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Abstract. Visual classification method is introduced as a learning strat-
egy for pattern classification problem in bioinformatics. In this paper, we
show the strong convergence property of the proposed method. In par-
ticular, the method is shown to converge to the Bayes estimator, i.e.,
the learning error of the method tends to achieve the posterior expected
minimal value. The method is successfully applied to some practical dis-
ease diagnosis problems. The experimental results all verify the validity
and effectiveness of the theoretical conclusions.

1 Introduction

Pattern classification is one of the fundamental problems in pattern recognition
in general and bioinformatics in particular. It aims at finding a discriminant rule
from a set of experiential data with multiple labels generated from an unknown
but fixed distribution, and then, according to the rule found, categorizing any
new input data. Pattern classification has attracted extensive attention in recent
decades due to its wide-spread applications in human, engineering and medical
sciences. Typical examples are, for instance, handwritten digit recognition[1],
face detection[2], bio-sequence analysis[3], structure prediction[4], drug design[5]
etc.

Visual classification method (VCM) is one of the latest methods for pattern
classification[6, 7]. The method is constructed by mimicking the human sensation
and perception principle. It, to a certain extent, can implement effective heuristic
categorization of patterns similar to the mechanism of human eyes. The main
aim of this research is to further propose the theoretical convergence property of
the VCM, and make applications in disease diagnosis. In particular, it is proved
that the classification discriminant function obtained by the VCM is convergent
to the Bayes estimator. That is, the learning error of the VCM tends to achieve
the posterior expected minimal value. This strong convergence property of the
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VCM is superior to other pattern classification methods, such as the well-known
support vector classification (SVC [8]), which only ensures the convergence of
the learning error of the obtained result to the minimal values of a pre-specified
learning machine (i.e., a function set). The performances of both methods in
disease diagnosis applications all confirm the theoretical conclusions.

In what follows, the general mathematical formulation of the classification
problem and a short review of the VCM is first made in Section 2. The theoret-
ical conclusions on the convergence property of the VCM are then proposed in
Section 3. Taking the SVC as a basis for comparison, the simulation results and
the applications in disease diagnosis are discussed in Section 4. A brief summary
of the paper is lastly given in Section 5.

2 Visual Classification Method

To facilitate our discussion, we first give the general mathematical formulation
of the classification problem. Since many multiple-label classification problems
can be transformed into a series of two-label problems, it is generally sufficient to
discuss the two-label classification problem. Let Dl = {xi, yi}l

i=1 be a given two-
label training data set which is independently generated from an unknown but
fixed distribution F (x, y) = F (y|x)F (x) defined on Z, where Z = X×Y , X ⊆ Rn

is the input (attribute) space, and Y = {−1, +1} is the output (label) space.
Given a family of preset indicator functions F = {fσ(x), σ ∈ Λ}, or equivalently,
a learning machine, the learning problem (precisely, the classification learning
problem) aims at determining an appropriate function fσ∗ from F by virtue of
the training set Dl such that fσ∗ has optimal classification capability for the
classification problem in a certain sense. The optimal classification capability
for the function fσ∗ in F can be mathematically expressed using the following
definitions:

The loss function L(y1, y2) (y1, y2 ⊂ Y ) is defined as:

L(y1, y2) =

{

0, if y1 = y2,
1, if y1 6= y2.

(1)

The risk functional (or risk) of fσ on Z is defined as

R(fσ) =

∫

Z

L(y, fσ(x))dF (x, y) =
1

2

∫

Z

|y − fσ(x)|dF (x, y) (2)

which is the expectation value of L(y, fσ(x)) over Z. A discriminant function
fσ∗ in F has optimal classification capability for the classification problem (or
equivalently, fσ∗ is an optimal discriminant function in F) if its risk is the min-
imization of the risks over the learning machine F . In these terms, the learning
problem can be more precisely defined as finding the optimal discriminant func-
tion fσ∗ in F such that

