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Abstract 

It is well known that confidence intervals for weakly identified parameters are 

unbounded with positive probability (e.g. Dufour, Econometrica 65, pp. 1365-1387 

and Staiger and Stock, Econometrica 65, pp. 557-586), and that the asymptotic risk of 

their estimators is unbounded (Pötscher, Econometrica 70, pp.1035-1065). In this note  

we extend these “impossibility results” and show that uniformly consistent tests for 

weakly identified parameters do not exist. We also show that all similar tests of size 

1/ 2α <  concerning possibly unidentified parameters have type II error probability 

that can be as large as 1 α− . 
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1. Introduction 

Weak instruments have been the focus of much econometric research since the 

publication of the seminal paper by Staiger and Stock (1997). The topic has important 

practical applications because instruments have been found to be weak in much 

empirical research.  

Weak instruments put forward a series of challenging non-standard inferential 

problems for theorists, too. In estimation theory, one of these challenging problems is 

that of measuring the precision of estimators of the weakly identified parameters. 

Dufour (1997) has shown that every confidence set of level α  must be unbounded 

with positive probability. This suggests that the use of confidence intervals to measure 

precision of an estimator may be problematic (even when the sample size is very 

large). Staiger and Stock (1997) and Stock and Wright (2000) have shown that 

standard estimators of weakly identified parameters are not consistent. Moreover, no 

uniformly consistent estimator for weakly identified parameters exists (e.g. Pötscher 

(2002)).  

Another challenging problem is the construction of tests which are, at least 

asymptotically, similar. Dufour (1997) shows that tests based on Wald confidence sets 

cannot be similar, and that the size of such tests cannot be bounded from above in a 

nontrivial way.  Kleibergen (2002) and Moreira (2003) suggest similar tests for linear 

structural equations models, and Kleibergen (2005) generalizes these results to a 

GMM framework. Guggenberger and Smith (2005) construct generalized empirical 

likelihood tests, and find that they have good size properties under conditional 

heteroskedasticity. One common characteristic of the tests of Kleibergen (2002) and 

(2005), Moreira (2003) and Guggenberger and Smith (2005) is that they are 

inconsistent under weak identification (although only Guggenberger and Smith (2005) 

mention this property). On the one hand this is intuitive because data is not very 

informative about the weakly identified parameters (e.g. Guggenberger and Smith 

(2005)). On the other hand, one wonders whether tests procedures are affected by 

“impossibility results” analogous to those identified by Dufour (1997) and Pötscher 

(2002) for confidence intervals and point estimators. 

In this paper we investigate the properties of tests on parameters that are possibly 

unidentified. With this expression we mean that the parameters can be unidentified or 

arbitrarily closed to being unidentified so that the weak instruments set-up is just a 
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special case. We contribute two results to the existing literature. Firstly, we show that 

no uniformly consistent test exists for possibly unidentified parameters. Therefore, it 

is impossible to discriminate between the null and the alternative hypotheses even 

when the sample size is very large. Secondly, we prove that no test for which the size 

is bounded by a constant, α  say, has power which is uniformly larger than α  under 

the alternative hypothesis, and, thus, the probability of a type II error could be as large 

as 1 α− . 

The paper focuses on the limitations of tests for possibly unidentified parameters, 

and complements the results of Dufour (1997) and Pötscher (2002) on the properties 

of confidence intervals and point estimators in the sense that it gives “impossibility 

results” originating from the discontinuity of the functional defining the interest 

parameter. On the positive side, our work helps to understand what optimal properties 

a good test can be expected to have in these situations.  

The remaining part of the paper is structured as follows. Section 2 explains the 

notation and gives some preliminary results showing that the problems associated 

with tests for possibly unidentified parameters arise from the discontinuity of the 

functional defining the interest parameters. These results are strongly related to the 

work of Pfanzagl (1998).  Section 3 presents the main theorem about the non 

existence of uniformly consistent estimator and the properties of tests of bounded size 

for potentially unidentified parameters. Finally, Section 4 concludes. 

