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Abstract: When insurance claims are governed by fat-tailed distributions, gross 
uncertainty about the value of the tail-fatness index is virtually inescapable. 
In this paper a new premium principle (the power principle) analogous to the 
exponential principle for thin-tailed claims, is discussed. 
Pareto premiums determined under the principle have a transparent ratio structure, 
cater convincingly for uncertainty in the tail-fatness index, and are applicable in 
passage to the extremal limit, to all fat-tailed distributions in the domain of attraction 
of the (Frechet) extreme-value distribution. Cover can be provided for part claims if 
existence of the claims mean is in doubt. Stop-loss premiums are also discussed. 
Mathematical requirements are very modest. 
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1.0  Introduction 
 
1.1  Objectives and structure of the paper 
 
The aim is to describe and demonstrate the application of a new premium principle 
(the power principle) for fat-tailed risk as described in Section 1.3. For this type of 
risk, the precise value of the tail-fatness index is of first importance in determination 
of claim severity. But the index is very difficult to estimate precisely, particularly 
with the sorts of sample sizes likely to be available to insurers in practice.  
The premium principle can be used to provide a coherent framework in which to 
determine premiums in a transparent form, when uncertainty in the tail-fatness index 
is suitably modelled. 
In the remainder of the paper, the exponential principle for thin-tailed risk is 
described. The power principle is introduced as the analogous principle for fat-tailed 
risk. Risk-neutral and risk-averse premiums for Pareto claims are shown to take the 
form of ratios of expected values of the largest order statistics independently of 
sample size. In passage to the extremal limit, the premiums predicated on Pareto are 
shown to apply to all fat-tailed distribution types in the domain of attraction of the fat-
tailed extreme value distribution. 
New results start with the Power Principle in Section 1.3 
 
1.2 Thin-tailed risk and the exponential principle 
 
When general insurance arrival claims are thin-tailed (possessing moments of all 
orders) the exponential principle (see Rolski et al, 1999, p.80), predicated on constant 
absolute risk aversion (see Pratt, (1964) and Arrow (1971)) applies.  
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Under the exponential principle, premium  P  for claim  X  is set as  
 
(1.1)    P = ln{MX(s)} 
 
                                                   ≈ µ + ½sσ2+o(s) 
 
where MX(·), µ, σ2 are respectively the moment generating function, mean and 
variance of  X.  Parameter  s  measures the constant absolute risk aversion of the 
insurer. See for instance Bowers et al, (1986). 
Indeed the exponential principle applies to annual aggregate claims Y where 
 
(1.2)   Y =  X1+X2+ · · · + XN, 
 
the {Xi}  are identically independently distributed, and N is the claim number 
distribution (frequently Poisson or negative binomial), since  
 
(1.3)   MY(θ) = MN[log{MX(θ)}] 
 
so that  

 

(1.4)   P ≈E[X]×E[N] + ½s{ var(X)×E[N]+var(N)×E[X]2} 

 

The exponential principle is conveniently established using the pricing function 

 

(1.5)    m(x) = exp(sx) 

 

and the pricing rule (analogous to the expected utility principle, see Appendix; Note 1) 

 

(1.6)    m(P) = E[m(X)] 

 

1.3  Fat-tailed risk and the power principle 

 
Individual claims {Xi} of  (1.2) are governed by a fat-tailed distribution  F(x) when  
 
(1.7)   1-F(x) = L(x)x-δ , (x > 0, δ > 0) 
 
where L(x) is 'slowly varying at infinity', i.e. for any ε > 0 and sufficiently large  x 
 
    x-ε < L(x) < xε. 
 
Thus the claim random variable  X  has moments only up to order  k < δ. 
 
