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Abstract

This paper investigates the problem of testing for structural change for
diagnostic purposes. We propose a modified form of the fluctuation test
of Ploberger et al. (1989). The meodified fluctuation test has the same
asymptotic distribution as the fluctuation test but much better finite
sample performance. A comparison of the supF test of Andrews (1993)
shows that both tests are actually based on the same components.
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1. Introduction

This paper considers the problem of testing for structural change for diagndstic
. purposes. The most famous test for this purpose is probably the CUSUM test of
Brown, Durbin and Evans (1975). However, the results of Ploberger and Krimer
(1989) and Hansen (1991) show that the CUSUM test only has trivial local power
against certain types of structural change. As an aitemative, Ploberger, Krimer and
Kontrus (1989) (henceforth PKK) propose a formal test called the fluctuation test
which has non-trivial local power irrespective of time and type of structurai change.
The finite sample behaviour of the fluctuation test has been investigated by Sonberger
and Kriamer (1986), Krimer, Ploberger and Kontrus (1989) among others and
intensively applied in empirical research (see Sonberger and Krimer (1986)).

On the other hand, a number of test statistics developed to test against various
specified alternatives have also demonstrated the same desirable tocal power property
as the fluctuation test. See, for example, Hansen (1990), Andrews (1993), Andrews
and Ploberger (1992) among others. In particular, the supF test of Andrews (1993)
seems of special interest. Although designed to detect a one-time discrete jump, it

was also recommended by Andrews for use as a diagnostic test.

This paper considers a modified form of the fluctuation test. Following the
same idea of the fluctuation test but employing a different choice of weighting matrix
and a more careful consideration of the partial sample estimation, we derive a new test
called the modified fluctuation test. The asymptotic distribution of the modified
fluctuation test is found to be free of nuisance parameters. We also investigate the
relationship between the supF test and the modified fluctuation test. It is found that,
although both tests stem from different classes of test procedures, they are actually
based on the same ingredients. A Monte Carlo experimeilt is then conducted to
compare the finite sample performance of the modified fluctuation test with the
fluctuation test and supF test. The results show that the modified fluctuation test can
be significantly more powerful than the fluctuation test in small samples. It is also
preferred to the supF test in some cases, aithough neither dominates the other

uniformly in finite samples.




The structure of this paper is as follows. In the next section we take a close
look at the fluctuation test and propose our new test, the modified fluctuation test.
The asymptotic distribution of the modified fluctuation test is also derived. Section 3
examines the relationship between the supF test and the modified fluctuation test.
Section 4 discusses the experimental design of the Monte Carlo study and its results.

“Some conclusions are made in section 5.

2. A Modified Fluctuation Test

Consider the linear regression model
Yo =xiB +u, t=1...,T (1)

where y, is the dependent ixariable, x, 1s a (kx1) vector of observations on the
independent variables, B, is a (kx1) vector of unknown regression coefficients, and u,
~ Is an unobservable disturbance term. The null hypothests is that 3, = B, for all time

periodst=1,...,T.
We tmpose the following assumptions which are standard in this literature:

(A.1) The regressors x, are non-stochastic.

T
(A2) limsup %Z[l xJ*® <eo for some & > 0 (|| is the Euclidean norm).
|

T

T+n

Zx,x;=R,

1
T=o min(T,n)—w T t=nel

n
(A3) lim —I-Zx,x; = lim
T t={
for some non-singular, non-stochastic (kxk) matrix R.

(A4) The disturbances uj are iid(0,6%).

In fact, assumptions A.l and A.4 can be weakened to allow, for example, for
dynamic models; see PKK for details. Denote X' = (X, Xz,...,%,)", Y' = (Y15 Yoseuus¥D'-
The test proposed by PKK (1989) examines successive OLS parameter estimates




~

B' =(X"X)'X"Y' for t = k+1,...T and rejects the null hypothesis whenever these

estimates fluctuate too much. Their test statistic is
5 = max —IX"X)" @ -FOLL | )
where‘||-l|¢, denote the maximum norm; specifically, for any kx1 vectors 8' and 6
16" -6%1, = max 18] -8} ®

& is a consistent estimate of the standard deviation of the disturbances. PKK (1989)

