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Abstract: Croston’s method is a widely used to predict inventory demand when it is inter­

mittent. However, it is an ad hoc method with no properly formulated underlying stochastic 

model. In this paper, we explore possible models underlying Croston’s method and three 

related methods, and we show that any underlying model will be inconsistent with the prop­

erties of intermittent demand data. However, we find that the point forecasts and prediction 

intervals based on such underlying models may still be useful..             [JEL: C53, C22, C51] 
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1 Introduction 

Inventories with intermittent demands are quite widespread in practice. Data for such items 

consist of time series of non-negative integer values where some values are zero. We shall 

denote the historical demand series Y1, Y2, . . . , Yn and assume these take non-negative integer 

values. 

Croston’s (1972) method is the most widely used approach for intermittent demand forecasting 

(IDF), and involves separate simple exponential smoothing (SES) forecasts on the size of a 

demand and the time period between demands. Other authors, including Johnston & Boylan 

(1996) and Syntetos & Boylan (2001), have suggested a few modifications to Croston’s method 

that can provide improved forecast accuracy. One such modification is to apply Croston’s 

method to the logarithms of the demand data and to the logarithms of the inter-demand time. 

However, all of these methods provide only point forecasts and are not based on a stochastic 

model. In fact, no underlying model for Croston’s method has ever been properly formulated. 

Consequently, there are no forecast distributions and prediction intervals associated with fore-

casts obtained using these methods. 

This paper aims to identify stochastic models that underly Croston’s method and related meth-
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ods, and hence obtain forecast distributions and other properties. However, we end up show­

ing that the models that might be considered as underlying Croston’s and related methods are 

inconsistent with the properties of intermittent demand data. In particular, the possible models 

underlying Croston’s and related methods must be non-stationary and defined on a continu­

ous sample space. For Croston’s original method, the sample space for the underlying model 

includes negative values. This is inconsistent with reality that demand is always non-negative. 

This does not mean that Croston’s method itself is not useful. Its long history of use shows that 

many people find the point forecasts obtained in this way to be satisfactory. Indeed, several 

studies have demonstrated that it gives superior point forecasts to some competing methods 

(e.g., Willemain et al. 1994). Furthermore, we show how the underlying stochastic models can 

be used to construct prediction intervals which are helpful in calculating appropriate levels of 

safety stock for inventory demand. 

In Section 2, we discuss Croston’s method and its potential underlying models. Section 3 

describes three additional models that are related to modifications of Croston’s method. We 

present in Section 4 the model properties such as forecast means and variances, forecast dis­

tributions and lead-time demand distributions. Prediction intervals are discussed in Section 5 

and we conclude in Section 6 by comparing the results and considering alternative approaches. 

Proofs of the main results are provided in the Appendix. 

2 Croston’s Method 

Let Yt be the demand occurring during the time period t and Xt be the indicator variable for 

non-zero demand periods; i.e., Xt = 1 when demand occurs at time period t and Xt = 0 when 

no demand occurs. Furthermore, let jt be number of periods with nonzero demand during 
�tinterval [0, t] such that jt = i=1 Xi, i.e., jt is the index of the the non-zero demand. For ease 

of notation, we will usually drop the subscript t on j. Then we let Yj 
∗ represent the size of the 

jth non-zero demand and Qj the inter-arrival time between Yj 
∗
−1 and Yj 

∗ . Using this notation, 

we can write Yt = XtYj 
∗ . 

Croston’s (1972) method separately forecasts the non-zero demand size and the inter-arrival 

time between successive demands using simple exponential smoothing (SES), with forecasts 

being updated only after demand occurrences. Let Zj and Pj be the forecasts of the (j + 1)th 

demand size and inter-arrival time respectively, based on data up to demand j. Then Croston’s 

method gives 

∗ Zj = (1 − α)Zj−1 + αYj , (2.1) 

Pj = (1 − α)Pj−1 + αQj . (2.2) 

Shenstone and Hyndman: 3 February 2003 2




� 

Stochastic models underlying Croston’s method for intermittent demand forecasting


The smoothing parameter α takes values between 0 and 1 and is assumed to be the same for 

both Yj 
∗ and Qj . Let � = jn denote the last period of demand. Then the mean demand rate, 

which is used as the h-step ahead forecast for the demand at time n + h, is estimated by the 

ratio 

Ŷn+h = Z�/P�. (2.3) 

Several variations on this procedure have been proposed including Johnston & Boylan (1996) 

and Syntetos & Boylan (2001). 

