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Abstract 
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is to fmd prediction intervals which incorporate an allowance for sampling error associated with parameter 

estimates. The effect of constraints on parameters arising from stationarity and invertibility conditions is also 
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method whereby parameter values are set equal to their maximum likelihood estimates 
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INTRODUCTION 

As indicated by Chatfield (1993) in his comprehensive state-of-the-art review, the 

construction of valid prediction intervals (Pis) for time series continues to present 

considerable difficulties. In particular, Chatfield notes a number of reasons why Pis may be 

too narrow; these include: 

" Model parameters may have to be estimated. 

Innovations may not be normally distributed. 

There may be outliers in the data. 

The wrong model may be identified. 

The underlying model may change, either during the period of fit or in the future." 

In this paper, we focus upon the first of these issues. If the uncertainty relating to parameter 

estimation is not allowed for explicitly, the resulting prediction intervals will be too narrow. 

Further, the non-linear nature of the parameter estimates in time series makes the problem 

intractable as regards an exact analytic solution, so we develop various approximate solutions 

which are then explored in a simulation study. Only when we are confident of our ability to 

produce reliable Pis in the basic case can we address the remaining issues. Thus, in the 

present paper, we examine the construction of Pis when the parameters are unknown and the 

errors are assumed to be normal, leaving the other issues to be addressed in further research. 

We identify four approaches to the construction of prediction intervals and report on an 

extensive simulation study of these alternatives. The particular model used in our simulations 



is the additive Holt-Winters scheme; see Example 2.2 below. Yar and Chatfield (1990) 

provide Pis for this scheme based upon its ARIMA representation and setting the parameter 

values equal to their estimates (the 'plug-in' approach). These authors find the method to be 

superior to previous, albeit heuristic, approaches and the plug-in PI is one of the options 

considered in our study. However, rather than use an ARIMA frajtnework, we have opted for 

a state space scheme; details are given in section 2. 

The principal method considered in the paper is a Bayesian simulation scheme. Ansley and 

Kohn (1986) showed how to obtain the conditional mean squared error (MSE) for a time 

series in the state space framework and pointed out that the correction to the MSE has a 

Bayesian interpretation. Under appropriate conditions we can use the asymptotic sampling 

distribution developed by Ansley and Kohn(1986) to generate the predictive distribution, 

using simulation. De Jong and Whiteman (1994) followed this approach in developing Pis 

for AR(p) schemes; the resulting simulated distribution is shown to converge to the 

predictive distribution using a result of Geweke (1989) and the same justification may be 

employed here. 

An alternative approach would be to use a complete Monte Carlo Markov Chain (MCMC) 

approach; see Bamett, Kohn and Sheather (1996, 1997) for the development of MCMC 

estimation procedures for ARMA models. Our method uses an analytic approximation to the 

posterior distribution of the parameters, which we then feed into Ihe computation of the 

predictive distribution. Thus, our scheme may be viewed as a 'partial' MCMC technique, 

which should be less demanding computationally, an important consideration when a large 

number of series is to be analyzed. 



Another approach would be to consider the non-parametric bootstrap; see, for example, 

Thombs and Schucany (1990), Kabaila (1993) and McCullough (1994). However, since our 

current focus is on getting the correct coverage with a known underlying error process, we 

have not pursued that line of inquiry at this time. 

In the paper, we address three main issues: 

1. the extension of the Bayesian simulation approach to state space schemes; 

2. the use of approximations to simplify the computational task; 

3. an extensive simulation study to determine whether the suggested approach provides Pis 

with the appropriate coverage. 

The structure of the remainder of this paper is as follows. In section 2, we compare single 

source and multiple source state space schemes and justify our use of a single source model. 

In section 3, we describe the various approaches to be considered for the construction of 

prediction intervals. Section 4 describes the simulation study and summarises the 

conclusions from that study. The summary and outline of fiiture directions appears in section 

5. 

2. STATE SPACE REPRESENTATIONS 

We consider the usual autoregressive integrated moving average or ARIMA (p,d,q) 

representation for a time series given by <^iB)w, = 0{B)€, where w, = V'y^, V=(l-5), B is 

the lag operator and ^ and 9 represent polynomials in B of orders p and q respectively. The 

errors {sj are taken to be independent and identically distributed with zero means and 



constant variances; that is, £t~llD(P,<?). The polynomials <^B) and 6(B) may be partitioned 

into regular and seasonal components, and we may add seasonal differences in the usual way. 

Akaike (1974) showed that any ARMA(p, q) scheme has a Markovian state space 

representation consisting of the observation equation y, = h'x, anid the state equation 

X, = Fx,_, +h£, where x/ is the state vector of order k [h=max(p,q+l)] ,h'= (1,0,...,0), 

0 I. 
h'=(\,i//^,...,i//,,_j) and F = p , the i/^j being the psi-weights given by the 

coefficients of powers of 5 in d{B)l(f/(JB). It is a single-source model since only a single 

source of stochastic variation {s^ is included in the model specification. 