 

2. Notation and preliminary results 

We follow the notation of Pfanzagl (1998). Let  be a family of probability 

measures on a measurable space 

P

( ),n nX A  where n denotes the sample size. No 

assumption about the absolute continuity of the probability measures in P  is required 

(cf. Dufour (1997)). For the sake of simplicity, we assume that all “observations” take 

on values in the same set X with measurable sets in the same σ -algebra , even 

though the probability measures in  could be defined on more general measurable 

spaces. The analysis is not restricted to the i.i.d. case. 

A

P
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For any two probability measures  and  in  define the total variation 

distance between them as 

P Q P

( ) ( ) ( ){ }, sup : nd P Q P A Q A A= − ∈A , and let  

be the functional defining the interest parameter.  

:κ →P

We now single out a probability measure  on 0P ( ),n nX A , which may or may not 

belong to , and denote by  a neighbourhood of  in P , i.e. P ( )0PεP 0P

 ( ) ( ){ }0 0: ,P P d P Pε ε= ∈ <P P . 

Moreover, let  

 ( ) ( )( )0 0N P Pκ
ε εκ= P  

and  

 ( ) ( )0 0
0

N P N Pκ κ
ε

ε >

=∩ . 

We wish to test the null hypothesis ( )0 :H Pκ ∈H0  against the alternative 

 where  and  are two disjoint (( )1 1:H Pκ ∈H 0H 1H 0 1∩ =∅H H ) subsets of .  Let 

( )ˆn xϕ  be a sequence of tests of the null hypothesis ( )0 0:H Pκ ∈H  against the 

alternative ( )1 1:H Pκ ∈H , that is ( )ˆn xϕ  is a sequence of measurable functions 

( )ˆn xϕ   from nX   to [ .   ]0,1

The sequence of tests ( )ˆn xϕ  is uniformly consistent if ( )ˆn xϕ  is a uniformly 

consistent estimator of the functional ( ) 0Pϕ =  on ( )1
0 0κ −=P H  and ( ) 1Pϕ =  on 

, and the convergence is uniform in .  ( )1
1 κ −=P 1H P

Since  

 ( ) ( )( ) ( )
( )

0

1

0 if 
1 if 

P
P P

P
κ

ϕ ϕ κ
κ

∈⎧⎪= = ⎨ ∈⎪⎩

H
H

, 

the properties of the functional ( )Pκ  are fundamental for the existence of uniformly 

consistent tests. The function ϕ  is uniformly continuous on , , so if  is 

uniformly continuous then 

iP 0,1i = κ

ϕ  is also uniformly continuous on , . One would 

expect from the work of Dufour (1997), Pfanzagl (1998) and Pötscher (2002), that 

problems arise when  is not uniformly continuous. 

iP 0,1i =

κ
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Let ( ) [ ]0,1nC x ⊆  be a confidence interval for ( )Pϕ . Such a confidence 

interval is trivial if ( ) [ ]0,1nC x =  (and has coverage probability 1) or if ( ) ( )0,1nC x ⊆  

(and has coverage probability zero). A nontrivial confidence interval for  must 

contain either 0 or 1 but not both. Let  

( )Pϕ

 ( ) ( )( )0 0\ i iN P Pκ
ε εκ= ∩PP P  

and 

 ( ) ( )( )0 0
0

\ \i iN P N Pκ κ
ε

ε >

=∩P P  

for i=0,1.  We will show that there is no uniformly consistent test for  

against the alternative 

( )0 0:H Pκ ∈H

( )1 1:H Pκ ∈H , where  and  are any two disjoint subsets 

of  by proving that a nontrivial confidence interval for 

0H 1H

( )Pϕ , has zero coverage 

probability when the functional κ  is discontinuous. This is achieved with the help of 

two intermediate results. 

 

Lemma 1. If  is nontrivial and ( )nC x ( ) { }0 \ 0,iN Pϕ =P 1  then 

 
( )

( ) ( ){ }
00

sup inf : 0.
i

n
nP P

P x X P C x
εε

ϕ
∈ ∩>

∈ ∈ =
P P

 

 

 

Lemma 2. If ( )0 \j iN Pκ⊆H P  then ( ) { }0 \ 0,iN Pϕ =P 1 i j for , 0,1=  i j . ≠

 

Lemma 1 shows that the coverage probability of any nontrivial confidence interval for 

 is zero if there is a probability measure  in a neighbourhood of which  

can take on both the value zero and one. Lemma 2, shows that this condition occurs 

whenever the parameter being tested is discontinuous at  and the image of all 

sufficiently small neighbourhoods of  contains both  and . Combining 

Lemmas 1 and 2 we have the following result. 

