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Summary 

A Bayesian approach is presented for nonparametric estimation of an additive 

regression model with autocorrelated errors. Each of the potentially nonhnear 

components is modelled as a regression spline using many knots, while the errors 

are modelled by a high order stationary autoregressive process parameterised 

in terms of its autocorrelations. The distribution of significant knots and partial 

autocorrelations is accounted for using subset selection. Our approach also allows 

the selection of a suitable transformation of the dependent variable. All aspects 

of the model are estimated simultaneously using Markov chain Monte Carlo. 

It is shown empirically that the proposed approach works well on a number of 

simulated and real examples. 
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1 Introduction 

When a regression model is fitted to time series data the errors are likely to be autocorre-

lated, such as in the problems tackled by Engle, Granger, Rice and Weiss (1986) and Harvey 

Koopman (1993). Few approaches are currently available for estimating a regression model 

nonparametrically when the errors Eire autocorrelated, despite the fact that fjiiliure to take 

account of the autocorrelation cam result in poor function estimates; see Section 4.1 and 

Altman (1990) for simulation evidence. Those authors that allow for autocorrelation in the 

errors usually only deal with univariate nonparametric regression with time as the indepen­

dent variable; e.g. Altman (1990), Chu and Marron (1991) and Hart (1991, 1994). These 

estimators do not generalise to the case where the independent variable is not in time order. 

This paper presents a comprehensive Bayesian approach for semipjirametrically estimat­

ing an additive regression model when the errors are autocorrelated. Each potentially nonlin-

eai component is modelled as a regression spline with many knots and the errors are modelled 

as a stationary autoregression parameterised by its partial autocorrelations. The distribu­

tion of significant knots in the regression spUne and significant partial autocorrelations is 

accounted for by subset selection. The Bayesian analysis also allows a suitable transforma­

tion to be chosen for the dependent variable. The entire model is estimated simultaneously 

using Markov chain Monte Carlo. 

To the best of our knowledge, even those papers that deal with nonparametric regression 

when the errors are correlated do not consider issues such as selecting the appropriate model 

for the errors and the transformation of the dependent variable. Furthermore, the approach 

in this paper can be made robust to outliers and cam accommodate missing values of the 

dependent variable as in Barnett, Kohn and Sheather (1996a). It can also be extended to 

bivariate surface estimation, as is demonstrated in Smith and Kohn (1996b). 

This paper hnks two lines of research. The first is by Smith and Kohn (1996a) who com­

bine regression splines with Bayesian subset selection to nonparametrically estimate an ad­

ditive regression model with independent errors. They show that in the univariate case their 



approach acts as a variable bandwidth smoother and compares favourably with modern ker­

nel weighted local linear smoothing. The second line of research is by Barnett et. al. (1996a) 

who propose a Bayesian approach for robustly estimating an autoregressive model, simul­

taneously choosing the order of the model and estimating its pjirameters and ciny missing 

observations. We note that the work of Smith and Kohn (1996a) is motivated by the Bayesian 

subset selection paper of George and McCuUoch (1993), while Barnett et. al. (1996a) refine 

and extend the work of McCuUoch and Tsay (1994). 

The paper is organised as follows. Section 2 describes the model and the prior assumptions 

and Section 3 discusses estimation and the Markov chain s£impler. Section 4 studies in detail 

the performance of the nonparametric estimator in the univariate case and compares it to 

previous estimators. Section 5 considers multiple regression examples and Appendix 1 shows 

how to implement the sampler. 

2 Model and prior assumptions 

2.1 Autoregressive model for the errors 

Suppose 

yt = f{xt) + ut, t = l,...,n, (2.1) 

where yt is the dependent variable, / ( i t ) is an unknown regression function of the independent 

variable it, and ut is a stationary autocorrelated error sequence. The errors are modelled by 

the zero mean stationary autoregressive process of maximal order s, 

Ut = diut-i H 1- 9sUt-s + et, 

where et is independent N{0,c^). There is little loss of generality in this assumption as 

most Gaussian stationary processes can be approximated by an autoregressive process of 

suflBciently high order. Moreover, it is straightforward to adapt the methods of the present 

paper to haindle autoregressive-moving-average errors as in Barnett, Kohn and Sheather 

(1996b). 



Let ipi be the ith partial autocorrelation of ut, so that —1 < rpi < 1 for z = l , . . . , s 

and Ipi = 0 for i > s. We note that the partial autocorrelations Vi,---,V' 

s are a one-

to-one trsmsformation of 9i,...,0s. As in Monahan (1984) and Barnett et. al. (1996a) it 

is convenient to enforce stationarity by re-parameterising ut in terms of tp = {ipi,... ,^s ) . 

When If is time it is important to enforce stationarity of Uf so as not to confound the model 

for the errors with the nonparametric estimate of the function. For example, a random walk 

on the errors, ut = Uf_i -f- et, acts as first order spline smoother. 
As in Barnett et. al. (1996a), the following prior assumptions are made on a^ and xp. 

Al. logcT"̂  has a flat prior on the line, so that pia"^) oc 1/a^. This is a commonly used prior 

for <7̂ . 

A2. Let Ki be a binary variable determining the status of ipi. If KJ = 0 then xpi is identically 

zero; if KJ = 1 then ipi is uniformly distributed on (—1,1). We assume that, a priori, 

the Ipi are independent of each other. This ensures that the ut are both stationary 

and parsimoniously parameterised and that the prior distribution of ip\Ki = 1 is non-

informative. We also assume that ipi is a priori independent of a^. 

The maximal order s of the autoregression and the probabiUties p{Ki = 1), i = 1 , . . . , s, 

are prescribed by the user. In all oiu: examples we take a descending prior on the 

order, where P{KI = 1) = 0.5,P{K2 = 1) = 0 .4 ,P(K3 = 1) = 0.3,p(«4 = 1) = 0.2, and 

p{Ki = 1) = 0.1 for i = 5 , . . . , s . However, the results prove reasonably insensitive to 

the exact specification of p(Ki = 1). 

