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Abstract

In 1973, Doyen and Wilson famously solved the problem of when a 3-cycle
system can be embedded in another 3-cycle system. There has been much
interest in the literature in generalising this result for m-cycle systems when
m > 3. Although there are several partial results, including complete solutions
for some small values of m and strong partial results for even m, this still
remains an open problem.

The main results of this thesis concern generalisations of the Doyen-Wilson
Theorem for odd m-cycle systems and cycle decompositions of the complete
graph with a hole. The complete graph of order v with a hole of size u, Kv−Ku,
is constructed from the complete graph of order v by removing the edges of a
complete subgraph of order u (where v > u).

For each odd m > 3 we completely solve the problem of when an m-cycle
system of order u can be embedded in an m-cycle system of order v, barring
a finite number of possible exceptions. The problem is completely resolved in
cases where u is large compared to m, where m is a prime power, or where
m 6 15. In other cases, the only possible exceptions occur when v−u is small
compared to m. This result is proved as a consequence of a more general result
which gives necessary and sufficient conditions for the existence of an m-cycle
decomposition of Kv − Ku in the case where u > m − 2 and v − u > m + 1
both hold.

We prove that Kv−Ku can be decomposed into cycles of arbitrary specified
lengths provided that the obvious necessary conditions are satisfied, v−u > 10,
each cycle has length at most min(u, v − u), and the longest cycle is at most
three times as long as the second longest. This complements existing results for
cycle decompositions of graphs such as the complete graph, complete bipartite
graph and complete multigraph.

We obtain these cycle decomposition results by applying a cycle switching
technique to modify cycle packings of Kv − Ku. The tools developed by cy-
cle switching enable us to merge collections of short cycles to obtain longer
cycles. The methodology therefore relies on first finding decompositions of
various graphs into short cycles, then applying the merging results to obtain
the required decomposition. Similar techniques have previously been success-
fully applied to the complete graph and the complete bipartite graph. These
methods also have potential to be further developed for the complete graph
with a hole as well as other graphs.

We also give a complete solution to the problem of when there exists a
packing of the complete multigraph with cycles of arbitrary specified lengths.
The proof of this result relies on applying cycle switching to modify cycle
decompositions of the complete multigraph obtained from known results.
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The results in this thesis make substantial progress toward generalising the
Doyen-Wilson Theorem for arbitrary odd cycle systems and toward construct-
ing cycle decompositions of the complete graph with a hole. However there
still remain unsolved cases. Moreover, the cycle switching and base decompo-
sition methods used to obtain these results give rise to several interesting open
problems.
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Chapter 1

Introduction

A decomposition of a graph G is a collection of subgraphs of G, {G1, . . . , Gτ}
whose edge sets partition the edge set of G. Many classical graph theoretic
problems, such as finding colourings and factorisations, can also be posed as
graph decomposition problems. The study of graph decompositions is closely
related to topics in combinatorial design theory and finite geometry. Tech-
niques arising from the study of graph decompositions have been effective in
obtaining solutions to problems such as designing effective experiments, opti-
mising the flow of data through fibre optic networks, and data sampling via
compressed sensing [16, 17, 36, 47]. This thesis makes significant progress
on two well-studied graph decomposition problems, namely, generalising the
Doyen-Wilson Theorem and packing the complete multigraph with cycles.

We now provide some definitions, and any graph theoretic terminology
that is not defined here can be found in [95]. An m-cycle decomposition of a
graph G is a decomposition {G1, . . . , Gτ} such that Gi is a cycle of length m
for i ∈ {1, . . . , τ}, where a cycle of length m is a 2-regular connected graph
on m vertices. An m-cycle system of order v is an m-cycle decomposition of
the complete graph of order v. An m-cycle system A is said to be embedded
in another m-cycle system B when A ⊆ B. In 1973, Doyen and Wilson [51]
found a complete solution to the question of when one 3-cycle system can be
embedded in another.

Theorem 1.1 (Doyen-Wilson Theorem [51]). There exists an embedding of a
3-cycle system of order u in a 3-cycle system of order v if and only if u, v ≡ 1
or 3 (mod 6) and v > 2u+ 1.

The requirement that u and v are 1 or 3 (mod 6) is both necessary and
sufficient for the existence of 3-cycle systems of these orders. In fact, for each
m > 3 it is known [4, 83] exactly which values of v are the order of an m-cycle
system. Thus it is a natural question to ask whether one m-cycle system of
order u can be embedded in another of order v for m > 3. A complete solution

1
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to this question is known for all m 6 14 [37, 38, 40], and for even values of m
when m 6 v − u [64]. It has also been solved when m is odd and u, v ≡ 1 or
m (mod 2m), with the exception of some cases when v is small [38]. Overall,
weaker results had been obtained for odd m than for even m.

A further generalisation of the Doyen-Wilson Theorem is to consider cycle
decompositions of the complete graph with a hole. The complete graph of
order v with a hole of size u, Kv−Ku, is constructed from the complete graph
of order v by removing the edges of a complete subgraph of order u (where
v > u). For even m, the problem of when Kv −Ku can be decomposed into
m-cycles is solved completely when m 6 14 [40] and for 4 6 m 6 min(u, v−u)
[64]. Again, less is known for odd m and this problem had only been solved
completely when m ∈ {3, 5, 7} [37, 40, 75].

The main focus of this thesis is on generalising the Doyen-Wilson Theorem.
In particular, we find embeddings of odd cycle systems and decompositions of
the complete graph with a hole into uniform length odd cycles. We also extend
these results to decompositions of the complete graph with a hole into cycles of
arbitrary lengths. The literature review in Section 1.1 outlines known results
on cycle decompositions of various graphs and progress that has been made
to date on generalising the Doyen-Wilson Theorem. The specific research
questions and methodology of this thesis are outlined in Section 1.2.

1.1 Literature review

Cycle decomposition of various graphs has been an interesting graph theoretic
problem since at least the 1800s when Walecki proposed a construction for a
Hamilton cycle decomposition of the complete graph (as reported by Lucas
[71]). Another early result is due to Kirkman in 1847 [68] who constructed
a 3-cycle decomposition of the complete graph of order v whenever v ≡ 1 or
3 (mod 6). These results have since been generalised in various ways and this
review outlines some of the major results on cycle decompositions of various
graphs.

1.1.1 Cycle decompositions of the complete graph

Each vertex in a cycle is incident with exactly two edges of that cycle, so
every vertex in a cycle decomposition has even degree. It follows that if a
complete graph has a decomposition into cycles then it has an odd number
of vertices. The intuitive variation of this problem for the complete graph
on an even number of vertices is to decompose the complete graph minus a
1-factor. Building on the early results by Walecki and Kirkman, research in
the literature first focused on decomposing the complete graph into cycles of
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uniform length and in particular on proving Theorem 1.2 (stated below). Later
results, inspired by the 1981 conjecture by Alspach [3], addressed cases with
various cycle lengths.

Uniform length cycles

Interest in the problem of decomposing the complete graph into uniform length
cycles was renewed in the 1960s with various results for specific cycle lengths
[69, 81, 82]. Many of these earlier results relied on cyclic constructions and
had limited potential to be extended to further results. However, following
on from numerous partial results, as outlined in the surveys [23, 39], research
on this problem culminated in 2002 with a complete solution due to Alspach,
Gavlas and Šajna [4, 83]. Here we briefly outline the main elements of this
proof.

Theorem 1.2 ([4, 83]). Let v and m be integers such that 3 6 m 6 v. If v
is odd then there exists an m-cycle decomposition of Kv whenever v(v − 1) ≡
0 (mod 2m). If v is even then there exists an m-cycle decomposition of Kv− I
whenever v(v − 2) ≡ 0 (mod 2m), where I is a 1-factor of Kv.

In the proof of Theorem 1.2, different cases are considered depending on
the parity of m and v, and each case has two main steps. The first step is to
show that there exists an m-cycle decomposition of Kv (or Kv−I) for all v that
satisfy the necessary conditions, provided that this holds for all m 6 v 6 km
(where k ∈ {2, 3} depending on the parity of m and v) [4, 18, 61, 79, 84]. The
second step is to find the decompositions required by this reduction.

Proving the reduction of this problem involves first decomposing Kv into a
collection of smaller graphs which in turn have m-cycle decompositions. These
results rely on the existence of cycle decompositions of graphs such as the
complete bipartite and multipartite graph, and the complete graph with a hole
(see results from Sections 1.1.2 and 1.1.3). As we will see in the remainder of
this chapter, this general approach is often a useful method for obtaining cycle
decomposition results (see also surveys on cycle decompositions [39, 23, 79]).

The proof of Theorem 1.2 is completed by obtaining m-cycle decomposi-
tions of Kv when m 6 v 6 3m (or v 6 2m when m and v are even). These
decompositions are found using various cycle decomposition techniques involv-
ing decomposing circulant graphs, results due to Haggkvist [57] and Tarsi [93],
and other constructions (see [4, 83]). For definitions and descriptions of these
and other techniques see the survey [23].
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Cycles of various lengths

Decomposing the complete graph into cycles of arbitrary specified lengths is
a natural generalisation of Theorem 1.2. The problem was articulated by
Alspach in Conjecture 1.3. For some list of positive integers m1, . . . ,mτ , an
(m1, . . . ,mτ )-decomposition of a graph G is a decomposition of G into τ cycles
of lengths m1, . . . ,mτ . Throughout the following, for a list of integers M =
m1, . . . ,mτ , an (M)∗-decomposition of Kv denotes an (M)-decomposition of
Kv if v is odd and an (M)-decomposition of Kv − I if v is even, where I is a
1-factor of Kv.

Conjecture 1.3 ([3]). Let v be a positive integer, and m1, . . . ,mτ a list of
integers. There exists an (m1, . . . ,mτ )

∗-decomposition of Kv if and only if
3 6 mi 6 v for i ∈ {1, . . . , τ} and m1 + · · ·+mτ = vb(v − 1)/2c.

The necessity of the conditions given in Conjecture 1.3 follows from first
observing that the total number of edges in the decomposition is

(
v
2

)
when v

is odd, and
(
v
2

)
− v

2
when v is even. Thus it follows that m1 + · · · + mτ =

vb(v − 1)/2c. Furthermore, the length of the longest cycle cannot exceed the
size of the graph, so 3 6 mi 6 v for i ∈ {1, . . . , τ}. Hence it remains to prove
the sufficiency of the conditions in Conjecture 1.3.

Results for decomposing the complete graph into cycles of different lengths
first appeared in the 1980s [57, 58]. These results considered existence of a
(m1, . . . ,mτ )-decompositions when mi ∈ S for each i ∈ {1, . . . , τ}, where S is
a set of allowed cycle lengths. Several other results of this type were obtained
up until 2011 [59, 66] as listed in the surveys [39, 23].

In 2001, Balister [14] verified Conjecture 1.3 for v 6 14, building on the
solution by Rosa [80] for v 6 10. Other partial results in the literature include
verifying Conjecture 1.3 for all v > N for some large value of N . In earlier
results of this form, N is a rapidly increasing function of the longest cycle in
the decomposition [14, 42]. These asymptotic results were later improved by
Bryant and Horsley when v is odd [29].

A complete solution to Conjecture 1.3 was obtained in 2014 by Bryant,
Horsley and Pettersson. This result is given as Theorem 1.4 and we outline
the proof below.

Theorem 1.4 ([33]). Let v be an integer and let m1, . . . ,mτ be a list of
integers. There exists an (m1, . . . ,mτ )

∗-decomposition of Kv if and only if
3 6 mi 6 v for i ∈ {1, . . . , τ} and m1 + · · ·+mτ = vb(v − 1)/2c.

We first require the following definition, which is given in full in [29, 33].
A v-ancestor list is defined as a list that contains at most one k-cycle for
6 6 k 6 v − 1 where the number of cycles of lengths 3, 4, 5 and v are
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also subject to some constraints, including ensuring that the list satisfies the
necessary conditions given in Conjecture 1.3. So a v-ancestor list is of the form

(3, 3, . . . , 3, 4, 4, . . . , 4, 5, 5, . . . , 5, k, v, v, . . . , v).

The proof of Theorem 1.4 has two main steps. The first is given by The-
orem 1.5 which reduces the proof of Theorem 1.4 to the problem of finding
decompositions corresponding to ancestor lists. The second step is to find
these decompositions.

Theorem 1.5 ([29]). For each positive integer v, if there exists an (M ′)∗-
decomposition of Kv for each v-ancestor list M ′, then there exists an (M)∗-
decomposition of Kv for each list M = m1, . . . ,mτ that satisfies 3 6 mi 6 v
for i ∈ {1, . . . , τ} and m1 + · · ·+mτ = vb(v − 1)/2c.

The key ingredients in the proof of this result are Lemmas 1.6 and 1.7,
which rely on the cycle switching technique introduced below in Section 1.1.4.
Ancestor lists are defined so that, using results such as these, a decomposition
corresponding to any listm1, . . . ,mτ that satisfies 3 6 mi 6 v for i ∈ {1, . . . , τ}
and m1 + · · · + mτ = vb(v − 1)/2c can be obtained from a decomposition
corresponding to some v-ancestor list.

Lemma 1.6 ([28]). Let v, m1, m2, m′1 and m′2 be positive integers such that
m1 6 m′1 6 m′2 6 m2 and m1 +m2 = m′1 +m′2, and let M be a list of integers.
If there exists an (M,m1,m2)

∗-decomposition of Kv in which an m1-cycle and
an m2-cycle share at least two vertices, then there exists an (M,m′1,m

′
2)
∗-

decomposition of Kv.

Lemma 1.6 ‘equalises’ the lengths of two cycles in a decomposition. A result
that complements Lemma 1.6 is the following lemma which, under certain
conditions, ‘merges’ two cycles in a decomposition to form one longer cycle.

Lemma 1.7 ([29]). Let M be a list of integers and let v,m,m′ and h be
positive integers such that m+m′ 6 2h and m+m′+h 6 v+ 1. If there exists
an (M,h,m,m′)∗-decomposition of Kv, then there exists an (M,h,m + m′)∗-
decomposition of Kv.

The proof of Theorem 1.4 was obtained by using both the ‘equalising’
and ‘merging’ methods (Lemmas 1.6 and 1.7 respectively) as well as numer-
ous constructions for cycle decompositions corresponding to v-ancestor lists.
The constructions concerning ancestor list decompositions consist of two main
cases, ancestor list decompositions with at least two v-cycles and those with
at most one v-cycle. The case with at least two v-cycles relies on various
constructions involving circulant graphs and difference methods. These con-
structions often assume that the decomposition has at least two v-cycles, so a
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different approach is required for the second case. The second case is proved
by induction on v, relying on the known result for v 6 14 [14]. There are
separate sub-cases for whether the decomposition contains one or no v-cycles
and whether it has many cycles of length 3, 4 or 5.

Finding the required decompositions completes the proof of Theorem 1.4,
solving the problem of when there exists a decomposition of the complete graph
into cycles of arbitrary specified lengths. Theorem 1.4 is applied numerous
times in this thesis (see Sections 2.2, 2.3, 3.2 and 3.3). Some of the other
results in this thesis include ideas similar to Lemma 1.7 (see Sections 2.1 and
3.1), thereby reducing the problem to finding decompositions in a smaller
subset of the problem (see Sections 2.2 and 3.2).

Lemma 1.7 has been extended to decompositions of the complete bipartite
graph in order to prove a recent result by Horsley [64] on decomposing the
complete bipartite graph into cycles of arbitrary lengths (see Theorem 1.21).
Using a merging result alone (as is done in the case of the complete bipartite
graph in [64]) tends to produce decompositions only when the cycle lengths
are at most half of the obvious necessary upper bound. In particular, while
Theorem 1.21 did significantly improve on previously known results for de-
composing the complete bipartite graph, the lack of a bipartite counterpart
to Lemma 1.6 limits the strength of results that can be obtained. Similarly,
when the equalising result alone was applied to cycle decompositions of Kv,
Conjecture 1.3 was only verified for cases when all of the cycle lengths are at
least about v/2 [28].

Related decomposition problems for Kv

There are several results worth mentioning here concerning problems that are
closely related to cycle decomposition of the complete graph.

A packing of a graph G is a decomposition of some subgraph H of G and
the leave of the packing is the graph obtained by removing the edges of H
from G. We define the reduced leave of a packing of a graph G as the graph
obtained from its leave by deleting any isolated vertices. For a list of positive
integers M = m1, . . . ,mτ an (M)-packing of G is a packing of G with τ cycles
of lengths m1, . . . ,mτ .

The following result extends Theorem 1.2 to packings of the complete graph
with uniform length cycles.

Theorem 1.8 ([63]). Let v and m be positive integers such that 3 6 m 6 v. If
v is odd, let k be the largest integer such that km 6

(
v
2

)
and

(
v
2

)
−km 6∈ {1, 2},

and if v is even, let k be the largest integer such that km 6
(
v
2

)
− v

2
. Then

there exists a cycle packing of Kv with k cycles of length m.
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Theorem 1.9 is the analogous version of Theorem 1.4 for λKv, where λKv

is the complete multigraph with λ edges between each pair of v distinct points.
Theorem 1.9 and other results in [31, 32] also include 2-cycles (pairs of parallel
edges) as these are present in λKv for λ > 2.

Theorem 1.9 ([32]). There is an (m1, . . . ,mτ )-decomposition of λKv if and
only if

• λ(v − 1) is even;

• 2 6 m1,m2, . . . ,mτ 6 v;

• m1 + · · ·+mτ = λ
(
v
2

)
;

• max(m1, . . . ,mτ ) + τ − 2 6 λ
2

(
v
2

)
when λ is even; and

•
∑

mi=2mi 6 (λ− 1)
(
v
2

)
when λ is odd.

There is an (m1, . . . ,mτ )-decomposition of λKv − I, where I is a 1-factor in
λKv, if and only if

• λ(v − 1) is odd;

• 2 6 m1,m2, . . . ,mτ 6 v;

• m1 + · · ·+mτ = λ
(
v
2

)
− v

2
; and

•
∑

mi=2mi 6 (λ− 1)
(
v
2

)
.

Resolvable decompositions of the complete graph into cycles have also been
of interest in the literature. Particular problems include the Oberwolfach prob-
lem [24, 41, 49] and Hamilton-Waterloo problem [1, 25]. Other problems of
interest are when complete graph can be decomposed into circuits [13, 30],
paths [93] or stars [70, 92] (note that a circuit is a connected graph in which
each vertex has even degree, and a star of size k is the complete bipartite graph
K1,k). For results on these and other problems see the survey [39].

1.1.2 Doyen-Wilson type results: Kv −Ku

In 1973, Doyen and Wilson proved Theorem 1.1 concerning embedding 3-
cycle systems. A natural generalisation of the Doyen-Wilson Theorem is to
find necessary and sufficient conditions for embedding m-cycle systems when
m > 3. A further generalisation is to consider m-cycle decompositions of
the complete graph with a hole, Kv −Ku. Here we outline the progress that
has been made to date on these problems, but we first mention some other
generalisations that have featured in the literature.
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One alternative generalisation of the Doyen-Wilson Theorem is given by
pairwise balanced designs of order v with a mandatory block of size u. This
gives a decomposition of Kv −Ku into blocks (or cliques) of given sizes. For
a precise definition and known results see [52, 76]. Another related problem is
enclosings of m-cycle decompositions of the complete multigraph λKu inside
decompositions of (λ + µ)Kv or, more generally, decompositions of complete
multigraphs with holes (λ+µ)Kv−λKu [9, 10, 77]. Other generalisations con-
cern embedding maximum packings and minimum coverings of triple systems,
and embedding partial triple systems [46, 48].

Any embedding of an m-cycle system of order u in another of order v yields
an m-cycle decomposition of Kv −Ku (via removing the cycles in the original
system). The problem of finding m-cycle decompositions of complete graphs
with holes is more general because the orders of the graph and hole need
not be feasible orders for m-cycle systems. Cycle decompositions of complete
graphs with holes are useful for constructing decompositions of other graphs.
For example, the reduction of Theorem 1.2 which is outlined above relies on
results concerning cycle decompositions of Kv−Ku (see Theorem 1.15 below).

The following result of Mendelsohn and Rosa in 1983 gives the conditions
for when the complete graph with a hole can be decomposed into 3-cycles, ex-
panding on Theorem 1.1 which concerns the more specific embedding problem.

Theorem 1.10 ([75]). Let u and v be integers such that u < v. There exists
a 3-cycle decomposition of Kv −Ku if and only if u and v are odd, v > 2u+ 1
and u, v ≡ 1 or 3 (mod 6), or u ≡ v ≡ 5 (mod 6).

Other known results similar to Theorem 1.10 are included below. We first
present Lemma 1.11 which gives necessary conditions for the existence of an
m-cycle decomposition of the complete graph with a hole.

Lemma 1.11 ([40]). For an integer m > 3 and for positive integers u and v, if
there exists an m-cycle decomposition of Kv−Ku then the following conditions
hold.

(N1) u and v are odd;

(N2)
(
v
2

)
−
(
u
2

)
≡ 0 (mod m);

(N3) (v −m)(v − 1) > u(u− 1); and

(N4) v > u(m+1)
m−1 + 1 if m is odd.

The following proof of this result expands on some details of the proof given
in [40].
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Proof. Suppose there exists a decomposition of Kv−Ku into m-cycles. Since
the degree of each vertex must be even, we have v − u ≡ 0 (mod 2) and
v − 1 ≡ 0 (mod 2) so (N1) follows. Condition (N2) holds since m divides

the number of edges in Kv − Ku. Note that there are v(v−1)−u(u−1)
2m

cycles in
the decomposition and a fixed vertex outside the hole must be in at least v−1

2

cycles. So v(v−1)−u(u−1)
2m

> v−1
2

and (N3) follows. Finally, any odd cycle in
Kv −Ku must contain at least one edge that is not incident with a vertex in
the hole, so if m is odd then (v−u)(v−u−1)

2
> v(v−1)−u(u−1)

2m
and (N4) follows.

So, as a consequence of Lemma 1.11, to generalise the Doyen-Wilson The-
orem to m-cycle decompositions of Kv−Ku it suffices to show that (N1)–(N4)
are sufficient conditions. In particular, an implication of (N4) (noted by Rodger
[78]) is that approaches to this problem are quite different depending on the
parity of m. This is reflected in the following results and more generally in
the fact that more is known for even cycle decompositions of Kv − Ku than
for odd cycles.

Even cycle decompositions of Kv −Ku

When m is even, the following theorem proved by Bryant, Rodger and Spicer
in 1997 reduces the problem of decomposing Kv − Ku into m-cycles to find-
ing decompositions of smaller graphs when u and v are not too large. This
idea is similar to the first step in proving Theorem 1.2 as was discussed in
Section 1.1.1.

Theorem 1.12 ([40]). Let m be an even integer and let u and v be integers
such that u = 1, u > m/2 or v > u. If there exists an m-cycle decomposition
of Kv −Ku then there exists an m-cycle decomposition of Kv+xm −Ku+ym for
x > y > 0 and x ≡ y (mod 2).

The proof of Theorem 1.12 relies on the 1981 result by Sotteau for de-
composing the complete bipartite graph into uniform length cycles (see Theo-
rem 1.19), as well as the then-known partial results on the existence of m-cycle
systems.

Theorem 1.13 fills in the cases required by Theorem 1.12 to solve the prob-
lem for m 6 14.

Theorem 1.13 ([40]). Let u, v and m be integers such that m ∈ {4, 6, . . . , 14}
and u < v. There exists an m-cycle decomposition of Kv −Ku if and only if
(N1)–(N3) hold.

The following more recent result of Horsley shows the existence of some
m-cycle decompositions of Kv −Ku when m is even.
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Theorem 1.14 ([64]). Let u and v be odd positive integers. If m > 4 is an
even integer such that

(
v
2

)
−
(
u
2

)
≡ 0 (mod m), u > m+ 1 and v−u > m, then

there is an m-cycle decomposition of Kv −Ku.

The proof of this result uses Sotteau’s result on decompositions of the
complete bipartite graph, and the result mentioned above on cycle packings
of the complete graph (see Theorem 1.8). The main idea behind the proof is
to consider Kv −Ku as the edge-disjoint union of Ku,v−u and Kv−u and apply
the relevant results to decompose each of these separately. However, the proof
also allows for the decomposition to include an m-cycle that is not contained
entirely within either of these graphs. Note that if we are considering the
embedding problem and u is the order of an m-cycle system, then u > m+ 1.
However, in general u > m + 1 and v − u > m are much stronger conditions
than (N3) so there are still unsolved cases when m > 16.

Odd cycle decompositions of Kv −Ku

The following theorem is one of the earlier results concerning m-cycle decom-
positions of the complete graph with a hole when m is odd. It is used in the
proof of Theorem 1.2 when m and v are both odd, but it only solves a small
fraction of the cases for each value of m.

Theorem 1.15 ([61]). Let u and m be odd integers and let `, q and r be
integers such that m = 2` + 1, u = q` + r and 1 6 r 6 `. If q 6 m + 2r − 1
then there exists an m-cycle decomposition of Ku+2m −Ku.

The next result due to Bryant and Rodger considers more cases than The-
orem 1.15, however it only applies to the more specific embedding problem.

Theorem 1.16 ([38]). Let m be odd and let u and v be 1 or m (mod 2m).
Any m-cycle system of order u can be embedded in an m-cycle system of order
v if and only if v > (m + 1)u/(m − 1) + 1, except sometimes when u ≡ v ≡
m (mod 2m) and (m+ 1)u/(m− 1) + 1 6 v 6 (m+ 1)u/(m− 1) + 2m.

Theorem 1.16 is simplified here but the full version in [38] gives more details
on which of the cases are missing. The same paper also develops some methods
for reducing the number of examples that need to be found in order to solve
the exceptions to Theorem 1.16. These methods are then applied to m ∈ {7, 9}
[38] and m ∈ {11, 13} [40], building on the result for m = 5 [37] to obtain the
following theorem.

Theorem 1.17 ([37, 38, 40, 51]). Let u, v and m be integers such that u < v
and m ∈ {3, 5, . . . , 13}. There exists an m-cycle system of order v containing
an m-cycle system or order u if and only if u and v are odd, v > m+1

m−1u + 1,
and u, v ≡ 1 or m (mod 2m).
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The previous theorem fills in some of the gaps of Theorem 1.16, however for
odd values of m 6 13 there are still numerous cases that remain unsolved for
the general problem of m-cycle decompositions of Kv −Ku. These are solved
for m = 5 [37] and m = 7 [40], which extends Theorem 1.10.

Theorem 1.18 ([37, 40, 75]). Let u, v and m be integers such that u < v and
m ∈ {3, 5, 7}. There exists an m-cycle decomposition of Kv −Ku if and only
if (N1)–(N4) hold.

For odd values of m > 9, the problem of decomposing Kv − Ku into m-
cycles remains largely unsolved. The difficulty is, in part, due to (N4) and the
fact that each cycle must contain an edge that is not incident with a vertex
in the hole which makes any constructions more cumbersome. In contrast, as
we have seen, more is known about the equivalent problem for even cycles,
including a complete solution for even m 6 14 and the general result given by
Theorem 1.14.

1.1.3 Cycle decompositions of other graphs

The previous sections have outlined some results for the complete graph and
complete graph with a hole, but other graphs with a high degree of structure
such as complete bipartite and complete multipartite graphs have also been
studied in depth. Here we present some of the central results for cycle de-
compositions of these graphs, including those which have been referred to in
the previous two sections. The aim of many of these investigations is to prove
results analogous to Theorems 1.2 and 1.4.

The first result we present here is due to Sotteau [89] and gives a complete
solution for when the complete bipartite graph can be decomposed into uniform
length cycles.

Theorem 1.19 ([89]). Let m, p and q be positive even integers. There exists
an m-cycle decomposition of Kp,q if and only if pq ≡ 0 (mod m) and m 6
2 min(p, q).

Theorem 1.19 has been used to obtain various other cycle decomposition
results. For example, it formed the basis of the reduction of Theorem 1.2 in the
case when v is odd and m is even [79]. Often, in applications of Theorem 1.19,
the graph that is being decomposed is first partitioned into smaller graphs,
one of which is a complete bipartite graph to which this result can be applied.

Extensions of Theorem 1.19 include results such as the following theorem
of Chou, Fu and Huang for decomposing the complete bipartite graph into
short cycles.
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Theorem 1.20 ([45]). Let b, d, f , p and q and be nonnegative integers such
that p and q are even. There exists a decomposition of Kp,q into b 4-cycles, d
6-cycles and f 8-cycles if and only if 4b+ 6d+ 8f = pq, p, q > 4 if d+ f > 1,
and (b, f) 6= (2, 1) if p = q = 4.

Results analogous to Theorems 1.19 and 1.20 for the complete bipartite
graph minus a 1-factor, Kn,n − I have been proved [7, 45, 72]. Because the
existence of a 1-factor is required for these results, these extensions are re-
stricted to complete bipartite graphs with both parts the same size. Other
results include a characterisation of the existence of decompositions of the
complete bipartite graph (and the complete bipartite graph minus a 1-factor)
into cycles of lengths 4 and 2t [44].

A more general result than Theorem 1.20 is the following theorem of Hors-
ley which gives a strong partial result for when the complete bipartite graph
can be decomposed into cycles of arbitrary specified lengths. It is used in the
proof of Theorem 1.14 on decomposing the complete graph with a hole into
uniform even length cycles.

Theorem 1.21 ([64]). Let p and q be positive integers such that either p and
q are even or p = q, and let K∗p,q be the graph Kp,q if p and q are even and
the graph Kp,q − I if p = q and p is odd, where I is a 1-factor of Kp,q. If
m1, . . . ,mτ are even integers such that 4 6 m1 6 · · · 6 mτ 6 min(p, q, 3mτ−1)
and m1 + · · · + mτ = |E(K∗p,q)|, then there is an (m1, . . . ,mτ )-decomposition
of K∗p,q.

Theorem 1.21 is proved by applying a bipartite graph version of Lemma 1.7
to decompositions into short cycles obtained via Theorem 1.20. While this
result is in some ways more general than Theorems 1.19 and 1.20 it does not
supersede them. For example, consider the possible decompositions of K6,10.
By Theorem 1.19 there exists a 10-cycle decomposition of K6,10 since 10 | 60
and 10 6 2 min(6, 10) = 12. However, the hypotheses of Theorem 1.21 are not
satisfied. Similarly, by Theorem 1.20, if 4b + 6d + 8f = 60 for nonnegative
integers b, d and f then there also exists a decomposition of K6,10 into b 4-
cycles, d 6-cycles and f 8-cycles, but if f > 1 then Theorem 1.21 cannot be
applied here.

In general it is still an open problem to determine when a complete bipartite
graph can be decomposed into cycles of arbitrary specified lengths. It is clear
that necessary conditions for such a decomposition to exist are that the longest
cycle in the decomposition is at most twice the size of the smallest part, the
degree of each vertex is even, and the sum of the lengths of the cycles in
the decomposition is equal to the number of edges in the graph. The only
known example where these conditions are not sufficient is that there is no
(4, 4, 8)-decomposition of K4,4, which is straightforward to verify.
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Other graphs that have been of interest in the cycle decomposition problem
include tripartite graphs [21], multipartite graphs [20, 64, 65] and circulant
graphs [35].

1.1.4 Cycle switching technique

Cycle switching is a technique for altering some of the cycles in a cycle decom-
position of a graph. It has been a powerful tool for obtaining graph decompo-
sition results for the complete graph and has also been extended to apply to
the complete bipartite graph and the complete multigraph. Results that have
been obtained through applications of the cycle switching technique include
Theorem 1.4 and Theorem 1.21.

This technique is related to early ideas for edge-colourings [67, 94] and
switching in triple systems [5]. It also has similarities to the amalgamation
technique [6, 12], and a method included in [58] for decomposing the complete
graph into cycles of lengths 2k and 2k+1. The results included here originate in
the more recent version of cycle switching which was first introduced by Bryant,
Horsley and Maenhaut in 2005 [30] to obtain results for decompositions of the
complete graph into 2-regular subgraphs. It has since been further developed
to obtain cycle decomposition results. See [28, 64] and the recent survey [62].

We now introduce some notation that will be necessary for this subsection.
The neighbourhood NG(x) of a vertex x in a graph G is the set of vertices in
G that are adjacent to x (not including x itself). We say vertices x and y of a
graph G are twin in G if NG(x) \ {y} = NG(y) \ {x}. For positive integers u
and v, the hole of Kv −Ku is the set of vertices of degree v − u. We say that
the remaining vertices (those of degree v − 1) are outside the hole. Note that
if u = 1 then the hole is trivial and any vertex can be specified as the hole.
We say an edge xy of Kv −Ku is a pure edge if both x and y are outside the
hole, and we say that it is a cross edge if either x or y is in the hole. Given
a permutation π of a set V , a subset S of V and a graph G with V (G) ⊆ V ,
π(S) is defined to be the set {π(x) : x ∈ S} and π(G) is defined to be the
graph with vertex set π(V (G)) and edge set {π(x)π(y) : xy ∈ E(G)}.

The following result presents the cycle switching idea for a general graph.
It is almost identical to Lemma 2.1 of [64] and the proof given in that paper
suffices to prove this result as well. A similar proof is also included in the
recent survey [62].

Lemma 1.22 ([64]). Let G be a graph, and let M be a list of integers. Let
P be an (M)-packing of G with leave L, let α and β be twin vertices in G,
and let π be the transposition (αβ). Then there exists a partition of the set
Z(P , α, β) = (NL(α) ∪ NL(β)) \ ((NL(α) ∩ NL(β)) ∪ {α, β}) into pairs such
that for each pair {x, y} of the partition, there exists an (M)-packing P ′ of G
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whose leave L′ differs from L only in that each of αx, αy, βx and βy is an
edge in L′ if and only if it is not an edge in L.

Furthermore, if P = {C1, C2, . . . , Cτ}, then P ′ = {C ′1, C ′2, . . . , C ′τ}, where,
for each i ∈ {1, . . . , τ}, C ′i is a cycle of the same length as Ci such that

(i) if neither α nor β is in V (Ci), then C ′i = Ci;

(ii) if exactly one of α and β is in V (Ci), then either C ′i = Ci or C ′i = π(Ci);
and

(iii) if both α and β are in V (Ci), then C ′i ∈ {Ci, π(Ci), π(Pi)∪P †i , Pi∪π(P †i )},
where Pi and P †i are the two paths in Ci which have end vertices α and
β.

We include a proof of this result since it will be central to the results in
Chapters 2 and 3 of this thesis. The following is based on the proofs by Horsley
[62, 64].

Proof. Let Z = Z(P , α, β), and P = {C1, . . . , Cτ}. We will construct a
(multi)graph G∗ from P such that V (G∗) = V (G)∪J and E(G∗) = E(G)∪F ,
where J and F are defined below, and F is a set of coloured red and green
edges. Furthermore, the set of vertices in G∗ that are the endpoints of maximal
alternating red-green paths are the set Z.

G∗ is constructed as follows. For each i ∈ {1, . . . , τ}

• If α ∈ V (Ci) and β /∈ V (Ci), add a red edge xy where NCi(α) = {x, y};

• If β ∈ V (Ci) and α /∈ V (Ci), add a green edge xy where NCi(β) = {x, y};

• If {α, β} ⊆ V (Ci), then Ci = Pi∪P †i , where Pi and P †i are the two paths
from α to β in Ci. For each of these paths P , if P = [α, x, . . . , y, β] has
length at least three then add a red edge xz and a green edge yz, where
z is a new vertex added to J .

Note that G∗ may not be a simple graph, but that G∗ − G is simple. For
example, if P contains a 3-cycle (α, x, y), then a red edge xy is added to G∗

parallel to the original edge xy ∈ E(G).
The set Z ∩ NL(α) is equal to the set of vertices that are incident with a

green edge and no red edges. Likewise, Z∩NL(β) is equal to the set of vertices
that are incident with a red edge and no green edges. This follows from the
assumption that α and β are twin, and by the definition of G∗. Consider a
vertex x ∈ Z ∩ NL(α). Since x is in NL(α), then x is incident with β in G
because α and β are twin. Since x is also in Z then it follows that xβ is an
edge of some cycle in P and a green edge incident with x was added to G∗.
Furthermore, since xα ∈ E(L) then x is not incident with a red edge in G∗.
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Similarly, for a vertex x in NG(α) \ Z, x is incident with both a red and
a green edge in G∗. This holds since αx must be an edge of Ci for some
i ∈ {1, . . . , τ} so there is a red edge added in the above construction. There is
also a green edge added since NG(α) \ {β} = NG(β) \ {α}.

Therefore, the set of maximal alternating red-green paths in G∗ forms a
partition Π of Z by pairing the end vertices of these paths. Let {x, y} be a
pair in Π, and let Q be the red-green path from x to y in G∗. Then P ′ is
constructed as follows.

For each edge pq of Q such that {p, q} ⊆ V (G), there is some cycle C ∈ P
such that [p, γ, q] is a subpath of C, where γ ∈ {α, β}. Then in P ′ replace C
with π(C) (recall that π is the transposition (αβ)).

For each subpath [p, z, q] of Q such that {p, q} ⊆ V (G) and z ∈ J , there is
some cycle C ∈ P such that C = P ∪ P ∗ where P and P † are the two paths
from α to β and {p, q} ⊆ V (P ). Then in P ′, replace P with π(P ). Note that
there may also be a subpath [p†, z†, q†] of Q where {p†, q†} ⊆ V (P †).

The remaining cycles in P remain unchanged since the only cycles that
are affected are those along the red-green path Q. We can see that P ′ is the
required (M)-packing of G since we have examined the changes that occur in
each of the cycles along Q.

As in the statement of Lemma 1.22, for a packing P with leave L and
vertices α and β, let Z(P , α, β) denote the set (NL(α) ∪ NL(β)) \ ((NL(α) ∩
NL(β))∪{α, β}). In the proof above, the partition of Z(P , α, β) is constructed
by considering the cycles that contain the edges αx and βx for each x ∈ V (G).
Figures 1.1–1.2 depict some of the cases where all of the cycles in P that are
involved in the switch contain exactly one of α and β. That is, all of the edges
of the maximal red-green path Q correspond to cycles which contain exactly
one of α and β.

If we are applying Lemma 1.22 we say that we are performing the (α, β)-
switch with origin x and terminus y (equivalently, with origin y and terminus
x). Figure 1.1 shows one case for the (α, β)-switch, where the edges αx and
βy in the leave are replaced by edges βx and αy, and the cycles in the packing
are modified as shown. The case shown by Figure 1.2 proceeds in a similar
manner, as do cases where the switch involves cycles containing both α and β.
However the latter is slightly more complicated than the examples shown by
Figures 1.1–1.2.

Since the partition of Z(P , α, β) is not given explicitly by Lemma 1.22, in
performing an (α, β)-switch we can specify the origin of the switch but must
examine all possible cases for the terminus. This will be seen in the proofs
given in Chapters 2 and 3.

When Lemma 1.22 is applied to a packing of the complete graph, the
condition that α and β are twin is trivial for any pair of vertices (α, β). If
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G is a complete bipartite graph then this condition is equivalent to specifying
that α and β are in the same part. Similarly, if G is a complete graph with
a non-trivial hole then this is equivalent to specifying that α and β are both
inside or both outside the hole. If we consider packings of graphs other than
the complete graph, omitting this condition could result in some of the edges
αx, αy, βx and βy being non-existent in G.

Applying a switch to a packing preserves certain properties of its cycles
and the following definition enables us to formalise this idea.

Definition. Let G be a graph, and let P = {G1, . . . , Gτ} be a packing of G.
We say that another packing P ′ of G is a repacking of P if P ′ = {G′1, . . . , G′τ}
where for each i ∈ {1, . . . , τ} there is a permutation πi of V (G) such that
πi(Gi) = G′i and x and πi(x) are twin in G for each x ∈ V (G).

Obviously, for any list of integers M , a repacking of an (M)-packing of a
graph G is also an (M)-packing of G. If G is a complete graph with a hole,
then the above definition implies that Gi and G′i have the same number of
pure and cross edges for each i ∈ {1, . . . , τ} and hence also that the leaves of
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P and P ′ have the same number of pure and cross edges. If P is a packing of a
graph G, P ′ is a repacking of P and P ′′ is a repacking of P ′, then P ′′ is also a
repacking of P . If P is a packing of a graph G and P ′ is another packing of G
obtained from P by applying Lemma 1.22, then P ′ is necessarily a repacking
of P .

Since its application to decompositions of the complete graph, cycle switch-
ing has also been developed for use on decompositions of the complete bipartite
graph [64]. A result analogous to Lemma 1.7 was proved for merging cycles in
the complete bipartite graph [64, Lemma 3.6]. Along with Theorem 1.20, this
is the main ingredient in proving Theorem 1.21. Results in [64] for the complete
graph with a hole and complete multipartite graphs are then obtained as con-
sequences of Theorem 1.21 rather than by applying cycle switching techniques
directly to these graphs.

Lemma 1.22 can be applied to any graph with twin vertices, but it is most
useful for highly structured graphs. Using cycle switching techniques often
relies on repeatedly applying Lemma 1.22 to different pairs of vertices in the
leave of a packing. Hence it is most effective when the graph contains large sets
of pairwise twin vertices as is the case with the complete graph, the complete
bipartite graph, and the complete graph with a hole.

1.2 Research questions

As a generalisation of the Doyen-Wilson Theorem we investigate the following
problem for embedding m-cycle systems. We focus on odd values of m since
less is known in this case than in the case of even m.

Problem 1.23. Given an odd integer m > 3, for which values of u and v can
an m-cycle system of order u be embedded in an m-cycle system of order v?

Problem 1.23 is a specific case of the following problem for decompositions
of the complete graph with a hole. Solutions to Problem 1.24 also give solutions
to Problem 1.23 by removing the edges of the cycle system of order u. However
the converse does not always hold.

Problem 1.24. Given an odd integer m > 3, for which values of u and v does
there exist an m-cycle decomposition of Kv −Ku?

Strong partial results to Problems 1.23 and 1.24 are given in Chapter 2.
We saw above that Theorem 1.2 for the existence of m-cycle systems was

later generalised to Theorem 1.4 for decompositions of the complete graph into
arbitrary length cycles. Chapter 3 contains results related to the following
question.
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Problem 1.25. For which lists of integers m1, . . . ,mτ , and values of u and v
does there exist an (m1, . . . ,mτ )-decomposition of Kv −Ku?

The partial solutions to Problems 1.23–1.25 that are given in Chapters 2
and 3 have a similar format. In both chapters, the proof of the main results
relies on starting with a ‘base’ decomposition of the complete graph with a hole
and then merging short cycles into cycles of the required length. The cycles
in the base decomposition consist of two types, short cycles that each contain
at most one pure edge and cycles of the desired lengths that contain no cross
edges (m-cycles in the case of Problems 1.23 and 1.24). These decompositions
are given in Sections 2.2 and 3.2. Sections 2.1 and 3.1 give results for merging
cycles. The merging result in Section 3.1 is similar to Lemma 1.7 and applies
to cycles with at most one pure edge. Section 2.1 contains a result adapted
to obtaining a collection of m-cycles rather than arbitrary length cycles. Both
of these merging results are obtained by applications of Lemma 1.22. The
remaining lemmas in Sections 2.1 and 3.1 are required to prove these merging
results.

The following question is a natural extension of the cycle packing result
Theorem 1.8 in light of results for cycle decompositions, namely Theorems 1.4
and 1.9.

Problem 1.26. For which lists of integers m1, . . . ,mτ , and values of v and λ
does there exist an (m1, . . . ,mτ )-packing of λKv?

A complete solution to this question is given in Chapter 4. The proof of
this result uses Theorems 1.4 and 1.9 as well as cycle switching on the complete
graph and the complete multigraph (see [31]).



Chapter 2

Uniform Length Cycles

The first main result of this chapter is a generalisation of the Doyen-Wilson
Theorem to embeddings of odd cycle systems. Theorem 2.1 is a complete
solution to this embedding problem for odd m-cycle systems in the case when
u > (m−1)(m−2)

2
and, for other values of m and u, a solution apart from cases

where u < v 6 u + m − 1. This means that, for each odd m, the Doyen-
Wilson Theorem is generalised with the exception of finitely many possible
cases. These possible exceptions are resolved when m is an odd prime power
by applying Theorem 1.16 (see [38]).

The embedding results in this chapter are obtained as a consequence of
results for decomposing the complete graph with a hole into uniform length odd
cycles. Theorem 2.2 gives necessary and sufficient conditions for the existence
of an m-cycle decomposition of Kv−Ku in the case where m is odd, u > m−2
and v − u > m + 1 all hold. As in the solution to the embedding problem,
for each odd m, the possible exceptions are reduced to a finite number of
cases. These cases are then fully resolved form ∈ {9, 11, 13, 15}, supplementing
known results for m ∈ {3, 5, 7} (see Theorem 1.18).

Theorem 2.1. Let m > 3 be an odd integer and let u and v be positive integers
with u < v.

(i) If u > (m−1)(m−2)
2

or if m is a prime power, then an m-cycle system of
order u can be embedded in an m-cycle system of order v if and only if
u and v are odd,

(
u
2

)
,
(
v
2

)
≡ 0 (mod m) and v > u(m+1)

m−1 + 1.

(ii) If u 6 (m−1)(m−2)
2

and m is not a prime power, then an m-cycle system
of order u can be embedded in an m-cycle system of order v if and only
if u and v are odd,

(
u
2

)
,
(
v
2

)
≡ 0 (mod m) and v > u(m+1)

m−1 + 1, except that

the embedding may not exist when u(m+1)
m−1 + 1 6 v 6 u+m− 1.

19



20

Theorem 2.2. Let m > 3 be an odd integer and let u and v be integers such
that u > m− 2 and v − u > m+ 1. There exists an m-cycle decomposition of
Kv −Ku if and only if

(i) u and v are odd;

(ii)
(
v
2

)
−
(
u
2

)
≡ 0 (mod m); and

(iii) v > u(m+1)
m−1 + 1.

Theorem 2.2 complements a similar result for cycles of fixed even length;
see Theorem 1.14 (from [64]). It is proved by beginning with a cycle decom-
position of Kv − Ku that involves many short cycles and iteratively altering
our decomposition of Kv−Ku so as to ‘merge’ a number of short cycle lengths
until we eventually obtain an m-cycle decomposition of Kv −Ku. For an odd
integer m > 3, we say that a pair (u, v) of positive integers is m-admissible if
u and v satisfy the conditions (N1)–(N4) of Lemma 1.11. As a consequence of
Theorem 2.2 we find the following.

Corollary 2.3. Let m and u be odd integers and let ωm(u) be the smallest
integer x > u such that (u, x) is m-admissible.

(i) If 3 < u < m− 2 and there exists an m-cycle decomposition of Kv′ −Ku

for each integer v′ such that (u, v′) is m-admissible and ωm(u) 6 v′ 6
ωm(u) + m − 1, then there exists an m-cycle decomposition of Kv −Ku

if and only if (u, v) is m-admissible.

(ii) If m − 2 6 u 6 (m−1)(m−2)
2

, then there exists an m-cycle decomposi-
tion of Kv − Ku if and only if (u, v) is m-admissible, except that this
decomposition may not exist when ωm(u) 6 v 6 u+m− 1.

(iii) If u > (m−1)(m−2)
2

or u ∈ {1, 3}, then there exists an m-cycle decomposi-
tion of Kv −Ku if and only if (u, v) is m-admissible.

Note that ωm(u) in the above corollary is at most the smallest integer

y ≡ u (mod 2m) such that y > u(m+1)
m−1 + 1, because (u, y) is m-admissible for

any such integer. Corollary 2.3 makes it clear that for a given odd m, we
can establish the existence of an m-cycle decomposition of Kv −Ku for all
m-admissible (u, v) provided we can construct a number of “small” decompo-
sitions. We have been able to do this for m ∈ {9, 11, 13, 15} and thus have
resolved the problem for each m 6 15, building on Theorems 1.13 and 1.18 for
m ∈ {3, 4, 5, 6, 7, 8, 10, 12, 14}.

Theorem 2.4. Let m, u and v be positive integers such that 3 6 m 6 15 and
v > u. Then there exists an m-cycle decomposition of Kv −Ku if and only if
(u, v) is m-admissible.
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We now give some notation and the definitions for two types of graphs,
rings and chains, which will be useful in both this chapter and Chapter 3. For
a set V , let KV denote the complete graph with vertex set V . For disjoint
sets U and W , let KU,W denote the complete bipartite graph with parts U
and W . For graphs G and H, we denote by G ∪ H the graph with vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H), we denote by G−H the graph
with vertex set V (G) and edge set E(G) \ E(H), and, if V (G) and V (H) are
disjoint, we denote by G∨H the graph with vertex set V (G)∪V (H) and edge
set E(G)∪E(H)∪E(KV (G),V (H)) (our use of this last notation will imply that
V (G) and V (H) are disjoint). The m-cycle with vertices x0, x1, . . . , xm−1 and
edges xixi+1 for i ∈ {0, . . . ,m− 1} (with subscripts modulo m) is denoted by
(x0, x1, . . . , xm−1) and the n-path with vertices y0, y1, . . . , yn and edges yjyj+1

for j ∈ {0, 1, . . . , n− 1} is denoted by [y0, y1, . . . , yn]. We will say that y0 and
yn are the end vertices of this path.