Multiple source representations are also available (c/f Harvey, 1990, chapter 2) with a 

measurement equation y, = h'x, + f, and state equation x, = Fx,_, + C5, where C is usually 

the identity matrix, (̂  is a vector of independent errors that are also independent over time 

and are independent of Sf+j for all j . ARIMA schemes may be represented by such a process, 

but sometimes restrictions must be placed on the ranges of the pai-ameters. If C is sufficiently 

general, these restrictions disappear, but the diagonal form of C is the only one used to any 

extent. 

An alternate single source representation (Snyder, 1985) is 

State Space Model: Single Disturbance Source (SSMSI 

y, = h'x,_, +£•, where x, = Fx,., +ae, and s, ~ IID(0,cr^), (2.1) 



a being a[kx\) parameter vector. A variation uses x/ instead of x .̂j in the measurement 

equation, but the present version is more convenient and the two schemes are formally 

equivalent. Aoki (1994) derives this structure as his 'forward-innovation representation' and 

develops estimators for the multivariate case. Any ARIMA(p, d, q) scheme may be 

represented by an SSMS with F = 
<l>^ 

I. •k-\ 

<t>k 0 J 

and a = 
K^o, 

h+Ou 

where k = max{p + d,q). 

In the reverse direction, any SSMS can be expressed as an ARIMA model. We can write the 

state equation of (2.1) as 

x,={I-¥By'a£,. (2.2) 

Substituting (2.2) into the measurement equation of (2.1), 

y, ={h'{l-FBy'aB + l)£,^,/^{B)£,. (2.3) 

Equation (2.3) is the moving average form of the state space model. If we write 

F'' = UA''V where A is the diagonal matrix of eigenvalues and (U, V) are the matrices of 

eigenvectors, (2.3) becomes 

y, = (h'U(l - Ag)"' VoB +1)^,. 

If all eigenvalues of F lie inside the unit circle 

/ 

y,= 
( 

l + h'U Y^hiB^^' Va e, 

The convergence of the coefficients in the infinite polynomial ^{p) corresponds to the roots 

of (^^(5)) = 0 lying outside the unit circle. Thus y, will be stationary if and only if the 

eigenvalues of F are inside the unit circle. 



In the case where F has unit eigenvalues, we can write the state equation of (2.1) as 

{I-FB)x,=a£,. (2.4) 

We can multiply both sides of (2.4) by the adjoint ofl-¥B, W(j5), to obtain 

det(I - ¥B)x, = y/{B)a£,. (2.5) 

If the eigenvalues do not exceed one, then 

det{l-FB) = G{B)H{B) 

where G{B) is a polynomial whose roots are all the unit eigenvalues of F, and H{B) is a 

polynomial that has an inverse. Then (2.4) can be written as 

G(B)x,=—j-4a£,. (2.6) 

The new substitution into the measurement equation of (2.1) will produce the following 

ARIMA model in place of (2.3): 

^(^^y'^r^'^^^^^n^'=^(^)-

If an eigenvalue of F exceeds 1, then the roots of [̂ (̂5)1 lie within the unit circle and the 

process is not stationary and cannot be made stationary by applying unit root operators. 

In a similar manner we can derive the requirements for invertibility. We may write the 

transition equation of (2.1) as x, = Fx,_, + a{y, - h' x,_, ) = ay,+ liBx, where D = F - ah'. 

Thus 

x,=(l-D5)-'a;^, (2.7) 

Substituting (2.7) into the measurement equation of (2.1) 



y,=h'{l-DBy'ay,_,+e,. 

Hence 

{l + h'{l-DBy'aB)y,=n:{B)y, =e, (2.8) 

Equation (2.8) is the autoregressive form of the state space model. This model will be 

invertible (ie roots of ijc[B)) = 0 lie outside the unit circle) if and only if the eigenvalues of 

D lie inside the unit circle. An important observation for later use is that D' -» Oas r -> oo 

if and only if the model is invertible. 

Example 2. J: AR(1) Scheme 

The state space scheme y, = //,_, +e, where//, = ̂ //,_, +ae, corresponds to the 

ARIMA( 1,0,1) scheme y, = ^,_, +£•, -(^-a)f,_, with invertibility condition 

|(t)-a|<l and stationarity condition |(|)|<1. Referencing the SSMS equivalent, D=((t)-a) 

and F=<j), yielding the same invertibility and stationarity requirements. 

The primary focus in section 4 is on the following special case of the SSMS which underlies 

the Holt-Winters method of forecasting (Winters, 1960). 

