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1 Introduction 

In many industrial applications a large number of series need to be forecast on a routine basis; 

examples include production planning and inventory management. In the last few decades 

many forecasting models have been developed. The forecaster may either select one appro­

priate model for all series under consideration, or may use a general selection methodology 

which will select the appropriate model for each series from a group of competitive models. 

The appropriate choice of forecasting model has the potential for major cost savings through 

improved accuracy. 

Information criteria provide a simple method to choose from a range of competing models. 

However, it is not clear which information criterion is best for a given forecasting task, and any 

one information criterion does not perform well for all forecasting model selection problems 

(see, for example, Billah et al., 2001; Mills & Prasad, 1992; Hurvich & Tsai, 1991). The arguments 

for and against each information criteria are usually highly theoretical, and it is not clear how to 

proceed in practice. The performance of an information criterion may depend on a number of 

factors such as the models in the choice set, forecasting horizons, and the series being forecast. 

Thus, the practitioner is confronted with a problem: which information criterion is the best for 

selecting an appropriate forecasting model for each time series? 

We overcome these problems by proposing a data-driven information criterion that we call 

the Empirical Information Criterion (EIC). The EIC can be tuned to the particular forecasting 

task. This new criterion uses information from a large number of roughly similar time series to 

calibrate the EIC appropriately. 

Suppose we have a single time series of length n and N possible models from which to choose. 

We can choose amongst these models using an information criterion, defined as a penalized 

log-likelihood: 

IC = log L(θÞ) − f (n, q), (1.1) 

where log L(θÞ) is the maximized log-likelihood function, θ is the q-vector of unknown free 

parameters and f (n, q) is the corresponding penalty function. The model with the largest value 

of IC is the chosen model. 
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Figure 1: Penalty functions for six different information criteria. 

Six commonly-used information criteria are Akaike’s Information Criterion (AIC; Akaike, 1973), 

the Bayesian Information Criterion (BIC; Schwarz, 1978), Hannan & Quinn’s criterion (HQ; 

Hannan & Quinn, 1979), Mallows’ Criterion (MCp; Mallows, 1964), the Generalized Cross Val­

idation criterion (GCV; Golub et al., 1979) and the Finite Prediction Error criterion (FPE; Akaike, 

1970). The penalty functions of these criteria are as follows: 

Criterion Penalty Function

AIC q 
BIC q log(n)/2 
HQ q log(log(n)) 
MCp n log(1 + 2q/r)/2 
GCV −n log(1 − q/n) 
FPE (n log(n + q) − n log(n − q))/2 

where r = n − q∗ and q∗ is the number of free parameters in the smallest model that nests all 

models under consideration. Figure 1 shows the penalty functions for the six criteria for n = 40 

and q∗ = 10. 

Any of these six information criteria may be used for automatic selection among competing 

forecasting models (e.g., Hyndman et al., 2002). However, rather than using a fixed penalty 

function f (n, q), we estimate the penalty function for the particular forecasting task, using an 
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ensemble of similar time series. 

The plan of this paper is as follows. We introduce the EIC in Section 2. Section 3 describes 

the application of the EIC to the M3 forecasting competition data using exponential smoothing 

models, and we show that it performs better than the existing information criteria. We apply 

the bootstrap version of the EIC in Section 4 which is applicable when there is only one series 

to be forecast. The paper ends with some concluding remarks in Section 5. 

2 Two new empirical information criteria 

Suppose we have m time series that are ‘similar’ to each other. Let yt,j be the tth observation of 

the jth series (j = 1, . . . , m and t = 1, . . . , nj). We denote the jth series by yj and the ensemble 

of series by Y = [y1, . . . , ym]. 

This situation can arise when we have a large inventory of m products for which sales need 

to be forecast on a regular basis. The m series form the ensemble used to compute the penalty 

function. 