2.2 Regression splines 

The nonlinear regression function is assumed to be smooth and modelled (approximated) by 

the regression spline 

m -

bo + bix + b2X^ + 631^ -I- 5 ^ bi+3{x - £i)+, (2.2) 
«=i 



where i i , . . . ,Xm are m knots placed along the domain of the independent variable x, such 

that mint(it) < i i < ^2 < • • • < ^m < maxt(it) and z+ = max(0, z). When f{x) is observed 

with noise, the two most important problems in approximating f{x) by (2.2) are how many 

knots to use and where to place them. If too few knots are used, or they are badly placed, 

then important features of the curve may be missed. If too many knots are used then the 

estimate of / will have high local variance. Smith aad Kohn (1996a) solve this problem in the 

independent error case by introducing many knots firom which significant knots axe selected. 

We show how to extend their approach to the autocorrelated error case by rewriting (2.1) as 

a linear model. 

Let r = m + 3, ;0 = {bo,..., 6r)' be a vector of regression coefficients, y = ( y i , . . . , j/„)' be 

a vector of observations on the dependent variable, x = ( i i , . . . ,a;n)') and let 1 be a n x 1 

vector of ones. Let x-' and (x — lxj)\ be the n x 1 vectors with zth elements x^ and (x, — Xj)\ 

respectively, and define the n x (r + 1) design matrix X = {l,x,x^,x^, (x - I x i ) ^ , . . . , (x — 

lim)+}- By replacing f{x) by (2.2), equation (2.1) can be expressed as the linear regression 

model 

y==Xf3 + u, (2.3) 

where it = (u i , . . . ,u„) ' is the vector of autoregressive errors. In this lineeir model context, 

selecting significant knots is equivalent to selecting significant variables in the lineair regression 

model (2.3). 

Let var(u) = a^fi^ be the variance matrix of u. To carry out subset selection on the 

columns of X, it is convenient to define the binary variables 7i,i = 0 , . . . , r , determining 

which columns of X are in the regression. Let 7i = 0 if bi is identically zero and let 7i = 1 

otherwise. Put 7 = (70,. . . ,7r) ' and let (3^ and X^ be the sub-vector of/3 and the sub-matrix 

of X, respectively, corresponding to the nonzero elements of 7. Given a'^,^, and K, we pla^e 

the following prior on 7 and /3. 

A3. The 7i are independent a priori with p{fi = i ) = 1/2, while the conditional prior for 



Pi is 

/3^|cT2,7,^~A^(0,c<72(x;fi;^%)-i) . 

The prior for 7 means that we have no prior information on which columns of X to 

include. We usually take c = 100 as it works well in practice and makes the prior for /3^ 

almost diffuse relative to the information in the likeUhood. We have checked using simulation 

on many examples that estimates based on this prior are relatively insensitive to values of 

c in the range 10 < c < 2000. The prior for /3^ is similar to Zellner's (1986) g-prior when 

n^ = I. 

2.3 Data transformation 

For a linear regression model with independent errors, Box and Cox (1964) show how to use 

a power transformation of the dependent variable to obtain an additive model with errors 

that axe Gaussian smd have a constzmt variance. Because our approach assumes an additive 

regression model with stationary errors, we make the choice of an appropriate transformation 

part of the Bayesian analysis. We consider a family of transformations Tx{y) indexed by A G A 

such that T\{y) is monotonicaily increasing in y for each A e A. An example is the family of 

power transformations T\{y) = y^ for A > 0, Tx{y) = log(y) for A = 0, and Tx{y) = —y^ for 

A<0. 

Taking a transformation of y can make both the location and scale of Tx{y) different for 

each A. Therefore, in a linear regression model Box and Cox (1964) Jidvocate making the 

prior for /3 and a"̂  depend on A. We take a different approach. Instead of working directly 

with Tx{y) we follow Smith and Kohn (1995) and work with the normalised transformation 

J/A = OA + bxTxiy). For each A, the scaiars ax and 6A are chosen as follows. Let t/(j) and 

y(t),A be the ith ordered values of j/j and yi^x = OA + bxTx{yi). The scaiars ax and bx are 

chosen so that y^n/2) = y(n/2),A and y(3n/4) - y(n/4) = y(3n/4),A -y(n/4),A- This means that the 

median and interquartile range of the J/Ĵ A are approximately the same for all A G A. Such a 

choice of ax and 6A is motivated by, but is a Uttle different to, the transformation approach 



of Emerson and Stoto (1983). 

Because the centre and the scale of the yi^x are the same for all A we make the following 

assumption. 

A4. The pairameters (T'^,K,rp,'y, and /3 are a priori independent of A. 

We also Umit the set of possible trcinsformations A to be discrete and small because it 

is necessary to integrate out A in some steps of the Markov chain Monte Carlo sampler in 

Section 3. 

3 Sampling scheme and pcirameter estimation 

3.1 Sampling scheme 

The complexity of the Bayesian model means that it is necessary to use Markov chain Monte 

Carlo sampling to estimate the regression function and the autoregressive parameters. We 

refer the reader to Gelfand and Smith (1990) and Tierney (1994) for the application of 

Markov chain Monte Carlo sampling in statistics. To describe the sampling scheme it is 

convenient to use the notation Q|/3 to mean that a is generated conditional on (3. Some steps 

of the SBjnpler generate from the exact conditional distribution which we write as p(a|/3). 

Other steps generate from an approximation to the conditional distribution combined with a 

Metropolis-Hastings step (see Tierney, 1994). We write the approximation to the conditionad 

distribution as q{a\P). 

The sampling scheme is first presented and each of its steps is then briefly described. 

Implementation details are given in Appendix 1. Let ip = {tpi,..., V's). « = («i) • • • >««)» and 

7 = (7o,--.,7r). 

Sampling Scheme: Starting with some initial values «toi,̂ [o],/9to],̂ (o]^ and At°̂  the sam-

pUng scheme iteratively generates the parameters using the following conditioning: (i) Py\K, rp, 7, A, y; 



(ii) rpi, Ki\Kjji:i, 'tpj^i, 7,13, A, y, for z = 1 , . . . , s; (iii) 7il7j>tt,«, V, y, for i = 0 , . . . , r; (iv) A|K, V, 7, V-

The sampling scheme is invariant to the posterior distribution p(/3,7, ^ , K , A|y) as eeich 

part either generates directly from a conditional distribution or uses a Metropolis-Hastings 

step. It can be readily checked that the sampUng scheme is also irreducible and aperiodic. 

