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Some nonlinear exponential smoothing

models are unstable

Abstract: This paper discusses the instability of eleven nonlinear state space models that un-

derly exponential smoothing. Hyndman et al. (2002) proposed a framework of 24 state space

models for exponential smoothing, including the well-known simple exponential smoothing,

Holt’s linear and Holt-Winters’ additive and multiplicative methods. This was extended to 30

models with Taylor’s (2003) damped multiplicative methods.

We show that eleven of these 30 models are unstable, having infinite forecast variances. The

eleven models are those with additive errors and either multiplicative trend or multiplicative

seasonality, as well as the models with multiplicative errors, multiplicative trend and additive

seasonality. The multiplicative Holt-Winters’ model with additive errors is among the eleven

unstable models.

We conclude that: (1) a model with a multiplicative trend or a multiplicative seasonal com-

ponent should also have a multiplicative error; and (2) a multiplicative trend should not be

mixed with additive seasonality.

Keywords: exponential smoothing, forecast variance, nonlinear models, prediction intervals,

stability, state space models.
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1 Introduction

Several researchers have discussed point forecasts from nonlinear exponential smoothing

models. However, there has not been much attention given to the forecast variances of these

nonlinear models. In this paper, we show that the forecast variances of some of these models

are infinite, thus making the models of questionable value for forecasting. This arises because

the state equations of some of the models involve the ratio of random variables, and the vari-

ance of the ratio of random variables is infinite when the denominator has positive density at

zero.

Hyndman et al. (2002) (hereafter referred to as HKSG) proposed a modelling framework based

on exponential smoothing methods. The framework involves 12 different methods, including

the well-known simple exponential smoothing, Holt’s method, and Holt-Winters’ additive

and multiplicative methods. For each of these methods, HKSG proposed two state space mod-

els with a single source of error, following the general approach of Ord et al. (1997). (This class

of state space models is also known as “innovation models”; e.g. Aoki & Havenner (1991)).

The two state space formulations correspond to the additive error and the multiplicative er-

ror cases. So altogether, the framework involves 24 different models (12 with additive errors

and 12 with multiplicative errors). Taylor (2003) recently extended this taxonomy to include

damped multiplicative trend method, thus adding another six models.

Each model is denoted by three letters: the first letter denotes the type of error (additive,

multiplicative), the second letter denotes the type of trend (none, additive, additive-damped,

multiplicative or multiplicative-damped) and the third letter denotes the type of seasonality

(none, additive or multiplicative). Table 1 shows the fifteen models with additive errors. For

example, cell ANN describes the simple exponential smoothing method, cell AAdN describes

additive-damped Holt’s linear method. The multiplicative Holt-Winters’ method is given

by cell AAM and the multiplicative-damped additive Holt-Winters’ method is given by cell

AMdA.

Hyndman et al. (2005) provide forecast variance expressions for fifteen of the thirty models.

In this paper, we show that eleven of the remaining fifteen models are inherently unstable,

having infinite forecast variances for all forecast horizons. (The other four models are sta-

ble but have so far proven too complicated to allow derivation of the forecast variance.) The

eleven unstable models are those with additive errors and either multiplicative trend or mul-

tiplicative seasonality, as well as the models with multiplicative errors, multiplicative trend

and additive seasonality. Notably, the multiplicative Holt-Winters’ model with additive errors
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is among the eleven unstable models. Equations for the eleven unstable models are given in

Table 2 using the same notation as in HKSG.

Seasonal Component
Trend N A M

Component (none) (additive) (multiplicative)

N (none) ANN ANA ANM

A (additive) AAN AAA AAM

Ad (additive damped) AAdN AAdA AAdM

M (multiplicative) AMN AMA AMM

Md (multiplicative damped) AMdN AMdA AMdM

Table 1: The fifteen state space models with additive errors from the taxonomy of HKSG as extended
by Taylor (2003).

Model AMN Model AMA Model AMM
µt = `t−1bt−1 µt = `t−1bt−1 + st−m µt = `t−1bt−1st−m
`t = `t−1bt−1 + αεt `t = `t−1bt−1 + αεt `t = `t−1bt−1 + αεt/st−m
bt = bt−1 + αβεt/`t−1 bt = bt−1 + αβεt/`t−1 bt = bt−1 + αβεt/(st−m`t−1)

st = st−m + γεt st = st−m + γεt/(`t−1bt−1)

Model ANM Model AAM Model AAdM
µt = `t−1st−m µt = (`t−1 + bt−1)st−m µt = (`t−1 + bt−1)st−m
`t = `t−1 + αεt/st−m `t = `t−1 + bt−1 + αεt/st−m `t = `t−1 + bt−1 + αεt/st−m
st = st−m + γεt/`t−1 bt = bt−1 + αβεt/st−m bt = φbt−1 + αβεt/st−m

st = st−m + γεt/(`t−1 + bt−1) st = st−m + γεt/(`t−1 + bt−1)

