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This papers presents a method for simultaneously estimating a system of nonparametric 

multiple regressions which may seem unrelated, but where the errors are potentijilly corre­

lated between equations. We show that the prime £uivantage of estimating such a 'seemingly 

unrelated' system of nonparametric regressions is that substantially less observations can 

be required to obtain reliable ftmction estimates than if each of the regression equations 

was estimated separately and the correlation ignored. This increase in efficiency is investi­

gated empirically using both simulated and real data. The method suggested here develops 

a Bayesian hierarchical framework where the regression ftmction is represented as a linear 

combination of a large nimiber of basis terms, the number of which is typically greater than 

the sample size. AH the regression coefficients, Jind the varieince matrix of the errors, are 

estimated simultcineously using their posterior means. The computation is caurried out using 

a Markov chain Monte Carlo sampling scheme that employs a 'focused sampling' step to 

combat the high dimensionad representation of the function and a Metropolis-Hastings step 

to correctly aiccoimt for the distribution of the covariance matrix. The methodology is also 

easily extended to other nonpairametric multivariate regression models. 

Key Words: Nonparametric Multivariate Regression, Bayesian hierarchical SUR model. Multi­

variate Subset Selection, Markov Chain Monte Carlo, Focused sampling. 



1 Introduction 

The cum of nonparametric regression is to estimate regression functions without £tssuining a 

priori knowledge of their functional forms. The price for this flexibility is that appreciably 

larger sample sizes are required to obtciin reUable nonparametric estimators than for para­

metric estimators. In this paper we consider a system of regression equations that can seem 

imrelated, but actually are because their errors are correlated. Such a system of equations is 

called a set of 'seemingly imrelated' regressions, or a SUR model (Zellner, 1962). This paper 

provides a Bayesian framework for reliably estimating the regression functions in a non­

parametric maimer, even for moderate sample sizes, by taking advantage of the correlation 

structure in the errors. The most important consequence of this work is to show that if the 

errors sire correlated, substantially better nonparametric estimators eire obtsuned by taking 

advantage of this correlation structiu'e compared to ignoring the correlation and estimating 

the equations one at a time. 

Specifically, we consider the system of m regression equations 

J , ' = / ' ( x ' ) + e' for 1 = 1,2,.. . , m (1.1) 

Here, the superscript denotes that this is the I'th of m possible regressions, y' is the dependent 

variable, x' is a vector of r ' independent variables and / ^ . . •, /"* are fimctions that require 

estimating in a nonparametric mcinner. As in the linear Gaussian SUR model, the regressions 

are related through the correlation structure of the Gaussian errors e'. That is, 

e ~ A r ( 0 , S ® / „ ) (1.2) 

where e' = (e^ ' ,e^ ' , . . . ,e"") , e' is the vector of errors for the n observations of the tth 

regression and S is a positive definite {mxm) matrix that also requires estimation. This paper 

is concerned with providing a data-driven procedure for estimating the unknown functions 

/ ' (for I = 1 , . . . , m) and covariemce matrix E in this model. 

Such systems of regressions are frequently used in econometric, financial and sociological 

modehng because taking into accoimt the correlation structure in the errors results in more 

efficient estimates than ignoring the correlation and estimating the equations one at a time. 



However, most of the literature on estimating a system of equations assumes that the / ' 

are linear functions. For recent examples, see Bartels, Fiebig and Plumb (1996), Min and 

Zellner (1993) and Mandy and Meirtins-Filho (1993). However, in practice the functional 

forms of the / ' in most regression appUcations are unknown a priori, so that an approach 

that estimates their form is preferable. We illustrate the need for a nonparametric approach 

and the gains in efficiency obtained by estimating a system of equations in section 4 by 

applying our methodology to two real data exEunples. The first concerns print advertisements 

in an Australian women's magazine and estimates the relationship between three measures 

of advertising exposure and the positioning of Jidvertisements in the mageizine. The second 

estimates the relationship between monthly returns and some key macroeconomic variables 

for five large mining companies listed on the Australian stock exchange. In both examples, 

significant nonlinear relationships are identified that would have been difficult to discern using 

a parametric SUR approach. In addition, the estimates are shown to differ substantisdly from 

those that arise from estimating each of the nonpcirametric regressions separately and ignoring 

the correlation between the equations. 

Our approach for estimating the system of equations defined at (1.1) and (1.2) models eauch 

of the functions / ' as a linezir combination of basis terms. We develop a Bayesian hierarchical 

model to explicitly parameterize the possibility that these terms may be superfluous aind have 

corresponding coefficient values equeil to exactly zero. A wide vjiriety of bases can be used, 

including many with a desired structure, such as periodicity or additivity. The unknown 

regression functions are estimated by their posterior means which attach the proper posterior 

probability to each subset of the basis elements, providing a nonpaiametric estimate that is 

both flexible and smooth. We develop a Markov chain Monte Ccirlo (MCMC) sampling 

scheme to calculate the posterior means because direct enumeration is intractable. This 

samphng scheme is a generalization of the 'focused sampler' discussed in Wong, Hansen, 

Kohn and Smith (1997) and is shown to be reliable emd fast. The performance of the new 

estimator is demonstrated empiricedly with a set of simulation experiments carefully designed 

to cover a range of potentied regression curves, noise levels and several commonly employed 

bases. These highlight the improvement that cam be made by exploiting correlation structure 



in a system of regressions. We note that the solution to the nonpaireimetric SUR model focused 

on here is easily extendible to other nonpjirametric multivariate (or vector) regression models, 

such as where the functions / ' are the sanne for all t = 1, . . . , m. 

