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ABSTRACT 

A test for the presence of serial correlation is routinely carried out as a test for efficiency in fmancial markets. The 
problems inherent in such testing in the presence of dynamic heteroscedasticity are addressed in this paper. The 
accuracy of using standard critical values of serial correlation tests in the presence of autoregressive conditional 
heteroscedasticity (ARCH), generalized ARCH (GARCH), normal and non-normal disturbances is investigated. 
Tests examined include the conventional Durbin-Watson, Box-Pierce, Ljung-Box, Lagrange multiplier tests, 
proposed ARCH-corrected versions of these tests, and the robust tests of Diebold (1986) and Wooldridge (1992). 

Standard serial correlation tests are derived assuming that the disturbances are homoscedastic, but this study shows 
that asymptotic critical values are not accurate when this assumption is violated. Asymptotic critical values for the 
ARCH(2)-coiTected LM, BP and BL tests are valid only when the underlying ARCH process is strictly stationary, 
whereas Wooldridge's robust LM test has good size and power properties overall. These tests exhibit similar 
behaviour even when the imderlying process is GARCH (1, 1). When the regressors include lagged dependent 
variables, the sizes and powers of the corrected tests depend on the coefficient of the lagged dependent variables, 
and the ratio of signal to noise. They appear to be robust across various disturbance distributions. 
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1. Introduction 

The problem of testing for serial correlation arises frequently in applied research involving 

economic and financial time series data. For example, omitted variables and inadequate 

modelling of fimctional form can give rise to correlated errors. A test of serial correlation, 

therefore, can be a test for misspecification of a model. Non-synchronicity due to infrequent 

trading of financial assets or inefficiency in financial markets results in serially correlated 

individual asset returns. A test for the absence of serial correlation in asset returns then can be a 

test for market efficiency [see Fama (1965) and BoUerslev and Hodrick (1992)] and 

synchronous trading [see Scholes and Williams (1977) and Lo and MacKinlay (1990)]. These 

are but two examples which illustrate both the importance of testing for serial correlation and 

how this issue can arise in different contexts. 

Engle (1982) and BoUerslev (1986) demonstrated that autoregressive conditional 

heteroscedastic (ARCH) behaviour may be commonly present in a time series context. ARCH-

type processes that emerge from evolving variance over time have the ability to capture the 

volatility clustering and leptokurtosis characteristic of financial time series of various 

frequencies; for example, see BoUerslev et al. (1992). A non-normal ARCH or generalized 

(GARCH) process is often required for a satisfactory representation of the distributional 

behaviour of asset returns, as shown by Baillie and DeGennaro (1990), Engle and Gonzalez-

Rivera (1991) and others. See BoUerslev, Chou and Kroner (1992) and Bera and Higgins 

(1992) for extensive surveys of this ARCH literature. 



Both phenomena, serial correlation and ARCH processes, have been found to occur 

simultaneously in models involving economic and financial variables, mainly due to time 

varying autoregressive parameters. Recent studies by Weiss (1986), Tsay (1987), Bera, Higgins 

and Lee (1992), Bollerslev and Hodrick (1992) and BoUeslev and Wooldridge (1992) consider 

the theory and applications of such ARMA-ARCH models, and demonstrate that the issue of 

testing for serial correlation in the presence of ARCH behaviour deserves attention. 

The limiting distributions of many serial correlation tests are derived assuming independent 

identically distributed (i.i.d.) normal disturbances. In empirical studies involving time series 

this ideal assumption is often violated, and these tests can be biased. Since an indication of 

serially correlated errors has far-reaching implications for econometric modelling, it is 

important that tests for this behaviour have correct size and good power in finite samples, 

particularly when the underlying assumptions are violated. 

The main objective of this study is to investigate the robustness of the popular Durbin-Watson 

(DW), Lagrange multiplier (LM), Box-Pierce (BP) and Ljung-Box (LB) tests and their 

corrected versions against autoregressive disturbances in the presence of dynamic 

heteroscedastic disturbances with normal or non-normal distributions. 

Diebold (1986) addressed the question of robustness of the BP and LB tests in the presence of 

ARCH and recommended using ARCH-corrected standard errors. Although empirical evidence 

using an observed time series supports his claiim, the perfoirmance of these tests with 

unobserved series needs to be evaluated. This is important as serial correlation is commonly 



present, for example, in the disturbance term of the regression model and our simulation study 

is designed to address this issue. Recently, Wooldridge (1991) proposed LM-type tests for 

serial correlation in the presence of ARCH and showed that they are robust when the dynamics 

are completely specified. The properties of these robust LM-type tests in finite samples remain 

unknown, though Small (1993) has undertaken some investigation in small samples. 

We also suggest corrections similar to those of Wooldridge to the conventional DW, BP, LB 

and LM tests and examine their properties. Here we assess the finite-sample size properties of 

the standard tests, Diebold's and Wooldridge's robust tests and our ARCH-corrected tests and 

compare their performance also when the underlying disturbance process is normal or non-

normal ARCH and GARCH. 

The model and the tests are discussed in the next section and a Monte Carlo experiment and the 

results are reported in section 3. Section 4 gives an illustrative example and section 5 concludes 

the paper. 

2. The Model and the Tests 

Consider the model 

y,=x;p + u„ t = l , ... T (1) 

where y, is a dependent variable, x, = [x,i,...XaJ is a kxl vector of variables, which may include 

stochastic and non-stochastic variables, lagged regressors and lagged values of y„ and p is a kxl 

vector of unknown parameters, and Ut follows the stationary AR(m) process 

ut = PiUt-i + •••+ PmUt-m + et, t = m+l, ..., T (2) 



where pi,..., p ,̂ are unknown autoregressive parameters. In order to ensure the stationarity of 

(2), we assume that roots of 1 -piL - .... -PmL*" = 0, where L is the lag operator, lie outside the 

unit circle. The term e, is assumed to be of the form 

et = CTtZt (3 ) 

where Cj > 0, {z,} is i.i.d. with E(Zt) = 0 and var (z^ =1, and for some function h, 

a,' = E(V I OM) = HO,.,) (4) 

where O^ is the information set available at time t-1. This model is widely used in finance. 

Our interest lies in testing for serial correlation in model (1), but appropriate tests would depend 

on the functional form of h. Although several different fimctional forms have been suggested in 

the literature, we restrict attention to the well known GARCH(p,q) process 

q p 

«y?=^o+Z«i«H+ZY.^H (5) 
i-i j=i 

where GQ̂  > 0, ttj > 0, i = 1,..., q and YJ > 0, j = 1,..., p [see BoUeirslev (1986)]. Nelson and Cao 

(1992) show that the non-negativity conditions can be relaxed somewhat when the process is 

GARCH. 

Stationary and integrated GARCH(p,q) processes have been of interest in many empirical 

studies. Therefore, we assume that 

I a i + Z Yj ^ 1 
q p 
I a i + Z 

i=l j = l 

If Yj = 0, j = 1,..., p, then (5) reduces to the ARCH(q) disturbance process. 

We wish to test the null hypothesis, given E(u, I Ot.O = G, , 



Ho:pi = - = Pm = 0 

against the alternative hypothesis 

H,:Notallpj = 0,j = l,...,m 

The Durbin-Watson test, although most often used to test against AR(1) disturbances, can be 

regarded as a test for disturbances with a first-order autocorrelated component [see King and 

Evans (1988)]. Against higher order AR(m) disturbances, the BP, LB and LM tests, denoted 

by BPm, LBm and LMm respectively, are used fi^quently. These test statistics are defined as 

DWl = 2(fi. - fi-O'/Zu?, 

t=2 t=l 

BPm = T^pf, 

m 

LBm = T(T+2)£(T-i)•'p^ 
i = l 

and LMm = (T-m)R^, 

where Ut, t = 1,..., T, are the OLS residuals of model (1), Pi = S Ui Ui-i / 2̂  Ut» i = 1,..., m, and 

R is the coefficient of determination of the regression of Ut on x, and (%],..., u,.^. The test 

statistics other than DWl have a chi-squared distribution with m degrees of fi-eedom (5C(m)) 

asymptotically imder the null hypothesis. All are derived under the assumption of 

homoscedastic and normal disturbance distributions. 

Diebold's corrected BP and LB tests, denoted DBPm and DLBm respectively, are defined as 



DBPm = T £ 
i=l L 

DLBm = T(T+2) J ] 

r '4 
a 

' 4 , 
.0 + 

m 

i=l 

-2 
T i . 

- 2 

Pi 

* 4 

a 
* 4 + 

-1 

*2 
T i -

(T-i)-' P-, 

respectively, where fi is an estimate of the ith autocovariance of Ut defined as 

Ti - T 2.(ut - a )(ut.i - a ) 

>4 . 
and a is the square of an estimate of the unconditional second moment of Ut defined as 

6' = [T'lu?]' 

