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ABSTRACT 

The response of consumer demand to prices, income, and other 
characteristics is important for a range of policy issues. Naturally, the 
level of detail for which consumer behaviour can be estimated depends on 
the level of disaggregation of the available data. However, it is often the 
case that the available data is differently aggregated in different time 
periods, with the information available in later time periods usually being 
more detailed. The applied researcher is thus faced with choosing between 
detail, in which case the more highly aggregated data is ignored; or 
duration, in which case the data must be aggregated up to the “lowest 
common denominator”. Furthermore, since parametric demand systems 
invariably involve a large number of parameters, with the number 
increasing at least linearly with the number of expenditure categories, it 
may well be that only the second option is feasible. That is, there is simply 
not enough data available at the finer aggregation level for the chosen 
model to be estimated. 

This paper develops a specification/estimation technique that exploits the 
entire information content of a variably-aggregated data set. The 
technique is based on the observation that the more highly aggregated data 
does in fact contain information on the finer subcategories: viz, the sum of 
certain subcategory expenditures is observed. It is thus possible, under 
certain simplifying assumptions, to write down, and maximize, the 
likelihood of the observed data as a function of the parameters of the 
chosen model written for the finest available level of disaggregation. The 
technique is applied to an ABS dataset containing historical information 
relating to private final consumption expenditures on up to 18 
commodities, and found to be feasible for both the LES and AIDS. 

KEYWORDS: Singular demand systems, Linear expenditure system, 
Almost ideal demand system, Missing data. 

JEL classification: C32, C51, D12, E21 



1. Introduction. 

The response of consumer demand to prices, income, and demographic and other 

characteristics is important for a range of policy issues, such as the effects of a change 

in the tax mix, and welfare calculations. Estimation of such response depends on 

economic theory, a statistical model, and a data source. Naturally, the precision and 

reliability of parameter estimates relies critically on the accuracy and time span of the 

available data; and the level of detail to which consumer behaviour can be estimated 

depends on the level of disaggregation of the available data. 

Typically, however, the available data is differently aggregated in different time 

periods, with the information available in later time periods generally being more 

detailed. The applied researcher is thus faced with choosing between detail, in which 

case the more highly aggregated data is ignored; or duration, in which case the data 

must be aggregated up to the “lowest common denominator”. Furthermore, since 

parametric demand systems invariably involve a large number of parameters, with the 

number increasing at least linearly with the number of expenditure categories, it may 

well be that only the second option is feasible. That is, there is simply not enough data 

available at the finer aggregation level for the chosen model to be estimated. 

The aim of this paper is the development of a specification/estimation technique that 

exploits the entire information content of a variably-aggregated data set. The 

technique is based on the observation that the more highly aggregated data does in 

fact contain information on the finer subcategories, in that the sum of the missing 

subcategory expenditures is observed. It is therefore possible to construct the 

likelihood of the observed expenditure data as a function of the parameters of the 

chosen model written for the finest available level of disaggregation. The precise form 

of the resulting likelihood function is indicated for the Linear Expenditure System 

(LES) and the Almost Ideal Demand System (AIDS), chosen as illustrative examples. 
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The technique is then applied to an ABS dataset containing detailed historical 

information relating to private final consumption expenditures on a wide range of 

commodities1, resulting in more detailed and more precise parameter estimates than 

would normally be available. Implications for the detailed analysis of policy questions 

of current interest, such as the effect on behaviour of a change in the tax mix, should 

be obvious. 

2. Model and notation. 

� 
Consider a system of demand equations q = ( p,m,θ) , where q is an N-vector of 

goods with price vector p, m is income (assumed equal to total expenditure), the 

vector θ contains the parameters of the utility function, and the functions � i(·), i = 

1,…,N, satisfy the restrictions implied by the theory of consumer demand. 

For the purposes of estimation the endogenous variables qi are generally transformed 

to expenditures xi = piqi , or, further, to expenditure shares wi = piqi m (to be more 

consistent with an assumption of homoscedasticity and to remove dependence on the 

numeraire). This leads to the standard specification in demand analysis: the estimation 

of the parameters of the system of share equations 

wi = 
� 

i ( p1, � , pN ,m;θ) + ui ; i = 1, � , N . 

More precisely, the 1 × N vector comprising the tth observation on the N expenditure 

shares2 w ~ ′ = ~ x′ mt , is modelled as a function of the N-vector of prices p ~
t ′ , income int t 

the tth period mt = ∑i

N 

=1 xit , the parameter vector θ, and an additive, serially 
~ 

independent, zero mean disturbance, with constant variance-covariance matrix ΣΣ ; ie, 

1 The dataset was compiled in previous joint work (McLaren, Rossiter and Powell (2000)) with the 
Australian Bureau of Statistics (ABS); and in effect extends the publicly available expenditure data 
back to 1969/70 for certain subcategories of Other Goods and Services. 

Quantities pertaining to the complete N-commodity system are henceforth indicated by a “~” over the 
symbol for the corresponding “full rank” quantity – cf. equation (2.2). 

2 
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� ~ 
w ~ ′ t = (p ~ 

t ′,mt ,θ) + u ~ 
t ′ ; u ~ 

t ~ (0, ΣΣ ) . (2.1) 
1× N N × N 

~ 
The demand system “adding-up” condition, making ΣΣ singular, of rank n = N – 1, is 

then as usual avoided by “dropping” one of the expenditure categories, so yielding a 

full rank system involving T observations on n categories:� 
w′ t = (p ~ 

t ′,mt ,θ) + u′ t ; ut ~ (0, ΣΣ ) . (2.2) 
1×n n×n 

The model is completed by the conventional assumption that ut is distributed n-variate 

normal3, and the standard Gaussian log-likelihood4 follows; ie, 

� T 1
(θ, ΣΣ) = − ln|ΣΣ | − tr(ΣΣ −1U′U) , (2.3) 

where U = W 

2 

− 
� � ( P ~

2

, m ,θ) (2.4)
T ×n T ×n T × N T ×1 

is the T × n matrix of disturbances, W is the T × n matrix of observed expenditure 

shares, and 
� � is the T × n matrix of expected expenditure shares, conditional on the 

~ 
T × N matrix of prices P , the T × 1 vector of total expenditures m, and the vector of 

“mean” parameters, θ. 