Alternatively, we can fit an initial model to the series of interest (chosen using the AIC for ex­

ample), and then generate m bootstrap series from the fitted model. In this case, the bootstrap 

series form the ensemble for estimating the penalty function which is then applied to the orig­

inal series of interest. This approach has some similarities with the algorithms proposed by 

Grunwald & Hyndman (1998) and Chen et al. (1993), although these authors were considering 

model selection in other contexts. 

A number of different forecast evaluation criteria could be used for selecting the penalty func­

tion. Because we are particularly interested in forecast accuracy, we shall use the mean absolute 

percentage error (MAPE) as the evaluation criterion. 

We consider two different forms of EIC, one involving a non-linear penalty function and the 

other involving a linear penalty function. Both assume that the penalty does not depend on the 

length of the series. This is not as restrictive as it first appears because we are estimating the 

penalty function based on time series that are similar. Thus all m series will usually be of the 

same or similar length. 
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The non-linear EIC (NLEIC) has f (n, q) = kqq where kq is the penalty weight for a model with 

q parameters. Thus 

NLEIC = log L(θÞ) − kqq. 

The model with the largest NLEIC is the chosen model. If qi is the number of parameters for the 

ith model (i = 1, 2, . . . , N), then the penalty weights kqi , need to be estimated from the ensemble 

of m series. Without loss of generality we let the first model have the fewest parameters and 

assume kq1 = 0. 

Figure 1 shows that the commonly used penalty functions are all close to linear over the range 

of interest. For larger n, they become more linear (and MCp, GCV and FPE all converge to 

AIC). This suggests that it may be beneficial to restrict attention to Information Criteria where 

f (n, q) = kq and k is a constant across all models considered. We call this the Linear Empirical 

Information Criterion (LEIC): 

LEIC = log L(θÞ) − kq, 

and the value of k is estimated from the ensemble of m series. 

For both EIC, each series in the ensemble is divided into two segments: the first segment con­

sists of n∗j = nj − H observations; the second segment consists of the last H observations. 

The value of H needs to be chosen by the forecaster according to what is appropriate for the 

particular series of interest. A common choice will be to set H to the largest forecast horizon 

required. 

2.1 Penalty estimation for LEIC 

For the LEIC, we need to select a value for k using the m series in Y . Small changes in k will not 

usually result in a change in the selected model. Therefore this is not a smooth optimization 

problem. 

We consider values of k between 0.25 and 2 log(n) in steps of size δ. This range of values is 

wider enough to contain all of the commonly used penalty functions. We have found that 

δ = 0.25 works well in practice. 

The steps for estimating k for the LEIC are as follows. 
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Step 1: Model estimation 

1a) For each of the m series, use the first n∗j observations to estimate the parameters in 

each of the N competing models using maximum likelihood estimation. 

1b) Record the maximized log-likelihoods for all estimated models. 

Step 2: Penalty estimation 

2a) For each trial value of k, select a model for each time series by using LEIC. 

2b) For each value of k and for each forecast horizon h, calculate the MAPE across the m 

time series to obtain 

m100
 ��yn∗j +h − ŷn∗j (h)
��/yn∗j +h,MAPE(h, k) =
 ∑
m
 j=1 

where ŷn∗j (h) is the h-step (h = 1, . . . , H) ahead forecast for the model selected for 

the jth series. 

2c) Select a value of k(h) by minimizing MAPE(h, k) over the grid of k values. Thus, a 

k(h) is selected for each forecast horizon h (h = 1, . . . , H). 

2d) We obtain the final value for k by averaging the H values of k(h): 

H1

k(h). (2.1)
k =
 ∑
H
h=1 

We then use the selected k value to find the best model for each series yj (using all nj observa­

tions) and produce forecasts from these chosen models. 

