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Abstract   
 
Fat-tailed distributions are used to model claims on general insurance contracts under 
which extremely large claims are a very real possibility. Since estimation of the tail-
fatness parameter is notoriously difficult – it is one of the major outstanding 
statistical/actuarial problems – methods which do not require precise knowledge are 
valuable. 
A characteristic feature of an important class of fat-tailed distributions, Pareto, is that 
ratios of expected values of large claims in the form   
 

{1+E[X(n)]}/{1+E[X(n-k)]}  
 
are independent of sample size. For suitably modelled uncertainty about the tail-
fatness parameter, premiums to insurers with constant relative risk aversion can be 
represented in terms of these ratios. 
Premiums increase with the insurers’ risk-aversion and depend upon their perception 
of the fattest-tailed distribution generating claims. 
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1. Introduction: a feature of fat-tailed risk 
 
In an insurance context we define thin-tailed risk as that involving distributions for 
which moments of all orders exist. 
Fat-tailed risk distributions have only finitely many integer moments. 
One characteristic which uniquely differentiates fat-tailed risk from thin-tailed risk, 
and allows for discrimination between degrees of  ‘tail obesity’ is the behaviour of 
order statistics. We investigate such behaviour for the Pareto distribution. 
 
 
1.1  Expected value of Pareto order statistics 
 
For Pareto  X  while the expected value of larger order statistics X(n-k) increases with  
n, ratios of the form {1+E[X(n)]}/{1+E[X(n-k)]} are independent of n (and depend only 
on  k and δ). 
The actual form of the ratio is essential to our premium representation theorem; rather 
than relegate the proof to an Appendix we prove it now. 
 
The density of the kth order statistic X(k)  of a sample of size  n  from distribution  
F(x) and density f(x)  is: 
 

 fk(x) = 
)!()!1(

!
knk

n
−−

F(x)k-1(1-F(x))n-kf(x) 

 
(see for instance, Kendall and Stuart, 1969, Vol. 1). 
 
When  Y (>0)  is Pareto with F(y) = 1-(1+y/λ)-δ, i.e. we measure Y in units of the 
scale parameter λ,  Y=λX then F(x) = 1-(1+x)-δ  (δ > 0). However it is necessary to 
have δ > 1 in order that µ = E[X]  = (δ-1)-1 exists and we assume this. When δ > 2 the 
variance of  X exists and O(n-1) convergence of the sample mean is ensured by the 
central limit theorem. Our main focus is thus mainly on values of δ in (1, 2]. 
This means that: 
 

(i) for 1<δ≤2  the variance of X does not exist, 
 
(ii) for 1 < δ ≤2  the variance of  X(n) does not exist but all other order statistics 

have finite variance (this follows easily from substitution in fk(x)). 
 
Then: 
 

E[1+X(k)] =  ∫
∞

−−−−−− ++−++
0

)(11 )1(})1(1{)1()1( dxxxxx knk δδδδ

 
Substitution  u = (1+x)-δ  leads directly to: 
 
E[1+X(k)] = Γ(n-k+1-1/δ)Γ(n+1)/{Γn+1-1/δ)Γ(n-k+1)}   (1) 
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Thus E[1+X(n)] = 
)/1( δ−n

n ·
)/11(

1
δ−−

−
n

n ·   ·  · 
)/11(

1
δ−

 

 
                          ~ n1/δΓ(1-1/δ) for large  n, (See Feller, 1965, p.66) 
and  
 
                          ≈ n1/δ/(δ-1) = µn1/δ if  δ is close to 1. 
 
when we are dealing with large values when δ ε (1,2). 
 

Similarly, from (1)        E[1+X(n-1)] = 
)/1( δ−n

n ·
)/11(

1
δ−−

−
n

n ·   ·  · 
)/12(

2
δ−

 

 
 
                                                         = (1-1/δ)E[1+X(n)] 
 

And  E[1+X(n-2)] = 
)/1( δ−n

n ·
)/11(

1
δ−−

−
n

n ·   ·  · 
)/13(

3
δ−

.
2
1          

 
                           = (1-1/δ){1-1/(2δ)}E[1+X(n)]         
 
More generally: 
 
E[1+X(n-k)] = (1-1/δ){1-1/(2δ)}· · · {1-1/(kδ)}E[1+X(n)]                          (2) 
 
And 
 
E[1+X(n)]/E[1+X(n-k)] = [(1-1/δ){1-1/(2δ)}· · · {1-1/(kδ)}]-1                     (3) 
 
 
Some values of E[1+X(n-k)] for various values of   n  and  δ are provided in Table 1 
below for k = 0, 1, 2. 
 