3. The “aggregated” likelihood. 

Now consider the situation in which the expenditure data is available at differing 

levels of disaggregation in different subperiods. For example: suppose that 

expenditure data is initially collected for categories “Food”, “Durables” and “Other”; 

where “Other” is later split into “Other goods” and “Other services”. That is, data is 

available for shares of N = 3 commodities (A, B, C) in the total budget for the first 

3 Although, as the dependent variable is now by definition constrained to be both non-negative, and to 
sum to unity, it can be argued that the disturbance distribution should be specified so as to avoid 
violating this constraint. See, for instance, Fry, Fry and McLaren (1996). 
4 For clarity, all likelihoods will be written without their density function constants. 
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time period, and for N = 4 commodities (1, 2, 3, 4) for a later time period. Thus we 

observe only 

wAt , wBt , wCt ; t = 1, 
 ,T1 , 

and	 w1t , w2 t , w3t , w4 t ; t = T1 +1, 
 ,T ; 

where, by the nature of the problem (and for later convenience setting “A” equal to 

“Other goods and services”, “B” equal to “Durables” and “C” equal to “Food”), 

wAt ≡ w1t + w2t , 

wBt ≡ w3t , 

and wCt ≡ w4t , t = 1, 
 ,T1. 

Standard estimation strategies in such a situation would be to: 

(a)	 aggregate the data for the period t = T1 +1, 
 ,T and apply the theory to the case 

of N = 3, for the entire period t = 1, � ,T ; or 

(b)	 use a statistical method to interpolate the data on wAt for the period 

t = 1, � ,T1 to construct an approximate statistical series for w1t and w2t for the 

period t = 1, � ,T1 , and then carry out estimation for the case of N = 4 for the 

period t = 1,…,T; or 

(c)	 estimate separate models for the subperiods t = 1, � ,T1 and t = T1 +1, � ,T . 

However, it must be the case that the expected expenditure on commodity A is just the 

sum of the expected expenditures on the component commodities 1 and 2, and hence 

the stochastic part of wA is also the sum over the sub-commodities; that is, 
	 
 
 
( p , m; θ) ≡ ( p , m; θ) + ( p , m; θ) ,At	 1t 2 t 

and	 uAt ≡ u1t + u2t . 
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In other words, an economic model specified for the most disaggregated data 

necessarily implies a corresponding economic model applying to the data at any level 

of aggregation. The same statement applies to the accompanying statistical model. 

To generalise this, let us assume S �  1 subperiods � 1,…, � S with differing degrees of 

expenditure category aggregation; and note that the observed expenditure shares in 

each subperiod are necessarily a linear combination of the underlying (partially 

~unobserved) expenditure set w . That is, for t ∈ � r we observe only the linear 
~ ~ 

combination ~ yt = Arw ~ 
t , where Ar is a Nr × N “aggregation matrix”, of rank Nr ≤ N, 

taking the N-vector w ~ into the Nr-vector of observed, but more aggregated, 

expenditures ~ y . We also assume that, for at least one of our subperiods (usually the 

last), expenditures on all N commodities are observed, in which case the implicit 

~ ~ aggregation matrix for that subperiod is the N × N identity (ie, yt = w t for t ∈ � S ). 

~ ~With w t generated as per (2.1) the model for yt , t ∈ � r , is then just 

~ � ~ ~ ~ ~ ~ yt ′ = w′ t A′ r = (p ~ 
t ′,m t ,θ)A′ r + ut ′A′ r , 

~ with5 A ~ 
rut ~ N(0, A ~ 

r ΣΣ
~A ~ ′ r ) . 

Thus, in the context of our introductory example, with {w1, w2, w3, w4} denoting the 

(partially unobserved) expenditure shares for the “disaggregated” set “Other goods”, 

“Other services”, “Durables”, “Food”; and {wA, wB, wC} denoting expenditure shares 

for “Other”, “Durables”, and “Food” respectively, the additional information that 

wA ≡ w1 + w2 instantly implies 

�
��� wA 

�
� �� �

�
��� 1 1 0 0 

�
�

���
�
�
���� 

w1 """" wB = 0 0 1 0 
w2 = A~ w ~ . 
w3 wC 0 0 0 1 !
w4 

5 The assumption of an additive multivariate normal disturbance is clearly advantageous in this setting. 

5 



~ A thus aggregates w ~ = {w1, w2, w3, w4} into ~ y = {wA, wB, wC}, and for at least some 

subset of the sample period (specifically, t = 1,…,T1) only the linear combination 

~ ~ ~ ~ ~ yt = Aw t is observed. The model for yt then follows from that assumed for w t . 

As before, converting the model for ~ y into a “full rank” equivalent is most simply 

accomplished by omission of one of the (possibly aggregated) expenditure categories, 

corresponding to deletion of the matching row from the aggregation matrix. More 

formally, note that elimination of the last equation/commodity from the N-vector w ~ 

corresponds to pre-multiplication by the n × N matrix J = I 0 ; ie: n 

w = J w ~ . 
n×1 N ×1 

~ ~Accordingly, for the rth subperiod, with Nr observed expenditure shares y = A ~ 
rw , let 

y = Jr 
~ y , 

nr ×1 Nr ×1 

~ 
where nr = Nr – 1, and Jr = I 0 . Then yt = JrArw ~ 

t , and, as before, the model nr 

for y would follow quite simply from that assumed for w ~ . 

The expression for y simplifies even further if we assume a system in which at least 

one category (such as “Food”, in the example above) is common to all subperiods, as 

we can then order the commodities such that 

A 0~ rA = 
#$% &' ( ,r 0′ 1 

~ 
where the top-left submatrix Ar is nr × n. Consequently, JrAr = A 0 , and r)*+ ,- . 

w 
y = A 0 = A w .r r wN 

Exclusion of the last commodity equation to avoid the adding-up problem now 
~ 

corresponds to deletion of the last row and column of A , and we have, for t ∈ / r , 
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0 
y′ t = w′ t A′ r = (p ~ 

t ′,mt ,θ)A′ r + u′ t A′ r ; Arut ~ N( 0, Ar ΣΣA′ r ) . 

Assuming Tr such observations then yields the log-likelihood for the rth subperiod as 

1 Tr 1 −1(θ, ΣΣ) = − ln|ΣΣ | − tr(ΣΣ U′U ) , (3.1)r r r r r2 2 

in which ΣΣ r = Ar ΣΣAr ′  , 
nr ×nr 3 2 ~ 

and Ur = Yr − ( Pr ,mr ,θ) A′ r . (3.2) 
Tr ×nr Tr ×nr Tr × N Tr ×1 n×nr 

Here Ur and Yr are the Tr × nr matrices of disturbances and observed expenditure3 2 3 2 
shares for the rth subperiod, and (P ~ 

r ,mr ,θ) , for convenience also denoted r (θ) , 

is the Tr × n matrix of expected expenditure shares, conditional on the Tr × N matrix6 

of prices pertaining to the rth subperiod P~ 
r , the Tr × 1 vector of total expenditures mr, 

and the k-vector of mean parameters θ. 

