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1 Introduction 

This paper provides a general methodology for testing for dependence in time series 

data. Particular emphasis is given to non-Gaussian data as the typically restricted 

sample space of the non-Gaussian variable leaves the use of existing test procedures 

open to question. As it is difficult to formulate structural models of dependence that 

apply generally to the wide range of data types that comprise the non-Gaussian class, 

a latent variable approach is adopted. That is, a dynamic model is postulated for a 

continuous latent variable and the dynamics transferred to the non-Gaussian, possibly 

discrete, observations, via a response function that defines stochastic parameters on 

which the non-Gaussian variable depends. 

In an extension of the approach adopted in Cox (1983) and McCabe and Leybourne 

(2000), the methodology is based on an approximate likelihood function, whereby the 

expectation of the distribution of the data, conditional on the unobservable stochastic 

parameters, is evaluated in a region local to the mean of the parameter distribution. 

As the approximate likelihood is a function of only the first and second moments of 

the latent process, and not of the latent variables themselves, the full probabilistic 

structure of the unobservable process need not be specified. In addition, as the test 

statistics are derived from the approximate likelihood, there are no computational 

issues arising from the presence of a high dimensional vector of unobservable variables. 

The tests are derived as locally most powerful (LMP) tests and have maximum power 

in the region in which the approximation to the true likelihood is most accurate. 

Particular attention is paid to the case where the conditional distribution of the data 

is a member of the exponential family, as this allows for a unified treatment of random 

variables of many different types. The tests can be viewed as a preliminary step in the 

analysis of the data, with specific dynamic models being formulated and estimated 

should dependence need to be modelled. 

The general framework includes cases in which the conditional mean of the ob

served variable is a function of the stochastic parameter, in which case the procedure 

produces a test for correlation in the levels of the variable. We demonstrate by con

structing tests for both short and long memory correlation for any conditional distrib

ution within the exponential family. The tests are shown to be invariant with respect 
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to members of the exponential family. When using standardized variables to elimi

nate unknown means and variances, the statistics are in fact equivalent, under weak 

conditions, to the corresponding Locally Best Invariant (LBI) tests of the covariance 

matrix of a Gaussian unconditional distribution. Since such LBI statistics form the 

basis of well known tests for correlation, in effect this result demonstrates a form of 

optimality for standard correlation tests in a broader distributional setting. For cases 

in which the stochastic parameter is related to higher-order conditional moments, the 

methodology provides a mechanism for producing tests for higher-order dependence. 

In order to highlight this fact we produce tests for short and long memory stochastic 

volatility. In contrast with the tests for correlation, optimal tests for dependence in 

the second moment do depend on the particular member of the exponential family 

chosen to model the conditional distribution of the data. 

The outline of the paper is as follows. In Section 2, the general latent variable 

model is defined and the nature of the transfer of dependence from the latent process 

to the data demonstrated. As is highlighted therein, the nature of the response 

function, as well as the values of various moments, are crucial in determining the 

extent of the dependence transfer from the latent to the observed process. Section 

3 outlines the approximation to the likelihood function, based on a Taylor series 

expansion of the distribution of the data, conditional on the stochastic parameters. 

The general test procedure is then outlined in Section 4, including details of some 

simplifications that can occur. When the data is standardized, the approximate 

LMP statistic is shown to be equivalent to the exact Gaussian LBI statistic derived 

under weak conditions. In Section 5, we then derive specific tests for short memory 

and long memory correlation that are valid for any conditional distribution with the 

exponential family. The LMP short memory statistic, based on an AR(1) process 

for the latent variable, is shown to be the first-order autocorrelation coefficient. The 

long-memory statistic, using a fractionally integrated process for the latent variable, 

is the statistic derived by Robinson (1994) and Tanaka (1999) under a Gaussian 

distributional assumption. Statistics for testing for short and long memory correlation 

in the variance of a process are also derived, again for any conditional distribution 

within the exponential family. When a conditional Gaussian distribution is adopted, 
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the LMP statistics have the same structural form as the statistics for testing for 

correlation in the levels of the data, but now applied to the squares. In contrast, the 

adoption of a conditional gamma distribution, appropriate for data on the positive 

domain, leads to stochastic volatility test statistics based on a different transformation 

of the data. Section 6 demonstrates the application of the tests to several non-

Gaussian financial time series, whilst Section 7 reports the results of Monte Carlo 

experiments used to assess the finite sample size and power properties of the tests. 

Some conclusions are provided in Section 8. 

2 Induced Dependence 

Let {yt} denote a sequence of arbitrary random variables. A continuous latent se

quence {xt} is used to induce dependence in {yt}, via a random parameter λt, and  

the distribution of yt conditional on λt. In this section, we investigate the extent 

to which dependence in the latent continuous {xt} is manifested in the observed, 

possibly discrete, variable {yt}. 
Suppose there are T observations, y1, ..., yT which are  stacked into  the  (T × 1) 

vector y = [y1, ..., yT ]
0 . The vector y is  assumed to depend on  T random parameters 

λ1, ..., λT , combined as the (T × 1) vector λ = [λ1, ..., λT ]
0. Each  λt, t  = 1, 2, . . . , T,  

is, in turn, linked to an underlying scalar latent process xt via the relations 

λt = h(xt), t  = 1, ..., T, (1) 

for a response function h(.). The  (T × 1) vector x is defined as x = [x1, ..., xT ]
0 . 

Dependence in y is to be modelled indirectly via an assumed dynamic model for x, 

with the dynamics in x transmitted to y through the response function. The response 

function is designed to ensure that x is mapped into the appropriate space for the 

random parameters λ. We write the joint density/mass function of (y, λ) as 

f(y, λ) = f(y|λ)f(λ), 

with f(y|λ) being the conditional distribution of y given λ and f(λ) the marginal 
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distribution of λ. The marginal distribution of y is therefore Z Z 
f(y) =  ... f(y|λ)f(λ)dλ 

= E [f(y|λ)] . (2) 

For notational convenience, the fact that f(y) is a function of the fixed unknown 

parameters that characterize the marginal distribution of λ, and, in some cases, the 

distribution of y conditional on λ, is not made explicit. However, the marginal dis

tribution in (2) clearly defines the likelihood function for that set of fixed parameters. 

To investigate how the correlation in x is transmitted to y we begin by expressing 

the first two moments of y as a function of the moments of λ. Let the first and 

second moments of the conditional distribution of y be denoted by µy|λ and Σy|λ 

respectively and those of the marginal of λ by µλ and Σλ respectively. The moments 

of the marginal distribution of y are 

E[y] = E [Eλ [y|λ]] = E 
£ 
µy|λ

¤ 
, (3) 

E[yy 0] = E [£ Eλ [yy ¤ 0|λ]] £ = E 
£
¤ Σy|λ +£ µy|λ¤ µy0 £|λ

¤
¤

= E Σy|λ + V µy|λ +E µy|λ E µy
0
|λ , (4) 

V [y] = E 
£ 
Σy|λ

¤ 
+ V 

£ 
µy|λ

¤ 
. (5) 

Thus, we can see that the variation in y can be decomposed into individual compo

nents associated with the mean and variance of the conditional distribution of y|λ. 
Assume, for the sake of illustration, we parameterize such that µy|λ = λ. In  this  case  

(3) and (5) become respectively 

E[y] = µλ (6) 

V [y] = E 
£ 
Σy|λ

¤ 
+Σλ. (7) 

That is, the unconditional mean of y is  the same as that of  λ while the unconditional 

variance-covariance matrix is the sum of the expectation of the variance-covariance 
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matrix of the conditional distribution of y and the variance-covariance matrix of λ. 

For example, when λ is stationary and when the elements of y are conditionally 

independent, as will be assumed at a later stage in the paper, the autocorrelation 

function (ACF) of yt is 

cor[yt, yt−k] =  
cov[yt, yt−k] 

V [yt] 

= 
cov[λt, λt−k] 

= 

E [V [yt|λt]] + V [λt] 

cor[λt, λt−k]. 
1 

E [V [yt|λt]] /V [λt]] + 1
, (8) 

for all lags k >  0. Hence, unambiguously, the ACF of yt is less than that of the random 

parameter, λt. In addition, if the ratio E [V [yt|λt]] /V [λt] is large, the correlation 

in the observed process will tend to be small regardless of the dependence in the 

stochastic parameter. 