Therefore, by Tierney (1994) the sampler converges to the correct posterior distribution. 

The error variance a^ is integrated out of the sampling scheme. In Step (i), /3y is 

generated from its conditional distribution p(/3-y|K,V',7, A,y) which is multivariate t. In 

Step (ii), ipi and KJ Jire generated as a block. The binary indicator KJ is generated first from 

p{Ki\Kj:^i, il)j^i, 7, /9, A, y) using numerical integration to determine the conditional probability 

that Ki = 1. The partial autocorrelation i/'i is then generated using a normal approximation 

to its conditionad distribution; we use the approximation 

q{ipi) a p{ys+i, •••)ynll/i) •••)J/s,«>^>7)/?i A) which is t—distributed in ipi. The generation 

of rpi is completed using a Metropolis-Hastings step. It is necessary to generate ipi and Ki 

simultaneously as generating them one at a time produces a reducible sampling scheme which 

does not converge. In Step (iii), the binomial density p(7t|7j5,ij,K,V',y) is obtained explicitly, 

by evaluating the probability that 7t = 0 and 1 up to a scale factor and then normalising. 

The transformation parameter A is generated from its multinomial conditional probability 

as for each A G A, the conditional probability of A can be evaluated up to a scale factor and 

then normalised. 

The family of transformations A is taken discrete and small to make it easy to integrate 

A out when generating ji and also to generate A. It is necessary to integrate A out when 

generating 7 as the sampler which conditions 7 on A converges too slowly to be practical. 

In general, the sampler is first run for a warmup period at the end of which it is as­

sumed that it has converged to the posterior distribution p{l3,j,K,ij},X\y). It is then run 

for a further period called the sampling period whose output is used for estimation. Let 

yg[fc] ,y[fc] ,̂ [fc]̂ [̂fc)̂ [̂«:]̂  ^ _ i^^^K^ be the iterates of P,'y,K,ip,X diuring the sampling pe­

riod. 



3.2 Est imat ion 

Estimation is done in two stages. The parameter A is first estimated as the mode of an 

estimate of p(A|i/); let AM be this estimate of the mode. In the second stage the unknown 

regression function and the autoregressive parameters are estimated conditional on AM- This 

two stage approach is used by Box and Cox (1964, 1982) who advocate estimating the re­

gression on a given scale (that is by conditioning on the estimate of A) rather thcin averaging 

over the distribution of A. 

The modal estimate AM is obtained as follows. The Markov chain sampler in Section 3.1 

is run to obtain the iterates P^''\'y^''\K^*!,i/''*^', A'*', k = 1...,K. Based on these iterates the 

probabihty p{X\y) is estimated by 

p(A|y) = i Ep(^l/'"^''^"''«'"'^^'^'y) (3-1) 
fc=i 

The estimate AM is the maximum of p(A|j/) for A 6 A. 

The Markov chain Monte Carlo sampler is run again, this time conditioning on AM, and 

not executing Step (iv) of the sampUng scheme. New iterates /3^''\ x ,'^^''\ V"'*̂ ' are obtained. 

The following estimates of E{(3\y),E{ip\y), and E{Ki\y) = p{Ki = l|y) are used to estimate 

the regression function and the autoregressive parameters; 

K 

fc=i 

^ = ^ E V ' f ^ 
k=i 

1 ^ 
ki = •^'^p{Ki = l\'tpf^i,Kf^i,XM,y), i = l,...,s. 

k=l 

The estimates $ and k are called mixture estimates as they are based on the conditional 

distributions of /9 and K. The estimate ip is called an empirical estimate as it is based on the 

raw iterates V-t*'. The regression function is estimated by plugging $ into (2.2). The estimate 

6 of the autoregressive parameter 6 is obtained from i^. 



4 Univariate nonparametric regression 

4.1 Independent variable not t i m e 

In this section we show by simulation that taking account of the autocorrelation in the errors 

can give substantially more accurate nonparametric estimates than those obtained if the 

autocorrelation is ignored. Previous simulation studies by Diggle and Hutchinson (1989) and 

Altman (1990) deal only with the univariate case where time is the independent variable. 

They show that if the errors are treated as independent then any autocorrelation in the 

errors is incorporated into the nonparametric estimate of the regression function and cam 

result in a very rough estimate. What is insufficiently discussed in the literature is that, 

even if the independent variable is not time, modelling the autocorrelation in the errors 

gives more efficient nonparametric estimates as it reduces the effective error variance. This 

is illustrated by the following example. Consider the model (2.1) with ut the first order 

stationary Gaussian autoregressive process ut = (put-i + et, with et independent N{0,(T'^) 

and (f) known. Then, var(ut) = a^/(l — (fy^). Equation (2.1) can be written as 

yt = (fyyt-i + f{xt) - Hi^t-i) + e* 

which is an additive regression with error vaxiance equal to CT"^. This shows that ignoring the 

structure in the errors increases the error variance by a factor of 1/(1 — (fy^) which is large for 

(f) close to 1. 

This gain in efficiency is illustrated by simulation. One hundred observations were gen­

erated from the model (2.1) for eaxh. of the three functions 

/ i (a ;)=2i- l , /2(a;)=sin(107ra;) , and /3(a;) = {<̂ (a;; 0.15,0.05)-l-0(x;0.6,0.2)}/4; (4.1) 

^(x; /i, a) is the Gaussian density, with mean /x and standard deviation a, evaluated at x. The 

independent variable xt was generated uniformly on (0,1), and the errors uj were generated 

from the second order autoregression ut = 0.9ut_i — 0.9ut_2 + et, with et ~ iV(0,0.5^). 

This was replicated one hundred times, and for eajch function and each replication three 

10 



nonparametric Bayesian estimators of the regression function were computed. The first 

estimator fits a second order autoregression to the errors with K\ and K2 fixed at 1 and 5 = 2. 

