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Nonsimultaneity and Futures Option Pricing:  
Simulation and Empirical Evidence 

 
 

Abstract 

Empirical tests of option pricing models are joint tests of the 'correctness' of the 
model, the efficiency of the market and the simultaneity of price observations. Some 
degree of nonsimultaeity can be expected in all but the most liquid markets and is 
therefore evident in many non-US markets. Simulation results indicate that 
nonsimultaneity is potentially a significant problem in empirical tests of futures option 
pricing models. Empirical results using Australian data show that a five-minute window 
for matching transactions does not remove the nonsimultaneity bias for near-the-money 
and out-of-the money options. A more accurate matching may therefore be required. The 
nonsimultaneity bias is effectively removed if a five-minute window is employed for in-
the-money options. 

Key Words:  nonsimultaneity; futures option; mispricing 

 

 

Introduction 

Empirical tests of option pricing models are joint tests of three hypotheses, 

namely the 'correctness' of the model, the efficiency of the option market and the 

simultaneity of price observations. Galai (1982) states that violation of any one of these 

three hypotheses will bias empirical tests towards rejection of the model as the true 

general equilibrium model with which markets price derivative securities. 

Nonsimultaneity will also lead to the appearance of ex-post abnormal profits when no 

such opportunities exist (Galai (1982)). The first two hypotheses have provided the 

impetus for a large and expanding literature on the pricing accuracy of increasingly 

sophisticated derivative pricing models. The third hypothesis refers to the matching, in 
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time, of the traded price of the option and the traded price of the underlying asset. 

Simultaneous price observations are available only if two conditions are met. First, the 

trades must occur at the same moment in time. Second, the data source must accurately 

report both trade times. The first condition is not required for a market to be efficient but 

is assumed to exist in pricing models. The second condition is likely to be met where 

trading is undertaken by electronic means but may be violated where data are gathered 

from pit trading. 

The problem of nonsimultaneity seems to have been resolved in the US by the 

availability of time-stamped transaction data on highly liquid instruments. These data 

may enable researchers to match prices to within one minute.1 However, there are a large 

number of option markets outside the US that are not sufficiently liquid to resolve fully 

the nonsimultaneity problem. Therefore, studies using data from these markets can still 

suffer from nonsimultaneity biases. Even within the US, simultaneous data are not 

available for all options listed on all option markets. 

The importance of nonsimultaneity in empirical tests of option pricing models can 

be assessed via two methods. These are: (1) simulation of the theoretical consequences of 

nonsimultaneity and (2) empirical estimation of the effects of nonsimultaneity. This study 

uses both methods to investigate the effects of nonsimultaneity in futures option markets. 

Empirical research on futures options in Australia has received growing attention. 

Brace and Hodgson (1991) focus on All-Ordinaries Share Price Index (SPI) futures call 

options and conduct a test of the pricing ability of the Asay (1982) model. They also 

examine the ability of volatility estimates implied by the model to forecast future stock 

price index volatility. However, they use daily closing prices and thus nonsimultaneity is 
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potentially a problem in their study. Brace and Hodgson recommend that future research 

use simultaneous data and also examine the model's ability to correctly price put futures 

options. Twite (1996) also examines SPI futures options using daily data. To minimise 

the nonsimultaneity problem, Twite uses the average of the closing bid and closing ask 

prices.2 Both papers report significant pricing errors, but the impact of nonsimultaneity 

on their results is unclear. 

Empirical evidence on this question is provided by Brown and Taylor (1997) who 

employ time-matched transaction data on the All Ordinaries SPI futures option contract.3 

Brown and Taylor find that there is significant mispricing using the Asay model and thus 

they suggest that nonsimultaneity does not appear to have been a source of the mispricing 

errors reported in prior research. Therefore, either the markets are inefficient, or the 

pricing model is incorrect. In response to these results Brown and Robinson (1999) 

develop a more sophisticated model that accounts for skewness and kurtosis of futures 

prices. They use transaction data matched to within five minutes and find that pricing 

errors, while reduced, are still present. This result may still be affected by 

nonsimultaneity because of the five-minute window between price observations. 

Brown (1999) examines the error structure of the Asay model in pricing SPI 

futures options by treating the implied volatility from market option prices as a means to 

quote the price of the option. Given that the implied volatility estimates should be equal 

across exercise prices and the term to maturity, the implied volatility estimate is used as 

an indication of factors not included in the Asay model. Brown finds evidence of a 

volatility skew and that there are risks in option trading not captured by the Asay model. 

She also finds that the supply and demand for institutional hedging by fund managers 
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determines the observed volatility skew in ways consistent with the observed volatility 

structure. 

Studies that use daily data can be subject to a large degree of nonsimultaneity. A 

lag of two hours is not improbable for less liquid contracts, while a rush in trading at the 

end of the day may cause price observations to be only minutes or seconds apart. While 

the use of transaction data should help to reduce the nonsimultaneity bias, studies that do 

not precisely match trades may still be subject to some degree of nonsimultaneity. It is 

the objective of this paper to quantify the effects of nonsimultaneity via simulation 

analyses and to investigate empirically the effects that nonsimultaneity may have had on 

recent studies of the Australian futures options market. 

Literature Review 

While the problem of nonsimultaneity was recognised in early empirical tests of 

option pricing models4, the non-existence of intraday data at that time precluded a 

detailed examination of its effects on apparent option mispricing. Trippi (1977) attempts 

to control for the effects of nonsimultaneity by referencing closing prices with their 

opening prices the next trading day to see whether execution of trades at the closing price 

was feasible. Galai (1977) uses hourly option quotations to help evaluate nonsimultaneity 

effects while Galai (1979) finds that violations of convexity boundary conditions using 

daily closing price data disappear when transactions data are employed. Nonsimultaneity 

has also been addressed in Vijh’s (1988) re-examination of the findings of Manaster and 

Rendleman (1982) and in Bodurtha and Courtadon’s (1986) study of foreign currency 

options. However, the most important studies for our purposes are those that have 
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modelled nonsimultaneity using simulation analysis. This type of analysis has been 

undertaken by Bookstaber (1981) and Easton (1994). 

