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Abstract 

This paper investigates the problem of testing for structural change for 
diagnostic purposes. We propose a modified form of the fluctuation test 
of Ploberger et al. (1989). The modified fluctuation test has the same 
asymptotic distribution as the fluctuation test but much better finite 
sample performance. A comparison of the supF test of Andrews (1993) 
shows that both tests are actually based on the same components. 

Acknowledgements: Part of this research was funded by an Australian 
Research Council Large Grant. 

mailto:Inder@Monash.edu.au


1. Introduction 

This paper considers the problem of testing for structural change for diagnostic 

purposes. The most famous test for this purpose is probably the CUSUM test of 

Brown, Durbin and Evans (1975). However, the results of Ploberger and Kramer 

(1989) and Hansen (1991) show that the CUSUM test only has trivial local power 

against certain types of structural change. As an alternative, Ploberger, Kramer and 

Kontrus (1989) (henceforth PKK) propose a formal test called the fluctuation test 

which has non-trivial local power irrespective of time and type of structural change. 

The finite sample behaviour of the fluctuation test has been investigated by Sonberger 

and Kramer (1986), Kramer, Ploberger and Kontrus (1989) among others and 

intensively applied in empirical research (see Sonberger and Kramer (1986)). 

On the other hand, a number of test statistics developed to test against various 

specified alternatives have also demonstrated the same desirable local power property 

as the fluctuation test. See, for example, Hansen (1990), Andrews (1993), Andrews 

and Ploberger (1992) among others. In particular, the supF test of Andrews (1993) 

seems of special interest. Although designed to detect a one-time discrete jump, it 

was also recommended by Andrews for use as a diagnostic test. 

This paper considers a modified form of the fluctuation test. Following the 

same idea of the fluctuation test but employing a different choice of weighting matrix 

and a more careful consideration of the partial sample estimation, we derive a new test 

called the modified fluctuation test. The asymptotic distribution of the modified 

fluctuation test is found to be free of nuisance parameters. We also investigate the 

relationship between the supF test and the modified fluctuation test. It is found that, 

although both tests stem from different classes of test procedures, they are actually 

based on the same ingredients. A Monte Carlo experiment is then conducted to 

compare the finite sample performance of the modified fluctuation test with the 

fluctuation test and supF test. The results show that the modified fluctuation test can 

be significantly more powerfiil than the fluctuation test in small samples. It is also 

preferred to the supF test in some cases, although neither dominates the other 

uniformly in finite samples. 



The structure of this paper is as follows. In the next section we take a close 

look at the fluctuation test and propose our new test, the modified fluctuation test. 

The asymptotic distribution of the modified fluctuation test is also derived. Section 3 

examines the relationship between the supF test and the modified fluctuation test. 

Section 4 discusses the experimental design of the Monte Carlo study and its results. 

Some conclusions are made in section 5. 

2. A Modified Fluctuation Test 

Consider the linear regression model 

y, =x;p,+u, t = l,...,T (1) 

where yt is the dependent variable, x, is a (kxl) vector of observations on the 

independent variables, P, is a (kxl) vector of unknown regression coefficients, and u, 

is an unobservable disturbance term. The null hypothesis is that P, = PQ for all time 

periods t= 1,...,T. 

We impose the following assumptions which are standard in this literature: 

(A. 1) The regressors x, are non-stochastic. 

(A.2) limsup —^11 x,|p** < QO for some 5 > 0 (|H| is the Euclidean norm). 
T-»oo i I 

1 " 1 1^" 
(A.3) l im-2,Xtx; = lim - 2^x^x[=R, 

T-»oo 1 I min(T,n)-»oo 1 . . 

for some non-singular, non-stochastic (kxk) matrix R. 

(A.4) The disturbances u, are iid(0,CT ). 

