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Abstract: Clustering is one of the most basic processes that are performed in simplifying data and expressing 
knowledge in a scientific endeavor. Clustering algorithms have been proposed for the analysis of gene 
expression data with little guidance  available to help choose among them however. Since the output of 
clustering is a partition of the input data, the quality of the partition must be determined. This paper presents 
fuzzy extensions to some commonly used clustering measures including the rand index (RI), adjusted rand 
index(ARI) and the jaccard index(JI)  that are already defined for crisp clustering. Fuzzy clustering, and 
therefore fuzzy cluster indices, is beneficial since it provides more realistic cluster memberships for the 
objects that are clustered rather than 0 or 1 values. If a crisp partition is still desired the fuzzy partition can 
be turned in to a crisp partition in an obvious manner. The usefulness of the fuzzy clustering in that case is 
that it processes noise better. These new indices proposed in this paper, called FRI, FARI, and FJI for fuzzy 
clustering, give the same values as the original indices do in the special case of crisp clustering. Through use 
in fuzzy clustering of artificial data and real data, including gene expression data, the effectiveness of the 
indices is demonstrated. 
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1 Introduction 
 
To understand complicated biological systems, huge quantities of gene expression data has been generated by 
researchers[1, 2]. Clustering is a useful exploratory technique for analysis of this data  [3, 4].  The first stage of 
knowledge acquisition and reduction of complexity concerning a group of objects is to partition or divide the 
objects into groups based on their attributes or characteristics. Partitioning objects is one of the most 
fundamental modes of understanding and learning [5] . This process, called clustering [6], is a form of 
unsupervised learning whereby similar objects are “put into” the same group or cluster. For example gene 
clustering is useful for discovering groups of correlated genes potentially co-regulated or associated with a 
disease such as cancer.  The objective of clustering algorithms is to partition the genes into groups exhibiting 
similar patterns of variation in expression level [3].  
Partitions can be crisp or fuzzy although a crisp partition is really a special case of a fuzzy partition.  In a fuzzy 
partition the elements belong to the subsets in a partition to varying degrees whose values lie in [0.1]. The 
subsets are fuzzy while the total set that is partitioned is crisp.  A fuzzy partition induces a crisp partition if the 
maximum membership value for each object over the various clusters is replaced by a 1 and all other values are 
replaced by a 0. Even if the objective is to obtain a crisp partition it is still useful to use a fuzzy clustering 
process as an improved way of handling noise. 

                                                            
1 Department of Mechanical  and Mechatronics Engineering  (Visiting Professor) University of Stellenbosch, Private Bag X1, Matieland 
7602, South Africa. and Professor  Department of Computing Science ,Thompson Rivers University  900 McGill Road Kamloops, BC V2C 
5N3Canada  E-mail: rkbrouwer@ieee.org 

 
M. Chetty, S. Ahmad, A. Ngom, S. W. Teng (Eds.): PRIB2008, 
Supplementary Conf. Proc., pp.104-114, 2008.  
(c) PRIB 2008



 

 To permit comparison of clustering techniques a measure of clustering quality is required. Comparisons of 
clustering methods[7] are required for example in genomics. The quality of a partition can be measured in 
various ways.  The measures discussed here require knowledge of the correct class of the objects in order to 
calculate a quantitative quality measure of the clustering result. 
The commonly accepted measures of crisp clustering quality, based on comparing a found partition to a given 
partition, to be discussed here, are defined in terms of 4 parameters a,b,c, and d as shown  in reference [8] and 
repeated here.In this case we have:  a: number of object pairs whose elements are in the same cluster in partition 
P1 and also in P2; b: number of object pairs whose elements are in the same cluster in P1 but are in  different 
clusters in P2; c: number of object pairs whose elements are in the same cluster in P2 but are in  different 
clusters in P1. d: number of object pairs whose elements are in different clusters in P1 and are also in different 
clusters in P2. They are essentially counts of pairs of numbers in the crisp case. In this paper they are redefined 
so that they can be used for fuzzy partitions and yet yield the same results for crisp partitions.  
The rand index(RI)[8] is defined as  

 
a + d

RI
a + b + c + d

=                                                              (1) 