In Bookstaber's model the final stock trade of the day occurs after the final option 

trade.5 To allow for this possibility, trading in options and stocks are modelled as 

occurring uniformly throughout the day. The number of trades above one is assumed to 

follow a Poisson distribution, where stock and option trades are independent random 

variables. Using this specification, the time between final stock and option trades is 

simulated and stock prices are simulated as lognormally distributed random variables. 

The difference between the stock price at the time of the final option trade and the final 

stock price of the day is evaluated relative to a preset benchmark that defines the impact 

of nonsimultaneity.6 By varying the daily number of trades in both stocks and options7, 

Bookstaber assesses the nonsimultaneity problem at differing degrees of liquidity, stock 

price variability and nonsimultaneity benchmarks. He finds that the number of option 

trades throughout the day is a key driver of nonsimultaneity, while the effects of 

nonsimultaneity also increase as the variability of stock prices increases. Furthermore, 

nonsimultaneity is found to decrease as the benchmark for nonsimultaneity increases 

(since by definition a greater degree of stock price movement is required to cause 

nonsimultaneity). Finally, Bookstaber applies his methodology to the study of Chiras and 

Manaster (1978) who examined the ability of implied variance to predict the future 

variability of stock returns. Bookstaber finds that, in a majority of instances, the apparent 

mispricing of options falls within the bounds of being explained by nonsimultaneity. 

Easton (1994) simulates the effects of nonsimultaneity on tests of put-call parity. 

In this study stock prices lag reported put and call option prices by periods of 15 minutes 
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and 2 hours and the study therefore extends the end-of-day closing data simulation study 

of Bookstaber (1981) to an intraday setting. Via an arbitrage argument, upper and lower 

bounds for the price of an American put are determined from simultaneous observations 

on the underlying stock price and the call price, for given exercise price, interest rate and 

dividends to be paid during the life of the option. The test consists of observing and 

analysing violations of these boundaries. Easton hypothesises that nonsimultaneity may 

have led to specious violations in Australian studies of put-call parity. Earlier studies had 

suggested that the observed violations may have been due to transaction costs. 

Easton calculates theoretically correct call and put option prices for a given set of 

parameters using Black-Scholes and binomial models of option pricing at a given point in 

time. The underlying stock price is modelled to follow a multiplicative binomial process 

for a period of time after the initial option prices are determined. The final stage involves 

using the simultaneous call and put option values and the subsequent (nonsimultaneous) 

stock prices, to observe the apparent violations of put-call parity. Sensitivity analysis is 

conducted by varying parameters such as the term to maturity of the option, the interest 

rate and the volatility of the underlying stock. Easton finds that nonsimultaneity can 

cause significant violation rates and that these violation rates are consistent with 

Australian empirical evidence on violations of put-call parity. His study therefore offers 

an alternative to transaction costs as an explanation of apparent option mispricing. 

There have been a number of differing lines of research in the literature on futures 

options. One considers mispricing biases resulting from futures options pricing models 

derived in the Black-Scholes framework. In Black's (1976) model, underlying futures 

prices are assumed to follow geometric Brownian motion. Therefore, futures prices are 
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log-normally distributed and returns are normally distributed. Ramaswamy and 

Sundaresan (1985) develop a futures option pricing model that allows for early exercise. 

Their model depends critically on the dividend yield of the underlying security. They find 

that early exercise may be optimal for futures options but by numerically assessing their 

model they conclude that the value of the early exercise premium is quite small. 

Asay (1982) and Lieu (1990) develop models that take account of futures-style 

margining which is used in some exchanges, such as the Sydney Futures Exchange. 

Futures-style margining requires no upfront purchase price for the option contract but 

margin calls may be made as the market price changes. Asay shows that futures option 

prices under futures-style margining are similar to Black (1976) futures options prices but 

because the option premium no longer flows from buyer to writer at initiation of the 

contract, the interest rate factor falls out of the option pricing formula. Lieu proves that 

with futures-style margining it is never optimal to exercise American futures options 

early because the option premium always exceeds the option’s intrinsic value. The model 

therefore applies to both American and European options. 

Simulation Analysis and Results 

We conducted a simulation of the effects of nonsimultaneity between futures 

prices and futures option prices. Potentially, the results of the simulation are relevant to 

empirical tests of option pricing models in any market where the researcher does not have 

access to time-stamped transaction data or where the securities are traded in imperfectly 

liquid markets. The results of this study quantify the potential impact of nonsimultaneity 
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with regard to a number of characteristics, such as term to maturity, degree of 

'moneyness' and the underlying futures price volatility. 

The methodology employed here is similar to that of Easton (1994) and consists 

of three steps. In step one we use the Asay (1982) option pricing model to value a 

hypothetical call or put option on a futures contract. The option is priced using a given set 

of parameters: the underlying futures price, the exercise price, the expected return on the 

underlying security8, the term to maturity, and the futures price volatility. This calculation 

provides a hypothetically 'correct' market price for the option when the option price and 

the futures price are observed simultaneously. Step two involves modelling the 

underlying futures price to follow a multiplicative binomial process for periods of 5 

minutes, 15 minutes and 2 hours after the price calculated in step one. These periods were 

divided into 250 intervals. For example, the time lag of two hours is divided into intervals 

of approximately 29 seconds. Step three involves using the Asay model to calculate the 

call and put prices resulting from each possible futures price at the end of the binomial 

tree. To show the effect of nonsimultaneity, these option prices are compared to the 

option price calculated in step one. The binomial distribution gives the probability of 

each outcome in the final step of the binomial tree.9 The results reported reflect the 

probability of achieving the specified degree of apparent mispricing resulting from 

nonsimultaneity between option prices and futures prices, given that the range of 

potential outcomes is represented by the binomial distribution. The pricing parameters are 

then varied, and the simulation repeated, to provide a detailed sensitivity analysis. 