_suggest estimating o by

: ' ' %
c=[;1—;2 (y, —x:ﬁ')’] - @

The test statistic ST can be written as

ST = sup [|IBO()l, (5)
0srsl
where BP(r) = Q(XT'XT)K((‘;“" —B"), 1(r) is the largest integer less than or equal
G

to k+r(T-k). Bm(r) is a k-dimensional stochastic process whose trajectories are right
continuous at each r € [0,1] and possess left-hand limits. Using the general result on

the convergence in distribution of random elements, PKK (1989) showed that under

H,

B'(1) 4 B@) = W) - tW(), ©)
where 8 denotes covergence in distribution as T — oo, W(r) is a k vector of
independent Brownian Motion on (0,1). B(r) is thus a process known as “tied-down

~ Brownian Motion”. This process has well known boundary crossing probabilities. In

particular, P[sup, . ||B(r)l, < x] is well known (Billingsley (1968, P.85)).



In the fluctuation test, the choice of (X"X")% as the weighting matrix is

somewhat arbitrary. The motive behind this is to standardize the differences ﬁf - ﬁIT

as well as to facilitate the evaluation of the limiting distribution. Let [.] denote

| “integer part”. Notice that
R R , [Tr) ) T
B[Tr} _ I-))T - (X{Tl'] X[Tr])-l z xiuj - (XT XT)—IZ xiuis
' 1 l
so we can show that
var(ﬁ[Tl‘] - ﬁT) = G2[(){[Tl']"){[ﬂrl'] )-'l _ (XT XT )"l ].

Compared with (X"'X")*, another, and perhaps a better, choice of weighting
matrix is (X™ X™)% which varies consistently with the partial sample estimate

™. We thus define the first modified fluctuation test statistic B

B = sup NEP ) I, 7
where flm(r)___ % (x{Tr]'X[Tr])yz(ﬁ[Tr] _BT)'

From (7), it is clear that £™(r) is based on the difference between f7, the full
sample estimate of B, and ™, the partial sample estimate of P which uses the first
T}

[Tr] observations. As r approaches 1 this test is iikely to have poor power as l§

approaches ﬁT. An alternative test which would not suffer from this problem would

be one which uses the last T-[Tr] observations to get another partial sample estimate
of B. We denote B™™ as the partiat sample estimator of p which uses the last T-[Tr}

observations. We define the second modified fluctuation test statistic B(ZT):




BSY = sup || £57(0) liw (8)
dsrxl

e

-

where fzm (r) = (XT-IT[-}: XT-[Tr])Ifl (ﬁT-[Tt] _ [’31).

B{" and B" contain the different information concerning possible structural

change in the regression model. B{" is likely to have low power for structural change

near the end of the sample, and B{" wiil suffer power loss near the start of the

sample. We can thus form a new test which combines the information provided

individually by B{™ and B{”. Define the modified fluctuation test statistic B"

B =sup { el (1) ll+ (1-HEV (D)L, &)

Ogrsl

where ¢ 1s any constant which satisfies 0 < ¢ < 1. If we choose ¢ = 0, then

B™ =B{™. If we choose ¢ = 1, then B™ = B{". Thus B] and B{" are included as

special cases of B, The choice of ¢ will be considered in section 4.

The asymptotic distribution of B™ is an immediate consequence of the

- following results, which are of some interest in their own right.

Lemma 1. Under H, and the assumptions (A.1)-(A.4)

l I T I Te l
RT(0) = Z(XTTXTAET - po) S = W),

RT(r) = %(x[“”xf“‘)%(ﬁ'f ~pyd VT wQ),

where W(r) is a k vector of independent Brownian Motion on (0,1).
Proof. Define a k-dimensional random vector

£, =X, U,.

Under our assumptions, £, obviously satisfies the conditions set out by Phillips
and Durlauf (1986, p.475). Then foliowing their Theorem 2.1, we have



[Tr} T
P TN 4 - .1
— RY 72 u:)d W h R = plim — X!
\/—_(G ) (EI :F,u,) (r) where plim El X;X]

- On the other hand,

: [Tr)

1 o [Te [T e

RY(r) =§(x”‘] X (T R ITH=1 5y,
i

]

L 2 [Te) o [T1) - L

— @XM XN T Y X,
l'T : 171

e~ 1 ) | . - T
ORI XY2(XTXTY Y Xy,
|

| T
- i;L:‘eo‘:f"xT)/T]"[(t«i“"*'X”")/‘flrly’inUa-
. . i

Since (X"X")/T— R,(X™ X"/ Tr— R, and the Lemma follows.

