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Abstract 
Hypothesis testing is widely regarded as an essential part of statistics, but its use in research 
has led to considerable controversy in a number of disciplines, especially psychology, with a 
number of commentators suggesting it should not be used at all. A root cause of this 
controversy was the overenthusiastic adoption of hypothesis testing, based on a greatly 
exaggerated view of its role in research. A second cause was confusion between the two 
forms of hypothesis testing developed by Fisher on the one hand and Neyman and Pearson on 
the other. This paper discusses these two causes, and also proposes that there is a more 
general misunderstanding of the role of hypothesis testing. This misunderstanding is reflected 
in vocabulary such as ‘the true value of the parameter’.  

Keywords: hypothesis test, significance, p value, probability model, statistical model, 
prediction 

1. Introduction 
Hypothesis testing has long been a part of statistics; to many it is, as one of the faces of 
inference, at the core of statistics, and is taught as such. Its use dates back three centuries, but 
modern hypothesis testing is usually dated from the work of Fisher on the one hand, and 
Neyman and Pearson on the other. Their approaches had a degree of commonality (Lehmann, 
1996), but the underlying views of what they were doing were very different (Gigerenzer, 
1993). What is commonly taught today in fields including psychology, education, medicine 
and, more recently, ecology, is an amalgam of the two approaches, what Gigerenzer calls “the 
hybrid logic of scientific inference, the offspring of the shotgun marriage between Fisher and 
Neyman and Pearson”. 

For much of the last four decades or so there has been considerable controversy in the fields 
mentioned above about the use of hypothesis testing in research. Since Morrison & Henkel 
(1970) presented an extensive review of criticisms of hypothesis testing, the arguments for 
and against it have ebbed and flowed; for example, Thompson (2001), McLean and Ernest 
(1998). Attitudes vary from unqualified support, through recognition of the importance of its 
role, provided that it is supplemented by other forms of analysis, to calls for it to be banned. 
Neither extreme is to be countenanced, but the latter smacks of throwing the baby out with the 
bath water. Sterne and Davey Smith (2001) present a typical discussion, in this case in the 
field of medicine, with an interesting range of responses on the web site. 
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Much of the controversy appears to have stemmed from the simple but extensive misuse of 
hypothesis testing, both by researchers and by editors of journals in which the researchers 
wished to publish their results. Papers were published, or not, on the basis of whether their 
results were significant at the 1% level or not (Melton 1962) and of course researchers 
responded to this in the natural way. They also had the tests take the major role in 
determining, and presenting, their results. Not surprisingly, moves are occurring to restore 
hypothesis testing to something more like its proper place. 

For example, the American Psychological Association (1994) encourages researchers to 
provide effect-size information. More recently, the APA Task Force on Statistical Inference, 
convened after the publication of an article by Cohen (1994), plans to recommend quite 
sweeping reforms, most more than acceptable but some perhaps putting that metaphorical 
baby at some risk (Wilkinson 1999). Similar changes are occurring within the American 
Education Research Association (Thompson 1996). These debates are discussed in Harlow, 
Mulaik & Steiger (1997). 

It should be noted that the controversy appears to focus primarily on the use of univariate and 
bivariate tests, particularly tests on the difference between two means. This is not, I believe, 
coincidence. 

Most of the argument is based on a common perception of what hypothesis testing is, with 
some differences such as those between the frequentist and Bayesian schools. Much of the 
disagreement can be located in varying ideas as to the role of hypothesis testing in statistics. 

This general argument in some parts of the research community has an echo in the teaching 
community. Students notoriously find hypothesis testing a difficult subject to learn properly. 
Although it is not difficult for students to carry out a class room (or examination) hypothesis 
test exercise, it is difficult to convince a teacher that the students really understand what they 
have learnt. There is considerable research into what students understand by, for example, 
‘level of significance’ which demonstrates considerable confusion; for example, Shaughnessy 
(1983), Falk (1986), Pollard and Richardson (1987). Given the confusion in the research 
community, this is not surprising. 

The aim in this paper is to present a view of hypothesis testing which removes, or at least 
reduces, this confusion – in a sense, to step around the controversy. The discussion is couched 
in terms of elementary statistical applications, partly because these seem to be where most of 
the controversy lies, partly because the proposals seem to be implicitly followed in more 
advanced applications. The major contribution, apart from making explicit what seems to be 
the implicit approach, is to indicate that this approach can be extended to elementary 
statistics. It has, in particular, direct implications for statistics education. 

The basic suggestions are: 
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1. 	 Our knowledge of the world is in terms of models, although we observe data – so 
these models are based on data – plus previously held models. In particular, all 
statistical analyses are concerned with probability models. 

2. 	 Hypothesis testing is a form of model selection under particular conditions. 

3. 	 Under the predictive view of statistics, hypothesis testing is a choice between a model 
with parameters specified by a null hypothesis, and one with parameters specified by 
sample data. 

The details of this approach, and some consequences, particularly with respect to this 
controversy, are discussed in the remainder of the paper. 

2.	 Models and proof 
2.1 	Models 
I pointed out recently (McLean 2001) that humans operate on the basis of models in the form 
of stereotypes, preconceptions, biases, myths, religious beliefs and scientific theories. These 
models are based on data, in the form of personal observations, information passed on to us 
by parents, school, mentors, advertising and the rest. Some are, to a greater or less degree, 
common to large numbers of people, some are very individual. Both individually and 
commonly held models change as new data is accepted. 

Many of the individual models we operate by are probabilistic in nature, although of course 
very imprecise. People understand the idea of uncertainty very well indeed: since we live in 
an uncertain world, there has been considerable evolutionary pressure to understand it, so 
people have a general concept of probability in the sense of what is likely or unlikely to occur. 
On the other hand, people seem to have difficulty comprehending numeric probabilities, 
particularly very small probabilities, so it is not surprising that students find mathematical, 
academic probability difficult.  