( )Pϕ 0P ( )Pϕ

0P

0P 0H 1H

 

Theorem 1.  Let ( )ˆn xϕ  be an estimator of ( )Pϕ , and 0 1t< < . Then, if 

 , ( )1 0 \N Pκ⊆H P0
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( )

( ){ }
0 00

ˆsup inf : 0 0n
nP P

P x X x t
εε

ϕ
∈ ∩>

∈ ≤ < =
P P

, 

and if  ( )0 0 \N Pκ⊆H P1

 
( )

( ){ }
0 10

ˆsup inf : 0 1 0n
nP P

P x X x t
εε

ϕ
∈ ∩>

∈ ≤ − < =
P P

. 

 

 

Theorem 1 applies for any sample size and thus it holds for n tending to infinity. It 

rules out the existence of uniformly consistent tests for situations where 

 or . This is certainly the case when the parameters 

are possibly unidentified as we will see in the next section.  

( )1 0 0\N Pκ⊆H P ( )0 0 1\N Pκ⊆H P

0

 

Corollary 1. Let  and  be any two disjoint subsets of .  If either 

 or 

0H 1H

( )1 0 \N Pκ⊆H P ( )0 0 \N Pκ⊆H 1P

0

 then no uniformly consistent test of 

 against the alternative ( )0 :H Pκ ∈H ( )1 1:H Pκ ∈H   exists. 

 

Theorem 1 and its corollary clearly characterize the problem affecting tests about 

discontinuous functionals: it originates from the closeness to a probability measure  

where the functional of interest can take on both values under the null and under the 

alternative hypotheses. This property continues to hold in any neighbourhood of , 

even if we exclude  from our family of probability measures .  

0P

0P

0P P

 

We now weaken our optimality requirements and focus on tests for which the size 

is fixed and known (similar tests) or can be bounded from above by a known constant. 

These are non-similar tests in the sense of Lehmann and Stein (1948). The starting 

point for the analysis is the following result. 

 

Lemma 3. Let  be a probability measure on 0P ( ),n nX A  for which  

and  (i.e. 

( )1 0 \N Pκ⊆H P0

1( )0 0 \N Pκ⊆H P ( ) { }0 \ 0,iN Pϕ =P 1 , i=0,1). Then, for any estimator ( )ˆn xϕ  

of   taking on only the values zero or one,  ( )Pϕ
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( )
( ) ( ){ } ( ){ } ( ){ }{ }

0
0 0

0
ˆ ˆsup inf : min : 0 , : 1

i

n n
n nP P

P x X x P P x X x P x X x
εε

ϕ ϕ ϕ ϕ
∈ ∩>

∈ = ≤ ∈ = ∈
P P

ˆn
n =

 

 

The characteristic of Lemma 3 is that the left hand side depends on  but the 

right hand side does not. Therefore, by finding an upper bound for the right hand side 

we can bound the quantity 

iP

( )
( ) ( ){ }

00
ˆsup inf :

i

n
nP P

P x X x P
εε

ϕ ϕ
∈ ∩>

∈ =
P P

 under both the null 

and the alternative hypotheses. 

 

Theorem 2. Let ˆnϕ  be a test for 0 :H 0κ ∈H  against the alternative  where 

 and  are any two disjoint subsets of  having the property that 

1 :H κ ∈H1

0H 1H

( ){ }
0

ˆsup : 1n
n

P
P x X xϕ α

∈
∈ =

P
≤ / 2 and 0 1α< < . Let  be a probability measure on 

 for which  and 

0P

( ,n nX A ) 0( )1 0 \N Pκ⊆H P ( )0 0 \N Pκ⊆H P1 . Then 

(i) ( ){ } ( ){ }{ }0 0ˆ ˆmax : 0 , : 1n n
n nP x X x P x X xϕ ϕ α∈ = ∈ = ≤ ; 

(ii) the power of the test satisfies ( ){ }
10

ˆsup inf : 1n
nP

P x X x
ε

ϕ α
∈>

∈ = ≤
P

 

 

 

Corollary 2.  If  and ( )1 0 \N Pκ⊆H P0 ( )0 0 \N Pκ⊆H 1P , the probability of a type II 

error for a similar test ( )ˆn xϕ  of size 1/ 2α <  could be larger than 1 α− : 

 ( ){ }
1

ˆsup : 0 1 .n
n

P
P x X xϕ α

∈
∈ = ≥ −

P
 

 
 
Theorem 2 shows two important properties of tests for discontinuous functionals. 