Assuming independence of observations across time periods then yields the complete, 

or “aggregated”, log-likelihood 

S S S1 −11
(θ, ΣΣ) = ∑ 1 

r = − 1 ∑Tr ln Ar ΣΣA′ r − 
2 ∑ tr 4 U′ rUr (Ar ΣΣA′ r ) 5 . (3.3)

2r =1 r =1 r =1 

It is now a straightforward matter, given θ and ΣΣ, to calculate the joint likelihood for 

the entire sample allowing for the varying levels of aggregation within the sample, 

provided price data is available on all commodities for the entire period. The only 

remaining requirement for specification of the aggregated likelihood is a parametric 

model for the expected expenditure shares; with the comparatively parsimonious 

Linear Expenditure System serving as a convenient starting point. 

6 Note that it is implicitly assumed that, although expenditure data is not available for all N 
commodities in all time periods, price data is. 
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3.1 Applicat ion t o the Linear Expenditure System 

For the LES the tth expenditure on the ith commodity is modelled as 

xit = pit γ i + βi (mt − p ~ 
t ′γ ) + vit , i = 1, 6 , N , t = 1, 6 ,T ; 

where βi, γi are parameters, γ is the N-vector (γ 1, γ 2 , 6 , γ N )′ , and the adding-up 

condition implies ∑1 

N βi = 1. In expenditure share form this becomes 

p p ~′ 
wit = it γ i + βi 

789 
1− t γ 

:; < 
+ uit , i = 1, 6 , N , t = 1, 6 ,T ;m mt t 

with total expenditure now subsumed into the price matrix as a divisor. Excluding the 

Nth equation and rewriting this in vector notation as per (2.2) then yields 

w′ = 1 p ~ 
t ′ mt ΠΠ(β, γ ) + u′ t , t = 1, 6 ,T , (3.4)t 

where β is an n-vector excluding βN and 

=

>

??????? 

@
β1 β2 

CC βn BBBBBB
γ 1(1− β1) −γ 1βn −γ 1βn 

−γ 1β1 γ 2 (1− β2 ) −γ 1βnΠΠ(θ) = ΠΠ( β , γ ) = D D C D . 
( N +1)×n n×1 N ×1 ⋅ 

−γ nβ1 −γ nβ2 
EE γ n (1− βn ) A B 

−γ N β1 −γ N β2 −γ N βn 

The expectation of the T × n matrix of expenditure shares is therefore

G F 
(
~ P,m,θ) = ιT P ΠΠ(β, γ ) , 

where ιT is the T-vector of ones, and P denotes the T × N matrix of prices scaled by 

total expenditure (ie, p t = p ~ 
t m ). Accordingly, for the rth subperiod,

t

G F G F 
r (θ) ≡ (P ~ 

r ,mr ,θ) = ιT Pr ΠΠ( β, γ) . (3.5) 
r 

Tr ×n Tr ×1 Tr × N ( N +1)×n 
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3.2 AIDS 

While the LES has the advantage of deriving directly from a well-defined utility 

function, and thus automatically satisfying the necessary theoretical restrictions, it can 

be criticised on the grounds that it simply has too few parameters to adequately 

model, in particular, the 2

1 n(n −1) substitution effects involved in a N-commodity 

demand system. We therefore also consider the Almost Ideal Demand System of 

Deaton and Muellbauer (1980), viz 

N 
twit = α i + βi ln 

m + ∑ γ ij ln pjt + uit , i = 1, H , N , t = 1, H ,T ; (3.6)
Pt j 1= 

where adding-up implies ∑i

N 

=1 
αi = 1, ∑i

N 

=1
βi = 0 , and ∑i

N 

=1 
γ ij = 0; homogeneity 

requires ∑N γ ij = 0 ; and γ ij = γ ji ensures Slutsky symmetry.
j=1 

Strictly speaking, the deflator Pt should enter (3.6) via the translog price index 

N N N 
1ln Pt = α0 + ∑α j ln pjt + 
2 ∑∑I γ jI ln pjt ln pI t . 

j =1 j=1 =1 

However, as we shall see, for any more than a few commodity categories the 

computational burden imposed by the symmetry restriction is already sufficiently 

onerous without imposing another level of nonlinearity. It is therefore common to 

either replace ln P by, for instance, Stone’s price index ∑i

N 

=1 
wi ln pi ; or, even more 

simply, to use real expenditure directly if this is already available. If this is done we 

have K N
~ mt ~ ~ 

w ~ ′ = α′ + 
JL 
ln 

M O 
β′ + P lnp′ Q ΓΓ + u ~′ , t = 1, R ,T . 

1× N
t P t

N × N t 
t 

Deleting the Nth equation and imposing homogeneity directly then yields 

m p′ 
w′ = α′ + TSU ln t VW X β′ + UST ln t WV X ΓΓ + u′ , t = 1, R ,T , (3.7) 
1×n

t Pt 
pNt n×n

t 
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implying 

W = ιTα′ + hβ′ + R ΓΓ + U , 
T ×n n×n 

where h is the T-vector with tth element equal to the logarithm of real income 

ln(mt Pt ) , R is the T × n matrix with tth row equal to the logarithm of the vector of 

normalised prices ln(p′ t pNt ) , and ΓΓ is n × n symmetric. Clearly, it is only the cross­

equation symmetry restrictions that now make the system nonlinear. 

The rth subperiod matrix of expected expenditure shares required by (3.2) is therefore 

Y ′ (θ) = ιT hr R r α β ΓΓ , (3.8)r r 

Tr ×n Tr ×1 Tr ×1 Tr ×n 

where hr and Rr denote the Tr -vector of log-real incomes and the Tr × n matrix of 

log-normalised prices in the rth subperiod. 

4. Maximizing the aggregated likelihood 

Specification of an “aggregated” likelihood is thus relatively straightforward. 

Estimation of the parameters of such a likelihood is, however, another matter. To see 

this, reconsider the conventional Gaussian likelihood of Section 2. It so happens, in 

this case, that the first order condition (FOC) for ΣΣ has a simple closed form solution, 

enabling the construction of a profile, or “concentrated” likelihood for θ of the 

familiar log-determinant form 

Z ∗ T
(θ) = − ln|U′U | . (4.1)

2 

An optimization problem previously involving k mean parameters θ, plus 2

1 n(n +1) 

covariance parameters, now depends only the former, and so is far more likely to be 

feasible. Indeed, it is not, in general, possible to maximize (2.3) with respect to both θ 

and ΣΣ numerically unless the number of expenditure categories is very small. 
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Exploitation of the closed form MLE of ΣΣ can therefore be crucial to estimation of the 

system. 

