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Abstract

Successful models learn from a particular kind of data and for a particular learning

task with the performance measured through comparative studies. Probabilistic

Finite State Machines (PFSMs) are models that contain regularities and patterns of

text data. The various sources generating such text data include a natural language

corpus, a DNA sequence and an email text corpus. The models (PFSMs) are used

for analysis of the text data such as classification and prediction. This research

work is focussed on learning PFSM models from two classes of text data under a

supervised learning environment. The model is a hypothesis and the information-

theoretic Minimum Message Length (MML) principle is used to judge the goodness

of the hypothesis in relation to prediction or classification, in different situations.

In short, MML has been used as a technique to select among the competing PFSM

models. We propose three novel approaches for classification and prediction. We

apply the approaches to two problems. The first approach is concerned with learning

two-machine PFSM models for a two-class classification of text data. Two models

are trained with the training data of the individual classes. The PFSM models

are inferred by using MML as an objective function in the Simulated Annealing

search process. The power of MML in giving a description length of model such

as PFSM has been used in this research and the description length is returned in

terms of two-part code length of the model. The models inferred from the training

dataset are then consequently tested with the test dataset. The unknown label of
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the test dataset is probabilistically estimated by measuring the amount of increase

in the two-part code length of the two inferred models and the model that measures

minimal increase in code length is chosen. In the second approach, the first approach

is modified to learning a single-machine PFSM model for the two classes of text

data. The advantages with this approach are as follows. First, the single-machine

approach is more space efficient than the two-machine approach. Second, the model

need not be inferred and the obvious benefit is, the model is learnt very quickly. A

single PFSM model is built from the two classes of text data. There is a binomial

distribution at the accepting states of the PFSM as they are reached by the text seen

in both classes of text data. The MML probabilities for the binomially distributed

accepting states are combined and the combined-probability is measured against a

threshold. The combined-probability greater than threshold results in the test data

being classified in one class and less than the threshold results in the test data being

classified into other class. The third approach that we propose for classification of

text data under a two-class learning environment is the idea of learning hierarchical

PFSMs or HPFSMs. This is an important contribution arising out of this research

on accounts of its novelty and experimentally proven good results. We discuss a

method of encoding HPFSMs and compare the code length of the HPFSM model

with the traditional PFSM model. For a text data, if the inherent hierarchies are

somehow found or assumed, then learning the HPFSM model for that text data is

cheaper than learning PFSM model for the same data. We show this comparison on

at least two artificially generated HPFSM models and also on some publicly available

datasets. The HPFSM models learnt are then used for classification or prediction in

a similar way as discussed in the first approach. The three approaches proposed are

applied on two application areas. The first application is the classification of spam

and non-spam emails using the Enron spam datasets and the performance of the

proposed methods are evaluated in terms of classification measures such as precision,

recall and accuracy. The second application is the prediction of individuals using the

Activities of Daily Living (ADL) datasets gathered from the University of California
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at Irvine (UCI) machine learning repository and the performance is evaluated in

terms of prediction of individuals. Existing methods such as Minimum Description

Length (MDL) and Näıve Bayesian classifiers are reviewed. These methods work on

constructing the Bag of Words (BOW) model for the text data as opposed to the

PFSM model. The benchmark results generated from our methods are compared

with these existing methods. The contributions are summarized as: 1) We propose

a novel idea of HPFSMs and come up with a coding scheme that describes an

HPFSM model. 2) We propose methods for classification and prediction by learning

HPFSM and PFSM models. 3) We compare our results with the other methods

such as Minimum Description Length (MDL) and Näıve Bayesian classifiers. The

two-machine approach resulted in giving 99.75% average classification accuracy as

compared to the 98.60% average classification accuracy by the MDL method on the

Enron spam datasets. On the ADL datasets too, the two-machine approach resulted

in accurate prediction of the individuals from the test dataset of the individual

classes. The experiments done with the HPFSM models on the artificially generated

datasets and on the ADL datasets show the strength of HPFSM models in terms of

best compression achieved when compared to non-hierarchical models.
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Chapter 1

Introduction

This thesis examines the problem of learning models from text data and the success

of the models is measured by doing a comparative analysis. The text data are seen as

regular language and the inference of regular languages has important applications in

the field of artificial intelligence, pattern recognition and data mining. The problem

of inference of regular languages could be specifically related to applications such as

modelling text, text classification and predication. The problem that is considered

is explained like this. Suppose we have a dataset that represents a sequence of

tokens separated by some stopping symbols or delimiter symbols. The model or the

hypothesis that is the source of generation of the data has somehow become non-

existent. Now, from here, various questions arise into our mind. First, is it possible

to reconstruct the source from the evidence? The question could be interpreted

this way also, what methods exist that try inferring the source from the evidence?

Second, if it is possible to do so, then what objective function will help us reconstruct

the source? Third, if there are more than one competing sources that can all generate

the data, then which one of them should be considered as the most appropriate one?

Let us discuss the problem in more detail. The data as mentioned above can be

seen as a sequence of tokens separated by delimiter symbols. Now there are many

sources of such kind of data. The sequence might get generated from a natural

language corpus and the tokens may represent the elements of the natural language.

1



2 CHAPTER 1. INTRODUCTION

Here the data can be, conversation, written composition, reading, dictation, trans-

lation or lip reading. The data source can be emails with text in them. The data

source can be a DNA sequence. The data sequence can refer to the movements of

an individual while doing transitions from one place to another as part of his daily

routine activities. The data sequence might represent language generated by a finite

state machine. Similarly many examples can be thought of like this where the data

can be easily transformed into a sequence of words separated by full stops. The data

at this point of time look not more than a Bag of Words (BOW), where the key idea

is to quantize each token as a histogram by counting the number of occurrences.

The BOW model is a useful representation for data and lots of useful analysis can

be done using the model like, e.g. text classification. But for a bulky information

source, the BOW model may not be the best representation model for the data. The

data can be alternatively represented by using a compression based technique while

achieving the same benefits of the BOW model.

In order to describe the data, a suitable model needs to be selected. According

to Wallace (Wallace, 2005), the model is an assertion on the observed data and

the inductive inference of the model tells how probable the model is, in generating

the data. The data in consideration are text data separated by delimiter symbols.

For such kind of data without much complexities, a fairly simple model such as the

Probabilistic Finite State Machine (PFSM) can be used. A finite state machine is

a compact representation of a sequence of words and the probabilistic version of a

finite state machine that describes a population of words can be inferred using a

statistical inference tool such as Minimum Message Length (MML).

Inductive inference has a special role to play in model selection. The information-

theoretic MML assigns a score to the model based on the structure of the model.

The score can be used as a basis of comparison between the competing models. The

score is calculated in the form of code length and the code lengths of the different

competing models are compared. The model that gets the least score is considered

as the best model. This is true because “The best explanation of the facts is the
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shortest”. For centuries this idea has been proposed and is generally accepted to be

more or less true subject to qualifications and exceptions (Wallace, 2005). According

to MML model selection criterion, the problem of inference is considered as a two-

part code communication between the hypothetical transmitter and receiver. The

first part code comprises the model or the hypothesis and the second part code

comprises the data generated by the hypothesis. Therefore, the different models

vary in their code lengths and the one with least total code length is regarded as

the best one.

Figure 1.1: Probabilistic Finite State Machines generating L

To understand the process of inductive inference using MML, let us consider a

small amount of observed data from Gaines (1976). Let the data be explained by

language L where

L = {CAB#CAAAB#BBAAB#CAAB#BBAB#BBB#CB#}. The words or

tokens in the language L are separated by the stopping symbol #. The model that

is suitable for modelling such sequence is a Finite State Machine. Now, consider



4 CHAPTER 1. INTRODUCTION

the different finite state machines in Figure 1.1 that are probable candidates for

generating such a data.

Now each one of the models in Figure 1.1 can generate the sequence denoted

by language L. So which one of these probable models should be considered as the

best one? The answer lies in the two-part code length of the different models of

Figure 1.1. The two-part code length is calculated using MML. Thus, inductive

inference will help us in finding the most suitable model. The problem of model

selection is crucial as any further analysis is based on the selected model.

Before explaining what the thesis contributes, I would like to briefly explain

MML over here. The detailed explanation follows in Chapter 3.

MML is an information-theoretic approach used for comparing the different hy-

potheses that are the sources for generation of data. MML works on the Bayesian

principle of calculating the posterior probability of a hypothesis given the data (Wal-

lace and Boulton, 1968; Wallace, 1990; Wallace and Dowe, 1999b,a; Dowe, 2008a,

2011) and states that given the data, the best possible conclusion about the data can

be drawn from the theory that attempts to maximize the posterior probability. Max-

imizing the posterior probability equivalently means maximizing the product of prior

probability with the probability of data given the theory or hypothesis or likelihood.

MML has emerged as a powerful tool, not only in providing a coding mechanism for

Probabilistic Finite State Machines (PFSMs) but, also plays an important role in

the inductive inference of discrete structures as PFSMs. An elementary information

theory concept based on Huffman code converts the probability values into the form

of code length, in bits. So, to compare the different hypotheses, their code lengths

are compared.

It is worth mentioning that there are essential differences between MML and

Bayesianism. Classical statistics typically postulates a distribution with an unknown

parameter, θ, as a single model, and then attempts to infer such a (vector) θ.

Classical statistics is interested largely in point estimation, but can also be interested

in interval estimation and giving confidence intervals. The Bayesian approach takes a
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Bayesian prior distribution, and can then proceed in a variety of different ways. One

approach is simply to arrive at a posterior distribution. Another Bayesian approach

is to take the posterior distribution and to obtain a point estimate by minimising

an expected loss function - see, e.g., Lehmann and Casella (2006); Dowe et al.

(1998). Other Bayesian point estimators exist, such as (e.g.) Minimum Message

Length (MML) and various approximations (see, e.g., Wallace (2005); Dowe (2008a,

2011), and also the Bayesian maximum a posteriori (MAP) approach. There are

also differences between MML and relatively recent MDL (Minimum Description

Length). The MDL method is attributed to Jorma Rissanen (1978) (Rissanen, 1978)

(Rissanen, 1999) and its objective is to find the best model class and the best model

in it is found by the shortest code length. The MML method on the other hand is

attributed to Chris Wallace and David Boulton (1968) (Wallace and Boulton, 1968)

and is concerned with finding the model that is the best explanation of the data. An

even more important distinction between MML and MDL is the use of subjective

priors (Raman et al., 1998)(Wallace and Dowe, 1999b) (Baxter and Oliver, 1994).

The MML considers and believes in incorporating the prior knowledge to the best

possible extent, whereas MDL considers a uniform or universal prior thus ignoring

the prior information.

The thesis work explores the application areas where MML could be used in

inductive inference and where there are no accounts of any previous work done

before using MML. We explain the applicability of MML to these areas with the

explanation of the different problem contexts and see how MML can be used to find

a solution to the raised problems.

1.1 Text classification using MML

The problem in concern is text classification using the Minimum Message Length

(MML) principle. The problem can be put down by asking the following questions.

How can an approach for text classification be developed that is adaptive to the

changing characteristics of input data, very much takes care of the prior information
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into account, uses a kind of representation to model the input data which is efficient

and can be effectively induced and, most importantly gives accurate classification

results which are at par with the other established text classification techniques?

The answer is explained like this below.

Given a text corpus with already classified matter of text in different categories.

The best example could be emails with classified emails in spam and non-spam

category. An approach for classification of a new email with unknown class can be

developed using MML. This is an area where MML has not been explored before.

With MML we try to answer the above questions in the following way by developing

three approaches.

1.1.1 Proposed Method-1

Emails as we know, can be viewed as collection of tokens or attributes. The tokens

or attributes can be converted to a form which resembles the sequence belonging

to language L as mentioned in the Introduction Section 1. Some attribute selection

procedures can be employed to reduce the dimensionality of the attribute space.

After having done this, a suitable model is selected that combines the two insights

i.e., finding regularities or patterns with the idea of compressing. And the suitable

model is the Probabilistic Finite State Machine (PFSM).

As the email corpus consists of two classes, the two PFSMs are built from the

attributes belonging to the two categories. The PFSMs are inferred using the MML

induction technique and simulated annealing heuristic is used that does an extensive

search of the search space and infers the best model. Any model is explained by a

two-part code length where one part is the model itself and the other part is the data

encoded using the model. After having inferred the PFSMs, the target document

is input to the two inferred PFSMs built from the two classes. The inferred PFSM

that results in minimal increase in the two-part code length is more probable to

have generated the tokens of the unknown target and, thus the class can be easily

identified.
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Now, there are accounts of email texts being classified by more or less similar ap-

proaches such as the Minimum Description Length (MDL)(Almeida and Yamakami,

2012), various versions of the Naive Bayes methods (Metsis et al., 2006) and statisti-

cal data compression models (Andrej Bratko, Gordon V. Cormack, Bogdan Filipič,

Thomas R. Lynam, Blazupan, 2006). The MDL spam classification technique uses

the Maximum Likelihood (ML) estimation for calculating the probability of the un-

known parameter with no sufficient literature on how the compression was actually

achieved. The prior information is also completely ignored. All the Naive Bayesian

methods work on the BOW representation of the model that does not do any com-

pression of the model. They also use a threshold value for classification where

over-setting and under-setting the threshold result in either high false positives or

high false negatives increasing the classification error rate.

We overcome the limitations of the above methods by using MML. The mod-

els inferred using MML are incrementally updateable and adaptive to the changing

characteristics of the input data. The MML two-machine model results in com-

petitive classification accuracy that can be compared with the other approaches of

similar kind and the best part is, it achieves compression. If desired, the extensive

search of the problem space can be compromised by using a greedy search strategy

to infer the best model. As far as classification is concerned, without compromis-

ing the classification accuracy, the search time can be reduced by using the greedy

search heuristic.

1.1.2 Proposed Method-2

The idea of using data compression in classification and other machine learning

tasks in some manner or the other has led to production of many research results.

This intuition arises from the principal observation that compact representation of

objects are possible only after some recurring patterns or regularities are detected.

This has motivated many applications of data compression algorithms to be used in

machine learning and data mining problems.
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The idea of the two-machine approach is not new. Most of the data compression

techniques doing classification rely on building two models. What is new is building

a single-machine model that is compact and can achieve comparable classification

results. The proposed method-2 focuses on how building a single-machine model

can be done using MML.

In the single-machine model, we build a single machine of the sequences seen in

both classes of emails. And therefore is a need for an additional code length factor

to be included in the code length calculation of the model along with the traditional

method of calculating the code length of any PFSM model. But, inspite of this

slight increase in the code length due to this additional factor, the overall code

length of the single-machine model is less as compared to the added values of the

code lengths of the two machines in the two-machine model. The good part of this

new approach is without compromising the classification accuracy, the compression

achieved is more.

The unknown class of the target document is obtained by estimating the prob-

ability of the state reached in the single-machine PFSM model. The states in this

PFSM model are reached by reading both spam and non-spam emails. Therefore

MML estimation for binomial distribution can be applied to obtain a probable an-

swer. This probable answer is compared against a threshold and the target document

is accordingly classified.

The two-machine classification problem can be generalized to n-machine classifi-

cation problem, but building n-models for n classes would turn very expensive. By

the use of the single-machine model, the n-models can be replaced by single model

by the above mentioned method and the benefits are evident.

1.1.3 Proposed Method-3

The third proposed method where MML has not been applied yet is encoding hier-

archical data. Now how do hierarchical data gets generated? To understand this we

consider a few examples and also consider how MML can be used in encoding of the
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hierarchical data. The obvious benefit by encoding the hierarchical machine is real-

ized in terms of the two-part code length of the hierarchical model when compared

with the non-hierarchical model.

As our first example, we consider a case where we are trying to encode the con-

versations of a multilingual person. A multilingual person speaks more than one

language. We consider an example of a person speaking three different languages.

The vocabularies of the three languages are different. Now, while speaking, the

person does transitions from one language to another. The traditional method of

encoding would encode the sentences one by one by making state transitions in the

finite state machine and, at the end of each sentence, the start state is again reached.

This method of encoding is completely non-hierarchical and the code length calcu-

lation has to include the vocabularies of all the languages. Now, if the conversations

are carefully observed, we would understand that while speaking one language, the

person tries to be in the domain of that language and his transition to other language

is quite infrequent. The different languages can constitute small machines and the

small machines are somehow connected externally. The external links may represent

transitions from one language to another. This model representation is hierarchical

and the code length calculation has to accordingly incorporate the hierarchy.

Another example why coding in hierarchy would turn beneficial could be under-

stood this way. Let us say we have a big machine that represents our movements in

a day, in the form of state transitions, from one place to another. Broadly speaking,

the places that we may visit are, “university or work place”, “home” and “city”.

We start from a local place say home. Home represents one small internal PFSM.

At “home” we do state transitions locally more often by visiting different places at

“home”. There is one point of entry (start state) to “home” and the same point can

be used as the exit point from this “home” local machine. Then we transit from

“home” to another internal PFSM, say “university”. We enter into the start state

of the “university” local PFSM and again we perform state transitions my moving
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around different places in the “university”. The start state of the “university” in-

ternal PFSM is also the exit state from it, as we had in the “home” internal PFSM.

If we are to specify a record of the daily movements that involves moving around

various places, in the form of code length, then considering the whole picture as a

non-hierarchical PFSM, would turn to be very expensive. Whereas if we do the same

through hierarchical coding mechanism, we would definitely get a cheaper encoding

of the daily movements.

Thus, proposed method 3 is focused on giving a hierarchical coding scheme for

the hierarchical machine. The thing that requires to be done is to identify hierarchy

in data and try converting it to a hierarchical representation. With sufficiently large

amount of data, the coding will always be cheaper. For insufficient amount of data,

we would be unnecessarily paying for the complex structure, as the hierarchical

structure is always more complex than the non-hierarchical structure.

1.2 Contributions

The contributions arising out of the research work are understood in the following

way:

• Modelling data using Probabilistic Finite State Machines.

For this, applications need to be explored where data can be viewed as a

sequence of tokens separated by delimiter symbols. Two such applications

areas were sought. One is the Enron-Spam Dataset with classified spam and

non-spam emails. The other one is obtained from the UCI machine learning

repository, which is Active Daily Living (ADL) dataset that records the daily

movements of a person as part of his daily routine from one place to another.

The first dataset, that is the Enron-Spam dataset was used in text classifica-

tion using our proposed approaches. The second dataset was found useful for

building the Hierarchical PFSM model.
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• Develop an induction mechanism for inference of Probabilistic Finite State

Machine. Here we are proposing a new method of induction that works on

greedy lines of finding an optimal solution. The optimal solution is the best

PFSM and the objective function that helps finding the optimal solution is

MML. We also used the simulated annealing approach to do an extensive

search of the search space.

• Develop a two-machine model for text classification.

The two models here represent the two classes. The evaluation criteria used

are the common evaluating measures such as precision, recall and accuracy.

Although compression is the main idea underpinning the whole thesis, other

literatures surveyed that work on statistical compression techniques for text

classification, do not mention the amount of compression achieved by their

methods. That is the reason why we felt the need to compare with the other

techniques using the above mentioned evaluation measures.

• Develop a single-machine model for text classification.

The same evaluating measures apply here also. But here we compare with the

two-machine model to show how much better compression the single-machine

model achieves without affecting the classification accuracy.

• Develop hierarchical encoding mechanism for hierarchical PFSMs.

The hierarchical model code length is compared with the non-hierarchical

model code length to show the benefits of hierarchical encoding.

1.3 Thesis Outline

The thesis is organized in the following manner.

Chapter 2 focuses on highlighting the key definitions related to Regular Lan-

guages, Finite State Machines (FSMs) and Probabilistic Finite State Machines (PF-

SMs). The observations are assumed to be strings separated by delimiter symbols
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and there are many such sources for getting such kind of data as discussed earlier

in Introduction Section of Chapter 1. The sequence of strings may be treated as

a regular language and any regular language can be modelled using a Finite State

Machine. The Finite State Machine that exists for any regular language is either ca-

pable of accepting all the strings in the sequence or it can also be viewed as a machine

generating the sequence of strings. A hypothetical FSM generating or representing

a collection of tokens (words) in a finite alphabet might contain regularities that

are not fully captured by the formal grammar. Therefore, the simple FSM model

is extended to include some probabilistic structure in the grammar. The model is

now termed as Probabilistic Finite State Machine (PFSM). A PFSM, along with

generating a set of possible tokens, also defines a probability distribution on the set.

The PFSM model needs to be inferred to identify the true source of data generation.

Chapter 3 begins with the formal definition and description of the Minimum

Message Length (MML) principle. In this chapter we describe the formal code

length calculation for binomial and multinomial distributions which are used in the

code length calculation for probabilistic finite state machines. The states in the

PFSM model have a binomial distribution if a two-class classification problem is

concerned and will have a multinomial distribution if n-class classification problem

is concerned.

Chapter 4 discusses the MML code length calculation on PFSMs. The code

length calculation is done in two parts, with the first part encoding the PFSM model

itself and the second part encoding the data generated by the model considered in

first part. We also discuss few MML induction methods that help us in getting the

minimal code length PFSM along with a discussion of our own induction method to

obtain the optimal code length PFSM.

Chapter 5 discusses the two-machine model for text classification where the

models are the PFSMs of the classes of data available from the training corpus.

We discuss the method of classification on artificial dataset first followed by exper-

imentation on the Enron-Spam datasets and the Activities of Daily Living (ADL)
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datasets. We compare the results generated by the two-machine MML approach

with the MDL approach. We discuss the possibility of applying the approach of

two-class classification problem to n-class classification problem, although we defer

the experimentation for future work for the n-classes. We also explain that the

n-model concept can be better replaced by the single-model concept to have more

compact encoding.

Chapter 6 is focused on implementing the single-machine model approach for

text classification. The experimentation is followed in a similar manner as in the

two-machine model classification problem. We compare the results generated by

the single-machine MML approach with the different versions of the Naive Bayes

classifiers.

Chapter 7 describes the hierarchical encoding of PFSMs. We get benefited from

hierarchical encoding if the data have inherent hierarchy in them. The benefit is

gained in terms of code length of the hierarchical model. Thus this chapter describes

coding scheme to generate the code length of a hierarchical PFSM model. The

method of encoding is followed by experimentation on artificial or pseudo randomly

generated hierarchical PFSM model and also on the Active Daily Living (ADL)

datasets.

Chapter 8 concludes the thesis by summarizing the contributions and discussion

of the key results gained by contributions. We also discuss the possibilities of future

work that can be carried out in extension to the work already done in this thesis.
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Chapter 2

Finite State Machines (FSMs) and

Probabilistic FSMs

2.1 Introduction

In this chapter we discuss the formal theory related to Finite State Machines (FSMs),

Regular Languages and Probabilistic Finite State Machines (PFSMs).

In brief, a Finite State Machine (FSM) is a mathematical model of computation

which can effectively describe grammar of a language. The grammar described

by this model of computation is called a regular grammar. The model plays an

important role in several applied areas of computer science, of which, text processing,

compiler and hardware design are the few common ones (Sipser, 2006). Finite

State Machines can effectively represent regularities and patterns. For this reason,

the words or tokens which are generated out of a natural language corpus can be

effectively modelled using a Finite State Machine as the corpus contains many word

repetitions.

A hypothetical grammar (FSM) generating or representing a collection of strings

(sentences) in a finite alphabet might contain regularities that are not fully captured

by the formal grammar. We can extend the simple FSM model to include some

probabilistic structure in the grammar. The model is now termed as a Probabilistic

15
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Finite State Machine (PFSM). The grammar represented by a PFSM is called a

probabilistic regular grammar. A PFSM, along with generating a set of possible

strings, also defines a probability distribution on the set (Wallace, 2005, sec. 7.1.2).

2.2 Finite State Machines

Finite State Machines (FSMs), also called Finite State Automata (FSAs), provide

a simple computational model with many applications. There are many ways of

modelling behaviour of systems, but the use of state machines is one of the oldest

and the best known (Wright, 2012). State machines are useful to model events

happening in some sequence or sequence of events happening in time series. State

machines allow to think about the “state” of a system at a particular point in time

and characterize the behaviour of the system based on that state. Many natural

and artificial systems may be modelled by defining (Wright, 2012):

• The possible states a system can occupy.

• The behaviour of the system in those states.

• How the system transitions between the states based on the input signal re-

ceived.

Let us consider a simple example of a stopwatch to understand the concept of

finite state machines. A stop watch has two states. One is the “Stopped” state and

the other one is the “Running” state. The behaviour is modelled using the state

diagram below.

