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Abstract  

 

In this Thesis, perfect sequences over the real quaternions are first considered. Definitions for the 

right and left periodic autocorrelation functions are given, and right and left perfect sequences 

introduced. It is shown that the right (left) perfection of any sequence implies the left (right) 

perfection, so concepts of right and left perfect sequences over the real quaternions are 

equivalent. Unitary transformations of the quaternion space ℍ are then considered. Using the 

equivalence of the right and left perfection, it is proved that unitary transformations of the 

quaternion space ‘respect’ perfection of a sequence. Consequently, any symmetry transformation 

of the alphabet preserves perfection of a sequence. 

 

Properties of quaternionic perfect sequences are studied. It is shown that quaternionic perfect 

sequences share many properties in common with perfect sequences over the complex numbers. 

Similar to complex perfect sequences, perfection over quaternions is preserved by shifting of a 

perfect sequence, multiplication by a scalar, taking conjugates of each element of a perfect 

sequence, taking a proper decimation of a perfect sequence. However, unlike the complex case, 

multiplication of the elements of a perfect sequence of length n by consecutive powers of an n-

root of unity destroys perfection, in general. 

 

To construct long sequences, this Thesis extends the well-known result about composition of two 

perfect sequences over complex numbers, of relatively prime lengths, into the domain of real 

quaternions. We introduce a concept of composition of two or more sequences with elements in 

the real quaternion algebra ℍ. Using this generalization, we construct a perfect sequence of 

really impressive length, in order of a few billions, over a 24-element alphabet of quaternionic 

12-roots of unity. Also, a new result on composition of two sequences of even lengths is 

presented, and an algorithm, based on the composition two sequences of even lengths, which 

renders longer perfect sequences, is given. 
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Conditions, necessary for perfection over quaternions, are studied. The Balance Theorem for the 

quaternions is proved, and a few generalizations of this theorem, which are also applicable to 

sequences over the complex numbers, are introduced. 

 

The left and the right quaternionic discrete Fourier transforms are introduced. It is shown that, 

dissimilar to the complex case, the property of having all discrete Fourier transform coefficients 

of equal norms is a necessary, but not sufficient, condition for perfection over quaternions. 

 

Many examples, illustrating new concepts and results, are given in this Thesis. 
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1. Introduction 

 

This work initiates the study of perfect sequences over the quaternions.  

A perfect sequence is a sequence with ideal periodic autocorrelation function, namely, the 

periodic autocorrelation function with zero values for all out-of-phase shifts. The quaternions, 

discovered by Sir William Rowan Hamilton in the Century XIX, can be viewed as hyper-

complex numbers, representing a linear combination of one real and three imaginary parts, 

                , with the fundamental relation                 . 

Perfect sequences have many applications in communication systems. Traditionally, perfect 

sequences are considered over commutative alphabets, usually complex roots of unity, and these 

sequences have many applications in electronic communications.  

Since complex numbers are special cases of the real quaternions, perfect sequences over the 

quaternions can be considered as a generalization of perfect sequences over the complex 

numbers. Understanding of the structure and properties of quaternionic perfect sequences may 

provide for better insight and advances in studying perfect sequences over the complex or real 

numbers. Currently, a development of the theory of perfect sequences over the quaternions is still 

in its incipient stage, and there is no instance of an advance in the theory of the complex or real 

perfect sequences by application of the more general concept of perfection over the quaternions. 

However, it is possible, and commonly happens in science, that generalizations produce greater 

understanding of the more particular instances of the theory. 

A beautiful and simple description of unit spheres in the 3- and 4-dimension space is achieved by 

using the quaternions. Over the quaternions, the unit sphere in 3 dimensions is represented by the 

equation        ℍ         , and the unit sphere in 4 dimensions has the equation  

      ℍ         . So, if, by some reason, we want to study sequences over points on the 

unit sphere in the 3- or 4-dimension space, the simplest approach would be to regard such 

sequences as the ones over unit quaternions. 
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Perfect sequences over the real quaternions may have potential applications in fiber optics 

communication systems, when attempts are made to make use of polarization properties of the 

light.  

Constructing perfect sequences over the quaternions is the first step towards applications.  

Perfect sequences over the real quaternions do exist. Three examples of different lengths, taken 

at random from a set of perfect sequences obtained by a computer search over the alphabet 

                , are listed below: 

                  , 

                      , 

                               . 

Unlike the complex numbers, the quaternion algebra is not commutative. Non-commutativity of 

the quaternions calls for defining two different autocorrelation functions: right and left 

autocorrelation, which, in general, have non-equal values for the given sequence (an example is 

given in Section 2).  

In sections which follow we define the right and left autocorrelation functions, and give 

corresponding definitions of the right and left perfect sequences. 

The present work consists of 11 major sections.  

 In Section 1, Introduction, a brief overview of the material that follows is given. 

 In Section 2, Notations and Definitions, some general definitions, used in the following 

sections, are given, and notations, adopted throughout this work, are introduced. 

 In Section 3, Algebra of Quaternions, we offer a brief historic review of the invention of 

the quaternions, introduce operations over the quaternions, and discuss some important 

properties of the quaternions. 

 In Section 4, Perfect Sequences over the complex field ℂ, an attempt is made to reflect 

the most recent state of study on perfect sequences over the complex numbers. In this 
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section, the known constructions of sequences are presented, conditions for perfection are 

introduced, properties are discussed and the question of existence of perfect sequences 

over ℂ is briefly considered. 

Together, Sections 3 and 4 can be regarded as the literature review, providing for the background 

necessary for understanding of the material that follows. 

 In Section 5, Equivalence of Right and Left Perfection over the Real Quaternions, the 

concepts of left and right perfection over the quaternions are introduced. It is proved that 

every right perfect sequence is also left perfect, and vice versa.  

 In Section 6, Transformations Preserving Perfection over the Quaternions, properties of 

perfect sequences over the real quaternions are studied. Also, it is shown that any unitary 

transformation of the real quaternion space ℍ preserves perfection of a sequence. Many 

examples, illustrating applications of the new results, are given. 

 In Section 7, Composition of Sequences over the Real Quaternions, we generalize the 

results on composition of perfect sequences over the complex numbers to sequences over 

the real quaternions, and then we use these new results for composing several perfect 

sequences over the quaternions, found by an exhaustive computer search. By this way, 

we have obtained a perfect sequence over a small alphabet of only 24 unit quaternions of 

quite impressive length              . Also, a brand new result on composition of two 

sequences of even lengths is presented in this section. 

 In Section 8, Conditions Necessary for Perfection over the Real Quaternions, we present 

the Balance Theorem over the quaternions, which is an extension of the known result 

over the complex numbers, and consider a few generalizations of this condition. Also, we 

study geometrical properties of perfect sequences over the quaternions in 3-dimension 

Euclidean space. It is also shown that the length of a perfect sequence over the alphabet 

                 is always an even number. 

 In Section 9, Discrete Fourier Transform of a Perfect Sequence over the Quaternions, as 

the name suggests, we introduce the discrete Fourier transform of a quaternionic 
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sequence. The important necessary condition for perfection over the quaternions, stating 

that all discrete Fourier transform coefficients of a perfect quaternionic sequence have the 

same norm, is proved in this section.  

 In Section 10, Conclusion, we give some final remarks and list the known properties of 

perfect sequences over the complex numbers and over the real quaternions in Table 10.1, 

which facilitates a comparison between the two structures. 

 Section 11, Bibliography. 

 

The results of Section 5, stating the equivalence of left and right perfection over the real 

quaternions, have been presented by the author to the Fourth International Workshop on Signal 

Design and its Application in Communications, held in Fukuoka, Japan, 19-23 October 2009, 

and are published in the IEEE Proceedings [55]. The results of Section 7, construction of a 

perfect sequence of length              , have been presented by the author to the 2010 World 

Congress on Mathematics and Statistics, held in Sharm El Sheikh, Egypt, 26-29 July 2010, and 

appear in the Online Journal on Mathematics and Statistics [56]. 
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2. Notations and Definitions 

 

In this section, notations, used throughout the following sections, are explained and some general 

definitions are given. Concepts, which are more specific to the topic of each particular section, 

are defined in that section. 

 

2.1. Fonts 

 

Throughout the present work, the quaternions, sequences and matrices over the quaternions are 

denoted by bold fonts, whereas ordinary fonts are reserved for the real and complex numbers. 

Three dimensional vectors are denoted by upper arrows   . 

 

2.2. Numbering 

 

The following numbering system is adopted in the present work.  

The text of the present work consists of 10 major sections. Each section has its own number 

implying the consecutive order of this section in the text. Some sections contain several parts, 

which, in turn, can be divided into more parts. The number of each part is derived by adding 

more digits, separated by a dot, to the number of the section in which the part is located.  

Every Definition, Lemma, Proposition, Corollary, important Remark, Example and Observation 

is given a unique number, consisting of two digits separated by the dot.  The first digit stands for 
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the number of the section, in which the Definition, Lemma, Proposition etc appears. The second 

digit is the consecutive number of the Definition, Lemma, Proposition etc in this section. 

 

Example 2.1 The title of this part reads ‘2.2. Numbering’, meaning that it is a subsection of 

Section 2, and the consecutive number of this subsection within Section 2 is 2. The number of 

this example, 2.1, means that the example is in Section 2, and it is the first example in this 

section. 

 

2.3. Rounding 

 

For positive  ,     denotes the integer not greater than   such that        is minimal,     

denotes the integer not less than   such that       is minimal. 

 

2.4. Definition of a Sequence 

 

Definition 2.1 An ordered  -tuple                  of elements from a set   is called a 

sequence. The set   is called an alphabet. The number   is called the length of the sequence  . 

 

Remark 2.1 For elements of a sequence of length  , the operations in indices are always assumed 

modulo  . 

 

The following three definitions are adapted from works of Barbe and Skordev [7]. 
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Definition 2.2 Let                  be a sequence. The smallest positive integer   such that  

       , for        , is called the period of the sequence  . 

 

Definition 2.3 For an integer  , the  -th circular shift to the left, or simply  -shift, of the 

sequence                 , denoted by   
 , is the sequence    

                  , 

that is, for every  ,        ,    
        , where    

    denotes the  -th element of the 

sequence   
 . 

 

Definition 2.4 For integer numbers   and  ,          , the      -decimation of a 

sequence                 , denoted by     
    , is the subsequence 

                
 

         
    , where           is the greatest common divisor of integers   

and  . That is, for every  ,     
 

         
  ,      

     
 

      . Where it does not 

cause confusion, the      -decimation is often called ‘decimation by  ’, irrespective of  . 

 

Observation 2.1     
         

     
 . 

 

Definition 2.5 (Skaug and Hjelmstad [85]) Decimation     
     of a sequence   

               is called proper if   is co-prime with  , that is,           . 

 

Note that the length of a decimation by   of a sequence                  is always a divisor 

of  , and equal to  
 

         
. The length of a proper decimation by   is equal to  , the length of 

the original sequence.  
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Definition 2.6 The sum of all elements of a sequence                  is called the balance 

of the sequence   and is denoted by    . 

 

Definition 2.7 The norm of a sequence                  is defined as the sum of the norms 

of all its elements:          
   
   . 

 

2.5. Roots of Unity Related Definitions 

 

Definition 2.8 A complex number   is called an  -th root of unity if     . 

 

Definition 2.9  An  -th root of unity   is called primitive if      and      for all   

       . 

 

Definition 2.10 The  -th root of unity of the form    
   

  is called the principal  -th root of 

unity. 
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3. Algebra of Quaternions 

 

In this section, a brief introduction to quaternions is given. The exposition in this section does 

not attempt to cover all available information about the real quaternions, but rather emphasizes 

the aspects that are related to the content of the following sections. 

 

3.1. Discovery of Quaternions 

 

The quaternions were discovered by Sir William Rowan Hamilton on October 16
th

, 1843 (Van 

Der Waerden [92]). 

Getting excited by the way the complex numbers are applied in the Euclidian plane geometry, 

Hamilton had spent a number of years trying to invent a bigger structure which can be similarly 

applied in 3-dimensional geometry. By analogy with the complex numbers, Hamilton attempted 

to construct the new numbers by means of attaching the second imaginary unit to the well known 

by that time complex numbers. So, he introduced a new imaginary unit  ,      , and studied 

the new numbers in the form             , where          are real numbers. Addition of 

the new numbers presented no problem: because Hamilton wanted the new numbers, when being 

interpreted as points            of a  -dimensional vector space   , to preserve properties of 

the vector space, the only option was the ordinary vector component-wise addition            

                              . However, multiplication was a much bigger concern. 

Because the new number system required to be closed under multiplication, the product of two 

imaginary units   and   must be of the form              , with           real numbers. 

Then, the equality 
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implies an inconsistent identity    
    ,     . 

After many months of trial and errors, Hamilton had realized that such a number system did not 

present the right choice. Within the assumption of associativity, distributivity over addition and 

commutativity with real numbers for the multiplication, Hamilton always came to a 

contradiction.  

In modern terms, Hamilton has been trying to construct a  -dimensional field. Now we know 

that no such thing exists! This striking answer was first discovered by German mathematician 

Ferdinand Georg Frobenius in 1877. He proved that, for    ,    cannot be made into a field. 

For a short, efficient proof of this Theorem refer to Young [97].  

So, a major revision of the new number system was required! 

All of a sudden, while walking with his wife along the Royal Canal to a meeting of the Royal 

Irish Academy in Dublin, in a pure stroke of genius, Hamilton has realized that the recourse was 

in a higher dimension space: it was not in   , but in    that one could introduce a meaningful 

multiplication which, moreover, was connected to rotations in    (Artmann [4]). The third 

imaginary unit,  , has been introduced. In Hamilton’s own words, ‘I then and there felt the 

galvanic circuit of thought close; and the sparks which fell from it were the fundamental 

equations between  ,  ,  ; exactly such as I have used them ever since’ (Baez [6]). 

Numbers of the form                 , where          , have been called (real) 

quaternions (De Leo [26]). 

Note that, with such definition, all real and complex numbers can be considered as a special case 

of real quaternions. Indeed, a quaternion with zero coefficients before  ,  ,   is equivalent to the 

real number     , while a quaternion with zero coefficients before   and   only is equivalent 

to the complex number          . 
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3.2. Axiomatic Properties of Quaternions 

 

In this part, a formal definition of quaternions is given, and some basic concepts related to 

quaternions are considered. 

 

3.2.1. Definition of a Quaternion 

 

Definition 3.1 (Vicci [93]) Real quaternions are defined as sums of four terms of the form 

                  

where             are real numbers,   is the multiplicative identity element, and  ,  ,   are 

symbolic elements having the properties: 

                   

            

            

            

Commonly, for the sake of brevity and when it does not lead to an ambiguity, the multiplicative 

identity element   is omitted in writing of a quaternion expansion:  

                    

 

By analogy with the complex numbers, elements  ,  ,   are called imaginary units. The 

multiplication law as per Definition 3.1 is called Hamilton’s multiplication table. 

It is easy to observe that Hamilton’s multiplication does not obey the commutative law. 
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3.2.2. Addition of Quaternions 

 

As it has already been mentioned above, the requirement for the new number system to possess 

properties of a linear space over   determines the component-wise addition rule for the real 

quaternions:  

                                       

for any real quaternions                    and                   .  

 

3.2.3. Multiplication of Quaternions 

 

The requirement for the quaternion multiplication to respect distributive and associative laws 

implies polynomial-like multiplication rule for quaternions. This, along with Hamilton’s 

multiplication table, provides for the following multiplication formula: for any real quaternions  

                  and                   

                                               

                                               

Note that a pair of quaternions can multiplicatively commute, anti-commute, or neither of the 

two. Consider three cases below: 

 

Example 3.1  

1. Commutative case. Complex numbers is a special case of the real quaternions. Any two 

complex numbers commute with each other: 
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                 ,                  .  

So,                          . 

2. Anti-commutative case.     ,       . So,         . 

3. Neither commutative, nor anti-commutative case.              ,  

             .  

So, neither                      ,  nor   

                      .  

 

3.2.4. Quaternion Conjugates 

 

Definition 3.2 For a quaternion                 , the quaternion           

         is called the conjugate of the quaternion  , and is denoted by   . 

Every quaternion   commutes with its conjugate: their order of multiplication can be 

interchanged. Indeed, by direct calculation,       
    

    
    

     .  

Note that the product         is always a non-negative real number. Furthermore, we have 

      if and only if    . 

The conjugate operation is distributive over addition, that is,             . With respect 

to multiplication, however,            (Artmann [4]). 

 

3.2.5. Norm of a Quaternion 

 

Definition 3.3 The norm of a quaternion  , denoted by    , is defined by        . A 

quaternion of the norm 1 is called a unit quaternion. 
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The norm multiplication law for quaternions,            , follows from the definition. 

Because quaternion multiplication preserves the norm, the set of all unit quaternions forms a 

group. 

Since       
    

    
    

 , the square root      is equal to the length of the vector 

              in   . 

 

3.2.6. Order of a Quaternion 

 

Definition 3.4 The order of a quaternion   is the smallest positive integer   such that     . If 

no such   exists, we say that   is of infinite order.  

Note that, since by the norm multiplication law for quaternions we have          , only 

unit quaternions can have a finite order.  

 

3.2.7. Division of Quaternions 

 

One of the most important properties of quaternions is the existence of quaternion division. That 

is, the equations      and      always have solutions for any quaternions   and      . 

Solutions of the equation      (    ) are called right (left) quotients of the quaternions   

and  . 

Denoting the right and left quotients by   
    and   

   respectively, we can easily derive explicit 

expressions for   
   and   

  . Multiplying both sides of the equation   
      from the right 

and    
     from the left by 

  

   
, we have   

   
   

   
 and   

   
   

   
 .  
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Since 
   

   
  

   

   
, two distinct quotients, in general, occur. However, in the special case     

both left and right quotients are equal to 
  

   
. The quaternion 

  

   
 is called the multiplicative 

inverse of a quaternion  . 

 

3.3. Division Algebra of Quaternions 

 

Mathematically, the remarkable property of the real quaternions is that they form a division 

algebra (many older sources use term ‘skew-field’ for division algebras). 

If we denote the set of all real quaternions by ℍ (we use ℍ because of Hamilton) 

ℍ                                   

then all the axioms of a field hold in ℍ, except for the commutative law of multiplication.  

Note that the quaternion algebra ℍ contains infinitely many complex subfields. Artmann [4] has 

shown that every  -dimension plane in ℍ, which passes through the real axis, is isomorphic to ℂ, 

with regard to the quaternion multiplication. 

The centre of the quaternion algebra ℍ, that is the subset of elements which commute with all 

other elements in ℍ, is   (Artmann [4]). 

 

3.4. Quaternions and Vectors in    

 

Every quaternion                  can be regarded as having a real (        ) and 

a pure, or imaginary  (                  ),  parts. Many older sources, following the 

terminology used by Hamilton himself, refer to scalar and vector parts of the quaternion   
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respectively, and denote them as       and                . Quaternions with zero 

real part are called pure quaternions.  

It is easy to see that real and imaginary parts of a quaternion                  can be 

expressed as follows: 

      
 

 
       

      
 

 
       

Hamilton regarded quaternions  ,  ,   as basis vectors in   . From this, even today, physicists 

call             a vector in    (Artmann [4]). 

For the sake of brevity, sometimes in the following sections we will denote the real and 

imaginary parts of a quaternion   by   and    respectively; thus, in such notations,         

          . 

It is known (Kyrala [57]) that the product of two arbitrary quaternions   and   can be expressed 

as 

                             

(3.1) 

where       and   denote inner and cross products of two vectors in three-dimensional Euclidian 

space   . It is clear that            and p             are the scalar and vector parts of the 

product quaternion    respectively.  

Since vector multiplication in  -dimensional space    is anti-commutative,             , it 

is clear that non-commutativity of the quaternion product originates from the presence of the 

vector product       in the expansion (3.1). 
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3.5. Quaternions and Unitary Mappings in    and    

 

Quaternions provide a convenient mathematical framework for representing rotations and 

reflections in  - and  -dimensional spaces. A connection between quaternions and rotations in  -

dimensional space    was first mentioned by British mathematician Arthur Cayley [16] as early 

as in 1845. Since then, the relationship between quaternions and linear transformations in  - and 

 -dimensional spaces has been established and studied. An elegant and complete description of 

unitary transformations in both    and    has been given by Coxeter [24] in 1946. In this part 

the results of Coxeter are briefly discussed. 

Following Hathaway [37], we identify a point               in    with the quaternion   

              . Besides, as it was already mentioned above, a point            in    is 

interpreted as the pure quaternion              .  

 

An origin-preserving linear transformation in    is defined as follows: 

 

Definition 3.5 Let   be a vector space over the real field   with an inner product           
 
  . A surjective linear transformation      

 
  , satisfying              , for all      , 

is called a unitary transformation of   . 

 

Because a unitary transformation preserves the inner product norm, 

                          , for all    ,  

it follows that        if and only if    . Thus a unitary transformation maps   to  , i.e. 

leaves the origin unchanged. Reflection in any hyperplane passing through the origin and 

rotations about the origin are examples of unitary transformations in the Euclidian space   . 
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3.5.1. Unitary Transformations in    

 

It is known (Cho [20]) that every unit quaternion   can be represented as                , 

where   is a real number and     is a unit pure quaternion. Let    be an ordinary vector in  -

dimensional space   , considered as a quaternion with zero real part, and let   be a unit 

quaternion      
 

 
       

 

 
 . Then the triple quaternion product          represent the 

rotation (in the clockwise direction, if the line of sight points in the direction of    ) of the original 

vector    by an angle   around the axis of     . Combining rotations         with inversions 

      , Coxeter [24] deduced that any unitary transformation of the ordinary  -dimensional 

space    can be represented as either          or          . 