Diebold (1986) has shown that these tests are asymptotically X(m) imder the null hypothesis and 

the normality assumption. Although the exact expressions for xf and a"* can be derived for an 

ARCH process, they need to be estimated in practice, which is done in our simulation study. 

Wooldridge's ARCH-corrected LM test, denoted RLMm, is robust for testing Ho in time-series 

models with completely specified dynamics. The construction of RLMm involves the 

following steps: 

(i) Obtain the fitted values denoted here by h,, t=l,..., T fi-om the linear regression 

U? = Go + Gl UM + ... + GqUlq + V,, t = l , . . . , T . 

(ii) Defme x! = x t / v ^ and ut = ut/vfi | , t= l , . . . , T. 

(iii) Save the Ixm vector of residuals, say ^, fi-om the regression of each of the X, on x*, 

where X,t ~ (ut-i> ••••> ut-m)-



(iv) Compute (T - SSR), where SSR is the sum of squares of residuals from the regression of 

1 on u, r , . (T - SSR) ~ x^m) asymptotically under Ho-

Before introducing our modified versions of the serial correlation tests, recall that an important 

assumption underlying the tests is that the disturbance terms have a constant variance, which is 

not the case in the presence of ARCH. This suggests that the DWl, BPm and LBm tests might 

be improved by replacing û  with its standardised version. We therefore replace Ut by u, 

obtained in step (ii) of Wooldridge's procedure and denote the corresponding corrected versions 

by CDWl, CBPm and CLBm, respectively. We also include such a correction for the 

conventional LMm test computed as (T-m)R , where R is the coefficient of determination of 

the linear regression of u, on x' and (u.,,...,u,.„,), and denote it by CLMm. The asymptotic 

distributions of these corrected tests are valid under the particular ARCH(q) model - including 

homoscedasticity - estimated in the preliminary stage, but are not robust to variance 

misspecification. However, Woohidge's corrected LM tests are asymptotically valid under any 

heteroscedasticity. We assess the properties of all corrected tests when the true model is 

GARCH (p.q) but the correction is made assuming the ARCH(q) process. 

BoUesIev and Wooldridge (1992) proposed easily computable LM tests for AR-GARCH, and in 

a simulation study showed that their sizes and powers compare favourably with the standard 

Wald and LM tests when the disturbances are non-nonnal. These tests are not considered in 

this smdy. Bera, Higgins and Lee (1992) also proposed a LM test for serial correlation in the 

presence of ARCH/GARCH process which arises as a result of time varying serial correlation 
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and Small (1993) considered its applications. However this test could not be applied directly to 

model (1). 

We use Monte Carlo simulations to assess the properties of the conected versions of the various 

tests and compare them with those of their uncorrected counterfiarts and the robust tests of 

Diebold and Wooldridge. 

3. Empirical Evaluation of the Tests 

A Monte Carlo experiment was conducted to assess the accuracy of the sizes of the 

abovementioned tests in the presence of ARCH and GARCH disturbances, using standard 

critical values. Some power comparisons were also undertaken. Selected size and power 

results only are presented in Tables 1 to 9. The complete set of results is available on request. 

3.1 Experimental Design 

Critical values were based on the assumption of standard i.i.d. nonnal errors in model (1) at the 

1, 5 and 10 per cent nominal levels. Exact values were calculated for the DWl test and 

tabulated chi-square values were used for the other tests with an asjonptotic justification. 

Monte Carlo simulations were based on 2,000 replications. In order to limit the simulation 

study to a manageable scale, we considered only the cases m = 1,2, 5,10,20 in the disturbance 

process (2), and (p,q) = (0,2), (1,1) in model (5) which correspond to ARCH(2) and 

GARCH(1,1) processes, respectively. An ARCH(2) process can be generated as 

ei = Ti.(l "•" aief-i + aicL) 



where (a,, a2) e Qj = {(aj, a2) I tti, a2 > 0 and ai + a2 < 1} with T], a random disturbance. A 

GARCH(1,1) process can be generated as 

e, = Ti,(l+ a.eM+Yicrf.,)"' 

where(a,,y,)EQ2 = {(ai,Y,) I ai,yi >0anda,+y, < 1}. 

For an underlying ARCH(2) disturbance process, sizes were estimated at the grid points 

{(a,, ttz): a, = 0.0,0.2,0.4 and a2 = 0.0,0.4,0.6} c fi,, 

and when the process is GARCH(1,1) they were estimated at 

{(a,, Yi): a, = 0.2,0.4 and yj = 0.0,0.4,0.6} c Q2. 

The following regressor or X matrices, with T = 50,100,500, were used 

XI: A constant dummy and the daily 90-day Australian Treasury bill rate commencing 16 

September 1985 (k=2). 

X2: A constant dummy and the daily spread between 90 and 180 days Australian Treasury 

bill rates commencing 16 September 1985 (k=2). 

X3: A constant dummy, the 90-day bill rate and this variable lagged by one, two and three 

days (k=5). 

X4: XI and the first-order lagged dependent variable (k=3), where the coefficient of X is P' 

= (0,1,5), with the coefficient of the lagged dependent variable, 5, set at 0.2, 0.4, 0.6 and 

0.8, and a = 0.07,2, 7. 
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X5: X2 and the first-order lagged dependent variable (k=3), where the coefficient of X is 

P' = (0,1,5), with the coefficient of the lagged dependent variable, 6, set at 0.2, 0.4, 0.6 

and 0.8, and a = 2,4,7. 

With dynamic regressors, test characteristics can depend on the signal to noise ratio, which for 

X4 and X5 corresponds to Sx^ / a . Generally the signal to noise ratio is given by 11 X*P 11 la, 

where X* is the matrix of regressors excluding the lagged dependent variable. To keep the 

experiment manageable, we chose only one set of values for P but a range of values for a, 

mostly those which result in reasonable R values for the model (1). 

A number of fitted values of h, were found to be negative, whiich is undesirable because the 

variables used to construct the test statistics are normalized by dividing by Vht (see step (i) in 

Wooldridge's procedure). Hence, to ensure that these fitted values h, were positive, the 

parameter estimates of the model with q = 2 were obtained by the method of least squares 

subject to the constraints 0o> 0,0i, 62 ^ 0. [When investigating tlie possibility of using absolute 

values of h, and log (h,), the ARCH-corrected tests were found to have unacceptably high 

sizes but Wooldridge's robust tests were unaffected.] 

To generate the random disturbances {rit}, a standard normal distribution, which is symmetric 

with a kurtosis of 3, and a weighted mixture (MIXNOR) of noimal distributions {0.1N(0,1) + 

0.9N(0,3)} were used. Disturbances following six other distributions, each with a zero mean, 

unit variance and characterised by their skewness and kurtosis, Avere also generated, based on a 
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generalisation of Tukey's lambda distribution. Parameter values were chosen fi-om the table in 

Rambierg, Tadikamalla, Dudewicz and Mykytka (1979). Leptokurtosis is implied by a kurtosis 

or tail measure greater than 3. These distributions have, respectively: a right skewness of 0.5 

and medium kurtosis or tail of 4 (RSMT) and heavy kurtosis (RSHT); a heavy right skewness 

of 0.8 and medium kurtosis of 4 (HRSMT) and heavy kurtosis of 9 (HRSHT); and symmetry 

witii kurtosis of 6 (KIJRT6) and 9 (KURT9). These distributions enable a systematic 

investigation of the effect of skewness and kurtosis and were chosen to represent a range of 

alternative behaviour characteristic of financial and economic situations. 

The powers of the ARCH-corrected DW test were computed against an AR(1) alternative 

hypothesis with pi = 0.1, 0.3, 0.5, 0.7, 0.9 and those of the other ARCH-corrected tests against 

AR(2) were computed at the grid points {(p,, P2) : Pi = 0.1, 0.3, 0.4 and p2 = 0.1, 0.3, 0.5}. 

Note that the ARCH/GARCH behaviour is present also under tiie altemative hypothesis. 

3.2 Size Comparisons 

Empirical sizes at a nominal significance level of 5 per cent for the DWl, LM2, LM5, BP5 and 

LB5 tests and our proposed ARCH(2)-corrected versions in the presence of ARCH(2) 

disturbances are reported in Table 1, and those in tiie presence of GARCH(1,1) are presented in 

Table 2 over selected grid points. Corresponding sizes of Wooldridge's robust RLM2 and 

RLM5 tests and Diebold's DBP5 and DLB5 tests are reported in Table 3. These are all based on 

the non-stochastic matrix XI with T = 50,100 and 500. Empirical sizes of these tests, based on 

asymptotic normal critical values, for various non-normal disturbance distributions are reported 
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in Table 4. Size comparisons for a stochastic regressor matrix X4 £ire shown in Table 5 for the 

proposed ARCH(2)-corrected tests. 