Zellner (1962, 1963) provides the seminal analysis of a system of regressions when the 

unknown functions / ' are eissumed linecu: in the coefficients. Srivastava and Giles (1987) 

summarize much of the literature dealing with this linear SUR model. However, recent ad­

vances in Markov chain Monte Caurlo methodology enable Bayesian analyses of more complex 

variations of the SUR model. For example, Chib and Greenberg (1995a) develop sampling 

schemes that estimate a hierarchical lineeU' SUR model with first order vector autoregressive 

or vector moving average errors and extend the analysis to a time vauying peirameter model. 

Markov chain Monte Czirlo methods have also provided a solution to reliably estimating 

nonparametric regressions in a variety of hitherto difficult situations. For example. Smith 

and Kohn (1996) and Wong, et al. (1997) develop nonparametric regression estimators for 

regression models where a data transformation may be required and/or outliers may exist in 

the data. 

The paper is organized as follows. Section 2 discusses how to model the unknown functions 

and why they are estimated using a hierarchical model. Section 3 discusses this Bayesian 

hierarchical model and develops a MCMC sampUng scheme to enable its estimation. Section 4 

uses the methodology to fit the Australian print advertising cind mining returns datasets. 

Section 5 conteuns simulation excimples which investigate the improvements that cam be 

ma.de using this estimation procedure over a series of sepairate nonparametric regressions, as 

well as compeiring a variety of commonly used bases. 

2 Baisis representation of functions 

Each regression function is modeled as a Uneair combination of basis fimctions, so that for a 

function / , 

f{x) = Y.fiMx) (2.1) 
1=1 

Here, B = {6i,. . . , bp) is a beisis of p functions, while the /3j's are regression parameters. 
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A number of authors have used such an approeich in the single equation case using a vari­

ety of univariate and higher dimensional bases. For example, Friedman and Silvermjin (1989), 

Friedman (1991), Smith and Kohn (1996) and Denison, Mallick and Smith (1997) use regres­

sion splines, Luo emd Wahba (1997) use severeil reproducing kernel bases and Donoho and 

Johnstone (1994) use wavelet bases to estimate non-smooth functions. In the empirical work 

in this paper we consider the following bases for a imivariate independent variable x, with n 

observations xi,X2,.-.,Xn-

1. Cubic Regression Spline: Here, Bi = {1,x,x^,x^,{x — xi)^,... ,{x — Xn)+}, where 

(.)3^ = max(0, •) andp = n + 4 . A similar basis was used in Smith and Kohn (1996), but 

with a smaller number of basis functions. However, by employing the focused sampler 

discussed in section 3.2, bases with p > n terms can be used. 

2. Quadratic Regression Spline: Here, B2 = { l , i , x^ , {x — xi)\,... ,{x — Xn)'+} and 

p = n + 3. 

3. Quartic Reproducing Kernel: Here, B3 = {fci(x), •. •, bn{x),x, 1}, where 

fci(^) = ^ ( ( k - : ^ i | - ^ ) ' - ^ ( k - ^ . | - ^ ) ' + ^ ) , fort = l , . . . , n , 

and p = n + 2. This basis was discussed in Luo and Wahba (1997) and is defined over 

the unit interval, so that we simply scale the independent variable before cedculation 

of 63, so that min(i) = 0 and max(i) = 1. 

4. Thin Plate Spline: Here, B4 = {61 ( x ) , . . . , 6„(x), x, 1}, where 

bi{x) = \x- x,p log(|x - x, | ) , 

and p = n -I- 2. This is an example of a radial basis function of the type discussed by 

Powell (1987) and was used in thin plate smoothing by Wahba (1990). 

5. Natural Cubic Spline: This is a basis discussed in Wahba (1990), where B5 = 

{6i(x) , . . . ,6„(x) ,x , l} and 

6.(x) = { 
5X^(1, — j x ) if X < Xj 

for t = 1,,... , n . 
^x]{x — |xi ) if X > Xj 



The basis elements are assumed to be distinct, those that are not we simply remove. In the 

absence of repUcated design points, the nimiber of terms in e£ich basis is p > n. All the above 

bases are known to be suited to approximating univariate functions that are both continuous 

and continuously diflFerentiable. 

In the case of multiple regressors in an equation a vciriety of other bases can be used, 

including tensor products of univariate bases (Friedman, 1991) and radiaJ bases (Powell, 

1987; Holmes and Mallick, 1997). In this paper we use additive combinations of the above 

univariate bases, so that for an r dimensional independent variable x, the basis is 

M = B^ U B^ u .. . U B ^ 

Here, B' is a univariate basis for the tth element of z eind M is the resulting multivariate basis. 

The number of elements in this basis is genercilly p w rn (approximate because the number 

of replicated design points is unknown) and the model is made identifiable by retaining only 

a single intercept. 