 

3.5.2. Unitary Transformations in    

 

Reflections and rotations in    can also be conveniently expressed by quaternion multiplication. 

Coxeter showed that, for unitary quaternion                 ,  the reflection in the 

hyperplane defined by the equation      
 
      in  -dimensional space    is represented 

by the transformation         . A rotation in    through angle   about a plane is 

represented by the transformation      , where                   and      

            are two unit quaternions with equal real parts,          
 

 
, and rotation is 

about the common plane of the two hyperplanes, defined by equations      
 
    

     
 
     , through twice the angle between them. 

The general rotation in  -dimensional space    is expressed by the transformation      , 

where   and   are unit quaternions. Such representation is unique for every rotation in    to the 

extent of changing signs             . 
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Based on these results, Coxeter [24] has proved that every unitary transformation in    is 

represented as either      , or       . 

 

3.6. Similarity of Quaternions  

 

Definition 3.6 (Zhang [98]) Two quaternions   and   are said to be similar if there exists a 

nonzero quaternion   such that        . Similarity of two quaternions   and   is written by 

     . 

 

Similarity is an equivalence relation on the real quaternion algebra ℍ. The equivalence class 

containing a quaternion   is denoted by     .  

It is known (Zhang [98]) that quaternions 

                 

 and  

          
    

    
  

 are similar, i.e.           
    

    
  .  

Note that the quaternion    can be regarded as a complex number. 

If         and         are two quaternions written as sums of the real and vector parts, 

then     if and only if        and            , i.e.             and                 

(Brenner [14]). From here it is readily seen that the equivalence class     contains infinitely 

many quaternions, which may be visualized as points in 4-dimension quaternion space located on 

a 2-sphere of radius         with the centre sitting on the real axis by       away from the 
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origin. Among those infinitely many similar quaternions, there are two complex numbers which 

are conjugates of each other.  

If   is a real number, which is a special case of a real quaternion, then the 2-sphere contracts into 

a single point on the real axis.  

Since                  for all   ℍ, every quaternion   is similar to its own conjugate, 

      . 

 

3.7. Fundamental Theorem of Algebra for the Quaternions 

 

Unlike the complex case, where every polynomial can be represented as              

      , polynomials over the quaternions can not always be written in such a form. Due to 

non-commutativity of quaternion multiplication, a general form of a polynomial over the 

quaternions consists of terms            where         are quaternions.  

The question of an existence of a root of a general polynomial over the real quaternions, that is a 

solution of the equation                       , where         are non-zero 

quaternions,   is a quaternion indeterminant, and      is the sum of a finite number of 

monomials           ,    , has been studied by Eilenberg and Niven [27]. They have 

proved that        has at least one quaternion solution. The obvious corollary of this result, 

which has been, in fact, discovered  before the main result became available (Niven [73]), is that 

        
              , with         quaternions, has at least one solution in 

ℍ. 

It is worth noting that, unlike in the complex case, the number of solutions of the equation 

       or        may exceed the degree   of the polynomial.  

 

Example 3.2 The equation        has infinitely many solutions.  
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Fan [28] has shown that the number of quaternionic solutions to       ,   ℍ, are either  

(1) two quaternions, when    , or  

(2) infinite number, when        , or  

(3) two real numbers, when        , or  

(4)  , when    . 

Niven [73] studied necessary and sufficient conditions for the equation of the form             

   
               to have infinitely many quaternion roots. Huang and So [47] have 

found an exact formula for the solutions of the quaternionic quadratic equation                 

   .  

The number of solutions and a general explicit formula for the solutions of the general 

quaternionic polynomial equation        are still open questions. 

 

3.8. Matrices over Quaternions 

 

In [98], Zhang studies matrices with quaternion entries, and introduces elementary operation 

over them. Although most of the results would be trivial in the case of complex numbers, non-

commutativity of quaternion multiplication makes properties of quaternion matrices quite 

dissimilar to properties of their complex counterparts. In matrix theory, the non-commutativity of 

quaternions needs to be treated with extreme care!   

Let      ℍ , or simply    ℍ  when    , denote the set of all     matrices with 

quaternion entries. Addition and multiplication of quaternion matrices are defined similarly to 

the complex case. The left (right) scalar multiplication is defined as follows:  

for              ℍ  and   ℍ,           (          .  
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It is clear that, in general,      . 

 

Definition 3.7 Just as for complex matrices, for every quaternion matrix              ℍ  

we define its conjugate        
        ℍ , transpose               ℍ , and 

conjugate transpose        
        ℍ . 

 

Zhang [98] introduces the concepts of unitary and Hermitian matrices over the real quaternions, 

by generalization of the complex case.  

 

Definition 3.8 Just as for complex matrices, a square quaternion matrix      ℍ   is said to be 

normal if        , Hermitian if     , and unitary if      , where   denotes the identity 

matrix.  

 

Since the equation      holds if and only if      holds ([98], Proposition 4.1), every 

unitary matrix   satisfies          . Like in the complex case, the product of unitary 

quaternion matrices is itself unitary. Also, a unitary quaternion matrix   scaled by a unit 

quaternion   is unitary, whether   is multiplied from the left or from the right (Sangwine and Le 

Bihan [79]).  

 

3.8.1. Quaternionic Determinants 

 

Note that since the classical definition of the determinant of a complex matrix involves 

summation of multiple products of the matrix entries, due to the non-commutative nature of 
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quaternion multiplication the classical concept of matrix determinant can not be directly applied 

in the case of quaternion matrices.  

Moore [70] was trying to avoid this problem by assigning some particular order of succession for 

multipliers in each term which goes in the determinant. Although used by some authors 

(Jacobson [51], Liebendorfer [61]), the Moore determinant has not received wide recognition. 

Sometimes, the concept of a double determinant, which, for a matrix  ,  is the Moore 

determinant of the product matrix    , is used instead (Chen [19], Renmin et. al. [78]). The 

double determinant has a nice property of being a non-negative real number. 

Another approach to defining a quaternion determinant was implemented by Study [87]. The 

details can be found in the excellent retrospective survey paper of Aslaksen [5]. Study’s idea was 

to transform a quaternion matrix of order   into the complex matrix of special form of order   , 

and compute the corresponding determinant. This is the most common approach to quaternion 

determinants, which has been adopted and evolved in many contemporary sources (Cohen [23], 

Farenick and Pidkowich [30], Zhang [98]). 

However, it has been accepted that quaternionic determinants present an important failure that 

can not be easily fixed. Fan [28] shows that there does not exist an extension for the conventional 

definition of matrix determinant to quaternion matrices, which preserves the multiplicative 

property of determinants                      .  

 

3.8.2. Matrix Inverse 

 

Due to non-commutativity of quaternion multiplication, left and right inverses of a quaternion 

matrix must be treated separately. Chen [19] gives necessary and sufficient conditions for the 

existence of left and right quaternion matrix inverses, and presents an explicit formula for 

calculation. Chen’s formula involves the double determinants.  
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Since the equations      and      can only hold simultaneously, in the case when both left 

and right quaternion matrix inverses exist, they are equal to each other. 

 

Definition 3.9 A square quaternion matrix      ℍ   is said to be invertible if         

for some matrix      ℍ .  

 

Zhang ([98], Theorem 4.1) has shown that for any two invertible matrices   and   in    ℍ , 

the following identities hold:  

           ,  

               and  

              . 

 

3.9. Eigenvalues of Matrices over the Quaternions 

 

In this section, we briefly consider the concepts of eigenvalues and eigenvectors in application to 

matrices over the real quaternions. It is clear that due to non-commutativity of quaternions two 

distinct eigenvalue equations can be considered:       and      . 

 

Definition 3.10 For a quaternion matrix      ℍ ,   ℍ is called a right (left) eigenvalue of 

 , if it satisfies the equation       (     ) for some non-zero   ℍ , and   is called a 

right (left) eigenvector of   corresponding to the right (left) eigenvalue  . The set of distinct 

right (left) eigenvalues is called the right (left) spectrum of  . 
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3.9.1. Right Quaternionic Eigenvalues 

 

Note that ℍ  is a full vector space over  , but only a right vector space over ℂ  r ℍ.  Indeed, 

every quaternion matrix      ℍ  acts as a transformation on the real vector space ℍ  by the 

usual correspondence      on vectors of ℍ . Because   is a linear transformation, the 

following identity holds: 

                         

Due to non-commutativity of quaternion multiplication, this equation only holds generally when 

   and    are real numbers, and not elements of ℂ or ℍ. However, if we take matrices   

   ℍ  acting from the left, and quaternions       acting from the right, the equation above 

transforms into 

                         

which holds for all       ℍ. Therefore, in the quaternion context it is natural to consider the 

eigenvalue equation      , where   ℍ  is non-zero and   ℍ. (Formally speaking, in the 

right vector space ℍ  over ℍ left multiplication of vectors by quaternions, e.g.   ,   ℍ, 

  ℍ , has no meaning!) 

Before going any further, we make note of the following inevitable fact. If matrix   has a non-

real right eigenvalue   (that is,        ) , then it has infinitely many right eigenvalues. In fact, 

any quaternion similar to   will be another non-real right eigenvalue of  . Indeed, if   is a right 

eigenvalue of   with corresponding eigenvector  , then, for any non-zero quaternion ω, the 

following equality holds:                                      , which 

shows that       is a right eigenvalue of   corresponding to the non-zero eigenvector   .  

Thus, the set of all right eigenvalues of a quaternion matrix breakes into a number of conjugacy 

classes, each class containing similar quaternions. Within each infinite conjugacy class, there are 

two quaternions which are complex numbers and conjugates of each other. Of those two 

complex numbers, the ones with non-negative imaginary part are called standard right 
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eigenvalues of the quaternion matrix. If the right eigenvalue is a real number, then the 

corresponding conjugacy class contracts to a single element. 

A fundamental property of quaternionic matrices is the existence result for right eigenvalues. It is 

known, and extensively reflected in literature (Lee [59], Brenner [14], Farenick and Pidkowich 

[30], Flaunt [31], Viswanath [94]), that every      ℍ  has a right eigenvalue. Furthermore, 

the number of distinct conjugacy classes of right eigenvalues of a quaternion matrix   does not 

exceed  . 

Similarly to the complex case, every     matrix   with quaternion coefficients can be 

transformed into an upper triangular form (i.e. all entries are zero below the main diagonal) by a 

unitary transformation (Lee [59], Brenner [14], Farenick and Pidkowich [30]). That is, for an 

arbitrary quaternion matrix  , there always exists a unitary matrix  , such that  

      

   
  

  
 

 
  

  
   

 . 

The diagonal elements         are   right eigenvalues of  , which can be chosen as complex 

numbers (standard right eingenvalues), and the stars denote quaternions. The diagonal elements 

        are indeterminate to the extent of changing to similar quaternions, and their order of 

succession. 

If   is a normal matrix, then its triangular form  

   
  

  
 

 
  

  
   

  is also a normal matrix. Lee 

[59] proves by induction that a triangular normal matrix is necessarily a diagonal one. So, every 

normal quaternion matrix can be transformed into a diagonal form by a unitary transformation. 

Moreover, a unitary quaternion matrix can be transformed by another unitary matrix into 

diagonal form with the diagonal elements being complex numbers of norm  , again 

indeterminate to the extent of changing to similar quaternions and their order of succession. The 

diagonal elements of a diagonal form of a hermitian quaternion matrix are necessarily real 

numbers, uniquely determined up to their order of succession. 
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The ‘power rule’ holds for right quaternionic eigenvalues:  if   is a right eigenvector of   with 

eigenvalue  , then it is a right eigenvector of    with eigenvalue   .  Indeed,           

                     .  

 

3.9.2. Left Quaternionic Eigenvalues 

 

Left quaternionic eigenvalues, that is the solutions of the equation      , have not been 

extensively studied in the literature, and very few results have been obtained so far.  

Note that the matrix      is singular if and only if the equation       holds for some non-

zero   ℍ . Therefore, left eigenvalues are often called singular eigenvalues in the literature. 

Wood [95] has proved the existence of a singular eigenvalue for an arbitrary quaternion matrix 

 . However, Wood merely proved the non-emptiness of left spectrum for a quaternion matrix  , 

without providing any algorithm for computation of left eigenvalues.  

De Leo and Rotelly [26] highlighted a few essential problems when dealing with left 

quaternionic eigenvalues. The first difficulty is represented by the impossibility to apply 

similarity transformations without losing the formal structure of the left eigenvalue equation. 

Since       in general, two similar quaternion matrices do not necessarily satisfy the same 

eigenvalue equation. Consequently, we can have quaternion matrices with the same left 

eigenvalue spectrum, but no similarity transformation relating them. Second, as we recall from 

linear algebra, eigenvalues of the complex Hermitian matrix are always real numbers. As we 

have seen in the previous part, the same property extends to the right eigenvalues of a quaternion 

matrix. However, as De Leo et. al. show, the left eigenvalue problem could admit non-real 

quaternionic solutions. An example of a quaternion Hermitian matrix with left eigenvalues pure 

quaternions can be found in [98].  Another difficulty is that, as we can observe, the eigenvalue 

‘power rule’ breaks for left eigenvalues, that is, if   is a left eigenvector of   with eigenvalue  , 

it will not necessarily be a left eigenvector of    with eigenvalue   .  Indeed,         

       .  
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The most recent study of left quaternionic eigenvalues is by Huang et. al. [46,47]. In their two 

papers, they give an example of a     quaternion matrix with only two non-similar left 

eigenvalues and that is not diagonalizable, present an algorithm to compute all left eigenvalues 

of a      matrix, and study the possible number of distinct left eigenvalues of a quaternion 

matrix. They put forward a conjecture that finiteness of both left and right spectra implies their 

equality. A new proof of Huang et. al.’s results has been given by Macias-Virgos and Pereira-

Saez [65]. 

Finding algorithms for computation of left eigenvalues of an arbitrary sized quaternion matrix is 

still an open problem.  

 

3.10. Inner Products in Quaternion Space 

 

The commutative linear vector spaces ℂ  and    possess a natural Euclidian inner product that 

allows an easy application of many geometrical concepts, such as orthogonality, in linear 

algebra. In this part, we introduce ℍ-, ℂ- and  -inner products in ℍ , having regarded ℍ  as a 

right vector space over ℍ. We denote the ℍ-, ℂ- and  -quaternionic inner products by      ℍ, 

     ℂ or        respectively.  

 

Definition 3.11 A right vector space   over ℍ is called a quaternionic inner product space if 

there is a function             , where   can be ℍ, ℂ or  , such that for all   ℍ and 

          the following identities hold: 

1)                             

2)                      

3)                               

4)         ;         ; and          if and only if    .  
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Note that axioms (1) – (4) of Definition 3.11 lead to the important identity: 

               
            

 

Definition 3.12 A norm of each vector     is defined by             . 

 

For such defined norm, the Cauchy-Schwartz inequality holds (Horwitz and Biedenharn [45]):  

                      

 

We now introduce the ℍ-valued inner product on the quaternion space ℍ , which satisfies 

conditions (1) – (4) of Definition 3.11. 

Definition 3.13
 
(Farenick and Pidkowich [30]) The ℍ-valued inner product of two vectors  

    

  

  

 
    

  and     

  

  

 
    

   from ℍ  is defined by 

     ℍ     
   

   

   

 

 

Note that with so defined inner product, Definition 3.12 is fully compatible with Definition 2.5 

(norm of the sequence), given in Section 2 of the present work:     ℍ     
   

   
    

     
   
       . 



Section 3: Algebra of Quaternions 

 

 

 
33 

 

Horwitz and Biedenharn [45] introduced a ‘hierarchy’ of quaternionic inner products, defining 

 - and ℂ-valued inner products on the quaternion space ℍ . For     ℍ  the corresponding  - 

and ℂ-valued inner products are defined as follows: 

               ℍ  

     ℂ          ℍ           ℍ   

It is easy to check that the  - and ℂ-valued quaternionic inner products satisfy conditions (1) – 

(4) of Definition 3.11. The  - and ℂ-valued quaternionic inner products have applications in 

construction of special tensor products used in quaternionic quantum physics. In the sections that 

follow we will only employ the ℍ-valued inner product, which is consistent with the action of ℍ 

on ℍ  from the right, and the subscript ‘ℍ’ will often be omitted. 

  

3.11. Linear Algebra over ℍ 

 

Linear algebra over quaternions is very similar to the familiar linear algebra over the real or 

complex fields. Many concepts, such as basis, dimension, linear independency, are still 

applicable to quaternionic vector spaces. In applying familiar concepts, one must always take 

care of the non-commutative nature of the quaternions. 

Exposition that follows in this part is generally adopted from the brilliant work of Farenick and 

Pidkowich [30]. 

 

Definition 3.14 If  is a nonzero right quaternion vector space ℍ  and if     is a nonempty 

subset, then 

1.   is a generating set for   if for some natural     

        
   
                           ℍ . 
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2.   is an ℍ-independent set if, for any distinct,            , the equation 

     
   
      is satisfied by           ℍ only for            .  

3.   is a basis for   if   is the generating set and ℍ-independent. 

 

Just like in the complex case, if there exist two bases for the same quaternion vector space  , 

they have the same cardinality  . The number of elements   in a basis is called a dimensionality 

of the quaternion vector space  . An analogue of the Gram-Schmidt Theorem holds for 

quaternion vector spaces.  

 

Theorem 3.1 If   is an  -dimension quaternion vector space, then for any     , such that 

      , there exist            , such that 

1.                  is a basis for  . 

2.        for every          .  

3.         
 ℍ    if      . 

Proof. Refer to Farenick and Pidkowich [30], Theorem 4.3, for proof.□ 

 

By establishing an isomorphism between the set of endomorphisms on a  -dimension right ℍ-

vector space  , that is a function       satisfying                      and 

            for all         and   ℍ, and the set of quaternion matrices    ℍ , 

Farenick and Pidkovich [30] show that, for every quaternion matrix      ℍ , there exists a 

unique quaternion matrix      ℍ , such that          
 ℍ           

 ℍ for all        . 

Moreover,     . 
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3.12. Finite Quaternion Groups 

 

Note that all quaternions belonging to some finite quaternion group must be of norm  . 

Therefore, any finite quaternion group consists of exclusively unit quaternions. 

All possible finite quaternion groups are known and classified. The first comprehensive 

description of all finite groups over the real quaternions has been given by Stringham [86] as 

early as 1881. There only exist five types of finite quaternion groups.  

 Type 1 is a class of cyclic groups. These groups are of the form                  , 

where   is any unit quaternion of finite order  . For every integer number  , there exists 

a cyclic quaternion group of order  .  Groups of this type can be regarded as a kind of 

‘ -dimensional’ structures, meaning that all their elements belong to a  -dimensional 

plane passing through the origin. Groups of complex roots of unity are a special case of 

quaternion groups of this type. 

 Type 2, the double pyramid groups, consists of groups of the form 

                                      , where   is any unit quaternion of 

even order   , and   is a unit quaternion orthogonal to   with zero real part. The order 

of groups of this type is always a multiple of  . The double pyramid group of order    

contains a cyclic subgroup of order   . The well-known i-j-k group    of order  , 

formed by unit quaternions             , is a special case of the double pyramid 

group, for    ,    ,    .  

 Type 3 consists of only one group, the double tetrahedron group    , of order   . This is 

a group generated by two unit quaternions,   and 
       

 
. Elements of this group are unit 

quaternions            , along with unit quaternions of the form  
        

 
  for all 

possible combinations of the   signs.    is a subgroup in    . 
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 Type 4 also consists of only one group, the double octahedron group    , of order   . 

This group is generated by two unit quaternions, 
   

  
 and 

   

  
.     and     are subgroups 

in    . 

 Type 5 consists of two isomorphic groups, the double icosahedron groups      and 

    
 , of order    .      is generated by two unit quaternions,   and 

        

 
, where 

   
    

 
,    

    

 
.     

  is generated by   and 
        

 
. That is, generators of      and 

    
  only differ by interchange of    and   . Isomorphism between      and     

  is 

established by the transformation    
 
              .    and     are subgroups 

in      and     
 , however,     is not a subgroup in      or     

 . 

There are no other finite groups over the real quaternions. 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
37 

 

4. Perfect Sequences over the Complex Field ℂ 

 

Definition 4.1 A non-zero sequence                  over the complex numbers is called 

perfect if its periodic autocorrelation function        
 

   
       

    
    is equal to zero for 

all non-zero shifts  ,        . 

 

Remark 4.1 In Definition 4.1, the normalizing factor 
 

   
 appears in the formula for the 

autocorrelation values. Due to presence of this factor, the autocorrelation function can not be 

defined for the sequence with all elements equal to zero. Such trivial sequences have no useful 

applications and, therefore, are beyond the interest of our research. In the present work, only 

non-trivial sequences, having at least one non-zero element, are considered. 

 

Perfect sequences over the complex numbers have many applications in such diverse areas as 

spread spectrum multiple access systems, pulse compression radars, fast-startup equalization and 

channel estimation (Mow [71]). 

