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Abstract. RNA interference (RNAi) is widely used as an important tool for genomic 
and therapeutic applications. Small interfering RNA (siRNA) is involved in the 
RNA interference process and knocks down the expression of a specific gene. 
During this process, messenger RNA (mRNA) is degraded by siRNA, the function 
of a harmful gene can be inhibited.  We focus on the problem of gene family 
knockdown by using the minimal number of siRNAs. The problem is to determine 
the minimal number of siRNAs required to knockdown a family of genes targeted 
by these siRNAs. In this paper, we explore some heuristic optimization methods for 
the minimal siRNA covering problem. Such methods include evolutionary 
heuristics, as well as novel greedy methods, applied for the first time to the minimal 
siRNA cover problems. 

    Keywords: Minimal siRNA Cover, Set Cover, Gene Family Knockdown. 

1   Introduction 

RNA interference (RNAi) is a highly evolutionally conserved process of post-
transcriptional gene silencing (PTGS) by double stranded RNA (dsRNA). When 
introduced into a cell, it will cause sequence-specific degradation of homologous mRNA 
sequences. It was first discovered in 1998 by Andrew Fire and Craig Mello in the 
nematode worm Caenorhabditis elegans and later found in a widely number of organisms, 
including mammals. RNA interference (RNAi) plays both regulatory and immunological 
roles in the eukaryotic genetic system [1, 2], and it also involved in both therapeutic and 
genomic applications because of its potentials in treatments for widely existed diseases 
such as HIV [3, 4], Huntington’s diseases [5] and some certain types of cancers [6, 7]. 
RNA interference (RNAi) is a mechanism that inhibits gene expression at the stage of 
translation by hindering the transcription of specific genes. RNAi targets include RNA 
from viruses and transposons (significant for some forms of innate immune response), and 
work on regulating development and genome maintenance. Small interfering RNA strands 
(siRNA) play a key role in the RNAi process, and have complementary nucleotide 
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sequences to the targeted RNA strand. Specific RNAi pathway proteins are guided by the 
siRNA to the targeted messenger RNA (mRNA), where they cleave the target, breaking it 
down into smaller portions which can not be translated into protein any more. A type of 
RNA transcribes from the genome itself, microRNA (miRNA), works in the same way 
[8]. 

Nowadays, RNAi research mainly focus on single gene knockdown. Gene knockdown 
relates to genetically modifying an organism whose goal is to have reduced expression of 
one or more genes in its chromosomes by inserting a reagent such as a short DNA or   
RNA oligonucleotide with a sequence complementary to an active gene or its mRNA 
transcripts. This can lead to permanent modification of the chromosomal DNA to produce 
a "knockdown organism" or a temporary change in gene expression without modification 
of the chromosomal DNA molecules to knock down the function of a single gene. In this 
paper, we want to knockdown a gene family with a minimal number of siRNAs because 
the efficacy of a specific siRNA in knocking down its target gene is determined by its 
homology to that gene. As the synthesis of individual siRNAs may cost hundreds or 
thousands of dollars, so using compact sets of siRNAs for gene family knockdown would 
have more advantages. 

Following association with an RNAi silencing complex, siRNA targets mRNA 

transcripts that have sequence identity for destruction. A phenotype resulting from this 
knockdown of expression may inform about the function of the targeted gene. However, 
off-target effects compromise the specificity of RNAi if sequence identity between siRNA 
and random mRNA transcripts causes RNAi to knockdown expression of non-targeted 
genes. The chance for off-target RNAi increases with greater length of the initial dsRNA 
sequence, inclusion into the analysis of available un-translated region sequences and 
allowing for mismatches between siRNA and target sequences. siRNA sequences from 
within 100 nucleotide of the 5' termini of coding sequences have low chances for off-
target reactivity. This may be owing to coding constraints for signal peptide-encoding 
regions of genes relative to regions which encode for mature proteins. Off-target 
distribution varies along the chromosomes of Caenorhabditis elegans, apparently owing 
to the use of more unique sequences in gene-dense regions. Finally, biological and 
thermodynamical descriptors of effective siRNA reduce the number of potential siRNAs 
compared with those identified by sequence identity alone, but off-target RNAi remains 
likely, with an off-target error rate of 10% [11]. In a word, we want to avoid off-target 
effects in which the siRNA causes unintended knockdown of an untargeted gene to which 
it incidentally has high homology. So our purpose is to select a minimal set of siRNAs 
that cover targeted genes in a family and do not cover any untargeted genes. This is a NP-
Hard problem [9] since we can regard it as a set cover problem. In this paper, we 
introduce four heuristics for this problem: a genetic algorithm-based heuristic, a 
dominated target covering heuristic, a dominant siRNA selection heuristic and a forward 
selection heuristic. Our experiment results show that our methods significantly reduce the 
number of siRNA covers compared with other two algorithms: branch and bound, 
probabilistic greedy [9].  
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We implement our proposed methods on three gene families. The first family, which is 
the set of Fibrinogen-related protein (FREP) genes from the snail Biomphalaria glabrata 
are medically relevant because this snail is a model organism for infection by the human-
affecting parasite Schistosoma mansoni [9]. The second family is another set of FREP 
genes like family 1[10]. And the data of third family, which is the olfactory genes of 
nematode Caenorhabditis elegans, is downloaded from NCBI [12]. 