Figure 2.1: Behaviour of a stopwatch represented as an FSM
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The stopwatch system starts in the “Stopped” state. In the “Stopped” state,

when the input “Run” is received, the system does a transition from “Stopped” to

“Running” state. Whereas, in the same state, if the input is “Stop”, the system

remains in the same state.

Thus, from the discussion above, several key characteristic features related to a

finite state machine can be drawn. The key features are:

• The system must be describable by a finite number of states.

• The system must have a finite set of inputs that can trigger a transition be-

tween the states.

• The system must have a start state.

• The behaviour of the system at any point of time is dependent on both the

current state and the current input symbol.

The key features of a finite state machine can be formally put down using a

mathematical notation.

2.2.1 Mathematical Definition of a Finite State Machine

A Finite State Machine M is defined as a 5-tuple where M = <Q,
∑

, δ, q0, F>.

The tuples are defined as below (Lenhardt, 2009):

• Q is the set of states of M

• ∑
is the set of input alphabet symbols

• δ is the transition function mapping Q×∑ to Q

• q0 is the initial state

• F is the set of final states of M
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There are few other definitions associated with the finite state machines (Lenhardt,

2009). They are defined as below:

Definition 1: A string or token or word over an alphabet
∑

is a finite sequence

of symbols from
∑

.

Definition 2: A language over an alphabet
∑

is a set of strings over the

alphabet
∑

.

Definition 3: A string x = (x1x2...xj...xn), where xj is a member of input

alphabet set
∑

and 1 ≤ j ≤ n, is accepted by finite state machine M , if the

sequence of states reached, while reading x, is s0s1...sn and the following conditions

are met.

1. s0 = q0

2. δ(si, xi+1) = si+1, for i = 0, ..., n− 1

3. sn ∈ F

Definition 4: The language accepted or recognized by M , denoted by L, is the

set of all strings x accepted by M .

Definition 5: The language L accepted by M is called a regular language.

Definition 6: The machine M is called a Deterministic FSM, if for a given

state and a given input symbol, the next state is known.

Definition 7: The machine M is called a Non-Deterministic FSM, if for a

given state and a given input symbol, the next state is uncertain. In other words,

there is more than one state that can be reached for the given state and the given

input symbol.

2.2.2 Representation of an FSM in a state diagram

The mathematical definition of a finite state machine can be easily transformed into

a state diagram as shown in the Figure 2.2. The FSM in Figure 2.2 corresponds to

language L where
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L = {CAB,CAAAB,BBAAB,CAAB,BBAB,BBB,CB}. The language is adopted
from the reference (Gaines, 1976).

Figure 2.2: Finite State Machine accepting the above mentioned language L

All the strings in language L get accepted by the Finite State Machine in Fig-

ure 2.2. The FSM starts with state 0 and reads the string belonging to language

L in a sequence by making state transitions. The final states shown in the FSM of

Figure 2.2 are marked by double circles over the state numbers. After reading the

complete string, the FSM again begins with state 0 to read the next string. Such

FSM where the common prefixes of the different strings are marked by common

states is known as the Prefix Tree Acceptor (PTA) of the strings of language

L (Saikrishna et al., 2015).

The transitions in the FSM of Figure 2.2 can also be understood by the transition

matrix in Table 2.1.

The transition matrix in Table 2.1 shows the next state transition from the

current state on a particular input symbol. The blank entries in the table or the

entries marked “-” are a method of specifying that there are no state transitions

from the current states on those input symbols.

As we see in the FSM model of Figure 2.2, the regularities or patterns in the

language can be easily handled, the model becomes very suitable for applications
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Table 2.1: Transition Table for the FSM in Figure 2.2

Current State Next State for Symbol
A B C

0 - 7 1
1 2 15 -
2 4 3 -
3 - - -
4 5 12 -
5 - 6 -
6 - - -
7 - 8 -
8 9 14 -
9 10 12 -
10 - 11 -
11 - - -
12 - - -
13 - - -
14 - - -
15 - - -

which have word repetitions or patterns. For this very reason, the FSMs can be used

to model the elements of a natural language corpus or even a sequence of events.

Let us again considering the language L, where

L = {CAB,CAAAB,BBAAB,CAAB,BBAB,BBB,CB}. The language L is

considered as data or observations and the strings in the data can be considered

as tokens or words or even sentences. Let us assume that these tokens of lan-

guage L are getting generated from an FSM whose true structure is not known.

The tokens belonging to language L arrive in the same order as they are men-

tioned in the sequence and we separate them by a delimiter symbol # to dis-

tinguish the tokens from each other. The same language L now looks like L =

{CAB#CAAAB#BBAAB#CAAB#BBAB#BBB#CB#}.

To model this sequence, we again start with some initial FSM and the initial FSM

is the Prefix Tree Acceptor (PTA) of the language L. While reading the tokens one

by one, whenever the symbol # is read, the machine again starts with the initial

state of the FSM. In other words, the symbol # on the current state forces the
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machine to do a transition to the initial state from the current state. Figure 2.3

shows a hypothetical Finite State Machine generating the tokens of language L.

The FSM in Figure 2.3 lacks the expressibility of denoting regularities in terms

of frequency of probability of occurrence of certain structures. Therefore, the finite

state machines are incapable of representing regularities that are not fully captured

by formal grammar. For this reason, the FSM model is extended to include some

probabilistic structure in the grammar. The extended model is now termed a Prob-

abilistic Finite State Machine (PFSM)

Figure 2.3: Hypothetical Finite State Machine generating L

2.3 Probabilistic Finite State Machines

Probabilistic Finite State Machines (PFSMs), also known as Probabilistic Finite

State Automata (PFSAs), is an extension of a finite state machine in the form

of a probabilistic structure capable of representing probabilistic transitions among

states (Wallace, 2005, sec. 7.1.2)(Wallace and Georgeff, 1983). The probabilities on

the arcs from any state sum to one. Any input string is accepted with a certain

probability in a PFSM. The grammar represented by a PFSM is called a probabilistic



22CHAPTER 2. FINITE STATEMACHINES (FSMS) AND PROBABILISTIC FSMS

regular grammar. A PFSM defines not just a set a possible strings but also defines

a probability distribution on the set. We define more precisely what PFSMs are and

introduce necessary notations in connection to the use of PFSMs.

2.3.1 Mathematical Definition of a Probabilistic Finite State

Machine

The PFSM is formally defined as a 6-tuple M = <Q,
∑

, δ, π, q0, F>. The tuples

are defined as below:

• Q is the set of states of M

• ∑
is the set of input alphabet symbols

• δ is the transition function mapping Q×∑ to Q

• π is the probabilistic function mapping Q×∑ to [0, 1]. This defines the prob-

ability of the next symbol in a given state. The sum of all probabilties from a

given state sum to 1.

• q0 is the initial state

• F is the set of final states of M

2.3.2 Representation of a PFSM in a state diagram

In the FSM of Figure 2.3, the transition arcs are additionally labelled with transition

probabilities to transform the representation into a PFSM representation (Wallace,

2005, sec. 7.1.2).

Thus for the same language L where,

L = {CAB#CAAAB#BBAAB#CAAB#BBAB#BBB#CB#}, the PFSM is

shown in Figure 2.4.

When we construct an FSM from a set of sample strings, we can estimate the

transition probabilities by keeping a count of the number of times each arc of the
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graph is traversed (Saikrishna et al., 2015). The counts can be converted into prob-

ability estimates by dividing each count by the total count of all the arcs from that

state. This turns the FSM to PFSM. The PFSM essentially tells the probability of

transition from one state to another state on seeing a particular symbol from the

finite alphabet set.

Table 2.2 shows the transition matrix for the PFSM in Figure 2.4 and Table 2.3

shows the transition probability table for the same Figure 2.4. From any state in

Table 2.3, the sum of probabilities for all the symbols is equal to 1.

Figure 2.4: Probabilistic Finite State Machine generating L
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Table 2.2: Transition Table for the PFSM in Figure 2.4

Current State Next State for Symbol
A B C #

0 - 7 1 -
1 2 15 - -
2 4 3 - -
3 - - - 0
4 5 12 - -
5 - 6 - -
6 - - - 0
7 - 8 - -
8 9 14 - -
9 10 12 - -
10 - 11 - -
11 - - - 0
12 - - - 0
13 - - - 0
14 - - - 0
15 - - - 0

Table 2.3: Transition Probability Table for the PFSM in Figure 2.4

Current State Next State for Symbol
A B C #

0 0 0.43 0.57 0
1 0.75 0.25 0 0
2 0.66 0.33 0 0
3 0 0 0 1
4 0.50 0.50 0 0
5 0 1 0 0
6 0 0 0 1
7 0 1 0 0
8 0.66 0.33 0 0
9 0.50 0.50 0 0
10 0 1 0 0
11 0 0 0 1
12 0 0 0 1
13 0 0 0 1
14 0 0 0 1
15 0 0 0 1
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2.4 Equivalence of FSMs and PFSMs

To understand the equivalence of two finite state machines (FSMs), let us consider

two finite state machines M1 and M2 shown by their state diagrams in Figure 2.5

and Figure 2.6 respectively.

Figure 2.5: Finite State Machine M1

Figure 2.6: Finite State Machine M2

Let the language generated by machine M1 be L1 and the language generated

by machine M2 be L2. The languages are generated from the grammar represented

by the two FSMs. An FSM generates a sequence from the grammar starting from

the initial state of the FSM and terminating at the final state of the FSM. The

final state in the FSM is known by the double circle over the state and it reads the

character # in that state. As in the “English Language Grammar”, the sentences

are terminated by a “Full Stop”, here the symbol # has the same significance as

of a “Full Stop” in “English Language Sentences”. Therefore we say that the FSM

generates sentences. The sentences are generated in the following manner:

The machine starts in state 0. It then moves to the next state by following one

of the arcs leaving state 0. When it moves to the next state, it generates a symbol

labelled by the arc that is followed. From the next state, again by following one of

the arcs, the next symbol gets generated. The same steps are continued until the
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arc labelled # is followed. The arc labelled # marks the end of sentence and takes

the machine again to the start state. The sentences after that are generated very

much in a similar manner like those with state 0.

Following the method of sentence generation above, machine M1 generates the

following sentences denoted by L1.

L1 = {AB#AABABB#AABB#AABABABB#...}
Machine M2 also generates the same set of sentences when the arcs are followed

in that machine. So the language generated by machine M2 is the same as language

L1.

L2 = {AB#AABABB#AABB#AABABABB#...}
Two FSMs are regarded as equivalent if they generate or accept the

same set of sentences.

When the machines M1 and M2 are given transition probabilities, they can no

longer be considered equivalent. This is because assigning transition probabilities

to the arcs of an FSM transforms an FSM model into a PFSM model and a PFSM

model not only defines possible sentences but it also defines a probability distribu-

tion on that set. For instance, machine M1 can represent a grammar such that

70% of all generated sentences are “AB”, 20% of all sentences are “AABB” but the

sentences beginning with “AABA...” have an average length of 100 symbols. Ma-

chine M cannot simply represent such a population. Therefore the PFSMs cannot

be considered as equivalent (Wallace, 2005, sec. 7.1.2).

2.5 Summary

This chapter discussed the basic theory related to finite state machines and proba-

bilistic finite state machines. These models are useful in modelling sequential data

where regularities or patterns can be detected. To understand a finite state ma-

chine (FSM), we consider the example of a stopwatch to explain the process of state

changes in a stopwatch through an FSM model design. An FSM model is defined

by identifying the set of states, set of input alphabet symbols, the initial state, set
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of final states and the transition function mapping the states to the input alpha-

bet symbols. We get familiar with a few definitions used in context of finite state

machines. The finite state machine represents a grammar which is called “Regular

Grammar”. The “Regular Grammar” generates sentences all of which belong to

“Regular Language”. The sentences are sometimes used to denote words or tokens

in different contexts.

We saw that the FSMs are incapable of expressing the transition probabilities and

therefore the FSM model is extended to allow the inclusion of transition probabili-

ties into the structure with additional labelling on arcs. These additional labelling

on arcs denote transition probabilities. The extended model is now termed as the

probabilistic finite state machine (PFSM). The PFSMs also define a probability dis-

tribution on the sentences generated along with defining a set of possible sentences.

We also discussed the equivalence of two finite state machines and two probabilis-

tic finite state machines. Two FSMs are considered equivalent if they generate or

accept same language whereas this is not true for the two PFSMs.

The research work is focussed on the PFSM design model for the applications.

Model construction is one aspect and the other aspect is model inference. Model

inference helps in finding a better model when the source has become extinct. “Mini-

mumMessage Length (MML)” has emerged as a powerful tool in providing a method

for inductive inference of structures like PFSMs by the way of encoding the PFSMs.

In Chapter 4 we will discuss the MML coding method for PFSMs and the inference

method to get an optimal PFSM.
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Chapter 3

Minimum Message Length (MML)

3.1 Introduction

We discuss a few key concepts related to Bayes Theorem, Bayesian Inference, Huff-

man Coding and the Minimum Message Length (MML) principle. The MML cal-

culation for a discrete binomial distribution and a discrete multinomial distribution

are then discussed. We refer to these calculations in the code length calculation of

the PFSM model later in Chapter 5.

On a very brief note here, MML works on the Bayesian principles of calculating

the posterior probability of a hypothesis given the data and an elementary informa-

tion theory concept based on Huffman code, converts the probability values into the

form of code length in bits (Wallace, 2005).

3.2 Bayes’ Theorem

In probability theory and statistics, Bayes’s theorem is a result of conditional prob-

ability, stating that for two events A and B, the conditional probability of A given

B is the conditional probability of B given A scaled by the relative probability of A

compared to B (Rice, 2014).

Bayes’s theorem is stated mathematically as the following equation:

29
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Pr(A|B) =
Pr(A & B)

Pr(B)
=

Pr(B|A)Pr(A)

Pr(B)
(3.1)

where A and B are events and Pr(B) �= 0

• Pr(A) and Pr(B) are the probabilities of observing events A and B without

regard to each other

• Pr(A & B) is the probability of observing both events A and B

• Pr(A|B), a conditional probability, is the probability of event A knowing that

event B is true

• Pr(B|A) is the probability of observing event B given that A is true

Figure 3.1 shows the illustration in the form of a Venn diagram for Bayes’s

theorem. The conditional probability of A given B (Pr(A|B)) in the figure is known

by the size of Pr(A & B) relative to the size of Pr(B).

Figure 3.1: Venn Diagram illustrating Bayes’s theorem
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3.2.1 An example

Suppose we want to know the probability of a person having cancer at 65 years of

age. Now the two events can be assumed as:

A: Person having cancer

B: Person being 65 years of age

So we are interested in finding the conditional probability of a person having

cancer at 65 years of age given by PrA|B). Pr(A) is the probability of cancer and

based on general prevalence of cancer, Pr(A) can be assigned some value and, say,

it is 1%. This is also known as the prior probability of cancer. If we assume that

cancer and age are related, this new piece of information can be used to better assess

that person’s risk of having cancer. In order to apply knowledge of that person’s

age in conjunction with Bayes’s Theorem, two additional pieces of information are

needed. The needed information is as follows:

• The probability of being 65 years old. Suppose it is 0.2%.

• The probability that a person with cancer whose age is 65 years is 0.5%.

Knowing this along with the prior, we can calculate that the person whose age

is 65 has a probability of having cancer equal to (0.5%× 1%)÷ 0.2% = 2.5%.

3.2.2 Bayesian Interpretation

The interpretation of Bayes’s theorem depends on the interpretation of the proba-

bilities used in the Bayes’s theorem. In the Bayesian interpretation, probability is

the measure of degree of belief. The Bayes’s theorem relates the degree of belief

in a hypothesis before and after accounting for evidence. This can be understood

from a simple example of a coin flipped number of times. It is believed with an

initial certainty of 50% that an unbiased coin will produce equal number of heads

and tails. This is the prior belief in the hypothesis. When the coin is flipped certain

number of times, the outcomes are observed and depending upon the outcomes of
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coin flip, the initial belief gets updated by the Bayes’s theorem. That is, the initial

belief may rise, fall or remain unchanged after the results are seen.

For hypothesis H and evidence E,

• Pr(H) is the initial belief in the hypothesis H, also known as prior probability

of the hypothesis H.

• Pr(E|H) is the likelihood of the evidence E knowing that the hypothesis is

true.

• Pr(H|E) is the updated belief in the hypothesis H after having accounted for

the evidence E. This is also known as posterior probability of the hypothesis

H.

• Pr(E) is the probability of the evidence E and also a normalizing factor when

different hypotheses are compared.

The Bayes’s theorem is re-written according to the Bayesian interpretation in

the following Equation 3.2.

Pr(H|E) =
Pr(E|H)Pr(H)

Pr(E)
(3.2)

3.3 Bayesian Inference

Bayesian statistical inference allows us to find out the best hypothesis that is the

source of generation of data or the evidence. This is done by the incorporation of

probabilistic knowledge about the source of data independent of, or prior to, the

observed data. This is where the Bayesian inference differs from the non-Bayesian

inference. In non-Bayesian inference, the prior knowledge about the source of data

is not considered or ignored and the different hypotheses are compared based on the

likelihood of the different sources or models. The inclusion of a Bayesian prior can
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allow deduction of rather more meaningful conclusions about the source (Wallace,

2005, sec. 1.13).

The inference problem is stated as follows:

There is a set of models Θ and we assume that the set is discrete. The models

in the set Θ are labelled as {θ1, θ2, ...}. The evidence is also known as data D. The

Bayesian approach assumes that, even before dataD is known or seen, the competing

models in the set Θ have initial probabilities, denoted as Pr(θi), (θi ∈ Θ). This is

called the prior probability of the model or prior distribution or simply prior. In

Bayesian approach, the data probability distribution or likelihood is also known for

each model and this is denoted as Pr(D|θi). Then using the Bayes’s theorem in

Equation 3.2, the posterior distribution or posterior probability or simply posterior

of the model θi is known by the Equation 3.3.

Pr(θi|D) =
Pr(D|θi)Pr(θi)

Pr(D)
∀θi ∈ Θ (3.3)

Pr(D) is the marginal data probability given by

Pr(D) =
∑
θi

Pr(D|θi)Pr(θi) (3.4)

Pr(D) behaves as a normalizing constant for the posterior distribution and thus

can be ignored while comparing the posterior probabilities of the different models

in the discrete set Θ. If two sets of data D1 and D2 are obtained from the same

source θi, then

Pr(θi|D1, D2) =
Pr(D1|θi)Pr(D2|θi)Pr(θi)∑
j Pr(D1|θj)Pr(D2|θj)Pr(θj)

(3.5)

The data sets are considered independent, that is, for a particular model θi, the

probability of yielding D1 is not affected by knowing that it has also yielded D2.
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Thus knowing the prior probability distribution over a set of discrete models, it

is possible to make judgement on the most probable source based on the Bayesian

method of inference. The prior on a set of possible models is given by the generalized

function “h(θ)” and h(θ) may represent a probability if θ is discrete.

3.4 Coding Probabilities

We start this section with some definitions that have relevance to computation of

coding probabilities.

Definition 1: An Information is defined as something the receipt of which

decreases our uncertainty about the state of the world (Wallace, 2005, sec. 2.1).

Definition 2: A Message is a binary sequence conveying some information

(Wallace, 2005, sec. 2.1.1).

Definition 3: A Code is an agreement between the transmitter and the receiver

as to how to represent the message in binary form. Clearly, code can be thought of

as a kind of language (Wallace, 2005, sec. 2.1.1).

So, a complete message will convey several pieces of information one after another

and, each piece is encoded separately.

Definition 4: When the messages are encoded piece-by-piece, each subsequence

is known as a word and the code definition requires that the binary sequence for

each word be defined (Wallace, 2005, sec. 2.1.1).

Definition 5: If codes are to be constructed for a known finite set of words,

then there should be one-to-one mapping between the words and the codes. In

addition, the codes should have a prefix property. This means, no code is a prefix of

any other code and the code following this property is known as the prefix code.
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3.4.1 Prefix Code Tree

Any binary prefix code for a set of N words can be represented by a code tree.

Consider a set of five words {P Q R S T}. A possible prefix code for the set of five

words is:

P = 0, Q = 100, R = 101, S = 110, T = 111

The code can be represented as a code tree in Figure 3.2.

Figure 3.2: Tree for prefix code

The tree is read in the following manner to find a binary string corresponding to

a word. The path from the root to the node labelled by the desired word is followed.

Whenever the left branch of the tree is followed, it is noted down as “0” and the

right path if followed, is noted down as “1”. For example, the code for word S is

generated by beginning from the root of the tree first. From the root, the right path

is followed and “1” gets noted down. From the sub-tree rooted at the right of the

root, another right path is followed and noted down as “1”. From that node, a left

branch is taken that eventually leads to the leaf S of the tree. Since the left branch

is taken, it is noted down as “0”. Therefore the code corresponding to word “S” is

110.

Now, the code tree in Figure 3.2 assigns the smallest string length code for word

P . String length is the number of binary symbols used in coding of any word. So,
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for word P , the string length is 1 and for the other words in the set, the string

length is 3. The transmitter and the receiver first agree on the choice of a code tree

first before transmitting the information. However when they agree on the coding

scheme, they do not yet know the information to be sent. However, there can be

a basis to believe that certain words are more probable than others in the set. For

more probable words, the code string with less binary symbols can be chosen to

minimize the use of communication medium, which can be expensive.

Let us assume that the transmitter and the receiver agree on the coding scheme as

shown in Figure 3.2. Each word in this tree is transmitted with a certain probability

and it is calculated in the following manner: First each node in the tree is assigned

a level. Level of a node is the number of branches from root to that node. The root

of the tree is at level 0 and as we go down in the tree, the level of nodes increases.

Each node in the tree is then assigned a weight and weight of a node is calculated as

2−l, where l is the level of the node. The weight of the root node is 1. The weights

and roots are shown in Figure 3.3.

Figure 3.3: Tree for prefix code with weights and levels

The weights of the leaf nodes that represent the words in the set are [1/2, 1/8,

1/8, 1/8, 1/8] for the corresponding words {P, Q, R, S, T} in the set. If ai

represents a particular word in the set, where 1 ≤ i ≤ N and N is the number
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of words in the set, then
∑

i 2
−li = 1. li is the level of the ith word in the set.

The weight of any leaf node in the tree is interpreted as the probability with which

the word is transmitted and the probabilities of all leaf nodes sum to 1. That is∑
i pi = 1, where pi is the probability of the ith word in the set of N elements.

Alternatively, if the probabilities with which the words are transmitted are known

prior to sending the information from transmitter to receiver, the string length for

each message or word can be calculated. Taking the same example of the code tree

in Figure 3.3, the probability with which the word P is transmitted is 1
2
. The string

length of the code corresponding to word P is calculated as − log2
1
2
, which is equal

to 1. The string length of the code corresponding to word Q is calculated as − log2
1
8
,

which is equal to 3. Similarly all other words in the set result in a string length of

3.

In general, the number of bits required to encode a word with transmission

probability pi, is given by − log2 pi. Let us denote the number of bits as string

length Li for the word i in the set and the general equation to calculate the string

length or code length is given by Equation 3.6.

Li < (− log2 pi) + 1 or Li ≈ − log2 pi (3.6)

An important point to discuss here is, if the logarithm of the probability is

calculated with base 2, this results in the code length being reported in bits. Or,

if the natural logarithm (ln) of the probability is calculated, the code length is

reported in nits. The string length of the message in coded form is also sometimes

referred as code length ormessage length. Another observation from the string length

calculation is, messages with high probabilities result in less string length. Like in

the example above, the word P is the most probable message and the string length

for the same word is the least.
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3.5 Minimum Message Length (MML) principle

The MML methodology has its roots in classical Bayesianism. For a discrete set

of models Θ, where the models in the set are labelled as {θ1, θ2, ...}, the posterior

probability of a selected model θ̂ from the set Θ, given according to Bayes’s theorem,

is: Pr(θ̂|D) = h(θ̂)Pr(D|θ̂)
Pr(D)

. Here h(θ̂) is the prior probability of the selected model

θ̂ and Pr(D|θ̂) is the likelihood of the data D generated assuming the theory θ̂ to

be true. The selected model θ̂ is the theory that results in the maximum posterior

probability compared to other models in the set Θ.

Choosing a theory or a model with maximum posterior probability is equivalent

to choosing a theory with highest product of the prior and the likelihood function,

as Pr(D) is only a normalizing constant when the different theories are compared

and thus can be disregarded in the calculation of posterior probability of a theory.

The theory θ̂ with prior probability h(θ̂) can give an explanation length of

− log2 h(θ̂) bits according to the coding scheme discussed in Section 3.4.1 and ex-

planation length of data D generated using θ̂ is given by − log2 Pr(D|θ̂). Therefore
the explanation length for the posterior probability of the theory is given by Equa-

tion 3.7.