Besides, studying the structure of perfect sequences, their properties, conditions for existence 

and finding generating algorithms would be extremely beneficial from purely a mathematical 

point of view.    

In this section, we discuss the necessary and sufficient condition for perfection of sequences with 

elements in the complex field ℂ, consider some useful properties, and give a brief description of 

various known types of perfect sequences. Finally, the question of existence of perfect sequences 

is briefly discussed. 

In the literature, when talking about complex perfect sequences, many authors are only 

considering sequences over the  -th complex roots of unity. Different sources call such 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
38 

 

sequences polyphase, unimodular, or phase-shift keying (PSK) sequences. In many cases, the 

results about perfect sequences over the roots of unity can without difficulty be extended to 

sequences over arbitrary complex numbers. In this work, we do not restrict attention to 

considering sequences over the roots of unity only. Most of the results listed below are 

applicable to sequences over arbitrary complex numbers. Where it is not the case, an explicit 

notice is given. 

 

4.1. Necessary and Sufficient Condition for Perfection over 

Complex Numbers 

 

We start with stating the necessary and sufficient condition for perfection over ℂ. 

Connection between perfect polyphase sequences and special properties of their discrete Fourier 

transforms has been known for quite a few decades. Chung and Kumar initiated the study of bent 

functions, which are defined as functions     
     with the property that all discrete Fourier 

coefficients of the bent sequence    
    

     
      

 , where   is a primitive  -th root of unity, 

have unit magnitude. Chung and Kumar [22] have made a remark that bent sequences have ideal 

autocorrelation properties. 

In his PhD Thesis (1993), Wai Ho Mow considers constructions of perfect sequences involving 

bent functions. Mow has mentioned, and used in his Thesis, the fact that the polyphase sequence 

                 is perfect if and only if              , for all        . Mow’s 

Thesis became a basis for the textbook [72], published in 1995, two years after submission of the 

Thesis. 

Fan and Darnell [29] consider conditions for perfection of a sequence              , 

          ℂ, in their paper published in the same year 1995. They have stated that the 

property of having all discrete Fourier transform coefficients of equal magnitude,        

      ,  is a necessary and sufficient condition for a sequence   to be perfect. 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
39 

 

Mow’s version and Fan and Darnell’s version differ only in use of normalizing factor. 

Another use of the above equivalence of perfection of a sequence with its Fourier transform 

coefficients being of equal norm is found in works of Gabidulin [34,35] and Gabidulin and 

Shorin [36], where perfect sequences are also constructed. 

However, none of the authors have presented a formal proof of this important condition for 

perfection. Here below we give a statement of this result and a formal proof. 

 

Proposition 4.1 Let                  be a sequence with elements in the complex field ℂ. 

The sequence   is perfect if and only if all its discrete Fourier transform coefficients    

   
   
     

   

 
  

,        , are of equal norm.  

Proof.  (i) First, assume that                . We show   is perfect.  

 Let              . Consider the autocorrelation function of the sequence 

                 for some non-zero shift  ,        .  
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The last summation,   
   

 
           

   , represents the sum of  -th roots of unity, which is equal to 

  for all       except for      , for which it is equal to  . Therefore, the equality above 

continues: 

 
 

     
    

     
   
 

   

   

    

 
 

    
       

   
 

   

   

    

 
 

    
  

   
 

   

   

    

   

since    
   

 
      

     is the sum of all  -roots of unity.  

So,          , and this is true for all non-zero shifts  ,        . Thus,   

               is perfect.  

(ii) On the other hand, assuming that                  is perfect, we have  

       
          

 
   
 

   

   

    

 

 

      
 

   
 

   

   

    

 

      
  

   
 

   

   

    

       
 

   
 

   

   

    

       
     

   
 

        

   

    

   

    

      
       

 
   
 

  

   

   

   

    

    
   
 

      
      

   

    

   

   

    
   
 

  

   

   

                         
 
  

   
 

  

   

   

     

The last equality above holds, because           for     and           otherwise.  

Thus, all discrete Fourier transform coefficients of a perfect sequence have equal norm, which is 

exactly the norm of the original sequence  ,                   . □ 
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4.2. Properties of Perfect Sequences over ℂ 

 

In this section, some basic properties of perfect sequences are discussed. 

 

4.2.1. Transformations Preserving Perfection 

 

Fan and Darnell [29] list the following properties of perfect sequences over roots of unity: 

If               is a polyphase perfect sequence, then so are 

1.              , where   is any integer and the subscript is expressed         ; 

2.             , where   is any complex constant; 

3.     
          , where   is any integer and   is an  -th root of  ; 

4.    
         , where   

  denotes complex conjugation; 

5.                   , the discrete Fourier transform of  . 

Note that properties 1 – 4 hold for perfect sequences over arbitrary complex numbers. The proof 

of properties 1, 2 and 4 is not complicated and directly follows from the definition of perfection, 

therefore, omitted here; proof for property 3 is presented in Section 7 of the present work, 

Corollary 7.1. Property 5 is valid for any sequence with elements of equal norm, not necessarily 

a perfect one. Refer to Proposition 4.2 below. 

 

Proposition 4.2 Let                  be a sequence over the complex numbers with all 

elements of equal norm. Then the discrete Fourier transform                       is 

perfect. 

Proof.  Assume that                 . Consider the autocorrelation function of the 

sequence                       for some non-zero shift  : 
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The last summation   
   

 
           

    represents a sum of  -th roots of unity, which is equal to   

for all       except for      , for which it is equal to  . Therefore, the equality above 

continues as 

 
 

   
    

    
  

   
 

   

   

    

 
 

   
        

   
 

   

   

    

 
  

   
   

   
 

   

   

    

   

since    
   

 
      

     is a sum all of  -roots of unity.  

Thus,               . Since it is true for all non-zero shifts  ,        , we have 

                   is perfect. □ 

 

The above list of properties can be appended by another one (Gabidulin and Shorin [36]):
 
A 

proper decimation of a perfect sequence is perfect. That is, a sequence                   is 

perfect if and only if, for   relatively prime with  , its      -decimation 

                      is perfect. 
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4.2.2. Balance Theorem 

 

The balance theorem, called so because it involves a balance, the sum of all elements of a 

sequence, provides a necessary condition for perfection.  

A version of the balance theorem was first introduced by Bomer and Antweiler [11], for two-

dimensional perfect arrays over ℂ. Since perfect sequences are special cases of perfect arrays 

(they are two-dimensional arrays of size    ) , this result is fully applicable for perfect 

sequences. 

The balance theorem states that if                   is a perfect sequence with elements 

from the complex field ℂ, then  

                                  

Refer to Section 8.1, Proposition 8.1, for a formal proof. 

 

4.2.3. Composition of Perfect Sequences 

 

A rule for composition of two perfect sequences, first mentioned in Ipatov’s text [49], is a 

convenient mean to form longer perfect sequences by ‘multiplying’ two perfect sequences of 

shorter lengths.  

If a sequence                of length    and a sequence                of length    are 

perfect and    and    are relatively prime numbers (that is,             ), then by repeating 

the sequence      times and the sequence      times, and multiplying them together element-by-

element, we obtain the composition sequence                           of length 

      , which is also perfect (Fan and Darnell [29]).  
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The rule for composition of two perfect sequences of relatively prime lengths is the direct 

consequence of a more general result (Luke [62]). Luke introduces the product theorem for 

autocorrelation functions, which states that the autocorrelation values of the composition of two 

sequences of relatively prime lengths are the products of the individual autocorrelation values. 

That is, if sequences                and                 are of relatively prime lengths, 

then the autocorrelation function of the composition     is expressed by           

              . 

 

 

4.3. Known Constructions of Perfect Sequences 

 

In this section, a short overview of known perfect sequences over ℂ is given. 

 

4.3.1. Perfect Sequences over   

 

The known perfect sequences with entries from the real field   can be subdivided into three 

major types:  

 binary perfect sequences, with elements from         ;  

 ternary perfect sequences, with elements from           ; 

 multilevel perfect sequences, with elements of different absolute magnitude (which may 

or may not include   among their entries).  

In this section, we briefly discuss each of these types. 
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4.3.1.1. Binary Perfect Sequences 

 

Although binary perfect sequences would be particularly interesting for practical applications, 

the only known binary perfect sequence, up to shifting and multiplying by   , is 

            

 

It is widely conjectured and proved for many cases that no binary perfect sequences of longer 

lengths exist, refer to Section 4.4.2 below. 

 

4.3.1.2. Ternary Perfect Sequences 

 

In the context of perfect sequences over  , by ternary sequences we understand sequences with 

entries from the set          . Such perfect sequences exist, and lengths much longer than   are 

achievable in many instances.  

 

Example 4.1 (Ipatov [49]) The sequence  

                                                   

is a perfect ternary sequence of length   . 

 

Study of ternary perfect sequences was initiated in the mid 1960’s by Chang [17]. By 

considering a relationship between the numbers of  ‘ ’, ‘  ’ and ‘ ’ among entries of a ternary 

perfect sequence, Chang derives a necessary condition for perfection of a ternary sequence. If we 

denote the number of  ’s in a ternary sequence by   , and the number of   ’s by   , then 

Chang’s condition implies that the following identity necessarily holds for any perfect sequence: 
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Chang has discovered that some sequences generated by a linear recursion relation over       of 

length          for some  ’s, after substitution      in their entries, satisfy this necessary 

condition. Manually checking for perfection those of them which satisfy the necessary condition, 

Chang found examples of perfect ternary sequences of lengths   ,    , and     . 

In his paper, Chang refers to the earlier work of Tompkins [90], who has listed all ternary perfect 

sequences up to length 18. 

Moharir [69] continues the reasoning line of Chang, and finds more necessary conditions (he 

calls them combinatorial admissibility conditions) for perfection of a ternary sequence. Based on 

these results, Moharir suggests an algorithm for optimization of an exhaustive search of ternary 

perfect sequences of longer lengths. Application of Mohair’s algorithm provides a significant 

reduction in computer running time for performing a search for longer perfect sequences.  

Many known constructions involve certain transformations of  -sequences, or other linear shift 

register sequences. For a good introduction to  -sequences and linear shift register sequences 

refer to Simon et. al. [84]. 

Shedd and Sarwate [83], using the formulae of Helleseth [40] for cross-correlation functions, 

suggest two constructions, based on two  -sequences over       of a special form of length 

    , for perfect ternary sequences of length     . One of the proposed constructions is 

applicable in the case    , another in the case when   is an odd prime. Shedd and Sarwate 

presented examples of ternary perfect sequences of length    and   . 

Ipatov [50] has introduced a large class of ternary sequences of length             , 

derived from linear shift register sequences over       , for odd   and     , where   is an 

odd prime.  

Using results from difference set theory, Hoholdt and Justesen [41] present a construction of 

ternary perfect sequences of length                , where     . Although the details of 

their construction are rather complicated, the suggested method for generating perfect sequences 
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is quite simple. For    , that is    , their construction coincides with that of Shedd and 

Sarwate.  

 

4.3.1.3. Multilevel Perfect Sequences over   

 

Except for the special case of ternary sequences, multilevel perfect sequences have not been 

extensively studied in the literature. 

Luke [62] introduces and studies amplitude asymmetrical (two-level) binary perfect sequences. 

Luke shows that, since the autocorrelation function of a binary  -sequence has the constant 

value of    for all non-zero shifts (refer to Sarwate and Pursley [80]), any binary  -sequence 

can be made into a perfect two-level sequence by substitution of all ‘  ’ entries by a suitable 

(rational) number  .    

 

Example 4.2 The binary  -sequence           over       of length        becomes 

perfect after substitution       
 

 
 . It is easy to manually check that the two-level sequence 

       
 

 
  is perfect. 

 

Three-level Legendre sequences            , which, for every prime   and       are 

defined by  

    

               
                 r     r            

               r         r            

  , 

can be modified in the same manner. Luke provides the following example of three-level perfect 

sequence derived from a Legendre sequence of length 17: 

 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
48 

 

Example 4.3 (Luke [62], Table I) The following sequence, derived from a Legendre sequence of 

length    by substitution          and      , is three-level perfect of length   : 

                                                                        

 

A similar construction has been proposed by Darrnell and Fan [25]. Concatenating together two 

copies of the same  -sequence               over       , where   is prime and the length, 

given by       , is such that      with   an odd number, in the inverse-repeat manner 

(that is, the resulting sequence is an anti-symmetric sequence of length    (Tomlinson [89])), 

and performing the appropriate substitutions, we get a quasi-perfect  -level sequence   

            , the autocorrelation function of which is given by  

         
        

         
      r    

  , for some  .  

If this quasi-perfect sequence is combined with the sequence          ,         , of 

the same length    using the element-by-element multiplication, the resulting sequence   

             will be  -valued multilevel of length    and period  . A ‘half’ of this sequence, 

representing one period, will be a perfect sequence of length  .  

Darrnell and Fan [25] give an example of such a perfect sequence for the values    ,    , 

and        . The resulting perfect sequence, shown in Example 4.4, is a ternary perfect 

sequence. However, different number of levels can be achieved by application of this method for 

different values of   . 

 

Example 4.4 (Darnell and Fan [25]) The following sequence is two-level perfect: 

                                  

 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
49 

 

Bomer and Antweiler [10] suggest another construction of three-level real valued perfect 

sequence. Based on an arbitrary  -sequence               over       of length       

 , where      for some prime  , the new perfect sequence                is defined by 

    

         
          
                

 , for        . 

The sequence   is perfect if     
          

 

   
 and    is a real root of the equation 

                 
          

                  
          

   , 

with    
      

     and    
      

    .  

 

4.3.2. Perfect Polyphase Sequences 

 

Due to an abundance of potential applications, perfect sequences over the roots of unity are 

comparatively well exposed in the literature. 

 

4.3.2.1. Frank Sequences 

 

The first publication concerning perfect sequences over the roots of unity appeared in 1961.  

Heimiller [39] presents a simple method of generating polyphase perfect sequences of length    

for a prime  . Let               be   different  -th roots of unity, that is    
 

   

 
 
,     

   . Then the sequences, suggested by Heimiller, are formed as follows. 

First, we build a matrix consisting of powers of             : 
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The perfect sequence is then formed by concatenating together in order all terms of the first 

column sequence above, then all terms of the second column sequence, etc, until all column 

sequences are used:  

                                  
    

        
        

      
          

     

Heimiller has noted that the order of the column sequences can be changed, and also any cyclic 

permutation of each column sequence can be substituted for the same column sequence, without 

affecting perfection of the resulting sequence. 

Upon publishing Heimiller’s paper, Frank [33] claimed that he had obtained the same sequences 

more than   years earlier. Being employed in the aircraft manufacturing industry, Frank could 

only place his results in internal reports having restricted circulation. However, the appropriate 

Patent
1
 had been issued at that time, containing a description of synchronizing systems using 

special properties of perfect sequences.  

Moreover, Frank has noted the restriction for   to be a prime number can be withdrawn, and the 

above construction yields a perfect sequence over the  -th roots of unity for any positive integer 

 . 

Heimiller has accepted Frank’s claim (Heimiller [38]). Polyphase perfect sequences of such a 

form are called Frank sequences. 

 

4.3.2.2. Chu Sequences 

 

                                                           
1 R.L.Frank, Phase Coded Communication System, U.S. Patent No 3 099 795, July 30, 1963 (filed Nov. 

27, 1957) 
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The lengths of Frank sequences are restricted to perfect squares. Chu [21] provides a 

construction of polyphase perfect sequences, which exist for every length  ,    . 

Chu sequences of length  ,              , are given by 

    
 

   
 

  

              

 
   
 

                  

  

for        , where   is an integer relatively prime with  . 

A linear phase shifts of the form  
     

 
 
, where   is any integer, when introduced into the 

sequence will not affect perfection, by Property 3 from Section 4.2.1 of the present work. 

Therefore, the modified sequence              ,       
     

 
 
, is also perfect. So, a more 

general expression for a Chu sequence is 

    
 

   
 

                     

 
   
 

                       

  

Some sources reference Chu sequences in this more general form (Fan and Darnell [29], Popovic 

[75]). 

After Chu had published his paper, Frank, again, remarked [32] that the same sequences had 

been earlier discovered by S. Zadoff, Frank’s colleague in the aircraft industry. For the same 

reason as Frank, Zadoff could not freely publish his findings, however, another Patent
2
 

comprising Zadoff’s results has been issued. So, Chu sequences are often referenced as Zadoff-

Chu, or ZC-, sequences in many sources. 

 

4.3.2.3. Alltop Sequences 

 

                                                           
2 S.Zadoff, Phase Coded Communication System, U.S. Patent No 3 099 796, July 30, 1963 (filed Nov. 27, 

1957) 
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Alltop [2] introduces a family of quadric phase sequences of odd length, which, he noted, are 

similar to those of Chu. For   an odd integer greater than  , a quadric phase sequence   

            is defined by     
    

 
  

, for        , where   is an integer relatively 

prime with  .  

It is easy to see that Alltop sequences correspond to Chu sequences of odd length. Indeed, if we 

take     ,      and     (note, since   is odd and relatively prime with  , that    is 

relatively prime with  ) in the expression for   ,        , we have  

    
   

 
             

    

 
  

   . 

 

4.3.2.4. P3 and P4 Codes 

 

Lewis and Kretschmer [60] propose two other sequences. For any positive integer  , they define 

P3 and P4 codes as follows: 

(P3):     
  

 
  

 

(P4):     
  

 
      

 

It is possible to show that P3 and P4 codes are also equivalent to Chu sequences (Fan and 

Darnell [29]). 

 

4.3.2.5. Golomb Sequences 

 

Zhang and Golomb [99] define another similar class of perfect polyphase sequences, which 

became known as Golomb sequences. For each integer  ,    , a Golomb sequence   

            of length   is defined by     
   

 
      

, for        . 
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When   is odd, a Golomb sequence is the same as the Chu sequence of the same length (more 

accurately, it is the shift by   of the Chu sequence). Thus, it is perfect. 

When   is even, the length of the Golomb sequence becomes   , and the sequence is not perfect, 

according to definition used in this work. However, Zhang and Golomb introduce the ‘window 

autocorrelation’ with a window of size  :     
            

    
   . Use of their windows 

autocorrelation instead of traditional autocorrelation retrieves the desired ideal autocorrelation 

properties for subsequences of length  . However, study of such autocorrelation functions lies 

outside the scope of the present work. 

 

4.3.2.6. Milewski Sequences 

 

A new elegant construction for perfect sequences of length         over the alphabet of 

    -roots of unity, for any positive integer   and    , has been suggested by Milewski [66]. 

His construction involves concatenating a few copies of a Chu sequence, multiplied by roots of 

unity in special order. 

Let               be any Chu sequence of length  . We then build a         matrix with 

entries        
  , where ω is a primitive     -root of unity, and indices of   are implied 

        : 

 
 
 
 
    

         
       

   
         

       

 
 

   
                

          

   
                

          

  

   
              

             

  

   
                     

               
 
 
 
 
 

       

 

The resulting perfect sequence is obtained by concatenating together, one by one, the rows of the 

matrix      . 
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4.3.2.7. Gabidulin Sequences 

 

Two new types of perfect sequences have been proposed by the Russian mathematician 

E.Gabidulin [34].  

The first type consists of sequences of length    , for   an odd prime and   any positive 

integer. By the Euclidian division algorithm, any integer  ,           can be uniquely 

represented as 

       , 

where          and         . 

Let     be a primitive root of unity of degree   . A perfect sequence                 is 

then constructed by 

        
   ,          ,  

where   is any integer relatively prime with  ,   and   are defined as above, and   ,     

    , are arbitrary complex numbers of norm  . 

Gabidulin has commented that if all   ’s are chosen to be equal to  , then sequences of this type 

turn into well known Frank sequences. 

The second type consists of sequences of length      , for   an odd prime and   any positive 

integer. Any integer  ,          , can be uniquely represented as 

             ,  

where       ,       and       .  

Let               be a perfect sequence of length  , and      ,     be primitive roots of 

unity of degree     ,     respectively. Then a perfect sequence                   is 

constructed by 
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  ,            ,  

where integers  ,   and    are defined as above. 

Fan and Darnell [29] have remarked that, if we choose the sequence               to be a 

Chu sequence of length  , Gabidulin sequences from the second family become equivalent to 

Milewski sequences.  

 

4.3.2.8. Generalized Bent Function Sequences 

 

Definition 4.2 (Chung and Kumar [22])
3
 A generalized bent function     

    , for a positive 

integer  ,  is a function having the property that all of the Fourier transform coefficients       , 

    
 , of                   , where   is a prime  -th root of unity, defined by        

 

   
      

    
      , have unit magnitude. The sequence                    is called a bent 

sequence. 

In the special case     (one-dimensional bent function, Mow [72]), the generalized bent 

function      is a mapping from an integer      to another integer        . 

Let         be a one dimensional bent function. Then, by Proposition 4.1, Section 4.1, the 

bent sequence                    is perfect. Bent sequences form a class of perfect sequences. It 

is interesting to know that this class of perfect sequences includes Frank sequences and a subset 

of Chu sequences as special cases (Fan and Darnell [29]). 

Gabidulin [35] has obtained the complete description of one-dimensional bent functions. 