Contrast this with the situation pertaining in the context of “aggregated” likelihood 

(3.3). The n × n matrix of scores with respect to the elements of ΣΣ is now 

[ [
∂ = ∑ 

S ∂ 
;r 

∂ΣΣ r =1 ∂ΣΣ

[
where r is a scalar-valued function of the quadratic ΣΣ r = Ar ΣΣA′ r as per (3.1), and the 

(i, j)th element of ΣΣr is just (ΣΣ r )ij ≡ a′ i 
( r) ΣΣ a (

j
r) with a i

( r)  denoting the n × 1 vector 

obtained by transposing the ith row of aggregation matrix Ar. The contribution of the 

rth subperiod to the score with respect to ΣΣ then proceeds by application of Lemmas 

A.1 – A.3 (Appendix A) as 

[ nr nr∂ r = ∑∑qij
( r) A (

ij
r) , (4.2)

∂ΣΣ i=1 j=i n×n 

[
in which qij

( r) ≡ ∂ r ∂(ΣΣ r )ij is the (i, j)th element of 

∂
[ \ ] 1 ^ _

Qr ≡ r = ΣΣ r 
−1 U′ rUr − Tr ΣΣ r ΣΣ r 

−1 − 
2 

D
ΣΣ r U ′ rUr −Tr ΣΣ r ΣΣ r 

; 
nr ×nr ∂ΣΣ r 

−1 −1 

A ij
( r) is the (i, j)th n × n submatrix of Ar = ∂ΣΣ r = ∂Ar ΣΣA′ r defined by 

nnr ×nnr ∂ΣΣ ∂ΣΣ

A ( r) ≡ 
d (ΣΣ r )ij = a ( r)a′( r) + a ( r)a′( r) − D ( r) ( r) ;ij i j j i a a ′ jidΣΣn×n 

DA denotes the n × n diagonal matrix with (i, i)th element equal to the corresponding 

diagonal element of the n × n matrix A7, and the matrix differential ∂ΣΣ r ∂ΣΣ is 

7 The same notation is, without ambiguity, employed for the “diagonalisation” of a vector; ie; if a is an 
n-vector then Da will denote the n × n diagonal matrix with (i, i)th element equal to the corresponding 
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defined as per MacRae (1974)8. The double-sum in (4.2) will be referred to (with 

notation and terminology borrowed from MacRae) as a modified “star product”, and 

written ` 
∂ ⋅ r = Qr ∗ Ar ,
∂ΣΣ nr ×nr nnr ×nnr 

` 
∂ S ⋅ implying = ∑ ( Qr ∗ Ar ) . 
∂ΣΣ r =1 nr ×nr nnr ×nnr 

Thus the FOC for ΣΣ consists of the sum, over r, of functions in which, even leaving 

aside the complication posed by the star-product with Ar , ΣΣ only ever appears via the 

quadratic ΣΣ r = Ar ΣΣA′ r . It is evident that we can no longer obtain a closed form 

solution for the MLE ΣΣa , and so cannot derive, after the manner of (4.1), a profile 

likelihood for θ. The 2

1 n(n +1)  parameters of the covariance matrix must, as a result, 

be estimated directly, along with the k (= 2n+1 for the LES, (n2 + 5n) 2 for 

symmetry-restricted AIDS) parameters of the mean. This was found, even for the 

comparatively parsimonious LES, and even leaving aside the matter of the missing 

expenditure data, to be infeasible9 for any realistic sample size at the level of 

commodity disaggregation contemplated here10. 

element of a. The converse operation, in which the diagonal elements of the n × n matrix A are 
“extracted” into an n-vector, will be denoted dv(A). 
8 That is, dYb dX ≡ Y ⊗ db dX. Cf. “definition 2” in §3 of Magnus and Neudecker (1988, p.171). 
9 In that the optimizing procedure (Gauss module CO) iterates ad infinitum without finding a set of 
parameter values that can with any confidence be said to be “maximizing”. 
10 The data available consisted of 27 annual, or 95 quarterly, observations on up to 18 expenditure 
categories. It should be noted that even an LES-based version of profile likelihood (4.1) cannot be 
maximized with only 27 observations – and if we prefer AIDS then 95 observations is similarly 
inadequate. Estimation of a model with so many commodity categories is thus problematic even 
without the additional complication of differing degrees of disaggregation. 
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4.1 De Boer and Harkema’s co variance matrix. 

An obvious solution to the problem described above is to reduce the dimension of the 

optimization problem by considering a reduced-order parameterization of the 
~ ~ 

covariance matrix. This has typically been accomplished by setting ΣΣ = σ2C , where 
~ C is a symmetric N × N matrix of constants (which may be functions of the data) 

devised such that ΣΣ~ ιN = 0 , where ιN is the N-vector of ones, and rank( ΣΣ~ ) = n. The 
1 n(n +1)  unknown covariance parameters are thereby reduced to just one – a degree2 

of parameter reduction which might be thought somewhat extreme. Furthermore, the 

most common data-independent specification (see §4.2 following) imposes the less 

than reasonable restriction that all category variances are equal, as are all the cross­

category covariances. 

Accordingly, consider the less restrictive order-N parameterization devised by De 
~ 

Boer and Harkema (1986), in which the singular N × N covariance matrix ΣΣ is 

parameterized on an N-vector ξ according to 

~ ΣΣ ( ξ ) = Dξ − ξξ′ ι′ Nξ , 
N × N N ×1 

~ ~ 
Dξ = diag(ξ1, c ,ξ N ) . Then ΣΣ(ξ) clearly satisfies ΣΣ ιN = 0 , and the submatrix 

defined by ommission of the last (or any) category, 

~ ΣΣ (ξ) = JΣΣJ′ = DJξ − Jξξ′J′ ι′ N ξ , (4.3) 
n×n 

Jξ = (ξ1, c ,ξn )′ , is positive definite if either (i) all ξi are strictly positive; ie, ξi > 0 

∀ i = 1, c , N (in which case all the cross-covariances will be negative); or (ii) a 

single ξi is negative, and of sufficient magnitude that ι′ N ξ is negative also. 

Substituting (4.3) into (3.3) then implies an “aggregated” likelihood parameterized on 

θ and ξ. Most importantly, the number of covariance parameters to be estimated is 

now O(n) rather than O(n²). 
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4.2 Order-1 parameterization 

The most restricted such parameterization of the covariance matrix is obviously just 

ξ = σ2 ιN , leading to the well known specification 

ΣΣ~ = σ2 (IN − ιN ι′ N N ) , (4.4) 

= σ2nimplying ΣΣ = σ2 (In − ιn ι′ n N ) , ΣΣ −1 = (In + ιn ι′ n ) σ2 , and ΣΣ N . Substituting 

θ σ2 Sthe last two into (3.3) then yields aggregated log-likelihood � ( , ) = ∑r =1 � r with 

Trnr 2 Tr 1 −1� r = − ln σ − ln|Cr | − 2 
tr(Cr U′ rUr ) , (4.5)