Croston (1972) stated that the assumptions of this method were (1) the distribution of non-zero 

demand sizes Yj 
∗ is iid normal; (2) the distribution of inter-arrival times Qj is iid Geometric; and 

(3) demand sizes Yj 
∗ and inter-arrival times Qj are mutually independent. These assumptions 

are clearly incorrect, as the assumption of iid data would result in using the simple mean as the 

forecast, rather than SES, for both processes. Nevertheless, much of the published empirical 

analyses of Croston’s method have been based on the same assumptions (e.g., Willemain et al. 

1994, Syntetos & Boylan 2001). 

One goal of this paper is to discuss what assumptions could lead to Croston’s method of fore-

casting. Specifically, is there a model that would lead to forecasts Zj and Pj as specified in (2.1) 

and (2.2), and what would the properties of such a model be? We have already seen that such 

models must be autocorrelated; are there other properties that can be determined? 

Note that (2.1) can be rewritten as an exponentially weighted average of past values: 

Zj = 
j−1 

k=0 

∗ α(1 − α)k Yj−k + (1 − α)j Z0. (2.4) 

A similar equation can be obtained for Pj . This immediately means that the underlying models 

must be non-stationary (e.g., Abraham & Ledolter 1983, Section 3.3). 

Now, if the sample space of a model defined as an exponentially weighted moving average 

is bounded to any subset of [0, ∞], (e.g., taking only positive values or integers), Grunwald 

et al. (1997) show that the original process will converge almost surely to a constant. Thus, 

the models underlying Croston’s forecasts must assume continuous data with sample space 

including negative values. This is clearly problematic when we have intermittent demand data 

that is always integer-valued and non-negative. 

Thus, any models underlying Croston’s method should be based on assumptions that the pro­

cess is autocorrelated, non-stationary and has a continuous sample space including negative 

values. However, we are unable to identify a unique underlying model. Chatfield et al. (2001) 

summarizes a general class of state space models for which SES provides optimal forecasts. 
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Nevertheless, this general class of models does not cover all the possible models leading to SES 

forecasts. 

The ARIMA(0,1,1) process is a special case of this class and is often used as the underlying 

model for SES (Box et al. 1994). Because it is the most studied model underlying SES forecast­

ing, we will use the Gaussian ARIMA(0,1,1) model in our empirical comparisons involving 

Croston’s method. That is, we will assume Yj 
∗ ∼ ARIMA(0, 1, 1) and Qj ∼ ARIMA(0, 1, 1) 

where Yj 
∗ and Qj are independent. The state-space representation of this model is 

∗ Yj = Zj−1 + ej , 

Zj = Zj−1 + αej , 
(2.5) 

Qj = Pj−1 + εj , 

and Pj = Pj−1 + αεj , 

iid iidwhere ej ∼ N(0, σe 
2) and εj ∼ N(0, σε 

2). We shall refer to this as the “Croston model”. In 

practice, when we use this model for simulating data (as in Section 5), we round the interarrival 

times to the next highest positive integer. In our analytical results for this model, we ignore this 

complication. 

From (2.5) we note that 

∗ ∗ ∗E(Yj+h | Y1 , . . . , Yj , Z0) = Zj and E(Qj+h | Q1, . . . , Qj , P0) = Pj 

and so this model does give the required forecasts (2.1) and (2.2), although the mean of the 

forecast distribution Yn+h | [Y1, . . . , Yn, Z0, P0] is not given by (2.3). Note that the initial states 

Z0 and P0 have negligible effect provided 0 < α < 2. 

