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FITTING A TABLE TO A PAGE USING NON-LINEAR OPTIMISATION 
 
INTRODUCTION 
 
Research papers often contain tables summarising or classifying data and/or results.  When a large table 
contains several columns or rows with very different amounts of text in cells, it can be difficult to adjust 
manually the width of columns so that the table fits onto one page or column. 
 
The usual approach to squeezing a table onto a page is trial and error; we adjust the column widths, reduce 
the font size and/or abbreviate text in large cells until the tables fits.  Unless the publication is of very high 
quality, this approach is probably more appropriate than the mathematical overkill espoused here.  However, 
the problem of adjusting column widths (subject to page width) to minimise the height of a table is 
expressible as a non-linear optimization problem that can be routinely solved. 
 
The literature was unsuccessfully searched for signs that this problem had been studied.  A keyword search 
of the Operations Research literature was fruitless.  In conversation, a publisher stated that this problem had 
not been addressed.  Computer packages such as Microsoft Word, Wordperfect and Netscape Composer 
allows the user to set the width of the columns of a table but do not offer any kind of optimization of column 
widths.  Similarly, typesetting and desktop publishing systems such as TeX (Knuth, 1986) Adobe Pagemaker 
(Connally, 2002) and QuarkXpress (Bain, 2002) do not have facilities for optimizing column widths.  The 
web was unsuccessfully searched for discussion of the column optimization problem. 
 
The problem has the air of a packing or cutting stock problem.  The most closely related problem is the two-
dimensional cutting stock problem in which rectangular shapes are cut from a continuous, fixed-width sheet 
(of metal, paper or cloth) so as to minimise the length used.  The cuts are guillotine and orthogonal (either 
parallel or perpendicular to the sides of the sheet or roll).  The required shapes are fixed, a large number of 
each shape is usually required, and the objective is to arrange the shapes so as to minimise some measure of 
wastage. 
 
In the table-fitting problem, the “shapes” have fixed spatial relationships, are rectangular and have (nearly) 
fixed areas.  The cuts are guillotine and orthogonal.  The only degree of freedom is setting the column widths 
(which implicitly determine the row heights). 
 
The traditional cutting stock problem is essentially geometric combinatorial and NP complete (Dyckhoff, 
1990, p 157).  The table-fitting problem is relatively easy: it is not combinatorial but does include quadratic 
constraints.  Two surveys of the cutting stock (Cheng, Feiring and Cheng, 1994; Dyckhoff, 1990) and pallet 
loading literature (Ram, 1992) were fruitlessly searched for traces of or analogues to the table-fitting prolem. 
 
 
FORMULATION 
 
The objective is to minimize the height of a rectangular table by varying the width of its columns.  
Optimization is constrained by the maximum page or column width and each cell having to be large enough 
to contain its contents (usually text). 
 
A table is a grid of rows and columns, a cell is defined by the intersection of a row and column.  We assume 
that rows and columns are of constant height and width respectively throughout the table but the formulation 
given can be trivially modified if a cell spans more than one row and/or column. 
 
The column width is conveniently measured in terms of the mean width of a character; the height is 
conveniently measured in terms of the distance between the bases of two adjacent lines.  Word processing 
packages allow the user to define cell margins: white space between the text in a cell and the horizontal or 
vertical edges of a cell.  The parameter col_tol (defined below) would normally be twice the vertical margin 
but can be set higher to allow for loss of space caused for example by text not filling out lines completely.  
This point is discussed further below (see SIMULATING WORD 2000’S BEHAVIOUR). 
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Notation 
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The useable area of a cell is the area not taken up by white space defined by row_tol and col_tol at the cell 
borders. 
 
Problem Defnition 
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Objective Function and Constraints 
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All variables are non-negative. 
The model is small; there are ostensibly mn m n+ +  variables, m n∗ non-linear constraints and one linear 
constraint.  However, AMPL (Fourer, GayandKernighan, 1998, pp 121-2, 247-248) will, in most 
circumstances, eliminate variables defined by equalities.  In this problem the variables 

(retained for narrative clarity) will be eliminated leaving ( , )  ,z i j i M j N∈ ∈ m n+  variables. 
 