Example 2.2: Additive Holt Winters Model 

The observation equation y, = £,_^ +6,_, +c,_„, + £•, is accompanied by state equations 

for the level £, = ̂ ,_| + 6,_i + cr,£, , the growth rate b, = 6,_, + ajf, and the seasonal 

factors c, = c,_„, + a^s,. By eliminating the state variables, it can be shown that this 

example reduces to the seasonal ARIMA scheme found by McKenzie (1984) for the 

Holt-Winters method. It may then be established that the conditions 0<ai<2, 



0<2ai+a2<4 and 0<a3<l are necessary for invertibility. The full conditions are given 

by Archibald (1990). 

An empirical study by Garcia-Ferrer and Del Hoyo (1992) contrasited the multiple source 

scheme (Harvey's basic structural model or BSM; Harvey, 1990) with ARIMA modelling for 

a number of series. Garcia-Ferrer and del Hoyo conclude that the ARIMA formulation 

generally produces better predictions than BSM, a result they attribute to the lack of 

orthogonality among the components of the state vector. Given thie equivalence of the 

ARIMA and SSMS representations, their conclusions imply that the SSMS form of the BSM 

is superior to its traditional multiple source counterpart. Note that the issue of orthogonality 

does not arise with SSMS. 

3. MODEL ESTIMATION AND PREDICTION INTERVALS 

3.1 Kalman Filter Approach 

Maximum likelihood estimates of the parameters a and a may be obtained using a 

procedure that incorporates the Kalman filter to expedite the evaluation of the likelihood 

function (Schweppe, 1965). The Kalman filter for the SSMS (Snyder, 1985) includes the 

equations 

e, =>^,-h'x,.,„., (3.1) 

and 

x,|, =Fx,.,|,_, +B,(y, -h'x,_,|,_,) (3.2) 

where x,,̂  denotes the estimator for x̂  based upon the sample Y^=(yi,...^s) ̂ nd where Hf is 

the Kalman gain. From SSMS and (3.2), the estimation error satisfies the recurrence 



relationship x,,, -x , =(F-a,h')(x,_,|,_, -x,_,) + (a, -a)£, from vi'hich the variance of x/|t, 

CT^Vt say, may be obtained. Minimization of the variance with respect to a, yields the 

expression for the Kalman gain a, = (FV,_,h + a) / (1 + h' V,_,h). Provided the process is 

invertible (see section 2 and 3.2) F, will converge to zero as the sample size increases, so that 

â  tends to a. In the steady state the updating equations correspond to those of exponential 

smoothing. 

It should be emphasised that it only makes sense to use the Kalman filter for normally 

distributed disturbances. In other cases, the Kalman filter still yields the best linear filter, but 

this may not be compatible with maximization of the likelihood function. 

3.2 Exponential Smoothing 

An inherently simpler strategy is to bypass the Kalman filter and use exponential smoothing 

from the outset. Conditioning on a trial value for x,, and assuming the sample y„={y],---y„) 

is known, SSMS implies that fixed successive values of the state vector x, can be computed 

recursively with the error correction form of the exponential smoothing equation 

x,=Fx,.,+a(3;,-h'x,.,). (3.3) 

Strictly speaking the x̂  should be read as x,| Y,_, ,0,Xo in (3.3) where 9 denotes the vector 

of xinknown parameters contained in (h, F, a ,a). The SSMS then implies that 

XI Y,_,,6, XQ ~ IID(h'x,_,, a^) from which it follows that the likelihood function has the 
3 

n 

form Z(9, Xg| }̂ ) = P][ p{y, | Y,_,,6,XQ) where pQ is the pdf for s,. Since XQ is treated as a 

(=1 

fixed vector of unknown parameters we have here a conditional, rather than a marginal, 

likelihood function. 
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In the case where the likelihood is based on a normal distribution, the maximum likelihood 

estimate of Xg, denoted by Xo|„, for given 9, is a linear least squares estimate. Estimates of 

successive state vectors, given a sample of size n, are then obtained with the recurrence 

relationship based on (3.3) 

x,^ =rx,.,^ +a(>^, - t 'x , . ,^ ) - (3-4) 

This is similar to the updating equation (3.2) of the Kalman filter, there being two 

differences: 

a) the Kalman gain is replaced by the vector of smoothing parameters; 

b) filtered values of the state vectors are replaced by corresponding smoothed values. 

The links, for given 0, are fiirther highlighted by the relationship 

x„|„ = Fx„.,^., + a[y„ -h'x„.,|„_,) + D"{x,^„ -x,^,_,), (3.5) 

This equation is obtained by rewriting equation (3.4) as x,|„ = Dx,_,|„ + ay,. Lagging this 

recurrence relationship with respect to the sample size n rather than /, and then subtracting the 

result we obtain (x,^ - x,^_,) = D(X,_,^ - x,_,^.,) with a solution (x,^ - x,^.,) = D' (x^^ - XQ^., ) . 