3 Modifications of Croston’s Method 

One simple modification to Croston’s method is to use log transformations of both demands 

and interarrival times to restrict the sample space of the underlying model to be positive. Of 

course, the underlying models are still defined on a continuous sample space, but they may 

provide a reasonable approximation to the data. The assumed underlying model involves two 

independent ARIMA(0,1,1) processes: 

∗ log(Yj ) ∼ ARIMA(0, 1, 1), 
(3.1) 

log(Qj ) ∼ ARIMA(0, 1, 1). 

Again, in simulations with this model we need to round the interarrival times to the next high­

est positive integer. 
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Both the Croston model and the log-Croston model (3.1) assume nonstationary interarrival 

times whereas we find that in practice the interarrival times often appear stationary and un­

correlated. In addition, we will see in the next section that the nonstationary interarrival time 

also makes it more difficult to explore the properties of the model. Thus, it is reasonable and 

necessary to assume independent interarrival times. 

Snyder (2002) proposed two methods in which the interarrival times are assumed to have an 

iid Geometric distribution. (Note that this is consistent with Croston’s stated assumptions.) 

The modified Croston model is specified as 

∗ 
j ∼ ARIMA(0, 1, 1),Y


(3.2)

iid

Qj ∼ Geometric(p), 

where p is the mean interarrival time of the demand series. The iid Geometric distribution of 

Qj indicates that the probability of demand occurring at each time period is 1/p, i.e., 

iid
Xt ∼ Binomial(1, 1/p). (3.3) 

This is useful in calculating the forecast distribution and the corresponding means and vari­

ances. The other model, the modified log-Croston model, is similar but uses logarithms of the 

demands: 

∗ 
j ) ∼ ARIMA(0, 1, 1),log(Y


(3.4)

iid

Qj ∼ Geometric(p). 

The distribution of Xt in (3.3) also holds for the modified log-Croston model. 

4 Model Properties 

Before discussing the model properties, we shall introduce some distributions that will be use­

ful. First, the Binomial-Normal distribution is constructed from a binomial distribution and 

several normal distributions. If X ∼ Binomial(n, q) and Y | X ∼ N(mX , σ
2 
X ), then Y has 

the Binomial-Normal distribution denoted by BN(n, q, µ, σ 2) where µ = (m0, . . . ,mn) and 
2 = (σ2 

n). Its distribution function is given by0 , . . . , σ
2 

σ


Pr(Y ≤ y) =

n 

i=0 

n

i

q i(1 − q)n−iΦ[(y − mi)/σi] 

where Φ(·) is the standard normal distribution function. Similarly, the Binomial-LogNormal 

distribution is denoted by BLN(n, q, µ, σ 2) with distribution function 
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n 
n

Pr(Y ≤ y) = q i(1 − q)n−iΦ[(ey − mi)/σi]. 
i 

i=0 

We now consider the properties of the four IDF models introduced in the previous sections. 

The forecasting methods corresponding to these four models, except that for the log-Croston 

model, have been used and discussed by various authors. However, none of these underlying 

models have been studied and explored for their theoretical properties. 

For each model, we are interested in exploring properties of the h-step ahead future demand, 

Yn+h, for any positive integer h, given the historical demand series Y1, Y2, . . . , Yn and the initial 

states P0 and Z0. For each model, provided 0 < α < 2 these initial states will have asymptoti­

cally zero effect. 

We shall denote the forecast mean by mh = E(Yn+h | I) and the forecast variance by vh = 

Var(Yn+h | I) where I = (Y1, . . . , Yn, Z0, P0). As above, we will assume the model parameters 

are such that the effect of the initial states Z0 and P0 is negligible. Furthermore, we use Yn(h) 

to denote the h-step ahead lead-time demand 

Yn(h) = Yn+1 + · · · + Yn+h 

with forecast mean Mh = E(Yn(h) | I) and forecast variance Vh = Var(Yn(h) | I). 