R(fσ∗) = min{R(fσ) : fσ ∈ F} := OPTF (F). (3)
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The quantity in (3) is often called the minimal risk of the machine F (with
respect to F ). Any implementation scheme to find (or approximate) the optimal
discriminant function of F is called a learning strategy. A learning strategy L is
normally designed on the basis of the given training sample set Dl. It can thus
be viewed as a mapping from the sample set Dl into the learning machine F . A
learning strategy L is said to be a learning algorithm if for any ε ∈ (0, 1) and
any δ ∈ (0, 1), there is an integer l0(ε, δ) such that whenever l > l0(ε, δ),

P{R(L(Dl)) < OPTF (F) + ε} ≥ 1 − δ (4)

where L(Dl) is the discriminant function generated from the learning strategy.
In this case, we also say that the learning strategy is convergent. For instance,
the SVC is one of the typical convergent learning strategies[8].

It shall be noted that OPTF (F), as defined in (3), is not the essential minimal
risk of all nontrivial discriminant functions. The real one is the Bayesian risk,
i.e.,

OPTF = min{R(f) : f ∈ Σ}

where Σ denotes the collections of all Lebesgue measurable indicator function
defined on X . It is easy to know that the Bayesian risk is an intrinsic quantity of a
learning problem, irrespective of the given learning machine, and is no larger than
OPTF (F) of any nontrivial learning machine F . Correspondingly, a learning
strategy L is said to be strongly convergent when the estimation in (4) holds for
the Bayesian risk OPTF in place of the minimal risk OPTF (F). Evidently, such a
strategy has better convergence property than the previously defined convergent
learning strategy, and hence is the expected one in applications.

Accordingly, the specified learning machine and the constructed learning
strategy significantly determine the final success of pattern classification. In-
trinsically speaking, the learning machine utilized in the VCM can be expressed
as follows [6]:

FV CM = {fσ,Dl
(x) = sgn(

1

l

l
∑

i=1

yig(x − xi, σ)) : σ ≥ 0}, (5)

where g(x, σ) is the Gaussian function

g(x, σ) =
1

(
√

2πσ)n
e−qxq

2/2σ2

. (6)

Actually, this learning machine can be formulated by virtue of scale space theory
and described by the visual sensation and perception principle: Given a primary
image f(x) at a distance of σ from human eyes, the observed blurry image
f(x, σ) can be mathematically determined by the following partial differential
equation([9]):

{

∂f(x,σ,)
∂σ = ∇xf(x, σ)
f(x, 0) = f(x)

.
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Fig. 1. (a) Observing the data set very closely, a discriminant function composed by
the disconnected circles surrounding each datum is perceived; (b) Observing the data
from a proper distance, a perfect discriminant function that optimally compromises
approximation and generalization performance is perceived; (c) Observing the data set
from far away, no discriminant function is perceived.

The solution of the above equation is explicitly expressed as

f(x, σ) = f(x) ∗ g(x, σ) =

∫

g(x − y)f(y)dy

where ‘∗’ denotes the convolution operation. If the training samples are treated
as an imaginary image with expression:

f(x,Dl) =
1

l

l
∑

i=1

yiδ(x − xi), (7)

then the corresponding blurred image f(x, σ,Dl) at scale σ can be specified by

f(x,Dl) ∗ g(x, σ) =
1

l

l
∑

i=1

yig(x − xi, σ). (8)

The learning machine FV CM can naturally be obtained. In fact, the classification
performance of the discriminant function fσ,Dl

(x) under different values of the
parameter σ is in high accordance with the visual phenomenon in observing the
classification image by varying its observing distance, as illustrated in Fig. 1.

The purpose of the VCM is then to construct the learning strategy to find
the optimal discriminant function from the learning machine FV CM . In fact,
any cross validation method, such as the k-fold cross-validation method, can
be applied [10–12]. In this method, the given data set is partitioned into k
subsamples. Of the k subsamples, a single subsample is retained as the testing
data for measuring the learning error of the related discriminant function, and
the remaining k-1 subsamples are used as training data. The cross-validation
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process is then repeated k times, with each of the k subsamples used exactly once
as the testing data. The k results from the folds are then averaged to produce a
single learning error. Since the visual validity principle implies that the optimal
scales should be selected moderately [13, 14], the appropriate candidates for the
scale parameter can be preset and the final result can be obtained by minimizing
the cross-validation learning error.