2.2 Penalty estimation for NLEIC 

The estimation of the penalty for the NLEIC is similar except that we have to choose a kq value 

for each unique q in {q2, . . . , qN }. In this non-linear case, there is no reason for the values of kq 

to remain positive. Consequently, we consider values of kq between −2 log(n) and 2 log(n) in 

steps of size δ. Assuming all values of {q1, . . . , qN } are unique, and that (ξ − 1)δ ≤ 4 log(n) < 

ξδ, then there are ξ values of kqi in the grid, for each i. Thus there are ξN−1 possible sets of 

{kq2 , . . . , kqN }. 
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Step 1 is same for both LEIC and NLEIC. Step 2 for the NLEIC is as follows. 

Step 2: Penalty Estimation 

2a) For each trial set of kq2 , . . . , kqN select a model for each time series by using NLEIC. 

2b) For each set of kq2 , . . . , kqN and each forecast horizon h, calculate the MAPE across 

the m time series to obtain 

m100
 ��yn∗j +h − ŷn∗j (h)
��/yn∗j +hMAPE(h; kq2 , . . . , kqN ) = ∑
m
 j=1 

where ŷn∗j (h) is the h-step (h = 1, . . . , H) ahead forecast for the model selected for 

the jth series. 

2c) Select a value of {k(h) , . . . , k(
q
h
N 
)} by minimizing MAPE(h; kq2 . . . , kqN ) over the grid ofq2


kq2 , . . . , kqN . Thus, a set {k(h) , . . . , k(
q
h
N 
)} is selected for each h, h = 1, . . . , H.
q2 

2d) A final value of kqi is obtained by averaging the H values of k(
q
h
i 
) as follows: 

H1

k(h) 

qi .
 (2.2)
kqi =
 ∑
H
h=1 

We then use the selected set {kq1 , . . . , kqN } in (2.2) to find the best model for each series yj (using 

all nj observations) and produce forecasts from this chosen model. 

We advocate a grid search in these algorithms because the MAPE function is complicated 

and relatively ill-behaved. However, it does lead to high computational time which increases 

sharply with the number of parameters and so can be extremely high for small δ. For a large 

number of parameters, the simulated annealing algorithm of Goffe et al. (1994) can be used 

instead. 

Variations on the algorithm can be obtained by replacing the MAPE criterion by some other 

criteria. For example, mean absolute error (MAE), mean square error (MSE) and root mean 

square error (RMSE). (But note that these three assume all m series are on the same scale.) 
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2.3 Bootstrap EIC 

Both the LEIC and NLEIC assume we have a suitable ensemble of m series to use in calibrating 

the penalty function. However, frequently only one series will be available. In this case, a 

bootstrap approach may be used. 

Chen et al. (1993) proposed a bootstrap approach to estimate a suitable penalty function for 

selecting the order p of an AR(p) model. Using a similar approach, we generate the additional 

m series in the ensemble using a bootstrap. 

We assume that the series to be forecast is stationary. If this is not so, it should be made station­

ary through transformations and differences. 

Let y0 denote the one series of interest, and let it be of length n. Then the steps for the bootstrap 

EIC are as follows. 

Step 0: Bootstrap sample generation 

0a)	 Fit a high order AR(p) model to y0, the series of interest, and calculate the residuals 

z = {z1, z2, . . . , zn}. 

0b)	 Generate m bootstrap samples of size n from the residuals z. Then, generate m sam­

ples of size n from the fitted AR(p) model using the m bootstrap samples of residuals 

as the errors. 

Then either the LEIC or NLEIC can be applied to obtain the optimal penalty functions. These 

penalty functions can then be applied to y0 to obtain a new model for the series of interest. 

The candidate models should all be stationary in this case; they need not be restricted to AR 

models. 