Scientific research consists essentially of formulating a model of some aspect of the ‘real 
world’, making predictions, on the basis of the model, which can be tested, collecting data 
and testing the model, then accepting, adjusting or rejecting the model according to the test. In 
practice, of course, the sequence is nothing like as straightforward as described here. One may 
think that the model is suggested by data (inductive reasoning) or that it is deduced from other 
models. Note that the word ‘models’ is used here very generally, to include the fuzzy natural 
models we have of the real world as well as formal scientific theories, mathematical models 
and the like. In this sense Fisher seems to be correct – models (hypotheses, theories) do not 
spring from the data alone. 

Models can be classified in a number of ways. All models are developed for the purpose, at 
least potentially, of prediction. Some will be in some sense causal, in that they embody some 
mechanism. Note that the mechanism may not be ‘correct’. Invoking the gods to bring rain 
involves a causal model of predicting rain: ‘If we carry out the ceremony this will make the 
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gods happy and inclined to do what we want and there will be rain’ is just as much a causal 
model as is: ‘If I apply a force to this object its acceleration will be given by the force divided 
by the mass of the object.’ Most people would consider the former to be an inferior model, in 
that predictions based on it are neither reliable nor accurate. 

Essentially the same classification is made by Lehmann (1990). He quotes Neyman, who 
identified ‘interpolatory formulae’ and ‘explanatory models’, and Box, who uses the terms 
‘empirical’ model, and ‘theoretical’ or ‘mechanistic’ model. These authors were talking of 
statistical models, but the same identification can be made quite generally. 

Implied in the above is the idea that the quality of a model is measured by the degree to which 
it provides accurate predictions. A causal model is not better than a purely predictive model 
because it provides understanding. It is better because it gives better predictions. This will 
only happen if the hypothesised mechanism is indeed appropriate; and we only know that it is 
appropriate because it gives good predictions! 

The scientific method can be viewed as an approach whereby such models are tested by 
comparing predictions based on them with observed data. If the data disagree with the 
predictions, the model is modified or discarded. As such, it is a formalisation of a mode of 
thought which is probably not as common as we would like to think, but is nevertheless used 
in daily life. People do test their models – their preconceptions – by comparing their 
predictions with what they observe, and modify these models. The process is called 
‘learning’1. 

The discussion above assumes that one can distinguish clearly between the ‘theory’ and the 
‘data’ – the observational or experimental evidence. In reality the distinction is not necessarily 
clear. One can argue that all observational evidence is itself but a model of the real world, 
since it is filtered through our senses and interpreted by our brains, but to be practical, we 
have to operate as if ‘data’ really is observed fact2. If you like, we each operate under a super 
model of the world. 

2.2 Probability models 
A large number of the natural everyday models we use are probabilistic. As such, they 
provide predictions in the sense of statements of what is likely to occur. For example: ‘If I 
walk down that street I am very likely to be mugged!’ These models are of course fuzzy and 
ill defined, although they probably are more precise in the mind than in the language used to 
express them. As in the general case, these models are likely to be modified with experience. 
If I walk down that street a few times without being mugged I am likely to change my model. 

1 The extent to which by developments such as the Greek belief that abstract reasoning is the ideal way to 
develop understanding hindered the development of the scientific approach from what seems a natural origin is 
an interesting question.
2 There appears to be evidence that when we ‘see’ a scene, most of it is a model in the sense that it is constructed 
from data already stored in the brain; only relevant detail is fresh. 
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It is well recognised that theoretical statistics is concerned with probabilistic models. 
Lehmann (1990) quotes Fisher as defining the principal task of statistics to be ‘the reduction 
of data’, and that ‘this object is accomplished by constructing a hypothetical infinite 
population, of which the actual data are regarded as constituting a sample. The law of 
distribution of this hypothetical population is specified by relatively few parameters…’ 
(Fisher 1922). Again, the population from which a sample came is a ‘product of the 
statistician’s imagination’ (Fisher 1955, p.71). On the other hand, the conclusion to be 
reached from elementary textbooks, particularly those directed at nontechnical students, can 
only be that the idea of statistics being concerned with probability models is simply not 
considered. 

The concept of probability itself is a model. The probability of an event refers to the 
likelihood of that event occurring on a particular occasion. It can, in theory, be measured as a 
long run proportion, as a proportion of favourable cases, or as a strength of belief by 
identifying a breakeven bet. None of these is a probability. Identifying a probability as the 
proportion of times an event is expected to occur if the occasion is repeated (the frequentist 
imagery) is at best a device to help a student understand, useful in some circumstances and 
totally inappropriate in others.  

A Bayesian may talk in terms of the probability of the true value of a parameter; for example, 
‘The true mean lies between 10 and 20 with probability 0.9.’ First, note that this expression is 
a form of shorthand. On the face of it, the mean either is within the interval or it is not, so the 
probability is either 1 or 0. But probability is not about what is or is not, but is a measure of 
uncertainty, which is a property of knowledge about what is. We think of probability as 
referring to the future: we are uncertain about the result of tossing a coin because we have not 
yet tossed it. But probability refers to lack of knowledge about what has happened, is 
happening, or is yet to happen. The phrase above is a statement about the uncertainty of 
knowledge of the value of the parameter.  

It is also a statement about a model. More accurately, it is ‘On the basis of available 
knowledge, the level of certainty (probability) that the mean of the model used lies between 
10 and 20 is 0.9.’ 