Given a choice of a particular basis for the approximation at (2.1), the tth regression 

at (1.1) can be written as the linear model 

y' = X*/3' + e'. (2.2) 

Here, y' is the vector of the n observations of the dependent variable, the design matrix 

X' = [bi|b2|. •. |bpi], bj is a vector of the values of the basis function bj evaluated at the 

n observations and 0 are the regression coefficients. The errors e* are correlated with those 

from the other regressions, as specified in (1.2), and we denote the number of basis terms 

in the ith equation as p*. It is inappropriate to estimate the regression coefficients using 

existing SUR methodology for three reasons. First, the columns of X* are not generally hn-

eaxly independent because usuadly p' > n and if there are several explanatory variables then 

p' » rn. Second, even if a maximal Unearly independent subset of columns was identified the 

resulting estimates of the regression coefficients would have high variance and the function 

estimate /* would interpolate the data (rather than produce smooth estimates that account 

for the existence of noise in the regression). Third, it is difficult to identify one superior 



linearly independent subset of basis terms over another . Therefonj, we estimate the regres­

sion parameters using a Bayesian hierarchical SUR model (described below in section 3) that 

explicitly eiccounts for the possibility that many of these terms maiy be redundamt. It is by 

estimating the regression parameters using this procedure, rather than simply by generalized 

least squares, that makes the function estimates nonp£ircimetric. 

3 A Bayesian Hierarchical SUR Model 

3.1 Modeling variable redundancy 

Consider the tth regression of a hnear SUR model given at equation (2.2), where the design 

matrix X* is (n x p*) and the coefficient vector fi* is of length pV To explicitly account for 

the notion that variables in this regression can be redundant, we introduce a vector of binary 

indicator Veiriables 7' = (71,72, ••• ,7p<)'- Here, 7Ĵ  corresponds to the fcth element of the 

coefficient vector of the tth regression, say ^]^, with 7Ĵ  = 0 if /?ĵ  = 0 and 7Ĵ  = 1 if /3j[ 7̂  0. 

By dropping the redundant terms with zero coefficients, the tth regression can be rewritten, 

conditional on 7', as 

y' = XJ^,/3iy,+e' (3.1) 

If qL = Yfiz=\ 7J, thsn the design matrix X ' , is of size (n x gL) and /3iy, is a vector of q~ 

elements. 

By stacking together the lineeir models for the m regressions, the SUR model can also be 

written, conditional on 7' = (7^', 7^', •.. ,7"")) so that 

y = J^^/3^+e (3.2) 

Here, y' = (y^'.y^',... ,y""), X^ = diag(Xiy.,X^,,..., XJUfm) and fi'^ = {fi\,\... ,/3^m'). 

If 97 = HULi 97, then X-y is an {nm x q-y) matrix and /3-y a vector of g-y elements. To com­

plete this Bayesian hierarchical model, we introduce the following priors on the pso'ameters. 

(i) In a similar mainner as O'Hagan (1995) we construct a conditional prior for /3~ by 



setting 

p(/3^|E,7)ocp(y|/3-y,7,S)'/"'" 

sothat/3-y|S,7 ~ N{fij,nm{XLfAX'Y)-^), where >1 = E-^®/„ and A^ = {X!yAX'y)-^XiyAy. 

This data-based fractional prior contains much less information about /3j thsui the like­

lihood. 

(ii) The prior for S~^ is taken as independent of 7 and is the commonly used non-

informative prior discussed in Zellner (1971), where p(E~^|7) oc |S~^|~("''*'^^/^. 

(iii) The 7Ĵ  are taken as 0 priori independent of one another with p{Yk = 1) = 1/2 through­

out this paper. 

Note that the model here is a hierarchical SUR model as, conditionjil on 7, it is simply a 

linear SUR model; and that it is through the conditional prior for 13^ that 7 is introduced 

into the model. 

3.2 Markov chain Monte Carlo sampling 

To estimate this model we use the following Markov chain Monte Carlo sampling scheme. 

(1) Generate from/3-y|E~\7, y 

(2) Generate from E-^|/3,7,y = E-^|/3-y,7,y 

(3) For t = 1,2,..,, m 

Choose Ci C {1,2,... ,p'} in the rcindom manner discussed below. 

(4) Repeat the following K times 

For i = 1,2,... ,m 

Generate from 7J|E~^,7\7J,y for j € d 

In this sampling scheme /3^ is generated from a multivariate normal distribution and 7J is 

generated from a binomial. Generation of the matrix E~^ directly from the posterior at 

step (2) is difficult because the fraction^ prior ;3/y|E~^7 is centered at ftj, which is a 



function of E. Consequently, we use a Metropolis-Hastings step where the proposal Wishart 

density is the posterior under a flat conditional prior for /3~. This; works well with between 

60% and 90% of those iterates that are generated being accepted. Deteiils of how to generate 

&om the distributions at steps (1), (2) and (4) are given in the appendix. It is important to 

note that care has been taken to generate 7J without conditioning on ^ at step (4), otherwise 

the sampling scheme would be reducible because 7J is known exactly given Pj. 

Step (3) is a 'focusing step' similar to that discussed in Wong et al. (1997) emd is under­

taken for each equation i = 1, . . . , m. The idea is to identify a subset of the binary variables 

7J which are relatively more likely to be 'active' (that is, variables where 7J = 1 and there­

fore the corresponding regression coefficients aire non-zero) and focus most attention on these. 

This is important even in single equation nonpaxcimetric regression because the bases used 

can employ greater thein n terms, most of the regression coefficients of which have a high 

probability of being zero. Focusing takes on a new importance in nonparsimetric SUR models 

because there are m times as many terms again as in the single equation model. 

We use a 'focusing rule' to identify the variables to be generated at the jth iteration of 

the sampling scheme, which are indexed by the indexing set C,- for each of the i equations. 

The rule we use is to generate all the binary variables that were active last iteration, plus a 

randomly selected set of those that were inactive. Each previously inactive binary variable 

is selected to be generated with probability 

Q = max (20/(p' - giy), gl^/(p' - qiy)) . 