− log2 h(θ̂) − log2 Pr(D|θ̂) (3.7)

Here − log2 h(θ̂) is the first part explanation length or code length of the theory

or model θ̂ and − log2 Pr(D|θ̂) is the second part code length that encodes data D

using the model θ̂. As discussed in Section 3.4.1 that highly probable events result

in small code lengths, therefore maximizing the posterior probability is equivalent

to minimizing − log2 h(θ̂) − log2 Pr(D|θ̂), i.e., the length of a two-part message

conveying the theory and the data in light of the theory.

There are essential differences between MML and simple Bayesian induction.

MML assists in the construction of prior probability distributions by establishing a
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correspondence between the code used to describe a theory with the prior probability

of that theory (Wallace, 2005, sec. 2.3). Classical statistics typically postulates a

distribution with an unknown parameter, θ, as a single model, and then attempts to

infer such a (vector) θ. Classical statistics is interested largely in point estimation,

but can also be interested in interval estimation and giving confidence intervals.

The Bayesian approach takes a Bayesian prior distribution, and can then proceed

in a variety of different ways. One approach is simply to arrive at a posterior

distribution. Another Bayesian approach is to take the posterior distribution and to

obtain a point estimate by minimising an expected loss function - see, e.g., Lehmann

and Casella (2006); Dowe et al. (1998). Other Bayesian point estimators exist, such

as (e.g.) Minimum Message Length (MML) and various approximations (see, e.g.,

Wallace (2005); Dowe (2008a, 2011), and also the Bayesian maximum a posteriori

(MAP) approach.

There are also differences between MML and the more recent MDL (Minimum

Description Length). The MDL method is attributed to Jorma Rissanen (1978)

(Rissanen, 1978, 1999) and its objective is to find the best model class and the

best model in it as found by the shortest code length. The MML method on the

other hand is attributed to Chris Wallace and David Boulton (1968) (Wallace and

Boulton, 1968) and is concerned with finding the model that is the best explanation

of the data. An even more important distinction between MML and MDL is the

use of subjective priors (Raman et al., 1998; Wallace and Dowe, 1999b; Baxter and

Oliver, 1994). The MML considers and believes in incorporating the prior knowledge

to the best possible extent, whereas MDL considers a uniform or universal prior

thus ignoring the prior information. For discussions of the generality of MML, see

(Wallace and Dowe, 1999a; Wallace, 2005). For applications of MML to clustering

and mixture modelling, see, e.g., (Wallace and Boulton, 1968; Wallace, 1990; Wallace

and Dowe, 1994b, 2000; Visser and Dowe, 2007) and for pointers to applications of

MML to a variety of other areas, see, e.g., (Wallace, 2005; Dowe, 2008a, 2011).
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3.5.1 More on MML and Applications

The Minimum Message Length (MML) principle dates back to Wallace and Boulton

(1968), with a variety of papers and two theses following upon this 1968 paper in the

years up until 1975 Boulton and Wallace (1969, 1970); Boulton (1970); Boulton and

Wallace (1973b,c,a, 1975); Wallace and Boulton (1975); Boulton (1975). This exten-

sive body of work from 1968 to 1975 would be followed a few years later by the Mini-

mum Description Length (MDL) principle Rissanen (1978). For further comparison

between MML and the subsequent MDL principle, see, e.g., Rissanen (1998); Wal-

lace and Freeman (1987); Rissanen (1999); Wallace and Dowe (1999a,b,c)(Wallace,

2005, sec. 10.2)(Dowe, 2011, sec. 6.7).

The original application of MML in Wallace and Boulton (1968) was to cluster-

ing and mixture modelling (with multinomial and Gaussian distributions and total

assignment - all data items or things each go into one class), with subsequent work

Wallace (1986, 1990); Wallace and Dowe (2000, 1994b) staying with multinomial and

Gaussian distributions but extending this from total assignment to partial assign-

ment (data things can be spread partially over different classes, although a “coding

trick” Wallace (1986) proposes doing total assignment in a clever pseudo-random

way). Work was then done on the von Mises circular distribution (for angular data)

Wallace and Dowe (1993, 1994a) and the von Mises-Fisher spherical distribution

Dowe et al. (1996), with the Poisson and von Mises circular distributions included

into the “Snob” program1 for mixture modelling Wallace and Dowe (1994b, 1997,

2000). Other statistical distributions are also considered in Agusta and Dowe (2002,

2003a,b). MML single latent factor analysis Wallace and Freeman (1992) has also

been used to extend the modelling Edwards and Dowe (1998), as has sequential

modelling Edgoose and Allison (1999); Edgoose et al. (1998); Molloy et al. (2006)

and models of spatial correlation Wallace (1998); Visser and Dowe (2007), and there

has also been subsequent work in the relevant areas Figueiredo and Jain (2002);

1see Dowe (2008a) for a discussion of the name of this program
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Kasarapu and Allison (2015). Other work on MML includes decision trees (or clas-

sification trees) Wallace and Patrick (1993) and (an extension to these allowing

disjunctions, or ORs, or joins, called) decision graphs Oliver and Wallace (1991);

Oliver (1993); Oliver et al. (1992); Tan and Dowe (2002, 2003)(Wallace, 2005, chap.

7) and oblique decision trees Tan and Dowe (2004).

Work on MML Bayesian nets Wallace et al. (1996); Wallace (2005) and above-

mentioned MML decision trees has been unified in Comley and Dowe (2003, 2005),

and MML Bayesian nets with hidden latent variables are considered in Visser et al.

(2012). Other generative models are given in Torsello and Dowe (2008a,b), where

they are used for structural representation. Some of the other many works of inter-

est include abovementioned sequential Edgoose and Allison (1999); Edgoose et al.

(1998); Molloy et al. (2006) and spatial models Wallace (1998); Visser and Dowe

(2007), work on time series Fitzgibbon et al. (2004); Schmidt (2008) and econo-

metric panel data modelling and estimation (Dowe, 2011, sec. 6.5). Some work on

MML hypothesis testing includes (Dowe, 2008a, sec. 0.2.5, p539 and sec. 0.2.2,

p528, col. 1 and sec. 1) (Dowe, 2008b, p433 (Abstract), p435, p445 and pp455-456)

Musgrave and Dowe (2010)(Dowe, 2011, sec. 3.2, p919 and sec. 7.6, p964) Makalic

and Schmidt (2011). Work on MML probabilistic finite state automata Georgeff and

Wallace (1984); Edgoose and Allison (1999); Edgoose et al. (1998); Wallace (2005) is

surveyed elsewhere throughout this thesis. For similar notes to much of the above,

see Chmait (2017) - and for further reference and survey material on MML, see

Wallace (2005); Dowe (2011). The influence of MML on quantifying intelligence

and intelligence testing is outlined in (e.g.) (Dowe, 2013, sec. 4) and references

therein, including Dowe and Hajek (1997a,b, 1998). For similar notes to much of

the above, see Chmait (2017) - and for further reference and survey material on

MML, see Wallace (2005); Dowe (2011).
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3.6 Code length calculation for a Binomial distri-

bution case

In this section, we discuss the MML calculation or MML estimate for a binomial

distribution case. A binomial distribution is defined as a frequency distribution

of a possible number of successful outcomes in a given number of trials in each of

which there is a probability of success. Let us assume, for a binomial example, the

number of trials is N , the number of successes is s and p is the unknown probability

of success. The likelihood of s successes denoted as f(s|p), under p probability of

success, is given by:

f(s|p) =
(
N

s

)
ps(1− p)N−s

The code length L corresponding to the above likelihood function is − log f(s|p).
Therefore,

L = − log

[(
N

s

)
ps(1− p)N−s

]

= − log

(
N

s

)
− log(ps) − log(1− p)N−s

∂L

∂p
=

∂

∂p

[
− log

(
N

s

)
− log(ps) − log(1− p)N−s

]

∂L

∂p
= 0 − ∂

∂p
s log p − ∂

∂p
(N − s) log(1− p)

∂L

∂p
=
−s
p

+
(N − s)

(1− p)
(3.8)

∂2L

∂p2
=

∂

∂p

[
−s
p

+
(N − s)

(1− p)

]
=

s

p2
+

(N − s)

(1− p)2
(3.9)

The expected value of s, denoted as E(s), is Np. Therefore the expected value

of the second order derivative of L with respect to p is given by:
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E

[
∂2L

∂p2

]
=

Np

p2
+

(N −Np)

(1− p)2
=

N

p
+

N(1− p)

(1− p)2
=

N

p(1− p)
(3.10)

The expected value of the second order derivative of L with respect to p is the

Fisher Information represented as F (p). It is a function of p whose form depends

only on the form of model probability function f(s|p). Being the expected value of

minus the second differential of the log likelihood, it indicates how sharply peaked

we expect the log likelihood to be, as a function of p (Wallace, 2005, sec. 5.1). If

F (p) is large for some value of p, the negative log likelihood will have sharp and

narrow peak and thus the estimate of p is quoted more precisely.

As there is no information regarding the prior probability h(p), it is reasonable

to assume a flat prior h(p) = 1. The two-part code length using the simple MML

formula I1B (Wallace, 2005, sec. 5.1) is computed as below:

= − log h(p) + (1/2) logF (p)− log f(s|p) + (K/2) log kD + (K/2)− log

(
N

s

)

Here K is the number of parameters and kD is a lattice constant. The value of

K for a binomial example is 1 and the value of lattice constant for one parameter

is 1/12. The above equation is simplified and the MML estimate for p denoted as

p̂MML is given by Equation 3.11.

p̂MML =
s+ 1

2

(N + 1)
(3.11)

The maximum likelihood (ML) estimate of p can also be found by equating

Equation 3.9 to zero.
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∂L

∂p
=
−s
p

+
(N − s)

(1− p)
= 0

→ (N − s)

(1− p)
=

s

p

→ p =
s

N

The ML estimate for p denoted as p̂ML is given by Equation 3.12.

p̂ML =
s

N
(3.12)

3.7 Code length calculation for a Multinomial dis-

tribution case

The code length calculation for a binomial distribution case generalizes directly

to a multinomial distribution case with m possible outcomes for each of the N

trials. Let us denote the number of outcomes of each type as s1, s2, ..., sm and their

respective probabilities as p1, p2, ..., pm. The likelihood of s1, s2, ..., sm outcomes

under p probability is given by:

f(s1, s2, ..., sm|p) = N !

s1!s2!...sm!
ps11 × ps22 × ...× psmm

The code length L being negative log of the likelihood function, is given by:

L = − log f(s1, s2, ..., sm|p) = − log

[
N !

s1!s2!...sm!
ps11 × ps22 × ...× psmm

]

= − log

(
N

s1, s2, ..., sm

)
−

m∑
i=1

si log pi
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The Fisher Information represented as F (p1, p2, ..., pm) is the expected value of

the second order derivative of L with respect to p and is given by:

F (p1, p2, ..., pm) =
Nm−1

Πm
i=1pi

The MML estimate for pi, where pi is the probability of a particular outcome i

and 1 ≤ i ≤ m, assuming a uniform prior is given by:

p̂iMML =
si + (1/2)

N + (m/2)
(3.13)

The ML estimate of the probability of a particular outcome i is given by:

p̂iML =
si
N

(3.14)

3.8 Summary

In this chapter, we discussed the formal key concepts related to Bayes’s Theorem,

Bayesian Inference, Coding probabilities using Huffman coding and most important,

the Minimum Message Length (MML) principle.

The importance of Bayes’s theorem lies in the fact that, it makes use of prior

knowledge in the computation of posterior probability of a hypothesis. The belief

in a particular theory is updated based on the likelihood of the hypothesis and the

prior information. Bayesian inference helps in selecting a model when there are

more sources generating data and the best source has to be inferred. According

to Bayesian inference, the model with the highest posterior probability is regarded

as the best source generating the data. The way of converting the probabilities

associated with any event into codes is through the use of prefix codes, the Huffman
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Coding. The information theory concept based on Huffman code states that an

event occurring with probability Pr can be coded in -log2 Pr bits. Highly probable

events result in small code lengths.

The Minimum Message Length (MML) principle, being inherently Bayesian,

combines the above two concepts as one. That is, it works on the Bayesian principles

of calculating the posterior probability of a hypothesis and then converts the poste-

rior probability in the form of code length by the use of Huffman codes. Therefore

the code length of the posterior probability of a hypothesis is the sum of the code

lengths of the likelihood function and the prior probability of the hypothesis. The

two-part code length is the code length of the hypothesis given by − log2 h(θ) and the

code length of the data generated in light of the hypothesis given by − log2 Pr(D|θ).
The MML inference mechanism selects that model, from the set of possible models,

that gives the least two-part code length.

The understanding of the Minimum Message Length (MML) principle is applied

to the case of discrete probability distributions seen in binomial and multinomial

distributions. The multinomial distribution case is a generalization of binomial

distribution case. So generally speaking, in a multinomial distribution case, there

are a certain number of possible outcomes on a sequence of N trials. If the number

of outcomes is 2, it becomes a binomial distribution case. In both the cases, the

negative log of the likelihood function is first represented in the form of code length.

The Fisher Information is then computed by the expected value of the second order

derivative of the code length of the likelihood function. The information is then used

in the two-part code length calculation using the simple MML formula I1B (Wallace,

2005, sec. 5.1). The MML estimate for the probability of a particular outcome is

then known. We also mentioned the Maximum Likelihood (ML) estimate for the

probability of a particular outcome in both the distribution cases.



Chapter 4

MML Encoding and Inference of

PFSMs

4.1 Introduction

Finite State Machines (FSMs) can be effective representations for a data of sequen-

tial nature or data observed in time series. Some sources generating such data are

natural language corpus, email corpus and DNA sequences. What is commonly ob-

served in these data sources is presence of some patterns or regularities, for which

FSMs are a suitable form of representation. The data can be viewed as a set repre-

senting a collection of words or tokens separated by some delimiter symbols. How-

ever powerful FSMs might seem, they are incapable of expressing regularities beyond

those fully captured by the formal grammar (FSM) (Wallace, 2005, sec. 7.1). That

is, they lack the ability to express probabilistic transitions among the states. For

this reason, as discussed in Chapter 2, the FSM structure is extended to allow in-

clusion of probabilistic structure and the extended model is called a probabilistic

finite state machine (PFSM). A PFSM defines not just a set of possible words but

also defines a probability distribution on the set.

MML has emerged as a powerful tool, not only in providing an encoding mech-

anism to find the code length of a PFSM but, it also plays an important role in the

47
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inductive inference of discrete structures such as PFSMs. This chapter discusses

how an inductive hypothesis (PFSM) can be modelled from a finite set of sentences

drawn from a finite alphabet set. An inductive hypothesis is said to be an abstrac-

tion over a set of sentences, but the inference of hypothesis tells how probable the

model is in generating those sentences. So, we also discuss the method of inference

using MML in this chapter.

4.2 Modelling an Inductive Hypothesis

Consider a set representing a collection of sentences. A sentence in turn, is a collec-

tion of data items drawn from a finite alphabet set. To make the distinction between

sentences and data items clear, we again consider the same example considered in

Section 2.2.2, where a set with sentences {CAB,CAAAB,BBAAB,CAAB,BBAB,

BBB,CB}, is taken. In the set, the sequences separated by “,”, are the sentences

and each sentence is a combination of symbols considered from the alphabet set

{A,B,C}.
Now, an abstraction over the set of these data items can be modelled using an

inductive hypothesis. The abstraction, in general, consists of two parts (Wallace

and Georgeff, 1983; Georgeff and Wallace, 1984; Raman et al., 1998; Collins and

Oliver, 1997)

• A statement of the hypothesis H itself.

• A specification of data D given this hypothesis H.

A good hypothesis in general will minimize the second component of abstraction

(Raman et al., 1998). One of the ways in which the hypothesis can be stated is

as list of probabilities of occurrence of each data item in the set. Codes can then

be assigned to these data items, by way of assigning the shortest code to the most

probable data item and longest code to the least probable data item. If the symbols

representing the data items are encoded using an alphabet with n unique symbols,
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then the information theory guidelines suggest that an optimal code length for the

symbol representing the ith data item in the set is calculated as − logn pi, where pi is

the probability of occurrence of data item i from the alphabet set (Shannon, 1948).

By the method of Huffman coding (Huffman, 1952; Gallager, 1968), this is achieved

in practice with the construction of prefix codes over the binary alphabet. Thus,

if data item i occurs with probability pi, then the prefix code corresponding to the

data item i is − log2 pi, according to Huffman coding.

Another method of stating the hypothesis is the abstraction specified as a Prob-

abilistic Finite State Machine (PFSM). The PFSM as discussed in Section 2.3 is a

deterministic state machine modified to have a stochastic transition function. That

is, the movement from one state to another is governed by probabilities. In the next

section, we discuss the MML method of encoding a hypothesis specified as a PFSM.

This was developed by (Wallace and Georgeff, 1983), who looked at the general

problem of inferring a structure for PFSM from a given set of sentences with zero

or more embedded delimiters.

4.3 Modelling a PFSM

Abstraction in the form of a PFSM is modelled using Minimum Message Length

(MML). As a recap here, MML principle has its roots in the classical Bayesian theory

of calculating the posterior probability of a hypothesis H. Computing the posterior

probability equivalently means computing the product of the prior probability of the

hypothesis and the probability of the data D generated in light of the hypothesis

(Oliver and Hand, 1994; Cheeseman, 1990). This equivalently means to compute

the sum of the following code lengths:

• code length of the hypothesis H.

• code length of the data D encoded using this hypothesis.

The problem of modelling an inductive hypothesis from a given set of observa-

tions becomes one of choosing between the competing models. Georgeff and Wallace
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(1984) proposes the MML principle to help make the decision. The hypothesis that

minimizes the sum of the above code lengths is regarded as the best one. Quan-

titatively, the sum can be put down as the following formula that calculates the

two-part code length of a hypothesis in bits.

CodeLength(H|D) = CodeLength(H) + CodeLength(D|H)

= − log2 Pr(H)− log2 Pr(D|H) (4.1)

4.3.1 Assertion code for hypothesis H

If the hypothesis is stated in the form of a PFSM, then the number of bits derived to

encode it can be calculated. Let us consider the PFSM of Figure 2.3 in Chapter 2,

which is the Prefix Tree Acceptor (PTA) of the Gaines (1976) data. Let us now call

the collection as the observed dataD. So,D = {CAB#CAAAB#BBAAB#CAAB

#BBAB#BBB#CB#}. The definitions used in the context of finding the code

length of a PFSM are enumerated below.

1. S is the number of states in the FSM.

2. Σ is the input alphabet set.

3. V is the cardinality of the input alphabet set.

4. nik is the number of transitions from state i on symbol k, where k ∈∑
.

5. M is the total number of arcs from all the states.

6. ai is the number of arcs leaving the current state i

Note that
S∑

i=1

ai = M .

The distinction between arcs and transitions is as follows. An arc represents a

single transition from one state to another state on seeing a particular symbol from

the finite alphabet set Σ. Whereas, transition represents the frequency of occurrence
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of an arc on a particular symbol. The calculation of code length for the hypothesis

H assumes any arc in the PFSM to have transited at least once for a uniform prior

assumption of the hypothesis. The PFSM of Figure 2.3 is shown again in figure

below and we replace the probability values labelling the arcs of Figure 2.3 with the

frequency of occurrence of symbols on the arcs. The figure is redrawn below with

the changed labels on the arcs.

Figure 4.1: PFSM (PTA) of Gaines data D

The hypothesis H is encoded considering the number of states in the PFSM,

number of arcs leaving each state of the PFSM, the labels on the arcs and the

destinations. (Wallace, 2005, sec. 7.1.3) describes a better coding scheme and the

coding scheme works as follows.

• The code begins by first stating the number of states in the PFSM. As the

number of states is specified by S, it takes log2 S number of bits to state the

number of states in the PFSM. For the PFSM in Figure 4.1, the number of

states is 16 and the cost to state this is log2 16 bits.

• Next the arcs leaving each state are stated. The number of possibilities for

the number of arcs from each state is V , by considering a uniform distribution
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of the symbols from each state. Therefore from each state, the arcs leaving

each state are encoded in log2 V bits. The number of arcs leaving each state

is quantified as ai, where i is a state and 0 ≤ i ≤ (S − 1). The number of

different possibilities for ai is between 1 and V.

• The set of symbols leaving any state i is encoded next. The different number

of ways of selecting ai symbols from a set of V symbols is calculated as
(
V
ai

)
.

Therefore the number of bits required to state this set of symbols from state

i is, log2
(
V
ai

)
.

• The PFSM specification includes the destination state reached when a symbol

is input on a current state i. The different ai symbols on the current state

i makes the PFSM transit on ai states. As the destination belongs to one

of the states from 0 to S − 1, the number of bits required to specify the

destination states from current state i is ai log2 S. But, for the arcs labelled

#, the destination state is implied. Therefore the number of bits required in

this case is (ai − 1) log2 S.

Using the above coding scheme any PFSM can be stated but, the code above

contains some inefficiencies. The numbering of the states other than State 0 can

be done in any arbitrary manner stating (S − 1)! equal length code lengths for the

same PFSM. Therefore, the redundancy is removed by obtaining a correction in the

above code, by subtracting (S − 1)! from the calculated code length of the PFSM.

The code is still redundant as it permits descriptions of PFSMs some of whose states

cannot be reached from the starting state. This amount of redundancy, however, is

small and can be thus ignored (Wallace, 2005, sec. 7.1.3).

For the PFSM of Figure 4.1, the asserted costs for the number of arcs, labels

and destinations for each state are calculated and shown in Table 4.1.
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Table 4.1: Code Length of PFSM from Figure 4.1 accepting D

State ai Cost Label(s) Cost Dest.(s) Cost

0 2 log2 V (C,B) log2
(
V
2

)
(1,7) 2log2 S

1 2 log2 V (A,B) log2
(
V
2

)
(2,15) 2log2 S

2 2 log2 V (B,A) log2
(
V
2

)
(3,4) 2log2 S

3 1 log2 V (#) log2
(
V
1

)
(0) 0

4 2 log2 V (A,B) log2
(
V
2

)
(5,12) 2log2 S

5 1 log2 V (B) log2
(
V
1

)
(6) log2 S

6 1 log2 V (#) log2
(
V
1

)
(0) 0

7 1 log2 V (B) log2
(
V
1

)
(8) log2 S

8 2 log2 V (A,B) log2
(
V
2

)
(9,14) 2log2 S

9 2 log2 V (A,B) log2
(
V
2

)
(10,13) 2log2 S

10 1 log2 V (B) log2
(
V
1

)
(11) log2 S

11 1 log2 V (#) log2
(
V
1

)
(0) 0

12 1 log2 V (#) log2
(
V
1

)
(0) 0

13 1 log2 V (#) log2
(
V
1

)
(0) 0

14 1 log2 V (#) log2
(
V
1

)
(0) 0

15 1 log2 V (#) log2
(
V
1

)
(0) 0

The cost columns in the table are added and the cost of encoding the hypothesis

H without applying correction is shown by Equation 4.2.

S∑
i=1

log2

(
V

ai

)
+

S∑
i=1

ai log2 S +
S∑

i=1

log2 V + log2 S

=
S∑

i=1

log2

(
V

ai

)
+M log2 S + S log2 V + log2 S

(4.2)

After applying the correction to the above code by subtracting (S− 1)! from the

equation above, the code length for the hypothesis H for the PFSM in Figure 2.1 is

given by Equation 4.3.
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CodeLength(H) =
S∑

i=1

log2

(
V

ai

)
+M log2 S + S log2 V + log2 S − log2(S − 1)!

(4.3)

The formula in Equation 4.3 is used further in calculating the first part code

length of any PFSM. The second part code length, that encodes the data D, assum-

ing the hypothesis to be true is discussed in the section following this.

4.3.2 Assertion code for data D generated by hypothesis H

This part of the code length asserts the data D generated by the hypothesis H.

From each state of the PFSM, there are multiple transitions on the arcs leaving

the state, therefore the distribution from each state appears to be multinomial. If

a uniform prior distribution from each state is assumed, then the MML estimate

for probability of a particular outcome can be known by the use of formula 3.13

discussed in Chapter 3. But, this assumption is valid only when the sample size is

known before transmitting the data. This is not usually the case, as after asserting

the discrete structure of the PFSM, the assertion starts encoding the data as it

comes. A possible solution to this is, if we desire to use the same MML probabil-

ity calculation for a particular transition on a symbol from a state, the expected

number of transitions from each state can be assumed. But in this case the compu-

tation of Fisher Information expressed as a function of the structure of the PFSM

and transition probability distribution from all its states, would be computationally

expensive. A much better solution to encode data is by the use of an adaptive code.