In fact, assumptions A. 1 and A.4 can be weakened to allow, for example, for 

dynamic models; see PKK for details. Denote X' = (X|, X2,...,Xt)', Y' = (y,, y2v5yt)'-

The test proposed by PKK (1989) examines successive OLS parameter estimates 



P" =(X' X')"'X' Y' for t = k+l,...,T and rejects the null hypothesis whenever these 

estimates fluctuate too much. Their test statistic is 

S<̂ ' = max 4-\\(X'-X'y"S' -p^)|L , (2) 
i=k,..,T CTT 

where ||||„ denote the maximum norm; specifically, for any kx 1 vectors 0 and 0 

||e^-02||„ = max |0 | -0? | . (3) 
i=l,...,k 

a is a consistent estimate of the standard deviation of the disturbances. PKK (1989) 

. suggest estimating a by 

a = ^ Zcy.-^-'P')' (4) 
j - k ^ 

The test statistic S^̂  can be written as 

S('^)= sup||B<^>(r)|U, (5) 
O^r^l 

where B '̂̂ (r) = 4^(X^'X^)^(P'^'' -p^), T(r) is the largest integer less than or equal 
GT 

to k+r(T-k). B (r) is a k-dimensional stochastic process whose trajectories are right 

continuous at each r e [0,1] and possess left-hand limits. Using the general result on 

the convergence in distribution of random elements, PKK (1989) showed that under 

Ho 

B^(r) i B(r) = W(r) - rW(l), (6) 

where = denotes covergence in distribution as T -)• «, W(r) is a k vector of 

independent Brownian Motion on (0,1). B(r) is thus a process known as "tied-down 

Brownian Motion". This process has well known boundary crossing probabilities. In 

particular, P[sup(,̂ ,̂ ,||B(r)|L ^ x] is well known (Billingsley (1968, P.85)). 



In the fluctuation test, the choice of (X^X^)^ as the weighting matrix is 

somewhat arbitrary. The motive behind this is to standardize the differences P- - p/ 

as well as to facilitate the evaluation of the limiting distribution. Let [.] denote 

"integer part". Notice that 

pt^^l-P^=(Xl^^]'xf^^])-'ExiUi-(X^'x^r'ixiUi, 
I I 

so we can show that 

var(pfT^l-p'^) = a2[(X[^^l'xt^^])-'-(XT"'x^)-']. 

Compared with (X^'X^)^, another, and perhaps a better, choice of weighting 

matrix is (X'̂ "' X'^'')^, which varies consistently with the partial sample estimate 

P'^''. We thus define the first modified fluctuation test statistic B[: 

B^ = sup||f<^(r)|L (7) 
0£r£l 

Where fr>(r) = ^ (Xf̂ Ĵ'xfT"̂ l)> (̂pfT'̂ ]-p"̂ ). 

From (7), it is clear that f/^'(r) is based on the difference between p^, the ftill 

sample estimate of P, and p'^'', the partial sample estimate of P which uses the first 

[Tr] observations. As r approaches 1 this test is likely to have poor power as p'^'' 

approaches P^. An alternative test which would not suffer from this problem would 

be one which uses the last T-[Tr] observations to get another partial sample estimate 

of p. We denote p" '̂'̂ '' as the partial sample estimator of p which uses the last T-[Tr] 

observations. We define the second modified fluctuation test statistic B\ :̂ 



B ( / ) = sup | |ff)(r)|L (8) 
0<ril 

where ff>(r) = A-^(X^-'^^''X^-f^'i)"'(P^-'^" -p^) . 
CT 

B{^^ and B ^ contain the different information conceming possible structural 

change in the regression model. Bĵ ^ is likely to have low power for structural change 

near the end of the sample, and B̂ ĵ ' will suffer power loss near the start of the 

sample. We can thus form a new test which combines the information provided 

individually by Bĵ ^ and B ^ . Define the modified fluctuation test statistic B 

B<̂ ' = sup { c\\f^'\v) IL+ (l-c)||ff>(r)|L (9) 
OSrSl 

where c is any constant which satisfies 0 < c < 1. If we choose c = 0, then 

B "̂" = B'i^K If we choose c = 1, then B ^ = B</'. Thus BJ and B(2̂ ^ are included as 

special cases of B . The choice of c will be considered in section 4. 

