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Abstract 

In this paper we consider the strategies a gambler may employ in situations such as 

horse races. We assume that the gambler knows which horses have odds which are 

favourable to him, that he wants to bet in such a way as to have a given positive 

expectation of win on a race, and that he wishes to minimise the probability of loss of his 

finite capital. We show that the best strategy is to bet on all the horses whose odds are 

favourable so as to minimise the probability of loss on a race. We further show that in 

order to achieve the last objective it is advisable to have a bet on a horse with fair odds, 

and at times on a horse with unfavourable odds, in addition to a bet on a horse with 

favourable odds. 



1. Introduction 

The use of probability theory to investigate gambling strategies is not new; see, 

Feller (1967), Dubins and Savage (1965), Epstein (1977), Breiman (1961), Rotando 

and Thorp (1992), to name just the more recent contributions. Feller showed that if a 

gambler's objective is to increase his initial capital of b by an amount a (a < b), 

and the game is unfavourable to him, then for even money games, and with a view to 

minimising the probability of his ruin, his initial bet should be for the amount a, and if 

he loses that game, his next bet should be for the amount 2 a etc; if the game is a 

favourable one, he should bet as small an amount as possible. Rotando and Thorp 

showed that if the game is for even money and the game is a favourable one, i.e. p the 

probability of win is greater than 1/2, then to maximise the exponential rate of growth 

of the gambler's capital, the gambler should bet the fraction p ~ q (where 

q = \ - p) of his capital at every stage of the play. Thus, by and large, the strategies 

explored so far are the ones the gambler may employ from game to game in a sequence 

of games. In this paper we consider the strategies a gambler may employ within each 

game. Horse racing provides the most common example of this situation. We shall 

discuss the subject matter in the context of horse racing, although the conclusions 

reached are valid in other contexts also. Within each game (i.e. a horse race), there are 

a number, (usually about ten to twenty) ofmutually exclusive betting propositions (i.e. 

horse to win). We shall assume that the gambler knows the probability of each horse 

winning the race, and is offered odds (or prices) about these, so that he can divide the 

race field into the three categories of favourable bets (i.e. those for whom the 

expectation is positive), fair bets (i.e. those for whom the expectation is zero) and 

unfavourable bets (i.e. those for whom the expectation is negative). We assume that 

there is at least one favourable bet in a game and that the gambler is able to bet on a 

sequences of such games. We also assume that he has a large but finite capital and is 

playing against an infinitely rich adversary, and that he wants to bet in such a way as to 

produce a given (positive) expectation of gain per race The question is: How should he 

bet if his objective is to minimise the probability of his ruin, i e. the exhaustion of his 

capital? 

For example suppose in a race there are, among others, three horses A, H, C. 
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The odds on offer against them winning the race are S/l, 3/1 and 3/1 and the 

probabilities ofthem winning are 0.2, 0.3 and 0.3 respectively. The question is: What 

bets should the gambler take? Should he bet on the horse with the most favourable 

odds? Or, should he hedge his bets, i.e bet on all the horses with favourable odds? 

We shall show that the probability of his ruin is a decreasing function of the 

probability of win on a race (with the same expectation of gain), so that in the situation 

above, rather than bet only on horse A, he should bet on all the three horses 

A, B, C. Indeed, if the gambler is in the fortunate position of being offered such bets 

in a succession of races, then with a capital of 80 dollars, betting 8 dollars on A above 

(to give an expectation of gain of $1.60 per race) makes the probability of his ruin equal 

to 0.4662, whereas betting amounts 2, 3 and 3 dollars on A, B and C 

respectively (to give the same expectation of $1.60 of gain on the race) would make 

the probability ofhis ruin considerably smaller, namely 0.00013. 

On the surface the difference between the two probabilities is striking. However, 

we need not seek too far to see the reason for this difference. The probability of ruin 

depends very heavily on the results of initial games, and the probability of getting a 

succession of losses when the loss probability per game is 0.8 is far greater than what it 

is when the loss probability per game is only 0.2. So, although there is not much to 

choose between the two alternatives when the capital is infinite, the difference between 

the loss probabilities per game has a telling consequence when the capital is finite. In 

practical terms the latter alternative has another advantage over the former. In practice, 

a gambler is more like to be able to correctly assess that in a particular race, the 

probability is 0.8 that the winner would come from one of the three horses A, B and C 

than correctly apportion probabilities of win to individual horses. 