That is, the error structiure is assumed to be known except for the values of the parameters 

61,62, and ar^. The second estimator fits an autoregression of order 5 = 6 to the errors 

and selects the significant partial autocorrelations. The third estimator treats the errors as 

independent. 

For all three estimators the knots are selected to follow the density of the independent 

variable, with one knot every fifth observation of the ranked predictor. Extensive simulations 

by the authors, some of which appear in Smith and Kohn (1996a), indicate that such a 

scattering of potential knot sites is more than adequate to capture all but the most oscillatory 

function. Each replicate for each function and each estimate consisted of 500 iterations with 

the first 100 iterations discarded to ensure convergence. 

The numerical criterion we use for judging the quaUty of an estimate f{x) of an unknown 

function f{x) is the integrated squared error (/5.B)-the integral of {/(x) — f{x)}^ over the 

domain of f{x). We approximate this integral by taking a grid of 400 equally spaced points 

Zi = i/400, i = 1, . . . , 400, and compute the ISE as 

, 400 

t = l 

Figure 1 presents the boxplots oilogg{ISE) for the three estimators and shows the substantial 

loss in efficiency when the autocorrelation in the errors is ignored. This is because the 

standard deviation of uj is 2.6 times the standard deviation of et- The plots cilso show that 

the second estimator, which does not assume that the order of the autoregression is known, 

performs almost as well as the first estimator which assumes that the order is known. 

To visually assess the performzmce of the full estimator (that is, where the autoregressive 

order is also estimated), we sorted the ISE scores from highest to lowest. We selected 

the 10th, 51st, and 90th highest scores as examples of poor, median and good fits for each 

of the three functions. These estimates, the actual function and the corresponding data 

are plotted in Figiire 2. Also plotted is the nonparametric estimate which assumes that 

11 



the errors are independent. The plots confirm that when autocorrelation in the errors is 

ignored the function estimates are very poor, whereas the estimate that takes account of the 

autocorrelation performs well. 

To ensure that 100 iterations suffice to ensure convergence, the output of a number of 

individual runs was studied. Convergence, as measured by the value of the iterates of the 

posterior density p(7[*l,«;W,^f'^],/3W|y) consistently occurred within two dozen iterations, 

with the same estimates of the function obtained using a number of difiierent starting values. 

In addition, the plots in Figure 2 show the high quality of the fits obtained for the second 

estimator. If the schemes had not converged to the correct joint posterior distribution these 

plots would either be highly biased (when important knots are omitted) or have a high 

variance (when redundant knots are retained). 

4.2 Time as the independent variable 

Much of the literature on nonparametric regression with autocorreiated errors deals ex­

clusively with the univariate case with time as the independent variable, e.g. Diggle and 

Hutchinson (1989), Altman (1990), Hart (1991, 1994), and Kohn, Ansley, and Wong (1994). 

We therefore study by simulation the perforniance of the Bayesian regression spline esti­

mator for this case. For comparison, we also look at the smoothing spline estimators in 

Kohn, Ansley and Wong (1992) and the kernel approach by Hart (1994). Kohn, Ansley, 

and Wong (1992) estimate the smoothing pairameter and the autoregressive parameters by 

two methods, margined likehhood and generalised cross-validation. Hart (1994) estimates the 

bandwidth by what he calls time series cross validation. We refer the reader to Kohn, Ansley 

and Wong (1992), and Hart (1994) for a description of their methods. 

One hundred observations were generated from the model (2.1) using the following three 

functions: the first function is fi{x) = 32x^(1 — x)^ which is used by Hart (1991) in his 

simulations; the other two functions fiix) and /3(a;) are described in (4.1). The independent 

variable was set to be xt = t/100, t = I,..., 100. The error ut is the first order autoregression 

12 



ut = 0.5itt-i + Cf, with et independent N{0,a^). For each function, a takes three values 

corresponding to the standard deviation of et being one eighth, one quarter, and one half 

the range of the function. These three values for the standard deviation of et represent low, 

medium, and high noise examples. 

One hundred replications were run for the four estimators, the three functions and the 

three noise levels and the performance of the estimators compared using ISE. To ensure 

a fair comparison all foiu: estimators had the order of the autocorrelation fixed to the true 

value, so that in the Bayesian case KI = 1 and KJ = 0 for i > 1. Figure 3 presents boxplots 

of log{ISE) and shows that the Bayesian regression spline estimator compares favourably to 

the other estimators over all three functions and all three noise levels. It 'breaks down' (that 

is, confuses the function estimate with the autoregressive process) far less frequently than 

the other three estimators. 

In particular, the regression spline estimator performs much better for the function /a. 

This function has differing curvature over the domain of x and requires an estimator with a 

degree of 'local adaptability', such as a variable bandwidth smoother. The smoothing spline 

and the kernel based estimators are single bcindwidth smoothers and therefore axe not locally 

axlaptive in nature and perform poorly. This is illustrated in Figure 4 which plots, for each 

estimator, the function estimate corresponding to the 51st worst value of the ISE together 

with the corresponding data set. The plots are for the low noise case. The plot shows that the 

regression spline produces a relatively unbiased and smooth estimate for the entire function, 

despite the fact that the curvature is much greater on the left side than the right side of the 

domain of x. The estimate of ^i is 0.646, close to the true value of di = 0.5. 

The smoothing spline estimate using generalised cross-validation uses the same bamd-

width throughout. This value is too small for the function on the right hand side of the x 

domain and results in under-smoothing of the function. The estimate of Ox is poor, with 

^1 = —0.076, because much of the autocorrelation process is identified as function curvature 

and incorporated into the function estimate. The smoothing spline estimate using marginal 

likelihood grossly over-smoothes as it incorporates the entire shape of the curve into the 

13 



autocorrelation process with the estimate 6\ = 0.942. Hart's estimate tends to interpolate 

the data by taking too small a bandwidth. The estimate of ^i is a non-stationjiry -3.45, 

while the bandwidth estimate is 0.1, which is the minimum allowed. This simulation un­

derscores the need for both the autocorrelation process and the underlying function to be 

considered simultaneously. If one is incorrectly identified then the other is also likely to be 

poorly estimated. 