Using (1), we may assess the effect of x on the moments of y by approximating, 

via a Taylor series expansion, the moments of λ as ¯̄̄̄

¯̄̄̄

 

1 ∂2h
≈ h(xt)| + (9)
E[λt] V [xt]xt =E[xt] 2 ∂x2 

t xt =E[xt]¯̄̄̄



∂h
 ∂h

≈
 (10)
cov[λt, λs] cov[xt, xs],

∂xt xt =E[xt] 
∂xs xs =E[xs] 

for t, s = 1, 2, . . . , T.  Denoting the variance-covariance matrix of x by Σx, h0 as the 

¯̄̄
 

¯̄̄
 

¯̄̄
 

(T ×1) vector with tth element h(xt)|xt =E[xt] , h2 as the (T ×1) vector with tth element 

and H1 as the (T × T ) matrix with tsth element ∂h∂2h ∂h ,

∂x2 

t ∂xt ∂xs xt =E[xt] xt =E[xt] xs =E[xs] 

(9) and (10) can be expressed more compactly as 

1 
µλ ≈ h0 + h2 ¯ diag(Σx) (11) 

2 
Σλ ≈ H1 ¯ Σx, (12) 

with ¯ denoting the direct product and diag(Σx) a vector consisting of the diagonal 

elements of Σx. For example, if xt is stationary, then Σx is time invariant and all of 

the elements of  H1 are the same (equal to h1).1 In this case, λ is also stationary and 
1This same notational convention is used when h0 and h2 contain elements that are all equal to 

a particular constant. 
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(12) implies that 

cor[λt, λt−k] ≈ cor[xt, xt−k] (13) 

for all k. To this order of approximation then, the effect of the response function, 

h(.), disappears from the correlation in the random parameters. However, in terms 

of the observations, substitution of (13) and (10) into (8) produces 

1 
cor[yt, yt−k] ≈ cor[xt, xt−k]. E[V [yt|λt]] , (14) 

+ 1
h1V [xt] 

for all k. Thus the qualitative nature of the ACF is transmitted from xt to yt, but  

with V [xt], h1 and E [V [yt|λt]] playing an important role in the magnitude of the 

correlation transmission. Thus, the presence of correlation in the latent variable alone 

is not sufficient to induce correlation in the observed data of equivalent magnitude. 

The variation in the latent variable, the response function and the variation in the 

data conditional on λt also affect the degree of correlation in the observed data. 

The qualitative nature of these results remain valid when µy|λ 6 λ.= In this case, 

the marginal variance-covariance matrix of y in (5) can still be expressed as an 

approximate function of the moments of x using expressions of the same form as (11) 

and (12). However, in this case, the quantities being approximated are respectively 

E 
£ 
µy|λ

¤ 
and V 

£ 
µy|λ

¤
, in which case the derivatives in h0, h2 and H1 are defined in 

terms of the compound function µy|λ, where  λ = h (x), rather than with respect to 

just λ = h (x). 

To investigate the transfer of higher order dependence to y, consider  Cov[w (yt) , 

g(ys)] for arbitrary functions w(.) and g(.). If this covariance is zero for all functions 

g(.) and w(.), then  yt and ys are independent. To illustrate, we assume conditional 

independence and that the distribution of yt|λt has mean θ (independent of λt) and  

variance σ2(λt). Note that in this setup the yt variables themselves are uncorrelated. 

Express Cov [w (yt) , g(ys)] as 

Cov [w (yt) , g(ys)] = E [w (yt) g(ys)] − E [w (yt)] E [g(ys)] , 

where 

E [w (yt) g(ys)] = E [Eλ (w (yt)) Eλ (g (ys))] 
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and 

E [w (yt)] = E [Eλ [w (yt)]] ; E [g (ys)] = E [Eλ [g (ys)]] . 

Now, 
1 ∂2w ̄̄̄¯
yt =θ 2 ∂y2 

t yt =θ 

with a similar expression holding for Eλ [g (ys)]. Noting that the terms in w(.) in (15) 

do not depend on λt it follows that 

Cov [w (yt) , g(ys)] ≈ k.Cov 
£ 
2σ (λt), σ

2(λ )s
¤

(16) 

Eλ [w (yt)] ≈ w(yt)| σ2(λt), (15)
+


for some constant k depending only on the second derivative terms like those in (15). 

For example, by setting w(yt) =  g(yt) =  yt 
2, we see that correlation in the conditional 

covariance is transmitted to the squares of the observed variables yt. In addition, 

to this order of approximation, if the conditional covariance sequence is uncorrelated 

the observed yt and ys are independent. A further Taylor series expansion allows the 

analysis to be conducted in terms of the xt variables and an expression corresponding 

to (14) to be produced for the more general functions of yt. 

The result in (14) makes it clear that a short memory process in xt maps into a 

short memory process in yt, long memory into long memory, etc. As such, a test for 

a particular form of correlation in yt needs to be based on the specification of the 

corresponding correlation structure for xt. Similarly, (16) suggests that (stochastic) 

volatility in xt is transmitted to functions, including the squares, of yt. This principle 

guides the construction of all test statistics in Section 5. However, given that the 

latent process and attendant response function, h(.), are unobserved, it is crucial 

that the proposed test statistics do not depend on any explicit specification for h(.). 

None of the tests suggested in Section 5 depend on the response function. That said, 

in any controlled experiments that assess the power of the tests, the response function 

does have an impact in that it contributes, via (14) and (16), to the extent of the 

dependence transfer from xt to yt under the alternative hypothesis. 

Finally, the above setup is in fact more general than it may appear, as can be 

seen by a judicious redefinition of the quantities involved. Specifically, let yt denote a 

(p×1) random variable on which there are T observations, y1, ..., yT . The observations 

on yt are stacked into the (Tp× 1) vector y = [y1
0 , ..., yT 

0 ]0 . The vector y is assumed to 
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depend on N random parameters, each of dimension (q×1), λ1, ..., λN , combined as the 

(Nq  × 1) vector λ = [λ0 1, ..., λ
0 0 . Each element of λi = (λ1i, ..., λqi)

0, i  = 1, 2, . . . , N,  N ]

is, in turn, linked to an underlying scalar latent process xci via the relations 

λci = hc(xci), c = 1, ..., q; i = 1, ..., N, 

for response functions hc(.). The  (Nq  × 1) vector x is defined as x = [x0 1, ..., x
0 
N ]
0 , 

where xi, i  = 1, 2, . . . , N,  is the (q × 1) vector with cth element xci. As  before  

f(y) = E [f(y|λ)] 

and the expressions (3) to (5) remain valid. Also, when µy|x = λ, (9) and (10) can 

be replaced by ¯̄̄̄

¯̄̄̄

 

1 ∂2hc
E [λci] ≈ hc(xci)| + xci =E[xci] 

ci 

V [xci]
2 ∂x2 ¯̄̄̄




xci =E[xci] 

∂hc ∂hm 
cov[λci, λmj ] ≈ cov[xci, xmj ],

∂xci xci =E[xci] ∂xmj xmj =E[xmj ] 

or by the corresponding approximations when µy|x 6= λ. Thus  the  results  above  

regarding dependence transfer, as well as the analysis to follow, apply in the more 

general case. 

3 An Approximate Likelihood 

In this section we suggest an approximation to the expectation in (2) that defines the 

marginal distribution of the data or, alternatively, the likelihood function. Following 

Cox (1983) and McCabe and Leybourne (2000), we take a Taylor Series expansion of 
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f(y|λ) about µλ, thereby producing, 

E [f(y|λ)] 

= E f(y|λ)| + (λ − µλ)
0 ∂f(y|λ) 

λ=µλ ∂λ 

" 
f(y) =  ¯̄̄̄



λ=µλ #
¯̄̄̄



1 ∂2f(y|λ)
(λ − µλ)

0 
∂λ∂λ0 

k3(λ − µλ) +O kλ − µλ+

2
 λ=µλ"
 #
¯̄̄̄



0f(y|λ)| +

1 
E (λ − µλ)

∂2f(y|λ) 
λ=µλ 2 ∂λ∂λ0 

(λ − µλ)=

λ=µλ¤ª" 

f(y|λ)| +
1 
tr 

∂2f(y|λ) 
λ=µλ 2 ∂λ∂λ0 

£
©
 k3+O E kλ − µλ ¯̄̄̄

 Σλ 

#


=

λ=µλ 

k3¤ª 
. (17) 

Considering only the first two terms on the right-hand-side of the last line in (17), an 

£
©

+O E kλ − µλ

approximation to the likelihood function, denoted by f∗(y), is given by #" ¯̄̄̄

f ∗ (y) = f(y|λ)| +

1 
tr 

∂2f(y|λ) 
λ=µλ 2 ∂λ∂λ0 

Σλ . (18) 
λ=µλ 

Since the approximation depends only on the first two moments of λ, no additional 

distributional assumptions regarding λ are required. Defining 

c(λ|y) = logL(λ|y) = log (f(y|λ)) 

and using 

¶


=


µ

∂2L 

∂λ∂λ0 
∂c ∂c ∂2c 

L(λ|y),
∂λ
∂λ0 

+ 
∂λ∂λ0

(18) becomes "
 (µ 

tr (MΣλ)

¯̄̄̄


λ=µλ 

Σλ

)#

∂2c 

¶
∂λ∂λ0 

1


¯̄̄̄
 

∂c ∂c 

¶

f ∗ (y) =  L(λ|y)| 1 +λ=µλ 
tr


∂λ0 
+ 

2
 ¸∂λ ·


L ∗ (µλ|y) 1 +
1 

(19)
=
 ,

2


where L∗(µλ|y) = L(λ|y)| and λ=µλ µ

∂c ∂c ∂2c 

M =
 .
 (20)

∂λ0 

+ 
∂λ∂λ0∂λ
 λ=µλ 
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In this paper we use the approximation in (19) as a vehicle for deriving tests 

of dependence. However, it is also possible to consider (19) directly as a starting 

point for estimation by treating it as a pseudo-likelihood. For example, we could 

take derivatives with respect to the unknown parameters and equate them to zero 

to provide a set of restrictions that could be treated as estimating equations for the 

unknown fixed parameters.2 We could also employ the approximation in a Bayesian 

latent variable treatment to reduce the computational burden of dealing with the 

exact likelihood. In situations in which (19) is used as a basis for estimation, issues 

to do with the quality of the approximation throughout the entire parameter space, 

including the extent to which standard likelihood conditions hold for the pseudo

likelihood, would need to be addressed (see Heyde, 1997). 