Due to the nonstationary interarrival time assumed by the model, it is difficult to derive the 

properties of the Croston model and the log-Croston model. Only the one-step ahead forecast 

properties for these two models are obtained (they are not in a simple form, however) and 

presented here. We start with the two simpler models, the modified Croston and log-Croston 

models, since their properties are easier to analysis. 

For each model, we use Zj and Pj to represent respectively the underlying states corresponding 

to the (log) demand size and the (log) interarrival time. We also let � = jn denote the last period 

of demand. Proofs of the following results are given in the Appendix. 

Theorem 4.1 The h-step forecast distribution for model (3.2) is 

Yn+h | I ∼	
BN(h − 1, 1/p, Z�1, σ 2) w.p. 1/p 

(4.1) 
0 w.p. 1 − 1/p. 

where 1 is a vector of ones and σi 
2 = σe 

2 1 + iα2 is the typical element of σ 2 . The forecast mean and 

variance are given by
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mh = Z�/p (4.2) 

and 

vh = (p − 1)Z� 
2 + σe 

2 p + α2(h − 1) /p2 . (4.3) 

The lead-time forecast mean and variance are given by 

Mh = hZ�/p (4.4) 

and 

Vh = 
h 
p3 p(p − 1)Z� 

2 + σe 
2 . (4.5)
p 2 + pα(1 + α/2)(h − 1) + α2(h − 1)(h − 2)/3 

Theorem 4.2 The h-step forecast distribution for model (3.4) is


LBN(h − 1, 1/p, Z�1, σ 2) w.p. 1/p 
(4.6)

0 w.p. 1 − 1/p. 
Yn+h | I ∼ 

1 + iα2 is the typical element of σ 2 . The forecast mean andwhere 1 is a vector of ones and σ2 
i = σ2 

e 

variance are given by 

mh = exp Z� + 1 
2 σe 

2 /p (4.7)
1 + α2(h − 1)/p 

and


p exp
 . (4.8)
2 
h σe 

2[1 + α2(h − 1)/p] − 1vh = m 

The lead-time forecast mean and variance are given by


Z� + σe 
2/2 (4.9)
Mh = θ1 exp 

and 

Vh = 
M 2 

h 

θ2 
1 

1 + 
2(θ2 − θ1)

θ4 exp{σe 
2} − θ2 

r − 1 
+ 

2(θ2 − h/p) exp{ασe 
2} h(h − 1)

− 
r2 − 1 p2 , (4.10)


where θi = {[1 + (ri − 1)/p]h − 1}/(ri − 1) and r = exp{α2σe 
2/2}. 
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It is assumed in both the Croston model and the log-Croston model that interarrival times are 

continuous and nonstationary. This makes it difficult to calculate the probability of demand 

occurring at each future time period, and consequently we are unable to derive other properties 

of the forecast distributions. Instead, we approximate the conditional probability given the 

previous demand and only look at the one-step forecast distributions. 

Theorem 4.3 For the Croston model (2.5), the one-step forecast distribution is 

Yn+1 | I ∼ 
N(Z�, σe 

2) w.p. ρ 
(4.11)

0 w.p. 1 − ρ 

with mean and variance given by m1 = ρZ� and v1 = ρ(1 − ρ)Z� 
2 + ρσe 

2 , where ρ = Φ [(1 − P�)/σε]. 

For the log-Croston model (3.1), the one-step forecast distribution is given by 

Yn+1 | I ∼ 
LogN(Z�, σe 

2) w.p. ψ 
(4.12)

0 w.p. 1 − ψ, 

with mean and variance given by m1 = ψ exp{Z� + σe 
2/2} and v1 = m2 

1(exp{σe 
2}/ψ − 1) where 

ψ = Φ (−P�/σε). 

Properties for further future steps (i.e., h ≥ 2) of these two models are not easy to work out or 

even to approximate. 