2 2 2σ 

and Cr = Ar (In − ιn ι′ n N )A′ r . 
nr ×nr 

The MLE of our single remaining covariance parameter is then easily obtained as 

� S S 

σ2 = ∑ tr(Cr 
−1U′ rUr ) ∑Trnr . (4.6) 

r =1 r =1 

Consequently, and in contrast to the situation for more general ΣΣ (including ΣΣ(ξ) of 

S 2the previous subsection), σ² can be concentrated out of ∑ r =1 � r (θ,σ ) . The result is an 

“aggregated” log-profile likelihood for θ of the form (ignoring all constants) 

S S 
∗ −1� (θ) = − 1 � �� ∑Trnr 

�� � 
ln 

� ��
∑ tr(Cr U′ rUr ) 

�� � 
. (4.7)

2 r =1 r =1 

This expression can naturally be used as a basis for the estimation of θ as an end in 

itself – provided we are prepared to accept the accompanying, possibly over­

restrictive, covariance structure. For our purposes (4.7) and (4.6) are most useful as a 

means of obtaining starting values for the maximization of the aggregated likelihood 

with ΣΣ as per (4.3). 
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4.3 Re-parameterizing A IDS for small d atasets 

The estimation problem is compounded if we attempt estimation of the Almost Ideal 

Demand System with a very small dataset (such as the annual dataset used in the 

Example following). Even after restricting the covariance matrix we find that 

symmetry-restricted AIDS cannot be estimated unless the dataset is reasonably 

large11. The problem, once again, is simply too many parameters ( (n 2 + 5n) 2 ) to 

permit non-linear estimation. 

Pursuing the same strategy as that employed for the covariance matrix, a feasible, 

though somewhat ad hoc, solution is to reparameterize the ΓΓ matrix in such a way as 

to considerably reduce the number of free parameters to be estimated, while ensuring 

symmetry and adding-up. The obvious choice is, once again, De Boer and Harkema’s 

parameterization, with the minor difference that we no longer require positive­

definiteness of any n × n submatrix. Accordingly, let 

~ ΓΓ = Dη − ηη′ ι′ N η , (4.8)
N × N 

where the N-vector η is unrestricted, implying 

ΓΓ = DJη − Jηη′J′ ι′ N η . (4.9) 
n×n 

The model now involves just 3n +1 free mean parameters, plus the N parameters of 

De Boer and Harkema’s covariance matrix. 

11 Such as the 95 observations of the quarterly dataset, for which AIDS with De Boer and Harkema’s 
covariance matrix could be estimated without difficulty. 
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5. Example 

The LES, with De Boer and Harkema’s covariance matrix (hereafter designated 

LES(1)), and AIDS, with De Boer and Harkema’s parameterization applied to both ΓΓ

and ΣΣ (hereafter AIDS(1)), were estimated for a demand system comprised of up to 18 

expenditure categories, over the period 1969/70 – 1995/96. The data12 used for the 

main example was collected annually, and included 3 subperiods of differing 

expenditure aggregation, due, in this case, to successive divisions of the “Other goods 

and services” category. The three subperiods were defined according to the then 

published data, with expenditure data disaggregated as follows. 

1969/70 – 1980/81. 12 categories: Food, Cigarettes and Tobacco, Alcohol and spirits, 

Clothing and footwear, Household appliances, Other household durables, 

Dwelling rent, Gas, electricity and fuel, Fares, Purchase of motor vehicles, 

Postal and telecommunications, and Other goods and services. 

1981/82 – 1986/87. Other goods and services (G&S) split into: Operation of motor 

vehicles, Health, Entertainment and recreation, Financial services, Other 

goods and services �  16 categories. 

1986/87 – 1995/96. Other G&S split into: Other goods, Other services, Net 

expenditure overseas (LES only) �  18 categories for LES, 17 for AIDS13. 

The experiment was repeated with quarterly data14, as this allowed the estimation of 

AIDS with ΓΓ symmetric but otherwise unrestricted; though, of course, still with De 

Boer and Harkema’s covariance matrix (hereafter designated AIDS(2)). The quarterly 

dataset extended from 1974(3rd quarter) to 1998(1st quarter), with the 12, 16, and 

12 Australian Bureau of Statistics National Accounts: Private Final Consumption Expenditure. 
13 Net overseas expenditure (NEO), alone of the categories, can take both negative and positive values. 
More crucially, the nominal and real data do not always have the same sign, making the actual 
definition of an IPD rather problematic in any case, and the log-price undefined. Total expenditure for 
AIDS was thus calculated net of NEO, and the category excluded. 
14 Australian Bureau of Statistics, Private Final Consumption Expenditure (quarterly estimates). 
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18(17) category subperiods covering, respectively, 1974(3) – 1985(3), 1985(4) – 

1989(3), and 1989(4) – 1998(1). The three subperiods were, once again, defined 

according to the then published data. 

In summary, the 1st subperiod consists of 12 annual (45 quarterly) observations on 12 

expenditure categories; the 2nd involves 6 annual (16 quarterly) observations on 16 

categories; and the 3rd involves 9 annual (34 quarterly) observations on 18 (17) 

categories. All expenditures are in A$ per capita. Prices are measured by the IPD for 

each expenditure category, and equal unity in 1989/90. 

Each model was estimated by ML in two stages, with Food as the “omitted” category 

in all subperiods. The first stage assumes that ΣΣ is parameterized on the scalar σ² as 

per (4.4); and so consists of maximization of likelihood (4.7) with respect to θ15. The 

MLE of σ² then follows via (4.6). The 1st stage thus supplies starting values for θ and 

2ξ (the latter via ξ = σ� ιN ) for the 2nd stage, in which likelihood (3.3), with ΣΣ

parameterized on ξ as per (4.3), is maximized with respect to θ and ξ, subject to the 

restriction that ξi > 0, i = 1,…,N. As remarked above, this is slightly more restrictive 

than necessary, and has the disadvantage that it forces all the cross covariances to be 

negative, but is trivial to implement. As it happens, replacing “all ξi > 0” with the 

requirement that all eigenvalues of ΣΣ be strictly positive had no effect other than to 

slow the optimization. 

Results for LES(1) and AIDS(1) (annual data) are given in Tables 2 and 4. Tables 3, 5 

and 6 give analogous results based on the quarterly dataset and models LES(1) and 

AIDS(2). Standard errors were computed via the inverse Hessian evaluated at the 

maximum; the Hessian itself being computed via forward difference approximation of 

15 Starting values for the 1st stage were, for the LES, β = average expenditure share in the final 
subperiod, and γ = 0. 1st stage starting values for AIDS were obtained via the unrestricted regression of 
the matrix of expenditure shares on log-real income, log-normalised prices, and a constant; with the 
exception of the initial η for AIDS(1), which we started at 0.01ιN. 
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the derivatives of the analytic gradient16. The time required for the estimation was less 

than 30 seconds for the LES, and about 1½ minutes for AIDS. 