Solving for x,,,,, using (3.4) to substitute for x,,,,,, and letting / = n ̂  we get (3.5). 

This is a decomposition of the updating relationship (3.2) of the Kalman filter into three 

components: an origin shift effect, a structural change effect, and a learning effect. Although 

never explicitly considered beyond period 1, the learning effect indicates that the Kalman 

filter implicitly revises the least squares estimates of the seed vector Xg in the light of new 

information provided by the latest observation jy^ . If the process is invertible (see section 2) 

the learning effect disappears in large samples and we are left with exponential smoothing. 

11 



As indicated earlier, the Kalman filter can only be used as part of the maximum likelihood 

procedure when the disturbances in the SSMS are normally distributed. The exponential 

smoothing method outlined in this section, however, can be applied for any disturbance 

distribution. The seed vector estimates no longer correspond to linear least squares estimates 

and the links with the Kalman filter disappear. This is of little consequence, however, 

because the method continues to yield maximum likelihood estimates. 

For the rest of the paper the maximum likelihood estimates of 6 and x̂  will be denoted by 

0 and XQ (replaces Xo|„). Likewise x, will replace x,|„ as the estimate for x,, obtained by 

applying (3.3). At some points of the paper cr will not be part of 9 and its maximum 

likelihood estimate will be denoted by G . 

3.3 Point Predictions and Prediction Intervals 

Once the maximum likelihood (ML) estimators have been foimd, we construct both point 

predictions and prediction intervals (PI) for up toy periods ahead;y=7,2,...,r. The point 

predictions for / = « +1,...,« + r are the conditional expectations of the model (2.1): 

y, = h'x,_, and x, = Fx,_,. Three principal approaches for the Pi's will be considered: the 

'plug-in' method, a linear approximation and a Bayesian simulation scheme. For 

completeness, we include the heuristic PI construction outlined in Bowerman and O'Connell 

(1993, Chapter 8) and call it the heuristic method (HEM). To simplify the notation we will 

use y p = (jv, ,..., y„) for the sample of past values and y^ = (ĵ „̂ , ,..., >;„̂ )̂ for fiiture 

values. 

12 



Tlug-in' Method (?D 

For the construction of the PI by the 'plug-in' method, the density function p(y^\Q,\Q,a,yp) 

of the future time series is approximated by the Gaussian density ^(yj\Q,Xf,,&,y). The 

predictions are determined in the usual way from this distribution. This method is equivalent 

to the usual procedure where we assume the psi-weights, i//j, which may be determined from 

the parameters, are known. We anticipate that this method will yield intervals which 

understate the true width. 

Linear Approximation Method (LA) 

The Linear Approximation Method accounts for the sampling error that is associated v^th 6, 

where cr is not included in 0. We expect that this method will produce intervals with better 

coverage than the Pi's from HEM and PIM. Let e/ denote the t tli residual estimated from a 

sample of size n obtained during the calculations with (3.3) and write e'= [e'^ ,0'], where 

e^' = [e,,...,e„] and £'=[£^,e}] is the corresponding («+r)xl vector oferror terms; the 

vector of zeros corresponds to the predicted values for e^. For an invertible process, as noted 

in section 3.1, the dependence of y^ on XQ will be slight; thus, we assume that y is 

approximately a linear function of 0 and 8 only and write y* = Z9 + L£ where y* denotes y 

minus the constant term from the Taylor series expansion where the matrices Z and L 

contain the derivatives of y with respect to 0 and s, evaluated at [0, e] . Note that L is a unit 

lower triangular matrix because the typical yt cannot depend on future values of the 

disturbances. 

13 



This linear approximation can be expressed as the following equations for the past (p) and 

future (/) values 

y;=Z^e + L,^e^ (3.6) 

y}=Z^e + L^^e^+L^£^ (3.7) 

Assuming a diffuse prior, we approximate the posterior by a Gaussian distribution with mean 

6 and variance 

Var(e\a,x„y^) = a'{Z^Zj' (3.8) 

where L„„Z„ =Z„. 
pp p p 

To construct Pi's we need the variance of the forecast error for future time periods. In the 

development of this variance first solve for e^ in (3.6) to get 

ep=L-; (y ; -M- (3.9) 

Then substitute (3.9) into (3.7) to find 

y ; = ( z , - L , , Z , ) e + L ^ e , + L , , L > ; . 

This equation can be rewritten in the following form 

y'y=ZyQ + Lffe^+const (3.10) 

14 



where Zj =Zj-'LpjZp. As a result, the distribution pi^j |Xg, cr, y^) is approximated by 

p{\j\\f^,cr,yp\ which, in turn, is approximated by a multivariate Gaussian distribution with 

mean (h'x„^,,...,h'x„^^) and variance matrix o-MZy(Z),Zp) Z^+L^L^j . The prediction 

intervals, for a specified coverage probability, are determined from a standard Gaussian 

distribution. 