For Croston’s method, several point forecasts have previously been suggested including Cros­

ton’s (1972) original forecast and the two revised forecasts proposed by Syntetos & Boylan 

(2000) and Syntetos & Boylan (2001). We shall denote these by Fcr , Fsb0 and Fsb1 respectively. 

They are given by 

Fcr = Z�/P�, Fsb0 = (1 − α/2)Z�/P� and Fsb1 = Z�/(P�c 
P�−1) 

where α and c are constants to be selected. The authors suggest using c = 100 and we use 

this value in the analysis described below. We use α = 0.5; other values of α made only small 

differences to the results. These three one-step ahead point forecasts can be considered as 

approximations to m1 = Φ[(1 − P�)/σε]Z�. Figure 1 shows the approximation of Φ[(1 − P�)/σε] 

implied by these three methods for different values of P� and σε 
2 . This shows that none of these 

methods are particularly good. Croston’s method Fcr is a poor approximation to m1 for all 

values of P� and σε 
2 . The Syntetos & Boylan (2001) method Fsb1 works well only when P� is 

large. The Syntetos & Boylan (2000) method Fsb0 provides a better approximation when the 

value of σε 
2 is greater than or equal to P�. However, when σε 

2 is small, it also does poorly. 
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Figure 1: Approximations for Φ[(1 − P�)/σε] based on the point forecasts of Croston (1972), Syntetos 
& Boylan (2000) and Syntetos & Boylan (2001). Here, c = 100 and α = 0.5. In the middle 
and the bottom graphs, P� = σε 

2/2 and P� = 2σε 
2 , respectively. 
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5 Prediction Intervals 

One of the most important uses of stochastic models in forecasting is the construction of predic­

tion intervals. These can be obtained for any of the models described in the preceding sections 

by simply simulating many sample paths from the model, and calculating the relevant em­

pirical percentiles from the sample at each forecast horizon. In all simulations, we round the 

inter-arrival times to the next highest positive integer. 

For the modified Croston and modified log-Croston models, we can also obtain analytical pre-

diction intervals which will be simpler to compute. The proof of the following Theorem is 

given in the Appendix. 

Theorem 5.1 Let δ(h) = σe[1+α2(h−1)/p]1/2 , and let k1 = Φ−1(αp/2) and k2 = Φ−1(1−p+αp/2). 
Also, let I(x) = x when p < 2/(2 − α) and I(x) = −∞ otherwise. Then, for the modified Croston 

model (3.2), a (1 − α)100% prediction interval for h-step ahead demand Yn+h is 

max min[0, Z� + k1δ(h)], I[Z� + k2δ(h)] , Z� − k1δ(h) , (5.1) 

and for the modified log-Croston model (3.4), a (1 − α)100% prediction interval for h-step ahead demand 

Yn+h is 

max
 min[0, exp{Z� + k1δ(h)}], I[exp{Z� + k2δ(h)}]} , exp{Z� − k1δ(h) . (5.2)


We demonstrate the use of these prediction intervals by computing them for a real data set. 

These data consist of monthly demand for a service part for Saturn motor vehicles, over the 

period January 1998 to March 2002. 

For the Croston and log-Croston models, 10000 sample paths were simulated using the fit­

ted parameters. Then the 2.5% and 97.5% percentiles of the sample paths were calculated to 

give 95% prediction intervals. For the modified models, we use Theorem 5.1 to obtain 95% 

prediction intervals. These are all shown in Figure 2. Also shown are the point forecasts for 

each model. Again, the means for the Croston and log-Croston models are computed from the 

simulated sample paths, while the others are obtained using Theorems 4.1 and 4.2. 