Much of our discussion centres on Pareto claims with 
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(1.8)   1-F(x) = (x+1)-δ,  (x > 0, δ > 0) 
 
It is easy to show (and is shown in the sequel) that relevant results for Pareto claims, 
extend in passage to the extremal limit to all claims with distributions in the domain 
of attraction of the Type I (Frechet) extreme value distribution, i.e. certainly to the 
class of distributions comprehended by (1.7).  
Exposure to the extremal process would imply that the general insurer is indefinitely 
continuing, in business in fact as a going concern (the ‘going concern’ concept is first 
of four fundamental accounting principles; assumptions on which the statutory reports 
of all companies are compiled; see Holmes and Sugden, 1990, Chapter 1). 
 
A Pareto claim  X under (1.8) is equivalent to claim  V  measured in terms of a scale 
parameter  λ  (i.e. V = Xλ) when  V has the Pareto form 
 

(1.9)   1-F(x) = 
δ

λ




 + x
λ


   (x > 0, δ > 0, λ > 0) 

 
For example λ  might be $100,000 or $1m. 
 
 
Fat-tailed claims (having limited moments) have no moment generating functions, 
hence no constant absolute risk-averse premiums. 
 
The Power Principle 
 
For fat-tailed risk premium  P can be set using the power principle,  predicated on 
constant relative risk-aversion measured by parameter  α, via pricing function  
 
(1.10)   m(x) = xα+1 (x > 0, α ≥ 0) 
 
and pricing rule (1.6); (see Appendix; Note 1). 
 
For any claims random variable  X, the  power principle leads to a premium  P 
determined by the risk-aversion coefficient  α  as 
 

(1.11)   P = 1
1

}1 +α{ +′αµ  
 
where  µk′ is the kth raw moment of  X.  
 
Thus  P  is a non-decreasing function of  α+1 ≥ 0  (see for instance, Puri and Sen, 
(1973, p.12). 
 
1.4  Risk-averse Pareto premiums 
 
When the power principle is applied to Pareto (1.8) we have for claim (1+X): 
 
 

    Pα+1 = E[(1+X)(α+1)] 
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                                                =  ∫
∞

−−+ ++
0

1)1( )1()1( dxxx δα δ

 

                                              = δ{δ-(α+1)}-1 

 

So                                 P = {1-
δ

α )1( + }-1/(α+1) 

 

In terms of  ρ = 1/δ, the constant relative risk-averse premium P is given by 

 

(1.12)                            P = (1-ρ/β)-β 

 

where  β = (α+1)-1 is the maximum tail-fatness index considered operative by the 
insurer with constant relative risk-aversion  α. 

 

1.4 Remarks:   

 

(i)  The insurer’s level of constant relative risk-aversion  α  is manifested by its choice 
of maximum tail-fatness index  (α+1)-1 = β = ρmax = 1/δmin. 

 

(ii)  Non-existence of the mean 

 

The foregoing argument assumes  δ >1 (ρ < 1) and the existence of  E[1+X]. 

If  δ ≤ 1,  (ρ ≥ 1)  then cover can be offered on part of the claim (1+X)φ  where φρ <1. 

In this case, the pricing rule is applied to claim (1+X)φ  resulting in premium 

 

(1.13)    P = (1-ρ/β)-φβ 

 

where now  β-1 = φ(α+1). 

 

 (iii)  The risk-neutral premium 

 

For Pareto (1.8)  E[X] = (δ-1)-1, δ > 1. 

If  α = 0, β = 1, equation (1.13) leads to (1-ρ)-1 = δ/(δ-1) = E[1+X]. 
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We show in Appendix: Note 3 that  

 

(1.14)                               (1-ρ)-1 = 
]1[

]1[
)1(

)(

−+

+
n

n

XE
XE  

where  X(k)  is the kth Pareto order statistic, the ratio being independent of  n. 

As  ρ ↑ 1, the ratio becomes very large. The expected value of the second largest 
order statistic (claim) is small compared with that of the largest. This suggests annual 
aggregate claims  Y  of  (1.2) will be largely attributable to the largest or few largest 
claims. 

Corollary: For thin-tailed claims  ρ = 0. Heuristally from (1.14) we expect the ratio 

]1[
]1[
)1(

)(

−+

+
n

n

XE
XE  to be 1 for all thin-tailed distributions. 

