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ABSTRACT 

Time series often have patterns that form a basis for comparing them or classifying 

them into groups. Pattern recognition of time series arises in a number of practical 

situations. Procedures for the comparison and classification of univariate stationary 

series already exist in the literature. A famous application is the comparison and 

classification of earthquake and nuclear explosion waveforms - Shumwqy (J982). In 

this pcper we present procedures to compare and classify stationary multivariate time 

series. Simulations studies show that the procedures perform fairly well for reasonably 

long series. 

L INTRODUCTION 

Pattern recognition of time series involves the use of comparison as well as 

classification techniques. Most tests in the literature for the comparison of independent 

stationary series involve the use of the estimated spectra of the series. Some relevant 

papers are Swanepoel and Van Wyk (1986), Coates and Diggle (1986) and Diggle and 

Fisher (1991). Hypotheses tests designed to compare two stationary independent time 

series involving the use of fitted parameter estimates were considered by De Souza and 



Thomson (1982) and Maharaj (1996). Maharaj and Inder (1997) extended this testing 

procedure to compare two related stationary time series. We now extend this testing 

procedure to compare two stationary multivariate time series which are not necessarily 

independent. 

The classification of time series has applications in various fields including 

Economics, Geology, Psychology, Oceanography and Engineering. Shumway (1982) 

used a combination of spectral and discriminant analysis to classify both univariate and 

multivatiate time series that are stationary. Various authors including Bohte et 

al.(1980), Tong et al. (1990), Shaw et al. (1992) and Piccolo (1990) have used cluster 

analysis to classify time series. The idea is to investigate similarities of the time series 

in the identified clusters. Maharaj (1996) proposes a method of clustering that has the 

property of uniquely identifying groups of stationary univariate time series. None of the 

existing clustering techniques in the literature have this property. We now extend this 

procedure to classifying stationary multivariate time series that are not necessarily 

independent. This procedure is based of the p-values of the test that is proposed for the 

comparison of two stationary multivariate time series. 

Given two stationary multivariate time series, vector autoregressive and moving 

average (VARMA) models converted to truncated vector autoregressive infinite order 

(VAR(oo)) models of order k, are fitted to each series. The test statistic is based on the 

differences between the VAR(k) estimates of the two sets of series under consideration. 

For related series, it is assumed that the disturbances of the two models are correlated. 

A test statistic to test for significant differences between the generating processes of 

these series is based on generalised least squares estimates of the VAR parameters. 



Using bivariate series we investigate the distributional properties, size and power of this 

test statistic, which has an asymptotic chi-square distribution, for finite sample sizes by 

a Monte Carlo study. We also assess the performance of the p-value clustering 

procedure when applied to bivariate series. 

2 HYPOTHESIS TESTING PROCEDURE 

Consider a stationary m-dimensional time series 

'̂ t ~ I ^\\'^2\.' • • • '^mi J 

that is generated by an infinite order zero mean vector autoregressive process (ie. a 

VAR(oo) process): 

CO 

X, =2iniX,., +a, 
i=i 

where the 11; are m x m matrices of coefficients and a, is the m-dimensional white noise 

process with mean vector 0 and covariance matrix S3. Just as a finite order AR model 

may be fitted to a univariate series of length T that is assumed to be generated by an 

AR(oo) process, a finite order VAR model may be fitted to a multivariate series of 

length T, that is assumed to be generated by a VAR(oo) process. Using the notation of 

Lutkepohl (1991) define the collection of coefficient matrices of the VAR(k) process as 

n(k) = [n„n2....,n,] 

Fitting a VAR(k) model to a multivariate series x ,̂ the ith estimated coefficient 

matrix is denoted by fti and the collection of estimated coefficient matrices is 

n(k) = [n,,n3....,n, ]. 



Suppose that {x,, t = 1, 2 , . . . ,T} and {yt, t = 1, 2 , . . . ,T} are stationary 

multivariate series which are assumed to be generated by VAR(ao) processes. Using a 

definite criterion such as Schwarz's BIC for modelling VAR structures, truncated 

VAR(oo) models of order k, and kz can be fitted to {\} and {y,} respectively. Define 

the matrices of VAR(k,) and VAROcj) parameters of the generating processes {X,} and 

{Y,} respectively as I ^ , i = 1,2,. . . , k„ and ITiy i = 1, 2,. . ., kz 

Let 

k = max(k„k2). 