4.3 Smoothing issues 

In some sense, the choice of c = 100 in the prior for /3^ foimd at assumption A3 is arbitrary. 

However, we would like to stress that in the nonparametric application examined in this 

paper, it is not interpretable as a traditional smoothing parameter analogous to that of 

smoothing splines or kernel smoothers. For example, notice that c = 100 was an appropriate 

value for the fovir very different functional forms found in the simulations of sections 4.1 and 

4.2. It is also appropriate for the two multivariate data examples examined later in section 5. 

To demonstrate the high degree of insensitivity of the procedure to even quite large 

alterations in the value of c we conducted a small simulation experiment. Again, ISE was 

used as a performance measure and the design was the same as used in Section 4.1 with 

AR(2) errors where the order is known a priori. The functions / i , / 2 and /a, three levels of 

a, 1/8,1/4 and 1/2 and three levels of c, c = 100,500, and 1000 were considered. As before, 

a regression spline as described in Section 4.1 was fit. The results axe plotted in Figure 5 

which present the logg{ISE) averaged over 50 replications for each of the functions, for the 

three levels of c amd the three levels of a. 

The plots illustrate that the performance of the regression spline is relatively insensitive 

for a range of values of c. This is true regardless of function type and signal to noise ratio. 

14 



4.4 Related Work 

Engle et. al. (1986) and Harvey and Koopman (1993) are two of the very few papers that 

discuss nonparametric regression when the errors are autocorrelated, but the independent 

variable is not in time order. Both papers only consider a first order autoregreissive process 

for the errors, but do not estimate the autoregressive parameter simultaneously with the 

unknown fimction. The results in Section 4.1 show that, in general, substantially better 

function estimates are obtaiined if the estimation is simultaneous. 

To make the computation tractable, Engle et. al. (1986) use a discretised version of spline 

smoothing by dividing the range of the independent variable into subintervals and assume 

the regression fimction is constant in each subinterval. They do not obtain a data driven 

subdivision of the range of the independent variable. 

Harvey and Koopman (1993) use regression splines to estimate the unknown function 

assuming that the errors are independent. The autoregressive parameter is then estimated 

from the residuals. Harvey and Koopman do not have a data driven approach for determining 

the position of the knots of the regression spUne. 

Chib and Greenberg (1994) use the Gibbs sampler to provide a Bayesian analysis of a 

regression model with autoregressive-moving-average errors. They do not carry out model 

selection for either the regression variables or the autoregressive moving average parameters. 

5 Additive semiparametric regression 

5.1 Introduction 

Consider the following additive regression model with independent variables x and z, 

yt = f{xt)+g{zt) + ut (5.1) 
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When the errors ut aie independent, the backfitting algorithm described by Hastie and Tib-

shirani (1990, p. 90) is a popular approach for estimating / and g. Starting from some initial 

estimate of 5, the backfitting algorithm iteratively estimates / given g and then g given / un­

til convergence is achieved. Any univariate smoothers can be used to carry out the iteration. 

Hastie and Tibshirani (1990, p. 122) show that the backfitting algorithm converges for a class 

of smoothers including spline smoothers; no proof is yet available for kernel based smoothers 

or supersmoother which is used by the ACE algorithm of Breiman and Friedman (1985). 

However, at present no backfitting algorithm exists for an additive model with auto-

correlated errors and the following example suggests that it will be difficult to obtciin one. 

Consider (5.1) with ut generated by the first order autoregression ut = <^t-i + Cj, with </> 

known. Equation (5.1) is equivalent to 

yt - (fyyt-i = f{xt)+g{zt) - (f>f{xt-i) - ^g{zt-i) + et. (5.2) 

Let vt = if_i, Wt = zt-i, fi{x) = f{x), and gi{z) = g{z). Then (5.2) can be written as 

yt - (hJt-i = f{xt) + g{zt) - <f>fi{vt) - (f>giiwt) + et • (5.3) 

By treating / , g, / i and gi as four separate functions the backfitting algorithm can be appUed 

to (5.3) to give estimators of / and g. However, in empirical work using smoothing splines 

we have found this approach often gives poor estimators of / and g as the constraints / = / i 

and g = gi are not enforced. Moreover, it seems difficult to enforce the constraints. A second 

shortcoming of using backfitting, even in the independent error case, is that it seems difficult 

to obtain high quality estimates of the smoothing parameters involved. Usually the estimates 

of the smoothing parameters are chosen as functions of the independent variables, but not 

the dependent variable and hence cannot adequately take account of any curvatxire in the 

unknown functions. 

By contrast, it is straightforward to extend the regression spline approach to handle 

£Ln additive nonpaurametric regression model. Each nonlinear component is modelled as a 

regression spline, but where only a single global intercept is included in the model. This 

gives rise to a linear regression model in which the knots are chosen by subset selection in 

16 



the same manner as in the univariate case. 

5.2 Electr ic i ty consumpt ion data 

As an illustrative example we apply the methodology to the residential electricity data in 

Harris and Liu (1993). The data consists of 264 consecutive observations of monthly electric­

ity consumption (y) and the following four independent variables: number of heating degree 

days (xi), number of cooling degree days (12), average real electricity price (13) and real 

disposable income (X4). Plots of the variables are given by Harris and Liu, along with a 

detailed explanation of the data. 

We model the data as the additive nonparametric regression 

yt,x = a + D{t) + flint) + f2{x2t) + fsixzt) + h{xAt) + «t • (5.4) 

Here, a is the intercept and D{t) is a trend. Each of the functions D{t), fi{xit),..., /4(x4t) 

is modelled as a regression spline with zero intercept and with a potential knot site every 

fifteenth observation of the ranked independent variable. Fewer potential knot sites are used 

for each function in the multivariate case than in the univairiate case to prevent the matrix 

X'y^'^^X^ becoming singular or nearly singular. Nevertheless, the number of knots used 

appears more than sufficient to capture any potential nonlinearity in the functions. 