                                                           
3 Note that in the present work the Fourier transform coefficients of sequence               are 

defined by         
 

   

 
     

   , and the inverse Fourier transform coefficients are defined by    
 

 
    

   

 
     

    and, therefore, differs from the definition of Chung and Kumar by the constant 

normalizing factor 
 

  
; the presence of this normalizing factor does not make any difference in what 

follows. 
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4.3.2.9. Unified Approach of Mow 

 

In his published textbook [72], Mow proposes a unified construction of perfect polyphase 

sequences and provides an explicit formula for computing such sequences.  

Mow’s general result states that, for any positive integers   and  , the polyphase sequence of 

length      , given by the expression 

  
   
 

      
   
 

        
   
 

         

where 

 for        ,      is as arbitrary rational-valued function,  

 for        , function      is defined by the recursive formula 

        
       

 
      

      

 
                     , where     ,     

   , is an arbitrary permutation of the elements in the set          , and  ,   ,   , 

  ,    are arbitrary integers such that 

         , 

         , and    is co-prime with  , 

         ,         is even and      
      

 
 is co-prime with   for all  , 

       ,  

          , and    is co-prime with  , 

    is an integer,          , 

is perfect. 

Mow shows that all classes of perfect polyphase sequences, discussed above in this section, are 

special cases of his unified approach.  
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4.3.2.10. Modulatable Perfect Sequences 

 

Modulatable polyphase perfect sequences are sequences with ideal autocorrelation properties, 

which are preserved by a modulation process, that is multiplication by a string of complex 

numbers. The modulation process can be used for information transmission in spread spectrum 

communication systems.  

Suehiro and Hatori [88] have introduced a new class of polyphase perfect sequences of length 

  . Each of their sequence can be modulated by   complex numbers of norm  , so that the 

resulting modulated sequence is also perfect.  

Suehiro and Hatori sequences are closely related to Frank sequences, and therefore are often 

called generalized Frank sequences.  

As with Frank sequences, we also start with the familiar     matrix  , consisting of powers of 

 -roots of unity.  

  

 
 
 
 
 

   
      

 

      
 

  
   

   

   
   

 
          

 
 

     
    

 
 
 
 

  

We then multiply this matrix, from the right, by a diagonal matrix  

  

 
 
 
 
 
   
   

   
 

   
 
   

  
      

 
 
 
 

 , with           complex numbers of norm  .  

A perfect sequence                of length    is obtained by concatenating the rows of the 

product matrix 
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Thus, sequence   can be regarded as a modulated sequence obtained by modulating the original 

Frank sequence with complex numbers of absolute value  . 

The general definition of a generalized Frank sequence                is given by the 

formula        
   

 
     , for             and         , and   is relatively prime with 

  (Fan and Darnell [29]). 

A similar generalization of Frank sequences has been independently proposed by Gabidulin [34]. 

Gabidulin sequences of the first type, discussed earlier in Section 4.3.2.7 of the present work, are 

a special case of generalized Frank sequences for      and   being an odd prime. 

A modulatable generalization of Chu sequences (called generalized chirp-like sequences) has 

been developed by Popovic [77]. The new class of perfect sequences is based on an application 

of Chu sequences of length      , where   and   are positive integers. If              , 

     , is a Chu sequence, and               is a sequence of   arbitrary complex 

numbers of norm  , then the generalized chirp-like (GCL) sequence               of length 

  is defined by        ,        , where indices of   are taken         . After 

substitution of defining equations for Chu sequences, the formula for GCL sequences becomes 

    
   

   

 
  

              

   
   

 
                  

 ,        ,           . 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
59 

 

Popovic has shown that P4 codes are derived as a special case of GCL sequences. Besides, it is 

interesting to note that GCL sequences include generalized Frank sequences and Milewski 

sequences as subclasses (Popovic [75,76]). 

 

4.3.3. Bomer and Antweiler Construction 

 

Bomer and Antweiler [10] suggest a construction of a three-level perfect sequence of length 

      ,  where   is any positive integer, by mapping elements of an  -sequence over 

      to three complex values. Let               be an  -sequence over      . Then 

elements of a  -level complex sequence               are formed by the rule 

    

         
          
                

 , for        , 

where        ,         with                            
 

   
  

 

 
       and 

  
      

      . 

Note that    and    are not exactly equal to the  -roots of unity, however, the phase values of    

and    tend to  
  

 
  and  

  

 
  for increasing length  . 

 

4.3.4. Multilevel Perfect Sequences over ℂ 

 

There are very few sources on multilevel complex perfect sequences in the literature.  

Using a technique, similar to that which has been employed for obtaining multilevel real valued 

perfect sequences, Darrnell and Fan [25] present a method of construction of multilevel complex 
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perfect sequences of length  , where   is any integer satisfying        for some prime   

and some integer  , and      for some odd  . There is an example of such a sequence. 

Example 4.5 (Darnell and Fan [25]) The following sequence is a two-level perfect sequence of 

length    
    

 
: 

                                                                           

 

Recently, Boztas and Parampalli [13], based on results of Lee [58], have presented a new 

construction of perfect sequences over a PSK+ alphabet, which is the set of  -roots of unity 

extended by adding  . Their construction employs  -sequences over       of length     , 

for           , and yields a perfect sequence over the  -roots of unity plus   of length 

    

   
.  

 

4.4. Existence of Perfect Sequences over ℂ 

 

Note that multilevel sequences exist for arbitrary long length  . Some constructions of ternary 

sequences of arbitrary long length, based on  -sequences or Legendre sequences of similar 

length, discussed in Section 4.3.1.3 of the present work. Perhaps, the simplest example of a two-

level perfect sequence, which exists for every length  , is the sequence of which all elements, 

except one, are zeros: 

 

Example 4.6 Two level perfect sequence of length  , for any  , 
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The construction, due to Bomer and Antweiler, of a perfect sequence of an arbitrary long length 

over the alphabet of only three complex numbers, each of norm  , is given in Section 4.3.3.  

However, the situation with perfect sequences over the  -roots of unity is rather different. It is 

known that such sequences do not exist for many lengths. Some recent non-existence results for 

perfect sequences over the roots of unity of certain lengths are presented in this section. 

 

4.4.1. Equivalent Formulation of Perfection 

 

The existence of a perfect sequence is equivalent to the existence of a circulant Hadamard 

matrix. 

 

Definition 4.3 A matrix         with entries from          with the property that any two 

distinct rows are orthogonal to each other, is called a Hadamard matrix.  

 

Formally, the condition of mutual column orthogonality for matrix   with entries from          

can be expressed as       , where   is the identity matrix.  

For a comprehensive introduction to Hadamard matrices refer to Horadam [43]. 

 

Definition 4.4 (Baumert [9]) A matrix      ℂ  is said to be a circulant if each successive row 

is derived from the previous row by shifting it cyclically one position to the right. 

 

Example 4.7
 
(Baumert [9]) The matrix  

        
      

      
       

      
        

        
      

  is circulant. 
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It is clear that the rows of a circulant Hadamard matrix are shifted versions of a binary perfect 

sequence. 

Arasu and De Launey [3] extend the concept of Hadamard matrix to matrices over roots of unity. 

 

4.4.2. Non-Existence of Non-Trivial Binary Perfect Sequences 

 

Many non-existence statements for perfect sequences are obtained by applying results from 

difference set theory. 

 

Definition 4.5 (Jungnickel and Pott [52]) Let   be an (additive) group of order  , and   be an  -

element subset of  . Then   is called a        -difference set if its list of differences, that is 

                         , contains each non-zero element of   precisely   times. 

If   is a cyclic group,   is likewise called cyclic. 

 

It is well known (Baumert [9], Jungnickel and Pott [53], Hoholdt [42]) that there exists a one-to-

one correspondence between binary sequences of length   with two-level autocorrelation 

function (that is, all autocorrelation coefficients for every non-zero shift are equal to some 

constant  ) and cyclic difference sets in   .  

Indeed, if   is a        -difference set in   , we construct a binary sequence 

                  by 

     
         
         

 ,        .  

The autocorrelation function of   is then given by  
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 ,        . 

 

For a perfect binary sequence all autocorrelation coefficients for every non-zero shift are equal to 

zero (   ), and, as shown in [9], for a difference set   to exist in   ,   has to be an even 

square,       for some  , and the parameters are in the form 

                         

Difference sets of this type are called Hadamard difference sets (Jungnickel and Pott [52]). 

The only known example of Hadamard difference set is the trivial        -difference set, 

corresponding to the trivial binary perfect sequence            of length  . It has been widely 

conjectured that no other Hadamard difference sets exist. The conjecture is commonly known as 

the ‘circulant Hadamard matrix conjecture’, due to the related concept of circulant Hadamard 

matrix, briefly explained above. 

Many attempts have been undertaken towards finding a proof of non-existence of other 

Hadamard difference sets, and many important results have been obtained on the way, however, 

the circulant Hadamard matrix conjecture is still unsolved. The history and recent status of the 

circulant Hadamard matrix conjecture is as follows. 

Turyn [91] has proved that if a Hadamard                 -difference set exists,   must 

be an odd number.  Baumert [9] has shown that non-trivial Hadamard difference sets can only 

exist for     . This means that there are no Hadamard difference sets for   in the range  

         . Using the results of Schmidt [81], Jungnickel and Pott [53] have been able to 

improve the result of Baumert, demonstrating that Hadamard difference sets with   in the range 

          do not exist, with possible exceptions of 

                                                                       . 

Since then, there has not been any more progress towards proving the circulant Hadamard matrix 

conjecture. 
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A paper of Xian [96], in which the author claimed he presented a proof of the circulant 

Hadamard matrix conjecture, appeared in 1987. However, shortly following this publication, 

Mitchell [68] has commented that the proof was not correct, and gave a counter-example, which 

highlighted the flaw in the proof.  

 

4.4.3. Non-Existence Results for Quaternary Sequences 

 

The term ‘quaternary sequences’ refers to sequences over the  -roots of unity, i.e. with entries 

from the set          . There are some results regarding the non-existence of quaternary perfect 

sequences. 

Studying properties of bent sequences, Chung and Kumar [22] have proved that there are no 

perfect quaternary sequences of length   , for    . 

Establishing equivalence between quaternary perfect sequences and difference sets in the group 

     , where    and    are cyclic groups of order   and   respectively, Arasu, De Launey and 

Ma [3] have obtained some results sufficient to prove that there are no quaternary perfect 

sequences for many orders. Applying these results, most of the orders are excluded as 

permissible length for a quaternary perfect sequence, leaving only    orders up to      yet to be 

checked: 

                                           . 

Arasu, De Launey and Ma put forward the conjecture that there exist no quaternary perfect 

sequences of length greater than   .  

Parraud [74] has presented an alternative proof for the results of Arasu, De Launey and Ma and 

conjectured that there only exist perfect quaternary sequences of length  ,   and 16. 

 



Section 4: Perfect Sequences over the Complex Field ℂ 

 

 

 
65 

 

4.4.4. Non-Existence of p-ary Polyphase Perfect Sequences 

 

Studying perfect sequences over the  -roots of unity, for   an odd prime, Ma and Ng [64] have 

shown that existence of such sequences is equivalent to the existence of certain kinds of 

difference sets. Using results from difference set theory, Ma and Ng have proved non-existence 

of perfect sequences of many lengths, including the following cases:  

   , for    ; 

    , for    ; 

   , for prime  ,    . 

 

4.4.5. Non-Existence of Almost p-ary Perfect Sequences 

 

Chee et. al. [18] introduces almost  -ary sequences of length    , which are defined as 

sequences of the form            , where         are  -th roots of unity, for some  . They 

present some non-existence results for perfect almost  -ary sequences for certain combinations 

of   and  .  

Also, it is shown (Luke [63]) that perfect almost binary sequences of length     do not exist 

for    . 

 

4.4.6. Conjecture on Non-Existence of Longer Polyphase Perfect Sequences  

 

Considering the known constructions of perfect sequences over the  -roots of unity, discussed in 

Section 4.3.2 of the present work, it is easy to observe that alphabet size increases for longer 
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perfect sequences. Note that none of the known constructions over  -roots of unity results in a 

perfect sequence longer than   .   

Based on such observations, Mow has conjectured a relationship between the length of a 

polyphase perfect sequence and the minimum alphabet size. 

 

Conjecture 4.1 (Mow [71]) Let      , for     positive integers and   is square free. A 

perfect polyphase sequence of length   exists if and only if its alphabet size   is an integer 

multiple of     , where      is the minimum alphabet size, given by  

      
      r                  

       r    
 . 

 

In particular, Mow’s conjecture means that over the alphabet of  -roots of unity, there are no 

perfect sequences of length above   . This statement is fully compatible with the conjectures of 

Arasu et. al. [3]  and Parraud [74],  refer to Section 4.4.3 of the present work.  
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5. Right and Left Perfection over the Real 

Quaternions 

 

In this section we give definition of right and left perfection over the real quaternions, and 

introduce a very important property of perfect sequences over the real quaternions. We prove 

that the right perfection of any sequence implies the left perfection, and vise versa, so the 

concepts of right and left perfection over the real quaternions are equivalent. The results of this 

section have been presented by the author on the Fourth International Workshop on Signal 

Design and its Application in Communications, held in Fukuoka, Japan, 19-23 October 2009, 

and are published in the IEEE Proceedings [55]. 

 

5.1. Definition of Perfection over the Real Quaternions 

 

Unlike complex numbers, the quaternion algebra is non-commutative. Non-commutativity of the 

quaternions calls for defining two alternative autocorrelation functions: right and left 

autocorrelation, which, in general, have non-equal values for the given sequence (refer to 

Example 5.1 below). Correspondingly, two definitions of perfect sequence are available. 

 

Definition 5.1 A non-zero sequence                  over an arbitrary quaternion alphabet 

is called right perfect if its right periodic autocorrelation function     
     

 

   
       

    
    

is equal to zero for all non-zero shifts  ,        . 
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Definition 5.2 A non-zero sequence                  over an arbitrary quaternion alphabet 

is called left perfect if its left periodic autocorrelation function     
     

 

   
   

     
   
    is 

equal to zero for all non-zero shifts  ,        . 

 

An alternative definition of left autocorrelation function, which may be perceived as a more 

natural way for defining it, is     
 

   
     

 

   
     

   
   
   . Since     

 
   

     

     
      , the two definitions are equivalent. In this work,         will be used for the left 

autocorrelation function.  

 

Example 5.1 For a sequence over the real quaternions, the set of right autocorrelation values can 

be different to the set of left autocorrelation values. For example, Table 5.1 below lists right and 

left autocorrelation values for the sequence                     for all non-zero shifts  , 

     . 

 

Table 5.1 Right and left autocorrelation values for the sequence                   . 

                                      

1        8   0 

2          4           12 

3   0   0 

4          4           12 

5       8   0 
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5.2. Equivalence of Right and Left Perfection over the Real 

Quaternions 

 

Here we prove the equivalence of right and left perfection over the real quaternions. That is, a 

sequence over the real quaternions is right perfect if and only if it is left perfect. 

 

Lemma 5.1 Let                  be any sequence with elements in the real quaternion 

algebra ℍ and     
     

 

   
       

    
    and     

     
 

   
   

     
   
    be the right and 

the left autocorrelation functions of the sequence   respectively. Then  

      
     

   

   

 
 

   
     

      
            

   

    

   

    

 

and 

      
     

   

   

 
 

   
     

     
            

 

   

    

   

    

 

Proof.  
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The second identity of Lemma 5.1 is proved in a similar way. □ 

 

Proposition 5.1 Let                  be any sequence over the real quaternion algebra ℍ. 

Then the sequence   is right perfect if and only if it is left perfect. 

Proof. Assume that                  is a right perfect sequence. We will show that the sum 

of the norms of the left autocorrelation values       
        

   , for all non-zero shifts  , is 

equal to zero.  

By Lemma 5.1 we have 

 

      
     

   

   

 
 

   
     

      
            

   

    

   

    

 

(4.1) 

Since   is assumed right perfect, all right autocorrelation values are equal to zero for all non-zero 

shifts  :     
              . Also, for any sequence   it is true that     
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      . Then,     

           for       and     
           for      , and 

the equality (4.1) above continues 

 
 

   
    

    

   

    

 
 

   
       

Thus,  

        
     

   

   

         
     

   

   

 

It follows that  

      
     

   

   

   

Since the sum of non-negative real numbers is equal to zero, every summand is necessarily equal 

to zero too.  Therefore,     
       for all non-zero shifts  , and   is left perfect by 

definition. 

The inverse implication is proved similarly, by assuming that   is left perfect and showing that  

      
     

   

   

   

This completes the proof of Proposition 5.1 □ 

 

Because, by Proposition 5.1, every right perfect sequence over the real quaternions is also left 

perfect, and vice versa, designations ‘right’ or ‘left’ perfect sequence are redundant. From now 

on, designations ‘right’ or ‘left’ for perfection will be omitted, and every right or left perfect 

sequence will simply be called perfect.  
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Corollary 5.1 Let                  be any sequence over the real quaternions. Then the 

sequence   is perfect if and only if its conjugate sequence       
    

        
   is perfect. 

Proof. Note that for any sequence   it is true that      
         

    . Therefore, left 

perfection of   implies right perfection of   . □ 
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6. Transformations Preserving Perfection over 

Quaternions 

 

This section consists of two major parts. In Part 6.1, some basic operations over sequences with 

quaternionic entries are considered. In Part 6.2 we study how perfection over quaternions is 

affected by transformations of the quaternion space itself. Many examples, illustrating 

applications of the new results, are presented for easier understanding of the text. 

Most results in this section are generalizations of the similar well known results on perfect 

sequences over the complex numbers. However, some results, presented in this section, are brand 

new. 

 

6.1. Operations Preserving Perfection over Quaternions 

 

Some elementary properties of perfect sequences over the complex numbers, considered in 

Section 4.2.1 of the present work, are generalized to perfect sequences over the real quaternions. 

A new result, Proposition 6.5, is introduced in Section 6.1.5. 

 

6.1.1. Perfection of a Shift of a Perfect Sequence 

 

Proposition 6.1 A sequence                  over the real quaternions is perfect if and only 

if any shift of this sequence is perfect. 



Section 6: Transformations Preserving Perfection over Quaternions 

 

 

 
74 

 

Proof. The defining equations for (right) perfection of the shifted sequence 

  
                             are the same as the defining equations for (right) 

perfection of the original sequence                 ,   

    
     

 

   
       

    
      ,        ,  

with circularly shifted summands. □ 

 

6.1.2. Perfection of the Sequence Obtained from a Perfect Sequence by 

Multiplying its Elements by a Constant Factor 

 

Proposition 6.2 Perfection of a sequence over the real quaternions is preserved by right (left) 

multiplication of each element of the sequence by a constant quaternion. 

Proof.  (i) Left or right multiplication of each element of a sequence by   produces the all-zero 

sequence, which is perfect.  

(ii) For a sequence                 , consider the (right) autocorrelation function of the 

product sequence                            for any non-zero quaternions   and  . 

      
     

 

       
                

   

   

 
 

       
           

   

   

   

 
 

       
       

   

   

    
    

   

       
     

   

   

    
    

 
   

       
     

       

 

If we assume   is perfect, then     
       for every        . Thus,         

     

 ,        , and sequence       is perfect by definition. □  
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6.1.3. Perfection of the Sequence Obtained from a Perfect Sequence by 

Multiplying its Elements by Consecutive Powers of Roots of Unity 

 

For a sequence over the real quaternions                 , consider the sequence      

    
     

     
         

    , where    
    

  is any  -th complex root of unity,     

   . 

 

As shown by the example below, multiplication of elements of a sequence by consecutive 

powers of a root of unity can destroy perfection of the original sequence. That is, for a perfect 

sequence                  over the real quaternions, the sequence 

         
     

     
         

     is not, in general, perfect.  

 

Example 6.1 The perfect sequence                , by right multiplication of its elements 

by        and    respectively, where   denotes the primitive  -th root of unity    , 

transforms to the sequence 

                   

 which is not perfect. Indeed, 
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However, by Proposition 6.3 below, in a special case, when elements of a perfect sequence 

commute with a root of unity, perfection is preserved by multiplication of elements of a sequence 

by consecutive powers of that root of unity. 

 

Lemma 6.1 Let                  be a sequence over the real quaternions. Then 

          . 

Proof.              
     

         
          

       
           

     

                                                       . □ 

 

Proposition 6.3 If all elements of a perfect sequence                  over the real 

quaternions commute with the  -th root of unity    
    

 , for some        , then  

         
     

     
         

     is perfect. 

Proof. First note that if all elements of the sequence                  commute with  , then 

they commute with every power          .  

By Lemma 6.1,           . Then, for any non-zero shift  ,        , we have 

       
     

 

      
     

             

   

   

 
 

   
    

           
 

   

   

 
 

   
    

       
 

   

   

 

Since every power of   commutes with all elements of  , the equality continues 

 
    

   
       

 

   

   

 
    

   
     

Therefore,      is (right) perfect. □ 
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Corollary 6.1 If                  is a perfect sequence over the complex numbers, then 

         
     

     
         

     is perfect, where   is the same as in Proposition 6.3. 

Proof. Complex numbers commute with  , so      is perfect by Proposition 6.3. □ 

 

Corollary 6.2  If                  is a perfect sequence over the real quaternions of an even 

length  , then the sequence                     is perfect. 

Proof. Since         for any even power  ,      is a  -th roots of unity for an even  . 