In our context, some of the elements of 6 must be nonnegative. Thus whenever 9,<Q, we 

replace it by 0 for the estimation of Var\\j16,x,,,cr,y^). Since we still have yet to include 

the sampling error for or in the variance matrix, it may be possible to improve the coverage 

of the Pi's fiirther. We investigate the addition of this sampling e:rror in the next method. 

Bavesian Simulation Method (BS) 

We may specify the sampling distributions for 0, ic,, and a in terms of the joint pdf: 

/?(6, XQ , CT| 6, XQ , <7); where pQ denotes a generic pdf. We may then develop the predictive 

distribution, in the Bayesian framework of Aitchison and Dimsmore (1975), as 

p{yj\y,) = \\\p{yj\y,,Q,x„a)p(Q,x„o\yptdQdK^da) (3.11) 

where the differential element covers all the items in 9 and inxp, so that the triple integral 

represents k+a+\ dimensions in all, a being the dimensionality oi' 9 and k being the number 

of states. The posterior density for (9,XO,(T) is determined from the sampling distribution 

and a suitable prior in the usual way as 

p[Q,x„(7\yp) = /'(ek,Xo,y Jj5(o-|Xo,y J/7(xo|y^) (3.12) 

15 



In our numerical work, we found that x, tended to x, quite quickly whenever the estimates of 

the smoothing parameters were non-zero; this observation has two main consequences: first 

of all, the results were largely unaffected by the variations in the seed state vector Xg; 

secondly, this relative insensitivity led to some numerical instabilities, particularly when 

7w=12. For both reasons, we decided to focus attention upon the variations in 0 and <T only. 

Thus, we now reformulate (3.11) for the current problem as: 

p{yf\y,) = jjp(y]yp,Q,io><^)p(Q,o\y,,io){dBd<T) (3.13) 

that is, we perform a simulation to arrive at the predictive distribution, which has the form: 

p(y/\yp) = jjp(y/\ypAxo,cr)p(e\yp,x„a)p((7\ypX){dOda) (3.14) 

A Monte Carlo integration method is employed to evaluate p(yf\yp) as follows; the steps 

are entirely the same as those described in Ord, Koehler and Snyder (1997): 

a) p(a\xQ,yp] is approximated by an inverted gamma distribution. A value of cr̂  is 

randomly generated fi-om the approximating distribution. 

b) p(Q\a,\Q,yp) is approximated by a Gaussian distribution with mean 0 and variance 

matrix (3.8). A value of 0 is randomly generated from the approximating distribution. 

Those elements of 0 which violate the invertibility conditions are adjusted. For example, 

for the additive structural model in Example 2.2, we saw that the smoothing parameters a 

must be nonnegative. Negative values are truncated to zero. (We ignore the other 

restrictions on the smoothing parameters for the Holt-Winters method because We rarely 

found them to be binding in practice.) 

16 



c) The distribution p(y^\Q,XQ,a,yp] is approximated by a synthetic sample of Mvalues of 

the vector y^ generated from the model in Example 2.2. The luture values of e, required 

for the calculation of each instance of y^ are themselves generated from an A'̂ (0,cr̂ ) 

distribution. Thus, for each y^ we estimate the probability density ftmction by 

P(yf\y,) = A^-'Ei^Cy/lyp'^/'^o.^,) (3.15) 

where the A''sets of values of 6, and a, are generated in accoi'dance with steps a-b above. 

d) Prediction intervals are constructed directly from the sample of the >y, for a specified 

confidence interval P, by deleting those M[l-P) sample values that are fiirthest from 

the associated point prediction for each period /. The smallest and largest values that 

remain in the culled sample are used as the lower and upper boundaries of the prediction 

intervals. 

This method is similar to one proposed by Thompson and Miller (1986) for stationary AR(p) 

processes. They do not impose constraints on the parameters for stationarity. Nor do they 

employ maximum likelihood estimates. 

4. THE SIMULATION STUDY 

A simulation study was imdertaken to compare the above prediction interval methods. We 

constrained the scope of the study to the additive Holt-Winters method of forecasting. Our 

choice was motivated by the fact that the additive Holt-Winters method is widely used in 

practice, that traditionally users of this method have relied on heuristics rather than sound 

statistical methods to compute associated prediction intervals, and that the structural model 

17 



underpinning it is a non-trivial example from the ARIMA class (as shown in Example 2.2). 

Any simulation study is necessarily limited by the range of model options selected, but we 

believe that the results of our study are reasonably representative of more complex models, 

and likely to provide greater insights than special cases such as AR(1) or MA(1). The case of 

the multiplicative HW scheme has been considered in Ord, Koehler and Snyder (1997). 