It lies in [0, 1] with 0 indicating that the two partitions do not agree on any pair of elements and 1 indicating that 
the two partitions are exactly the same.   
The adjusted rand index (ARI) [9] corrects the RI to give a constant expected value of 0 and may be calculated 
according to the formula (2). 
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ARI lies in [-1, 1]. To permit direct comparison with RI, ARI can be converted to 
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of information. In that case it also lies in [0, 1]. 
Another commonly used method for the comparison of partitions is the Jaccard index(JI) [10] defined as: 

 
a

JI =
a + b + c

                                                                                     (3) 

 
The Jaccard index lies in [0, 1]. When it is 0 no two elements are together simultaneously in partition P(1) and 
partition P(2) . If the partitions P(1) and P(2) are equivalent then b=c=0 and the Jacquard index is 1. It makes use 
of less information than either RI or ARI. It well known in the clustering community that for comparing two 
crisp partitions the adjusted rand index possesses the most desirable properties [9, 11, 12]. 
In this paper a relationship called bonding is defined between two objects that describes the degree to which the 
two objects  are in the same cluster or class. In case of crisp partitions this is always 0 or 1. Two partitions may 
then be compared on the basis of the bonding similarity in case of both crisp and fuzzy clusters 
To allow variable names of more than one letter and thereby permit variable names to be neumonic, all 
operations are denoted by explicit operators. Multiplication, for example, is defined explicitly using the operator 
×. Implicit multiplication will not exist and na for example is just a variable name. Names of arrays are in bold 
font. Rank-1 array variables are in lower case and names of arrays of rank greater than 1 are in capital. Ai,.  and 
A.,i  and means the ith row and ith column repectively.  Division and multiplication between arrays are generally 
between the components of the arrays.  
 
2 Bonding of Objects in a crisp or fuzzy partition 
Partitioning induces a relationship between objects in that two objects are related if they are in the same set of 
the partition. We call this relationship a bonding.  This can be extended to fuzzy partitions as follows. 
 
Definition 1Bonding between objects in a fuzzy partition 
Given the  membership vectors for the objects and the fuzzy partition a measure of bonding between two 
elements with fuzzy membership vectors  v and w  is given by the cosine correlation (cc) 

⎡ ⎤= ∈ ⎣ ⎦×
i( , ) 0,1b v wv w

v w
                                                    (4) 

 
The cosine correlation (abbreviated as cc below) between two lists is often used to measure the similarity 
between two vectors. (Correlation based similarity measures have been widely used in the micro-array literature 
[4, 13].)  A bonding matrix, B, for a fuzzy partition or fuzzy membership matrix, M, is defined by 
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Definition 2The bonding matrix B for a partition defined by membership matrix M is  
  ,. ,.( , ) , 1..i, j i jcc i j ne= =B M M  

cc means cosine correlation. ,. ,.,i jM M  correspond to the ith and jth row of M  respectively corresponding to 
membership values for  the ith and jth object respectively. 
 
 
The rows of M, Mi,., correspond to objects and columns correspond to clusters. Here we see that B is the 
similarity matrix for the membership vectors in a fuzzy partition.  If a,b,c, and d are defined as in Definition 3 
we get  the same result for the commonly known indices, a, b, c, and d, as they are defined in [8].   
 
Definition 3  Values of a,b,c, and d for fuzzy partitions and as a special case also for crisp partitions are 

  ( )( )= × 2(1) Ta g B B                                                                    (6)

  ( ) ( )( )= − ×1 2(1 ) Tb f B B                                                             (7)

  ( ) ( )( )= × − 21 (1 )c f B B                                                                (8)
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f(X)  represents the function of a square array, X,  as defined in (10). 
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g(X)   represent the function of a square array of dimension, n, as defined in (11). 
 

 
,

,( )
2

i j
i j

n
g

−

=
∑ X

A                                                                         (11)

The product between the matrices is the component wise product.  
 