Here, the conditional distribution of y|λ is deemed to play a significant role in 

modelling the marginal distribution of y so that, for example, when data are counts we 

specify that f(y|λ) is Poisson. The role of the variable λ is to introduce dependence 

and possibly some limited overdispersion in y. As  such,  λ is simply an artifact and 

may, for all practical purposes, be considered Gaussian with a small variance, in 

which case its higher order moments may safely be ignored. The approximation in 

(19), based on only the first two moments of λ and evaluated at the mean of λ, is  

thus expected to be reasonable under such a scenario. However, by (14) and (16) the 

transfer of dependence from x, via  λ, to  y may possibly be small when there is little 

variation in λ. Accordingly, we seek to construct tests that have maximum power 

in the region close to the null hypothesis of independence. This is accomplished in 

the next section by using a parameter π to control the degree of dependence and by 

constructing tests that are local in π. 
2In related independent work by Huber, Ronchetti and Victoria-Fese (2003), the Laplace approx

imation of Tierney and Kadane (1986) is applied to produce an approximate likelihood function 
on which estimation of the parameters of the latent variable model is based. See also Davis and 
Rodriguez-Yam (2003). 
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4 Tests for Dependence 

4.1 The General Form of the LMP Test 

In this section a test procedure is developed using the density f∗(y) in (19) to approx

imate that of  f(y) in (2). The procedure produces local tests of a scalar parameter 

π, where we assume that 

µλ = µλ(π) and Σλ = Σλ(π). 

That is, both the mean and variance-covariance matrix of the random parameter 

vector λ may depend on a single  hyper-parameter  π, with power being maximized 

local to the null hypothesis of 

H0 : π = 0. (21) 

The statistic for the LMP test against the one-sided alternative hypothesis, 

H1 : π > 0, (22) 

is given by 
∂ log f∗(y)

S = 

¯̄̄̄

 .


∂π π=0 

(See, for example, Casella and Berger, 1990, Section 8.3.4). Following King and Wu 

(1997) we can entertain multiple parameters πi, i  = 1, 2, . . . , s,  and construct the 

one-sided locally mean most powerful test by simply adding up the test statistics for 

the individual parameters. Thus for notational simplicity we continue with a single 

π. Taking the logarithm of (19) it follows that h ¯̄̄


i¯̄̄̄

¯

∂(MΣλ)tr∂ c(λ|y)|λ=µλ 

∂π 
π=0 (23) S
=
 +


∂π
 [2 + tr ((MΣλ)|π=0)]
π=0 

where 
∂ (MΣλ) ∂Σλ ∂M 

= M + Σλ. 
∂π ∂π ∂π 

Using the approximation for the moments of λ in terms of the latent vector x in (11) 

and (12), we can then derive a form of the test statistic that is a function of x, which  

is the process with respect to which π is explicitly defined. 
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4.2 Maintained Assumptions 

In this section we list the assumptions that we maintain throughout the rest of the 

paper, despite the fact that they are not necessary for the general theory of Section 

4.1 above. 

¯̄̄̄
¯ 

(a) We assume that only the marginal density of the latent variable, f(λ), is a  

function of the parameter under test, π. Thus, the only way that π enters f(y) is 

through f(λ). The implication of this assumption is that f(y|λ) only depends on 

π through the influence of λ, so that quantities like those in M depend on π only 

through µλ. This allows for several possible simplifications in (23). First, when 
∂µλ = 0 it follows that !|π=0∂π Ã
¯̄̄̄

¯
∂ c(λ|y)|λ=µλ 
∂ c(λ|y)|λ=µλ 

∂µλ = = 0,

∂µλ 

0 ∂π 
π=0 

∂π

π=0 

∂m∗ 
¯̄̄



¯̄̄

∂mi,j ∂µλso only the second term of (23) remains. In addition, i,j = 0 = 0,


∂π ∂µ
π=0 ∂πλ π=0 

for each element mi,j of the matrix M defined in (20), and thus (23) simplifies to ¯̄£¡ ¢
[2 + tr ((MΣλ)|

¯̄̄̄
 

¤ 

¯̄̄̄
¯ 

π=0

Secondly, when λ is nonstochastic under the null and Σλ| = 0 as a consequence, π=0 

! ¶

M∂Σλ 
∂π

tr

π=0 (24)
S =
 .


)]


Ãthen (23) simplifies to 

∂ c(λ|y)|λ=µλ 
∂µλ 

·µ
M

¸

∂Σλ (25)
S =
 + tr
 .


∂µλ 
0 ∂π ∂π
 π=0π=0 

Obviously, if both simplifications occur only the second term of (25) remains. 

(b) We maintain that the null hypothesis, H0 : π = 0, induces independence in λ, 

whilst the alternative hypothesis, H1 : π >  0, is associated with correlation of some 

sort in x and thus λ. Hence under H0, Σλ| = σ2 I for some σ2 ≥ 0. We  use  the  π=0 λ λ 

following additional notation for the trace terms that enter all versions of the test 

statistic, namely ·µ
∂Σλ 

tr M 

¯̄̄̄¶
π=0 

¸

tr ((MΣλ)| ) =  σλ
2 tr(M| )π=0 π=0 

= σλ 
2 [q 0 q+tr (R)] , (27) 
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q 0D0q+tr (RD0) (26) =

∂π


and 



where 
∂c  ̄̄̄¯
 (28)
q = ,

∂λ λ=µλ,π=0 

∂2c 
R = 

∂λ∂λ0 ̄̄̄̄ 
 (29)

λ=µλ,π=0 

and 
∂Σλ ̄̄̄¯
 (30)
D0 = .

∂π π=0 

(c) We assume that y|λ is conditionally independently and identically distributed. 

That is, for all π ≥ 0, we assume that 

f(y|λ) = f(y1|λ1)f(y2|λ2) . . . f(yT |λT ), (31) 

so that dependence in y is generated solely through λ (from the latent process x), 

with  the transfer of that dependence taking  place  via  (14) or via  (16). When the 

elements of λ are independent under H0, (31) implies that the elements of y are also 

independent, that is, Z
Z

f(y) =  f(y|λ)f(λ)dλ
...
Z
Z


Z 
f(y2|λ2) . . . f(yT |λT )

= f(y1|λ1)f(λ1)dλ1 f(y2|λ2)f(λ2)dλ2 . . .  f(yT |λT )f(λT )dλT 

= f(y1)f(y2) . . . f(yT ). (32) 

Note without the independence of λ, Σλ| = σ2 I, σ2 
λ > 0, is insufficient to ensure π=0 λ

that y is independent, under the null, except when λ is Gaussian. However σ2 
λ = 0, 

associated with λ being fixed, does imply independence in y. Although not required 

for the general derivation of LMP tests based on the approximate likelihood function, 

the assumption in (31) has the advantage of clarifying the testing problem. Invoking 

this assumption, the null hypothesis is associated with independent data, and the 

alternative hypothesis with data that is dependent only through the influence of the 

correlated latent variable xt, with correlation in xt characterized by a positive value 

of π. As such, testing H0 : π = 0  against H1 : π >  0 is equivalent to testing 

for independent data against the alternative of dependent data. Moreover, the lack 

f(y1|λ1) f(λ1)f(λ2) . . . f(λT )dλ= ...
Z
 Z
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of any dependence structure in f(y|λ) is consistent with one of the motivations for 

the latent variable approach to dynamic modelling adopted in the paper, namely that 

when the data under consideration has a restricted sample space, the direct modelling 

of dependence via structural dynamic models can be difficult. 