The rest of the paper is organized as follows. In Section 2, we give a brief introduction 
to minimal siRNA set cover problem and formulate it as an integer linear programming 
problem. The set cover problem has been well studied and a number of exact and 
approximate methods exist for it, including the exact branch-and-bound algorithm [9], 
probabilistic greedy algorithm [9], LP relaxation [13] and genetic algorithm [14, 15]. In 
Section 3, we describe one dominated target covering heuristic with some modifications 
based on Wang et al. [16], one dominant siRNA selection heuristic one genetic algorithm 
heuristic improved from [14] and one novel deterministic greedy heuristic called forward 
selection for the minimal siRNA set cover problem. Experimental results are discussed in 
Section 4 and we conclude in Section 5. 

2   Minimal siRNA Set Cover Problem 

Given a siRNA set, S = {s1,…,sN}, and a gene set, G = {g1,…gK}, a N×K matrix W=[wij] is 
generated such that wij = 1 if sj cover gi, otherwise wij = 0. By doing this, we can transfer 
the minimal siRNA set cover problem to simple set covering problem. Table 1 shows an 
example of a matrix with the number of siRNAs N=7 and the number of genes K=6. First, 
we generate this matrix from the original sequences of siRNAs. For example, g1 and g3 
have the same siRNA sequences: s1=CACUCUACUGCAGCAAAGC; g2, g3 and g6 have 
the same siRNA sequences: s2=GUGGGAGCGCGUGAUGAAC. Then for the first 
column: w11=1, w31=1, and wi1=0 for other elements; for the second column: w22=1, 
w32=1, w62=1, and wi2=0 for other elements. With the off target effect genes: g4, g5 and g6, 
we should not select column 2, 4 and 5, because those genes include s2, s4 and s5. Table 2 
shows the matrix without off target effects. In this paper, we select the off target genes 
randomly. 

Table 1. Example of a matrix with off target effects. 

  s1 s2 s3 s4 s5 s6 s7
g1 1 0 0 0 1 1 0 
g2 0 1 1 0 1 0 0 On 

target g3 1 1 1 1 1 0 1 
g4 0 0 0 0 1 0 0 
g5 0 0 0 1 0 0 0 Off 

target g6 0 1 0 0 0 0 0 
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Table 2. Example of a matrix without off target effects. 

  s1 s3 s6 s7
g1 1 0 1 0 
g2 0 1 0 0 On 

target g3 1 1 0 1 
 

   Given a matrix W, the objective of the minimal siRNA set cover problem is to find a 
minimal set of siRNAs that can cover all the target genes without covering any off target 
genes. In Table 2, for instance, {s3, s6} is an optimal solution, while the solution {s1, s3, 
s7} is not, and therefore it is not cost effective. 

 The definition is that, given a N×K matrix W with a siRNA set, S= {s1,…,sN} and a 
gene set G= {g1,…gK}, the goal of the minimal siRNA set cover problem is to select a 
subset Smin⊆ S of siRNAs such that 1) Smin is minimal, and 2) Smin covers all the target 
genes without hitting any off target genes. In [9], this was proved to be an NP-hard 
problem by performing a reduction from the set covering problem. 