Then define 

^^x ~ [ ^^lx»^*2x' • • • 3 ^^kx J 

y ~ [ ^^ly ^^2y> • • • » *^ky J • 

Given two multivariate stationary series of the same dimension {Xt} and {yj, 

the hypotheses to be tested are: 

HQ. There is no significant difference between the generating processes of two 

stationary m-dimensional times series (ie. Vec n^ = Vec Ily). 

H]: There is a significant difference between the generating processes of two 

stationary m- dimensional time series (ie. Vec n^ ^ Vec Ily). 

Lewis and Reinsel (1985) have obtained results on least squares estimates of a 

finite order VAR process that has been truncated from a VAR(ex3) process. They assume 

that the truncated order k depends on the length T of the m-dimensional series x̂  such 

that 



-^0 and V ^ S I W I ^ O as T->oo 
=k+l 

They have shown consistency and asymptotic normality of these least squares estimates 

(see Lutkepohl (1993) pages 306-307). 

The model to be considered is of the form of the multivariate analogue of the 

seemingly imrelated regressions model proposed by Zellner (1962). The m(T-k) 

equations fitted to {x̂ } and {yt} can be expressed collectively as 

X = I1,B, + A, 

where 

Y = riy By + Ay 

n.=[n,„n,„..;,n^] 

(2.1) 

B = 

Mk 

' '2k 

X lT-1 

'•2T-1 

Mk-1 

"•ak-i 

^ m k '^mk-l 

X] x-2 '^l T-3 

^ 2 7-2 ^ 2 T-3 

' 'mT-2 ^mT-3 

'^lT-2 

'•2T-2 

'^mT-l '^mT-2 

'̂ l 1 

X 21 

"ml 

'•I T-k+1 

'•2T-k+l 

^m T-k+1 

'^IT-k 

'^2T-k 

'•mT-k 



x = 

Mk+l 

^2k+l 

X mk+I 

'^l T-l '^l T 

^^21-1 ^^27 

'^mX-l '^mT. 

A.= 

^ I k + l x • • • 

^ 2 k + l x • • • 

. ^ m k + l x • • • 

^1 T-l X ^1 Tx 

^2T-lx ^2Tx 

m T-I X m Tx 

The dimensions of n^, X, B^ and Â  are m x mk, m x (t-k), mk x (t-k) and m x (t-k) 

respectively. Ily, Y, By and Ay are similarly defined. We make the following 

assumptions for the error term: 

E[AJ = 0 E [ A , A ; ] = 2,(8)IT. , 

E[AJ = 0 E[ AyA; ] = Zy ® I^., 

E[A,A;] = E^®IT.. 

where Ij.^ is a (T-k) x (T-k) identity matrix and 

2.= 

'xl 

'x2xl 

xlx2 

^L 

.^xmxl ^xmx2 

xl xm 

x2xm 



^y = 

2:.= 

^ y . 

^ y 2 y l 

_^ymyl 

^ x l y l 

^ x 2 y l 

xmyl 

<^yly2 

^ ; . 

^ymy2 

' ' x l y 2 

^ x 2 y 2 

^)any2 

ylym 

y2ym 

ym 

xl ym 

x2ym 

xmyin 

The combined model may be expressed as 

Z = n B + A 

where 

z= x" 
Y 

, B = 
Bx 

X 

0 

0" 

By. 

n= 
X' 
Hy. 

, A = 
X" 
A. 

and 

E[AAT = V = Sx^ix-k 2:^®iT.k 

2:xy®lT-k Sy^Ir-U 

(2.2) 

The dimensions of V are 2m(T-k) x 2m(T-k). The models in (2.2) can also be 

expressed as 

Vec(x)=(B;®lJVec( n J + V e c ( A j 

Vec(Y) = ( B ; ® I„ )Vec(ny)+ Vec(A,) (2.3) 



where I„, is a m x m identity matrix. Hence the combined model in (2.2) can also be 

expressed as 

Z, = B . n , + A, (2.4) 

where 

Z , = 

n „ = 

"Vec(x) 

Vec(Y) 

vec(nj-
Vec(ny) 

B = 
B '®I„ 0 

X m 

0 B' ®I 

A = 
Vec(Aj" 

Vec(Ay) 

The dimensions of Z ,̂ B„ IX and A^ are 2m(T-k) x 1, 2m(t-k) x 2m^k, 2m k̂ x 1 and 

2m(T-k) X 1 respectively. Thus using (2.4) the generalised least squares estimator of IX 

is 

ri, = [B;v-'B, J 'B.V'Z, 

Now assuming that A^ is normally distributed, then 

VT(n,-n,)^N(o.v'), 

(multivariate analogue of results in Anderson (1971)) 

where 

(2.5) 