In fact it is not difficult to prove this if  1-F(x) = O(exp(-λxγ)), (x > 0, λ > 0, γ > 0). 

 

 
2.0  Risk-averse premiums when tail-fatness index is uncertain 
 
2.1  Fat-tail claims models 
 
The main reason for using fat-tailed arrival claims is to model classes of insurance 
with potentially a few very large individual claims. We have in mind catastrophe, 
public liability, professional indemnity, industrial fire and the like. 
For (1.2) to provide a useful model for very large claims, the variance of individual 
claims must be infinite; otherwise aggregate claims will be governed by central limit 
theorems.  
The principal cost of annual aggregate claims in the classes of insurance involving 
fat-tailed claim is usually attributable to one or two large claims (see Mikosch, 1997 
for argument, Feller (1971, p.289, for theoretical justification; also Appendix: Note 2 
(quote from Mikosch, 1997). Remark (iii) of Section 1.4 above is also relevant). 
 
This means that the tail-fatness index  δ   of  (1.7) or (1.8) does not exceed  2.  
 
 If in addition, typical large claims from (1.8) are large multiples of the (unit) scale 
parameter, and  E[X] is supposed to exist,  δ  must be close to 1. 
 
It is probably worth pointing out that for Pareto claims  X under (1.8), the mean  
µ = (δ-1-1 is ‘a rare event’ as δ ↓1, in the sense that Pr (X > µ) → 0.  
Thus the mean will be greater than any quantile of the distribution as δ approaches 1. 
For  δ  in the range (0, 2], the tail-fatness index is notoriously difficult to estimate, 
even when quasi-parametric or parametric assumptions are made.  
 
Empirical evidence is provided in Appendix: Note 2. 
 
Since  δ  (and so µ)  is never known precisely, there is some danger in attempting to 
use ‘the quantile principle’ (Rolski et al, 1999, p.83) to set premiums. 

 5



 
In practical terms this difficulty can be side-stepped by modelling tail-fatness 
uncertainty as we now outline. Unless otherwise stated, it is assumed that the claims 
mean E[X] exists, so that δ  > 1. 
 
2.2  Model for tail-index uncertainty 
 
Uncertainty about the precise value of  ρ (= 1/δ) is modelled using a transformed beta 
density on (0, β) where β = 1/(α+1), the maximum tail-fatness  ρmax  deemed operable 
by an insurer with constant relative risk-aversion α. 
 
The risk-averse premium  P = (1-x/β)-β  from (1.12) is averaged over (0, β) for 
weights given by 
 
(2.1)    fρ(x) = νxν-1/βν  (0 ≤ x < β, ν ≥ 1) 
 
the premium being calculated as a mean value.  
 
Alternatively, distribution (2.1) can be regarded as a Bayesian prior for  ρ (with  E[P] 
the resultant posterior mean).  
 
The reasons for using  ρ  weights in the form (2.1) are: 
 
(i)  Prudence: Insurers would doubtless prefer  ρ  to be small, near zero (if ρ = 0 risk 
arises from a thin-tailed, or a mixture of thin-tailed distributions), but financial 
prudence suggests that values near 1 should be most heavily weighted, since it is these 
values which generate greatest claim severity. The functional form (2.1) does not 
absolutely preclude the possibility that claims arise from a mixture of thin-tailed 
distributions (when ν = 1, ‘law of equal ignorance’ for ρ on [0,β), the value ρ = 0 ‘is 
as likely as’ any specific non-zero value, in that its probability density is β-1), however 
as  ν  is increased, ρ values near 1 are given heavier weightings. 
Even so, this is a little misleading.  
Even if  ν = 1, fρ(x) = 1/β,  the ‘law of equal ignorance’ for  ρ  on (0, β), implies that 
the distribution in terms of  δ  weights is fδ(x) = β-1/x2  (x > δmin = 1/β). That is, the  δ  
weights are Pareto with a mode at  x = δmin. 
 