If now, we suppose that the situation is such that there is only one favourable bet 

in the race, e.g. A fs above and he is offered a fair bet on horse D at even money in 

the same race, then betting 8 dollars each on both A and D would (if such 

situations were available in a succession of races) be preferable to betting 8 dollars on 

A alone as the probability of ruin now is 0.37729, somewhat less than 0.4662 for 
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betting on A alone. More surprisingly, the probability of ruin for the combination of 

A and an unfavourable bet in the same race (albeit only marginally unfavourable) is 

less than what it would be for the single bet on A . These conclusions go counter to 

our intuition that the gambler must avoid, at all cost, fair and unfavourable bets. 

The preceding discussion was by necessity a hypothetical one* in practice a 

gambler intending to bet on a succession of races in a season or a life-time would meet 

a large variety of betting propositions. What the above tells us is that, a gambler must 

consider only races where there is at least one bet which is favourable, should bet such 

that the probability of loss on a race is minimum, and to satisfy this objective, even take 

fair and unfavourable bets. 

2. Preliminaries 

Let X be the net gain made by the gambler on a game, be it with one bet or 

more than one bet and let E(X) = fj > 0. Let us assume we have a sequence of 

games, for each of which the net gain has a distribution, the same as that of X. Then 

we have a sequence {X,} of independent and identically distributed random variables, 

n 

and S„ = ^X, is the net gain after n games. If the gambler's capital is ^ > 0, 
I 

{S,}, (n = 0, 1, 2, 3, •••) is a random walk process with an absorbing barrier at 

-b, the gambler's ruin corresponding to the absorption of the random walk at ~b. A 

convenient tool used to derive the probability of absorption in random walks is Wald's 

Identity (Wald(1947)) which is as follows: 

Wald's Identity: Let A' be the first time the random walk is absorbed, and let 

M{0) be the moment generating function {m.g.f.) of X. Then, 

EU'^" A/d?)"] = 1 (1) 
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for all d such that \hA(9)\ i. \. 

We shall also need the following lemma, also due to Wald (1947). 

Wald's Lemma: Let X be a r. v. assuming both positive and negative values with 

E(X) * 0, and let A/(d) exist for 0 in an interval (c,d) around zero. Then there 

exists one and only one real dg ^ 0 such that M{0g) = i. 

For our case, with E(X) > 0, we have 0^ < 0, 

Putting 0 = Of, in (1), we obtain 

£[A'^] = 1. (2) 

Suppose now our r.v. X is integer-valued with the minimum value - 1 , and let b be 

an integer. Then, at absorption, the barrier -b is reached exactly, i.e. S^ = -b, 

and we have, from (2), the probability of the gamblers ruin, P(R) given by 

P(.R) = e*"". (3) 

We shall find it convenient to consider the probability generating function (p.g.f.) 

rather than the m.g.f. Putting e " = TJ, we have 

P(R) = 2„' (4) 

where z^ is the unique solution (0 < z„ < 1) of P(z) = 1. Suppose now the 

r.v. X is integer-valued with the minimum value -M, {M > 1), then at 

absorption, we have S^ = - b, -b-l, -b-2, •••, -b-M+\. For this case, it can 

be shown, using Rouche's theorem, that P(z) = 1 has M roots 
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Ty, {j = I, 2, •••, M) y\z} < l ) . One of the roots z,, say is the i 

above, lying between 0 and 1. Using the identity (I) with p.g.f. P(:) of X 

instead of the m.g.f. M{0), and putting z = ẑ  (y = 1, 2, •••, A/) and denoting 

Pr(Sfj = - i - / ' ) by /̂ , we have'the M equations. 

z' /?z;'"' = I 0 = 1.2,-, w)̂  (5) 
I = 0 

These can be solved for {/)}. F(/?) is then given by 

U-] 

pw = Z ^. 
/ = 0 

For the case M = 2, the root Zj is also real, (-1 < Zj < 0), and solving (5) we 

obtain 

r,^,^ -^^)^' - (̂  - '̂̂  '̂ . (6) 
Z, - Zj 

For our application, b is large compared to the negative values assumed by X, and 

hence we may neglect the overshoot over the barrier -b, and we have the approximate 

result. 