The results reported in Table 1A reveal that when the disturbances follow an ARCH(2) process 

the sizes of the standard serial correlation tests first gradually and tlien more sharply increase as 

ai + a2 increases to 1. The maximum sizes always occur at aj + a2 = 1, i.e., when the process 

is integrated. The maximum size is near 0.4 for DWl, and can be as high as 0.7 for the BP5, 

LBS and LM5 tests in large samples. Ceteris paribus, the sizes of the standard tests tend to 

increase as the sample size increases when the ARCH process is integrated or nearly integi-ated, 

indicating that their asymptotic critical values are not accurate when the assumption of 

homoscedastic errors is relaxed. 

When the disturbances follow m ARCH(2) process, the ARCH(2)-corrected tests have sizes 

which are generally closer to the nominal level than their uncorrected counterparts (see Table 

IB), though still usually exceeding it particularly for (near) integrated process and in large 

samples. Even when the underlying disturbance process is ARCH(l), corrected tests based on 

an over-parameterized ARCH(2) model show a marked improvement over the uncorrected tests, 

particularly when the process is stationary. Our ARCH(2)-corrected tests appear to have 

reasonably accurate sizes using asymptotic critical values only when the ARCH/GARCH 

process is strictly stationary, possibly because the estimates of the ARCH parameters are not 

well-behaved otherwise. 
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Overall the sizes of the standard Durbin-Watson tests are smaller than those of the other tests; 

the Box-Pierce tests are closer to the nominal level than the Ljung-Box test (with 5 lags); and 

the Lagrange multiplier tests perform better with lags of two (LM2) than with five (LM5) in 

some range of ARCH parameter values and sample sizes, whereas the reverse is true in the other 

ranges. 

When the tests are corrected assuming ARCH(2) disturbances, similar size behaviour is 

observed when the true disturbances are GARCH(1,1), demonstrating the robustness of such a 

correction when the heteroscedastic form is inappropriate (see Table 2). The sizes of our 

proposed ARCH(2)-corrected tests are often closer to the nominal size in the GARCH(1,1) 

parameter space at the selected grid points than those corresponding to ARCH(2). 

The ARCH-corrected tests DBP5 and DLB5 do not seem in this study to have accurate sizes 

(see Table 3A), whereas in Diebold's (1986) study the ARCH-corrected BP and LB tests do. A 

possible reason for this inconsistency is that his study and ours differ in two respects. His 

experiment involved an observed time series yt = e„ but we use residuals fi-om the regression 

model with an unobserved disturbance term. In addition, Diebold used a closed form 

expression for the standard errors, assuming normal disturbance terms following an ARCH 

process of known order, whereas we estimated the standard errors and the corrected tests 

statistics are derived without such assumptions. Because of the poor size performance of these 

tests in most cases, their powers are not computed. 
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The Wooldridge ARCH(2)-corrected RLM2 test has close to the nominal size in ahnost all 

cases considered in this study (see Table 3) and the size of the RLM5 test is much lower for 

small samples but is reasonable for T > 50. A desirable property of Wooldridge's test, not 

shared by the others, is that its size is usually below the nominal level in all samples and is 

stable over the range of ARCH/GARCH parameter values in large samples. The RLNCl and 

RLM5 tests are notably robust when the imderlying disturbance process is GARCH(1, 1) rather 

than ARCH(2) and the use of asymptotic critical values results in accurate sizes. 

The sizes of all the tests appear reasonably stable across various underlying disturbance 

distributions, as demonstrated in Table 4. This is consistent witli Evans (1992), where DWl 

and other tests of serial correlation were foimd to be robust even when the disturbance 

distribution had no finite moments. Ceteris paribus, the tests are not sigmficantly affected by 

skewness and no systematic effect of kurtosis was apparent on their sizes. These characteristics 

were evident also at the 1 and 10 per cent significance levels. 

The sizes of the ARCH(2)-corrected tests for the stochastic X4 matrix (shown in Table 5) 

depend on 6 and the signal to noise ratio, generally increasing as a and/or 5 increase. The 

RLM2 test size is below 0.05 in all cases considered here, whereas for the CLM2, CBP2 and 

CBL2 test sizes can be as high as 0.3, 0.1 and 0.1 respectively, particularly when the î JlCH 

processes is integrated or is nearly so. Ceteris paribus, the siz<;s of all tests increase as the 

sample sizes increases, but generally remain below the nominal level when the process is 

stationary with the exception of CLM2. The CDW test size can be as low as 0.00 when T = 50. 
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3.3 Power Comparisons 

Selected power calculations given in Tables 6 to 9 are based on ARCH(2)-corrected serial 

correlation tests using standard critical values at the 5 percent nominal level. For the non 

stochastic matrix XI with T = 50, empirical powers for the corrected LM and BP tests against 

AR(2) are shown for AR(2)-ARCH(2) disturbances in Table 6: for normal disturbances in Table 

6A, for disturbances which are right skewed with heavy kurtosis in Table 6B; and for heavily 

right skewed disturbances with medium kurtosis in Table 6C. Power results of corrected tests 

against AR(2) disturbance process are given in Table 7A as well as for the corrected Durbin 

Watson test against AR(1) disturbances in Table 73, when the imderlying process is normal 

AR(2)-GARCH(1,1). For the stochastic matrix X4 with T = 50, power results for the 

ARCH(2)-corrected DW test when the disturbance distribution is normal AR(1)-ARCH(2) are 

given in Table 8 and with T = 100 in Table 9, for the ARCH(2)-con:ected LM and BP tests 

when the disturbance distribution is normal AR(2)-ARCH(2). 

The ARCH-corrected tests appear to have reasonable powers for non-stochastic regressors, as 

seen in Table 6, increasing with higher values of the autoregressive parameters p, and pj. The 

power properties of the tests when the disturbance distribution is non-normal and the regressors 

are non-stochastic differ relatively little from the normal case: when the distribution is 

leptokurtic, the powers of the corrected tests are marginally lower than those for normal 

distribution in most cases; when the disturbance distribution is skewed, the powers slightly 

exceed those for normal distribution, particularly when pi and Pi values exceed 0.3. The 

overall power was generally high for all, and the tests can be ranked as CBL2, CBP2, CLM2 

and RLM2 in terms of power. Wooldridge's RLM2 test however actually performs the best. 



given that its sizes are the lowest and the closest to the nominal sizes, particularly for hirger 

values of the ARCH(2)/GARCH(1, 1) parameter values. However, wdth a heavily skewed 

disturbance distribution (Table 6C), the RLM2 test is consistently superior for a, + a2 > 0.4. 

The RLM test is more powerful than the other ARCH(2)-corrected tests in the presence of 

normal GARCH (1, 1) disturbances (see Table 7). Patterns similar to these for ARCH(2) 

disturbances were observed across all X matrices. These power results and the corresponding 

signs demand the effectiveness and rorbustness of ARCH corrections, even if the true model is 

some other form of dynamic heteroscedasticity. 

The power against AR(1) of the corrected DW test varies from 0.1 to 1.00 as pi varies from 0.1 

to 0.9, when the regressions are non-stochastic as seen from Table 8 with 5 = 0. Powers are 

quite reasonable with a tendency to marginally decline as the ARCH(2) parameters aj and/or ai 

increase. 

However when the regressor matrix is stochastic, with B ̂  0 such that it includes a lagged 

dependent variable, powers increase as a decreases and/or 5 increases and are significantly 

lower for high o and low 8 parameter. The CDW test is most powerful with powers rzinging 

from 0.003 to 1.00 for T = 50 and 100: generally the nominal size exceeded the power for the 

other tests for T = 50, but these are not reported here. For a stochastic regressor matix the 

power of each of the tests generally increases with higher 6 values, as evident in Table 8 jmd 9. 

Generally when the dynamic term coefficient is large the power is quite reasonable for T = 100. 

The powers of the ARCH(2)-corrected LM tests are above the nominal level for all pi and p2 
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values (see Table 9). The CBL2 test performs better than the CBP2 test as expected, but 

surprisingly its power can be much smaller than the nominal size for small values of 5 and T = 

100. The RLM2 tests have lower power than the other corrected LM tests in all cases as a 

consequence of its lower size for large ARCH parameter values; this difference is noticeable 

only when (pi, P2) values are small. 

4. An Illustrative Example 

The Australian Treasury bill rates used in our experiment have been found to be 1(1) variables 

with GARCH(1,1) disturbances [see Inder and Silvapulle (1993)] when using monthly 

observations. Serial correlation in the first differences of these bill rates was tested for, using 

monthly data for the period January 1973 to October 1992. The estimated uncorrected test 

statistics and corresponding corrected versions are: 

Series DWl LM5 BP5 BL5 

3monthrate 1.614 13.148 15.911 15.083 

6 month rate 

Series 

1.789 

CDWl 

12.402 

CLM5 RLM5 

19.000 

CBP5 

18.904 

CBL5 

3monthrate 1.890 7.036 8.414 14.112 13.012 

6 month rate 1.808 5.890 10.001 12.927 12.000 

At the 5 percent level, the uncorrected statistics all exceed the critical values, indicating that the 

null of no serial correlation is rejected. In contrast, the CDW, CLM5, and RLM5 statistics are 
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insignificant at the 5 per cent level, indicating acceptance of the null hypothesis. However, the 

CBP5 and CLB5 statistics are still significant at the 5 per cent level. 