This ensures that on average at least 20 previously inactive termi! in the ith equation are 

generated, while more terms are generated for functions that require a lot of basis functions, 

so that Qy > 20. This ensures that the sampler cam move quickly and efficiently around the 

support of the posterior distribution. 

Because the focus sets are selected in a rauidom manner, the sampling scheme is irreducible 

and aperiodic, so that by Tierney (1994) it converges to its invarisint distribution, which is 

the posterior distribution E~^, 7, /9|y. It is both an order faster than a Gibbs sampling alter­

native that generates all the elements of 7 one at a time, (that is, where Ci = {1,2,... ,p*}) 
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and possesses stronger convergence properties. The latter is because, at any iteration j , 

step (4) forms a Gibbs sub-chain of K iterations which converges to the conditional posterior 

distribution of the 'block' 7c|S~^,7\7c,y. where 7^ is defined here to be all the binary 

variables to be generated. 

Given an initial state for the Markov chain and a 'weirmup period', eifter which the 

sampler is assumed to have converged to the joint posterior distribution, we can collect 

iterates (E-^'^J, 7'^', /^W),..., (E"̂ t"̂ J, 7'*'^ /3^-'^) which form a Monte Carlo sample from the 

joint posterior distribution. It is this sample that we use for inference. 

A sampler that generates solely from the parameter space of 7 is not considered as it 

is difficult to generate from the posterior distribution 7J|7\7J,y. Similarly, Scimplers that 

generate from either the parameter space of (7, S~^) or (7,)9) Jire not considered because it 

appears difficult to generate from either the conditioned posterior distribution E~^|7,y, or 

7J|7\7J,/̂ .y-

We have found this sampler to have strong empirical convergence properties- usually 

converging to a stable distribution (as witnessed by the marginal distributions of the pa­

rameters) in a handful of iterations. This appeeirs to occm- regardless of the initial starting 

state, which is best demonstrated by the fact that all of the very different examples in this 

paper had the same initial state of /S'"' = 0, E~ '̂°) = /„, and 7'°! = 0. Any other arbitrjiry 

feasible state also appears to work fine. The overall reliability and efficiency of the scheme 

are demonstrated in section 5. 

3.3 Est imat ion 

Inference about the unknown functions £ind paxcmaeters is based on the Monte Carlo seimple 

obtained from the sampling scheme. Here, we only consider posterior means, but higher 

posterior moments and diagnostic statistics (such as residuals) cjin be heindled similarly. 

The posterior mean of the regression pareuneters, £^[/3|y], is estimated using the mixture 



estimate 

P = -jY.^\Pb^\^-'^\y\ (3.3) 

Each of the conditional expectations in the sum is simple to calculate because S[/3«y|7, S~^, y] = 

/i~, while elements oi P that are not common to /3~ are set exactly to zero. 

The posterior mean £?[E|y] is estimated by the histogram estimate E = f j 53/=i E'^t^H 

We do not use a mixture estimate because the distribution of E~^|/3~, 7, y is difficult to iden­

tify (which is edso the reason a Metropolis-Hastings step is used at step (2) of the sampler). 

The posterior means E[P{z)\y] of the functions at equation (1.1) at any point z in the 

domain of x ' is estimated using the mixture estimate 

/•(z) = i f ;^ [/•(z)|7W,S-iW,y] = v' ( i f ^ [^a'lT^'l.E-^W.y] j = „ '^ ' 
>=i \ J=i / 

Here, v = (6i(z),..., 65 (z))' is a vector containing the basis function expansion of the function 

/ ' evaluated at the point z. The vector ft is made up of the elements of fi that correspond 

to /3'. If the function is univariate, so that x' is a scalar, then / ' is an estimate of a 

curve, while for higher dimensions it is a surface. For additive nonpareimetric models the 

component function estimates can easily be calculated separately by identifying the basis 

terms and regression coefficient estimates that correspond to each function and forming the 

inner product of these. 

4 Real Data Examples 

4.1 Australian Print Advertising Data 

In this section we demonstrate our procedure using n = 457 observations of data from six 

issues of an Austredian monthly women's magsizine. Each observation corresponds to an 

advertisement placed in the mageizine and the following three advertisement exposure scores, 

which are recorded from an experimented audience, sire used as mesisures of the various levels 

of effectiveness of the print advertisement. 
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y^ (Noted Score): Proportion of respondents who claim to recognize the ad as having 

been seen by them in that issue. 

y^ (Associated Score): Proportion of the respondents who claim to have noticed the 

advertiser's brand or compamy name or logo. 

y^ (Read-Most Score): Proportion of respondents who claim to have read half or more 

of the copy. 

These scores from y^ to y^ axe thought to measure advertisement exposure at increasing 

levels of depth. 

It long been thought that the positioning of an advertisement within an issue has am effect 

on its exposure to an audience (Hamssens and Weitz, 1980). To quantify this we constructed 

the variable P as 
_ page number 

nxmiber of pages in issue 

to represent the position in the issue in which each advertisement appewed. Figures l(a)-(c) 

provide scatter plots of P verses j / ^ , j / ^ and y^, respectively. 

To estimate the effect the design variable P has on the exposure of a print eidvertisement, 

we considered the three nonparametric regressions 

j / ' = /»(P) + e' fori = 1,2,3 

where the thin plate spline basis B4 is used to model / ' , for i = 1,2,3. Expected features in 

the functions / ' include high casual attention to advertisements placed in the front (and to 

a lesser extent back) of the magazine, while the pre-editorijd slots (where P is about 0.7) are 

thought to attract more indepth attention. 