Definition. An (a1, a2, . . . , as)-chain (or s-chain if we do not wish to spec-
ify the lengths of the cycles) is the edge-disjoint union of s > 2 cycles
A1, A2, . . . , As such that

• Ai is a cycle of length ai for 1 6 i 6 s; and

• for 1 6 i < j 6 s, |V (Ai)∩V (Aj)| = 1 if j = i+1 and |V (Ai)∩V (Aj)| = 0
otherwise.

We call A1 and As the end cycles of the chain, and for 1 < i < s we call
Ai an internal cycle of the chain. A vertex which is in two cycles of the chain
is said to be the link vertex of those cycles. We denote a 2-chain with cycles
P and Q by P ·Q.

Definition. An (a1, a2, . . . , as)-ring (or s-ring if we do not wish to specify the
lengths of the cycles) is the edge-disjoint union of s > 2 cycles A1, A2, . . . , As
such that

• Ai is a cycle of length ai for 1 6 i 6 s;

• for s > 3 and 1 6 i < j 6 s, |V (Ai) ∩ V (Aj)| = 1 if j = i + 1 or if
(i, j) = (1, s), and |V (Ai) ∩ V (Aj)| = 0 otherwise; and

• if s = 2 then |V (A1) ∩ V (A2)| = 2.

We refer to the cycles A1, A2, . . . , As as the ring cycles of the ring in order
to distinguish them from the other cycles that can be found within the graph.
A vertex which is in two ring cycles of the ring is said to be a link vertex of
those cycles.
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Definition. For disjoint sets U and W , an s-chain that is a subgraph of
KU∪W −KU is good if s = 2 or if s > 3 and

• one end cycle of the chain contains at least one pure edge and has its
link vertex in W ; and

• each internal cycle of the chain has one link vertex in W and one link
vertex in U .

Definition. For disjoint sets U and W , an s-ring that is a subgraph of KU∪W−
KU is good if either

• s is even, and each of the ring cycles has one link vertex in U and one
link vertex in W ; or

• s is odd, one ring cycle has both link vertices in W and contains at least
one pure edge, and each other ring cycle has one link vertex in U and
one link vertex in W .

2.1 Merging cycle lengths

Our aim in this section is to prove Lemma 2.5. This lemma allows us to
begin with a packing of Kv − Ku satisfying various conditions and find a
repacking whose leave can be decomposed into two m-cycles, each with exactly
one pure edge. Finding m-cycles of this form is important because, in an m-
cycle decomposition of Kv −Ku with m odd and v = u(m+1)

m−1 + 1 (that is, with
equality in necessary condition Lemma 1.11(N4)), every cycle must contain
exactly one pure edge. Thus Lemmas 2.5 and 2.11–2.19 concern packings
of Kv − Ku whose leaves have exactly two pure edges (recall that repacking
preserves the number of pure and cross edges in the leave).

Lemma 2.5. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m be a positive odd integer such that 7 6 m 6
min(|U |+ 2, |W |−1). Let a1, . . . , as and b1, . . . , bt be lists of integers such that
a1 + · · ·+ as = m and b1 + · · ·+ bt = m. Suppose there exists an (M)-packing
P of KU∪W −KU with a reduced leave that contains exactly two pure edges and
is the edge-disjoint union of cycles of lengths a1, . . . , as, b1, . . . , bt. Then there
exists an (M,m,m)-decomposition D of KU∪W −KU containing two m-cycles
C ′ and C ′′ such that D \ {C ′, C ′′} is a repacking of P.

The results in Subsection 2.1.1 show when the required m-cycle can be ob-
tained from a packing whose reduced leave is a 2-chain of size at least m+ 3.
In Subsection 2.1.2, this is extended to the case when the reduced leave is an
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s-chain or s-ring with specified properties. The main result of Subsection 2.1.2
is proved by induction on s, relying on results in Subsection 2.1.1 for 2-chains.
Finally, Lemma 2.5 is proved by using the results in Subsection 2.1.3 to ob-
tain a packing whose reduced leave is an s-chain with the required properties.
Lemma 2.6 is a technical lemma which will be used in Subsections 2.1.2 and
2.1.3.

Lemma 2.6. Let U and W be disjoint sets with |U | odd and |W | even, and
suppose that L is a subgraph of KU∪W −KU such that L contains exactly two
pure edges and each vertex of L has positive even degree.

(i) If |E(L)| 6 2(|U |+ 1) and U contains a vertex of degree at least 4 in L,
then there is a vertex y in U such that y /∈ V (L).

(ii) If |E(L)| 6 2 min(|U |+ 2, |W |) and S is an element of {U,W} such that
S contains either at least two vertices of degree 4 in L or at least one
vertex of degree at least 6 in L, then there is a vertex y in S such that
y /∈ V (L).

(iii) If |E(L)| 6 2 min(|U |+2, |W |) and L contains either at least two vertices
of degree 4 or at least one vertex of degree at least 6, then there are twin
vertices x and y in KU∪W −KU such that degL(x) > 4 and y /∈ V (L).

Proof. Let l = |E(L)|. Because L contains exactly two pure edges, we have∑
x∈V (L)∩U

degL(x) = l − 2 and
∑

x∈V (L)\U
degL(x) = l + 2.

Proof of (i). Suppose that l 6 2(|U | + 1) and U contains a vertex of degree
at least 4 in L. Suppose for a contradiction that U ⊆ V (L). Then we have
l− 2 =

∑
x∈V (L)∩U degL(x) > 2|U |+ 2 since every vertex of L in U has degree

at least 2. This contradicts l 6 2(|U |+ 1).
Proof of (ii). Suppose that l 6 2 min(|U | + 2, |W |) and S is an element of
{U,W} such that S contains either at least two vertices of degree 4 in L or
at least one vertex of degree at least 6 in L. Suppose for a contradiction that
S ⊆ V (L). Then we have

∑
x∈V (L)∩S degL(x) > 2|S|+ 4 since every vertex of

L in S has degree at least 2. So, if S = U , then l− 2 > 2|U |+ 4, contradicting
l 6 2(|U |+ 2). If S = W , then l + 2 > 2|W |+ 4, contradicting l 6 2|W |.
Proof of (iii). Because we have proved (ii), it only remains to show that if
L contains two vertices of degree 4, one in U and one in W , and every other
vertex of L has degree 2, then there are twin vertices x and y in KU∪W −KU

such that degL(x) > 4 and y /∈ V (L). Suppose otherwise. Then it must be
the case that V (L) = U ∪W , l− 2 = 2|U |+ 2 and l+ 2 = 2|W |+ 2. But then



24 2.1. MERGING CYCLE LENGTHS

l = 2|U | + 4 and l = 2|W |, so |W | = |U | + 2 which contradicts the fact that
|U | is odd and |W | is even.

2.1.1 Packings whose leaves are 2-chains

In this subsection we focus on starting with a packing whose reduced leave is a
2-chain, and finding a repacking whose reduced leave is the edge-disjoint union
of two cycles of specified lengths. Our main goal here is to prove Lemma 2.13.
The other lemmas in this subsection are used only in order to prove it. Lemmas
2.7–2.10 apply to packings of arbitrary graphs, while in Lemmas 2.11–2.13
we concentrate on packings of complete graphs with holes whose leaves have
exactly two pure edges. Lemma 2.9 will also be used in Chapter 3.

Lemma 2.7. Let G be a graph and let M be a list of integers. Let m, p and
q be positive integers with m > p and p + q −m > 3. Suppose there exists an
(M)-packing P of G whose reduced leave is a (p, q)-chain (x1, x2, . . . , xp−1, c) ·
(c, y1, y2, . . . , yq−1) such that x1 and ym−p+1 are twin in G. Then there exists
a repacking of P whose reduced leave is either

• the edge-disjoint union of an m-cycle and a (p+ q −m)-cycle; or

• the (m−p+2, 2p+q−m−2)-chain given by (x1, ym−p, ym−p−1, . . . , y1, c) ·
(c, xp−1, xp−2, . . . , x2, ym−p+1, ym−p+2, . . . , yq−1).

Proof. Note that p + q − m > 3 implies that m − p + 1 6 q − 2. If
p = m then we are finished, so assume p < m. Since x1 and ym−p+1 are
twin in G, we can perform the (x1, ym−p+1)-switch with origin x2. If the
switch has terminus ym−p, then we obtain a repacking of P whose reduced
leave is the (m − p + 2, 2p + q − m − 2)-chain (x1, ym−p, ym−p−1, . . . , y1, c) ·
(c, xp−1, xp−2, . . . , x2, ym−p+1, ym−p+2, . . . , yq−1). Otherwise the switch has ter-
minus ym−p+2 or c and in either case we obtain a repacking of P whose re-
duced leave is the edge-disjoint union of a (p + q −m)-cycle and the m-cycle
(y1, y2, . . . , ym−p+1, x2, x3, . . . , xp−1, c).

Figure 2.1 provides an illustration of the different cases in Lemma 2.7. The
grey edges in the original leave indicate the m-path from x1 to ym−p+1. We can
see that this results in an m-cycle when the terminus of the switch is ym−p+2

or c.
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Original leave Resulting leave

terminus ym−p

terminus ym−p+2

terminus c

Figure 2.1

Lemma 2.8. Let G be a graph and let M be a list of integers. Let m, p and
q be positive integers with m > p and p + q −m > 3. Suppose there exists an
(M)-packing P of G whose reduced leave is a (p, q)-chain (x1, x2, . . . , xp−1, c) ·
(c, y1, y2, . . . , yq−1) such that x2 and ym−p+2 are twin in G. Then there exists
a repacking of P whose reduced leave is either

• the edge-disjoint union of an m-cycle and a (p+ q −m)-cycle; or

• the (m−p+4, 2p+q−m−4)-chain given by (x1, x2, ym−p+1, ym−p, . . . , y1, c)·
(c, xp−1, xp−2, . . . , x3, ym−p+2, ym−p+3, . . . , yq−1).

Proof. Note that p + q − m > 3 implies that m − p + 2 6 q − 1. If
p = m then we are finished, so assume p < m. Since x2 and ym−p+2 are
twin in G, we can perform the (x2, ym−p+2)-switch with origin x3. If the
switch has terminus ym−p+1, then we obtain a repacking of P whose reduced
leave is the (m− p+ 4, 2p+ q −m− 4)-chain (x1, x2, ym−p+1, ym−p, . . . , y1, c) ·
(c, xp−1, xp−2, . . . , x3, ym−p+2, ym−p+3, . . . , yq−1). Otherwise the switch has ter-
minus ym−p+3 or x1 and in either case we obtain a repacking of P whose
reduced leave is the edge-disjoint union of a (p+ q−m)-cycle and the m-cycle
(y1, y2, . . . , ym−p+2, x3, x4, . . . , xp−1, c).

Lemma 2.9. Let G be a graph and let M be a list of integers. Let m, p and q be
positive integers with m odd, m > p and p+q−m > 3. Suppose there exists an
(M)-packing P of G whose reduced leave is a (p, q)-chain (x1, x2, . . . , xp−1, c) ·
(c, y1, y2, . . . , yq−1) such that either
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(i) p is odd, x1, y3, y5, . . . , ym−p+1 are pairwise twin in G and y2, y4, . . . ,
ym−p+2 are pairwise twin in G; or

(ii) p is even, x1, x3, . . . , xp−3 are pairwise twin in G and ym−p+2, x2, x4, . . . ,
xp−2 are pairwise twin in G.

Then there exists a repacking of P whose reduced leave is the edge-disjoint
union of an m-cycle and a (p+ q −m)-cycle.

Proof. If p = m, then we are finished. If p = 4, then x2 and ym−2
are twin in G and we can apply Lemma 2.8 to obtain the required pack-
ing. So we may assume p /∈ {4,m}. Let p0, p1, . . . , p` be the sequence
m, 4,m− 2, 6, . . . , 7,m− 3, 5,m− 1, 3. For some k ∈ {2, . . . , `} assume that
the lemma holds for p = pk−1. We will now show that it holds for p = pk.
Case 1. Suppose p = pk is odd. Since x1 and ym−p+1 are twin in G, Lemma 2.7
can be applied to obtain a repacking P ′ of P . Either we are finished, or the
reduced leave of P ′ is a (p′, q′)-chain where p′ = m−p+2 and q′ = 2p+q−m−2.
We give this chain and, below it, a relabelling of its vertices.

(x1, ym−p, ym−p−1, . . . , y1, c) · (c, xp−1, xp−2, . . . , x2, ym−p+1, ym−p+2, . . . , yq−1 )
( x′1, x′2, x′3, . . . , x′p′−1, c) · (c, y′1, y′2, . . . , y′p−2, y′p−1, y′p, . . . , y′q′−1)

Note that p′ = pk−1 and p′ is even. Since x′1 = x1 and {x′3, x′5, . . . , x′p′−3} =
{y3, y5, . . . , ym−p−1}, the vertices x′1, x

′
3, . . . , x

′
p′−3 are pairwise twin in G. Simi-

larly, since y′m−p′+2 = y′p = ym−p+2 and {x′2, x′4, . . . , x′p′−2} = {y2, y4, . . . , ym−p},
the vertices y′m−p′+2, x

′
2, x
′
4, . . . , x

′
p′−2 are pairwise twin in G. Thus P ′ satisfies

(ii) and we are finished by our inductive hypothesis.
Case 2. Suppose p = pk is even. Then, since x2 and ym−p+2 are twin in
G, Lemma 2.8 can be applied to obtain a repacking P ′ of P . Either we are
finished, or the reduced leave of P ′ is a (p′, q′)-chain where p′ = m − p + 4
and q′ = 2p+ q −m− 4. We give this chain and, below it, a relabelling of its
vertices.

(x1, x2, ym−p+1, ym−p, . . . , y1, c) · (c, xp−1, xp−2, . . . , x3, ym−p+2, ym−p+3, . . . , yq−1 )
( x′1, x

′
2, x′3, x′4, . . . , x′p′−1, c) · (c, y′1, y′2, . . . , y′p−3, y′p−2, y′p−1, . . . , y′q′−1)

Note that p′ = pk−1 and p′ is odd. Since x′1 = x1 and {y′3, y′5, . . . , y′m−p′+1} =
{x3, x5, . . . , xp−3}, the vertices x′1, y

′
3, y
′
5, . . . , y

′
m−p′+1 are pairwise twin in G.

Similarly, since {y′2, y′4, . . . , y′m−p′+2} = {x4, x6, . . . , xp−2} ∪ {ym−p+2}, the ver-
tices y′2, y

′
4, . . . , y

′
m−p′+2 are pairwise twin in G. Thus P ′ satisfies (i) and we

are finished by our inductive hypothesis.

Lemma 2.10. Let G be a graph and let M be a list of integers. Let m, p
and q be positive integers with m odd, m > p, p + q − m > 3 and q > 5.
Suppose there exists an (M)-packing P of G whose reduced leave is a (p, q)-
chain (x1, x2, . . . , xp−1, y0) · (y0, y1, . . . , yq−1) such that y0 and yq−2 are twin in
G. Then there exists a repacking of P whose reduced leave is either
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• a (p+ 2, q − 2)-chain containing the (q − 2)-cycle (y0, y1, . . . , yq−3); or

• the (p, q)-chain (x1, x2, . . . , xp−1, y0) · (y0, yq−1, yq−2, y1, y2, . . . , yq−3).

Proof. Perform the (y0, yq−2)-switch with origin yq−3 (note that y0 and yq−2
are twin in G and that q > 5). If the terminus of the switch is y1, then the
reduced leave of the resulting packing is the (p, q)-chain (x1, x2, . . . , xp−1, y0) ·
(y0, yq−1, yq−2, y1, y2, . . . , yq−3). Otherwise the terminus of the switch is x1 or
xp−1 and in either case the leave of the resulting packing is a (p+2, q−2)-chain
containing the (q − 2)-cycle (y0, y1, . . . , yq−3).

Lemma 2.11. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, p and q be positive integers with m odd and
m, p+q−m > 3. Suppose there exists an (M)-packing P of KU∪W−KU whose
reduced leave L is a (p, q)-chain such that each cycle of L contains exactly one
pure edge and the link vertex of L is in W if 3 ∈ {m, p+ q −m}. Then there
exists a repacking of P whose reduced leave is the edge-disjoint union of an
m-cycle and a (p+ q −m)-cycle.

Proof. We can assume without loss of generality that m > p+q−m and that
p 6 q. Note that this implies p 6 m. Since each cycle of L must contain an
even number of cross edges, p and q are odd. If p = m, then we are finished
immediately, so we can assume that p 6 m − 2. We will show that we can
obtain a repacking of P whose reduced leave is either a (p+ 2, q − 2)-chain or
the edge-disjoint union of an m-cycle and a (p+ q−m)-cycle. This will suffice
to complete the proof, because by iteratively applying this procedure we will
eventually obtain a repacking of P whose reduced leave is the edge-disjoint
union of an m-cycle and a (p+ q −m)-cycle.
Case 1. Suppose that L can be labelled (x1, x2, . . . , xp−1, y0) · (y0, y1, . . . , yq−1)
so that y0x1 is not a pure edge and yryr+1 is a pure edge (subscripts modulo
q) for an integer r such that m − p + 2 6 r 6 q − 1. Then the hypotheses of
Lemma 2.9(i) are satisfied and we can apply it to obtain a repacking of P whose
reduced leave is the edge-disjoint union of an m-cycle and a (p+ q−m)-cycle.
Case 2. Suppose that L cannot be labelled as in Case 1. Without loss of
generality we can label L as (x1, x2, . . . , xp−1, y0) · (y0, y1, . . . , yq−1) so that y0x1
is not a pure edge and yryr+1 is a pure edge (subscripts modulo q) for an
integer r such that q−1

2
6 r 6 q − 1, r is even if y0 ∈ W , and r is odd if

y0 ∈ U . It must be that r 6 m− p + 1, for otherwise we would be in Case 1.
Then we can iteratively apply Lemma 2.10 to obtain a repacking of P whose
reduced leave L′ is either a (p + 2, q − 2)-chain or a (p, q)-chain which can be
labelled (x′1, x

′
2, . . . , x

′
p−1, y

′
0) · (y′0, y′1, . . . , y′q−1) so that y′0x

′
1 is not a pure edge,

and y′r′y
′
r′+1 is a pure edge (subscripts modulo q), where r′ is the element of

{m− p+ 2,m− p+ 3} such that r′ ≡ r (mod 2). Note that r′ 6 q− 1 because
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if p + q −m > 4 then m− p + 3 6 q − 1, and if p + q −m = 3 then y0 ∈ W ,
r is even and r′ = m − p + 2 = q − 1. If L′ is a (p + 2, q − 2)-chain then we
are finished, and if L′ is a (p, q)-chain then we can proceed as we did in Case
1.

Lemma 2.12. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, p and q be positive integers with m odd
and m, p+ q−m > 3. Suppose there exists an (M)-packing P of KU∪W −KU

whose reduced leave L is a (p, q)-chain such that one cycle in L contains no
pure edges, the other contains exactly two pure edges, and the link vertex of
L is in W if 3 ∈ {m, p + q −m}. Then there exists a repacking of P whose
reduced leave is the edge-disjoint union of an m-cycle and a (p+ q−m)-cycle.

Proof. We can assume without loss of generality that m > p+q−m and that
a p-cycle in L contains no pure edges. Since each cycle of L must contain an
even number of cross edges, p and q are even.
Case 1. Suppose that L can be labelled (x1, x2, . . . , xp−1, y0) · (y0, y1, . . . , yq−1)
so that yryr+1 and ysys+1 are pure edges (subscripts modulo q) for integers r
and s such that 0 6 r < s 6 q−1, r 6 m−2 and s > m−p+1. Observe that,
in particular, such a labelling is always possible when q = 4 (any labelling
with r < s and s ∈ {2, 3} will suffice, because then r 6 2 < m − 2 since
m > p + 4 − m and m − p + 1 6 2 6 s since p + 4 − m > 3). Let x0 = y0
and t = max(r + 1,m− p + 1). Consider the vertices xm−t and yt. Note that
1 6 m − t 6 p − 1 because r 6 m − 2, p > 3 and t > m − p + 1, and that
r < t 6 s because t > r+1, r < s and s > m−p+1. Since r+1 6 t 6 s, there
is exactly one pure edge in the m-path [xm−t, xm−t−1, . . . , x1, y0, y1, . . . , yt] and
hence xm−t and yt are twin in KU∪W − KU . Let L′ be the reduced leave of
the repacking of P obtained by performing the (xm−t, yt)-switch with origin
xm−t−1. If the terminus of the switch is not yt−1, L

′ is the edge-disjoint union
of an m-cycle and a (p + q −m)-cycle and we are finished. If the terminus of
the switch is yt−1, then L′ is a (p + 2t −m, q + m − 2t)-chain with one pure
edge in each cycle and whose link vertex is in W if 3 ∈ {m, p + q −m}, and
we can apply Lemma 2.11 to complete the proof.
Case 2. Suppose that L cannot be labelled as in Case 1. From our comments
in Case 1 we may assume q > 6. We will show that we can obtain a repack-
ing of P whose reduced leave either satisfies the conditions of Case 1 or is a
(p+ 2, q − 2)-chain in which a (p+ 2)-cycle contains no pure edges. Since any
reduced leave which is a (p + q − 4, 4)-chain with exactly two pure edges in
which a (p+q−4)-cycle contains no pure edges must fall into Case 1, repeating
this procedure will eventually result in a repacking of P whose reduced leave
satisfies the conditions of Case 1. We can then proceed as we did in Case 1 to
complete the proof.
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Without loss of generality we can label L as (x1, x2, . . . , xp−1, y0) ·
(y0, y1, . . . , yq−1) so that yryr+1 and ysys+1 are pure edges (subscripts mod-
ulo q) for integers such that 0 6 r < s 6 q − 1 and r 6 q

2
. Because r 6 q

2
and

q
2
6 m−2 (note that m > p+q

2
> q+4

2
), it must be that s < m−p+1, for other-

wise we would be in Case 1. So we can repeatedly apply Lemma 2.10 to obtain
a repacking of P whose reduced leave L′ is either a (p+2, q−2)-chain in which
a (p + 2)-cycle contains no pure edges or a (p, q)-chain which can be labelled
(x′1, x

′
2, . . . , x

′
p−1, y

′
0)·(y′0, y′1, . . . , y′q−1) so that y′ry

′
r+1 and y′s′y

′
s′+1 are pure edges

for integers r′ and s′ such that 0 6 r′ < s′ 6 q−1 and s′ ∈ {m−p+1,m−p+2}
(note that m− p+ 2 6 q − 1 since p+ q −m > 3). Observe that in the latter
case L′ satisfies the conditions of Case 1.

Lemma 2.13. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, p and q be positive integers with m odd,
and m, p + q −m > 3. Suppose there exists an (M)-packing of KU∪W − KU

whose reduced leave L is a (p, q)-chain such that L contains exactly two pure
edges and the link vertex of L is in W if 3 ∈ {m, p+ q−m}. Then there exists
a repacking of P whose reduced leave is the edge-disjoint union of an m-cycle
and a (p+ q −m)-cycle.

Proof. If each cycle of L contains exactly one pure edge, then we can apply
Lemma 2.11 to complete the proof. If one cycle in L contains no pure edges
and the other contains exactly two pure edges, then we can apply Lemma 2.12
to complete the proof.

2.1.2 Packings whose leaves are s-chains

In this subsection we use Lemma 2.13 to prove an analogous result for chains
with more than two cycles, namely Lemma 2.16. Given a packing whose
reduced leave is an s-chain that contains two pure edges and satisfies certain
other properties, Lemma 2.16 allows us to find a repacking whose reduced leave
is the edge-disjoint union of two cycles of specified lengths.

Lemma 2.14. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let p and s be positive integers such that p > 5 is
odd and s > 2. Suppose there exists an (M)-packing P of KU∪W −KU whose
reduced leave L is a good s-chain that has a decomposition {P,L − P} into
two paths such that P has length p and each path contains exactly one pure
edge and has both end vertices in W . Suppose further that P has a subpath
P0 = [x0, . . . , xr] such that 2 6 r 6 p−1, x0 is an end vertex of P , P0 contains
no pure edge, and degL(xr−1) = degL(xr) = 2. Then there is a repacking of P
whose reduced leave L′ is a good s-chain that has a decomposition {P ′, L′−P ′}
into two paths such that P ′ has length p − 2, each path contains exactly one
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pure edge and has both end vertices in W , and P ′ contains a pure edge in an
end cycle of L′ with link vertex in W if P contains a pure edge in an end cycle
of L with link vertex in W .

Proof. We prove the result by induction on the length of P0. If |E(P0)| = 2,
then {P ′, L − P ′} where P ′ = [x2, . . . , xp] is a decomposition of L with the
required properties. So we can assume that |E(P0)| > 3. By induction we can
assume that P0 is the shortest subpath of P satisfying the required conditions.
Because r > 3 this implies degL(xr−2) = 4. Label the vertices in V (P ) \V (P0)
so that P = [x0, . . . , xp].

The vertices xr and xr−2 are twin in KU∪W −KU because they are joined
by a path of length 2 containing no pure edge. Let L′ be the reduced leave
of the repacking of P obtained by performing the (xr, xr−2)-switch with origin
xr−3. Note that L′ is a good s-chain irrespective of the terminus of the switch.
If the terminus of the switch is not xr+1, then {P ′, L′ − P ′} where P ′ =
[x0, x1, . . . , xr−3, xr, xr+1, . . . , xp] is a decomposition of L′ with the required
properties. If the terminus of the switch is xr+1, then {P ′, L′ − P ′} where
P ′ = [x0, x1, . . . , xr−3, xr, xr−1, xr−2, xr+1, xr+2, . . . , xp] is a decomposition of L′

into two paths such that P ′ has length p and each path contains exactly one
pure edge and has both end vertices in W . Further P ′ has the subpath P ′0 =
[x0, . . . , xr−3, xr, xr−1] and we know that x0 is an end vertex of P ′, P ′0 contains
no pure edge, and degL′(xr) = degL′(xr−1) = 2. Thus, because |E(P ′0)| = r−1,
we are finished by our inductive hypothesis.

Lemma 2.15. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m1, m2 and s be positive integers such that m1

and m2 are odd, m1,m2 > s and s > 3. Suppose there exists an (M)-packing
P of KU∪W −KU whose reduced leave is a good s-chain of size m1 + m2 that
contains exactly two pure edges. Then there exists a repacking of P whose
reduced leave is a good s-chain that has a decomposition into an m1-path and
an m2-path such that each path contains exactly one pure edge.

Proof. Suppose without loss of generality that m1 6 m2, and let L be the
reduced leave of P . Note that |E(L)| = m1 + m2. Because L is good and
contains exactly two pure edges, we can find some decomposition {P,L− P}
of L into two odd length paths each of which has both end vertices in W and
contains exactly one pure edge. Without loss of generality we can assume that
P is at least as long as L− P if m1 > s + 1 and that P contains a pure edge
in an end cycle of L with link vertex in W if m1 = s. Let p be the length of
P and note that in each case p > m1 because p > m1+m2

2
> m1 if m1 > s + 1

and p > s = m1 if m1 = s. We are finished if p = m1, so we may assume
p > m1 + 2.
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Case 1. Suppose each cycle of L contains at most two edges of P . Then
exactly p− s cycles of L contain two edges of P and the rest contain one edge
of P . Because L is good and both end vertices of P are in W , if C is a cycle
of L that contains two edges of P , then either

• C is an internal cycle of L and C contains the pure edge of P ; or

• C is an end cycle of L with link vertex in U and C contains the pure
edge of P ; or

• C is an end cycle of L with link vertex in W and C does not contain the
pure edge of P .

From this it follows that p− s 6 3. Note that p > m1 + 2 > s + 2 and hence
that p ∈ {s+ 2, s+ 3}. If p = s+ 2, then m1 = s. But then P contains a pure
edge in an end cycle of L with link vertex in W by its definition and it can be
seen that no cycle of L contains two edges of P , contradicting p = s + 2. So
it must be that p = s+ 3 and thus m1 = s+ 1 = p− 2 because m1 and p are
odd. Because p = s+ 3, P contains two edges of each end cycle of L and two
edges, including a pure edge, of some internal cycle of L. Let P ′ be the path
obtained from P by deleting both end vertices of P and their incident edges.
Then {P ′, L − P ′} is a decomposition of L into an m1-path and an m2-path
such that each path contains exactly one pure edge.
Case 2. Suppose there is a cycle C in L such that C ∩P is a path of length at
least 3. Let P0 = [x0, . . . , xr] be a subpath of P such that x0 is an end vertex
of P , P0 contains no pure edge, and P0 contains exactly two edges in C ∩P . If
C ∩P contains no pure edge or if C ∩P has length at least 4, then it is easy to
see such a subpath exists. If C∩P has length 3 and contains a pure edge, then
the facts that L is good and that the end vertices of P are in W imply that
C is an end cycle of L with link vertex in W and hence that such a subpath
exists. So we can apply Lemma 2.14 to obtain a repacking of P whose reduced
leave L′ is a good s-chain that has a decomposition {P ′, L′−P ′} into two paths
such that P ′ has length p − 2, each path contains exactly one pure edge and
has both end vertices in W , and P ′ contains a pure edge in an end cycle of L′

with link vertex in W if m1 = s. It is clear that by repeating this procedure
we will eventually obtain a repacking of P whose reduced leave either has a
decomposition into an m1-path and an m2-path such that each path contains
exactly one pure edge or has a decomposition into odd length paths which
satisfies the hypotheses for Case 1. In the former case we are finished and in
the latter we can proceed as we did in Case 1.

Lemma 2.16. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m1, m2 and s be positive integers such that
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s > 2, m1 and m2 are odd, m1,m2 > s, m1 + m2 6 2 min(|U | + 2, |W |), and
m1 + m2 6 2(|U | + 1) if 3 ∈ {m1,m2}. Suppose there exists an (M)-packing
P of KU∪W −KU whose reduced leave has size m1 +m2, contains exactly two
pure edges, is either a good s-ring or a good s-chain that, if 3 ∈ {m1,m2}, is
not a 2-chain with link vertex in U . Then there exists a repacking of P whose
reduced leave is the edge-disjoint union of an m1-cycle and an m2-cycle.

Proof. Let L be the reduced leave of P . We first show that the result holds
for s = 2. If L is a 2-chain, then the result follows by Lemma 2.13. If L is a
2-ring, then it follows from our hypotheses and Lemma 2.6 that there are twin
vertices x and y in KU∪W −KU such that degL(x) > 4 and y /∈ V (L), and such
that if 3 ∈ {m1,m2} then x ∈ U (if 3 ∈ {m1,m2}, then apply Lemma 2.6(i)
and otherwise apply Lemma 2.6(iii)). Performing an (x, y)-switch results in a
repacking of P whose reduced leave is a 2-chain whose link vertex is in W if
3 ∈ {m1,m2} and the result follows by Lemma 2.13. So it is sufficient to show,
for each integer s′ > 3, that if the result holds for s = s′ − 1 then it holds for
s = s′.

Case 1. Suppose that L is a good s′-chain. By Lemma 2.15 we can obtain a
repacking of P whose reduced leave is a good s′-chain with a decomposition
into paths of length m1 and m2 each containing exactly one pure edge. Let
[x0, x1, . . . , xm1 ] be the path of length m1. Observe that x0 and xm1 are twin in
KU∪W −KU because they are joined by an odd length path containing exactly
one pure edge, and perform the (x0, xm1)-switch with origin x1.

If the terminus of the switch is not xm1−1, then we obtain a repacking of P
whose reduced leave is the edge-disjoint union of an m1-cycle and an m2-cycle
and we are finished. If the terminus of the switch is xm1−1, then we obtain a
repacking of P whose reduced leave is a good (s′−1)-ring that contains exactly
two pure edges and the result follows by our inductive hypothesis.

Case 2. Suppose that L is a good s′-ring. Let A be a ring cycle of L such
that A contains a pure edge and if s′ is odd then A has both link vertices in
W . Let x and y be twin vertices in KU∪W −KU such that x is a link vertex in
A, x ∈ U if s′ is even, and y /∈ V (L). Such a vertex y exists by Lemma 2.6(ii)
because |E(L)| 6 2 min(|U | + 2, |W |), W contains two vertices of degree 4 in
L if s′ is odd, and U contains two vertices of degree 4 in L if s′ is even (for
then s′ > 4). By performing an (x, y)-switch with origin in V (A) we obtain a
repacking of P whose reduced leave contains exactly two pure edges, is a good
s′-chain if the terminus of the switch is also in V (A), and is a good (s′−1)-ring
otherwise. In the former case we can proceed as in Case 1 and in the latter
case the result follows by our inductive hypothesis.
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2.1.3 Proof of Lemma 2.5

In this subsection we use Lemma 2.16 to prove Lemma 2.5, which is our primary
goal in this section. Given a cycle decomposition of Kv − Ku that satisfies
certain conditions, Lemma 2.5 allows us to find a new cycle decomposition of
Kv − Ku in which some of the shorter cycle lengths have been merged into
cycles of length m.

Lemma 2.17. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m1, m2, t and k be positive integers such that
m1 and m2 are odd, m1,m2 > k + t− 1, m1 + m2 6 2 min(|U | + 2, |W |), and
m1 + m2 6 2(|U | + 1) if 3 ∈ {m1,m2}. Suppose there exists an (M)-packing
P of KU∪W −KU with a reduced leave L of size m1 +m2 such that L contains
exactly two pure edges and L has exactly k components, k − 1 of which are
cycles and one of which is a good t-chain that, if 3 ∈ {m1,m2}, is not a 2-
chain with link vertex in U . Then there exists a repacking of P whose reduced
leave is the edge-disjoint union of an m1-cycle and an m2-cycle.

Proof. By Lemma 2.16 it is sufficient to show that we can construct a repack-
ing of P whose reduced leave is a good s-chain, for some s ∈ {2, . . . , k+ t−1},
that is not a 2-chain with link vertex in U if 3 ∈ {m1,m2}. If k = 1, then we
are finished, so we can assume k > 2. By induction on k, it suffices to show
that there is a repacking of P with a reduced leave L′ such that L′ has exactly
k − 1 components, one component of L′ is a good t′-chain for t′ ∈ {t, t + 1},
each other component of L′ is a cycle, and a degree 4 vertex of L′ is in W if
3 ∈ {m1,m2}.

Let H be the component of L which is a good t-chain, and let C be a
component of L such that C is a cycle and C contains at least one pure edge
if H contains at most one pure edge. Let H1 and Ht be the end cycles of H
where H1 contains a pure edge if H does and the link vertex of H1 is in W if
t > 3.
Case 1. Suppose that either t > 3 or it is the case that t = 2, H1 contains
a pure edge, and the link vertex of H is in W . Let x and y be vertices such
that x ∈ V (Ht), x is not a link vertex of H, y ∈ V (C), x, y ∈ W if t is odd,
and x, y ∈ U if t is even. Let P ′ be a repacking of P obtained by performing
an (x, y)-switch with origin in V (Ht). The reduced leave L′ of P ′ has exactly
k − 1 components, k − 2 of which are cycles and one of which is a good t′-
chain, where t′ = t+ 1 if the terminus of the switch is also in V (Ht) and t′ = t
otherwise. Further, a degree 4 vertex of L′ is in W if 3 ∈ {m1,m2}. So we are
finished by induction.
Case 2. Suppose that t = 2 and either H contains exactly one pure edge and
has its link vertex in U or H contains no pure edges. Then C contains a pure
edge. Let w and x be vertices such that w ∈ V (C)∩W , x ∈ V (H1)∩U , and x
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is not the link vertex of H. Let P ′ be a repacking of P obtained by performing
a (w, x)-switch with origin in V (H1) and let L′ be the reduced leave of P ′.
If the terminus of this switch is in C, then L′ has exactly k − 1 components,
k − 2 of which are cycles and one of which is a 2-chain, and the link vertex of
this chain is in W if 3 ∈ {m1,m2}. In this case we are finished by induction.
Otherwise the terminus of this switch is in V (H1) and L′ has exactly k − 1
components, k− 2 of which are cycles and one of which is a 3-chain H ′ one of
whose end cycles contains a pure edge and has its link vertex in W . If H ′ is
good, then we are done. Otherwise, it must be that both link vertices of H ′

are in W . In this latter case we proceed as follows.
Let H ′1 and H ′3 be the end cycles of H ′ such that H ′1 has a pure edge. Let

y, z ∈ W be vertices such that y is the link vertex in V (H ′3) and z /∈ V (L′)
(note that z exists by Lemma 2.6(ii) because m1 + m2 6 2 min(|U | + 2, |W |)
and both link vertices of H ′ are in W ). Let P ′′ be a repacking of P obtained
from P ′ by performing a (y, z)-switch with origin in V (H ′3) and let L′′ be the
reduced leave of P ′′. If the terminus of this switch is not in V (H ′3), then L′′ has
exactly k−1 components, k−2 of which are cycles and one of which is a 2-chain
whose link vertex is in W . In this case we are finished by induction. Otherwise,
the terminus of this switch is in V (H ′3) and L′′ has exactly k components, k−1
of which are cycles and one of which is a 2-chain that contains a pure edge and
has its link vertex in W . In this case we can proceed as we did in Case 1.
Case 3. Suppose that t = 2, H contains two pure edges and the link vertex
of H is in U . Note that, from our hypotheses, m1,m2 > 4. Let x be the link
vertex of H and let y be a vertex in V (C) ∩ U . Let P ′ be a repacking of P
obtained by performing an (x, y)-switch with origin in V (H2) and let L′ be
the reduced leave of P ′. If the terminus of this switch is in V (C), then L′

has exactly k − 1 components, k − 2 of which are cycles and one of which is a
2-chain. In this case we are finished by induction. Otherwise the terminus of
this switch is in V (H2) and L′ has exactly k components, k − 1 of which are
cycles and one of which is a 2-chain that contains at most one pure edge and
has its link vertex in U . In this case we can proceed as we did in Case 2.

Lemma 2.18. Let U and W be disjoint sets with |U | odd and |W | even. If L
is a subgraph of KU∪W −KU such that L contains at most two pure edges, L
has one vertex of degree 4, and each other vertex of L has degree 2, then L has

at most
⌊
|E(L)|−6

4

⌋
+ 1 components.

Proof. Because each vertex of L has even degree, L has a decomposition D
into cycles. Since there are at most two pure edges in L, at most two cycles
in D have length 3 and each other cycle in D has length at least 4. Thus

|E(L)| > 4(|D| − 2) + 6 which implies |D| 6
⌊
|E(L)|−6

4

⌋
+ 2. At least one

component of L contains a vertex of degree 4 and hence contains at least two
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cycles and each other component of L contains at least one cycle. The result
follows.

Lemma 2.19. Let U and W be disjoint sets with |U | odd and |W | even, and let
M be a list of integers. Suppose there exists an (M)-packing P0 of KU∪W −KU

with a reduced leave L0 such that |E(L0)| 6 2 min(|U |+2, |W |), L0 has exactly
two pure edges, and L0 has at least one vertex of degree at least 4. Then there
exists a repacking P? of P0 with a reduced leave L? such that exactly one vertex
of L? has degree 4 and every other vertex of L? has degree 2.

Proof. Let d = 1
2

∑
x∈V (L0)

(degL0
(x)−2), and construct a sequence of packings

P0,P1, . . . ,Pd−1, where for i ∈ {0, . . . , d−2} Pi+1 is a repacking of Pi obtained
from Pi by performing an (xi, yi)-switch where xi and yi are twin vertices in
KU∪W −KU such that the degree of xi in the reduced leave of Pi is at least 4
and yi is not in the reduced leave of Pi. Such vertices exist by Lemma 2.6(iii)
since |E(L0)| 6 2 min(|U | + 2, |W |) and i 6 d − 2. Exactly one vertex of the
reduced leave of Pd−1 has degree 4 and all its other vertices have degree 2.

We now prove the main result of this section.

Proof of Lemma 2.5. Let L be the reduced leave of P . It obviously suffices
to find a repacking of P whose reduced leave is the edge-disjoint union of two
m-cycles.

We prove the result by induction on s + t. If s = 1 and t = 1, then the
result is trivial. So suppose that s+ t > 3. Assume without loss of generality
that s > t and note that s > 2.
Case 1. Suppose that some vertex of L has degree at least 4. Then by Lemma
2.19, there is a repacking P ′ of P with a reduced leave L′ such that exactly
one vertex of L′ has degree 4 and every other vertex of L′ has degree 2. So
one component of L′ is a 2-chain, and any other component of L′ is a cycle.
Furthermore L′ contains at most b2m−6

4
c+ 1 components by Lemma 2.18 and

obviously m > b2m−6
4
c + 2. Thus, applying Lemma 2.17 with m1 = m2 = m

to P ′, there is a repacking of P whose reduced leave is the edge-disjoint union
of two m-cycles.
Case 2. Suppose that every vertex of L has degree 2. Then the components
of L are cycles of lengths a1, . . . , as, b1, . . . , bt. Let x and y be vertices in W
such that x and y are in two distinct cycles of L which have lengths a1 and
a2 respectively. Let P ′ be a repacking of P obtained by performing an (x, y)-
switch and let L′ be the reduced leave of P ′. If the origin and terminus of
this switch are in the same cycle, then one vertex of L′ has degree 4 and every
other vertex of L′ has degree 2, and we can proceed as we did in Case 1. If
the origin and terminus of this switch are in different cycles, then L′ is the
edge-disjoint union of cycles of lengths a1 + a2, a3, . . . , as, b1, . . . , bt (lengths
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a1 + a2, b1, . . . , bt if s = 2) and we can complete the proof by applying our
inductive hypothesis.

2.2 Base decompositions

Our goal in this section is to prove Lemmas 2.23 and 2.24 which provide the
‘base’ decompositions of Kv −Ku into short cycles and m-cycles to which we
apply Lemma 2.5 in order to prove Theorem 2.2. Lemma 2.23 is used in the
case where m > 11 and Lemma 2.24 is used when m = 9. We first require
two preliminary results. Lemma 2.20 is a method for decomposing certain
graphs into 3-cycles and 5-cycles, and Theorem 2.22 is an existing result on
decomposing the complete bipartite graph into cycles.

We require some additional notation. For a positive integer v, let Kc
v denote

a graph of order v with no edges and, for a set V , let Kc
V denote the graph

with vertex set V and no edges. For technical reasons we shall consider a
0-cycle to be a trivial graph with no vertices or edges. Because we can add
any number of 0-cycles to a packing without altering its leave, we shall not
distinguish between packings that differ only in their number of 0-cycles nor
between lists that differ only in their number of 0s. For a nonnegative integer
i, let xi denote a list containing i entries all equal to x.

For each even integer ` > 4 we define a list R` as follows

R` =

{
4`/4 if ` ≡ 0 (mod 4);
4(`−6)/4, 6 if ` ≡ 2 (mod 4).

We also define R0 to be the empty list. Given a list R` and a positive integer
i we define Ri

` to be the list obtained by concatenating i copies of R`.

Lemma 2.20. Let a and k be nonnegative integers such that k > 3, a 6 k
and a is even. Let C be a cycle of length k, and let N be a vertex set of size
k− a such that V (C)∩N = ∅. Then there exists a (3a, 5k−a)-decomposition of
Kc

2 ∨ (C ∪Kc
N) such that each cycle in the decomposition contains exactly one

edge of C.

Proof. Let U ′ = {y, z}, C = (c1, c2, . . . , ck), and N = {x1, x2, . . . , xk−a}. Let

D1 ={(y, ck, c1), (z, c1, c2), (y, c2, c3), (z, c3, c4), . . . , (y, ca−2, ca−1), (z, ca−1, ca)};
and

D2 ={(y, ca, ca+1, z, x1), (y, ca+1, ca+2, z, x2), . . . , (y, ck−2, ck−1, z, xk−a−1),

(y, ck−1, ck, z, xk−a)};
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where D1 is understood to be empty and c0 = ck if a = 0, and D2 is understood
to be empty if a = k. Then D1 ∪ D2 is a decomposition with the required
properties.

Theorem 2.22 below is slightly stronger than Theorem 1.21 (see [64]) but
is easily proved using the following lemma which is Lemma 3.6 of the same
paper.

Lemma 2.21 ([64]). Let M be a list of integers and let a, b, h, n and n′ be
positive integers such that a 6 b, n + n′ 6 3h, n + n′ + h 6 2a + 2 if a < b,
and n + n′ + h 6 2a if a = b. If there exists an (M,h, n, n′)-decomposition of
Ka,b, then there exists an (M,h, n+ n′)-decomposition of Ka,b.

Theorem 2.22. Let a and b be positive integers such that a and b are even
and a 6 b, and let m1,m2, . . . ,mτ be even integers such that 4 6 m1 6 m2 6
. . . 6 mτ . If

(B1) mτ 6 3mτ−1;

(B2) mτ−1 +mτ 6 2a+ 2 if a < b and mτ−1 +mτ 6 2a if a = b; and

(B3) m1 +m2 + · · ·+mτ = ab;

then there exists an (m1,m2, . . . ,mτ )-decomposition of Ka,b.

Proof. Suppose for a contradiction that there exists a nondecreasing list of
integers that satisfies the hypotheses of the theorem but for which there is
no corresponding decomposition of Ka,b, and amongst all such lists let Z =
z1, . . . , zτ be one with a maximum number of entries.

It follows from Theorem 1.20 that zτ > 8. Let Z? be the list z1, z2, . . . , zτ−1,
4, zτ − 4 reordered so as to be nondecreasing. Since Z satisfies the conditions
of the claim, so must Z?, and since Z? has more entries than Z, there exists
a (Z?)-decomposition of Ka,b. However, by applying Lemma 2.21 with n = 4,
n′ = zτ − 4 and h = zτ−1 we obtain a (Z)-decomposition of Ka,b which is a
contradiction.

We now prove the existence of the required base decompositions for odd
m > 11.

Lemma 2.23. Let u, v and m be odd integers such that m > 11, (u, v) is m-
admissible, v−u > m+1, u > m if m ∈ {11, 13, 15}, and u > m−2 if m > 17.
Let k, t and x be the nonnegative integers such that u(v − u) = (m− 1)k + t,
t < m− 1 and m(k + x) =

(
v
2

)
−
(
u
2

)
. Then, for some h ∈ {4, 6, . . . ,m− 7} ∪

{m− 3}, there exists an (mx, 3k, h,Rk−1
m−3,R1

m−h−3)-decomposition of Kv −Ku

in which each cycle of length less than m contains at most one pure edge.
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Proof. Observe that k is the maximum number of pairwise edge-disjoint m-
cycles in Kv −Ku that each contain exactly one pure edge. Also note that t is
even so t 6 m− 3. Let w = v − u, note that w is even, and let p and q be the
nonnegative integers such that k = w(p+ 1

2
) + q and q < w. We will make use

of the following facts throughout this proof.

uw = (w(p+ 1
2
) + q)(m− 1) + t (2.2.1)

2(u− 2p) >

{
4
3
m+ 22

3
if p = 0

4
3
m+ 34

3
if p > 1

(2.2.2)

Note that (2.2.1) follows directly from the definitions of k, t, p and q. To
see that (2.2.2) holds, observe that when p = 0 and m ∈ {11, 13, 15} we have
2(u − 2p) = 2u > 2m, which implies 2(u − 2p) > 4

3
m + 22

3
since m > 11.

When p = 0 and m > 17 we have 2(u − 2p) = 2u > 2m − 4, which implies
2(u−2p) > 4

3
m+ 22

3
since m > 17. Also, (2.2.1) implies uw > w(p+ 1

2
)(m−1)

and so u > (p + 1
2
)(m − 1). Thus 2(u − 2p) > 2p(m − 3) + m − 1. So when

p > 1 we have 2(u − 2p) > 3m − 7, which implies 2(u − 2p) > 4
3
m + 34

3
since

m > 11.
Let U = {y1, y2, . . . , yu} and W = {z1, z2, . . . , zw} be disjoint sets of ver-

tices. We will construct a decomposition of KU∪W − KU with the desired
properties. Let I be a 1-factor with vertex set W . The proof divides into two
cases depending on whether t = 0 or t > 0.
Case 1. Suppose that t > 0. Then q > 0, for otherwise (2.2.1) implies
w(u− (p+ 1

2
)(m− 1)) = t > 0 which contradicts the facts that w > m > t and

u− (p+ 1
2
)(m− 1) is an integer.