4.3  Comparison with an Exact Test  

It is of interest to compare the test statistic based on the approximation with a 

corresponding statistic based on the exact likelihood function. Naturally, this may 

only be accomplished in special cases, since a closed-form solution for f(y) in (2) 

is likely to be available for very few combinations of distributions for y|λ and λ. 

The leading case in which an exact result is attainable is when it is assumed that ¢

y|λ v MN λ,Σ

MN  denotes the multivariate normal distribution.3

¡
, with  Σy|λ not a function of λ, and  λ v MN  (µλ,Σλ), where  y|λ 

In this case standard algebra 

associated with the MN  distribution produces ¢
¡
µλ,Σy|λ + Σλ . 

Invoking Assumption (c), and assuming that y is conditionally homoscedastic, it 

y v MN

follows that Σy|λ = σ2I, for  some  σ2 > 0. Further assuming that λ is homoscedas

tic, it follows that Σλ| = σ2 I, for some σ2 > 0. Hence, under the null, y ∼π=0 λ λ 

MN  (µλ| , σ20I) , where σ
2 = σ2 + σλ

2 . Definingπ=0 0 

V = σ2I + Σλ, 

it follows that ¯̄̄̄



∂ log f(y)
S = 

∂π π=0 ¯̄̄̄



¯̄̄̄



0 ∂V−1∂µλ 

∂π0 
1


V−1 (y − µλ) (y − µλ)2 ∂ππ=0 

−
 (y − µλ)=

π=0¯̄̄̄




¯̄̄̄



∂µλ 

∂π0 
1 0 ∂V 

V−1 (y − µλ) V−1 V−1 (y − µλ)+ (y − µλ)=

2
 ∂π
π=0 π=0¯̄̄̄


 +

1
∂µλ0 0D0z= z z 

∂π π=0 2σ0 

3Note we can set λ = x here without loss of generality. 
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where z = (y− µλ| ) /σ0 and D0 is as defined in (30).  π=0

In practice we need to estimate z. Accordingly,  define 

ẑ = (y−y) /s, (33) PT 
qST (yt−y)2 

with y = 
T 
1 

t=1 yt and s = t=1

T . We then base the test on S evaluated 

using ẑ. In Gaussian applications, we are typically interested in tests of covariance of 

the distribution and µλ 

∂µλ 

¯̄̄
 

does not depend on π. In this case, or more generally when 

= 0, we obtain  
∂π 

π=0 

S = ẑ 0D0ẑ, (34) 

which is the LBI procedure, under location and scale invariance, for tests of the 

covariance matrix of the Gaussian distribution; see King and Hillier (1988). 

Similar arguments allow us to deal with the multivariate lognormal-normal mix¡
λ,Σ

it follows that log(y) v MN  (µλ, σ
2I + Σλ).  The  test  statistic has  the same form  

as that in (34), but based on log(y) rather than y. It is possible to derive the mar

ginal distribution of y in some other special cases, for example the Poisson-Gamma 

mixture, but additional independence assumptions are required. 

We wish to compare the exact test in (34) with the approximate test based on the 

¢

ture, that is where log(y)|λ v MN and λ v MN  (µλ,Σλ); in which case y|λ 

¯̄̄
 

¢ same assumptions as invoked above for the conditional distribution, namely y|λ v 

MN λ,Σ , but with the distribution of λ left unspecified. Again focussing on the 
¡

y|λ 

case where ∂µλ = 0, the version of the approximate statistic in (24) is appropriate. 
∂π 

π=0 

In this case, it follows that 

∂c 
= σ−2(y − λ)

∂λ 
∂2c 

= −σ−2I,
∂λ∂λ0 

and that 
σ−2 [z0D0z− tr (D0)]

S = ,
2 +  σ2 

λ [σ0z
0z − σ2T ]

where z = (y− µλ| ) /σ0. Since  ̂z0ẑ = T , replacing z by ẑ in (33) means that the π=0

test statistic reduces (by deleting multiplicative and additive constants) to 

S = ẑ 0D0ẑ, (35) 
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which is equivalent to (34). Thus, in this particular case the test suggested by the 

approximation is equivalent to the LBI test based on the exact Gaussian likelihood. 

5	 Testing for Dependence; The Exponential Fam
ily 

5.1 The Natural Exponential Family 

Of course, while S in (23) may form the basis of a test procedure it cannot be used 

as a statistic until all nuisance parameters have been eliminated and critical values 

found. To this end we derive the form of S based on more specific assumptions about  

the conditional distribution of y,  namely that it falls  within  the exponential  family  of  

distributions. The exponential family  of  distributions allows for  a unified treatment 

of random variables of different types such as the exponential (positive), the Poisson 

(discrete) and even the Gaussian random variable itself. We shall specify that the 

conditional distribution f(y|λ) is a member of the exponential family and, hence, 

that f(y) has a distribution in the larger class that mixes the exponential family 

over the marginal distribution of λ. This class contains the multivariate Gaussian 

distribution as shown in Section 4.3 when f(y|λ) and f(λ) are specified as normal, 

with µy|λ = λ and Σy|λ functionally independent of λ. However, in general f(λ) 

will be non-Gaussian. Hence, the statistics derived in this section are applicable to a 

very broad range of data types. 

For specified functions a(.), b(.) and c(.), the density of the multivariate natural 

exponential family is given by (see Fahrmeir and Tutz, 1994) ½ ¾ 

f (y|θ, γ) =  c (y,a(γ)) exp 
y0θ 

a

− 
(γ

b

)

(θ) 
,	 (36) 

where θ is a vector parameter and γ is a positive scalar dispersion parameter. Under 

the assumption of conditional independence, this exponential family includes, among 

others, the multivariate Poisson, Bernoulli, exponential, uniform and Gaussian distri

butions. In applications where we wish to test for correlation in the y, we set a(γ) = 1  

and θ corresponds to λ of the previous sections. In the volatility applications γ plays 

the role of  λ. 

17 



In the next sub-section we derive tests of the null of independence against short 

memory and long memory correlation in y and in the final sub-section, tests for 

stochastic volatility, that is, tests that the variation in y is serially correlated. 

5.2 Testing for Memory 

In this section we use the simplified form of the exponential family distribution to 

test for correlation. That is θ = λ and a(γ) = 1, in which case (36) becomes 

f (y|λ) = c (y) exp {y 0λ − b (λ)} . (37) 

From (37) it follows that 

∂c 
∂λ 

= y− 
∂b 
∂λ 
= y − µy|λ (38) 

∂2c ∂2b 
∂λ∂λ0 

= − 
∂λ∂λ0 

= −Σy|λ. (39) 

Note that, apart from the moments involved, the expressions in (38) and (39) are 

both independent of any particular distributional form. It follows that M in (20) and 

the first term in (23) are also independent of distributional forms. Thus the statistic 

(23) is the same for all members of the exponential family in this setting. 

The process x is used to generate correlation which is transferred to λ via a suitable 

response function h(.). Assumptions (a), (b) and (c) of Section 4.2 are presumed to 

hold. The mean of the conditional exponential family is µy|λ and Σy|λ = σ2I, with  

σ2 independent of λ. That is, we parameterize the conditional distribution in such a 

way that only the conditional mean is a function of the stochastic parameter vector 

λ. Thus, the covariances of y are determined only by the second component of (5). 

Define ´³ ¯̄

y − µ /σ0,z = y|λ 

where σ20I is the variance-covariance matrix of y under the null. The statistic (23) 

has three components: 

λ=µλ,π=0 

∂ c(λ|y)|λ=µλ 

∂π


¯̄̄̄
¯


¯̄̄̄



¯̄̄̄



∂µλ ∂b ∂µλ0 −
= y 0∂π
 ∂µπ=0 λ ∂π
 π=0π=0 

0 ∂µλ = σ0 z 

¯̄̄̄

 ,


∂π π=0 
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£
 0) =  σ2 
λ σ0

2 z z − σ2Tπ=0

¤

·


tr ((MΣλ)|

and ¯̄̄̄



¯̄̄̄



¯̄̄̄



·
 ·
¸
 ¸

∂ (MΣλ) ∂Σλ 

+ σ2 
λtr 

∂M 
M
tr
 = tr
 .


∂π
 ∂π
 ∂π
π=0 π=0 π=0 

In addition, ¯̄

 ¯̄̄̄

¯

¯̄̄̄



·
 ∂ µ
¸

∂M
 y|λ 

∂π 
λ=µλ= −2σ2 

λσ
2
0 z 

0σ2 
λtr .