The above strategy defines a mapping LV CM from the data set Dl into the
FV CM . We will show in the next section that the mapping LV CM so defined ac-
tually achieves a strongly convergent learning algorithm by specifically selecting
the scale candidates.

Remark 1. Actually, by applying the Parzen Windows method [15] to estimate
the densities underlying the positive class data and the negative class data re-
spectively, and by comparing the estimated densities at every input datum, a
classification discriminant function can be obtained. When the method adopts
the Gaussian window, the obtained discriminant function is very similar to the
function from the VCM. In this sense, the proposed classification implementa-
tion scheme and further, the learning machine VCM, are not new. However, in
this paper, the learning strategy and the learning machine, which are proposed
in visual perspective, can make the following theory more understandable and
the analysis of the theory more intrinsic. Furthermore, a significant principle
for the new learning theory, visual validity principle, is presented based on the
visual phenomenon. Thus, introducing the VCM in the visual perspective will
make the related theoretical descriptions more reasonable and natural.

3 Theoretical conclusions on the VCM

In this section, we will show that the proposed learning machine FV CM con-
verges to the Bayesian estimator. Before presenting the main theorems (proofs
are omitted due to limitation of space), we first distinguish two notations of
probability spaces.

Assume Ω = (X × Y ) is the data space (set) of the given classification
problem determined by the unknown but fixed distribution F (x)F (y|x), F =
M(X) × S(Y ) is the σ-algebra of Ω defined by its power set, and P is the
probability defined by

P (A × B) =

∫

A×B

dF (x, y), ∀A × B ∈ F.

Then, P1 = (Ω, F, P ) defines a probability space. Likewise, if we let ΩX = X
be the attribute space, FX = M(X) be the σ-algebra of ΩX deduced by all the
measurable subset X , and the probability PX be defined by

PX(A) =

∫

A

dF (x), ∀A ∈ M(X),

then P2 = (ΩX , FX , PX) defines another probability space. These two different
probability spaces will be used without further justification.
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For the given classification problem and any function fσ,Dl
(x) in FV CM ,

the upper bound for the deviation of its learning risk from the Bayesian risk is
theoretically estimated. The related conclusion is stated as follows:

Theorem 1. Let P1 = (Ω, F, P ) and P2 = (ΩX , FX , PX) be the probability
spaces, Dl the training sample set generated from P , Ey(x) the average of y at
x, and p(x) the density function of x. Assume X is open and bounded in Rn and
Ey(x)P (x) is continuous on X (the closure of X). Then for any fixed σ > 0 and
any δ ∈ (0, 1), ε > 0, there exist positive constants c1, c2 c3, c4, independent of
l and σ, such that

P{|R(fσ,Dl
) − OPTF | <

ε + PX{0 < |Ey(x)p(x)| < Bound(ε, δ, l, σ)}} > 1 − δ (9)

where Bound(ε, δ, l, σ) is defined by

Bound(ε, δ, l, σ) = 2ε +
c1

l
1
2

+ c2σ
n+2 + c3σ +

c4

l
1
2 (σ)n

. (10)

Under the mild condition, Theorem 1 implies the following fundamental up-
per bound estimation on the deviation of the learning function risk from the
Bayesian risk in probability

R(fσ,Dl
) − OPTF ≤ ε + PX {0 < |Ey(x)P (x)| < Bound(ε, δ, l, σ)} (11)

which also provides a measurement on the generalization capability of any dis-
criminant function fσ,Dl

in VCM.
From (11), in order to maximize the generalization capability of the fσ,Dl

,
or equivalently, to minimize the risk of a discriminant function from the VCM,
one possible way is to minimize the function Bound(ε, δ, l, σ). This provides
a strategy of controlling the generalization capability of the learning machine
FV CM .

Since ε and δ in (9) are arbitrary, the function Bound(ε, δ, l, σ) can be re-
garded as varying with l and σ only. So, with this understanding, some useful
observations can be made:

– Bound(ε, δ, l, σ) → ∞ whenever l is fixed and σ → 0, for c4

l
1
2 (σ)n

→ ∞ in

(10);
– Bound(ε, δ, l, σ) → ∞ whenever l is fixed and σ → ∞, for c2σ

n+2+c3σ → ∞
in (10).