The adaptive code differs from the other code discussed in Chapter 3 in Sec-

tion 3.7, in the assumption made about the receiver’s prior knowledge. In this type

of coding, the data are encoded in segments, each giving the next symbol to be

seen in making a transition from the current state. The adaptive coding method is

detailed in the section following next.
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4.3.2.1 Adaptive Coding of data D with a uniform prior

To understand the method of adaptive encoding we consider a small example of a

discrete Binomial distribution where a sequence of heads and tails are recorded in

a series of coin tosses. Let us denote the outcome head as h and outcome tail as t.

The sequence is as follows:

h h t h t h h t t t

The events in the sequence are independent of each other. The sequence starts

with the outcome h. Before seeing this first h, if the two outcomes are considered

equally probable or in other words both the outcomes are assumed to be present

in equal numbers before the start of the actual data, then the probability of seeing

the first symbol as h is 1
2
. The probability of seeing the second symbol as h is

2
3
, probability of seeing the third symbol as t is 1

4
and so on. The probability of

occurrence of each subsequent symbol, as it appears, is mentioned in Table 4.2. As

the sequence appears, the probabilities are multiplied incrementally and when the

whole data is seen, the final probability of seeing five number of heads and five

number of tails is given by the last column of the table.

Table 4.2

1 2 3 4 5 6 7 8 9 10 product
Data h h t h t h h t t t

number
of
h

1 - 2 - 3 - 3 - 4 - 4 - 5 - 6 - 6 - 6 -

number
of
t

1 - 1 - 1 - 2 - 2 - 3 - 3 - 3 - 4 - 5 -

total number
of

h & t
2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 -

running estimate
of probability

1/2 2/3 1/4 3/5 2/6 4/7 5/8 3/9 4/10 5/11
((no. of h)! * (no. of t)!)/
(no. of h + no. of t + 1)!

The idea of adaptive coding considered for a Binomial distribution case can be

extended for the case of a discrete Multinomial distribution. For a Multinomial

distribution case, let us say there are m possible outcomes for each of the N trials.

The number of outcomes of each type are denoted as s1, s2, ..., sm. The respective

probabilities are denoted as p1, p2, ..., pm. By incrementally multiplying the proba-

bility of the outcomes as we progress, the final probability expression is given by
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Equation 4.4. In the expression, a uniform prior is assumed over all the possible

outcomes before the outcomes are seen and the prior is 1
m
.

p1 × p2 × ...× pm =
(s1!s2!...sm!)(m− 1)!

(N +m− 1)!
(4.4)

Now we apply the method of adaptive coding to the states of PFSM where the

states observe a multinomial distribution. There are ai arcs transiting from a state

i or we can say the number of possible outcomes from state i are ai. Each outcome

is labelled by a symbol k and k ∈ ∑
. The code length needed to encode all the

transitions from the current state i is given by − log2
(ai−1)!Πk(nik!)

(ti+ai−1)!
, where nik is the

number of times the state i has already seen symbol k transiting from it, ti is the

total number of times the state has already been left (Wallace, 2005, sec. 7.1.6). The

code length of the individual states are summed over S and that gives the complete

two-part code length for data D generated by the PFSM. The code length of the

data D generated by the hypothesis H is given by the Equation 4.5.

If it is desired to treat the probabilities as an essential feature of the inferred

model, a small correction from (Wallace, 2005, sec. 5.2.13) can be added to the

above expression, as detailed in (Wallace, 2005, sec. 7.1.6), given by approximately

(1
2
(π(ai − 1)) − 0.4) for each state. For the state having only one exit arc, there is

no need to calculate the transitional probability.

CodeLength(D|H) =
S∑

i=1

log2
(ti + ai − 1)!

(ai − 1)!Πk(nik!)
(4.5)

The total two-part code length for the PFSM is written as CodeLength(H)

+ CodeLength(D|H), which is approximately equal to the following expression in

Equation 4.6.

Total Two-Part CodeLength =
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S∑
i=1

{
log2

(ti + ai − 1)!

(ai − 1)!Πk(nik!)
+ log2

(
V

ai

)}
+M log2 S + S log2 V + log2 S − log2(S − 1)!

(4.6)

4.3.3 A Few Examples

As the first example, we compute the two-part code length on the PFSMs of Gaines

(Gaines, 1976) data. The sequence is represented asD = {CAB#CAAAB#BBAAB#

CAAB#BBAB#BBB#CB#}.
Figures 4.2 - 4.7 show the PFSMs explaining the Gains data.

Figure 4.2: 1-state PFSM explaining Gaines data D

Figure 4.3: 2-state PFSM explaining Gaines data D

Figure 4.4: 3-state PFSM explaining Gaines data D



58 CHAPTER 4. MML ENCODING AND INFERENCE OF PFSMS

Figure 4.5: 4-state PFSM explaining Gaines data D

Figure 4.6: 5-state PFSM explaining Gaines data D

Figure 4.7: 6-state PFSM explaining Gaines data D
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Table 4.3 shows the two-part code lengths of the PFSMs explaining Gaines data.

Table 4.3: Code Lengths in bits for the PFSMs in Figures 4.2 - 4.7

States
Two-Part code lengths in bits on

Gaines Data using Eq.(4.6)

1 77.4146

2 76.1269

3 70.8393

4 66.6234

5 78.6874

6 90.3504

Of the various PFSMs explaining Gaines data D, the PFSM with four number

of states gives the least two-part code length. With the increase in the number of

states, the likelihood of the data generated using the PFSMs increases as the code

length becomes shorter and shorter. But a further increase in number of states

beyond four states starts reducing the likelihood. Thus for the Gaines data, the

best PFSM is the PFSM with four states in Figure 4.5, that describes the data in

the best possible manner.

As another example we consider the sequence of events represented as {ABCD#}.
The number of different PFSMs explaining the sequence of events are shown in Fig-

ure 4.8. The PFSMs explaining the sequence start with one state to four states in

the figure. The one-state PFSM gives the most compact representation and also

the best representation in terms of the two-part code length resulted by the model.

The 5-state theory is the worst theory that can be formed at this stage as it results

in the largest two-part code length. The code lengths can be seen in column-2 of

Table 4.4. The one-state theory that does not assign any specific order to any of the

events is the most likely one and the initial guess that a compact theory is indeed

the best seems convincing.

Now, if we suppose that the sequence of events repeats 100 times, then the initial

guess about the most compact theory being declared as the best, is no more valid.

The third column of Table 4.4 can be referred to see the amount of code length
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decrease with the increase in the number of states. In this case, the 5-state theory

is most likely than the other theories that are trying to explain the same sequence

of events. So, Table 4.4 is actually doing a comparison of two-part code lengths in

bits for the different PFSMs for the events {ABCD#} observed once and the same

sequence of events observed 100 times, represented as {(ABCD#)100}.

Figure 4.8: PFSMs explaining the sequence {ABCD#}

Table 4.4: Code Lengths in bits for the PFSMs explaining {ABCD#} and
{(ABCD#)100}

States
Code Lengths in bits

for {ABCD#}
Code Lengths in bits
for {(ABCD#)100}

1 24.1130 1190.720

2 33.7568 843.610

3 34.9332 528.456

4 36.5754 260.125

5 37.5659 65.856
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4.4 Inference of PFSM using MML

The number of PFSMs that can exist for a given data sequence is computationally

intractable (Raman et al., 1997). For S number of states in a PFSM, the number of

PFSMs that all can account for the same data sequence, is exponential in S. Accord-

ing to Gold (1978), Angluin (1978) and Feldman (1972), the problem of searching

the minimal PFSM from a given data sequence is known to be NP-complete. There-

fore in searching the best PFSM to account for a given data sequence along with

making the problem of searching tractable, a trade-off between the guarantee of

optimality of the solution is done with tractability considerations in mind, and this

is achieved using heuristics.

To infer a stochastic PFSM with transition probabilities that best reflects a given

data sequence, Raman (1997), Raman and Patrick (1997a), Clelland (1995), Clelland

and Newlands (1994), Raman and Patrick (1997b), Collins and Oliver (1997) and

Hingston (2001), propose various approaches. The method on inferencing works

along the lines of building a minimal or maximal canonical PFSM. The minimal

PFSM to start with is the one state PFSM where the states are split in each iteration

until no further split is possible. The maximal PFSM to begin with is the Prefix

Tree Acceptor (PTA) of the data sequence. The states in the PTA are progressively

merged until no further merge is possible.

In this section, we discuss two methods of inferencing a PFSM, represented as

a PTA of the data sequence. The methods work along the lines of ordered merging

and random merging of states in the PFSM. The method of ordered merging is

completely novel and proposed by us. This method uses a greedy search heuristic

to find a near optimal PFSM and most suitable for applications where optimality

can be compromised for quickness of the solution. The second method proposed by

Raman and Patrick (1997b) uses a simulated annealing heuristic to find an optimal

solution. This method can guarantee an accurate solution by appropriate setting

of the temperature and rate of cooling. We have re-implemented this method in

our own way by doing minimal modifications in the original algorithm in the way
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that suits our needs. By optimal solution we mean the minimum two-part code

length PFSM and the objective function to get the optimal solution is the Minimum

Message Length (MML) principle.

4.4.1 Inference of PFSM by Ordered Merging (OM)

For inference using Ordered Merging (OM), the induction process begins by con-

sidering the input in the form of a PTA of the data sequence. The node pairs are

merged in stages satisfying two major constraints:

• First, the merging always remains deterministic. That is, when two states are

merged, the transitions on any input symbol on the merged states should be

unambiguous. Any symbol from the merged states should not lead transitions

to more than one state. If this is not satisfied, the second condition is never

tried.

• Second, the two-part code length of the new PFSM after merge is lesser than

the two-part code length of the PFSM before merge. Since the method works

along the lines of searching using greedy search heuristic, the merge is only

tried when the two-part code length of the PFSM after merge is lesser than

the two-part code length of the PFSM before merge.

The stages of the node pair merges are given in detail in the subsections below:

4.4.1.1 First Stage Merge

In the first stage of the merge process, the final states of the initial PFSM are

merged. The final states are those states in the PFSM that have transitions on

input symbol #. This transition on input symbol # leads back to the initial state

of the PFSM.

To see the effect of this merging, we reconsider the PFSM in Figure 4.1, which

is the PTA of the Gaines data. The two-part code length calculated for this PTA

using Equation 4.6 is 181.205 bits. The final states with input symbol # transitions
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from them, are merged and the resulting PFSM after merging final states is shown

in Figure 4.9. The two-part code length of the new PFSM is 136.365 bits.

Figure 4.9: PFSM with final states merged from Figure 4.1

An important observation to be noted here is, it is not necessary that all the

final states get merged as one by applying the First Stage merge Process. So there

might be chances of still getting more than one final states after the First Stage

Merge is over. This is attributed to the constraints put on merging.

4.4.1.2 Second Stage Merge

In the second stage of the merge process, the states directly connected to the final

states are merged with each other. No merging with the final states is done here.

The process of merging through the list of states directly connected with the final

state continues until no further merging turns beneficial. The effect of applying the

Second Stage Merge is seen in Figure 4.10. The two-part code length of this PFSM

is 66.6234 bits.
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Figure 4.10: PFSM with Second Stage states merged from Figure 4.9

4.4.1.3 Third Stage Merge

In the third stage of the merge process, pair of states are merged where one state is

the final state and the other state is the state connected to it. We loop through the

list until we reach a PFSM whose code length is the minimum. This PFSM can now

be termed as the MML PFSM. This kind of stage-wise merging is more systematic

as opposed to the random merge pairs in the Beam Search Algorithm (Raman and

Patrick, 1997b). Merging states in Third Stage of the inference process generates

the same PFSM as in Figure 4.10.

4.4.1.4 Ordered Merging (OM) algorithm

We formally write the method of inferencing through Ordered Merging in the form

of an algorithm. The merges achieved in different stages are mentioned as three

separate algorithms. Algorithm-2 is very much similar to Algorithm-1. The only

difference between the two algorithms is, the merging is applied on different lists in

both the cases. Algorithm-1 considers the list of final states for merging the states,

whereas Algorithm-2 considers the list of states directly connected to final states for

merging the states. The two-part code length calculated using MML is used as an

objective function to obtain the minimum code length PFSM.
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Algorithm 1 Ordered Merging First Stage

Input: PTA
Output: Reduced PFSM after First Stage Merge
1: ListOfFinalStates← List of F inal States
2: NoOfFinalStates← Number of F inal States
3: oldMML ← CodeLengthOfCurrentPFSM
4: for i← 1 to NoOfFinalStates− 1 do
5: for j ← i+ 1 to NoOfFinalStates do
6: if (CanBeMerged(ListOfFinalStates[i], ListOfFinalStates[j])) then
7: newMML ←Merge(ListOfFinalStates[i], ListOfFinalStates[j])
8: if (newMML ≤ oldMML) then
9: oldMML = newMML

10: i← i− 1
11: break
12: else
13: UndoMerge()
14: end if
15: end if
16: end for
17: end for

Algorithm 2 Ordered Merging Second Stage

Input: PFSM resulting from First Stage Merge
Output: Reduced PFSM after Second Stage Merge
1: ListOfStates← List of states directly connected to F inal States
2: NoOfStates← Number of states directly connected to F inal States
3: oldMML ← CodeLengthOfCurrentPFSM
4: for i← 1 to NoOfStates− 1 do
5: for j ← i+ 1 to NoOfStates do
6: if (CanBeMerged(ListOfStates[i], ListOfStates[j])) then
7: newMML ←Merge(ListOfStates[i], ListOfStates[j])
8: if (newMML ≤ oldMML) then
9: oldMML = newMML

10: i← i− 1
11: break
12: else
13: UndoMerge()
14: end if
15: end if
16: end for
17: end for
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Algorithm 3 Ordered Merging Third Stage

Input: PFSM resulting from Second Stage Merge
Output: Minimum Code Length PFSM or the Inferred PFSM
1: oldMML ← CodeLengthOfCurrentPFSM
2: newMML ← 0
3: ListOfFinalStates← List of F inal States
4: NoOfIterations← Initial Number Of Iterations
5: i← 0
6: while (newMML < oldMML OR i ≤ NoOfIterations) do
7: state1← Random State from ListOfF inalStates
8: state2← Random State from States connected to state1
9: if (CanBeMerged(state1, state2) then

10: newMML ←Merge(state1, state2)
11: if (newMML ≤ oldMML) then
12: oldMML = newMML

13: newMML ← 0
14: else
15: UndoMerge()
16: i← i+ 1
17: end if
18: else
19: i← i+ 1
20: end if
21: end while

4.4.2 Inference of PFSM using Simulated Annealing (SA)

We are basing the inference of a PFSM using Simulated Annealing (SA) by following

a path that considers random merging of nodes instead of ordered merging. Raman

and Patrick (1997b) use the method of inference using SA to get the minimal code

length PFSM and we briefly explain the method in this section.

To understand the method of inferencing using SA, we first try to explain what

Annealing is. Annealing is a physical process in which metals are heated to very

high temperature and then they are gradually cooled. The high temperature causes

the electrons of the metal to emit photons and in this process of doing so, the metal

gradually descends from high energy state to low energy state. The emitted photons

may bump into another electron, causing it to move to high energy state, but the

probability of happening this decreases with cooling. The probability p is quantified

as p = e−
ΔE
kT , where ΔE is the positive change in energy level of electron, T is the
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temperature and k is Boltzmann’s constant. The rate of cooling is called annealing

schedule and it plays a very important role in the formation of the final product.

Rapid cooling will prohibit the electrons to descend to lower energy state and as

a result there will be formation of regions of stable high energy. Too much slow

cooling will be a waste of time. Therefore there has to be an optimum choice of the

annealing schedule and that is determined empirically.

4.4.2.1 Simulated Annealing (SA)

In simulated annealing procedure, the Boltzmann’s constant is irrelevant as it is

specific to the physical process. Therefore the probability formula now becomes

p′ = e−
ΔE
T . As ΔE refers to the change in the energy state of an electron in Annealing

procedure, in Simulated Annealing it refers to the change in objective function. Thus

in this case ΔE is the change in the two-part code length of the current PFSM. The

temperature in Annealing is set in kelvin and in SA, the temperature is set to some

value which is number of bits. The value is again determined empirically as in

Annealing.

The modified probability is now given by p′ = e
−(newCodeLength−oldCodeLength)

T , where

newCodeLength is the code length of the changed PFSM after applying node merge

and oldCodeLength is the code length of the PFSM before applying merge. The change

in the objective function is guaranteed to be a positive quantity as the probabilistic

acceptance is only tried when the newCodeLength is larger than the oldCodeLength. For a

negative change in the objective function, where the newCodeLength is always smaller

than the oldCodeLength, the merge is always considered as it results in better solution.

The Simulated Annealing method of inferencing is formalized as an algorithm in

Section 4.4.2.2.
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4.4.2.2 Simulated Annealing (SA) algorithm

Algorithm 4 Simulated Annealing

1: oldMML ← Code Length of Current PFSM
2: Temperature← Initial Temperature
3: CurrentState← Intitial State of current PFSM
4: while Temperature �= 0 do
5: RandomState1← Random state of current PFSM
6: RandomState2← Random state of current PFSM
7: while RandomState1 = RandomState2 do
8: RandomState1← Random state of current PFSM
9: RandomState2← Random state of current PFSM
10: end while
11: if CanBeMerged(RandomState1, RandomState2) then
12: newMML ←Merge(RandomState1, RandomState2)
13: if newMML ≤ oldMML then
14: oldMML = newMML

15: else

16: p = e
−(newMML−oldMML)

Temperature

17: RandomNumber = Random(0, 1)
18: if RandomNumber ≤ p then
19: oldMML = newMML

20: end if
21: end if
22: end if
23: Temperature← Temperature− 1
24: end while

4.5 Experiments and Discussion

In this section we run the two algorithms for PFSM inference on a few randomly

generated strings that were generated using two initial PFSMs.

The first initial PFSM is the Gaines machine in Figure 4.5. The PFSM though

labels all the 6 arcs in the figure with transition frequencies but we assume them

to be not present there and we generate random number of strings by setting up

initial probabilities of transition between the transition arcs. The alphabet size is

4 including the delimiter symbol. We assume a uniform prior for a multinomial

distribution case. To cover the possibility of including all the arcs being visited
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atleast once in the process of random string generation, we start with a minimum

of 50 number of strings and go upto a maximum of 1000 number of strings.

Figure 4.11 shows a comparison of the two-part code length computation using

the true PFSM model of Figure 4.5, the inferred PFSM model induced by Or-

dered Merging induction method and the inferred PFSM model induced by using

Simulated Annealing search method.
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Figure 4.11: Two-part Code Length comparison between the true PFSM model of
Figure 4.5, the inferred PFSM model by OM and the inferred PFSM model by SA

Experimental results indicate that the Simulated Annealing approach is able to

correctly infer and converges to the true model approximately 2 times of the total

11 trials with different number of random strings. The Ordered Merging approach

on the other hand shows a better performance by converging to the true model

approximately 4 times of the total 11 trials. We started the Simulated Annealing

search by setting the initial temperature to 20000 bits. We experimented with

different temperatures and the most reasonable to consider was 20000 bits. A value

higher than 20000 bits considered for the initial temperature, only took longer time

to search through the search space to result an optimal solution but, did not give a

better result than what we generated from this 20000 bits value.
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We also plot a curve for the Error obtained in the process of inferring by the

two inference methods against the different test strings. The Error is calculated as

(1− ( codelength(inferredPFSM )
codelength(truePFSM )

)). The plot is shown in Figure 4.12.
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Figure 4.12: Error measured while inferring PFSMs on test strings using SA and
OM methods of inference

The Error plot in the figure indicates that the differences between the two-

part code lengths of the true PFSMs and the inferred PFSMs resulted by Ordered

Merging approach are less as compared to the ones inferred by Simulated Annealing

approach. This indicates a possibility of less error seen in the method of inference

using the OM method. But the method purely works on greedy lines of selecting

a suitable path from the current situation. The SA approach, although resulted in

more error than the OM method, does a more extensive search of the search space.

By the process of random merging applied on the current PFSM, if the machine

gets into a worse solution (which might happen as high temperature increases the

probability of acceptance of worse solutions), it becomes necessary to keep track of

a few best machines found so far, so that there is a way to backtrack. The negative

Error in the figure indicates some sort of redundancy in the randomly generated

structure.
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The second initial PFSM that we consider is the machine in Figure 4.13.

Figure 4.13: Sample PFSM

This sample PFSM represents a small scale representation of the dataset, of

which we try to build a PFSM model from the corpus of Enron spam dataset. We

speak about the details of dataset in Chapter 5. The only difference is that the

PFSM in Figure 4.13 represents the model constructed at sentence level and, for

the Enron spam dataset, we build the model working at word level. For this sample

PFSM again, considering a uniform probability distribution from each state on the

different symbols, random number of strings are generated ranging from number 50

to number 1000. By assigning unique characters to each word labelling the arcs in

the PFSM, the total alphabet size computed is 9 including the delimiter symbol.

The code length comparisons between the true models and the inferred models

using the two inference methods for the different number of random strings are

shown in Figure 4.14 and the error plot is shown in Figure 4.15.
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Figure 4.14: Two-part Code Length comparison between the true PFSM model of
Figure 4.13, the inferred PFSM model by OM and the inferred PFSM model by SA
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Figure 4.15: Error measured while inferring PFSMs on test strings using SA and
OM methods of inference

The results for the PFSM of Figure 4.13 indicate that the inferred PFSMs were

always resulting in more two-part code lengths than their corresponding true PFSMs.

For this second example the performance of the SA inference approach was better

than the OM inference approach as the error encountered in the process on inferring
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using the SA method was in the range of -0.35 to -0.02. Whereas for the OM method,

the error was in the range of -0.39 to 0.1. This second example had more number of

states with more large input alphabet size than the Gaines machine of Figure 4.5.

For even more big examples like the one that we will be considering for learning

PFSMs mentioned in Chapter 5, the SA method can be a reliable choice. The

method does an extensive search of the search space at an added cost of additional

space which is required to keep the track of a few best PFSMs.

4.6 Summary

On the concluding notes we summarize the whole chapter by leading a discussion

that first describes a method to encode an inductive hypothesis modelled as a PFSM.

The modelling of a PFSM includes modelling the structure of PFSM followed by

modelling data using the structure. This two-part modelling is correlated with the

Bayesian theorem. So relating with the Bayesian theorem, the code-length of the

posterior probability of a hypothesis modelled as a PFSM is calculated by summing

up the code length of the prior probability of the hypothesis and the code length of

the transition probabilities.

The first part of code length i.e. the code length of the PFSM structure itself

is modelled by making use of some known information or prior information about

the PFSM. This prior information includes the number of states of PFSM, the

cardinality of the input alphabet set and the number of arcs from each state of the

PFSM. The second part of the code length, i.e. the code length of the data using

the structure of PFSM, is calculated by encoding the transition probabilities from

each state of the PFSM model. The code length calculation method makes use of

the transition frequencies instead of transition probabilities and that is known from

the data that is observed. The incremental code for a multinomial distribution case

with a uniform prior is proportional to (approximately normalized) p01, p
0
2, ..., p

0
m and

the adaptive coding starts with pre-counts of 1 in each class.
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Then in the further discussions, we speak about the MML inference methods to

find a minimal PFSM. We discuss two methods here. One is the way through Or-

dered Merging (OM) of node pairs and another way is through the random merging

of node pairs using the Simulated Annealing (SA) heuristic. Both the methods, in

general, start the process of induction by considering the initial PFSM in the form

of a Prefix Tree Acceptor (PTA) of the data sequence. The OM method follows

a sequence of node pair merges in different stages and the approach used is the

greedy approach. By the use of greedy approach, the node pair merge that does

not result in lesser two-part code length than the original two-part code length, is

not considered for merging. The SA approach on the other hand might consider

a worse solution in favour of future better solutions. The SA approach simulates

the physical annealing process where a metal is heated to a very high temperature

and then gradually cooled. The probability of accepting a bad solution is higher in

the initial stages of merging when the temperature is high. But as the temperature

gradually decreases, this tendency of accepting bad solutions also decreases. In the

SA approach, there is a necessity to use an extra space at the cost of doing more

extensive search, to keep track of the best solutions found so far.