We find that our estimated coefficients are, for the most part, statistically significant 

at the 5% level, and have signs that are usually plausible. Thus, for the LES, it is not 

unreasonable to suppose that most of those categories attracting a significantly 

negative γi are indeed price elastic; while for AIDS most of the positive βi are attached 

to categories that might be regarded as “luxuries”. However, as is common when 

estimating consumer demand based on aggregate data, theoretical restrictions not 

explicitly imposed during estimation are not in general satisfied. In particular, for the 

LES, estimates of the income effects parameter β, which should in theory lie between 

0 and 1, are occasionally negative; implying both a negative Engel elasticity and 

positive own-price substitution effect. Similarly, for AIDS most γii are positive, 

suggesting that negativity is again likely to be violated. We emphasise, however, that 

such criticisms should be regarded separately from the feasibility of the suggested 

method of estimating a demand system with differently aggregated data. 

6. Conclusion 

A simple method has been proposed for the ML estimation of a consumer demand 

system in the situation where not all expenditures are observed for all commodity 

categories in all time periods. The major difficulty with the estimation of such a 

system is that, while the likelihood function can be written down simply enough 

(particularly if we assume serially uncorrelated Gaussian errors), its maximization is 

problematic because of the 2

1 n(n +1) covariance parameters that must now also be 

included in the objective function. In essence, the complete log-likelihood cannot be 

satisfactorily maximized unless ΣΣ can be concentrated out. It is worth noting that this 

16 Analytic expressions for the scores with respect to the components of θ in each model, and with 
respect to the De Boer and Harkema (1986) covariance vector ξ, are given in Appendix B. 
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would be the case even if we had a complete set of quarterly data (95 observations) 

available on all 18 expenditure categories. 

The obvious strategy, and the one considered in this paper, is to reduce the number of 

covariance parameters to be estimated by a suitable re-parameterization, leading to the 

adoption of De Boer and Harkema’s (1986) covariance matrix. We find that the 

“aggregated” likelihood based on the LES can now be maximized without difficulty, 

even for the annual (27 observation) dataset. Furthermore, while such estimation 

cannot easily be carried out in a standard econometric package such as TSP or 

Shazam, it can be coded and computed quite simply in a programming language such 

as GAUSS. 

Estimation of the aggregated likelihood based on AIDS was (unsurprisingly) more 

problematic, even after reparameterizing ΣΣ. The method is perfectly feasible if 

sufficient data is available; however, for practical purposes this means the use of 

quarterly data. Estimation of “aggregated” AIDS with annual data was, at least for our 

dataset, possible only if the number of free parameters in the ΓΓ matrix was also 

greatly reduced. As implemented here this leaves us with only N parameters to 

estimate the substitution effects. Nonetheless this still represents a distinct advance 

over the LES, which imposes, among other things, the “hidden” restriction that the 

Allen-Uzawa substitution elasticities be proportional to the product of the 

corresponding Engel elasticities. 

The need to impose De Boer and Harkema’s still fairly restrictive parameterization on 

the covariance structure of the model might be thought something of a disadvantage. 

It seems that the price of being able to use differently aggregated data from earlier 

time periods without sacrificing some commodity subcategories is a somewhat ad hoc 

covariance structure. We find, however, that not even the concentrated log-likelihood, 

which we would expect to use if there were no missing expenditure data, can be 

reliably maximized if the annual dataset is preferred. That is, 27 observations are 

insufficient to allow maximization of the conventional likelihood with symmetric but 
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otherwise unrestricted covariance matrix and more than 7 or 8 categories, even for the 

extremely parsimonious LES. If we prefer AIDS then the (95 observation) quarterly 

dataset is similarly insufficient. Indeed, restricting the covariance matrix may well be 

essential to the estimation of AIDS for a large number of commodities, even without 

the problem of missing expenditure data. Of course, if there are insufficient data17 

available on all N commodities then an N-commodity model cannot be estimated in 

any case without resort to additional information – such as that implicit in more 

highly aggregated data in previous time periods. 

Naturally, implementation of our approach requires, fairly obviously, that there be 

expenditure data available on all commodities in at least one time period18. Also note 

that we must have data on the complete set of explanatory variables for all time 

periods; that is, only the dependent variable (expenditure) can be “missing”. Since (in 

Australia) price (CPI) data has been collected for a greater degree of disaggregation 

over longer time periods than almost any other series this may not be too onerous a 

requirement, at least as regards the estimation of demand systems. 

17 ML requires, at the very least, T ≥ N – 1 observations to be feasible in an N-commodity system. 
18 Though it is difficult to say how few observations on the full system it would be possible to have 
before the problem became, in some sense, ill-conditioned, and the maximization infeasible. 
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Appendix A.


T 1 −1LEMMA A.1. Given � = − ln|ΣΣ | − tr(ΣΣ U′U) where ΣΣ is symmetric, 

∂ � 2 

−1 
� 2 � −1 1 � � 

= ΣΣ U′U − T ΣΣ ΣΣ − D
ΣΣ −1 U′U−T ΣΣ ΣΣ −1 . (A.1)

∂ΣΣ 2 

LEMMA A.2. For X n × n symmetric and n-vectors a and b, 

da′Xb = ab′ + ba′ − D
dX ab′ 

LEMMA A.3. Let w be a scalar-valued function of a n × n symmetric matrix Y which is 

in turn a function of matrix X. Then the derivative of w with respect to X is 

n ndw = ∑∑ ∂w ⋅ 
dy ij . 

dX i=1 j=i ∂yij dX 

LEMMA A.1 is a straightforward application of Graybill (1983, pp.354-358), theorems 

10.8.8 and 10.8.11. LEMMA A.2 extends Graybill (1983) Theorem 10.8.4. LEMMA A.3 

follows from the ordinary chain rule, bearing in mind that, because Y is symmetric the 

summation is to be taken over only “half” of Y to avoid double-counting. The lemma 

thus modifies Theorem 8 of MacRae (1974) regarding differentiation of a scalar­

valued function of a matrix so as to correctly handle symmetric matrices. 

Appendix B. 