2.3 The predictive view 
The predictive view of statistics (McLean, 2000b) suggests that the purpose in any statistical 
analysis is to formulate a probability model which can be used to predict what is likely to 
happen in the context under consideration. This is true even when data are simply recorded 
with no apparent use in mind, or when the ostensible use is simply to ‘understand the 
situation’. This reflects a view that statistics are useful! 

The predictive view leads to some understanding of why we do statistics the way we do – for 
example, why the mode and mean are so important. It also suggests changes in what we teach: 
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for example, prediction intervals should form part of any elementary course and, despite the 
importance of working with data, trying to teach statistics without probability is by its nature 
flawed. Naturally, the predictive approach leads to an emphasis on the use of models. 

2.4 Proof 
It is not true that ‘You can prove anything with statistics!’ The reverse is true. The role of 
statistics is to provide evidence based on observed data, hopefully fairly objective, and to 
some extent to provide an assessment of the strength of that evidence, for or against some 
model. This can take a form whereby a given model is tested, or where data are used to 
suggest a particular model, and to estimate appropriate parameters. 

The word ‘proof’ has a variety of connotations. In mathematics its meaning is that a 
conclusion is ‘proved’ if it shown that it must be the case, given the assumptions made, that it 
follows logically from these premises. In everyday language it seems to be used more along 
the lines of: I consider the conclusion is proved if the evidence is strong enough to convince 
me. So the interpretation to be placed on the word depends on the required level of evidence 
implied by the user. Unfortunately, it is rarely made clear what that level of evidence is, so 
there is an element of ambiguity in its use. 

We can define ‘truth’ and ‘proof’ pragmatically – a hypothesis or theory is ‘true’ if it is based 
on sufficiently strong observational (‘factual’) evidence that ‘most reasonable people’ accept 
it as a workable model. Its ‘truth’ has been ‘proved’ if this is the case. These pragmatic 
definitions are mental shorthand – they are not in any sense absolute statements. People have 
to be continually reminded of this. 

It can be argued that when a researcher talks about the ‘truth of the null hypothesis’, for 
example, that he is using this mental shorthand – he really does understand that he is talking 
about a model which is not really ‘true’, but finds it easier to talk as if this is not so. From my 
observations, this is not generally the case.  

This pragmatic view of truth describes science. The theory of evolution is accepted as ‘true’ 
because the evidence is sufficiently strong, and comes from such a wide variety of sources, 
that it is generally accepted as a workable model. (For most people this acceptance is 
probably implicit.) It is also the case in the criminal courts: to say that a person has been 
‘proved guilty’ of a crime is merely to say that the factual evidence is sufficiently strong that 
‘most people’ (represented by the jury) accept his or her guilt as a workable model. (People 
may find this an uncomfortable view, but the number of cases where later evidence has shown 
that the model ‘X is guilty of this crime’ is not sustainable is itself uncomfortably large.) 
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3.	 Hypothesis testing 
3.1 	 What is hypothesis testing? 
Hypothesis testing is a very pure example of the scientific method, in the sense that one is 
explicitly testing a hypothesis by experiment – that is, by looking at the data. 

Hypothesis testing is a rather peculiar form of model selection. The particular features are: 

(1)	 it is used to select between two complementary models, one of which, the null model 
is usually ‘embedded’ in the other3, the alternative model; 

(2)	 the null model is privileged in that, for external, generally nonstatistical reasons, it will 
be selected unless the alternative model appears to be significantly better (here the 
word ‘significantly’ is used in its ordinary meaning); 

(3) 	 the selection criterion is the p value for the chosen statistic – the probability according 
to the null model of obtaining the sample results ‘or worse’; if this is sufficiently 
small, the alternative model will be selected. 

Hypothesis testing does not say anything about the ‘true value’ of the parameter(s) being 
tested. As a form of model selection, it does provide a way of assessing which of the two 
models is likely to work better in prediction. In the usual terminology, if we accept the null, 
we conclude that the null model is likely to enable better predictions; if we reject it – that is, if 
we accept the alternative – we conclude that the alternative model is likely to enable better 
predictions. 

This approach is independent of whether a traditional or Bayesian viewpoint is adopted, 
though it is perhaps more in sympathy with the latter. 

3.2 	 The role of hypothesis testing 
Hypothesis testing is carried out in two major contexts: on the one hand in research, on the 
other in what might be called industrial statistics, including particularly such methods as 
acceptance sampling. Commercial research, such as in marketing, might be considered as 
falling somewhere between. In the development of modern hypothesis testing, Fisher 
developed his ideas in the context of research, while Neyman and Pearson developed ideas 
appropriate to the industrial situation. One of the root causes of much of the confusion over 
the use of hypothesis testing was the mixing of the two approaches (Gingerezer, 1993), helped 
along by the acrimonious arguments between the principals. 

In acceptance sampling we have a straightforward problem which is repeated frequently, and 
a process which can reasonably be automated. In this context, the hypothesis test is the whole 
of the process: a sample is taken, the relevant statistic computed, the null model is accepted or 
rejected and the corresponding action taken. Judgement is needed in setting up the process 
initially, but is not a factor in the operation of the process. 

3 Some authors do discuss non-embedded tests, but these seem to be distinguished by their theoretical technique 
rather than by their applicability. 
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A piece of research is an argument in favour of one model (or theory) over one or more 
others. The argument is based on evidence, generally of various types, and aims to convince 
the reader of the validity of the chosen model. Whether or not the reader accepts the validity 
is a matter of judgement. Within that argument one or many hypothesis tests may be used. 
Each hypothesis test is one part, perhaps a very important part, in the whole argument. 

The research involves a large amount of design, perhaps a number of sources of information. 
It may involve collection of quantitative data, sets of values of variables measured on a 
sample of individuals, or it may involve qualitative research which looks deeply at a few 
individuals. It may involve considerable issues of definition, of variables, of populations of 
interest, of measurement issues, and the like. Along with all these issues, it will involve 
definition of the models under consideration. 