We measure the extent of mispricing by the percentage pricing error, which is 

defined as the difference between the initial ('correct') price of the option and the price of 
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the option derived from the nonsimultaneous futures price, divided by the initial option 

price. The percentage pricing error depends to a large extent on the initial price of the 

option. For example, the same absolute (dollar) pricing error may be found for an out-of-

the-money option and an in-the-money option, but because out-of-the-money options are 

worth less than in-the-money options, the percentage pricing error will be greater for the 

out-of-the-money option. For this reason the mispricing of out-of-the-money options may 

appear relatively large but may not be economically significant when transaction costs 

are taken into account. On the other hand, measuring the extent of mispricing by absolute 

(dollar) pricing errors is also problematic. A dollar pricing error of any given magnitude 

can always be achieved simply by imagining that a trader varies the number of contracts 

traded. Percentage pricing errors cannot be manipulated in this way. 

Table 1 reports the results of using nonsimultaneous prices in pricing call options. 

The time lag between price observations is varied from 5 minutes to 15 minutes to 2 

hours. The three panels assess the differing sensitivities of in-the-money, at-the-money, 

and out-of-the-money call options to mispricing from nonsimultaneity. For all 

simulations the initial futures price is fixed at $10, and the exercise price is varied to 

produce different degrees of moneyness. While the futures price lags the recorded option 

price the analysis also applies where the futures price is recorded before the option price. 

In this case the binomial tree modelling the nonsimultaneous futures prices progresses 

“backward” through time rather than forward. The calculations are the same. 

Panel A of table 1 shows the effects of nonsimultaneity on pricing in-the-money 

call options. The percentage of options which display greater than a five percent degree 

of mispricing is at a maximum of 28 percent when a 30-day call option is considered, for 
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which the level of underlying futures price volatility is 40 percent, and where the time lag 

between option and futures prices is set at two hours. The degree of mispricing increases 

as the volatility of the underlying futures price increases. A higher futures price volatility 

allows a greater dispersion of possible futures prices at the end of the time lag, and hence 

mispricing is greater over the range of possible outcomes. The degree of mispricing also 

increases as the option’s term to maturity decreases. Because options become less 

valuable as the term to maturity decreases, a given degree of nonsimultaneity (ie a given 

futures price discrepancy), will cause a larger degree of option mispricing at shorter terms 

to maturity. Panel A of table 1 also shows that there are virtually no cases of mispricing 

of the order of 15 percent. Finally, mispricing is not present when shorter time lags of 

either 15 minutes or 5 minutes are considered. 

Panel B of table 1 shows the mispricing observed for at-the-money call options 

under conditions of nonsimultaneity. Mispricing in this case is greater than is the case 

with in-the-money options. For example, with 10 percent volatility of the underlying 

futures price and 30 days to maturity of the call option, the degree of mispricing is over 

five percent in nearly 45 percent of all possible futures price outcomes after a two-hour 

time lag between futures and option prices. The corresponding result for in-the-money 

calls (panel A) is only 0.29 percent. Qualitatively, the results for at-the-money calls 

(panel B) are similar to those for in-the-money calls (panel A) in that mispricing 

increases with higher volatility, a shorter term to maturity and a longer time lag between 

price observations. Mispricing virtually disappears at a time lag of 5 minutes but is 

present for 30-day options when the time lag is 15 minutes. 
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Panel C of table 1 shows that, in the case of out-of-the-money call options, there 

is significantly greater mispricing than in the two prior cases. The intuition for this result 

is that out-of-the-money options have lower values than in-the-money options because 

they have only a time value. Hence, a smaller futures price change is able to cause a 

larger degree of relative mispricing. Consequently, high degrees of mispricing are 

observed. For example, in the case of a 30-day call option with underlying futures price 

volatility of 10 percent, there is an 84 percent probability of observing a five percent 

degree of mispricing when the observation lag is two hours. The effects of term to 

maturity and the time lag between observations are in the same direction as in the two 

previous cases but the direction of effect for volatility has reversed. Mispricing now 

decreases as the underlying futures price volatility increases. When the underlying futures 

price volatility increases, there are two offsetting effects. First, there is a greater 

dispersion of possible futures price outcomes and hence a higher probability of observing 

a given degree of mispricing. Second, however, the call price increases so that 

nonsimultaneity is less of a problem, since it takes a larger deviation from the correct 

futures price to cause a given percentage level of option mispricing. In panel C, the latter 

effect dominates the former, because out-of-the-money options have relatively low 

prices. 

To consider further these results the analyses are repeated by decomposing the 

option price into its intrinsic value and time value components.10 The effect of 

nonsimultaneity on the intrinsic value of an in-the-money option is straightforward. The 

true (simultaneous) intrinsic value is FT � X, where FT is the true (simultaneous) futures 

price and X is the exercise price. The observed (nonsimultaneous) intrinsic value is FO � 
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X, where FO is the observed (nonsimultaneous) futures price. The difference between 

these measures of intrinsic value shows the effect of nonsimultaneity on the intrinsic 

value and is just FO � FT. The effect will therefore depend (positively) on just two factors 

viz the time lag between the true and the observed futures prices and the futures price 

volatility during this period. 

The price of an out-of-the-money option consists entirely of time value and it is 

therefore hypothesised that the results for the time value of in-the-money options will be 

similar to the results for out-of-the-money options. The effects of nonsimultaneity on call 

option time value are reported in table 2. As hypothesised, the results are qualitatively 

similar to those for out-of-the-money call options. In particular, higher volatility causes 

lower mispricing in both cases, whereas higher volatility causes higher mispricing for in-

the-money options (table 1, panel A). The direction of effects for term to maturity 

(negative) and time lag (positive) are, as expected, unchanged. The magnitude of the 

effects is also comparable. For example, panel A of table 2 shows that the probability of 5 

percent mispricing at a two-hour time lag for the time value of an in-the-money call, with 

30 days to maturity and a volatility of 10 percent, is 80.07 percent. The corresponding 

figure for the out-of-the-money option (table 1, panel C) is 84.96 percent. 