 This problem can be formulated as an integer linear programming (ILP) problem as 
follows: 

Minimize:  ∑
=

N

j
jx

1
  (1) 

Subject to:    i=1,…,K 1
1

≥∑
=

N

j
jijxw   (2) 

}{ 1,0∈jx      j=1,…,N   (3) 

Variables xj=1 when siRNA j is selected, otherwise xj=0. 
 In this paper, we solve the above ILP problem by using three deterministic greedy 

heuristics and a genetic algorithm. 

3   Heuristic Methods for Minimal siRNA Set Cover Problem 

It is well known that heuristic method is extremely important for the present and future 
developments of bioinformatics, since it can provide key solutions for the new challenges 
posed by the progressive transformation of biology into data analysis. There are four 
heuristic methods are presented in this paper to solve the minimal siRNA set cover 
problem. 
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3.1 Dominated Target Covering Heuristic (DTC) 

To select a minimal number of siRNAs Smin-covering each target gene, DTC uses a 
function to evaluate each individual siRNA. Given a matrix W which is determined by a 
siRNA set S={s1,…sN} and a gene set G={g1,…gK}, we define the cover function cov as 
follows: 

( )
igSijij wgs 1,cov ×=  

igj Ss ∈ , Ggi ∈   (4) 

where 0≤cov(sj,gi)≤1 and Sgi is the set of siRNAs related to gene gi. The value of 
cov(sj,gi) is considered as a ratio by which sj contributes to the satisfaction of coverage 
constraint for gene gi. 

Since the minimal number of siRNAs is to be selected, it is suitable to take into 
consideration each siRNA with regard to its capability of satisfying coverage constraints. 
After applied Equation (4), the coverage is calculated as: 

( ) ( ){ }kigssC ijj ≤≤= 1,covmax  jsi Gg ∈    (5) 

where Gsj is the set of genes covered by sj, C(sj) is the maximum contribution made by Sj 
according to each gene. This is illustrated in Table 3, which derives from Table 2. 

 Table 3. Example of a coverage function table. 

 s1 s3 s6 s7
g1 1/2 0 1/2 0 
g2 0 1 0 0 
g3 1/3 1/3 0 1/3
C 1/2 1 1/2 1/3

 
When C(sj) = 1, we consider sj as an essential siRNA since any feasible solution has to 
include it. In Table 3, it is obvious that s3 is an essential siRNA. 
   This heuristic consists of three phases: initialization, construction and reduction. 
Initially, we calculate C(s) for each siRNA s∈S from the given matrix W. Then an initial 
non-feasible solution Sini is created, which only contains essential siRNAs. We denote S as 
the set sj, Ssol is the subset of S which contains selected sj in the next phase. In the 
construction phase, we always select the high-ratio siRNAs sj into Sini by sorting S\Ssol in 
descending order of C(s). Note that, when we select a sj∈S\Ssol that covers gi, we delete sj 
from matrix W, and then we compute C(s) from the reduced matrix W’. This step executes 
repeatedly until we get an initial feasible solution. In the reduction phase, Ssol is reduced 
by repeatedly removing low-ratio siRNAs to achieve a feasible but near optimal solution 
Smin which is selected to cover all the target genes. 

More precisely, the steps of the heuristic can be described as follows: 
1. Initialization Phase 
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  a) compute C(s) for all s∈S 
  b) Sini ={s∈S ︱C(s)=1} {essential siRNAs in initial solution} 
2. Construction Phase 
  c) Ssol = Sini
  d) sort S\Ssol in descending order of C(s) 
  e) for each gene gi not covered by Ssol

       Ssol = Ssol ∪sj {next highest-ratio sj∈S\Ssol that covers gi } 
  f) delete sj from matrix W;  
  g) repeat step a) to step f) 
3. Reduction Phase 
  h) Smin = Ssol

  i) W=W︱Smin   /*the restriction of matrix W to the siRNAs in Smin */ 
  j) compute C(s) for all s∈Smin

  k) sort Sdel ={s∈Smin︱C(s)<1} in ascending order of C(s) 
  l) if Smin\{s} is feasible for each s ∈Sdel then  
            Smin = Smin\{s} 
  m) return Smin

3.2 Dominant siRNA Selection Heuristic (DSS) 

We also want to satisfy the selection of dominant siRNAs; sj dominates sl if Gsl ⊂Gsj. In 
Table 2, for example, s1 dominates s6 since Gs6={g1} Gs⊂ 1={g1,g3}. Selecting dominant 
siRNAs instead of dominated siRNAs covers more genes. In the example, however, we 
have C(s1)=C(s6), and hence DTC will select s1 for gene coverage rather than s6 which 
depends on the particular order of the siRNAs. This is because DTC will select a 
dominant siRNA sj over its dominated siRNA sl only if C(sj)>C(sl). In Table 2, s6 
dominates s7 and C(s6)>C(s7), therefore s6 will be selected first. 