The asymptotic distribution of B^^ is an immediate consequence of the 

following results, which are of some interest in their own right. 

Lemma 1. Under HQ and the assumptions (A.1)-(A.4) 

RT(r) = i ( x I T ^ l ' x t ' ^ ^ l ) > ^ ( p l - P o ) i 4 w ( r ) , 
a Vr 

r ( r ) = i(X[T^l'xf^^l)^(P''-Po)iVi^W(l), 
a 

where W(r) is a k vector of independent Brownian Motion on (0,1). 

Proof Define a k-dimensional random vector 

e, =x,u,. 

Under our assumptions, 8, obviously satisfies the conditions set out by Phillips 

and Durlauf (1986, p.475). Then following their Theorem 2.1, we have 



[Tr] 

-^(a2R)->^(|;xiUi)dW(r) Where R = plim:j: 

On the other hand, 

RT( , ) ^i(X[^^l'x[T'^J/nxf'^'''x['^^])-'XxjUi 
^ 1 

Z'^i^i-

= -^[a2(X['^^l'xf^^l)/Trr>^Z^i" 
vrT 1 

1 

T 
R^(r) = i(X[^^]'x[T'^J)^(xT'X^)-'ZxiU 

^[a(X'^'X^)/T]-'[(XlT^l'xlT^])/Tr]>^Z^i^i-
vT 1 

Since (X^'X^)/T^ R,(X'^"'X'''")/Tr-^ R, and the Lemma follows. 

Lemma 2. Under HQ and the same assumptions as Lemma 1, 

S'^(r) = i(x'r-[Tr]'xT-[Tr])l/2(pT-[Tr] _ p^^ j - ^ ( W ( l ) - W(r)), 
CT = ' V l - r 

S'̂ (r) = l(X'^-f'^^]'X^-['^^l)^(P'^ - Po) d ^ / i ^ W(l) 

where W(r) is the same k-dimensional Brownian Motion as in Lemma 1. 

Proof. Notice that 



^ [Tr]+1 

= - j J ^ [62(X^-f^^l 'X^-t^^b/T(l-r)r>^(2xiUi-XxiUi) . 

sT(r) = 1 (xT--t'r^l'X^-t'^^J)^(X'^'X'^r'y XjUi 
^ 1 

T 

= : ^ [ ( X T - [ T r ] ' x ' r - [ T r ] ) / - r ( i _ r ) ] ; ^ [ a ( X ' ^ ' x T ) / T ] - ' ^ X i U i . 

Again by Theorem 2.1 of Phillips and Durlauf notice that the R (r), 

R^(r), S^(r) and S^(r) are based on the same innovations XiUi(i = 1, 2,...,T), so 

Lemma 2 follows in a similar way to Lemma 1. 

Theorem 1: Under HQ and given assumptions (A.1)-(A.4), the statistic B^^\r) 

has a well defined limiting distribution as T ->• oo with distribution function 

F(x) - 0 x < 0 , 

00 

= [1+2 2](-iyexp(-2ix')] ' ' x > 0 . (10) 

Proof. Since f|'^\r) = Ay7[R'̂ (r) - R'^(r)], f f ^(r) = V T ^ [S'^(r) - S^(r)]. 