The simulation analysis is also performed for equivalent in-the-money, at-the-

money and out-of-the-money put options. All parameters are identical to those used for 

the call option simulations. The results of this analysis are provided in table 3. The results 

show that mispricing of put options can arise under conditions of nonsimultaneity, 

especially when the degree of option moneyness is low. 
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Panel A of table 3 shows the results for in-the-money put options. The percentage 

of options which display greater than a five percent degree of mispricing is at a maximum 

of 21 percent when a 30-day put option is considered, for which the level of the 

underlying futures price volatility is 40 percent and where the time lag between option 

and futures prices is set at two hours. Similar to the case of in-the-money call options, put 

option mispricing increases with higher levels of futures price volatility for the reasons 

which were previously explained. Furthermore, the degree of mispricing is shown to 

decrease as the term to maturity of the option increases. This follows since increasing the 

term to maturity increases the value of options. Hence they become less sensitive to 

nonsimultaneity since they require a larger price discrepancy to cause the same relative 

degree of mispricing. Finally, it is apparent in panel A of table 3 that at any time lag there 

are almost no cases of mispricing of the order of 15 percent. Similarly, mispricing 

virtually disappears when the time lag is decreased from two hours to either 15 or 5 

minutes. 

Note that the mispricing results for at-the-money put options are equal to those 

derived for the time-value of at-the-money call options by the put-call parity relation for 

futures options with futures-style margining.11 This result also holds true for in-the-

money call options and out-of the money put options. Finally, results for the time value of 

put options are equal to those reported for the time value of call options by the same 

relation. 
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Empirical Analysis 

To provide empirical evidence relevant to the simulation results provided in 

Section 3, we conducted an empirical analysis on SPI futures options using all trades in 

1993 on the Sydney Futures Exchange. This analysis uses the transaction data employed 

in Brown and Robinson (1999). However our objective is not to replicate Brown and 

Robinson's results but rather to draw general inferences about the consequences of 

nonsimultaneity in relation to pricing tests. Given that the data are recorded from the 

open outcry system used in the Sydney Futures Exchange prior to November 1999, the 

actual time appended to the data may be inaccurate since it represents the time that the 

transaction was entered into the computerised system and not the time of the transaction. 

Because the time stamp may be inaccurate this is a limitation of the data used in this 

study. 

The methodology of testing for nonsimultaneity is as follows. SPI futures option 

transactions are matched with the immediately preceding SPI futures transaction to a 

maximum time between trades of five minutes. In order to calculate theoretical option 

prices, the Asay (1982) option pricing model is used. The Asay model requires an 

estimate of the volatility of the log futures price. To estimate this parameter we use data 

from a five-day window preceding each option trade. The procedure used is to minimise 

the sum of squared pricing errors as in Whaley (1982), using all transactions in the five-

day window for options with the same maturity date. Percentage pricing errors are 

calculated as the market price minus the model price, divided by the market price of the 

option, where underlying variables are measured in dollar terms (one point = $100 prior 

to 11 October 1993 and one point = $25 thereafter). Percentage pricing errors are 
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examined for the impact of nonsimultaneity by regressing the absolute percentage pricing 

errors on the time lag between matched prices and a set of control variables. 

Options of all maturities were used and after eliminating 28 call prices and 2 put 

prices which violated boundary conditions, there remained 2694 call prices and 2179 put 

prices. Moneyness groupings are shown in table 4, while table 5 shows descriptive 

statistics of the implied volatility estimates employed in the model. Table 6 shows 

summary statistics for the pricing errors that result. On average, the Asay model appears 

to overprice call options and underprice put options, and the mispricing is greater for put 

options than for call options. Table 7 shows characteristics of the independent variable, 

the time between matched futures and options transactions. The sample means are 54.8 

seconds for calls and 51.9 seconds for puts. The maximum time is close to the maximum 

allowable of 5 minutes, while the minimum is zero.  

The regression model employed to analyse the pricing errors is: 

Absolute Percentage Errorit = � + �1 itTradesBetween  Time + �2 Option Moneynessit + 
�3 Option Maturityit + �4 Option Volatilityit + �5 Dummyit + �it 
 

where Absolute Percentage Error is the absolute value of the percentage mispricing 

defined as the market price minus the model price, divided by the market price; Time 

Between Trades is the time in minutes between matching futures and options 

transactions; Option Moneyness is defined as the underlying futures price divided by the 

exercise price; Option Maturity is the option's term to maturity measured in days; Option 

Volatility is the volatility input used in the Asay model and Dummy is a variable which 

takes the value of one if the transaction was after the re-denomination of the SPI futures 

contract on 11 October 1993 and zero otherwise. The regression is a pooled regression 
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since option transactions occur across exercise prices (subscript i) and through time 

(subscript t). 

Several studies, including Whaley (1982) and more recently Bakshi, Cao and 

Chen (1997) and Long and Officer (1997) have used regression models to analyse option 

pricing errors and we have adopted a similar approach. However, our choice of 

explanatory variables is also motivated by the simulation results in Section 3. These 

results showed that a number of factors affected the option pricing errors when 

nonsimultaneity was present. In addition to the degree of nonsimultaneity itself, option 

moneyness, volatility and term to maturity were all shown to affect the degree of option 

mispricing due to the degree of nonsimultaneity. Further, the mathematical analysis 

contained in the Appendix shows that the option pricing errors due to nonsimultaneity 

should be proportional to the square root of the time between matching trades. Hence the 

functional form of the regression model is specified to include the square root of the time 

between trades. Evidence in Brown (2001) suggests that SPI futures volume, as measured 

by both contract numbers and dollar values, increased after the re-denomination of the 

SPI futures contract, so that market efficiency may have increased. Finally, the data are 

sub-grouped into moneyness categories since the model has known moneyness biases; for 

examples, see Brown (1999) and Shimeld and Easton (2000). 