To satisfy the selection of a dominant siRNA that has the same degree as some of its 
dominated siRNAs, we modify Equation (4) in such a way that a dominant siRNA sj will 
have a higher C(s) value than its dominated siRNAs. We solve this by adding a penalizing 
each entry in Table 3 with an amount that takes into account the number of coverd genes. 
The new cov function has the form as follows: 

( ) 1
11,cov

+−
××=

ji GsmSgijij wgs    igj Ss ∈ ， Ggi ∈    (6) 

where 0≤cov(sj,gi)≤1, Sgi is the set of siRNAs related to gene gi, Gsj in the penalty term 
is the set of genes covered by sj and m is the number of genes. In Equation (6), siRNAs 
that cover fewer genes are penalized more than those that cover more genes. 

Dominant siRNA Selection (DSS) heuristic is similar to DTC heuristic described in 
Section 3.1 only with the exception that function C is defined by using Equation (6) 
instead of Equation (4). In DSS, siRNAs that cover dominated genes are selected first, as 
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in DTC. Unlike DTC, dominant siRNAs among all such siRNAs will be selected first. 
These two greedy principles together allow a larger coverage at each selection step. So 
DSS is greedier than DTC. 

3.3 Genetic Algorithm for Minimal siRNA Set Cover Problem 

Beasley et al. [14] presented a genetic algorithm-based heuristic for set covering problem. 
Based on this method, our GA inherits the siRNA selection function defined in Section 
3.2. The improved genetic approach can be illustrated in details as follows. 

3.3.1 Representation and Fitness Function 
To design a genetic algorithm, we have to devise a suitable representation scheme at first. 
Given the initial candidate siRNA set S= {s1,…,sN}, we want to find a feasible subset 
Smin⊆ S of minimal cardinality. Therefore, the search space is the power set of S, denoted 
by 2S; that is the set of all subsets of S. The fitness of an individual s is related to its 
objective value, which corresponds to the number of siRNAs in its associated subset. So 
the fitness function is: 

∑
=

=
N

j
iji sf

1
   (7) 

where sij is the value of the j-th bit (column) in the string corresponding to the i-th 
individual. 

3.3.2 Parent Selection Operator 
For the purpose of selecting the fittest individuals continuously, we apply a binary 
tournament selection which selects the best individual in any tournament. The chosen 
individual will be removed from the population, otherwise individuals can be selected 
more than once for the next generation. 

3.3.3 Crossover Operator 
We implement the fusion operator of [14] which regards both the structure and the 
relative fitness of each parent solution, and produces a single child only. This crossover 
focuses on the differences of the parents. So it will generate new solutions more 
efficiently when they have similar parents. Besides, the fittest parent will obtain more 
probability to contribute the fitness of the child. Let  and  be the scaled fitness 
values of the parents P

s
pf 1

s
pf 2

1 and P2 respectively, and let C denote the child solution, then for 
each j Є [1, N]: 
1. IF P1j = P2j, THEN C j = P1j = P2j; 
2. ELSE 
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(1) C j = P1j with probability s
p

s
p

s
p

ff
f

p
21

2

+
= s 

(2) C j = P2j with probability 1﹣p 

3.3.4 Mutation Operator and Variable Mutation Rate 
In the next step of crossover, we use the mutation operator to change a number of bit 
positions randomly. The number of positions to mutate for a given solution depends on 
the mutation rate. We use the variable mutation rate in [14]. It essentially depends on the 
rate of the GA convergrence which means lower mutation rates are used in early 
generations. When mutation increases to higher rates, the population converges, after that 
mutation stabilizes to a constant rate. The mutation schedule below specifies the number 
of bits to mutate [14]. 