Thus by Lemmas 1, 2 and the continuous mapping theorem of Billingsley (1968), we 
have 

B^( r )= sup {c| | f / '^>(r) |L+(l-c) | | f f)(r) |L} 
O^r^l 

= sup {c| |^/^[R^"(r)-R'^(r)] |L+(l-c) | |V^7[S^"(r)-S'^(r)] |L} 
OSr<l 

i sup { c||W(r) - rW(l) |L+(l -c) | K W ( r ) - rW(l)) |L} 
OSr<l 

= sup ||B(r)|L . 
OSr^l 



The distribution of sup ||B(r)||oo is well known and given by (10). (See 
O^rSl 

Billingsley (1968, P.85)). This completes the proof of the theorem. 

Theorem 1 shows that the modified fluctuation test has exactly the same 

asymptotic null distribution as the fluctuation test statistic advocated by PKK. The 

critical values of the modified fluctuation test for various number of regressors can 

thus be found in PKK. 

3. A COMPARISON WITH THE supF TEST 

Although the supF test was originally developed as a test against a one-time 

discrete jump, it has been recommended by Andrews (1993) for use as a diagnostic 

test. Since both the supF test and the modified fluctuation test are based on the same 

norm, it would be worthwhile to further investigate their relationship. 

The supF test statistic of Andrews (1993) is given by 

IT IT/ ̂  ••uIr/^ ( u u - u ' u / k ) 
sup F = sup F(r), with F(r) = ^,^ 

ren u ' u / ( T - 2 k ) 

where u is the vector of OLS residuals from fitting the model (1) under the null 

hypothesis of no structural change, u is the vector of OLS residuals from fitting the 

model (1) under the alternative hypothesis of a one-time discrete jump with jump 

point [Tr]. In other words, u =[u^^ ' , u^'^"^']' is the vector of OLS residuals from 

fitting the model 

y = 
rylTr] >| 

„T-[Tr] 

rxfTr] 0 

0 x"-^'^ 
^ ^ P . 

VP2. 
+ 

/^u^T^l 

u 
T-[Tr] 

(12) 



Denote Z = 
rxtT^i 0 "i 

0 X T-[Tr] , y = ((Pi > P2)'- Then (12) can be written as 

y = Zy + u. As shown by Johnston (1984, p.207), the F(r) test statistic (11) can be 

equivalently expressed as 

F(r) = 
(y -y)'(Z'Z)(y - y ) / k 

u ' u / ( T - 2 k ) 
(13) 

where y* = (p'^',p'^')',y =(pn>]\ pT-[Tr]'y 

Evaluating (13), we have 

F(r.) = 
(y -y)'(Z'Z)(y - y ) / k 

u ' u / ( T - 2 k ) 

T-2k rpT_p[Tr] ^ 

ku'u 

fxITrl 'xITr] 0 

T-[Tr]'YT-[Tr] x ' - i ' ^ J x pT_pT~[Tr] 

= I i ^ [(pT-pm)'(x[^^]'xfT"^i)(P^-p[^^i) + 
ku'u 

(pT _pT-[Tr]y(xT-[Tr]'xT-[Tr]')(pT _pT-[Tr])j 

VpT.pfTr] > 

pT.pT-rrr] 
J 

Observe that 

f(T)(r) = : ^ ( X [ T r r x [ T r ] y / 2 ( p [ T r ] _ p T ) ^ 

a 

f(T)(r) = ^ (xT-[Tr]'xT-[Tr]y/2(pT-[Tr] _ pT^ 

Therefore 

F(r) = ''-^ [±'f(T)-(r)f/T)(,) ^ j i f^(T)-( ,)4T,(^) , 
ku u r 1 - r (14) 



u'u/(T-2k) 
fr'(r) r 

0 

0 

1 

1-r 

^f^Cr)' 

vf^Cr) 

ko' 
•[f('^>'(r)f,(^)(r) / r + f2(^)'(r)ff ^(r) / (1 - r)]. (15) 

Comparing (15) with (9), we see that the supF test can essentially be expressed 

as a weighted average of the two squared components of the modified fluctuation test, 

except that the supF test uses a variance estimate obtained under the alternative 

instead of the null. In other words, the two tests differ primarily in how they use the 

information in the vectors fj ^(r) and {2 (r)- The supF test takes sums of squares 

of these elements, while the modified fluctuation test looks for the element which is 

largest in absolute terms. 