Depending on the value of q, we define integers p′, q′ and q′′ so that
w(p′ + 1

2
) + q′ + q′′ = k according to the following table.

case p′ q′ q′′

q ∈ {1, 2, 3, 4} p− 1 w q
q ∈ {5, 7, . . . , w − 1} p q − 1 1
q ∈ {6, 8, . . . , w − 2} p q − 2 2

We show that p′ > 0 by establishing that it cannot be the case that both
p = 0 and q ∈ {1, 2, 3, 4}. If p = 0 and q ∈ {1, 2, 3, 4}, then (2.2.1) implies
uw 6 (m − 1)(w

2
+ 4) + (m − 3) and hence w(u − m−1

2
) 6 5m − 7. Because

u > m if m ∈ {11, 13, 15} and u > m− 2 if m > 17, we have that u− m−1
2

> 6
and we obtain a contradiction by noting that w > m.

We define h to be the smallest integer in {4, 6, . . . ,m− 7} ∪ {m− 3} such
that h > 2q′′+t

3
. Using the facts that q′′ ∈ {1, 2, 3, 4} and t 6 m−3 it is routine

to check that if 2q′′+t
3

> m − 7, then m = 11, q′′ ∈ {3, 4} and h = 8. Thus h

is well-defined and, if it is not the case that 2q′′+t
3

6 h 6 2q′′+t+5
3

, then either



CHAPTER 2. UNIFORM LENGTH CYCLES 39

2q′′ + t 6 6 and h = 4 or m = 11, q′′ ∈ {3, 4} and h = 8. We claim that

2q′′ + t+ h 6

{
4
3
m+ 28

3
if p′ = p− 1;

4
3
m+ 3 if p′ = p.

(2.2.3)

To see that this is the case note that if 2q′′ + t 6 6 and h = 4 or if m = 11,
q′′ ∈ {3, 4} and h = 8, then (2.2.3) holds (recall that t 6 m− 3 and m > 11).
Otherwise, 2q′′+ t+h 6 4

3
(2q′′+ t)+ 5

3
and hence 2q′′+ t+h 6 4

3
m+ 1

3
(8q′′−7)

using t 6 m − 3. Because q′′ 6 2 if p′ = p and q′′ 6 4 if p′ = p − 1, (2.2.3)
holds.

We will complete the proof by constructing an (mx, 3k, h,Rk−1
m−3,R1

m−h−3)-
decomposition of KU∪W−KU in which each cycle of length less than m contains
at most one pure edge. We will construct this decomposition in such a way that
the pure edges in the 3-cycles of the decomposition form p′ w-cycles, a 1-factor
with w vertices, a q′-cycle, and a q′′-path (recall that p′w+w/2 + q′+ q′′ = k).
Our required decomposition can be obtained as

(D1 \ {H1, . . . , Hp, C
′, C ′′}) ∪ (D2 \ {C†}) ∪ D3 ∪ D4 ∪ D5

where D1,D2,D3,D4,D5 are given as follows.

• D1 is a (wp
′
,mx−1, q′,m + q′′ − t)-decomposition of KW − I, that in-

cludes p′ w-cycles H1, . . . , Hp′ , a q′-cycle C ′, and an (m+q′′− t)-cycle C ′′

containing the path [z1, z2, . . . , zq′′+1] and not containing the t
2
− 1 ver-

tices zq′′+2, zq′′+3, . . . , zq′′+ t
2
. A (wp

′
,mx−1, q′,m + q′′ − t)-decomposition

of KW − I exists by Theorem 1.4 because mx + p′w + q′ + q′′ − t =
mx+k−t−w

2
=
(
w
2

)
−w

2
(note that the definitions of k, t and x imply that(

w
2

)
= mx+ k − t). We can relabel the vertices of this decomposition to

ensure that C ′′ has the specified properties because (m+q′′−t)+( t
2
−1) =

m− t
2

+ q′′ − 1 6 w. (If m− t
2

+ q′′ − 1 > w + 1, then t > 2, q′′ 6 4 and
w > m+ 1 imply (t, q′′, w) = (2, 4,m+ 1) and hence q = 4. However, in
this case (2.2.1) implies that u(m+ 1) = (m+ 1)(m− 1)(p+ 1

2
) + 4m− 2

and hence that (m+ 1) divides 4m− 2. This contradicts m > 11.)

• D2 is a (2q′′ + t, h,Rk−1
m−3,R1

m−h−3)-decomposition of K{y1,...,yu−2p′−1},W −
KU ′,V (C′) including the (2q′′+t)-cycle C† = (y1, z1, y2, z2, . . . , yq′′+ t

2
, zq′′+ t

2
),

where U ′ = {yu−2p′−2, yu−2p′−1}.
We formD2 by first decomposing the complete bipartite graphKU ′,W\V (C′)

into w−q′
2

4-cycles (if q′ < w) and then decomposing K{y1,y2,...,yu−2p′−3},W

into cycles of the remaining lengths. Note that Rk−1
m−3 contains at least

k−1 4s since m > 11, and also that k−1 = w(p+ 1
2
)+q−1 > w

2
+q−1 >

w−q′
2

.
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A decomposition of K{y1,y2,...,yu−2p′−3},W into cycles of the remaining
lengths exists by Theorem 2.22. Let mτ and mτ−1 be respectively the
greatest and second greatest of the remaining cycle lengths. To see that
(B1), (B2) and (B3) hold, we first suppose that (mτ ,mτ−1) = (2q′′+t, h).
It follows from the definition of h that 2q′′+ t 6 3h and hence that (B1)
holds. If u − 2p′ − 3 > w, then (B2) holds because, using m > 11 and
(2.2.3), we have

2w > 2(m+ 1) > 4
3
m+ 28

3
> 2q′′ + t+ h.

If u− 2p′− 3 < w and p′ = p, then (B2) holds because, using (2.2.2) and
(2.2.3), we have

2(u−2p′−3)+2 = 2(u−2p)−4 > (4
3
m+ 22

3
)−4 > 4

3
m+3 > 2q′′+ t+h.

If u − 2p′ − 3 < w and p′ = p − 1, then p > 1 and (B2) holds because,
using (2.2.2) and (2.2.3), we have

2(u− 2p′ − 3) + 2 = 2(u− 2p) > 4
3
m+ 34

3
> 4

3
m+ 28

3
> 2q′′ + t+ h.

Finally, (B3) holds because, using the definitions of t, k, p and q, and
the fact that q′ + q′′ − q = w(p− p′), we have

(k − 1)(m− 3) + (m− h− 3) + h+ (2q′′ + t)− 4w−q
′

2

= k(m− 3) + t− 2w + 2(q′ + q′′)

= (uw − 2k)− 2w + 2(q′ + q′′)

= (u− 2p− 3)w + 2(q′ + q′′ − q)
= (u− 2p′ − 3)w.

Now suppose that (mτ ,mτ−1) 6= (2q′′ + t, h). Then it must be that
mτ 6 12 and mτ−1 ∈ {4, 6}. Clearly (B1) holds. Also, mτ +mτ−1 6 18.
So if w 6 u− 2p′ − 3 then (B2) holds because 2w > 2(m+ 1) > 24, and
if w > u−2p′−3 then (B2) holds by (2.2.2) since 2(u−2p′−3) + 2 > 18
(note that p′ 6 p and m > 11). Finally, (B3) holds by the argument
above. We can relabel the vertices of this decomposition to ensure that
C† = (y1, z1, y2, z2, . . . , yq′′+ t

2
, zq′′+ t

2
).

• D3 is a (3q
′
)-decomposition of Kc

{yu−2p′−2,yu−2p′−1}
∨ C ′ which exists by

Lemma 2.20.

• D4 is a (3p
′w+w/2)-decomposition of Kc

{yu−2p′ ,...,yu}
∨ (I ∪ H1 ∪ · · · ∪ Hp′)

which exists by applying Lemma 2.20 to Kc
{yu−2p′−1+i,yu−p′−1+i}

∨ Hi for
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i ∈ {1, 2, . . . , p′} and taking the obvious decomposition of K{yu} ∨ I.

• D5 is the (3q
′′
,m)-decomposition of C ′′ ∪ C† given by

{(z1, y2, z2), (z2, y3, z3), . . . , (zq′′ , yq′′+1, zq′′+1)} ∪
{(C ′′−[z1, z2, . . . , zq′′+1])∪[zq′′+1, yq′′+2, zq′′+2, yq′′+3, . . . , yq′′+ t

2
, zq′′+ t

2
, y1, z1]}.

Case 2. Suppose that t = 0. Then (2.2.1) reduces to uw = (w(p+ 1
2
)+q)(m−

1). Note that q 6= 1, since if q = 1 then uw = w(p+ 1
2
)(m− 1) +m− 1 and so

w divides m − 1 which contradicts w > m + 1. Depending on the value of q,
we define integers p′, q′ and q′′ so that w(p′+ 1

2
) + q′+ q′′ = k according to the

following table.

case p′ q′ q′′

q ∈ {0, 3, 5} p− 1 w q
q = 2 p− 1 w − 2 4
q ∈ {4, 6, . . . , w − 2} p q 0
q ∈ {7, 9, . . . , w − 1} p q − 3 3

We show that p′ > 0 by establishing that it cannot be the case that both
p = 0 and q ∈ {0, 2, 3, 5}. If p = 0 and q ∈ {0, 2, 3, 5}, then (2.2.1) implies
uw 6 (m − 1)(w

2
+ 5) and hence w(u − m−1

2
) 6 5m − 5. Because u > m if

m ∈ {11, 13, 15} and u > m− 2 if m > 17, we have that u− m−1
2

> 6 and we
obtain a contradiction by noting that w > m.

We will complete the proof by constructing an (mx, 3k,Rk
m−3)-decomposition

of KU∪W −KU in which each cycle of length less than m contains at most one
pure edge. We will construct this decomposition in such a way that the pure
edges in the 3-cycles of the decomposition form p′ w-cycles, a 1-factor with w
vertices, a q′-cycle, and a q′′-cycle if q′′ 6= 0 (recall that p′w+w/2+q′+q′′ = k).
The desired decomposition can be obtained as

(D1 \ S1) ∪ (D2 \ S2) ∪ D3 ∪ D4 ∪ D5

where (S1, S2) = ({H1, H2, . . . , Hp′ , C
′, C ′′}, {C†}) if q′′ 6= 0, (S1, S2) =

({H1, H2, . . . , Hp′ , C
′}, ∅) if q′′ = 0, and D1,D2,D3,D4,D5 are given as follows.

• D1 is an (mx, wp
′
, q′, q′′)-decomposition of KW − I that includes p′ w-

cycles H1, . . . , Hp′ , a q′-cycle C ′ and, if q′′ 6= 0, the q′′-cycle C ′′ =
(z1, z2, . . . , zq′′). An (mx, wp

′
, q′, q′′)-decomposition of KW − I exists by

Theorem 1.4 because mx+p′w+q′+q′′ = mx+k−w
2

=
(
w
2

)
−w

2
(note that

the definitions of k, t and x imply that
(
w
2

)
= mx+k−t). We can relabel

the vertices of this decomposition to ensure that C ′′ = (z1, z2, . . . , zq′′).
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• D2 is a (2q′′, 3k,Rk
m−3)-decomposition of K{y1,y2,...,yu−2p′−1},W −KU ′,V (C′)

that includes the (2q′′)-cycle C† = (y1, z1, y2, z2, . . . , yq′′ , zq′′) if q′′ 6= 0,
where U ′ = {yu−2p′−2, yu−2p′−1}.

We form D2 by first decomposing KU ′,W\V (C′) into w−q′
2

4-cycles (if q′ <
w) and then decomposing K{y1,y2,...,yu−2p′−3},W into cycles of the remaining

lengths. Note that Rk
m−3 contains at least k 4s since m > 11, and also

that k = w(p+ 1
2
) + q > w

2
+ q > w−q′

2
.

A decomposition of K{y1,y2,...,yu−2p′−3},W into cycles of the remaining
lengths exists by Theorem 2.22. Let mτ and mτ−1 be respectively
the greatest and second greatest of the remaining cycle lengths. Note
that mτ 6 max(2q′′, 6) 6 10 and mτ−1 ∈ {4, 6}. Clearly (B1) holds.
If w 6 u − 2p′ − 3, then (B2) holds because mτ−1 + mτ 6 16 and
2w > 2(m + 1) > 24. If w > u − 2p′ − 3, then (B2) holds because
mτ−1 + mτ 6 16 and (2.2.2) implies that 2(u − 2p′ − 3) + 2 > 18 (note
that p′ 6 p and m > 11). Finally, (B3) holds by a similar argument to
that used in Case 1. We can relabel the vertices of this decomposition
to ensure that C† = (y1, z1, y2, z2, . . . , yq′′ , zq′′) if q′′ 6= 0.

• D3 is a (3q
′
)-decomposition of Kc

{yu−2p′−2,yu−2p′−1}
∨ C ′ which exists by

Lemma 2.20.

• D4 is a (3p
′w+w/2)-decomposition of Kc

{yu−2p′ ,...,yu}
∨ (I ∪ H1 ∪ · · · ∪ Hp′)

which exists by applying Lemma 2.20 to Kc
{yu−2p′−1+i,yu−p′−1+i}

∨ Hi for

i ∈ {1, 2, . . . , p′} and taking the obvious decomposition of K{yu} ∨ I.

• D5 is the (3q
′′
)-decomposition of C ′′ ∪ C† given by

{(z1, y2, z2), (z2, y3, z3), . . . , (zq′′−1, yq′′ , zq′′), (zq′′ , y1, z1)}

if q′′ 6= 0, and D5 = ∅ if q′′ = 0.

Lemma 2.24. Let u and v be positive integers such that (u, v) is 9-admissible,
v − u > 10 and u > 9. Let k, t and x be the nonnegative integers such that
u(v−u) = 8k+ t, t < 8 and 9(x+k) =

(
v
2

)
−
(
u
2

)
. Then, for some nonnegative

integer k′ 6 k, there exists a (3k−k
′
, 4k

′
, 5k

′
, 6k−k

′
, 9x)-decomposition of Kv−Ku

in which each cycle of length less than 9 contains at most one pure edge.

Proof. Observe that k is the maximum number of pairwise edge-disjoint 9-
cycles in Kv −Ku that each contain exactly one pure edge. Also note that t is
even and so t 6 6. Let w = v − u, note that w is even, and let p and q be the
nonnegative integers such that k = (p+ 1)w

2
+ q and q < w

2
. We will make use
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of the following fact, which follows directly from the definitions of k, t, p and
q, throughout this proof.

uw = 8((p+ 1)w
2

+ q) + t (2.2.4)

Note that p > 1, for otherwise uw 6 4w + 8q + t 6 4w + 8(w
2
− 1) + 6 < 8w

which contradicts u > 9. Also note that u > 4p + 5, because u is odd and
(2.2.4) implies uw > 4(p+ 1)w. From this, we can see that

u− 2p− 3 > 2p+ 2 > 4. (2.2.5)

Let U = {y1, y2, . . . , yu} and W = {z1, z2, . . . , zw} be disjoint sets of ver-
tices. We will construct a decomposition of KU∪W − KU with the desired
properties. Let I be a 1-factor with vertex set W . The proof divides into two
cases depending on whether t = 0 or t > 0.
Case 1. Suppose that t > 0. Then q > 0, for otherwise (2.2.4) implies
w(u − 4p − 4) = t > 0 which contradicts the facts that w > 10 > t and
u− 4p− 4 is an integer. Depending on the value of q, we define integers p′, q′3,
q′5 and q′′ so that (p′+ 1)w

2
+ q′3 + q′5 + q′′ = k according to the following table.

case p′ q′3 q′5 q′′

q ∈ {1, 2, 3} p− 1 2q − 2 w
2

+ 1− q 1
q ∈ {4, . . . , w

2
− 1} p 0 q − 1 1

We will complete the proof by constructing a (3w/2+q
′
3+q

′′
, 4p

′w/2+q′5 , 5p
′w/2+q′5 ,

6w/2+q
′
3+q

′′
, 9x)-decomposition of KU∪W −KU in which each cycle of length less

than 9 contains at most one pure edge. We will construct this decomposition
in such a way that the pure edges in the 3-cycles and 5-cycles of the decom-
position form p′ w

2
-cycles, a 1-factor with w vertices, a (q′3 + q′5)-cycle, and a

q′′-path (recall that (p′ + 1)w
2

+ q′3 + q′5 + q′′ = k). The desired decomposition
can be obtained as

(D1 \ {H1, H2, . . . , Hp′ , C
′, C ′′}) ∪ (D2 \ {C†}) ∪ D3 ∪ D4 ∪ D5

where D1, D2, D3, D4 and D5 are given as follows.

• D1 is a (9x−1, (w
2
)p
′
, q′3 + q′5, 9 + q′′ − t)-decomposition of KW − I that

includes p′ (w
2
)-cycles H1, H2, . . . , Hp′ , a (q′3+q′5)-cycle C ′, and a (9+q′′−

t)-cycle C ′′ containing the edge z1z2 and not containing the t
2
−1 vertices

z3, z4, . . . , z t
2
+1 if t > 2. A (9x−1, (w

2
)p
′
, q′3 + q′5, 9 + q′′ − t)-decomposition

of KW − I exists by Theorem 1.4 because 9(x − 1) + p′w
2

+ q′3 + q′5 +
9 + q′′ − t = 9x + k − t − w

2
=
(
w
2

)
− w

2
(note that the definitions of k,

t and x imply that
(
w
2

)
= 9x + k − t). We can relabel the vertices of
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this decomposition to ensure that C ′′ has the specified properties because
(9 + q′′ − t) + ( t

2
− 1) = 9− t

2
< 10 6 w.

• D2 is a (4p
′w/2+q′5 , 6w/2+q

′
3+q

′′
, t+2q′′)-decomposition of K{y1,...,yu−2p′−1},W−

K{yu−2p′−2,yu−2p′−1},V (C′)∪Q, where Q is a subset of W \ V (C ′) of size q′5,

that includes the (t+2q′′)-cycle C† = (y1, z1, y2, z2, . . . , y t
2
+1, z t

2
+1). Note

that |W \V (C ′)| = w− q′3− q′5 > q′5 follows from our choice of q′3 and q′5.

We form D2 by first decomposing K{yu−2p′−2,yu−2p′−1},W\(V (C′)∪Q) into
w−q′3−2q′5

2
4-cycles and then decomposing K{y1,y2,...,yu−2p′−3},W into cycles

of the remaining lengths. Note that we desire p′w
2

+q′5 4-cycles in D2 and

that p′w
2

+ q′5 > w−q′3−2q′5
2

follows from our choice of p′, q′3 and q′5 (recall
that p > 1).

A decomposition of K{y1,y2,...,yu−2p′−3},W into cycles of the remaining
lengths exists by Theorem 1.20 because t + 2q′′ ∈ {4, 6, 8}. To see that
the conditions of Theorem 1.20 hold, note that u−2p′−3 > u−2p−3 > 4
using (2.2.5), that w > 10, and that

4(p′w
2

+ q′5 −
w−q′3−2q′5

2
) + 6(w

2
+ q′3 + q′′) + (t+ 2q′′)

= 8((p′ + 1)w
2

+ q′3 + q′5 + q′′) + t− (2p′ + 3)w

= uw − (2p′ + 3)w

= (u− 2p′ − 3)w.

We can relabel the vertices of this decomposition to ensure that C† =
(y1, z1, y2, z2, . . . , y t

2
+1, z t

2
+1).

• D3 is a (3q
′
3 , 5q

′
5)-decomposition of Kc

{yu−2p′−2,yu−2p′−1}
∨ (C ′ ∪Kc

Q) which

exists by Lemma 2.20.

• D4 is a (3w/2, 5p
′w/2)-decomposition of K{yu−2p′ ,...,yu},W ∪ I ∪ H1 ∪ · · · ∪

Hp′ which exists by applying Lemma 2.20 (with a = 0 and n = w
2
) to

Kc
{yu−2p′−1+i,yu−p′−1+i}

∨ (Hi ∪ Kc
W\V (Hi)

) for i ∈ {1, 2, . . . , p′} and taking

the obvious decomposition of K{yu} ∨ I.

• D5 is the following (3q
′′
, 91)-decomposition of C ′′∪C† (recall that q′′ = 1).

{(z1, y2, z2)} ∪ {(C ′′ − [z1, z2]) ∪ [z2, y3, z3, y4, . . . , y t
2
+1, z t

2
+1, y1, z1]}

Case 2. Suppose that t = 0. Then (2.2.4) reduces to uw = 8((p + 1)w
2

+ q).
Depending on the value of q, we define integers p′, q′ and q′′ so that (p′+1)w

2
+

q′ + q′′ = k according to the following table.
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case p′ q′ q′′

q = 0 p− 1 w
2

0
q ∈ {1, 2} p− 1 w

2
− 3 + q 3

q ∈ {3, 4, . . . , w
2
− 1} p q 0

We will complete the proof by constructing a (3w/2+q
′′
, 4p

′w/2+q′ , 5p
′w/2+q′ ,

6w/2+q
′′
, 9x)-decomposition of KU∪W − KU in which each cycle of length less

than 9 contains at most one pure edge. We will construct this decomposition in
such a way that the pure edges in the 3-cycles and 5-cycles of the decomposition
form p′ w

2
-cycles, a 1-factor with w vertices, a q′-cycle, and a q′′-cycle if q′′ 6= 0

(recall that (p′+1)w
2

+q′+q′′ = k). The desired decomposition can be obtained
as

(D1 \ S1) ∪ (D2 \ S2) ∪ D3 ∪ D4 ∪ D5

where (S1, S2) = ({H1, H2, . . . , Hp′ , C
′, C ′′}, {C†}) if q′′ 6= 0, (S1, S2) =

({H1, H2, . . . , Hp′ , C
′}, ∅) if q′′ = 0, and D1, D2, D3, D4 and D5 are given

as follows.

• D1 is a (9x, (w
2
)p
′
, q′, q′′)-decomposition of KW − I that includes p′ (w

2
)-

cycles H1, H2, . . . , Hp′ , a q′-cycle C ′ and a q′′-cycle C ′′ = (z1, z2, . . . , zq′′)
if q′′ 6= 0. A (9x, (w

2
)p
′
, q′, q′′)-decomposition of KW−I exists by Theorem

1.4 because 9x + p′w
2

+ q′ + q′′ = 9x + k − w
2

=
(
w
2

)
− w

2
(note that the

definitions of k, t and x imply that
(
w
2

)
= 9x + k − t). We can relabel

the vertices of this decomposition to ensure that C ′′ = (z1, z2, . . . , zq′′) if
q′′ 6= 0.

• D2 is a (4p
′w/2+q′ , 6w/2+q

′′
, 2q′′)-decomposition of K{y1,y2,...,yu−2p′−1},W −

K{yu−2p′−2,yu−2p′−1},V (C′)∪Q, where Q is a subset of W \ V (C ′) of size q′,

that includes the (2q′′)-cycle C† = (y1, z1, y2, z2, . . . , yq′′ , zq′′) if q′′ 6= 0.
Note that |W \ V (C ′)| = w − q′ > q′ follows from our choice of q′.

We formD2 by first decomposingK{yu−2p′−2,yu−2p′−1},W\(V (C′)∪Q) into w
2
−q′

4-cycles (if q′ < w
2
) and then decomposing K{y1,y2,...,yu−2p′−3},W into cycles

of the remaining lengths. Note that we desire p′w
2

+ q′ 4-cycles in D2 and
that p′w

2
+ q′ > w

2
− q′ follows from our choice of p′, q′ and q′′ (recall that

p > 1 and w > 10).

A decomposition of K{y1,y2,...,yu−2p′−3},W into cycles of the remaining
lengths exists by Theorem 1.20 because 2q′′ ∈ {0, 6}. The conditions
of Theorem 1.20 can be shown to hold by a similar argument to that
used in Case 1. We can relabel the vertices of this decomposition to
ensure that C† = (y1, z1, y2, z2, . . . , yq′′ , zq′′) if q′′ 6= 0.

• D3 is a (5q
′
)-decomposition of Kc

{yu−2p′−2,yu−2p′−1}
∨ (C ′∪Kc

Q) which exists
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by Lemma 2.20.

• D4 is a (3w/2, 5p
′w/2)-decomposition of K{yu−2p′ ,...,yu},W ∪ I ∪ H1 ∪ · · · ∪

Hp′ which exists by applying Lemma 2.20 (with a = 0 and n = w
2
) to

Kc
{yu−2p′−1+i,yu−p′−1+i}

∨ (Hi ∪ Kc
W\V (Hi)

) for i ∈ {1, 2, . . . , p′} and taking

the obvious decomposition of K{yu} ∨ I.

• D5 is the (3q
′′
)-decomposition of C ′′ ∪ C† given by

{(z1, y2, z2), (z2, y3, z3), . . . , (zq′′−1, yq′′ , zq′′), (zq′′ , y1, z1)}

if q′′ 6= 0, and D5 = ∅ if q′′ = 0.

2.3 Proof of main results

We first prove the following lemma, which does most of the work toward prov-
ing Theorem 2.2.

Lemma 2.25. Let m, u and v be positive odd integers such that m > 9,
v − u > m+ 1 and (u, v) is m-admissible. If either m > 17 and u > m− 2 or
m ∈ {9, 11, 13, 15} and u > m, then there exists an m-cycle decomposition of
Kv −Ku.

Proof. Let k and x be the integers such that k = b(u(v − u))/(m − 1)c and
m(x+ k) =

(
v
2

)
−
(
u
2

)
. From Lemmas 2.23 and 2.24, it follows that there is an

(mx,M1, . . . ,Mk)-decomposition D0 of Kv −Ku in which each cycle of length
less than m contains at most one pure edge, where for j ∈ {1, . . . , k} Mj is a
list of at least two integers with sum m that contains exactly one odd integer.

We will now construct a sequence of decompositionsD1, . . . ,Dk−1 such that,
for each i ∈ {1, . . . , k−1}, Di is an (mx+i+1,M1, . . . ,Mk−i−1)-decomposition of
Kv−Ku such that, with the exception of x m-cycles, each cycle in Di contains
at most one pure edge. This will suffice to complete the proof because Dk−1
will be an m-cycle decomposition of Kv −Ku.

Let D1 be the decomposition obtained by applying Lemma 2.5 to the pack-
ing P0 = D0 \C0, where C0 is a set of cycles in D0 with lengths given by the list
Mk−1,Mk. For each i ∈ {1, . . . , k−2}, let Di+1 be the decomposition obtained
by applying Lemma 2.5 to the packing Pi = Di \ ({Ci} ∪ Ci), where Ci is an
m-cycle in Di that contains exactly one pure edge and Ci is a set of cycles in
Di with lengths given by the list Mk−i−1. For each i ∈ {0, . . . , k − 2}, it is
easy to verify that Di+1 has the required properties because Di does and, by
Lemma 2.5, Di+1 \ {C ′, C ′′} is a repacking of Pi for some distinct m-cycles
C ′, C ′′ ∈ Di+1.
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The following lemma exploits the fact that two m-cycle decompositions
of complete graphs with holes can be “nested” to create another. It will be
used to help deal with the remaining cases of Theorem 2.2 and in the proof of
Corollary 2.3.

Lemma 2.26. Let m > 9 and u be odd integers. If there exists an m-cycle
decomposition of Ku? −Ku for some positive integer u? > m, then there exists
an m-cycle decomposition of Kv−Ku for each integer v such that v > u?+m+1
and (u, v) is m-admissible.

Proof. Let v be an integer such that v > u?+m+1 and (u, v) is m-admissible.
Let U , U? and V be sets such that |U | = u, |U?| = u?, |V | = v, and U ⊆ U? ⊆
V . By our hypotheses, there exists an m-cycle decomposition D1 of KU?−KU .
Now note that v − u? > m + 1 and u? > m from our hypotheses, and that
(u?, v) is m-admissible because (u, u?) and (u, v) are m-admissible. Thus, by
Lemma 2.25, there is an m-cycle decomposition D2 of KV −KU? . Then D1∪D2

is an m-cycle decomposition of KV −KU .

Proof of Theorem 2.2. We first note that Theorem 2.2 is equivalent to
showing that for u > m − 2 and v − u > m + 1, there exists an m-cycle
decomposition of Kv − Ku if and only if (u, v) is m-admissible (note that
v− u > m+ 1 guarantees that (v−m)(v− 1) > u(u− 1)). By Lemma 1.11, if
there exists an m-cycle decomposition of Kv−Ku, then (u, v) is m-admissible.
So it is sufficient to prove that for any m-admissible pair (u, v) of integers such
that u > m− 2 and v − u > m + 1, there exists an m-cycle decomposition of
Kv −Ku. By Theorem 1.18, this is established for m 6 7 (see [26, 40, 75]), so
we can suppose that m > 9. By Lemma 2.25 there exists an m-cycle decom-
position of Kv−Ku if either m > 17 and u > m− 2 or m ∈ {9, 11, 13, 15} and
u > m, so we can further suppose that m ∈ {9, 11, 13, 15} and u = m− 2.

Because u = m− 2 and m ∈ {9, 11, 13, 15}, it follows from v − u > m + 1
that v > 2m− 1. Furthermore, it is routine to check that (N1) and (N2) of
Lemma 1.11 imply that v ≡ 3 (mod 2m) or v ≡ m − 2 (mod 2m). Provided
that there exists an m-cycle decomposition of K2m+3−Km−2, by Lemma 2.26
there exists an m-cycle decomposition of Kv − Km−2 if v > 4m + 3. Thus,
because v > 2m− 1, it suffices to show that there is an m-cycle decomposition
of K3m−2 − Km−2 and of K2m+3 − Km−2. By Theorem 1.15 (with q = 1),
there exists an m-cycle decomposition of K3m−2 −Km−2 for each m > 3. For
each m ∈ {9, 11, 13, 15}, we have an m-cycle decomposition of K2m+3 −Km−2
using a computer program that implements basic cycle switching techniques to
augment decompositions. These decompositions are included in Appendix A.

Proof of Corollary 2.3. Part (i) follows from Lemma 2.26 (with u? =
ωm(u)). Part (ii) follows from Theorem 2.2. For u = 1 part (iii) follows
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from Theorem 1.4 and for u = 3 it follows by removing a 3-cycle from a de-
composition of a complete graph into m-cycles and a single 3-cycle which also
exists by Theorem 1.4. If u > 3, then part (iii) follows from Theorem 2.2,

noting that u > (m−1)(m−2)
2

implies that u(m+1)
m−1 + 1 > u+m− 1.

Now we shall prove Theorem 2.1. Theorem 2.2 can be shown to cover the
exceptions to Theorem 1.16, and as a consequence we can completely solve the
embedding problem for m-cycle systems in the case where m is an odd prime
power.

Lemma 2.27. Let m be an odd prime power. For positive integers u and
v with u < v, an m-cycle system of order u can be embedded in an m-cycle
system of order v if and only if u, v ≡ 1 or m (mod 2m) and v > u(m+1)

m−1 + 1.

Proof. Let m = pn for some odd prime p and some integer n > 1. If there
exists an m-cycle system of order v containing a subsystem of order u then pn

divides
(
u
2

)
= u(u−1)

2
and

(
v
2

)
= v(v−1)

2
. Since p cannot divide both u and u− 1,

then u ≡ 1 or m (mod 2m) and by a similar argument v ≡ 1 or m (mod 2m).

Also note that v > (m+1)u
m−1 + 1 by Lemma 1.11.

Conversely, suppose that v > (m+1)u
m−1 + 1 and u, v ≡ 1 or m (mod 2m). If

u ≡ v ≡ m (mod 2m), then u > m, v − u > 2m and the result follows by
Theorem 2.2. Otherwise either u ≡ 1 (mod 2m) or v ≡ 1 (mod 2m) and the
result follows directly from Theorem 1.16.

Proof of Theorem 2.1. Part (i) follows directly from Theorem 1.4, Corol-
lary 2.3(iii) and Lemma 2.27. Part (ii) follows from Theorem 1.4 and Corollary
2.3(ii) (note that an m-cycle system of order one is trivially embedded in any
m-cycle system and that any nontrivial m-cycle system has order at least
m).

Finally we shall prove Theorem 2.4.

Proof of Theorem 2.4. By Theorem 1.13 and Corollary 2.3 it is sufficient
to find m-cycle decompositions of Kv − Ku when m 6 15 is odd, (u, v) is
m-admissible and either

• u < m− 2 and v 6 ωm(u) +m− 1; or

• m− 2 6 u 6 (m−1)(m−2)
2

and v 6 u+m− 1.

By Theorem 1.16 we also know that, for pairs (u, v) such that u ≡ 1 (mod 2m)
and v ≡ m (mod 2m), there exists an m-cycle decomposition of Kv−Ku when

v > u(m+1)
m−1 +1. Finally, by Theorem 1.15 with q = 1 we know that there exists

an m-cycle decomposition of Kv −Ku when v − u = 2m and u 6 m − 1. So
simple calculation reveals that it suffices to find an m-cycle decomposition of
Kv −Ku for the values of m, u and v given in the following table.
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m (u, v)

9 (5, 11), (5, 17), (11, 17), (17, 23)

11 (5, 29), (7, 27), (13, 21), (25, 31), (35, 43)

13 (5, 35), (9, 31), (15, 25), (29, 37), (41, 51)

15 (5, 41), (7, 19), (7, 27), (9, 19), (9, 27), (11, 35), (15, 25), (17, 29), (21, 31),
(27, 37), (27, 39), (33, 43), (37, 49), (39, 49), (45, 55), (47, 59), (49, 57),
(51, 61), (57, 67), (57, 69), (63, 73), (67, 79), (77, 89)

We have found the desired decompositions in each of these cases using the
same computer program that was used to prove the cases in Theorem 2.2.
These decompositions are included in Appendix A.



Chapter 3

Cycles of Arbitrary Lengths

The focus of this chapter is on decomposing the complete graph with a hole
into cycles of arbitrary specified lengths. The main result here is that the
complete graph of order v with a hole of size u can be decomposed into cycles
of lengths m1,m2, . . . ,mτ provided that the obvious necessary conditions are
satisfied, v − u > 10, and m1 6 m2 6 · · · 6 mτ 6 min(u, v − u, 3mτ−1). This
generalises results from Chapter 2 for uniform length cycles. Specifically, if
mi = m for i ∈ {1, . . . , τ} then Theorem 3.1 specialises to Theorem 2.2 when
m is odd and Theorem 1.14 when m is even. Theorem 3.1 also complements
known results for decomposing various graphs into cycles of arbitrary specified
lengths, namely Theorems 1.4, 1.9 and 1.21.

Theorem 3.1. Let u and v be integers with v − u > 10, and let m1, . . . ,mτ

be a nondecreasing list of integers such that mτ 6 min(u, v−u, 3mτ−1). There
exists a decomposition of Kv−Ku into cycles of lengths m1, . . . ,mτ if and only
if

(i) u and v are odd;

(ii) m1 > 3;

(iii) m1 + · · ·+mτ =
(
v
2

)
−
(
u
2

)
; and

(iv) there are at most
(
v−u
2

)
odd entries in m1, . . . ,mτ .

It is not difficult to see that conditions (i)-(iv) in Theorem 3.1 are neces-
sary for the existence of a decomposition of Kv − Ku into cycles of lengths
m1, . . . ,mτ . We establish this in Lemma 3.2. Note that if m1 = m2 = · · · =
mτ , then Lemma 3.2 specialises to Lemma 1.11, which is the analogous result
for cycles of uniform length.

50
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Lemma 3.2. Let m1, . . . ,mτ be a nondecreasing list of integers and let u and
v be positive integers. If there exists a decomposition of Kv −Ku into cycles
of lengths m1, . . . ,mτ then

(i) u and v are odd;

(ii) m1 > 3 and mτ 6 min(v, 2(v − u));

(iii) m1 + · · ·+mτ =
(
v
2

)
−
(
u
2

)
;

(iv) there are at most
(
v−u
2

)
odd entries in m1, . . . ,mτ ; and

(v) τ > v−1
2

.

Proof. Suppose there exists a decomposition of Kv−Ku into cycles of lengths
m1, . . . ,mτ . Since the degree of each vertex must be even, we have v − u and
v − 1 are even so (i) follows. Clearly m1 > 3 and mτ 6 v. Also, every cycle
has at least half of its vertices outside the hole, so mτ 6 2(v − u) and thus
(ii) follows. Condition (iii) clearly holds. Any odd cycle in Kv − Ku must
contain at least one edge that is not incident with a vertex in the hole, thus
(iv) follows. Finally, a fixed vertex outside the hole must be in at least v−1

2

cycles, so (v) follows.

The remainder of this chapter is concerned with proving the existence of
cycle decompositions of Kv − Ku. Our general approach is to first construct
decompositions of Kv − Ku that contain collections of short cycles and then
merge these cycles together to construct longer cycles. This method is similar
to that used in Chapter 2.

3.1 Merging two cycle lengths

The aim of this section is to prove Lemma 3.3 which, given a cycle packing
of Kv − Ku with certain properties, allows us to obtain a repacking where
two cycle lengths have been merged into a single cycle. This lemma plays
a similar role here to Lemma 2.5 in Chapter 2. In Chapter 2 we applied
Lemma 2.5 to produce two odd cycles each containing one pure edge and so
we only considered leaves containing two pure edges. Here, however, we might
also wish to produce two even cycles containing no pure edges, or one odd
cycle containing one pure edge and one even cycle containing no pure edges.
Thus we must consider leaves with 0, 1 and 2 pure edges.

Lemma 3.3. Let u > 5 and v be odd integers such that v > u, and let M
be a list of integers. Suppose there exists an (M)-packing P of Kv −Ku with
a reduced leave that has exactly µ pure edges, where µ ∈ {0, 1, 2}, and has a
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decomposition into an h-cycle, an m1-cycle and an m2-cycle where h is odd if
µ = 2. If m1 +m2 6 3h and m1 +m2 + h 6 min(2u+ 3, 2(v− u) + 1, v), then
there exists a repacking of P whose reduced leave has a decomposition into an
h-cycle and an (m1 +m2)-cycle each containing at most one pure edge.

The work required to prove the µ = 0 case of this lemma is done in the
proof of Lemma 2.21 (see [64]).

Lemma 3.4. Let u and v be positive odd integers, and let M be a list of
integers. Suppose there exists an (M)-packing P of Kv − Ku with a reduced
leave that has no pure edges, and has a decomposition into an h-cycle, an m-
cycle and an m′-cycle. If m+m′ 6 3h and m+m′+h 6 2 min(u+1, v−u+1),
then there exists a repacking of P whose reduced leave has a decomposition into
an h-cycle and an (m+m′)-cycle.

Proof. This lemma is very similar to Lemma 2.21, but it applies to packings
of Kv−Ku rather than to packings of Ku,v−u (the leaves of the packings are still
subgraphs of Ku,v−u). It can be proved exactly as per the proof of Lemma 2.21,
except that Lemma 1.22 is used in place of [64, Lemma 2.1]. Note that two
vertices of Kv −Ku are twin if and only if they are both in the hole or both
outside it. Also note that u 6= v − u because u and v are odd.

It remains to prove Lemma 3.3 in the cases µ = 1 and µ = 2. To help
with this task we first prove two useful lemmas. Lemma 3.6 below extends
Lemma 2.6 to include leaves with one pure edge.

Lemma 3.5. Let G be an even graph, let y and z be twin vertices in G, and
let P be an (M)-packing of G with (unreduced) leave L. If degL(y) > degL(z),
then there is an (M)-packing P ′ of G with an (unreduced) leave L′ such that
degL′(y) = degL(y) − 2, degL′(z) = degL(z) + 2, and degL′(x) = degL(x) for
each x ∈ V (G) \ {y, z}. Furthermore the number of nontrivial components in
L′ is at most one greater than the number of nontrivial components in L.

Proof. Let P ′ be the repacking of P obtained by applying a (y, z)-switch
whose origin and terminus are both adjacent to y in L. Such a switch exists
because degL(y) > degL(z). The result can be seen to follow by examining the
differences between L′ and L.

Lemma 3.6. Let U and W be disjoint sets with |U | odd and |W | even, and
suppose that L is a subgraph of KU∪W − KU such that L contains exactly µ
pure edges, where µ ∈ {1, 2}, and each vertex of L has positive even degree.

(i) If |E(L)| 6 2(|U |+ 1) and U contains a vertex of degree at least 4 in L,
then there is a vertex x in U such that x /∈ V (L).
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(ii) If |E(L)| 6 min(2(|U | + 2), 2|W | + 1) and S is an element of {U,W}
such that S contains either at least two vertices of degree 4 in L or at
least one vertex of degree at least 6 in L, then there is a vertex x in S
such that x /∈ V (L).

(iii) If |E(L)| 6 min(2(|U |+ 2), 2|W |+ 1, |U |+ |W |) and L contains either at
least two vertices of degree 4 or at least one vertex of degree at least 6,
then there are twin vertices x and y in KU∪W−KU such that degL(x) > 4
and y /∈ V (L).

Proof. Let ` = |E(L)| and note that ` ≡ µ (mod 2). If µ = 2 then the result
follows by Lemma 2.6. So suppose that µ = 1. Then we have∑

x∈V (L)∩U
degL(x) = `− 1, and

∑
x∈V (L)∩W

degL(x) = `+ 1.

Proof of (i). Suppose that ` 6 2(|U |+ 1) and U contains a vertex of degree
at least 4 in L. Then ` 6 2|U | + 1 since ` is odd. If U ⊆ V (L) then ` − 1 =∑

x∈V (L)∩U degL(x) > 2|U |+ 2 which contradicts ` 6 2|U |+ 1.

Proof of (ii). Suppose that ` 6 min(2(|U | + 2), 2|W | + 1, |U | + |W |) and
S is an element of {U,W} such that S contains either at least two vertices of
degree 4 in L or at least one vertex of degree at least 6 in L. Suppose for a
contradiction that S ⊆ V (L). Then we have

∑
x∈V (L)∩S degL(x) > 2|S| + 4.

So, if S = U , then ` − 1 > 2|U | + 4, contradicting ` 6 2|U | + 3. If S = W ,
then `+ 1 > 2|W |+ 4, contradicting ` 6 2|W |+ 1.
Proof of (iii). Because we have proved (ii), it only remains to show that if
L contains two vertices of degree 4, one in U and one in W , and every other
vertex of L has degree 2, then there are twin vertices x and y in KU∪W −KU

such that degL(x) > 4 and y /∈ V (L). Suppose otherwise. Then it must be
the case that V (L) = U ∪W , `− 1 = 2|U |+ 2 and `+ 1 = 2|W |+ 2. But then
` = 2|U |+ 3 and ` = 2|W |+ 1, so |U ∪W | = 2|U |+ 1 and ` = |U |+ |W |+ 2,
contradicting ` 6 |U |+ |W |.

3.1.1 Proof of Lemma 3.12

In order to prove Lemma 3.3 we will require Lemma 3.12 which is an analogue
of Lemma 2.17 for packings whose leaves have one pure edge. The proof of
Lemma 3.12 proceeds as follows. Lemmas 2.9 and 3.7 are used in proving
Lemma 3.8, which gives conditions under which we can repack to transform
a 2-chain leave into a union of two cycles of specified lengths. Lemma 3.8
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then acts as a base case and is used, along with Lemmas 3.9 and 3.10, in an
induction proof of Lemma 3.11. Lemma 3.11 gives conditions under which we
can repack to transform a good s-chain or s-ring leave into a union of two
cycles of specified lengths. Finally Lemma 3.12 is proved from Lemma 3.11.

Lemma 3.7. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, p and q be positive integers with m odd
and m, p+ q−m > 3. Suppose there exists an (M)-packing P of KU∪W −KU

whose reduced leave L is a (p, q)-chain (x1, x2, . . . , xp−1, x0)·(x0, y1, y2, . . . , yq−1)
such that L contains exactly one pure edge, namely xrxr+1 for some r ∈
{0, . . . , p− 1} (subscripts modulo p). If p 6 m, or if p > m+2 and r 6 m−3,
then there exists a repacking of P whose reduced leave is the edge-disjoint union
of an m-cycle and a (p+ q −m)-cycle.

Proof. The proof relies on several applications of Lemma 1.22. We consider
the case when p 6 m and the case p > m + 2 and r 6 m − 3 separately.
Note that since the p-cycle in L contains exactly one pure edge and the q-cycle
contains no pure edges, then p is odd and q is even.
Case 1. First suppose that p 6 m. If p = m then we are done so assume
p < m. Without loss of generality, assume x0x1 is not a pure edge (other-
wise relabel vertices in L). Then the result follows by Lemma 2.9(i) because
[x1, x0, y1, . . . , ym−p+2] is a path with no pure edges and hence the vertices
x1, y3, y5, . . . , ym−p+1 are pairwise twin in KU∪W − KU and y2, y4, . . . , ym−p+2

are pairwise twin in KU∪W −KU .
Case 2. Now assume that p > m+2 and r 6 m−3. Then by a simple induction
it is sufficient to obtain either the required decomposition, or a (p− 2, q + 2)-
chain (x′1, x

′
2, . . . , x

′
p−3, x

′
0) · (x′0, y′1, y′2, . . . , y′q+1) that contains exactly one pure

edge x′rx
′
r+1 for some r ∈ {0, . . . ,m− 3}.

Let P ′ be the repacking of P obtained by performing the (y1, xm−1)-switch
with origin x0. Note that {y1, xm−1} and {xm, xm−2} are twin pairs in KU∪W −
KU because r 6 m− 3 and hence [xm−2, xm−1, . . . , xp−1, x0, y1] is a path with
no pure edges. If the terminus of the switch is not xm−2 then the reduced
leave of P ′ has a decomposition into an m-cycle and a (p + q −m)-cycle and
we are done. So assume that the terminus is xm−2. Then the reduced leave
of P ′ is the (q+m− 2, p−m+ 2)-chain (x1, x2, . . . , xm−2, y1, y2, . . . , yq−1, x0) ·
(x0, xm−1, xm, . . . , xp−1).

Let P ′′ be the repacking of P ′ obtained by performing the (xm, xm−2)-
switch with origin xm−1. If the terminus of the switch is not xm−3, then the
reduced leave of P ′′ has a decomposition into an m-cycle and a (p + q −m)-
cycle and we are done. Otherwise, the terminus is xm−3 and the reduced
leave of P ′′ is the (p − 2, q + 2)-chain (x1, . . . , xm−3, xm, xm+1, . . . , xp−1, x0) ·
(x0, xm−1, xm−2, y1, y2, . . . , yq−1) where xrxr+1 is a pure edge.
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Lemma 3.8. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, p and q be positive integers with m odd and
m, p+q−m > 3. Suppose there exists an (M)-packing P of KU∪W−KU whose
reduced leave L is a (p, q)-chain such that L contains exactly one pure edge and
the link vertex of L is in W if m = 3. Then there exists a repacking of P whose
reduced leave is the edge-disjoint union of an m-cycle and a (p+ q−m)-cycle.

Proof. Since L contains exactly one pure edge, p + q must be odd. Without
loss of generality suppose p is odd. Then the p-cycle in L contains the pure
edge and the q-cycle in L contains no pure edges.
Case 1. Suppose either that p 6 m or that p > m+ 2 and L can be labelled
(x1, x2, . . . , xp−1, x0) · (x0, y1, y2, . . . , yq−1) such that xrxr+1 is the pure edge for
some r ∈ {0, . . . ,m− 3}. Then the result follows by Lemma 3.7.
Case 2. Suppose that p > m + 2 and there is no such labelling. Let L be
labelled (x1, x2, . . . , xp−1, x0) · (x0, y1, y2, . . . , yq−1) such that xrxr+1 is the pure
edge for some r ∈ {m − 2, . . . , p − 1} (subscripts modulo p). Then r > 2,
using the fact that x0 ∈ W if m = 3. It is sufficient to show that there exists
a repacking P ′ of P whose reduced leave is either a (p, q)-chain that can be
labelled as (x′1, x

′
2, . . . , x

′
p−1, x

′
0) · (x′0, y′1, y′2, . . . , y′q−1) where the pure edge is

x′r−2x
′
r−1, or a (p − 2, q + 2)-chain. By repeating this process we eventually

obtain a repacking of P which satisfies the criteria of Case 1.
Let P ′ be the repacking of P obtained by performing the (x0, x2)-switch

with origin x3. Note that x0 and x2 are twin in KU∪W −KU because r > 2 and
hence [x0, x1, x2] is a path with no pure edges. If the terminus of the switch is
xp−1, then the reduced leave of P ′ is the (p, q)-chain (x3, x4, . . . , xp−1, x2, x1, x0)·
(x0, y1, y2, . . . , yq−1) and we are done. If the terminus of the switch is not xp−1
then the reduced leave of P ′ is a (p− 2, q + 2)-chain.