The three regressions were estimated one at a time using the single equation ansilogy of 

the estimator introduced in this paper (where E = /s) and the resulting function estimates 

plotted in figures l(a)-(c) as dashed Unes. However, the three scores y^,y'^ and y^ are highly 

positively correlated and it is likely that the assumption of independence in the errors is 

inappropriate. Therefore, we also estimated the equations as a nonparametric SUR (NSUR) 
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system. The estimate of the covaricmce and correlation matrix were 

E = 0.02 

1.050 1.024 0.586 

1.092 0.622 

0.486 

Estimated Correlation = 

1.000 0.956 0.819 

1.000 0.854 

1.000 

confirming the existence of high correlation, especially between the pair y^ and y^ and the 

pair ŷ  and y^. The function estimates /*, (i = 1,2,3) are cilso plotted in figures l(a)-(c) as 

bold Unes. They demonstrate that the fi:ont (and to a lesser extent) back of the magazine are 

areas in which advertisements achieve higher average exposure; though this is more prominent 

for the noted and associated scores, y^, y ,̂ than for the read-most score y^. The pre-editorial 

slots also result in increased exposure, with a particularly positive effect on indepth exposure, 

as meaisured by y^. The function estimates differ substantially firom those provided by single 

equation estimation and reveal that tciking the correlation into account can seriously filter 

the function estimates. In addition, the relationships are distinctly nonUnear emd would be 

hard to discern using pareimetric SUR estimation. 

To help confirm that the NSUR estimates had correctly captured the apparent relation­

ships between y^,y^,y^ and P, we calculated Monte Carlo estimates of the posterior mean 

of the standardized uncorrelated residuals r = (i? ® /„)e, where R'R = S~^. The estimate 

was calculated fi-om the Monte Carlo sample as 

1 -̂  

J «=i 

where R^^ is a Cholesky factor, such that R^^'R^^ = T,-^^\ and et̂ 'i = y - Xji^y Note that 

as r ~ N{Q,Inrn)i it is expected that f should have the approximately the same distribution. 

Figures l(d)-(f) plot the standardized uncorrelated residucils f' corresponding to the three 

equations, where we have partitioned the vector f = (f\f^,f^). They appear randomly 

distributed and seem to confirm that the functions /^/•^ and /^ were estimated without 

bias. 
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4.2 Australian Mining Returns 

To demonstrate the use of our methodology to systems of additive regressions we apply it to 

data concerning five large mining companies publicly listed on the AustraliJin Stock Exchange: 

BHP, CRA, CMC, MIM and WMC. The data was collected for n = 227 consecutive months 

from December 1972 to November 1991. The dependent variable for the tth regression is 

the respective company's dividend eidjusted return, which is defined to be iJJ = ln(P/ + 

Dl) — ln(P/_i), where P} is the stock price of compjiny i at time t cind D] is equal to the 

dividend payment of company i over the period {t — l,t]. The independent variables are the 

macroeconomic variables given below. 

• Of. Change in the logarithm of the All Ordinaries (the major Austrahan stock index) 

at time t. 

• Xt: Change in the logarithm of the red exchange rate ($US/$AUS) at time t. 

• Gt: Change in the logarithm of the gold price at time t. 

To investigate how the rettirns for each compeiny related to these key macroeconomic vari­

ables, we posited the following nonparametric additive SUR model. 

^ = mOt) + mXt) + n{Gt) + e\ fori = l , . . . ,5 

Here, the regressions were labeled in the following order: i = 1 for BHP, i = 2 for CRA, 

1 = 3 for CMC, 1 = 4 for MIM and t = 5 for WMC. No time dependency in the mean returns 

was considered as past retiurns axe thought to have httle, or no, information regarding future 

mean returns due to arbitrage arguments, though the errors are likely to be correlated eicross 

stocks. 

We modeled the functions / j using the cubic regression sphne basis Bi cind fit the model 

both as five separate nonpareimetric regressions and using the nonparaimetric SUR (or NSUR) 

estimator. The regression function estimates using the two approaches are given in figure 2 

and differ subst£intially, demonstrating the difference that modehng potentieJ correlation can 
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make in real data with moderate seunple sizes. The NSUR estimated the variance of the 

errors as 

"̂  0.459 0.170 0.289 0.300 0.304 

0.902 0.479 0.432 0.440 

E = 0.01 0.964 0.691 0.632 

0.985 0.664 

0.980 

where all the stocks axe positively correlated, even after the common effect of changes in the 

All Ordinaries (Ot) is removed. This is not surprising as all compjinies have heavy interests 

in Australian mining and/or base metal production. Of particular interest is the correlation 

between CMC, MIM and WMC, which are the compjinies that have their balance sheets 

almost exclusively focused on mining base metal ores during the p)eriod, whereas BHP and 

CRA are more diversified resoiurce companies (Thomas, 1995). 

The function estimates aire given in figures 2(a)-(o); one panel for each of the fifteen 

function estimates /.*, i = 1,...,5 and j = 1,2,3. A density estimate of the respective 

independent variable {Ot, Xt or Gt) has been included on top of eacli plot. Each of these plots 

has been produced over the domain of the middle 95% of the observations of the respective 

independent variable. This is because the independent variables have extreme outhers in the 

i-space (due to market shocks) and the resulting scale would distort the results. 