The two methods of PFSM inference are then applied on a few randomly gen-

erated strings using two initial PFSM structures. The first structure is the Gaines

machine in Figure 4.5 and the second structure is the machine in Figure 4.13. Ran-

dom strings are generated staring from number 50 to number 1000 by setting up

initial probabilities of transition from each state of the PFSM. The two-part code

length of the true PFSM that generated the strings is compared against the two-part

code length of the inferred PFSMs and the error is noted down. For the first struc-

ture the OM method performs better as the overall error noted down in the process

of inferring is less as compared to the SA method. But, for the second structure

which is bigger than the first structure in terms of number of states and cardinality

of the input alphabet set, the SA method results in better performance than the

OM method. In general, both the methods used for the second structure did not
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converge to the true PFSM model in any of the cases considered for the trainings

sets. This may be attributed to two facts. The first one is that the initial PTA

PFSMs built using the training random strings are very large and certain determin-

istic conditions imposed while merging the node pairs never allows certain merges

to happen. The second fact is that the random structure is redundant.

In the chapters ahead, the method of inference that we will be using is the SA

method as the method atleast guarantees more possibilities of node pair merges than

the OM method. The setting of the initial temperature and the rate of cooling can

be determined empirically depending upon the problem context.
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Chapter 5

Learning Two-Machine PFSM

models

5.1 Introduction

This chapter is an application to learning and inference of PFSM models using MML

on a text based corpus and the objective is to observe the amount of correctness

achieved while trying to classify some text from the same corpus whose label is

unknown. PFSM models can be easily constructed from training examples that

contain repetitive text and the patterns are captured well with a further possibility

of compression. We are considering a case of supervised learning where the texts

belonging to different categories are known in advance. The text is viewed as a

sequence of words or tokens separated by delimiter symbols.

The two-machine model learning approach learns the PFSM models from the

classified text categories. The learnt models are then inferred to reflect the best

and most compact representations. These trained models are then used to test the

set of text tokens whose label is unknown. The testing is done by measuring the

amount of increase in the two-part code lengths when the set of test text tokens is

made input to both the trained models. The trained model that measures minimal

77
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increase in the two-part code length is more probable to have generated the set of

test tokens and this way the set of test tokens are categorized.

This chapter focusses on how the models are learnt and inferred from the training

sets. We apply the method of learning and inference on the real world datasets

namely the Enron spam datasets (Enr) and the Activities of Daily Living (ADL)

datasets (Ordonez et al., 2013). The Enron spam datasets contain the text-based

classified spam and non-spam datasets and the models can be learnt directly from

them without the need of any preprocessing to be done on the text files. The

voluminous text corpus is reduced to a sequence of tokens by the application of

a feature selection process. The ADL datasets on the other hand first require a

preprocessing to be done on the raw data before learning can be applied on them.

We discuss the details of the datasets in the chapter in further sections.

5.2 Design of the two-machine PFSM models

The word two-machine is emphasized to get an idea of learning two models from two

categories. The examples that we have considered are the ones that strictly possess

two categories of data. For the sake of convenience let us denote the two categories

as, class1 and class2 respectively. The idea of two-machine approach is not new.

Most of the data compression techniques doing classification rely on building two

models. One model is constructed from a sequence of positive examples and the

other one from a sequence of negative examples.

To understand, we consider the following tokens in class1 and class2.

class1 = {(aab#)8(abc#)5(abb#)2(baa#)6},
class2 = {(aab#)1(abc#)5(abb#)10(bab#)5}

The numbers in the sets denote the frequencies of occurrences of tokens in the

sets. The interpretation is done like this. Class1 and Class2 commonly represent

a few tokens that are seen in both classes. The amount of usage for those common

tokens are different in each class. In addition to that Class1 contains tokens that
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are not seen in Class2 and similarly, Class2 contains tokens that are not seen in

Class1. This example is very much analogous to the corpus of spam and non-

spam emails where the tokens represent words used in spam and non-spam emails.

Certain words are used in high frequency in spam emails than the non-spam emails.

And this is true the other way round also. There are certain words that are seen

only in spam emails and they don’t have a usage in non-spam emails. So, after

breaking the emails into a sequence of tokens, the PFSM models are constructed.

The two models corresponding to two different categories are constructed. The

initial models as discussed earlier in Chapter 4 in Section 4.4.2 are the Prefix Tree

Acceptors (PTAs) of the tokens. The initial models in the form of PTAs are shown

in Figure 5.1 and Figure 5.2.

Figure 5.1: Class1 PTA
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Figure 5.2: Class2 PTA

The PFSMs are inferred using the SA (Simulated Annealing) approach and are

shown in Figure 5.3 and Figure 5.4.

Figure 5.3: Class1 Inferred PFSM

Figure 5.4: Class2 Inferred PFSM

5.3 Classification using the two-machine PFSM

models

The classification of the target sequence using the two-machine PFSM model is done

in the following manner and pictorially shown in Figure 5.5.
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• The tokens are first learnt from the training dataset that contains the two

categories.

• Appropriate feature selection method can be applied for voluminous training

datasets.

• The PFSM models are then built from the tokens learnt from the two cate-

gories.

• Next, the models are inferred using the Simulated Annealing search method

that makes use of MML as an objective function in generating the most com-

pact and the most probable form.

• The target sequence of tokens from the test dataset are input to the inferred

PFSM models generated above.

• The model that measures minimal increase in the two-part code length be-

comes the classification class for the target sequence of tokens.

Let the target sequence whose class is unknown be denoted by the following set.

Target = {aab#abc#}

The target sequence is input to both the inferred PFSM models. The increase in

two-part code length in class1 model is 4.4825 bits whereas, the increase in two-part

code length in class2 model on the same target sequence is 7.1722 bits. Therefore,

for the target sequence, the class2 model is more probable to have generated the

sequence and thus becomes the classification class for the target sequence. The

probability can be quantified as 27.1722

27.1722+24.4825
= 0.865.
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Figure 5.5: Classification using two-machine design

5.4 Experiments

The experiments are conducted in two different experimental set-ups. The descrip-

tion of the data sets used in the experiments, the evaluation metrics and the results

obtained are discussed in distinguished sections. We also compare the results with

the state of art classifiers.
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5.4.1 Experimental set-up A

We have used the Enron spam datasets 1 in our experimental evaluation. The dataset

is a collection of personal files of approximately 150 Enron employees made public.

The experiment used the mailboxes of six employees namely, farmer-d, kaminski-

v, kitchen-l, williams-w3, beck-s and lokay-m. The spam messages were col-

lected from sources namely, SpamAssasign corpus (SA), Honey pot project

(HP), Bruce Guenter and Georgios Paliouras (BG, GP). The six non-spam

message collections of the six Enron employees were paired with the spam collec-

tions from the above mentioned spam sources generating six Enron spam datasets as

Enron-1, Enron-2, ...., Enron-6. The first three datasets, Enron-1 to Enron-3, used

a non-spam - spam ratio of approximately 3:1 and the other three datasets used a

non-spam - spam ratio of approximately 1:3. Each dataset consists of approximately

5000 - 6000 messages.

The six datasets are available in a preprocessed form. The following preprocess-

ing steps were applied.

• The owner of the mailbox was removed from the messages by checking if the

owner appeared in the “To:, Cc:, or Bcc:” fields of the messages.

• All the HTML tags and the headers of the messages were removed keeping

only subjects and bodies of messages.

• The spam message containing non-Latin characters were removed because the

non-spam messages were all written in Latin characters.

Table 5.1 summarizes the characteristics of the entire Enron spam dataset with

details including the number of spam and non-spam messages in each dataset and

the periods they were collected in.

1The Enron Spam datasets are available from http://www.iit.demokritos.gr/skel/i-config and
http://www.aueb.gr/users/ion/publications
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Table 5.1: Composition of the Enron spam datasets

Dataset non-spam + spam non-spam:spam non-spam period, spam period

Enron-1 farmer-d + GP 3762:1500 [12/99, 1/02], [12/03, 9/05]
Enron-2 kaminski-v + SH 4361:1496 [12/99, 5/01], [5/01, 7/05]
Enron-3 kitchen-l + BG 4012:1500 [2/01, 2/02], [8/04, 7/05]
Enron-4 williams-w3 + GP 1500:4500 [4/01, 2/02], [12/03, 9/05]
Enron-5 beck-s + SH 1500:3675 [1/00, 5/01], [5/01, 7/05]
Enron-6 lokay-m + BG 1500:4500 [6/00, 3/02], [8/04, 7/05]

5.4.1.1 Model Training and Feature Selection

Each of the Enron spam dataset contains distinguished spam and non-spam messages

as discussed above. For training the spam and the non-spam PFSM models, 50% of

the messages in each category (spam and non-spam) were considered. The following

feature selection procedure was applied and the models were built on the selected

features. For convenience, let us denote the set of spam messages as SM and the

set of non-spam messages as NSM .

1. The messages in the SM set were first tokenized by the application of the

Bag of Words approach. This was done by the removal of stop words and

delimiter symbols. As mentioned above 50% of the total spam messages were

tokenized and it resulted in an enormous collection of features set.

2. To reduce the dimension of the feature space, the features were arranged in

decreasing order of the frequency of their usage in 50% of the spam messages

considered for training. In other words, a histogram representing the frequency

of occurrence of each feature was formed.

3. From the total features collected, 3000 high frequency features were selected.

4. Each feature looked like a token with a certain frequency of occurrence.

5. The spam PFSM model was then built on these 3000 high frequency features.

The non-spam model was built by following the same procedure as listed above.

A small subset of the selected features with their frequency of use in spam messages

of the Enron-1 spam dataset can be seen in Table 5.2.
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Table 5.2: Enron-1 Spam Features

Feature No. Feature Fequency Feature No. Feature Fequency

1 http 201 29 stop 58
2 $ 148 30 html 56
3 www 139 31 meds 55
4 click 127 32 send 55
5 free 121 33 site 55
6 email 114 34 biz 53
7 information 101 35 easy 53
8 money 99 36 future 53
9 time 99 37 info 53
10 online 88 38 limited 53
11 offer 80 39 dollars 52
12 mail 74 40 list 52
13 special 73 41 low 52
14 message 72 42 net 52
15 order 70 . . .
16 price 69 . . .
17 today 68 . . .
18 prices 67 2990 advertising 3
19 link 65 2991 aesthete 3
20 paliourg 65 2992 affiliates 3
21 back 64 2993 affirmative 3
22 receive 62 2994 affront 3
23 address 61 2995 aficionado 3
24 buy 61 2996 agate 3
25 visit 60 2997 agency 3
26 prescription 59 2998 agenda 3
27 world 59 2999 aggravate 3
28 office 58 3000 agnomen 3

Table 5.3 represents a small subset of the collection of non-spam features from

the Enron-1 dataset.
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Table 5.3: Enron-1 Non-Spam Features

Feature No. Feature Frequency Feature No. Feature Frequency

1 enron 738 42 price 161
2 cc 691 43 ticket 161
3 forwarded 570 44 back 158
4 ect 534 45 production 158
5 pm 527 46 effective 156
6 hou 514 47 america 155
7 gas 506 48 daily 151
8 daren 495 49 set 151
9 hpl 490 50 fyi 146
10 corp 480 51 august 145
11 attached 410 52 june 145
12 deal 391 53 actuals 141
13 meter 383 54 clynes 141
14 questions 348 55 contact 137
15 farmer 303 56 gary 137
16 month 285 57 week 132
17 day 263 58 today 131
18 volume 258 59 number 126
19 call 253 60 plant 125
20 sitara 250 61 teco 123
21 mmbtu 247 62 bob 121
22 nom 245 63 days 121
23 file 229 64 mail 121
24 information 222 65 work 120
25 robert 204 66 tap 118
26 time 199 67 sale 117
27 contract 198 . . .
28 volumes 196 . . .
29 xls 195 . . .
30 july 192 2889 transmitted 4
31 change 190 2990 ttimeonline 4
32 ami 184 2991 tue 4
33 deals 180 2992 turnaround 4
34 chokshi 171 2993 typically 4
35 pat 171 2994 understood 4
36 flow 169 2995 unseen 4
37 make 169 2996 utilize 4
38 nomination 168 2997 vances 4
39 texas 167 2998 vanessa 4
40 energy 162 2999 vastar 4
41 north 161 3000 venture 4
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5.4.1.2 Evaluation Procedure

In the evaluation procedure, spam recall (SR), non-spam recall (NSR), spam preci-

sion (SP ) and non-spam precision (NSP ) were used as the measures of performance

evaluation. The number TP denotes true positives which is equal to the number of

messages correctly classified as spam, the number TN denotes true negatives and is

equal to the number of messages correctly classified as non-spam, the number FP

denotes false positives and is equal to the number of non-spam messages misclassi-

fied as spam and the number FN denotes false negatives and is equal to the number

of spam messages misclassified as non-spam. SR is calculated as TP
TP+FN

, NSR is

calculated as TN
TN+FP

, SP is calculated as TP
TP+FP

and NSP is calculated as TN
TN+FN

(Metsis et al., 2006).

Weighted accuracy rate WAcc and weighted error rate WErr have also been

used as measures for cost sensitive evaluation because precision and recall do not

take into account the cost of misclassification done. The penalty for classifying a

non-spam message as spam is more severe than letting a spam message pass the

filter. Therefore Androutspoulos et al. (Androutsopoulos et al., 2000) introduced

these cost sensitive measurements and they are defined as WAcc = λ.TN+TP
λ.Ns+Nns

and

WErr = λ.FP+FN
λ.Ns+Nns

where Ns and Nns are the number of spam and non-spam mes-

sages respectively.

Three different values of λ :1,b 9 and 999 were introduced by Androutspoulos

et al. (Androutsopoulos et al., 2000). A value of λ equal to 1 denotes a scenario

where classifying a non-spam message as spam and classifying a spam message as

non-spam are equally penalized. Values of λ equal to 9 or 999 denote a scenario

where classifying a non-spam message as spam is 9 or 999 times more severe. In our

experiments the value of λ as 1, has been considered.

5.4.1.3 Testing and Results

The spam and non-spam PFSM models were trained on 50% of the classified mes-

sage in each of the Enron spam dataset. Consequently, the remaining 50% were
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considered for testing purpose. Table 5.4 provides a summary of the number of

spam and non-spam messages considered for training and testing processes. We also

mention the two-part code lengths of the spam and non-spam PFSM models in the

same table.

Table 5.4: Summary of Training and Testing Dataset in each Enron Category

Dataset No. of Trained Messages No. of Tested Messages
Two-Part Code Length

in bits
Spam Non-Spam Spam Non-Spam Spam Model Non-Spam Model

Enron-1 750 1836 750 1836 758418 869953

Enron-2 748 2180 748 2181 692412 751346

Enron-3 750 2006 750 2006 721248 802158

Enron-4 2250 750 2250 750 834624 714673

Enron-5 1837 750 1838 750 897214 744318

Enron-6 2250 750 2250 750 884268 739217

The messages were tested in batches. The batches were formed by using the

following sequence of steps.

1. In each Enron category, the testing messages belonging to spam and non-spam

classes, were first grouped as one set. This grouping was done in the following

way.

• First the non-spam messages were organized according to their sequence

of arrivals.

• Random number of slots equal to the number spam messages in the Enron

category, were created.

• The spam messages were inserted according to their arrival sequence into

these random slots.

2. After the grouping was done, the messages were divided into batches contain-

ing 100 messages in each batch. Each Enron category resulted in approxi-

mately 25-30 batches that were used for testing. A few last batches in a the

Enron categories had less than 100 messages.

3. Each batch had a varying spam:non-spam ratio and was tested on the trained

spam and non-spam PFSM models of its own Enron category.
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4. We noted down the recall, precision and weighted accuracy % for each batch.

We did not note down error as the λ value considered was 1 and the weighted

error rate in that case is 1 - (weighted accuracy rate).

Figures 5.6 - 5.11 show the spam:non-spam ratio in each batch of the Enron-1

to Enron-6 datasets. Each batch is a combination of varying spam and non-spam

messages and in total they contain 100 messages that are to be tested. Table 5.5

shows the spam:non-spam ratio averaged over each batch of the corresponding Enron

category. Enron-1 to Enron-3 datasets have approximately three times more non-

spam messages than the spam messages in each batch and Enron-4 to Enron-6

datasets have approximately three times more spam messages than the non-spam

messages in each batch.

Table 5.5: Average Spam - Non-Spam ratio in each Enron category

Category Avg. Spam:Non-Spam ratio
Enron-1 0.44

Enron-2 0.35

Enron-3 0.38

Enron-4 3.02

Enron-5 2.52

Enron-6 3.05



90 CHAPTER 5. LEARNING TWO-MACHINE PFSM MODELS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25

Batch Number

Enron-1: Spam:Non-Spam ratio

Figure 5.6: Spam:Non-Spam ratio in each Batch of the Enron-1 dataset
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Figure 5.7: Spam:Non-Spam ratio in each Batch of the Enron-2 dataset
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Figure 5.8: Spam:Non-Spam ratio in each Batch of the Enron-3 dataset
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Figure 5.9: Spam:Non-Spam ratio in each Batch of the Enron-4 dataset
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Figure 5.10: Spam:Non-Spam ratio in each Batch of the Enron-5 dataset
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Figure 5.11: Spam:Non-Spam ratio in each Batch of the Enron-6 dataset
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Figures 5.12 - 5.17 show the calculations for spam recall, non-spam recall, spam

precision, non-spam precision and weighted accuracy in each batch of the tested

messages of the Enron datasets. The figures don’t show the results for each batch,

instead the values have been averaged over each group of five batches and shown as

% in the figures. The values are again summarized and shown in Table 5.6 for each

of the Enron datasets. In each performance category the best results are bold faced.

Enron-2 dataset gives the best results for spam recall, non-spam recall, non-spam

precision and also weighted accuracy among the other Enron datasets. Whereas

Enron-4, Enron-5 and Enron-6 achieve the highest score for spam precision. The

results achieved outperform the state of art classifiers. We compare our results

computed on the two-machine model with a classifier (Almeida and Yamakami,

2012) which uses the subsequently related Minimum Description Length (MDL)

principle (Rissanen, 1978). We discuss the MDL approach for classification and

do a comparison of results with the MML approach in the next section. We have

considered the same scenario for comparison in the MDL approach too and work

on the same 3000 high frequency attributes that were considered for our approach

using MML.
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Figure 5.12: Results obtained for each Batch of the Enron-1 dataset
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Figure 5.13: Results obtained for each Batch of the Enron-2 dataset
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Figure 5.14: Results obtained for each Batch of the Enron-3 dataset
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Figure 5.15: Results obtained for each Batch of the Enron-4 dataset
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Figure 5.16: Results obtained for each Batch of the Enron-5 dataset
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Figure 5.17: Results obtained for each Batch of the Enron-6 dataset
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Table 5.6: Results across all Enron datasets

Category SR(%) NSR(%) SP(%) NSP(%) WAcc(%)
Enron-1 99.62 99.78 99.59 99.81 99.72
Enron-2 99.88 99.86 99.58 99.95 99.86
Enron-3 99.59 99.77 99.48 99.82 99.72
Enron-4 99.86 99.74 99.90 99.60 99.83
Enron-5 99.82 99.77 99.90 99.42 99.80
Enron-6 99.86 99.72 99.90 99.59 99.56

5.4.1.4 Minimum Description Length (MDL) classifier

A compression-based spam classification approach was proposed by Almeida et al.

(Almeida and Yamakami, 2012), that uses the Minimum Description Length (MDL)

principle (Rissanen, 1978) for spam classification. The MDL principle is a formal-

ization of Occam’s Razor in which the best theory can be represented in a most

compact form. The model selection is based on the degree of compression achieved

and accordingly the model gets selected.

The principle states that if we have a probability distribution of the elements on

a finite and countable set T , then there exists a prefix code for an element x ∈ T

such that L(x) = − log2 Pr(x), where L(x) is the code length in bits associated with

the probability of x ∈ T . From this, it is implied that large probabilities result in

small code lengths and vice versa.

Assuming the classes to be c ∈ {spam, non-spam}, the two models are built by

extracting the terms from the already classified messages. For a new message m,

which is a sequence of k tokens and whose class label is unknown, the probability

of each token ti belonging to a particular class c given by the maximum likelihood

estimation is:

Pti =
nc(ti)+

1
|φ|

nc+1

where nc denotes the sum of all the terms that appear in messages belonging to class

to c and |φ| is assumed to be 232 (Almeida and Yamakami, 2012). The total code

length for all the terms in the token set t of a new message m belonging a particular

class c is calculated as:
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Lm(c) =
∑|k|

i=1− log2

(
nc(ti)+

1
|φ|

nc+1

)

The class that minimally increases the code-length becomes the classification

class for the new messagem. Almeida et al. (Almeida and Yamakami, 2012) suggests

that if Lm(spam) > Lm(non-spam), then the new message m is classified as spam,

otherwise non-spam. This classification criterion should be the other way round i.e.,

if Lm(non-spam) > Lm(spam), then the message m is classified as spam otherwise

non-spam. Also the introduction of the factor 1
|φ| in the equation above is unclear

and seems that it has been introduced to have non-zero value to the probability

for tokens not seen in a particular class of mail. The estimate given by maximum

likelihood is Pti =
nc(ti)
nc

.

5.4.1.5 Comparison of Two-Machine Model approach using MML with

the MDL approach

In this section we compare the results generated by the two-machine model approach

using MML and the MDL approach proposed by Almeida et al. (Almeida and

Yamakami, 2012). Table 5.7 and Table 5.8 show the results computed by the MDL

classifier and the results achieved by the MML approach are also mentioned for

comparison.

Table 5.7: Comparison of MML and MDL approaches across Enron-1 to Enron-3
datasets

Dataset Enron-1 Enron-2 Enron-3

Measures MML MDL MML MDL MML MDL

SR(%) 99.62 94.46 99.88 93.33 99.59 90

NSR(%) 99.78 99.01 99.86 99.77 99.77 100

SP(%) 99.59 94.62 99.58 99.28 99.48 100

NSP(%) 99.81 98.75 99.95 97.1 99.82 96.4

WAcc(%) 99.72 97.56 99.86 97.61 99.72 97.28

The analysis is done the following way. For each Enron category we infer the

misclassification resulted while trying to classify spam messages and while trying to
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Table 5.8: Comparison of MML and MDL approaches across Enron-4 to Enron-6
datasets

Dataset Enron-4 Enron-5 Enron-6

Measures MML MDL MML MDL MML MDL

SR(%) 99.86 97.00 99.82 99.73 99.86 98.67

NSR(%) 99.74 100 99.77 96.00 99.72 92.00

SP(%) 99.90 100 99.90 98.39 99.90 97.48

NSP(%) 99.60 94.02 99.42 99.31 99.59 97.56

WAcc(%) 99.83 97.83 99.80 98.65 99.56 97.50

classify the non-spam messages. The overall classification accuracy is obvious from

the tables.

An observation into the tables indicates that the MDL classifier produces 100%

accurate results in the Enron-3 and Enron-4 categories as far as classifying the non-

spam messages are concerned. There is no misclassification with the MDL classifier.

Whereas the MML approach achieves 99.72% accuracy, on an average, in classifying

the non-spam messages in the same datasets. The average accuracy achieved in

Enron-1 dataset by the MML two-machine model approach while classifying the

spam messages is 99.71%, whereas in the same category the MDL method results

in 96.61%. In classifying the non-spam messages, in the Enron-1 category, the

MML method gives 99.69% accuracy and the MDL method gives 96.60% accuracy.

In overall accuracy (WAcc%), the MML method performs better than the MDL

method.

In Enron-2 category, the MML method results in 99.91% ac uracy when spam

messages are classified. The MDL method on the other hand results in 95.22%

accuracy. While classifying the non-spam messages, the MML method results in

99.72% accuracy and the MDL method results in 99.43% accuracy. In Enron-3

dataset, the spam classification accuracy achieved by the MML approach is 99.70%

and the MDL approach classifies spam messages by resulting in 93.2% accuracy. In

Enron-4 dataset again, the classification accuracy of the spam messages resulted by

the MML method is 99.74% and the MDL method classifies them at 95.52% rate.
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In Enron-5 and Enron-6 datasets also, the MML classifier and the MDL classifier

behave similarly. The average spam classification is 99.67% by the MML method

and the average spam classification is 98.80% by the MDL method. The average

non-spam classification by the MML method is 99.78% and that achieved by the

MDL method is 96.76%.

One common benefit with both the methods is that they are not sensitive to

thresholds. The setting of the threshold results either in high spam recall or high

non-spam recall. One has to compromise at the expense of other. It is not possible

to get both the values high. Whereas with the compression based models like the

MML and MDL, it is possible to get both values high.