Model AMdN Model AMdA Model AMdM
µt = `t−1bφ

t−1 µt = (`t−1bφ
t−1) + st−m µt = (`t−1bφ

t−1)st−m

`t = `t−1bφ
t−1 + αεt `t = `t−1bφ

t−1 + αεt `t = `t−1bφ
t−1 + αεt/st−m

bt = bφ
t−1 + αβεt/`t−1 bt = bφ

t−1 + αβεt/`t−1 bt = bφ
t−1 + αβεt/(st−m`t−1)

st = st−m + γεt st = st−m + γεt/(`t−1bφ
t−1)

Model MMA Model MMdA
µt = `t−1bt−1 + st−m µt = `t−1bφ

t−1 + st−m

`t = `t−1bt−1(1 + αεt) + αst−mεt `t = `t−1bφ
t−1(1 + αεt) + αst−mεt

bt = bt−1(1 + αβεt) + αβεt(st−m/`t−1) bt = bφ
t−1(1 + αβεt) + αβst−mεt/`t−1

st = st−m(1 + γεt) + `t−1bt−1γεt st = st−m(1 + γεt) + `t−1bt−1γεt

Table 2: State space equations for the models considered in this paper. In additive error cases, yt =
µt + εt and in multiplicative error cases, yt = µt(1 + εt), where εt is a white noise process with mean
zero and variance σ2.
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If we observe the series {yt} and define the state vector as xt = (`t, bt, st, st−1, . . . , st−m+1)′,

then all of the models can be written in state space form:

yt = µt + k(xt−1)εt (1.1a)

xt = f (xt−1) + g(xt−1)εt . (1.1b)

The model with additive errors has k(xt−1) = 1, so that yt = µt + εt. The model with multi-

plicative errors has k(xt−1) = µt, so that yt = µt(1 + εt).

The forecast variance is defined as the variance of yt+h conditional on observations to time t

and the initial state:

vt+h|t = Var(yt+h | y1, y2, . . . , yt, x0).

In the next section, we will show that vt+h|t = ∞ when h ≥ 2 for each of the eleven models

given in Table 2. Section 3 contains a simulation study to explore the problem numerically.

We conclude with some recommendations in Section 4.

2 Unstable models

The problem is apparent when we consider the simplest of the eleven models, namely the

AMN model where

yt = `t−1bt−1 + εt (2.1)

`t = `t−1bt−1 + αεt (2.2)

bt = bt−1 + αβεt/`t−1. (2.3)

If `t−1 ≈ 0, then bt tends to ±∞. Therefore yt+1, which is a function of bt, also tends to ±∞.

If b0 = 1 and β is very small, then {`t} will behave like a random walk and will cross zero

almost surely. Thus, this problem is bound to occur eventually.

To see that this problem is more general than the special case of small β and b0 = 1, consider

the trend equation at time t = 2:

b2 = b1 + αβε2/`1

= b0 + αβ

{
ε2

`1
+

ε1

`0

}

= b0 + αβ

{
ε2

`0b0 + αε1
+

ε1

`0

}
.
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If εt is normally distributed, then the first term in the brackets is a ratio of two normal vari-

ables. If `0b0 = 0, then this term has a Cauchy distribution. For other values of `0b0, it is

not Cauchy but it still has infinite variance and undefined expectation. In fact, normality is

not required. In the Appendix, we show that these problems arise whenever εt has positive

density over an interval including zero. These problems with the trend equation will propa-

gate into the observation equation from time t = 3. Similar arguments lead to the following

conclusions.

For models AMN, AMA, AMdN, AMdA, AMM, AMdM, MMA and MMdA:

• Var(yt | x0) = ∞ for t ≥ 3;

• E(yt | x0) is undefined for t ≥ 3;

• Var(yn+h | xn) = ∞ for h ≥ 3;

• E(yn+h | xn) is undefined for h ≥ 3.

For models ANM, AAM and AAdM:

• Var(yt | x0) = ∞ for t ≥ m + 2;

• E(yt | x0) is undefined for t ≥ m + 2;

• Var(yn+h | xn) = ∞ for h ≥ m + 2;

• E(yn+h | xn) is undefined for h ≥ m + 2.

The results involving yn+h|xn make it undesirable to use these models for forecasting. It is

still possible to generate point forecasts and even percentiles of the forecast distribution, but

the instability is such that the point forecasts cannot be interpreted as means of future sample

paths.