Figure 2 about here 

Figures 2(a)-(e) indicate that the returns of Jill five companies are highly related to chemges 

in the All Ordinaries, which is reassuring as these compeinies form a major component of this 

index. BHP has an almost Unecir relationship with what would be a slope coefficient close 

to one, (figure 2(a)) which is not surprising as this company is the largest company listed 

with the Australian Stock Exchange amd the most diversified of the five considered here. 

However, the relationships between the retiurns for the other four companies (especially WMC 

in figure 2(e)) and the All Ordinaries appe£ur distinctly nonhnear. Here, compciny returns 

increase more with positive returns on the All Ordinaries index than they decreeise with 
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negative returns on the index. This is because Austredizin mining and resources returns have 

proved fairly robust to downturns in genereil Australiem returns during the period in which 

the data have been collected. 

The relationship between these company returns zmd changes in the exchange rate (Xt) 

are minor and generally negative, (see figures 2(f)-(j)). This refiects the fact that all these 

companies export a lairge amount of ore £ind/or base metals and an increase in Xt makes 

their product more expensive. However, it should be be noted that these companies will also 

gain a short term increase in income on existing contracts alreeidy signed. Therefore, it is 

hard to say what efi'ect individual changes in Xt will have on monthly returns i?J; something 

that appears to be reflected in the indeterminant nature of the estimated relationships foimd 

in figures 2(g) and (h). 

Figiu-es 2(k)-(o) plot the relationship between company returns and changes in the gold 

price (Gt)- None of these companies are specifically gold miners (Thomas, 1995), but the 

relationship between the gold price cind company returns increases from none for BHP to a 

significant nonlinear relationship for MIM and WMC (figiures 2(n) eind (o)). It useful to note 

that BHP and CRA were the largest amd most diversified of the five companies during the 

period of our data, while CMC and WMC were the smallest cind least diversified with an 

especially high focus on base metals. Therefore, it is possible that the gold price is capturing 

an effect that is peculiar to these undiversified base metal miners. 

Overall, the estimates explain quite a large percentage of variation in the compciny returns 

for the companies. Many of the more interesting relationships appear distinctly nonlinear 

and would not be captured by simply fitting a hnear in parameters SUR. 

5 Simulation Experiments 

The performance of the nonparametric SUR estimator is studied using simulated data. Yee 

cind Wild (1996) use smoothing spUnes to estimate a system of equations in a nonpeireimetric 

m£inner, but they do not have data-driven estimators for their smoothing parameters. In the 

exEimple in section 5 of their paper they use values of the smoothing parameters based on 
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the independent vjiriable, but not the dependent variable. Such an approach is not a satis­

factory way of estimating the smoothing peiraxneters because it does not take into ziccount 

the curvatm-e exhibited by the dependent variable. Nor is it fully automatic in that a value 

for the effective degrees of freedom has to be chosen by the user. For these reasons we do not 

include the Yee and Wild (1996) estimator in our simulations and instead compare our esti­

mator with one that estimates each regression equation separately, ignoring einy correlation 

between the regressions. In doing this we show that this can result in substantially improved 

estimates. 

5.1 Example 1: Highly positively correlated univariate regressions 

This simulated example highlights the case where the errors are liighly correlated between 

regressions, with the true covariance matrix E being given below ait (5.1). There are m = 4 

univariate regressions, so that ri = r2 = r^ = r^ = 1 and the stcindeird deviation of the errors 

(var(e*))^/'̂  = 1 is high compared to the range of the functions. 

Four true functions were carefully chosen to represent a wide vairiety of possible relation­

ships. These are f^{x) = sin(87rx) (which is highly oscillatory), f^{x) = (< (̂x, 0.2,0.25) + 

(f>{x, 0.6,0.2))/4, with <̂ (x, o, b) being a normal density of mean a and standard deviation 6, 

(which requires a locally adaptive estimator as there are different degrees of smoothness on 

the left and right of the function), /^(x) = 1.5i (which was chosen .as mjiny relationships are 

often thought to be linear) and /^(x) = cos(27rx), (which is a smooth nonlinear function). 

The independent variables for the four univariate regressions were x̂  ~ U{0,1), x^ ~ U{Q, 1) 

and 
1 0.6 

0.6 1 

We generated n = 100 data points from this true SUR model and apphed the nonparametric 

SUR estimator to this data. To assess the resulting estimates of the four functions, we 

calculated the log mean squared difference between the function estimates and the true 

x M / ( 0.5 . 
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functions. This measure of distance between the two is defined as 
200 ( J 200 

where min(a;*) = zi < 22 < • • • < -̂ 200 = max(x*) is an evenly spaced grid over the domain of 

x*. For the same data we also fit four single equation imivariate nonparametric estimators 

corresponding to using the estimator proposed here with m = 1 on each of the foiir regres­

sions. The log mean squared difference was also calculated for each of these four function 

estimates. We use the same bases for the SUR and single equation estimators, namely the 

reproducing kernel basis B3. 

Figure 3 about here.— 

The entire process was repeated one hundred times. Figures 3(a)-(d) give boxplots of the 

one hundred resulting values of log(M5Dj) for each of the four fimctions (i = 1,2,3,4) and 

for both the nonpcirametric SUR estimator (NSUR) and individual nonparzimetric estima­

tors (NR). Figure 3 shows that taking into accoimt the correlation between the errors has 

substantially eind consistently improved the resulting estimates of all the regression functions. 