Firstly, in order to find a test having size which is bounded above by a constant α , we 

need to make sure that the test has at most size α  for the probability measures where 

the functional of interest is continuous. So, for example, in possibly unidentified 

structural equations models if a test has size α  in the identified case, then it will have 

size smaller than α  in the totally or partially unidentified case. 

Secondly, suppose that the size of ˆnϕ  is bounded by α , then, in the worst case 

scenario, the power of the test is less or equal to the size. Thus, no similar test can be 
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uniformly consistent under the alternative if the functional κ  is discontinuous. 

Moreover, in such situation, no test can be uniformly unbiased in the sense that 

( )
( ){ }

0 10
ˆsup inf : 1n

nP P
P x X x

εε
ϕ α

∈ ∩>
∈ =

P P
> . The intuition for this result is that at  the 

null and the alternative hypotheses are indistinguishable because of the discontinuity 

of the functional 

0P

κ . One cannot rule out a situation where the probability of a type I 

error is α  and the probability of a type II error is as large as 1 α− .  

Pötscher (2002) briefly discusses hypotheses test of trend-stationarity against 

difference-stationarity and concludes that not test can have power larger than size 

(remark (ii) p. 1053). This result is a special case of those derived above since in his 

case the interest functional (i.e. the spectral density at zero) is not continuous at a 

point  arbitrarily closed to both trend and difference stationary models (see also 

Faust (1996)). 

0P

 

3. Main result 

We now specialise the results of Section 2 to a situation where the interest 

parameters are possibly unidentified in the sense that they can be arbitrarily closed to 

being unidentified. Define a general family of probability measures 

{ }, : ,Pκ φ κ φ= ∈ ∈P Φ , where Φ  is a subset of a Hilbert space. Note that  can be 

either a family of fully parametric models if 

P

Φ  is an Euclidean space, or a family of 

semi-parametric models.  Define the functional of interest as ( ),Pκ φκ κ=  and suppose 

that the parameter κ  is identified, i.e. 
1 1 2 2,P P ,κ φ κ φ=  implies 1 2κ κ= . Moreover assume 

that  is possibly unidentified in the sense that there exists κ 0φ ∈Φ  and a probability 

measure  on ,  not necessarily in , such that  0P ( ,n nX A ) P

 ( )
0

, 0lim , 0d P Pκ φφ φ→
=  

for all . This definition of a possibly unidentified parameter corresponds to the 

one used by Dufour (1997) and Pfanzagl (1998), and is slightly more general than the 

notion of weakly identified parameters used by Staiger and Stock (1997), which in our 

notation would translate as  where  is a fixed arbitrary element of 

κ ∈

1/ 2
0 n cφ φ −= + c H , 

and n is the sample size.  

The main result of this paper is the following theorem. 
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Theorem 3.  Let the parameter  be possibly unidentified in the sense defined above. 

Let  and  be any two disjoint subsets of . Then 

κ

0H 1H

i. There is no uniformly consistent test of  the null hypothesis  

against the alternative hypothesis

( )0 0:H Pκ ∈H

( )1 1:H Pκ ∈H  

ii. For any sample size n, no similar test of size 1/ 2α <  for the null hypothesis 

 against the alternative hypothesis0 :H κ ∈H0 11 :H κ ∈H  can have power 

uniformly larger than α . Moreover, the power of a type II error could be 

larger than 1 α− . 