These observations show that whenever σ gets to be too large or too small,
the function fσ,Dl

will never attain good generalization performance. That is,
a good (particularly, an optimal) performance can only occur when the scale
parameter σ is set as a moderate value. This conclusion is clearly supported by
our visual system (the visual validity principle) and coincides completely with
the simulations conducted in [6].

A question naturally arisen is: “Is there an optimal scale σ∗ and where is
it?”. The following theorem provides an answer to this question:
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Theorem 2. For any fixed l, the function Bound(ε, δ, l, σ) has a unique mini-
mum and it attains its minimum at

σ∗ = Cl−
1

2n+2 (12)

where n is the dimension of the attribute space and

C = n+1

√

√

√

√

2nc4

c3 +
√

c2
3 + 4(n + 2)c2

nc4

l
1
2

(13)

where c1, c2, c3, c4 are the constants appeared in Theorem 1.

Theorem 2 implies that the preferred scale candidates in the VCM should

be set with the rank O(l−
1

2n+2 ). That is to say, we can set the candidate range
of the scale as follows: first, specify the appropriate parameters a and b (say,

a = 10−1 and b = 103), and then let εl = al−
1

2n+2 and El = bl−
1

2n+2 , and select
the optimal scales in the interval [εl, El].

According to the above discussion, the mapping LV CM :
⋃Dl → FV CM can

be specified as

LV CM (Dl) = fσ∗,Dl
(x) (14)

where σ∗ is the optimal scale obtained from the following optimization problem:

σ∗ = arg min
σ∈[εl,El]

CV (σ) (15)

where CV (σ) is the related cross validation error under the scale parameter
σ. To minimize the continuous function CV (σ) and to find the optimal scale
parameter σ∗ of (15), any one-dimension global optimization method, such as
grid algorithms [16], simulated annealing [17] and evolutionary methods [18],
can be adopted.

The following theorem shows that by setting the scale parameter to within
[εl, El], LV CM is a strongly convergent learning algorithm for the classification
problem.

Theorem 3. In the setting of Theorem 1, if the optimal scale is selected with
rank O(− 1

2n+2 ), then for any ε > 0 and δ ∈ (0, 1), there is an integer l(ε, δ) such
that whenever l > l(ε, δ)

P {R (LV CM (Dl) − OPTF ) ≥ ε} < δ. (16)

That is, LV CM is a strongly convergent learning algorithm for the classification
problem.

In the next section, we further verify these theoretical conclusions by exper-
imental results.
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Fig. 2. The generalization capability (Y-axis) of the discriminant function fσ,Dl
with

the scale parameter σ (X-axis) varying from very small to very large. σ∗ is the optimal
scale parameter attained by VCM.

4 Simulations and applications in disease diagnosis of the

VCM

In this section we provide two sets of numerical simulations to support the
feasibility and validity of the theoretical results above, and four applications of
the VCM in disease diagnosis. In the experiments, the optimization problem (15)
of the VCM was solved by the grid optimization method. All programs were run
on the Matlab 7.0 platform in a personal computer with Pentium IV 1.7 CPU,
1 G memory and Windows XP operating system.

4.1 Simulation results

The first set of simulations was conducted to demonstrate the rationality of
using Bound(ε, δ, l, σ) in Theorem 1 to bound the deviation of the risk of a
discriminant function fσ,Dl

(x) in FV CM from the Bayesian risk, that is, applying
this estimated bound as a measure of the learning capability of fσ,Dl

(x). The
simulations were carried out by comparing the behavior of Bound(ε, δ, l, σ) and
the performance of the discriminant function fσ,Dl

(x). The artificial spiral two-
label classification data set D100 = {x+

i , +1}50
i=1 ∪ {x−

i ,−1}50
i=1 was used for the

comparison, where

x+
i = (exp((−1.5π + iπ/30)) − 0.5) ∗ cos(−1.5π + iπ/10);

x−

i = (exp((−1.5π + iπ/30)) − 0.5) ∗ sin(−1.5π + iπ/10).