To examine the qualitative improvement that occurs, we focus on the single data set 

corresponding to the 50th sorted value of I^^=i MSD, for the nonparametric SUR estimator. 

This data set can be regarded as providing a 'typical' exeimple of the procedure and is plotted 

as four scatter plots in figiu-es 3(e)-(h) and again in figtures 3(i)-(l). The nonparametric SUR 

estimates of the four functions for this data appear in figures 3(e)-(h) jmd the estimates 

for the separate nonparametric regressions appejir in figures 3(i)-(l). These figures show 

that the nonpairametric SUR estimator significantly outperforms the separate nonparametric 

estimators which ignore the correlation between the separate regressions. The vciri£ince S of 

the errors and its estimate S for this data set is given below. 

E = 

1 0.96 0.64 0.93 

1 0.98 0.90 

1 0.85 

1 

E = 

1.571 1.269 0.944 1.261 

1.244 0.982 1.139 

1.053 0.913 

1.199 

(5.1) 
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It compares favorably to the 'best possible' estimate Sbat that arises from the saimple vjirismce 

of the true errors themselves, which are known because this is a simulated exjimple. 

E.e.. = ^^((e^e^e^e ' ' ) ' ) = 

1.568 1.234 0.921 1.256 

1.261 0.990 1.143 

1.061 0.914 

1.200 

5.2 Example 2: Different Bases 

The choice of basis used to represent a function can make a large emaoimt of difference in 

the empirical performance of any estimation methodology. The bases introduced in section 2 

are those typicadly used to fit smooth functions and this excimple compares their ability to 

parsimoniously reproduce the function employed in the multivariate nonparametric systems 

examined in example 1. We applied the Scime nonparametric SUR estimator as in the first 

example, except that we used the five bases Bi,..., B5. Figure 4 provides the log{MSDi) 

for the five bases and four functions. The performances axe roughly comparable, which is 

because all of the bases are known to be suited to smooth function estimation. However, 

of the five alternatives, on average the queirtic reproducing kernel basis is superior, which is 

why we focus on this basis throughout the paper. 

—Figure 4 About Here.— 

5.3 Example 3: Various noise levels and sample sizes 

The first exaimple investigated the properties of the procedure in the case where there was 

a fixed sample size (n = 100) and a fixed covarieince matrix S. Although this particular 

combination was challenging (because of the high ratio of the stimdard deviation of the 

errors to the function ranges in each of the regressions), it importcint to see how the estimator 

performs with different sample sizes and noise levels. 
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To undertake this, we repeated the simulation experiment discussed in the first example, 

but where we considered all combinations of fom: sample sizes, n = 100,200,400,1600, and 

foiu: covariance matrices 0.2511,0.5E, E, 2S, where S is the sjime covarismce matrix used in 

the first exEimple and is given at (5.1). Notice that these are still highly correlated examples, 

just with diflFerent noise levels. To compare the nonparametric SUR estimator (NSUR) to 

the four separate nonparametric regressions (NR) we calculated the logarithm of the mean 

squared difference averaged over all four regression functions for both procedures. That is, 

log{AMSD) = log ( 2 ^ MSDi 
x4 i=^ 

Low values of this suggest that the average distance of the function estimates from the true 

functions is low (and therefore the performance of the estimator is good), while higher values 

suggest the function estimates are further away from the true function. For each combination 

of sample size and noise level, two boxplots (one each for the NSUR and NR estimators) of 

the values of AMSD resulting from the 100 simulated data sets are included in figure 5. 

figure 5 about here 

Figure 5 reveals that regardless of sample size cind noise level, the NSUR procedure 

consistently outperforms the NR procedure, where the correlation is ignored and sepeirate 

regressions fit. The performance of the estimators converge as the sample size increases 

and the noise level decreases. For excimple, the performance between the two differ more 

when (7 = 2 and n = 100 thcin when a = 0.25 and n = 1600. In moderate sample size 

environments the benefits can be substantial. For example figure 5 reveals that, regardless of 

noise level, the NSUR estimator provides about the same level of performance (as measured 

by AMSD) with only n = 100 observations as simple NR estimation does with a SEimple size 

of between n = 400 and n = 1600. Although AMSD is a distauice meeisure averaged over the 

four regression functions, we have checked that the NSUR estimator eilso outperforms the 

sepeirate NR estimates using the individual MSDi criteria on all fom: individuaJ functions. 

To demonstrate that the NSUR estimator is practicsil to implement, we report the time 

required to fit models of each sample size for both it emd the NR procedure. The computer 
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used was a steindard DEC Alpha workstation rimning at 233 MH:z and the code for both 

procedures was written in FORTRAN and compiled similarly. Although these timings are 

implementation dependent, they do indicate that this Mjirkov cheiin Monte Ceirlo procedure 

is not overly computationally intensive. 

—table 1 about here.— 

5.4 Example 4: Unrelated regressions 

The previous examples consider a highly related set of regressioios and demonstrate the 

improvements in the regression function estimates that can occin: when correlations between 

the regressions axe modeled and estimated, rather than ignored. However, consider the case 

where it is uncertain whether, or not, there is correlation between the regressions. In this 

case, is there a risk of degrading the function estimates by modeling a correlation that does 

not exist? 