The results in table 8 show that for call options the degree of nonsimultaneity is a 

significant factor in explaining the pricing errors. Using all call option transactions, for 

each (square root of the) minute of nonsimultaneity, the absolute value of the percentage 

pricing error increases by 1.3% and this result is significantly different from zero at the 

five percent level.12 Given that the data are predominantly from near-the-money options, 
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grouping the data into moneyness categories may be able to show more clearly any 

nonsimultaneity bias. The simulation analysis showed that at-the-money and out-of-the-

money options were the most affected by nonsimultaneity and the regression results in 

table 8 partially support this conclusion. For near-the-money options, the coefficient for 

the time between trades is positive and significant at the five percent level but for out-of-

the-money options, the coefficient, while positive, is not statistically significant. Finally, 

the results show that for in-the-money options, the time between trades is not a significant 

variable in explaining percentage mispricing errors. This result is consistent with the 

simulation results which showed that a five-minute window eliminated the 

nonsimultaneity bias for in-the-money and at-the money options. 

The other variables are also significant factors in the regression model. The 

percentage mispricing decreases, the greater the moneyness of the option and the 

estimated coefficient is significantly different from zero at the one percent level. This 

result holds for all option transactions and within moneyness groupings and is probably 

best explained by the fact that the procedure for minimising the sum of dollar square 

errors to find the implied volatility estimate gives greater weight to options with higher 

prices. Hence the more the option is in-the-money, these options, all other things being 

equal, will be worth more and have greater weight in determining the volatility estimate 

to best fit the option prices. This analysis also holds for option maturity. The longer the 

term to maturity, the lower is the percentage mispricing error for all categories reported 

with the exception of in-the-money options. Volatility displays varying impacts on the 

percentage mispricing but none of the coefficients is significantly different from zero. 
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Finally, the coefficient on the dummy variable shows that after the re-denomination of 

the SPI contract mispricing has decreased in all moneyness categories. 

Table 9 shows the results of the regression model for put options. The coefficient 

for the time between trades across all transactions indicates that for each (square root of 

the) minute between matching trades, the absolute value of the percentage pricing errors 

increases by 1.15%, but this result is not significantly different from zero at the five 

percent level. When transactions are grouped by moneyness, for out-of-the-money 

options, the (square root of the) time between trades is shown to have a positive impact 

on the pricing errors and this result is statistically significant at the five percent level. 

Furthermore, the simulation results of the previous section showed that out-of-the-money 

options were most affected by the consequences of nonsimultaneity. This empirical result 

supports that conclusion. 

Other variables in the analysis are also able to explain the variation in the 

percentage pricing errors. The results indicate that pricing errors are greater the less the 

option is in-the-money, which is the same result as discussed for call options.13 Option 

term to maturity also has a negative impact on the pricing errors, and this result follows 

from the previous analysis of option moneyness and maturity and the least squares 

minimisation procedure used to estimate volatility. However, neither of the last two 

results is significant for in-the-money put options, which may be due to the small sample 

size. Finally, the dummy variable for the re-denomination of the SPI futures contract 

shows that option pricing errors using in the Asay model have decreased since the SPI 

contract was re-denominated and is statistically significant when transactions are 

categorised according to moneyness. These results suggest that for put options, since 
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most trades for SPI options are out-of-the-money, nonsimultaneity may still cause biases 

even when a five-minute matching window for futures and options trades is employed. 

 

Summary and Conclusions 

The simulation results of this study suggest that apparent mispricing is strongly 

related to the degree of nonsimultaneity between the option price and the price of the 

underlying asset, as measured by the time lag between price observations. The degree of 

apparent mispricing (measured by percentage pricing errors) in the presence of a given 

degree of nonsimultaneity will be related to the option’s moneyness (negatively) and the 

option’s term to maturity (also negatively). The effect of volatility on apparent mispricing 

in the presence of nonsimultaneity is more complex and depends on the moneyness of the 

option because the effect on intrinsic value can be in the opposite direction to the effect 

on time value. The results also suggest that a time lag as short as five minutes may not be 

sufficient to eliminate the bias for out-of-the-money options, whereas for in-the-money 

options even a lag of 15 minutes may be adequate. Accordingly, it may be advisable in 

future empirical studies to use a different matching rule for different options. For 

example, a five-minute window might be used for in-the-money options, and a shorter 

window for at-the-money and out-of-the money options. 

The empirical results using the prices of futures options on the Sydney Futures 

Exchange are broadly consistent with the patterns suggested by the simulation results. 

Our measure of the time between trades shows a consistently positive (although not 

always statistically significant) relationship between the degree of nonsimultaneity and 
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the percentage pricing error. Similarly, the relationship between pricing errors and option 

moneyness14 is typically found to be negative, and the relationship between pricing errors 

and term to maturity is also typically negative. Finally, and also as expected, the results 

for the relationship between pricing errors and volatility are mixed. 
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Appendix 

The Asay model for a call option is given by � � � �21 dXNdFN ��C  

T

T
X
Fn

d
�

���
�

�
�
�

�

	

2

1
2
1

�

 and Td ��� 12d   

where F is the underlying futures price, X is the exercise price of the option, T is the term 

to maturity of the option, � is the volatility of the underlying log futures price and N( ) is 

the cumulative Normal function. 