We see then that despite the fact that the supF test and the modified fluctuation 

test are developed from different classes of test procedures, they are based on the 

same components. The different principles lead to the construction of similar test 

statistics. This confirms the claim that the supF test can be used quite effectively in a 

data analytic fashion. 

Since the asymptotic distribution of the modified fluctuation test is valid for 

r e (0, 1), its asymptotic critical value is thus determined only by k, the number of 

regressors. On the other hand, the asymptotic distribution of the supF test is jointly 

decided by k and n , a pre-specified subset of (0, 1) whose closure lies in (0, 1). 

Therefore, in addition to k, the number of regressors, the critical values of the supF 

test are also dependent on the choice of 11. This shortcoming can cause some 

inconvenience to the application of the supF test. 

10 



4. SOME MONTE CARLO EVIDENCE 

A Monte Carlo study was conducted to investigate and compare the size and 

power properties of the fluctuation test, the modified fluctuation test and the supF test. 

The X matrix used in the comparison is 

X, = [1, sint]' 

which is the same as that is used by Kramer, Ploberger and Schulter (1992). 

Three sample sizes were used, small (T = 30), medium (T - 60) and large 

(T= 120). To compare the power properties, we consider both a one-time discrete 

jump and a random walk in p. Against a one-time discrete jump, a structural change 

in P is given by 

Pt = Po + Ap, whent > T* 

AP = b, / T " 2 (cos(t), sirKJ))' . 

On the other hand, against the random walk alternative, a structural change in P 

is given by 

P, = Po + n,, whent > T* 

^t = Ti,.,+b2/T''^(v„cos(t),V2tSin(t))' 

where (j) is the angle between the mean regressor which is given by 

c = l i m i X ^ t = [ l 0]' 

and the change vector b] (b2). (j) takes the value 0°, 30° 60° and 90°. v,„ V2t are 

independent N(0,1). We set po = (0, 0)' initially, b, = 8.6 and bj = 2.0. The b, and 

b2 are selected so that the tests have reasonable power under the alternative 

hypothesis. 

11 



Under the alternative hypothesis, the structural change occurs at T* = [TX,]. 

Against the one-time discrete jump alternative. A, = 0.15, 0.3, 0.5, 0.7, 0.85. Against 

the random walk alternative, we let X = 0, 0.2, 0.5 and 0.8. Obviously X, = 0 implies a 

random walk at the beginning of the sample. For any combinations of 

((), T, X, N=1000 replications were performed to investigate the actual size 

performance of the tests. 

For the fluctuation test and the modified fluctuation test, critical values only 

depend on the number of regressors. For the supF test, however, the critical values 

used in the experiment depend on the range of 11 through the choice of r. We let 

r = 0.1, 0.05 and 0.025, respectively for T = 30, 60 and 120. Befoie the modified 

fluctuation test can be computed, a c value in (9) has to be chosen. A few c values are 

used in the experiments; the results for the modified fluctuation test reported in this 

chapter correspond to a c value of 0.5. Results seem largely insensitive to reasonable 

c values. 

Observe that the fluctuation test and the modified fluctuation test estimate a 

under the null hypothesis while the supF test estimates a under the alternative of a 

one-time discrete jump. For a fair comparison, we also estimate a under such an 

alternative for both of the fluctuation test and the modified fluctuation test. Obviously 

this would not change their asymptotic distribution under the null while it may 

improve their power under the one-time discrete jump alternative. For convenience, 

we use M-Fluctuation to represent the modified fluctuation test. 