( )( )⎥⎥
⎤

⎢
⎢

⎡
−−+

=
fcg

f
mut

mmtm
mNum

4exp1
   (8) 

where t is the number of child solutions that have already been generated, mf specifies the 
final stable mutation rate, mc is the number of solutions that should be generated such that 
the mutation rate is

2
fm , and mg specifies the gradient at t = mc. The value of mf is user-

defined and the values of mc and mg are problem-dependent parameters. 

3.3.5 Heuristic Feasibility Operator 
Crossover and mutation operators can generate unfeasible solutions. Hence, we propose a 
heuristic feasibility operator that keeps the feasibility of solutions in the population. More 
over, the operator provides a local optimization method for fine-tuning the results 
generated from crossover and mutation operators. This operator consists of the last two 
phases of DSS heuristic: construction and reduction phases. GA has already generated a 
potentially good solution Ssol so we do not need to apply the initialization phase for this 
step. The construction phase starts with such a solution Ssol which is not a feasible solution 
generated by GA. The feasibility operator is applied for unfeasible solutions only. 

3.3.6 The Algorithm 
This Genetic Algorithm can be summarized as follows: 

1) Generate an initial population of N solutions. Set t:=0. 
2) Select two solutions S1 and S2 from the population using binary tournament 
selection. 
3) Produce a new solution C using the fusion crossover operator. 
4) Mutate Nummut randomly selected bits in C. 

44



9      Xiaoguang Li, Alioune Ngom, Luis Rueda 

5) Make C feasible and remove redundant columns in C by using DSS heuristic 
operator. 
6) If C is identical to any one of the solutions in the population, go to step 2; 
otherwise, set t:=t+1 and go to step 7. 
7) Replace a randomly selected solution with an above average fitness in the 
population by C. 
8) Repeat steps 2-7 until t=Ps. (t is the number of child solutions that have already 
been generated, Ps is the population size which is a user defined parameter).  

3.4 Forward Selection Heuristic 

Forward Selection begins from an empty set of features. It first evaluates all one-feature 
subsets and selects the one with the best performance. Then evaluates all two-feature 
subsets that include the feature already selected in the first step and selects the best one. 
This process will continue until extending the size of the current subset leads to a lower 
performance. The steps of forward selection heuristic are shown as follows in detail: 

1) Use Equation (6) to select a sj with the best value. For instance, s1 is selected.  
2) From all possible two-dimensional vectors that contain sj form the fist step, that is,      
[s1, s2]T, [s1, s3]T, [s1, s4]T…[s1, sj]T, compute the criterion value for each of them and 
select the best one, give an illustration: [s1, s4]T. 
3) Form all three-dimensional vectors generated from the two-dimensional winner 
([s1, s4]T), that is, [s1, s4, s2]T, [s1, s4, s3]T, [s1, s4, s5]T…[s1, s4, sj]T and select the best 
one.                    
4) Continue this procedure, until find a subset of S which can cover all the target 
genes with the minimal number of sj. 
5) In case that S may include redundant siRNAs, the last phase of DSS: reduction 
phase will be used in this step. 

4   Computational Experiments 

We implemented all approaches, and experimental results show that our heuristic 
approaches are good alternatives for the minimal siRNA set cover selection problem 
heuristics: exact branch and bound algorithm, probabilistic greedy algorithm [9]. All 
heuristics were implemented in Java, the hardware platform is a workstation with  
Intel(R) Xeon(TM) CPUs 3.20GHz and 3.19GHz with 8.00GB of RAM and the operating 
system is Microsoft Windows XP, Professional x64 Edition. 
We apply our methods to three gene families. The first family, the set of Fibrinogen-
related protein (FREP) genes from the snail Biomphalaria glabrata, is of interest in human 
immunological studies because both humans and B.glabrata may become infected by the 
parasite Schistosoma mansoni [9]. The second family is also a set of FREP genes like 
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family 1[10]. And for the third family, we downloaded the olfactory genes of nematode 
Caenorhabditis elegans from NCBI [12]. Fibrinogen-related proteins (FREPs) are in the 
hemolymph of the freshwater gastropod Biomphalaria glabrata. They are produced in 
hemocytes. Some categories of FREPs are modulated following infection with parasites 
such as the digenetic trematode Echinostoma paraensei. Some FREPs are capable of 
binding to parasite surfaces and can precipitate soluble parasite antigens, prompting 
hypothesis that they take into effect in internal defense [17]. The defense responses of B. 
glabrata are a relational concern since this snail is one of the most important intermediate 
hosts for another digenetic trematode, Schistosoma mansoni, a parasite which infects 
about 83 million people [18]. Studying of molecules or genes involved in snail response to 
trematode infection will be very helpful for understanding the underlying mechanisms of 
the snail host and parasite interaction. 