With the scale parameter σ varying from small to large, the performance of
the discriminant function fσ,Dl

for each σ is demonstrated in Fig. 2. It can be
observed that the generalization capability of fσ,Dl

becomes very poor when σ
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Fig. 3. Performance of the optimal discriminant function fσ∗

l
,Dl

attained by VCA
when data size varies from 30, 100, 500, 1000 to 5000. It should be observed that all

(σ∗

l , l−
1

2n+2 ) are nearly on a line, that is, l−
1

2n+2 /σ∗

l is approximately a constant for
any l.

tends to be too large or too small. In fact, for any fixed ε, δ and l, it is easy to
deduce that the function Bound(ε, δ, l, σ) is positive and convex when σ ≥ 0, and
its value varies from infinitely large to its finite minimum, and then to infinitely
large again, as σ goes from 0 to infinity. The observed performance of fσ,Dl

(x) is
clearly in accordance with the behavior of Bound(ε, δ, l, σ) and this verifies the
rationality of the developed upper bound estimation (Theorem 1).

The second set of numerical simulations was carried out to verify the cor-
rectness of Theorem 2, that is, to show that there exists a positive constant C
such that the optimal scale σ∗

l and the data size l obey the relation

C = l−
1

2n+2 /σ∗
l . (17)

The following spiral data sets Dl = {x+
i , +1}l/2

i=1∪{x−

i ,−1}l/2
i=1 with variable size

l was used to test (17), where

x+
i = (exp((−1.5π + iπ/0.3l))− 0.5) ∗ cos(−1.5π + iπ/0.1l);

x−

i = (exp((−1.5π + iπ/0.3l))− 0.5) ∗ sin(−1.5π + iπ/0.1l).

By applying the VCM, we found the optimal scales σ∗
l to be 0.06, 0.05, 0.04,

0.035 and 0.025 when data size l =30, 100, 500, 1000 and 5000, respectively, as
shown in Fig. 3. It is calculated that for each case, C30 ≈ 0.1057, C100 ≈ 0.1077,
C500 ≈ 0.1126, C1000 ≈ 0.1107 and C5000 ≈ 0.1134. All are approximately equal.
This supports the validity of Theorem 2.

The validity of Theorem 3 will be verified by the application results on disease
diagnosis in the next section.

4.2 Disease diagnosis

To further verify the aforementioned theoretical results on the VCM (especially
its strong convergence property) and show its performance in bioinformatics
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applications, we further applied the VCM to some disease classification problems.
In particular, four sets of disease diagnosis data were adopted. The information
about the data is listed as follows:

– Breast cancer data. This breast cancer data set was obtained from the
University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. The
instances are described by 9 attributes: age, menopause, tumor-size, inv-
nodes, node-caps, deg-malig, breast, breast-quad, and irradiat. The output
classes are non-recurrence or recurrence of the event.

– Diabetes disease data. This data set was obtained from the National
Institute of Diabetes and Digestive and Kidney Diseases (donated by Pe-
ter Turney). There are 8 input attributes: number of times being pregnant,
plasma glucose concentration a 2 hours in an oral glucose tolerance test,
diastolic blood pressure, triceps skin fold thickness, 2-Hour serum insulin,
body mass index, diabetes pedigree function, and age. in the binary out-
put class, 0 and 1 mean the non-occurrence and occurrence of the disease,
respectively.

– Heart disease data. This database contains 76 attributes, but all published
experiments only need 14 of them. The 13 input attributes used are respec-
tively age, sex, chest pain type, resting blood pressure, serum cholestoral,
fasting blood sugar, resting electrocardiographic results, maximum heart rate
achieved, exercise induced angina, oldpeak, the slope of the peak exercise ST
segment, and number of major vessels. The variable to be predicted is the
absence or presence of heart disease.

– Thyroid disease data. This data set was collected by several laboratory
tests used to predict whether or not a patient’s thyroid belongs to the class
euthyroidism, hypothyroidism or hyperthyroidism. The 5 input attributes
respectively mean: T3-resin uptake test, total Serum thyroxin as measured
by the isotopic displacement method, total serum triiodothyronine as mea-
sured by radioimmuno assay, basal thyroid-stimulating hormone as measured
by radioimmuno assay, and maximal absolute difference of TSH value after
injection of 200 micro grams of thyrotropin-releasing hormone as compared
to the basal value. In the output class, 1, 2, and 3 represents respectively
the euthyroidism, hypothyroidism, and hyperthyroidism diagnosis result.