Table 1 reports the rejection fi-equencies of the three tests using the asymptotic 

1%, 5% and 10% significance levels. We observe that these tests tend to over-reject 

the true null hypothesis when sample size is small. Among them, the fluctuation test 

has the worst size distortion while the M-fluctuation test has much better 

performance. The supF test is somewhat between the fluctuation test and the M-

fluctuation test. However, when sample size becomes larger, their size behavior 

improves quickly. 

Tables 2 to 4 report size-corrected powers of the three tests. These tables 

eliminate the power distortions that arise due to under- or over-rejection under the null 

12 



when asymptotic critical values are used. The estimated powers of all the tests clearly 

depend on the angle between mean regressor and the shift vector as well as the 

location of structural change, particularly when the alternative is random walk. 

It is easy to observe tliat the M-fluctuation test consistently dominates the 

fluctuation test when sample size is small. Their power difference is reasonably large, 

exceeding 0.1 in most cases considered. When sample size becomes larger, the power 

advantage of the M-Fluctuation test gradually disappears. It is only slightly more 

powerful than the fluctuation test when T is 60. There is essentially no difference 

between the tests when T is increased to 120. 

A comparison between the M-fluctuation test and the supF test shows that 

against a one-time discrete jump, the M-fluctuation test tends to have better power 

around the sample mid-point while the supF test is more powerfiil against an early or 

late structural change. Sometimes the power gain for the supF test over the M-

fluctuation test is large. This is not surprising if we notice that unlike the supF test, 

the M-fluctuation test is imequally weighted across different values of r with 

asymptotic variance being equal to r(l-r). This variance attains its maximum at 

r = 0.5. Overall, it seems that the supF test is slightly preferred to the M-fluctuation 

test. 

In terms of the random walk alternative, the M-fluctuation test typically 

outperforms the supF test by a small margin when the random walk occurs early or 

from the beginning of the sample. On the other hand, the supF test is slightly 

preferred against the random walk which occurs late in the sample. Against the 

random walk which occurs in the middle of the sample, the M-fluctuation test seems 

more powerfiil that the supF test with small and mediimi sample sizes, while the supF 

test looks better with large sample sizes. 

In concluding, the M-fluctuation test seems to be a good alternative to the 

fluctuation test and a potential competitor to the supF test. It significantly improves 

the power performance of the fluctuation test and outperforms the supF test in certain 

cases. It also has better size behavior than both the fluctuation test and the supF test 

13 



in small samples. Hao (1994) has provided further Monte Carlo evidence in support 

of the M-fluctuation test. 

5. CONCLUSIONS 

An important feature of the fluctuation test is that it has nontrivial local power 

irrespective of the particular type of structural change. This property makes it more 

attractive than other diagnostic tests such as the CUSUM test. In this paper we 

suggested a modified form of the fluctuation test through the employment of a 

different weighting matrix and a more carefiil consideration of partial sample 

estimation. 

A comparison of the modified fluctuation test with the supF test of Andrews 

(1993) showed that although the two tests are proposed in different classes of test 

procedures, they are in fact based on the same ingredients. Both tests could thus be 

expected to have similar power performance whether as a particular test against 

discrete jump or a diagnostic test against a more general alternative hypothesis. 

The size and power properties of the fluctuation test, the modified fluctuation 

test and the supF test were investigated through a Monte Carlo simulation. The 

modified fluctuation test has demonstrated the best size performance and is 

significantly more powerful than the fluctuation test in small samples. It is also 

preferred to the supF test in some cases, although none of them dominates the other 

uniformly in finite samples. 