P(R) « z,' (7) 

Obviously the smaller \zj\ is compared to z,, the better is the approximation The 

closeness of the approximation may be seen by taking the example where X assumes 

values 2, I, 0, -2 with probabilities 0.3, 0.1, 0.4, and 0.2 respectively. We obtain 

z, = 0.7483 and Zj = -0.6022, and we notice that |zj| is fairly close to z. For 

b = 10, 15 and 20, the exact and approximate values of P(R) obtained from (6) 

and (7) are as follows: 
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b 

Exact 

Approximate 

10 

00496 

0 0551 

15 

0 0114 

0.0129 

20 

0.0027 

0.0030 

Let's now consider the scenario described in the introduction, where we have three 

horses A, B and C with odds 5/1, 3/1 and 3/1 and probabilities of win 0.2, 0.3 

and 0.3 respectively. Suppose, we bet the amounts 2, 3 and 3 dollars on 

A, B, and C. X now takes the values 4 and -8 v t̂h probabilities 0.8 and 0.2 

respectively, so that we have P(z) = 0.8r* + 0.2z"V Now, theprobability of ruinfor 

this case with b = iO, is the same as when we have b= 20 and X takes the 

values 1 and-2 with probabilities 0.8 and 0.2. The resulting pgf. is 

P(z) = 0.82 + 02z-\ and taking P{z) = 1, yields z, = 0.6404, z^ = -0.3904, 

The approximate and exact values of PiR) obtained from (6) and (7) are 0.00013 

and 0.00012 respectively. Table 1 gives the approximate values of P(R) obtained 

&om (7) with 6 = 80, for various possible combinations of bets for the game (all 

with the same expected gain on the game). We notice that P(R) decreases as q the 

probability of loss in the game decreases. 

Table J 

P(R), the probability, of the gambler's ruin with a capital of 80 units 

Betting 

Combination 

Prob of loss 

on a game, q 

P(R) 

Var(X) 

8 units on 

A only 

0.8 

04662 

368.64 

8 units on 

B (or C) 

only 

0.7 

0.2769 

215.04 

3.2 units on 

A, 4.8 units 

on B(orC) 

0.5 

0.0591 

92.16 

4 units 

each on 

B and C 

0.4 

0.0173 

61 44 

2 units on 

A, 3 units 

each on B, C 

0.2 

0.00013 

23.04 
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For large values of b, we may consider another relationship. The number of 

steps before absorption, A ,̂ is now large and since we are dealing with sums of random 

variables, we may use the Central Limit Theorem; see Bartlett (1955). This effectively 

means that we can assume that the net gain per game has a normal distribution. The 

relationship M{ff) = 1 gives us 6^ = - 2 / / / < T \ where cr' is the variance of X, 

and from (3) we note that P(R) is an increasing function of cr^, for a constant fj . 

Table 1 brings out this relationship between P(.R) and a ' fairiy strongly. 

In the general theory given in the rest of the paper, we shall assume that we have 

either a unit bet on the game (Section 3), or else the primary bet is of unit amount 

(Sections 4 and 5). In this case, the net gain is unlikely to assume integer values; 

however, with b large and the loss per game restricted to under 2, the overshoot is 

small and may be neglected, and P{R) is approximately given by (7). The problem 

therefore reduces to comparing the values of z, obtained for various betting strategies. 

The z, is the unique positive solution (0 < z, < 1) of P{z) = I, where the 

definition of p.g.f. is extended to include the case of non-integer valued random 

variables. 

3. Betting on Favourable Bete 

For betting only on favourable bets, we can bet amounts on each horse, so that 

the net gain is the same. Let p bethecombinedprobability ofa winand q{= 1 - p) 

the probability ofa loss. We shall assume the total bet is one unit; thus c the overall 

odds we are getting is such that cp - (f = ft > 0. The net gain is the random 

variable X assuming values c and -1 with probabilities p and q respectively. 