5.4.2 Experimental set-up B

In the experimental set-up B, we have used the Activities of Daily Living (ADL)

datasets to construct two-machine PFSM models. The datasets were gathered from

the University of California at Irvine (UCI) machine learning repository (Ordonez

et al., 2013). In the sections following we give a description of datasets and the

experiments done using the datasets.

5.4.2.1 Description of Datasets

This dataset comprises information regarding the Activities of Daily Living (ADL)

performed by the two users on daily basis in their own home settings. This dataset

is composed by two instances of data, each one corresponding to a different user and

summing up to 35 days of fully labelled data. The dataset gives a description of

the individuals daily movements in different rooms. Each instance of the dataset is

described by three text files, namely: description, sensors events (features), activities

of the daily living (labels). Sensor events were recorded using a wireless sensor

network and data were labelled manually. For simplicity, the individuals are called

as “Person-A” and “Person-B” respectively. The individual settings are described

as below:
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For “Person-A”, the description file leads us to the following information. The

number of labelled days for “Person-A” is 14. A 4 room house is considered for the

movements. There are in total 10 activities that the person does and the activities

include Leaving, Toileting, Showering, Sleeping, Breakfast, Lunch, Dinner, Snack,

Spare-Time/TV and Grooming. There are 12 sensors that are activated in different

parts of the 4 room house. There are 5 broad categories for the sensors that include

Passive Infrared (PIR), Magnetic, Flush, Pressure and Electric. The second file that

is the Activities of Daily file gives a description of labelled activities in the form of a

table that lists the start time, end time and the name of the activity. The third file

that we have used in our experiments gives description in tabular form for the start

time and end time of the activity, the location of the activity captured using sensors

and the place where it happened. The entries look like the one listed in Table 5.9.

Table 5.9: Person-A Active Daily Living (ADL)

Start time End time Location Type Place

28/11/2011 2:27 28/11/2011 10:18 Bed Pressure Bedroom

28/11/2011 10:21 28/11/2011 10:21 Cabinet Magnetic Bathroom

28/11/2011 10:21 28/11/2011 10:23 Basin PIR Bathroom

28/11/2011 10:23 28/11/2011 10:23 Toilet Flush Bathroom

28/11/2011 10:23 28/11/2011 10:32 Shower PIR Bathroom

. . . . .

. . . . .

. . . . .

11/12/2011 15:41 11/12/2011 15:43 Basin PIR Bathroom

11/12/2011 15:43 12/12/2011 0:22 Sear Pressure Living

12/12/2011 0:31 12/12/2011 7:22 Bed Pressure Bedroom

For “Person-B”, the number of labelled days is 21. The movements are captured

in a 5 room house. The activities include Leaving, Toileting, Showering, Sleeping,

Breakfast, Lunch, Dinner, Snack, Spare-Time/TV and Grooming. Here again, 12

sensors are activated that capture movements. The broad categories of the sensors

are the same as used in “Person-A’s” home setting. The details of the activities and

the place where it happened are mentioned in Table 5.10.
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Table 5.10: Person-B Active Daily Living (ADL)

Start time End time Location Type Place

11/11/2012 21:14 12/11/2012 0:21 Seat Pressure Living

12/11/2012 0:22 12/11/2012 0:22 DoorL PIR Living

12/11/2012 0:23 12/11/2012 0:23 Door PIR Kitchen

12/11/2012 0:24 12/11/2012 0:24 Door PIR Kitchen

12/11/2012 0:24 12/11/2012 0:24 DoorL PIR Living

. . . . .

. . . . .

. . . .

2/12/2012 21:18 2/12/2012 21:18 DoorL PIR Living

2/12/2012 21:18 2/12/2012 21:18 DoorL PIR Living

2/12/2012 21:19 3/12/2012 1:03 Seat Pressure Living

5.4.2.2 Conversion of the ADL datasets for PFSM modelling

The datasets given in the tabular form needs to be converted into a sequence of

tokens separated by delimiter symbols. This representation in the form of sequence

of tokens makes the dataset ready to be modelled by a PFSM and some useful

analysis can be done using the PFSM models. The activity instances in the two

datasets corresponding to two users are modelled as two PFSMs.

To do so, we make use of the “Place” column and the “Location” column in

Tables 5.9 and 5.10. We assign unique character to each distinguished location in

the tables and mark end of sentence (in other words, place a delimiter symbol to

the end of token) whenever there is a change in place. Table 5.11 shows the symbols

used to identify the locations in the two datasets.

The sequence of tokens for “Person-A” generated from Table 5.9 looks like:

{A#BCDE#FGHFG#C#L#CD#...}

For “Person-B”, the sequence is generated from Table 5.10 and looks like:

{AB#CD#BAB#DD#E#...}
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Table 5.11: Assignment of Characters to Locations in the ADL datasets

S. No.
Person-A Person-B

Location Character Location Character

1 Bed A Seat A

2 Cabinet B DoorL B

3 Basin C Door C

4 Toilet D DoorB D

5 Shower E Basin E

6 Fridge F Toilet F

7 Cupboard G Bed G

8 Toaster H Fridge H

9 Cooktop I Microwave I

10 Microwave J Shower J

11 Maindoor K Cupboard K

12 Seat L Maindoor L

5.4.2.3 Building PFSM models

Two PFSM models are built from the sequences generated in the above manner and

each one corresponds to each single user. We train the models on nearly half of the

labelled datasets as we did in the Enron datasets. The remaining half is used for

testing purpose.

For “Person-A” we have 14 days of labelled data. We use the sequence generated

from the first 7 days to train the PFSM model for “Person-A. Similarly, we have 21

days of labelled data for Person-B. We use 11 days of training data for “Person-B”

and the remaining 10 days are used in testing. The initial PFSMs are the PTAs

of the sequences and the PFSMs are inferred using the Simulated Annealing (SA)

approach to get reduced to compressed representations. Table 5.12 shows the two-

part code length of the initial PFSMs and the inferred PFSMs in bits for the two

individuals. We also show the initial number of states in the PTAs. When inferred

using SA, the final number of states in the induced PFSMs are also shown.
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Table 5.12: Code Lengths and Number of States in the Initial and Inferred PFSMs
of the trained PFSM models in the ADL Datasets

Individual
Code Length (bits) Number of States

Initial PFSM (PTA) Inferred PFSM Initial PFSM (PTA) Inferred PFSM

Person-A 1691.02 1143.39 65 32

Person-B 4098.8 3374.84 99 47

5.4.2.4 Prediction of Individuals

A more useful analysis of the PFSM models learnt from the training datasets is

done by experimentation. As mentioned above, the ADL datasets consist of 35 days

of labelled data. This includes 14 days of labelled for “Person-A” and 21 days of

labelled data for “Person-B”. We use 50% of the total available datasets for learning

the models, the remaining 50% is used for testing purpose. The testing datasets are

divided into sequence of transitions corresponding to each day and hence we get 7

days in the test dataset for “Person-A” and 10 days in the test dataset for “Person-

B”. The sequence of transitions corresponding to each test day in test dataset is

input to both the models and the amount of increase in message length is noted

down in bits. The model that minimally increases the two part code length is more

probable to have generated that sequence.
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Figure 5.18: Code Length increase in bits for the inferred PFSM models on test
data when tested with test data of Person-A

The increase in code length is quantified in Figure 5.18 and Figure 5.19 on the

test dataset for each observed day for each of the trained PFSM models. Inferred

PFSM (Person-A) model shows a lesser increase in code length for its own test

dataset for every test day, whereas the inferred PFSM (Person-B) shows a greater

amount of increase in code length for “Person-A’s” test data for each test day. This

results to arrive at the conclusion that inferred PFSM (Person-A) model correctly

predicts “Person-A’s” movements for each test day as belonging to inferred PFSM

(Person-A) model than what the other model would do for test day of “Person-A”.

Similarly inferred PFSM (Person-B) model correctly predicts the model from the

movements, if the movements belong to “Person-B”, by showing a lesser increase in

two part code length.
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Figure 5.19: Code Length increase in bits for the inferred PFSM models on test
data when tested with test data of Person-B

On a concluding note it can be said that individual prediction, given sequence

of movements, can be done accurately by the concept of designing the two-machine

PFSM models. We did not observe any misclassification when the testing was done

with test datasets of the individuals on the inferred PFSM models of both the

individuals.

5.5 Summary

We summarize the chapter in this section by highlighting the key concepts that

were discussed and the experiments that were performed. The key to this chapter

was to learn building the PFSM models from the datasets and consequently using

the models that can do classification accurately and also, where the results can be

compared with the state of art classifiers.
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The word two-machine, in the whole context, is to emphasize the fact that we

have two classes of datasets and we are doing learning under a supervised learning

environment. We started by considering pseudo examples in the two classes. One

class being referred as Class1 and the other one referred as Class2. The classes

were considered as a sequence of tokens separated by delimiter symbols. With this

representation of the classes, building the PFSM models was fairly easy. Once the

models were constructed from the classes, the models were inferred by the Simulated

Annealing (SA) induction process. The details of the SA method can be found in

Chapter 4. Now for doing classification of the test dataset whose class label is

unknown, the test dataset was input to both the inferred PFSM models that were

built from the training dataset of the two classes. The model that resulted in

minimal increase in the two-part code length with the test dataset was considered

to be more probable of generating the test dataset and this is how the unknown

label of the test dataset was found.

To test the theory of doing classification using the two-machine model design, we

considered experimentation on the real datasets. Two different experiment situa-

tions were considered. In one experimental set-up, we used the Enron spam datasets

which internally contains 6 classified spam and non-spam datasets. In the other ex-

perimental set-up, we considered the Activities of Daily Living (ADL) datasets that

contain the record of the daily activities performed by two individuals in their home

settings. In both the experimental set-ups the PFSM models were built on 50% of

the total datasets available and testing (classification) was done on the remaining

half of the datasets.

In Experimental set-up A, spam and non-spam PFSM models were built by

considering 3000 high frequency attributes in both the classes from the training

dataset. The test data were evaluated in terms of precision, recall and accuracy. We

also compared these measures with the well known Minimum Description Length

(MDL) classifier. In almost all the cases, the results generated by the PFSM-MML

models were far better than that computed with the MDL classifier. The average
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misclassification % seen when trying to classify spam emails across all the Enron

datasets with MML approach was 0.28% and that seen with the MDL approach

was 3.63%. The average misclassification % seen when trying to classify non-spam

emails across all the Enron datasets with MML approach was 0.25% and that seen

with the MDL approach was 1.95%. The average overall classification percentages

across all the Enron spam datasets by the MML approach was 99.75% and that with

the MDL approach was 98.60%.

In Experimental set-up B, the ADL datasets were considered. The sequence of

movements into various places in the home were captured as strings by assigning

unique characters to different locations in the home. The PFSM models correspond-

ing to two different individuals were learnt and then, based on the models learnt, the

prediction of the individuals with a sequence with unknown label were tried. The

model learnt for “Person-A” correctly predicted the sequence belonging to “Person-

A” when tried on “Person-A’s” test dataset by showing a minimal increase in the

two-part code length. The same situation was true when “Person-B’s” test dataset

was predicted with the PFSM model belonging to “Person-B”.

The idea of building two models for two classes is not new, but with MML this

is our first successful experimentation. The main advantage with the two-machine

approach is that it is not sensitive to thresholds and therefore it is possible to get

both the precision and recall values high at the same time. In the chapter ahead,

we will discuss the single-machine model learning for two classes and classification

using the single-machine PFSM model. The advantage of this method over the

two-machine method is that the model building is cheaper than the two-machine

approach. But in this method there is no other option other than using the threshold

value to do the classification and therefore we compromise the classification accuracy.

The details will follow in Chapter 6.



Chapter 6

Learning Single-Machine PFSM

model

6.1 Introduction

This chapter discusses the method of learning a single-machine PFSM model from

the given categories or classes of data. The single-machine model, as the name

suggests, is a single model that is learnt from the training dataset of the two classes

and has the advantage of being cheaper in terms of bits required to represent the

model as compared to the two PFSM models. This chapter discusses the model

construction and classification by using the single-machine PFSM model approach.

The single-machine PFSMmodel is learnt by considering the attributes belonging

to the two classes. If required, the feature selection procedure can be applied to

reduce the dimensionality of the feature space. As already explained in Chapter 5,

while building models on the Enron datasets, this procedure necessarily has to be

present. The two-part MML code length of the single PFSM model learnt from the

two classes of attributes is computed the same way as computed in the two-machine

PFSM model except for the fact that there is an additional information in the states

of the single-machine PFSM learnt and this is elaborated later in Section 6.2. This

additional information is, each state in the single model is reached by the attributes

109
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seen in both classes and so, there is a binomial distribution case that applies to these

states. MML calculation for the binomially distributed states adds to the traditional

two-part code length calculation of a PFSM.

To classify a test dataset which is a sequence of tokens and whose class label has

to be known, it is input to the single model. The unknown class of the new sequence

of tokens is inferred using the probability estimated by MML. The threshold of 0.5 is

considered and the probabilities resulted from the single machine model by the input

of the test data sequence is compared with this threshold. Threshold value of 0.5

refers to a case where a token is seen equally in the two classes. Probability values

above the threshold result in the test dataset being classified into one category,

and less than the threshold result in the test dataset being classified into the other

category. A value equal to threshold would mean that the test dataset is equally

probable of belonging to both classes and for a black and white classification, it

can be put into the category where misclassification results in less penalty if we are

doing a cost sensitive evaluation.

The experiments were performed on the Enron spam datasets as detailed out

in Chapter 5 in Section 5.4.1. We have used the same measures for evaluation as

we used in the two-machine model. Since this is a case of threshold sensitive clas-

sification, we compared our approach with the other threshold sensitive techniques

and obtained good classification results. The description of the datasets and the

evaluation measures have already been discussed in Chapter 5 and here we simply

focus on the results and comparisons. Parts of this chapter have been presented in

International Conference on Eco-Friendly Computing and Communication Systems,

2016 (Saikrishna et al., 2016).

6.2 Design of the single-machine PFSM model

To describe the construction of the single-machine PFSM model, we again consider

the same example as considered in the two-machine model design in Chapter 5.

The following tokens are considered in Class1 and Class2.
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Class1 = {(aab#)8(abc#)5(abb#)2(baa#)6},
Class2 = {(aab#)1(abc#)5(abb#)10(bab#)5}

The single-machine PFSM model is constructed by considering the tokens be-

longing to the two classes. The model looks like the one in Figure 6.1.

Figure 6.1: Single PFSM model constructed from tokens of Class1 and Class2

Each state in the PFSM of Figure 6.1 is reached by the input alphabets that are

seen in both the classes. For example, from PFSM of Figure 6.1, state 3 is reached

8 times by the token aab when reading the token from Class1 and the same state

3 is reached 1 time when the token is read from Class2. Therefore, a binomial

distribution case is observed at each state of the PFSM. The MML probabilities

for the binomially distributed states are calculated by the computation discussed in

Chapter 3 in Section 3.6. The probabilities are encoded and added to the two-part

code length of the PFSM structure. The MML probability for State qi (1 ≤ i ≤ S,

where S is number of states) is given by Equation 6.1. The details of the derivation

can be found in Chapter 3 in Section 3.6. The two-part code length of the PFSM

model of Figure 6.1 is 225.829 bits. The single-machine model is more cheaper than
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the two-machine models learnt for Class1 tokens and Class2 tokens. The number

of bits required by the two-machine model is 272.75 bits when we add the two-part

code lengths of the inferred PFSM of Figure 5.3 and the inferred PFSM of Figure 5.4.

Pr(qi) =
NClass1 +

1
2

NClass1 +NClass2 + 1
(6.1)

In the expression above, the variable NClass1 is used to represent the number of

times state qi is reached by reading the input alphabet from Class1 category. And

similarly, NClass2 denotes the number of times state qi is reached from the symbol

in Class2 category. The MML probability above assumes a uniform prior (?).

Table 6.1 shows the MML probabilities for each such state of PFSM. For further

clarity, we also show the number of times the state is reached by the input alphabet

in the respective classes.

Table 6.1: MML probability for each state of the PFSM in Figure 6.1

State Input Alphabet NClass1 NClass2 MML probability

1 a 15 16 0.48

2 a 8 1 0.85

3 b 8 1 0.85

4 b 7 15 0.33

5 c 5 5 0.5

6 b 2 10 0.19

7 b 6 5 0.54

8 a 6 5 0.54

9 a 6 0 0.93

10 b 0 5 0.08



6.3. CLASSIFICATION USING THE SINGLE-MACHINE PFSM MODEL 113

6.3 Classification using the single-machine PFSM

model

In the single-machine PFSM model, the state merges cannot be applied as the

accepting states are expressive in telling the class probability for a particular token.

Every token takes the PFSM to finally reach an accepting state starting from the

start state and moving through a sequence of state transitions. In other words,

the inference of the PFSM cannot be done. The individual MML probabilities are

combined by the Bayesian method of combining multiple evidences and the final

probability can be known for the test tokens by that method.

To test a new data with k tokens, the individual probabilities denoted by Pr(Ti),

where 1 ≤ i ≤ k and Ti is a token, are combined. Thus if the CombinedProbability

is greater than 0.5, the test dataset can be categorized as Class1, otherwise the test

dataset is categorized as Class2.

The CombinedProbability for k tokens is calculated by the following equation:

(Class1instances/M)Pr(T1)Pr(T2)...P r(Tk)
(Class1instances/M)Pr(T1)Pr(T2)...P r(Tk)+(Class2instances/M)(1−Pr(T1))(1−Pr(T2))...(1−Pr(Tk))

(6.2)

In the above formula the occurrence of tokens are considered as independent

events. The formula has been derived by using the Bayesian principles of com-

bining multiple evidences that assumes conditional independence (Anderson, 2007).

Class1instances denotes the number of instances in Class1 category, Class2instances

denotes the number of instances in Class2 category andM denotes the total number

of instances seen in both classes. Therefore M = Class1instances + Class2instances.

If the number of instances in both classes are assumed equal, then the equation is

written in the form as shown below:
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Pr(T1)Pr(T2)...P r(Tk)

Pr(T1)Pr(T2)...P r(Tk) + (1− Pr(T1))(1− Pr(T2))...(1− Pr(Tk))
(6.3)

To understand how the single-machine PFSM model works, we consider the same

target sequence as considered in the two-machine model design. Let the target

sequence whose class label is unknown be denoted by the following set.

Target = {aab#abc#}

The target or the test sequence is input to the single-machine PFSM model.

The two tokens result in different accepting state numbers, state 3 and state 5.

The corresponding MML probabilities for these states from Table 6.1 are 0.85 and

0.5. By the use of Equation 6.3, the CombinedProbability for the tokens resulted

by the PFSM model of Figure 6.1 is 0.85. The CombinedProbability is measured

against threshold of 0.5 and since this value is greater than 0.5, the test dataset with

sequence of tokens {aab#abc#} is classified under category Class1.

The method of building and classification using the single-machine PFSM model

is shown pictorially in Figure 6.2
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Figure 6.2: Classification using single-machine PFSM model design
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In case, the test dataset contains a token or a group of tokens that has not been

learnt by the single-machine PFSM model, the token or the group of tokens are

added to the model with a transition count of 1 in each class. And, when the MML

probability is calculated for the token or the group of tokens, the probability value

returned is 0.5. The test data in this case can be put in any class depending on

where the inclusion would result in minimum penalty.

6.4 Differences between the Single-Machine PFSM

model and the Two-Machine PFSM models

The differences between the single-machine design and two-machine designs are sum-

marized in Table 6.2.

Table 6.2: Differences between the single-machine design and two-machine design

S. No
Differentiating

Features
Two-Machine Models Single-Machine Model

1. Popularity

The two-machine model design is more popular
than the single-machine model design. The idea
of building multiple models from the classified

categories of the training corpus has been used in
the past with success. The models are learnt by
constructing PFSM models from the categories of
data. The novelty is introduced by the use of MML
approach, both in model learning and classification.

The single-machine model on the other hand is
less popular than the two-machine model.

Here also the model is leant by building PFSM
model from categories of data. MML has more
role to play in classification than learning the

models itself. The model two-part code length is
computed in the same way using MML as in the

two-machine model design.

2. Cost of Building Models

The cost of building two-machine models is more
than what is required for the single-machine

PFSM model. The two PFSMs are inferred and
the total cost of constructing models is the sum of the

two-part code lengths of the individual inferred
PFSMs.

The single-machine model requires less number
of bits for model construction. The two-part code
length of the model is computed the same way
except for one difference. There is additional

information in the states of PFSM that also needs
to be encoded. The additional information is the
MML probability of the Binomially distributed

states.

3. Time required to Infer Models

The two PFSMs are inferred using the Simulated
Annealing method by applying state merges. The

inferred PFSMs then represent the optimal code length
models. The time required to get the minimal PFSMs

depends on the initial temperature set and the
initial temperature is determined empirically.

The PFSM need not be inferred in the single-
machine design as the state merges cannot be

applied. This is the reason that models are learnt
very fast and are more or less equally efficient

in doing classification as the two-machine models.

4. Threshold Sensitiveness
There is no requirement of using any threshold values

to do the classification. It is possible to get both
precision and recall rate high at the same time.

The thresholds are required in single-machine
design for classification. Incorrect setting of

threshold either results in high false positive rate
or high false negative rate.

5.
Suitability for multiple classes

classification

The idea of constructing multiple models comes from
the notion of multiple classes. In practice, it is not always
feasible to construct multiple models for multiple classes

as each of the class needs to be inferred.

The single-machine model looks for feasible when
multiple classes are present. This machine will
definitely be cheaper than constructing multiple
models for various classes. The accepting states
will have a Multinomial distribution and MML
probabilities for the same can be known. Only

disadvantage with this construction is careful setting
of the threshold value.

6. Classification Accuracy

Theoretically the two-machine model is guaranteed to
give good classification results. This is also proven
experimentally in the sections further that discusses

results.

The classification accuracy attained in the
single-machine design is not that pleasing as

compared to the two-machine model design, but
it still gives satisfactory results that can be
compared with other similar approaches.
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6.5 Experiments

In this section we compare the results obtained with the single machine design with

the various forms of Naive Bayes classification methods. The results are computed

on the Enron spam datasets, for which the results computed using the Naive Bayes

classification methods are already calculated in the previous works in the references

(Almeida and Yamakami, 2012)(Androutsopoulos et al., 2000). We briefly review

the methods and show a comparison of results by these methods with our single-

machine design.

Before comparing, we first show a comparison of the single-machine model code

length with the two-machine model code length. The two-machine model discussed

in Chapter 5 learns two PFSM models from the two classes of data. The individual

class PFSM model code lengths are added and compared with the code length of the

single-machine PFSM model. The model is trained on the same training dataset of

the Enron spam datasets. Table 6.3 shows the comparison and we observe that in

each category of the Enron spam dataset, the single-machine design always results

in a cheaper model than the two-machine model. On an average, the single-machine

models for all the Enron categories are 25630 bits cheaper than the corresponding

two-machine models.

Figures 6.3 to 6.8 show the results in terms of precision, recall and weighted

accuracy for the tested batches of the Enron spam datasets.

Table 6.3: Comparison of Two-Part model code lengths between the Two-Machine
and Single-Machine designs

Dataset
Training Dataset
(No. of Messages)

Two-Machine Design Single-Machine Design

Spam Non-Spam
Spam Model
Code Length

Non-Spam Model
Codel length

Total Code Length
Single-Machine
Code Length

Enron-1 750 1836 758418 869953 1628371 1615627

Enron-2 748 2180 692412 751346 1443758 1417643

Enron-3 750 2006 721248 802158 1523406 1484288

Enron-4 2250 750 834624 714673 1549297 1516277

Enron-5 2837 750 897214 744318 1641532 1623562

Enron-6 2250 750 884268 739217 1623485 1598652
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Figure 6.3: Results obtained for each Batch of the Enron-1 dataset using the single-
machine PFSM model of Figure 6.1
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Figure 6.4: Results obtained for each Batch of the Enron-2 dataset using the single-
machine PFSM model of Figure 6.1
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Figure 6.5: Results obtained for each Batch of the Enron-3 dataset using the single-
machine PFSM model of Figure 6.1
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Figure 6.6: Results obtained for each Batch of the Enron-4 dataset using the single-
machine PFSM model of Figure 6.1
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Figure 6.7: Results obtained for each Batch of the Enron-5 dataset using the single-
machine PFSM model of Figure 6.1
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Figure 6.8: Results obtained for each Batch of the Enron-6 dataset using the single-
machine PFSM model of Figure 6.1
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The results across all the tested batches are averaged and shown in Table 6.4 for

the six Enron categories.