Lemma 2. Under Hy and the same assumptions as Lemma I,

Tooy = L oy T-IT) 5 T[T\ U2 AT-(Te) _ g v g ) _
S'(r) 6(X X ) B ﬁo):“—'—*\/l—_—r(\_’*’(l) W(r)),

§T(r)= = (XTI XTTYAET - gy d it WD)
where W(r) is the same k-dimensional Brownian Motion as in Lemma 1.

Proof. Notice that




| ST(r)_"" XT {TI’]'XT-[TI’])y(XT—[TI‘]'XT [TI‘]) Zx u]
[Tr]+I

(Tr)

{Az(XT [Tr]'XT-[TrI)/T(l_r)] /( X;u; Xju
i o en

| ST(r) (XT—{Tr]'XT ﬁr])A(XT XT IZX

T
- -\/ff%l' [(XT—[Tr]'XT-[TI']) / T(l _ r)]yz [G(XT'XT) / T]—I z X;u;.
i |

Again by Theorem 2.1 of Phillips and Durlauf notice that the R(r),
R7(r), ST(r)and S"(r) are based on the same innovations xu;(i = 1, 2....,T), so

Lemma 2 follows in a similar way to Lemma 1.

Theorem 1: Under H, and given assumptions (A.1)-(A.4), the statistic Bm(r)

has a well defined limiting distribution as T — oo with distribution function

0 | x <0,

F(x)

[1+2 i(-l)‘ exp(-2ix*)]* x> 0. | (10)

- Proof. Since f,(T)(r) = J;[RT(r)— ﬁT(r)], fén(r) =J1-r [ST(r)-ST(n)].

Thus-by Lemmas 1, 2 and the continuous mapping theorem of Billingsley (1968), we
have

BT ()= sup (cllfP(0) o+ (1-NEV () il }

0=r=l

sup { cfivr (RT()-RT(0)] i+ (1 c)||J_ ENOBRERW

0srzl

S {HW(D) - tWD)|lo+1 =) ||-(W(r) = rW(1) || }
=rE

sup {|B(t)le -
11444|

Y-8

1



The distribution of sup [|B(r)|l, is well known and given by (10). (See
0gr2l
Billingsley (1968, P.85)). This completes the proof of the theorem.

Theorem 1 shows that the modified fluctuation test has exactly the same
asymptotic null distribution as the fluctuation test statistic advocated by PKK. The
critical values of the modified fluctuation test for various aumber of regressors can
thus be found in PKK.

3. A COMPARISON WITH THE supF TEST

Although the supF test was originally developed as a test against a one-time
discrete jump, it has been recommended by Andrews (1993) for use as a diagnostic
test. Since both-the supF test and the modified fluctuation test are based on the same

norm, it would be worthwhile to further investigate their relationship.

The supF test statistic of Andrews (1993) is given by

T T LT
sup F = sup F(r), withF(r)= M
rell u'u/(T-2k)
where ( is the vector of OLS residuals from fitting the model (1) under the null
hypothesis of no structural change, U is the vector of OLS residuals from fitting the
model (1) under the alternative hypothesis of a one-time discrete jump with jump

{Te} a T'[Tf]']:

point [Tr]. In other words, U = [ is the vector of OLS residuals from

fitting the model

[Tr) [Ti) q
_|Y _ (XU 0 Py u
y—[yT—ITrl) = [0 Xr-rm) (Bz) * [UT-[Tr]}' (12)




_ xMl g _
Denote Z = vy=((B;, B5). Then (12) can be written as

XF |
y=Zy +u. As shown by Johnston (1984, p.207), the F(r) test statistic {11} can be

equivalently expressed as

G -I@DG -9)/k
WE/(T-2k)

Ftr) =

Where Yﬂ* = (ﬁT"ﬁT' ).r, = (B[Tl‘] A T- [Tr] )