Here P{z) = p z ' " ' " " ' + ^ z ' ' . 

It is fairly easy to show that (for constant p) the root z, (0 < z, < 1) of 

P{z) = 1 decreases as p increases from 0 to 1. 
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First, we note that P(\) = 1, F'(\) = p > 0, P(z) ^ oo as z -> 0, and 

that P(z) is a convex function of z, (0 < z <, \). This means, there is a value 

2', (0 < z' < 1) at which P{z) attains its minimum value. Solving P'(z) = 0, 

-]pUf * I) 

, and we know z, < z'. Now, z, is a we have 
1 

I + fj - p 

function of p, implicity defined by 

p z / " - " " - ' +<7z,-' = 1. (8) 

Differentiating (8) with respect to p, we find 

1 III = z.'" *'"^ [ ] - ( ; . + !)/>-• log z . ] - l 
z, dp , _ / , _ ( ^ + i _p ) , ,< ' '^ ' )" 

The numerator above is of the form jf(l - logjc) - 1 where 0 < jr < 1. This is 

always negative. From the value of z' above, it is easy to see that the denominator 

above is positive for z, < z'. Thus dzjdp is negative, i.e. z, decreases as p 

increases. 

To see how z, depends on /v and p, we let z, = I - S, and use Taylor 

series expansion for the lefi hand side of (8) and solve for S. We obtain 

J: - Im 
(1 + ft)iq + ft) 

Thus, (for a constant value of ft) as p increases, S increases, and since 

P(,R) = z\, P{R) decreases. Table 2 gives the variation of the values of r, 

obtained from (8) with respect to values of q for ft = 0.05, 0.1, 0.2, and it can be 

seen that as q decreases, z, decreases. Indeed, since the ruin probability is an 

exponential function of z,, the effect on the ruin probability is very much greater. 
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r 
Table 2 

r, values for values of q and // for favourable games. 

Ml 

0.05 

0.10 

0.20 

0.2 

0.5145 

0.3458 

0.2183 

0.2 

0.7163 

0.5640 

0.4101 

0.3 

0.8156 

0.6966 

0.5556 

0.4 

0.8744 

0.7846 

0.6667 

0.5 

0.9132 

0.8469 

0.7535 

0.6 

0.9407 

0.8932 

0.8229 

0.7 

0.9612 

0.9291 

0.8795 

0.8 

0.9770 

0.9576 

0.9265 

0.9 

0.9897 

0.9808 

0.9662 

4. Betting on an additional Fair Bet 

Suppose now there is only one favourable bet in a race with probability of win p 

and expectation // > 0, so that the odds offered are given by 

c = (I + p) / p - I. Let us assume we have an additional fair bet in the race with 

probability of win p' i.e. the odds are q' / p', where q' = I - p'. Whatever 

amount x we have on the fair bet leaves our expectation of the net gain unchanged. 

Betting a unit amount on the favourable bet and an amount x units on the fair bet, the 

net gain X has the distribution 

X 

Pr 

c - X 

P 

xq'/p' - 1 

P' 

-] - x 

\- p- p' 

To minimise the probability of ruin by betting on this game (and successive such games), 

we should take that value of x such that the root z, (0 < z, < 1) of the resultant 

equation P(z) = 1, i.e. 

pz'" + p'z"' -z"' + \-p-p- = 0 (9) 

takes its minimal value. 
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Putting z = \ - S and using Taylor series expansion for the left hand side of 

(9), we obtain 

2p 
c(,c + \)p -2x + ^^q'/p' 

For given c and p, the maximum value of S is obtained when x = p' I q'. 

Substituting the value of x in (9) we solve for z. Table 3 gives the z, values 

obtained for n = 0.1, 0.2, p = 0.1, 0.2, 0.3, 04, 0.5 and 

p' = 0.1, 0.2, 0.3, 0.4. The required 2, values are those which correspond to the 

case u = 0. The corresponding z^ values for the same p with only favourable bets 

is given in each case. From the table we note, for example, that for /i = 0.2, the 

single favourable bet at p = 02 gives z, = 0.9265. However, with the additional 

fair bet at p' = 0.5, yields r, = 0.9071, so that with * = 40, P(R) decreases 

from 0.04723 to 0.02026. 