Lemma 3.9. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let p and s be integers such that p > 4 and s > 2.
Suppose there exists an (M)-packing P of KU∪W −KU whose reduced leave L
is a good s-chain that contains exactly one pure edge and has a decomposition
{P,L−P} into two paths such that P has length p and each path has both end
vertices in W . Suppose further that P has a subpath P0 = [x0, . . . , xr] such
that 2 6 r 6 p − 1, x0 is an end vertex of P , P0 contains no pure edge, and
degL(xr−1) = degL(xr) = 2. Then there is a repacking of P whose reduced
leave L′ is a good s-chain that has a decomposition {P ′, L′−P ′} into two paths
such that P ′ has length p − 2, each path has both end vertices in W , and P ′

contains a pure edge if and only if P does.

Proof. Label the vertices in V (P ) \V (P0) so that P = [x0, . . . , xp]. We prove
the result by induction on the length of P0. If |E(P0)| = 2, then {P ′, L− P ′}
where P ′ = [x2, . . . , xp] is a decomposition of L with the required properties.
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So we can assume that |E(P0)| > 3. By induction we can assume that P0 is
the shortest subpath of P satisfying the required conditions. Because r > 3,
this implies that degL(xr−2) = 4 and xr−2 is a link vertex of L.

The vertices xr and xr−2 are twin in KU∪W − KU because [xr−2, xr−1, xr]
is a path with no pure edges. Let L′ be the reduced leave of the repack-
ing of P obtained by performing the (xr, xr−2)-switch with origin xr−3. Note
that L′ is a good s-chain irrespective of the terminus of the switch. If
the terminus of the switch is not xr+1, then {P ′, L′ − P ′} where P ′ =
[x0, x1, . . . , xr−3, xr, xr+1, . . . , xp] is a decomposition of L′ such that P ′ has
length p−2, each path has both end vertices in W , and P ′ contains a pure edge
if and only if P does. If the terminus of the switch is xr+1, then {P ′, L′ − P ′}
where P ′ = [x0, x1, . . . , xr−3, xr, xr−1, xr−2, xr+1, xr+2, . . . , xp] is a decomposi-
tion of L′ into two paths such that P ′ has length p and contains a pure edge
if and only if P does, and each path has both end vertices in W . Further P ′

has the subpath P ′0 = [x0, . . . , xr−3, xr, xr−1] and we know that x0 is an end
vertex of P ′, P ′0 contains no pure edge, and degL′(xr) = degL′(xr−1) = 2. Thus,
because |E(P ′0)| = r − 1, we are finished by our inductive hypothesis.

Lemma 3.10. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, m′ and s be integers such that m + m′ is
odd, m,m′ > max(s, 3) and s > 2. Suppose there exists an (M)-packing P of
KU∪W −KU whose reduced leave is a good s-chain of size m+m′ that contains
exactly one pure edge. Then there exists a repacking of P whose reduced leave
is a good s-chain that has a decomposition into an m-path and an m′-path such
that the end vertices of the paths are twin in KU∪W −KU .

Proof. Let L be the reduced leave of P and note that |E(L)| = m + m′.
Because L is good and contains exactly one pure edge, we can find some
decomposition {H,L − H} of L into two paths such that H has odd length
and contains the pure edge, L − H has even length, and each of the paths
has both end vertices in W . Let m∗ ∈ {m,m′} and P ∈ {H,L − H} such
that |E(P )| > m∗ and |E(P )| ≡ m∗ (mod 2) (such an m∗ and P exist because
|E(L)| = m+m′). If |E(P )| = m∗ then we are done, so suppose |E(P )| > m∗.
Let p = |E(P )|.
Case 1. Each cycle of L contains at most two edges of P . Then exactly p− s
cycles of the chain contain two edges of P and the rest contain one edge of P .
Because L is good and both end vertices of P are in W , if C is a cycle of L
that contains two edges of P then C is an end cycle of L, the link vertex of C
is in W , and C∩P contains no pure edges. Thus, because p > m∗ > s, it must
be that p = s + 2 and m∗ = s. Then {P ′, L− P ′}, where P ′ is obtained from
P by removing the end vertices and the incident edges, is a decomposition of
L into an m-path and an m′-path such that both end vertices of each path are
in U .
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Case 2. There exists a cycle C in L such that C ∩ P is a path of length at
least 3. Let P0 = [x0, . . . , xr] be a subpath of P such that x0 is an end vertex
of P , P0 contains no pure edge, and P0 contains exactly two edges in C ∩ P .
If C ∩ P contains no pure edge then it is easy to see such a subpath exists. If
C ∩ P contains the pure edge then (since L is good) C is an end cycle of L
whose link vertex is in W and again there exists such a subpath. So we can
apply Lemma 3.9 to obtain a repacking of P whose reduced leave L′ is a good
s-chain that has a decomposition {P ′, L′−P ′} into two paths such that P ′ has
length p−2, P ′ has a pure edge if and only if P does, and both paths have end
vertices in W . It is clear that by repeating this procedure we will eventually
obtain a repacking of P whose reduced leave either has a decomposition into
two paths which satisfies the criteria for Case 1 or has a decomposition into an
m-path and an m′-path such that both end vertices of each path are in W .

Lemma 3.11. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, m′ and s be positive integers such that s > 2,
m+m′ is odd, m,m′ > max(s, 3), m+m′ 6 min(2|U |+3, 2|W |+1, |U |+ |W |),
and m + m′ 6 2|U | + 1 if 3 ∈ {m,m′}. Suppose there exists an (M)-packing
P of KU∪W −KU whose reduced leave has size m + m′, contains exactly one
pure edge, and is either a good s-chain or a good s-ring that, if 3 ∈ {m,m′}, is
not a 2-chain with link vertex in U . Then there exists a repacking of P whose
reduced leave is the edge-disjoint union of an m-cycle and an m′-cycle.

Proof. Let L be the reduced leave of P . We first show that the result holds
for s = 2. If L is a 2-chain then the result follows by Lemma 3.8. If L is a
2-ring then by our hypotheses and Lemma 3.6 there are twin vertices x and y
in KU∪W −KU such that degL(x) > 4, y /∈ V (L) and x, y ∈ U if 3 ∈ {m,m′}
(if 3 ∈ {m,m′} then apply Lemma 3.6(i), otherwise apply Lemma 3.6(iii)).
Performing an (x, y)-switch results in a repacking of P whose reduced leave
is a 2-chain with link vertex in W if 3 ∈ {m,m′}, and the result follows by
Lemma 3.8. So the result holds for s = 2 and it is sufficient to show, for each
integer s′ > 3, that if the result holds for s = s′ − 1 then it holds for s = s′.
Case 1. Suppose that L is a good s′-chain. By Lemma 3.10 we can obtain a
repacking of P with a reduced leave whose only component is a good s′-chain
with a decomposition into paths of length m and m′ whose end vertices are
twin. Let [x0, x1, . . . , xm] be the path of length m and let P ′ be the repacking
of P obtained by performing the (x0, xm)-switch with origin x1.

If the terminus of the switch is not xm−1, then the reduced leave of P ′ is
the edge-disjoint union of an m-cycle and an m′-cycle and we are done. If
the terminus of the switch is xm−1, then the reduced leave of P ′ is a good
(s′ − 1)-ring that contains exactly one pure edge and the result follows by our
inductive hypothesis.
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Case 2. Suppose that L is a good s′-ring. Let A be the ring cycle of L that
contains the pure edge in L and note that if s′ is odd then both link vertices
of A are in W . Let x and y be twin vertices in KU∪W −KU such that x is a
link vertex in A, x ∈ U if s′ is even, and y /∈ V (L). Such a vertex y exists
by Lemma 3.6(ii) because m + m′ 6 min(2|U | + 3, 2|W | + 1, |U | + |W |), W
contains two vertices of degree 4 in L if s′ is odd, and U contains two vertices
of degree 4 in L if s′ is even (for then s′ > 4). Let P ′ be the repacking of P
obtained by performing an (x, y)-switch with origin in A. If the terminus of
this switch is also in A, then the reduced leave of P ′ is a good s′-chain and
we can proceed as in Case 1. Otherwise, the reduced leave of P ′ is a good
(s′ − 1)-ring and the result follows by our inductive hypothesis.

Lemma 3.12. Let U and W be disjoint sets with |U | odd and |W | even, and
let M be a list of integers. Let m, m′, k and t be positive integers such that
m,m′ > max(k + t− 1, 3), m+m′ 6 min(2|U |+ 3, 2|W |+ 1, |U |+ |W |), and
m + m′ 6 2|U | + 1 if 3 ∈ {m,m′}. Suppose there exists an (M)-packing P of
KU∪W −KU with a reduced leave L of size m+m′ such that L contains exactly
one pure edge and L has exactly k components, k − 1 of which are cycles and
one of which is a good t-chain that, if 3 ∈ {m,m′}, is not a 2-chain with link
vertex in U . Then there exists a repacking of P whose reduced leave is the
edge-disjoint union of an m-cycle and an m′-cycle.

Proof. First note that, since L contains exactly one pure edge and L has a
decomposition into cycles, m+m′ is odd. Without loss of generality let m be
odd and m′ be even.

By Lemma 3.11 it is sufficient to show that we can construct a repacking
of P whose reduced leave is a good s-chain for some s ∈ {2, . . . , k+ t− 1} and
is not a 2-chain with link vertex in U if m = 3. If k = 1, then we are finished,
so we can assume k > 2. By induction on k, it suffices to show that there is
a repacking of P with a reduced leave with exactly k − 1 components, one of
which is a good t′-chain for t′ ∈ {t, t + 1} that contains a link vertex in W if
m = 3 and the remainder of which are cycles.

Let H be the component of L which is a good t-chain, and let C be a
component of L such that C is a cycle and C contains the pure edge if H does
not. Let H1 and Ht be the end cycles of H where H1 contains the pure edge
if H does and the link vertex of H1 is in W if t > 3.
Case 1. Suppose that either t > 3 or it is the case that t = 2, H1 contains a
pure edge and the link vertex of H is in W . Then let x and y be vertices such
that x ∈ V (Ht), x is not a link vertex of H, y ∈ V (C), x, y ∈ W if t is odd,
and x, y ∈ U if t is even. Let P ′ be a repacking of P obtained by performing
an (x, y)-switch with origin in Ht. The reduced leave of P ′ has exactly k − 1
components, k − 2 of which are cycles and one of which is a good t′-chain,
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where t′ = t+ 1 if the terminus of the switch is also in Ht and t′ = t otherwise.
Also, H ′ has a link vertex in W because H does. So we are finished by our
inductive hypothesis.

Case 2. Suppose that t = 2 andH contains no pure edge. Then C contains the
pure edge. Let x1 and x2 be vertices such that x1 ∈ V (C)∩W , x2 ∈ V (H1)∩W ,
and x2 is not the link vertex of H. Let P ′ be a repacking of P obtained by
performing an (x1, x2)-switch with origin in H1 and let L′ be the reduced
leave of P ′. If the terminus of this switch is in C, then L′ has exactly k − 1
components, k − 2 of which are cycles and one of which is a 2-chain with
link vertex in W if m = 3. In this case we are finished by our inductive
hypothesis. Otherwise the terminus of this switch is in H1 and L′ has exactly
k − 1 components, k − 2 of which are cycles and one of which is a 3-chain
H ′ such that one end cycle of H ′ contains a pure edge and has its link vertex
in W . If H ′ is good, then we are again finished by our inductive hypothesis.
Otherwise, it must be that both link vertices of H ′ are in W and we proceed
as follows.

Let H ′1 and H ′3 be the end cycles of H ′ where H ′1 has the pure edge. Let
y1, y2 ∈ W be vertices such that y1 is the link vertex in H ′3 and y2 /∈ V (L′)
(note that y2 exists by Lemma 3.6(ii)). Let P ′′ be a repacking of P ′ obtained
by performing a (y1, y2)-switch with origin in H ′3 and let L′′ be the reduced
leave of P ′′. If the terminus of this switch is not in H ′3, then L′′ has exactly
k− 1 components, k− 2 of which are cycles and one of which is a 2-chain with
link vertex in W . In this case we are finished by our inductive hypothesis.
Otherwise, the terminus of this switch is in H ′3 and L′′ has exactly k compo-
nents, k − 1 of which are cycles and one of which is a 2-chain that contains a
pure edge and has its link vertex in W . In this case we can proceed as we did
in Case 1.

Case 3. Suppose that t = 2, H1 contains the pure edge and the link vertex
of H is in U . Note that m > 5 by the hypotheses of the lemma. Let x be the
link vertex of H and let y be a vertex in V (C) ∩ U . Let P ′ be a repacking
of P obtained by performing an (x, y)-switch with origin in H2 and let L′ be
the reduced leave of P ′. If the terminus of this switch is in C or H1, then L′

has exactly k − 1 components, k − 2 of which are cycles and one of which is
a 2-chain. In this case we are finished by our inductive hypothesis. Otherwise
the terminus of this switch is in H2 and L′ has exactly k components, k− 1 of
which are cycles and one of which is a 2-chain that contains no pure edges. In
this case we can proceed as we did in Case 2.
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3.1.2 Proof of Lemma 3.3

Here we use Lemmas 2.17, 3.4 and 3.12 to prove Lemma 3.3 which was our
main goal in this section. We first require two more simple results. Lemma 3.13
is an easy bound on the maximum number of components in the reduced leave
of a packing, and Lemma 3.14 allows us to find a repacking whose reduced
leave is a vertex-disjoint union of a single 2-chain and a collection of cycles.
This subsection also contains Lemma 3.15, which is used only in the proof of
Lemma 3.28.

Lemma 3.13. Let U and W be disjoint sets with |U | odd and |W | even. If
G is a subgraph of KU∪W −KU such that G contains µ pure edges, G has one
vertex of degree 4, and each other vertex of G has degree 2, then G has at most⌊
1
4
(|E(G)|+ µ)

⌋
− 1 components.

Proof. Because each vertex of G has even degree, G has a decomposition D
into cycles. Since there are µ pure edges in G, at most µ cycles in D have length
3 and each other cycle in D has length at least 4. Thus |E(G)| > 4(|D|−µ)+3µ
which implies |D| 6

⌊
1
4
(|E(G)|+ µ)

⌋
. At least one component of G contains

a vertex of degree 4 and hence contains two cycles, and each component of G
contains at least one cycle. The result follows.

In Lemma 3.14 and in some cases in the proof of Lemma 3.3 we require
a packing whose reduced leave is the vertex-disjoint union of a 2-chain and a
collection of cycles. In such a leave one vertex has degree 4 and the remaining
vertices have degree 2. For an (M)-packing P of an even graph G we define

d(P) =
1

2

∑
x∈V (L)

(degL(x)− 2) = |E(L)| − |V (L)|,

where L is the reduced leave of P . Note that d(P) > 0 because L is even, and
that if d(P) = 1 then L has exactly one vertex of degree 4 and the remaining
vertices have degree 2.

Lemma 3.14. Let U and W be disjoint sets with |U | odd and |W | even, let M
be a list of integers, and let µ ∈ {1, 2}. Suppose there exists an (M)-packing P
of KU∪W−KU with a reduced leave L such that |E(L)| 6 min(2(|U |+2), 2|W |+
1, |U | + |W |), L has k components, L has exactly µ pure edges, and L has at
least one vertex of degree at least 4. Then there exists a repacking P ′ of P
with a reduced leave L′ such that exactly one vertex x′ of L′ has degree 4, every
other vertex of L′ has degree 2, and L′ has at most k + d(P)− 1 components.
Furthermore if |E(L)| 6 2|U | + 2 and there is a vertex in W with degree at
least 4 in L, then x′ is in W .
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Proof. The proof is by induction on d(P). Because L has at least one vertex
of degree at least 4, d(P) > 1. If d(P) = 1, then we are finished immediately
because one vertex of L has degree 4 and every other vertex has degree 2. So
suppose that d(P) > 2 and hence that L contains either at least two vertices
of degree 4 or at least one vertex of degree at least 6.

Let P ′′ be the repacking of P obtained by applying Lemma 3.5 with y
and z chosen to be vertices in U ∪ W such that degL(y) > 4, z /∈ V (L),
y, z ∈ U if such vertices exist in U , and y, z ∈ W otherwise. These choices
for y and z exist by Lemma 3.6(iii), and by Lemma 3.6(i) they will be in U
unless |E(L)| > 2|U | + 2 or degL(x) = 2 for all x ∈ V (L) ∩ U . Note that
d(P ′′) = d(P)− 1 and the reduced leave of P ′′ has at most k + 1 components.
Thus we can complete the proof by applying our inductive hypothesis.

Proof of Lemma 3.3. Note first that m1 + m2 + h ≡ µ (mod 2). If µ = 0,
then the result follows by Lemma 3.4. So suppose µ ∈ {1, 2}.

Let U and W be disjoint sets of sizes u and w = v−u and let P be a packing
of KU∪W −KU satisfying the hypotheses of the lemma. Let L be the reduced
leave of P and let k be the number of components of L (note that k 6 3).
Below we will sometimes wish to apply Lemma 2.17 or 3.12 with m = h and
m′ = m1 +m2. Accordingly, we note that if h = 3 then m1 +m2 + h 6 2u+ µ
because m1 + m2 6 3h, m1 + m2 + h ≡ µ (mod 2) and u > 5. We also note
that if µ = 2 then m1 +m2 + h 6 2w because m1 +m2 + h ≡ µ (mod 2).

Let C1, C2 and H be edge-disjoint cycles in L such that V (H) = h and
|V (C1)| + |V (C2)| = m1 + m2 (we do not assume that |V (C1)| = m1 and
|V (C2)| = m2).
Case 1. Suppose that k = 3. Then the components of L are C1, C2 and H.
Let x and y be vertices such that x ∈ V (C1) ∩W and y ∈ V (C2) ∩W . By
performing an (x, y)-switch we obtain a repacking of P whose reduced leave
is either the edge-disjoint union of an h-cycle and an (m1 + m2)-cycle or the
vertex-disjoint union of an h-cycle and a 2-chain of size m1 + m2 with link
vertex in W . In the former case we are finished and in the latter case we
apply Lemma 2.17 (if µ = 2) or Lemma 3.12 (if µ = 1) with m = h and
m′ = m1 +m2.
Case 2. Suppose that k ∈ {1, 2}, that (k, d(P)) 6= (1,m1 + m2) and that W
contains a vertex of degree at least 4 in L if h = 3. Note that L must have a
vertex of degree at least 4. Applying Lemma 3.14 to P , we see that there is a
repacking of P whose reduced leave L′ is the vertex-disjoint union of a 2-chain
and k′ − 1 cycles for some k′ 6 k + d(P)− 1. Furthermore, the link vertex of
the 2-chain is in W if h = 3. If we can show that h,m1 +m2 > k′+ 1, then we
can complete the proof by applying Lemma 2.17 or Lemma 3.12 with m = h
and m′ = m1 +m2.
Case 2a. Suppose further that h 6 m1+m2. Then it is sufficient to show that
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h > k′ + 1. By Lemma 3.13, k′ + 1 6 bm1+m2+h+µ
4

c. Because m1 + m2 6 3h

and µ 6 2, we have bm1+m2+h+µ
4

c 6 h. So h > k′ + 1 as required.
Case 2b. Suppose further that h > m1 + m2. Then it is sufficient to show
that m1 + m2 > k′ + 1. If k = 2 then d(P) 6 max(m1,m2) and if k = 1 then
d(P) 6 m1 +m2. So, because we have assumed that (k, d(P)) 6= (1,m1 +m2),
we have k+ d(P) 6 m1 +m2. Thus m1 +m2 > k+ d(P) > k′+ 1 as required.
Case 3. Suppose that (k, d(P)) = (1,m1 +m2). Then W contains more than
one vertex of degree at least 4 in L. Also L has no cut vertex because L has
h vertices and contains an h-cycle.

Let x and y be twin vertices in KU∪W − KU such that degL(x) > 4 and
y /∈ V (L) (such vertices exist by Lemma 3.6(iii)). Then let P∗ be a repacking
of P obtained by performing an (x, y)-switch and let k∗ be the number of
components in the reduced leave of P∗. Note that k∗ = 1 because L has no
cut vertex and d(P∗) = d(P)− 1 = m1 + m2 − 1. Now we can proceed as we
did in Case 2 (note that our argument in Case 2 did not depend upon L being
the edge-disjoint union of an h-cycle, an m1-cycle and an m2-cycle).
Case 4. Suppose that k ∈ {1, 2}, h = 3 and that each vertex in V (L) ∩W
has degree 2 in L. Then m1 + m2 6 9 and it must be that m1 = m2 = 4 if
µ = 1 and {m1,m2} ∈ {{3, 4}, {3, 6}, {5, 4}} if µ = 2.
Case 4a. Suppose further that C1 and C2 are vertex-disjoint. Let x ∈ V (C1)∩
W and y ∈ V (C2) ∩W , and let P ′ be the repacking of P ∪ {H} obtained by
performing an (x, y)-switch with origin in C1. If the terminus of this switch is
in C2, then the reduced leave of P ′ is an (m1 + m2)-cycle and we can remove
from P ′ a 3-cycle that contains exactly one pure edge to complete the proof.
If the terminus of this switch is in C1, then the reduced leave of P ′ is an
(m1,m2)-chain with link vertex in W and we can remove from P ′ a 3-cycle
that contains exactly one pure edge and then proceed as in Case 2.
Case 4b. Suppose further that C1 and C2 share at least one vertex (in U).
By applying Lemma 3.5 once or twice to P ∪ {H}, we can obtain a repacking
P ′ of P ∪ {H} whose reduced leave L′ is 2-regular. Note that L′ is either an
(m1+m2)-cycle or the vertex-disjoint union of two cycles whose lengths add to
m1 +m2. In either case we remove from P ′ a 3-cycle H ′ that contains exactly
one pure edge. In the former case we are finished immediately and in the
latter case we can proceed as in Case 1, 2 or 4a, depending on V (L′)∩ V (H ′).
(If V (L′) ∩ V (H ′) = ∅ then proceed as in Case 1, if W contains a vertex of
degree 4 in L′ ∪ H ′ then proceed as in Case 2, and otherwise proceed as in
Case 4a.)

We conclude this section with the following result which will be used in the
proof of Lemma 3.28 to obtain two cycles from a leave with a vertex of degree
at least 4.
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Lemma 3.15. Let U and W be disjoint sets with |U | odd and |W | even,
let M be a list of integers, and let µ ∈ {1, 2}. Let m and m′ be positive
integers such that m is odd, m,m′ > max(b1

4
(m + m′) + µc, 3), m + m′ 6

min(2|U | + 4, 2|W | + 1, |U | + |W |), and m + m′ 6 2(|U | + 1) if 3 ∈ {m,m′}.
Suppose there exists an (M)-packing P of KU∪W −KU with a reduced leave L
of size m+m′ such that L has exactly µ pure edges, L has at least one vertex
of degree at least 4 and, if 3 ∈ {m,m′}, there is a vertex of degree at least 4
in V (L) ∩W . Then there exists a repacking of P whose reduced leave is the
edge-disjoint union of an m-cycle and an m′-cycle.

Proof. Note that m+m′ ≡ µ (mod 2). The proof splits into two cases.
Case 1. Suppose that L has exactly one vertex x of degree 4 and every other
vertex of L has degree 2. Note that, by the hypotheses of the lemma, x is in
V (L)∩W if 3 ∈ {m,m′}. Then L is the vertex-disjoint union of a 2-chain and
k − 1 cycles, where k is the number of components in L. So the result follows
by Lemma 3.12 (if µ = 1) or Lemma 2.17 (if µ = 2). (Note that m,m′ > k+ 1
since k 6 b1

4
(m+m′) + µc − 1 by Lemma 3.13.)

Case 2. Suppose that L has at least two vertices of degree at least 4, or one
vertex of degree at least 6. Let P ′ be the repacking of P obtained by applying
Lemma 3.14, and let L′ be the reduced leave of P ′. Then L′ has exactly one
vertex of degree 4, every other vertex of L′ has degree 2, and there is a vertex
of degree 4 in V (L) ∩W if 3 ∈ {m,m′}. We can proceed as in Case 1.

3.2 Base decompositions

The aim of this section is to prove Lemmas 3.22, 3.23 and 3.28. These lemmas
share a common form. Under various technical conditions, they guarantee the
existence of an (N, 3a, 4b, 5c, 6d, k)-decomposition of Ku+w −Ku that includes
cycles with lengths (3a, 4b, 5c, 6d, k) that each contain at most one pure edge
(where k is even and perhaps 0). In order to prove Theorem 3.1 we will then
take a base decomposition provided by one of these lemmas and repeatedly
apply Lemma 3.3 to produce a desired (M)-decomposition of Ku+w − Ku.
Very roughly speaking, Lemma 3.22 will be used when M has few odd entries,
Lemma 3.23 will be used when M has many large entries, and Lemma 3.28
will be used when M has few large entries.

In essence, Lemmas 3.23 and 3.28 are proved as follows. Consider Ku+w−
Ku as KU,W ∪ KW , where U and W are disjoint sets of sizes u and w. For
some entry m of N , we use Theorem 1.4 to find an (N \ (m))-packing P of KW

whose leave L has size a+ c+m− t, where t = uw− (2a+ 4b+ 4c+ 6d), t = 0
if m = 0 and t ∈ {2, . . . ,m − 2} if m > 0. We then use various other results
to find a (3a, 4b, 5c, 6d, k,m)-decomposition of KU,W ∪L such that one cycle of
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length m contains m− t edges of L and each other cycle contains one edge of
L if it has odd length and no edges of L if it has even length. Lemma 3.22
is proved similarly except that we consider Ku+w −Ku as KU\U1,W ∪KW∪U1 ,
where U and W are disjoint sets of sizes u and w and U1 ⊆ U with |U1| = 1.

Throughout this section we will make extensive use of some existing results
on cycle decompositions of complete graphs and complete bipartite graphs that
are stated in previous chapters, namely Theorems 1.4, 1.20 and 2.22. We also
require the following notation. For a list X = (x1, . . . , xn), let

∑
X =

∑n
i=1 xi.

For a list X and a sublist Y of X, let X \ Y be the list obtained from X by
removing the entries of Y . For a real number x we denote the greatest even
integer less than or equal to x by bxce and the least even integer greater than
or equal to x by dxee.

3.2.1 Preliminary results

The results in this subsection are tools that we will use in the proofs of Lem-
mas 3.22, 3.23 and 3.28. Lemmas 3.16 and 3.17 provide cycle packings of the
complete bipartite graph whose leaves have decompositions into two paths of
specified lengths. Lemmas 3.18, 3.19 and 3.20 provide cycle packings of the
union of the complete bipartite graph with one or more cycles. Lemma 3.21 al-
lows us to decrease the number of 4-cycles and increase the number of 6-cycles
in a packing.

Lemma 3.16. Let U ′ and W be sets such that |U ′| and |W | are even, let
m1, . . . ,mτ be even integers such that 4 6 m1 6 · · · 6 mτ 6 3mτ−1 and
m1 + · · ·+mτ = |U ′||W |. If mτ−1 +mτ 6 2|U ′| when |U ′| = |W | and mτ−1 +
mτ 6 2 min(|U ′|, |W |) + 2 otherwise, then

(i) for all distinct i, j ∈ {1, . . . , τ} there exists an ((m1, . . . ,mτ ) \ (mi,mj))-
packing of KU ′,W whose reduced leave has a decomposition into an mi-
path and an mj-path whose end vertices are in W ; and

(ii) for each i ∈ {1, . . . , τ}, there exists an ((m1, . . . ,mτ ) \ (mi))-packing of
KU ′,W whose reduced leave has a decomposition into an (mi−2)-path and
a 2-path whose end vertices are in W .

Proof. By Theorem 2.22, there exists an (m1, . . . ,mτ )-decomposition D of
KU ′,W . We can remove an mi-cycle from D to obtain the packing required by
(ii), so it remains to prove (i). Let P be a packing of KU ′,W obtained from D
by removing an mi-cycle and an mj-cycle. Assume that mi 6 mj. Let L be
the reduced leave of P . The proof divides into cases according to whether L
is connected.
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Case 1. Suppose that L is connected. Then L has at least one and at most mi

vertices of degree 4, and every other vertex of L has degree 2. Furthermore, if
L has exactly mi vertices of degree 4 then L has no cut vertex, since in this case
L has exactly mj vertices and contains an mj-cycle. So it can be seen that, by
applying [64, Lemma 3.4] and then [64, Lemma 3.5] to this packing, we can
obtain an ((m1, . . . ,mτ ) \ (mi,mj))-packing of KU ′,W with a reduced leave L′

of size mi + mj such that exactly one vertex of L′ has degree 4, every other
vertex of L′ has degree 2, and L′ has at most mi − 1 components. Then, by
applying [64, Lemma 3.2] we can obtain an ((m1, . . . ,mτ ) \ (mi,mj))-packing
of KU ′,W whose reduced leave has a decomposition into an mi-path and an
mj-path whose end vertices are in W (note that 4 6 mi 6 mj).
Case 2. Suppose that L is not connected. Then L must consist of two
vertex-disjoint cycles. Let x, y ∈ U ′ such that x and y are in distinct cycles
of L. By applying an (x, y)-switch we obtain an ((m1, . . . ,mτ ) \ (mi,mj))-
packing of KU ′,W whose reduced leave L′ is either an (mi + mj)-cycle or an
(mi,mj)-chain with link vertex in U ′. In either case it is easy to see that L′

has a decomposition into an mi-path and an mj-path whose end vertices are
in W .

Lemma 3.17. Let U ′ and W be sets such that |U ′| and |W | are even and
|W | > 8, and let ` and t be integers such that ` ∈ {2, 4, . . . , 12} and t ∈
{6, 8, . . . , |W | − 2}. Let M be a list of integers such that m ∈ {4, 6} for
all entries m in M and (

∑
M) + k + ` + t = |U ′||W |, where k = d t+2

3
ee

if t > 12 and k = 0 if t 6 10. If max(k + 2, `, 8) + t 6 2|U ′| + 2 and
(`, t, |U ′|, |W |) 6= (12, 6, 8, 8), there exists an (M,k)-packing of KU ′,W whose
reduced leave has a decomposition into an `-path and a t-path whose end vertices
are in W .

Proof. If ` ∈ {4, 6, . . . , 12}, then apply Lemma 3.16(i) taking m1, . . . ,mτ as
the list (M,k, `, t) reordered to be nondecreasing and (mi,mj) = (`, t). If
` = 2, then apply Lemma 3.16(ii) taking m1, . . . ,mτ as the list (M,k, t + 2)
reordered to be nondecreasing and mi = t+2. The condition that mτ 6 3mτ−1
holds by our definition of k. If |U ′| < |W |, then mτ−1 + mτ 6 2|U ′| + 2
holds because max(k + 2, `, 8) + t 6 2|U ′| + 2. If |W | < |U ′|, it is routine to
show that mτ−1 + mτ 6 2|W | + 2 holds by considering the cases ` = 2 and
` ∈ {4, 6, . . . , 12} separately. Similarly, if |W | = |U ′| then mτ−1 + mτ 6 2|W |
holds since (`, t, |U ′|, |W |) 6= (12, 6, 8, 8).

Lemma 3.18. Let U ′ and W be sets with |U ′|, |W | even, and let a, c, m and
t be nonnegative integers such that either

(i) (m, t) = (0, 0) and a+ c ∈ {3, . . . , |W |}; or

(ii) t ∈ {2, 4, . . . , bmce − 2} and a+ c ∈ {1, . . . , |W | −m+ t
2

+ 1}.
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Suppose there is an (M)-packing P of KU ′,W with a reduced leave L such that
degL(x) = 2 for each x ∈ V (L) ∩W and L is a union of edge-disjoint paths
P0, . . . , Pa+c such that

• P0 has length t, a of the paths P1, . . . , Pa+c have length 2, and the re-
maining c have length 4;

• there are vertices x0, . . . , xa+c ∈ W such that, for i ∈ {1, . . . , a+ c}, the
end vertices of Pi are xi−1 and xi; and

• the end vertices of P0 are x0 and xa+c (if (m, t) = (0, 0), xa+c = x0 and
P0 is trivial).

Let C be an (a + c + m − t)-cycle such that V (C) ⊆ W if (m, t) = (0, 0) and
V (C) ⊆ W ∪ {α} for some α /∈ U ′ ∪W if t > 0 (note that a + c + m − t ∈
{0} ∪ {3, . . . , |W |}). Then there exists an (M, 3a, 5c,m)-decomposition P ′ of
KU ′,W ∪ C that, if m > 0, includes an m-cycle containing m − t edges of C.
Furthermore, if |V (C)|+ t−2

2
6 |W | − 1 and c > 1, then P ′ includes a 5-cycle

that has exactly one edge of KW and has a vertex in W \ V (C).

Proof. It follows from (i) and (ii) that a+ c+m− t ∈ {3, . . . , |W |}. Let C be
such an (a+ c+m− t)-cycle. By permuting vertices in P , we can assume that
x0x1, x1x2, . . . , xa+c−1xa+c are consecutive edges in C (note that xa+c = x0 if
(m, t) = (0, 0) and that |E(C)| − (a + c) > 2 otherwise) and that no internal
vertices of P0 are in V (C). To see that we can do this note that, if t > 0, then
t−2
2

+ (a + c + m − t) 6 |W | by (ii). Furthermore, if |V (C)| + t−2
2

6 |W | − 1
and c > 1, we can ensure that some path of length 4 in {P1, . . . , Pa+c} has an
internal vertex in W \ V (C). Let P ′ be the (m− t)-path induced by the edges
of C other than x0x1, x1x2, . . . , xa+c−1xa+c (if (m, t) = (0, 0), then xa+c = x0
and P ′ is trivial). Then {P0 ∪ P ′} ∪ {Pi ∪ [xi−1, xi] : i = 1, . . . , a + c} is a
(3a, 5c,m)-decomposition of C ∪ L and the result follows.

Lemma 3.19. Let U ′ and W be sets such that |U ′| > 2 and |W | > 4 are even.
Let a, b, c, d and m be nonnegative integers such that

(i) d = 0 if |U ′| = 2;

(ii) 2a+ 4b+ 4c+ 6d+ t = |U ′||W | where t ∈ {0, 2, 4};

(iii) 2a+ 4c+ t 6 2|W |; and

(iv) either

– (m, t) = (0, 0) and a+ c ∈ {0} ∪ {3, . . . , |W |}; or

– t ∈ {2, 4}, m ∈ {t+2, . . . , |W |} and a+c ∈ {1, . . . , |W |−m+ t
2
+1}.
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Let C be an (a+c+m−t)-cycle such that V (C) ⊆ W if t = 0 and V (C) ⊆ W ∪
{α} for some α /∈ U ′∪W if t > 0 (note that a+c+m−t ∈ {0}∪{3, . . . , |W |}).
Then there exists a (3a, 4b, 5c, 6d,m)-decomposition of KU ′,W∪C that, if m > 0,
includes an m-cycle containing m− t edges of C.

Proof. If (a, c,m, t) = (0, 0, 0, 0), then the result follows from Theorem 1.20.
Thus, using (iv), we may assume that a + c + m − t ∈ {3, . . . , |W |} and
2a+ 4c+ t > 4.

Suppose there exists a (4b, 6d)-packing P ′ of KU ′,W with a reduced leave
L′ such that L′ is connected and degL′(x) = 2 for all x ∈ V (L′) ∩W . Then
|E(L′)| = 2a+4c+t by (ii). We claim that in this case L′ has a suitable decom-
position into paths so that we can complete the proof by applying Lemma 3.18
(with M = (4b, 6d)) to P ′. If |E(L′)| = 4, then (a, c, t) = (1, 0, 2) and L′ is a
4-cycle and has a suitable decomposition into two 2-paths. If |E(L′)| > 6 then,
because L′ is a connected even graph, it has a closed Eulerian trail. Because
L′ is bipartite and degL′(x) = 2 for all x ∈ V (L′)∩W , any subtrail of this trail
that begins at a vertex in V (L′) ∩W and has length 2 or 4 is a path. Thus, a
suitable decomposition of L′ into a 2-paths, c 4-paths and a t-path exists. So
it suffices to find a (4b, 6d)-packing of KU ′,W with a reduced leave L′ such that
L′ is connected and degL′(x) = 2 for all x ∈ V (L′) ∩W .

By applying Theorem 1.20 and removing cycles, we can obtain a (4b, 6d)-
packing P ′′ of KU ′,W . We can do this because |U ′||W | − 4b − 6d ∈ {0} ∪
{4, 6, . . . , |U ′||W |} by (ii) and (iv), and because |U ′||W |− 4b− 6d ≡ 0 (mod 4)
when |U ′| = 2 by (i). Let L′′ be the reduced leave of P ′′.
Case 1. Suppose degL′′(x) = 2 for all x ∈ V (L′′) ∩W . If L′′ is connected
then we are done. Otherwise, let y1, y2 ∈ V (L′′) ∩ U ′ such that y1 is in a
largest component of L′′ and y2 is in another component of L′′. By performing
a (y1, y2)-switch with origin adjacent to y2 we obtain a repacking of P ′′ whose
reduced leave has a component larger than any component in L′′. We can
repeat this process until we obtain a repacking of P ′′ whose reduced leave is
connected.
Case 2. Suppose degL′′(x) > 4 for some x ∈ V (L′′) ∩ W . By repeatedly
applying Lemma 3.5 we can obtain a repacking of P ′′ whose reduced leave has
no vertices of degree greater than 2 in W (note that |E(L′′)| 6 2|W | by (iii)).
Thus we can proceed as in Case 1 to complete the proof.

The following is a method for packing 3-cycles and 5-cycles into the com-
plete graph with a hole, where each cycle has exactly one pure edge. It will
have a similar role to Lemma 2.20 in Chapter 2.

Lemma 3.20. Let W be a set of even size w > 6, and let a and c be non-
negative integers such that a is even and (a, c) 6= (0, 0). Let n and b be the
integers such that a + 2c = nw − 2b and 0 6 b 6 w−2

2
, and let U ′ be a set
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such that U ′ ∩ W = ∅ and |U ′| = 2n. Let `1, . . . , `n be integers such that
`i ∈ {w2 , . . . , w} for i ∈ {2, . . . , n}, `1 ∈ {12(w − 2b), . . . , w − 2b} \ {1, 2} and
`1 + · · · + `n = a + c. Then, for any edge-disjoint cycles C1, . . . , Cn in KW

with lengths `1, . . . , `n, there exists a (3a, 5c)-packing of KU ′,W ∪ C1 ∪ · · · ∪ Cn
whose reduced leave is a subgraph of KU ′,W isomorphic to K2,2b. Furthermore,
if a + 2c 6≡ 2 (mod w), and if c 6≡ 2 (mod w

2
) when a = 0, then there do exist

such integers `1, . . . , `n.

Proof. Suppose first that we are given a list `1, . . . , `n satisfying our hy-
potheses. Let U ′ = {p1, . . . , p2n}. By Lemma 3.19, there is a (32`i−w, 5w−`i)-
decomposition Di of K{p2i−1,p2i},W ∪ Ci for i ∈ {2, . . . , n}. Let W1 be a set of
size w − 2b such that V (C1) ⊆ W1 ⊆ W . Also by Lemma 3.19, there is a
(32`1−w+2b, 5w−2b−`1)-decomposition D1 of K{p1,p2},W1 ∪C1. Using the facts that
nw−2b = a+2c and that `1 + · · ·+`n = a+c, it can be seen that D1∪· · ·∪Dn
is a (3a, 5c)-packing of KU ′,W ∪C1∪· · ·∪Cn. The reduced leave of this packing
is K{p1,p2},W\W1 , which is isomorphic to K2,2b.

Now suppose that a + 2c 6≡ 2 (mod w) and that c 6≡ 2 (mod w
2
) if a = 0.

Note that, because a+ 2c = nw − 2b, the former implies that w − 2b 6= 2 and
the latter implies that w − 2b 6= 4 if a = 0. Let `1 = w − 2b if a > w − 2b and
let `1 = 1

2
(w−2b+a) if a < w−2b. Then `1 ∈ {12(w−2b), . . . , w−2b}\{1, 2}.

To show that there exist integers `2, . . . , `n such that `i ∈ {w2 , . . . , w} for
i ∈ {2, . . . , n} and `2 + · · ·+ `n = a+ c− `1, and hence to complete the proof,
it suffices to show that w

2
(n− 1) 6 a+ c− `1 6 w(n− 1). If a > w − 2b, then

a+ c− `1 = a+ c− w + 2b and

w
2
(n− 1) = 1

2
(a+ 2c−w+ 2b) 6 a+ c−w+ 2b 6 a+ 2c−w+ 2b = w(n− 1),

where both equalities follow from a+ 2c = nw− 2b, the first inequality follows
because a > w − 2b and the second inequality follows because c > 0. If
a < w − 2b, then

a+ c− `1 = 1
2
(a+ 2c− w + 2b) = w

2
(n− 1),

where the first equality follows because `1 = 1
2
(w − 2b + a) and the second

equality follows because a+ 2c = nw − 2b.

Lemma 3.21. Let P = {C1, . . . , Cr, X1, . . . , X3j} be an (M, 43j)-decomposition
of an even graph G where X1, . . . , X3j are 4-cycles. If there is a set S of
four vertices in G that are pairwise twin and pairwise nonadjacent such that
|V (Xi) ∩ S| = 2 for i ∈ {1, . . . , 3j}, then there is an (M, 62j)-decomposition
P ′ = {C ′1, . . . , C ′r, Y ′1 , . . . , Y ′2j} of G such that Y ′1 , . . . , Y

′
2j are 6-cycles and, for

each i ∈ {1, . . . , r}, V (C ′i) = πi(V (Ci)) for some permutation πi of V (G) that
fixes each vertex in V (G)\S. Furthermore, |V (Y ′i )∩S| = 3 for i ∈ {1, . . . , 2j}.
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Proof. The result is trivial if j = 0, so we may assume that j > 1. We claim
that, given any cycle packing P? of G whose reduced leave L? is a subgraph of
KS,V (G)\S with exactly 12 edges, we can apply a sequence of switches on vertices
in S to obtain a repacking whose reduced leave has a (6, 6)-decomposition. If
this is the case, then we can begin with P and j times repeat the process
of removing three 4-cycles that each contain two vertices of S, applying such
a sequence of switches, and adding the two 6-cycles in the resulting reduced
leave to the resulting repacking. Because we only apply switches on vertices in
S, it follows from Lemma 1.22 that we will be able to find appropriate 4-cycles
at each stage, and the final result will be an (M, 62j)-decomposition of G with
the required properties. So it suffices to prove our claim.

Let P? be a cycle packing of G whose reduced leave L? is a subgraph of
KS,V (G)\S with exactly 12 edges. Note that L? is even because G is even. If
L? contains a 6-cycle, then L? has a (6, 6)-decomposition and we are finished.
So we may suppose that L? has no 6-cycle but has a (4, 8)-decomposition or a
(4, 4, 4)-decomposition.

Case 1. Suppose that no vertex in S has degree 6 in L? and that L? is
connected. It is routine to check that L? contains a path [x0, . . . , x6] of length
6 and a vertex y /∈ {x0, . . . , x6} such that x0, x6 ∈ S and x0y and x2y are
edges in L?. By performing the (x0, x6)-switch with origin x1 we obtain a
repacking of P? whose reduced leave has a (6, 6)-decomposition with each
of the 6-cycles containing exactly three vertices from S and we are finished.
(Note that {x0, x2, x4, x6} = S and if the terminus of the switch is x5 then the
reduced leave contains the 6-cycle (x0, y, x2, . . . , x5), and otherwise it contains
the 6-cycle (x1, . . . , x6).)

Case 2. Suppose that no vertex in S has degree 6 in L? and that L? is
disconnected. Then L? is a vertex-disjoint union of a copy of K2,4 and a 4-
cycle. Let x, y ∈ S be vertices such that degL?(x) = 4 and degL?(y) = 2. By
performing an (x, y)-switch whose origin is adjacent to x we obtain a repacking
of P? whose leave satisfies the conditions of Case 1 and we can proceed as we
did in that case.

Case 3. Suppose that a vertex in S has degree at least 6 in L?. By repeatedly
applying Lemma 3.5, we can obtain a repacking of P? whose leave either has
a (6, 6)-decomposition or satisfies the conditions of Case 1 or Case 2 (note
that each application of Lemma 3.5 is simply a switch on vertices in S). In
the former case we are finished and in the latter we can proceed as we did in
Case 1 or Case 2.
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3.2.2 Lists with few odd entries

Lemma 3.22. Let u > 5 and w > 8 be integers such that u is odd and w is
even. Let N be a list of integers and let a, b, c and d be nonnegative integers
such that the following hold.

(i) (
∑
N)− t+ a+ c =

(
w+1
2

)
, where t ∈ {0, 2, . . . , w − 2};

(ii) 2a + 4b + 4c + 6d + k + t = (u − 1)w, where k = d t+2
3
ee if t > 12 and

k = 0 otherwise;

(iii) 3 6 ` 6 min(u,w) for each entry ` in N , and d = 0 if u = 5;

(iv) if t > 0, there is some entry m in N such that m > t+ 2; and

(v) either

– a+ c > 6, a+ 2c 6 w, and b > 1; or

– a+ c = 3, (m, t) 6= (w, 2), and (a, c, t, u, w) 6= (0, 3, 6, 9, 8).

Then there exists an (N, 3a, 4b, 5c, 6d, k)-decomposition of Ku+w −Ku that in-
cludes cycles with lengths (3a, 4b, 5c, 6d, k) that each contain at most one pure
edge.

Proof. Let U and W be disjoint sets of sizes u and w and let U1 ⊆ U with
|U1| = 1. Observe that KU∪W −KU = KU\U1,W ∪KW∪U1 . Let m = 0 if t = 0.
We first choose integers a2, a3, c2 and c3. Let (a3, c3) be the leftmost pair from
the appropriate row of the table below such that a3 6 a and c3 6 c, and let
a2 = a− a3 and c2 = c− c3. It is routine to check using (v) that some pair in
the appropriate row will always satisfy these conditions.

case (a3, c3)
a+ c = 3 (a, c)
a+ c > 6, t > 0, a even (0, 1), (2, 0)
a+ c > 6, t > 0, a odd (1, 0)
a+ c > 6, t = 0, a even (0, 0)
a+ c > 6, t = 0, a odd (3, 0), (1, 2)

This choice ensures that a2, a3, c2 and c3 are nonnegative integers such that
a2 is even, a2 + a3 = a, c2 + c3 = c, 2a3 + 4c3 6 12, a3 + c3 ∈ {1, 2, 3} if t > 0,
and a3 + c3 ∈ {0, 3} if t = 0.

We now construct packings P1,P2,P3 as follows (we justify that these pack-
ings exist later).

• P1 is an (N \(m))-packing of KW∪U1 . The reduced leave of P1 is C∗∪C†,
where C∗ is an (a2 + c2)-cycle such that U1 * V (C∗) and C† is an
(m− t+ a3 + c3)-cycle such that U1 * V (C†) if t = 0.
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Let U2 ⊆ U \ U1 with |U2| = 0 if (a2, c2) = (0, 0) and |U2| = 2 otherwise.
Let b2 = 1

4
(|U2|w − 2a2 − 4c2). By (v) and the choice of a2 and c2, we have

b2 ∈ {0, . . . , w−42
}.

• If |U2| = 2, then P2 is a (3a2 , 4b2 , 5c2)-decomposition of KU2,W ∪ C∗ and,
if b2 > 0, the union of the 4-cycles in P2 is a copy of K2,2b2 . If |U2| = 0,
then P2 = ∅.

• P3 is a (3a3 , 4b−b2+3j, 5c3 , 6d−2j, k,m)-decomposition of KU3,W ∪C†, where
U3 = U \ (U1 ∪ U2) and

j =

{
0 if b > b2,
d1
3
(b2 − b)e otherwise.

Furthermore, if m > 0, there is an m-cycle in P3 that contains m − t
edges of C†.

The union P ′ = P1∪P2∪P3 will be an (N, 3a, 4b+3j, 5c, 6d−2j, k)-decomposit-
ion of KU∪W−KU . Using (i), we can see that P ′ will include cycles with lengths
N that contain all but a+c edges of KW∪U1 (the

∑
N−m edges in cycles in P1

are all in KW∪U1 , as are m− t edges in an m-cycle in P3 if m > 0). So, because
each odd cycle in P ′ must contain at least one edge of KW and because KW is
a subgraph of KW∪U1 , P ′ will include cycles with lengths (3a, 4b+3j, 5c, 6d−2j, k)
that each contain at most one edge of KW .

If b > b2, then j = 0 and this will complete the proof. Otherwise b2 > b
and we will be able to apply Lemma 3.21 to P ′ (with S ⊆ U2 ∪ U3) to obtain
a decomposition P with the required properties provided we can find 3j 4-
cycles in P ′ that meet the hypotheses of Lemma 3.21. If 3j = b2 − b, we will
be able to use 3j 4-cycles from P2. If 3j ∈ {b2 − b + 1, b2 − b + 2}, then
b2 > 3j+ b−2 > 3j−1 (since b > 1) and we will be able to use 3j−1 4-cycles
from P2 and any one 4-cycle from P3. (It must be the case that b > 1 by (v)
because b2 > b implies (a2, c2) 6= (0, 0) and a + c > 6 by our choices of b2,
a2 and c2.) Note that Lemma 3.21 ensures P will include cycles with lengths
(3a, 4b, 5c, 6d, k) that each contain at most one edge of KW .