The point forecasts are very similar for all models, while the prediction intervals are very dif­

ferent, reflecting the different assumptions made in formulating the models. Obviously, those 

intervals which include negative values (the Croston and modified Croston models) would 

normally be truncated in practice, although this will inevitably alter the probability coverage. 
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Prediction Intervals for the Four Models 
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Point Forecasts for Croston’s method and the Four Models 

Data 
Modified Croston 
Modified log−Croston 
Croston 
log−Croston 
Croston’s method 

4
5

2
3

0
1 

0 20 40 60 80 
time (month) 

Figure 2: Prediction intervals and point forecasts for the four models considered here applied to monthly 
demand for a spare part for Saturn motor vehicles (January 1998 – March 2002). Results for 
the Croston and log-Croston models were obtained from simulation. In the bottom graph, 
point forecasts for the original Croston’s method are also presented. 
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Model name Forecast mean: mh = E[Yn+h | I] Forecast variance: vh = Var[Yn+h | I] 

Modified Croston 

(Snyder 2002) 
mh = Z�/p vh = 1 

p2 

� 
(p − 1)Z2 

� + σ2 
e 

� 
p + α2(h − 1) 

�� 

Modified log-Croston 

(Snyder 2002) 
mh = exp 

� 
Z� + σe 

2p2 

� 
p + α2(h − 1) 

� � 
vh = m 2 

h 

� 
p exp 

� 
σ2 

e 
p [p + α2(h − 1)] 

� 
− 1 

� 

Croston 

(Croston 1972) 
m1 = ρZ� v1 = ρ(1 − ρ)Z2 

� + ρσ2 
e 

log-Croston 
m1 = ψ exp{Z� + σ2 

e /2} v1 = m 2 
1(exp{σ2 

e }/ψ − 1) 

Table 1: Forecast means and variances for the four IDF models. Here ρ = Φ [(1 − P�)/σε], ψ = 
Φ (−P�/σε) and Φ(·) is the standard normal distribution function. 

6 Conclusion 

We have shown that any model assumed to be underlying Croston’s method must be non-

stationary and defined on a continuous sample space including negative values. Hence, the 

implied model has properties that don’t match the demand data being modelled. 

We have also studied models underlying some of the suggested modifications to Croston’s 

method. Table 1 summarizes the forecast means and variances for the four models discussed 

in this paper. Of these, only the modified log-Croston model is defined on the positive real line 

(which may be considered an approximation to the non-negative integers) and has tractable 

expressions for the forecast mean and variance. This makes it a more attractive candidate for 

IDF modelling than either Croston’s original proposal or the other suggested modifications. 

However, notably all four models discussed here are nonstationary. Consequently, the forecast 

variances are all increasing over time which can result in wide prediction intervals, especially 

at long forecast horizons. It would be useful to also consider stationary models for IDF rather 

than restrict attention to models based on SES. Potential stationary models are Poisson au­

toregressive models (see Grunwald et al. 2000) and other time series models for counts (e.g. 

Cameron & Trivedi 1998, Winkelmann 2000). To our knowledge, these have not be used for 

intermittent demand data before, and are worthy of investigation in this context. 
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Appendix: Proofs 

Proof of Theorem 4.1 

Assume there are s arrivals of non-zero demands within (n, n + h]. We first derive results 

conditional on s. It is useful to note that Yn+h = Xn+hY� 
∗ 
+s and, by the properties of SES, 

∗ 
�+s = Z� + e�+s + α(e�+s−1 + · · · + e�+1).Y


So Y� 
∗ 
+s has a normal distribution and the forecast distribution conditional on s is 

N
 Z� , σ
2 
e 1 + α2(s − 1) w.p. 1/p


Yn+h | I, s ∼ (A.1)
0 w.p. 1 − 1/p. 

Since Yn+h takes values from the normal distribution in (A.1) only if demand occurs in time 

n + h (i.e., Xn+h = 1), then, in this case, s ≥ 1 and (s − 1) ∼ Binomial(h − 1, 1/p). Thus we 

obtain (4.1), from which we obtain 

∗ mh = E[Xn+h | I]E[Y�+s | I] = Z�/p 

and 

∗ ∗ vh = Var[Xn+h | I](E[Y�+s | I])2 + E[X 2 
n+h | I]Var[Y�+s | I] 

= (1 − 1/p)Z� 
2/p + σe 

2(1 + α2E[s − 1])/p 

=
 (p − 1)Z� 
2 + σe 

2 p + α2(h − 1) /p2 . 