HKSG applied 24 of the 30 models to the data from the M-competition, including 7 of the

unstable models. Of the 1001 series in the M-competition, unstable models were chosen 221

times using the AIC for model selection. The most commonly chosen of these unstable models

were ANM and AMN, accounting for 121 of the 221 time series models. The Holt-Winters

model AAM and its damped-trend variant AAdM were chosen a total of 76 times. So these

unstable models arise quite often for real data, and the problems we have identified are of

practical as well as theoretical interest.

It is natural to wonder if there is a natural replacement for each of the unstable models. In

most cases, there is. For the models ANM, AAM, AAdM, AMM, AMdM, AMN and AMdN,

the additive error can be replaced by a multiplicative error. This will give the same forecasts

(if the parameters are unchanged), but the multiplicative error models are stable and so are
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suitable for obtaining prediction intervals and other model properties. In other words, if there

is a multiplicative trend or a multiplicative seasonal component, there should also be a multiplicative

error in the model.

However, for the models AMA, AMdA, MMA and MMdA, there is no natural solution as both

the additive and multiplicative error versions are unstable. In other words, a multiplicative

trend should not be mixed with additive seasonality.

3 Simulations from unstable models

In order to demonstrate the problem of instability, we undertook a Monte Carlo study of the

AAM model. The instability of the model AAM is linked with the value of the seasonal com-

ponent. When st−m is close to zero, the values of the level (`t) and the trend (bt) components

become unstable, as can be seen from the model equations in Table 2.

Figure 1 shows 150 observations from one simulated sample path of the AAM model, along

with the components of the simulated series, with α = β = γ = 0.2, σ = 1, `0 = 0.1, b0 = 1,

s−3 = 0.8, s−2 = 0.6, s−1 = 1.2 and s0 = 1.4. From the top panel of Figure 1, it can be seen

that the series is stable until observation 116. It can also be observed that although the series

becomes unstable, in this case the seasonal component remains stable. The bottom panel of

Figure 1 makes it clear that the cause of the instability is the seasonal component being close

to zero at time t = 112.

4 Conclusion

In this paper we have shown that eleven of the nonlinear state space models in the exponential

smoothing framework are unstable. The unstable models are AMN, AMA, AMdN, AMdA,

AMM, AMdM, MMA, MMdA, ANM, AAM and AAdM. Each of these models has undefined

forecast mean and infinite forecast variance after the first few forecast horizons. This result

holds for any distribution of the error series {εt} that has positive density at zero. It also holds

for any values of the initial state and all non-zero values of the smoothing parameters.

The consequence of this result is that these models are of questionable value in forecasting.

While it is possible to obtain point forecasts from the models, the point forecasts are not means.

Furthermore, forecast intervals derived from variances will be wrong. Consequently, we rec-

ommend that only the 19 stable models of the exponential smoothing framework be used.
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Figure 1: AAM simulation with α = β = γ = 0.2, σ = 1, `0 = 0.1, b0 = 1, s−3 = 0.8, s−2 = 0.6,
s−1 = 1.2 and s0 = 1.4. Top panel: first 116 observations of simulated series. Second panel: all 150
observations of simulated series. Bottom three panels: components of the simulated series.
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Appendix: Ratio of random variables

It is well known that the ratio of two normal random variables, each with mean zero, has

a Cauchy distribution and so has undefined mean and infinite variance (see, e.g., Marsaglia

1965). In fact, all even order moments are infinite, and all moments of odd order are unde-

fined. These problems are not apparent in numerical computation if the probability of the

denominator being close to zero is very small (for details, see Springer 1979).

It is less well-known that the ratio of any two random variables where the denominator has

positive density at zero will have the same properties, viz., infinite even order moments and

undefined odd order moments. In fact, we could not locate any reference containing this

result. So we provide a brief derivation here.

Theorem. Let X and Y be two random variables where Y has positive density for all values on an

interval including zero. Then the variance and other even order moments of the ratio X/Y are infinite,

and the mean and other odd order moments of the ratio X/Y are undefined.

Proof. Let f (x, y) be the joint probability density of (X, Y) and note that

E(|X/Y|k) ≥
∫ b

x=a

∫ ε

y=−ε
|x/y|k f (x, y) dx dy .

for a < b and ε > 0. Choose a, b and ε such that f (x, y) > C > 0 for x ∈ (a, b) and y ∈ (−ε, ε).

Then,

E(|X/Y|k) ≥ C
∫ b

x=a

∫ ε

y=−ε
|x/y|k dx dy = C

(∫ b

x=a
|x|k dx

) (∫ ε

y=−ε
|y|−k dy

)

by Fubini’s theorem. The second integral is infinite for all k = 1, 2, . . . . The theorem follows.
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