All these data can be downloaded from the UC Irvine Machine Learning Repos-
itory (http://www.ics.uci.edu/∼mlearn/MLSummary.html).

To reasonably measure the classification capability of a learning strategy,
the following way is generally utilized: first, multiple partitions of the training
and testing sets are randomly generated from the original data sets. Second,
on each partition, a classifier is trained by the learning strategy and its test set
error is obtained correspondingly, the mean and variance of these obtained errors
are then taken as the final learning error of the strategy. Based on such ideas,
we had conducted three series of simulations (denoted henceforth by A1, A2
and A3 respectively). In series A1, each problem includes 100 partitions of the
training and testing sets, which can be directly downloaded from the website:
http://ida.first.fhg.de/projects/bench. In series A2 and A3, there are 20 and 10
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Table 1. Statistics of the data for the 4 disease diagnosis classification problems used
in simulations A1, A2 and A3

Problems dim Training data sizes (A1, A2, A3) Testing data sizes (A1, A2, A3)

Broast-cancer 9 200×100,1000×20,2000×10 77×100,385×20,770×10
Diabotis 8 468×100,2340×20,4680×10 300×100,1500×20,3000×10
Heart 13 170×100,850×20,1700×10 100×100,500×20,1000×10

Thyroid 5 140×100,700×20,1400×10 75×100,375×20,750×10

Table 2. Performance comparison between VCM & SVC

Problems Misclassification rate(A1) Misclassification rate(A2) Misclassification rate(A3)
SVC(%) VCM(%) SVC(%) VCM(%) SVC(%) VCM(%)

Breast-cancer 25.48±4.41 25.69±3.38 2.89±0.62 2.84±0.51 2.84±0.34 2.84±0.30

Diabotis 23.51±1.48 25.84±1.61 0.48±0.54 0.53±0.56 0.07±0.21 0.07±0.12

Heart 15.62±3.26 17.19±3.00 0.30±0.57 0.45±0.60 0.0±0.0 0.0±0.0

Thyroid 5.07±2.33 4.28±1.87 0.07±0.30 0.27±0.82 0.0±0.0 0.0±0.0

Average 17.42± 2.87 18.25±2.47 0.94±0.51 1.02 ± 0.62 0.73±0.14 0.73±0.10

partitions of the training and testing sets, respectively formed by combining each
5 and 10 training and testing sets of those used in A1. All the data involved
are listed in Table 2. The VCM and SVC were respectively applied to these
training and testing sets of the four disease diagnosis problems. Specifically, in
the implementation of the SVC, the 5-fold cross-validation method was used to
select model parameters σ and C from 100 = 10× 10 candidates (10 candidates
of C and 10 candidates of σ at each fixed C). The experimental results are
summarized in Table 2.

From Table 2, it is easy to observe that when the size of the training data
increases, the VCM gradually outperforms the SVC. Particularly, For both series
A1 and A2, the SVC performs better in 3 diagnosis cases, and only in 1 case the
VCM performs better. Yet it can also be observed that as the size of the training
data becomes larger from A1 to A2, the advantage of SVM compared with VCM
is much smaller. For the A3 case, where the size is largest, the VCM evidently
outperforms the SVC. In particular, in all of 4 applications, the misclassification
rates of the VCM is no larger than those of the SVC. This shows the success
of the VCM in disease diagnosis, especially in view of its strong convergence
property.

5 Conclusions

In this paper, we have introduced a visual classification method and shown its
strong convergence. It has been supported by several simulations and real-life
applications in disease diagnosis. In particular, the theoretical conclusion on its
achieving the posterior expected minimal value, i.e., the Beyesian estimator, has
been illustrated. This theoretical result has been verified by a series of synthetic
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simulations and applications in disease classification. Compared with the well-
known support vector classification method, the VCM has been shown to be
effective and efficient. The proposed method thus provides useful techniques in
the analysis of bioinformatic data.
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