 
        δ = 2.0   (µ=1)                 n = 10                         n = 100                     n = 500 
E[1+X(n)] 5.68 17.75 39.64 
E[1+X(n-1)] 2.84 8.87 19.82 
E[1+X(n-2)] 2.13 6.66 14.87 
 
        δ = 1.5   (µ=2)                 n = 10                         n = 100                     n = 500 
E[1+X(n)] 12.57 57.78 168.80 
E[1+X(n-1)] 4.19 19.26 56.27 
E[1+X(n-2)] 2.79 12.84 37.51 
 
 
        δ = 1.1   (µ=10)                 n = 10                         n = 100                     n = 500 
E[1+X(n)] 85.57 691.5 2985.91 
E[1+X(n-1)] 7.78 62.86 271.45 
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E[1+X(n-2)] 4.24 34.29 148.06 
 
Table 1:  Some expected values of (1+Pareto order statistics)  for selected sample 
sizes and values of tail-fatness parameter. Numbers down columns are in constant 
ratio in each panel. 
 
Thus the ratio  
 

E[1+X(n)]/E[1+X(n-1)] = (1-1/δ)-1 → ∞  as  δ → 1; 
 
 for the very fattest-tailed distributions for which the mean exists. 
 
This is in contrast to thin-tailed risk where  
 

E[1+X(n)]/E[1+X(n-k)] → 1 for all  k  as n → ∞  
 
(heuristically, for all thin-tailed distributions δ = ∞, and the result follows from (3)).  
We want to determine circumstances under which insurance premiums can be 
represented in terms of ratios like these. 
 
 

2.  Two classic measures of risk aversion 
 
Noble laureate Kenneth Arrow (1971) defined two measures of risk aversion relating 
to a utility of wealth function U(x): 
 
RA = -U′′(x)/U′(x)  is an investor’s absolute risk aversion. 
 
RA  should be decreasing with x (or at least not increasing) 
 
RR = -xU′′(x)/U′(x)  is an investors’ relative risk aversion 
 
RR  should be increasing with x (or at least not decreasing) 
 
Different functional forms of utility function are implied by holding these two 
measures constant. 
 
 
 
2.1  Investors with constant absolute risk aversion 
 
Investors with constant absolute risk aversion  s  have a utility function 
 
   U(x) = -exp(-sx)   (s>0)    (4) 
 
Assets priced under the expected utility principle  
 
   E[U(X)] = U(P)     (5) 
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with U(x) as in (4) lead to prices which depend on the Laplace tranform of the density 
of  X.  
Specifically, 
 
   P = -lnMX(-s)/s 
 
 
where  MX(-s)  is the Laplace transform. These can be found in closed form for assets 
with both thin and fat-tailed payoff distributions (see for instance Bowers et. Al. 1986, 
Gay, 2003b). 
 
 
Utility theory does not lend itself naturally to general insurance premium 
determination. The reason is that given Jensen’s theorem/inequality, utility functions 
are the wrong shape for premium pricing. In the actuarial literature this difficulty is 
negotiated by using ‘special versions’ of the expected utility principle as follows: 
 
For an insurer of wealth W the minimum acceptable premium  P  to insure against 
loss X is given by: 
 
   E[U(W+P-X)] = U(W)    (6) 
 
For customers with wealth W  the rule is: 
 
   E[U(W-X)] = U(W-P)     (7) 
 
 
The equation need not involve W. There is the ‘zero utility principle’: 
 
   E[U(P-X)] = U(0)     (8) 
 
See for instance Rolski et al. (1998). 
 
When these rules are applied to investors with constant absolute risk aversion, i.e. 
U(x) as in (4);  all lead to: 
 
    Exp(sP) = E[exp(sX)]    (9) 
 
where the pricing function (the exponential) is the right shape for premium 
determination. 
Acknowledging this, the simplest thing to do is admit a wider class of pricing 
functions of appropriate shape for premium determination into pricing repertoire. 
This case is argued in Gay (2003a). 
 
Premiums determined under (9) are given by: 
 
    P = lnMX(s)/s 
 
where MX(s) is the moment generating function of  X. Rolski et. al refer to this as ‘the 
exponential principle’. 
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The premium depends on all the moments of the distribution.  
 
There is no constant absolute risk-averse price for any fat-tailed asset. 
 
 
2.2  Investors with constant relative risk aversion 
 
Investors with constant relative risk-aversion  α  (α > 0) have 
 
    U(x) = x1-α/(1-α)     (10) 
 
where we interpret α = 1 to mean U(x) = ln(x). 
 