Chen et al. (1993) show that if the true series is an AR model of order less than p and the 

candidate models are autoregressive models, then this procedure coupled with the LEIC can 

produce a consistent estimate of the order of the model. 
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3	 Example 1: Non-seasonal exponential smoothing models and the 

M3 data 

Exponential smoothing methods are widely used in forecasting sales of individual products 

for inventory control, production scheduling and production planning (Brown, 1959; Winters, 

1960; Brown, 1963; Brown, 1967; Gardner, 1985; Makridakis & Wheelwright, 1989; Makridakis 

& Hibon, 1991). These methods have been shown to perform very well for forecasting (Makri­

dakis et al., 1982; Makridakis et al., 1993; Fildes et al., 1998; Hyndman et al., 2002). As there 

are many exponential smoothing methods available, using only one method for all time se­

ries under study may not give good accuracy (see Fildes, 1989). It is anticipated that selecting 

a method (from a group of competing methods) to suit each individual series improves fore­

casting accuracy. Hyndman et al. (2002) describe 24 such exponential smoothing methods and 

provide state space models for each of them. This allows the likelihood of each model to be 

computed and allows penalized likelihood model selection to be used. 

In this application, we apply the non-seasonal exponential smoothing models to the 3003 time 

series that were part of the M3 competition (Makridakis & Hibon, 2000). First, we outline the 

underlying state space model of various exponential smoothing methods used in the plausible 

group. Then, we discuss the computations and results. 

3.1 State space models 

A class of state space models has been shown to underpin the exponential smoothing methods 

(Ord et al., 1997). The linear state space models have the following form: 

yt = Hxt−1 + et, (3.1) 

xt = Fxt−1 + Get, (3.2) 

where xt is an unobserved state variable, et is a disturbance term that is independently and 

normally distributed with mean zero and variance σ2, and F, G and H are coefficient matrices. 

Equation (3.1) is called the observation equation and equation (3.2) is called the state equa­

tion. When computing the various information criteria, the number of parameters includes the 
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unknown elements of F, G and H as well as the elements of the initial state vector x0. 

The following are some special cases of such state space models (see Hyndman et al., 2002, for 

details): 

Model 1: Local Level Model (LLM): 

yt = �t−1 + et, where �t = �t−1 + αet is the local level at time t and α is the exponential 

smoothing parameter. This underpins the simple exponential smoothing (SES) method. 

Model 2: Local Level Model with Drift (LLMD): 

yt = �t−1 + b + et, where �t = �t−1 + b + αet is the local level at time t, b is the drift and 

α is the exponential smoothing parameter. This underpins the SES with drift method. 

Hyndman & Billah (2003) show that the LLMD is identical to the Theta method of As­

simakopoulos & Nikolopoulos (2000) which performed well in the M3 competition of 

Makridakis & Hibon (2000). Hence, this method is of considerable interest to forecast 

practitioners. 

Model 3: Local Trend Model (LTM): 

yt = �t−1 + bt−1 + et, where �t = �t−1 + bt−1 + αet, bt = bt−1 + βet. Here, bt is the growth 

rate with exponential smoothing parameter β. It underpins Holt’s method. 

Model 4: Damped Trend Model (DTM): 

yt = �t−1 + bt−1 + et, where �t = �t−1 + bt−1 + αet, bt = φbt−1 + βet, and φ is the damped 

parameter. It underpins damped exponential smoothing. The LTM is a special case of 

DTM. 

It is not difficult to see how each of these models can be written in the state space form (3.1) 

and (3.2). The four models have 2, 3, 4 and 5 parameters respectively. 

The h-step ahead point forecasts for the LLM, LLMD, LTM and DTM are given, respectively, 
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by 

yn(h) = �n, (3.3)Þ Þ

yÞn(h) = Þ�n + hÞb, (3.4) 

yÞn(h) = Þ�n + hÞbn, (3.5) 
h−1 

and yn(h) = �n + Þbn ∑ φi , (3.6)Þ Þ
i=0 

Þ

where Þ�n, Þb, Þbn and φÞ are maximum likelihood estimates of �n, b, bn and φ respectively. 

3.2 Calculations and results 

For the annual data in the M3 competition, the above models are used in this paper as the 

competitive models. Previous studies (e.g., Makridakis et al., 1982; Makridakis & Hibon, 2000) 

show that for seasonal data, the deseasonalized exponential smoothing methods do better than 

their corresponding seasonal versions, particularly for monthly data. Therefore, for seasonal 

data, the deseasonalized versions of these methods are used. The seasonal data are deseasonal­

ized using the ratio-to-moving average method (Makridakis, Wheelwright & Hyndman, 1998) 

and the forecasts are re-seasonalized before calculating the MAPE. 