4.1 Design 

Each original series was generated using the additive Holt-Winters scheme described in 

Example 2.2. The initial conditions were: ô = 100,6o=2, cj.m = A sm(2nj/m),j=\,2...,m 

where A denotes the seasonal amplitude . Clearly any distribution may be used in the 

simulations, although our emphasis in this paper has been on the normal distribution. We 

considered a mixture of normals (1-^)*N(0,1) + ̂ *N(0,4) for S/CT, q representing the 

proportion of outliers. Prediction intervals were generated for probability levels 0.90, 0.95 

and 0.99. The specified factors in the design are shown in Table 4.1. Note that one set of 

values for a is (0,0,0) so that we may examine the impact of boundary values upon the 

Bayesian simulation method. 

~ Insert Table 4.1 — 

The design generated a total of 36 scenarios or factor combinations for quarterly data and 24 

for monthly data. Each scenario corresponds to a single choice for [n,A,a,a) from Table 

4.1. Each scenario was replicated 10 times. For each replication, we executed the following 

sequence of steps: 

18 



a) generate estimates of XQ , denoted by x„, using Winters' approach (see Bowerman and 

O'Connell, 1993, Chapter 8), based upon the first three years of data. 

b) determine the ML estimators for a conditional upon x„; 

c) generate the forecasts for 8 lead times v^th quarterly data and 24 lead times with monthly 

data. 

d) generate the PI for each of the four approaches described earlier: heuristic, plug-in, 

Bayesian simulation, and linear approximation. 

e) for each of the four methods generate intervals for 0.90,0.95 and 0.99 probability levels. 

This entire process was done twice: once when the error terms are normally distributed (8,640 

intervals for quarterly data and 17,280 for monthly data) and once when they have a mixed 

distribution. We used N=M=\000 and based the analysis upon expression (3.15). The 

simulations were carried out using GAUSS on a Pentium PC. 

4.2 Analysis 

A so-called coverage index, defined by 

CI = (proportion of original series that fall within constructed PIs)/(nominal coverage), 

was used to measure the performance of the prediction intervals. Thus, when the nominal 

coverage is (1-a), CI has an upper limit of l/(l-a) or 1.11,1.05,1.01 for the values 0.90, 0.95 

and 0.99 respectively. Since we want CI to be concentrated around 1.0, it comes as no 

surprise that the measure exhibits marked negative skewness. In general, we foimd the 

median to be a more reliable guide to performance than the mean, although both sets of 

values are recorded in Tables 4.2-4.3. The left interquartile range(LQ=median - lower 

quartile) was used to describe variation in the lower tail, and PUL, the percentage of CI 
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values hitting the upper limit was used to describe the behaviour of the upper tail. The 

standard deviation was found to be unreliable as a summary of variability because of the 

asymmetric nature of the distribution and the severe impact of a few extreme values. 

- Insert tables 4.2 and 4.3 -

The results presented in these tables as percentages, are averaged across replications and 

scenarios; that is, we report 'main effects'. Thus, for example, the CI values in Table 4.2 on 

the impact of sample size for quarterly series with q=0 are each based upon 2880 values 

[={36 scenarios} X {10 replicates} X {8 lead times} X{3 levels of PI} / {3 levels ofn}]. As 

observed earlier, each value is based upon M=N= 1000 iterates. With the exception of the 

row labeled 'Mixed', all results are based on normally distributed disturbances. The single 

row for a non-normal distribution shows results for a mixture of normal distributions with q = 

0.2. 

4.3 Interpretation of the results 

An examination of Tables 4.2-4.3 leads to the following conclusions, grouped by method. 

Heuristic CHE) 

1. Coverage is below nominal in all major categories, but generally close to that of the plug-

in method. 

2. Underestimation appears to be most serious for small sample sizes, longer lead times, a 

confidence level of 90 percent and the intermediate level of smoothing constants. 

3. Changes in the standard deviation, the seasonal amplitude, and the presence/absence of 

outliers seem to have a negligible impact on performance. 
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4. Coverage tends to be lower for monthly than for quarterly series. 

5. The values of LQ and PUL tend to be about the same as for the plug-in method. In each 

case the LQ is somewhat higher than for the other two methods, and the PUL is very 

small, consistent with the persistent tendency for the intervals to have coverage below 

their nominal levels. 

'Plug-In' (?l) 

1. Coverage again is below nominal, but slightly better than the heuristic method for longer 

lead times. 

2. Underestimation occurs when the sample size is small (especiiilly for monthly data), for 

longer lead times, when confidence level is 90 percent, for the highest level of the 

smoothing constants (especially for monthly data). 

3. Changes in the standard deviation, the seasonal amplitude, and the presence/absence of 

outliers seem to have a negligible impact on performance. 