∂π
 π=0 π=0 ¯̄̄̄



∂ µy|λ|
∂π 

∂µλλ=µλIn many cases, for example when λ is weakly stationary, and 
∂π 

π=0¯̄

 ¤

form  of  the statistic is thus  

S = ẑ 0D0ẑ. (40) 

Hence, as suggested earlier we obtain the same statistic for all members of the expo

nential family, with (40) in turn equivalent to the LBI statistic in (34) derived under 

unconditional Gaussianity. Thus, the optimal procedures for testing for correlation 

are based on the usual sample ACF with no further cognizance needed to be taken of 

the underlying nature of the data. In particular, the procedures are just as applicable 

to data with a restricted sample space, such as discrete or positive data, as to data 

that is defined on the  whole real line.  

5.2.1 Testing for Short Memory Correlation 

In this section we derive the form of the test statistic when xt is modelled as a Markov 

process, that is as a stationary autoregressive model of order one (AR(1)), 

(xt − a) =  ρ (xt−1 − a) +  ηt, (41) 

with |ρ| < 1 and 

ηt ∼ iid(0, 1), (42) 

for t = 1, 2, . . . , T .4 Given (14), the model in (41) is an appropriate starting point for 

the construction of a test for short memory correlation in yt. With reference to the 
4As the final version of the statistic is invariant to the variance of ηt in (42), we set the variance 

equal to 1. 
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£π=0 

M∂Σλ 
∂π

are constant vectors, in which case the statistic (23) reduces to tr (ig
π=0

noring constants). Using (26), (38) and (39) and replacing z by ẑ in (33), the final 

¸


¯̄̄





parameter π defined in Section 4.1, we test the null hypothesis 

H0 : π = ρ = 0  (43) 

against the alternative hypothesis 

H1 : π = ρ >  0. (44) 

Note because of (42) and (31) the yt are independent under the null. Under the 

alternative the yt are correlated by (14). Given the AR(1) model in (41), E[xt] = a 

for all t and the covariance matrix of x is  
1 ρ ρ2 ρT −1 

ρ 1 ρ ρT −2 

ρ2 ρ 1 ρT −3 

ρ 
ρT −1 ρ 1 







.

1


(45)
Σx = 
1− ρ2 

Using (11), (12) and (45) we obtain £

h2(1− ρ2)−1

¤

i≈
 h0 + 1/2 (46)
µλ 

and 

Σλ ≈ h1Σx, (47) 

where i denotes a column of 1’s and h0, h1 and h2 are suitable response functions 

constant in a.  From  (47) it follows  that  D0 ≈ h1A, with  D0 as defined in (30), where  

=





0 1 0  0  
1 0 1  
0 1 0 1  

1

1 

0  1 0  




.

∂Σx ̄̄̄¯
A =

∂ρ ρ=0 

Thus, we obtain 

S = ẑ 0Aẑ. (48) 

With scaling, the final form of the statistic becomes the normalized ordinary first

order correlation coefficient, 

T 1/2 
PT −1(yt − y)(

S = t=1 yt+1 − y) 
, (49) PT −1(yt − y)2 

t=1 
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which has previously been shown to be a locally optimal test for AR(1) correlation in 

the Gaussian model; see, for example, Anderson (1971, Chp. 6). Under mild regularity 

(see, for example, Fuller, 1996, Corollary 6.3.6.2.) S is asymptotically distributed as 

N(0, 1) under the null of independence. Crucially, the specific form of the test statistic 

in (49) is independent of the response function h(.). 

Thus, notwithstanding the possible non-Gaussian nature of the data, use of the 

common first-order correlation coefficient is seen to be an optimal procedure for test

ing for AR(1) correlation in the model (2) in the context of conditional distributions 

within the exponential family defined by (36). Further, as is clear from a comparison 

of (48) and (35), and invoking the arguments presented in Section 4.3, the approxi

mate LPM test derived here corresponds to the exact LBI test based on a Gaussian 

likelihood. 

5.2.2 Testing for Long Memory Correlation 

We adopt the fractional white noise model as a representation of long memory, de

fined to be the case where the covariances of a stationary process are not absolutely 

summable. Thus, 

(1 − L)d(xt − a) =  εt, (50) 

where 

εt v iid(0, 1). (51) 

The difference operator in (50) is defined as 

(1 − L)d = 1  − dL + 
d(d − 1) 
2! 

L2 − 
d(d − 1)(d − 2) 

3! 
L3 + ..., (52) 

where L denotes the lag operator and the expansion in (52) is valid for d >  −1. 
We wish to test the null hypothesis 

H0 : π = d = 0  (53) 

against the alternative hypothesis 

H1 : π = d >  0 (54) 
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Since the test is local in d, terms  that  are  O(d2) may be ignored without loss of 

generality. Thus, expressing (50) as 

(xt − a) = (1− L)−dεt 

and collecting terms in d we obtain 

d d 
(xt − a) =  1 + dL + L2 + L3 + ... +O(d2) εt. (55) 

2 3 

Hence E[xt] = a and, given (55), 

½ ¾


¾


E [(xt − a)(xt−j − a)] = 
1 j = 0  

+O(d2). (56) d
j j ≥ 1 

The yt are independent under the null by (51) and (31), and correlated under the 

alternative by (14). Clearly, ¯̄̄̄



¾

∂E [(xt − a)(xt−j − a)] 0 j = 0  

= 1 j ≥ 1 (57) 
j∂d
 d=0 

and D0 ≈ h1B where the (T × T ) matrix B contains the derivative functions in (57). 

Hence, 

S = ẑ 0Bẑ (58) 

which, with appropriate scaling, may be written as 
−T 1X 

j
j=1 

where ρ̂j = γ̂j /γ̂0 with γ̂j = T −1 
PT 

1

T 1/2S =
 ˆ (59) ρj, 

(yt − y) (yt−j − y). Under the mild regularity t=j+1 

´³conditions specified in Tanaka (1999), Theorem 3.1, S is asymptotically distributed 

as N 0, π
6 

2 
when the null hypothesis of independence holds. In particular, this 

asymptotic result does not depend on the assumption of normality for yt invoked 

by Tanaka in the derivation of the statistic and remains valid for the non-Gaussian 

data types that are the focus here. Hence, the statistic in (59) is shown to be the 

approximate LMP procedure for testing for long memory in (2) in all cases in which 

a conditional distribution in the exponential class is adopted. As in the case of the 

short memory statistic derived in the previous section, the long memory statistic is 

independent of the response function h(.) used to transmit correlation into (2) via λ. 

Also as in the short memory case, the statistic in (58) corresponds to the exact LBI 

statistic for long memory derived under an unconditional Gaussian assumption. 
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5.3 Testing for Stochastic Volatility 

We now treat the dispersion parameter, γ in (36) as stochastic while keeping θ con

stant. Under conditional independence, ¾½ 

f (yt|θ, λt) =  c (yt, a(λt)) exp 
ytθ − b (θ) 

, (60) 
a (λt) 

where θ is now assumed to be a fixed scalar parameter for all t and γ = λt is a random 

parameter linked to the underlying latent variable xt via (1). The parameter λt will 

produce randomness in the conditional variance of yt, whilst the fixed parameter θ will 

ensure that the conditional mean is nonstochastic. In this case µy|λ is independent 

of λ so that (5) has only a single component due to the diagonal matrix Σy|λ. 

The  null hypothesis is that  y has an overdispersed exponential family distribu

tion (since λt is an i.i.d process under the null) against the alternative that there 

is volatility clustering, i.e. that λt is a correlated sequence with either short or long 

memory. Again, assumptions (a), (b) and (c) of  Section 4.2  are deemed to hold.  The  

null and alternative hypotheses are characterized by (21) and (22) respectively, with 

the latent process xt assumed to follow either the AR(1) process in (41) or the long 

memory process in (50). Expectations are evaluated, under the null, at E [λt] =  µλ. 

Given (60), the elements of the vector q are given by #" ¯̄̄̄



¯̄̄̄



∂ log(c) 1 ∂a

+ [ytθ − b(θ)] −qt = 

a(λt)2∂λt ∂λtλt =µλ λt =µλ 

and the diagonal elements of the matrix R given by #" ¯̄̄̄

 + [ytθ − b(θ)] 

¯̄̄̄



¯̄̄̄



∂2 log(c) ∂2a
2 ∂a
 1
−
rtt = ,

∂λ2 

t ∂λ2 
ta(λt)3 a(λt)2∂λt λt =µλλt =µλ λt =µλ 

with zero off-diagonal elements. Notice the differences between qt and rtt derived 

in this section and the corresponding quantities computed from (38) and (39). In 

particular, in the present case qt is typically a non-linear function of the observed 

variable yt and rtt is not free of the observations. This means that, in contrast to 

tests for correlation in the yt, the optimal statistic for stochastic volatility will depend 

on the particular member of the exponential family chosen for the analysis. This is 

borne out below where the optimal statistic in the Gaussian case is based on the 
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(standardized) squares of the observations while that of the Gamma distribution is 

not. 