 

 

If  and ( )1 0 \N Pκ
ε⊄H P0 ( )0 0 \N Pκ

ε⊄H 1P  for every measure  (not necessarily 

in ), we could identify classes of hypotheses for which uniformly consistent tests 

would exist. For example, Theorem 1 of LeCam and Schwartz (1960) and the 

continuity of 

0P

P

( ),Pκ φκ = κ

κ 1

 would imply the existence of a uniformly consistent test of 

 against ( )0 0:H Pκ = ( )1 :H Pκ ∈H  provided 0κ  is not a cluster point of , i.e. 

 under the alternative hypothesis is not arbitrarily close to 

1H

κ 0κ  (see also Berger 

(1951).  However, Theorem 3 shows that there is no set of hypotheses  

and  for which uniformly consistent tests exist in a neighbourhood of 

. Therefore, even asymptotically it is not possible to discriminate between the null 

and alternative hypotheses concerning possibly unidentified parameters. The sets 

 and 

( )0 0:H Pκ ∈H

( )1 :H Pκ ∈H1

)

0P

(1
0κ − H ( )1

1κ − H  have a cluster point in common, so that these two sets cannot 

be clearly separated. 

Dufour (1997) considers tests of 0 :H 0κ κ=  against 1 :H 0κ κ≠  based on Wald 

confidence intervals by defining a test as a function ( )ˆn xψ  which equals zero if κ  

belongs to a Wald confidence interval ( )nC x  and zero otherwise (i.e. ( )ˆ 0n xψ =  

means that  is accepted, and 0H ( )ˆ 1n xψ =  that  is rejected). Dufour (1997) shows 

that the distribution of 

0H

( )ˆn xψ  depends on the “nuisance parameter” φ  and that there 
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is no way of bounding the size of the test, ( ){ }ˆ 1nP xψ = , over φ . This negative result 

has encouraged econometricians to look for tests that are not based on the Wald 

confidence sets. 

  Dufour (1997) recommends the use of the Anderson-Rubin test because it is 

similar.  Earlier results of Hillier (1987) show that the Anderson-Rubin test is optimal 

in the sense that it maximises a weighted average power under the assumption of 

normal errors. Kleibergen (2002) and Moreira (2003) have suggested tests on weakly 

identified parameters in structural equations models that are similar. Kleibergen 

(2005) has even suggested tests for parameters without assuming that they are 

identified. Guggenberger and Smith (2005) have discussed the construction of 

asymptotically similar tests in the context of generalized empirical likelihood tests. 

They also investigate the power properties of their test, and find that it is not 

consistent when instruments are weak. 

Our Theorem 3 gives some information about the power of similar tests in 

possibly unidentified models. It shows that tests for which the size is bounded have 

very poor power properties. For example, if the size of the test is chosen to be equal to 

 the probability of a type II error can be higher than .99  both in finite samples 

and asymptotically.  The situation does not improve when one focuses on GMM-type 

tests, because the cause of the problem (i.e. the proximity to a probability  where 

the interest parameter is unidentified) is unchanged. This implies that Kleibergen 

(2005)’s GMM-M test may have a very large type II error probability. 

0.01

0P

 

4. Conclusions 

In this paper, we have shown that tests on possibly unidentified parameters cannot 

satisfy some of the conditions which are usually satisfied by tests in a standard set-up. 

These results complement those of Dufour (1997) and Pötscher (2002) on confidence 

intervals and point estimators.   

We have shown that the problem of testing possibly unidentified parameters is 

very difficult because (i) it is not possible to discriminate between null and alternative 

hypothesis even when the sample size is infinitely large; and (ii) any test with size 

bounded from above by a known constant has potentially very low power and a large 

type II error. Since models with weakly identified parameters seem to be very 
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frequent in practical applications, our main result, Theorem 3, suggests that standard 

optimality criteria for tests may be inadequate tools to deal with these situations.  

  

Appendix: Proofs 
Proof of Lemma 1. Lemma 2.1 of Pfanzagl (1998) with ( )0PεP  restricted to 

 implies that for every probability measure  on ( )0Pε iP ∩P 0P ( ),n nX A  

( )
( ) ( ){ } ( ) ( ){ }{ }

( ) ( ){ }{ }}
0

0 0
0 0

0 00

sup inf : min : inf sup inf \ ,

: sup inf sup \ .

i

n n
n nP P

n
n i

P x X P C x P x X C x N P

P x X C x N P

ε

ϕ
ε

ε ε

ϕ
εε

ϕ
∈ ∩> >

>

⎧∈ ∈ ≤ ∈ ≤⎨
⎩

∈ ≥

P P
P

P

i

 

The fact that  is nontrivial means that (i) when ( )nC x ( )inf 0nC x =  then 

( )sup 1nC x <  (so that ( ){ }0 : sup 1 0n
nP x X C x∈ ≥ = ) and (ii) when ( )sup 1nC x =  

then ( )inf 0nC x >  (so that  ( ){ }0 : inf 0 0nP x X C x∈ ≤ = . 