 
 
(ii)  Mathematical tractability: The form P = (1-ρ/β)-β of the risk-averse premium, 
with an integrable pole at  ρ = β, (β < 1), suggests the functional form (2.1) to 
generate risk-weighted premiums involving the Beta function. 
This indeed happens, but the interpretation in terms of ratios of expected values of 
higher order statistics (discussed below) is indeed fortuitous. 
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2.3  The nature of the uncertainty premiums 
 

Denote by  Pν  the premium obtained as mean value of . 

Substitution u = x/β in the integral leads immediately to  

∫ − −−−
β

βνν βνβ
0

1 )/1( dxxx

 
(2.2)       Pν = νB(ν, 1-β) 
 
where  B( · , ·) is the beta function. We call  Pν the uncertainty premium. 
 
2.4 Ratio structure of the uncertainty premium  Pν 
 
If  ν = k  an integer,   
 
(2.3a)    Pk = kB(k,1-β) 
 
but also, 

 

(2.3b)    Pk  = 
]1[

]1[
)(

)(

kn

n

XE
XE

−+

+  

 
where  X(k) is the kth order statistic of the claim distribution. If  E[X] exists, so does 
E[X(n)]. 
 
The ratio is independent of  n (Appendix: Note 3) 
 
In passage to the extremal limit (as n becomes large; the insurer is supposed to be an 
indefinitely continuing entity) the value  Pk  remains constant. 
 

However the character of the ratio 
]1[

]1[
)(

)(

kn

n

XE
XE

−+

+  changes to that of the ratio of 

expected values of extremes of the distribution; i.e.  
 
     
    Pk → Pk* 
 
where  
 

(2.4)    Pk* = 
][

][
)1(*

)1*(

kXE
X

+
E  

 
and where  X*(m)  is the kth extreme of the distribution. i.e. it is the limiting value  for 
large n, of  X(n-m+1). 
 
Aside: An interesting independent check of this result is available. 
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The limiting density of  X(n-k+1)   is the density of the kth extreme of any distribution 
in the domain of attraction of the Frechet extreme value distribution and is  
 
(2.5)   fk(x) = δx-kδ-1(vn)kδexp{-(vn)δx-δ}/(k-1)! 
 
 
where  n(1-F(vn)) = 1, i.e  vn  is the ‘tail-quantile’ function. 
 
(See for instance David and Nagaraja, (2003, p.306). 
 
It follows that                    E[X*(k)] = vnΓ(k-1/δ)/Γ(k) 
 
                                                        = vnΓ(k-ρ)/Γ(k) 
 
So for instance  E[X*(1)]/E[X*(1+k)] = Γ(k+1)Γ(1-ρ)/Γ(k+1-ρ) 
 
                                                        = kB(1-ρ,k) 
 
                                                        =kB(1-β,k)   
as for the ratio 
 

]1[
]1[
)(

)(

kn

n

XE
XE

−+

+  

 
in equation (2.3) with ρ = β. End: Aside 
 
2.5  Remarks: 
 
(i)  Universal fat-tailed premiums 
 
The premium  Pk = P*k  is independent of  n.  
 
The alternative derivation based on (2.5) shows that it is also independent of the set of 
distribution-specific normalizing constants {vn} required to ensure convergence of 
extremes from individual parent type distributions to the extreme value distribution. 
 
For instance. for Pareto (1.8) , vn = nρ 
 

For loggamma, f(x) = 11))(log(
)(

−−−
Γ

λα
α

α
λ xx , (x > 1, α,λ > 0),  

vn = )1())(log(
)(

−








Γ

αρ


ρ

α
nn ; (see Teugels and VanRoelen, 2004) 

 
 
Its independence of vn shows that the ratio premium  is independent of distribution 
type. 
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In the extremal limit (for ongoing insurers) it provides a universal premium for all 
fat-tailed distribution types in the domain of attraction of the Frechet extreme value 
distribution. 
 