By the time the researcher comes to analyse the data statistically, a large amount of model 
construction has been done, and a large amount of judgement exercised. To carry out the 
analysis, further modelling will generally be done; for example, assuming normality, or that 
the variables are interval rather than ordinal. Only then does hypothesis testing come in to the 
picture. 

It is essential to remember that the models are only models. Interpretation of the result of a 
test involves assessing the validity of the model. There may be relevant tests to help (tests of 
normality, equality of variance, and the like) but there is always some element of judgement, 
concerning for example the validity of the measuring tool, the randomness of the sample, the 
nature of the population. 

In an area like acceptance sampling, it is appropriate to set up a hypothesis test as an 
automated decision process, but in research this is not so. Although in accepting or rejecting a 
null model one is making a decision, it is, first, always tentative, and second, always a matter 
of judgement. 

3.3 The null model 
One misunderstanding that is fairly commonly held is that the null hypothesis is so called 
because it always specifies that the parameter value in the null model is zero. While this is so 
in many applications, it is certainly not always the case. Fisher considered the null hypothesis 
as that which is expected to be nullified. In quality control applications, it is usually identified 
as that which leads to no action. 

In general, the null model is privileged for some non statistical reason (McLean 1999). In 
many applications, the reason amounts to Occam’s razor: only choose a more complex model 
if it is worth the greater complexity. In statistics, from the predictive view this amounts to 
choosing it only if it is expected to lead to improved predictions. In acceptance sampling, the 
alternative requires some action, which is to be done only if necessary. 
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In scientific research, the null is taken to be the currently accepted wisdom – a new theory has 
to ‘prove’ itself. This is also the case in daily life, at least to those of a sceptical turn of mind. 
In a court case, it is a notion of fairness: under the Westminster system the null is that the 
charged person is innocent – guilt is to be ‘proved’. 

One can argue that the null should be conservative, but this is not necessarily what is done. In 
comparing variances, for example, the null model assumes them to be equal. This model is the 
simpler but more restrictive choice, not the more conservative, leading to a more powerful 
test. 

3.4 The alternative model 
Fisher considered only the null hypothesis, the test either ‘nullifies’ or ‘disproves’ it (Fisher, 
1935), or ‘confirms or strengthens’ it (Fisher 1955, p. 73). Since the null hypothesis may be 
true or not, there is however an implied alternative hypothesis. 

Neyman and Pearson introduced the concept of competing hypotheses, one of which must be 
true. Since they worked in terms of ‘truth’ and the frequentist view of probability, they could 
introduce the concepts of Type I and Type II errors, and the consequent logical structure. 

The null model specifies a value of the model parameter of interest, and thus an expected 
value of the test statistic; under the alternative hypothesis the value of the parameter is usually 
considered to be left unspecified, but this is simply not so. If the alternative model is selected, 
the parameter will be estimated on the basis of the sample, so it is more honest to recognise 
that the test selects between two models – one suggested by the null model, the other with the 
parameter taking the value implied by the sample. 

In short, hypothesis testing selects between the model suggested by theory and the model 
suggested by the sample data. 

3.5 The nature of acceptance 

Despite the terminology of Fisher, Pearson and Neyman and countless statisticians since, we 
do not ‘prove’ or ‘disprove’ either the null or the alternative hypothesis, except in the very 
pragmatic sense suggested in §2.4. We do accept one or other of the models. To talk of 
‘failing to reject the null’ simply means that the sample evidence was not as strong as we 
would have liked, that our evidence was not strong enough to show what we hoped to show. 
Similarly, we do not only reject the null – we accept the alternative, albeit tentatively. 

The nature of the acceptance of the null varies with the circumstances. In acceptance 
sampling, when the test is used to decide an immediate action, to accept the null means to 
carry out action A (often ‘do nothing’) while to accept the alternative means to carry out 
action B. If the null model is, in effect, that everything is working (adequately) well, and the 
alternative that it is not, we do not want to carry out action B unless we have to, so it is 
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natural to privilege the null. In this case, although we recognise that we are dealing with 
probabilities and models, we have to act on the decision. 

In acceptance sampling and similar tasks we have a decision process, and it is useful to 
automate the decision. In this context it is reasonable to set up a significance level – strictly, 
a threshold significance level – and reject the null automatically if the p value is less than 
that. 

On the other hand, in research, acceptance (of either model) is always tentative. Although the 
decision will affect future actions, acceptance or rejection of a null model is rarely total. Just 
how tentative the acceptance, and how definitive the actions, depends on the circumstances. 

Fisher approached hypothesis testing from the point of view of research, while Neyman and 
Pearson introduced the concept of decision making – that one decides between the null and 
the alternative models (although all failed to recognise that they were dealing with models, 
and talked of the ‘truth of the null hypothesis’). Fisher observed (1955) that the latter 
approach is applicable to situations such as acceptance sampling, where a decision has to be 
made. He considered that in research no decision is made, so the decision theoretical view is 
not applicable. This is clearly not the case – although choices are tentative, they do affect the 
researcher’s future actions, particularly where budgets are limited and a career depends on 
research ‘success’. Nevertheless, the distinction between what might be called ‘industrial 
statistics’ and ‘research statistics’ is valid, since in the former a choice must be made and 
acted on. 

Where it is relevant confidence intervals (and prediction intervals) should be computed 
automatically. Using the former as an indicator of significance is simply doing a test in a 
roundabout way. 