As ∂µλ 

¯̄̄

 = 0 for the particular memory models being entertained, the form of 

∂π 
π=0 

the test statistic in (24) applies. Also, given that the diagonal elements of D0 are 

equal to zero, for both the short and long memory models described in the previous 

sections, the statistic then reduces to 

q0D0q i . (61) 
t=1 

PT0 +q q 
hS = 

2 + σ2 
λ rtt 

5.3.1 Conditional Gaussian Distribution 

ih∼ N(θ, λt),  we have that  E[yt] =  θ 

−1
2 

y

λ
t 
2 

t 
+ log(2πλt) , b(θ) =  θ2

If we consider the case where yt|θ, λt = µy and 

V [yt] =  E[λt] =  µλ = σy
2, giving log (c (yt, λt)) /2
=


and a(λt) = λt. Thus,  ¯̄̄̄¶
λt =µλ 

2 

/2

¤
 1

λ2 
t 

¯̄̄̄


λt =µλ

µ

2 £
1
 yt 
λt 

ytθ − θ2− 1
 ¯̄̄̄
 

−qt = 
2λt £


= 
2λ2 

t 

1 

(yt − θ)
¤
λt =µλi¢2 

− λt

= yt − µ − σ2 
yy 

1


h¡
2σ4 

y 

dt − E[dt] 
= k. 

V [dt]1/2 
, (62) 

¢2 

¡
¡

¡
yt − µ

yt − µ

for some constants k1 and k2. Next  define an empirical version of dt, dt = (yt − y)2 , 

with the vector ds composed of the standardized elements (dt − d)/sd, where  d and 

sd are the mean and standard deviation of dt. Empirical versions of qt and rtt are 

then produced by replacing the term (dt − E[dt]) /V [dt]1/2 by (dt − d)/sd in (62) and 
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where dt and k is some constant. Similarly, =
 y ¯̄̄̄¸
2

λt =µλ 

·
 ¢21
 λt−
 −
rtt = 
λ3 
t 

y ·
 ¢2 σy 
2 ¸


1
−
 yt − µy −
=
 · 
σ6 
y 2
¸

dt − E[dt] 

= k1 + k2 (63)
,

V [dt]1/2 



(63) respectively. Since d0 sds = T and ds
0 i = 0, it follows that q0q+ 

PT
t=1 rtt in (61) 

is equal to a constant and we may use 

S = d0 sD0ds (64) 

as a test statistic. Note that we gain robustness to normality by using sd as a consis

tent estimator of the fourth moment. It follows that the tests for short run and long 

run correlation in the volatility may be constructed by calculating (49) and (59) but ³ ´ 
using the standardized squares of the observations, dt−d , in place of the standard

sd 

ized observations themselves. Under the null hypotheses in (43) and (53) respectively 

and when the regularity conditions of Fuller (1996) and Tanaka (1999) are applied to 

dt, d and sd converge by the weak law of large numbers, and hence it is easy to show 

that S is asymptotically normal when scaled appropriately. 

Thus, under the assumption of conditional normality, the approximate LMP test 

for AR(1) correlation in the conditional variance is the first-order correlation coeffi

cient constructed from the standardized squared data and, under the null of indepen

dence, asymptotically N(0, 1) critical values may be used. This test is asymptotically 

equivalent to the Lagrange Multiplier test for an Autoregressive Conditionally Het

eroscedastic (ARCH) process of order one, as proposed in Engle (1982), also under 

the assumption of conditional normality; see also McLeod and Li (1983). The approx

imate LMP test for long memory (given conditional normality) is the Tanaka (1999) 

test but applied to the standardized squared data. 

5.3.2 Gamma Conditional Distribution 

In the case where the data is restricted to the positive region, a Gamma distribution 

may be thought to be an appropriate choice of conditional distribution, where yt|θ, λt 
in this case has density 

f(yt|θ, λt) =  
1 1 

µ−θyt ¶λ
1 
t 

exp

µ
θyt 
¶ 

, (65) 
Γ( 1 ) yt λt λtλt 

with E[yt|θ, λt] = −1 , V [yt|θ, λt] =  
θ
1 
2 λt, E[yt] =  −1 = µ and V [yt] = µ2E[λt] =θ θ y y

µy
2µλ = σy

2. Also  define µλ = σy
2/µy 

2 = vy. In this case, it follows that log c (yt, λt) =  

25




λ−1 
t log λ−1 

t

¡
yt 
¢
− log(yt) − log Γ(λ−t 

1), b(θ) =  − log(−θ) and a(λt) =  λt. Thus,  

¢¤
̄̄̄¯
 ¯̄̄̄
 

¢ 
= λ−1 

t 

£∂
 ∂


[ytθ + log(−θ)]− 
λ2 
t 

¡

¡

¡

λ−1 
tλ−1 

t −

∂λtλt =µλ 

log log Γqt yt
∂λt λt =µλ¯̄̄̄



λt =µλ 

+ 1 + [ytθ + log(−θ)] 
¯̄̄̄
 

ª ¡

λ−1 
t 

¯̄̄̄
 

¢ 
λt =µλ 

©
 ¢
1
 ∂

λ−1 
t yt = − 

≈ v 

= v 

−
log log Γ
λ2 
t ∂λtλt =µλ¶

¶


·
 µ
µ


h i¸

νyyt yt−2 −2− log ) − 1
 − v
+ log(vy + log(vy)y y 2µy µy·
 ³
 ´¸


yt yt vy−2 − log − 1 + 
 ,
y 2
µy µy ¢
 ¢

λ−1 
t

¡
constant k. Using (11), it follows that E

¡h λ−1 
t ) − λ−1log(λ−t 

1 
t≈
using the approximation log Γ + k, for  some  i− 1/2 

≈ −vylog( yt )
µy 

/2 and ¶¸
·


− log

µ
 ´
³
yt yt 
µy 

≈ 1 +  
vy 

. (66) E

2
µy 

¯̄̄̄
 

¶
¡

¡

Thus, defining 

gt = 
yt − log( 

yt 
) (67) 
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and using the approximation (66), we may write 
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for a constant k1. Similarly, ¸
= log
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for some constants k2 and k3. Define an empirical version of gt in (67) as 

gt = 
yt 
y

− log

µ

yt 
y


¶


(69)
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and gs as the vector of standardized elements, (gt − g) /sg, with  g and sg respectively 

the mean and standard deviation of gt. We  find, as in the Gaussian case above, that PT q0q+ t=1 rtt in (61) is equal to a constant and that 

S = gs
0 D0gs (70) 

can serve as a test statistic as a consequence. As in the conditional Gaussian case, tests 

for short run and long run correlation in the conditional variance may be constructed 

by calculating (49) and (59) but using the standardized variable gs in place of the 

standardized observations themselves. Interestingly, and in contrast to the Gaussian 

case, the approximate optimal test is not based on the squares of the observations. 

When gt satisfies the regularity of Fuller (1996), it is also straightforward to show 

that S (scaled) is still asymptotically N(0, 1) under the null of independence, for D0 

equal to A as defined in Section 5.2.1. Similarly, the asymptotic N(0, π
6 

2 
) distribution 

still holds under the null for D0 equal to B as defined in Section 5.2.2.  

6 Illustrative Applications 

6.1 Preliminaries 

In this section we report the results of applying the four tests derived in Sections 

5.2.1, 5.2.2, 5.3.1 and 5.3.2 respectively, to various non-Gaussian financial time series. 

Three of the data sets considered relate to trading on the Australian firm Broken 

Hill Proprietary (BHP) Limited, namely daily returns between 1998 and 2001, one

minute trade counts for 1 August, 2001, and trade durations for 1 August, 2001. 

The fourth data set comprises daily returns on the S&P500 index between 1994 

and 1997. The purpose of the empirical exercise is two-fold. First, to confirm the 

existence of non-Gaussian data with the particular dynamic properties for which 

the procedures developed in the paper are designed to test. Secondly, to use the 

distributional features of the various data sets to motivate the design of the Monte 

Carlo experiments reported in Section 7 of the paper. 

The empirical results associated with all four data sets are reported in Table 1, 

with the sample size on which each set of results is based reported in parentheses. 

Both the short memory (SM) correlation test and the long memory (LM) correlation 
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Table 1: Empirical Results 

SM TEST LM TEST SMSV TEST LMSV TEST 

BHP Returns 
(T = 1011) 

2.736∗(a) 0.688 

NORM 

6.192∗ 

GAM 

n.a.(b) 

NORM 

10.715∗ 

GAM 

n.a. 

S&P500 Returns 
(T = 949) 

1.748 0.318 1.497 n.a. 9.585∗ n.a. 

BHP Trade Durations 
(T = 1432) 

3.106∗ 6.207∗ n.a. 0.738 n.a. 2.147∗ 

BHP Trade Counts 
(T = 360) 

5.776∗ 17.159∗ n.a. n.a. n.a. n.a. 

(a) ∗ denotes significance at the 5% level. 