(ii) Continuous premiums  
 
When only integer order statistics are used, the premiums available have large gaps. 
For instance when  β is set at 1/1.1 (δ = 1.1), premiums increase with ν = k as shown 
in Table 1 below. The premiums are for claim (1+X) 
 
 
Value of  ν = k 1 2 3 4 
Premium 11 20.1667 28.9347 37.4449 
Table 1  Constant relative risk averse premiums for (1+X) when β = 1/1.1 when ν = k 
an integer 
 
By using values of  ν  between integers we can obtain premiums to fill in these gaps. 
One way of preserving the structural (ratio) form of the premium is as follows. 
 
Define the fractional order statistic X(ν) interpolating between  X(k) and  X(k+1). 
For any value ν such that 1≤k ≤ ν < k+1≤n, the  νth Pareto order statistic X(ν) is defined 
via its density on (0, ∞) given by 
 
 
(2.6)   fν(x) = δ[1- (x+1)-δ]ν-1(x+1)-(n-ν)δ(x+1)-δ-1/B(ν,n+1-ν) 
 
 
by analogy with the density of the kth Pareto order statistic 
 
(2.7)   fk(x) = δ[1- (x+1)-δ]k-1(x+1)-(n-k)δ(x+1)-δ-1/B(k,n+1-k) 
 
 
Here B(ν, n+1-ν) = Γ(ν)Γ(n+1-ν)/Γ(n+1). 
 
The νth extreme (the limiting value of X(n-ν+1) , ν ≥ 1) is similarly defined via its 
density , denoted by fν(x)  where  
 
 
(2.8)  fν(x) = δ(vn)νδx-νδ-1exp{-(vn)δx-δ}/Γ(ν)   (ν ≥ 1, x > 0, δ > 0) 
 
 
Then  
 
(2.9a)                               Pν = νB(ν, 1-β) 
 
and 

(2.9b)                               Pν = 
]1[

]1[
)(

)(

ν−+

+
n

n

XE
XE  

while   
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(2.10)      

                                         Pν*   = 
][

][
)1(*

)1*(

ν+XE
XE  

 
(These results are established in Appendix: Note 3). 
 
Illustration 
 
For instance for  β = 1/1.1 and  ν  between 0 and 1 we obtain for claim (1+X): 
 
 
Value of nu  Premium 
1.0 11.0000 
1.1 11.9421 
1.2 12.8774 
1.3 13.8064 
1.4 14.7297 
1.5 15.6476 
1.6 16.5604 
1.7 17.4685 
1.8 18.3720 
1.9 19.2714 
2.0 20.1667  
Table 2  Flexible premiums obtained using fractional order statistics and β = 1/1.1 
 
 
(iii)  Insurer's pragmatic strategy (ν = 1; the implications) 
 
In Appendix: Note 2 evidence it was intimated that whatever information can be 
gained from sample data, is best gained via direct estimation of the tail-fatness index. 
Nevertheless, precise knowledge about the operative value is just not available. 
What the insurer must do effectively is choose a value of the tail-fatness  δ  or ρ  
which it considers financially prudent and use it as a basis to set premiums. 
 
This is equivalent to making a choice for  β = ρmax   and using a ratio premium based 
on  ν = 1 ; i.e. setting  P = (1-β)-1  the 'risk-neutral premium' based on the fattest tail,  
β = ρmax using the law of equal ignorance for  ρ on (0, β). This choice nevertheless 
implies the fattest tails obtain heaviest weights as explained in Section 2.1. 
 