Estimates of parameters are obtained by maximizing the conditional log-likelihood as described 

in Ord et al. (1997). The likelihood depends on x0 and the parameters α, β and φ. Constrained 

optimization was employed to obtain the values of x0 and parameters that maximize the log­

likelihood conditional on x0. 

We treat the annual, quarterly and monthly data separately. All series in the set of annual time 

series are used as the ensemble for calibrating the penalty function for these series. Similarly 

for the quarterly and monthly series. 

Each series is divided into two segments: the training set and the test set. The jth time series 

(j = 1, , m) has nj observations in the training set and H observations in the test set. For · · · 
annual, quarterly and monthly data, the values for H are 6, 8 and 18, respectively. The training 

set is further divided into two subsets. The jth time series has n∗j observations in the first subset 

and H observations in the second subset. The data in the training sets are used to estimate the 
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penalty functions (Steps 1 and 2 in Section 2) for each series. 

For the LEIC, the penalties are then averaged across the forecast horizons to obtain a single 

penalty function for use with annual data, another with monthly data and a third with quar­

terly data. Similarly, the penalties for NLEIC are averaged to obtain just one for each of annual, 

monthly and quarterly data. 

We compare the LEIC and NLEIC obtained in this way with the six other criteria outlined in 

Section 1. Each selected model is used to forecast the values in the test set, and the APE is 

computed for each forecasting horizon. 

The MAPEs from the M3 competition are presented in Tables 1 to 3. The results show that 

both LEIC and NLEIC perform better than all existing information criteria (NLEIC is better 

than LEIC). Among the existing information criteria BIC is the best. The performances of the 

criteria AIC, BIC, HQ, MCp, GCV and FPE are not the same, particularly for yearly data where, 

as compared to quarterly and monthly data, the series sizes are usually smaller. The strength 

of LEIC and NLEIC is that they work well for all model selection problems. The estimated 

penalty weights are presented in Table 4. 

Figure 2 shows the penalty functions for AIC, LEIC and NLEIC. The estimated penalty weights 

for LEIC are larger than unity and hence compared to AIC, LEIC penalizes larger models more 

heavily. The estimated penalties for NLEIC are highly non-linear. The non-linear form is sim­

ilar for all three data types with a maximum at q = 4. This consistency demonstrates the 

stability of our procedure. Since the NLEIC has much higher values of kqi for the Local Trend 

Model than the other models, it has high penalty and will be less likely to be chosen than other 

models. 
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Methods Forecasting Horizons Average

1 2 3 4 5 6 1 to 4 1 to 6


AIC 8.2 12.9 22.0 23.8 28.6 29.7 18.8 22.2 
BIC 8.1 12.8 21.8 23.3 28.0 29.4 16.5 20.6 
HQ 8.2 12.7 21.9 23.6 28.3 29.7 16.6 20.7 
MCp 8.2 12.9 22.0 23.8 28.5 29.6 16.7 20.8 
GCV 8.1 12.8 21.8 23.5 28.3 29.2 16.6 20.6 
FPE 8.2 13.0 22.1 24.0 28.9 30.1 16.8 21.1 
LEIC 8.5 13.0 21.7 21.9 26.0 26.6 16.3 19.6 
NLEIC 8.4 12.7 21.4 21.4 25.3 25.8 16.0 19.2 