Table 6.4: Results across all Enron datasets using Single-Machine model

Category SR(%) NSR(%) SP(%) NSP(%) WAcc(%)
Enron-1 97.62 98.90 97.33 99.00 98.52
Enron-2 97.34 98.95 96.73 99.05 98.53
Enron-3 96.88 96.23 96.23 98.74 98.18
Enron-4 97.33 92.00 97.33 92.00 96.00
Enron-5 98.00 95.62 98.19 94.81 97.31
Enron-6 98.60 95.53 98.53 95.53 97.80

An analysis into Table 6.4 reveals that the average misclassification seen when

trying to classify the spam emails across all Enron categories is 2.37%. Average

misclassification resulted when classifying the non-spam emails is 3.79%. The over-

all accuracy % across all Enron categories is 97.72 in the single-machine model.

The two-machine model on the other hand, from Table 5.6, resulted in 99.74%

average accuracy when summarized for all the Enron categories. The average mis-

classification rates obtained were 0.28% and 0.25% in the two-machine model, when

classifying spam and non-spam emails respectively. This leads to a conclusion that

the two-machine model results in better accuracy as compared to the single-machine

model. But then we pay more in terms of space and time in the two-machine model.

The time factor is attributed to the fact that it takes time to converge the two

PFSM models into PFSM-MML models in the two-machine design. Whereas the

single-machine model has no such requirements.

We also compare the results generated by the single-machine PFSM model with

the different versions of the Naive Bayes classifiers. The various Naive Bayes classi-

fiers are briefly reviewed here.

6.5.1 Naive Bayes Classification methods

The Naive Bayesian methods rely on Bayes’s theorem to calculate the probability of

a new message with k tokens belonging to either Class1 or Class2. If the k tokens
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are represented by message vector D, then the probability of the message belonging

to class Classj ∈ {Class1, Class2} is given by:

Pr(Classj|D) =
Pr(Classj).P r(D|Classj)

Pr(D)

The message is classified into the class Classj where the product Pr(Classj)

.P r(D|Classj) is maximum, as the denominator is independent of class. A message

is classified in Class1 category if the following holds true:

Pr(Class1).P r(D|Class1)

Pr(Class1).P r(D|Class1) + Pr(Class2).P r(D|Class2)
> T

where T is a threshold and set to 0.5 value in all experimental evaluations. The

probability Pr(D|Classj) is calculated differently in different forms of the Naive

Bayesian Classifiers.

6.5.1.1 Basic Naive Bayes

Proposed by Sahami et al. (Sahami et al., 1998), the method of calculating proba-

bility Pr(D|Classj) is given by:

Pr(D|Classj) =
k∏
i=i

Pr(Ti|Classj)

The probabilities Pr(Ti|Classj) are estimated by:

Pr(Ti|Classj) =
MTi,Classj

Classjinstances

where MTi,Classj are the number of messages that contain token Ti in Classj

category and Classjinstances are the number of Classj messages.
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6.5.1.2 Multinomial Term Frequency Naive Bayes

The Basic Naive Bayes considers the occurrence of a token in a message only once.

In other words, the message D is a Boolean vector. Whereas in the Multinomial

Term Frequency Naive Bayes, a message D with k tokens considers the number of

occurrences of tokens (McCallum and Nigam, 1998). The occurrence of each token

Ti is represented as Mi. The probability follows a multinomial distribution and is

given by:

Pr(D|Classj) = Pr(D).D!.
k∏

i=1

Pr(Ti|Classj)Mi

Mi!

The probabilities Pr(Ti|Classj) are estimated by Laplacian prior:

Pr(Ti|Classj) =
1 +MTi,Classj

k + Classjinstances

6.5.1.3 Multinomial Boolean Naive Bayes

This method is similar to the above Multinomial Term Frequency Naive Bayes ex-

cept for the change that each token is Boolean. The above two methods take into

consideration the absence of the tokens, but this method does not considers tokens

that are not present. The assumption in the Multinomial Term Frequency Naive

Bayes is that the attributes follow a Poisson distribution in each category. But in

reality, the assumption does not follow and so in that case, working with Boolean

attributes gives better results (Schneider, 2004).

6.5.1.4 Multivariate Bernoulli Naive Bayes

In this method, each message D is seen as result of k Bernoulli trials, where at each

trial, it is decided whether or nor Ti will appear in D (Losada and Azzopardi, 2008).

The probabilities Pr(D|Classj) are computed by:
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Pr(D|Classj) =
k∏

i=1

Pr(Ti|Classj)Mi .(1− Pr(Ti|Classj)(1−Mi)

The probabilities Pr(Ti|Classj) are estimated by Laplacian prior:

Pr(Ti|Classj) =
1 +MTi,Classj

2 + Classjinstances

where MTi,Classj are the number of messages that contain token Ti in Classj

category and Classjinstances are the number of Classj messages.

6.5.1.5 Boolean Naive Bayes

The Boolean Naive Bayes works similar to Multivariate Bernoulli Naive Bayes with

the difference that it does not take into account the absence of terms. The proba-

bilities Pr(D|Classj) are given by:

Pr(D|Classj) =
k∏

i=1

Pr(Ti|Classj)

The probabilities Pr(Ti|Classj) are estimated the same way as in Multivariate

Bernoulli Naive Bayes.

6.5.1.6 Multivariate Gauss Naive Bayes

Each token Ti in the Multivariate Gauss Naive Bayes is considered as a real-valued

attribute that follows a Gaussian distribution g(Ti;μi,Classj, σi,Classj) for each cate-

gory Classj. The mean μi,Classj and the standard deviation σi,Classj are estimated

from the training dataset. The probabilities Pr(D|Classj) are computed by:
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Pr(D|Classj) =
k∏

i=1

g(Ti;μi,Classj, σi,Classj)

6.5.1.7 Flexible Bayes

The Flexible Bayes works similar to Multivariate Gauss Naive Bayes with the only

change that instead of using a single normal distribution for each token Ti, the

Flexible Bayes represents the probabilities Pr(D|Classj) as the average of Li,Classj

normal distributions with different values of μi,Classj (John and Langley, 1995).

Therefore the probabilities Pr(D|Classj) are computed by:

Pr(D|Classj) =
1

Li,Classj

Li,Classj∑
i=1

g(Ti;μi,Classj, σi,Classj)

Li,Classj is the amount of different values that the token Ti has in the training

set of class Classj.

6.5.1.8 Support Vector Machines

Support Vector Machines (SVMs) are one of the most powerful techniques employed

in text classification (Cormack, 2007)(Drucker et al., 1999). In this method of clas-

sification, the data point is viewed as p − dimensional vector and the points are

separated with p− 1 hyperplanes. Among the different hyperplanes separating the

data points, the hyperplane that represents the largest separation or margin, is cho-

sen. The details of the SVM method of classification can be found in references

(Hidalgo, 2002)(Kolez and Alspector, 2001)(Sculley and Wachman, 2007).
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6.5.2 Comparison of the Single-Machine model with the

Naive Bayes Classifiers

We compare the results generated by the single-machine PFSM model with the dif-

ferent versions of the Naive Bayes classifiers. The results generated by the classifiers

were computed on 3000 attributes and on the same threshold value of 0.5. Tables 6.5

- 6.10 show the comparison of the single-machine PFSM model (abbreviated as SM

in the tables) with the different version of Naive Bayes classifiers.

1

Table 6.5: Enron-1 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 91.33 96 82 82.67 72 78.67 87.33 83.33 97.62
NSR(%) 93.48 63.32 88.86 79.35 81.79 95.38 94.29 95.11 98.9
SP(%) 85.09 51.61 75 62 61.71 87.41 86.18 87.41 97.33
NSP(%) 96.36 97.49 92.37 91.82 87.76 91.64 94.81 93.33 99
WAcc(%) 92.86 72.78 86.87 80.31 78.96 90.54 92.28 91.7 98.52

Table 6.6: Enron-2 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 80 95.33 75.33 74 65.33 62.67 68.67 90.67 97.34
NSR(%) 99.31 92.45 99.8 99.54 94.97 98.86 99.54 96.8 98.95
SP(%) 97.57 81.25 96.58 98.23 81.67 94.95 98.1 90.67 96.73
NSP(%) 93.54 98.3 92.13 91.77 88.87 88.52 90.25 96.8 99.05
WAcc(%) 94.38 93.19 93.2 93.2 87.39 89.61 91.65 95.23 98.53

Table 6.7: Enron-3 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 57.33 99.33 57.33 62 100 52.67 52 61.33 96.88
NSR(%) 100 99.75 100 100 93.28 97.76 99.25 98.76 96.23
SP(%) 100 99.33 100 100 84.75 89.77 96.3 96.48 96.23
NSP(%) 86.27 99.75 86.27 87.58 100 84.7 84.71 96.83 98.74
WAcc(%) 88.41 99.64 88.41 89.67 95.11 85.51 86.41 96.74 98.18

Table 6.8: Enron-4 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 94.67 98 93.78 96.89 98.22 94.44 94.89 98.89 97.33
NSR(%) 100 100 100 100 100 100 100 100 92
SP(%) 100 100 100 100 100 100 100 100 97.33
NSP(%) 86.21 94.34 84.27 91.46 94.94 85.71 86.71 86.77 92
WAcc(%) 96 98.5 95.33 97.67 98.67 95.83 96.17 99.7 96

1Basic (Basic Naive Bayes), Bool (Boolean Naive Bayes), MN TF (Multinomial Term Fre-
quency), MV Bern (Multivariate Bernoulli), MV Gauss (Multivariate Gaussian), Flex Bayes (Flex-
ible Bayesian), SVM (Support Vector Machines)
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Table 6.9: Enron-5 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 89.67 78.23 88.86 94.29 98.1 96.68 88.86 89.4 98
NSR(%) 97.33 100 100 100 80.67 92 97.33 99.33 95.62
SP(%) 98.8 100 100 100 92.56 96.37 98.79 99.7 98.19
NSP(%) 79.35 76.14 78.53 87.72 94.53 73.89 78.7 79.26 94.81
WAcc(%) 91.89 90.93 93.8 95.95 93.5 88.22 91.31 92.28 97.31

Table 6.10: Enron-6 Results achieved by each classifier

Measures Basic Bool MN TF MN Bool MV Bern MV Gauss Flex Bayes SVM SM
SR(%) 86 66.86 76.67 92.89 96.22 92 89.78 89.78 98.6
NSR(%) 97.33 99.33 98.67 92 76 85.33 95.33 86.67 95.53
SP(%) 98.98 99.67 99.42 97.21 92.32 94.95 98.3 95.28 98.53
NSP(%) 69.86 50 58.5 81.18 87.2 78.5 75.66 73.86 95.53
WAcc(%) 88.33 75 82.17 92.67 91.17 90.33 91.17 90.5 97.8

In the Enron-1 dataset, the single-machine (SM) model gives the best perfor-

mance in all performance categories. In the Enron-2 dataset, the SM method

achieves the best in classifying the spam messages and also achieving the best in

the overall classification accuracy measure. The near competitor in terms of over-

all classification accuracy, is the Support Vector Machine (SVM) classifier in this

dataset. The accuracy achieved by the SM classifier is again the best in Enron-

5 and Enron-6 datasets. The near competitors in this category are Naive Bayes

(Basic), Boolean Naive Bayes (Bool), Multinomial Term Frequency (MN TF) and

Multinomial Boolean (MN Bool). In the Enron-4 dataset, the accuracy achieved by

the SM method is comparable to the Basic Naive Bayes classifier, whereas the other

classifiers did exceptionally better than the SM classifier. On the whole, the SM

method did well in most of the cases.

6.6 Summary

The chapter is summarized as follows.

The method of learning single-machine PFSM model is first discussed. Given

two classes of data, the model is first trained on the training dataset of the two

classes. The attributes or tokens belonging to the two classes are modelled as a

Prefix Tree Acceptor (PTA). The method of computing the two-part code length of

the PTA of the attributes is done the same way as discussed in Chapter 4 in Section
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4.3. The single-machine PFSM model (PTA), as it sees the tokens belonging to two

separate classes, the states in the PTA have an additional information contained

in them. This information is the number of bits required to encode the binomially

distributed states as they are reached by reading the tokens from two different

classes. The MML calculation for binomial distribution for the states of the single-

machine model applies in addition to the encoding of the other parts information of

the single-machine PFSM model. This slightly increases the two-part code length

of the single-machine model but, when compared to the added two-part code length

of the two-machine model design, the single-machine model takes less number of

bits. In other words the single-machine is cheaper than the two-machine model for

the same set of training data. This space efficiency of the single-machine design is

understood in both datasets (one shown for the artificially created dataset and the

other one shown in the publicly available Enron spam datasets).

The method of learning the single-machine PFSM model is followed by classi-

fication. The test tokens whose class label is unknown, are input to the single-

machine model. The MML probabilities of the test tokens are then combined by

the Bayesian method of combining multiple evidences. The combined probability is

measured against a threshold. The values greater than the threshold result in the

tokens being classified into one class and the values less than threshold classifies the

tokens into the other category.

Experiments with real datasets and comparison with the existing methods follow

after learning a classifier with the artificial dataset. For experimentation, the single-

machine PFSM model is learnt on high frequency 3000 attributes of the spam and

non-spam emails in the Enron spam datasets. We show a comparison of the single-

machine PFSM model versus the two-machine PFSM model and observe that in

every category of the Enron spam datasets, the single-machine model always results

in a less code length machine than the two-machine model. The trained model is

tested against the test dataset in each category of the Enron spam datasets. A

threshold of 0.5 is considered in the experiments. The performance of the model is
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evaluated in terms of precision, recall and accuracy. The model performance is then

compared with the different threshold sensitive Naive Bayes classifiers. Overally,

the single machine model resulted in better results when compared to the other

classifiers on the Enron spam dataset.

We also discuss the advantages and disadvantages of the single-machine model

over the two-machine model. Although the single-machine is more space efficient

than the two machine-model, the criteria for classification is subjected to thresholds.

This results either in high false positive rate or high false negative rate. The thresh-

old needs to be optimally chosen. The two-machine model, as it is not dependent

on any threshold setting, is capable of resulting in low false positive and low false

negative rates at the same time. Also, the accuracy resulted by the two-machine

model is more appealing than that resulted by the single-machine model.

In the following chapter, we will discuss a more precise method representing the

PFSM models suitable for a particular class of data. That is, we will talk about

learning the Hierarchical PFSM (HPFSM) models. We also do an analysis on the

HPFSM models learnt in the chapter ahead.
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Chapter 7

Learning Hierarchical PFSM

(HPFSM) model

7.1 Introduction

The conventional method of learning non-hierarchical PFSMs or simply PFSMs is

extended to the case of learning Hierarchical PFSMs or HPFSMs in this chapter and

is the crux of the complete research work. The HPFSMs represent the behaviour

of PFSMs more concisely by identifying the inherent hierarchy in the data that

is a sequence of tokens. This chapter introduces a method of learning HPFSM

models from classes of data and the HPFSM models learnt are used in doing some

meaningful and useful analysis of the data.

We discuss in this chapter the method of encoding HPFSMs by extending the

traditional coding scheme that uses the MML principle. To explain the coding

scheme, we consider two different artificially created HPFSM models. The coding

scheme is in line with the two-part encoding of a PFSM model as discussed in

Chapter 4. The first part encodes the HPFSM model and the second part encodes

the data generated by the model. The two-part MML code length is the sum of

the code lengths of the first part and the second part of the HPFSM model. From

the artificially created HPFSM model, random strings or data tokens are generated

131
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and we compare the cost of encoding the HPFSM model for those tokens with the

traditional PFSM model.

We then discuss the experiments performed on the UCI gathered, Activities of

Daily Living (ADL) datasets. As discussed before in Chapter 5, the dataset is a

collection of daily activities performed by two individuals in their home settings

that are captured through sensors. We discuss a method of encoding the dataset

in the form of an HPFSM model. The initial models learnt are then inferred using

Simulated Annealing and we do an analysis by using those models. The analysis

is the prediction of individuals using the models. We do training on nearly half of

the datasets and use the other half for testing purpose. Here we use accuracy of

prediction as the evaluating criteria for the models.

The model two-part code length is compared with the traditional PFSM model

and also with the one-state model. The results indicate that the HPFSM model

gives the best compression when compared to the other models.

7.2 Hierarchical Probabilistic Finite State Machine

(HPFSM)

The research work done earlier that encodes a hypothesized PFSM, considers the

PFSM to be structurally non-hierarchical. Various induction methods using MML

have been proposed and they all aim at resulting in a minimal PFSM which is again

structurally non-hierarchical. But, a careful observation at the data observations

would reveal that, some of the subsets can be generated by small internal PFSMs

without the need to get generated out of the big single PFSM (non-hierarchical).

And the small PFSMs are tied together in the outer structure resulting in some kind

of hierarchy.

This view-point is extremely essential to understand the things happening in

ground reality. If we consider an example, where we have a set of observations

and the observations are the words belonging to different languages. In those sets
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of observations if we try constructing a PFSM that best describes those sets of

observations, the code length would be enormous as it has to include the vocabularies

of all the languages. Also, if the observations result in heavy use of one language

than the other, then there are infrequent transitions from one language to the other

language. So constructing a single non-hierarchical PFSM would turn out to be more

expensive in this case. We can do this in a cheaper way by constructing a hierarchical

PFSM for the set of observations. For enormous enumerations of the data sequence,

the cost of encoding the hypothesis H and the data D generated by the hypothesis

would be cheaper than the cost of encoding a non-hierarchical PFSM. But, on the

other hand, if we have very less enumerations (which is quite improbable), we would

be unnecessarily paying for the complex hierarchical structure.

Another example why coding in hierarchy would turn out to be beneficial could

be understood this way. Let us say we have a big machine that represents our

movements in a day, in the form of state transitions, from one place to another

. Broadly speaking, the places that we may visit are, “university or work place”,

“home” and “city”. The machine representing this situation is seen in Figure 7.1.

We start from a local place say home. Home represents one small internal PFSM.

At “home” we do state transitions locally more often by visiting different places at

“home”. There is one point of entry (start state) to “home” and the same point can

be used as the exit point from this “home” local machine. Then we transit from

“home” to another internal PFSM, say “university”. We enter into the start state

of the “university” local PFSM and again we perform state transitions my moving

around different places in the “university”. The start state of the “university”

internal PFSM is also the exit state from it, as we had in the “home” internal

PFSM. If we are to specify a record of the daily movements that involves moving

around various places, in the form of code length in bits, then considering the whole

picture as a non-hierarchical PFSM and thereafter calculating the code length would

turn to be very expensive. Whereas, if we do the same through hierarchical coding
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mechanism, we would definitely get a cheaper encoding of the daily movements of

the person.

Figure 7.1: An Example of Hierarchical PFSM

7.2.1 Defining an HPFSM

A hierarchical PFSM consists of an outer PFSM whose states can internally contain

inner PFSMs (or inner HPSMs). We refer to the hierarchical PFSM as HPFSM

to keep it short. An example of such an HPFSM is shown in Figure 7.2. The

probability of transition on a particular symbol from any state in the HPFSM of

Figure 7.2 is not shown but from every state the transitions on the different symbols

are seen equally probable. That, a multinomial distribution with a uniform prior is

considered from each state on all symbols.

The behaviour of a simple PFSM model can be understood in a very concise

manner in terms of an HPFSM and the obvious benefit is a less two-part code

length machine that still represents the same grammar. We refer to the HPFSM

model in Figure 7.2, which is a special case, where there are three outer states

and each of the outer PFSMs internally contains PFSMs with three states inside,

but in general, we can have as many outer and inner states as we may like in the

HPFSM model. The structure is explained like this. The HPFSM has three states

in the outer structure labelled S1, S2 and S3. The outer states internally contain
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PFSMs with three states in each PFSM. The outer PFSM has an initial state S1 and

this is the string generation point in the HPFSM. Each internally contained PFSM

has a starting state and the same state is used as an exit state to transit to other

PFSMs in the outer structure. Each internally contained PFSM can independently

generate strings separated by the delimiter symbol # or it can communicate with

the other PFSMs through the outer transitions and can generate strings that include

the outer symbols. Like, for example, the kind of strings produced by the HPFSM

of Figure 7.2 can look like D = {AB#BAC##C#DBC#BC#A##...}. Each

internally contained PFSM has its own input alphabet symbols and similarly the

outer structure also has one.

Figure 7.2: Hierarchical PFSM

7.2.2 MML assertion code for the hypothesis H of HPFSM

Before starting with the two-part code length calculation for the HPFSM, we refer

to the following definitions:

• Souter is the number of states in the outer PFSM.

• Vouter is the cardinality of the input alphabet set in the outer PFSM including

the delimiter symbol #.

• The states in the outer PFSM are labelled as S1, S2, ..., SSouter .
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• The number of states in the inner PFSMs are denoted as Sinternal1 , Sinternal2 ,

..., SinternalSouter
.

• The cardinalities of the input alphabets in the inner PFSMs are denoted as

Vinternal1 , Vinternal2 , ..., VinternalSouter
.

• The number of arcs leaving any state in internal PFSM Sj is denoted by asji ,

where 1 ≤ j ≤ Souter and 1 ≤ i ≤ Sinternalj .

• The number of transitions on symbol k from any current state i in any internal

PFSM Sj is denoted as njik , where k can be a symbol from the input alphabet

set of Sj or the input alphabet set of outer PFSM.

The coding scheme described below is explained in reference to S1 internal

PFSM. The other PFSMs are encoded in a similar fashion.

1. The code begins with the number of states in internal PFSM, which is Sinternal1 ,

and the code length is calculated as log2 Sinternal1 bits.

2. For each state in the inner PFSM S1, the number of arcs leaving the state are

coded. The number of arcs leaving any state depends on the cardinality of the

input alphabet set. Since state 1 of internal PFSM S1 has outgoing arcs to

internal PFSM S1 and also outgoing arcs to other states in the outer structure,

therefore a selection from 1 to Vouter + Vinternal1 is made giving a code length

of log2(Vouter + Vinternal1) bits. We calculate the combined cardinality denoted

by the expression Vouter + Vinternal1 by considering unique input alphabets in

the two alphabet sets. So, if # appears in the input alphabet set of the both

the internal and the outer structure, it is counted as 1 and likewise any other

character other than #.

3. For each state, the labels on the arcs are coded. This is done by making a

selection of asj1 symbols from the set of (Vouter + Vinternal1) symbols giving a

code length of log2
(
(Vouter+Vinternal1

)
asj1

)
bits, if the state is the starting state of the
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internal PFSM. Otherwise for the other states, the code length is log2 Vinternal1

bits. Here 1 ≤ j ≤ Souter.

4. The code for the destination states is calculated from each state. From the

starting state, the destination can be any of the internal states of that PFSM or

it can be of the states in outer structure. In the outer structure the destination

is always the initial state of other internal PFSMs. Therefore for the starting

state, the code length encoding the destinations is asj1 log2(Souter + Sinternal1)

bits. For states other than the starting state, the coding can be done in

log2 Souter bits. For the arcs labelled with # delimiter symbol the destination

is already known and the coding can be done in (asj1 − 1) log2 Sinternal1 bits.

The coding scheme above generates Table 7.1 which shows encoding of the first

part code length of the S1 internal PFSM. The other internal PFSMs are encoded

similarly and are shown in Table 7.2 and Table 7.3.

Table 7.1: Code Length of internal PFSM S1 from Figure 7.2

State asj1 Cost Label(s) Cost Dest.(s) Cost

1.1 4 log2(Vouter + Vinternal1) (A,B,C,D) log2
(
Vouter+Vinternal1

4

)
(1.2, 1.3, S2, S3) 4log2(Souter + Sinternal1)

1.2 1 log2 Vinternal1 (B) log2
(
Vinternal1

1

)
(1.3) log2 Sinternal1

1.3 1 log2 Vinternal1 (#) log2
(
Vinternal1

1

)
(1.1) 0

Table 7.2: Code Length of internal PFSM S2 from Figure 7.2

State asj2 Cost Label(s) Cost Dest.(s) Cost

2.1 3 log2(Vouter + Vinternal2) (A,B,#) log2
(
Vouter+Vinternal2

3

)
(2.2, 2.3, S1) 2log2(Souter + Sinternal2)

2.2 1 log2 Vinternal2 (C) log2
(
Vinternal2

1

)
(2.3) log2 Sinternal2

2.3 1 log2 Vinternal2 (#) log2
(
Vinternal2

1

)
(2.1) 0

Table 7.3: Code Length of internal PFSM S3 from Figure 7.2

State asj3 Cost Label(s) Cost Dest.(s) Cost

3.1 3 log2(Vouter + Vinternal3) (B,A,#) log2
(
Vouter+Vinternal3

3

)
(3.2, 3.3, S1) 2log2(Souter + Sinternal3)

3.2 1 log2 Vinternal3 (C) log2
(
Vinternal3

1

)
(3.3) log2 Sinternal3

3.3 1 log2 Vinternal3 (#) log2
(
Vinternal3

1

)
(3.1) 0

The final equation that encodes the first part code length of the HPFSM is given

in Equation 7.1. The start state of each internally contained PFSM is handled
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separately in the equation as it has transitions to outer states and that is the reason

the variable i starts with 2 in the equation.