So it remains to establish the existence of the packings P1,P2,P3. In what
follows we will often use the facts that w > 8 and that either (m, t) = (0, 0) or
t < m 6 w (the latter follows from (iv)).

Proof that P1 exists. First observe that a2 + c2 ∈ {0} ∪ {3, . . . , w} and
m− t+ a3 + c3 ∈ {0}∪{3, . . . , w+ 1} by (iii), (iv), (v), our choice of a3 and c3
and the definition of m. Then, by Theorem 1.4, a packing with the required
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properties exists by (iii) and because∑
(N \ (m)) + |E(C†)|+ |E(C∗)|

= (
(
w+1
2

)
+ t− (a+ c)−m) + (m− t+ a3 + c3) + (a2 + c2)

=
(
w+1
2

)
where the first equality follows by (i). If t = 0, then |V (C∗)| + |V (C†)| =
a + c 6 w by (v) and we can permute the vertices of this packing so that
U1 * V (C∗) ∪ V (C†). If t > 0, then |V (C∗)| = a2 + c2 6 w by (v) and we can
permute the vertices of this packing so that U1 * V (C∗).
Proof that P2 exists. This is trivial if (a2, c2) = (0, 0) and |U2| = 0, so
assume that |U2| = 2 and (a2, c2) 6= (0, 0). Then the definition of b2 implies that
a2 + 2c2 = w− 2b2. So the existence of P2 follows immediately by Lemma 3.20
because a2 + c2 ∈ {12(w − 2b2), . . . , w − 2b2} \ {1, 2} by (v), and our choice of
a2 and c2.
Proof that P3 exists. We will show that P3 exists using either Lemma 3.19 (if
t ∈ {0, 2, 4}) or Lemmas 3.17 and 3.18 (if t > 6). Note that |U3| = u−|U2|−1 ∈
{u − 3, u − 1} and hence |U3| > 4, except when u = 5 and |U2| = 2. We first
establish two useful facts.

(a) b − b2 + 3j >>> 0 and d − 2j >>> 0. Obviously b − b2 + 3j > 0 by the
definition of j, and clearly d− 2j > 0 if b > b2 and hence j = 0. So it remains
to show that d− 2j > 0 when b < b2. Then j = d1

3
(b2 − b)e. Observe that

2a3 + 4b+ 4c3 + 6d+ k + t = w|U3|+ 4b2 (3.2.1)

by (ii) and the definitions of a3, c3, b2 and U3. So it cannot be that u = 5
because then b > b2 by (3.2.1) (since d = 0 by (iii), |U3| > 2, 2a3 + 4c3 6 12
and, by (iii) and (iv), t 6 2 and k = 0). So assume that u > 7 and hence
|U3| > 4. Then it follows from (3.2.1) that d > 2

3
(b2 − b) using the facts that

2a3 + 4c3 6 12 and k 6 t 6 w − 2. So we have d− 2j > 0.

(b) 2a3 +4(b−b2 +3j)+4c3 +6(d−2j)+k+ t = |U3|w. Observe that

2a3 + 4(b− b2 + 3j) + 4c3 + 6(d− 2j) + k + t

= (2a+ 4b+ 4c+ 6d+ k + t)− (2a2 + 4b2 + 4c2)

= |U3|w

where the final equality follows by (ii) and because 2a2 + 4b2 + 4c2 = |U2|w by
the definitions of U2 and b2.

Case 1. Suppose that t ∈ {0, 2, 4}. Then k = 0. We claim that P3 exists by
Lemma 3.19. To see that we can apply Lemma 3.19, note that |U3| > 2 and
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that d = 0 if |U3| = 2 by (iii). Also, using 2a3 + 4c3 6 12, 2a3 + 4c3 + t 6 2w.
Finally, a3+c3 ∈ {0, 3} if t = 0 and a3+c3 ∈ {1, . . . , w−m+ t

2
+1} if t ∈ {2, 4}

by (v) and our choice of a3 and c3.
Case 2. Suppose that t > 6. Then u > 9 because u > m > 8 by (iii) and
(iv). Also, |U3| > u − 3 > 6. By Lemma 3.18, to show that P3 exists it
suffices to find a (4b−b2+3j, 6d−2j, k)-packing of KU3,W whose reduced leave has
a decomposition into a t-path and a (2a3 + 4c3)-path with end vertices in W
(note that 1 6 a3 + c3 6 3 6 w −m + t

2
+ 1). Also note that, since KU3,W is

an even graph, such a leave must be connected.
By Lemma 3.17, to find such a packing it suffices to show that max(k +

2, 2a3 + 4c3, 8) + t 6 2|U3| + 2 and (2a3 + 4c3, t, |U3|, w) 6= (12, 6, 8, 8) (note
that 2a3 + 4c3 ∈ {2, 4, . . . , 12}). We have max(k + 2, 8) + t 6 2|U3| + 2
because t 6 u − 3 (by (iii) and (iv)), k 6 t+7

3
and |U3| > u − 3. We have

2a3+4c3+t 6 2|U3|+2 because t 6 u−3, 2a3+4c3 6 12 and either 2a3+4c3 6 6
or |U3| = u− 1 (by our choice of a3 and c3 and the definitions of U2 and U3).
It follows directly from (v) that (2a3 + 4c3, t, |U3|, |W |) 6= (12, 6, 8, 8).

3.2.3 Lists with many large entries

Lemma 3.23. Let u > 7 and w > 8 be integers such that u is odd and w is
even. Let N be a list of integers and let a, b, c and d be nonnegative integers
such that the following conditions hold.

(i) (
∑
N)− t+ a+ c =

(
w
2

)
, where t ∈ {2, 4, . . . , w − 2};

(ii) 2a + 4b + 4c + 6d + k + t = uw, where k = d t+2
3
ee if t > 12 and k = 0

otherwise;

(iii) 3 6 ` 6 min(u,w) for each entry ` in N ;

(iv) a > w
2

+ 1, b > 1 and c 6 1;

(v) there is some entry m > max(t+ 2, 7) in N such that uw > (a+ c)bmce
if a+ 2c > 3w

2
+ 3;

(vi) (m, t) 6= (w, 2), and if a > w
2

+ 4, (m, t) /∈ {(w − 1, 2), (w, 4)}.

Then there exists an (N, 3a, 4b, 5c, 6d, k)-decomposition of Ku+w −Ku that in-
cludes cycles with lengths (3a, 4b, 5c, 6d, k) that each contain at most one pure
edge.

Proof. Let U and W be disjoint sets of sizes u and w and observe that
KU∪W −KU = KU,W ∪ KW . We first choose integers a2, a3, c2 and c3. Let
(a3, c3) be the leftmost pair from the appropriate row of the table below such
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that a3 6 a, c3 6 c, and a2 + 2c2 6≡ 2 (mod w) where a2 = a − w
2
− a3 and

c2 = c− c3. It is routine to check using (iv) that some pair in the appropriate
row will always satisfy these conditions.

case (a3, c3)
a− w

2
even (0, 1), (2, 0), (2, 1), (4, 0)

a− w
2

odd (1, 0), (1, 1), (3, 0)

This choice ensures that a2, a3, c2 and c3 are nonnegative integers such that
a2 is even, w

2
+a2 +a3 = a, c2 + c3 = c, a3 + c3 ∈ {1, 2, 3, 4}, and 2a3 + 4c3 6 8.

We now construct packings P0, . . . ,P3 as follows (we justify that these
packings exist later).

• P0 is an (N \ (m))-packing of KW − I, where I is a 1-factor on vertex
set W . The reduced leave of P0 is a union of cycles C† ∪ C1 ∪ · · · ∪ Cn,
where

– n and b2 are the nonnegative integers such that a2 + 2c2 = nw−2b2
and 0 6 b2 6 w−4

2
(note that a2 + 2c2 6≡ 2 (mod w));

– C† is an (m− t+ a3 + c3)-cycle;

– if a2 + c2 > 0, |V (Ci)| ∈ {w2 , . . . , w} for 2 6 i 6 n, and |V (C1)| ∈
{1
2
(w − b2), . . . , w − b2} \ {1, 2};

– |V (C1)|+ · · ·+ |V (Cn)| = a2 + c2.

The cycle lengths |V (C1)|, . . . , |V (Cn)| exist by Lemma 3.20, noting that
c2 6 1 by (iv), that a2 is even, and that a2 + 2c2 6≡ 2 (mod w).

• P1 is a (3w/2)-decomposition of KU1,W ∪I for some U1 ⊆ U with |U1| = 1.

• P2 is a (3a2 , 4b2 , 5c2)-decomposition of KU2,W ∪C1∪ · · · ∪Cn, where U2 ⊆
U \ U1 with |U2| = 2n and, if b2 > 0, the union of the 4-cycles in P2 is a
copy of K2,2b2 .

• P3 is a (3a3 , 4b−b2+3j, 5c3 , 6d−2j, k,m)-decomposition of KU3,W ∪C†, where
U3 = U \ (U1 ∪ U2) and

j =

{
0 if b > b2,
d1
3
(b2 − b)e otherwise.

Furthermore, if m > 0, there is an m-cycle in P3 that contains m − t
edges of C†.
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The union P ′ = P0∪· · ·∪P3 will be an (N, 3a, 4b+3j, 5c, 6d−2j, k)-decomposit-
ion of KU∪W−KU . Using (i), we can see that P ′ will include cycles with lengths
N that contain all but a+ c edges of KW (the

∑
N −m edges in cycles in P0

are all in KW , as are m− t edges in an m-cycle in P3 if m > 0). So, because
each odd cycle in P ′ must contain at least one edge of KW , P ′ will include
cycles with lengths (3a, 4b+3j, 5c, 6d−2j, k) that each contain at most one edge
of KW .

If b > b2, then j = 0 and this will complete the proof. Otherwise b2 > b
and we will be able to apply Lemma 3.21 to P ′ (with S ⊆ U2 ∪ U3) to obtain
a decomposition P of KU∪W − KU with the required properties provided we
can find 3j 4-cycles in P ′ that meet the hypotheses of Lemma 3.21. If 3j =
b2 − b, then b2 > 3j and we will be able to use 3j 4-cycles from P2. If
3j ∈ {b2 − b + 1, b2 − b + 2}, then b2 > 3j − 1 because b > 1 by (iv) and we
will be able to use 3j − 1 4-cycles from P2 and any one 4-cycle from P3. Note
that Lemma 3.21 ensures P will include cycles with lengths (3a, 4b, 5c, 6d, k)
that each contain at most one edge of KW .

So it remains to establish the existence of the packings P0, . . . ,P3. It is
straightforward to see that P1 exists.

Proof that P0 exists. First observe that m − t + a3 + c3 ∈ {3, . . . , w} by
(iii), (v), (vi) and our choices of a3 and c3. Then, by Theorem 1.4, a packing
with the required properties exists by (iii) and because∑

(N \ (m)) + |E(C†)|+ |E(C1)|+ · · ·+ |E(Cn)|
= (
(
w
2

)
+ t− (a+ c)−m) + (m− t+ a3 + c3) + (a2 + c2)

=
(
w
2

)
− w

2
.

The first equality follows by (i) and the definitions of C† and C1, . . . , Cn. The
second equality follows because a2 + a3 + w

2
= a and c2 + c3 = c.

Proof that P2 exists. This is trivial if (a2, c2) = (0, 0). If (a2, c2) 6= 0,
then this follows immediately by Lemma 3.20 because |V (Ci)| ∈ {w2 , . . . , w}
for 2 6 i 6 n, |V (C1)| ∈ {12(w − b2), . . . , w − b2} \ {1, 2} and |V (C1)| + · · · +
|V (Cn)| = a2 + c2.

Proof that P3 exists. We will show that P3 exists using either Lemma 3.19
(if t ∈ {2, 4}) or Lemmas 3.17 and 3.18 (if t > 6). We first establish some
useful facts. Recall that |E(C†)| = m− t+ a3 + c3 and note that m > t.

(a) b − b2 + 3j >>> 0 and d − 2j >>> 0. Obviously b − b2 + 3j > 0 by the
definition of j and we can establish that d− 2j > 0 by a similar argument to
the one used in the proof of Lemma 3.22.
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(b) 2a3 +4(b−b2 +3j)+4c3 +6(d−2j)+k+ t = w|U3|. Observe that

2a3 + 4(b− b2 + 3j) + 4c3 + 6(d− 2j) + k + t

= 2(a− a2 − w
2
) + 4(b− b2) + 4(c− c2) + 6d+ k + t

= (2a+ 4b+ 4c+ 6d+ k + t)− (2a2 + 4b2 + 4c2)− w
= w|U3|.

The first equality follows because a2 + a3 + w
2

= a and c2 + c3 = c. The
final equality follows because 2a+ 4b+ 4c+ 6d+ k + t = uw by (ii), w|U2| =
2a2 + 4b2 + 4c2 by the definition of U2, and |U3| = u− |U2| − 1.

(c) |U3| >>> 4. Recall |U3| = u−2n−1. If n 6 1, then |U3| > 4 because u > 7.
So suppose n > 2. By the definition of n, this implies that a2 + 2c2 > w + 4
and hence that a + 2c > 3w

2
+ 4 because a > a2 + w

2
and c > c2. Thus, using

(v),
uw > (a+ c)bmce > (w

2
+ a2 + c2)bmce.

Now 2a2 + 4c2 + 4b2 = 2nw by the definitions of n and b2, and hence a2 + c2 =
nw − 2b2 − c2. Observe that c2 6 1 by (iv) and so a2 + c2 > nw − 2b2 − 1.
Using this fact, we have uw > ((n+ 1

2
)w − 2b2 − 1)bmce. Rearranging yields

u− 2n− 1 > (n+ 1
2
)(bmce − 2)− 1

w
(2b2 + 1)bmce.

Because b2 6 w−4
2

and hence 1
w

(2b2 + 1) < 1, we see that

u− 2n− 1 > (n− 1
2
)(bmce − 2)− 2. (3.2.2)

So because n > 2 and bmce > 6 by (v), we have |U3| = u− 2n− 1 > 4.

Case 1. Suppose that t ∈ {2, 4}. Then k = 0. So P3 exists by Lemma 3.19
because |U3| > 4, a3+c3 ∈ {1, 2, 3, 4}, 2a3+4c3 6 8, and w−m+ t

2
+1 > a3+c3

by (vi) (by our choice of a3 and c3, a > w
2

+ 4 if a3 + c3 = 4).
Case 2. Suppose that t > 6. Then u > 9 because u > m > 8 by (iii) and (v).
By Lemma 3.18, to show that P3 exists it suffices to find a (4b−b2+3j, 6d−2j, k)-
packing of KU3,W whose reduced leave has a decomposition into a t-path and a
(2a3 + 4c3)-path (note that a3 + c3 ∈ {1, 2, 3, 4}). Also note that, since KU3,W

is an even graph, such a leave must be connected.
Noting that 2a3+4c3 6 8, by Lemma 3.17, to find such a packing it suffices

to show that max(k + 2, 8) + t 6 2|U3|+ 2. Note that 2|U3|+ 2 = 2u− 4n. If
n ∈ {0, 1}, this holds because u > 9, k 6 t+7

3
, and t 6 u − 3 by (iii) and (v).

So suppose that n > 2. We have

2u− 4n > (2n− 1)(bmce − 2)− 2 > 3t− 2,
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where the first inequality follows by multiplying (3.2.2) by 2, and the second
holds because n > 2 and bmce > t+2 by (v). Thus max(k+2, 8)+ t 6 2u−4n
holds because t > 6 and k 6 t+7

3
.

3.2.4 Lists with few large entries

Lemma 3.28 is the most intricate of our base decomposition lemmas and re-
quires some more preliminary results. Lemma 3.24 is an edge-colouring result
that is easily obtained by combining a theorem of Fournier [54] with the well-
known result that any graph with chromatic index at most ` has a proper
edge-colouring with ` colours such that the sizes of any two colour classes dif-
fer by at most one (see [74]). Lemma 3.25 will allow us to decompose the union
of K3,w and a graph on the part of size w whose vertices have odd degrees.
This is useful when a is small. Lemmas 3.26 and 3.27 are more results giving
cycle packings of the union of a complete bipartite graph with one or more
cycles. The hypotheses of Lemmas 3.26 and 3.27 both concern the quantity
ρ = 2a+ 4c+ t. This is the number of edges of KU,W that will be used in the
m-cycle that contains m − t edges of KW , and the a 3-cycles and c 5-cycles
that each contain one edge of KW .

Lemma 3.24 ([54, 74]). Let G be a graph with maximum degree `. If the
subgraph of G induced by the vertices of degree ` contains no cycle, then G has
a proper edge-colouring with ` colours such that the sizes of any two colour
classes differ by at most one.

Lemma 3.25. Let G be a graph with vertex set W such that |E(G)| = d3
4
|W |e

and each vertex of G has degree 1 or 3. Let {p1, p2, p3} be a set of three vertices
not in W and let αβ be an edge of G. Then there exists a (5b3|W |/4c)-packing
P of K{p1,p2,p3},W ∪G such that each cycle in P contains exactly one edge from
G and

• if |W | ≡ 0 (mod 4), then the reduced leave of P is empty;

• if |W | ≡ 2 (mod 4), then the reduced leave of P is the 3-cycle (p3, α, β).

Proof. Let w = |W |. Let B = {x ∈ W : degG(x) = 3} and note that
|B| = d3w

4
e − w

2
.

Case 1. Suppose that w ≡ 0 (mod 4). Then |E(G)| = 3w
4

. Let E = E(G) and
let W ′ = {ve : e ∈ E} be a set of |E| vertices disjoint from W ∪ {p1, p2, p3}.
Let H be the graph obtained from G by adding the vertices in W ′ and then
replacing each edge yz ∈ E with the two edges yvyz and zvyz.

Note that the maximum degree of H is 3, no two vertices of degree 3 are
adjacent in H, and |E(H)| = 3w

2
. So by Lemma 3.24 there exists a proper 3-

edge colouring γ of H with colour set {1, 2, 3} such that |γ−1(i)| = 1
3
|E(H)| =
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w
2

for i ∈ {1, 2, 3}. For each vertex x ∈ V (H) we denote by γ(x) the set
of colours assigned by γ to the edges incident with x. For i ∈ {1, 2, 3}, let
W ′
i = {x ∈ V (H) : γ(x) = {1, 2, 3} \ {i}} and Ai = {x ∈ W : γ(x) = {i}}. Let

A = {x ∈ W : degG(x) = 1}.
We shall show that there is a bijection f : W ′ → A such that f(W ′

i ) = Ai
for each i ∈ {1, 2, 3}. Then

P = {(pγ(yvyz), y, z, pγ(zvyz), f(vyz)) : yz ∈ E}

will form a packing of K{p1,p2,p3},W ∪G with |E| 5-cycles, each of which contains
four edges of K{p1,p2,p3},W and one edge in E. Thus the reduced leave of P will
be empty. So it suffices to show that such a bijection f exists, and hence it
suffices to show that |W ′

i | = |Ai| for i ∈ {1, 2, 3}.
Obviously |W ′

1| + |W ′
2| + |W ′

3| = |E|. Because each edge of H is incident
with exactly one vertex in W ′, we have |γ−1(k)| = |W ′

i | + |W ′
j| for {i, j, k} =

{1, 2, 3}. So, because the colour classes of γ have equal size, it follows that
|W ′

1| = |W ′
2| = |W ′

3| = 1
3
|E| = w

4
. Furthermore, for any {i, j, k} = {1, 2, 3},

we have 2|γ−1(i)| = |Ai|+ |W ′
j|+ |W ′

k|+ |B| by considering the total degree of
the graph induced by the colour class γ−1(i). Solving for |Ai|, it follows that
|A1| = |A2| = |A3| = 1

3
|A| = w

4
.

Case 2. Suppose that w ≡ 2 (mod 4). Then |E(G)| = 3w+2
4

. The proof
proceeds as in Case 1 with the following exceptions. We let E = E(G) \ {αβ},
so that |E| = 3w−2

4
and again |E(H)| = 3w

2
. At most one pair of vertices of

degree 3 are adjacent in H, so Lemma 3.24 can still be applied and again each
colour class of γ has size w

2
. We may assume without loss of generality that

γ(αβ) = 3. The reduced leave of the packing P will be the 3-cycle {p3, α, β}.
Because each edge of H except αβ is incident with exactly one vertex in W ′, we
find |W ′

1| = |W ′
2| = w−2

4
and |W ′

3| = w+2
4

. We deduce that |A1| = |A2| = w−2
4

and |A3| = w+2
4

.

Lemma 3.26. Let U ′ and W be sets such that |U ′| > 2 and |W | > 6 are even,
let (m, t) ∈ {(0, 0), (4, 2), (5, 2), (6, 2), (6, 4)}, let a, b, c and d be nonnegative
integers, and let ρ = 2a+ 4c+ t. Suppose that

(i) d = 0 if |U ′| = 2;

(ii) ρ+ 4b+ 6d = |U ′||W |;

(iii) ρ ∈ {0} ∪ {4, 6, . . . , 2|W |};

(iv) t = 2 when ρ = 4, and (a, c) /∈ {(0, 2), (1, 1)} when ρ ∈ {6, 8} and t = 0;
and

(v) if t ∈ {2, 4} and ρ = 2|W |−2i for some i ∈ {0, 1, 2}, then m 6 c+t+i+1.
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Let C be an (a+c+m−t)-cycle such that V (C) ⊆ W (note that a+c+m−t ∈
{0} ∪ {3, . . . , |W |}). Then there exists a (3a, 4b, 5c, 6d,m)-decomposition of
KU ′,W ∪ C that, if m > 0, includes an m-cycle containing m− t edges of C.

Proof. The result follows immediately from Lemma 3.19. To see that hy-
pothesis (iv) of Lemma 3.19 is satisfied when t ∈ {2, 4}, it may help to note
the following facts. If t ∈ {2, 4} and ρ = 2|W | − 2i for some i ∈ {0, 1, 2},
then c + t + i + 1 = |W | + t

2
+ 1 − a − c by the definition of i, and hence

m 6 c + t + i + 1 implies |W | − m + t
2

+ 1 > a + c. If t ∈ {2, 4} and
ρ 6 2|W | − 6, then a + c 6 |W | − 3 − t

2
because ρ 6 2|W | − 6, and hence

a+ c 6 |W | −m+ t
2

+ 1 because (m, t) ∈ {(4, 2), (5, 2), (6, 2), (6, 4)}.
Lemma 3.27. Let U ′ and W be sets with |U ′|, |W | even, |U ′| > 4 and
|W | > 10, let (m, t) ∈ {(0, 0), (4, 2), (5, 2), (6, 2), (6, 4)}, and let a, b, c and
d be nonnegative integers, and let ρ = 2a+ 4c+ t. Suppose that

(i) ρ+ 4b+ 6d = |U ′||W |;

(ii) ρ ∈ {2|W | − 4, 2|W | − 2, . . . , 4|W |}, t = 2 if ρ ∈ {2|W | − 4, 2|W | − 2},
and t ∈ {2, 4} if ρ = 2|W |; and

(iii) if ρ > 4|W | − 6 and t ∈ {2, 4} then c > 3.

Then there are integers `1, `2 ∈ {3, . . . , w} such that `1 + `2 = a + c + m − t
and, for any edge-disjoint cycles C1 and C2 in KW with lengths `1 and `2,

• if |U ′| > 6 or d is even, there exists a (3a, 4b, 5c, 6d,m)-decomposition P
of KU ′,W ∪ C1 ∪ C2;

• if |U ′| = 4, d is odd and c > 1, there exists a (3a, 4b, 5c−1, 6d−1,m)-packing
P of KU ′,W ∪ C1 ∪ C2 whose reduced leave contains exactly one edge of
KW and has a (3, 4, 4)-decomposition;

• if |U ′| = 4, d is odd and c = 0, there exists a (3a−1, 4b, 6d−1,m)-packing
P of KU ′,W ∪ C1 ∪ C2 whose reduced leave contains exactly one edge of
KW , has a (4, 5)-decomposition, and has a vertex of degree 4 in W .

Furthermore, if m > 0, then in each case there is an m-cycle in P that contains
m− t edges of KW (or C2).

Proof. Let w = |W |. Let U ′1 ⊆ U ′ with |U ′1| = 2 and let U ′2 = U ′ \ U ′1. Let
δ = 1 if d is odd and δ = 0 if d is even. Note that, by (i),

ρ+ 2δ ≡ 0 (mod 4). (3.2.3)

We will select values for a1, b1, c1, a2, b2, c2 and d2 such that a1 +a2 +c1 +c2 =
a + c according to the following tables (the criteria for the cases are given
below).
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case a1 b1 c1

1 min(bace, w) 0 w−a1
2

2 min(bace, w − 4) 2 w−a1
2
− 2

3 min(bace, w − 4) 2 w−a1
2
− 2

4 min(ba+ δce, w) 0 w−a1
2

5 max(0, w − 4− 2c+ 2δ) 2 w−a1
2
− 2

6 w − 2δ δ 0

7 w − 4 2 0

case a2 b2 c2 d2

1 a− a1 b c− c1 d

2 a− a1 b− 2 c− c1 d

3 a− a1 b+ 1 c− c1 d− 2

4 a+ δ − a1 b+ 3(d−δ)
2

+ 2δ c− δ − c1 0

5 a+ δ − a1 b+ 3(d−δ)
2

+ 2δ − 2 c− δ − c1 0

6 a− δ − a1 b+ 3(d−δ)
2

δ 0

7 a− δ − a1 b+ 3(d−δ)
2

+ δ − 2 δ 0

We will apply Lemma 3.26 to show that a1 + c1 and a2 + c2 +m− t are in
{3, . . . , w} and that, for any edge-disjoint cycles C1 and C2 in KW with lengths
a1+c1 and a2+c2+m−t, there is a (3a1 , 4b1 , 5c1)-packing P1 of KU ′1,W

∪C1 and
a (3a2 , 4b2 , 5c2 , 6d2 ,m)-packing P2 of KU ′2,W

∪ C2 from which we can obtain a
packing with the required properties. In each case the fact that the hypotheses
of Lemma 3.26 are satisfied when constructing P1 and P2 can be deduced from
(3.2.3), the hypotheses of this lemma and the criteria of the relevant case.
In particular, we use w > 10 frequently. For brevity, let ρ1 = 2a1 + 4c1 and
ρ2 = 2a2+4c2+t. For each case, we now detail the criteria for the case, explain
how a packing with the required properties can be obtained from P1∪P2, and
justify some of the less obvious deductions required to see that the hypotheses
of Lemma 3.26 are satisfied. To show that hypotheses (iii), (iv) and (v) of
Lemma 3.26 are satisfied in constructing P2, it suffices to show that

ρ2 > 4, t = 2 if ρ2 = 4, and (a2, c2) /∈ {(0, 2), (1, 1)} if ρ2 ∈ {6, 8} and t = 0,
(3.2.4)

and

ρ2 6 2w, and m 6 c2 + t+ i+ 1 when t ∈ {2, 4} and i ∈ {0, 1, 2}, (3.2.5)
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where i is the integer such that ρ2 = 2w − 2i.
Case 1: |U ′| >>> 6, ρ >>> 2w+ 8, and t ∈ {2,4} if ρ = 2w+ 8. In this case
P1 ∪ P2 is itself a packing with the required properties. Note that ρ1 = 2w
and ρ2 = ρ − 2w. We have c2 > 0 because either c1 = 0 or a2 ∈ {0, 1} and
2a2 + 4c2 = ρ2 − t > 4. We have (3.2.4) by the criteria for this case. We have
(3.2.5) by (iii) when c1 = 0 and because

c2 + t+ i+ 1 = 1
4
(ρ2− 2a2− t) + t+ i+ 1 > 2w+2i+3t+4−2a2

4
> 7 for t ∈ {2, 4}

when a2 ∈ {0, 1}.
Case 2: |U ′| >>> 6, ρ 666 2w + 8, t = 0 if ρ = 2w + 8, and b >>> 2. In
this case P1 ∪ P2 is itself a packing with the required properties. Note that
ρ1 = 2w − 8 and ρ2 = ρ − 2w + 8. We have c2 > 0 because either c1 = 0 or
a2 ∈ {0, 1} and 2a2 + 4c2 = ρ2 − t > 4 by (ii). We have (3.2.4) by (ii). We
have (3.2.5) by the criteria for this case.
Case 3: |U ′| >>> 6, ρ 666 2w + 8, t = 0 if ρ = 2w + 8, and b ∈ {0,1}.
Lemma 3.21 can be applied to P1 ∪ P2 (using the two 4-cycles in P1 and any
one 4-cycle in P2) to obtain a packing with the required properties. We have
d2 > 0 because 4b + 6d = |U ′|w − ρ > 4w − 8 by (i) and the criteria for this
case. We have c2 > 0, (3.2.4) and (3.2.5) by similar arguments to those in
Case 2.
Case 4: |U ′| = 4, c >>> 1, ρ >>> 2w + 8, and t ∈ {2,4} if ρ ∈ {2w +
8,2w + 10}. Lemma 3.21 can be applied to P1 ∪ P2 (using any 3

2
(d − δ)

4-cycles in P1 ∪ P2) to obtain a (3a+δ, 4b+2δ, 5c−δ, 6d−δ,m)-decomposition of
KU ′,W ∪C1 ∪C2. If δ = 0 this completes the proof and if δ = 1 we can remove
two 4-cycles and a 3-cycle to obtain a packing with the required properties.
Note that ρ1 = 2w and ρ2 = ρ−2w−2δ. We have c2 > 0 because either c1 = 0
or a2 ∈ {0, 1} and 2a2 + 4c2 = ρ2− t > 4 (note that if δ = 1, then ρ > 2w+ 10
by (3.2.3)). We have (3.2.4) by the criteria for this case. We have (3.2.5) by
similar arguments to those in Case 1.
Case 5: |U ′| = 4, c >>> 1, ρ 666 2w+10, and t = 0 if ρ ∈ {2w+8,2w+10}.
Lemma 3.21 can be applied to P1∪P2 (using any 3

2
(d−δ) 4-cycles in P1∪P2) to

obtain a (3a+δ, 4b+2δ, 5c−δ, 6d−δ,m)-decomposition of KU ′,W ∪C1 ∪C2. If δ = 0
this completes the proof and if δ = 1 we can remove two 4-cycles and a 3-cycle
to obtain a packing with the required properties. Note that ρ1 = 2w − 8 and
ρ2 = ρ− 2w+ 8− 2δ. We have a2 > 0 because 2a+ 4c = ρ− t > 2w− 6 by (ii)
and hence a+ 2c > w − 3. Further, a2 > δ when ρ > 2w − 2. We have b2 > 0
because 4b + 6d = 4w − ρ > 2w − 10 by (i) and the criteria for this case and
hence b > w−3d−5

2
. We have c2 > 0 because either c > w

2
−2 + δ and c1 = w

2
−2

or c1 = c− δ. We have (3.2.4) by (ii) (note that if δ = 1, then ρ > 2w − 2 by
(3.2.3) and that a2 > δ when ρ > 2w − 2). We have (3.2.5) by the criteria for
this case.
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Case 6: |U ′| = 4, c = 0, and ρ >>> 2w + 8. If δ = 1, then we can ensure
that the 4-cycle in P1 and the 5-cycle in P2 with one edge of KW share at
least one vertex in W . We will justify this below. Lemma 3.21 can be applied
to P1 ∪ P2 (using 3

2
(d− δ) 4-cycles in P2) to obtain a (3a−δ, 4b+δ, 5δ, 6d−δ,m)-

decomposition of KU ′,W ∪ C1 ∪ C2 in which, if δ = 1, a 4-cycle with no edges
of KW and a 5-cycle with one edge of KW share a vertex in W . If δ = 0 this
completes the proof and if δ = 1 we can remove the 4-cycle and 5-cycle from
the decomposition to obtain a packing with the required properties. Note that
ρ1 = 2w−4δ and ρ2 = ρ−2w+6δ. We have a2 > 0 because 2a = ρ−t > 2w+4
by the criteria for this case and hence a > w+2. We have (3.2.4) by the criteria
for this case. We have (3.2.5) because ρ 6 4w−6δ by (i) and because ρ 6 4w−8
when t ∈ {2, 4} by (iii) (note that if δ = 1, then ρ 6 4w − 10 by (3.2.3)).

It remains to show that, if δ = 1, then we can ensure that the 4-cycle
X in P1 and the 5-cycle Y in P2 with one edge of KW share at least one
vertex in W . Note that V (X) ∩ W = W \ V (C1). When V (C2) * V (C1),
we can permute the vertices of P2 so that the edge of Y in KW is incident
with a vertex in V (C2) \ V (C1) and hence in V (X). When V (C2) ⊆ V (C1),
noting that |V (C2)| 6 w − 2 and t 6 4, we can ensure that Y has a vertex in
W \ V (C2). (This can be seen by directly applying Lemma 3.18 to construct
P2. The hypotheses of Lemma 3.18 are satisfied since the reduced leave of a
(4b2)-packing of KU ′2,W

is a copy of K2,w−2b2 , which clearly has the required
path decomposition.) We can then permute the vertices of P2 so that this
vertex of Y is in W \ V (C1) and hence in V (X).
Case 7: |U ′| = 4, c = 0, ρ 666 2w + 6. A packing with the required
properties can be obtained from P1 ∪ P2 as in Case 6. Note that ρ1 = 2w − 8
and ρ2 = ρ− 2w+ 8 + 2δ. We have b2 > 0 because 4b+ 6d = 4w− ρ > 2w− 6
by (i) and the criteria for this case and hence b > w−3d−3

2
. We have a2 > 0

by similar arguments to those in Case 5. We have (3.2.4) by (ii). We have
ρ2 6 16 by the criteria for this case, so (3.2.5) holds.

Lemma 3.28. Let u > 5 and w > 10 be integers such that u is odd and w is
even. Let N be a list of integers and let a, b, c and d be nonnegative integers
such that the following conditions hold.

(i) (
∑
N)− t+ a+ c =

(
w
2

)
, where t ∈ {0, 2, 4};

(ii) 2a+ 4b+ 4c+ 6d+ t = uw;

(iii) 3 6 ` 6 min(u,w) for each entry ` in N , and d = 0 if u = 5;

(iv) either a > w
2

and a+ c > w
2

+ 3, or c > 3w
4

and a+ c > 3w
4

+ 4;

(v) if b+ d 6 2 and t ∈ {2, 4}, then a ∈ {0, 1, 2, 3, 4, w
2
, w
2

+ 1, w
2

+ 2, w
2

+ 3};
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(vi) if t ∈ {2, 4}, there is some entry m in N such that (m, t) ∈ {(4, 2), (5, 2),
(6, 2), (6, 4)}.

Then there exists an (N, 3a, 4b, 5c, 6d)-decomposition of Ku+w−Ku that includes
cycles with lengths (3a, 4b, 5c, 6d) that each contain at most one pure edge.

Proof. Let U and W be disjoint sets of sizes u and w and observe that KU∪W−
KU = KU,W ∪KW . Let m = 0 if t = 0. We first choose disjoint subsets U1 and
U2 of U and nonnegative integers a1, a2, a3, c1, c2 and c3. Let a1, c1 and |U1|
be given as follows.

case a1 c1 |U1|
a > w

2
w
2

0 1
a < w

2
and w ≡ 0 (mod 4) 0 3w

4
3

1 6 a < w
2

and w ≡ 2 (mod 4) 1 3w−2
4

3
a = 0 and w ≡ 2 (mod 4) 0 3w−2

4
3

Using (iv), we see that a1 6 a and c1 6 c. Further, let a′, c′, b3 and d3 be
given as follows.

case a′ c′ b3 d3
a = 0, w ≡ 2 (mod 4), d is even 1 c− c1 − 2 b+ 1 d
a = 0, w ≡ 2 (mod 4), d is odd 0 c− c1 − 1 b+ 2 d− 1
a > 1 or w ≡ 0 (mod 4) a− a1 c− c1 b d

Let ρ = 2a′ + 4c′ + t. Using (iv) we see that a′, c′, b3 and d3 are nonnegative.
Let |U2| and ρ3 be the nonnegative even integers that satisfy the conditions
given below.

case conditions

(u, |U1|) = (5, 3) or ρ 6 8 ρ = |U2|w + ρ3, |U2| = 0

10 6 ρ 6 (u− |U1| − 4)w + 8 ρ = |U2|w + ρ3,
ρ3 ∈ {10, 12, . . . , 2w + 8}

ρ > (u− |U1| − 4)w + 10, (u, |U1|) 6= (5, 3) ρ = |U2|w + ρ3, |U2| = u− |U1| − 4

Note that |U2| ∈ {0, 2, . . . , u−|U1|−4} unless (u, |U1|) = (5, 3) and |U2| = 0.
Now let

a2 = min(ba′ce, 12 |U2|w), c2 = 1
4
(|U2|w − 2a2), a3 = a′ − a2, c3 = c′ − c2.

By our definitions, 2a2 + 4c2 = |U2|w and 2a3 + 4c3 + t = ρ3. Clearly, a2, c2
and a3 are nonnegative. When ρ3 < 10 we have |U2| = 0 and (a3, c3) = (a′, c′).
Thus it follows from (iv) and the definitions of a′ and c′ that either ρ3 > 10 or
a3 + c3 > 3. Furthermore, c3 is nonnegative because c2 = 0 when a2 = 1

2
|U2|w,

and a3 ∈ {0, 1} and 2a3 + 4c3 + t = ρ3 > 6 when a2 = ba′ce. It may be that
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a1 + a2 + a3 6= a or c1 + c2 + c3 6= c. However, P3 (defined below) will be
produced by applying Lemma 3.26 or 3.27 with (a, b, c, d) = (a3, b3, c3, d3) and
then possibly removing cycles. Observe that ρ3, w and t satisfy one of the
following

ρ3 6 2w, t ∈ {0, 4} if ρ3 ∈ {2w − 4, 2w − 2}, and t = 0 if ρ3 = 2w. (3.2.6)

ρ3 > 2w − 4, t = 2 if ρ3 ∈ {2w − 4, 2w − 2}, and t ∈ {2, 4} if ρ3 = 2w.
(3.2.7)

We now construct packings P0, . . . ,P3 as follows (we later show how these
packings produce the required decomposition, and justify that they exist).

• P0 is an (N \ (m))-packing of KW − I, where I is a 1-factor on vertex
set W . The reduced leave of P0 is the edge-disjoint union of cycles
C?, C1, . . . , Cn, C

†
1, C

†
2, where

– C? is trivial if a > w
2

and |E(C?)| = dw
4
e otherwise; and

– n = |U2|
2

, |E(Ci)| ∈ {w2 , . . . , w} for 1 6 i 6 n, and
∑n

i=1 |E(Ci)| =
a2 + c2; and

– |E(C†1)|+ |E(C†2)| = m− t+ a3 + c3.

The cycle lengths |E(C1)|, . . . , |E(Cn)| will be given by Lemma 3.20 (note
that a2+2c2 = nw). The cycle lengths |E(C†1)| and |E(C†2)| will be given
by Lemma 3.26 or 3.27.

• P1 is a (3a1 , 5c1)-packing of KU1,W ∪ I ∪ C?. The reduced leave L1 of P1

is a 3-cycle if a = 0 and w ≡ 2 (mod 4) and is trivial otherwise.

• P2 is a (3a2 , 5c2)-decomposition of KU2,W ∪ C1 ∪ · · · ∪ Cn.

• P3 is a packing of KU3,W ∪ C
†
1 ∪ C

†
2 that, if m > 0, includes an m-cycle

containing m− t edges of KW , where U3 = U \ (U1 ∪U2), with a reduced
leave L3. The properties of P3 and L3 divide according to the following
cases. The cases are mutually exclusive because d3 is defined so as to be
even when a = 0 and w ≡ 2 (mod 4).

Case 1: a = 0, w ≡ 2 (mod 4), and d is even.
Then P3 is a (3a3−1, 4b3−1, 5c3 , 6d3 ,m)-packing, L3 has exactly one
pure edge, L3 has a (3, 4)-decomposition, and L1 ∪ L3 has a vertex
of degree 4;

Case 2: a = 0, w ≡ 2 (mod 4), and d is odd.
Then P3 is a (3a3 , 4b3−2, 5c3 , 6d3 ,m)-packing, L3 has no pure edges,
L3 has a (4, 4)-decomposition, and L1∪L3 has a vertex of degree 4;
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Case 3: (3.2.7) holds, |U3| = 4, d3 is odd, and c3 >>> 1.
Then P3 is a (3a3 , 4b3 , 5c3−1, 6d3−1,m)-packing, L3 has exactly one
pure edge, and L3 has a (3, 4, 4)-decomposition;

Case 4: (3.2.7) holds, |U3| = 4, d3 is odd, and c3 = 0.
Then P3 is a (3a3−1, 4b3 , 5c3 , 6d3−1,m)-packing, L3 has exactly one
pure edge, L3 has a (4, 5)-decomposition, and there is a vertex in
W with degree 4 in L3;

Case 5: otherwise.
Then P3 is a (3a3 , 4b3 , 5c3 , 6d3 ,m)-decomposition and L3 is trivial.

Let P ′ = P0 ∪ P1 ∪ P2 ∪ P3. Then P ′ is a packing of KU∪W − KU with
reduced leave L1 ∪ L3. If we are in Case 5 then P ′ is an (N, 3a, 4b, 5c, 6d)-
decomposition with the required properties. Otherwise we can obtain an
(N, 3a, 4b, 5c, 6d)-decomposition P of KU∪W − KU with the required proper-
ties by applying Lemma 3.15 with m and m′ as per the following table. That
P ′ is an (N, 3a, 4b, 5c, 6d)-decomposition in Case 5, and that the entries in the
second and third columns of the table are correct, can be checked using the
definitions of P0, . . . ,P3, a

′, c′, a3, b3, c3 and d3.
Using (i), we can see that P ′ includes cycles with lengths N that contain

all but a+ c edges of KW (the
∑
N −m edges in cycles in P0 are all in KW ,

as are m− t edges in an m-cycle in P3 if m > 0). The same is true of P , since
Lemma 3.15 yields a repacking. So, because each odd cycle in P contains at
least one edge of KW , P includes cycles with lengths (3a, 4b, 5c, 6d) that each
contain at most one edge of KW .

case cycle type of P ′ size of L1 ∪ L3 (m,m′)
1 (N, 3a, 4b, 5c−2, 6d) 10 (5, 5)
2 (N, 3a, 4b, 5c−1, 6d−1) 11 (5, 6)
3 (N, 3a, 4b, 5c−1, 6d−1) 11 (5, 6)
4 (N, 3a−1, 4b, 5c, 6d−1) 9 (3, 6)

So it remains to establish the existence of the packings P0, . . . ,P3. We first
establish three useful facts.

(a) ρ3 + 4b3 + 6d3 = |U3|w. It follows from the definitions of a′, c′, b3 and
d3 that 2a′+ 4b3 + 4c′+ 6d3 + t = 2a+ 4b+ 4c+ 6d+ t− |U1|w. It follows from
the definitions of a2 and c2 that 2a2 + 4c2 = |U2|w. Thus, because a3 = a′− a2
and c3 = c′− c2, we have 2a3 + 4b3 + 4c3 + 6d3 + t = (u− |U1| − |U2|)w by (ii).

(b) If |U3| = 2, t ∈ {2,4} and ρ3 = 2w− 2i, then 6 666 c3 + t+ i+ 1.
Because |U3| = 2, (u, |U1|) = (5, 3) by the definition of U2 and thus a 6 w

2
− 1

by the definition of U1. So from 2a3+4c3+t = 2w−2i we deduce c3 > w+2−t−2i
4

and hence c3 + t + i + 1 > w+3t+2i+6
4

. Because w > 10 and t > 2, the result
follows.
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(c) ρ3 666 4w and, if ρ3 >>> 4w − 6 and t ∈ {2,4}, then c3 >>> 3. If ρ3 6
2w+8, then ρ3 < 4w−6 (note w > 10). If ρ3 > 2w+8, then |U2| = u−|U1|−4
and |U3| = 4 by the definitions of U2 and U3. So ρ3 + 4b3 + 6d3 = 4w by (a)
and hence ρ3 6 4w. Furthermore, if we now suppose that ρ3 > 4w − 6, then
4b3+6d3 6 6 and so b3+d3 6 1. Then b+d 6 2, because b 6 b3 and d 6 d3+1.
So by (v), a′ 6 4 and hence a3 6 4. Because 2a3 + 4c3 + t = ρ3 > 4w − 6, it
follows that c3 > 6.

Proof that P0 exists. First observe that 3 6 dw
4
e 6 w because w > 10. We

choose lengths |E(C1)|, . . . , |E(Cn)| with the required properties, which exist
by Lemma 3.20 because a2+2c2 ≡ 0 (mod w). If |U3| = 2 or (3.2.6) holds, then
a3+c3+m−t ∈ {0}∪{3, . . . , w} by Lemma 3.26 with (a, b, c, d) = (a3, b3, c3, d3)
and U ′ = U3 (the hypotheses are satisfied by (iii), (a), (b), and because either
ρ3 > 10 or a3 + c3 > 3) and we let |E(C†1)| = a3 + c3 +m− t and |E(C†2)| = 0.
If |U3| > 4 and (3.2.7) holds, then we let |E(C†1)| and |E(C†2)| be the cycle
lengths given by Lemma 3.27 with (a, b, c, d) = (a3, b3, c3, d3) and U ′ = U3 (the
hypotheses are satisfied by (a) and (c)). Then, by Theorem 1.4, a packing
with the required properties exists by (iii) and because∑

(N \ (m)) + |E(C?)|+ |E(C†1)|+ |E(C†2)|+ |E(C1)|+ · · ·+ |E(Cn)|
= (
(
w
2

)
+ t−m− a− c) + |E(C?)|+ (m− t+ a3 + c3) + (a2 + c2)

=
(
w
2

)
− (a+ c) + (a′ + c′) + |E(C?)|

=
(
w
2

)
− w

2
.

The first equality holds by (i) and the definitions of C1, . . . , Cn, C
†
1, C

†
2. The

second equality holds by the definitions of a3 and c3. The final equality holds
because it follows from the definitions of a′, c′ and C? that a + c − a′ − c′ =
w
2

+ |E(C?)|.
Proof that P2 exists. This follows immediately by Lemma 3.20 because
|E(Ci)| ∈ {w2 , . . . , w} for 1 6 i 6 n and

∑n
i=1 |E(Ci)| = a2 + c2.

Proof that P3 exists. We established above that if |U3| = 2 or (3.2.6) holds,
then C†2 is trivial and we can apply Lemma 3.26 with (a, b, c, d) = (a3, b3, c3, d3),
U ′ = U3 and C = C†1. Also, we established that if |U3| > 4 and (3.2.7)
holds, then we can apply Lemma 3.27 with (a, b, c, d) = (a3, b3, c3, d3), U

′ = U3

and (C1, C2) = (C†1, C
†
2). Let P ′3 be the packing produced by applying the

appropriate lemma. In Cases 3, 4 and 5, P ′3 is itself a packing with the required
properties. In Case 1, we can obtain a packing with the required properties
by removing a 3-cycle and a 4-cycle from P ′3 (note that a3 > 1 and b3 > 1 in
this case). In Case 2, we can obtain a packing with the required properties by
removing two 4-cycles from P ′3 (note that b3 > 2 in this case). In Cases 1 and
2 we will ensure that L1 ∪ L3 has a vertex of degree 4 when we construct P1
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below.
Proof that P1 exists. If a > w

2
, then (a1, c1) = (w

2
, 0), C? is trivial and a

packing with the required properties clearly exists. So we may assume that
a < w

2
. By Lemma 3.25 there is a packing P ′1 of KU1,W ∪ I ∪ C? with b3w

4
c

5-cycles with a reduced leave L′1 such that L′1 is trivial when w ≡ 0 (mod 4),
L′1 is a 3-cycle when w ≡ 2 (mod 4), and L′1 shares a vertex with L3 when
w ≡ 2 (mod 4) and a = 0. If w ≡ 0 (mod 4) or a = 0, then P ′1 is a packing
with the required properties. If 1 6 a < w

2
and w ≡ 2 (mod 4), then P ′1∪{L1}

is a packing with the required properties.

3.3 Proof of Theorem 3.1

This section contains the proof of the main result for the chapter. Lemma 3.29
dispenses with the case where the sum of odd entries in the list (m1, . . . ,mτ )
is small. In this case we can obtain the required decomposition using known
cycle decomposition results for the complete graph and the complete bipartite
graph. The remaining cases of Theorem 3.1 are proved by repeatedly applying
Lemma 3.3 to base the decompositions given by Lemmas 3.22, 3.23 and 3.28.