Asset prices determined under (10) thus involve Mellin transforms (see for instance 
Oberhettinger, 1974). More precisely 
 
    P = E[X1-α]1/(1-α) 

 
where in general  α  will need to be suitably restricted for different payoff 
distributions.  
 
For instance if  X is a fat-tailed payoff,  f(x) = δ(1+x)-δ-1  (δ >1) 
 

P1-α = Γ(2-α)Γ(δ+α-1)/Γ(δ). 
 
If the argument of the gamma function is restricted to be non-negative,  
(0 < α < 2) all prices are in the range (δ-1, (δ-1)-1). 
 
 
 
2.3  Premiums which reflect constant relative risk aversion  
 
We extend by analogy the pricing principle embodied in (5) to pricing functions 
mθ(x), x ≥ 0, via the rule     

 

mθ(P) = E[mθ(X)]    (11) 

 

where θ is a suitable parameter set. 
 
For constant relative risk aversion we choose  m(x) = xα-1 , (α ≥ 2, i.e. by analogy with 
the constant absolute risk aversion case, using the reciprocal of the utility function for 
α values which give the right premium pricing shape), then we obtain the pricing rule: 
 
 

                 Pα-1 = E[Xα-1]     (12)  
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The simple device provides a coherent pricing framework. General insurance 
premiums for both thin-tailed and fat-tailed risk are available. The premium 
 
    M = E[Xα-1]1/(α-1) 
 
is classically an increasing function of  α (α ≥ 2). 
 
 
 
 
2.4   Premiums for fat-tailed risk: Pareto premiums 
 
From (12)  the Pareto premium P is determined by the rule: 
 
  Pα-1 = E[Xα-1] 
 

                               =  ∫
∞

−−− +
0

11 )1( dxxx δαδ

                           = δB(α, δ-α+1) 
 
                           = Γ(α)Γ(δ-α+1)/Γ(δ) 
 
If  α = 2, P = (δ-1)-1. 
 
For Pareto, it is more convenient to price the claim (1+X) and use mα(x) = xα-1. 
This makes no difference to the asymptotics. 
 
Then      

 Pα-1 = δ/(δ-α+1) 
 

                                      P = {1-
δ

α 1− }1/(α-1)   (13) 
 

where again α = 2 leads to P = δ/(δ-1)-1 for (1+X) and risk-neutrality. It is also clear 
that we need α-1 < δ since Pareto moments exist only up to order δ. 
 
 
The diagram below depicts premiums based on constant relative risk-aversion for a 
fat-tailed Pareto risk (δ = 1.1, i.e. µ = 10). 
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Premium based on constant relative risk-aversion
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Figure 1:  Cost of bearing risk incorporated in the insurance  premium for a fat-tailed 
risk based on constant relative risk aversion (δ = 1.1, µ = 10). 
 
Figure 2 below provides a comparison for insurance premiums involving fat-tailed 
(Pareto) risk and thin-tailed (negative exponential) risk based on constant relative risk 
aversion; 
 

Thin and fat-tailed insurance  premiums under constant relative risk aversion
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Figure 2: Thin and fat-tailed premiums under constant relative risk aversion 
compared; Pareto and negative exponential with the same mean (µ = 1). 
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3.  Premiums when the tail-fatness parameter is uncertain; 
the fat premium representation theorem 
 
One of the major outstanding statistical problems in the area of fat-tailed risk is 
estimation of the tail-fatness parameter δ. 
A recent publication outlining and improving the current state of affairs is Teugels 
and Vanroelen (2003). 
The difficulties attaching to estimation of the tail-fatness parameter in the context of 
insurance risk are well understood. Large claims are rare observations. The large 
sample sizes needed to establish estimator precision especially when the tails are very 
fat, are invariably unavailable; it is in just this situation that the usual estimators are 
least efficient. 
 
We now show that the tractable form of the constant relative risk-averse premium 
(13) provides an elegant and transparent premium when the tail-fatness parameter is 
subject to suitably modelled uncertainty. 
 
We re-parametrize (13) so that  
 
   P = (1-ρ/β)-β     (14) 
 
where ρ = 1/δ, β = 1/(α-1). Because 1 ≤α-1 < δ, it follows that ρ < β ≤1. 
 
In extreme value theory it is usual to put ρ = 1/δ; so 0 < ρ < ∞ for the tail-fatness 
index, but only distributions with 0 < ρ < 1 have means and we impose this restriction.  
 
In (14),  β is a measure of ‘risk tolerance’; (the largest value of  β, β = 1 leads to P = µ 
= δ/(δ-1)-1 for claim (1+X); the smallest,  β = ρ leads to P = ∞).  
 