Table 1: Average MAPE for the annual M3 competition data


Methods Forecasting Horizons Average

1 2 3 4 5 6 7 8 1 to 4 1 to 6 1 to 8


AIC 5.2 7.9 8.3 9.3 10.5 13.7 13.0 14.1 7.7 9.2 10.3 
BIC 5.2 8.0 8.3 9.3 10.5 13.7 13.0 14.0 7.7 9.2 10.3 
HQ 5.2 8.0 8.3 9.3 10.5 13.7 13.0 14.2 7.7 9.2 10.3 
MCp 5.2 7.9 8.3 9.3 10.5 13.7 13.0 14.2 7.7 9.2 10.3 
GCV 5.2 7.9 8.3 9.3 10.5 13.7 13.0 14.1 7.7 9.2 10.3 
FPE 5.2 8.1 8.4 9.5 10.9 14.4 13.8 14.9 7.8 9.4 10.6 
LEIC 5.1 8.0 8.2 9.1 10.0 13.2 12.2 13.3 7.6 8.9 9.9 
NLEIC 5.0 7.8 7.8 8.8 9.5 12.6 11.6 12.6 7.4 8.6 9.5 

Table 2: Average MAPE for the quarterly M3 competition data


Methods Forecasting Horizons Average 
1 2 3 4 5 8 12 18 1 to 4 1 to 8 1 to 12 1 to 18 

AIC 15.1 13.9 15.7 18.1 14.7 15.6 16.6 21.9 15.7 15.6 16.0 17.6 
BIC 15.1 13.8 15.5 17.8 14.6 15.3 16.1 21.8 15.6 15.4 15.7 17.4 
HQ 15.2 13.9 15.7 18.0 14.7 15.6 16.6 21.9 15.7 15.6 16.0 17.6 
MCp 15.1 13.9 15.7 18.1 14.7 15.6 16.6 21.9 15.7 15.6 16.0 17.6 
GCV 15.1 13.9 15.7 18.1 14.7 15.6 16.6 21.9 15.7 15.6 16.0 17.6 
FPE 15.2 13.9 15.7 18.0 14.8 15.6 16.6 21.9 15.7 15.6 16.0 17.7 
LEIC 15.1 13.9 15.4 17.7 14.5 15.0 15.9 21.4 15.5 15.3 15.6 17.2 
NLEIC 15.1 13.9 15.4 17.7 14.5 15.1 15.9 21.4 15.5 15.3 15.6 17.2 

Table 3: Average MAPE for the monthly M3 competition data
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Methods Estimated Weights Data Types 
Annual Quarterly Monthly 

LEIC k 3.08 2.59 3.94 
kq2 1.92 1.75 1.03 

NLEIC kq3 4.41 3.62 3.47 
kq4 1.42 0.69 1.75 

Table 4: Estimated weights for the M3 competition data 

Figure 2: MAPE and estimated penalty functions for LEIC and NLEIC. 
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4 Example 2: Bootstrap EIC applied to simulated data 

To test the procedure on simulated data, we generated 500 series from the AR(2) model, yt = 

1.2yt−1 − 0.5yt−2 + et, for sample sizes n = 20, 30 and 50. The first n∗ = n − 6 observations 

were used for estimating the candidate models AR(1), AR(2) and AR(3) and the last H = 6 

observations were used for computing the RMSE. For each series the penalty values were 

estimated using the bootstrap LEIC and NLEIC. The forecast RMSE for the models selected 

by AIC, LEIC and NLEIC are calculated and presented in Table 5. The penalty weights for 

these simulations are given in Table 6 and plotted in Figure 3; these demonstrate that the LEIC 

penalty is very close to AIC for this problem. The results in Tables 5 show that for larger n the 

NLEIC does substantially better than either AIC or LEIC. For n = 20 there is little difference 

between the methods. 

Again, the nonlinear penalty functions (Figure 3) are very similar for all sample sizes. This sug­

gests that the penalty functions are determined by the nature of the data (in this case AR(2)), 

which supports our general philosophy of allowing the entire ensemble of similar data to de­

termine the nature of the penalty function. 