We can rewrite the h-step ahead lead-time demand as


Yn(h) = 
s 

k=1 

Y

s 

k=1 

∗ 
�+k = Y ∗ 

� (s) = sZ� + 1 + α(s − k)
 e�+k 

so that E[Y� 
∗(s) | I, s] = sZ� and Var[Y� 

∗(s) | I, s] = s{1 + α(s − 1) + α 
6 
2 
(s − 1)(2s − 1). Hence, 

the conditional distribution of h-step ahead lead-time demand will be 

Yn(h) | [I, s] ∼ N sZ� , σe 
2 s 1 + α(s − 1) + α 

6 
2 
(s − 1)(2s − 1) , (A.2)


where s ≥ 0 and therefore s ∼ Binomial(h, 1/p). Note the distribution of s in (A.2) differs from


Shenstone and Hyndman: 3 February 2003 14




� � 

� � 
� � 

� � 
� � 

� � 
� 

� � 
� 

� � 

� � 

Stochastic models underlying Croston’s method for intermittent demand forecasting


that in (A.1). Thus we obtain Mh = E[sZ�] = hZ�/p and 

Vh = Var[E(Yn(h) | I, s)] + E[Var(Yn(h) | I, s)] 

= Var(sZ� | I) + E[σe 
2 s(1 + α(s − 1) + α 

6 
2 
(s − 1)(2s − 1)) | I] 

hσ2 

= h(p − 1)Z� 
2/p2 + e 1 + α(1 + α/2)(h − 1)/p + 

3 
α
p 

2

2 (h − 1)(h − 2) . 
p 

Here, we have used the fact that, if s ∼ Binomial(h, 1/p), then E[s(s − 1)] = h(h − 1)/p2 and 

E[s(s − 1)(s − 2)] = h(h − 1)(h − 2)/p3 . 

Proof of Theorem 4.2 

The derivations are similar to that for Theorem 4.1, so we omit some of the details and use 

similar notation. We can write Yn+h = Xn+hY� 
∗ 
+s = Xn+h exp{W�+s}, where {Wj } is the 

ARIMA(0,1,1) process underlying the logarithm of the demand size. Thus the h-step ahead 

forecast distribution of Yn+h conditional on s for this model is 

 
 LogN Z� , σ

2 1 + α2(s − 1) w.p. 1/p1
Yn+h | I, s ∼ (A.3) 

 0 w.p. 1 − 1/p, 

where (s − 1) ∼ Binomial(h − 1, 1/p) given Xn+h = 1. This gives (4.6) and we find the h-step 

ahead forecast mean is given by (4.7) and the variance is given by 

� �2 
vh = Var[Xn+h | I] E[e W�+s | I] + E[X 2 

n+h | I]Var[e W�+s | I] 

1 � � �� 1 � � 
= exp σe 

2 1 + α2(h − 1)/p − exp 2Z� + σe 
2 1 + α2(h − 1)/p 

p p 

from which (4.8) follows. 

The h-step ahead lead time demand Yn(h) = Y� 
∗(s) is the sum of correlated lognormal random 

variables, for which the distribution is unknown. However, we can derive the mean by first 

noting that, if s ∼ Binomial(h, 1/p), then E[xs] = (1 + (x − 1)/p)h . Thus, the mean lead time 

demand for this model is given by 

s 
∗ Mh = E[Y� (s) | I] = E exp{W�+k } | I 

k=1 
s 

= E exp Z� + e�+k + α(e�+k−1 + · · · + e�+1) 
k=1 

rs − 1 
= E 

r − 1 
exp{Z� + σe 

2/2} 

from which we obtain (4.9). The variance of the h-step ahead lead-time demand can be derived
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similarly as follows. 