The score with respect to general θ in likelihood (2.3) can readily be shown to be 

T∂ � ∂� ′ ∂ ��
~ ′ u ; (B.1)= ∑ t ΣΣ −1u t ≡ IT ⊗ ΣΣ −1 

~∂θ t =1 ∂θ ∂θ 
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� � 
where t 

′ = (p ~ 
t ′,mt ,θ) is the n-vector of expected expenditure shares at time t as 

per (2.2), u~ = vec(U′) , and � � ~ = vec( 
� � ′) ; U and 

� � being defined as per (2.4).� S �
∂ ∂

In the context of “aggregated” likelihood (3.3) this becomes = ∑ r , where 
∂θ r =1 ∂θ 

∂
� 

r =
∂ �� ~ r ′ u~r ≡ ∑ ∂ � 

t 
′ 
A′ r ΣΣ r 

−1u t 
( r ) , (B.2)ITr 

⊗ A′ r ΣΣ r 
−1 

∂θ ∂θ t∈ r 
� ∂θ 

( r )ur = vec(Ur ′ ) , �� r = vec( 
� � r ′) , ut is the tth row of Ur; and Ur , 

� � r are as per (3.2). ~ ~ 
nrTr ×1 nTr ×1�
∂ r simplifies considerably, as might be expected, for the LES and AIDS. In 
∂θ 

particular, for the LES, with � (p~ 
t ′,mt ,θ) as per (3.4), we find that 

�
∂
∂α 

r = A′ r ΣΣ r 
−1U′ r (ιT − Pr γ ) , 

r 

∂ r −1 −1and 
� 

= −P′U ΣΣ A α + dv � P′U ΣΣ A J � ,
∂γ r r r r r r r r 

where dv( A ) = 
� 

(a11, � ,ann )′ and J = [In 0] . 
n×n 

For AIDS (equation (3.7)), which is in any case linear with respect to α and β, we� � 
simply require the sum over r of 

∂ r = A′ r ΣΣ r 
−1U′ r ιT , 

∂ r = A′ r ΣΣ r 
−1U′ rhr , and, for 

r� ∂α ∂β 
symmetric ΓΓ, 

∂
∂ΓΓ

r = Gr + G′ r − DGr 
, where Gr = A′ r ΣΣ r 

−1U′ r R r and 

= diag(a , ,a ) for any n × n A.DA 

� 
11 � nn 

Finally, for De Boer and Harkema’s (1986) covariance matrix, in which ΣΣ is 

parameterized on ξ as per (4.3), it can be shown that the score with respect to ξ, for 

both conventional likelihood (2.3) and aggregated likelihood (3.3), is given by 

∂
� � �� ∂

� �� � � �� ∂
� � �� � � �� ∂

� � �� � 
= dv J − J′ + D∂ ∂ΣΣ ζ + ιNζ′ + D∂ ∂ΣΣ ζ , (B.3)

∂ξ ∂ΣΣ ∂ΣΣ ∂ΣΣ
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�
∂ 

where ζ ≡ J ξ ι′ N ξ , and is as per (4.2) in the case of the aggregated likelihood,
∂ΣΣ

(A.1) otherwise. Hence, for AIDS with ΓΓ parameterized on η as per (4.8), the score 

with respect to η is also given by (B.3), with η and ΓΓ replacing ξ and ΣΣ respectively. 
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Tables


Table 1. Abbreviations for expenditure categories


Food FOD 

Cigarettes and Tobacco CGT 

Alcohol and spirits ALC 

Clothing and footwear CFF 

Dwelling rent RNT 

Purchase of motor vehicles MVP 

Household appliances HAP 

Other household durables HDU 

Postal and telecommunications TEL 

Gas, electricity and fuel GEF 

Fares FRS 

Operation of motor vehicles MVO 

Health MED 

Entertainment and recreation REC 

Financial services FIN 

Other goods OGD 

Other services OSV 

Net expenditure overseas NEO 
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Table 2. ML estimation of the LES. De Boer and Harkema’s covariance matrix; 3 

subperiods; 18 expenditure categories; annual data 

β γ ξ (× 104)‡ 

Expenditure 
category 

final 
estimate 

standard 
error 

final 
estimate

† 
standard 

error 
final 

estimate 
standard 

error 

FOD 0.0870 0.0052 1.2954 0.0550 0.1434 0.0420 

CGT 0.0244 0.0132 0.0949 0.0948 0.3015 0.1026 

ALC -0.0033 0.0040 0.5957 0.0231 0.0853 0.0241 

CFF 0.0051 0.0036 0.7215 0.0198 0.0954 0.0272 

RNT 0.2502 0.0110 0.4118 0.1993 0.4344 0.1835 

MVP 0.0112 0.0035 0.4124 0.0219 0.0847 0.0240 

HAP 0.0454 0.0044 0.0539 0.0084 0.1441 0.0424 

HDU 0.0171 0.0034 0.3955 0.0212 0.0707 0.0200 

TEL 0.0298 0.0019 -0.0076 0.0093 0.0084 0.0024 

GEF 0.0154 0.0006 0.1627 0.0108 0.0014 0.0004 

FRS 0.0230 0.0019 0.1854 0.0159 0.0225 0.0063 

MVO 0.0526 0.0063 0.4167 0.0422 0.0390 0.0146 

MED 0.1143 0.0076 0.0580 0.0728 0.0267 0.0104 

REC 0.1138 0.0074 -0.2007 0.1028 0.0153 0.0059 

FIN 0.0674 0.0092 -0.0577 0.0585 0.0678 0.0264 

OGD -0.0232 0.0278 1.0468 0.1732 0.7423 0.6550 

OSV 0.1878 0.0120 -0.2244 0.1273 0.0145 0.0069 

NEO -0.0179 0.0036 -0.0081 0.0062 0.2806 0.1475 

Initial log-likelihood 1651.50 Final log-likelihood 1754.27 

Number of iterations 26 Norm of the gradient 2.09 × 10−5 

Time to convergence 38.89 seconds Number of observations 27 (annual) 

† For estimation purposes the matrix of price ratios (that is, the ratio of price (an index, =1 in 1989/90) 
to total expenditure per capita (in Australian $)) has been scaled up by 103. Estimates of γ in Tables 2 
and 3 are thus in units of thousands of 1989/90 A$. 

‡ The system covariances are recoverable via σ ii = ξi − ξi 

2 ι′ N ξ , σ ij = − ξ i ξ j ι′ Nξ , i ≠ j . 
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Table 3. ML estimation of the LES. De Boer and Harkema’s covariance matrix; 3 