4. Coverage tends to be lower for monthly than for quarterly series. 

5. Comments for LQ and PUL as for the heuristic method. 

Bavesian simulation (BS) 

1. Coverage is a little below nominal across all major categories for quarterly data primarily 

because of the effects of the smaller sample size, which has spill-over effects into the other 

summary classifications. 

2. For monthly data, the average coverage is quite close to the nominal level. 

3. In the case of quarterly data, some underestimation occurs for the highest level of 

smoothing constants, but this is much less marked than for the heuristic and plug-in 

approaches. 
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4. The LQ values are somewhat lower than for the heuristic and plug-in methods, but are 

accompanied by higher values for PUL; the linear approximation has slightly higher LQ 

values, but much lower PUL levels. There are modest improvements in these measures 

with increases in sample size. 

5. Including the sampling error for 9 and b in the variance of y^ improves coverage. 

Linear Approximation (LA) 

1. The intervals tend to be too narrow although the results are quite reasonable in larger 

samples. 

2. LQ is higher than the Bayesian approach, but PUL is lower. 

3. Coverage is much better than heuristic and 'plug-in' methods. Taking the sampling error 

for 9 into account makes a difference. 

Overall, we regard the performance of the Bayesian simulation as superior to the other three 

methods, unless the sample size is large. For large samples, the linear approximation method 

is reasonable but not quite as good as the Bayesian simulation method. Although the 

Bayesian simulation method is computationally quite intensive, it takes less than a minute on 

a Pentium computer for application to a single series and provides an estimate of the 

complete predictive distribution, not just the PI; Tsay(1993) and others have argued that such 

an approach is more desirable. In particular, the entire predictive distribution is required 

when we consider cost-based loss functions, rather than measures such as squared-error loss. 

Also, Bayesian simulation is readily extendable to non-normal errors, although its 

performance remains to be explored. 
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Finally, we note that the results for the Bayesian simulation hold up even when a = 0. As a 

practical matter, we recommend that the model be re-estimated whenever one or more (close 

to) zero estimates arise; the PI should then be constructed from the revised model. 

5. SUMMARY 

We have identified four approaches to the construction of prediction intervals for linear time 

series processes. Using the additive Holt-Winters method as an example, we conducted an 

extensive simulation study to examine the coverage provided by these methods and found the 

Bayesian simulation approach to be superior to the others, at least in the case of normally 

distributed errors. We found considerable gains in the accuracy of coverage by taking the 

estimation of 6 and a into account in the Bayesian simulation method. 

Chatfield (1993) noted that several problems remain in the construction of valid prediction 

intervals, as discussed in the Introduction. We believe that the present framework will 

provide a sound basis for examining a number of these issues. 
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Table 4.1 Design of Simulation Experiment 

factor symbol levels 

number of seasons in 

sample size 

seasonal amplitude 

proportion of outliers 

standard deviation 

year m 

n 

A 

(1 

a 

4 12 

16* 36 72 

0 30 

0.0 0.2 

5 20 

forecasting horizon h [=2m] 

smoothing constants a (0,0,0), (0.2,0.1,0.1), (0.8,0.1,0.1) 

* only used for m=4 
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Table 4.2 Coverage index: quarterly data: normal disturbances 