2.5  More general ratio premiums 
 
If values of  δ ≤ 1 are in play (ρ ≥ 1) the existence of  E[X] is not guaranteed. 
The most general premium modelled under uncertainty (which includes the cases 
already discussed above) is given by the following theorem 
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Theorem  When claims have a Pareto distribution with  1-F(x) = (x+1)-δ, (x > 0, δ > 
0) the ratio premium for claim (1+X)ϕ  (ϕρ < 1 if  ρ ≥ 1, ϕ = 1 otherwise) calculated 
as a mean value of constant relative risk-averse premiums  P = (1-ρ/β)-ϕβ  with 
weights fρ(x) = ν(x-β0)ν-1/(β-β0)ν,  (β0 < x < β) is: 
 
(2.10)   Pν = (1- β0/β)-ϕβνB(ν,1-ϕβ) 
 
or  
 

(2.11)   Pν   = (1-β0/β)-ϕβ

])1[(
])1[(

)(

)(

ϕν

ϕ

−+

+
n

n

XE
XE  

 
The premium is independent of  n, and of standardizing constants. 
For an insurer exposed to the extremal process it is thus also expressible as 
 

(2.13)   Pν* = (1-β0/β)-ϕβ

])[(
])[(

)1(*

)1*(

ϕν

ϕ

+XE
XE  

 
applicable to claims from every parent in the domain of attraction of the fat-tailed 
extreme value (Frechet) distribution. See Appendix, Note 4 
 
 
3.0  Stop-loss insurance  
 
3.1 Constant relative risk-averse stop-loss premiums 
 
In this section the emphasis is on premiums for claims against the extreme-value 
distribution (i.e. insurer is a going concern, and  n  is large). 
 
We want a premium  Pν*(K)  for  (X-K)+ = X-K  (X ≥ K) 
 
                                                                  = 0  otherwise. 
 
(The risk-neutral premium based on the fattest tail index can then be found by putting 
ν = 1). 
 
 
Notice that  (X+1) = {(X-K)++K+1} on (K, ∞)  
 

                              = (K+1){ 1
1
)(

+
+

− +

K
KX  ) on (K, ∞) 

has the distribution  (K+1)(U+1) on where U is a positive fat-tailed random variable 
on (0,∞). 
Hence for large n  its risk-averse stop loss premium is Pν

*(K) = E[U*(1)]/E[U*(1+ν)]  
where  U is positive and fat-tailed on (0,∞); i.e. 
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(3.1)      Pν*(K) ~ Pν*            
 
 
Stop-loss constant relative risk-averse premiums for the extremal process are the same 
as the risk-averse premiums for the entire claim.          
                     
 
 
 
 
Summary 
 
For thin-tailed distributions the exponential principle is used to set premiums in the 
form  P = ln{MX(s)} based on constant absolute risk-aversion  s. 
 
For fat-tailed claims distributions there is a corresponding power principle 
 

     P = E[Xα+1]1/(α+1)  
 
based on constant relative risk-aversion α. 
 
The risk-neutral Pareto premium for claim (1+X) is   
 
    P1 = (1-ρ)-1 
 
                                                     = B(1,1-ρ) 
 

                                                     = 
]1[

]1[
)1(

)(

−+

+
n

n

XE
XE  

which is independent of  n. 
 
For large n the ratio changes in character (i.e. meaning) without changing value.  
It is expressible as the ratio of the two largest extremes; i.e. 
 

   P1
* = 

][
][

)2(*

)1*(

XE
XE  

 
                                           = 1B(1, 1-ρ) 
 
Hence premiums initially predicated on Pareto claims are applicable for an ongoing 
insurer to all fat-tailed claim distribution types in the domain of attraction of the 
extreme value distribution. 
 
The risk-neutral premium  is a special case of the risk-averse uncertainty premium, 
obtained when uncertainty in  ρ  is modelled by transformed beta density  
fρ(x) = νxν-1β-ν  for  0 ≤ x < β, which is 
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                                     Pν
* = 

][
][
)1(*

)1*(

ν+XE
XE  

 
                                           = νB(ν, 1-ρ) 
 
where X*(ν)  (ν ≥ 1)  is a 'fractional extreme'. 
 