 
We now have a definition of the parameters for the RI, ARI, and JI indices for fuzzy partitions and crisp 
partitions that gives the same values for the indices in the case of crisp partitions as before. The new indices will 
be referred to as FRI, FARI, and FJI. 
 
3 Clustering method to which the quality measures are applied 
Usefulness of the indices, FRI, FARI, and FJI  may be demonstrated through use in fuzzy clustering. The 
measures are tested by producing fuzzy partitions through fuzzy c-means (FCM) [6, 14] , the traditional fuzzy 
clustering method that will briefly be described next.  The indices are calculated by comparing two partitions, 
one is a class partition and the other is the clustering partition obtained during clustering.   
FCM consists of repeatedly determining prototypes for the clusters to be found and calculating membership 
values for the objects in the clusters. Every attribute value in a prototype is the weighted mean over all members 
of the data set to be clustered, with weights equal to a power of the degree to which a pattern belongs to a 
cluster.  
Formally, let the weights or membership values for clusters be designated by Mp,k; the membership of pattern p 
in cluster k. Also let Yp,a represent the parameters for the attribute values themselves within objects. The ath 
attribute of the prototype for cluster k is  
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Here, the subscripts have the following meaning  
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identifies patterns

identifies attributes

identifies clusters

p = 1..np

a = 1..na

k = 1..nk

 

 
 
The cluster membership values are calculated in terms of distance between object representations and the 
prototypes as in  
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Dp,k is the distance between object  p’s representation  and prototype k. m is a measure of fuzziness in the 
clustering.  There are two popular similarity metrics for example in the gene expression analysis domain for 
clustering [3] : Euclidian distance ( for example, [1]) and correlation coefficient ( for example [4]). Here the 
Euclidian distance is used in performing the clustering.  
 
4 Simulations 
To determine the usefulness of  FRI, FARI, and FJI  they are applied in the fuzzy clustering of artificial and real 
data. The indices are evaluated both during clustering and at the end of clustering. Data for which classes are 
known are clustered and the partition due to clustering is compared to the class partition using the measures 
defined in this paper.  As clustering proceeds the values of the quality measures are recorded. The values 
obtained in this way are then examined for sensibility.  

Three different partition matrices are considered in each case. There is the class partition matrix or discriminant 
matrix, the fuzzy membership matrix and the fuzzy membership matrix induced crisp partition matrtix. The 
crisp membership matrix is obtained from the fuzzy membership matrix by replacing maximums in each row by 
one’s and the other components by zeroes. A confusion matrix [8], C, can be obtained for two crisp partitions as 
defined by  

  , # 1 2i j objects simultaneously in class i of partition and class j of partition=C                        (14) 

In the comparison tables, FARI is replaced by 
1

2
FARIFARI' +

=  to map its values into the same range as the 

others. In the comparison tables cp means class partition, fcp means fuzzy cluster partition, and ccp means crisp 
cluster partition. 

4.1 Values of indices obtained during clustering of artificial data 

 In the artificial data case each data set is generated from four bi-variate normal distributions. Each of the four 
bi-varite distributions generates a class which is used in the comparisons. The data sets vary in the 
distinctiveness of the clusters, as can be seen from the plots, from having very distinct clusters to having no 
apparent partition at all.  

4.1.1 Data sets 

4.1.1.1 Data set 1  
The parameters of the bi-variate normal distributions for data set 1 are listed in Table 1 below.  The class of a 
point (feature vector, pattern, object etc.)is defined by the bi-variate distribution that generated the point. 
 