Because    is a real number, it commutes with any quaternion  . Therefore, by Proposition 6.3, 

    
     

         
                         is perfect. □ 

 

6.1.4. Perfection of a Proper Decimation of a Perfect Sequence 

 

Proposition 6.4 below is a generalization of the known result on perfect sequences over the 

complex numbers (Gabidulin and Shorin [36]). 

 

Proposition 6.4 A proper decimation of a prefect sequence over the real quaternions is perfect.  

 

The Euler function      of a positive integer   is defined as the number of positive integers not 

greater than   and co-prime with  . The poof of Proposition 6.4 will rely on the following 

Lemma 6.2. 
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Lemma 6.2 Let   and   be two positive integers, such that     and           , and let   

be an arbitrary integer. Then, for any integer        , the equation                

has the solution                    ; moreover, this solution is unique in the range 

       . 

Proof. Consider the equation                with indeterminate  . By the Euler theorem 

(refer to Schroeder [82]),             . Then 

               
 

  

                     
 

   

                                  
 

   

                                      
 

   

                                                

 

            
            

                                      
       
       

                            
 

  

                      

Therefore,                      is a solution of               . 

The uniqueness of the solution is proved by contradiction. Assume that there exist two positive 

integers    and   ,                   , such that                  

  2      . Then 
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The last equality implies that the remainders of     and     after division by   are equal. 

Therefore, 

                
 

  

                  
 

  

      
        

 
 

Since       by assumption,       is an integer not equal to zero. Because   is co-prime with 

 ,   does not divide  , therefore,   must divide      , that is,         , for some  . Then 

      
   

 
    

Since        ,   
     

 
  . Therefore,             . However, because   

          implies            , we have the contradictory inequality         

   ,  meaning that our assumption of existence                   was incorrect. 

Thus, a solution for             is unique in        . □ 

 

We are now ready for a proof of Proposition 6.4. 

Proof of Proposition 6.4 Let                  be a perfect sequence over the real 

quaternions of length  . Let   be an arbitrary positive integer such that        . We 

denote     
     by                    :     

                      , where   is co-

prime to  . 

Consider the (right) autocorrelation value for the  -th shift of the decimated sequence   
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Because                     is the decimation of                  by  , for every   , 

       , there exists          , so that         . By solving the equation 

               for all  , we find the ‘pre-image’ of every element    of the decimated 

sequence in the original sequence  . The equation                has the unique solution 

                     in         by Lemma 6.2. Therefore, with all indices 

assumed to be         , the equality above is continued as  

 
 

   
                               

 

   

   

 
 

   
                                     

 

   

   

 
 

   
    

     
 

   

   

 

where                     ,                 .  

Notice that the magnitude of   does not depend on  , the position in the sequence. Moreover, 

because the equation                has a unique solution   such that        , 

namely                     for any integer        ,  the correspondence  
 

   is 

‘one-to-one’.  Therefore, the set of indices                is a permutation of the set of 

integers {          , and     
    

        
  is a permutation of               . It means 

that every element of the sequence   necessarily appears in a proper decimated version of  , and 

appears only once. Thus, the last summation is in fact the sum of products of every element of 

the sequence   by the conjugate of another element located ‘  elements apart’. Up to the order of 

summation, it is exactly the  -th right autocorrelation value of the sequence  . Therefore, by 

commutativity of quaternion addition, the equality is continued as 

 
 

   
       

 

   

   

     
       

Because   has been chosen as an arbitrary integer         , the equality above holds for 

every non-zero shift   of the sequence       
    . Thus, the sequence       

     is 

(right) perfect. □ 
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Corollary 6.3 A sequence                  over the real quaternions is perfect if and only if 

its reverse sequence,                 , is perfect. 

Proof. The reverse of a sequence   is exactly the decimation of   by    : 

                        
                  

Since   is assumed perfect, its reverse sequence is perfect by Proposition 6.4 □ 

 

Example 6.2 Consider the perfect sequence                                  of length 

   (found by an exhaustive computer search). There are three integers co-prime with    in the 

range between   and   :  ,   and  . By Proposition 6.4, sequences 

    
                                    

    
                                     

    
                                    

are perfect. Checking these sequences with a computer confirms their perfection.  

 

6.1.5. Perfection of a Sequence of Balances of Decimations of a Perfect 

Sequence 

 

For a sequence                 , we denote the sum of all elements by   : 

      

   

   

 

The sum of all elements of a sequence is called the balance of the sequence. 



Section 6: Transformations Preserving Perfection over Quaternions 

 

 

 
82 

 

 

Proposition 6.5 Let                  be a perfect sequence over the real quaternions and 

  ,    be two integers such that          and       . Then the sequence  

       
           

             

          

of length    is perfect. 

Proof. Note that all indices of   are understood         . Let 

         
           

             

        

       

    

   

        

    

   

             

    

   

  

Consider the (right) autocorrelation function of sequence   for any non-zero shift  ,     

     . 
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Since         , then, multiplying this inequality by the positive integer    and adding the 

integer  , we have                           . Since         , 

then       , and           . Thus,          , and              . 

Since   is assumed perfect, all its (right) autocorrelation values for any non-zero shift are zero, 

that is      
           for all          and         . 

The equality above continues as 

   

    

   

   

Thus,     
       for all         ,  and the sequence   is (right)  perfect. □ 

 

Example 6.3 If                     is a perfect sequence of length 6 over the real quaternions, 

then the sequences 

                      

and  

                     

are both perfect. 

For instance, since the sequence                    is perfect (found by an exhaustive 

computer search), it follows that the sequences 

                

and 

          

are also perfect. 
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6.2. Transformations of the Quaternion Space Preserving 

Perfection 

 

In the previous part of this section, we considered some transformations of quaternionic 

sequences preserving perfection. Such simple transformations as shifting, multiplying by a 

constant, decimation etc, are like elementary arithmetical operations over perfect sequences, and 

do not involve a transformation of the quaternion space ℍ itself.  

In this part, we study how transformations of the quaternion space ℍ itself affect perfection of 

sequences with elements from ℍ.  

 

Proposition 6.6 Let                  be a sequence with elements in the real quaternion 

space ℍ, and    be any unitary transformation of the quaternion space ℍ. Then the sequence   is 

perfect if and only if the transformed sequence                              is perfect. 

Proof. It is known (Coxeter [24]) that, for any unitary transformation   of the real quaternion 

space ℍ, there exist two unit quaternions   and  , so that the transformation   is represented as 

either         , or          . 

Assume   is perfect. By Corollary 5.1 the conjugate sequence    is perfect. Then, by Proposition 

6.2, sequences    and    are perfect for any quaternion  . Then sequences     and      are 

perfect for any quaternion  . Therefore,      is perfect. 

Conversely, assume that the sequence      is perfect. Consider the inverse transformation    , 

given by either             , or            . Thus     is also a unitary transformation 

of the real quaternion space ℍ. Since            , and since      is assumed perfect, we 

have   is perfect. □ 
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Definition 6.1 A unitary transformation   of the real quaternion space ℍ is called a symmetry 

transformation of a finite alphabet   if it maps alphabet   onto itself,     
 
  .  

 

Example 6.4  If elements of an alphabet   represent vertices of a regular polytope, then any 

transformation of this polytope by rotation, reflection or inversion is a symmetry transformation 

of alphabet  .  

 

Corollary 6.4 A symmetry transformation of the alphabet preserves perfection of a sequence over 

the real quaternions. 

Proof. Any symmetry transformation of the alphabet is a special case of the unitary 

transformations of the quaternion space ℍ. □  

 

Example 6.5 Consider a reflection   of the quaternion space ℍ in the hyperplane passing through 

the origin and orthogonal to the real axis. Such a reflection   changes a sign of the real part   of 

every quaternion        ℍ, leaving its vector part    unchanged. The perfect sequence 

                                , taken from Example 6.2 above, will transform to 

                                   by this transformation, which is also perfect. 

. 

Example 6.6 Consider the perfect sequence             over the  -roots of unity         , 

where    
   

 . Since complex numbers are a special case of the real quaternions, sequences 

over the complex numbers will possess all properties of sequences over the quaternions. In 

particular, any unitary transformation of the complex space ℂ preserves perfection of a sequence. 

Consider a transformation   of the complex space by rotation about the origin by angle 
 

 
 (refer 

to Figure 6.1). The transformation   maps the set of  -roots of unity into the set of  -th roots of 
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unity:       
  

 ,        ,        
   

 . Proposition 6.6 ensures that the sequence 

        
  

          over  -th roots of unity is perfect. 

 

Figure 6.1 Transformation of the complex space by rotation about the origin by angle 
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7. Composition of Sequences over Quaternions 

 

Some methods for building longer perfect sequences over the real quaternions are introduced in 

this section. The main idea behind the considered methods is a use of shorter perfect sequences, 

or other sequences of a special form, as ‘building blocks’ for compounding longer perfect 

sequences. The shorter sequences are generally found by an exhaustive computer search over 

some alphabet.  

Two main results of this section are 

 Proposition 7.1 on compounding two sequences of relatively prime length, and 

 Proposition 7.2, which considers methods of compounding two sequences of even 

lengths. 

It has been conjectured that there are no perfect sequences longer than    over the  -complex 

roots of unity (Mow’s conjecture, refer to Section 4.4.6 of the present work). This conjecture, if 

true, imposes significant limits for the lengths of perfect sequences over the roots of unity, 

restricting a potential for practical applications which require longer sequences. In this section 

we demonstrate that there is no equivalent restriction for quaternion sequences. Example 7.3 

shows a perfect sequence of quite impressive length, in order of a few billions, over an alphabet 

of     unit quaternions, which are quaternionic   -roots of unity.  

Proposition 7.2 introduces a brand new method for compounding two sequences of even lengths. 

A use of this new method for constructing new sequences of length    and    over an alphabet 

of    unit quaternions is demonstrated in Examples 7.4 and 7.5. 
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7.1. Composition of Sequences of Relatively Prime Lengths 

 

Definition 7.1 Let                   and                    be two sequences over the 

real quaternions.  The sequence            ,                   ,  where indices of 

sequences   and   are understood           and           respectively, is called the 

composition of sequences   and  . 

 

If sequences   and   are of relatively prime length, then the length of the composition sequence 

is equal to the product of lengths of the original sequences. 

 

Note that, dissimilar to the complex case, the product theorem for autocorrelation functions, 

briefly discussed in Section 4.2.3 of the present work, does not hold for sequences over 

quaternions. That is, the autocorrelation function of the composition sequence is not, in general, 

equal to the product of autocorrelations functions of the original sequences. Consider the 

example below: 

 

Example 7.1 Consider two sequences           and         of relatively prime lengths. The 

composition of these sequences                  . Calculating autocorrelation function for 

shift  , we have 

                

               

              

and  
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As the following proposition states, the composition of two perfect sequences over the real 

quaternions will be perfect. However, over the quaternions, this statement is not a simple 

consequence of the product theorem for autocorrelation functions. 

 

Proposition 7.1 Let                   and                   be two perfect sequences 

over the real quaternions so that their lengths    and    are relatively prime numbers. Then their 

composition                              is perfect. 

Proof. Indices of sequences   and   are understood           and           respectively. 

Consider the (right) autocorrelation function of the product sequence     for any non-zero shift 

 ,                 : 

      
     

 

     
                

      

   

 
 

     
         

     
 

      

   

 
 

     
             

      
 

    

    

    

    

 
 

     
              

 

    

    

      
 

    

    

 

If            then          
     

      , since   is perfect.  

If            then          
     

            
     

        . 

The assumption that    and    are relatively prime numbers assures the condition that  , 

                , can not be equal to          and          simultaneously. Since 

  is perfect, its only non-zero autocorrelation values are for shifts           .  

Therefore, the equality above continues as 
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Thus,       
       for all non-zero shifts  ,                 , and the 

composition sequence     is (right) perfect by definition. □ 

 

Example 7.2 Consider perfect sequences over the double-tetrahedron group     (Stringham 

[86]). This group of order    contains integer and half-integer quaternions of norm  , i.e. 

            and quaternions of the form  
        

 
  for all possible combinations of ‘ ’ and 

‘ ‘ signs. An exhaustive computer search for perfect sequences over     shows that this group 

is remarkable in a sense that perfect sequences of both odd and even lengths over     exist. It is 

possible to choose two sequences over     of co-prime lengths, for example, lengths   and  . 

Here are two examples, taken at random from a set of perfect sequences generated by computer 

search: 

    
       

 
               

                   

Because     is a group, it is closed under multiplication, so the composition of two sequences 

above will be another sequence over the same alphabet    : 

      
        

 
            

       

 
           

       

 
            

 
       

 
            

        

 
           

        

 
              

By Proposition 7.1,     is a perfect sequence of length   .  
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Definition of the composition of two sequences can be generalized for an arbitrary number of 

sequences. 

 

Definition 7.2  If                  ,                  , …,                   are 

  sequences over the real quaternion algebra ℍ, then the sequence  

                 ,                        , 

where indices of   are taken          , indices of   are taken           , and so on, indices 

of   are taken           , is called the composition of   sequences  ,  , …,  . 

 

Note that if sequences         are of co-prime lengths, then the length of the composition 

sequence is equal to the product of lengths of the original sequences. 

It is clear that composition of any finite number of perfect sequences of relatively prime lengths 

is perfect. Therefore, composing several perfect sequences of relatively prime lengths may be 

considered as a convenient instrument for obtaining much longer perfect sequences. Consider 

Example 7.3 below. 

 

Example 7.3 Using an exhaustive computer search over the double-tetrahedron group    , 

perfect sequences of relatively prime lengths                   and    have been found. Note 

that our search was restricted to palindromic (that is, sequences which have an elements starting 

with which they read the same forwards and backwards), sequences of the special form 

                                   , where            and      . 

 Here are examples of perfect sequences for each length: 

Length 23:                                                           
        

 
   

Length 19:                                                     
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Length 17:                                               
       

 
   

Length 13:                                   
        

 
   

Length 11:                                 
        

 
   

Length 9:                          
        

 
   

Length 7:                    
        

 
   

Length 5:              
        

 
   

 

We can append this list with one more perfect sequence, 

                                              

which is the well-known Frank sequence over the  -roots of unity of length    (refer to Section 

4.3.2.1 of the present work). We regard entries of this sequence as quaternions and elements of 

the group    . Length    is a relatively prime number to lengths of all sequences from the list 

above.   

The composition of all the above sequences,  

                       
        

 
   

       

 
   

is perfect of length                                         

Note that elements of the group     can be regarded as quaternionic   -roots of unity. Indeed, 

     , for all      . So, the sequence of length              , obtained in Example 7.3, is 

in fact over the quaternionic 12-roots of unity. 

 



Section 7: Composition of Sequences over Quaternions 

 

 

 
93 

 

7.2. Composition of Two Sequences of Even Lengths 

 

The result of this part, Proposition 7.2, is a new result on composition of two sequences of even 

lengths. We give several applications of this result to perfect sequences over the real quaternions, 

where new perfect sequences are obtained. However, we have not found new perfect sequences 

over complex roots of unity by using Proposition 7.2, because we were unable to find any 

sequences satisfying properties 3 – 5 of Proposition 7.2 over complex roots of unity by an 

exhaustive search on our ordinary desktop computer. 

  

Definition 7.3 The (right) cross correlation function between non-zero sequences    

               and                  is defined as 

     
     

 

       
       

 

   

   

 

for         . 

 

Proposition 7.2 Let                  ,                   be two sequences of even 

lengths    and    over unit quaternions, so that the following conditions are satisfied: 

1.    is not a multiple or a divisor of   , 

2. Sequence   is perfect, 

3. The subsequences     
     and     

     of    are both perfect,  

4.        
         

    
              

         
    

      for every  ,      
  

 
  , 

5.        
         

    
      are real numbers for every  ,      

  

 
  .  

Then the composition sequence             ,                   , is perfect. 
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Some Lemmas will be required for the proof of Proposition 7.2. 

  

Lemma 7.1 Let                  and                  be sequences of length   over 

the real quaternions. Then, for      , the following identity is true:  

      
     

 

      
       

Proof. 

      
     

 

  
 

       
       

    
    

 

 
 

       
       

    
    

 

       
       

    
    

     
      . □ 

 

Lemma 7.2 Let                  and                  be sequences of length   over 

the real quaternions. If the condition      
            

     holds for every   in the range 

     
 

 
 , then it holds for every integer  . 

Proof.  By taking conjugates of both parts of the equality      
            

    , we have  

     
              

      , by Lemma 7.1. Since, by assumption, this is true for every 

  in the interval      
 

 
 , it follows that, after substitution        , we have 

     
            

     for   
 

 
       . Therefore,      

            
     for 

every   in  

        
 

 
       

 

 
                   , 

and, since arithmetic          applies for  , for any integer  . □ 

 

Lemma 7.3 Let                  and                  be sequences of length   over 

the real quaternions, so that the condition of Lemma 7.2 holds:      
            

     for 
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 . If      

     are real numbers for      
 

 
 , then      

     are real numbers 

for every integer  . 

Proof. Note that, by Lemma 7.2, the assumed condition      
            

     holds for all 

integers  . Since      
     are real numbers for      

 

 
 , implying they are equal to their 

conjugates, then, making use of Lemma 7.1 and the assumed condition      
       

     
    , we have  

     
          

             
         

 

      
        . 

Therefore,      
         are also real for      

 

 
 , or, after the substitution     

   ,       
     are real for  

 

 
       . Thus,      

     are real for every   in  

        
 

 
       

 

 
        . 

If   is an even number, then  
 

 
   

 

 
  and  

        
 

 
       

 

 
                  .  

If   is an odd number, then 

     
   

 

 
        

   
 

 
           

     
 

 
     

 

       
   

 

 
   

 

.  

Therefore, for an odd  ,      
   

 

 
   is always a real number. Then,      

     are real for every 

  in  

        
 

 
       

 

 
           

 

 
            . 

Thus,      
     is real for every   in       , irrespective of the parity of  . The 

arithmetic modulo   applies to  , therefore,      
     is a real number for every integer  . □ 
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We are now ready to proceed with a proof of Proposition 7.2. 

Proof of Proposition 7.2 Let       
    ,       

     and   
  

 
. 

Note that, by Lemmas 7.2 and 7.3, conditions   and   of Proposition 7.2 are, in fact, equivalent 

to the conditions 

  .        
         

    
              

         
    

      for all integer   , 

and 

  .        
         

    
     is a real number for all integers   .  

 

We now consider the (right) autocorrelation value of the composition of two sequences   and   

for an arbitrary shift  ,                  and show that, with the assumptions of 

Proposition 7.2,  it is equal to zero.  

Consider two cases: the first,           , and the second,           .  

Case 1.           . 

      
     

 

     
                

            

   

 
 

     
         

     
 

            

   

 

(7.1) 

Since indices of   are taken          , in the summation above, every    and     
  will repeat 

itself 
          

  
 times in every   -th term, and, since indices of   are taken          ,  every 

time they will meet    and     
  which are exactly                elements apart from the 

   and     
 , so the summation above is partitioned as follows: 
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Since    and    are even numbers,       is an even number too. Moreover, because    and    

are not multiples of each other, 
          

  
 

  

 
. Since indices of all summands in the brackets 

above are assumed modulo   , the sum in the brackets can be expanded as follows:  

                           
 

          
  

  

   

                            
 

  
 

  

   

 

 
 
 
 

 
 
      

             
         

    
  

 

 
                     r      

     
             

         
    

  
 

 
                            

      
          

             
         

    
                                 

      
          

             
         

    
                       r     

  

Note that since sequences   and   are assumed over unit quaternions, that is, all their elements 

have norm  , and both     
     and     

     are of the same length  
  

 
, then      

      

     
      

  

 
 and       

          
      

  

 
.  

 

 
 
 
 

 
 
 

  

 
        

         
    

  
 

 
                     r      

  

 
        

         
    

  
 

 
                            

  

 
        

         
    

                                 

  

 
        

         
    

                       r     

  

Equality (7.1) continues: 
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(7.2) 

Since            by the assumption of this case, 
 

 
       

  

 
. Because     

     and 

    
     are both perfect of length 

  

 
, then        

         
    

  
 

 
    and 

       
         

    
  

 

 
   .  

Let          
         

    
      . By conditions    and   ,   is a real number, and   

       
         

    
    . Then, equality (7.2) continues 
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Note that  
    

      
       

     is always equal to zero irrespective of  , due to   in the 

numerator;      
     is equal to zero for every           , and therefore, since    is an 

even number by assumption, for every odd  . 

  

    

      
          

    

      
        

    

Case 2.           . We have  

      
     

 

     
                

            

   

 
 

     
         

     
 

            

   

 
 

     
    

 

 
 

                           
 

          
  

  

   

 

 
 

     
 

    

    

 
 

     
                                

 

  
 

  

   

      
 

    

    

 

Summation in indices of   is taken          , therefore               
              

 . So the 

equality continues 

 
 

     
                              

 

  
 

  

   

      
 

    

    

 
 

     
                    

  
 

  

   

      
 

    

    

 

Sequence   is over unit quaternions by assumption, meaning all its elements have norm  .  
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The autocorrelation function     
     has a non-zero value only for           . Because 

   and    are assumed not to be multiples of each other, it is impossible to have            

and            at the same time in the interval                 . Since, in this case 

we assumed            , then,           , and     
      . 