Evaluating (13), we have

=G D@D -k
"""'/(T 2k)

T-2k l‘_;,T__ﬁ[Tr] 'X[Tr]‘X[Tr] 0 ﬁT_ﬁlTrl
G ﬁT_BT—-[Tr] 0 : X T-[Tr) 5 T=[Tr) [‘gT_ﬁT-l‘Trl

= T2 [T -y X XTNET - 4

(ﬁT _ ﬁT-[TI’] )r(xT—[Tl‘]'XT-[TI']' )(BT _ E’T—[TI'] )]
Observe that

Jr

(D) = - (XX ET gT),

f(T)( ) U c (xT [Tr]"xT [Tl'])lfz(BT-{TI'] B )

Therefore

Fry= 122K

—--'Ei- [

f‘“ () + —fzm (O] (14



: ' i o
__ & (Pm) [ ()
wi/(T-20 \6Pm) | o Ly, (B
l-r

G

2
S O e+ 6T MEP ) 11 -1)). (15)

G

Comparing (15) with (9), we see that the supF test can essentially be expressed
as a weighted average of the two squared components of the modified fluctuation test,
except that the supF test uses a variance estimate obtained under the alternative

instead of the null. In other words, the two tests differ primarily in how they use the

information in the vectors f,m(r) and fzm(r) . The supF test takes sums of squares
of these elements, while the modified fluctuation test looks for the element which is

largest in absolute terms.

We see then that despite the fact that the supF test and the modified fluctuation
test are developed from different classes of test procedures, they are based on the
same components. The different principles iead to the construction of similar test
statistics. This confirms the claim that the supF test can be used quite effectively in a

data analytic fashion.

Since the asymptotic distribution of the modified fluctuation test is valid for
r € {0, 1), its asymptotic critical value is thus determined only by k, the number of
regréssors. On the other hand, the asymptotic distribution of the supF test is jointly
decided by k and IT, a pre-specified subset of (0, 1) whose closure lies in (0, 1).
Therefore, in addition to k, the number of regressors, the critical values of the supF
test are also dependent on the choice of I1. This shortcoming can cause some

inconvenience to the application of the supF test.

10




4. SOME MONTE CARLO EVIDENCE

A Monte Carlo study was conducted to investigate and compare the size and
power properties of the fluctuation test, the modified fluctuation test and the supF test.

The X matrix used in the comparison is
X, =[1, sint)’
which is the same as that is used by Kramer, Ploberger and Schulter (1992).

Three sample sizes were used, smali (T = 30), medium (T = 60) and large

(T=120). To compare the power properties, we consider both a one-time discrete

jump and a random walk in B. Against a one-time discrete jump, a structural change

in B is given by

B, Bg + AB, whent 2 T*

by / TV? (cosp, sing)’ .

AB

On the other hand, against the random walk alternative, a structural change in §

is given by

Bt = B0+T|ts whent = T*

N = Ty +by "‘Tuz(vlt cosd, vy sing)’

where ¢ is the angle between the mean regressor which is given by

1 I

¢= lim — =[1, 0]
Tl-r::ngx' . 0]

and the change vector by (by). ¢ takes the value 0°, 30° 60° and 90°. v, v, are

independent N(0,1). We set $, = (0, 0) initially. b, =8.6 and b, =2.0. The b, and

b, are selected so that the tests have reasonable power under the alternative

hypothesis.

11



Under the alternative hypothesis, the structural change occurs at T* = [TA).
Against the one-time discrete jump altemative, A = 0.15, 0.3, 0.5, 0.7, 0.85. Against
the random‘walk alternative, we let A = 0, 0.2, 0.5 and 0.8. Obviously L =0 implies a
random walk at the beginning of the sample. For any combinations of
¢, T, A\, N=1000 replications were performed to investigate the actual size

performance of the tests.

For the fluctuation test and the modified fluctuation test, critical values only
depend on the number of regressors. For the supF test, however, the critical values
used in the experiment depend on the range of I through the choice of r. We let
r=0.1, 0.05 and 0.025, respectively for T = 30, 60 and 120. Befoie the modified
fluctuation test can be computed, a ¢ value in (9) has to be chosen. A few ¢ values are
used in the experiments; the resuits for the modified fluctuation test reported in this
chapter correspond to a ¢ value of 0.5. Resuits seem largely insensitive to reasonable

¢ values.