Table 1 Parameters of bi-variate normal distributions for the first data set 
 
class X mean Y mean X variance Co variance Y variance 

1 1000 4000 400 10 400 
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2 4000 1000 400 10 400 

3 4000 4000 400 10 400 

4 1000 1000 400 10 400 

 
A plot of data set 1 is shown in Figure 1. 
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Figure 1 Plot of data set 1 

4.1.1.2 Data set 2 
Data set 2, as plotted in Figure 2, is produced by the same bivariate normal distributions as data set 1 except that 
the x and y variances are now 700 to make the classes less distinct geometrically.  A plot of the data set appears 
in Figure 2. 
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Figure 2 Plot of data set 2 

4.1.1.3 Data set 3 
Data set 3 is produced by the same bivariate normal distributions as data set 1 except that the x and y variances 
are now set to  10000.  A plot of the data set appears in  Figure 3. 
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Figure 3 Plot of data set 3 

4.1.2 Results obtained during fuzzy clustering 

In this case the correct fuzzy membership matrix to include in the comparison is not known unless the actual 
clusters are an infinite distance apart so that in effect each element belongs to only one cluster. In the case of the 
first data set this is almost true and we can use the class partition for comparison as before.  The class of a 
member is defined by the bi-variate normal distribution that generated the member as before. The curves in the 
following plots from top to bottom at the y axis correspond to FRI,  FJI,  and FARI. 

4.1.2.1 Fuzzy clustering of data set 1 
A  plot of the 3 parameters FRI,  FJI,  and FARI as FCM clustering proceeds, is shown in  Figure 4 for data set 
1. Each parameter reached the value 1 showing that the class partition was equivalent to the fuzzy cluster 
partition. The classes were sufficiently separated so that the discriminant matrix was almost equal to the correct 
membership matrix. 
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Figure 4 A plot of the 3 parameters FRI,  FJI,  and FARI as FCM clustering proceeds for data set 1 using fuzzy clustering 

 
Table 2 Values of indices at the end of fuzzy clustering for data set 1 

 
 FRI FARI’ FJI 
cp vs fcp 0.99983 0.999769 0.9993 
cp vs ccp 1 1 1 
 

Table 3 Confusion matrix for fuzzy clustering of data set 1 
 
cluster            class     0 1 2 3 
0 25 0 0 0 
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1 0 0 25 0 
2 0 25 0 0 
3 0 0 0 25 
 
 
The parameters do not reach 1 because the correct membership matrix is not the same as the discriminant matrix 
used in the comparison. 

4.1.2.2 Fuzzy clustering of data set 2 
For data set 3 a plot of the 3 parameters FRI,  FJI,  and FARI as FCM clustering proceeds, is shown in Figure 5. 
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Figure 5 plot of the 3 parameters FRI,  FJI,  and FARI as fuzzy c-means clustering proceeds for data set 2 using fuzzy 

clustering  
 
 

Table 4 Values of indices at the end of fuzzy clustering for data set 2 
 
 FRI FARI’ FJI 
cp vs fcp 0.975 0.967 0.905 
cp vs ccp 1 1 1 
 

Table 5 Confusion matrix for fuzzy clustering of data set 2 
 
cluster            class     0 1 2 3 
0 1 0 25 0 
1 24 0 0 0 
2 0 1 0 25 
3 0 24 0 0 

4.1.2.3 Fuzzy clustering of data set 3 
For data set 3 a plot of the 3 parameters FRI,  FJI,  and FARI as FCM clustering proceeds, is shown in  Figure 
12.  
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Figure 12 A plot of the 3 parameters FRI,  FJI,  and FARI as fuzzy c-means clustering proceeds for data set 3 using fuzzy 

clustering 
 
 
The curves demonstrate that the correct class membership matrix is not the class discriminant matrix because 
classes are far from being geometrically distinct in this case. 