 
EXAMPLES 
 
Example 1 
 
Example 1( ) contains text formatted in 12-point courier font each character of which has width 0.1 
inch.  Because courier fonts have constant character width, a 12-point courier font and imperial 
measurements were used for clarity of exposition in all examples (the ligature fi takes less space than mm in 
most fonts).  This table has three columns of equal width (2 in) and “height” 30 lines.  This table is almost 
certainly not optimized: there is spare space in each of column 1’s cells.  The method espoused was used to 

Table 1
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minimise the height of this table.  The data file ( ) describes the table; matrix A stores the number of 
characters of text (including spaces) in each cell of the table. 

Figure 1

 
The student edition of the AMPL package (Fourer, Gay et al., 1998) (downloadable free from 
http://www.ampl.com/cm/cs/what/ampl/index.html) was used to solve this problem.  AMPL is a matrix 
generation package that incorporates several alternative optimisers; the MINOS optimiser was chosen 
because it can handle non-linear constraints.  The student edition can solve problems with up to 300 
constraints and 300 non-integer variables.  The model input to AMPL is given in Figure 2 
 
MINOS failed to solve the problem when a default set of initial values (all variables at their lower bounds) 
was used.  When initial values: 

[ ]{ }
( ) / ,

( ) max ( , ) / ( ) _ _ .
j N

y j w n j N
x i A i j y j row tol col tol i M

∈

= ∈

= − + ∈  

were prescribed, a solution was found without difficulty.  Mindful of the possibility of having found a local 
but not global minimum, we experimented with a few other starting values but always obtained the same 
optimum. 
 
The parameter col_tol that defines the total amount of horizontal white space in a cell strongly affects the 
“look” and height of the table.  Microsoft’s Word package does not exploit all the space in a cell; inter-word 
spaces at the end of a line are not suppressed and hyphenation is evidently suppressed within tables. 
 
Some of the output from AMPL is given in Table 3 and .  The optimal column widths were 13.1, 25.7 
and 21.2 characters.  These values were rounded to integers; the student edition of AMPL does not give 
integer solutions.  The optimised table with “height” 26, is shown as Table 4.  Perhaps the dual variables’ 
values are the most interesting aspect.  The page_width constraint has a dual variable value of -0.35, 
widening the table by 3 characters width would ostensibly reduce the height of the table by one line.  
Reducing the content of the row 3 column 1 or row 2 column 3 cells would slightly reduce the table height. 

Table 4

 
Although the table’s appearance is improved, the reduction in height (from 30 to 26 lines) is not especially 
impressive for this small example especially as the adjustment could have been done by hand.  Manual 
adjustment of large tables is more difficult.  The method was applied to four larger tables whose details are 
given in the next section. 
 
Examples 2 Through 5 
 
The tables used in these examples are not reproduced.  In all examples, a 12pt Courier New font with ten 
characters per inch was used and row_tol was set to zero. 
 
Example 2 has 3 rows, 4 columns (is 3 by 4), col_tol = 0 and 0w = ; the number of characters in each cell is 
given in Table 5;Table 6 summarises and compares the original and optimally formatted tables.  The third 
row of  gives the optimal continuous solution.  The fourth row was obtained by (a) rounding the row 
widths from the continuous solution to the nearest integer and (if necessary) permuting these answers so that 
they sum to the page width and (b) Reformatting the table with these row widths in Word 2000 and noting 
the “height” or total number of rows Word 2000 used to print the table.  Exact agreement cannot be expected 
because Word wastes some space at the ends of rows. 

Table 6

Table 6

 
Example 3 is 4 by 3, has col_tol = 0 and a page width of 60 characters; its cell contents are given in Table 7 
and Table 8, like , summarises and compares the original and optimally formatted tables.  The 
optimal column widths are not very different from the original and the saving in vertical space is not very 
great. 
 