To conclude, when we accept the null, that ‘there is no evidence for the alternative’ as is 
sometimes done, is simply wrong. There is no evidence only if the sample data agrees 
completely with the null, in which case no test is carried out. A test is carried out only if there 
is some evidence in favour of the alternative. The purpose in carrying out the test is to assess 
the strength of this evidence in favour of the alternative. If the evidence is strong enough, the 
null model is rejected. 

3.6 The p value and ‘significance’ 
The p value is the criterion used to select between the null model and the alternative model. It 
is the probability of getting the sample result, or more extreme, if the null model is used. 

The use of hypothesis testing does not in fact require the p value to be interpreted as a 
probability. In effect, it is a device for rescaling the difference between the null value of the 
parameter and the sample value of the statistic. Bearing in mind §3.4 above, this is the 
difference between the null and alternative values of the parameter. Its most important feature 
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is that its scale is universally applicable. A p value of 0.02, say, can validly be interpreted as 
indicating a significant difference between the null and alternative values regardless of the 
distribution used. There is some evidence that experience shows the standard levels of 0.01 
and 0.05 to work reasonably well as threshold measures of ‘significance’. 

A p value is a measure of strength of the evidence against the null model and in favour of the 
alternative. In this sense how it is calculated and exactly what is calculated does not matter. A 
low p value means that the evidence is strong; a high value means it is weak. It is legitimate to 
compare the results of two tests using different statistics, and say one reflects stronger 
evidence than the other. (But the results should be interpreted with reservations – because the 
models are only models.) 

A result is then ‘significant’ or ‘highly significant’ or ‘not significant’ according to whether 
we judge the evidence to be strong, very strong or weak, respectively. The measure, p, helps 
us to decide, but does not make the decision! It is customary to judge a result as ‘significant’ 
if the p value is less than 5%. It is clearly unwise to interpret this figure as a fixed measure. 

To calculate the p value requires the null model to specify a value for the parameter. For a one 
sided test, for example on a mean, where the null takes the form µ µ0 µ µ0≤  or ≥ , while the 
alternative hypothesis specifies an open interval, this requires the further assumption that the 
parameter takes the boundary value. In teaching, the ability to do this is often presented as one 
criterion in identifying the null hypothesis. 

The reason for calculating the p value based on the null model is because it is privileged, as 
indicated in §3.3. In teaching, the subsidiary reason given is that it provides a fully specified 
model. Accepting the point made in §3.4, both hypotheses enable sufficiently specified 
models. Arguing that the null model should not be privileged, an ‘alternative p value’ which 
gives the probability, on the alternative model, of getting the null value. With this approach, 
the two p values will be identical if the distribution used in the test is symmetric, otherwise 
not. 

4. Examples 
Much of the controversy over the use of hypothesis testing seems to be at the elementary 
level. I believe that this is largely because users do not recognise that they are working with 
models – that they expect to find out something ‘true’ about the world. When more complex 
statistical methods are involved, people are more likely to recognise that they are working 
with models: more precisely, teachers and text books are more likely to talk in terms of 
models. To illustrate, multiple regression is more likely to be taught in terms of selection of 
the ‘best’ model, while introductory simple linear regression is likely to be couched in terms 
of the regression line as an estimate of ‘the true regression line’. However, my impression is 
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that even introductory regression is more likely to be expressed in terms of models than is 
basic univariate statistics. 

4.1 Elementary linear regression 
The model used (implicitly) in much of basic statistics is  

i µ ε  ε  i 
2Y = + i ; ~ N (0,  σY ),  iid  .................................................................... (1) 


It is convenient in this context to write this as: 

Y = β ε  ε  + ; ~ N (0,  σ 2 ),  iid  ................................................................ (1a) 
i 0 i i Y 

The simple linear regression model is: 

Y = β  β  + x + ; ~ σ 2 ),  iid  ...................................................... (2) 
ε ε  N (0,  i 0 1 i i i Y x  

The variable mean model (2) reduces to the constant mean model (1a) if the coefficient β1  is 
zero. The standard test on the coefficient β1  does not test whether or not there is a ‘true’ 
linear relationship, or whether Y (really) is related to X. All it does is to suggest which of these 
models is likely (on the basis of the sample data) to do a better job of forecasting values of Y. 
On grounds of simplicity the constant mean model will be selected unless the regression 
model performs convincingly better on the sample data: that is, unless the value of β̂1 is 
significantly different from zero. 

Accepting the conclusion from the predictive approach that the actual alternative model has 
the parameter estimated from the sample, this test selects between (1a) and 

+ ˆ x + ; ~ N (0,  σ 2 ),  Y = β β  ε ε  iid  ...................................................... (2a) 
i 0 1 i i i 

Neither model specifies the constant term (mean or intercept) nor the variance. The test 
selects between the derived models: 

ˆ ˆ ˆΒ − 0 Β − β1 1 1~ t(n−2)  and s ~ t(n−2) 
sY x  Y x 


SSX SSX 

where Β̂1  is the random variable of which β̂1  is the observed value, and sY x  is the residual 
standard deviation (the misnamed ‘standard error of the estimate’.) 

One can extend the argument of §3.4 to observe that accepting the null model entails 
assuming the best estimate of it, based on the sample mean and variance: 

y ε ε  ; ~ N (0,  s2 ),  Yi = + i i Y iid  ................................................................... (1c) 


where sY  is the sample standard deviation. Accepting the alternative model again entails 
assuming the best estimate: 

ˆ ˆ 2Y = β  β  + x + ε  ε  ; ~ N (0,  s ),  iid  ..................................................... (2c) 
i 0 1 i i i Y x  
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so that the practical choice is between models (1c) and (2c). 