14 



Table 1 

Estimated null rejection frequency 

Test 10% 5% 1% 

T = 30 

T = 60 

T=120 

Fluctuation 
M-Fluctuation 

SupF 

Fluctuation 
M-Fluctuation 

SupF 

Fluctuation 
M-Fluctuation 

SupF 

0.178 
0.105 
0.116 

0.100 
0.093 
0.092 

0.082 
0.082 
0.080 

0.111 
0.062 
0.069 

0.049 
0.047 
0.050 

0.038 
0.040 
0.043 

0.042 
0.020 
0.023 

0.012 
0.012 
0.014 

0.008 
0.008 
0.010 

15 



Table 2 
Estimated size-adjusted powers at 5% nominal level (T = 30) 

X 1 

.15 

.3 
. .5 

.7 

.85 

.15 

.3 

.5 

.7 

.85 

.15 

.3 

.5 

.7 

.85 

rw 
.2 
.5 
.8 

rw 
.2 
.5 
.8 

rw 
.2 
.5 
.8 

b 

8.6 
8.6 
8.6 
8.6 
8.6 

8.6 
8.6 
8.6 
8.6 
8.6 

8.6 
8.6 
8.6 
8.6 
8.6 

2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 

0° 

.299 

.691 

.861 

.658 

.231 

.394 

.805 

.926 

.781 

.375 

.501 

.737 

.850 

.727 

.514 

.051 

.316 

.564 

.033 

.100 

.465 

.705 

.058 

.139 

.389 

.623 

.103 

30° 60° 

One Time Discrete Jump 
Fluctuation 

.222 

.620 

.719 

.388 

.197 

.149 

.397 

.430 

.182 

.150 
M-FIuctuation 

.314 

.791 

.856 

.577 

.346 

.476 

.751 

.799 

.594 

.472 

supF 

.216 

.605 

.631 

.343 

.266 

.379 

.604 

.604 

.430 

.385 
Random Walk 

Fluctuation 
.047 
.245 
.489 
.032 

.139 

.449 

.190 

.033 
M-Fluctuation 

.108 

.332 

.621 

.042 

.102 

.265 

.583 

.067 

supF 

.254 

.572 

.304 

.032 

.176 

.481 

.317 

.034 

90° 

.173 

.351 

.488 

.320 

.151 

.244 

.463 

.620 

.440 

.228 

.302 

.408 

.476 

.387 

.276 

.281 

.688 

.055 

.030 

.407 

.819 

.082 

.035 

.290 

.718 

.097 

.030 
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Table 3 
Estimated size-adjusted powers at 5% nominal level (T = 60) 

X 1 

.15 
"1 

.J 

.5 

.7 

.85 

.15 

.3 

.5 

.7 

.85 

.15 

.3 

.5 

.7 

.85 

rw 
.2 
.5 
.8 

rw 
.2 
.5 
.8 

rw 
.2 
.5 
.8 

' b 

8.6 
8.6 
8.6 
8.6 
8.6 

8.6 
8.6 
8.6 
8.6 
8.6 

8.6 
8.6 
8.6 
8.6 
8.6 

2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 

0° 

.384 

.858 

.953 

.874 

.332 

.384 

.873 

.957 

.884 

.355 

.509 

.807 

.892 

.807 

.507 

.971 

.998 

.852 

.125 

.977 

.998 

.857 

.136 

.950 

.995 

.772 

.163 

30° 60° 

One Time Discrete Jump 
Fluctuation 

.385 

.762 

.899 

.769 

.284 

.273 

.511 

.678 

.506 

.189 
M-Fluctuation 

.399 

.776 

.908 

.784 

.302 

.533 

.768 

.857 

.749 

.506 

supF 

.299 

.541 

.711 

.528 

.198 

.431 

.587 

.673 

.568 

.351 
Random Walic 

Fluctuation 
.916 
.984 
.730 
.108 

.427 

.675 

.299 

.082 
M-Fluctuation 

.918 

.986 

.746 

.121 

.864 

.972 

.660 

.155 

supF 

.437 

.693 

.316 

.101 

.405 

.601 

.243 

.112 

90° 

.186 

.490 

.636 

.452 

.139 

.201 

.523 

.669 

.492 

.162 

.273 

.449 

.528 

.418 

.233 

.060 

.066 

.060 

.070 

.067 

.076 

.072 

.085 

.085 

.073 

.054 

.076 
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