subperiods; 18 expenditure categories; quarterly data 

β γ ξ (× 104)‡ 

Expenditure 
category 

final 
estimate 

standard 
error 

final 
estimate 

Standard 
error 

final 
estimate 

standard 
error 

FOD 0.0902 0.0041 0.2650 0.0163 0.2207 0.0337 

CGT 0.0300 0.0032 -0.0083 0.0035 0.0527 0.0104 

ALC -0.0105 0.0040 0.1674 0.0088 0.1459 0.0217 

CFF 0.0179 0.0050 0.1479 0.0108 0.7158 0.1188 

RNT 0.2592 0.0137 -0.0677 0.0640 2.6211 0.7294 

MVP 0.0243 0.0035 0.0663 0.0095 0.1590 0.0238 

HAP 0.0303 0.0018 0.0192 0.0016 0.1044 0.0156 

HDU 0.0130 0.0039 0.0983 0.0089 0.2670 0.0406 

TEL 0.0262 0.0013 -0.0095 0.0017 0.0229 0.0035 

GEF 0.0136 0.0037 0.0355 0.0085 0.1326 0.0197 

FRS 0.0269 0.0011 0.0228 0.0041 0.0228 0.0034 

MVO 0.0155 0.0017 0.1682 0.0049 0.0094 0.0019 

MED 0.0855 0.0062 0.0174 0.0202 0.1285 0.0262 

REC 0.0977 0.0096 -0.0780 0.0301 0.1804 0.0377 

FIN 0.0338 0.0030 0.0310 0.0081 0.0728 0.0147 

OGD 0.1208 0.0072 -0.0755 0.0272 0.0808 0.0195 

OSV 0.1383 0.0117 -0.0325 0.0356 0.3527 0.0821 

NEO -0.0126 0.0023 -0.0093 0.0050 0.6465 0.1437 

Initial log-likelihood 5159.35 Final log-likelihood 5588.39 

Number of iterations 18 Norm of the gradient 2.95 × 10−7 

Time to convergence 28.18 seconds Number of observations 95 (quarterly) 

‡ σ ii = ξi − ξi 

2 ι′ N ξ , σ ij = − ξ i ξ j ι′ Nξ , i ≠ j . 
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Table 4. ML estimation of AIDS(1). De Boer and Harkema’s covariance matrix; 3 

subperiods; 18 expenditure categories; annual data 

α β η† ξ (× 104)‡ 

Expenditure 
category 

final 
estimate 

standard 
error 

final 
estimate 

standard 
error 

final 
estimate 

standard 
error 

final 
estimate 

standard 
error 

FOD 0.4852 0.1162 -0.0355 0.0123 0.1781 0.0373 0.0937 0.0307 

CGT 0.3406 0.0115 -0.0342 0.0012 0.0111 0.0006 0.0020 0.0005 

ALC 0.5316 0.0239 -0.0515 0.0026 0.0212 0.0118 0.0289 0.0082 

CFF 0.8824 0.0487 -0.0870 0.0052 -0.0046 0.0088 0.0435 0.0125 

RNT -0.4252 0.1496 0.0639 0.0158 0.2214 0.0385 0.3386 0.1605 

MVP 0.3116 0.0414 -0.0290 0.0044 0.0249 0.0093 0.0873 0.0265 

HAP -0.0306 0.2806 0.0064 0.0296 0.0066 0.0089 0.1272 0.0411 

HDU 0.0109 0.0985 0.0030 0.0104 0.1255 0.0298 0.0359 0.0110 

TEL -0.2305 0.0166 0.0261 0.0018 0.0059 0.0011 0.0028 0.0008 

GEF 0.0656 0.0094 -0.0047 0.0010 0.0161 0.0011 0.0015 0.0004 

FRS 0.1622 0.0293 -0.0144 0.0031 -0.0099 0.0051 0.0125 0.0035 

MVO 0.4169 0.0615 -0.0372 0.0065 -0.0036 0.0075 0.0198 0.0082 

MED -0.4675 0.1037 0.0566 0.0109 0.0782 0.0327 0.0576 0.0302 

REC -0.2767 0.0513 0.0344 0.0055 0.0528 0.0159 0.0072 0.0029 

FIN 0.2227 0.0620 -0.0195 0.0065 -0.0775 0.0076 0.0079 0.0032 

OGD -0.2786 0.0299 0.0369 0.0031 -0.0095 0.0089 0.0021 0.0010 

OSV -0.7207 0.0645 0.0858 0.0068 -0.0303 0.0119 0.0315 0.0148 

Initial log-likelihood 1726.74 Final log-likelihood 1908.03 

Number of iterations 55 Norm of the gradient 7.21 × 10−4 

Time to convergence 99.97 seconds Number of observations 27 (annual) 

~† To recover the matrix of price effects ΓΓ , recall that γ ij = − ηi η j ι′ η , i ≠ j andN 

γ ii = ηi − ηi 

2 ι′ N η . Note that the estimated ι′ N η = 0.6065, implying γii < 0 iff ηi < 0 or ηi > ι′ N η . 
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Table 5. ML estimation of AIDS(2). De Boer and Harkema’s covariance matrix; 3 

subperiods; 18 expenditure categories; quarterly data 

α β γii 
† ξ (× 104)‡ 

Expenditure 
category 

final 
estimate 

standard 
error 

final 
estimate 

standard 
error 

final 
estimate 

standard 
error 

Final 
estimate 

standard 
error 

FOD 0.2340 0.0706 -0.0106 0.0087 0.0909 0.0186 0.0920 0.0186 

CGT 0.0451 0.0147 -0.0034 0.0018 0.0074 0.0011 0.0033 0.0005 

ALC -0.1052 0.0441 0.0184 0.0055 0.0127 0.0083 0.0330 0.0054 

CFF -1.0580 0.0865 0.1382 0.0107 0.1409 0.0250 0.1526 0.0264 

RNT 1.4678 0.0461 -0.1587 0.0057 0.1190 0.0170 0.0297 0.0060 

MVP 0.0908 0.0644 -0.0066 0.0080 -0.0084 0.0082 0.1045 0.0180 

HAP -0.0575 0.0907 0.0106 0.0112 0.0105 0.0045 0.2713 0.0604 

HDU -0.7723 0.0408 0.1005 0.0051 0.0218 0.0171 0.0244 0.0037 

TEL 0.0443 0.0140 -0.0037 0.0017 0.0066 0.0016 0.0028 0.0005 

GEF -0.0420 0.0809 0.0077 0.0100 0.0186 0.0074 0.1870 0.0347 

FRS 0.1288 0.0298 -0.0125 0.0037 0.0028 0.0040 0.0138 0.0023 

MVO 0.3723 0.0215 -0.0382 0.0027 0.0532 0.0041 0.0034 0.0008 

MED 0.4543 0.0531 -0.0478 0.0066 -0.0099 0.0324 0.0210 0.0050 

REC 0.3201 0.0319 -0.0338 0.0040 0.0963 0.0245 0.0059 0.0014 

FIN 0.2740 0.0300 -0.0293 0.0037 0.0317 0.0059 0.0061 0.0018 

OGD -0.8655 0.0696 0.1158 0.0086 -0.0407 0.0474 0.0261 0.0075 

OSV 0.4691 0.1042 -0.0466 0.0129 -0.0068 0.0710 0.1344 0.0431 

Initial log-likelihood 6063.93 Final log-likelihood 6431.78 

Number of iterations 15 Norm of the gradient 2.73 × 10−4 

Time to convergence 77.77 seconds Number of observations 95 (quarterly) 

~† γ ii , i = 1,…,N, are the diagonal elements of the N × N matrix of price effects ΓΓ . 
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