Similarly, the standard F test for the multiple linear regression model selects between the


constant mean model (1a) and the model: 


Y β β  x + β x ... β x + ; ~ N (0, 2= +  + +  ε ε  σ ), iid  ......................... (3) 
i 0 1 1i 2 2i  k ki  i  i  

Again, model (3) is only selected if it performs significantly better than (1a) in prediction 
within the data set. 

4.2 A t test on a mean 
In the example above it is much clearer that hypothesis testing is selecting between models 
than it is in the first test that most students encounter, a (two sided) test on a mean. Here the 
choice is between a null model 

i = +  0 i ; i ~ N (0,  σ 2 ),  Y µ ε  ε  iid .................................................................. (4) 


and an alternative model 

Yi = +µ ε  ε  i ; i ~ N (0,  σ 2 ),  iid  ; µ µ0≠ .................................................... (5) 


This is just as much a matter of model selection as is the regression example, but it is very 
rarely presented, or viewed, as such. 

Accepting that the alternative model actually used has the parameter estimated from the 
sample, this test on the mean selects between (4) and: 

y ε ε  ; ~ N (0,  σ 2 ),  Yi = + i i iid  .................................................................. (5a) 


The null and alternative derived models are, respectively: 

Y − µ0 ~ t( 1)  and Y − y ~ t( 1)  n−s n− sy y 

n n 

Based on the null model, the usual p value is: 



p P  

 t >
= 
 

y − µ0 

s 
n 

 
 

 

and based on the alternative model, the alternative p value is: 

 
p ' = P 

 t > 
 

µ0 − y 
s 

n 

 
 

 

Note that this reflects what is usually considered a very common error among students. The 
fact that it is so common suggests that this is a natural way to view the process. 
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4.3 An F test on a ratio of variances 
In the previous example the two p values are equal, due to the symmetry of the t distribution. 
For some tests this is not so. To test if two variances are equal, the choice is between two 
composite models. For a basic example, the null is: 

µ ε  ε  ; ~ N (0,  σ 2 ),  X = +  iid  1i 1 1i 1i ............................................................. (6) 
X µ ε  ε  ; ~ N (0,  σ 2 ),  iid  = +  2i 2 2i 2i 

and the alternative: 

µ ε  ε  ; ~ N (0,  σ 2 ),  X = +  iid1i 1 1i 1i 1 ............................................ (7) 

X = +  ; ~ N (0,  ),  iid  ; σ  σ  ≠µ ε ε  σ 2 2 2 

2i 2 2i 2i 2 1 2 

2If the sample ratio is s s2
2 = θ , the derived null and alternative models are, respectively: 1

S1
2 

S2
2 ~ F(n1 1,  n2 1)  and S1

2 

S2
2 ~ θ F(n1 − −  1,  n2 1)  − −

so (assuming θ > 1) the two p values are: 

p P  


S1
2 

2 > θ 
 = P F  ( > θ ) .................................................................. (8a) 
=


 S2 


p ' = P 
S1

2 

2 < 1
 = P F  ( < 1 ) .................................................................. (8b) 

 S2  θ 

These probabilities are not in general equal. 

5. Some extensions 
5.1 Critical values 
In the absence of computers the p value of a test was at best difficult to obtain, so the use of 
tables of critical values developed as an effective substitute. The concepts of hypothesis 
testing can be developed in terms of critical values rather than p values, and in introductory 
texts this is commonly still done. This approach has some pedagogical advantages, but does 
make for greater complexity. 

A minor disadvantage of its use is terminological. The p value of a test is a measure of the 
significance of the sample data. It is, if you like, a measure of one’s level of doubt about using 
the alternative model in preference to the null model. This does not necessarily mean that it is 
being interpreted as a probability: simply that a large p value says that we should have 
considerable doubt about using it, while a small p value says that we should have little doubt. 
(As always, this is subject to provisos about the appropriateness of the model in the first 
place.) It is natural then to refer to the p value as the significance level of the test. 

A critical value is the value of a test statistic corresponding to a threshold p value; that is, a 
threshold significance level. Unfortunately of course, the phrase ‘significance level’ has 
already been commandeered for the threshold p value. 
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On the other hand, a major disadvantage is the following. Because the tables were, naturally, 
created for a few standard threshold p values, these have been granted much greater 
importance than they warrant. At the extreme, results were considered to have been 
established, or not, according to whether they were significant at the 5% level, or at the 1% 
level. This misuse of hypothesis testing has led to results with p = 0.049 accepted, and those 
with p = 0.051 rejected, and is one the major reasons for the controversy of the last half 
century4. 

The use of a fixed threshold p value and a critical value is appropriate for an application 
which can reasonably be automated, such as industrial sampling, but not for research. 

5.2 Errors 
Neyman and Pearson approached hypothesis testing as an exercise in deciding whether the 
null hypothesis is true or not (as did Fisher), apparently in some absolute sense. In these 
terms, the concept of decision errors makes sense, and so the whole baggage of type I and II 
errors, significance level as the conditional probability of making a type I error, and power of 
a test follow.  

To calculate the ‘probability of making a type I error’ requires a previously specified 
threshold level of significance, usually called simply the ‘level of significance’. It is then easy 
to set up the decision as ‘reject the null model if the null p value is less than the specified 
(threshold) value’. The probability of rejecting the null is trivially the specified level. 

The probability of a type I error makes sense in the case of acceptance sampling which is 
automated with a fixed threshold p value, interpreted as a measure of expected risk. It is 
acceptable to deduce, regardless of one’s interpretation of probability, that if P(A) = 0.2, say, 
then the expected number of errors in N trials is 0.2 × N, so the expected costs of this repeated 
process can be validly estimated. 

In terms of the view promulgated here, one can at most define a type I ‘error’ as ‘choosing the 
alternative model when the null model would probably work better’. Note that this does not 
say that the null model is true, or correct. Neither word applies to a model, particularly a 
probability model! Nor does it say that the null model is the best model. 