 

Proof of Lemma 2. By definition ( ) ( )( )0 0\ iN P Pκ
ε εκ= ∩PP iP  for any ε , and  

 
( ) ( )( ) ( )( )( )

( )( )
0 0 0

0

\

\ .

i i

i

N P P P

N P

ϕ
ε ε ε

κ
ε

ϕ ϕ κ

ϕ

= ∩ = ∩

=

P PP P

P

iP
 

Since ( )0 \j iN Pκ
ε⊆H P , i≠  for every ε  the statement of the lemma follows.  j

 

Proof of Theorem 1. The confidence intervals ˆ0 n tϕ≤ <  and ˆ0 1 n tϕ≤ − <  are 

nontrivial. The result follows from Lemmas 1 and 2.  

 

Proof of Lemma 3. This can be proved along the lines of Lemma 2.1 of Pfanzagl 

(1998) with  restricted to ( )0PεP ( )0Pε iP ∩P  and a degenerate confidence interval for 

which ( )ˆn Pϕ  equals zero or one.  

 

Proof of Theorem 2. Note that 
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( ){ }

( )
( ){ }

( )
( ){ }

0

0 0

0 0

0

0

ˆsup : 1

ˆinf sup : 1

ˆ1 sup inf : 0 .

n
n

P

n
n

P P

n
nP P

P x X x

P x X x

P x X x
ε

ε

ε

ε

α ϕ

ϕ

ϕ

∈

> ∈ ∩

∈ ∩>

≥ ∈ =

≥ ∈

= − ∈ =

P

P

P

P

P

=  

Then Lemma 3 implies that  

( )
( ){ } ( ){ } ( ){ }{ }

0 0
0 0

0
ˆ ˆsup inf : 0 min : 0 , : 1n n

n nP P
P x X x P x X x P x X x

εε
ϕ ϕ

∈ ∩>
∈ = ≤ ∈ = ∈

P P
ˆn

nϕ =

so 

 ( ){ } ( ){ }{ }0 0ˆ ˆ1 min : 0 , : 1n n
n nP x X x P x X xα ϕ≥ − ∈ = ∈ =ϕ , 

and part (i) follows easily. Then, using Lemma 3 and part (i) of the Theorem 

 

( ){ }
( )

( ){ }
( ){ } ( ){ }{ }

1 0 10

0 0

ˆ ˆinf : 1 sup inf : 1

ˆ ˆmin : 0 , : 1

n n
n nP P P

n n
n n

P x X x P x X x

P x X x P x X x
εε

ϕ ϕ

ϕ ϕ

α

∈ ∈ ∩>
∈ = ≤ ∈ =

≤ ∈ = ∈

≤

PP P

=  

and part (ii) is also proved.  

 

Proof of Corollary 2. The probability of a type II error is ( ){ }ˆ: 0nP x X xϕ∈ =  for 

. So 1P∈P

 

( ){ }
( )

( ){ }

( )
( ){ }

1 0 1

0 1

0

0

ˆ ˆsup : 0 inf sup : 0

ˆ1 sup inf : 1

1 .

n n
n n

P P P

n
nP P

P x X x P x X x

P x X x
ε

ε

ε

ε

ϕ ϕ

ϕ

α

>∈ ∈ ∩

∈ ∩>

∈ = ≥ ∈ =

= − ∈

≥ −

P

P

P P

P
=  

and the result is proved.  
 

Proof of Theorem 3. Consider a functional ( ),Pκ φκ κ= , and let  

 ( ) ( ){ }0 , , 0: , , ,P P d P Pε κ φ κ φκ φ ε= ∈ ∈Φ <P , 

since ( )
0

, 0lim , 0d P Pκ φφ φ→
= , one has that ( ) ( )( ) ( )0 0\ i iN P Pκ

ε εκ κ= =P P∩P P for every 

0ε > .  Part (i) follows from Theorem 1 and part (ii) from Theorem 2.  
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