Lemma 3.29. Let u > 5 and v be odd integers such that v > u + 4, and let
m1, . . . ,mτ be a nondecreasing list such that the following hold

(i) m1 > 3 and mτ 6 min(u, v − u);

(ii) m1 + · · ·+mτ =
(
v
2

)
−
(
u
2

)
; and

(iii) the sum of odd entries in m1, . . . ,mτ is at most (v−u)(v−u−2)
2

.

Then there exists an (m1, . . . ,mτ )-decomposition of Kv −Ku.

Proof. Let w = v − u and let U and W be disjoint sets of size u and w
respectively. Let U1 ⊆ U such that |U1| = 1, and let M = m1, . . . ,mτ . We
will form an (M)-decomposition of KU∪W −KU from a packing P0 of KW∪U1

and a packing P1 of KU\U1,W .
Let n1, . . . , ns where n1 6 · · · 6 ns be the sublist of M containing all of its

even entries. Note that n1 + · · ·+ ns >
(
u+w
2

)
−
(
u
2

)
− w(w−2)

2
= uw+ w

2
by (ii)

and (iii). Let s′ be the largest element of {1, . . . , s} such that ns′ 6 3ns′−1.
Observe that n1 + · · ·+ ns′ > w(u− 1) because

ns′+1 + · · ·+ ns <
∞∑
i=0

ns
3i

6
∞∑
i=0

w

3i
<

3w

2

where the first inequality follows because ni <
1
3
ni+1 for each i ∈ {s′, . . . , s−1},

and the second inequality follows because ns 6 w by (i).
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We now define a sublist M1 of (n1, . . . , ns′) as follows. Begin with M1

empty. Iteratively apply the following procedure: while there is an entry x of
(n1, . . . , ns′) \M1 such that

∑
M1 + x 6 w(u− 1), add the largest such entry

to M1. When no such entry exists, terminate the procedure and fix M1. Let
M0 = M \M1, let t be the integer such that

∑
M1 + t = w(u − 1). Because

n1+ · · ·+ns′ > w(u−1), this procedure will terminate and M1 will be a proper
sublist of (n1, . . . , ns′). Thus, the smallest even entry in M0 is ns′′ for some
s′′ ∈ {1, . . . , s′}. Also, t is even because

∑
M1 and w(u − 1) are even. We

establish three more useful facts.

(a)
∑∑∑
M1 = w(u− 1)− t and

∑∑∑
M0 =

(
w+1

2

)
+ t. The former follows

from the definition of t and the latter follows from the former by the definition
of M0 and by (ii).

(b) t 666 ns′′ − 2 and there are at least two even entries in M0. If
t were at least ns′′ , then another even entry of (n1, . . . , ns′) \M1 would have
been added to M1 before the procedure terminated. So t 6 ns′′ − 2. Because
n1 + · · · + ns > uw + w

2
, the even entries in M0 sum to at least 3w

2
+ t and

hence there are at least two by (i).

(c) (ns′−u+1, . . . , ns′) is a sublist of M1 and t 666 w−4. Because ns′ 6 w
by (i), the first u − 1 entries added to M1 are ns′ , ns′−1, . . . , ns′−u+1. Thus, if
t = w − 2, then ns′′ = w by (b) and it would follow that M1 = (wu−1) and
t = 0.

If t = 0, then an (M)-decomposition of KU∪W −KU is given by P0 ∪ P1,
where P0 is an (M0)-decomposition ofKW∪U1 , and P1 is an (M1)-decomposition
of KU\U1,W . Noting (a), (c) and (i), we see that P0 exists by Theorem 1.4 and
P1 exists by Theorem 2.22. Thus we can assume that t ∈ {2, 4, . . . , w − 4}.

We now define integers p, p†, b and b† and (possibly empty) lists M ′
0

and M ′
1. We will then show that there exists an (M0 \M ′

0)-packing P0 of
KW∪U1 whose reduced leave L0 is the edge-disjoint union of a p-path and
a p†-path, an (M1 \M ′

1)-packing P1 of KU\U1,W whose reduced leave L1 is
the edge-disjoint union of a b-path and a b†-path such that there exists an
(M ′

0,M
′
1)-decomposition P2 of L0 ∪L1. This will suffice to complete the proof

as P0 ∪ P1 ∪ P2 will be an (M)-decomposition of KU∪W −KU .

• If there is an entry q in M0 that is at least t+3, then let M ′
0 = (q) and let

M ′
1 = (r) where r is the smallest entry of M1. Let b = t+ 2, b† = r − 2,

p = q − t− 2 and p† = 2.

• If t > 4 and each entry in M0 is at most t+ 2, then M0 contains at least
two entries equal to t+ 2 by (b). Let M ′

0 = (t+ 2, t+ 2), and let M ′
1 be

empty. Let b = 2, b† = t− 2, p = t and p† = 4.



CHAPTER 3. CYCLES OF ARBITRARY LENGTHS 89

• If t = 2 and each entry in M0 is at most 4, then M0 contains at least two
entries equal to 4 by (b). Let M ′

0 = (4, 4) and let M ′
1 = (r) where r is

the smallest entry of M1. Let b = 4, b† = r − 2, p = 4, and p† = 2.

In each case note that p + p† =
∑
M ′

0 − t and b + b† =
∑
M ′

1 + t. Hence∑
(M0 \M ′

0) + p+ p† =
(
w+1
2

)
and

∑
(M1 \M ′

1) + b+ b† = w(u− 1) by (a).

Proof that P1 exists. Using (a), (b), (c) and (i), it can be checked that by
Lemma 3.16 there is an (M1\M ′

1)-packing of KU\U1,W whose reduced leave has
a decomposition into a b-path B and a b†-path B† with end vertices x and y
in W (apply Lemma 3.16(ii) with mi = b+ b† if 2 ∈ {b, b†} and Lemma 3.16(i)
with mi = b and mj = b† otherwise).

Proof that P0 exists. First suppose that M ′
0 6= (4, 4). Using (a), (c) and

(i), there is an (M0 \M ′
0, p+ p†)-decomposition of KW∪U1 by Theorem 1.4 (in

each case 3 6 p+ p† 6 w+ 1). Let P0 be the result of removing a p+ p† cycle
from this decomposition and permuting vertices so that the reduced leave of the
resulting packing is the edge-disjoint union of paths P and P † with end vertices
x and y such that V (P ) ∩ V (B) = V (P †) ∩ V (B†) = {x, y}. This relabelling
is possible provided that |V (B)∩V (B†)∩W |+ p+ p†− 2, |V (B)∩W |+ p− 1
and |V (B†) ∩W |+ p† − 1 are each at most w + 1 (for a proof of this, see [64,
Lemma 5.2]). These inequalities can be checked using (c) and the facts that

|V (B) ∩ V (B†) ∩W | 6 |V (B) ∩W | = b+2
2

and |V (B†) ∩W | = b†+2
2

.

Now suppose that M ′
0 = (4, 4). We form P0 as above, except that we

permute vertices so that V (P )∩V (B) = {x, y, z} where V (B)∩W = {x, y, z}
and z is not adjacent to x or y in P .

In each case the properties of B, B†, P and P † ensure that there is an
(M ′

0,M
′
1)-decomposition P2 of L0 ∪ L1.

We introduce some more notation. For a list M and an integer m we let
νm(M) denote the number of entries of M that are equal to m. For a list M ,
let ν(M) denote the total number of entries of M and let νo(M) denote the
number of odd entries of M . For a nondecreasing list M = (m1, . . . ,ms), we
say that M is well-behaved if ms 6 3ms−1.

We say that a list R is a refinement of an integer m > 3 if
∑
R = m, each

entry of R is at least 3 and at most one entry of R is odd. For any integer
m > 3 the list (m) is a refinement of m. We say that a list R is a refinement
of a list M = (m1, . . . ,ms) if R can be reordered as (R1, . . . , Rs) where Ri is
a refinement of mi for each i ∈ {1, . . . , s}. The fact that νo(R) = νo(M) is
crucial and we will use it frequently. The basic refinement of an integer m > 3
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is R, where

R =


(4m/4), if m ≡ 0 (mod 4);
(3, 4(m−9)/4, 6), if m ≡ 1 (mod 4) and m > 9;
(4(m−6)/4, 6), if m ≡ 2 (mod 4);
(3, 4(m−3)/4), if m ≡ 3 (mod 4);
(5), if m = 5.

We say that a list R is the basic refinement of a list M = (m1, . . . ,ms) if R can
be reordered as (R1, . . . , Rs) where Ri is the basic refinement of mi for each
i ∈ {1, . . . , s}. Note that for an even integer `, the basic refinement is equal
to the list R` as defined in Section 2.2.

Lemma 3.30 shows how Lemma 3.3 can be repeatedly applied to our base
decompositions to obtain the decompositions required by Theorem 3.1.

Lemma 3.30. Let u > 5 and v be integers such that v > u+4, let N and Z =
(z1, . . . , zq) be nondecreasing lists of integers such that zq 6 min(u, v−u, 3zq−1),
and let R be a refinement of Z. If there exists an (N,R)-decomposition of
Kv − Ku that includes cycles with lengths R that each contain at most one
pure edge, then there exists an (N,Z)-decomposition of Kv −Ku.

Proof. Assume that there exists such an (N,R)-decomposition D of Kv−Ku.
Let ` be the number of entries in R. Note that ` > q, and that if ` = q, then
R = Z and the result is obviously true. So suppose that ` > q. By induction,
it suffices to show that there is an (N,R′)-decomposition D′ of Kv−Ku where
R′ is a refinement of Z with `− 1 entries and D′ contains cycles with lengths
R′ that each contain at most one pure edge. Let R1, R2, . . . , Rq be a reordering
of R so that Ri is a refinement of zi for i ∈ {1, . . . , q}.
Case 1. Suppose that there is exactly one list Ri in R1, . . . , Rq such that
ν(Ri) > 2. Let Ri = a1, . . . , aν(Ri) and let j = q if i 6= q and j = q− 1 if i = q.
Let C1, C2 and C3 be cycles in D of lengths a1, a2 and zj that each contain
at most one pure edge. We can obtain a decomposition D′ with the required
properties by applying Lemma 3.3 to D \ {C1, C2, C3} with h = zj, m1 = a1
and m2 = a2. We have m1 + m2 + h 6 zi + zj 6 2 min(u, v − u) from our
hypotheses. We have m1 + m2 6 3h because either a1 + a2 6 zi 6 zq = h or
(i, j) = (q, q − 1), in which case a1 + a2 6 zq 6 3zq−1 by our hypotheses.
Case 2. Suppose that there are at least two lists in R1, . . . , Rq that each
have at least two entries. Let r be the largest entry in R1, . . . , Rq and let i ∈
{1, . . . , q} such that r is an entry of Ri. Let j be an element of {1, . . . , q} \ {i}
such that ν(Rj) > 2 and let Rj = a1, . . . , aν(Rj). Let C1, C2 and C3 be
cycles in D of lengths a1, a2 and r that each contain at most one pure edge.
We can obtain a decomposition D′ with the required properties by applying
Lemma 3.3 to D \ {C1, C2, C3} with h = r, m1 = a1 and m2 = a2. We have
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m1 + m2 + h 6 zi + zj 6 2 min(u, v − u) from our hypotheses. We have
m1 +m2 6 3h because a1, a2 6 r.

We are now ready to prove the main result of this chapter.

Proof of Theorem 3.1. If there exists an (m1, . . . ,mτ )-decomposition of
Kv − Ku then (i)–(iv) hold by Lemma 3.2. So it remains to show, for
any integers u and v with v − u > 10 and list M = (m1, . . . ,mτ ), that
if mτ 6 min(u, v − u, 3mτ−1) and (i)–(iv) hold, then there exists an (M)-
decomposition of Kv −Ku.

If m1 = m2 = · · · = mτ then the result follows by Theorem 2.2 (mi odd)
or Theorem 1.14 (mi even, see [64]). If u = 1, there is an (M)-decomposition
of Kv by Theorem 1.4 and Kv = Kv − K1. If u = 3, there is an (M, 3)-
decomposition of Kv by Theorem 1.4 and deleting the edges of a 3-cycle pro-
duces an (M)-decomposition of Kv − K3. If the sum of odd entries in M is

at most (v−u)(v−u−2)
2

, then the result follows by Lemma 3.29. Thus we can
suppose that m1 < mτ , u > 5, and the sum of odd entries in M is greater than
(v−u)(v−u−2)

2
.

We will proceed as follows. First we choose a sublist Z of M such that Z
is well-behaved. Then we define a refinement R = (3a, 4b, 5c, 6d, k) of Z such
that a, b, c, d and M \ Z satisfy the hypotheses of Lemma 3.22, 3.23 or 3.28
(R is not always the basic refinement of Z but it is always ‘close’ to it). The
appropriate lemma will then yield an (M \Z,R)-decomposition D of Kv −Ku

that contains cycles with lengths R that each contain at most one pure edge.
Applying Lemma 3.30 will then produce an (M)-decomposition of Kv−Ku. So
it remains to define Z and R, and to show that the hypotheses of Lemma 3.22,
3.23 or 3.28 are satisfied. In each of the following cases we will also specify the
entry m that is used in applications of Lemma 3.22, 3.23 and 3.28.

Let w = v−u. Throughout this proof we employ some notational shorthand
concerning lists. For a list X, a set S and an integer x, we write x ∈ X if at
least one entry of X is equal to x, X ⊆ S if each entry of X is an element of
S, and maxe(X) for the largest even entry of X. For a sublist X = x1, . . . , xs
of M , we define

∑
eX =

∑s
i=1 bxice and t(X) = uw−

∑
eX. Note that

∑
eX

can also be written as
∑
X − νo(X). Then

∑
eX = uw − t(X) and, by (iii),∑

(M \X) =
(
w
2

)
− νo(X) + t(X). Clearly t(X) is always even. We abbreviate

t(Z) to t.
The proof splits into three cases, depending on νo(M) and ν5(M).

Case 1. Suppose that νo(M) − ν5(M) > w
2

+ 3. We aim to satisfy the
hypotheses of either Lemma 3.23 (in Case 1a) or Lemma 3.28 (in Case 1b).
We choose Z and m according to the following procedure.

1. Let Z ′′ be the list consisting of the w
2

+ 3 largest odd entries of M that
are not equal to 5.
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Each entry in M is at most min(u,w) 6 u, so
∑

e Z
′′ 6 (u − 1)(w

2
+ 3)

and hence t(Z ′′) > (u+1)(w−6)
2

+ 6 > 2u + 8. Below, this will imply that
ν(Z ′ \ Z ′′) > 2.

2. Begin with Z ′ = Z ′′ and repeatedly add the largest entry of M \ Z ′ to
Z ′, until M \ Z ′ is empty or Z ′ satisfies t(Z ′) 6 max(M \ Z ′)− 2.

It follows from this definition that t(Z ′) > 0 (note that t(Z ′) is even).
Because

∑
(M\Z ′) =

(
w
2

)
−νo(Z ′)+t(Z ′), it follows from (iv) that t(Z ′) =

0 if M \Z ′ is empty. If t(Z ′) > 2, then t(Z ′) 6 max(M \Z ′)− 2 6 w− 2
and each entry in Z ′ \ Z ′′ is at least max(M \ Z ′).

3.1 If t(Z ′) 6= 2, then let Z = Z ′ and let m = 0 if t = 0 and m = max(M \Z ′)
if t > 0. Note that t = t(Z ′).

3.2 If t(Z ′) = 2 and M \ Z ′ * {3, w − 1, w}, then let Z = Z ′ and let m be
the largest entry in M \ Z ′ such that 4 6 m 6 w − 2. Note that t = 2.

3.3 If t(Z ′) = 2, M \Z ′ ⊆ {3, w− 1, w} and 3 ∈M \Z ′, then let Z = (Z ′, 3)
and let m = 0. Note that t = 0.

3.4 If t(Z ′) = 2, M \ Z ′ ⊆ {w − 1, w} and w ∈ M \ Z ′, then let Z =
Z ′ \ (min(Z ′′)), and let m = w. Note that t = 2 + bmin(Z ′′)ce.

We have min(Z ′′) 6 w − 3 and hence t 6 w − 2. Otherwise, because
Z ′ \ Z ′′ ⊆ {w}, Z ′ = (wi, (w − 1)w/2+3) for some i and, by the definition
of t(Z ′), t(Z ′) ≡ 6 (mod w). This contradicts t(Z ′) = 2.

3.5 If t(Z ′) = 2 and M \ Z ′ ⊆ {w − 1}, then let Z = (Z ′ \ (w), w − 1), and
let m = w − 1. Note that t = 4.

There is a w in Z ′ for otherwise Z ′ ⊆ {w − 1} and hence M ⊆ {w − 1}
which contradicts m1 < mτ . Further, because t(Z ′) = 2 and Z ′ =
(wi, (w − 1)j) for some i and j, we have j ≡ 1 (mod w

2
) and hence can

deduce from
∑

(M \Z ′) =
(
w
2

)
− νo(Z ′) + t(Z ′) that M \Z ′ = ((w− 1)h)

for some h ≡ −1 (mod w
2
). Thus h > 2 and so m ∈M \ Z.

We first show that Z is well-behaved. For i ∈ {τ − 1, τ}, because
ν(Z ′ \ Z ′′) > 2, if mi is not added to Z ′′ in step 1 then it is added to Z ′

in step 2. So unless our procedure terminates at step 3.5, (mτ−1,mτ ) is a
sublist of Z. If the procedure terminates at step 3.5, then Z ⊆ {w − 1, w},
and it follows that Z is well-behaved.

Let k = d t+2
3
ee if t > 12 and k = 0 otherwise. We now note some important

properties that hold for any refinement (3a, 4b, 5c, 6d, k) of Z.
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(a) 2a+ 4b+ 4c+ 6d+ k + t = uw and
∑

(M \ Z) + a+ c =
(
w
2

)
+ t. These

properties follow because
∑

e Z = uw−t and
∑

(M \Z) =
(
w
2

)
−νo(Z)+t.

(b) Either (m, t) = (0, 0), or t > 2 and t+ 2 6 m 6 w. This is easy to check
in each case.

(c) a+ c > w
2

+ 2 and, if m < w, a+ c > w
2

+ 3. This follows because a+ c =
νo(Z), νo(Z

′′) = w
2

+ 3 and either Z ′′ is a sublist of Z or Z ′′ \ (min(Z ′′))
is a sublist of Z (the latter occurs only in case 3.4 when m = w).

(d) m ∈M \Z if m > 0, and min(Z \ Y ) > m, where Y = Z ′′ \ (min(Z ′′)) if
the procedure terminates at step 3.4 and Y = Z ′′ otherwise. This is clear
if m = 0, so we may suppose that m > 0 and, by (b), that t > 2. It is
easy to check in each case that m ∈M \Z and also that m ∈M \Z ′, and
it follows that max(M \Z ′) > m. We noted min(Z ′ \Z ′′) > max(M \Z ′)
after step 2. If the procedure terminated at a step other than 3.5, then
min(Z \ Y ) > min(Z ′ \ Z ′′) and the statement holds (note it did not
terminate at step 3.3 because m > 0). If the procedure terminated at
step 3.5, then Z \Y ⊆ {w−1, w} and m = w−1, so the statement holds.

Case 1a. Suppose that m > 7. Then t > 2 by (b). Let x = max(Z).
Let (3a, 4b, 5c, 6d) be the basic refinement of (Z \ (x), x − k) if x − k 6= 9
and the basic refinement of (Z \ (x), 4, 5) if x − k = 9. Note that, by (b)
and (d), x > m > t + 2. Thus x − k = x > 7 if t 6 10 and, if t > 12,
x − k > t + 2 − d t+2

3
ee > 8 . It can be seen that a, b, c, d and M \ Z satisfy

the conditions of Lemma 3.23 using (a) – (d) and the following facts.

• c ∈ {0, 1} and a = νo(Z) − c > w
2

+ 1. We have c = 0 if x − k 6= 9 and
c = 1 if x − k = 9 because 5 /∈ Y by the definition of Y , 5 /∈ Z \ Y by
(d), and x− k 6= 5. Then a = νo(Z)− c > w

2
+ 1 using (c).

• b > 1. This is obvious if x− k = 9. If x− k 6= 9, the basic refinement of
x− k contains a 4 (recall that x− k > 7).

• Either a 6 w
2

+3 or uw > (a+ c)bmce. The former holds if min(Z ′′) < m
because then each odd entry in M \ Z ′′ is less than m by the definition
of Z ′′ and so every entry of Z \ Y is even by (d). The latter holds if
min(Y ) > m because then min(Z) > m by (d) and so (a + c)bmce =
νo(Z)bmce 6

∑
e Z 6 uw − t.

• (m, t) 6= (w, 2) and, if a > w
2

+ 4, then (m, t) /∈ {(w − 1, 2), (w, 4)}.
Clearly (m, t) 6= (w, 2) and (m, t) 6= (w − 1, 2) because if t = 2, then the
procedure terminated at step 3.2 and m 6 w−2. If (m, t) = (w, 4), then
Z \ Y ⊆ {w} by (d) and hence a 6 νo(Z) = νo(Y ) 6 w

2
+ 3.
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Case 1b. Suppose that m 6 6. Then t ∈ {0, 2, 4} by (b) and k = 0. Let
(3a, 4b, 5c, 6d) be the basic refinement of Z. It can be seen that a, b, c, d and
M \ Z satisfy the conditions of Lemma 3.28 using (a) – (d) and the following
facts.

• If u = 5 then mτ 6 5 by our hypotheses so d = 0.

• a > w
2

+ 2 because νo(Y ) > w
2

+ 2, 5 /∈ Y , and Y is a sublist of Z.

• If b + d 6 2 and t ∈ {2, 4}, then a 6 w
2

+ 3. Because b + d 6 2,
Z \ (y1, y2) ⊆ {3, 5} for some y1, y2 ∈ Z (note that the basic refinement
of any integer in {3, . . . , w} \ {3, 5} contains a 4 or a 6). For i ∈ {1, 2},
if yi > 7 and yi is odd, then yi ∈ Y and yi /∈ Z \ Y . Because t > 2,
3 /∈ Z \ Y , using (b) and (d). Thus any odd entries in Z \ Y are 5s, and
a 6 w

2
+ 3.

Case 2. Suppose that νo(M)−ν5(M) < w
2

+3, ν5(M) > w and νo(M) > w+4.
We aim to satisfy the hypotheses of Lemma 3.28. We choose Z andm according
to the following procedure.

1. Begin with Z ′′ = (5d3w/4e) and add the four largest odd entries of M \(5w)
to Z ′′. Note that ν5(M \ Z ′′) > bw4 c because ν5(M) > w.

Because each odd entry in M is at most min(u,w − 1) 6 u,
∑

e Z
′′ 6

3w + 2 + 4(u− 1) and hence t(Z ′′) > (u− 3)(w − 4)− 10. This implies
that t(Z ′′) > 0 (note that u > 5 and w > 10).

2. Begin with Z ′ = Z ′′ and repeatedly add the largest entry of M \ Z ′ to
Z ′, until M \ Z ′ is empty or Z ′ satisfies t(Z ′) 6 max(M \ Z ′)− 2.

It follows from this definition that t(Z ′) > 0 (note that t(Z ′) is even).
Because

∑
(M \ Z ′) =

(
w
2

)
− νo(Z

′) + t(Z ′), it follows from (iv) that
t(Z ′) = 0 if M \ Z ′ is empty. If t(Z ′) > 2, then t(Z ′) 6 max(M\Z ′)−2 6
w − 2 and each entry in Z ′ \ Z ′′ is at least max(M \ Z ′).

3.1 If M \ Z ′ is empty or max(M \ Z ′) 6 6, then let Z = Z ′. Let m = 0 if
t = 0 and m = max(M \ Z) if t > 0. Note that t = t(Z ′) 6 4.

3.2 If max(M \Z ′) > 6, then let Z = (Z ′, 5i) where i = b t(Z
′)

4
c and let m = 0

if t = 0 and m = 5 if t = 2. Observe that t = 0 if t(Z ′) ≡ 0 (mod 4) and
t = 2 if t(Z ′) ≡ 2 (mod 4).

To see that Z is a sublist of M note that

ν5(M \ Z ′) = ν5(M \ Z ′′) > bw4 c > b
t(Z′)
4
c = i
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because min(Z ′\Z ′′) > max(M\Z ′) > 6 and t(Z ′) 6 w−2. Furthermore,
bw
4
c > i when t(Z ′) ≡ 2 (mod 4) and so 5 ∈M \ Z when t = 2.

We first show that Z is well-behaved. This is obvious if u 6 7 and hence
mτ 6 7 by our hypotheses. If u > 9 then t(Z ′′) > (u − 3)(w − 4) − 10 > 2w
and ν(Z ′ \ Z ′′) > 2. Thus, for i ∈ {τ − 1, τ} if mi is not added to Z ′′ in step
1 then it is added to Z ′ in step 2. So (mτ−1,mτ ) is a sublist of Z and Z is
well-behaved.

Let (3a, 4b, 5c, 6d) be the basic refinement of Z. It can be seen using ar-
guments similar to those of Case 1b that a, b, c, d and M \ Z satisfy the
hypotheses of Lemma 3.28. Note that c > 3w

4
and a + c > 3w

4
+ 4 because Z ′′

is a sublist of Z. If b + d 6 2 and t > 2, then a 6 4 because, by arguments
similar to those used in Case 1b, (Z \ (y1, y2)) ⊆ {3, 5} for some y1, y2 ∈ Z and
the only odd entries in Z \ Z ′′ are 5s.

Case 3. Suppose that νo(M)−ν5(M) < w
2

+3 and that either νo(M) < w+4 or
ν5(M) < w. We aim to satisfy the hypotheses of Lemma 3.22. Accordingly we
redefine t(X) and t. For a sublist X of M , we define t(X) = (u−1)w−

∑
eX.

Then
∑

eX = (u−1)w−t(X) and, by (iii),
∑

(M \X) =
(
w+1
2

)
−νo(X)+t(X).

Again, t(X) is always even and we abbreviate t(Z) to t. Observe that νo(M) >
w−2
2

> 3 since the sum of odd entries in M is greater than w(w−2)
2

. Let σ be
the sum of the νo(M)− 3 smallest odd entries in M .

Case 3a. Suppose further that σ 6
(
w+1
2

)
. We choose Z and m according to

the following procedure.

1. Let Z ′′ be a list consisting of the largest three odd entries of M .

We have
∑

e Z
′′ 6 3(u − 1) and hence t(Z ′′) > (u − 1)w − 3(u − 1) >

7u− 7 > 5u. Below, this will imply that ν(Z \ Z ′′) > 5.

2. Begin with Z = Z ′′ and repeatedly add the largest even entry of M \Z to
Z, until M \Z contains no even entries or until Z satisfies t 6 maxe(M \
Z)− 2. Let m = 0 if t = 0, m = max(M \ Z) if t > 4, and let m be an
entry of M \ Z such that 4 6 m 6 w − 1 if t = 2 (we show below that
such an entry exists).

It follows from this definition that t > 0. To show that a suitable choice
of m exists when t = 2, suppose otherwise that M \ Z ⊆ {3, w}. Then,
the sum of the odd entries in M is at most 3(w− 1) + 3(w

2
− 1) = 9w

2
− 6,

because each of the three odd entries in Z is at most w − 1, each odd
entry in M \Z is a 3, and νo(M)− ν5(M) 6 w

2
+ 2. This contradicts our

assumption that the sum of the odd entries in M is greater than w(w−2)
2

(note that w > 10).
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For i ∈ {τ − 1, τ}, because ν(Z \ Z ′′) > 2, if mi is not added to Z ′′ in step
1 then it is added to Z in step 2. Thus (mτ−1,mτ ) is a sublist of Z and Z is
well-behaved. Let k = d t+2

3
ee if t > 12 and k = 0 otherwise. Let (3a, 4b, 5c, 6d)

be the basic refinement of (Z \ (mτ ),mτ −k). If mτ 6 6, then mτ −k = mτ . If
mτ > 7 then, as in Case 1a, mτ − k > 7. Using arguments similar to those in
the previous cases and the following facts we can see that a, b, c, d and M \Z
satisfy the conditions of Lemma 3.22.

• a + c = νo(Z) = 3 and (m, t) 6= (w, 2). The former follows from the
definition of Z (note that mτ − k and mτ have the same parity). The
latter follows from our choice of m.

• m > t+ 2 if t > 0. If t = 2 this is obvious by our choice of m, so we may
suppose that t > 4. We have

∑
(M \ Z) =

(
w+1
2

)
− νo(Z) + t >

(
w+1
2

)
because νo(Z) = 3 and t > 4. However, the sum of the odd entries in
M \ Z is σ, and σ 6

(
w+1
2

)
. Thus M \ Z has an even entry and we have

m > maxe(M \ Z) > t+ 2 by the definition of Z.

Case 3b. Suppose further that σ >
(
w+1
2

)
. We choose Z and m according to

the following procedure.

1. Let Z ′′ be a sublist of M with maximum sum subject to the constraints
that ν(Z ′′) = νo(Z

′′) = 6 and ν5(Z
′′) 6 1.

Such a sublist exists because νo(M) > 6 and νo(M)− ν5(M) > 5. These
facts must hold because σ >

(
w+1
2

)
and since either νo(M) 6 w + 3 or

ν5(M) 6 w − 1 by the criteria for Case 3. We have
∑

e Z
′′ 6 6(u − 1)

and hence t(Z ′′) > (u− 1)w− 6(u− 1) > 3u. Below, this will imply that
ν(Z \ Z ′′) > 3.

2. Begin with Z = Z ′′ and repeatedly add to Z the largest entry of M \ Z
not equal to 5 until Z satisfies t 6 max(M \Z)−2. Let m = max(M \Z)
if t > 0 and let m = 0 if t = 0.

It follows from this definition that t > 0. This process terminates with
M\Z * {5}, since

∑
(M\Z) =

(
w+1
2

)
− νo(Z) + t > 11w

2
− (w

2
+ 2)− 1 >

5w − 3 and 5ν5(M \ Z) 6 5ν5(M) 6 5(w − 1), using the criteria
for Case 3 and the fact that ν5(Z) = ν5(Z

′′) ∈ {0, 1}. Note that
t 6 max(M \ Z)− 2 6 w − 2.

We must have mτ > 7 for otherwise, by the criteria for Case 3, σ 6
3(w

2
+ 2) + 5(w − 4) = 13w

2
− 14, contradicting σ >

(
w+1
2

)
(note w > 10). So,

for i ∈ {τ − 1, τ}, because ν(Z \ Z ′′) > 2, if mi is not added to Z ′′ in step 1
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then it is added to Z in step 2 (note that if mτ−1 = 5 then mτ−1 ∈ Z ′′). Thus
(mτ−1,mτ ) is a sublist of Z and Z is well-behaved.

Let k = d t+2
3
ee if t > 12 and k = 0 otherwise. Let (3a, 4b, 5c, 6d) be the

basic refinement of (Z \ (mτ ),mτ − k) if mτ − k 6= 9 and the basic refinement
of (Z \ (mτ ), 4, 5) if mτ − k = 9. As in Case 1a, mτ − k > 7. Using arguments
similar to those in the previous cases and the following facts we can see that
a, b, c, d and M \ Z satisfy the conditions of Lemma 3.22.

• a+ 2c 6 w. We have a+ 2c 6 νo(Z) + ν5(Z) + 1 (equality occurs when
mτ − k = 9). Thus, a + 2c 6 w

2
+ 5 6 w by the definition of Z and

because νo(M)− ν5(M) 6 w
2

+ 2 and ν5(Z) = ν5(Z
′′) 6 1.

• a+ c > 6 because a+ c = νo(Z) > νo(Z
′′) = 6.

• b > 1 as in Case 1a.



Chapter 4

Cycle Packings of λKv

The main result of this chapter provides necessary and sufficient conditions for
the existence of packings of the complete multigraph with cycles of arbitrary
specified lengths. Our proof relies on Theorem 1.9 for cycle decompositions of
the complete multigraph [31, 32] and on techniques for constructing packings
of the complete graph with uniform length cycles [27, 63].

For positive integers λ and v, λKv is the complete multigraph with λ par-
allel edges between each pair of v distinct vertices. For λ > 2, λKv contains
2-cycles (pairs of parallel edges). For vertices x and y in a multigraph G, the
multiplicity of xy is the number of edges in G which have x and y as their
endpoints, denoted µG(xy). If µG(xy) 6 1 for all pairs of vertices in V (G)
then we say that G is a simple graph. A multigraph is said to be even if
every vertex has even degree and is said to be odd if every vertex has odd de-
gree. Definitions for decompositions and packings of graphs extend naturally
to multigraphs, in particular a cycle decomposition of λKv is a partition of the
λ
(
v
2

)
edges of λKv into cycles.

Theorem 4.1. Let m1, . . . ,mτ be a list and let λ and v be positive integers.
Then there exists an (m1, . . . ,mτ )-packing of λKv if and only if

(i) 2 6 m1, . . . ,mτ 6 v;

(ii) m1 + · · · + mτ = λ
(
v
2

)
− δ, where δ is a nonnegative integer such that

δ 6= 1 when λ(v−1) is even, δ 6= 2 when λ = 1, and δ > v
2

when λ(v−1)
is odd;

(iii)
∑

mi=2mi 6

{
(λ− 1)

(
v
2

)
− 2 if λ and v are odd and δ = 2,

(λ− 1)
(
v
2

)
if λ is odd; and

(iv) mτ 6

{
λ
2

(
v
2

)
− τ + 2 if λ is even and δ = 0,

λ
2

(
v
2

)
− τ + 1 if λ is even and 2 6 δ < mτ .

98
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The necessity of conditions (i)–(iv) follows from Theorem 1.9 as we now
show.

Lemma 4.2. Let m1, . . . ,mτ be a nondecreasing list and let λ and v be positive
integers. If there exists an (m1, . . . ,mτ )-packing of λKv then

(i) 2 6 m1, . . . ,mτ 6 v;

(ii) m1 + · · · + mτ = λ
(
v
2

)
− δ, where δ is a nonnegative integer such that

δ 6= 1 when λ(v−1) is even, δ 6= 2 when λ = 1, and δ > v
2

when λ(v−1)
is odd;

(iii)
∑

mi=2mi 6

{
(λ− 1)

(
v
2

)
− 2 if λ and v are odd and δ = 2,

(λ− 1)
(
v
2

)
if λ is odd; and

(iv) mτ 6

{
λ
2

(
v
2

)
− τ + 2 if λ is even and δ = 0,

λ
2

(
v
2

)
− τ + 1 if λ is even and 2 6 δ < mτ .

Proof. Suppose there exists an (m1, . . . ,mτ )-packing P of λKv with leave L.
Condition (i) is obvious. The degree of each vertex in λKv is λ(v − 1), so if
λ(v − 1) is even then L is an even multigraph and if λ(v − 1) is odd then L
is an odd multigraph. Hence (ii) follows because an even graph cannot have
a single edge, an even simple graph cannot have two edges, and an odd graph
on v vertices has at least v

2
edges. To see that condition (iii) holds, note that

there are at most bλ
2
c
(
v
2

)
edge-disjoint 2-cycles in λKv. Furthermore, note

that if λ and v are both odd and δ = 2 then L is a 2-cycle (because L is an
even multigraph and has two edges). If λ is even and δ = 0 then (iv) follows
directly from Theorem 1.9, so suppose λ is even and 2 6 δ < mτ . Then L
contains at least one cycle so there exists an (m1, . . . ,mτ ,M)-decomposition
of λKv for some list M containing at least one entry. So (iv) follows from
Theorem 1.9.

It remains to prove the sufficiency of conditions (i)–(iv) in Theorem 4.1.
We first adapt some tools that were crucial to the proof of Theorem 1.8 to
packings of the complete multigraph. These are given in Section 4.1.

4.1 Preliminary results

In order to prove Lemmas 4.4 and 4.5 we require the following cycle switching
lemma for cycle packings of multigraphs. Lemma 4.3 is closely related to the
cycle switching method applied to simple graphs in Chapters 2 and 3 (see
Lemma 1.22).
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Lemma 4.3. Let v and λ be positive integers, let M be a list of integers,
let P be an (M)-packing of λKv, let L be the leave of P, let α and β
be distinct vertices of L, and let π be the transposition (αβ). Let E be a
subset of E(L) such that, for each vertex x ∈ V (L) \ {α, β}, E contains
precisely max(0, µL(xα) − µL(xβ)) edges with endpoints x and α, and pre-
cisely max(0, µL(xβ) − µL(xα)) edges with endpoints x and β (so E may
contain multiple edges with the same endpoints), and E contains no other
edges. Then there exists a partition of E into pairs such that for each pair
{x1y1, x2y2} of the partition, there exists an (M)-packing P ′ of λKv with leave
L′ = (L− {x1y1, x2y2}) + {π(x1)π(y1), π(x2)π(y2)}.

Furthermore, if P = {C1, . . . , Ct}, then P ′ = {C ′1, . . . , C ′t} where for i ∈
{1, . . . , t}, C ′i is a cycle of the same length as Ci such that for i ∈ {1, . . . , t}

• If neither α nor β is in V (Ci), then C ′i = Ci;

• If exactly one of α and β is in V (Ci), then C ′i = Ci or C ′i = π(Ci); and

• If both α and β are in V (Ci), then C ′i = Qi∪Q∗i where Qi = Pi or π(Pi),
Q∗i = P ∗i or π(P ∗i ), and Pi and P ∗i are the two paths from α to β in Ci.

When λ(v−1) is even, Lemma 4.3 is identical to the original version of the
result [31, Lemma 2.1] so this case has already been proved. Lemma 4.3, as it
is stated here, differs from the original version [31, Lemma 2.1] in that here P
is a cycle packing of λKv regardless of the parity of λ(v − 1), whereas when
λ(v−1) is odd [31, Lemma 2.1] concerns a cycle packing of λKv−I, where I is
a 1-factor of λKv. However, in this case the proof of Lemma 4.3 follows from
very similar arguments to those used in the corresponding case of the original
proof.

In applying Lemma 4.3 we say that we are performing the (α, β)-switch
with origin x and terminus y (where {x1, y1, x2, y2} ⊆ {α, β, x, y}). Note that
x1y1 and x2y2 may be parallel edges, in which case x = y.

For integers p > 2 and q > 1, a (p, q)-lasso is the union of a p-cycle and
a q-path such that the cycle and the path share exactly one vertex and that
vertex is an end-vertex of the path. The order of a (p, q)-lasso is p + q. A
(p, q)-lasso with cycle (x1, x2, . . . , xp) and path [xp, y1, y2, . . . , yq] is denoted by
(x1, x2, . . . , xp)[xp, y1, y2, . . . , yq]. A chord of a cycle is an edge which is incident
with two vertices of the cycle but is not in the cycle. Note that a chord may
be an edge parallel to an edge of the cycle.

The following lemmas extend results for packings of the complete (simple)
graph [27] to packings of the complete multigraph.

Lemma 4.4. Let v, s and λ be positive integers such that s > 3, and let M be
a list of integers. Suppose there exists an (M)-packing P of λKv whose leave
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contains a lasso of order at least s + 2 and suppose that if s is even then the
cycle of the lasso has even length. Then there exists an (M, s)-packing of λKv.

Proof. Let L be the leave of P . Suppose that L contains a (p, q)-lasso
(x1, x2, . . . , xp)[xp, y1, y2, . . . , yq] such that p + q > s + 2 and p is even if s
is even. If L contains an s-cycle then we add it to the packing to complete the
proof, so assume L does not contain an s-cycle and hence p 6= s.
Case 1. Suppose 2 6 p < s and either p = 2 or p ≡ s (mod 2). We can
assume that p+ q = s+ 2 since L contains a (p, s+ 2− p)-lasso.

Let L′ be the leave of the packing P ′ obtained from P by applying the
(x1, yq−1)-switch with origin x2 (note that µL(x2yq−1) = 0 for otherwise L
contains an s-cycle). If the terminus of the switch is not yq−2 then L′ con-
tains an s-cycle which completes the proof (recall that s = p + q − 2).
Otherwise, the terminus of the switch is yq−2 and L′ contains a (q, p)-lasso
(x′1, x

′
2, . . . , x

′
q)[x

′
q, y
′
1, y
′
2, . . . , y

′
p]. If p = 2 then L′ contains an s-cycle which

completes the proof, so assume L′ contains no s-cycle and p > 3.
Let L′′ be the leave of the packing P ′′ obtained from P ′ by applying the

(x′2, y
′
p)-switch with origin x′3 (note that µL′(x

′
3y
′
p) = 0 for otherwise L′ contains

an s-cycle). If the terminus of this switch is not y′p−1 then L′′ contains an s-cycle
which completes the proof (recall that s = p+ q− 2). Otherwise, the terminus
of the switch is y′p−1 and L′′ contains a (p+ 2, q − 2)-lasso, so since p < s and
p ≡ s (mod 2), the result follows by repeating the procedure described in this
case.
Case 2. Suppose 3 6 p < s and p 6≡ s (mod 2). As above, assume p+q = s+2.
Then s is odd, p > 4 is even and q is odd by our hypotheses.

Let L′ be the leave of the packing P ′ obtained from P by applying the
(x2, yq)-switch with origin x3 (note that µL(x3yq) = 0 for otherwise L contains
an s-cycle). If the terminus of the switch is not yq−1 then L′ contains an s-cycle
which completes the proof. Otherwise, the terminus of the switch is yq−1 and
L′ contains a (q + 2, p− 2)-lasso. Note that q + 2 6 s (because p + q = s + 2
and p > 4) and q + 2 ≡ s (mod 2). If q + 2 = s then this completes the proof,
otherwise we can proceed as in Case 1.
Case 3. Suppose 3 6 s < p. Let L′ be the leave of the packing P ′ ob-
tained from P by applying the (xp−s+1, y1)-switch with origin xp−s+2 (note
that µL(xp−s+2y1) = 0 for otherwise L contains an s-cycle). If the terminus
of the switch is not xp then L′ contains an s-cycle which completes the proof.
Otherwise, L′ contains a (p− s+ 2, q+ s− 2)-lasso. By repeating this process
we obtain an (M)-packing of λKv whose leave contains a (p′, p+ q − p′)-lasso
such that 2 6 p′ 6 s. Thus we can proceed as in Case 1 or Case 2.

Lemma 4.5. Let v, s and λ be positive integers with s > 3, and let M be a
list of integers. Suppose there exists an (M)-packing of λKv whose leave L has
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a component H containing an (s+ 1)-cycle with a chord. Then there exists an
(M)-packing of λKv with a leave L′ such that E(L′) = (E(L)\E(H))∪E(H ′),
where H ′ is a graph with V (H ′) = V (H) and |E(H ′)| = |E(H)| which contains
an (s, 1)-lasso. Furthermore, degH′(x) > degH(x) for each vertex x in the s-
cycle of this lasso.

Proof. Let (x1, . . . , xs+1) be an (s + 1)-cycle in H with chord x1xe for some
e ∈ {2, 3, . . . , s − 1} (note that L may not be a simple graph). If H con-
tains an (s, 1)-lasso then we are finished immediately, so suppose otherwise. If
e = 2, then perform the (x3, x2)-switch with origin x4 (note that µL(x2x4) = 0
because H contains no (s, 1)-lasso). The leave of the resulting packing con-
tains the (s, 1)-lasso (x4, . . . , xs+1, x1, x2)[x2, x3], and degH′(xi) > degH(xi) for
i ∈ {1, . . . , s + 1} \ {3}. If e = 3, then H contains an (s, 1)-lasso which
completes the proof.

So suppose e > 4 and let P∗ be the packing with leave L∗ obtained from P
by applying the (xe−1, xe)-switch with origin xe−2 (note that µL(xe−2xe) = 0
for otherwise L contains an (s, 1)-lasso). If the terminus of the switch is
not xe+1 then E(L∗) = (E(L) \ E(H)) ∪ E(H∗), where H∗ is a graph
with V (H∗) = V (H) and |E(H∗)| = |E(H)| which contains the (s, 1)-
lasso (xe+1, . . . , xs+1, x1, . . . , xe−2, xe)[xe, xe−1]. Also note that degH∗(xe) >
degH(xe) and degH∗(xi) = degH(xi) for i ∈ {1, . . . , s + 1} \ {e, e− 1}. Other-
wise, the terminus of the switch is xe+1 and E(L∗) = (E(L) \E(H))∪E(H∗),
where H∗ is a graph with V (H∗) = V (H) and |E(H∗)| = |E(H)| which con-
tains an (s+1)-cycle (x∗1, . . . , x

∗
s+1) with chord x∗1x

∗
e−1. Furthermore, the degree

of each vertex in this (s+1)-cycle remains unchanged in H ′. The result follows
by repeating this process.

4.2 Main result

Theorem 4.1 is established for λ odd and λ even in Lemmas 4.6 and 4.7 re-
spectively. These results rely on using Lemmas 4.4 and 4.5 to modify cycle
packings of λKv obtained via Theorem 1.9.

Lemma 4.6. Let m1, . . . ,mτ be a list and let λ and v be positive integers, with
λ odd, then there exists an (m1, . . . ,mτ )-packing of λKv if and only if

(i) 2 6 m1, . . . ,mτ 6 v;

(ii) m1 + · · · + mτ = λ
(
v
2

)
− δ, where δ is a nonnegative integer such that

δ 6= 1, (λ, δ) 6= (1, 2), and if v is even then δ > v
2
; and

(iii)
∑

mi=2mi 6

{
(λ− 1)

(
v
2

)
− 2 if v is odd and δ = 2,

(λ− 1)
(
v
2

)
otherwise.
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Proof. If there exists an (m1, . . . ,mτ )-packing P of λKv, then conditions (i)–
(iii) hold by Lemma 4.2. So it remains to show that if λ, v and m1, . . . ,mτ

satisfy (i)–(iii), then there is an (m1, . . . ,mτ )-packing of λKv.

Let ε = δ if v is odd, and ε = δ − v
2

if v is even. If ε = 0 then the result
follows by Theorem 1.9, so suppose ε > 1 and note that if v is odd then ε 6= 1
and (λ, ε) 6= (1, 2).

Case 1. Suppose v is odd or ε > 3. Note that if v is odd and ε = 2 then
2 +

∑
mi=2mi 6 (λ− 1)

(
v
2

)
by (iii).

We show that there exists a list N such that 2 6 n 6 v for all n ∈ N ,∑
N = ε and

∑
n∈N,n=2 n +

∑
mj=2mj 6 (λ − 1)

(
v
2

)
. If this list exists, then

by Theorem 1.9 there exists an (m1, . . . ,mτ , N)-decomposition D of λKv (if v
is odd) or λKv − I (if v is even), where I is a 1-factor of λKv. We obtain the
required packing by removing cycles of lengths N from D.

We first consider the cases when v ∈ {2, 3}. If v = 2, then ε is even by
(i) and (ii) and there exists a 2-cycle decomposition of λK2 − I. If v = 3
and ε is even, then mi = 3 for some i ∈ {1, . . . , τ} by (i) and (ii). Then
ε+
∑

mi=2mi 6 (λ−1)
(
v
2

)
by (ii) and we take N = (2ε/2). If v = 3 and ε is odd

then ε−3+
∑

mi=2mi 6 (λ−1)
(
v
2

)
by (ii) and we take N = (2(ε−3)/2, 3). In each

of these cases we can see that there exists an (m1, . . . ,mτ , N)-decomposition
of λKv since the hypotheses of Theorem 1.9 are satisfied by (i)–(iii).

Now assume v > 4 and let q and r be nonnegative integers such that
ε = vq + r and 0 6 r < v. If q = 0 or r 6∈ {1, 2} then we take N = (r, vq). If
q > 1 and r ∈ {1, 2} then N = (3, v−3+r, vq−1) (note that either v−3+r > 3,
or v = 4 and r = 1). If ε = 2 or (v, r) = (4, 1), then N contains exactly one
entry equal to 2 and otherwise n > 3 for all n ∈ N . By the hypotheses of this
case if ε = 2 then 2 +

∑
mi=2mi 6 (λ− 1)

(
v
2

)
. Further, if v = 4 and ε = 4q+ 1

for some q > 1 then (i) and (ii) imply that mi = 3 for some i ∈ {1, . . . , τ} so
again 2 +

∑
mi=2mi 6 (λ − 1)

(
v
2

)
. We can therefore see that there exists an

(m1, . . . ,mτ , N)-decomposition of λKv since the hypotheses of Theorem 1.9
are satisfied by (i)–(iii) and the fact that

∑
N = ε.

Case 2. Suppose v is even and ε ∈ {1, 2}. Let M = m1, . . . ,mτ and let m be
the least odd entry in M if M contains an odd entry, otherwise let m be the
least entry in M such that m > 4 (such an entry exists by (iii)). Note that if
ε = 1 then by (ii) M contains an odd entry and m is odd.