How do we know that ‘the null model would probably work better’? In practice, of course, we 
generally cannot. It may eventuate from subsequent research that a different choice may have 
led more easily to some understanding, or that the researcher has proceeded down a wrong 
path. It may turn out when the production line machinery was stopped that it wasn’t really 
necessary to stop it at that time. It may turn out, from new evidence, that the person found 

4 The use of fixed rules such as this (and the n > 30 rule) bedevils the teaching of statistics. Statistics is about 
judgement, and iron clad rules such as these discount the role of judgement. 
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guilty of murder was (probably) innocent. But in general the decider will not know, at any 
useful time, whether he or she made the ‘correct’ decision. 

In this light, the usefulness of the concept of ‘probability of making a type I error’ is far from 
clear. 

5.3 One sided tests 

Based on the Neyman-Pearson concept of two alternative hypotheses, one of which must be 
true, the alternative hypothesis is always composite, while the null should prescribe a specific 
value of the parameter whose value is being tested. For a two sided test, this occurs naturally, 
but for a one sided test it does not. If the alternative is µ µ0 µ µ0> , the null must be ≤ . Many 
textbooks concentrate on the need for a specified value at the expense of the underlying idea 
that one of the hypotheses must be true, and simply specify the null as µ µ0 = . More careful 
authors will give the correct null, and observe that not only is it privileged by being assumed 
true unless the sample evidence is strong enough to reject it, but that rejection will be made as 
difficult as possible by making the strongest possible assumption about its value : that the 
parameter takes its boundary value, µ0. 

In terms of the modelling view presented here, regardless of the sidedness of the test, the 
choice is between the null model with µ µ0 µ = x= , and the alternative model with 

6. The hypothesis testing controversy 
The purpose in this section is to discuss some of the statements made in the course of the 
controversy, in the light of the approached presented in the early part of this paper. I have 
selected a few of the most common and /or salient points made. 

6.1 “The null is always false” 

This only makes any sense if the null is a simple statement µ µ0
= ; it makes no sense for a 
composite null, such as µ µ0≤ . It also makes sense only in terms of the ‘true value of the 
parameter’. But Statistics only deals with true values in very special and generally artificial 
cases. To ‘accept the null’ means that we conclude that we should base future actions 
(including ‘hold opinion’) on the null model – but we know perfectly well that this is a model, 
which is at best only approximately ‘true’. 

6.2 The replication fallacy 
What practical meaning does p have as a probability? One interpretation is embodied in the 
replication fallacy (Gigerenzer, 1993, p.330). This says that if a test is repeated in 
replications of the investigation, a significant result would be obtained 1-p of the time; or in 
nonfrequentist terms, the investigator can have a confidence level of 1-p that the result would 
be significant if the investigation were repeated. 
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The fallacy here is because the probability is interpreted as unconditional. The p value says 
nothing about replication other than its definition. If the null model provides a good 
description of the real world, a significant p value is the probability of getting a significant p 
value (and rejecting the null model in error!) 

If the result is declared not significant, on the basis of the sample evidence, the null model is 
at least as good as the alternative model, so is chosen. The probability of obtaining an equally 
significant (or insignificant) result on a replication is p. 

If the result is declared significant, the alternative model is chosen. Using this model, the 
probability of getting an equally significant value on the repeated test can be estimated. 

To illustrate, suppose we carry out a one tailed test on a mean, assuming normality and σ 
known to be 5, with the null hypothesis µ ≤ 20. A sample of 20 gives mean 23. The effective 
choice is between the null model with µ = 20 and the alternative with µ = 23. Then z = 2.683, 
with p = 0.0073. This would generally be considered significant, so we would accept the 
alternative model µ = 23. 

Now suppose we replicate the test, this time with a sample of 105. 

If the original test was carried out with a specified threshold p value of 5%, say, ‘significant’ 
is defined as having a p value less than or equal to 5%. The critical value is 1.645. For the 
replication to be significant in testing the same null, this critical value corresponds to a sample 
mean of 20 + 1.645 × 1.5811 = 22.601.  

If the null model is valid, the probability of a significant result on a replication is 5%. 
However on the basis of the previous test we believe the alternative model should be used, 
and on the basis of this, the probability of a significant result on the replication is 

P X  
 > 22.601− 23  = 0.5997( > 22.601) = P Z   1.5811  

If the threshold p value is identified with the observed p value, ‘significant’ is defined as 
having a p value less than (or equal to) 0.0073. The critical sample mean is then 23, and the 
probability of a significant result under the alternative model is of course 0.5. 

This of course is related to the Bayesian computation of inverse probability. It is worth noting 
that there is no observable relationship between the probability of a significant result under 
the null model, p, and that under the alternative model. 

6.2 p value as ‘worth of research’ 
Reputedly the p value has sometimes been taken as a measure of the value of a piece of 
research. A highly significant result is better than a less significant result, is better than a 
nonsignificant result. 

5 This example is similar to that used in Tversky and Kahneman (1993) 
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The p value is not a measure of the worth of the research. A nonsignificant result is not 
inferior to a significant one. First, even if the test is global for the whole investigation, it is 
simply choosing between two models. It is true that the alternative hypothesis is often that 
which is expected by the researcher, but this does not make the negative result uninformative.  

A significant result in research is more highly prized in that it is seen as leading to developing 
theory, while an insignificant result may be identifying a dead end. In this sense a p value 
may be considered a measure of satisfaction, but not of worth or importance. 

Finally, in most cases each test used in an investigation is very limited in its role. Much more 
important to determine the worth of the research are the design, the sample selection and the 
design of the measuring process. 