For the extremal process, the same premium can be used for stop-loss insurance 
 
 
 
Appendix 
   
Note 1.  (Pricing functions and a pricing rule deriving from constant risk aversion) 
 
The ‘no-arbitrage’ principle widely used in pricing risk is inappropriate for pricing 
general insurance premiums; insurers are price-setters (see Albrecht, 1992) 
 
Premiums can be set using the classic theory of risk-aversion. 
 
Arrow (1971) defined two measures of risk-aversion described below: 
 
Absolute risk aversion  RA  where   
 

(A.1)                                        RA = -
)(
)(

xU
x

′
U ′′

  

 
and  

 

Relative risk aversion  RR  where 

 

(A.2)                                        RR = -
)(
)(

xU
xUx

′
′′

  

 

If  RA =  s  (>0, constant),  the utility function  

 

(A.3)                                   U(x) = -exp(-sx) 

obtains. 

 

The exponential principle which determines the risk-averse premium P for claim X as 

 

(A.4)    P = ln{MX(s)} 
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(where MX(s)  is the moment generating function of  X) follows by using a version of 
the expected utility principle (see  for instance Bowers et. al. 1986, p.9); i.e. a version 
of 

 

(A.5)                                     U(P) = E[U(X)] 
 
For instance, the minimum acceptable premium  P  to an insurer with utility function 
U  and wealth  W  for insurance against random claim  X  is given as in (A.4) by 
using utility function (A.3) and 
 
(A.6)                                    U(W) = E[U(W+P-X)]) 
 
 
 
Or it derives from the ‘zero utility principle’, 
 
(A.7)                                        E[U(P-X)] = U(0) 
 
(see for instance, Rolski et al. 1999. p.91), in conjunction with utility function(A.3). 
 
Equivalently, the exponential function m(x) = exp(sx) could be regarded as the 
pricing function of an insurer with constant absolute risk-aversion (see Gay, 2004) 
and the principle follows directly from a pricing rule. 

 

(A.8)    m(P) = E[m(X)] 

 

analogous to (A.5). 

This is just manipulating the expected utility principle to apply to premium 
determination rather than asset pricing. Think of the graph of  U(x) = -exp(-sx)  in the 
third Cartesian quadrant (x<0, U < 0). 
Now transfer the shape back to the first quadrant (x>0, U>0) i.e. measure loss 
positively and negative utility positively (where –U(x) is “degree of discomfort” m(x), 
say). 
Then m(x) = exp(sx)  is used to price insurance premiums in the face of constant 
absolute risk aversion. 
 
For constant relative risk aversion, the process requires amendment of the definition 
of  RR  for pricing insurance premiums to  
 

(A.9)   RR = 
)(
)(

xU
xUx

′
′′

 

 
resulting in pricing function 
 
(A.10)   m(x) = xα+1 
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when  RR is set to constant  α. 
 
Evidently α = 0 provides for risk-neutrality, α>0 for positive the risk-aversion. 
 

However it is derived, the exponential principle: 

•  has its roots in constant absolute risk-aversion,  

•  is applicable to thin-tailed distributions of exponential order, and  

•  results in setting premiums with reference to mean and standard deviation of claims. 

Since the random sums (1.2) are subject to central limit theorems there are no serious 
complications of a theoretical nature in respect of thin-tailed claims distributions. 

 

The power principle derives from constant relative risk-aversion, is applicable to fat-
tailed (power) distributions. Premiums are determined in terms of ratios of expected 
values of the largest order statistics of the claims distribution as demonstrated in Note 
3. 

 
Note 2: (Some empirical results on estimation of tail-fatness index) 
 
When  δ  is in the range (0,2], the tail-fatness index  δ  is notoriously difficult to 
estimate from sample sizes likely to be available to a general insurer, even using 
information across the whole national industry. 
 
Example A.1 
 
For Pareto (1.8) with  δ = 1.1, i.e. µ = (δ-1)-1 = 10, an insurer might hope to determine  
µ  in the range (9,11) with 100 or so observations. This would seem reasonable. The 
reality is as follows:  
 
Non-parametric estimation 
 
When a large number of samples of size n = 100 from Pareto (1.8) with   
δ = 1.1  is generated (the present author used one million several times), typically only 
about  3.1% of sample means are in the range (9,11). 
 