� � �� � � �� 
s s 

Vh = E Var exp{W�+k } | I, s + Var E exp{W�+k } | I, s 
k=1 k=1 

  
s 

= E  Var (exp{W�+k } | I, s) + 2 Cov (exp{W�+i}, exp{W�+k } | I, s) 

k=1 1≤i≤k≤s 

s 

+ Var E exp{W�+k } | I, s 
k=1 

= E (r4s−1) exp{σ2 
e } − r

2s−1 + 2[r
2s −1−s(r2−1)] exp{ασ2 

r4 −1 r2−1 (r2−1)2 
e } − s(s − 1) exp{2Z� + σe 

2} 

rs − 1 
+ Var 

r − 1 
exp{Z� + σe 

2/2} . 

Then simple algebra leads to (4.10). 

Proof of Theorem 4.3 

For simplicity, we assume that the last non-zero demand Y� 
∗ occurs at time n, i.e., Yn = Y� 

∗ . 

Then, Q�+1 is the number of time periods we wait from Y� 
∗ until the next non-zero demand 

Y� 
∗ 
+1. Then, using the properties of SES, for the Croston model the conditional distribution of 

Q�+1 is Q�+1 | Q1, . . . , Q� ∼ N(P�, σε 
2), and for the log-Croston model Q�+1 | Q1, . . . , Q� ∼ 

LogN(P�, σε 
2). 

In the Croston model, the conditional probability of demand occurring probability at time n +1 

can be approximated as 

Pr(Xn+1 = 1 | I) = Pr(Q�+1 ≤ 1 | Q1, . . . , Q�) = Φ[(1 − P�)/σε] = ρ. 

Then the one-step ahead forecast distribution is given by (4.11) from which we can obtain the 

one-step forecast mean and variance. 

A similar argument for the log-Croston model leads to the one-step ahead forecast distribution 

in the form (4.12) from which we can obtain the one-step ahead forecast mean and variance. 

Proof of Theorem 5.1 

For each of the two models, we obtain a prediction interval with its lower and upper limits, a 

and b, being respectively the (α/2)th and the (1 − α/2)th quantiles of the forecast distribution 

such that Pr(Yn+h ≤ a) = Pr(Yn+h ≥ b) = α/2. 

For the modified Croston model, the forecast distribution is given by (4.1). Let s be the number 
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of non-zero demands within (n, n + h] and let D(s) = Yn+h | (s,Xn+h = 1). Then 

Pr(Yn+h ≤ y) = (1 − 1 
p )1{y≥0} + 1 Pr(D(s) ≤ y)Pr(X = s)p 

s 

= (1 − 1 
p )1{y≥0} + 1 E[Pr(D(s) ≤ y)]p 

where s − 1 ∼ Binomial(h − 1, 1/p) provided s ≥ 1, and 1{y≥0} is an indicator function taking 

value 1 if y ≥ 0 and 0 otherwise. 

Now if s ≥ 1 then D(s) ∼ N Z� , δ
2(s) where δ2(s) = σe 

2 1 + α2(s − 1) . Because Z� > 0 

for demand data, it is always true that the upper limit of the prediction interval b > 0. So 

we have Pr(D(s) ≤ b) = Φ{[b − Z�]/δ(s)} and therefore α/2 = E[Pr(D(s) > b)]/p. Thus 

b = Z� − k1E[δ(s)] = Z� − k1δ(h). 

Similarly, for the lower limit a, if E[Pr(D(s) < 0)] ≥ αp/2, then a ≤ 0 and we have α/2 = 

E[Pr(D(s) < a)]/p which gives a = Z� + k1δ(h). Now let d = α/2 − E[Pr(D(s) < 0)]/p. Then 

when E[Pr(D(s) < 0)] < αp/2, we have d > 0. If p ≥ 2/(2 − α) then a = 0 since d ≤ 1 − 1/p. 

When p < 2/(2 − α), if Pr[D(s) < 0] ≥ αp/2 − p + 1, then d ≤ 1 − 1/p and therefore a = 0; 

otherwise d > 1 − 1/p and a = Z� + k2δ(h). 

A similar argument for forecast distribution (4.6) leads to the prediction interval in (5.2) for the 

modified log-Croston model. 
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