6.3 Significance, power and effect size 
There is an argument (Cohen 1994) that if the sample is large enough – that is, the test has 
sufficient power - any effect will be significant, so that rejecting a null means only that you 
have a large enough sample to do so: so why carry out a test? This may be based on the notion 
that ‘the null hypothesis is always false’, but has some validity in its own right. 

Although valid, this observation should be regarded as a warning against foolish practices 
rather than a rejection of hypothesis testing. First, experimentation costs money, and one 
should only take a large sample when necessary. As in any field, power costs, so use only 
what you need. Hence, it is wise to use hypothesis testing in its converse form – to calculate 
the sample size which will give the power expected to identify a significant effect of specified 
size. 

Second, unless the sample is very large indeed, it is highly likely that it will not be known that 
the effect is significant, so there is an argument for ‘checking it out’. Third, if an effect is 
sufficiently small that only a very powerful test will identify it as significant, it is hardly large 
enough to be useful! 

A significance test helps the researcher to decide if it is reasonable to accept the alternative 
model on statistical grounds. But an effect has to have both statistical significance and 
practical significance in order to be adopted. The latter means simply that the effect size is 
large enough to be worth using. For example, if research shows that the difference in recovery 
rates between a drug and a placebo is only 1%, this will be statistically significant if the 
sample is large enough, but is not enough of a difference to warrant spending money on the 
drug. Conversely, if the difference in recovery rates is 20%, it would certainly seem 
reasonable to put money into the drug – but very unwise if the result is not statistically 
significant. 

In short, it is essential to avoid confusing the statistical and nonstatistical arguments. 
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6.4 The modus tollens argument 
Cohen (1994) presents an argument that modifying the modus tollens argument: 

If the null hypothesis is correct, the result D cannot occur.

Result D has occurred. 

Therefore the null hypothesis is false. 


to be probabilistic: 

If the null hypothesis is correct, the result D is very unlikely.

Result D has occurred. 

Therefore the null hypothesis is very unlikely.


renders it invalid. 

Cohen observes that the argument above amounts to concluding that if p = (P data H0 ) is 
small, then the inverse probability ( 0P H data)  is small; further, people are likely to think that 
if p is less than the threshold significance level (0.01, say) then so is the inverse probability. 
He then uses an example, essentially a simple exercise in conditional probability, to calculate 
the latter as a posterior probability, and demonstrates that the inverse probability need not be 
small. Note that this calculation only makes sense if ‘the probability that the hypothesis is 
true’ makes sense 

In terms of the predictive/modelling view of hypothesis testing, this argument becomes: 

If the null model is assumed, the result D is very unlikely.

If the alternative model is used, the result D is very likely.

Result D has occurred. 

Therefore the alternative model is likely to give better results than the null. 


Cohen’s example involved a proposed screening test for schizophrenia, for which the 
incidence in adults is about 2%. The test is such that if a randomly selected adult is tested, the 
probability of a (correct) positive result (indicating the person has schizophrenia) when he 
actually has it is greater than 0.95, while the probability of a correct negative result when he 
actually does not is about 0.97. Treating a single test as a hypothesis test, with the null model 
being that the person is normal and the sample result positive, we have (P data H0 ) < 0.05 , 
leading one to conclude at the 5% level that the person has schizophrenia. He then computes 
the probability ( 0P H data) = 0.60  approximately. That is, with a positive result, the patient 
probably does not have schizophrenia. 

In terms of the predictive view, the purpose of identifying a relationship such as that between 
the test result and the existence of schizophrenia is to improve predictability, in this case 
predictability of the existence of schizophrenia. For a nominal variable, the measure of 
predictive quality is usually taken to be the probability of error, so the best prediction is the 
mode (McLean 2000). With this in mind, the relevant probabilities are P(has schizophrenia) = 
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0.02 and P(has schizophreniapositive result) = 0.40. So the test does improve the 
predictability, so is useful. 

The fact that the patient is in fact more likely not to have schizophrenia simply says that the 
test is not as good as we would like it to be. 

Cohen concluded that this example ‘demonstrates how wrong one can be by considering the p 
value from a typical significance test as bearing on the truth of the null hypothesis for a set of 
data.’ This is true, but the flaw is in the misconception as to what a hypothesis test really 
does. 

7. Conclusions 
In this paper, a view of hypothesis testing has been presented which is based on the idea that 
all statistical analysis is concerned with modelling, and with choosing the best model in any 
situation. The ‘best’ model is that which, on the sample evidence, is expected to give the best 
forecasts. Hypothesis testing is a way of identifying the better model of two alternatives, in 
which the model suggested by the sample data will only be selected if the sample evidence is 
sufficiently strong. The strength of this evidence is measured by the p value. This is 
calculated as a conditional probability, although interpreting this in applications as a 
probability is frequently not necessary and can lead to considerable misunderstanding. 

In applications such as acceptance sampling, where the selection of the model entails an 
action to be carried out, it is appropriate to automate hypothesis testing by specifying a 
threshold p value and adopting the decision based approach of Neyman and Pearson. In 
research, this is not appropriate because, while a choice is made, it is tentative. In research, 
any hypothesis test is only one tool used as part of an argument; each hypothesis test mimics 
the total piece of research in assessing the evidence in favour of a model. 

Taking the predictive view of statistics, a hypothesis test compares two specific models. This 
is a natural approach, consistent with the observation that informal use of probability and 
hypothesis testing is a natural mode of thinking, and with the reactions of students. 

The confusion over the role of hypothesis testing in research appears to have sprung partly 
from its overenthusiastic adoption, an unwise application of the Neyman-Pearson approach to 
research – and to a lack of appreciation that research, and statistics, deals with models, rather 
than with the ‘real’ world’. 
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