The actual target gene families used in our experiments are: 
• Target family 1: 13 FREP genes from Zhao et al. [9]. 
• Target family 2: 53 fibrinogen (FBG) genes from the FREP family in Zhang et al. [10]. 
• Target family 3: 150 olfactory genes from NCBI [12]. 

We design the siRNA sequences for above 3 gene families by a software [16]. It 
generates 96 siRNA sequences in family 1, 277 in family 2 and 1,339 in family 3. 
Experiment results show that our heuristics are able to select less number of siRNAs than 
the methods mentioned in [9]. When the number of siRNA increases, DSS, GA_DSS and 
FS give much better results than other methods. It can be expected that this will provide a 
great help for RNAi interference experiments. Table 4, 5 and 6 show the number of 
siRNAs used for covering target genes. In these tables, G is the number of target genes, S 
is the number of siRNA sequences without off target gene effects. (Some abbreviations 
are used: PG=Probabilistic Greedy, BB=Branch & Bound, DTC=Dominated Target 
Covering, DSS=Dominant siRNA Selection, GA_DSS=Genetic Algorithm with 
Dominant siRNA Selection, FS=Forward Selection). 

 

Table 4. Results for Target Family 1. 

size of 
target 

set 

G=2 
S=22 

G=3 
S=27 

G=4 
S=30 

G=5 
S=30 

G=6 
S=36 

G=7 
S=45 

G=8 
S=51 

G=9 
S=65 

G=10
S=75 

G=11
S=81 

G=12 
S=84 

G=13 
S=96 

PG 2 3 4 5 5 6 7 9 10 13 14 15 

BB 2 3 4 5 5 6 7 9 10 13 14 15 

DTC 2 3 4 5 5 6 7 7 8 9 10 11 

DSS 2 3 4 5 5 6 7 7 8 8 9 10 

GA_DSS 2 3 4 5 5 6 7 7 8 8 9 10 

FS 2 3 4 5 5 6 7 7 8 8 9 10 
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Table 5. Results for Target Family 2. 

size of 
target 

set 

G=5 
S=40 

G=10 
S=79 

G=20 
S=137 

G=30S
=170 

G=40 
S=201 

G=5 
S=254 

G=53 
S=277 

PG 5 11 24 36 51 33 30 
BB 5 11 24 37 51 34 30 

DTC 5 10 15 21 26 20 18 
DSS 5 9 15 20 25 19 17 

GA_DSS 5 9 15 20 25 19 17 
FS 5 9 15 20 25 19 17 

 

Table 6. Results for Target Family 3. 

size of 
target 

set 

G=15 
S=144 

G=30 
S=273 

G=45 
S=423 

G=60 
S=567 

G=75 
S=711 

G=90 
S=860 

G=105
S=991 

G=120 
S=1097

G=135 
S=1202 

G=150 
S=1339 

PG 16 33 48 63 79 95 110 122 120 153 
BB 16 33 48 63 80 96 112 123 121 154 

DTC 14 27 42 57 71 86 99 110 121 136 
DSS 14 26 41 56 69 84 97 108 118 132 

GA_DSS 14 26 41 56 69 84 97 108 118 132 
FS 14 26 41 56 69 84 97 108 118 132 

 

5 Conclusions and Future Work 

In this paper, we discussed some heuristic approaches for the minimal siRNA set cover 
problem which is important to gene family knockdown. We introduced a novel heuristic 
method: forward selection for set covering problem and other three improved methods. 
Experiments showed that these methods are able to obtain near minimal solutions which 
are still comparable to the known heuristics [9] for this problem. We plan to study 
different variations of our heuristic feasibility operator. Future research will include 
designing a much larger dataset than we used in this paper, since there is no such 
remarkable difference between the results of DSS, GA_DSS and FS for a relatively small 
gene family. 
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