We note that as p' increases the value of z, decreases. So if an additional fair 

bet is to be taken,the shorter the odds the better it is. Ideally, of course, we should take 

a fair bet at p' = \ - p, but quite obviously, in practice this would be unattainable, as 

it would mean there is no loss, only a possibility of a gain. 

5. Betting on an additional unfavourable bet 

Suppose now we have, as before, a favourable bet of one unit with probability of 

win p, and expectation /i > 0. Let us assume we have in addition an unfavourable 

bet with probability of win p', and let us assume the odds offered are q'I p' - u to 

1, so that the unfavourability factor is u > 0. It is obvious that to maintain the 

expectation of the total transaction of the two bets to p , we need to increase the 

amount on the favourable bet. Let x > 0 be the increase of the amount on the 

favourable bet and y the amount on the unfavourable bet. Since the loss on the 
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unfavourable bet (due to its unfavourability) has to be compensated by the extra gain on 

the favourable bet, we have the relation p'uy = fu. The net gain X on the game 

has the probability distribution 

X c(l + x) - y (q'lp' - « ) > ' - (1 + x) -\ - x - y 
Pr. p p' \- p - p' 

so that the equation P{2) = 1 becomes 

p^O*.Xi*c) + p.^l\','-')y _ ^i^'^y + \- p - p' = 0 (10) 

As before, to find the values of x and ^ so that the root z^ (O < r, < l) of (10) 

takes its minimum value, we let z = \ - S, expand the left hand side of (10) by a 

Taylor series expansion and solve for S intennsof ft, p , p ' , c, x, y and u. The 

maximum value of S is obtained when 

_ -(c + l)(2c + \)pp'uln + 2 + p'u{\ - ^) //i 
^ ~ 2[pp''u\\ + cf/fi' + (1 - p'uflp' - (fj +p'uf/M'] 

Using the value of ^ and x given by x = p'uy/fx in (10) we solve for z. The 

values of z, for p = 0,1, 0.2, p = 0.1, 0.2, 03, 0.4. p' = 0.1, 0.2, 03, 0.4. 0.5, 

and u= .01. OS are given in Table 3. The asterisks * in the table correspond to the 

cases where the values of x and y are negative, and therefore not admissible. The 

symbols # correspond to the cases where p + p' = \; these cases are obviously not 

realizable in practice. 

From Table 3 we note for example that for /j = 0.1, the single favourable bet at 

p - 04 yields z, = 08932. and with an additional fair bet at p' = O.S (the case 

1/ = 0) yields z, = 0.7S10. However, if the additional bet is an unfavourable bet with 

p' = 0.5 and tt = 005, we have z, = 0.8410, sothatwith b = 20, thevaluesof 

F(R) for the three cases above are 0.1045. 0.0033. and 0.0313 respectively. 
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Table 3 

z,, Values/or values of p, p', fx.u for additional fair and unfavourable bets. 

u P' 

0 

0.01 

0.05 

u P' 

0 

0.01 

0.05 

u P' 

0 

0.01 

0.05 

u P' 

0 

0.01 

0.05 

. . '' 
0 

0.01 

0.05 

p = 0.1 

fi = 0.1 (z, = 0.9807) i 

0.1 0.2 .0.3 0.4 0.5 

.9805 .9802 .9799 .9793 .9785 

.9806 .9804 .9803 .9802 .9802 

.9807 .9808 • • » 

p = 0.2 

11 = 0.1 (r, = 0.9575) 

.1 .2 .3 .4 .5 

.9565 .9550 .9530 .9500 .9451 

.9565 .9554 .9541 .9524 .9500 

.9569 .9568 .9571 * • 

p = 0.3 

/J = 0.1 (z, = 0.929l) 

.1 .2 .3 .4 .5 

.9259 .9216 .9153 .9051 .8858 

.9261 .9224 .9173 .9097 .8959 

.9267 .9250 .9240 .9236 .9241 

p = 0.4 

/I = 0.1 (r, = 0.8932) 