However β loses this character when it is used as the limit of integration in the 
expectation below. Its role as the upper limit of ρ (i.e. the fattest tail under 
consideration) means that its increase is certain to cause an increase in the insurer’s 
premium. 
   
Suppose ρ is unknown and  β0 = 1/δ0  is a putative or estimated value of ρ. 
It ultimately will not matter if we want to adjust this value to a higher one – i.e. a 
fatter tail; this can be done by increasing β. 
 
In the interests of prudence in premium setting, we want to be able to accord values 
near ρ0 high probability density. 
In this paper the uncertainty in the value of  ρ  near ρ0 is expressed by use of beta 
densities restricted to (0, β).  
 
We have: 
 
 
  fρ(x) = νβ-νxν-1,   (0 < x < β, ν ≥ 1, ρ < ρ0 ≤ β <1) 
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The parameter  ν  now has the character of risk aversion. As  ν  increases the 
uncertainty attaching to  ρ  reflects the insurer’s increasing conviction (or fear) of its 
value being the largest value  ρ0. 
Figure 3 below indicates this. 
 

Beta densities modelling uncertainty in tail-fatness parameter
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Figure 3:  Beta densities with increasing ν reflecting higher conviction of ρ being 
close to ρ0 (here ρ0 =1/1.1). 
 
 
Under these circumstances the expected value of the constant relative risk-averse 
premium is given by 
 

     Iν = E[P]  = ∫ −−− −
β

βνν

β
νβ

0

1 )1( dxxx   

 
             = Γ(ν+1)Γ(1-β)/Γ(ν-β+1)                            (15) 

 
(see for instance, Gradshteyn and Ryzhik, 1965, p.284, 3.191(1)) 

 
               

 
In general  ν  need not be an integer, but it is very convenient if it is. 
 
For suppose ν = k. Then (15) gives  
 

  E[P] = 
)()2)(1(

321
βββ −⋅⋅⋅−−

⋅⋅⋅⋅⋅
k

k     (16) 
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This expected value is a version of equation (3) relating expected values of large order 
statistics, a correspondence we now demonstrate. 
 
For fixed values of  ν  minimum premiums occurs when β = 1/δ0 (the ‘thinnest’ fat 
tail). 
Denote by  Pν(β)  the premium determined as an expectation under (10), and Pν the 
minimum premium when β0 = 1/δ0. 
 
If  ν = 1, fρ(x) = 1/β = δ0 (‘ the law of equal ignorance’) 
  

   P1 = (1-β0)-1 
 
         =(1-1/δ0)-1  
 
         = E[1+X(n)]/E[1+X(n-1)] 

 
i.e. P = µ0 = δ0/(δ0-1)-1 the risk-neutral or globally minimum acceptable premium for 
claim (1+X) when δ0 is the true tail-fatness. 
 
As β increases towards 1, the premium increases according to  
 

P1(β) = 1/(1-β). 
 
 
 
For ν = 2  , fρ(x) = 2x/β, the minimum acceptable premium when β0 = 1/δ0 is given by 
      
                                       P2 = 2/{(1-β0)(2-β0)}-1 

 
                                             = (1-1/δ0)-1{1-1/(2δ0)}-1 
 
                                             = E[1+X(n)]/E[1+X(n-2)] 
 
As β  increases, the premium increases via 
 
     P2(β) = {(1-β)(1-β/2)}-1 
 
and so on. 
 
In general; minimum premiums for ν = k are given by 
 

    Pk = {(1-1/δ0)(1-1/(2δ0)(1-1/(3δ0) ·  ·  · (1-1/(kδ0))}-1 
 
                                 = E[1+X(n)]/E[1+X(n-k)] 
 
 
and premiums for claim (1+X) and larger values of  ρ0  by increasing  β in the formula 
            

Pk(β) = 
)()2)(1(

321
βββ −⋅⋅⋅−−

⋅⋅⋅⋅⋅
k

k  
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Thus we have the remarkable result that for premiums determined as expected values  
under constant relative risk aversion, the uncertainty attaching to the tail-fatness 
parameter (modelled by a restricted beta distribution) is reflected directly in a choice 
of ratios of expected values of the largest order statistics. 
 
The relation between minimum premiums and uncertainty in ρ  is depicted by the end-
points of the graphs in Figure 4  below. As β at each (integer) level increases, 
premiums increase. The putative value of  ρ is ρ0 = 1/1.1 (i.e. δ = 1.1). 
 