Observe that the fluctuation test and the modified fluctuation test estimate o
under the null hypothesis while the supF test estimates o’ under the alternative of a
one-time discrete jump. For a fair comparison, we also estimate o’ under such an
alternative for both of the fluctuation test and the modified fluctuation test. Obviously
this would not change their asymptotic distribution under the null while it may
improve their power under the one-time discrete jump alternative. For convenience,

we use M-Fluctuation to represent the modified fluctuation test.

Table I reports the rejection frequencies of the three tests using the asymptotic
1%, 5% and 10% significance levels. We observe that these tests tend to over-reject
the true null hypothesis when sample size is small. Among them, the fluctuation test
has the worst size distortion while the M-fluctuation test has much better
performance. The supF test is somewhat between the fluctuation test and the M-
fluctuation test. However, when sample size becomes larger, their size behavior

improves quickly.

Tables 2 to 4 report size-corrected powers of the three tests. These tables

eliminate the power distortions that arise due to under- or over-rejection under the null

12




when asymptotic cnitical values are used. The estimated powers of all the tests clearly
depend on the angle between mean regressor and the shift vector as well as the

location of structural change, particularly when the altemative is random walk.

It is easy to observe that the M-fluctuation test consistently dominates the
fluctuation test when sample size is small. Their power difference is reasonably large,
exceeding 0.1 in most cases considered. When sample size becomes larger, the power
advantage of the M-Fluctuation test gradually disappears. It is only slightly more
powerful than the fluctuation test when T is 60. There is essentially no difference

between the tests when T is increased to 120.

A comparison between the M-fluctuation test and the supF test shows that
against a one-time discrete jump, the M-fluctuation test tends to have better power
around the s‘ample mid-point while the supF test is more powerful against an early or
late structural change. Sometimes the power gain for the supF test over the M-
fluctuation test is large. This is not surprising if we notice that unlike the supF test,
the M-fluctuation test is unequally weighted across different values of r with
asymptotic variance being quual to r(l-r). This vartance attains its maximum at
r=10.5. Overall, it seems that the supF test is slightly preferred to the M-fluctuation

test.

In terms of the random walk alternative, the M-fluctuation test typically
outperforms the supF test by a small margin when the random walk occurs early or
from the beginning of the sample.' On the other hand, the supF test is slightly
preferred against the random walk which occurs late in the sample. Against the
random walk which occurs in the middle of the sample, the M-fluctuation test seems
more powerful that the supF test with smail and medium sample sizes, whiie the supF

test looks better with large sample sizes.

In concluding, the M-fluctuation test seems to be a good alternative to the
fluctuation test and a potential competitor to the supF test. It significantly improves
the power performance of the fluctuation test and outperforms the supF test in certain

cases. It also has better size behavior than both the fluctuation test and fhe supF test

13



in small samples. Hao (1994) has provided further Monte Carlo evidence in support

of the M-fluctuation test.

5.  CONCLUSIONS

An important feature of the fluctuation test is that it has nontrivial local power
irrespective of the particular type of structural change. This property makes it more
attractive than other diagnostic tests such as the CUSUM test. In this paper we
suggested a modified form of the fluctuation test through the employment of a
different weighting matrix and a more careful consideration of partial sample

estimation.

A comparison of the modified fluctuation test with the supF test of Andrews
(1993) showed that although the two tests are proposed in different classes of test
procedures, they are in fact based on the same ingredients. Both tests could thus be
expected to have similar power performance whether as a particular test against

discrete jump or a diagnostic test against a more general alternative hypothesis.