V* = Urn VarfVr n^) = plini 
B ' V ' B , 

. -1 

Now the null hypothesis HQ: Vec (TIJ = Vec (Tly) may be expressed as 

Rrx = o 

where 

R=[I -I] 

and where I is a m k̂ x m k̂ identity matrix. It is easy to see that under Ĥ  



Vf(Rn,-Rn,)^N Q,plim 
^RB:.V-'B,.R'^ 

V 

V - " v * 

T 

-'A 
(2.6) 

Define 

F = (R(B;V-'B,)"'R'j''^'(Rn, - Rn,) 

Under Hg 

So from (2.6) 

F = (R(B;vxrR') RAV 

F ~ N(0 . I„J 

and 

F'F = (Rn) fR(B;V-'B,)"'R'r ( R D ) ~x'(m'k) 

Since Z^, Zy and Z^ are unknown, feasible generalised least squares estimators 

of riy have to be obtained. Using the multivariate equivalent to the univariate results of 

Zellner (1962), ordinary least squares estimates may be used to estimate consistently the 

elements of Z^, Zy and Z^ with 

Y _ -̂ x-̂ x 
m(T-k) 

A A' 
y _ ^ -^y-^j^ 

(T-k) m 

y _ -^x-^y 
-xy (T-k) m 

Hence the feasible least squares estimator of 11̂  is 
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n, = [B;v-'B,]"'B,v-'z, 

where 

V = Sx^Ir-k S^®lT.k 

Since V is nonsingular. 

plmy = \ , 

so under HQ 

D = FF' = (Rn,)rR(B:V-'B,) ' 'R'] (^J) ~x'(ni'k). 

2.1 Simulation Study: Assessment of the Test 

To investigate the finite sample behaviour of the test statistic D, bivariate series 

of lengths 50 and 200 are simulated from the following VARMA processes: 

AR(1) 

MA(1) 

AR(2) 

MA(2) 

o = 

0 = 

o,= 

0 , = 

ARMA(1,1) a> 

'0.5 0.1' 

0.7 0.5 

'0.3 0.7" 

0.1 03 

'0.5 0.1 

[0.7 0.5 

'0.3 0.7" 

0.1 03 

"0.5 o.r 
0.7 0.5 

<E>2 = 

© 2 = 

0 = 

'0 0 " 

0 -03 

•-02 0.1" 

03 0.1 

•-02 0.f 

03 0.1 
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Distributional properties of the test based on D are checked by obtaining estimates of 

the mean, variance, skewness of the test statistic and the size of the test under HQ. This 

is done by applying the test to pairs of bivariate series simulated from the same process. 

It is assumed that the correlation between the disturbances are in turn 

>"'.= y 

[1 0' 

0 1 
and I 

xy 

0 0 

0 0 

2 . = Sv = 
1 0.5 

0.5 1 
and 2xv = "y 

0.5 0.5 

0.5 0.5 

(i) 

and 

(ii) 

Estimates of size are obtained for 5% and 1% significance levels. Estimates of 

power for 5% and 1% significance levels are obtained by applying the test to every pair 

of bivariate series . 

The order (up to 10) of the truncated VAR model to be fitted to each bivariate 

series in each pair is determined by Schwarz's BIC. In estimating the model in (3.4), 

the maximum order is fitted to both the bivariate series in each pair. The test statistic is 

then obtained. This is repeated 1000 times. As well as obtaining size and power 

estimates for the various degrees of freedom, overall estimates of power and size are 

also obtained by aggregating the size estimates over the various degrees of freedom. 

For series of length 50, size is considerably overestimated and estimates of the 

mean, variance and skewness do not correspond closely to the respective theoretical 

values. Hence no further analysis was performed on series of this length 50. The overall 

size estimates for T = 50 are shown in Table 2.1. 
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Table 2.1 
Generating 
Process 

AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA(1,1) 

Overall Estimates of and Size for T=50 
Correlation (i) 

5% 1% 
0.120* 0.055* 

0.139* 0.057* 

0.142* 0.059* 

0.094* 0.089* 

0.238* 0.120* 

Correlation (ii) 

5% 1% 
0.106* 0.032* 

0.140* 0.054* 

0.134* 0.054* 

0.184* 0.087* 

0.204* 0.109* 

size differs fix>m nominal size by a significant amount (5% level) 

For series of length 200, where a reasonable number of statistics occur for a 

given degrees of freedom, the estimates of the means, variances and measures of 

skewness are in many cases fairly close to the corresponding theoretical parameters. 