The call option price, C, as a function of the underlying asset price, F, as measured at the 

point in time, t, can be expressed with a first order Taylor series approximation around a 

measurement at an earlier time of (t-k) as follows: 

� �� � � �� �ktFCtFC ��   =  � �� �
� � � �� .ktFtF �

F
ktFC

��
�

��   (A1) 

The underlying index price, S, in the Asay model is assumed to follow a geometric 

Brownian motion: 

SdzSdtdS ����  and  dt��dz where � � Normal (0,1).   (A2) 

The futures price on the index, by the cost of carry model can be shown to be: 

� � .SeF tTr �

�       (A3) 

Applying Ito's lemma to (A3), the stochastic process followed by the futures price, F, in 

(A3) can be shown to be: 

� � Fdz.FdtrdF �����      (A4) 
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Since )d(N
F

)F(C
1�

�

�  and substituting (A4) into (A1) leads to the discrete 

approximation: 

� �� � � �� �ktFCtFC ��  = � �� �� �� �k)kt(F)kt(kF)r(.ktFdN ��������1   (A5) 

By risk neutrality, � = r, so that the expected return on the futures contract is zero. Taking 

absolute values of (A5) and substituting the previous result leads to: 

� �� � � �� �ktFCtFC ��   =  � �� �� �� �.k)kt(F.ktFdN ����1   (A6) 

Since � � k and F , ,dN �1  are positive by definition, equation (A6) leads to the following 

hypotheses. 

The absolute value of the option pricing model error is dependent on: 

The option's delta, N(d1), the underlying asset price volatility,�, the underlying asset 

price, F, the square root of the time between option trades and underlying asset trades, 

k ( i.e. the degree of nonsimultaneity), and the absolute value of a normally distributed 

random variable . 

It can also be shown that for put options in the Asay model equation (A6) becomes: 

� �� � � �� �ktFPtFP ��   =  � �� �� �� � � �k)kt(F.ktFdN ����� 11    (A7) 

where P(F) denotes the put price in the Asay model. 
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1 An example is Whaley (1986). See also Bakshi, Cao and Chen (1997). 

2 Twite (1996, p. 142) also suggests that because of infrequent option trading the nonsimultaneity problem 

will remain even if transaction data are used. 

3 The maximum time lag between futures prices and futures option prices was set at one minute. The 

average time between price observations was 28 seconds. 

4 Nonsimultaneity has also been recognised in other areas of finance, such as the biases incurred when 

using daily data as opposed to intraday data. Brooks and Chiou (1995) provide an example and review 

studies examining stock price behaviour around events such as stock splits. 

5 Bookstaber also recognises that the final trade of the day may be in the option market rather than the stock 

market. While allowing for this possibility, he concludes that the primary cause of nonsimultaneity is where 

the final stock trade follows the final option trade. 

6 Bookstaber suggests that a reasonable value of this benchmark might be the difference between the stock 

price implied by the final option trade and the last reported stock quotation. 

7 The stockmarket is modelled to have greater liquidity than the option markets. The empirical evidence 

supports the notion that there is greater trading activity in the underlying instruments than in the option 

market. 

8 Note that the expected return on the underlying security is not required to price the option. It is required 

only to determine the true probabilities of each ending state occurring. In general, a higher expected return 

on the security leads to a higher upside probability in the binomial model, all other things being equal. 

Because the underlying security is a futures contract the expected rate of return is set to zero. For a further 

discussion of the expected return on futures contracts see Hull (2000, pp. 293-4). 

9 Note that these probabilities are the true 'risk averse' probabilities for each particular outcome, which may 

differ from the risk neutral probabilities of each particular outcome used implicitly to price the option. 

However, numerical analyses not reported here show that tests of nonsimultaneity are not materially 

affected by using either the true risk averse probabilities or the risk neutral probabilities.  
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10 The intrinsic value of a call option on futures is the futures price less the exercise price (with a minimum 

value of zero). Time value is the difference between the option price and the intrinsic value of the option. 

11 The put-call parity relation can be expressed for futures options with futures style margining as  

P � C = X � F, where P is put price, C is call price, X is exercise price and F is futures price. 

12 We hypothesise that the longer the time between matching trades, the greater the pricing error due to 

nonsimultaneity. Therefore, we use a one-tailed test. 

13  Note that the sign of moneyness is now reversed for put options since the variable definition of 

moneyness is unchanged. 

14 Given that the moneyness variable is defined as F / X for both calls and puts, a negative relationship 

between pricing errors and moneyness shows up as a negative regression coefficient for calls and a positive 

regression coefficient for puts. 
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TABLE 1 
Simulation Analysis: Pricing Errors for Call Futures Options 

 
The Asay (1982) model is used to calculate a hypothetically ‘correct’ call futures option price for given futures price (F), exercise price (X), 
option term to maturity (T) and annualised standard deviation of the futures price (�). The futures price is then modelled using a 
multiplicative binomial process for a further 5 minutes, 15 minutes or 2 hours, and the model option price is recalculated using each terminal 
(nonsimultaneous) futures price. The binomial tree provides the probability of each nonsimultaneous price being observed. Apparent pricing 
errors are calculated as the ‘correct’ option price, minus the nonsimultaneous price, divided by the ‘correct’ price. The probability of 
observing 5% and 15% mispricing are reported in the table. 

 
Panel A 

In-the-Money Call Option 
F     F/X X

$10 1.1        9.09  
 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 

T �      Prob> 5%
Mispricing

 Prob> 15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10% 0.29% 0.00%  0.00% 0.00% 0.00% 0.00%
25% 18.40% 0.00% 0.01% 0.00% 0.00% 0.00%
40% 28.23% 0.15% 0.29% 0.00% 0.00% 0.00%

90 Days 10%  0.19% 0.00%  0.00% 0.00% 0.00% 0.00%
25% 7.69% 0.00% 0.00% 0.00% 0.00% 0.00%
40% 14.56% 0.00% 0.00% 0.00% 0.00% 0.00%

180 Days 10%  0.08% 0.00%  0.00% 0.00% 0.00% 0.00%
 25%       2.67% 0.00% 0.00% 0.00% 0.00% 0.00%

40% 5.80% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 1 Continued 

 
Panel B 

At-the-Money Call Option 
F     F/X X

$10    1.0 10
 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 

T �      Prob> 5%
Mispricing

 Prob> 15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10%  44.88% 2.79%  3.17% 0.00%  0.02% 0.00% 
25% 48.67% 2.78% 3.67% 0.00% 0.03% 0.00%
40% 48.67% 2.78% 4.32% 0.00% 0.04% 0.00%