This example demonstrates that, in the presence of ARCH disturbances, tests for serial 

correlation may result in misleading inferences if this ARCH behaviour is not taken into 

account. ARCH-corrected tests may improve such testing. 

5. Conclusion 

Using a Monte Carlo simulation study, we investigated the validity of the standard critical 

values of the Durbin-Watson, Lagrange multiplier, Box-Pierce and Llimg-Box tests and their 

ARCH-corrected versions plus Diebold's and Wooldridge's robust tests in the presence of 

ARCH/GARCH disturbances. 

Our results suggest that sizes of standard serial correlation tests are higher than the nominal size 

when ARCH/GARCH disturbance behaviour is present but unaccounted for, and they increase 

sharply as the parameter values of the process increase. For all sample sizes, our proposed 

ARCH-corrected tests have sizes that are close to the nominal level only when the underlying 

ARCH/GARCH disturbance process is stationary. Diebold's tests have relatively poor size 

properties. Wooldridge's ARCH-corrected LM tests sizes appear ttie closest to the nominal level 

and are stable over a range of ARCH/GARCH parameter values in large samples. The Diorbin-

Watson test appears to be the next best. 

The sizes of the ARCH-corrected serial correlation tests are marginally smaller when the 

underiying disturbances follow a GARCH rather than an ARCH process. In the presence of 



19 

stationary ARCH behaviour, when the correlation tests are corrected assuming a slightly over-

parameterized process, the sizes are appear close to the nominal level. 

Taking account of the size properties of the tests, it is evident from power comparisons that the 

corrected tests have good powers when the regressors are non-stochastic even in small samples, 

whereas they have poor powers for stochastic regressors, particularly when the sample size and 

the coefficient of lagged dependent variable are small and the signal to noise ratio is large. 

Again taking size properties into account, generally the ARCH-corrected Durbin Watson test is 

most powerfiil against first order autoregressive disturbances and Wooldridge's robust LM test 

against higher orders. Wooldridge's test is most powerful in the presence of inappropriate form 

of dynamic heteroscedasticity. ARCH corrected DW and LM tests resulted in correct inference 

when applied to Australian Treasury Bill rates. 

Given their good size and power properties when the disturbance process is either some form of 

dynamic heteroscedasticity or is homoscedastic, the use of ARCH-corrected tests is highly 

recommended: one can test for serial correlation without taking a stand on the disturbance 

variance process. 
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Table 2 

Empirical sizes, with normal GARCH (1,1) disturbances, based on standard 5% critical values for 
matrix XI. 

T= 50 100 500 

Test 
Statistics ^l •0.2 0.4 0.2 0.4 0.2 0.4 

A: Standard serial correlation tests 

DWl 
LM2 
LM5 
BP5 
LBS 

DWl 
LM2 
LM5 
BP5 
LBS 

DWl 
LM2 
LMS 
BP5 
LBS 

0.0 

0.4 

0.6 

0.045 
0.091 
0.079 
0.0S8 
0.082 

0.090 
0.096 
0.097 
0.068 
0.099 

0.091 
0.093 
0.101 
0.096 
0.124 

0.053 
0.140 
0.113 
0.074 
0.101 

0.095 
0.159 
0.145 
0.117 
0.157 

0.111 
0.146 
0.156 
0.158 
0.192 

0.061 
0.087 
0.076 
0.068 
0.079 

0.087 
0.116 
0.095 
0.088 
0.104 

0.099 
0.129 
0.117 
0.113 
0.127 

0.077 
0.139 
0.118 
0.102 
0.116 

0.109 
0.189 
0.179 
0.173 
0.202 

0.138 
0.231 
0.276 
0.276 
0.306 

0.063 
0.085 
0.075 
0.070 
0.074 

0.121 
0.115 
0.102 
0.104 
0.108 

0.109 
0.142 
0.154 
0.152 
0.156 

0.120 
0.178 
0.159 
0.141 
0.145 

0.130 
0.290 
0.342 
0.348 
0.354 

0.298 
0.475 
0.600 
0626 
0.632 

B: ARCH (2)-corrected serial correlation tests 

CDWI 
CLM2 
CLM5 
CBFS 
CLBS 

CDWI 
CLM2 
CLMS 
CBFS 
CLBS 

CDWI 
CLM2 
CLMS 
CBP5 
CLBS 

0.0 

0.4 

0.6 

0.042 
0.04S 
0.060 
0.042 
0.069 

0.063 
0.050 
0.060 
0.041 
0.067 

0.062 
0.050 
0.083 
0.057 
0.089 

0.050 
0.069 
0.064 
0.044 
0.064 

0.068 
0.070 
0.093 
0.059 
0.082 

0.080 
0.084 
0.140 
0.070 
0.098 

0.053 
0.046 
0.045 
0.047 
0.058 

0.062 
0.064 
0.068 
0.052 
0.059 

0.059 
0.057 
0.079 
0.062 
0.071 

0.059 
0.060 
0.047 
0.043 
0.054 

0.070 
0.090 
0.090 
0.072 
0.086 

0.098 
0.127 
0.201 
0.107 
0.124 

0.053 
0.041 
0.044 
0.043 
0.044 

0.077 
0.058 
0.057 
0.053 
0.055 

0.060 
0.062 
0.078 
0.061 
0.062 

0.050 
0058 
0.053 
0.050 
0.053 

0.081 
0.099 
0.120 
0.078 
0.080 

0.100 
0.223 
0.345 
0.204 
0.211 
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Tables 

Empirical sizes of the Wooldridge's ARCH(2)-corrected robust LM test and Diebold's corrected 
BP and LB tests based on standard 5% critical values for matrix XL 

T= 50 100 500 

Test 
Statistics 

aj=0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4 

A: Normal ARCH(2) disturbances. 

RLM2 
RLM5 
DBP5 
DLB5 

RLM2 
RLM5 
DBP5 
DLB5 

RLM2 
RLM5 
DBP5 
DLB5 

0.0 

0.4 

0.6 

Yi 

0.049 
0.026 
0.064 
0.060 

0.056 
0.027 
0.097 
0.087 

0.052 
0.028 
0.112 
0.096 

«! = 

0.057 
0.026 
0.135 
0.120 

0.055 
0.032 
0.124 
0.113 

0.049 
0.022 
0.157 
0.142 

0.2 

0.051 
0.023 
0.139 
0.121 

0.047 
0.025 
0.142 
0.124 

0.052 
0.025 
0.162 
0.157 

0.4 

0.048 
0.046 
0.070 
0.065 

0.046 
0.041 
0.100 
0.090 

0.051 
0.041 
0.120 
0.115 

a ,= 

0.048 
0.040 
0.140 
0.128 

0.054 
0.049 
0.128 
0.112 

0.054 
0.042 
0.139 
0.131 

0.2 

0.051 
0.042 
0.142 
0.128 

0.054 
0.048 
0.140 
0.106 

0.041 
0.034 
0.145 
0.139 

0.4 

0.053 
0.049 
0.120 
0.100 

0.049 
0.048 
0.113 
0.096 

0.048 
0.037 
0.129 
0.120 

tti = 

0.046 
0.052 
0.147 
0.120 

0.051 
0.049 
0.130 
0.118 

0.049 
0.043 
0.136 
0.120 

0.2 

0.048 
0.050 
0.151 
0.134 

0.054 
0.052 
0.137 
0.127 

0.043 
0.040 
0.128 
0.127 

0.4 

B: Normal GARCH (1,1) disturbances. 

RLM2 
RLM5 
DBP5 
DLB5 

RLM2 
RLM5 
DBP5 
DLB5 

RLM2 
RLM5 
DBP5 
DLB5 

0.0 

0.4 

0.6 

0.041 
0.018 
0.128 
0.121 

0.046 
0.034 
0.119 
0.102 

0.049 
0.028 
0.148 
0.131 

0.046 
0.029 
0.130 
0.123 

0.048 
0.025 
0.138 
0.130 

0.052 
0.028 
0.150 
0.139 

0.045 
0.039 
0.131 
0.120 

0.054 
0.047 
0.122 
0.111 

0.047 
0.041 
0.129 
0.113 

0.059 
0.048 
0.131 
0.122 

0.054 
0.042 
0.131 
0.120 

0.052 
0.045 
0.130 
0.114 

0.053 
0.052 
0.129 
0.118 

0.045 
0.047 
0.123 
0.120 

0.046 
0.047 
0.127 
0.118 

0.046 
0.047 
0.138 
0.121 

0.051 
0.049 
0.129 
0.121 

0.050 
0.053 
0.129 
0.120 
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Table 4 

Empirical sizes with ARCH (2) disturbances of ARCH(2)-corrected serial correlation tests, based 
on standard 5% critical values for matrix XI and different disturbance distributions. 