Method Forecasting Horizons Average 
1 2 3 4 5 6 1 to 4 1 to 6 

NLEIC 1.17 1.95 2.31 2.26 2.24 2.23 1.92 2.03 
n = 20 LEIC 1.11 1.85 2.23 2.35 2.37 2.28 1.88 2.03 

AIC 1.13 1.87 2.24 2.35 2.38 2.30 1.90 2.04 
NLEIC 1.09 1.72 2.10 2.16 2.09 2.03 1.77 1.87 

n = 30 LEIC 1.16 1.82 2.07 2.15 2.19 2.20 1.80 1.93 
AIC 1.18 1.82 2.09 2.17 2.23 2.23 1.82 1.95 
NLEIC 1.03 1.65 1.95 2.08 2.15 2.18 1.68 1.84 

n = 50 LEIC 1.11 1.74 2.06 2.26 2.25 2.07 1.79 1.92 
AIC 1.10 1.73 2.06 2.26 2.23 2.05 1.79 1.90 

Table 5: Average RMSE for the simulated data
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Methods Estimated Sample size n 
Weights 20 30 50 

LEIC k 0.851 0.915 1.096 
NLEIC kq2 -1.593 -1.514 -1.467 

kq3 -0.833 -0.698 -0.632 

Table 6: Estimated average weights for the simulated data


Figure 3: RMSE and estimated penalty functions for AIC, LEIC and NLEIC for the simulated data.
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5 Conclusions 

We have proposed an automatic forecasting model selection algorithm when a large number 

of series need to be forecast on a routine basis. The methodology is based on a penalized 

likelihood criterion and is data-adaptive in the sense that the penalty function is determined 

by the data to be forecast. Thus, the penalty level is tuned to the attributes of the series being 

forecast. We have proposed a linear and a non-linear version of EIC; both were shown to 

perform better than all six standard existing information criteria on real and simulated data. 

The non-linear EIC in particular gives substantial improvement in forecast accuracy over other 

comparable methods. 

References 

AKAIKE, H. (1970) Statistical predictor identification, Annals of Institute of Statistical Mathemat­

ics, 22, 203–217. 

AKAIKE, H. (1973) Information theory and an extension of the maximum likelihood principle, 

in B.N. Petrov and F. Csaki (eds.), Second International Symposium on Information Theory, 

Akademiai Kiado: Budapest, 267–281. 

ASSIMAKOPOULOS, V. and NIKOLOPOULOS, K. (2000) The theta model: a decomposition ap­

proach to forecasting. International Journal of Forecasting 16, 521–530. 

BILLAH, M.B., KING, M.L., KOEHLER, A.B. and SNYDER, R.D. (2001) Exponential smoothing 

model selection for forecasting, Working paper, Department of Econometrics and Business 

Statistics, Monash University, Australia. 

BROWN, R.G. (1959) Statistical Forecasting for Inventory Control, McGraw Hill: New York. 

BROWN, R.G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice-Hall: 

Englewood Cliffs. 

BROWN, R.G. (1967) Decision Rules for Inventory Management, Holt, Rinehart and Winston: New 

York. 

CHEN, C., DAVIS, R.A., BROCKWELL, P.J. and BAI, Z.D. (1993) Order determination for au­

toregressive processes using resampling methods, Statistics Sinica, 3, 481–500. 

FILDES, R. (1989) Evaluation of aggregate and individual forecast method selection rules, Man-

Billah, Hyndman & Koehler: 29 January 2003 17 



Empirical information criteria for time series forecasting model selection


agement Science, 35, 1056–1065. 

FILDES, R., HIBON, M., MAKRIDAKIS, S. and MEADE, N. (1998) Generalizing about univariate 

forecasting methods: further empirical evidence, International Journal of Forecasting, 14, 339– 

358. 

GARDNER, E.S. (1985) Exponential smoothing: the state of the art, Journal of Forecasting, 4, 1–28. 

GOFFE, W.L., FERRIER, G.D. and ROGERS, J. (1994) Global optimization of statistical functions 

with simulated annealing, Journal of Econometrics, 60, 65–99. 