Thus, in both above cases       
      . This means that        

       for all  ,     

            , and the composition sequence     is perfect. □ 

 

Example 7.4 By an exhaustive search for sequences of length   over    , using the 

computational software package Magma, developed by the University of Sydney [12], some 

examples of sequences satisfying conditions 3 – 5 of Proposition 7.2 have been found. One 

example of such sequence is  

       
        

 
       

        

 
      

Indeed, it is not difficult to check that 

    
              

        

 
   

and 

    
         

        

 
         

are both perfect. Therefore, condition 3 is satisfied.  

For a sequence                of length  , condition   means that  

         
      

      
      

      
      

  , 

         
      

      
      

      
      

  . 
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Condition 5 implies that all these sums are real numbers.  

Direct calculation shows that conditions 4 – 5 are met for sequence  :  

      

    
      

      
     

        

 
 
 

        
        

 
      

        

 
   

        

 
    

    
      

      
  

        

 
         

        

 
 
 

        
        

 
 

        

 
 

     

      

    
      

      
                

        

 
  

        

 
 
 

          

    
      

      
  

        

 
  

        

 
 
 

                        

Thus, sequence    satisfies conditions 3 – 5, and according to Proposition 7.2, the composition of 

any perfect sequence, whose length is not a multiple or a divisor of 6, with the sequence   will 

be a perfect sequence.  

For example, consider the composition of the well known Frank perfect sequence of length   

(refer to Section 4.3.2.1 of the Present work),                , with the sequence   : 

                      
        

 
       

        

 
        

    
        

 
      

        

 
     

       

 
     

        

 
       

The resulting sequence of length 12 is perfect over    .  

 

Finding sequences satisfying conditions 3 – 5 of Proposition 7.2 by an exhaustive search may be 

a very time consuming process, which often exceeds the computational power of an average 
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desktop computer. As an alternative to the exhaustive search, one may try to construct a 

sequence with the required properties, making use of already known perfect sequences of shorter 

length as building blocks. A sketch of an algorithm which can be used for construction of 

compounded perfect sequences over the quaternions is presented below. In some cases, this 

algorithm allows finding sequences satisfying conditions 3 – 5 of Proposition 7.2 in a fraction of 

the time required for finding perfect sequences of the same length by the exhaustive search. 

Before we proceed with the description of the algorithm, we define a new operation, interlacing, 

on two sequences of equal lengths.  

 

Definition 7.4 Let   
  and    

  denote the sets of all sequences of lengths   and    over some 

alphabet   respectively. The interlace of two sequences                  and   

               from   
 , denoted by         , is defined as the operation   

    
     

  such 

that, for         ,              
  

 

             

    

 

            
  , where      denotes the  -th element of 

the sequence in brackets, and operations in indices of   and   are assumed modulo  . 

 

In plain language,  the interlace of a pair of sequences of equal length is constructed by the 

following rule: we take the first element of the first sequence in the pair and insert it as the first 

entry of the interlace sequence, then we take the first element of the second sequence in the pair 

and append it as the second entry of the interlace sequence, then take the second element of the 

first sequence in the pair and append it as the third entry of the interlace sequence, and so on, 

until all elements of both sequences in the pair have been appended to the interlace sequence. 

The length of the interlace sequence is double the length of the original sequences. 

 

Algorithm 7.1 (constructing a sequence over the real quaternions, satisfying conditions 3 – 5 of 

Proposition 7.2, by interlacing two perfect sequences) 
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Input: Integer   ; A finite set of quaternions   (alphabet)  

Output: A set of sequences of length    satisfying conditions 3 – 5 of Proposition 7.2 

Step 1. By an exhaustive computer search
4
 over   

 , construct the set   
  of all perfect sequences 

of length   over  : 

1.1 Define an empty set   
 ; 

1.2 Generate the first sequence of length   with elements from the set  ; 

1.3  Check the sequence generated in the previous step for perfection: if it is perfect, append 

it to the set   
 ;  

1.4 While there exists a sequence of length   with elements from the set   still unchecked for 

perfection in the previous steps, generate this sequence and start over from step 1.3; 

Step 2. For every pair of sequences from the set   
 ,  construct the interlace sequence and check 

it for conditions 4 – 5 of Proposition 7.2. 

2.1 Define an empty set    
 ; 

2.2 Pick up the first sequence from the set   
 ,     

 ; 

2.3 Pick up the second sequence from the set   
 ,     

 ; 

2.4 Compute the interlace          and check
5
 if it satisfies conditions 4 – 5 of Proposition 

7.2: if yes, append it to the set     
 ;  

2.5 While there is a sequence in the set   
 , not yet taken in step 2.4, replace   with this 

sequence and go to step 2.4; 

                                                           
4 In the absence of sufficient computer power, the search in this step can be restricted to sequences with 

special properties, e.g. palindromic. However, restricting the search would possibly decrease the total 

number of perfect sequences, found in this step (the size of the set   
 ), which, in turn, reduces the 

probability of successful outcome (non-empty output) of Algorithm 7.1. 

 
5 If we have restricted the search in step1 by considering only sequences of a special form, the list of 

perfect sequences in the set   
  may not be exhaustive. In this case, in order to maximize chances of non-

empty output of Algorithm 7.1, we recommend also trying to check           obtained after the 

substitution of sequences   and   by perfect sequences derived by performing all shifts, proper 

decimations and, in the case when alphabet   is a finite quaternion group, multiplication of all elements 

of the original sequence by elements of the same group, of sequences   and   respectively.  
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2.6 While there is a sequence in the set   
 , not yet taken in step 2.3, replace   with this 

sequence and go to step 2.3; 

2.7 Stop. 

 

For many particular combinations of an integer   and an alphabet  , the output of Algorithm 7.1 

will be the empty set, meaning that there exist no sequences of length    over  , satisfying 

conditions 3 – 5 of Proposition 7.2  

When Algorithm 7.1 retrieves a non-empty set    
 , the composition of any perfect sequence, 

length of which is not equal to, or a divisor or a multiple of,    , with any sequence from this set 

is a perfect sequence of a longer length. The compositions of the same perfect sequence with 

different sequences from the resulting set    
  will produce different perfect sequences.  

 

Example 7.5 This example demonstrates use of Algorithm 7.1 for finding sequences over    . 

Step 1. We have run an exhaustive search for finding perfect sequences of length 5 of the 

following form: 

                  , where             and           .  

On our ordinary desktop computer (Intel Pentium 4 2.80GHz, 1.00 GB of RAM, with the 

computational software package Magma [12] running under Windows XP), the complete 

exhaustive search over all available sequences of such form was running for about 2 minutes, 

and has yielded 384 perfect sequences. All found sequences have been stored in a set named 

P5Q24. 

Step 2. For every pair of perfect sequences from set P5Q24, we constructed the interlace 

sequence of length 10 by taking the first element of the first sequence in the pair and adding it to 

the new interlace sequence, then taking the first element of the second sequence in the pair and 

adding it at the end of the new interlace sequence, and so on, until all elements of both sequences 

have been exhausted and appeared in the interlace sequence.  
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Then we performed a check of the interlace sequence for conditions 4 – 5 of Proposition 7.2. 

Sequences, satisfying the conditions, we placed it in a set named  R10Q24, otherwise, we started 

over step 2 and chose another pair of sequences from the set P5Q24.  

In total, 384 interlace sequences satisfying conditions 3 – 5 of Proposition 7.2 have been found 

and put in the set R10Q24. The computer time required for performing this part of the algorithm 

was about 2 minutes again.   

The compositions of any perfect sequence, whose length not a multiple or a divisor of 10, with 

any sequence from the set R10Q24 give perfect sequences of longer length. 

For example, sequences        
        

 
        and             

       

 
   were found to be 

perfect and belonged to the set P5Q24. The interlace sequence, the sequence of length 10, is 

           
        

 
                    

       

 
                

        

 
           

       

 
  . 

This sequence satisfies conditions 3 – 5 of Proposition 7.2, therefore, the composition of any 

perfect sequence of any length, except a multiple or a divisor of 10, with this sequence is a 

perfect sequence.  

For instance, the composition of the perfect sequence                of length 4 with this 

sequence gives the sequence of length 20 

             
        

 
          

       

 
          

        

 
            

        

 
  , 

which is perfect.  

Note that there exist more than        sequences of length 20 over    . So, finding a perfect 

sequence by an exhaustive search is well beyond the computational power of a desktop 

computer!  
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8. Conditions Necessary for Perfection over 

Quaternions 

 

Conditions, which can be deduced from perfection of a sequence over the real quaternions, are 

studied in this section.  

 

8.1. Balance Theorem over Quaternions  

 

The Balance Theorem for complex perfect sequences was briefly overviewed in Section 4.2.2 of 

the present work. A generalization of this theorem for quaternions is introduced in this part.  

 

Proposition 8.1 (The Balance Theorem) Let                  be a perfect sequence over the 

real quaternions. Then 

    

   

   

       

   

   

 

 

Proof. Consider the (right) autocorrelation function for any non-zero shift  ,        :  

    
     

 

   
       

 

   

   

   

This is equivalent to 
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(8.1) 

Summing up equations (8.1) for        , and adding the equation 

     
 

   

   

      

   

   

 

we have 

        
 

   

   

   

   

          
 

   

   

 

   

   

         
 

   

    

 

   

   

     

   

   

     
 

   

   

 

     

   

   

     

   

   

 

 

      

   

   

   

Since the (right) autocorrelation values of a perfect sequence for all non-zero shifts   are equal 

to zero, the only summand in the sum above which is not equal to zero is for    , and hence 

        
 

   

   

   

   

      
 

   

   

      

   

   

 

Thus, 

     

   

   

        

   

   

   

 

Example 8.1 Consider the perfect sequence     of length    from Example 7.2. Because all 

elements of      have norm  ,                
  
           

   . Then, 
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8.2. Generalizations of the Balance Theorem 

 

As the Balance Theorem in Section 8.1 suggests, perfect sequences possess some special 

statistical properties.  In this part some new results, revealing more similar properties, are 

introduced. These new results, given in Propositions 8.2 and 8.3, may be regarded as 

generalizations of the Balance Theorem. 

 

Proposition 8.2 Let                  be a perfect sequence over the real quaternions and 

     for some positive integers   and   . Then 

          

   

    

 

   

    

      

   

   

 

Proof. The sequence 

       

   

   

       

   

   

             

   

   

  

is perfect by Proposition 6.5. Then, by Proposition 8.1,  
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Note that 

          

   

    

   

    

      

   

   

  

Since   is assumed perfect, 

    

   

   

       

   

   

 

This proves Proposition 8.2. □ 

 

Example 8.2 If                       is a perfect sequence of length  , then, by Proposition 

8.2, 

                          

and 

                            

 

Consider the perfect sequence                        of length  .  

         

   

   

   

Then, 

                       

and  
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Proposition 8.3 Let                  be a perfect sequence over the real quaternions, and 

 ,  be positive integers satisfying 

1.           and 

2.            

Then the following identity holds 

         

   

    

 

   

   

      

Proof. Consider the set of defining equations for a (right) perfect sequence over the real 

quaternions: 

 
 
 
 
 

 
 
 
      

     

   

   

       
   

   

    

         
   

   

   

  

 Consider the sum of the following equations from this set:  

 the first equation taken   times; 

 the   -th equation taken       times; 

 the    -th equation taken       times; 

 … 

 the        -th equation taken   time; 

 the            -th equation taken   time; 

 …  
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        -th equation taken       times; 

       -th equations taken       times. 

Note that the total number of the equations in this sum is                  

        . Conditions 1 and 2 ensure that            for any          , implying 

that the first equation      
        

    is taken exactly   times.  

      
 

   

   

             
 

   

   

               
 

   

   

               
 

   

   

  

               
 

   

   

 

Using the commutativity of addition, re-arrange the order of summation in some equations, 

shifting the summands circularly: 
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The sum of the right hand parts of the equations is 

                                                  . 

Thus,  

              

   

    

 

   

   

 

This proves Proposition 8.3 □ 

 

Example 8.3  For a perfect sequence of length   over unit quaternions, Proposition 8.3 states that 

whatever positive integers   and   we choose, both not greater than  , and   is relatively prime 

with  , the identity          
   
      

       holds. Let’s illustrate this identity for the perfect 

sequence                        from Example 8.2, for several different combinations of    

and   . 

        : 
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        : 

        

 

    

 

 

   

                                          

                                          

                                           

                                          

       : 

         

 

    

 

 

   

                                  

                                  

                                  

                                      

                                       

                    

 

8.3. Perfection over Quaternions and the Geometry of    

 

Some interesting properties, relating perfection over the quaternions and the geometry of 

Euclidean space   , are studied in this part. 

 

Proposition 8.4 Let                  be a perfect sequence over the real quaternions.  
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(A) If each element             is  expanded as the sum of scalar and vector parts, 

             , then for each         the following identity holds: 

                      

   

   

   

where ‘ ’ stands for the vector cross product in three-dimensional Euclidian space. 

 

(B) If             are expanded as in (A) above, then for each         the 

following identity holds: 

                    

   

   

 

 

(C) If each element             is expanded as                  , then for each 

        the following identities hold:  

  
      

      
 

   

   

     
      

      
 

   

   

     
      

      
 

   

   

   

where  
  
    stands for the determinant of a     matrix. 

 

(D) If             are expanded as in (C) above, then for each         the 

following identities hold: 

  
      

      
 

   

   

     
      

      
 

   

   

     
      

      
 

   

   

   

  

(E) Let             denote the commutator of two quaternions   and  . Then for each 

        the following identity holds: 

          

   

   

   

Proof.   
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(A) Since   is assumed perfect, implying it is both right and left perfect by Proposition 5.1, the 

following is true for any non-zero shift  ,        :  

      
     

 

   
       

 

   

   

 

 
 

   
                                 

   

   

                                                   

 
 

   
                                  

 

   
                                                     

   

   

   

   

 

and 

      
     

 

   
   

     

   

   

 

 
 

   
                                 

   

   

                                                   

 

 
 

   
                                  

 

   
                                                    

   

   

   

   

  

A quaternion is equal to zero if and only if its scalar and vector parts are both equal to zero. 

Therefore, 

                                                     

   

   

   

(8.2) 

and  
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(8.3) 

By summing up equations (8.2) and (8.3), we have 

                      

   

   

    

This proves the validity of statement (A).  

 (B) From equations (8.2) and (8.3) it follows that   

                              

   

   

    

This, after gathering together the terms with equal vector parts, gives the identity of statement 

(B).  

(C) Note that if                   and                    are arbitrary 

quaternions, then 

    
    

                                                 

Since the sequence   is both right and left perfect, then for any non-zero shift  ,       

 , we have 

       
 

   

   

   

and  
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Subtracting the latter from the former, we have: 

         
 

   

   

    
      

   

   

        
    

      

   

   

 

                    

   

   

                    

   

   

                    

   

   

 

      
      

      
 

   

   

     
      

      
 

   

   

     
      

      
 

   

   

 

(8.4) 

Since a quaternion is only equal to zero when each of its components is equal to zero, from (8.4) 

we get all the identities of statement (C): 

  
      

      
 

   

   

     
      

      
 

   

   

     
      

      
 

   

   

   

 

(D) The cross-product of two vectors                     and                     can be 

expanded as                                                         (Kyrala [57]). If a 

sequence   is perfect, then, by part (A) of this Proposition,   
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Since a quaternion is only equal to zero when each of its components is equal to zero, from (8.4) 

we get all the identities of statement (D): 

  
      

      
 

   

   

     
      

      
 

   

   

     
      

      
 

   

   

   

 

 (E) Since the product of two arbitrary quaternions   and   can be expanded as  

                             (Kyrala [57]), it follows that       
 

 
       . With 

this identity, statement (E) becomes a simple consequence of statement (A). □ 

 

Example 8.4 For the perfect sequence                                  from Example 

6.2, the sum of commutators, for    ,  is given by 

          

 

   

                                                    

                                              

   

 

8.4. Length of a Perfect Sequence over    

 

In the next Proposition 8.5 we restrict our attention to considering sequences over the i-j-k group 

   (Stringham [86]), sometimes called a quaternion group. It is a non-abelian multiplicative 

group of order   formed by the unit quaternions             . 
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Proposition 8.5 Let                  be a perfect sequence with elements from   . Then its 

length   is an even number. 

Proof. The multiplicative inverse of a unit quaternion   is unique and equal to its conjugate   . 

Therefore, being a multiplicative group, the set of elements    is closed in respect to 

multiplication and taking conjugates.  

As it has been shown earlier, perfection of a sequence   is equivalent to        
    

      

(Equations (8.1)). 

The terms in the left hand part of (8.1) are products of elements in the group   . 

Note that the sum of two quaternions from    can only be equal to zero if they are a pair of 

additive inverses. For any element    of the group    its additive inverse,   , is also in   . This 

additive inverse is unique and can not be represented as a sum of elements of   . Therefore, in 

order to be equal to zero, the sum of finitely many elements of the group    must only contain 

pairs of quaternions and their additive inverses. That is, for any quaternion      the number 

   of its appearances in the sum should be equal to number     of appearances of   .  

We have                               .  

However, from (8.1),        ,        ,       ,       .  

Therefore,                                  .  

Thus   is an even number. □ 
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9. Discrete Fourier Transform of a Perfect Sequence 

over Quaternions 

 

Most of the properties of perfect sequences over the real quaternions, discussed in the previous 

sections, coincide with similar properties of perfect sequences over the complex numbers. The 

following statements are true for perfect sequences over the real quaternions and over the 

complex numbers: 

 Left and right perfection are equivalent; 

 Multiplication of a  perfect sequence by a scalar (either from the left, or from the right) 

preserves perfection; 

 The conjugate sequence of a perfect sequence is perfect; 

 Any shift of a perfect sequence is perfect; 

 A proper decimation of a perfect sequence is perfect; 

 The composition of two or more perfect sequences of co-prime lengths is perfect. 

One might be tempted to think that perfect sequences over the quaternions have all the properties 

of complex perfect sequences. However, this is not true. A difference appears when we consider 

the discrete Fourier transform of a perfect sequence.  

In this section, we introduce the discrete Fourier transform of a sequence over the real 

quatenions, and discuss a difference between perfect sequences over the real quaternions and the 

complex numbers.  
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9.1. Quaternionic Discrete Fourier Transform 

  

We define the discrete Fourier transform over the quaternions by analogy with the discrete 

Fourier transform over the complex numbers. However, due to non-commutativity of the 

quaternions, it is possible to consider two distinct discrete Fourier transforms: left and right 

discrete Fourier transforms. 

 

Definition 9.1 We call the sequence               
    

        
   over the real 

quaternions the left discrete Fourier transform (left DFT) of a sequence                   

over the real quaternions if 

  
     

   
 

    

   

   

 

where  
   

  is the principal  -th complex root of unity. The elements   
    

        
  of the left 

DFT are called the left discrete Fourier transform coefficients.  

 

Definition 9.2 We call the sequence               
    

        
   over the real 

quaternions the right discrete Fourier transform (right DFT) of a sequence  

                 over the real quaternions if  

  
      

 
   
 

  

   

   

 

where  
   

  is the principal  -th complex root of unity. The elements   
    

        
  of the right 

DFT are called the right discrete Fourier transform coefficients.  
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Also, we define left and right inverse discrete Fourier transforms. 

 

Definition 9.3 We call the sequence                
    

        
   over the real 

quaternions the left inverse discrete Fourier transform (left IDFT) of a sequence    

               over the real quaternions if  

  
  

 

 
  

   
 

    

   

   

 

where  
   

  is the principal  -th complex root of unity. The elements   
    

        
  of the left 

DFT are called the left inverse discrete Fourier transform coefficients.  

 

Definition 9.4 We call the sequence                
    

        
   over the real 

quaternions the right inverse discrete Fourier transform (right IDFT) of a sequence    

               over the real quaternions if  

  
  

 

 
    

   
 

  

   

   

 

where  
   

  is the principal  -th complex root of unity. The elements   
    

        
  of the right 

DFT are called the right inverse discrete Fourier transform coefficients.  

 

The left and the left inverse discrete Fourier transforms, so defined,  possess an important 

property: they are the inverse functions of each other, and likewise for the right and the right 

inverse discrete Fourier transforms. Refer to Proposition 9.1 below. 
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Proposition 9.1 Let                  be a sequence over the real quaternions. Then   

               and                  . 

Proof. Let            
    

        
  . If we denote the  -th element of the sequence 

                by                  
 
,  we have 

                
 
 

 

 
   

  
   
 

  

   

   

 
 

 
      

 
   
 

   

   

    

 
   
 

  

   

   

 
 

 
      

 
   
 

       

   

    

   

   

 
 

 
       

   
 

       

   

   

   

    

 

Since    
   

 
          

    represents the sum of  -th roots of unity,  

   
   

 
          

     
       
        

 .  

Therefore, the equality above is continued as 

 
 

 
       

The statement                  is proved in a similar way. □ 

 

The left and the right discrete Fourier transforms of a sequence                  over the 

real quaternions are, in general, non-equal. Consider Example 9.1. 

 

Example 9.1 The left and the right discrete Fourier transform coefficients of the sequence 

              are listed in Table 9.1: 

  



Section 9: Discrete Fourier Transform of a Perfect Sequence over Quaternions 

 

 

 
124 

 

Table 9.1 Left and right discrete Fourier transform coefficients of the sequence              . 