.1 .2 .3 .4 .5 

.8860 .8755 .8587 .8277 .7510 

.8863 .8766 .8620 .8357 .7709 

.8872 .8809 .8738 .8636 .8410 

p = 0.5 

fi = 0.1 (r, = 0.8469) 

.1 .2 .3 .4 .5 

,8316 .8075 .7642 .6627 # 

.8863 .8766 .8620 .8357 « 

.8872 .8809 ,8738 ,8636 # 

fj = 0.2 (r, = 0.9662) 

0.1 0.2 0.3 0.4 0.5 

,%58 ,%53 .9647 9638 .9626 

.9658 .9655 .9651 .9647 .9643 

.9660 • » » « 

fj = 0.2 (zj = 0.9265) 

.1 .2 .3 0.4 0.5 

.9248 .9225 .9193 .9146 .9071 

.9249 .9229 .9203 .9168 .9115 

.9252 .9242 ,9237 .9236 .9240 

/J = 0.2 (z, = 0.8795) 

.1 ,2 ,3 0.4 0.5 

,8747 .8682 .8588 .8438 .8165 

.8749 .8689 .8605 .8476 .8246 

.8754 .8712 .8667 .8612 .8530 

ft = 0.2 (z, = 0.8229) 

.1 .2 .3 0.4 0.5 

.8124 .7974 ,7741 .7330 ,6404 

,8126 .7983 .7766 .7389 .6537 

.8133 .8018 .7863 .7615 .7057 

fi = 0.2 (z| = 0.7535) 

.1 ,2 .3 0.4 0.5 

.7327 .7011 .6473 .5343 # 

.7329 .7023 .6508 .5425 # 

.7339 .7071 .6645 .5754 # 



13 

References 

Bartlett, M.S. (1955), An introduction to stochastic process. Cambridge University 

Press, Cambridge. 

Breiman, L. (1961),...Optimal gambling systems for favourable games. Fourth Berkely 

Symposium on Probability and Statistics. I.. 65-78 

Dubins, L.E and Savage, L.J. (1965), How to gamble if you must. McGrawHill, 

N.Y. 

Epstein, R.A. (1977), The theory of gambling and statistical logic. Academic Press, 

San Diego. 

Feller, W. (1967), An introduction to probability theory and its applications. Vol. 1.. 

J. Wiley, N.Y, 

Rolando, L.M. and Thorp, E.G. (1992), The Kelly Criterion and the stock market, 

Amer. Math. Monthly, 99, 922-931. 

Wald, A. (1947), Sequential Analysis. J. Wiley, NY. 



STATISTICS RESEARCH REPORTS 

(239] Spectral Analysis of Aggregates and Products of Time Series Construed of Variable Failure 
Rates. May 1994. N. Singh. 

(240) A Modiflcation Move-to-front Scheme with Markov dependent requests. July 1994. R.M. 
Phatarfod. 

(241) An Analysis of Categorical Repeated Measurements in the presence of an external factor. 
I July 1994. P.I. McCloud and J.N. Darroch. 

[242] OnanOutbreakof rotavirus Test for the comparison of two or more spectra. October 1994. 
N. Singh and E.A. Maharaj. 

|243] Homogeneity of Variance Test for the comparison of two or more spectra. October 1994. 
N. Singh and E.A. Maharaj. 

|244] Easy-to-Calculate Predictois for Seasonal and Nonseasonal Fractionally Integrated ARMA 
Models. October 1994. M.S. Peiris and N. Singh. 

|24S] New Control Limits for Quality Measurements following ARIMA. 

(246) Sample Quantiles in Statistical Packages. February 1993. R.J. Hyndman and Yanan Fan. 

(247) Control Charts for Stationary Vector ARMA Processes. April 1995. N. Singh. 

(2481 

(249] Time Series Modelling of the Kobe-Osaka Earthquake Recordings. Dr N. Singh and D. 
Tambubolon. 

[2S0] Segregating Sites in a Sample of Chromosomes in a Population Genetics Model with Gene 
Conversion and Mutation. M. Bahio 

(231] Tattslotto Numbers and the Perception of Randomness. RM. Clark. December 1993 

(232] Simulation Results for Anchored Clones. W.J. Ewens. January 1996. 