When sample size is increased to n = 200, the proportion increases to about 3.3%. 
 
The figures can be checked on a standard laptop. 
 
Generally speaking direct estimators of δ , which however, require at least partial 
parametrisation, are more efficient. 
 
Quasi- and maximum likelihood estimation 
 
Under assumption, Pareto (1.8) admits a maximum likelihood estimator (MLE).  

 15



For Pareto, when the MLE, Hill’s (1975) estimator, and method of moments 
estimators with Box-Cox transformations (see Teugels and Vanroelen, 2004 for the 
justification) were used, the following results, based on one million samples of size  
n = 100 and n = 200 were obtained.  
The proportions below are for sample values of  δ  in the range (1.0909, 1.1111); i.e. 
indicating that  µ = (δ-1)-1 is in the range (9,11). 
 
 
sample size MLE Moments (Box-Cox) Hill 
     100           0.0733 0.0736 0.0724 
      200 0.1028 0.1025 0.1007 
Table A.1  Proportions of estimates of  δ = 1.1 from one million Pareto samples of   
n = 100 and  n = 200 observations which imply  µ in the range (9,11). 
 
 Note:   About 16% of samples gave an estimate of  δ < 1. 
 
These figures do represent a considerable improvement on use of the mean. 
 
The imprecision of sample information available on  δ  prompted one experienced 
investigator to comment: 
 
“Statistical analyses of large claim data are based on extreme value theory and 
related methods. These are known to be very sensitive with respect to the tails of the 
distributions, and therefore the existence of one very large claim may justify a fit of a 
Pareto instead of a lognormal distribution, say” (Mikosch,1997). 
 
Note 3: (The ratio premiums) 
 
Using (2.5) it is easy to show that for Pareto (1.8)  
 

E[1+X(ν)] = B(ν, n+1-ν-ρ)/B(ν,n+1-ν) 
 
                = {Γ(ν)Γ(n+1-ν-ρ)/Γ(n+1-ρ)}×Γ(n+1)/Γ(ν)/Γ(n+1-ν) 
 
 
                = Γ(n+1-ν-ρ)Γ(n+1)/{Γ(n+1-ρ)Γ(n+1-ν)} 

 
                                     
 
Then  
 

]1[
]1[
)(

)(

ν−+

+
n

n

XE
XE  = {Γ(1-ρ)Γ(n+1)/Γ(n+1-ρ)}÷[Γ(ν+1-ρ)Γ(n+1)/{Γ(n+1-ρ)Γ(ν+1)}] 

 
 
 
                      = Γ(1-ρ)Γ(ν+1)}/Γ(ν+1-ρ) 
 
 

 16



                     = νB(1-ρ,ν) 
 
                     = Pν 
 
which is independent of  n.  
 
Similarly, E[(1+X(ν))φ] = B(ν, n+1-ν-ρφ)/B(ν,n+1-ν)  
 
and  
 

])1[(
])1[(

)(

)(

ϕν

ϕ

−+

+
n

n

XE
XE  = νB(1-ρφ, ν)  for ρφ <1. 

 

The universal premium Pν* = 
][

][
)1(*

)1*(

ν+XE
XE  is consequence of passage to the extremal 

limit. 
 
Note 4: ( Proof of Theorem) 
 
Denote by  Pν  the premium obtained as mean value of 

.  ∫ −−− −−−
β

ϕβνν ββββν
0

1
00 )/1()()( dxxx

 
Substitution u = (x-β0)/(β-β0) in the integral leads immediately to  
 
 

      Pν = (1-β0/β)-φβνB(ν,1-βφ)  
 

                                             = (1-β0/β)-ϕβ

])1[(
])1[(

)(

)(

ϕν

ϕ

−+

+
n

n

XE
XE  

 
and thence to Pν*  on passage to extremal limit. 
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