90 Days 10%  18.40% 0.01%  0.02% 0.00%  0.00% 0.00% 
25% 20.67% 0.02% 0.04% 0.00% 0.00% 0.00%
40% 22.94% 0.03% 0.06% 0.00% 0.00% 0.00%

180 Days 10%  6.64% 0.00%  0.00% 0.00%  0.00% 0.00% 
 25%          8.75% 0.00% 0.00% 0.00% 0.00% 0.00%

40% 10.05% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 1 Continued 
 

Panel C 
Out-of-the-Money Call Option 

F     F/X X
$10 0.9      11.11  

 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 
T �      Prob> 5%

Mispricing
 Prob> 15% 

Mispricing 
Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10%  84.96% 48.67%  52.80% 5.15% 25.58% 0.11% 
25% 65.81% 20.67% 22.94% 0.05% 4.32% 0.00%
40% 61.36% 12.96% 16.48% 0.00% 1.63% 0.00%

90 Days 10%  56.93% 7.69%  10.06% 0.00% 0.36% 0.00% 
25% 37.69% 0.89% 1.14% 0.00% 0.00% 0.00%
40% 34.28% 0.41% 0.54% 0.00% 0.00% 0.00%

180 Days 10%  31.25% 0.28%  0.54% 0.00% 0.00% 0.00% 
 25%         18.40% 0.01% 0.01% 0.00% 0.00% 0.00%

40% 14.56% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 2 
Simulation Analysis: Pricing Errors for Time Value Component of Call Futures Options 

 
The Asay (1982) model is used to calculate a hypothetically ‘correct’ call futures option price for given futures price (F), exercise price (X), 
option term to maturity (T) and annualised standard deviation of the futures price (�). The futures price is then modelled using a 
multiplicative binomial process for a further 5 minutes, 15 minutes or 2 hours, and the model option price is recalculated using each terminal 
(nonsimultaneous) futures price. The binomial tree provides the probability of each nonsimultaneous price being observed. Apparent pricing 
errors for the time value component are calculated as the time value of the  ‘correct’ price, minus the time value of the nonsimultaneous 
price, divided by the time value of the ‘correct’ price. The probability of observing 5% and 15% mispricing are reported in the table. 

 
 

In-the-Money Call Option (Time Value) 
F     F/X X

$10    1.1 9.09
 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 

T �      Prob> 5%
Mispricing

 Prob> 15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10%  80.07% 44.89%  48.67% 3.44%  22.94% 0.03% 
25% 65.81% 16.49% 20.67% 0.02% 2.67% 0.00%
40% 56.93% 10.07% 11.37% 0.00% 0.79% 0.00%

90 Days           10% 52.80% 5.16% 7.70% 0.00% 0.15% 0.00%
25% 34.28% 0.31% 0.54% 0.00% 0.00% 0.00%
40% 25.59% 0.08% 0.15% 0.00% 0.00% 0.00%

180 Days           10% 28.23% 0.12% 0.24% 0.00% 0.00% 0.00%
 25%          11.37% 0.00% 0.00% 0.00% 0.00% 0.00%

40% 7.70% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 3 
Simulation Analysis: Pricing Errors for Put Futures Options 

 
The Asay (1982) model is used to calculate a hypothetically ‘correct’ put futures option price for given futures price (F), exercise price (X), 
option term to maturity (T) and annualised standard deviation of the futures price (�). The futures price is then modelled using a 
multiplicative binomial process for a further 5 minutes, 15 minutes or 2 hours, and the model option price is recalculated using each terminal 
(nonsimultaneous) futures price. The binomial tree provides the probability of each nonsimultaneous price being observed. Apparent pricing 
errors are calculated as the ‘correct’ option price, minus the nonsimultaneous price, divided by the ‘correct’ price. The probability of 
observing 5% and 15% mispricing are reported in the table. 

 
Panel A 

In-the-Money Put Option 
F     F/X X

$10 0.9      11.11  
 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 

T �      Prob> 5%
Mispricing

 Prob> 15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10%  0.02% 0.00%  0.00% 0.00%  0.00% 0.00% 
25% 11.37% 0.00% 0.00% 0.00% 0.00% 0.00%
40% 20.68% 0.01% 0.03% 0.00% 0.00% 0.00%

90 Days 10%  0.02% 0.00%  0.00% 0.00%  0.00% 0.00% 
25% 3.67% 0.00% 0.00% 0.00% 0.00% 0.00%
40% 6.64% 0.00% 0.00% 0.00% 0.00% 0.00%

180 Days 10%  0.00% 0.00%  0.00% 0.00%  0.00% 0.00% 
 25%          0.64% 0.00% 0.00% 0.00% 0.00% 0.00%

40% 1.14% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 3 Continued 
 

Panel B 
At-the-Money Put Option 

F     F/X X
$10    1.0 10

 Lag of Two Hours  Lag of 15 Minutes  Lag of 5 Minutes 
T �      Prob> 5%

Mispricing
 Prob> 15% 

Mispricing 
Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

Prob> 5%
Mispricing 

Prob >15% 
Mispricing 

30 Days 10%  44.89% 2.01%  3.17% 0.00%  0.01% 0.00% 
25% 41.10% 2.01% 2.67% 0.00% 0.01% 0.00%
40% 41.10% 1.63% 2.29% 0.00% 0.01% 0.00%

90 Days 10%  18.40% 0.01%  0.01% 0.00%  0.00% 0.00% 
25% 16.49% 0.00% 0.01% 0.00% 0.00% 0.00%
40% 14.56% 0.00% 0.00% 0.00% 0.00% 0.00%

180 Days 10%  5.81% 0.00%  0.00% 0.00%  0.00% 0.00% 
 25%          4.97% 0.00% 0.00% 0.00% 0.00% 0.00%

40% 3.67% 0.00% 0.00% 0.00% 0.00% 0.00%
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TABLE 4 
 

Moneyness Groupings 
 
Moneyness groupings are defined with reference to the underlying futures price (F) divided by the option 
exercise price (X). For call options In-the-Money-Options are defined as F/X >= 1.025, Near-the-Money 
options are defined as 0.975 =< F/X < 1.025 and Out-of-the-Money options are defined as F/X < 0.975. Put 
options groupings are defined using the opposite ordering. 