Case 2a. Suppose m+ε 6 v. By Theorem 1.9 there exists an (M \(m),m+ε)-
decomposition D of λKv − I, where I is a 1-factor of λKv. Let P be the
(M \ (m))-packing of λKv that is obtained by removing an (m+ ε)-cycle from
D. Let L be the leave of P and note that L consists of an (m + ε)-cycle and
the 1-factor I.

If L contains an (m + ε, 1)-lasso then we apply Lemma 4.4 to P with
s = m to complete the proof. The hypotheses of Lemma 4.4 are satisfied
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because ε + 1 > 2, and if m is even then M contains no odd entries so ε = 2
by (ii).

So suppose L does not contain an (m+ ε, 1)-lasso. Then m+ ε is even and
L contains a component H such that H is the union of an (m + ε)-cycle and
a 1-factor on V (H). We apply Lemma 4.5 to P with s = m+ ε− 1 to obtain
an (M \ (m))-packing P ′ of λKv whose leave L′ contains a component H ′ on
m+ ε vertices that has 3

2
(m+ ε) edges and contains an (m+ ε− 1, 1)-lasso. If

ε = 1 then we can add the m-cycle of this lasso to P ′ to complete the proof.
Otherwise ε = 2 and H ′ contains an (m+1)-cycle with a chord because m > 3
and any vertex in this cycle has degree at least 3 (note that degH(x) = 3 for
each x ∈ V (H)). Then we can apply Lemma 4.5 with s = m to P ′ to obtain
an (M \ (m))-packing P ′′ of λKv whose leave contains an (m, 1)-lasso. We add
the m-cycle of this lasso to P ′′ to complete the proof.
Case 2b. Suppose m+ ε > v. Then m > v− 1 and ε = 2 (note that ε is even
if m = v).

If m = v then mi ∈ {2, v} for all i ∈ {1, . . . , τ}, so λ
(
v
2

)
− v

2
≡

2 +
∑

mi=2mi (mod v) by (ii) and hence 2 +
∑

mi=2mi 6 (λ − 1)
(
v
2

)
by (iii).

Then by Theorem 1.9 there exists an (M, 2)-decomposition D of λKv − I. We
remove a 2-cycle from D to complete the proof.

So suppose that m = v − 1. Since ε is even, M contains an even number
of odd entries, so at least two entries of M are equal to v − 1. Let D0 be an
(M \ ((v − 1)2), v2)-decomposition of λKv − I which exists by Theorem 1.9.
Let P0 be the (M \ ((v− 1)2), v)-packing of λKv formed by removing a v-cycle
from D0. The leave L0 of P0 is the union of a v-cycle and the 1-factor I. Let
P1 be the packing obtained by applying Lemma 4.5 to P0 with s = v − 1.
Then the leave of P1 contains a (v − 1, 1)-lasso. We add the (v − 1)-cycle of
this lasso to P1 and remove a v-cycle to obtain an (M \ (v− 1))-packing P2 of
λKv. The leave of P2 has size 3v

2
+ 1.

By applying Lemma 4.5 to P2 with s = v − 1 we obtain an (M \ (v − 1))-
packing P3 of λKv whose leave contains a (v− 1, 1)-lasso. We add the (v− 1)-
cycle of this lasso to P3 to complete the proof.

Lemma 4.7. Let m1, . . . ,mτ be a nondecreasing list and let λ and v be positive
integers with λ even. Then there exists an (m1, . . . ,mτ )-packing of λKv if and
only if

(i) 2 6 m1, . . . ,mτ 6 v;

(ii) m1 + · · · + mτ = λ
(
v
2

)
− δ, where δ is a nonnegative integer such that

δ 6= 1; and

(iii) mτ 6

{
λ
2

(
v
2

)
− τ + 2 if δ = 0,

λ
2

(
v
2

)
− τ + 1 if 2 6 δ < mτ .
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Proof. If there exists an (m1, . . . ,mτ )-packing P of λKv with leave L, then
conditions (i)–(iii) hold by Lemma 4.2. So it remains to show that if λ, v and
m1, . . . ,mτ satisfy (i)–(iii), then there exists an (m1, . . . ,mτ )-packing of λKv.
If δ = 0 then the result follows immediately from Theorem 1.9, so suppose
δ > 2.

Let

N =


(δ) if 2 6 δ < mτ ,
(2(δ−mτ )/2,mτ ) if δ > mτ and δ ≡ mτ (mod 2),
(2(δ−mτ+1)/2,mτ − 1) if δ > mτ and δ 6≡ mτ (mod 2).

Note that in each case
∑
N = δ. We show that there exists an (m1, . . . ,mτ , N)-

decomposition D of λKv because the hypotheses of Theorem 1.9 are satisfied
by (i)–(iii) and the definition of N . The required packing is then obtained by
removing cycles of lengths N from D.

Let s be the number of entries in N . Let M = m1, . . . ,mτ . First observe
that

∑
M +

∑
N = λ

(
v
2

)
by (ii) and since

∑
N = δ. By (i) and the definition

of N it also holds that 2 6 n 6 mτ 6 v for all n ∈ N . If 2 6 δ < mτ , then
mτ 6 λ

2

(
v
2

)
− τ − s + 2 by (iii) and since s = 1. If δ > mτ , then because∑

M > mτ + 2(τ − 1) and
∑
N > mτ − 1 + 2(s− 1), it follows that

λ
2

(
v
2

)
− τ − s+ 2 = 1

2
(
∑
M +

∑
N)− τ − s+ 2

> 1
2
(mτ + 2(τ − 1) +mτ − 1 + 2(s− 1))− τ − s+ 2

= mτ − 1
2
.

Therefore max(N,M) = mτ 6 λ
2

(
v
2

)
− τ − s + 2 because λ

2

(
v
2

)
− τ − s + 2

is an integer. So by Theorem 1.9 we can see that there exists an (M,N)-
decomposition of λKv which completes the proof.



Chapter 5

Conclusion

This thesis makes significant progress on the problem of generalising the Doyen-
Wilson Theorem, a topic which has generated a lot of interest in the literature
since the proof of the original theorem in 1973. Specifically, we obtain new
results for embedding odd cycle systems and decomposing the complete graph
with a hole into cycles. The main results of Chapter 2 are in response to Prob-
lems 1.23 and 1.24, and the main result of Chapter 3 responds to Problem 1.25.
Finally, Chapter 4 contains a complete solution to Problem 1.26.

Our main results in Chapter 2 stem from Theorem 2.2 and concern m-cycle
decompositions when m > 9 is odd. These results give a complete solution to
Problem 1.23 for when an m-cycle system of order u can be embedded in one
of order v if m 6 15, if m is a prime power, or if v − u > m + 1. Further,
a complete solution to Problem 1.24 for m-cycle decompositions of Kv − Ku

is given when m 6 15, or if u > m − 2 and v − u > m + 1 both hold. As
is implied by Corollary 2.3, the remaining cases could be completely solved if,
for each odd m > 17, a finite number of example cases are found.

Problem 5.1. For odd m > 17, let u and v be integers such that u < v and
the conditions in Lemma 1.11 hold. Does there exist an m-cycle decomposition
of Kv −Ku when

(i) u < m− 2 and v < ωm(u) +m+ 1; or

(ii) m− 2 6 u 6 (m−1)(m−2)
2

and v 6 u+m− 1?

Recall that for integers u and m, ωm(u) is the least integer such that
(u, ωm(u)) is m-admissible.

An interesting problem related to Problem 1.24 is when the complete multi-
graph with a hole (λ+µ)Kv−λKu can be decomposed into m-cycles. There has
been some interest in the literature around this problem, beginning with results
for enclosings of triple systems [19]. While there are some results known for m
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even [9], very little is known for m odd when m > 3. The following problem is
therefore a potential application for Theorem 2.2 and the techniques used in
Chapter 2.

Problem 5.2. Given an odd integer m > 3 and positive integers λ and µ,
for which values of u and v does there exist an m-cycle decomposition of the
multigraph (λ+ µ)Kv − λKu?

Many of the known results are restricted to cases when there are one or
two vertices outside the hole and m is small [8, 10, 77]. More general results
are known for m even when m+ 2 6 min(u, v − u) [9].

Using a similar methodology to Chapter 2, results in Chapter 3 extend
Theorem 2.2 to decompositions of the complete graph with a hole into arbitrary
specified length cycles. Theorem 3.1 gives a solution to Problem 1.25 when
there is an upper bound on the length of the longest cycle in the decomposition.
Extending Theorem 2.2 in this manner echoes the progress that was made
for decompositions of the complete graph, where the uniform length cycle
case was solved first and then extended to cycles of arbitrary lengths (see
Theorems 1.2 and 1.4). Some of the tools used to obtain Theorem 3.1 rely on
the assumption that there are at least ten vertices outside the hole. With more
work along similar lines to the methods in Chapter 3 this small gap could be
filled, providing an answer to the following question.

Problem 5.3. Given a list of integers M , for which values of u and v such that
v−u 6 8 and max(M) 6 min(u, v−u) does there exist an (M)-decomposition
of Kv −Ku?

A key method in proving the results in Chapters 2 and 3 is the cycle
switching technique described by Lemma 1.22. Cycle switching has been shown
to be an effective method for obtaining cycle decomposition results of graphs
containing large sets of pairwise twin vertices. This has been demonstrated
previously for the complete graph and the complete bipartite graph [29, 33, 64].
The results in Chapters 2 and 3 build tools for applying cycle switching to
decompositions of the complete graph with a hole.

The main tool developed by cycle switching in Chapters 2 and 3 is
Lemma 3.3 which, under certain conditions, adds the lengths of two cycle
together to form a single, longer cycle. The upper bounds on the cycle lengths
in the decompositions given by Theorems 2.2 and 3.1 are required in order
to apply Lemma 3.3 or similar merging results. As we saw in Chapter 1, in
the proof of Theorem 1.4 for cycle decompositions of the complete graph, a
‘merging’ lemma was complemented with an ‘equalising’ lemma [29]. This en-
abled a complete solution to Conjecture 1.3, whereas either of these methods
on its own was limited in the results it could obtain. Developing other tools for
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modifying cycle packings of the complete graph with a hole could be beneficial
for resolving some of the cases of Problem 5.1.

In spite of the limitations of cycle switching, the known results have been
significantly improved as a result of applying this technique to the complete
graph with a hole. It is also possible that cycle switching methods could
be extended to obtain results for cycle decompositions of other graphs whose
vertices can be partitioned into sets of pairwise twin vertices. For example this
raises the following question concerning the complete multipartite graph.

Problem 5.4. Given an integer m > 3, for which lists of integers a1, . . . , ar
does there exist an m-cycle decomposition of the complete multipartite graph
Ka1,...,ar with r parts of sizes a1, . . . , ar?

There are numerous partial results for Problem 5.4, including results for
when m is small [43, 65]. Other results include cases when the parts are equal
sizes [86, 87, 88] or ai > m+ 2 for i ∈ {1, . . . , r} [64]. Also see the survey [20].

Results in Chapters 2 and 3 rely on applying cycle switching methods to
existing decompositions of the complete graph with a hole. Therefore find-
ing decompositions of the complete graph with a hole into short cycles is an
important aspect of the methodology. These decompositions are given in Sec-
tions 2.2 and 3.2. The majority of m-cycles in the decompositions of Kv −Ku

given in Chapter 2 contain either one or m pure edges, and a similar approach
is taken to cycles in the decompositions given in Chapter 3. This approach
enabled the use of cycle switching techniques to merge cycle lengths and ob-
tain longer cycles in the decomposition. However, developing constructions
for decompositions of Kv −Ku containing cycles with a mix of pure and cross
edges could be useful for obtaining decompositions into cycles of length greater
than min(u, v − u). This could then resolve some cases of Problem 5.1. The
base decompositions in Chapter 3 could also be built on to find results for the
following problem.

Problem 5.5. Given a list of integers M such that each entry of M is in
{3, 4, 5, 6}, for which values of u and v does there exist an (M)-decomposition
of Kv −Ku?

First note that if u ∈ {1, 3} then the solution to Problem 5.5 follows directly
from Theorem 1.4, and by removing a 3-cycle from the decomposition of Kv

if u = 3. If max(M) 6 min(u, v− u) then the solution to Problem 5.5 is given
by Theorem 3.1 or the solution to Problem 5.3. Further note that if v = u
then the decomposition is trivial, and if v = u + 2 then M = (31, 4(u−1)/2)
by Lemma 3.2 so the decomposition obviously exists. Thus we can assume
that u > 5, v − u > 4 and max(M) > min(u, v − u), so the following are the
remaining cases for a solution to Problem 5.5.
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Case 1. u > 5, v = u+ 4 and max(M) ∈ {5, 6}.
Case 2. u = 5, v > 11 and max(M) = 6.

Case 1 can be simplified by noting that, by Lemma 3.2(iv), there are at
most six odd cycles in a cycle decomposition of Ku+4−Ku. Lemma 3.21 could
also be used to simplify the results of both cases.

The main result of Chapter 4 is a complete solution to Problem 1.26. That
is, Theorem 4.1 states the conditions for when there exists a packing of the
complete multigraph with cycles of specified lengths. The proof of Theorem 4.1
applies the multigraph version of cycle switching to modify known cycle de-
compositions of the complete multigraph. Following a complete solution to
Problem 1.26, it is natural to ask whether there exist packings of the complete
multigraph with other graphs. The following question is one such example.

Problem 5.6. For positive integers λ and v, for which lists of integers
s1, . . . , sτ does there exist a packing of λKv with stars of sizes s1, . . . , sτ?

A solution to Problem 5.6 is known when λ = 1 [70]. If si = s for
i ∈ {1, . . . , τ}, then the problem has also been solved whenever s | λ

(
v
2

)
[92]

(see also [11, 22, 60]). However, in general, Problem 5.6 is still an open problem
for λ > 2.

Results in this thesis make substantial progress towards generalising the
Doyen-Wilson Theorem to odd cycle systems, and decomposing the complete
graph with a hole into cycles. Despite the strength of the results given here,
there are still unsolved cases for Problems 1.23–1.25. Moreover, the cycle
switching and base decomposition methods used to obtain the results in this
thesis also give rise to several interesting open problems.
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[36] D. E. Bryant and P. Ó Catháin. An asymptotic existence result on com-
pressed sensing matrices. Linear Algebra Appl., 475:134–150, 2015.

[37] D. E. Bryant and C. A. Rodger. The Doyen-Wilson theorem extended to
5-cycles. J. Combin. Theory Ser. A, 68(1):218–225, 1994.

[38] D. E. Bryant and C. A. Rodger. On the Doyen-Wilson theorem for m-cycle
systems. J. Combin. Des., 2(4):253–271, 1994.



REFERENCES 113

[39] D. E. Bryant and C. A. Rodger. Cycle decompositions. In C. J. Colbourn
and J. H. Dinitz, editors, The CRC Handbook of Combinatorial Designs,
pages 373–382. CRC Press, Boca Raton, 2nd edition, 2007.

[40] D. E. Bryant, C. A. Rodger, and E. R. Spicer. Embeddings of m-cycle
systems and incomplete m-cycle systems: m 6 14. Discrete Math., 171(1-
3):55–75, 1997.

[41] D. E. Bryant and V. Scharaschkin. Complete solutions to the Oberwolfach
problem for an infinite set of orders. J. Combin. Theory Ser. B, 99(6):904–
918, 2009.

[42] Y. Caro and R. Yuster. List decomposition of graphs. Discrete Math.,
243(1-3):67–77, 2002.

[43] N. J. Cavenagh and E. J. Billington. Decomposition of complete multi-
partite graphs into cycles of even length. Graphs Combin., 16(1):49–65,
2000.

[44] C.-C. Chou and C.-M. Fu. Decomposition of Km,n into 4-cycles and 2t-
cycles. J. Comb. Optim., 14(2-3):205–218, 2007.

[45] C.-C. Chou, C.-M. Fu, and W.-C. Huang. Decomposition of Km,n into
short cycles. Discrete Math., 197/198:195–203, 1999.

[46] C. J. Colbourn. Triple systems. In C. J. Colbourn and J. H. Dinitz, editors,
The CRC Handbook of Combinatorial Designs, pages 58–71. CRC Press,
Boca Raton, 2nd edition, 2007.

[47] C. J. Colbourn, A. C. H. Ling, G. Quattrocchi, and V. R. Syrotiuk.
Grooming traffic to minimize load. Discrete Math., 312(3):536–544, 2012.

[48] C. J. Colbourn and A. Rosa. Triple systems. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York, 1999.

[49] A. Deza, F. Franek, W. Hua, M. Meszka, and A. Rosa. Solutions to the
Oberwolfach problem for orders 18 to 40. J. Combin. Math. Combin.
Comput., 74:95–102, 2010.

[50] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer, Heidelberg, fourth edition, 2010.

[51] J. Doyen and R. M. Wilson. Embeddings of Steiner triple systems. Dis-
crete Math., 5:229–239, 1973.



114 REFERENCES

[52] P. Dukes, E. R. Lamken, and A. C. H. Ling. An existence theory for
incomplete designs. Canad. Math. Bull., 59(2):287–302, 2016.

[53] S. I. El-Zanati. Maximum packings with odd cycles. Discrete Math.,
131(1-3):91–97, 1994.

[54] J.-C. Fournier. Colorations des arêtes d’un graphe. Cahiers Centre Études
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gons. Mat.-Fyz. Časopis Sloven. Akad. Vied, 16:349–352, 1966.



116 REFERENCES

[82] A. Rosa. On the cyclic decompositions of the complete graph into polygons
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Appendix A

For each of the following values of m, u and v, let V = {1, . . . , v} and U = {1, . . . , u}.
Then D is an m-cycle decomposition of KV −KU .

The algorithm used to obtain these decompositions begins by finding a random
cycle decomposition of Kv − Ku, with cycles of any length. The next step of the
algorithm is to apply cycle switches to improve the decomposition. The algorithm
terminates when all cycles have length m or if there is no solution after a given num-
ber of iterations. In the latter case solutions were found by running the algorithm
again on a new initial decomposition.

Missing decompositions for Theorem 2.2.

(m,u, v) D
(9,7,21) {(6, 9, 18, 20, 8, 21, 12, 19, 13), (4, 8, 15, 7, 18, 14, 17, 10, 19), (3, 14, 8, 10, 7, 16, 21, 6, 19), (2, 12, 14, 20, 13,

3, 9, 21, 18), (1, 12, 18, 6, 11, 20, 2, 21, 13), (1, 11, 12, 5, 8, 13, 10, 2, 14), (4, 11, 17, 7, 9, 16, 18, 15, 13), (3, 8,
11, 10, 5, 14, 7, 13, 16), (1, 15, 11, 21, 10, 12, 17, 3, 18), (1, 10, 4, 14, 11, 7, 20, 17, 16), (6, 14, 9, 8, 18, 13, 12, 15,
16), (2, 11, 5, 16, 10, 15, 21, 17, 13), (4, 16, 14, 13, 11, 18, 19, 9, 20), (5, 15, 14, 10, 20, 12, 7, 21, 19), (1, 19, 7, 8,
17, 15, 3, 21, 20), (1, 8, 12, 16, 2, 9, 17, 5, 21), (4, 12, 9, 13, 5, 18, 10, 6, 17), (3, 10, 9, 5, 20, 19, 8, 6, 12), (2, 17,
18, 4, 15, 6, 20, 16, 19), (3, 11, 9, 4, 21, 14, 19, 15, 20), (1, 9, 15, 2, 8, 16, 11, 19, 17)}

(11, 9, 25) {(6, 19, 17, 15, 12, 7, 22, 8, 25, 21, 23), (1, 16, 13, 4, 17, 2, 23, 3, 10, 11, 18), (2, 16, 15, 6, 10, 20, 4, 25, 24, 9, 19),
(1, 11, 2, 10, 18, 21, 14, 8, 16, 19, 22), (1, 19, 4, 24, 14, 2, 22, 11, 12, 6, 21), (4, 12, 18, 8, 21, 9, 11, 17, 20, 25, 14),
(3, 13, 8, 15, 25, 23, 11, 20, 16, 9, 22), (1, 13, 21, 5, 15, 7, 19, 14, 23, 9, 25), (3, 12, 13, 15, 21, 7, 20, 9, 14, 18, 25),
(2, 18, 6, 11, 14, 13, 19, 10, 16, 4, 21), (5, 19, 18, 13, 23, 10, 21, 12, 24, 8, 20), (3, 15, 10, 8, 17, 18, 7, 14, 6, 24,
21), (8, 19, 25, 13, 24, 17, 21, 16, 14, 15, 23), (3, 14, 20, 23, 19, 21, 11, 5, 18, 24, 16), (3, 19, 15, 24, 7, 23, 12, 17,
10, 22, 20), (3, 17, 25, 11, 19, 12, 20, 24, 22, 16, 18), (5, 13, 11, 16, 17, 14, 22, 21, 20, 6, 25), (5, 16, 25, 10, 14, 12,
8, 11, 15, 22, 23), (1, 12, 5, 17, 23, 4, 18, 22, 25, 2, 20), (1, 10, 5, 22, 13, 17, 7, 25, 12, 2, 15), (1, 17, 6, 13, 9, 12,
10, 4, 11, 3, 24), (2, 13, 7, 16, 12, 22, 4, 15, 20, 19, 24), (1, 14, 5, 24, 11, 7, 10, 9, 15, 18, 23), (6, 16, 23, 24, 10, 13,
20, 18, 9, 17, 22)}

(13, 11, 29) {(1, 19, 24, 7, 13, 6, 25, 27, 28, 10, 22, 29, 23), (1, 14, 17, 3, 27, 11, 20, 7, 28, 4, 19, 21, 16), (5, 19, 7, 15, 17, 16,
13, 29, 27, 14, 20, 24, 22), (1, 24, 15, 20, 5, 14, 3, 23, 6, 18, 27, 4, 26), (8, 13, 24, 23, 10, 14, 16, 29, 20, 26, 15, 11,
18), (1, 20, 2, 17, 23, 11, 21, 3, 16, 22, 4, 18, 28), (8, 23, 26, 27, 12, 13, 17, 24, 14, 19, 28, 20, 25), (3, 25, 22, 23, 5,
24, 12, 10, 18, 15, 16, 8, 26), (2, 13, 27, 19, 18, 16, 24, 6, 15, 3, 20, 4, 14), (1, 13, 19, 22, 3, 12, 14, 18, 26, 28, 23,
27, 21), (2, 19, 16, 28, 6, 14, 7, 12, 11, 17, 18, 5, 21), (5, 12, 20, 9, 29, 7, 26, 21, 24, 11, 25, 10, 17), (6, 21, 29, 28,
25, 19, 11, 26, 10, 20, 22, 17, 27), (1, 12, 15, 4, 17, 20, 18, 3, 13, 5, 29, 2, 25), (5, 15, 10, 13, 20, 27, 7, 16, 25, 18,
22, 14, 26), (2, 23, 20, 6, 22, 13, 18, 21, 4, 25, 14, 11, 28), (2, 15, 22, 8, 17, 28, 9, 25, 5, 27, 16, 26, 24), (2, 12, 4,
24, 10, 29, 8, 27, 22, 21, 25, 7, 18), (1, 18, 24, 8, 15, 27, 10, 19, 29, 26, 17, 9, 22), (4, 23, 12, 28, 5, 16, 6, 26, 13, 14,
9, 15, 29), (1, 15, 23, 14, 28, 8, 19, 26, 9, 21, 13, 11, 29), (7, 17, 21, 14, 8, 12, 19, 9, 27, 24, 29, 25, 23), (3, 19, 20,
21, 12, 26, 25, 15, 28, 13, 23, 9, 24), (2, 16, 9, 18, 12, 17, 6, 19, 15, 21, 28, 22, 26), (1, 17, 25, 13, 15, 14, 29, 12, 16,
11, 22, 2, 27), (3, 28, 24, 25, 12, 22, 7, 21, 10, 16, 23, 18, 29), (4, 13, 9, 12, 6, 29, 17, 19, 23, 21, 8, 20, 16)}
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(15, 13, 33) {(7, 23, 33, 24, 28, 30, 8, 15, 27, 14, 21, 20, 31, 13, 29), (2, 25, 3, 30, 20, 24, 23, 15, 12, 17, 32, 5, 26, 22, 31), (1,
19, 20, 4, 25, 31, 9, 17, 6, 21, 8, 16, 5, 18, 33), (2, 29, 32, 27, 21, 18, 17, 13, 22, 9, 19, 8, 20, 6, 30), (2, 26, 33, 3,
24, 17, 31, 23, 20, 14, 30, 22, 29, 6, 28), (3, 23, 14, 32, 20, 11, 25, 9, 26, 10, 27, 8, 24, 5, 29), (2, 17, 4, 14, 12, 18,
11, 31, 7, 24, 32, 13, 33, 6, 19), (3, 16, 11, 23, 12, 21, 7, 22, 8, 31, 30, 15, 18, 13, 28), (1, 14, 33, 22, 4, 27, 19, 30,
29, 28, 5, 31, 12, 26, 21), (6, 15, 11, 27, 12, 28, 17, 16, 29, 26, 8, 23, 30, 7, 18), (7, 14, 28, 33, 30, 25, 27, 17, 20, 29,
10, 31, 16, 15, 32), (1, 16, 19, 33, 15, 9, 32, 21, 3, 17, 25, 14, 24, 11, 28), (4, 29, 24, 6, 26, 19, 21, 5, 25, 20, 13, 23,
18, 10, 30), (2, 15, 7, 28, 32, 8, 29, 12, 30, 11, 26, 3, 22, 6, 23), (4, 18, 30, 9, 14, 15, 29, 11, 22, 21, 28, 20, 33, 27,
23), (1, 15, 17, 11, 19, 12, 16, 7, 25, 6, 31, 3, 14, 2, 18), (2, 21, 31, 4, 19, 28, 10, 25, 32, 12, 22, 15, 3, 18, 27), (1,
20, 26, 14, 31, 27, 28, 25, 33, 29, 23, 21, 16, 30, 32), (4, 15, 20, 16, 14, 17, 26, 25, 18, 29, 27, 9, 24, 30, 21), (2, 20,
10, 15, 26, 23, 28, 9, 18, 24, 25, 13, 27, 22, 32), (1, 17, 7, 33, 4, 32, 6, 16, 9, 23, 19, 3, 27, 24, 26), (1, 24, 16, 18, 14,
11, 21, 33, 10, 23, 17, 19, 15, 5, 30), (5, 20, 18, 31, 29, 17, 21, 13, 15, 24, 19, 10, 22, 16, 33), (1, 29, 9, 21, 10, 14,
19, 7, 20, 12, 33, 2, 22, 28, 31), (2, 16, 23, 32, 3, 20, 9, 33, 8, 17, 5, 19, 25, 12, 24), (13, 24, 31, 15, 28, 16, 27, 20,
22, 25, 29, 19, 32, 26, 30), (1, 23, 22, 24, 10, 32, 33, 31, 19, 18, 8, 28, 26, 7, 27), (4, 16, 26, 27, 6, 14, 29, 21, 15, 25,
23, 5, 22, 18, 28), (1, 22, 14, 5, 27, 30, 17, 33, 11, 32, 31, 26, 13, 16, 25), (4, 24, 21, 25, 8, 14, 13, 19, 22, 17, 10, 16,
32, 18, 26)}
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Missing decompositions for Theorem 2.4.

(m,u, v) D
(5, 11) {(1, 8, 11, 9, 7, 2, 6, 3, 10), (1, 6, 10, 4, 9, 8, 3, 11, 7), (1, 9, 10, 8, 7, 5, 6, 4, 11), (2, 9, 6, 11, 5, 8, 4, 7, 10), (2, 8,

6, 7, 3, 9, 5, 10, 11)}
(9, 5, 17) {(5, 6, 15, 17, 16, 9, 12, 8, 7), (2, 6, 9, 13, 15, 11, 16, 12, 7), (4, 9, 5, 14, 12, 13, 11, 10, 16), (1, 10, 14, 17, 3, 11, 5,

15, 16), (2, 10, 5, 12, 6, 3, 9, 11, 17), (1, 7, 14, 16, 8, 10, 13, 5, 17), (1, 14, 8, 13, 6, 16, 7, 4, 15), (3, 10, 9, 8, 17, 4,
14, 11, 12), (6, 7, 10, 12, 17, 9, 15, 8, 11), (1, 9, 14, 2, 16, 5, 8, 4, 13), (2, 8, 6, 17, 13, 3, 14, 15, 12), (1, 11, 2, 15,
7, 17, 10, 4, 12), (2, 9, 7, 3, 15, 10, 6, 14, 13), (1, 6, 4, 11, 7, 13, 16, 3, 8)}

(9, 7, 25) {(4, 13, 6, 16, 22, 11, 20, 9, 21), (1, 11, 5, 12, 2, 19, 14, 6, 24), (5, 10, 9, 18, 21, 6, 17, 8, 25), (3, 8, 10, 24, 21, 12,
22, 5, 19), (2, 11, 3, 25, 24, 14, 7, 19, 17), (6, 12, 11, 25, 19, 23, 10, 14, 22), (2, 8, 23, 6, 10, 13, 16, 20, 21), (1, 9,
8, 12, 18, 22, 15, 3, 21), (2, 20, 17, 10, 21, 15, 4, 12, 25), (1, 10, 7, 12, 15, 24, 9, 14, 20), (2, 13, 19, 20, 18, 3, 9, 7,
15), (6, 11, 8, 18, 24, 23, 9, 15, 20), (1, 8, 19, 4, 20, 22, 25, 15, 14), (3, 14, 16, 18, 5, 24, 7, 20, 23), (4, 9, 17, 13,
21, 25, 16, 7, 23), (2, 9, 25, 6, 15, 11, 24, 3, 16), (7, 11, 16, 12, 10, 18, 14, 17, 22), (11, 17, 12, 23, 13, 20, 24, 16,
19), (1, 13, 24, 17, 25, 4, 11, 21, 19), (10, 16, 15, 19, 22, 21, 14, 25, 20), (1, 15, 10, 19, 12, 14, 11, 13, 25), (4, 17,
23, 18, 15, 5, 9, 19, 24), (5, 16, 23, 15, 13, 14, 8, 21, 17), (2, 18, 7, 8, 13, 3, 20, 12, 24), (4, 8, 22, 10, 11, 9, 13, 5,
14), (1, 17, 7, 21, 5, 20, 8, 24, 22), (1, 16, 17, 3, 22, 2, 23, 25, 18), (6, 8, 16, 9, 22, 23, 11, 18, 19), (1, 12, 13, 22, 4,
10, 2, 14, 23), (4, 16, 21, 23, 5, 8, 15, 17, 18), (3, 10, 25, 7, 13, 18, 6, 9, 12)}

(9, 11, 17) {(1, 13, 2, 16, 9, 12, 4, 14, 15), (7, 16, 8, 13, 9, 14, 11, 15, 17), (4, 15, 6, 12, 13, 17, 14, 5, 16), (3, 14, 16, 10, 12,
11, 17, 9, 15), (1, 12, 2, 17, 16, 3, 13, 7, 14), (5, 12, 8, 15, 13, 10, 14, 6, 17), (1, 16, 6, 13, 5, 15, 12, 3, 17), (2, 14,
12, 17, 4, 13, 11, 16, 15), (7, 12, 16, 13, 14, 8, 17, 10, 15)}

(9, 17, 23) {(10, 18, 22, 16, 19, 11, 23, 13, 21), (4, 21, 12, 20, 8, 23, 5, 19, 22), (6, 18, 12, 22, 20, 15, 23, 17, 19), (3, 21, 8, 19,
23, 4, 18, 11, 22), (7, 21, 17, 18, 16, 23, 20, 10, 22), (2, 19, 10, 23, 9, 18, 21, 14, 20), (7, 18, 15, 22, 21, 16, 20, 13,
19), (1, 19, 18, 20, 17, 22, 2, 21, 23), (5, 20, 7, 23, 12, 19, 21, 9, 22), (5, 18, 8, 22, 6, 20, 19, 15, 21), (2, 18, 3, 20,
4, 19, 14, 22, 23), (1, 20, 11, 21, 6, 23, 18, 13, 22), (1, 18, 14, 23, 3, 19, 9, 20, 21)}

(11, 5, 29) {(1, 27, 4, 17, 26, 25, 11, 5, 8, 12, 29), (2, 14, 25, 6, 22, 10, 21, 28, 15, 13, 18), (2, 8, 3, 16, 26, 20, 15, 4, 6, 5, 23),
(2, 7, 9, 17, 11, 15, 14, 24, 12, 4, 13), (1, 8, 11, 24, 19, 23, 12, 2, 16, 27, 28), (11, 18, 14, 26, 24, 27, 25, 20, 12, 15,
19), (1, 16, 9, 4, 29, 3, 26, 27, 19, 8, 21), (2, 6, 24, 10, 16, 28, 19, 7, 23, 14, 11), (4, 18, 9, 15, 23, 22, 7, 13, 16, 19,
26), (4, 14, 21, 20, 16, 24, 15, 29, 13, 9, 23), (6, 14, 8, 26, 9, 25, 28, 29, 24, 13, 19), (2, 25, 13, 17, 7, 3, 18, 23, 6,
12, 28), (6, 10, 12, 19, 25, 8, 16, 22, 17, 21, 15), (4, 10, 20, 13, 6, 17, 14, 12, 7, 28, 22), (3, 23, 29, 26, 13, 21, 6, 28,
11, 16, 25), (3, 14, 19, 20, 7, 11, 9, 28, 26, 18, 17), (1, 11, 21, 16, 23, 28, 18, 10, 5, 27, 12), (1, 13, 22, 19, 2, 26, 15,
3, 28, 4, 25), (8, 13, 23, 25, 15, 16, 12, 26, 11, 22, 20), (1, 9, 8, 23, 26, 7, 27, 2, 29, 10, 19), (1, 6, 16, 5, 25, 21, 26,
10, 14, 29, 20), (2, 9, 3, 12, 25, 10, 15, 7, 18, 21, 24), (2, 17, 25, 29, 22, 18, 20, 23, 11, 4, 21), (1, 14, 28, 24, 25, 7,
29, 11, 3, 20, 17), (1, 15, 27, 23, 10, 3, 21, 22, 2, 20, 24), (5, 15, 17, 29, 6, 8, 7, 24, 18, 27, 22), (2, 10, 8, 27, 6, 9,
19, 4, 16, 18, 15), (4, 7, 21, 29, 16, 14, 20, 5, 19, 17, 24), (5, 17, 10, 28, 20, 6, 18, 8, 22, 9, 24), (5, 13, 14, 7, 10, 27,
9, 12, 21, 19, 29), (3, 24, 22, 12, 17, 8, 29, 18, 5, 21, 27), (1, 10, 13, 3, 6, 11, 20, 27, 14, 5, 26), (1, 7, 16, 17, 27, 11,
12, 18, 19, 3, 22), (4, 8, 24, 23, 17, 28, 13, 27, 29, 9, 20), (5, 12, 13, 11, 10, 9, 14, 22, 15, 8, 28), (1, 18, 25, 22, 26,
6, 7, 5, 9, 21, 23)}

(11, 7, 27) {(1, 14, 10, 4, 25, 20, 7, 27, 22, 26, 16), (2, 18, 10, 15, 9, 20, 13, 5, 25, 14, 21), (1, 12, 20, 26, 2, 22, 6, 17, 19, 8,
21), (9, 13, 11, 16, 24, 20, 22, 15, 12, 19, 26), (1, 9, 12, 24, 27, 5, 18, 15, 8, 3, 19), (2, 8, 9, 14, 19, 11, 23, 4, 21, 12,
25), (2, 15, 13, 18, 11, 26, 3, 22, 12, 14, 24), (1, 8, 16, 20, 27, 13, 6, 21, 25, 26, 15), (3, 14, 6, 20, 17, 22, 11, 8, 13,
10, 27), (2, 10, 17, 3, 21, 15, 6, 11, 27, 14, 23), (4, 11, 15, 7, 12, 17, 13, 21, 5, 9, 16), (8, 12, 23, 19, 13, 24, 15, 16,
14, 22, 18), (5, 14, 7, 17, 8, 27, 26, 24, 18, 9, 19), (1, 25, 10, 9, 22, 24, 7, 16, 2, 14, 26), (3, 13, 7, 23, 26, 12, 18, 6,
24, 5, 20), (1, 11, 25, 8, 5, 12, 6, 9, 17, 16, 27), (4, 12, 13, 22, 21, 11, 5, 15, 19, 20, 18), (4, 13, 16, 6, 23, 5, 10, 21,
17, 25, 19), (4, 24, 8, 14, 11, 7, 10, 19, 16, 25, 27), (2, 12, 3, 11, 9, 4, 22, 10, 23, 15, 17), (1, 17, 14, 4, 20, 15, 27,
19, 18, 23, 24), (3, 23, 9, 7, 26, 6, 8, 22, 16, 21, 24), (5, 16, 18, 25, 9, 21, 26, 10, 12, 27, 17), (3, 15, 4, 17, 23, 16,
12, 11, 10, 24, 25), (1, 13, 14, 20, 10, 16, 3, 18, 21, 27, 23), (2, 9, 27, 18, 7, 22, 23, 20, 11, 24, 19), (1, 20, 2, 27, 6,
10, 8, 23, 13, 25, 22), (6, 19, 21, 7, 8, 26, 17, 18, 14, 15, 25), (1, 10, 3, 9, 24, 17, 11, 2, 13, 26, 18), (4, 8, 20, 21, 23,
25, 7, 19, 22, 5, 26)}

(11, 9, 31) {(4, 16, 8, 31, 20, 17, 25, 6, 24, 10, 21), (1, 23, 2, 17, 7, 19, 27, 11, 28, 10, 29), (2, 22, 4, 17, 14, 27, 18, 3, 21, 23,
30), (1, 12, 5, 10, 27, 22, 21, 20, 25, 7, 18), (2, 20, 8, 23, 4, 30, 7, 24, 22, 26, 31), (1, 15, 12, 4, 20, 18, 16, 9, 27, 8,
19), (3, 10, 23, 17, 9, 19, 22, 14, 21, 5, 11), (7, 14, 19, 24, 9, 23, 15, 10, 31, 22, 20), (6, 27, 23, 12, 21, 28, 8, 10, 20,
24, 29), (4, 24, 13, 16, 23, 26, 29, 28, 18, 30, 27), (3, 13, 17, 11, 14, 5, 20, 30, 12, 28, 24), (3, 16, 30, 26, 8, 17, 12,
9, 15, 7, 23), (1, 25, 14, 16, 7, 11, 19, 20, 6, 10, 26), (2, 13, 21, 25, 24, 26, 6, 18, 31, 17, 15), (1, 16, 19, 12, 24, 27,
20, 29, 15, 26, 17), (2, 14, 18, 25, 29, 17, 10, 12, 26, 27, 28), (2, 16, 31, 25, 26, 9, 30, 5, 22, 12, 29), (2, 24, 30, 6,
31, 7, 29, 14, 3, 15, 27), (1, 11, 24, 8, 25, 5, 18, 19, 4, 28, 30), (3, 25, 22, 11, 16, 15, 8, 13, 23, 14, 28), (3, 17, 18,
26, 28, 16, 22, 8, 30, 15, 19), (6, 14, 31, 27, 21, 7, 10, 16, 25, 11, 23), (4, 10, 30, 25, 19, 29, 13, 31, 5, 23, 18), (5,
15, 24, 17, 30, 19, 13, 18, 12, 20, 26), (1, 21, 6, 13, 26, 3, 30, 11, 29, 9, 22), (2, 19, 17, 21, 18, 15, 28, 25, 9, 11, 26),
(1, 13, 5, 17, 27, 12, 16, 6, 28, 31, 24), (5, 24, 21, 29, 22, 23, 19, 28, 9, 13, 27), (1, 10, 11, 31, 29, 23, 20, 14, 26, 7,
28), (5, 16, 21, 30, 14, 15, 25, 12, 7, 13, 28), (1, 20, 16, 24, 23, 25, 4, 11, 8, 29, 27), (2, 21, 31, 4, 13, 14, 8, 12, 3,
27, 25), (4, 15, 22, 7, 27, 16, 29, 18, 10, 19, 26), (3, 22, 13, 11, 6, 15, 20, 9, 31, 30, 29), (1, 14, 9, 18, 11, 20, 28, 22,
6, 19, 31), (2, 11, 15, 31, 3, 20, 13, 25, 10, 14, 12), (2, 10, 9, 21, 19, 5, 29, 4, 14, 24, 18), (6, 12, 13, 30, 22, 18, 8,
21, 26, 16, 17), (10, 13, 15, 21, 11, 12, 31, 23, 28, 17, 22)}

(11, 13, 21) {(4, 15, 11, 14, 6, 19, 18, 9, 20, 10, 17), (1, 17, 13, 16, 10, 19, 12, 21, 18, 7, 20), (4, 16, 7, 14, 12, 17, 20, 8, 19, 13,
21), (2, 19, 4, 14, 16, 17, 15, 12, 18, 5, 21), (1, 15, 14, 19, 9, 17, 18, 13, 20, 6, 21), (2, 16, 3, 15, 8, 14, 21, 19, 20, 4,
18), (2, 14, 10, 21, 15, 7, 17, 6, 16, 12, 20), (1, 14, 18, 15, 20, 3, 17, 21, 11, 16, 19), (3, 18, 11, 17, 19, 15, 13, 14,
20, 16, 21), (1, 16, 15, 9, 21, 20, 5, 14, 17, 8, 18), (2, 15, 6, 18, 16, 9, 14, 3, 19, 5, 17), (5, 15, 10, 18, 20, 11, 19, 7,
21, 8, 16)}

(11, 25, 31) {(13, 27, 15, 31, 29, 19, 30, 21, 26, 16, 28), (1, 29, 27, 8, 30, 2, 26, 17, 28, 22, 31), (3, 28, 10, 27, 22, 30, 4, 26, 31,
20, 29), (7, 26, 19, 28, 25, 29, 10, 30, 27, 24, 31), (6, 29, 28, 12, 27, 25, 31, 11, 26, 14, 30), (2, 29, 12, 26, 3, 30, 28,
14, 27, 19, 31), (1, 26, 29, 17, 27, 3, 31, 12, 30, 23, 28), (4, 27, 9, 31, 17, 30, 29, 8, 26, 20, 28), (1, 27, 31, 14, 29,
13, 26, 6, 28, 5, 30), (2, 27, 18, 30, 26, 10, 31, 21, 29, 11, 28), (5, 27, 21, 28, 7, 30, 31, 18, 26, 24, 29), (4, 29, 7, 27,
28, 24, 30, 25, 26, 5, 31), (9, 26, 15, 30, 20, 27, 16, 31, 28, 18, 29), (8, 28, 26, 22, 29, 16, 30, 11, 27, 23, 31), (6, 27,
26, 23, 29, 15, 28, 9, 30, 13, 31)}
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(11, 35, 43) {(4, 37, 43, 22, 41, 21, 38, 24, 40, 27, 39), (5, 38, 11, 41, 18, 37, 36, 21, 39, 29, 43), (15, 38, 36, 27, 42, 35, 39, 25,
43, 18, 40), (2, 36, 23, 42, 37, 3, 39, 32, 41, 27, 38), (2, 39, 17, 43, 15, 36, 10, 41, 38, 25, 42), (1, 38, 12, 37, 16, 40,
23, 43, 39, 28, 41), (2, 41, 13, 38, 18, 36, 5, 42, 39, 33, 43), (8, 40, 38, 17, 42, 26, 41, 12, 36, 19, 43), (1, 36, 9, 39,
24, 43, 7, 37, 40, 32, 42), (1, 39, 20, 38, 7, 41, 34, 36, 40, 26, 43), (8, 41, 15, 39, 23, 37, 38, 30, 43, 12, 42), (4, 36,
17, 37, 34, 43, 14, 39, 11, 42, 40), (11, 36, 14, 38, 39, 31, 40, 34, 42, 20, 37), (8, 36, 26, 39, 16, 41, 43, 21, 37, 35,
38), (3, 36, 41, 5, 37, 9, 40, 7, 42, 10, 38), (3, 40, 39, 19, 38, 28, 36, 33, 42, 9, 43), (14, 40, 35, 41, 20, 43, 36, 30, 37,
19, 42), (2, 37, 27, 43, 35, 36, 42, 4, 41, 33, 40), (5, 39, 7, 36, 13, 42, 38, 16, 43, 28, 40), (3, 41, 17, 40, 11, 43, 38, 6,
37, 15, 42), (10, 37, 28, 42, 16, 36, 29, 41, 39, 12, 40), (6, 39, 37, 33, 38, 23, 41, 24, 36, 22, 42), (26, 37, 31, 41, 42,
29, 40, 30, 39, 34, 38), (4, 38, 22, 40, 6, 41, 37, 8, 39, 10, 43), (1, 37, 24, 42, 30, 41, 25, 36, 32, 43, 40), (13, 37, 14,
41, 19, 40, 20, 36, 31, 42, 43), (9, 38, 32, 37, 22, 39, 18, 42, 21, 40, 41), (6, 36, 39, 13, 40, 25, 37, 29, 38, 31, 43)}

(13, 5, 35) {(4, 22, 20, 27, 30, 8, 29, 21, 28, 10, 16, 18, 24), (4, 16, 15, 30, 11, 22, 25, 23, 18, 29, 28, 27, 31), (2, 19, 9, 15, 28,
12, 24, 25, 5, 17, 6, 13, 20), (1, 22, 14, 4, 35, 10, 32, 23, 2, 33, 5, 12, 27), (1, 13, 22, 32, 7, 17, 30, 5, 27, 9, 2, 6, 23),
(2, 14, 27, 4, 26, 7, 5, 16, 29, 10, 22, 28, 18), (1, 15, 23, 14, 9, 20, 30, 22, 34, 19, 3, 29, 26), (1, 10, 15, 25, 12, 16,
21, 2, 22, 6, 14, 11, 29), (1, 9, 25, 27, 22, 29, 6, 10, 31, 17, 3, 33, 14), (2, 27, 29, 35, 19, 13, 31, 9, 12, 33, 25, 4, 28),
(1, 21, 24, 5, 13, 16, 33, 19, 6, 26, 27, 35, 28), (1, 17, 16, 31, 3, 8, 12, 10, 5, 28, 30, 24, 33), (1, 24, 11, 32, 4, 18, 20,
21, 6, 27, 23, 9, 30), (1, 16, 22, 17, 14, 24, 2, 11, 31, 15, 27, 3, 18), (1, 11, 23, 29, 5, 21, 30, 2, 25, 34, 31, 26, 32),
(3, 6, 9, 18, 5, 8, 19, 15, 20, 26, 25, 17, 12), (3, 7, 13, 14, 31, 19, 21, 12, 20, 25, 18, 11, 10), (8, 14, 21, 31, 23, 12,
29, 30, 26, 33, 34, 16, 27), (4, 20, 29, 32, 33, 11, 12, 19, 26, 9, 21, 10, 23), (8, 17, 32, 31, 28, 23, 33, 9, 29, 13, 10,
25, 35), (6, 18, 7, 23, 24, 10, 26, 17, 9, 8, 11, 16, 30), (2, 7, 33, 8, 31, 6, 24, 3, 9, 13, 15, 18, 12), (1, 6, 33, 30, 14,
15, 22, 19, 28, 26, 5, 32, 20), (2, 10, 14, 12, 26, 23, 8, 4, 34, 3, 25, 19, 32), (2, 13, 21, 35, 33, 10, 34, 32, 27, 11, 15,
17, 29), (2, 17, 24, 15, 6, 8, 7, 25, 16, 28, 33, 20, 34), (3, 23, 17, 34, 8, 24, 27, 13, 35, 22, 31, 12, 30), (3, 21, 34, 13,
11, 5, 31, 33, 15, 35, 7, 6, 32), (5, 9, 34, 6, 35, 32, 28, 13, 8, 18, 33, 21, 23), (2, 8, 25, 28, 11, 7, 24, 32, 18, 17, 13,
26, 15), (1, 19, 7, 20, 28, 3, 26, 21, 4, 15, 29, 14, 25), (1, 8, 21, 11, 4, 6, 20, 5, 22, 24, 35, 26, 34), (1, 12, 35, 5, 15,
7, 10, 20, 8, 26, 16, 2, 31), (4, 10, 8, 28, 17, 11, 25, 6, 12, 13, 18, 35, 30), (3, 13, 23, 16, 9, 24, 26, 14, 7, 30, 25, 32,
15), (2, 26, 11, 3, 16, 6, 28, 7, 4, 13, 30, 31, 35), (5, 6, 11, 9, 22, 7, 16, 19, 14, 35, 23, 30, 34), (4, 12, 34, 14, 32, 13,
25, 21, 22, 8, 16, 20, 17), (4, 9, 10, 17, 33, 29, 24, 28, 14, 18, 34, 23, 19), (7, 21, 18, 30, 19, 27, 17, 35, 9, 28, 34, 29,
31), (3, 20, 19, 17, 21, 27, 7, 12, 15, 8, 32, 16, 35), (4, 29, 25, 31, 20, 24, 34, 15, 21, 32, 12, 22, 33), (10, 19, 18, 26,
22, 23, 20, 14, 16, 24, 13, 33, 27), (1, 7, 29, 19, 5, 14, 3, 22, 18, 27, 34, 11, 35), (7, 9, 32, 30, 10, 18, 31, 24, 19, 11,
20, 35, 34)}