    
     

     
     

   

0         4         4 

1      8   4 

2         4         4 

3   0     4 

 

It is easy to observe that                . 

 

Remark 9.1 For a sequence over the complex numbers, concepts of the left and the right Fourier 

transforms coincide, due to commutativity of the complex numbers. That is,         

        for every sequence                  over the complex numbers.  

 

However, as stated in Proposition 9.2 below, there exists a simple relationship between the left 

and the right discrete quaternionic Fourier transforms. 

 

Proposition 9.2 Let                  be a sequence over the real quaternions, and    

   
    

        
   be its conjugate sequence. Then, if we denote the  -th element of a sequence by 

    , 

                        
  

Proof. 
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In contrast to sequences over the complex numbers, the left (right) discrete Fourier transform of 

a sequence over the real quaternions with all elements of equal norm is not always perfect. 

Consider two examples below, for non-perfect and perfect sequences over the real quaternions:   

 

Example 9.2 Consider the non-perfect sequence             with all elements of norm  .  

                                       

                                       

Neither the left nor the right Fourier transforms are perfect. Indeed, 

   
                 
    

 
 

 
                                      

              

 
 

 
                              

 

 
      

   
                 
    

 
 

 
                                      

              

 
 

 
                        

 

 
      

 

Example 9.3 Consider another sequence                        , which is perfect over the 

unit quaternions, of length  . However,  
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are not perfect, since  

   
                             
    

 
 

 
                                               

                                                

                                   

 
 

 
                                           

 

 
       

   
                             
    

 
 

 
                                                 

                                                

                                 

 
 

 
                                            

 

 
       

 

Example 9.3 demonstrates that perfection is not, in general, preserved by taking the left or the 

right discrete Fourier transform of a quaternionic perfect sequence. 
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9.2. Norm of the Discrete Fourier Transform Coefficients of 

a Perfect Sequence 

 

In Section 4.1 of the present work, it has been shown that sequence                  over 

the complex numbers is perfect if and only if all its discrete Fourier transform coefficients have 

equal norm    . Would the condition of having all discrete Fourier transform coefficients of 

equal norm be necessary and sufficient for perfection over the quaternions? Consider the 

example below. 

 

Example 9.4 The left and right Fourier transforms of the non-perfect sequence                

are as follow: 

                                 

                                 

It is easy to observe that    
      

      
      

     and    
      

      
   

   
    . 

So, the property of having the left and right discrete Fourier transform coefficients of equal norm 

is not sufficient for perfection over the quaternions. 

 

However, as shown below, the condition of having all discrete Fourier transform coefficients of 

equal norm is necessary for perfection over the quaternions. The main result of this section is 

contained in the following statement: 

 

Proposition 9.3 Let                  be a perfect sequence over the real quaternions. Then, 

for        , 
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where   
     

   

 
    

   
    and    

      
 

   

 
     

    denote the  -th left and right discrete 

Fourier transform coefficients respectively. 

 

Before we proceed with the proof, we need to make some remarks, illustrating that the statement 

of Proposition 9.3 is not trivial. 

 

Remark 9.2 For an arbitrary sequence   over the real quaternions, the norms of all the discrete 

Fourier transform coefficients are not necessarily equal. That is, there exist quaternionic 

sequences, whose discrete Fourier transform coefficients are of non-equal norm. Consider the 

simple Example 9.5. 

 

Example 9.5 The discrete Fourier transforms of the non-perfect sequence               with 

all elements of norm   from Example 9.2 are as follow: 

                                          

                                          

It is easy to observe that  
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Remark 9.3 Since the sequence             
               , where    

    

  is an  -th 

complex root of unity,        , is not, in general, perfect for an arbitrary perfect sequence 

                  over the real quaternions (refer to Example 6.1), Proposition 9.3 is not a 

simple consequence of the Balance Theorem (Proposition 8.1) for the sequence     .  

 

Remark 9.4 The proof of Proposition 4.1, stating that the condition of having all discrete Fourier 

transform coefficients of equal norm is necessary and sufficient for perfection over the complex 

numbers, relies on the commutative law for the complex numbers. Due to the non-commutative 

nature of the quaternions, this proof cannot be adopted here. Use of commutative law is avoided 

in the proof of Proposition 9.3, to be presented in this section. 

 

Before proceeding with a proof of Proposition 9.3, some important properties of the real 

quaternions and sequences over the real quaternions need to be discussed.  

 

9.3. Alternative Definition of Perfection 

 

In the next few paragraphs an alternative definition of a perfect sequence will be given.  

Consider the     matrix with entries   and  : 
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Matrix   has        ’s in the positions just above the main diagonal and one   in the bottom 

left corner; all other entries are zero. It is a permutation matrix, meaning that its columns are a 

permutation of columns of the identity matrix  . 

If we consider a sequence                  as a column vector      

  

  

 
    

 , then the 

product of  matrix   and column vector    will be another column vector corresponding to the 

shift of the original sequence   by  :       

  

  

 
  

  .  

It is obvious the multiplication of the sequence column vector    by the consecutive powers of   

from the left give consecutive cyclic shifts of the sequence. Thus, all shifts of the original 

sequence   can be expressed by the multiplication of the vector    by the corresponding powers 

of the matrix   from the left:       

  

    

 
    

 . Raising   to the  -th power will give the identity 

matrix  ,     . Therefore, the product of matrix    and vector    is equal to the original 

vector   , which represents the original sequence  .  

 

Consider the left autocorrelation function of a sequence                  over ℍ,  

    
     

 

   
   

     
   
   . By definition,   is a perfect sequence if and only if     

     

  for all non zero shifts  ,        . Recall (Section 3.10 of the present work) that the 

inner product of two vectors     

  

  

 
    

  and     

  

  

 
    

   from ℍ  is defined by         

   
   

   
   .  
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Since any shift of a sequence can be represented as the product of the respective power of matrix 

  and the column vector corresponding to this sequence, it can be stated that sequence   

                over the real quaternions is (left) perfect if and only if             for 

every integer           . 

Therefore, the set of equations 

                    

(9.1) 

can be regarded as an alternative set of defining equations for a (left) perfect sequence. 

Therefore, the problem of finding a (left) perfect sequence is equivalent to finding a solution of 

the equations (9.1).  

Thus, we have come to an alternative definition for (left) perfection. A sequence   over the real 

quaternions is (left) perfect if and only if equations (9.1) hold. 

 

9.4. Diagonalization of Matrix   

 

It is easy to see that matrix  

  

 
 
 
 
 
 
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

 
 
 
 
 

 

is a unitary matrix, therefore normal (refer to Section 3.8, Definition 3.8, for definitions of 

normal and unitary matrices). Properties of matrices over the real quaternions have been briefly 

discussed in Section 3.9.1 of the present work. It is known (Lee [59]) that every normal matrix 

over the real quaternions can be transformed into the diagonal form by a similarity 
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transformation. That is, if   is a normal matrix over the real quaternions then there exists a 

unitary matrix   such that       , where   is a diagonal matrix. Moreover, each diagonal 

element of   is some right eigenvalue of   (Farenick and Pidkowich [30]). Therefore, the 

problem of finding a diagonal form for a given matrix with real quaternion entries is equivalent 

to the problem of finding its right eigenvalues. 

It is known that a quaternion matrix may have infinitely many right eigenvalues. In fact, if   is 

an eigenvalue of a matrix   with quaternion entries then every      , where     denotes the 

similarity class containing  , is an eigenvalue too. However, the number of similarity classes is 

not unbounded for the given matrix  . It has been proved (Farenick and Pidkowich [30]) that the 

number of distinct similarity classes of right eigenvalues of an arbitrary     quaternion matrix 

  does not exceed   . 

We now transform matrix   into a diagonal form. Calculating eigenvalues of an arbitrary 

quaternion matrix is not a simple task. However, because matrix   contains only   and   as its 

entries, we can regard   as a matrix over the complex field ℂ. A complex matrix is 

diagonalizable over ℍ if and only if it is diagonalizable over ℂ (Zhang [98], Corollary 7.2). If 

matrix   is transformed into a diagonal form   by a similarity transformation over the complex 

field ℂ, then every quaternion similar to a diagonal entry of   is an eigenvalue of matrix  , if   

is regarded as a matrix over the real quaternion algebra ℍ (refer to Section 3.6 for brief 

explanation of quaternion similarity). Every diagonal matrix obtained from    by substitution of 

any main diagonal entry by a similar quaternion will be another diagonal form of matrix   over 

ℍ. 

So, by considering   as a matrix with complex entries, we transfer the problem of finding its 

eigenvalues into the domain of complex algebra. A task of matrix diagonalization over the 

complex field ℂ belongs to the well studied area of commutative linear algebra. In particular, it is 

known (Byron and Fuller [15], Theorem 4.23) that normal matrices over the complex field ℂ are 

diagonalizable by unitary similarity transformations, and their diagonal forms contain complex 

valued eigenvalues on the main diagonal (Hungerford [48], Theorem 5.5). Moreover, columns of 

the unitary matrix  , which  diagonalizes the normal matrix   by the similarity transformation, 

are eigenvectors of    (Mirsky [67], Theorem 10.2.1).  
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Throughout this work bold fonts are reserved for quaternions, sequences, vectors and matrices 

over quaternions. All matrices considered in the two lemmas that follow are regarded as matrices 

over the complex field ℂ, so we do not use bold fonts when writing their notations. 

In linear algebra, the equation             in the single variable   is called a characteristic 

equation of a square matrix  . Eigenvalues of   are roots of the characteristic equation. The 

task of finding a diagonal form of matrix   is therefore reduced to the task of finding roots of its 

characteristic equation. 

 

Lemma 9.1         is the characteristic equation of the     matrix  

  

 
 
 
 
 
 
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

 
 
 
 
 

 

Proof. Since                (Barnett [8]), we have 

            
 

 

    
    
    

   
    
   

   
          
   

   
    
    

 

 
 

 

 

 
 
 
 
 
 
    
    
    

   
    
   

   
          
   

   
    
     

 
 
 
 
 
 

 

 

 
 

 

    
    
    

   
        
   

   
          
   

   
    
    

 

 
 

We now expand the last determinant by minors along the first row using the Laplace expansion 

formula                
         , where     is a minor obtained from matrix   by removal of 

row   and column   (refer to Horn and Johnson [44]). 
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The determinant of a triangular matrix is equal to the product of all diagonal elements (Barnett 

[8]), therefore  

                                   

If   is an even number then                     . If   is an odd number then 

                     . In both cases we can write the characteristic equation of the 

matrix   in the form        . □ 

 

Lemma 9.2 Let    
   

  be the principal  -th root of unity. Then the unitary matrix 

  
 

  

 
 
 
 
 
 

      

      

      

     

         

         

   
          

          

   
     

      
 
 
 
 
 

 transforms the      matrix  

  

 
 
 
 
 
 
  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

 
 
 
 
 

  into diagonal form    

   
   

  
  

  
  

  
     

  by the similarity  

transformation       . 

Proof. In the light of Lemma 9.1, the spectrum (that is, the set of all eigenvalues) of matrix   

coincides with the set of all  -th roots of unity                  . Therefore, the main 

diagonal entries of a diagonal form of matrix   represent some permutation of the set of all  -th 
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roots of unity. In fact, every permutation of the eigenvalues on the main diagonal gives a 

diagonal form of matrix  . We pick up one of the available diagonal forms of the matrix  , as 

follows 

                      

   
   

  
  

  
  

  
     

  

It is known (Mirsky [67], Theorem 10.2.1) that a unitary matrix  , which diagonalizes matrix  , 

contains eigenvectors of the matrix   as its columns. Therefore, in order to find  , we need to 

find eigenvectors of  .  

Since we consider   as a matrix over the complex field ℂ, an eigenvector   of the matrix   

corresponding to the eigenvalue λ satisfies the equation      . We expand and solve this 

equation for  : 
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The last set of equations is consistent if and only if      , that is, when λ is an  -th root of 

unity.  

If we consider    as an independent variable     , then the solutions of the system above, the 

eigenvectors of the matrix  , can be written as     

 
 
 
 
 
 

 
  
   
 

     
      

 
 
 
 
 

  

 
 
 
 
 
 

  

  

  

 
    

     
 
 
 
 
 

 .  

We now construct the matrix  , consisting of eigenvectors   :  

                     

 
 
 
 
 
 

      

      

      

     

         

               

   
              

              

   
                       

                        
 
 
 
 
 

  

 
 
 
 
 
 

      

      

      

     

         

         

   
          

          

   
     

      
 
 
 
 
 

 

Note that matrix   is symmetric,     , and therefore      .  

If    is an  -th root of unity then its conjugate            . Therefore, 
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By direct calculation, we have 

         

  

 
 
 
 
 
 
      

          

          

     

     

     

   
      

      

   
         

          
 
 
 
 
 

  

 
 
 
 
 
 

      

      

      

     

         

         

   
          

          

   
     

      
 
 
 
 
 

 

The main diagonal elements of the product of two matrices above are, in fact, the sums of terms 

of the form          , each taken   times, and therefore equal to  . Elements off the main 

diagonal represent the sums of all  -th roots of unity             , for   a divisor of  , 

and therefore equal to zero. 

    

  
  

  
  

  
  

  
  

      

Choosing the normalizing factor   
 

  
 brings the above equation to the form       and 

matrix   becomes unitary. This completes the proof of Lemma 9.2 □ 

 

The following lemmas involve matrices over the quaternions, so bold fonts are used. 
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Lemma 9.3  If a unitary matrix   over the real quaternions diagonalizes an     matrix   over 

the real quaternions by similarly transformation, i.e.       , where   is a diagonal matrix, 

then   diagonalizes    for every positive integer  ; moreover,    is a diagonal form of the 

matrix   . 

Proof. 

                                                 
       

                                   
       

  

                  
       

       . □ 

  

Lemma 9.4 Let   be an     matrix over the real quaternions and    be any column vector 

over the real quaternions. Then                   . 

Proof.  If we denote the  -row  -column entry of the matrix   by                      

  then we have 
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9.5. Additional Results Required for Proof of the Main 

Result 

 

A few lemmas, used in the proof of Proposition 9.3, are presented in this part. 

 

Lemma 9.5 Let   and    be two integers such that            ,       and         . 

Then rows    and    of the     matrix  

     

 
 
 
 
 
 
 
 

   

    
      

 
   

      

 

    
      

 
   

      

 

   

    
          

 
   

          

 

    
          

 
   

          

 
   

    
          

 
   

          

 

    
          

 
   

          

 

   

    
              

 
   

              

 

    
              

 
   

              

  
 
 
 
 
 
 
 

  

over the real numbers are orthogonal in respect to the Euclidian inner product  

            
   
   . 

Proof. Express matrix      as follows: 
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Let    and    be two integers satisfying the conditions of Lemma 9.5. We will show that the 

inner product of rows    and    is equal to zero. 

     
       

 
    

       

 
      

           

 
      

       

 
    

       

 
      

           

 
    

   
       

 
   

       

 
    

       

 
   

       

 
      

           

 
   

           

 
  

From the product-to-sum trigonometric identity (Abramowitz and Stegun [1], p. 72) 

         
 

 
                   , the equality continues as 

 

 

 
   

            

 
 

 

 
   

            

 
 

 

 
   

            

 
 

 

 
   

            

 
   

 

 
   

                

 
 

 

 
   

                

 
  

 
 

 
    

            

 
    

            

 
      

                

 
  

 

 
    

            

 
 

   
            

 
      

                

 
   

Applying the sum of cosines with arguments in arithmetic progression formula (Knapp [54]) 

                                        
   

  

 
      

      

 
 

   
 

 

  with 

    and   
         

 
  to each of the brackets above, we have   

 
 

 

   
 

         
 
 

   
     

         
 

 

   

         
 
 

 
 

 

   
 

         
 
 

   
     

         
 

 

   

         
 
 

  

 
 

 

                        
        

 
 

   
        

 

 
 

 

                        
        

 
 

   
        

 

    

The last equality holds, since both             and             are equal to zero for all 

integers      , and both summands in the last expression are equal to zero too, and thus so is 

their sum. □ 
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Corollary 9.1 The first  
 

 
    rows of the     matrix      are linearly independent. 

Proof. Integers        in the range 0        
 

 
    satisfy the conditions of Lemma 9.5, and 

therefore are mutually orthogonal. Non-zero non-zero mutually orthogonal vectors are linearly 

independent. □ 

 

Corollary 9.2             
 

 
   . 

Proof. Cosine is an even function of period   ,     
      

 
    

          

 
, for all      

 

 
  and 

all        . Then, rows   and     are equal to each other. Because the first  
 

 
    rows 

are linearly independent, by Corollary 9.1,             
 

 
   . □ 

 

Lemma 9.6 Let   and    be two integers such that            ,       and         . 

Then rows    and    of the     matrix  

     

 
 
 
 
 
 
 
 

   

    
      

 
   

      

 

    
      

 
   

      

 

   

    
          

 
   

          

 

    
          

 
   

          

 
   

    
          

 
   

          

 

    
          

 
   

          

 

   

    
              

 
   

              

 

    
              

 
   

              

  
 
 
 
 
 
 
 

  

over the real numbers are orthogonal in respect to the Euclidian inner product  

            
   
   . 

Proof. The proof is quite similar to Lemma 9.5. Express matrix      as follows: 
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Let       be two integers satisfying the conditions of Lemma 9.6. Consider the inner product 

of rows    and     We will show it is equal to zero. We have 

     
       

 
    

       

 
      

           

 
      

       

 
    

       

 
      

           

 
    

   
       

 
   

       

 
    

       

 
   

       

 
      

           

 
   

           

 
  

From the product-to-sum trigonometric identity (Abramowitz and Stegun [1], p. 72) 

         
 

 
                   , the last equality can be continued as 

 

 

 
   

            

 
 

 

 
   

            

 
 

 

 
   

            

 
 

 

 
   

            

 
   

 

 
   

                

 
 

 

 
   

                

 
  

 
 

 
    

            

 
    

            

 
      

                

 
  

 

 
    

            

 
 

   
            

 
      

                

 
   

Applying the sum of cosines with arguments in arithmetic progression formula (Knapp [54]) 

                                        
   

  

 
      

      

 
 

   
 

 

 with     

and   
         

 
  to each of the above brackets, we have  
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Indeed, since both             and             are equal to zero for all integers      , both 

summands in the last expression above are zeros too, and so is their sum. □ 

 

Observation 9.1 The first row of the matrix      is the all-zero row; if   is an even number, then 

row  
 

 
  is the all-zero row too. 

 

Corollary 9.3 The first  
 

 
    non-zero rows of     matrix      (numbered from   to   

 

 
  

 ) are linearly independent. 

Proof. Integers        in the range          
 

 
    satisfy the conditions of Lemma 9.6. 

The first  
 

 
    rows of matrix      (including all-zero rows) are mutually orthogonal, 

therefore,  
 

 
    non-zero rows are linearly independent. □ 

 

Corollary 9.4             
 

 
   . 

Proof. Sine is an odd function of period   ,     
      

 
     

          

 
, for all      

 

 
  and 

all        . Then, rows   and     are negatives of each other. Because the first  
 

 
    

non-zero rows are linearly independent, by Corollary 9.3,             
 

 
   . □ 

 

Lemma 9.7 For    , the general solution in    of the system of simultaneous linear equations  
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(9.2) 

is either    
 

 
    

  

 
          

 
   

  

 
   

 
     

 
 

 

 
, when   is even;  

or     
 

 
    

  

 
         

 
 

 
 
 

  

 
  

 
 

 
 
 , when   is odd. 

Proof. Note that the matrix of system (9.2) is exactly     , defined in Lemma 9.5. By Corollary 

9.2, the rank of system (9.2) is             
 

 
    and, therefore, the general solution will 

have    
 

 
     

 

 
    independent and  

 

 
    dependent variables.  

Because, by Corollary 9.1, the first  
 

 
    rows of the matrix      are linearly independent, 

(9.2) is equivalent to (9.3), which consists of only the  
 

 
    first equations from (9.2):  

 
 
 
 
 

 
 
 
 

              

        
      

 
      

      

 
          

          

 
  

        
      

 
      

      

 
          

          

 
  

 

        
    

 

 
   

 
      

    
 

 
   

 
          

    
 

 
       

 
  

        
     

 

 
      

 
      

     
 

 
      

 
          

     
 

 
          

 
  

   

(9.3) 

Note that    
     

 
    

         

 
 for every integer      

 

 
 , and therefore the matrix of 

system (9.3) possesses a special symmetry: the second column is equal to the last column, the 
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third column is equal to the one just before last, and so on. Thus, each equation in (9.3) contains 

pairs of equal coefficients. 

Consider two cases,   even or   odd, separately.  