 
 Calls  Puts 

In-the-Money 261 29 
Near-the Money 1612 731 

Out-of-the-Money 821 1419 
Total 2694 2179 

 
 
 

TABLE 5 
 

Daily Implied Volatility Estimates 
 

Implied volatility estimates are calculated for each of the 254 trading days 
during 1993 using a five-day rolling window which employs all trades (at 
least one required). Following the methodology of Whaley (1982) implied 
volatility estimates are calculated by minimising the sum of square pricing 
errors of the Asay (1982) option pricing model. Options of all maturity series 
are included in the five-day window of transactions. 

 
 Calls Puts 
N 250 250 
Mean 15.25% 16.69% 
Median 14.86% 16.43% 
Maximum 18.73% 20.06% 
Minimum 12.03% 13.76% 
Standard Deviation 1.25% 1.23% 
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TABLE 6 
 

Summary Statistics of Pricing Errors 
 

Percentage pricing errors are defined as the market price minus the model price divided by the market price 
of the option. 

Option Type N Mean Percentage 
Error 

Median Absolute 
Percentage Error 

Mean Absolute 
Percentage Error 

Calls  2593 -4.47% 6.28% 11.62% 
Puts 2120 14.36% 10.41% 21.44% 

 

 
TABLE 7 

 
Time between Futures and Options Trades for Call and Put Options 

 
 Calls Puts 
N 2694 2179 
Mean 54.8s 51.9s 
Median 34.5s 30s 
Maximum 4m 58.8s 4m 57s 
Minimum 0s 0s 
Standard Deviation 57.8s 58.1s 
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TABLE 8 
 

Empirical Results: Call Options 

 Absolute Percentage Errorit = � + �1  Trades  BetweenTime it + �2 Option Moneynessit + �3 Option 

Maturityit + �4 Option Volatilityit +�5 Dummyit + �it 

The absolute percentage error is measured as the absolute value of the market price less the model price, 
divided by the market price. The time between trades on futures and options is measured in minutes, option 
moneyness is defined as the futures price divided by the exercise price, option maturity is measured in days, 
option volatility is measured in in percent and is calculated using options with the same term to maturity 
and Dummy is a variable which takes the value of one if the transaction was on or after 11 October 1993 
and zero otherwise. Note that the number of observations used in the regression differs from those reported 
in Table 4 because all trades in the first five trading days of the year were required to calculate the first 
rolling implied volatility estimate. T statistics are in parentheses and are calculated using White's 
heteroscedasticity-consistent standard errors and covariances. The regression is a pooled regression since 
option transactions occur across exercise prices (subscript i) and through time (subscript t). 
 

Data N � �1 �2 �3 �4 �5 
All Trades 
1993 

2593 2.3674 
13.81* 

0.0130 
1.96** 

-2.2399 
-13.67* 

-0.0012 
-9.48* 

0.1351 
0.47 

-0.0191 
-3.14* 

In-the-Money 254 0.1592 
3.83* 

0.0026 
0.72 

-0.1487 
-3.82* 

0.0002 
2.98* 

0.0903 
0.59 

-0.0002 
-0.07 

Near-the-
Money 

1550 2.5770 
11.19* 

0.0112 
1.74** 

-2.3972 
-11.08* 

-0.0015 
-11.92* 

-0.2526 
-0.78 

-0.0180 
-2.97* 

Out-of-the-
Money 

789 4.6745 
8.23* 

0.0244 
1.51 

-4.5390 
-8.04* 

-0.0019 
-5.47* 

-0.2407 
-0.39 

-0.0361 
-2.35* 

* denotes significance at the one percent level 
** denotes significance at the five percent level 

 

 32



TABLE 9 

Empirical Results: Put Options 

Absolute Percentage Errorit = � + �1  Trades  BetweenTime it + �2 Option Moneynessit + �3 Option 

Maturityit + �4 Option Volatilityit +�5 Dummyit + �it 

The absolute percentage error is measured as the absolute value of the market price less the model price, 
divided by the market price. The time between trades on futures and options is measured in minutes, option 
moneyness is defined as the futures price divided by the exercise price, option maturity is measured in days, 
option volatility is measured in in percent and is calculated using options with the same term to maturity 
and Dummy is a variable which takes the value of one if the transaction was on or after 11 October 1993 
and zero otherwise. Note that the number of observations used in the regression differs from those reported 
in Table 4 because all trades in the first five trading days of the year were required to calculate the first 
rolling implied volatility estimate. T statistics are in parentheses and are calculated using White's 
heteroscedasticity-consistent standard errors and covariances. The regression is a pooled regression since 
option transactions occur across exercise prices (subscript i) and through time (subscript t). 

 

 
Data N � �1 �2 �3 �4 �5 

All Trades 
1993 

2120 -3.5522 
-23.64* 

0.0115 
1.42 

3.9956 
27.56* 

-0.0035 
-20.80* 

-1.5513 
-4.94* 

-0.0093 
-1.26 

In-the-Money 29 0.0574 
0.12 

0.0034 
0.30 

-0.0340 
-0.07 

0.0004 
0.65 

0.0896 
0.16 

-0.0302 
-2.19** 

Near-the-
Money 

719 -1.9281 
-3.40* 

0.0199 
1.33 

2.0621 
3.64* 

-0.0021 
-8.42* 

0.2074 
0.48 

-0.0296 
-3.50* 

Out-of-the-
Money 

1372 -3.7189 
-36.28* 

0.0159 
1.71** 

4.4307 
53.99* 

-0.0038 
-22.31* 

-3.3206 
-8.53* 

-0.0184 
-1.92** 

* denotes significance at the one percent level 
** denotes significance at the five percent level 
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