Disturbance Distribution 

T 

50 

100 

(tti, "2) 

(0,0) 

(0.4,0.4) 

(0,0) 

(0.4, 0.4) 

Test 
Statistics 

CDWl 
CLM2 
CLM5 
CBP5 
CLB5 
RLM2 
RLM5 

CDWl 
CLM2 
CLM5 
CBP5 
CLB5 
RLM2 
RLM5 

CDWl 
CLM2 
CLM5 
CBP5 
CLB5 
RLM2 
RLM5 

CDWl 
CLM2 
CLM5 
CBP5 
CLB5 
RLM2 
RLM5 

NORMAL 

0.041 
0.030 
0.056 
0.047 
0.063 
0.049 
0.026 

0.061 
0.107 
0.111 
0.082 
0.107 
0.047 
0.025 

0.051 
0.035 
0.065 
0.056 
0.065 
0.048 
0.046 

0.078 
0.132 
0.106 
0.089 
0.103 
0.054 
0.048 

MIXNOR 

0.040 
0.038 
0.055 
0.049 
0.061 
0.051 
0.028 

0.065 
0.109 
0.110 
0.080 
0.108 
0.050 
0.027 

0.050 
0.048 
0.062 
0.058 
0.068 
0.047 
0.047 

0.075 
0.120 
0.110 
0.092 
0.103 
0.054 
0.050 

RSMT 

0.045 
0.036 
0.057 
0.040 
0.055 
0.050 
0.026 

0.068 
0.108 
0.105 
0.083 
0.094 
0.051 
0.030 

0.048 
0.037 
0.060 
0.054 
0.067 
0.049 
0.050 

0.090 
0.129 
0.117 
0.110 
0.110 
0.054 
0.050 

RSHT 

0.049 
0.028 
0.054 
0.032 
0.049 
0.053 
0.027 

0.072 
0.101 
0.109 
0.072 
0.092 
0.052 
0.030 

0.055 
0.029 
0.062 
0.059 
0.069 
0.049 
0.051 

0.092 
0.130 
0.115 
0.105 
0.120 
0.053 
0.049 

HRSI^ 

0.050 
0.032 
0.058 
0.039 
0.050 
0.052 
0.028 

0.070 
0.109 
0.098 
0.075 
0.090 
0.050 
0.021 

0.052 
0.032 
0.058 
0,054 
0.070 
0.050 
0.051 

0.087 
0.126 
0.113 
0.102 
0.125 
0.053 
0.050 

HRSHT 

0.050 
0.039 
0.056 
0.032 
0.046 
0.055 
0.031 

0.073 
0.104 
0.100 
0.080 
0.099 
0.050 
0.028 

0.055 
0.029 
0.053 
0.055 
0.072 . 
0.050 
0.052 

0.089 
0.129 
0.116 
0.112 
0.109 
0.055 
0.050 

KURT6 

0.049 
0.028 
0.057 
0.035 
0.052 
0.057 
0.030 

0.077 
0.104 
0.104 
0.079 
0.093 
0.052 
0.029 

0.056 
0.032 
0.056 
0.057 
0.073 
0.052 
0.050 

0.099 
0.129 
0.115 
0.109 
0.108 
0.055 
0.051 

KURT9 

0.050 
0.030 
0.055 
0.034 
0.049 
0.056 
0.032 

0.075 
0.104 
0.100 
0.078 
0.095 
0.055 
0.032 

0.056 
0.028 
0.055 
0.058 
0.073 
0.052 
0.054 

0.091 
0.128 
0.114 
0.115 
0.105 
0.058 
0.054 
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Table 5 

Estimated sizes with normal ARCH(2) disturbances of the ARCH(2)-corrected serial correlation 
tests based on standard 5% critical values for matrix X4. 

(T,a,5) 

(50,2,0.2) 

(50,2,0.8) 

(50,0.07,0.2) 

(50,0.07,0.8) 

(100,2,0.2) 

(100,2,0.8) 

(100,0.07,0.2) 

(100,0.07,0.8) 

ai = 

" 2 = 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBD2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

CLM2 
CBP2 
CBL2 
RLM2 
CDW 

0.0 

0.0 

0.054 
0.006 
0.010 
0.015 
0.003 

0.062 
0.019 
0.021 
0.024 
0.020 

0.053 
0.007 
0.009 
0.020 
0.030 

0.062 
0.023 
0.025 
0.028 
0.029 

0.055 
0.012 
0.013 
0.013 
0.007 

0.032 
0.014 
0.015 
0.021 
0.015 

0.059 
0.016 
0.023 
0.015 
0.010 

0.025 
0.018 
0.018 
0.016 
0.017 

0.0 

0.4 

0.075 
0.020 
0.025 
0.023 
0.002 

0.071 
0.024 
0.030 
0.029 
0.012 

0.062 
0.024 
0.026 
0.023 
0.013 

0.069 
0.023 
0.028 
0.031 
0.014 

0.060 
0.017 
0.019 
0.017 
0.010 

0.078 
0.036 
0.039 
0.026 
0.025 

0.055 
0.012 
0.018 
0.016 
0.012 

0.075 
0.040 
0.044 
0.025 
0.028 

0.0 

0.6 

0.093 
0.017 
0.023 
0.019 
0.002 

0.100 
0.024 
0.031 
0.027 
0.027 

0.097 
0.018 
0.020 
0.018 
0.015 

0.095 
0.021 
0.029 
0.030 
0.018 

0.115 
0.030 
0.032 
0.020 
0.009 

0.126 
0.037 
0.041 
0.032 
0.033 

0.102 
0.029 
0.030 
0.024 
0.018 

0.131 
0.038 
0.044 
0.034 
0.038 

0.2 

0.0 

0.059 
0.010 
0.013 
0.018 
0.001 

0.050 
0.015 
0.021 
0.022 
0.021 

0.057 
0.013 
0.018 
0.019 
0.020 

0.040 
0.011 
0.024 
0.028 
0.021 

0.070 
0.021 
0.023 
0.025 
0.019 

0.061 
0.020 
0.024 
0.026 
0.024 

0.075 
0.022 
0.033 
0.034 
0.019 

0.062 
0.024 
0.027 
0.031 
0.021 

0.2 

0.4 

0.079 
0.029 
0.038 
0.024 
0.005 

0.094 
0.027 
0.032 
0.020 
0.030 

0.081 
0.049 
0.048 
0.028 
0.009 

0.098 
0.030 
0.032 
0.025 
0.028 

0.089 
0.026 
0.030 
0.019 
0.016 

0.096 
0.024 
0.028 
0.018 
0.029 

0.079 
0.028 
0.035 
0.020 
0.021 

0.095 
0.023 
0.028 
0.019 
0.037 

0.2 

0.6 

0.132 
0.039 
0.047 
0.033 
0.009 

0.129 
0.037 
0.049 
0.031 
0.042 

0.152 
0.061 
0.057 
0.038 
0.005 

0.138 
0.045 
0.055 
0.035 
0.043 

0.138 
0.045 
0.049 
0.025 
0.019 

0.157 
0.044 
0.048 
0.019 
0.053 

0.117 
0.044 
0.047 
0.023 
0.021 

0.130 
0.042 
0.047 
0.018 
0.056 

0.4 

0.0 

0.060 
0.013 
0.014 
0.019 
0.021 

0.078 
0.016 
0.020 
0.028 
0.027 

0.049 
0.014 
0.013 
0.024 
0.008 

0.082 
0.021 
0.027 
0.031 
0.023 

0.072 
0.010 
0.012 
0.015 
0.021 

0.076 
0.020 
0.023 
0.020 
0.040 

0.068 
0.009 
0.010 
0.012 
0.025 

0.074 
0.018 
0.021 
0.019 
0.025 

0.4 

0.4 

0.121 
0.033 
0.039 
0.030 
0.020 

0.140 
0.035 
0.046 
0.025 
0.039 

0.132 
0.044 
0.049 
0.038 
0.012 

0.140 
0.031 
0.043 
0.029 
0.047 

0.154 
0.041 
0.045 
0.026 
0.024 

0.158 
0.046 
0.055 
0.019 
0.055 

0.148 
0.038 
0.042 
0.029 
0.030 

0.160 
0.049 
0.048 
0.018 
0.056 

0.4 

0.6 

0.142 
0.034 
0.051 
0.022 
0.021 

0.162 
0.049 
0.059 
0.026 
0.059 

0.139 
0.049 
0.071 
0.030 
0.013 

0.152 
0.045 
0.058 
0.031 
0.060 

0.202 
0.077 
0.085 
0.024 
0.033 

0.271 
0.086 
0.092 
0.017 
0.087 

0.182 
0.075 
0.089 
0.024 
0.037 

0.288 
0.096 
0.092 
0.016 
0.084 
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Table 6 

Empirical powers against normal AR(2) disturbances of ARCH(2)-corrected serial correlation tests 
based on asymptotic 5% critical values for matrix XI with T = 50, with different imderlying 
disturbance distributions. 