GOLUB, G.H., HEATH, M. and WAHBA, G. (1979) Generalized cross-validation as a method 

for choosing a good ridge parameter, Technometrics, 21, 215–223. 

GRUNWALD, G.K. and HYNDMAN, R.J. (1998) Smoothing non-Gaussian time series with au­

toregressive structure, Computational Statistics & Data Analysis, 28, 171–191. 

HANNAN, E.J. and QUINN, B.G. (1979) The determination of the order of an autoregression, 

Journal of the Royal Statistical Society, Series B, 41, 190–195. 

HYNDMAN, R.J. and BILLAH, M.B (2003) Unmasking the Theta Method, International Journal 

of Forecasting, to appear. 

HYNDMAN, R.J., KOEHLER, A.B., SNYDER, R.D. and GROSE, S. (2002) A state space frame­

work for automatic forecasting using exponential smoothing methods, International Journal 

of Forecasting, 18(3), 439–454. 

HURVICH, C.M. and TSAI, C.L. (1991) Bias of the corrected AIC criterion for underfitted re­

gression and time series models, Biometrika, 78, 499–509. 

MAKRIDAKIS, S., ANDERSEN, A., CARBONE, R., FILDES, R., HIBON, M., LEWANDOWSKI, 

R., NEWTON, J., PARZEN, E. and WINKLER, R. (1982) The accuracy of extrapolation (time 

series) methods: results of a forecasting competition, Journal of Forecasting, 1, 111–153. 

MAKRIDAKIS, S., CHATFIELD, C., HIBON, M., MILLS, T., ORD, J.K. and SIMMONS, L.F. (1993) 

The M2-Competition: a real-time judgmentally based forecasting study, International Journal 

of Forecasting, 9, 5–22. 

MAKRIDAKIS, S. and HIBON, M. (1991) Exponential smoothing: the effect of initial values and 

loss functions on post-sample forecasting accuracy, International Journal of Forecasting, 7, 

317–330. 

MAKRIDAKIS, S. and HIBON, M. (2000) The M3-Competitions: results, conclusions and impli-

Billah, Hyndman & Koehler: 29 January 2003 18 



Empirical information criteria for time series forecasting model selection


cations, International Journal of Forecasting, 16, 451–476. 

MAKRIDAKIS, S. and WHEELWRIGHT, S.C. (1989) Forecasting Methods for Management, 5th edi­

tion, John Wiley and Sons: New York. 

MAKRIDAKIS, S. WHEELWRIGHT, S.C. and HYNDMAN, R.J. (1998) Forecasting Methods and Ap­

plications, 3rd edition, John Wiley & Sons: New York. 

MALLOWS, C.L. (1964) Choosing variables in a linear regression: a graphical aid, presented at 

the Central Regional Meeting of the Institute of Mathematical Statistics, Manhattan, Kansas. 

MILLS, J.A. and PRASAD, K. (1992) A comparison of model selection criteria, Econometric Re­

views, 11, 201–233. 

ORD, J.K., KOEHLER, A.B. and SNYDER, R.D. (1997) Estimation and prediction for a class of 

dynamic nonlinear statistical models, Journal of the American Statistical Association, 92, 1621– 

1629. 

SCHWARZ, G. (1978) Estimating the dimension of a model, The Annals of Statistics, 6, 461–464. 

WINTERS, P.R. (1960) Forecasting sales by exponentially weighted moving averages, Manage­

ment Science, 6, 324–342. 

Billah, Hyndman & Koehler: 29 January 2003 19 


	Introduction
	Two new empirical information criteria
	Penalty estimation for LEIC
	Penalty estimation for NLEIC
	Bootstrap EIC

	Example 1: Non-seasonal exponential smoothing models and the M3 data
	State space models
	Calculations and results

	Example 2: Bootstrap EIC applied to simulated data
	Conclusions
	References
	wp2-03cover.pdf
	ISSN 1440-771X
	
	Md B Billah, R.J. Hyndman and A.B. Koehler