Examples 4 and 5 are large 3 by 4 tables with col_tol = 0 and 60,80w = respectively; the number of 
characters in each cell is given in Table 9. Table 10 and Table 11, similar to Table 6, summarise and 
compare the original and optimally formatted tables. 
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SIMULATING WORD 2000’S BEHAVIOUR 
 
The optimisation problem assumes that all space within a cell is used.  This is not so:  Especially as Word 
2000 does not always hyphenate words, space is wasted at the end of lines (If a column is narrower than a 
word’s length, the word will be split between lines without a hyphen being used). 
 
Word 2000 contains a parameter Hyphenation Zone that specifies the amount of space that may be left at the 
right-hand end of a line.  If, after normal formatting, more space than Hyphenation Zone would be left, Word 
exploits it by hyphenating the first word of the next line.  High values of Hyphenation Zone reduce the 
amount of hyphenation and waste space. Low values exploit space by using frequent hyphenation.  
Unfortunately and illogically, Word 2000 turns off hyphenation in tables. 
 
The parameter col_tol that gives the mean amount of space wasted per line was varied: the optimal solutions 
for problems 2 and 5 for different values of col_tol are summarised in Table 12.  In problem 2, the optimal 
column widths are insensitive to changes in col_tol probably because no column is especially narrow.  
Contrastingly, in problem 3; the width of the narrowest column is increased by one unit with each unit 
increase in col_tol.  This small sample suggests that, to ape Word 2000’s behaviour, col_tol should be set to 
2. 
 
CONCLUSION 
 
We note that, by changing the objective function to Min ( ) ( )

i M j N
x i y

∈ ∈

+ j∑ ∑  we solve the problem of 

minimising the table’s perimeter or internal and external “fencing” but no application of this variant comes 
to mind. 
 
It is unlikely that, unless an individual author was preparing an especially high quality publication, he or she 
would use the analysis described.  The method might be useful to a professional typesetter if it could be 
routinised.  It might be economic to include the method in automated form in a widely used package such as 
Microsoft Word or TeX.  The ability to automatically compute the length of a text string and the area 
required to print any block of text in a given column width would be advantageous. 
 
This is a simple, perhaps pedagogically useful, application of optimisation with non-linear constraints.  
Perhaps the most striking finding was that software that can generate the matrix for and routinely solve this 
problem is readily available. 
 
A large number of solvers for linear and non-linear problems are available on the web 
(http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html and 
http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html and, remarkably, a service 
offering to solve a variety of optimisation problems is available at the Optimization Technology Center at 
http://www.ece.nwu.edu/OTC/. 
 
In contrast to the variety of solvers available, there is a paucity of matrix generators.  AMPL seems to be 
well designed: as well as generating the matrix, the user can include preliminary calculations and 
reasonableness checks; there are many useful functions; many useful ways of defining and using sets and 
very flexible output options. 

 5

http://www�unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html
http://www�unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html
http://www.ece.nwu.edu/OTC/


 
REFERENCES 
 
Bain, S.(2002), QuarkXpress 5: the complete reference, Osborne/McGraw-Hill, Berkeley, Calif. 

Cheng, C.H., B.R. Feiring and T.C.E. Cheng(1994), The cutting stock problem--a survey, International 
Journal of Production Economics 36, 291-305. 

Connally, C.M.(2002), PageMaker 7: the complete reference, Osborne/McGraw-Hill, Berkeley, Calif. ; 
London. 

Dyckhoff, H.(1990), A typology of cutting and packing problems, European Journal of Operational Research 
44, 145-159. 

Fourer, R., D.M. Gay and B.W. Kernighan(1998), AMPL: A Modelling Language for Mathematical 
Programming, Boyd & Fraser, Massachusetts. 

Knuth, D.E.(1986), The TeXbook, Addison-Wesley, Reading, Mass. 

Ram, B.(1992), The pallet loading problem: A survey, International Journal of Production Economics 28, 
217-225. 