Premiums under tail-fatness uncertainty and constant relative risk aversion
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Figure 4;  Fat-tailed insurance premiums under constant relative risk aversion when 
the tail-fatness parameter value is uncertain (in the vicinity of δ0 = 1.1) 
 
When ν is not an integer 
Because Iν  is a continuous function of   ν,  premiums ‘deform continuously’ between 
the integer values. The non-integer curves determined from numerical evaluation of  
 

   Pν(β)  = ∫ −−− −
β

βνν

β
νβ

0

1 )1( dxxx
 

 
              = Γ(ν+1)Γ(1-β)/Γ(ν-β+1) 

 
 ‘fill in the spaces’ along curves between the integer value curves (and between ratios 
of the sort: 
 

 E[1+X(n)]/E[1+X(n-k)] 
 
 
The results in the present framework are summarised as follows: 
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4.1  The  fat premium representation theorem 
 
When the claim distribution is Pareto with tail-fatness parameter  ρ  in the range  
0 < ρ ≤ β < 1, uncertainty in ρ being modelled by restricted beta densities, minimum 
premiums for insurers with constant relative risk aversion for claim (1+X) are 
determined as expected values at the value ρ = 1/δ  and are  ratios of expected values 
of the order statistics according to the following scheme: 
 
When uncertainty is modelled by fρ(x) = kxk-1/βk on (0, β),  
 

    Pk(β) = (1+E[X(n)])/(1+E[X(n-k)]  
 
                                     = [(1-1/δ0){1-1/(2δ0)}· · · (1-1/(kδ0))]-1 

 

             = 
)()2)(1(

321
βββ −⋅⋅⋅−−

⋅⋅⋅⋅⋅
k

k  

 
 
In general the value of the minimum premium for a given value of risk-aversion  ν  is 
given by 
 

Pν(β) = Γ(ν+1)Γ(1-β)/Γ(ν-β+1) 
 
         = νB(1-β, ν) 
 

For k-1<ν<k ,  Pν  falls between  
 

Pk-1 = (1+E[X(n)])/(1+E[X(n-k+1)]  
 
and  
 
  Pk = (1+E[X(n)])/(1+E[X(n-k)] 
 
 
 
 
 
 
5. Remarks 
 
1.  The representation of premium in terms of expected values of the largest claims is 
interesting. The raison d’etre of fat-tailed distributions in insurance is for large claim 
modelling. Large claims represent greatest risk for insurers. It is pleasing to be able to 
frame premium structure in terms of ratios of expected values of order statistics which 
are independent of sample size. 
 
2.  Uncertainty about the value of the tail-fatness parameter (ρ = 1/δ) is expressed in 
very simple terms via the family of beta densities. 

 13



 
3. The insurer has considerable flexibility in management of risk. It must: 
 
(i)  choose an estimated or putative value β = 1/δ0  for the fattest tailed risk it is 
prepared to entertain; this choice will depends on the insurer’s level of relative risk-
aversion 
 
(ii)  decide upon an appropriate value of  ν  for the beta distribution 
 
   fρ(x) = νβ-νxν-1,   (0 < x < β, ν ≥ 1, ρ < ρ0 ≤ β<1) 
 
As ν increases, premiums increase, so the value of   ν  can also reflect risk-aversion, 
in the sense it reflects the degree of belief that fat tails (i.e. high ρ values) dominate 
the claims generation process. 
 
 
 
These two features, although artefacts of the model, reflect practical issues facing 
insurers. 
 
4.  Since premiums are determined as expected values (equation (15)), it is sensible to 
ask ‘when do the actual premiums have variances?’ The variance will exist when  
 

  E[P2]  =  ∫ −−− −
β

βνν βνβ
0

21 )/1( dxxx

exists. 
It is easy  to show that  β must be less than ½  i.e. δ >2. That is, only when the 
variance exists for the original claims distribution (the result follows from the fact that 
we need equation (16) to make sense when β is replaced by 2β). 
 
 
5.  Summary and conclusion 
 
Fat-tailed distributions are used to model insurance business with potential large 
claims. It is possible to structure premiums in terms of expected values of these 
claims. 
For Pareto claims, when the tail-fatness parameter is unknown but its uncertainty 
suitably modelled, insurance premiums for investors with constant relative risk-
aversion determined as expected values can be represented in terms of ratios of 
expected values of the largest order statistics.  
Premiums for more risk-averse insurers increase with their conviction as to the true 
value of the tail-fatness parameter being near the extreme end of the range, and with 
the actual range value δ0. 
The premiums form a continuum, with values between the ratios expressive of non-
integer beta distribution models for tail-fatness uncertainty.  
The premium structure articulates practical decisions and some of the fears which face 
an insurer setting premiums 
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