To allow for seasonality, the errors ut are modelled as an autoregression with maximum 

order s = 20; the descending prior for the indicator variables KJ is given in Section 2.1. 

Alternatively, to captmre the seasonality, the errors ut could be modelled as a multiplicative 

autoregressive model containing both seasonal and non-seasonal terms as in Barnett et. al. 

(1996a). 

To obtain additivity of the regression function and normality of the intrinsic errors e, a 

normalised power transformation of the dependent variable is used as outlined in Section 2.3; 

i-e- yt,x = 0.x + bxTxiyt) with Tx{y) = y^ and with A restricted to the nine values A = 

{—2, —1.5, —1, —0.5,0,0.5,1,1.5,2}. Inclusion of a trend term was suggested by looking at 
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the residuals of the nonparametric fit of the model at (5.4) with the trend term omitted; see 

also Figure 7(b) for a plot of the original data. 

The Bayesiein approach was applied with a warmup period of 200 iterations and a further 

100 iterations were used to estimate the posterior distribution of A. The posterior probability 

of A = 0 was 0.99 so the normalised logarithmic transformation was selected. Using this 

transformation of the dependent variable, the sampler was then run for a fiurther 400 iterations 

to estimate the regression function and the autoregressive parameters. 

Estimates of p(Ki = l|y) and E{9i\y) are given in Table 1 eind suggest that ut is a twelfth 

order autoregression, which is consistent with monthly data. The estimate of the intercept 

d = 0.4209 while the estimates of / i , . . . , /4 are plotted in Figures 6(a)-6(d). These suggest 

log(y) is linear in heating degree days and cooling degree days, but nonlinear in real electricity 

price and real disposable income. They also suggest that the two environmental predictors 

explain more of the variability in the dependent variable than the financisd variables because 

/ i and /2 both have a greater range than either /a or f^. The estimate of the time trend 

D{t) is plotted in Figure 7(a) and is consistent with the plot of the dependent variable in 

Figure 7(b). 

To explsiin the scatter plots in Figures 6(a)-6(d) and 7(a) we need some additional no­

tation. For < = 1,... ,n, let 6 = "t - •E(uf|«i, • • • ," t - i ) , o'̂ -Rt = var(^t) and Ct = ^t/y/Rt-

Then (t is independent JV(0, cr̂ ) and (̂ t = et for t > s + 1. Let (t and Rt be the estimates of 

f̂ and Rt based on the estimate of t/>. If the fitted model is correct then Ct = it/yRt is ap­

proximately N{0,(T^) suid independent. The scatter plot in Figure 6(a) is /i(a;it) + Ct against 

xit and suggests that the eflTect of i i t on log(yt) is captured correctly. The scatter plots 

in Figures 6(b)-6(d) and Figure 7(a) are interpreted similarly and suggest that the effects 

of X2t,X3t,X4t and the time trend are also estimated correctly. Figure 6(e) is a plot of the 

sample autocorrelations of (t and Figure 6(f) is a normal probability plot of Ct- These plots 

indicate that Q is independent and normal and thus validate the regression assumptions. 

Figure 7(b) is a time plot of the dependent variable and the Bayesian fit showing that 
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the fitted values exp{{y^^ — a'^)/b^} track the data well on the original scale. Figure 7(c) 

plots the logarithm of the posterior density logp(7t* ]̂, r/'̂ '̂ l, «'*', /3t*̂ l, AW|t/), (up to an additive 

constant), for the first 200 iterations and suggests that the sampler converges quickly. 

5.3 Toothpaste data 

As a second example we consider the toothpaste data previously analysed by Wichern and 

Jones (1977). This data includes the market share and price of both Crest and Colgate over 

276 consecutive weeks during the years 1958-1963. During that period the American Dentad 

Association (ADA) publicly endorsed Crest between weeks 135 and 136. This intervention 

is modelled by the dummy variable Xt = I ii t > 135 and Xt = 0 otherwise. We model 

the market share of Crest in terms of Xt and Pt — price of Colgate /price of Crest at time 

t. Because the market share of Crest is a fraction in the interval (0,1) we transform the 

dependent variable to help ensure that the regression assumption are satisfied. Nine c£indidate 

tremsformations T\{y),\ = 1,...,9, are considered and listed in Table 2 together with the 

normahsation constants a^ and b^ which ensure that the median and the interquartile range 

are similar for each transformation. Thus the model we attempt to estimate is 

yt,x = ai( l - Xt) + a2Xt + f{Pt) + ut, 

with yt^x the transformed market shaire of Crest, and a\ and a2 are the pre-endorsement and 

the post-endorsement intercepts. The errors ut are modelled as a stationziry autoregressive 

process of maximum order s = 8. The function f{Pt) is modelled as a regression spline 

without intercept and with potential knot sites plziced every fifteenth value of the ranked 

independent variable Pt-

The sampling scheme in Section 3.1 was run for a warmup period of 100 iterations with 

a further 100 iterations used to estimate A and a final 400 iterations to estimate ai,a2,f,K 

and 9. Sequence plots of the parameter values and posterior probability indicate that the 

sampling scheme converged within a handful of iterations in the same way as occurred with 

the fit to the residential electricity data. Table 2 presents the estimate of the marginal 
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posterior distribution of A and shows that the mode occurs for Tx{yt) = ^~^(y?'^), where 

$(•) is the standard normal cdf. The rest of the estimates were calculated conditioned on XM 

as outlined in Section 3.2. 

The estimate of £;(«|y) is p(« = l|y) = (1,1,0.886,0.361,0.149,0.041,0.014,0.104), sug­

gesting that either an AR(3) or an AR(4) model for the errors is adequate. The estimates of 

Qi and 02 are (di,d2) = (0.3063,0.5113), while the estimate oid is 

e = (0.2722,0.2133,0.1655,0.0524,0.0233,0.0030,-0.0013,0.0006). 

Figiure 8(a) is a plot of the estimated curve f{Pt) together with the added residual scatter 

plot Ct + /(-Pt)? where Q is defined in Section 5.2. Prom this plot, we conclude that yt,x is 

roughly linear in Pt and that Pt is a relatively insignificant determinant of the market shsire 

of Crest. 