PI P2 

«! = 

012 = 
A: Normal AR(2)-ARCF 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

0.1 

0.3 

0.5 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBD2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBD2 
CBL2 
RLM2 

0.0 

0.0 
(2) disturbj 

0.071 
0.083 
0.092 
0.060 

0.251 
0.283 
0.323 
0.250 

0.480 
0.519 
0.551 
0.445 

0.313 
0.344 
0.375 
0.282 

0.564 
0.612 
0.632 
0.562 

0.720 
0.762 
0.789 
0.703 

0.736 
0.748 
0.770 
0.700 

0.906 
0.926 
0.938 
0.812 

0.939 
0.950 
0.958 
0.925 

0.0 

0.4 
inces 

0.072 
0.063 
0.086 
0.061 

0.279 
0.280 
0.315 
0.258 

0.472 
0.461 
0.495 
0.426 

0.321 
0.326 
0.360 
0.280 

0.592 
0.624 
0.654 
0.500 

0.721 
0.746 
0.766 
0.680 

0.777 
0.781 
0.800 
0.703 

0.883 
0.895 
0.904 
0.810 

0.938 
0.941 
0.948 
0.907 

0.0 

0.6 

0.074 
0.690 
0.090 
0.062 

0.280 
0.310 
0.358 
0.240 

0.480 
0.512 
0.532 
0.429 

0.311 
0.315 
0.350 
0.288 

0.585 
0.621 
0.648 
0.497 

0.721 
0.752 
0.770 
0.672 

0.728 
0.755 
0.778 
0.700 

0.891 
0.899 
0.918 
0.811 

0.938 
0.930 
0.935 
0.903 

0.2 

0.0 

0.075 
0.088 
0.103 
0.062 

0.293 
0.315 
0.362 
0.248 

0.485 
0.520 
0.557 
0.430 

0.272 
0.300 
0.330 
0.290 

0.571 
0.616 
0.649 
0.490 

0.724 
0.757 
0.774 
0.678 

0.713 
0.746 
0.759 
0.698 

0.880 
0.909 
0.917 
0.805 

0.932 
0.929 
0.939 
0.901 

0.2 

0.4 

0.096 
0.076 
0.093 
0.066 

0.342 
0.354 
0.386 
0.245 

0.487 
0.482 
0.515 
0.440 

0.353 
0.342 
0.371 
0.285 

0.603 
0.629 
0.655 
0.498 

0.732 
0.750 
0.769 
0.690 

0.746 
0.759 
0.777 
0.705 

0.851 
0.877 
0.886 
0.809 

0.940 
0.942 
0.949 
0.896 

0.2 

0.6 

0.099 
0.111 
0.120 
0.063 

0.280 
0.303 
0.337 
0.248 

0.482 
0.473 
0.515 
0.436 

0.313 
0.308 
0.333 
0288 

0.589 
0.605 
0.625 
0.525 

0.732 
0.757 
0.785 
0.686 

0.717 
0.721 
0.739 
0.707 

0.867 
0.882 
0.894 
0.803 

0.931 
0.936 
0.946 
0.883 

0.4 

0.0 

0.110 
0.115 
0.128 
0.064 

0.340 
0.303 
0.376 
0.243 

0.512 
0.490 
0.522 
0.442 

0.348 
0.336 
0.366 
0.280 

0.565 
0.593 
0.615 
0.530 

0.721 
0.755 
0.776 
0.689 

0.719 
0.717 
0.736 
0.699 

0.876 
0.879 
0.897 
0.805 

0.926 
0.929 
0.935 
0.872 

0.4 

0.4 

0.126 
0.105 
0.120 
0.068 

0.345 
0.349 
0.355 
0.243 

0.514 
0.499 
0.530 
0.435 

0.360 
0.342 
0.372 
0.286 

0.580 
0.590 
0.618 
0.510 

0.708 
0.714 
0.750 
0.685 

0.740 
0.734 
0.743 
0.692 

0.866 
0.867 
0.878 
0.798 

0.920 
0.928 
0.924 
0.909 

0.4 

0.6 

0.123 
0.110 
0.118 
0.067 

0.346 
0.333 
0.350 
0.255 

0.516 
0.489 
0.538 
0.440 

0.362 
0.350 
0.379 
0.289 

0.589 
0.603 
0.609 
0.520 

0.715 
0.714 
0.760 
0.690 

0.754 
0.738 
0.752 
0.692 

0.868 
0.862 
0.890 
0.800 

0.919 
0.920 
0.930 
0.872 
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Pi P2 

a, = 

" 2 = 

0.0 

0.0 

0.0 

0.4 

0.0 

0.6 

0.2 

0.0 

0.2 

0.4 

0.2 

0.6 

0.4 

0.0 

0.4 

0.4 

0.4 

0.6 
B: RSHT - AR(2)-ARCH(2) disturbances 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

0.1 

0.3 

0.5 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBD2 
CBL2 
RLM2 

0.057 
0.069 
0.080 
0.057 

0.261 
0.299 
0.327 
0.271 

0.517 
0.541 
0.580 
0.471 

0.315 
0.337 
0.359 
0.265 

0.552 
0.618 
0.643 
0.532 

0.716 
0.774 
0.796 
0.673 

0.772 
0.803 
0.822 
0.729 

0.878 
0.913 
0.928 
0.870 

0.935 
0.952 
0.957 
0.923 

0.063 
0.070 
0.082 
0.070 

0.276 
0.315 
0.347 
0.216 

0.467 
0.492 
0.539 
0.381 

0.329 
0.343 
0.368 
0.271 

0.546 
0.604 
0.632 
0.499 

0.716 
0.746 
0.765 
0.649 

0.787 
0.806 
0.818 
0.725 

0.886 
0.902 
0.914 
0.871 

0.933 
0.947 
0.953 
0.904 

0.074 
0.081 
0.092 
0.067 

0.295 
0.312 
0.351 
0.214 

0.471 
0.476 
0.504 
0.354 

0.366 
0.373 
0.405 
0.301 

0.573 
0.620 
0.639 
0.515 

0.714 
0.750 
0.785 
0.659 

0.787 
0.790 
0.815 
0.727 

0.878 
0.893 
0.902 
0.848 

0.932 
0.938 
0.941 
0.894 

0.074 
0.075 
0.094 
0.064 

0.301 
0.334 
0.368 
0.250 

0.514 
0.553 
0.591 
0.429 

0.335 
0.356 
0.382 
0.250 

0.561 
0.615 
0.642 
0.507 

0.736 
0.780 
0.799 
0.711 

0.745 
0.768 
0.796 
0.674 

0.883 
0.902 
0.916 
0.855 

0.936 
0.947 
0.948 
0.917 

0.091 
0.092 
0.109 
0.069 

0.278 
0.280 
0.317 
0.207 

0.499 
0.508 
0.546 
0.372 

0.359 
0.349 
0.381 
0.260 

0.558 
0.599 
0.636 
0.494 

0.721 
0.754 
0.776 
0.642 

0.771 
0.786 
0.811 
0.685 

0.889 
0.898 
0.910 
0.842 

0.927 
0.941 
0.949 
0.899 

0.089 
0.086 
0.102 
0.050 

0.296 
0.300 
0.349 
0.182 

0.468 
0.486 
0.515 
0.368 

0.364 
0.364 
0.397 
0.254 

0.545 
0.582 
0.607 
0.452 

0.718 
0.734 
0.760 
0.596 

0.761 
0.770 
0.790 
0.657 

0.885 
0.903 
0.915 
0.805 

0.927 
0.939 
0.946 
0.868 

0.085 
0.093 
0.114 
0.063 

0.281 
0.304 
0.330 
0.227 

0.501 
0.520 
0.558 
0.457 

0.362 
0.362 
0.387 
0.234 

0.562 
0.590 
0.622 
0.495 

0.721 
0.738 
0.755 
0.658 

0.744 
0.749 
0.775 
0.644 

0.882 
0.899 
0.913 
0.839 

0.922 
0.937 
0.942 
0.914 

0.124 
0.103 
0.125 
0.077 

0.304 
0.310 
0.338 
0.206 

0.509 
0.519 
0.562 
0.349 

0.372 
0.372 
0.399 
0.198 

0.570 
0.618 
0.641 
0.450 

0.741 
0.747 
0.771 
0.603 

0.734 
0.741 
0.757 
0.609 

0.867 
0.893 
0.901 
0.834 

0.920 
0.932 
0.941 
0.875 

0.114 
0.106 
0.118 
0.052 

0.349 
0.333 
0.362 
0.180 

0.512 
0.496 
0.540 
0.321 

0.365 
0.361 
0.392 
0.211 

0.564 
0.595 
0.615 
0.391 

0.726 
0.745 
0.768 
0.571 

0.751 
0.752 
0.779 
0.542 

0.880 
0.888 
0.896 
0.773 

0.920 
0.928 
0.936 
0.851 
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PI P2 

a,= 

" 2 = 

0.0 

0.0 

0.0 

0.4 

0.0 

0.6 

0.2 

0.0 

0.2 

0.4 

0.2 

0.6 

0.4 

0.0 

0.4 

0.4 

0.4 

0.6 
C: HRSMT 

0.1 0.1 

0.3 

0.4 

0.1 0.3 

0.3 

0.4 

0.1 0.5 

0.3 

0.4 

- AR(2)-ARCH(2) disturbances 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