The size and power properties of the fluctuation test, the modified fluctuation
test and the supF test were investigated through a Monte Carlo simulation. The
modified fluctuation test has demonstrated the best size performance and is
significantly more powerful than the fluctuation test in small samples. It is also
preferred to the supF test in some cases, although none of them dominates the other

uniformly in finite samples.
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Table 1

Estimated null rejection frequency

T Test - 10% 5% 1%
T=30 Fluctuation 0.178 0.111 0.042
M-Fluctuation 0.105 0.062 0.020
SupF 0.116 0.069 0.023
T=60 Fluctuation 0.100 0.049 0.012
M-Fluctuation 0.093 0.047 0.012
SupF 0.092 0.050 0.014
T=120 Fluctuation | 0.082 0.038 0.008
M-Fluctuation 0.082 0.040 0.008
SupF 0.080 0.043 0.010

15




Estimated size-adjusted powers at 5% nominal level (T = 30)

Table 2

103

A /! b o’ 30° 60° 9¢0°
One Time Discrete Jump
Fluctuation

A5 8.6 299 222 .149 173
3 8.6 691 620 397 351
.5 8.6 861 719 430 488
i 8.6 658 388 182 320
.85 8.6 231 197 150 151

M-Fluctuation
15 8.6 .394 314 216 244
3 8.6 .805 791 605 463
5 8.6 926 .856 631 .620
7 8.6 781 577 .343 440
85 8.6 375 346 266 228

supF

A5 8.6 501 AT6 379 302
3 8.6 737 751 604 408
5 8.6 850 799 604 476
7 8.6 727 .594 430 387
.85 8.6 514 472 385 276

Random Walk

Fiuctuation

w 2.0 051 047 139 281
2 2.0 316 245 449 688
5 2.0 564 489 190 .055
-8 2.0 033 032 033 .030

M-Fluctuation
™ 2.0 100 108 254 407
2 2.0 465 332 572 819
5 2.0 .705 621 .304 082
8 2.0 058 042 032 035

supF

™w 2.0 139 102 - .176 290
2 2.0 389 265 481 J18
S 2.0 623 583 317 097
3 2.0 067 034 030
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Estimated size-adjusted powers at 5% nominal level (T = 60)

Table 3

A/ b 0° 30° 60° 90°
One Time Discrete Jump
Fluctuation
A5 8.6 384 385 273 .186
3 8.6 858 762 Sl 490
5 8.6 953 .899 .678 .636
7 8.6 874 .769 .506 452
.85 8.6 332 284 .189 139
M-Fluctuation
A5 8.6 .384 399 299 201
3 8.6 .873 776 541 .523
.5 8.6 957 908 Tl 669
7 8.6 .884 .784 528 492
.85 8.6 355 302 .198 162
supF
A5 8.6 .509 533 431 273
3 8.6 .807 768 587 449
5 8.6 .892 857 673 528
7 8.6 .807 749 568 418
.85 8.6 507 506 351 233
Random Walk
Fluctuation
™w 2.0 971 916 427 .060
2 2.0 998 984 675 .066
5 2.0 852 730 299 .060
.8 2.0 125 108 082 070
M-Fluctuation
™w 2.0 977 918 437 067
2 2.0 998 986 693 076
5 2.0 857 746 316 072
.8 2.0 136 121 101 .085
supF
w 2.0 950 .864 405 .085
2 2.0 995 972 .601 073
5 2.0 72 .660 243 054
.8 2.0 163 155 112 076

17




.Estimated size-adjusted powers at 5% nominal level (T = 120)

Table 4

A/ b o - 30° 60° 90°
One Time Discrete Jump
Fluctuation
15 8.6 392 299 177 193
3 8.6 862 762 523 S12
.5 8.6 937 .866 670 671
i 8.6 .853 726 483 508 -
85 8.6 363 247 147 156
M-Fluctuation
15 8.6 378 303 179 191
3 8.6 359 763 534 506
S 8.6 934 871 677 667
i 8.6 846 719 484 508
.85 8.6 363 247 147 156
supF
15 8.6 529 453 334 259
3 8.6 .804 729 .556 448
5 8.6 857 .809 639 527
7 8.6 788 703 531 429
.85 8.6 514 405 280 227
Random Walk
Fluctuation
™w 2.0 892 .768 392 371
2 2.0 960 .900 914 977
.5 2.0 464 660 982 996
.8 2.0 662 517 .190 129
M-Fluctuation
™ 2.0 .888 758 381 376
2 2.0 954 897 914 979
.5 2.0 454 656 981 995
2 2.0 650 508 194 133
supF
™w 2.0 756 596 .340 319
2 2.0 964 923 .857 938
.5 2.0 493 820 987 996
8 2.0 697 .600 274 137
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