The Figure 8(b) is a time plot of the fitted values [^{{ViX ~ °A)/°A}]^° ^^^ *^6 actual 

observations on the original scale. The fitted values appeair to track the data well and capture 

the discontinuity of the intervention, suggesting that the model provides a good fit to the 

data. Figure 9(a) is a plot of the autocorrelations of Ct and Figure 9(b) is a normal probability 

plot of Ct- These plots suggest that the errors ut are stationary and normally distributed jmd 

follow a fourth order autoregressive process. 

6 SumiriEiry 

A Bayesian approach is proposed for nonparametric regression with autocorrelated errors. 

This approach compares favourably with other nonparametric approaches in the univariate 

case with time as the independent variable. More importantly, the procedmre works well 

when the independent variable is not time and is also capable of handling a more general 

additive nonparametric regression model. It seems difficult to do so with other approaches to 

nonparaimetric regression. Furthermore, it should be straightforward to adapt the Bayesian 

approach to handle nonparametric regression with other correlated error structures. 
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Appendix Implementation of the sampler 

This appendix outlines how to implement the sampling scheme in Section 3.1. Let 

5(7,^, A) = y i f i ; ^v -Y^yAf i^ ' ^7 (^ ;« ; ; ; ' ^7 ) " ' ^ ; " ; ' j /A 

let q^ be the number of elements of ^^, and let J\ be the absolute value of the determinant 

of the Jacobian matrix for the transformation y -¥ yx. Prom the assumptions in Section 2, 

p(y|/3^, 7, V, ^ ' , A)p(/3 |̂V',7, cT')p{a^) a (27r)-("+'-)/2(a2)-("+9^)/2-ic-'-/2|^, j^-ij^^|i/2j^ 

^^^p{-^[Si'Y,'^,>^) + Y^^i0y-^yyK^;,'X^i0^-^^)]^ (AI) 

Generating /3^ 

p()9^,a2|y,7,T/;,A) oc p(y|/3^,7,t/;,c72, A)p(/3^|V',7,a2)p((T2). (A.2) 

Integrating a^ out of (A.l) and (A.2) using an inverse gamma integral, 

p(/3^|y,7,t/;,A) a {5(7,1/', A) + ^^{p^ - p^)'X'^il^'X^{/3^ - ^^)^ 
-(n+q^)/2 

That is, the conditional distribution of P^ is multivariate t with degrees of freedom n, which 

is centred at P~f and has scale matrix {X!yQ,Z,^Xy)~^cS{'y,'ip,X)/n{l + c); for n large, this 

conditional distribution is effectively multivariate normal. 

Generating V*! and KJ These variables are generated as a block with a^ integrated out. 

Note that 

p(V't,«t|y,/37,7,V'i#t,A) 0(ip{il>i,Ki\u,tl)jjii). 

21 



We sketch out the necessary steps to generate ipi, KJ; the details are in Barnett et. al. (1996a). 

p{lpi,Ki = l,a^\u,1j}j^i) <X p{u\lp,Ki = l,(7^)p{lpi\Ki = l)p{cT^) 

oc ip(«i = l)(a2)-"/2+i|n^|-i/2 exp{-u%'u/2). 

Integrating a^ out using an inverse gamma integral, 

p(^i,Ki = l\u,i;j^i) ex ^piKi = l)|fi^r^/2(^/j^-i^)-„/2 

The binary variable Ki is generated first without conditioning on ipi. To integrate out V'i we 

proceed as follows. Let ^t and Rt be defined as in Section 5.2. Then, 

t=l 

the ^t are independent and, for t > s, ^t = ut — ^i^t-i • • • — Os'^t-s and Rt = 1. Barnett 

et. al. (1996a) show that, for t > s, it is linear in t}}i so it is possible to write I^"=a+i i't = 

A{'il}i — B)"^ + C, with A, B and C independent of V't, A. and C positive, and all three terms 

computed as in Barnett et. al. (1995). Let D{rpi) = E?=i ^t/^- Then D « 1 as its 

numerator is the sum of s terms whereas its denominator is the sum of n — s terms. Thus, 

(u'n-^u)-"/2 « C-"/2{i + A{iPi - B)VC}-"/2 « C-"/2exp{-nA(t/'i - Bf/2C} . 

Letgii^i) = |n^|-i/2{Z>+l+A(V'i-B)VC}-"/2(C/nA)i/V('/'i;5,C/nA)-i, where 0(a;,/x,a2) 

is the normal density evaluated at x with mean /x and variance cr^. Then, 

1 /•! 
p{Ki = l|u, i/>ĵ i) oc -p{Ki = 1) y^ g{ipi)<t>ii{Ji, B, ClnA)dii)i. (A.3) 

The integral in (A.3) is readily evaluated by approximating logg(^i) by a quadratic in each 

of the intervals B + {j - l){C/nAy/^/2, B + j{C/nA)^/^/2, ; = - 7 , . . . , 8. Similarly, 

p{Ki = 0|u, Vj^i) « p{Ki = 0)\n^\-'f^D + 1 + Ai-tPi - B)VC}-"/2 , (A.4) 

with (A.4) evaluated at ipi = 0. The conditional probability of KJ is obtained by normalising 

(A.3) and (A.4). Once KJ is generated, V't = 0 if Ki = 0. If KJ = 1, we generate ipi firom 

qiipi) = (t>{tj}i,B,c/nA) and use a Metropolis-Hastings step. 
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Genera t ing 7i 

p(7i, 0y, (r\ X\y, jj^i, XIJ) a p{y\py, 7, ACT\X)P{P^\^, 7, (r^)p{cr^)pWp{rpi). (A.5) 

Integrating Py out of (A.l) and (A.5) using a normal integral, then integrating CT^ out using 

an inverse gamiha integral, and finally summing over A G A, we obtain 

P(7i|y, 7i^i, V-) OC J 3 JAP(A)(1 + c)-'-/25(^^ ^^ ^)-n/2 (A.6) 
A€A 

The conditional density of 7i is obtained by evaluating (A.6) for 7i = 0 and 1, and normalising. 