Table 6 Values of indices at the end of fuzzy clustering for data set 3 
 
 FRI FARI’ FJI 
cp vs fcp 0.593 0.491 0.148 
cp vs ccp 0.614 0.492 0.138 
 

Table 7 Confusion matrix for fuzzy clustering of data set 3 
 
cluster class            0 1 2 3 
0 4 4 5 3 
1 7 3 5 6 
2 7 10 9 11 
3 7 8 6 5 
 

4.2 Values of  indices obtained during fuzzy clustering of iris data 

In this simulation a data set with 148 random samples of flowers from the iris species setosa, versicolor, and 
virginica collected by Anderson [15] was used. There are 50, 50 and 48 observations respectively for the species 
for sepal length, sepal width, petal length, and petal width in cm. This dataset was used by Fischer [16] in his 
initiation of the linear-discriminant-function technique.  
A visual representation of the values of the indices as clustering proceeds is provided in  

Figure 14. The curves from top to bottom at the y axis in the following plots correspond to FRI,  FJI,  and FARI 
respectively. 
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Figure 14 Plot of indices FRI, FARI, and FJI as clustering proceeds for iris data set with 3 clusters 
 
       
 

Table 8 Values of indices at the end of fuzzy clustering for iris data set  
 
 FRI FARI’ FJI 
cp vs fcp 0.876 0.8625 0.694 
cp vs ccp 0.879 0.865 0.696 
 

Table 9 Confusion matrix for fuzzy clustering of iris data set  
 

cluster           class       0 1 2 
0 0 48 14 
1 0 2 34 
2 50 0 0 

 
The fact that the crisp clustering induced by the fuzzy clustering does not completely match the class partition 
does not mean that the clusters that were obtained  by the clustering process are of low quality and due to a poor 
clustering method. It may just be due to the fact that the classification is not compatible with measures of 
distances between the feature vectors. It may be due to feature vectors being poor representations of the objects 
that they represent. 
 

4.2.1 Fuzzy clustering of a gene expression data set with 2 clusters 

The data matrix pertaining to the article by Alon et.al. [17] contains the expression of  2000 genes with highest 
minimal intensity across 62 tissues. Gene expression in 40 tumour and 22 normal colon tissue samples was 
analyzed [18] . In this simulation the gene expression values are treated as values of attributes with each gene 
treated as an attribute. The tissue samples are the objects that are clustered. Each object vector is normalized so 
that the sum over its components is zero and the magnitude of the vector is one.  
Following is the result of applying FCM clustering. As before the curves from top to bottom along the y-axis 
correspond to FRI, FJI and FARI respectively. 
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Figure 6 Plot of indices FRI, FARI, and FJI as clustering proceeds for gene expression data set 

 
 

Table 10 Values of indices at the end of fuzzy clustering for gene expression data set  
 
 FRI FARI’ FJI 
cp vs fcp 0.305 0.514 0.122 
cp vs ccp 0.518 0.5305 0.132 

 
 

Table 11 Confusion matrix for fuzzy clustering of gene expression data set 
 

cluster        class T N 
N 6 18 
T 34 4 

   
We have labelled  the  clusters  on the basis of the maximum in each row which is possible since each class  has 
a unique cluster maximum . We get the result of : false positives is 6 out of 40  or 15% and , false negatives is 4 
out of 22 or 18%. To obtain better results more pre-processing is required in terms of gene selection possibly. 
 
5 Conclusion 
The simulations have shown that the fuzzy extensions of the standard cluster quality measures, RI, ARI and JI  
to FRI, FARI, and FJI respectively, proposed in this paper give desired results. Of these 3, FARI is most 
meaningful in the fuzzy case just as ARI  is in the strictly crisp partition case.   
In this paper, partitions obtained by fuzzy clustering, are compared to class partitions. There are two reasons 
why the class partition may not match the cluster partition. One is that the clustering process itself is an 
approximation. Another more serious reason is that the class partition only defines the source of the data. 
Classes of elements or objects, that are represented by feature vectors, are not assigned on the basis of distance 
between the feature vectors while assignment of elements to clusters is based on distance. Thus a low value for 
an index may mean no more than that the original data is not very separable in terms of the distance measure 
used in clustering.  
In general the correct partition is not known since clustering is unsupervised.  The indices in this paper however 
only measure similarity between two partitions whatever their source. Unless the clusters are very distinct in the 
original  data, the correct partitioning in the fuzzy case is not known and it is difficult to determine the 
parameters for the indices.  
Of course there are also measures that do not require comparison to a correct partition. These will be discussed 
in another paper [19]. 
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