 6



 
FIGURES 
 
Figure 1:  AMPL model file 
 
param NR integer;  # number of rows 

param NC integer;  # number of columns 

param col_tol; # the amount of blank space at the top 

 # and bottom of a cell 

param col_tol;  # the amount of blank space at the left 

# and right of a cell 

set rows := 1 .. NR; 

set cols := 1 .. NC; 

param page_width >0; 

param A{rows, cols} >= 0;      # the required area of each 

 # cell of the table 

param lr{rows} >=0; ;          # lower bound on row height 

param ur{i in rows} >= lr[i];  # upper bound on row height 

param lc{cols} >=0; ;          # lower bound on column width 

param uc{i in cols} >= lc[i];  # upper bound on column 

 #width 

#intial values for x and y 

param init_x {i in rows}        

:= max {j in cols} A[i,j]/(page_width/card{cols}- col_tol)+ col_tol;   

param init_y {j in cols} := page_width/(card{cols} - col_tol);  # the initial values of x 

var x{i in rows} integer >=lr[i], <= ur[i], := init_x[i];  # the height of each row 

var y{j in cols} integer >=lc[j], <= uc[j], := init_y[j];  # the width of each column 

var z{i in rows, j in cols} >= A[i,j]; 

# the area of each cell  

minimize total_height:  sum{i in rows} x[i]; 

subject to page_w: sum {j in cols} y[j] <=  page_width;    # total width less than page width 

subject to cell_area {i in rows, j in cols}: 

# define available area of the cell 

 (x[i]- col_tol)* (y[j]- col_tol) = z[i,j]; 

# end of table design model. 
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Figure 2:  Data for the page problem 
 
# data for the page width model 

# Nick Beaumont 21 jan 02 

param NR := 3; 

param NC := 3; 

param page_width := 60; 

param col_tol := 0.0;  

param col_tol := 6.0; 

param:   lr   ur := 

   1     0    80 

   2     0    80 

   3     0    80 ; 

param:   lc   uc := 

   1     0    60 

   2     0    60  

   3     0    60 ; 

param A:  

           1     2    3:= 

   1      92   266   47 

   2      70    45  157 

   3      35    21   58 ; 
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TABLES 
 
Example 1 
 
Table 1:  An example of a table to be optimised 
 

Competitive pricing to insure 
that the company is placed at 
the leading edge of the market.   

Increased focus on meeting 
KPI/SLA to ensure that the 
service offering meets the 
ongoing needs of the business.  
Flexibility of supply systems 
to capture not only financial 
data, but service activity levels 
and their ability to meet the 
KPIs.  how far do they go?  

On time as per the agreement 
and accurate data. 

Cost per unit and fee structure.  
Purchase price.  Whole of life 
cost.  

Delivery according to key 
process indicators.  

Systems and reporting 
mechanisms that support all 
the components of the 
service/product offering 
allowing the supply to manage 
its business more efficiently.  

How the cost compares with 
the market (benchmarking). 

Margin of error rate. The feasibility of the 
population is well below sea 
level. 

 
 
Table 2:  Table 1 optimised 
 

Competitive pricing
to insure that the
company is placed at
the leading edge o

 
 
 

f 

Increased focus on meeting KPI/SLA to
ensure that the service offering meets the
ongoing needs of the business.  Flexibility 
of supply systems to capture not only 
financial data, but service activity levels 
and their ability to meet the KPIs.  How far 
do they go?  

the market.   

 
 
On time as per the agreement and 
accurate data. 

Cost per unit and fee
structure.  Purchase

 
 

price.  Whole of life 
cost.  

Delivery according to key process
indicators.  

 Systems and reporting 
mechanisms that support all the 
components of the service/product 
offering allowing the supply to 
manage its business more 
efficiently.  

How the cost Margin of error rate. 
compares with the 
market 
(benchmarking). 