Method HE 

Average 

PI BS LA 

Effect of prediction lead time 

I 

2 

3 

4 

5 

6 

7 

S 

89 

86 

84 

81 

76 

73 

71 

69 

88 

85 

84 

82 

79 

78 

78 

78 

97 

94 

93 

91 

91 

89 

89 

88 

95 

92 

91 

90 

88 

87 

86 

86 

HE 

94 

92 

90 

88 

83 

80 

77 

74 

Median 

PI 

93 

91 

89 

88 

86 

85 

86 

86 

BS 

99 

98 

97 

97 

96 

96 

97 

97 

LA 

99 

97 

96 

95 

94 

93 

94 

94 

HE 

16 

16 

16 

18 

17 

17 

17 

17 

PI 

16 

16 

16 

16 

17 

17 

17 

17 

LQ 

BS 

13 

14 

15 

15 

15 

15 

15 

15 

LA 

13 

15 

15 

16 

16 

16 

16 

16 

HE 

1 

2 

2 

3 

2 

3 

2 

3 

PI 

1 

1 

1 

2 

3 

3 

3 

4 

PUL 

BS 

13 

11 

9 

10 

12 

12 

14 

15 

LA 

7 

5 

5 

6 

6 

7 

8 

9 

Count 

1080 

1080 

1080 

1080 

1080 

1080 

1080 

1080 

93 94 99 98 

68 72 96 90 

89 89 96 95 

Effect of nominal interval probability 

90 74 77 88 86 81 83 94 92 

95 78 80 91 89 86 88 97 95 

99 84 87 96 93 

Effect of sample size 

16 65 68 89 84 

36 81 83 91 89 

72 90 92 95 95 96 96 99 99 

Effect of distribution 

Normal 79 81 91 89 87 89 97 96 

Mixed 79 83 92 90 88 91 98 96 

Effect of amplitude of seasonal cycle 

0 77 81 91 89 86 88 97 96 

30 80 82 92 90 88 90 98 96 

Effect of standard deviation of disturbances 

5 78 81 91 89 88 88 97 95 

20 79 82 92 90 86 89 98 96 

Effect of smoothing constants 

0 85 86 97 95 95 94 100 99 

20 77 82 92 90 80 86 96 94 

80 74 76 86 84 86 84 93 90 

17 17 16 16 

17 16 15 16 

16 16 13 14 

16 16 15 16 

16 16 15 16 

15 15 13 13 

17 16 15 15 

16 16 13 15 

17 16 15 15 

16 16 14 15 

16 16 15 16 

17 16 14 15 

16 16 13 13 

17 17 15 16 

17 17 16 16 

0 1 3 1 2880 

1 1 6 3 2880 

6 6 27 17 2880 

2 2 20 8 2880 

3 2 9 6 2880 

3 3 8 6 2880 

2 2 12 7 

1 2 9 4 

2 2 U 6 

3 2 13 7 

2 2 11 6 

2 3 13 8 

8640 

8640 

4320 

4320 

4320 

4320 

2 2 18 10 2880 

0 1 8 4 2880 

5 4 II 6 2880 
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Table 4.3: Coverage index: monthly data: normal distribution 

Method HE 

Average 

PI BS 

Effect of prediction interval 

1 

2 

3 

4 

5 

6 

12 

18 

24 

83 

80 

77 

74 

71 

68 

56 

48 

45 

82 

79 

77 

77 

77 

77 

84 

87 

88 

97 

96 

95 

95 

95 

95 

95 

95 

95 

LA 

91 

88 

86 

84 

84 

84 

8S 

90 

91 

HE 

89 

87 

84 

84 

79 

76 

50 

35 

26 

Effect of nominal interval probability 

90 

95 

99 

54 

57 

64 

79 

82 

88 

95 

95 

96 

84 

87 

92 

54 

60 

73 

Median 

PI 

88 

86 

85 

85 

84 

85 

92 

95 

97 

85 

90 

96 

BS 

100 

99 

99 

100 

100 

100 

101 

101 

101 

101 

101 

101 

LA 

96 

95 

93 

92 

92 

92 

95 

97 

99 

91 

95 

98 

HE 

26 

27 

28 

29 

29 

30 

23 

15 

11 

25 

27 

30 

PI 

26 

27 

28 

28 

28 

28 

23 

22 

21 

28 

25 

21 

LQ 

BS 

17 

18 

18 

17 

17 

17 

16 

16 

16 

16 

16 

16 

LA 

21 

22 

24 

23 

23 

23 

22 

21 

18 

24 

22 

20 

HE 

0 

0 

I 

1 

2 

2 

2 

2 

3 

0 

1 

5 

1 

PI 

0 

0 

1 

1 

1 

2 

11 

16 

22 

6 

9 

17 

PUL 

BS 

21 

21 

23 

26 

30 

30 

38 

42 

44 

20 

33 

54 

LA 

3 

2 

3 

3 

3 

5 

13 

20 

24 

6 

10 

23 

Count 

720 

720 

720 

720 

720 

720 

720 

720 

720 

5760 

5760 

5760 

Effect of sample size 

36 41 76 96 83 32 83 101 

72 76 90 95 93 89 95 100 

Effect of distribution 

Normal 58 83 95 88 62 91 101 

Mixed 60 84 95 88 66 92 100 

Effect of seasonal amplitude 

0 57 81 94 86 58 88 101 

30 59 85 96 89 65 93 101 

Effect of standard deviation of disturbances 

5 57 83 96 88 60 91 101 

20 59 83 94 88 65 91 101 

Effect of smoothing constants 

0 65 87 99 95 84 95 101 

20 49 87 97 91 45 92 101 

80 60 75 90 78 74 82 99 

91 14 28 16 24 0 11 50 13 8640 

98 26 22 17 20 4 10 22 13 8640 

95 28 24 16 22 2 10 36 13 17280 

96 29 23 14 20 1 7 30 9 17280 

94 26 26 16 23 2 10 34 12 8640 

97 28 23 16 21 1 11 38 14 8640 

95 27 24 16 22 2 10 36 13 8640 

96 28 24 16 21 2 10 35 13 8640 

100 28 22 16 17 2 22 45 28 5760 

96 20 23 16 21 0 5 37 6 5760 

85 30 28 18 28 4 4 26 5 5760 
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