(b) n.a. = not applicable. 

test are applied to all four data sets. The stochastic volatility tests (both short mem

ory (SMSV) and long memory (LMSV)), that assume conditional normality (NORM), 

are applied to the two returns data sets, whilst the stochastic volatility tests that as

sume a conditional gamma (GAM) distribution are applied to the durations data. 

Test statistics that are significant at the 5% level, using the appropriate asymptotic 

critical value, are indicated by an asterisk. 

6.2 Empirical Results 

In Figure 1, panels (a), (b) and (c) respectively, we present the times series plot, 

empirical distribution and sample ACF for BHP daily returns from 2 January, 1998 

to 31 December, 2001. The sample ACF’s for the squared and absolute returns are √ 
presented in panel (d). The asymptotic confidence bounds of 1.96×1/ T are included 

28




Figure 1: 

on each ACF graph. As is very typical of such data, the sample ACF for the levels 

of the data indicates little correlation, in accordance with the efficient market theory.  

In contrast, more substantial correlation is evident in both squared and absolute 

returns, with there being a slower decline in the ACF for these quantities, indicating 

the possible presence of long memory in volatility; see, for example, Engle, Granger 

and Ding (1993) and Ray and Tsay (2000). 

Linked to the time-varying volatility feature, the unconditional distribution of 

returns exhibits more kurtosis than is associated  with  a normal distribution,  with  

the estimated kurtosis coefficient of 3.911 being significantly greater that the value 

of 3 associated with the normal distribution. That said, the degree of excess kurtosis 

is not extreme. In addition, there is little evidence of skewness, with the estimated 

skewness coefficient of 0.069 being insignificantly different from the value of zero 

associated with normality. As such, the assumption of conditional normality appears 
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Figure 2: 

justified, with the stochastic volatility test statistic in (64), as based on the squared 

data, being applicable as a consequence. 

The results of the four tests as applied to the BHP returns data are reported in 

the top panel in Table 1. The SM test rejects the null hypothesis of independent 

returns at the 5% significance level, although the degree of first-order autocorrelation 

is not substantial, with the estimated coefficient having a value of 0.087. The  LM  

test clearly fails to reject the null.5 In contrast, significant short and long memory 

correlation is found in the conditional variance. 

Figure 2 reproduces the graphical features of S&P500 returns from 2 January, 

1994 to 31 December, 1997. In this case the evidence of excess kurtosis is slightly 

more marked, with significant kurtosis and skewness coefficients of 4.928 and −0.240 
respectively. As with the BHP data however, the departure from normality is not 

5The 5% asymptotic critical value for the LM test is 1.645 × 
p
(π2/6) = 2.110. 
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Figure 3: 

extreme, indicating that a conditional Gaussian assumption is acceptable. The sample 

ACF’s for the squared and absolute data provide much stronger evidence for a long 

memory structure in volatility, with significant autocorrelations still occurring after 

60 lags. For this particular data set, the results (reported in the second panel in 

Table 1) tally exactly with the stylized facts associated with returns data. The level 

of returns display neither short nor long memory characteristics, according to the SM 

and LM correlation statistics, whilst the stochastic volatility tests clearly indicate 

that a long memory rather than a short memory structure exists. 

In Figure 3 the empirical features of the BHP trade durations data is displayed. 

The data comprises the durations between trades on 1 August 2001, between 10.20am 

and 4.00pm, with zero trade durations omitted. The intraday pattern in the duration 

data is modelled using a cubic smoothing spline, with the roughness penalty chosen 

using generalized cross-validation; see also Engle and Russell (1998). The durations 
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are then adjusted by dividing raw durations by the ordinate of the estimated spline 

function evaluated at the corresponding points. In modelling the correlation in such 

data using either an Autoregressive Conditional Duration model (Engle and Russell, 

1998) or a Stochastic Conditional Duration Model (Bauwens and Veradas, 2004) 

the conditional distribution is typically specified as being either exponential or some 

variant thereof, such as the Weibull or gamma distributions. Certainly the empirical 

distribution in panel (b) indicates that any such distribution is a plausible choice. In 

particular, the adoption of a conditional gamma distribution means that the stochastic 

volatility statistic in (70) can be used to test for both short and long memory volatility 

in the data. From the statistics reported in Table 1 it is clear that as well as there 

being significant short and long memory correlation in (adjusted) durations over the 

day, there is evidence of a long memory structure in volatility. We include the sample 

ACF for the squared durations in panel (d) of Figure 3 in order to highlight the fact 

that the squared values of the data are not the appropriate quantity to consider in 

this case, with the graph giving no hint of the long memory discerned by the LMSV 

test. 

Finally, in Figure 4 we present the graphical features of the one-minute trade 

count data for the six hours (360 minutes) between 10.00am and 4.00pm on 1 August 

2001. In this case the data has not been adjusted for the intraday pattern. Perhaps 

as a consequence of this, more substantial memory is evident from the sample ACF. 

Both correlation statistics reported in Table 1 are also highly significant. 

7  Finite Sample Properties  

In this section we calculate finite sample sizes and powers for respectively : 1) the 

SM test, adopting an exponential conditional distribution; 2) the LM test, adopting 

a Poisson conditional distribution; 3) the SMSV test, adopting a gamma conditional 

distribution; and 4) the LMSV test under the assumption of conditional normality. 

All calculations in the Monte Carlo experiments are based on 10000 replications of 

the relevant process, with results reported for sample sizes of 400, 1000 and 1500. 

The latter are chosen to tally approximately with the sizes of the various empirical 

data sets analyzed in the previous section. Certain aspects of the experimental design 
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Figure 4: 

for each set of experiments are determined by the features of the empirical data sets, 

with details of the calibration of the simulated data with the empirical data outlined 

in the Appendix. All results are presented in Table 2 below. 

The hypotheses under test in the first set of experiments are given by (43) and (44) 

above. Under the null hypothesis, the statistic in (49) is asymptotically distributed 

as N(0, 1). Hence, the 5% empirical size of the test is estimated by the proportion of 

times that the calculated test statistic exceeds the 5% nominal critical value  of  1.645. 

The conditional distribution of yt is assumed to be exponential, hence 

f(yt|λt) =  λ−1 e −yt/λt (71) t 

for t = 1, 2, . . . , T.  In all replications, the values of xt are generated from the AR(1) 

process (41), with the response function in (1) assumed to be exponential, that is 
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λt = h(xt) = exp(xt). 6 The mean of xt, a,  is assigned a value that ensures that the 

mean value of the simulated data is approximately equal to 2, a value  that  is  similar  

to the average value of the (adjusted) durations data analyzed in the previous section; 

see the Appendix for details. 

The size and power results are recorded in the upper panel in Table 2. Corre

sponding to each value of ρ, the mean value of the first order correlation coefficient 

of yt across the replicated samples of the particular size (ρy) is recorded.
7 For the 

sample size of N = 400, the power of the test for even low levels of correlation in the 

yt values is very high. For the sample size closest to the size of the durations data set, 

N = 1500, the probability of the test correctly rejecting the null of independence in 

favour of the alternative of Markov dependence is approximately 90% even when the 

(estimated) degree of first-order correlation in the data is only 0.087, a  value  that  is  

equivalent to the sample correlation coefficient for the empirical sample of durations. 

The empirical size of the test is reasonably close to the nominal level, for all sample 

sizes considered. 

In the second set of experiments, the hypotheses under test are given by (53) 

and (54) above. Under the null, the statistic in (59) is asymptotically distributed as ³ ´ 
N 0, π

6 

2 
. Hence, the 5% empirical size of the test is estimated by the proportion 

of times that the calculated test statistic exceeds the 5% nominal critical value of p
1.645× (π2/6) = 2. 110. The conditional distribution of yt is assumed to be Poisson, 

hence 

f(yt|λt) =  
e−λt λt

yt 

(72) 
yt! 

for t = 1, 2, . . . , T.  In order to reduce the computational burden associated with the 

replication of (50) under H1, the  AR(∞) process invoked by the fractional operator, 

for d 6= 0, is approximated by an AR(500) process, 

xt = a+ d1xt−1 + d2xt−2 + · · ·+ d500xt−500 + ηt, (73) 
6In this and all other sets of experiments, the qualitative nature of the results was found to be 

robust to the choice of response function. 
7This mean value is an estimate of the expected value of the first-order sample correlation co

efficient for yt, as based on a particular sample size. Since the sample correlation coefficient is a 
downwardly biased estimate of the population correlation coefficient in finite samples, (the estimate 
of) the expected value is likely to slightly understate the true degree of correlation present in the yt 
process associated with the given latent process. 
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Table 2:  Finite Sample Sizes  and  Powers  