The feasibility of the population is 
well below sea level. 
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Table 3:  Optimal row and column dimensions 
 

Row or column Row height Column width

1 13.5 13.1 

2 10.4 25.7 

3 4.9 21.2 

Totals 28.8 60.0 
 
 
Table 4  Example 1:  Values of cell size, required cell size and reduced costs 
 

Row Column 
Z (calculated 

cell size ) 
A (Required  

cell size) 
Reduced 

costs 

1 1 96.5 92 - 

1 2 266.0 266 0.05 

1 3 204.4 47 - 

2 1 74.1 70 - 

2 2 204.4 45 - 

2 3 157.0 157 0.07 

3 1 35.0 35 0.14 

3 2 96.5 21 - 

3 3 74.1 58 - 
 
 
Example 2 
 
The table has 3 rows, 4 columns and page width of 60. 
 
Table 5  Example 2:  Number of characters (including spaces) in each cell 
 

 Column 1 Column 2 Column 3 Column 4 

Row 1 531 265 265 131 

Row 2 399 131 527 399 

Row 3 265 399 0 531 
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Table 6  Example 2:  Details of initial and optimal solutions 
 

 Column widths  Total 
width 

Row heights Total number of 
rows 

Original 15, 15, 15, 15 60 34, 53, 49 136 

Optimal solution 18.07, 10.26, 
18.01, 13.66 

60 29.38, 29.27, 
38.88 

97.52 

Optimal solution 
rounded and applied in 
Word 2000. 

18, 10, 18, 14 60 27, 33, 40 100 

 
 
Example 3 
 
The table has 4 rows and 3 columns. 
 
Table 7  Example 3:  Number of characters (including spaces) in each cell 
 

 Column 1 Column 2 Column 3 

Row 1 677 548 218 

Row 2 300 99 249 

Row 3 399 300 656 

Row 4 656 1082 300 
 
 
Table 8  Example 3:  Details of initial and optimal solutions 
 

 Column widths  Total 
width 

Row heights Total number of 
rows 

Original 20, 20, 20 60 41, 17, 39, 62 159 

Optimal solution 20.77, 21.99, 
17.24 

60 32.59, 14.44, 
38.05, 49.21 

134.29 

Optimal solution 
rounded and applied in 
Word 2000. 

21, 22, 17 60 34, 16, 40, 52 142 

 
 
Example 4 
 
The table has 3 rows and 4 columns and width 60. 
 
Table 9  Examples 4 & 5: Number of characters (including spaces) in each cell 
 

 Column 1 Column 2 Column 3 Column 4 

Row 1 1547 712 361 1026 

Row 2 159 1662 337 671 

Row 3 1622 637 364 1882 
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Table 10  Example 4:  Details of initial and optimal solutions 
 

 Column widths  Total 
width 

Row heights Total number of 
rows 

Original 15, 15, 15, 15 60 125, 189, 209 426 

Optimal solution 16.80, 18.58, 
5.45, 19.17 

60 104.54, 100.24, 
109.61 

314.40 

Optimal solution 
rounded and applied in 
Word 2000. 

17, 18, 6, 19 60 108, 114, 151,  373 

 
 
Example 5 Large 
 
The table has 3 rows and 4 columns and width 80. 
 
Table 11  Example 5:  Details of initial and optimal solutions 
 

 Column widths  Total 
width 

Row heights Total number 
of rows 

Original 20, 20, 20, 20 80 140, 53, 117 310 

Optimal solution 22.77,25.51,5.31,26.41 80 67.95. 65.16, 
71.25 

204.36 

Optimal solution 
rounded and applied 
in Word 2000. 

23, 25,6,26 80 79, 85, 82 246 

 
 
Table 12:  The effect of the col_tol parameter on table size. 
 

Test problem col_tol Optimal 
number of rows 

Number of rows when optimal column 
widths (rounded) are used in word 

0 134 142 

1 141 142 

Example 2 (4 by 3  

w = 60) 

2 149 142 

0 204 246 

1 215 246 

2 227 236 

Example 5 (3 by 4  

w = 80) 

3 240 232 
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