0.041 
0.047 
0.059 
0.061 

0.249 
0.286 
0.316 
0.235 

0.448 
0.484 
0.525 
0.419 

0.285 
0.318 
0.345 
0.232 

0.533 
0.591 
0.615 
0.520 

0.732 
0.768 
0.796 
0.681 

0.744 
0.762 
0.790 
0.698 

0.903 
0.919 
0.930 
0.849 

0.953 
0.955 
0.962 
0.908 

0.095 
0.076 
0.092 
0.161 

0.260 
0.271 
0.298 
0.358 

0.428 
0.411 
0.442 
0.565 

0.379 
0.355 
0.390 
0.356 

0.582 
0.602 
0.631 
0.630 

0.693 
0.711 
0.733 
0.764 

0.769 
0.755 
0.787 
0.772 

0.896 
0.898 
0.907 
0.892 

0.928 
0.935 
0.940 
0.940 

0.149 
0.115 
0.135 
0.194 

0.305 
0.273 
0.299 
0.463 

0.445 
0.403 
0.436 
0.613 

0.425 
0.361 
0.388 
0.442 

0.616 
0.585 
0.613 
0.656 

0.728 
0.716 
0.740 
0.775 

0.787 
0.754 
0.777 
0.791 

0.910 
0.899 
0.913 
0.902 

0.921 
0.917 
0.925 
0.935 

0.076 
0.067 
0.089 
0.074 

0.274 
0.309 
0.388 
0.264 

0.479 
0.486 
0.526 
0.454 

0.291 
0.313 
0.342 
0.326 

0.550 
0.586 
0.617 
0.530 

0.705 
0.735 
0.762 
0.690 

0.709 
0.721 
0.747 
0.730 

0.859 
0.886 
0.894 
0.855 

0.926 
0.941 
0.946 
0.907 

0.142 
0.111 
0.126 
0.219 

0.310 
0.297 
0.329 
0.462 

0.490 
0.452 
0.495 
0.597 

0.345 
0.327 
0.346 
0.439 

0.590 
0.584 
0.605 
0.681 

0.692 
0.706 
0.723 
0.820 

0.739 
0.722 
0.750 
0.777 

0.873 
0.873 
0.886 
0.910 

0.919 
0.926 
0.934 
0.940 

0.165 
0.112 
0.133 
0.293 

0.357 
0.305 
0.344 
0.519 

0.526 
0.'M9 
0.491 
0.643 

0.390 
0.347 
0.367 
0.563 

0.585 
0.580 
0.601 
0.714 

0.698 
0.679 
0.699 
0.836 

0.734 
0.700 
0.730 
0.813 

0.849 
0.847 
0.858 
0.940 

0.914 
0.921 
0.926 
0.952 

0.107 
0.092 
0.103 
0.139 

0.307 
0.295 
0.321 
0.317 

0.500 
0.504 
0.530 
0.524 

0.331 
0.315 
0.336 
0.400 

0.536 
0.556 
0.578 
0.603 

0.688 
0.696 
0.715 
0.724 

0.708 
0.702 
0.731 
0.731 

0.866 
0.877 
0.889 
0.869 

0.918 
0.918 
0.929 
0.914 

0.203 
0.147 
0.171 
0.283 

0.378 
0.337 
0.367 
0.490 

0.543 
0.482 
0.510 
0.640 

0.400 
0.325 
0.354 
0.523 

0.610 
0.570 
0.591 
0.714 

0.709 
0.703 
0.720 
0.815 

0.740 
0.729 
0.740 
0.784 

0.851 
0.850 
0.857 
0.921 

0.910 
0.910 
0.915 
0.960 

0.165 
0.112 
0.133 
0.353 

0.357 
0.305 
0.344 
0.574 

0.526 
0.449 
0.491 
0.691 

0.390 
0.347 
0.367 
0.575 

0.589 
0.580 
0.601 
0.785 

0.698 
0.679 
0.699 
0.851 

0.734 
0.700 
0.730 
0.810 

0.849 
0.847 
0.858 
0.924 

0.914 
0.921 
0.926 
0.969 
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Table 7 

Empirical powers of ARCH(2)-corrected serial correlation tests based on standard 5% critical 
values for matrix XI with T = 50, when the underiying disturbance process is normal AR(2) -
GARCH(1,1) 

a, = 0.2 0.2 0.2 0.4 0.4 0.4 

P2 0.0 0.4 0.6 0.0 0.4 0.6 
A: Powers against normal AR (2). 

0.1 

0.3 

0.5 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

0.1 

0.3 

0.4 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBD2 
CBL2 
CLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLML 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

0.055 
0.070 
0.083 
0.102 

0.231 
0.276 
0.288 
0.320 

0.467 
0.505 
0.519 
0.553 

0.242 
0.291 
0.314 
0.342 

0.460 
0.537 
0.582 
0.615 

0.666 
0.724 
0.747 
0.767 

0.671 
0.742 
0.760 
0.781 

0.857 
0.894 
0.909 
0.912 

0.908 
0.932 
0.949 
0.952 

0.045 
0.061 
0.070 
0.089 

0.245 
0.295 
0.318 
0.355 

0.422 
0.488 
0.518 
0.548 

0.244 
0.298 
0.311 
0.344 

0.505 
0.570 
0.615 
0.640 

0.638 
0.728 
0.729 
0.762 

0.656 
0.750 
0.763 
0.785 

0.838 
0.889 
0.901 
0.913 

0.897 
0.914 
0.929 
0.937 

0.068 
0.093 
0.085 
0.093 

0.210 
0.277 
0.297 
0.337 

0.424 
0.490 
0.512 
0.555 

0.233 
0.306 
0.313 
0.337 

0.418 
0.557 
0.595 
0.624 

0.638 
0.707 
0.749 
0.761 

0.640 
0.726 
0.744 
0.762 

0.843 
0.892 
0.912 
0.928 

0.900 
0.936 
0.941 
0.944 

0.063 
0.092 
0.090 
0.109 

0.234 
0.294 
0.312 
0.345 

0.418 
0.518 
0.507 
0.544 

0.200 
0.314 
0.306 
0.330 

0.454 
0.559 
0.585 
0.611 

0.625 
0.716 
0.731 
0.766 

0.618 
0.717 
0.725 
0.744 

0.830 
0.892 
0.895 
0.905 

0.893 
0.917 
0.926 
0.933 

0.045 
0.104 
0.100 
0.113 

0.237 
0.316 
0.337 
0.375 

0.396 
0.554 
0.531 
0.570 

0.213 
0.340 
0.327 
0.354 

0.445 
0.571 
0.600 
0.629 

0.641 
0.741 
0.746 
0.770 

0.597 
0.744 
0.751 
0.767 

0.814 
0.867 
0.876 
0.889 

0.882 
0.921 
0.922 
0.929 

0.043 
0.104 
0.082 
0.098 

0.211 
0.332 
0.331 
0.356 

0.361 
0.518 
0.515 
0.550 

0.184 
0.339 
0.317 
0.352 

0.449 
0.575 
0.590 
0.617 

0.627 
0.714 
0.734 
0.756 

0.593 
0.732 
0.721 
0.741 

0.795 
0.874 
0.886 
0.897 

0.885 
0.916 
0.927 
0.931 
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a, =0.2 0.2 0.2 0.4 0.4 0.4 

0.4 0.6 Yi = 0.0 0.4 0.6 0.0 
'test, CDWl 

0.1 
0.3 
0.5 
0.7 
0.9 

0.089 
0.415 
0.829 
0.979 
1.000 

0.089 
0.422 
0.833 
0.984 
0.997 

0.101 
0.429 
0.847 
0.975 
0.995 

0.107 
0.453 
0.841 
0.969 
0.995 

0.116 
0.437 
0.798 
0.973 
0.999 

0.116 
0.452 
0.827 
0.968 
0.999 
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Table 9 