Genera t ing A 

p(A|y,7,^) ocp(y|7,V',A)p(A) oc 5 ( 7 , ^ , A ) - " / 2 J A P ( A ) (A.7) 

The posterior probability of A is obtained by evaluating (A.7) for all A 6 A and normalising. 

We conclude by showing how to efficiently compute y'x^^^y\,y'x^^ Xy,XyCl'^^Xy, and 

\Cl^\. As in Monahan (1984), for t = 1, . . . , s , 

^t = ut-et,iut-i et,t-iui and /2t = { ( l - V ' ? ) - - - ( l - V ' ? ) r ' - (A.8) 

Let M be a lower triangular matrix with ones on the diagonal; for t = 1 , . . . , s, Mt^t-j = 

-6t,j,j = 1 , . . . , < - 1; for t > s, Mt,t-j = -Oj,j = l,...,s, and Mtj = 0 for j > s. Thus M 

is a lower triangular band matrix with bandwidth at most s. Prom (A.8) and the definition 

of ^t and Rt, Mu = ^, Mn,j,M' = R, where i? is a diagonal matrix with tth diagonal element 

Rt. Let y = Myx,X = MXy, then, y^fi^^yA = y'R-'y,y'xii;i,'Xy = y'R-^X,X^^;^''X^ = 

X'R-'X, and \n^\ = n?=i Rt-
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d. I I 

Afl(2) oRtorMttmatad irM^anora AR(2) ORtorMtimatad Jndptarron AR(2) onlar actimatad indpl arrora 

Figure 1: Boxplots of log{ISE) for each of the three test functions and the three estimators. 

The left, middle and right panels correspond to / i , /2 and /a- In each panel the boxplot on 

the left corresponds to the estimator which assumes that the order of the autoregression is 

known to be 2, the middle boxplot corresponds to the estimator which does not assume that 

the order of the autoregression is known, and the right boxplot corresponds to the estimator 

which takes the errors to be independent. 
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i 

1 

2 

3 

4 

5 

Ki 

1 

0.992 

0.232 

0.202 

0.117 

Oi 

0.398 

-0.094 

0.003 

-0.058 

0.062 

i 

6 

7 

8 

9 

10 

ki 

0.089 

0.068 

0.741 

0.093 

1 

ei 

0.011 

-0.131 

0.206 

-0.126 

0.013 

i 

11 

12 

13 

14 

15 

Ki 

1 

1 

0.171 

0.071 

0.059 

Oi 

0.158 

0.544 

-0.024 

-0.002 

0.002 

i 

16 

17 

18 

19 

20 

ki 

0.055 

0.047 

0.055 

0.053 

0.082 

Oi 

-0.002 

-0.001 

0.005 

0 

-0.009 

Table 1: Estimates of p(«;i = l|t/) {ki) and (p for the residential electricity data. 

A 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Txiy) 
$-l(y0.1) 

$-l(y0.25) 

$-i(y°-5) 

$-l(y0-75) 

$-i(y) 

$-l(yl.5) 

$-l(y2) 

log(T^) 

log(- log(l - y)) 

OA 

-0.4061 

-0.0039 

0.2498 

0.3756 

0.4544 

0.5510 

0.6095 

0.4434 

0.5007 

bx 

0.5809 

0.4656 

0.3814 

0.3348 

0.3033 

0.2618 

0.2345 

0.1763 

0.2014 

p(A|y) 

0.5016 

0.2363 

0.1097 

0.0655 

0.0444 

0.0253 

0.0170 

0.0001 

0 

Table 2: Candidate treinsformations Tx{y), normalising constants ax and bx, and the pos­

terior probability estimate of each transformation p(A|y) for the toothpaste data. $ is the 

cumulative distribution function of the standard normal. 
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Figure 2: Plots of / i , /2 and /a (dotted line) together with estimate based on unknown order 

of the autoregression (solid line) and independent errors (dashed line). For each function, the 

left, middle and the right panels correspond to the 10th, 51st and 90th worst fits as judged 

by ISE. 
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Figure 3: Boxplots of log(/5£?) for each of the three test fimctions, three different noise 

levels auid four different estimators. The bottom three panels correspond to low noise, the 

middle three to mediimi noise, and the top three to high noise. In each panel, the estimators 

from left to right are: regression spline, smoothing spline using generalised cross-validation, 

smoothing spline using marginal likeUhood and Hart's estimate. 
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Figure 4: Plot of the estimate of /s corresponding to the median fit as judged by ISE 

together with the corresponding data set. The independent variable is in time order, the 

errors axe a first order autoregression, and the noise level is low. Panels (a)-(d) correspond 

respectively to the regression spline estimate, the smoothing spUne estimate using generalised 

cross-validation, smoothing spline estimate using marginal likelihood and Hart's estimate. 
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Figure 5: loge(/5JS) (vertical axes) for each of the three functions averaged over 50 replica­

tions. In each panel the bold line represents the results when c = 100, the dotted line c = 500 

and the dashed line c = 1000. The horizontal axis is a divided by the range of the function 
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Figure 6: Parts (a)-(d). Plots of the function estimates / i ( i i t ) , . . . , Ji{x^t) (solid line) to­

gether with the added residual scatter plots f{x\t) + Ct, • • •, f{xAt) + Ct- (e) Autocorrelations 

of Ct. (f) Normal probability plot of Ct-
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Figure 7: (a) Plot of the trend estimate D{t) (solid line) together with the added residual plot 

•^(0 + Ct- (b) Residential electricity consumption over time (scatter plot) together with the 

fitted values (solid line), (c) Trace of the log posterior density logp(7t* l̂, KW, /3l*l, A '̂'', ip^''^y) 

(up to an additive constjint) for the first 200 iterations of the sampler. 
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Figure 8: (a) Plot of /(Pj) (solid line) and the added residual scatter plot /(Pf) against Pt. 

(b) Crest market share (scatter plot) and the fitted values on the original scale (plotted as a 

solid line) from the model estimate. 
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Figure 9: Crest data, (a) plot of the sample autocorrelation function of Q. (b) Normal 

probability plot of Ct-
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