To investigate this case, we repeated the simulation undertaken in example 1, except 

where the true regressions were fixed to be unrelated, with E = I4. Figmes 6(a)-(l) provide 

the equivalent output for this example as was produced in example 1. It can be seen from the 

boxplots in figures 6(a)-(d) that, in genered, there is a slight deterioration in the log(M5I?,) 

for the NSUR estimator compared to the NR estimation procedure. This is expected as the 

regressions Eire actually not related and the NSUR procedure also estimates E. For the single 

median data set (which we take as a typical example in the same way as example 1) the 

estimate of S is 

'' 1.005 -0.207 -0.147 0.174 

0.851 0.043 -0.065 

0.829 0.079 

1.137 

However, the loss in the efficiency of the function estimates is very small and in this median 

data set the function estimates from the NSUR estimator (figures 6(e)-(h)) are almost iden­

tical to those from the NR procedure (figtu:es 6(i)-(l)). This suggests that if it is not known 

E = 

20 



whether a system of regressions is actually related, or not, using nonpaxcimetric SUR esti­

mation can provide significant improvements if there really is correlation, while it is unlikely 

to result in a serious degradation of the function estimates if the regressions were not really 

related. 

— f̂igure 6 about here 

5.5 Implementation Details 

The Markov chain in all these estimations ran with 1000 iterations for the warmup and a 

subsequent 500 iterations for the mixture estimation. The warmup period is conservative 

as the sampling scheme consistently appears to converge (as measured by the distributions 

of the iterates) within fifty iterations. In addition, we aire using a conservative number of 

iterations for the mixture estimation as the estimates / ' appeeir to stabilize eifter around fifty 

to one hundred iterations. 
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Appendix 1 Generating from the conditional posterior distri­

butions 

A l . l Generating from ;3^IE"\ 7, y 

This conditional distribution can be Ccilculated exactly, as 

p(y3^|E-S7,y) a p(y|/3-y,E-\7)p(/3^|E-\7) 
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so that /3-y |E~^, 7, y ~ N{fi,^, nm+i i^'y-^^l)~^)- Here, flj emd A are defined in section 3.1. 

A1.2 Generating from E~^|;9/y, 7, y 

This conditioned distribution is difficult to recognize as S is embedded in the conditioned 

prior for (3j. Therefore, to obtain an iterate we use a Metropolis-Hastings step; see Chib 

and Greenberg (1995b) for an introduction to this tool. The proposal density from which we 

generate a candidate iterate is given by 

g(E-^) a p(y|;3-y,S-\7)p(S-'l7) 

a |S-i |("-" '- i) /2exp|-^tr(fiE-^) | 

which is a Wishart(f2~^, n,m) density. Here, fl is an (m x m) matrix with tjth element 

i^ij = (y' — Xlfifi\i)'{y^ — ^ifjfi'lfj)- A newly generated iterate S~J, is accepted over the 

old value E^j with probability 

. /p(S-ll^7-"y-y)g(^o'ii) ,\ • /P (^7 l^w.7) \ a = mm I ^ • , 1 = nun ' q , 1 I 
\p{Kd\0'y,i,y)q{^:.\,) I lp(/37lE„-;i,7)' ; 

High acceptance rates of 60-90% are obtained because the proposal density q{) is equal to 

the correct conditional density except for the factor p(/3-y|S~\7). 

A1.3 Generating from 7 J |S~ \7 \7J ,y 

This conditioned density can be calculated exactly, with 

p(7J|S-\7\7J,y) ex |p(y|7,£-\/3^)p(/3^|7,S-^)d/3-yp(7J) 

a {nm + l)-n/2exp | - i (y'yly - y'AX^{XLyAX^)-^XiyAy) } (Al.l) 

In equation (Al.l) the regression coefficient is integrated out using /3-^ ~ N{p,j, H^T( -^7- ' ^ -^7)~^) 

and p(7J) = 1/2. The binary variable 7J is generated by evaluating (Al.l) for TJ- = 1 and 

7J = 0 and then normalizing. 
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Figure 3: (a)-(d) Boxplots of the log(M5D,) for t = 1,2,3 and 4, respectively. The left hand 

boxplot is for the NSUR estimator, while the right hand boxplot iii for the NR estimation 

procedure. Panels (e)-(h) contain scatter plots of x* against j / ' , idong with the function 

estimates / ' (bold Une) and true fimctions /* (dotted line) for i = 1,2,3,4 that result from 

applying the NSUR estimator. Panels (i)-(l) plot the function estimates /* (bold line) jmd 

true functions /* (dotted line) for i = 1,2,3,4 that result from applying the NR procedure 

to the same data. P-« 



sample size 

n = 100 

n = 200 

n = 400 

n = 1600 

NSUR estimator 

43s 

58s 

213s 

3850s 

NR procedure 

9s 

14s 

49s 

910s 

Table 1: Average time (in seconds) taken to complete a fit to data generated from the model 

in example 2 for both the NSUR and NR estimation procedures and foiur sample sizes. 

(a)f1 (b)f2 (c)f3 (d)M 

Bl. B2 B3 B4 Bl B2 B3 B4 Bl B2 B3 B4 Bl B2 B3 B4 

Figure 4: Comparision of the five bases S i , . . . , 65. Each plot corresponds contains boxplots 

of the log(M5Di) for the four functions/equations. 
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Figiure 5: Results of the simulation experiment in exjimple 3, with each row corresponding to 

a different sample size and column to a different noise level. In eacli panel, the left boxplot 

is oif the log(AM5D) resulting from fitting the NSUR estimator to the 100 simulated data 

sets, while the right boxplot is of the log{AMSD) resulting from fitting the NR estimator to 

the same data. 
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