The results for which there are at least 100 test statistics are shown in Tables 2.2 and 

2.3. 

Table 2.2-3.3 Estimates of Mean, Variance, Skewness and 
Size for T=200 (Bivariate Series) 

Table 2. 
Process 

AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA 

0,1) 

2 Ce 
Order 
k 

1 

1 
2 

2 

2 
3 

2 
3 

rrelation ( 
dMn\ 

4 

4 
8 

8 

8 
12 

8 
12 

[») 
No. 
Test 
Stats. 
991 

140 
774 

973 

602 
379 

237 
655 

Mean 

4.212 

3.957 
8.645 

8.469 

8.047 
13.865 

8.464 
12.785 

Var 

8.434 

7.370 
20.370 

18.363 

16.746 
34.810 

21.438 
28.104 

Skew 

0.228 

0.215 
0.190 

0.193 

0.188 
0.119 

0.212 
0.146 

Size 
5% 

0.063 

0.036 
0.067* 

0.071* 

0.055 
0.121* 

0.097* 
0.075* 

Size 
1% 

0.000 

0.014 
0.022* 

0.013 

0.013 
0.026* 

0.021 
0.016 

* size differs fiom nominal size by a sigmffcant amount (5% level) 
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Table 2.3 Correlation (ii) 
Process 

AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA 

(1,1) 

Order 
k 

1 

1 
2 
3 

2 

2 
3 
4 

2 
3 
4 

df=m^k 

4 

4 
8 

12 

8 

8 
12 
16 

8 
12 
16 

No. 
Test 
Stats. 
996 

127 
759 
111 

992 

211 
670 
117 

155 
740 
105 

Mean 

4.198 

4.093 
8.371 

13.781 

8.231 

8.198 
12.648 
18.496 

8.714 
12.614 
18.059 

Var 

8.869 

7.672 
19.148 
26.161 

17.014 

18.555 
27.788 
43.481 

20.410 
29.839 
45.440 

Skew 

0.230 

0.161 
0.231 
0.074 

0.179 

0.213 
0.105 
0.020 

0.263 
0.147 
0.174 

Size 
5% 

0.063 

0.047 
0.082* 
0.090 

0.057 

0.071 
0.067 
0.103* 

0.097* 
0.073* 
0.133* 

Size 
1% 

0.016 

0.008 
0.012 
0.009 

0.015 

0.005 
0.015 
0.034* 

0.026 
0.020* 
0.038* 

'*'size differs from nominal size by a significant amount (5% level) 

In many cases the size estimates are reasonably close to the predetermined significance 

levels. The overestimation of size in other cases in general caused the overall size to be 

slightly overestimated. These overall size estimates, as well as overall power estimates, 

are shown in Tables 2.4 to 2.7. 

Table 2.4-2.7 Overall Estimates of Size and Power for T =200 

Table 2.4 Correlation (i) 
5% level 
AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA(1,1) 

AR(1) 
0.068* 

MA(1) 
1.000 

0.067* 

AR(2) 
0.920 

1.000 

0.074* 

MA(2) 
1.000 

0.737 

1.000 

0.085* 

ARMA(1,1) 
1.000 

1.000 

1.000 

1.000 

0.088* 
* size differs from nominal size by a significant amoimt (S% level) 
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Table 2.5 
1% level 
AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA(1,1) 

Correlation (i) 
AR(1) MA(1) 
0.015 1.000 

0.022* 

AR(2) 
0.846 

1.000 

0.015 

MA(2) 
1.000 

0.547 

1.000 

0.018* 

ARMA(1,1) 
1.000 

1.000 

1.000 

1.000 

0.021* 
* size differs fiom nominal size by a significant amount (5% level) 
Table 2.6 Correlation (ii) 
5% level 
AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA(1,1) 

AR(1) 
0.063 

MA(1) 
1.000 

0.078* 

AR(2) 
0.998 

1.000 

0.057 

MA(2) 
1.000 

0.990 

1.000 

0.073* 

ARMA(1,1) 
1.000 

1.000 

1.000 

1.000 

0.083* 
* size differs from nominal size by a significant amount (5% level) 

Table 2.7 Correlation (ii) 
1% level 
AR(1) 

MA(1) 

AR(2) 

MA(2) 

ARMA(1,1) 
* size differs 1 

AR(1) 
0.016 

MA(1) AR(2) MA(2) 
1.000 0.994 1.000 

0.011 1.000 0.965 

0.015 1.000 

0.015 

Tom nominal size by a significant amount 

ARMA(1,1) 
1.000 

1.000 

1.000 

1.000 

0.023* 
(5% level) 

Overall power estimates reveal that the test is quite powerful when the two 

bivariate series are generated from vastly different processes. For those degrees of 

freedom for which reasonably good size estimates were obtained, the estimates of the 
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means, variances and skewness of the test statistic are very often fairly close to the 

theoretical means, variances and measures of skewness respectively. 