N = 400  N = 1000  N = 1500  

SM TEST ρ ρy Size/Power ρy Size/Power ρy Size/Power 

0.0 
0.1 
0.3 
0.5 
0.7 

-0.003 
0.023 
0.084 
0.161 
0.267 

0.053 
0.128 
0.447 
0.838 
0.987 

-0.001 
0.026 
0.087 
0.165 
0.276 

0.059 
0.203 
0.775 
0.994 
1.000 

-0.001 
0.026 
0.087 
0.165 
0.277 

0.057 
0.248 
0.901 
1.000 
1.000 

LM TEST d Size/Power Size/Power Size/Power 

0.0 
0.1 
0.2 
0.3 
0.4 

0.037 
0.365 
0.860 
0.990 
0.999 

0.040 
0.696 
0.996 
1.000 
1.000 

0.041 
0.852 
1.000 
1.000 
1.000 

SMSV TEST ρ Size/Power Size/Power Size/Power 

0.0 
0.1 
0.3 
0.5 
0.7 

0.047 
0.100 
0.271 
0.543 
0.795 

0.052 
0.125 
0.447 
0.802 
0.958 

0.054 
0.147 
0.570 
0.910 
0.983 

LMSV TEST d Size/Power Size/Power Size/Power 

0.0 
0.1 
0.2 
0.3 
0.4 

0.032 
0.089 
0.241 
0.520 
0.785 

0.043 
0.152 
0.501 
0.878 
0.981 

0.042 
0.192 
0.638 
0.956 
0.994 
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Γ(−d+j)where dj = −
Γ(−d)Γ(j+1) . Simulation of xt then occurs via the finite order AR model 

in (73), for a range of values of d, with  λt = exp(xt).8 In this case the parameter a is 

used to produce simulated data with a mean value of approximately 5, which  accords  

with the Poisson count data analyzed in the previous section. 

The size and power results for the long memory test are recorded in the third 

panel of Table 2. As is evident from the results, the power of this test rises sharply 

near to the null hypothesis. For a sample size of 1000, the test has approximately 70% 

probability of correctly rejecting the null of independence when the underlying latent 

process is fractional with  d equal to only 0.1. This probability increases to 85% for 

N = 1500. For the sample size closest to the size of the trade count data set, T = 400, 

there is close to 100% probability of correctly rejecting the null when the fractional 

parameter is equal to 0.3. The empirical size is somewhat less than the nominal size 

of 5% for the sample sizes considered here. 

The third set of results relate to the application of the SMSV test to conditionally 

gamma data, with the simulated data being calibrated with the empirical durations 

data. The density of the conditional distribution is given by (65) and the underlying 

latent variable, xt, assumed to follow the Markov process in (41), with λt = exp(xt). 

All details of the specification of values for the parameters θ and a, are outlined in 

the Appendix. 

Under the null hypothesis of (43), the statistic in (49), as applied to the standard

ized quantities in the vector gs, defined with reference to the quantity gt in (69), is 

asymptotically distributed as N(0, 1). The empirical size and power calculations are 

recorded in the fourth panel of Table 2. The powers are uniformly smaller than the 

corresponding powers for the SM correlation test applied to the conditionally expo

nential data, for each value of ρ. However, for the sample size that is closest to the 

size of the durations data set, T = 1500, the power is high for values of ρ far from 

the null. 

The final set of experiments relates to the application of the LMSV test to condi
8The alternative to this method of simulation is to generate the fractional process exactly using 

the known variance covariance matrix of the (N × 1) vector x = (x1, x2, . . . , xN )
0 . For large N, 

however, this exercise is computationally burdensome, given the need to calculate the Cholesky 
decomposition of an (N × N) matrix. 
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tionally normal data. The conditional density of yt is thus given by µ ¶
1 

f(yt|θ, λt) = (2πλt)−1/2 exp − (yt − θ)2 . (74) 
2λt 

The conditional variance, var(yt|θ, λt) = λt, is linked to the underlying variable xt via 

λt = exp(xt), with  xt assumed to follow the fractional process in (50). Details of the 

way in which the simulated data is calibrated with the empirical S&P500 returns data 

via the specification of values for the fixed conditional mean, θ, and the parameter a 

of the model in (73), are provided in the Appendix. 

Under the null hypothesis of (53), the statistic in (59), as applied to the standard³ ´ 
ized squares of the simulated data, is asymptotically distributed as N 0, π

6 

2 
. The 

empirical size and power calculations are recorded in the bottom panel of Table 2. 

The powers are uniformly smaller that the corresponding powers for the LM correla

tion test applied to the conditionally Poisson data, for each value of d, markedly  so  

for the lower values of d. However, for the larger sample sizes, including that closest 

to the size of the returns data set, T = 1000, power is close to 100% for d = 0.4. 

8 Conclusions  

In this paper we have derived statistics for testing various forms of dependence in 

non-Gaussian data. The methodology is based on the modelling of dependence in the 

observed data indirectly via a dynamic structure for a latent process. In exploiting an 

approximation to the exact likelihood function, the computational issues associated 

with  the unobservable variables  are obviated.  The tests  are derived  as  locally most  

powerful tests, and, thus, exploit the accuracy of the approximation to the true 

likelihood function in the region of the null hypothesis of independence. 

The short and long memory correlation statistics are invariant to the distribution 

adopted within the exponential family. Hence, the tests produced here have optimality 

properties in very broad distributional settings. The stochastic volatility statistics on 

the other hand have a form that is dependent on the particular distribution used in the 

exponential family. We conjecture that tests for correlation in higher-order moments 

would mimic this feature of the volatility tests, in the sense of being dependent in 

some way on the particular conditional distribution used to capture the basic features 
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of the non-Gaussian data. The derivation of such higher-order dependence tests is 

left for future work. The application of the correlation and volatility tests to non-

Gaussian financial data has been demonstrated, and their finite sample performance 

documented. The tests have been shown to possess high power, especially for the 

larger sample sizes typically associated with financial data sets, along with good size 

behaviour overall. 
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Appendix: Details of Monte Carlo Designs 

SM TEST 

The correspondence between the mean value of the simulated yt data and the 

value of a in the AR(1) process for xt, (41), is approximated as follows. Given that 

for the exponential distribution in (71), µy|λ = λ, and that by (6), E(y) =  µλ as 

a consequence, controlling the simulated values of yt so as to maintain a particular 

value for the marginal mean of yt is equivalent to simulating λt so as to maintain that 

same  value for  the marginal mean of  λt. Given the exponential form of the response 
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function and the moments of the stationary AR(1) process for xt in (41), it follows 

that 

1 ∂2ext 
E [λt] ≈ e xt |xt =E[xt] + 2 ∂x2 

t 
|xt =E(xt) × var [xt] 

1 1 
= e a + e a( ). (75) 

2 1− ρ2 

Hence, for any given value of ρ, the simulation of λt (and yt) values with  E(λt) = 2  

is (approximately) achieved by setting the parameter a according to · µ µ ¶¶¸
1 1 

a = ln(2)− ln 1 +  . (76) 
2 1− ρ2 

LM TEST 

In the case of the LM test, with an exponential response function adopted, a in 

(73) is selected according to · µ ¶¸ 500
1 X 

a = ln {E [λt]}− ln 1 +  var [xt] (1− dj), (77) 
2 

j=1 P500 ψ2for any given value of d, where var [xt] is approximated as var [xt] ≈ j=1 j , with 
Γ(d+j)ψj = 

Γ(d)Γ(j+1) being the jth coefficient in the finite order moving average approxi

mation to (50), 

xt = (1− L)−d a + ψ1ηt + ψ2ηt−1 + · · ·+ ψ500ηt−500. 

Since µy|λ = λ for the conditional Poisson distribution, it follows that E(yt) = E [λt], 

with E [λt] in (77) set equal to the approximate sample mean of the Poisson trade 

count data, namely 5. 

SMSV TEST 

In the case of the conditional gamma distribution, with density as in (65), E(yt|θ, λt) =  
−1 1and var(yt|θ, λt) =  

θ2 λt. From (3) and (5) it then follows that E(yt) =  −1/θ,
θ 

var(yt) = E(λt)/θ
2 and 

E(λt) =  
var(yt) 

2 . (78) 
[E(yt)]
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Using the expression for E(yt), the parameter θ is equated with the negative of the 

reciprocal of the sample mean of the durations, whilst E(λt) is set equal to the 

function of sample variance and sample mean corresponding to (78). The expression 

in (76) is used to produce a value of a for any given value of ρ. 

LMSV TEST 

In the case of the conditional Gaussian distribution, with density as in (74), 

E(yt|θ, λt) =  θ and var(yt|θ, λt) =  λt. From (3) and (5) respectively it then fol

lows that E(yt) = θ and var(yt) = E(λt). The parameter θ is thus equated with the 

sample mean of the S&P500 returns data. Setting E(λt) equal to the sample variance 

of the S&P500 returns data, the value of a, for  any  given  value  of  d, is  determined  

using (77). 
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