CodeLength(H) =

Souter∑
j=1

⎛
⎝Sinternalj∑

i=2

log2

(
Vinternalj

asji

)
+ log2

(
Vouter + Vinternalj

asji

)

+ (Sinternalj − 1) log2 Vinternalj + log2(Vouter + Vinternalj)

+

Sinternalj∑
i=2

asji log2 Sinternalj +asj1 log2(Souter + Sinternalj)

+ log2 Sinternalj

⎞
⎠ + log2 Souter (7.1)

7.2.3 Encoding the transitions of HPFSM

Again assuming a uniform prior over a multinomial distribution case, the probability

of transition on any symbol k from current state i in any internal PFSM Sj, is

denoted as
(njik

+1)

(nji+asji )
, where njik represents the number of transitions from current

state i in current internal PFSM Sj on symbol k and nji represents the total number

of transitions on all symbols from the current state. The number of bits required to

code the transitions on symbol k is negative logarithm of the transition probability.

If we sum over the probabilities for all the symbols from the current state, then

the total number of bits required to encode the transitions is given by the following

equation:

(nji + asji)!

Πk(njik)!
(7.2)

where 1 ≤ j ≤ Souter, 1 ≤ i ≤ Sinternalj and k is a symbol from the input alphabet

sets of Sinternalj and Souter.

Equation 7.3 calculates the second part code length of the HPFSM in Figure 7.2.
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CodeLength(D|H) =

Souter∑
j=1

⎛
⎝Sinternalj∑

i=1

log2
(nji + asji)!

Πknjik !

⎞
⎠ (7.3)

The complete two-part code length for the HPFSM is calculated by adding Equa-

tion 7.1 and Equation 7.3

7.3 Experiments

The experiments are performed on the artificial datasets generated by the HPFSM

of Figure 7.2 and on the UCI gathered Activities of Daily Living (ADL) datasets.

In both the experimental situations, we compare the cost of the hierarchical model

with the non-hierarchical model and the one-state model. In the experiments per-

formed with the ADL datasets, we first describe a method of learning the initial

HPFSM models from the datasets of the individuals. This learning is followed by

induction using the Simulated Annealing (SA) search to obtain the optimal HPFSM

models. We then finally perform a prediction of individuals based on the sequence

of movements from the HPFSM models learnt.

7.3.1 Experiments on Artificial datasets

7.3.1.1 Example-1

We use the HPFSM of Figure 7.2 to generate random data strings or tokens of vari-

able string lengths. As a recap, the HPFSM in Figure 7.2 has three outer states and

each of the three outer states has a internal vocabulary of four characters including

the delimiter symbol #. The outer PFSM has an input alphabet size of three char-

acters. The strings are generated by setting up initial transition probabilities on all

the transition arcs of the HPFSM model. The probabilities for this data-generating

process have been set, in this first example, to be uniform in nature. For exam-

ple, let us consider the state 1.1 in the HPFSM model. State 1.1 has 4 number of
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transitions to other states. That is, on characters A and C, states 1.2 and 1.3 are

reached respectively from state 1.1 in the same internal PFSM S1. On characters

B and D, outer states S2 and S3 are reached from state 1.1. If all the possibili-

ties are considered equally probable in the process of string generation, then all the

transition arcs are initially set to probabilities of 0.5 from state 1.1. Similarly the

probabilities on other transition arcs are set in the HPFSM model and strings get

generated eventually. This constitutes an artificial dataset that is hierarchical as it

is generated from the hierarchical structure. The smallest number of strings that

we generate are 5 and going upto a maximum of 5000 strings. The string length of

the strings that get generated from the HPFSM model are usually 1 or 2. This is

because, each internal PFSM has three states internally

and the final states in the internal PFSMs either read single character from the

start state or 2 characters from the start state of the internal PFSMs.

Figures 7.3-7.5 show a comparison of the two-part code lengths computed using

MML between the various models. We do a comparison of the HPFSM model with

the initial non-hierarchical PFSM that is simply shown as PFSM (PTA) in the

figures. The PFSM (PTA) models are inferred and what we obtain is the inferred

PFSM model. The inferred PFSM model is results in shorter two-part code length

model than the PFSM (PTA) model, as expected. We also compare with the one-

state model.

Figure 7.3 shows the comparison on number of random strings from 2 in number

to 80 strings. For the number of random strings from 2-20 in Figure 7.3, the one-

state PFSM model gives the best compression when compared to the other models.

The HPFSM model on the other hand results in the highest two-part code length for

such less number of strings. This is obvious as the structure encoding is expensive

for such a small number of strings. But as the number of strings further increases,

the HPFSM model starts showing the least two-part code length when compared to

other models.
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Figure 7.3: Code Length comparison between HPFSM, PFSM (PTA), inferred
PFSM and one-state PFSM for random strings 2-80

Figure 7.4 shows the comparison on random strings from 110-800 and Figure 7.5

on random strings from 900-5000. The two figures show a common trend where

the HPFSM model shows the best compression and the one-state model shows the

worst compression for the dataset comprising the random strings in all the cases. The

amount of compression achieved by the HPFSM model for 5000 number of random

strings is 28.54% more than the inferred PFSM model. Whereas the same HPFSM

model shows 43.57% more compression than the one-state model for 5000 number

of random strings. We calculate these percentages by calculating the difference in

the two-part code length code length of the HPFSM model with the other models

in comparison. The difference in code lengths is then divided by the two-part code

length of the compared model and shown as percentage.



142 CHAPTER 7. LEARNING HIERARCHICAL PFSM (HPFSM) MODEL

300

800

1300

1800

2300

2800

3300

3800

110 140 170 200 130 260 300 400 500 600 700 800

Tw
o-

Pa
rt

 C
od

e 
Le

ng
th

 in
 B

its
 

Number of Random Strings

HPFSM PFSM (PTA) Inferred PFSM One-state PFSM

Figure 7.4: Code Length comparison between HPFSM, PFSM (PTA), inferred
PFSM and one-state PFSM for random strings 110-800
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Figure 7.5: Code Length comparison between HPFSM, PFSM (PTA), inferred
PFSM and one-state PFSM for random strings 900-5000
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7.3.1.2 Example-2

We consider another example of an HPFSM as shown in Figure 7.6. In this example,

the outer structure of the HPFSM model has two outer states and the two outer

states internally contain 5 and 4 states respectively in their inner PFSMs. The

internal vocabulary of the two internal PFSMs are the same. This time, instead

of setting uniform prior probabilities in the transition arcs, we set non uniform

probabilities. The reason for doing so comes from the motivation that made us

think about the idea of HPFSMs. We set to high, the probabilities of transition

in the internal arcs and likewise, in the outer transitions the probability values are

set to low value. This is because the internal transitions are more frequent than

the outer transitions. Variable number of random strings get generated out of the

HPFSM model in Figure 7.6 and we do a similar analysis of the model two-part code

length for the random strings generated. The two-part code length of the HPFSM

model is then compared against the inferred PFSM and the one-state models.

Figure 7.6: Hierarchical PFSM

Figures 7.7 and 7.8 show the comparison of the two-part code lengths of the

HPFSM model with other models.
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Figure 7.7: Code Length comparison between HPFSM, PFSM (PTA), inferred
PFSM and one-state PFSM models for random strings 2-230 for the PFSM of Fig-
ure 7.6

In Figure 7.7, we show a comparison on the number of random strings from 2 to

230. The HPFSM model shows the largest two-part code length for the number of

random strings less than 8. This is understandable as the model is fairly complex

in structure for such small number of strings. The one-state model on the other

hand shows the least two-part code length for such small number of random strings.

But as the number of strings further increase, the trend completely reverses. The

HPFSM model gives the least two-part code length and the one-state model results

in the largest two-part code length model.
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Figure 7.8: Code Length comparison between HPFSM, PFSM (PTA), inferred
PFSM and one-state PFSM models for random strings 260-5000 for the PFSM of
Figure 7.6

In Figure 7.8, the comparison is shown on the number of random strings from 260

to 5000 and a similar observation follows. The two-part code length in bits obtained

from the HPFSM model for 5000 number of random strings is 8728.45 bits and for

the inferred PFSM model, the two-part code length is 9534.76 bits. The one-state

model on the other hand results in 25421.8 bits for the same dataset. Therefore,

for 5000 number of random strings, the probability of the HPFSM model of having

generated those strings as compared to the inferred PFSM model is quantified as

29534.76

(29534.76+28728.45)
. Aso, the HPFSM model is 225421.8

(225421.8+28728.45)
more probable than the

one-state model in generating the dataset of 5000 strings.
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7.3.2 Experiments on ADL datasets

The results are also computed using the Activities of Daily Living (ADL) datasets

gathered from the UCI Machine Learning Repository (see Table 7.4). A short version

of the dataset is presented in Table 7.4. A more detailed version can be seen in

Chapter 5 in Section 5.4.2.1. This dataset comprises information regarding the ADL

performed by the two users on daily basis in their own home settings and summing

up to 35 days of fully labelled data (Ordonez et al., 2013). We call the individuals

“Person-A” and “Person-B”. Each individual dataset gives a description of the start

time and end time of the event, the location of the event captured using sensors

and the place where it happened. The five different places (Bathroom, Kitchen,

Bedroom, Living and Entrance) are initially considered as five outer states in the

HPFSM, each of which has its own internal PFSM. The sequence of transitions is

captured as strings and encoded using the HPFSM. The conversion of the sequence

of transitions into strings is done by assigning unique symbols to distinct locations in

Table 7.4 and the change of place in the table is noted down as the end of sentence.

This change of place inserts a delimiter symbol into the sequence formed so far. The

HPFSM is inferred and we show as an example in Figure 7.9, the inferred HPFSM

model for “Person-A” with three outer states. Three outer states (Bedroom, Living

and Entrance) get merged, resulting, finally in three outer states, as seen in the

HPFSM of Figure 7.9. We similarly learn the HPFSM model for “Person-B” and

the inferred HPFSM model for “Person-B” is shown in Figure 7.10

Table 7.4: Person-A Activities of Daily Living (ADL)

Start time End time Location Type Place
28/11/2011 2:27 28/11/2011 10:18 Bed Pressure Bedroom
28/11/2011 10:21 28/11/2011 10:21 Cabinet Magnetic Bathroom
. . . . .
. . . . .
. . . . .
12/12/2011 0:31 12/12/2011 7:22 Bed Pressure Bedroom



7.3. EXPERIMENTS 147

Figure 7.9: Inferred HPFSM for Person-A

Figure 7.10: Inferred HPFSM for Person-B

Table 7.5 compares the two-part code length of the HPFSM and the non-hierarchical

PFSM. The table reveals that, if the tokens generated by the activities of individ-

uals, are encoded using HPFSM, the cost of encoding is less. This is evident from

the two-part code length of the HPFSM and simple PFSM (or simply PFSM or

non-hierarchical PFSM). We also compare with the one-state PFSM code length.
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Table 7.5: Code length in bits given by various models for the ADL of individuals

Initial Inferred Initial PFSM Inferred 1-state
HPFSM HPFSM (PTA) PFSM PFSM

Person-A 1235.10 1095.70 1691.02 1143.39 1143.39

Person-B 3062.52 3022.64 4098.80 3374.84 4036.83

A more useful analysis of the HPFSM models learnt from the training datasets

is done and that is, prediction of the individuals. As mentioned above, the ADL

datasets consist of 35 days of labelled data. This includes 14 days of labelled for

“Person-A” and 21 days of labelled data for “Person-B”. We use 50% of the total

available datasets for learning the models, the remaining 50% is used for testing

purpose. The testing datasets are divided into sequence of transitions corresponding

to each day and hence we get 7 days in the test dataset for “Person-A” and 10 days

in the test dataset for “Person-B”. The sequence of transitions corresponding to

each test day in test dataset is input to both the models and the amount of increase

in code length is noted down in bits. The model that minimally increases the code

length is more probable to have generated that sequence.

The increase in code length is quantified in the Figures 7.11 and Figure 7.12 on

each HPFSM model on the test dataset belonging to the two individuals for each

observed day. Inferred HPFSM (Person-A) model shows a lesser increase in code

length for its own test data of every test day, whereas the inferred HPFSM (Person-

B) shows a greater amount of increase in code length for “Person-A’s” test data of

each test day. This results to arrive at the conclusion that inferred HPFSM (Person-

A) model correctly predicts “Person-A’s” movements for each test day as belonging

to inferred HPFSM (Person-A) model, than what the other model would do for test

day of “Person-A”. Similarly inferred HPFSM (Person-B) model correctly predicts

the model from the movements, if the movements belong to “Person-B”, by showing

a lesser increase in two-part code length.
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Figure 7.11: Code Length increase in bits in the inferred HPFSM models on test
data of Person-A
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Figure 7.12: Code Length increase in bits in the inferred HPFSM models on test
data of Person-B
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7.4 Summary

This chapter investigated a new learning method based on hierarchical construction

of a simple PFSM model called as an HPFSM model. The HPFSM model encoding

of both the structure and the data were discussed. The benefits of the construction

were understood in viewpoint of the real things happening around us. We discussed

the example of a multilingual person and the activities performed by an individual in

his daily life if that involves moving around to various places. Most of the time the

movements are local and then there is absolutely no need to encode them using one

big machine. We can rather construct small machines and combine them somehow

so that the purpose is achieved. This is how the construction of hierarchical PFSMs

was driven by the need of representing things in a more concise manner and the

the obvious advantage is a less code length model that still represents the same

grammar.

The need for constructing the HPFSM model was then followed by an artificial

design of an HPFSM model to understand what the model looks like. Using the

same design we discussed the two-part code length calculation using MML. The first

part code length that encodes the model was summarized by Equation 7.1 and the

second part code length that encodes the data using the model was summarized by

Equation 7.3.

Finally two different experiments were performed to show the benefits of hi-

erarchical encoding over the non-hierarchical style of encoding. Under the first

experimental set up, we considered two artificially created HPFSM models. Dif-

ferent datasets were generated out of the artificially created HPFSM models. The

datasets consisted of variable number of random strings from 2 to 5000. In the first

artificially created HPFSM model (Example-1 Figure 7.2) , the initial probabili-

ties of transition assumed for string generation were considered uniform. Whereas

in the second artificially created HPFSM model (Example-2 Figure 7.1, the initial

probabilities of transition were considered variable with the internal transitions set

to high probabilities and outer transitions set to low probabilities. The two-part
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encoding cost was then compared with the non-hierarchical PFSM (inferred PFSM)

model and the single-state model. The datasets with strings greater than 50 were

encoded in a cheaper way by the HPFSM model as compared to the other models,

eventually leading to the conclusion that the HPFSM models offered a cheaper way

of encoding if the datasets were hierarchical.

The second experiment was performed on the real datasets from the UCI reposi-

tory. The datasets were the Activities of Daily Living (ADL) datasets. The HPFSM

model construction from the datasets was discussed followed by an analysis using

the models. The HPFSM model code length, again, in this case also gave a better

performance in terms of encoding as compared to the other models. The model

learning or encoding was followed by an analysis using the models. We used predic-

tion as the evaluating criteria to test the models. The HPFSM models were correctly

able to predict the class from the instances of test data from the ADL datasets.
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Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

I conclude the thesis by summarizing the contributions made in relation to the cen-

tral underlying question: how can a model be developed that can model regularities

and pattern of text data, is easy to build, can be further used in doing some mean-

ingful analysis and whose performance is measured by comparing it with the other

models? The thesis answers the central question by setting out various sub-goals

which are briefly described here in the chapter. But the final goal in the thesis was

to develop a model for a particular kind of data and the success of the model was

measured through comparative studies.

Probabilistic Finite State Machines (PFSMs) are models that can model text

data that contain regularities and patterns. Now, such text data can be obtained

from various sources such as a natural language corpus, a DNA sequence or an

email text corpus. If we recollect the concept of a finite state machine, then it is

best described as a machine that represents a regular grammar. From the regular

grammar, originate languages, that are termed as regular languages. The elements of

a regular language can be termed as words or tokens or sentences depending upon the

context of the application areas. Any text data can be viewed as a regular language

and consequently Finite State Machines (FSMs) can model them effectively. A

PFSM is an extended FSM that describes a population of sentences.

153
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In the thesis we learned PFSM models from various sources of text data. Accord-

ing to Wallace (Wallace, 2005), the model is an assertion on the observed data and

the inductive inference of the model tells how probable the model is in generating

the data. For the inductive inference Minimum Message Length (MML) was used.

MML has emerged as a powerful tool, not only in providing a coding mechanism for

structures as PFSMs but also plays an important role in the inductive inference of

such structures. The sub-goals set out to achieve the main goal are summarized as

below:

In Chapter 2, we discussed the underlying theory of FSMs and PFSMs. Chapter

3 discussed the Minimum Message Length (MML) principle in general. MML is a

Bayesian approach premised on Bayes’s theorem. We discussed in this chapter the

MML calculation for a discrete Binomial distribution case and MML calculation for

a discrete Multinomial distribution case. The calculations were later referred in the

MML encoding of a PFSM model.

Chapter 4 discussed the MML two-part code length calculation of a PFSMmodel.

The information-theoretic MML first provides an encoding of the structure of PFSM

model by making use of some discrete information in the PFSM. MML does the

second part encoding by encoding the data generated by the PFSM model. This

is done by encoding the transition probabilities. The two-part MML encoding is

followed by a search to find the best model that describes the data. For this we

discussed a novel induction method where the two-part MML code length was used

as a objective function to search the best model among the competing models. We

also discussed in this chapter another search method based on Simulated Annealing

(SA) to obtain an optimal MML PFSM model. In all the experiments, we have used

SA as the search method to get MML PFSMs.

The contributions arising out of the research work were discussed in the sub-

sequent chapters. We list the contributions below. The first sub-goal set out was

accomplished by learning the PFSM models for the text kind of data. We explored

two application areas that contained text data with specifically two classes and
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the learning was carried out under a supervised learning environment. The con-

tributions were made in relation to the approaches that we developed for learning

and classification using the PFSM models and finally measuring the performance of

the approaches by comparing with Minimum Description Length (MDL) and Naive

Bayes Classifiers. The two application areas explored were, the publicly available

Enron spam dataset and the Activities of Daily Living (ADL) datasets. Both the

examples considered had two instances of classified data contained in them.

• The first approach was learning the two-machine PFSM models from the two

classes of data. The training datasets of the two classes were used to learn the

initial PFSM models. The initial PFSM models were the Prefix Tree Acceptors

(PTA) of the training datasets of the two classes. The initial PTAs were

inferred by the SA search method to get minimum two-part code length PFSM

models. The two models were then used for classification of the test datasets

of the two classes. The two-machine model approach was experimented on

the Enron spam datasets and the ADL datasets. In both the datasets, the

training of the models was done on 50% of the datasets and the remaining

50% was used for testing. Precision, weighted accuracy and recall were used as

performance measures in the Enron spam datasets whereas we used prediction

of class in the ADL datasets. The performance of the 6 Enron spam datasets

were compared against the MDL performance on the same datasets. The

two-machine PFSM-MML method resulted in better results than the MDL

method by giving 99.75% average classification accuracy. The MDL method

on the other hand resulted in 98.60% average classification accuracy. On the

ADL datasets also, the two-machine PFSM model approach resulted in correct

prediction of class for every test dataset of the two individuals.

The main advantage as seen from the design of the two-machine approach was

that the method was insensitive to thresholds and as a consequence of which

it was possible to achieve both precision and recall values high at the same

time.
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• The two-machine design was modified to single-machine design in the second

approach. The benefits as seen in the single-machine design as compared to

the two-machine design were: the cost of building model was less, the model

was built in less time as compared to the two-machine design as it avoided

any inference of the PFSM model and lastly the single-machine design had

more suitability in multiple class classification scenario as compared to the

two-machine design.

The experiments were done on the Enron spam datasets. We compared the

cost of building the single-machine model with the cost of building two-machine

models on the training dataset of the Enron spam dataset. The single-machine

model in every case resulted in a cheaper code length machine than the com-

bined code length of the two machines in two-machine design approach. The

performance of the single-machine model was compared against the different

versions of the Naive Bayes classifiers and the general conclusion was that

in almost all the cases the single-machine design performed better than the

different versions of the Naive Bayes classifiers.

• The third approach was developed in view of obtaining an even more con-

cise representation of grammar by encoding through the means of Hierarchical

PFSM (HPFSM). In an HPFSM, several small PFSMs were connected in the

outer structure or the external PFSM and each of the small PFSMs or in-

ternal PFSMs independently generated their own language by making use of

the internal transitions and internal input alphabet sets. Here we discussed

the two-part MML calculation for an HPFSM model that was in line with

the two-part MML calculation for a PFSM model. The traditional coding

scheme of a PFSM model was modified and we came up with a new coding

scheme for HPFSMs. One benefit of encoding using an HPFSM model was

shown in terms of generating data from an artificial HPFSM model and then

showing that, when trying to infer the model from which the data came, for

datasets above a certain size, the shortest code length was obtained from the
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HPFSM model. Datasets with variable number of strings were generated by

the artificial HPFSM model and it was proved experimentally that for strings

greater than 50, the HPFSM model resulted in giving the best compression

when compared to the non-hierarchical PFSM model and the one-state model.

Because of the nature of the datasets in the ADL datasets, the HPFSM model

learning and prediction of classes was possible. We did experimentation on

the ADL datasets by building two HPFSM models from the training dataset

of the two individuals and the test dataset was used in prediction of classes.

The test datasets, when input to both the HPFSM models, resulted in giving

accurate results.

8.2 Future Work

The list of things that can be further taken up and implemented for future research

include the following:

• We came up with the approach of two-machine model in our research to classify

a test data that belonged to one of the two classes. The idea of two-machine

model can be generalized to multiple class classification scenario where multi-

ple PFSM models can be built from the multiple classes of data. This method

is expected to give good classification results but then, the individual classes

need to be learnt and inferred individually. This may be applied for datasets of

size that are relatively small but for large size datasets, converting into single

machine concept will be more practical. Although we did not attempt to try

classification into multiple classes either with multiple machines or with single

machine, but this is one possibility where the current research can be taken

further.

• The current research was focussed on training the PFSM models with text

data. Text data is too simplistic assumption for a dataset when classification

is concerned. Even the emails, where classification into spam and non-spam
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category is required, they might contain data in image form or any other

multimedia form. If we desire to use the PFSM modelling for such data source,

appropriate conversion must be done in order to model them as a PFSMmodel.

So in future, possibilities arise to model a multimedia data source.

• We also assumed simplistically that the occurrence of tokens or words in the

email text corpus were independent events. In reality, there may be depen-

dency of tokens on one other which can be taken into account in future.

• In the Enron spam datasets, the emails were first tokenized and then, with

the appropriate feature selection method, the attributes were selected. The

criterion for feature selection was the term frequency of the attribute in the

classes of emails. We worked on 3000 high frequency attributes in all our

experimental evaluations just to make our work comparable with the other

methods on the same dataset. For example, all the Naive Bayes classifiers in

the previous studies worked on 3000 high frequency attributes and considered

a threshold of 0.5 in their experiments. We kept the experimental conditions

the same. In future, different feature selection methods can be employed and

also, experiments can be tried with attributes more than 3000 in number and

the impact on the results can be seen.

• The PFSM models were trained on word level in our experiments with the

Enron spam datasets. The sentence in an email was broken down into tokens

by removing all the stop words and the delimiter symbols. In future the models

can be trained on phrase level or even sentence level.

• For training the models, we considered 50% of the dataset and performed test-

ing on the other half. In future, a more robust training and testing procedure

like the k-fold cross validation method can be employed on the datasets.

• For performance evaluation, we used precision and recall as the evaluating

metrics. Although precision and recall are the two widely used evaluation
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criteria in classification, but in future other criteria like Receiver Operations

Characteristics (ROC) curve can be used for comparisons.

• We chose two application areas where PFSM models could be learnt. If mod-

elling with text data is desired, then there are other application areas where

PFSM models can be learnt like the natural language corpus or DNA se-

quences. The PFSM models can be used in DNA sequence clustering.

• We compared the results obtained using the MML (single-machine and two-

machine) methods with the Minimum Description Length (MDL) classifier and

the Naive Bayes classifiers. Comparison with more text classification methods

can be done in future.
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