3. CLUSTERING PROCEDURE 

The method of clustering as proposed by Maharaj (1996) will now to be 

extended here for use with stationary multivariate time series has the following steps: 

First perform the test of hypothesis from Section 2.1 for every pair of series 

determining the p-value associated with the test statistic D. Use these p-values in an 

algorithm that incorporates the principles of hierarchical clustering but will only group 

together those series whose associated p-values are greater than some predetermined 

number (eg. 0.05 or 0.01). Note that the p-value of the test is a measure of similarity 

and satisfies properties of a semi-metric. 

We assess the performance of this clustering procedure for bivariate series in the 

following section. 

3.1 Simulation Study: Assessment of Clustering Procedure 

The p-value clustering procedure was applied to 10 bivariate series, 2 of which are each 

simulated from the VARMA processes listed in Section 2.1. The series are labelled as 

follows: 

AR(1): 1, 2; MA(1): 3, 4; AR(2): 5, 6; 

MA(2): 7, 8 ; ARMA(1,1):9, 10. 

The correlation between the disturbances are the same as those given in scenarios (i) 

and (ii) in Section 2.1. The minimum p-value is in turn set at 0.05 and 0.01 and clusters 
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are simulated 100 times for each of these minimum p-value settings. For each 

simulation, statistics are then obtained on the number of clusters produced each of the 

100 times, the number of exactly correct clusters produced at each simulation (clusters 

containing the 4 series from the same generating process) , the number of clusters of 

mixed series which are produced at each simulation (clusters containing series from 

different generating processes) and the number of occasions that series from the same 

generating processes fail to come together when no mixing occurs. The results are 

shown in Tables 3.1 to 3.4. 

From Table 3.1 for correlation (i), that is 

2 . = 2 = 
1 0 

0 1 
and 2xv = xy 

0 0 

0 0 

with the minimum p-value set at 0.05 we observe the follow: The four cluster solution 

occurs most frequently (55% of the time) , followed by the five cluster solution which 

occurs 36% of the time. At least one exactly correct cluster is produced 100% of the 

time, with exactly three correct clusters occurring most frequently (74% of the time) 

and exactly five correct clusters occurring only 1% of the time. One cluster of mixed 

series occurs 91% of the time. In 80% of simulations there were no cases of processes 

failing to come together and one failure occurs 18% of the time. 

From Table 3.2 it can be seen that for correlation (i) with the minimum p-value 

set at 0.01, the four cluster solution occurs more fi^equently than in the previous case 

(87% of the time compared to 55% of the time) . This was followed by the five cluster 

solution which occurs 12% of the time as compared to 36% of the time in the previous 

case. At least one exactly correct cluster is produced 100% of the time, with exactly 
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Table 3.1-3.2 Cluster Statistics for T=200, Correlation (i) 
(Bivariate Series) 

Table 3.1 p-value=0.05 
Number 
clusters 
4 
5 
6 
7 

Number 
clusters 

of 

of 
of 

mixed series 

0 
1 
2 

% freq. 

55 
36 

8 
1 

100 
% freq 

2 
91 

7 
100.00 

Number of exactly correct clusters 

0 
1 
2 
3 
4 
5 

Number of occasions , series from 
the same generating process failed 
to come together in the absence of 
mixing 
0 
1 
2 

% freq. 

0 
6 

18 
74 

1 
1 

100 
% freq 

80 
18 
2 

100.00 

Table 3.2 p-value=0.01 
Number 
clusters 

4 
5 
6 

of 

Number of 
clusters of 
mixed series 

0 
1 
2 

% freq. 

87 
12 

1 

100.00 
% freq 

0 
94 

6 
100 

Number of exactly correct clusters 

0 
1 
2 
3 

Nimiber of occasions ,series from 
the same generating process failed 
to come together in the absence of 
mixing 
0 
1 

% freq. 