(233) Ages of Segregating Sites in the Inflnitely-Many-Sites Model. Russell Thomson. 
January 1996. 

(234) Nonparametric autocovariance function estimation. R.J. Hyndman and M.P. Ward. 
February 1996. 

(233] Are your Tattslotto Numbere Overdue? R.M. Claik. March 19%. 

(236) The Comparison of Two Stationaiy Time Series Using the Moving Blocks Bootstrap. 
E.A. Maharaj*, A.R. Padmanabhan and N. Singh. March 1996. 

(237) Ages of Segregating Sites in the Inflnitely-Many-Sites Model. Russell Thomson. March 
19%. 

(238] Quantum Operators in Classical Probability Theoiy: IV Quasi-Duality and Thinnings of 
Interacting Particle Systems. A.W. Sudbuiy. March 19% 

[239] Betting Strategies in Horse Races. RM. Phatarfod. April 19% 



MONASH UNIVERSITY DEPARTMENT OF MATHEMATICS 

STATISTICS RESEARCH REPORTS 

The following is a list of papers published Jrom 1992 in this series. Copies of the reports are 
available on request firom the authors. 

|2I5] Identification of an ARMA process with nonstationaiy white-noise. March 1992. N. 
Singh. 

(216] A note on Singh's test for the Equality of Location Parameters of k exponential 
distributions. May 1992. N. Singh. 

|2I7] A New and Simple Approach to Identification of Bivariate ARMA Processes with 
nonstationaiy innovations. June 1992. N. Singh 

[218] A New Approach to Identification and Prediction for Nonseasonal Vector ARMA Processes 
with nonstationaiy innovations. November 1992. N. singh 

(219) Assessing the evidential value of DNA profiles matching without using the assumption of 
independent loci. December 1992. A.W. Sudbuiy 

|220] Assessing the evidential value of DNA profiles matching without using the assumption of 
independent loci. March 1992. A.W. Sudbuiy, J. Maiioompoulos & P. Cunn. 

(221 ] Upper Confidence Bounds for the Probability of a Match by chance. December 1992. 
N. Singh. 

[222] Recursive Estimation of Time-dependent Reliability. December 1992. N. Singh. 

|223] The use of a Square Array in Blood Testing. March 1993. R.M. Phatarfod and A.W. 
Sudbury. 

[224] Waiting Time Distributions in the Final Step of the Coalescent Process in an Island Model. 
April 1993. H.B. Nath. 

[223] Statistical Laws of Decision by Croups 1, The law of cubic proportion in elections. April 
1993. R.M. Phatarfod and M. Constantinou. 

[226] Statistical Laws of Decision of Groups II. The square root law of the resolute minority. 
April 1993. R.M. Phatarfod. 

[227] The Geometricity of the limiting distribution in queues and dams. April 1993. R.M. 
Phatarfod. 

[228] A Statistical Model for Some Achievements in Sport. April 1993. R.M. Phatarfod. 

[229] The effect of seasonality on reservoir size. April 1993. R.M. Phatarfod. 

[230] On the Transition Probabilities of Move to Front Scheme. April 1993. R.M. Phatarfod. 

(231] The migration process in the genealogy of neutral genes in a two-island model. N.B. Nath. 
May 1993. 

[232] On the Move-to-front Scheme with Markov Dependent Requests. R.M. Phatarfod and David 
Dyte. June 1993. 

[233] An Appraisal of Fractional Modelling. N.Singh. September 1993. 

(234] Matching Probabilities without the Assumption of Independence. November 1993. A.W. 
Sudbury. 

[23SJ Stochastic Modelling of Aggregates and Products of Variable Failure Rates. N. Singh. 
November 1993. 

(236] Estimation in an island model undergoing a multidimensional coalescent process. 
November 1993. H.B. Nath and R.C. Grifiilhs. 

[237] Quantum Operators in Classical Probability Theory : II. The Concept of Duality in 
Interacting Particle Systems. November 1993. Peter Lloyd and Aidan Sudbuiy. 

(238] A New Method for Flood Frequency Analysis. May 1994. 