If   is an even number, then (9.3) consists of 
 

 
   equations. Every term in each equation, 

except for the first and the last ones, has an equal counterpart in the same equation. Therefore, 

after re-arranging the equal terms together, (9.3) can be written as  

 
 
 
 
 
 

 
 
 
 
                   

 
     

 
      

 
  

               
      

 
      

 
     

 
      

      
 

 
   

 
   

 
   

     
 

 

 
  

               
      

 
      

 
     

 
      

      
 

 
   

 
   

 
   

     
 

 

 
  

 

               
    

 

 
     

 
      

 
     

 
      

    
 

 
     

 

 
   

 
   

 
   

    
 

 
    

 

 

 
  

               
   

 

 
  

 
      

 
     

 
      

   
 

 
  

 

 
   

 
   

 
   

   
 

 
 
 

 

 
  

   

After the substitution of variables 

                      
 
  

   
 
  

   
 
  

    
 

   
 
 

(9.3) can be written as 

 
 
 
 
 
 

 
 
 
 
 

          

 
     

 
  

        
      

 
     

 
     

      
 

 
   

 
   

 
   

     
 

 

 
  

        
      

 
     

 
     

      
 

 
   

 
   

 
   

     
 

 

 
  

 

        
    

 

 
     

 
     

 
     

    
 

 
     

 

 
   

 
   

 
   

    
 

 
    

 

 

 
  

        
   

 

 
  

 
     

 
     

   
 

 
  

 

 
   

 
   

 
   

   
 

 
 
 

 

 
  

   

(9.4) 
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Because the  
 

 
     

 

 
    matrix of system (9.4) has been obtained by elimination of 

 

 
   

‘twin’ columns in the  
 

 
      matrix of system (9.3), which has rank 

 

 
  , the matrix of 

system (9.4) has the same rank 
 

 
  . Therefore, the matrix of system (9.4) is non-singular and 

(9.4) has exactly one solution in  
 

 
  

. 

It is not difficult to see, without actually solving the system, that 

   
 

 
    

  

 
     

 
  

 
  

 
   

 
 

 

 
 

is the solution of (9.4).  

Indeed, the first equation is obviously true for    
 

 
    

  

 
     

 
   

  

 
   

 
 

 

 
,  

because  
 

 
 

  

 
   

  

        

 
   

 
       

 
 

 
   

 

 
  .  

The  -th equation, for     
 

 
, after substitution    

 

 
    

  

 
     

 
   

  

 
   

 
 

 

 
, 

becomes 

 

 
 

  

 
   

     

 
   

  

 
   

     
 

 
   

 
 

 

 
   

    
 

 

 
  

 
 

 
       

     

 
       

     
 

 
   

 
    

    
 

 

 
   

 
 

 
        

     

 
     

     

 
       

     
 

 
   

 
         

 
 

 
         

     

 
      

     
 

 
   

 
          

Applying the formula (Knapp [54])  

                                    
   

      

 
      

  

 
 

   
 

 

,  
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with     and   
   

 
, we can continue the equality as  

 
 

 
     

   

 
 
 
   
 

 
   

 
 
 
    

   
 

 

   

   
 
 

        
 

 
     

   
  

 
    

  

 
 

  

 
 

   
  

 

         

If   is an even number then    
  

 
  ,        , and the equality continues as 

 
 

 
          . 

 If   is an odd number then 
   

  

 
    

  

 
 

  

 
 

   
  

 

 
          

  

 
 

   
  

 

  ,          and the equality 

continues as 

 
 

 
            .  

So, the  -th equation in (9.4) holds, for     
 

 
, and the solution of (9.4) for an even   is 

   
 

 
    

  

 
     

 
  

 
  

 
   

 
 

 

 
 

Thus, the solution of (9.2) in    is    
 

 
         

  

 
     

 
     

 
   

  

 
   

 
 

 

 
, or 

   
 

 
    

  

 
             

 
  

 
  

 
   

 
  

   
 

 
 

 
 

 

If   is an odd number, then (9.3) consists of  
 

 
     

 

 
  equations. Every term in each 

equation has an equal counterpart in the same equation. System (9.3) can be written as  
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After the substitution of variables 

                     
 
 
 
 
   

 
  

   
 
  

 

(9.3) can be written as 

 
 
 
 
 
 

 
 
 
 
 

         
 
 

 
 
  

        
      

 
    

 
 

 
 
   

      
 

 
 

 
  

        
      

 
    

 
 

 
 
   

      
 

 
 

 
  

 

        
     

 

 
      

 
    

 
 

 
 
   

     
 

 
      

 

 
 

 
  

        
    

 

 
   

 
    

 
 

 
 
   

    
 

 
   

 

 
 

 
  

   

(9.5) 

Because the  
 

 
   

 

 
  matrix of system (9.5) has been obtained by elimination of  

 

 
  ‘twin’ 

columns in the  
 

 
    matrix of system (9.3), which has rank  

 

 
     

 

 
 , the matrix of 

system (9.5) has rank  
 

 
 . Therefore, the matrix of system (9.5) is non-singular and (9.5) has 

exactly one solution in   
 

 
 
. 

Similar to the case of an even  , it is not difficult to see, without actually solving the system, that 
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is the solution for (9.5).  

Again, the first equation is obviously true for    
 

 
    

  

 
     

 
 

 
 
 

  

 
,  

since  
 

 
 

  

 
   

  

        

 
   

 
       

   
 

 
  .  

The  -th equation, for      
 

 
 , after substitution    

 

 
    

  

 
    

 
 

 
 
 

  

 
 , becomes 

 

 
 

  

 
   

     

 
   

  

 
   

     
 

 
 

 
 

 

 
       

     

 
       

     
 

 
 

 
   

 
 

 
        

     

 
     

     

 
       

     
 

 
 

 
   

 
 

 
         

     

 
      

     
 

 
 

 
   

 

 
     

   
  

 
 
     

   
 

 
   

 
 
 
  
   
 

 

   

   
 
 

   

 
 

 
     

   
 
   

 
    

   
 

 
   

   
 

 
   
 

 

   

   
 
 

  
 

 
     

   

   
 

 
   
 

 
   

   
 

 
   
 

 

   

   
 
 

   

 
 

 
     

    
  

 
 

  

  
     

  

 
 

  

  
 

   
  

 

   

From the formula (Abramowitz and Stegun [1], p. 72)                
   

 
   

   

 
, the 

equality continues   

    
         

  

 

   
  

 

    
     

   
  

 

    .  

Therefore, the  -th equation in (9.5) holds, for      
 

 
   and the solution of (9.5) for an odd 

  is 
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Thus, the solution of (9.2) in    is    
 

 
         

  

 
    

 
 

 
 
  

 
 

 
 
 

  

 
, or 

   
 

 
    

  

 
            

 
 
 
 
 

  

 
  

 
 
 
 
 

This completes the proof of Lemma 9.7. □ 

 

Lemma 9.8 The general solution in ℍ  of the system of simultaneous linear equations  

 
 
 
 
 

 
 
 
      

      

 
      

      

 
          

          

 
  

     
      

 
      

      

 
          

          

 
  

     
      

 
      

      

 
          

          

 
  

 

     
          

 
      

          

 
          

              

 
  

     
          

 
      

          

 
          

              

 
  

   

(9.6) 

is                      
 
 

 
   

  
 
 

 
   

;    and, in the case of even  ,   

 
  are arbitrary 

quaternions. 

Proof. Unlike in Lemma 9.7, where we were interested in finding solutions of simultaneous 

linear equations in   , we now seek for the general solution in ℍ . Although a problem of 

finding solutions of a linear equation      over the real quaternions may look somewhat 

complicated, we will be able to reduce the system in question to the special case     , for 

which it is known (Zhang [98], Theorem 4.3) that, in the case of an invertible matrix  , it has a 

unique solution    . 

The concepts of rank, linear independence, characteristic matrix etc are applicable to matrices 

over ℍ (Zhang [98]). However, because of the non-commutative nature of the quaternions, the 

left and right linear independence over ℍ is to be treated separately. There are examples of left 
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linear dependent vectors which are right linearly independent, and vice versa. Note that two 

linear dependent vectors over ℍ  may be linearly independent over ℂ . However, since the real 

numbers commute with all quaternions, it is easy to understand that for vectors from   , which 

is a subspace of  ℍ , concepts of left and right linear independence are equivalent, and their 

linear independence over ℂ  implies linear independence over ℍ . 

The rank of a quaternion matrix   is defined as the maximum number of rows which are left 

linearly independent. If a matrix   is of rank  , then   is also the maximum number of columns 

that are right linearly independent.  An     matrix   is invertible, meaning there exists   such 

that        , if and only if          . If   is an     matrix over ℍ of rank   , then 

the solutions of      form a subspace in ℍ  of dimension    . 

Because for vectors from    linear independence over ℂ  is equivalent to linear independence 

over ℍ  , the rank of a matrix with real entries over ℂ coincides with its rank over ℍ. That is, if 

  is a matrix over the real field  , then      ℂ        ℍ   . Therefore, the dimension of 

the subspace of solutions of      in ℍ  is       ℂ   .  

Note that the matrix of system (9.6) is exactly the matrix     , defined in Lemma 9.6, which is a 

matrix over  . By Corollary 9.4, the rank of system (9.6) is     ℂ        
 

 
   , and 

therefore the subspace of its solutions is of dimension    
 

 
     

 

 
    and the general 

solution of (9.6) has  
 

 
    independent and  

 

 
    dependent variables. The first and, in the 

case of even  , the 
 

 
-th columns of matrix      are columns of zeros. That implies that    and, 

for even  ,   

 
  can be taken as any arbitrary quaternions in the solution of (9.6).  

Because, by Corollary 9.3, the first  
 

 
    non-zero rows of the matrix      are linearly 

independent, system (9.6) is equivalent to system (9.7), which contains only the  
 

 
    first 

non-trivial equations from (9.6):  
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(9.7) 

Elimination of the all-zero column    and, if   is even,  
 

 
  does not change the solution, and 

therefore the system becomes: 

 
 
 
 

 
 
      

      

 
    

 
 

 
   

   
       

 

 
    

 
  

 
 

 
   

   
       

 

 
    

 
         

          

 
  

     
      

 
    

 
 

 
   

   
       

 

 
    

 
  

 
 

 
   

   
       

 

 
    

 
         

          

 
  

 

     
     

 

 
      

 
    

 
 

 
   

   
     

 

 
       

 

 
    

 
  

 
 

 
   

   
     

 

 
       

 

 
    

 
         

     
 

 
          

 
  

   

(9.8) 

Note that    
     

 
     

         

 
 for every      

 

 
 , and therefore the matrix of system 

(9.8) possesses a special kind of anti-symmetry: the first column is equal to the negative of the 

last column, the second column is equal to the negative of the one just before last, and so on. 

Because every equation in (9.8) has an even number of summands, after re-arranging the 

mutually negative sines together, (9.8) can be written as 

 
 
 
 

 
 
             

      

 
     

 
 

 
   

  
 
 

 
   

    
       

 

 
    

 
  

            
      

 
     

 
 

 
   

  
 
 

 
   

    
       

 

 
    

 
  

 

            
     

 

 
      

 
     

 
 

 
   

  
 
 

 
   

    
     

 

 
       

 

 
    

 
  

   

and, after substitution of variables                
 
 

 
   

  
 
 

 
   

  
 
 

 
   

, we have 



Section 9: Discrete Fourier Transform of a Perfect Sequence over Quaternions 

 

 

 
153 

 

 
 
 
 

 
 
       

      

 
    

 
 

 
   

   
       

 

 
    

 
  

      
      

 
    

 
 

 
   

   
       

 

 
    

 
  

 

      
     

 

 
      

 
    

 
 

 
   

   
     

 

 
       

 

 
    

 
  

   

(9.9) 

Since the   
 

 
       

 

 
     matrix of system (9.9) has been obtained by elimination of 

 
 

 
    ‘negative-twin’ and zero columns in the   

 

 
        matrix of system (9.8), which 

has rank  
 

 
   , the matrix of system (9.9) is also of rank  

 

 
   . Then, the matrix of system 

(9.9) is non-singular, and therefore invertible. It is known (Zhang [98], Theorem 4.3) that if a 

quaternion matrix   is invertible then the equation      has a unique solution over ℍ . 

Therefore, system (9.9) has exactly one solution in ℍ , namely    . 

Thus,          
 
 

 
   

   is the unique solution of the system (9.9).  

Therefore, 0              
 
 

 
   

  
 
 

 
   

, and 

                     
 
 
 
   

  
 
 
 
   

 

is the unique solution of system (9.6).  As it has been shown above,    and, if   is even,   

 
 can 

be chosen as arbitrary quaternions.  

This completes the proof of Lemma 9.8. □ 

 

Lemma 9.9 Let                  be an arbitrary real quaternion. Then  

        
    

    
    

                                 

Proof.                                          
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Lemma 9.10 Let   and   be arbitrary quaternions. If          , then        . 

Proof.                                                         
 

                  

 
 

                    

 
 

                     

 
                   

 
 

                 

 
 

             

 
 

              

 

9.6. Proof of the Main Result 

 

We are now in the position to prove the main result of Part 9, Proposition 9.3.  

Proof of Proposition 9.3 We append the set of equations (9.1), defining perfection of a sequence 

                , by one more equation, namely 
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As     , we can rewrite the above equation as                               .  

Therefore, a sequence   over the real quaternions is perfect if and only if 

            

for every           and 

              

(9.1a) 

Consider the equation            . By Lemma 9.3, matrix    is diagonalizable by the 

unitary matrix  , where   is defined in Lemma 9.2. That is,         , where   is a 

diagonal form of the matrix  . Then, 

         
 

            

Using the results of Lemma 9.4 and making the substitution       , we transform the 

equation             as follows: 

                                                                  

Note that, by definition,   is a column vector rather than a sequence. All its components 

             are quaternions. With such defined  , our primary goal is to prove that       

              
   

 
. 

Continue the equality above: 
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Each     denotes an  -th root of unity, a complex number, and we write 

                     , where         and         , the real and imaginary parts, are 

real numbers.  

Therefore, the equality continues 

    
                     

   

   

    
          

   

   

    
           

   

   

 

Real numbers commute with all quaternions (Zhang [98], Theorem 2.1), and so the equality 

continues 

           
   

   

   

           
    

   

   

             

   

   

           
    

   

   

 

Thus,  

            

   

   

           
    

   

   

   

(9.10) 

The left hand side of equation (9.10), being a real quaternion, represents the sum of two terms. 

The first term,             
   
   , is a real number. The second term is the summation of   
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products of the form      , where   is a real number,   is a real quaternion and   is the 

imaginary unit in ℂ. By Lemma 9.10, a product of the form      is always a pure quaternion 

(that is, a quaternion with zero real part). Then,       is a pure quaternion too. Thus, the first 

and the second terms in the left hand side of equation (9.10) represent the real and imaginary 

parts of the sum respectively.  

Because a quaternion is equal to zero if and only if its real and imaginary parts are both equal to 

zero, equation (9.10) implies that  

            

   

   

   

(9.11) 

If we chose     and apply the same chain of transformations as above to the equation 

             , we have  

            

   

   

               

(9.12) 

Combining equations (9.11) and (9.12) together, we have the following system of linear 

equations in variables     ,…,        : 

 
  
 

  
 

                                                   

                                                             

                                                             
 

                                                                             

                                                               

  

(9.13) 

The principal  -th root of unity is expressed by the Euler’s formula (Abramowitz and Stegun [1], 

p. 74) as      
  

     
  

 
     

  

 
.  
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The powers of the principal root are, by the De Moivre’s Theorem (Abramowitz and Stegun [1], 

p. 74),        
  

  
 

   
   

     
   

 
     

   

 
. 

It is clear that           
   

 
, therefore (9.13) can be written as  

 
 
 
 
 

 
 
 
    

      

 
        

      

 
        

      

 
          

          

 
        

   
      

 
        

      

 
        

      

 
          

          

 
        

   
      

 
        

      

 
        

      

 
          

          

 
        

 

   
          

 
        

          

 
        

          

 
          

              

 
        

   
      

 
        

      

 
        

      

 
          

          

 
          

   

(9.14) 

Since every cosine in the first term of each equation of system (9.14), as well as every cosine in 

the last equation, are equal to  , system (9.14) is equivalent to 

 
 
 
 

 
 
 

                           

        
      

 
        

      

 
          

          

 
        

        
      

 
        

      

 
          

          

 
        

 

        
          

 
        

          

 
          

              

 
        

        
          

 
        

          

 
          

              

 
        

   

(9.15) 

If we regard (9.15) as simultaneous linear equations in                   , the matrix of this 

system will be 
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By Lemma 9.7, the general solution for (9.15) is 

     
   

 
             

    

 
      

 
       

 
    

    

 
    

 
  

   

 
, if   even; 

     
   

 
             

    

 
     

 
 

 
 
    

 
 

 
 
  

    

 
, if   odd. 

(9.16) 

We will show that            , for all      
 

 
   . 

Consider equation (9.10) again. As it was already mentioned, the second term in the left hand 

side of this equation,           
    

   
   , is the imaginary part of a quaternion, which is equal 

to zero.  

This implies that 

          
    

   

   

   

(9.17) 

Equation (9.17) holds for all        . So, we can construct a system: 

 
  
 

  
 

        
             

                   
        

          
               

                       
        

          
               

                       
        

 
              

                   
                           

        

          
               

                       
        

  

(9.18) 

Using the Euler formula       
   

 
     

   

 
, and moving the last equation on the top, we 

transform system (9.18) into  
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(9.19) 

By Lemma 9.8, if we assume      
          

                
      , the general 

solution for the system (9.19) is  

  
         

         
         

          
 
 

 
   

   
 
 

 
   

  
 
 

 
   

   
 
 

 
   

.  

Then, by Lemma 9.10, 

                            
 
 
 
   

    
 
 
 
   

  

(9.20) 

Combination of (9.16) and (9.20) gives the desired identities 

     
   

 
      

   

 
          

   

 
 

Thus, what we have proved so far is that if the sequence                   is perfect, then 

the norm of each element    of the sequence        is equal to 
   

 
.  

Because       , expanding each   , we have 
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or 

 
 
 

 
 

   
      

   
      

   
      

 
     

      

  

(9.21) 

So, we have proved Proposition 9.3 for the left discrete Fourier transform.  

Now, since                  is assumed perfect, its conjugate sequence 

      
    

        
   is also perfect, by Corollary 5.1. It is clear that         . Applying 

the left discrete Fourier transform to the conjugate sequence   , we have               

        . By Proposition 9.2,                         
 , for        . Therefore, 

                               
                 . Thus, for all  ,        , 

                
       

(9.22) 

Combination of (9.21) and (9.22) gives the desired identities 

   
      

       

 for        . □  
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Corollary 9.5 Let                  be a perfect sequence over unit quaternions. Then, for 

       , 

   
      

     

where   
     

   

 
    

   
    and    

      
 

   

 
     

    denote the  -th left and right discrete 

Fourier transform coefficients respectively. 

Proof.  For sequences over unit quaternions,      . □ 

 

Example 9.6 For the perfect sequence                , as in  Example 6.1, we have   

                                  

                                               

                                               

It is easy to see that  
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10. Conclusion 

 

In the present work, perfect sequences over the real quaternions have been introduced and their 

properties have been studied. Many examples of quaternionic perfect sequences, found by a 

computer search, are given in the text. Perfect sequences over the quaternions have never been 

considered in the literature in the past. 

Due to non-commutativity of the quaternions, we define left and right autocorrelation functions, 

and give corresponding definitions of the left and right perfect sequences. A very important 

result, proved in Section 5, is that left and right perfection over the quaternions are equivalent.  

Perfection over the quaternions can be regarded as a generalization of the concept of perfection 

over the complex numbers. In this text, it has been shown that quaternionic perfect sequences 

share many common properties with perfect sequences over the complex numbers. However, due 

to the non-commutative nature of the quaternions, some properties of perfect sequences over the 

complex numbers do not hold for perfect sequences over the quaternions. Table 10.1 below 

provides a brief summary in comparison of quaternionic and complex perfect sequences. 
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Table 10.1 Comparison chart for properties of perfect sequences over the complex numbers and over 

the real quaternions. 

Property of a Sequence 

Sequences over 

the Complex 

Numbers 

Sequences over 

the Real 

Quaternions 

Left and right perfections are equivalent Yes Yes 

Multiplication of perfect sequence by a scalar 

preserves perfection 
Yes 

Yes, for left and right 

multiplications 

Conjugate sequence of a perfect sequence is 

perfect 
Yes Yes 

Any shift of a perfect sequence is perfect Yes Yes 

A proper decimation of a perfect sequence is 

perfect 
Yes Yes 

The Product Theorem for autocorrelation 

functions hold 
Yes No 

The composition of perfect sequences of co-

prime lengths is perfect 
Yes Yes 

Perfection preserved by unitary transformations 

of the space to which elements of the perfect 

sequence belong  

Yes Yes 

The Balance Theorem holds Yes Yes 

The discrete Fourier transform of an arbitrary 

sequence with all elements of the same norm is 

perfect 

Yes No 

A sequence obtained by multiplication of the 

elements of a perfect sequence of the length   

by consecutive powers of an  -th root of unity 

is perfect 

Yes No 

The norms of the discrete Fourier transform 

coefficients of a perfect sequence   are all equal 

to the norm of the sequence     

Yes, necessary and 

sufficient condition 

for perfection 

Yes, necessary 

condition for 

perfection only 

It is conjectured that the maximum possible 

length of a perfect sequence is limited by the 

size of an alphabet 

Yes, for sequences 

over roots of unity 
No 
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Although practical applications of quaternionic perfect sequences are not yet known, study of an 

algebraic structure and properties of quaternionic perfect sequences can provide for better 

understanding and advances in studying complex perfect sequences, which have an abundance of 

practical applications in many aspects of communication systems. Besides, perfect sequences 

over the real quaternions may have applications in the modern coherent fiber optics 

communication systems and free space microwave links. 
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