0 
5 
5 

90 
100.00 
% freq 

96 
4 

100 
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Table 3.3-3.4. Cluster Statistics for T=200, Correlation (ii) 
(Bivariate Series) 

Table 3.3 p-value=0.05 
Number 
clusters 
4 
5 
6 
7 
8 

Number 
clusters 

of 

of 
of 

mixed series 

0 
1 

% freq. 

2 
77 
18 
2 
1 

100 
% freq 

76 
24 

100 

Number of exactly correct clusters 

0 
1 
2 
3 
4 
5 

Number of occasions , series from 
the same generating process failed 
to come together in the absence of 
mixing 
0 
1 
2 
3 

% freq. 

0 
0 
3 

26 
15 
56 

100 
% freq 

79 
20 

0 
1 

100 

Table 3.4 p-value=0.01 
Number of 
clusters 
4 
5 
6 

Number of 
clusters of 
mixed series 

0 
1 

% freq. 

14 
79 
7 

100.00 
% freq 

65 
35 
100.00 

Number of exactly correct clusters 

0 
1 
2 
3 
4 
5 

Number of occasions ,series from 
the same generating process failed 
to come together in the absence of 
mixing 
0 
1 

% FREQ. 

0 
0 
4 

31 
3 

62 
100.00 
% FREQ 

93 
7 

100.00 



19 

three correct clusters occurring 90% of the time compared with 74% of the time in the 

previous case. Neither four nor five correct clusters occur at all. One cluster of mixed 

series occurs 94% of the time as compared to 91% of the time in the previous case. In 

96% of simulations there are no cases of processes failing to come together compared 

with 80% in the previous case and one failure occurs 4% of the time compared with 

18% in the previous case. 

From Table 3.3 it can be seen that for correlation (ii), that is 

2x = 2:v = 
1 0.5 

0.5 1 
and 2xv = xy 

0.5 0.5 

0.5 0.5 

and when the minimum p-value is set at 0.05, the five cluster solution occurs most 

frequently - 77% of the time, followed by the six cluster solution which occurs 18% of 

the time. There are at least two exactly correct clusters, with exactly five correct 

clusters occurring most frequently (56% of the time). 76% of the time there were no 

and one cluster of mixed series occurs 24% of the time. In 79% of simulations there 

were no cases of processes failing to come together and one failure occurs 20% of the 

time. 

From Table 3.4 it can be seen that when for correlation (ii) with the minimum p-

value set at 0.01, the five cluster solution occurs most frequently (79% of the time), as 

compared to 77% in the previous case. This is followed by the four cluster solution 

which occurs 14% of the time. In the previous case the four cluster solution occurs only 

2% of the time. At least one exactly correct cluster is produced 100% of the time, with 

exactly 5 correct clusters occurring 62% of the time compared with 56% of the time in 

the previous case. For 65% of the cases, no clusters of mixed series. In 93% of 

simulations there are no cases of processes failing to come together compared to 79% in 
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the previous case and one failure occurs 7% of the time compared to 20% of the time in 

the previous case. 

For both correlation scenarios (i) and (ii) the performance of the clustering 

procedure clearly improves when the minimum p-value is set at 0.01 since the number 

of cases where series from the same generating process fail to come together in the 

absence of mixing is reduced. Furthermore there is no increase in the number of mixed 

clusters occurring. 

For the correlation (ii) scenario, the clustering procedure performs very much 

better than the correlation (i) scenario for both minimum settings of the p-value. The 

five cluster solution (which is the correct one) occurs 77% (p-value 0.05) and 79% (p-

value 0.01) of the time as compared to 36% (p-value 0.05) and 12% (p-value 0.01) of 

the time. 

4. CONCLUDING REMARKS 

From the simulation study it is clear that the test procedure works quite well for 

reasonably large sample sizes. The distributional approximations to the chi-square 

distribution are fairly adequate and size estimates reveal that the test statistic gives an 

approximately valid test. The test appears to have fairly good power in that it clearly 

distinguishes between series that were generated from vastly different generating 

processes. 

This procedure can also be extended to test for significant differences between 

the generating processes of more than two stationary multivariate processes. However 
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one will require reasonably large sample sizes to obtain reliable estimates of size and 

power. 

From the results of clustering it is clear that the p-value algorithm performs 

reasonably well. While all these simulation results are valid for bivariate stationary 

series, it is expected that they would be valid for higher dimensional stationary series as 

well, although larger sample sizes may be needed to get reasonable power. 
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