Estimated powers against normal AR(2) distributions of ARCH(2)"CoiTected serial correlation tests 
based on asymptotic critical values at the 5 per cent nominal level for matrix X4 with T = 100, 
when the underlying distribution is normal AR(2)-ARCH(2) 

(CT,p„P2,6) 

(2,0.3,0.1,0.2) 

(2,0.3,0.1,0.8) 

(2,0.3,0.4,0.2) 

(2,0.3,0.4,0.8) 

(2,0.5,0.1,0.2) 

(2,0.5,0.1,0.8) 

(2,0.5,0.4,0.2) 

(2,0.5,0.4,0.8) 

ai = 

" 2 = 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

0.0 

0.0 

0.084 
0.010 
0.011 
0.028 

0.606 
0.464 
0.479 
0.436 

0.535 
0.512 
0.526 
0.483 

0.903 
0.870 
0.885 
0.844 

0.176 
0.020 
0.023 
0.062 

0.961 
0.927 
0.932 
0.918 

0.298 
0.294 
0.302 
0.270 

0.978 
0.983 
0.985 
0.970 

0.0 

0.4 

0.106 
0.027 
0.018 
0.025 

0.675 
0.521 
0.542 
0.462 

0.510 
0.449 
0.463 
0.451 

0.898 
0.825 
0.830 
0.799 

0.193 
0.036 
0.039 
0.063 

0.966 
0.946 
0.947 
0.928 

0.305 
0.249 
0.266 
0.252 

0.987 
0.983 
0.983 
0.974 

0.0 

0.6 

0.142 
0.011 
0.030 
0.025 

0.748 
0.576 
0.591 
0.486 

0.559 
0.483 
0.493 
0.410 

0.873 
0.795 
0.809 
0.756 

0.222 
0.052 
0.055 
0.059 

0.975 
0.940 
0.947 
0.923 

0.374 
0.288 
0.303 
0.257 

0.986 
0.979 
0.983 
0.969 

0.2 

0.0 

0.086 
0.028 
0.013 
0.027 

0.584 
0.422 
0.041 
0.395 

0.504 
0.447 
0.463 
0.434 

0.818 
0.870 
0.882 
0.834 

0.171 
0.033 
0.041 
0.060 

0.948 
0.893 
0.899 
0.898 

0.328 
0.294 
0.314 
0.280 

0.980 
0.978 
0.982 
0.971 

0.2 

0.4 

0.140 
0.053 
0.030 
0.028 

0.637 
0.475 
0.489 
0.399 

0.529 
0.454 
0.466 
0.401 

0.877 
0.807 
0.815 
0.755 

0.210 
0.057 
0.059 
0.063 

0.947 
0.895 
0.899 
0.890 

0.364 
0.279 
0.292 
0.250 

0.975 
0.966 
0.970 
0.950 

0.2 

0.6 

0.160 
0.012 
0.057 
0.020 

0.690 
0.489 
0.505 
0.386 

0.584 
0.471 
0.479 
0.390 

0.881 
0.798 
0.805 
0.752 

0.269 
0.062 
0.068 
0.066 

0.953 
0.887 
0.896 
0.872 

0.442 
0.317 
0.328 
0.261 

0.974 
0.955 
0.958 
0.936 

0.4 

0.0 

0.117 
0.043 
0.013 
0.023. 

0.610 
0.416 
0.437 
0.379 

0.532 
0.443 
0.466 
0.389 

0.920 
0.858 
0.868 
0.790 

0.181 
0.024 
0.026 
0.061 

0.929 
0.861 
0.871 
0.882. 

0.336 
0.261 
0.278 
0.265 

0.978 
0.970 
0.972 
0.945 

0.4 

0.4 

0.172 
0.052 
0.047 
0.026 

0.645 
0.443 
0.463 
0.362 

0.568 
0.435 
0.451 
0.385 

0.889 
0.796 
0.810 
0.752 

0.242 
0.055 
0.062 
0.067 

0.936 
0.879 
0.885 
0.842 

0.438 
0.303 
0.323 
0.250 

0.970 
0.952 
0.956 
0.929 

0.4 

0.6 

0.220 
0.071 
0.079 
0.027 

0.680 
0.483 
0.494 
0.367 

0.613 
0.429 
0.445 
0.339 

0.891 
0.799 
0.810 
0.730 

0.322 
0.099 
0.106 
0.069 

0.953 
0.884 
0.897 
0.802 

0.503 
0.334 
0.344 
0.232 

0.976 
0.955 
0.959 
0.898 
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(a,p„p2,5) 

(0.07,0.3,0.1,0.2) 

(0.07,0.3,0.1,0.8) 

(0.07,0.3,0.4,0.2) 

(0.07,0.3,0.4,0.8) 

(0.07,0.5,0.1,0.2) 

(0.07,0.5,0.1,0.8) 

(0.07,0.5,0:4,0.2) 

(0.07,0.5,0.4,0.8) 

«! = 

" 2 = 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBD2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

CLM2 
CBP2 
CBL2 
RLM2 

0.0 

0.0 

0.307 
0.184 
0.191 
0.183 

0.827 
0.752 
0.767 
0.743 

0.760 
0.714 
0.732 
0.685 

0.963 
0.946 
0.949 
0.926 

0.441 
0.336 
0.354 
0.323 

0.992 
0.989 
0.990 
0.980 

0.905 
0.866 
0.873 
0.839 

1.000 
0.998 
1.000 
0.998 

0.0 

0.4 

0.350 
0.185 
0.197. 
0.169 

0.782 
0.664 
0.681 
0.690 

0.713 
0.639 
0.654 
0.589 

0.968 
0.948 
0.960 
0.913 

0.426 
0.309 
0.319 
0.301 

0.973 
0.963 
0.965 
0.943 

0.880 
0.823 
0.831 
0.787 

1.000 
1.000 
1.000 
1.000 

0.0 

0.6 

0.360 
0.184 
0.197 
0.156 

0.771 
0.604 
0.620 
0.650 

0.734 
0.624 
0.638 
0.572 

0.977 
0.954 
0.959 
0.929 

0.490 
0.351 
0.364 
0.306 

0.986 
0.977 
0.979 
0.946 

0.886 
0.807 
0.817 
0.740 

1.000 
0.999 
0.984 
0.980 

0.2 

0.0 

0.344 
0.199 
0.215 
0.189 

0.842 
0.762 
0.777 
0.735 

0.772 
0.707 
0.729 
0.690 

0.943 
0.915 
0.910 
0.872 

0.486 
0.358 
0.382 
0.344 

0.975 
0.974 
0.974 
0.957 

0.909 
0.847 
0.857 
0.822 

1.000 
1.000 
1.000 
0.992 

0.2 

0.4 

0.367 
0.200 
0.213 
0.158 

0.754 
0.633 
0.651 
0.624 

0.693 
0.616 
0.617 
0.569 

0.941 
0.899 
0.911 
0.852 

0.497 
0.349 
0.370 
0.300 

0.981 
0.972 
0.973 
0.950 

0.874 
0.779 
0.794 
0.762 

1.000 
1.000 
1.000 
0.994 

0.2 

0.6 

0.423 
0.219 
0.231 
0.170 

0.871 
0.749 
0.701 
0.684 

0.696 
0.681 
0.699 
0.666 

0.940 
0.900 
0.930 
0.860 

0.480 
0.350 
0.372 
0.299 

0.986 
0.970 
0.974 
0.951 

0.882 
0.821 
0.842 
0.742 

0.982 
0.987 
0.999 
0.990 

0.4 

0.0 

0.391 
0.218 
0.229 
0.170 

0.841 
0.700 
0.722 
0.695 

0.770 
0.692 
0.705 
0.666 

0.936 
0.883 
0.880 
0.790 

0.469 
0.344 
0.368 
0.298 

0.981 
0.969 
0.974 
0.958 

0.900 
0.841 
0.856 
0.782 

0.998 
0.999 
1.000 
0.995 

0.4 

0.4 

0.434 
0.233 
0.245 
0.149 

0.803 
0.639 
0.651 
0.560 

0.750 
0.639 
0.652 
0.616 

0.931 
0.885 
0.881 
0.763 

0.513 
0.364 
0.378 
0.264 

0.978 
0.969 
0.970 
0.921 

0.879 
0.770 
0.780 
0.654 

0.992 
1.000 
1.000 
0.989 

0.4 

0.6 

0.483 
0.272 
0.278 
0.150 

0.831 
0.655 
0.672 
0.530 

0.763 
0.615 
0.630 
0.539 

0.926 
0.886 
0.878 
0.740 

0.572 
0.417 
0.438 
0.250 

0.973 
0.958 
0.958 
0.902 

0.888 
0.798 
0.813 
0.610 

0.990 
1.000 
1.000 
0.986 