(13, 9, 31) {(1, 28, 12, 4, 16, 7, 19, 15, 8, 24, 11, 13, 29), (2, 12, 20, 27, 17, 21, 22, 25, 30, 16, 24, 13, 23), (1, 17, 9, 30, 21, 18,
2, 14, 7, 27, 16, 20, 23), (2, 28, 31, 4, 29, 11, 5, 21, 15, 18, 17, 3, 30), (2, 21, 13, 18, 22, 11, 25, 19, 12, 31, 10, 4,
24), (3, 13, 14, 30, 22, 9, 26, 4, 21, 6, 31, 11, 27), (1, 26, 15, 3, 28, 22, 19, 9, 23, 7, 12, 27, 30), (1, 10, 28, 26, 21,
24, 18, 9, 13, 15, 17, 5, 27), (4, 14, 11, 19, 31, 16, 29, 12, 30, 6, 28, 9, 20), (1, 15, 20, 13, 8, 11, 4, 23, 25, 26, 31, 3,
21), (5, 18, 10, 13, 19, 27, 26, 11, 17, 20, 21, 8, 30), (2, 15, 28, 8, 19, 16, 23, 21, 10, 7, 13, 17, 26), (2, 13, 31, 30,
17, 25, 3, 12, 10, 14, 6, 23, 19), (4, 13, 28, 5, 15, 31, 7, 18, 14, 29, 21, 16, 22), (1, 13, 16, 25, 29, 20, 8, 27, 21, 14,
5, 23, 18), (5, 16, 12, 14, 24, 10, 23, 22, 26, 20, 11, 28, 25), (2, 11, 23, 27, 25, 10, 20, 30, 18, 26, 24, 15, 16), (1, 16,
18, 4, 30, 15, 22, 8, 14, 31, 5, 13, 25), (3, 24, 25, 8, 29, 9, 21, 12, 5, 19, 30, 10, 26), (1, 14, 22, 6, 18, 29, 28, 4, 15,
12, 25, 20, 31), (6, 15, 7, 24, 9, 10, 22, 17, 23, 31, 21, 28, 27), (2, 20, 7, 29, 31, 24, 30, 26, 6, 12, 17, 14, 27), (3, 11,
12, 22, 7, 28, 30, 13, 6, 16, 17, 8, 18), (1, 11, 18, 28, 20, 3, 29, 19, 26, 13, 12, 24, 22), (7, 26, 8, 12, 9, 14, 28, 16, 10,
15, 29, 23, 30), (2, 17, 19, 28, 24, 29, 6, 10, 11, 9, 15, 25, 31), (3, 10, 19, 4, 17, 24, 5, 22, 13, 27, 9, 16, 14), (2, 10,
8, 16, 3, 23, 24, 19, 14, 15, 27, 4, 25), (1, 12, 26, 29, 2, 22, 20, 14, 23, 28, 17, 6, 24), (5, 26, 14, 25, 21, 11, 15, 23,
12, 18, 27, 10, 29), (1, 19, 3, 22, 27, 29, 30, 11, 7, 17, 31, 18, 20), (6, 11, 16, 26, 23, 8, 31, 27, 24, 20, 19, 18, 25),
(5, 10, 17, 29, 22, 31, 9, 25, 7, 21, 19, 6, 20)}

(13, 11, 37) {(1, 19, 32, 30, 26, 20, 6, 29, 10, 13, 31, 9, 36), (4, 27, 36, 24, 7, 20, 29, 15, 12, 25, 11, 34, 33), (1, 17, 8, 18, 5, 32,
23, 31, 19, 15, 13, 24, 30), (4, 19, 6, 15, 17, 14, 10, 23, 7, 27, 11, 30, 25), (2, 24, 4, 23, 18, 36, 14, 20, 9, 32, 37, 11,
26), (1, 23, 3, 36, 31, 12, 34, 37, 7, 19, 13, 11, 29), (2, 20, 10, 31, 35, 19, 26, 32, 22, 21, 7, 34, 27), (2, 29, 25, 33,
21, 28, 14, 31, 18, 6, 35, 17, 30), (2, 12, 23, 11, 35, 3, 25, 18, 13, 30, 16, 36, 17), (4, 13, 17, 10, 22, 24, 23, 20, 11,
28, 32, 14, 37), (1, 22, 2, 33, 23, 15, 18, 9, 35, 20, 8, 19, 25), (9, 14, 33, 35, 32, 36, 26, 21, 30, 22, 25, 24, 34), (3,
17, 37, 33, 16, 35, 36, 13, 9, 15, 14, 19, 24), (1, 28, 12, 7, 13, 26, 24, 10, 27, 23, 37, 5, 31), (5, 25, 27, 20, 15, 16, 14,
18, 7, 35, 22, 33, 26), (3, 32, 15, 7, 33, 18, 26, 17, 24, 14, 30, 6, 37), (1, 33, 6, 26, 22, 11, 24, 8, 35, 14, 4, 18, 37),
(6, 25, 31, 33, 30, 28, 13, 35, 23, 9, 12, 26, 27), (12, 18, 30, 37, 29, 26, 14, 23, 19, 17, 28, 31, 24), (3, 18, 17, 25, 23,
6, 22, 15, 11, 21, 32, 10, 30), (3, 19, 10, 18, 21, 15, 26, 25, 16, 17, 32, 4, 22), (2, 21, 25, 7, 31, 26, 35, 12, 22, 9, 24,
29, 28), (2, 32, 12, 36, 4, 16, 37, 31, 15, 35, 18, 29, 34), (1, 12, 33, 17, 4, 35, 37, 13, 21, 16, 8, 22, 18), (1, 15, 34,
20, 36, 30, 23, 17, 9, 27, 21, 6, 24), (2, 13, 33, 19, 5, 34, 25, 10, 15, 36, 8, 21, 35), (3, 20, 25, 36, 7, 29, 14, 5, 15, 8,
31, 34, 26), (5, 13, 6, 28, 15, 30, 29, 36, 11, 16, 9, 19, 22), (4, 20, 30, 9, 25, 37, 22, 27, 16, 5, 21, 24, 28), (2, 36, 6,
34, 3, 16, 19, 11, 12, 8, 33, 24, 37), (1, 13, 3, 28, 7, 14, 22, 16, 29, 4, 12, 19, 34), (1, 21, 10, 16, 31, 4, 34, 35, 5, 27,
17, 7, 32), (1, 14, 3, 31, 21, 29, 23, 26, 9, 33, 28, 8, 27), (1, 16, 34, 36, 10, 33, 3, 29, 13, 20, 18, 24, 35), (10, 12, 20,
31, 32, 34, 21, 23, 16, 18, 19, 37, 28), (1, 20, 33, 15, 24, 32, 18, 28, 19, 2, 14, 8, 26), (7, 16, 13, 14, 21, 19, 27, 35,
28, 9, 37, 10, 26), (2, 23, 22, 34, 17, 20, 5, 33, 11, 14, 27, 13, 25), (5, 29, 32, 16, 28, 27, 15, 37, 12, 21, 20, 19, 30),
(3, 15, 25, 28, 20, 22, 13, 32, 27, 31, 29, 9, 21), (2, 18, 11, 17, 29, 19, 36, 23, 28, 34, 8, 30, 31), (4, 26, 28, 5, 36, 22,
31, 17, 21, 37, 27, 12, 30), (3, 12, 17, 22, 28, 36, 37, 8, 13, 23, 34, 18, 27), (5, 12, 29, 22, 7, 30, 27, 33, 32, 11, 31, 6,
17), (5, 23, 8, 25, 35, 10, 34, 13, 12, 6, 16, 20, 24), (14, 25, 32, 20, 37, 26, 16, 24, 27, 29, 35, 30, 34), (2, 15, 4, 21,
36, 33, 29, 8, 32, 6, 14, 12, 16)}

(13, 15, 25) {(1, 23, 3, 22, 11, 17, 19, 5, 16, 13, 20, 6, 25), (1, 18, 9, 17, 21, 16, 4, 23, 13, 24, 11, 25, 20), (3, 24, 18, 16, 23, 15,
19, 14, 17, 4, 21, 13, 25), (4, 19, 6, 24, 9, 25, 5, 18, 12, 23, 14, 21, 22), (3, 17, 25, 12, 20, 21, 10, 16, 14, 22, 23, 11,
19), (4, 20, 5, 17, 16, 9, 19, 13, 18, 23, 21, 24, 25), (2, 20, 3, 18, 22, 6, 16, 8, 21, 7, 24, 14, 25), (1, 21, 15, 25, 7, 19,
20, 10, 23, 8, 22, 5, 24), (2, 22, 16, 12, 17, 8, 24, 20, 18, 10, 19, 25, 23), (7, 17, 23, 24, 19, 16, 11, 18, 21, 25, 22, 9,
20), (3, 16, 24, 10, 17, 20, 22, 7, 23, 19, 18, 6, 21), (1, 16, 7, 18, 17, 24, 22, 15, 20, 23, 9, 21, 19), (2, 18, 4, 24, 12,
21, 5, 23, 6, 17, 13, 22, 19), (2, 16, 20, 14, 18, 25, 8, 19, 12, 22, 17, 15, 24), (1, 17, 2, 21, 11, 20, 8, 18, 15, 16, 25,
10, 22)}

(13, 29, 37) {(3, 30, 5, 35, 24, 33, 23, 31, 17, 34, 20, 32, 37), (8, 32, 15, 31, 21, 33, 17, 36, 25, 37, 27, 30, 34), (4, 30, 14, 37, 11,
34, 9, 36, 6, 31, 16, 35, 33), (4, 36, 16, 34, 32, 11, 30, 8, 33, 22, 31, 24, 37), (7, 30, 24, 34, 12, 35, 22, 32, 10, 31, 33,
11, 36), (2, 34, 29, 36, 32, 19, 31, 11, 35, 28, 30, 20, 37), (8, 31, 9, 33, 18, 30, 15, 35, 21, 32, 28, 36, 37), (1, 36, 2,
35, 6, 33, 32, 4, 31, 3, 34, 28, 37), (5, 33, 26, 30, 22, 34, 21, 36, 14, 32, 35, 17, 37), (3, 33, 19, 36, 23, 34, 5, 31, 37,
29, 30, 13, 35), (1, 30, 33, 20, 35, 26, 31, 29, 32, 23, 37, 13, 34), (6, 30, 17, 32, 9, 37, 22, 36, 15, 33, 29, 35, 34), (9,
30, 16, 32, 27, 33, 37, 19, 34, 31, 18, 36, 35), (2, 30, 23, 35, 27, 31, 32, 6, 37, 10, 36, 12, 33), (3, 32, 25, 35, 18, 34,
37, 16, 33, 14, 31, 20, 36), (5, 32, 30, 37, 15, 34, 14, 35, 7, 33, 28, 31, 36), (10, 33, 13, 36, 30, 35, 31, 12, 37, 18, 32,
26, 34), (1, 32, 24, 36, 33, 25, 34, 7, 31, 30, 21, 37, 35), (2, 31, 25, 30, 19, 35, 4, 34, 36, 26, 37, 7, 32), (1, 31, 13,
32, 12, 30, 10, 35, 8, 36, 27, 34, 33)}
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(13, 41, 51) {(4, 49, 14, 47, 8, 51, 23, 43, 41, 44, 48, 20, 50), (2, 48, 8, 44, 4, 47, 32, 49, 25, 43, 27, 50, 51), (7, 45, 36, 44, 13,
49, 17, 42, 47, 31, 43, 29, 48), (4, 42, 38, 47, 51, 9, 46, 5, 50, 15, 43, 24, 48), (3, 42, 29, 49, 40, 47, 22, 44, 50, 39,
48, 10, 51), (1, 42, 46, 34, 47, 33, 45, 6, 44, 23, 50, 19, 43), (5, 43, 9, 45, 27, 46, 10, 44, 37, 47, 18, 49, 51), (9, 42,
43, 28, 44, 34, 50, 10, 47, 35, 45, 22, 48), (6, 47, 9, 49, 16, 51, 41, 46, 44, 21, 48, 38, 50), (10, 42, 44, 11, 50, 26, 43,
20, 51, 18, 45, 30, 49), (1, 47, 43, 3, 45, 12, 49, 15, 46, 7, 42, 14, 50), (2, 45, 32, 43, 22, 46, 39, 51, 6, 49, 48, 11,
47), (13, 45, 25, 42, 50, 30, 46, 26, 47, 41, 49, 22, 51), (21, 42, 36, 43, 30, 51, 32, 46, 40, 48, 47, 24, 50), (8, 46, 25,
50, 28, 42, 48, 14, 44, 17, 51, 11, 49), (20, 45, 50, 32, 48, 33, 51, 26, 42, 24, 44, 31, 49), (1, 45, 40, 42, 19, 47, 17,
48, 12, 51, 24, 46, 49), (14, 46, 16, 45, 29, 44, 26, 48, 50, 43, 49, 36, 51), (12, 44, 39, 43, 16, 47, 27, 48, 51, 19, 49,
35, 46), (19, 44, 43, 40, 50, 22, 42, 23, 47, 21, 51, 35, 48), (6, 42, 8, 45, 28, 49, 44, 18, 48, 43, 7, 50, 46), (13, 47, 46,
17, 43, 51, 37, 42, 49, 21, 45, 41, 50), (12, 42, 41, 48, 23, 45, 26, 49, 38, 51, 46, 21, 43), (2, 43, 14, 45, 38, 46, 3, 50,
12, 47, 44, 5, 49), (7, 47, 28, 46, 29, 50, 16, 44, 25, 48, 15, 45, 49), (3, 48, 28, 51, 34, 45, 47, 20, 44, 32, 42, 27, 49),
(9, 44, 30, 47, 49, 34, 43, 33, 42, 11, 46, 36, 50), (1, 44, 38, 43, 35, 42, 31, 50, 2, 46, 45, 4, 51), (1, 46, 37, 43, 10,
45, 51, 15, 44, 2, 42, 34, 48), (4, 43, 45, 24, 49, 50, 47, 15, 42, 30, 48, 31, 46), (16, 42, 39, 45, 37, 50, 33, 44, 51, 25,
47, 36, 48), (3, 44, 40, 51, 31, 45, 42, 20, 46, 33, 49, 39, 47), (5, 42, 51, 7, 44, 35, 50, 8, 43, 18, 46, 48, 45), (11, 43,
46, 23, 49, 37, 48, 13, 42, 18, 50, 17, 45), (5, 47, 29, 51, 27, 44, 45, 19, 46, 13, 43, 6, 48)}

(15, 5, 41) {(1, 10, 33, 30, 38, 16, 12, 11, 6, 35, 39, 20, 41, 8, 24), (1, 33, 2, 35, 22, 10, 19, 23, 12, 29, 18, 4, 14, 6, 38), (3, 7,
23, 5, 6, 30, 32, 28, 17, 4, 10, 41, 11, 16, 36), (1, 23, 35, 18, 26, 12, 30, 3, 14, 40, 28, 2, 19, 32, 27), (1, 19, 5, 27, 14,
24, 34, 31, 25, 11, 7, 12, 20, 28, 36), (2, 16, 7, 26, 11, 35, 34, 9, 37, 30, 20, 36, 32, 10, 38), (2, 12, 41, 23, 17, 10, 26,
15, 37, 5, 32, 4, 30, 39, 24), (1, 12, 25, 16, 3, 9, 36, 38, 33, 14, 2, 30, 35, 26, 17), (6, 10, 27, 41, 38, 37, 11, 24, 20,
14, 17, 13, 28, 39, 32), (1, 29, 19, 24, 22, 38, 18, 8, 2, 17, 36, 33, 13, 4, 34), (3, 22, 34, 21, 14, 41, 33, 27, 39, 15, 9,
8, 23, 24, 40), (4, 6, 26, 39, 11, 15, 31, 16, 34, 37, 17, 22, 28, 30, 36), (2, 31, 12, 37, 6, 15, 25, 33, 4, 23, 11, 22, 21,
8, 34), (3, 25, 8, 13, 40, 37, 31, 22, 36, 21, 5, 30, 16, 29, 41), (3, 12, 21, 23, 30, 22, 41, 5, 24, 18, 6, 25, 38, 11, 33),
(1, 9, 30, 7, 33, 23, 28, 25, 20, 40, 26, 4, 35, 13, 16), (6, 27, 29, 9, 17, 38, 12, 34, 15, 40, 22, 14, 32, 37, 28), (1, 8,
30, 11, 14, 34, 26, 21, 40, 41, 39, 33, 18, 16, 15), (5, 33, 24, 26, 23, 22, 12, 15, 35, 38, 20, 32, 29, 6, 34), (4, 19, 21,
33, 17, 6, 12, 18, 32, 34, 29, 24, 35, 41, 31), (2, 13, 14, 10, 15, 20, 18, 41, 21, 7, 39, 37, 29, 25, 32), (2, 22, 26, 30,
14, 12, 27, 17, 39, 38, 15, 24, 4, 37, 41), (5, 28, 29, 10, 36, 19, 7, 13, 21, 18, 31, 32, 33, 6, 40), (5, 17, 15, 8, 27, 13,
24, 7, 35, 33, 29, 30, 18, 19, 22), (4, 20, 29, 17, 35, 36, 27, 21, 39, 31, 14, 18, 11, 9, 40), (7, 22, 15, 23, 16, 9, 14, 25,
30, 10, 40, 11, 36, 24, 28), (3, 19, 11, 20, 8, 26, 28, 15, 5, 36, 31, 33, 16, 37, 27), (1, 7, 34, 13, 3, 17, 20, 19, 14, 26,
9, 35, 28, 38, 32), (3, 18, 40, 38, 13, 36, 7, 9, 24, 30, 34, 27, 28, 14, 29), (2, 18, 22, 13, 11, 8, 16, 41, 4, 29, 23, 25,
36, 26, 27), (1, 21, 37, 2, 25, 4, 8, 17, 11, 3, 38, 5, 26, 16, 35), (2, 23, 34, 40, 19, 28, 10, 20, 7, 37, 13, 31, 8, 14, 36),
(1, 11, 34, 18, 17, 32, 8, 36, 40, 29, 22, 9, 31, 6, 39), (4, 21, 25, 9, 38, 26, 13, 6, 7, 40, 17, 24, 12, 39, 22), (1, 6, 16,
4, 7, 32, 12, 19, 27, 20, 13, 9, 18, 15, 41), (4, 12, 40, 23, 14, 15, 21, 35, 19, 16, 22, 33, 37, 10, 39), (3, 24, 6, 21, 32,
22, 25, 13, 29, 31, 40, 39, 19, 8, 37), (2, 9, 6, 23, 37, 19, 25, 27, 35, 12, 17, 7, 8, 5, 10), (1, 26, 31, 38, 24, 32, 15, 7,
29, 8, 39, 18, 28, 41, 30), (2, 15, 27, 7, 14, 39, 5, 20, 16, 17, 21, 29, 35, 8, 40), (2, 11, 27, 16, 28, 4, 15, 13, 23, 3, 6,
41, 34, 19, 26), (3, 32, 40, 27, 38, 21, 11, 31, 10, 25, 26, 37, 14, 16, 39), (5, 7, 18, 37, 36, 34, 10, 16, 32, 9, 23, 38,
19, 17, 31), (1, 14, 5, 25, 34, 17, 30, 13, 41, 9, 4, 27, 23, 20, 31), (5, 9, 33, 19, 31, 35, 20, 37, 22, 6, 36, 41, 24, 10,
11), (2, 29, 11, 4, 38, 8, 12, 10, 13, 19, 6, 20, 33, 34, 39), (3, 10, 8, 33, 28, 31, 21, 24, 37, 25, 40, 35, 14, 38, 34), (1,
13, 18, 25, 17, 41, 26, 29, 15, 33, 12, 28, 3, 8, 22), (3, 15, 36, 29, 38, 7, 25, 24, 16, 21, 10, 35, 32, 26, 20), (1, 28, 21,
20, 9, 27, 24, 31, 23, 36, 39, 29, 5, 16, 40), (1, 18, 5, 12, 13, 39, 9, 10, 7, 2, 6, 8, 28, 34, 20), (2, 20, 22, 27, 18, 23,
39, 25, 35, 3, 26, 33, 40, 30, 21), (3, 21, 9, 12, 36, 18, 10, 23, 32, 41, 19, 15, 30, 27, 31), (1, 25, 41, 7, 31, 30, 19, 9,
28, 11, 32, 13, 5, 35, 37)}

(15, 7, 19) {(2, 16, 10, 4, 19, 15, 6, 14, 17, 12, 13, 5, 11, 7, 18), (1, 13, 18, 17, 9, 8, 3, 19, 7, 10, 12, 14, 11, 16, 15), (1, 8, 10,
2, 9, 12, 16, 6, 11, 15, 3, 17, 19, 5, 14), (2, 17, 13, 8, 11, 4, 15, 18, 6, 9, 5, 16, 3, 12, 19), (1, 17, 4, 14, 16, 9, 10, 3,
13, 2, 12, 15, 8, 5, 18), (1, 10, 15, 13, 16, 7, 17, 6, 8, 14, 18, 3, 9, 19, 11), (3, 11, 12, 7, 13, 10, 5, 17, 16, 19, 8, 18,
4, 9, 14), (2, 8, 4, 13, 11, 9, 18, 10, 19, 6, 12, 5, 15, 7, 14), (1, 12, 18, 16, 8, 7, 9, 15, 17, 11, 10, 6, 13, 14, 19), (1,
9, 13, 19, 18, 11, 2, 15, 14, 10, 17, 8, 12, 4, 16)}

(15, 7, 27) {(2, 15, 3, 10, 27, 4, 22, 26, 24, 23, 16, 14, 7, 21, 25), (1, 21, 27, 24, 2, 13, 18, 15, 14, 26, 3, 16, 11, 9, 25), (1, 9, 7,
10, 23, 18, 27, 2, 16, 25, 4, 8, 14, 6, 19), (1, 16, 21, 20, 19, 10, 8, 26, 5, 22, 25, 18, 4, 9, 17), (1, 13, 4, 11, 6, 8, 12,
20, 26, 2, 21, 10, 9, 14, 24), (1, 14, 3, 23, 19, 13, 26, 7, 25, 10, 22, 11, 15, 8, 27), (2, 10, 11, 5, 9, 6, 23, 15, 7, 8, 19,
25, 13, 3, 12), (1, 12, 5, 23, 20, 4, 26, 11, 17, 2, 14, 25, 24, 3, 22), (3, 11, 23, 8, 24, 15, 26, 27, 13, 10, 4, 19, 17, 14,
21), (3, 8, 13, 5, 27, 6, 20, 10, 26, 19, 24, 11, 25, 15, 9), (5, 14, 11, 8, 16, 24, 17, 13, 7, 20, 22, 19, 27, 12, 21), (2,
11, 21, 13, 22, 15, 20, 17, 7, 18, 26, 12, 16, 4, 23), (5, 15, 10, 12, 17, 26, 23, 22, 21, 9, 19, 14, 27, 16, 18), (5, 17, 18,
8, 21, 15, 13, 24, 12, 11, 27, 22, 9, 16, 19), (1, 15, 16, 6, 26, 25, 3, 18, 10, 24, 9, 27, 23, 14, 20), (1, 11, 13, 16, 7, 24,
4, 15, 19, 21, 6, 18, 2, 9, 26), (1, 18, 19, 7, 22, 12, 4, 14, 10, 17, 21, 24, 20, 13, 23), (3, 17, 23, 9, 8, 25, 5, 20, 11, 18,
22, 24, 6, 12, 19), (1, 8, 2, 20, 9, 13, 14, 18, 12, 15, 17, 27, 25, 6, 10), (5, 10, 16, 20, 27, 7, 23, 25, 17, 22, 14, 12, 9,
18, 24), (2, 19, 11, 7, 12, 13, 6, 17, 16, 26, 21, 18, 20, 8, 22), (3, 20, 25, 12, 23, 21, 4, 17, 8, 5, 16, 22, 6, 15, 27)}

(15, 9, 19) {(2, 12, 17, 18, 10, 19, 8, 15, 3, 14, 13, 6, 11, 5, 16), (1, 10, 16, 3, 12, 14, 19, 2, 18, 4, 11, 13, 5, 17, 15), (2, 10, 4,
16, 17, 7, 11, 18, 5, 14, 9, 15, 19, 12, 13), (1, 13, 10, 15, 5, 12, 6, 18, 14, 11, 19, 3, 17, 9, 16), (5, 10, 7, 18, 16, 13,
9, 11, 8, 12, 15, 14, 17, 6, 19), (1, 11, 12, 7, 15, 16, 6, 10, 14, 4, 17, 19, 13, 8, 18), (2, 11, 3, 18, 13, 17, 10, 12, 9,
19, 16, 8, 14, 6, 15), (1, 12, 18, 15, 4, 13, 3, 10, 11, 17, 2, 14, 16, 7, 19), (1, 14, 7, 13, 15, 11, 16, 12, 4, 19, 18, 9,
10, 8, 17)}

(15, 9, 27) {(1, 14, 16, 3, 24, 25, 4, 10, 23, 20, 8, 26, 22, 6, 15), (2, 13, 17, 10, 25, 9, 19, 3, 12, 5, 14, 23, 22, 4, 16), (1, 21, 27,
24, 10, 8, 17, 16, 23, 9, 20, 26, 3, 18, 22), (2, 25, 5, 23, 11, 3, 20, 4, 26, 14, 8, 21, 19, 18, 27), (2, 12, 26, 18, 9, 11,
19, 25, 23, 7, 20, 17, 27, 6, 24), (1, 10, 19, 7, 24, 20, 13, 27, 12, 14, 22, 2, 18, 21, 16), (1, 18, 23, 4, 21, 7, 13, 9, 24,
12, 19, 15, 2, 14, 27), (3, 10, 16, 5, 18, 11, 15, 23, 12, 13, 21, 17, 26, 6, 14), (1, 19, 22, 10, 6, 12, 7, 17, 4, 15, 24,
26, 13, 8, 23), (3, 13, 23, 6, 20, 12, 10, 27, 4, 24, 14, 18, 25, 11, 22), (7, 11, 17, 12, 21, 22, 25, 26, 27, 19, 14, 10, 18,
24, 16), (4, 12, 11, 8, 24, 21, 25, 17, 19, 13, 16, 27, 22, 15, 18), (1, 12, 8, 19, 4, 11, 10, 26, 15, 25, 3, 21, 23, 2, 17),
(8, 16, 26, 23, 19, 20, 15, 27, 11, 21, 14, 9, 22, 13, 18), (1, 20, 16, 25, 8, 15, 21, 2, 11, 14, 17, 18, 12, 22, 24), (4, 13,
6, 16, 22, 17, 23, 27, 5, 10, 7, 18, 20, 25, 14), (2, 19, 26, 5, 13, 24, 11, 16, 15, 9, 17, 6, 21, 10, 20), (3, 17, 24, 5, 22,
7, 15, 10, 9, 21, 20, 14, 13, 25, 27), (1, 11, 5, 15, 3, 23, 24, 19, 16, 12, 9, 26, 2, 10, 13), (5, 17, 15, 12, 25, 7, 26, 11,
20, 27, 9, 16, 18, 6, 19), (1, 25, 6, 11, 13, 15, 14, 7, 27, 8, 22, 20, 5, 21, 26)}
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(15, 11, 35) {(1, 18, 25, 28, 14, 16, 29, 5, 17, 20, 3, 31, 33, 2, 21), (1, 14, 6, 35, 16, 22, 7, 25, 10, 23, 5, 20, 26, 29, 31), (1, 29,
6, 16, 30, 34, 19, 22, 17, 4, 12, 31, 11, 15, 33), (3, 19, 30, 6, 20, 23, 21, 34, 27, 29, 4, 25, 12, 24, 35), (2, 17, 11, 30,
8, 18, 4, 23, 35, 31, 16, 19, 15, 10, 34), (1, 12, 27, 4, 14, 34, 9, 19, 33, 5, 21, 3, 32, 30, 15), (1, 24, 15, 8, 29, 28, 21,
18, 17, 33, 12, 23, 32, 27, 30), (2, 12, 29, 23, 34, 22, 35, 11, 20, 25, 6, 31, 7, 14, 15), (5, 14, 24, 11, 21, 6, 32, 26, 9,
18, 29, 33, 7, 23, 25), (3, 29, 13, 4, 28, 15, 21, 19, 26, 17, 10, 27, 31, 5, 34), (2, 24, 30, 14, 22, 26, 4, 31, 18, 33, 13,
3, 25, 19, 28), (1, 16, 34, 29, 20, 32, 5, 18, 14, 17, 25, 9, 31, 2, 26), (4, 15, 32, 7, 17, 13, 30, 26, 14, 33, 20, 12, 5,
24, 16), (3, 14, 25, 35, 19, 12, 10, 18, 32, 24, 6, 13, 11, 28, 30), (5, 13, 32, 35, 26, 7, 19, 31, 20, 28, 27, 9, 23, 8, 22),
(4, 32, 17, 15, 12, 9, 14, 29, 7, 24, 33, 35, 21, 13, 34), (8, 26, 11, 19, 29, 22, 21, 25, 13, 12, 16, 23, 30, 17, 27), (11,
18, 13, 27, 19, 32, 29, 24, 31, 28, 16, 15, 23, 17, 34), (6, 27, 33, 22, 15, 25, 31, 21, 16, 13, 20, 30, 12, 34, 28), (4, 24,
9, 29, 11, 32, 33, 26, 16, 20, 19, 8, 34, 35, 30), (1, 23, 18, 7, 21, 29, 30, 25, 34, 20, 10, 35, 2, 14, 32), (1, 28, 8, 20,
22, 24, 27, 15, 5, 30, 9, 16, 33, 4, 35), (3, 24, 23, 14, 11, 22, 32, 25, 33, 9, 15, 13, 35, 5, 28), (3, 12, 32, 28, 23, 19,
5, 27, 7, 15, 6, 17, 21, 24, 18), (1, 17, 3, 16, 8, 21, 30, 7, 34, 24, 26, 28, 9, 13, 19), (6, 19, 24, 25, 16, 32, 21, 33, 30,
22, 18, 28, 13, 31, 23), (1, 22, 3, 26, 15, 35, 17, 19, 10, 16, 2, 13, 23, 33, 34), (1, 25, 22, 2, 20, 24, 28, 7, 16, 18, 12,
8, 13, 14, 27), (2, 18, 20, 7, 35, 8, 14, 10, 32, 34, 15, 3, 27, 25, 29), (3, 23, 27, 26, 34, 31, 14, 12, 35, 29, 15, 20, 21,
10, 33), (1, 13, 22, 31, 30, 18, 6, 33, 28, 17, 16, 27, 21, 9, 20), (6, 26, 21, 12, 11, 33, 8, 17, 29, 10, 22, 28, 35, 18,
34), (6, 12, 28, 10, 24, 8, 25, 26, 23, 11, 27, 20, 35, 9, 22), (2, 23, 22, 27, 35, 14, 21, 4, 19, 18, 26, 10, 31, 8, 32), (2,
19, 14, 20, 4, 22, 12, 17, 9, 32, 31, 26, 13, 10, 30), (2, 25, 11, 16, 5, 26, 12, 7, 13, 24, 17, 31, 15, 18, 27)}

(15, 13, 43) {(2, 16, 37, 3, 15, 28, 27, 26, 21, 40, 29, 24, 9, 31, 43), (1, 28, 6, 38, 40, 14, 20, 3, 18, 39, 11, 22, 2, 23, 30), (3, 17,
40, 34, 20, 15, 7, 19, 12, 41, 6, 27, 4, 21, 35), (7, 18, 38, 8, 32, 17, 42, 24, 12, 39, 13, 26, 14, 43, 41), (4, 18, 24, 14,
8, 35, 27, 25, 41, 5, 34, 21, 43, 11, 30), (1, 31, 32, 42, 14, 37, 2, 25, 15, 8, 29, 16, 18, 41, 33), (6, 16, 22, 33, 18, 40,
19, 35, 42, 11, 23, 9, 41, 34, 24), (1, 36, 34, 12, 38, 29, 32, 43, 28, 20, 4, 14, 2, 42, 41), (4, 29, 42, 12, 30, 15, 43, 9,
32, 6, 39, 31, 13, 36, 38), (12, 22, 41, 24, 43, 27, 32, 26, 40, 35, 31, 16, 33, 37, 36), (2, 17, 37, 15, 12, 14, 30, 16, 8,
20, 19, 10, 28, 9, 18), (1, 20, 27, 10, 39, 35, 4, 24, 30, 5, 28, 23, 26, 12, 25), (1, 18, 10, 21, 17, 16, 28, 4, 32, 39, 26,
19, 3, 27, 22), (3, 28, 36, 8, 18, 20, 24, 16, 34, 6, 33, 38, 17, 22, 39), (5, 14, 39, 28, 30, 6, 40, 23, 20, 17, 35, 34, 31,
24, 33), (1, 24, 11, 32, 7, 22, 8, 37, 5, 15, 31, 41, 14, 9, 35), (1, 14, 15, 4, 40, 2, 32, 41, 13, 37, 23, 17, 28, 42, 21), (6,
21, 37, 22, 24, 39, 25, 43, 30, 20, 13, 16, 41, 15, 23), (3, 34, 10, 31, 28, 7, 43, 18, 25, 29, 14, 32, 20, 35, 41), (6, 35,
23, 25, 40, 12, 33, 14, 38, 21, 29, 13, 27, 19, 43), (1, 19, 2, 24, 13, 42, 6, 37, 26, 8, 23, 33, 21, 27, 38), (1, 32, 36, 40,
31, 27, 16, 38, 25, 24, 5, 29, 12, 23, 43), (1, 23, 32, 18, 15, 42, 19, 36, 43, 17, 25, 7, 35, 5, 27), (2, 15, 17, 18, 31, 23,
36, 35, 25, 22, 5, 42, 10, 24, 38), (4, 31, 30, 38, 19, 41, 20, 9, 26, 42, 33, 27, 24, 17, 39), (11, 28, 29, 43, 42, 18, 23,
19, 24, 36, 26, 22, 15, 27, 40), (5, 16, 14, 34, 17, 31, 22, 18, 35, 29, 39, 37, 42, 9, 19), (3, 16, 36, 33, 17, 26, 34, 11,
19, 37, 4, 43, 22, 35, 38), (5, 26, 33, 13, 21, 30, 10, 16, 12, 17, 14, 6, 31, 38, 43), (1, 17, 13, 32, 24, 15, 16, 25, 42, 8,
28, 22, 20, 39, 34), (1, 26, 2, 27, 12, 21, 31, 33, 32, 15, 9, 34, 37, 30, 42), (1, 15, 29, 34, 32, 3, 21, 11, 33, 25, 10, 40,
30, 9, 16), (8, 30, 26, 38, 34, 22, 40, 43, 16, 19, 14, 18, 11, 36, 39), (5, 21, 28, 32, 10, 33, 15, 6, 29, 19, 13, 30, 34,
27, 39), (2, 36, 6, 19, 4, 33, 30, 18, 26, 15, 38, 9, 29, 37, 41), (5, 38, 32, 37, 27, 29, 11, 20, 10, 22, 19, 8, 21, 16, 40),
(4, 25, 9, 39, 40, 37, 18, 13, 22, 42, 38, 7, 23, 41, 36), (8, 27, 23, 38, 22, 30, 32, 35, 11, 37, 9, 40, 42, 39, 43), (3, 26,
11, 31, 37, 7, 14, 35, 15, 13, 25, 19, 30, 39, 33), (3, 23, 16, 7, 39, 21, 18, 34, 25, 26, 20, 42, 36, 5, 31), (1, 39, 15, 19,
28, 12, 35, 26, 10, 41, 11, 27, 42, 3, 40), (6, 22, 9, 17, 27, 30, 35, 24, 28, 41, 21, 7, 42, 16, 26), (1, 29, 20, 6, 17, 36,
21, 24, 3, 25, 30, 2, 35, 43, 37), (3, 29, 18, 12, 37, 35, 33, 20, 21, 32, 16, 39, 23, 34, 43), (3, 14, 31, 25, 8, 34, 15, 11,
38, 41, 29, 33, 7, 17, 30), (2, 29, 26, 24, 23, 22, 14, 10, 36, 25, 6, 18, 27, 9, 33), (4, 26, 41, 27, 36, 18, 5, 23, 14, 21,
25, 20, 43, 33, 34), (7, 24, 40, 32, 12, 43, 26, 31, 42, 23, 10, 38, 28, 14, 27), (4, 16, 35, 10, 29, 22, 21, 15, 36, 7, 26,
28, 33, 8, 17), (7, 29, 36, 20, 12, 31, 19, 17, 10, 43, 13, 38, 39, 41, 40), (4, 22, 36, 30, 7, 20, 37, 25, 28, 18, 19, 33,
40, 8, 41), (11, 17, 41, 30, 29, 23, 13, 34, 28, 40, 20, 31, 36, 14, 25), (2, 31, 29, 17, 5, 32, 22, 3, 36, 9, 21, 23, 4, 42,
34), (2, 20, 16, 11, 14, 13, 28, 37, 24, 8, 31, 7, 34, 19, 21), (2, 28, 35, 13, 40, 15, 10, 37, 38, 20, 5, 25, 32, 19, 39)}

(15, 15, 25) {(4, 20, 15, 22, 18, 10, 19, 21, 8, 16, 23, 11, 17, 12, 24), (1, 16, 19, 11, 22, 3, 24, 5, 18, 23, 9, 21, 25, 17, 20), (2, 16,
12, 25, 19, 4, 23, 17, 14, 18, 3, 21, 24, 10, 20), (2, 18, 25, 6, 20, 5, 17, 9, 19, 14, 21, 10, 22, 23, 24), (1, 19, 20, 7, 25,
11, 24, 13, 16, 9, 22, 6, 18, 15, 21), (1, 18, 20, 21, 17, 6, 19, 24, 22, 14, 16, 3, 25, 2, 23), (4, 17, 22, 5, 16, 18, 12, 21,
7, 19, 8, 23, 20, 14, 25), (1, 22, 12, 23, 5, 21, 16, 25, 13, 19, 15, 17, 7, 18, 24), (2, 17, 16, 4, 22, 20, 25, 8, 18, 19, 23,
14, 24, 6, 21), (7, 23, 15, 25, 9, 20, 11, 21, 18, 13, 17, 19, 22, 16, 24), (4, 18, 9, 24, 25, 22, 13, 20, 8, 17, 10, 16, 6,
23, 21), (1, 17, 24, 15, 16, 20, 3, 19, 2, 22, 21, 13, 23, 10, 25), (3, 17, 18, 11, 16, 7, 22, 8, 24, 20, 12, 19, 5, 25, 23)}

(15, 17, 29) {(1, 18, 5, 27, 22, 3, 25, 10, 28, 2, 20, 15, 29, 7, 19), (1, 24, 23, 25, 15, 27, 18, 22, 6, 20, 4, 29, 3, 28, 26), (2, 23, 18,
21, 6, 24, 17, 29, 12, 28, 5, 19, 9, 20, 27), (4, 23, 26, 5, 29, 14, 28, 17, 18, 15, 19, 8, 21, 10, 24), (4, 18, 25, 20, 17,
27, 24, 28, 16, 19, 23, 13, 21, 22, 26), (5, 20, 16, 26, 17, 22, 15, 28, 27, 11, 24, 9, 29, 6, 25), (3, 18, 12, 26, 9, 25, 27,
23, 8, 22, 11, 21, 20, 14, 24), (2, 21, 14, 27, 19, 25, 26, 15, 23, 22, 20, 8, 18, 28, 29), (1, 20, 23, 14, 26, 6, 18, 10, 29,
19, 3, 27, 8, 25, 22), (1, 25, 13, 24, 21, 27, 12, 19, 22, 9, 28, 23, 10, 20, 29), (1, 23, 12, 25, 7, 26, 19, 24, 22, 4, 21,
29, 18, 13, 28), (5, 21, 25, 16, 18, 19, 28, 22, 7, 23, 29, 26, 20, 12, 24), (3, 21, 23, 11, 28, 6, 19, 10, 27, 13, 29, 25,
24, 8, 26), (1, 21, 9, 23, 17, 19, 2, 18, 20, 24, 16, 22, 10, 26, 27), (2, 22, 29, 8, 28, 7, 27, 9, 18, 26, 11, 19, 21, 15,
24), (6, 23, 16, 21, 17, 25, 14, 19, 13, 20, 11, 18, 24, 29, 27), (3, 20, 19, 4, 25, 28, 21, 26, 24, 7, 18, 14, 22, 5, 23),
(2, 25, 11, 29, 16, 27, 4, 28, 20, 7, 21, 12, 22, 13, 26)}

(15, 21, 31) {(1, 22, 15, 23, 5, 28, 17, 24, 2, 30, 12, 31, 25, 13, 29), (1, 23, 21, 27, 4, 22, 18, 25, 12, 26, 31, 17, 29, 7, 28), (5, 22,
21, 24, 13, 23, 8, 26, 25, 14, 29, 28, 27, 30, 31), (4, 23, 30, 18, 26, 6, 22, 17, 25, 21, 29, 16, 28, 12, 24), (1, 24, 7, 25,
5, 29, 2, 26, 11, 30, 15, 28, 22, 16, 27), (3, 28, 30, 20, 26, 4, 25, 6, 24, 14, 22, 27, 17, 23, 31), (1, 26, 13, 22, 3, 27,
15, 24, 25, 11, 31, 16, 23, 14, 30), (1, 25, 9, 27, 26, 16, 24, 29, 3, 30, 22, 10, 28, 19, 31), (4, 28, 6, 29, 30, 5, 24, 23,
12, 22, 26, 14, 27, 7, 31), (2, 28, 11, 29, 19, 26, 24, 20, 27, 6, 23, 22, 25, 10, 31), (2, 23, 25, 30, 17, 26, 3, 24, 8, 29,
22, 31, 28, 13, 27), (9, 22, 11, 24, 30, 16, 25, 28, 18, 27, 31, 20, 29, 26, 23), (4, 29, 18, 31, 8, 27, 10, 23, 19, 22, 20,
28, 24, 9, 30), (8, 28, 9, 31, 29, 12, 27, 11, 23, 20, 25, 15, 26, 21, 30), (2, 22, 24, 19, 30, 6, 31, 21, 28, 26, 9, 29, 23,
27, 25), (3, 23, 18, 24, 10, 26, 7, 30, 13, 31, 15, 29, 27, 19, 25), (5, 26, 30, 10, 29, 25, 8, 22, 7, 23, 28, 14, 31, 24,
27)}

(15, 27, 37) {(5, 28, 11, 34, 23, 32, 27, 30, 17, 37, 29, 7, 33, 12, 36), (2, 31, 4, 36, 24, 37, 18, 30, 7, 35, 29, 10, 34, 20, 33), (2, 36,
34, 21, 33, 9, 28, 20, 32, 26, 30, 5, 35, 12, 37), (2, 28, 33, 4, 30, 12, 32, 3, 31, 14, 37, 15, 29, 25, 34), (1, 30, 29, 26,
33, 10, 28, 13, 34, 3, 37, 20, 31, 6, 36), (13, 31, 29, 27, 34, 30, 35, 32, 16, 33, 14, 28, 21, 36, 37), (4, 32, 8, 29, 5, 33,
6, 35, 16, 28, 25, 31, 37, 9, 34), (1, 28, 27, 31, 15, 35, 37, 21, 29, 17, 33, 11, 36, 10, 32), (2, 29, 19, 35, 14, 34, 37, 8,
30, 23, 31, 7, 36, 18, 32), (11, 29, 13, 33, 34, 31, 35, 22, 30, 21, 32, 28, 36, 27, 37), (5, 34, 32, 29, 6, 30, 13, 36, 22,
28, 19, 33, 35, 25, 37), (1, 29, 36, 3, 30, 15, 32, 7, 28, 24, 35, 21, 31, 22, 34), (1, 31, 28, 29, 33, 27, 35, 8, 36, 25, 30,
24, 32, 22, 37), (3, 28, 12, 34, 8, 33, 37, 10, 30, 14, 36, 9, 31, 26, 35), (11, 30, 33, 15, 36, 23, 28, 18, 31, 16, 34, 17,
32, 13, 35), (2, 30, 37, 7, 34, 6, 28, 8, 31, 11, 32, 14, 29, 23, 35), (3, 29, 12, 31, 17, 36, 20, 35, 34, 15, 28, 26, 37, 32,
33), (4, 29, 34, 18, 33, 36, 32, 6, 37, 28, 30, 19, 31, 10, 35), (1, 33, 23, 37, 16, 29, 20, 30, 32, 31, 36, 26, 34, 28, 35),
(4, 28, 17, 35, 36, 16, 30, 31, 33, 24, 29, 9, 32, 19, 37), (5, 31, 24, 34, 19, 36, 30, 9, 35, 18, 29, 22, 33, 25, 32)}
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(15, 27, 39) {(2, 30, 33, 23, 32, 27, 37, 26, 39, 11, 31, 21, 36, 28, 35), (1, 34, 11, 33, 39, 16, 31, 19, 29, 7, 36, 22, 38, 9, 35), (1,
29, 22, 34, 6, 28, 14, 35, 21, 33, 17, 37, 36, 25, 32), (3, 33, 26, 38, 12, 28, 39, 20, 32, 7, 35, 24, 34, 16, 36), (8, 38,
10, 31, 12, 36, 23, 34, 19, 28, 27, 35, 37, 30, 39), (5, 30, 13, 37, 11, 28, 26, 36, 9, 29, 31, 24, 33, 12, 35), (1, 33, 19,
32, 34, 7, 37, 23, 30, 18, 35, 11, 29, 14, 38), (2, 32, 15, 29, 27, 36, 11, 38, 7, 30, 17, 31, 8, 35, 34), (1, 31, 23, 28, 29,
13, 39, 22, 33, 10, 34, 27, 30, 8, 37), (2, 29, 20, 35, 19, 30, 28, 32, 8, 34, 5, 33, 31, 15, 39), (12, 32, 30, 16, 33, 36,
29, 17, 34, 18, 31, 20, 38, 37, 39), (6, 30, 34, 21, 39, 35, 10, 28, 37, 22, 32, 14, 33, 38, 36), (4, 28, 13, 35, 30, 11, 32,
26, 31, 6, 29, 38, 34, 25, 33), (5, 31, 13, 34, 36, 24, 38, 19, 39, 6, 32, 9, 30, 29, 37), (4, 32, 24, 29, 10, 30, 36, 20,
37, 33, 9, 34, 26, 35, 38), (2, 36, 31, 14, 39, 5, 29, 3, 30, 22, 28, 17, 32, 10, 37), (4, 35, 16, 37, 15, 30, 38, 21, 28, 7,
31, 9, 39, 10, 36), (7, 33, 20, 28, 31, 34, 37, 19, 36, 32, 35, 17, 38, 25, 39), (3, 28, 33, 35, 36, 17, 39, 38, 5, 32, 29,
4, 37, 12, 34), (1, 28, 25, 37, 18, 32, 16, 38, 23, 35, 22, 31, 4, 39, 36), (2, 33, 18, 36, 8, 29, 34, 20, 30, 24, 37, 3, 39,
32, 38), (3, 31, 30, 12, 29, 18, 39, 34, 28, 15, 35, 6, 33, 27, 38), (14, 34, 33, 15, 38, 28, 24, 39, 27, 31, 35, 29, 21, 32,
37), (3, 32, 33, 29, 39, 31, 38, 18, 28, 5, 36, 14, 30, 25, 35), (1, 30, 21, 37, 6, 38, 13, 32, 31, 2, 28, 16, 29, 23, 39),
(4, 30, 26, 29, 25, 31, 37, 9, 28, 8, 33, 13, 36, 15, 34)}

(15, 33, 43) {(6, 39, 33, 34, 26, 38, 41, 32, 35, 9, 37, 10, 36, 25, 40), (2, 35, 14, 34, 17, 38, 43, 7, 41, 25, 39, 24, 42, 9, 36), (9, 34,
29, 36, 43, 14, 38, 21, 39, 10, 35, 31, 42, 26, 41), (1, 34, 20, 37, 13, 39, 23, 43, 17, 41, 16, 42, 14, 40, 38), (2, 38, 11,
43, 20, 36, 27, 41, 6, 42, 39, 3, 37, 21, 40), (6, 34, 37, 41, 42, 36, 18, 40, 39, 7, 38, 33, 35, 22, 43), (1, 41, 29, 35, 11,
39, 31, 34, 16, 37, 36, 26, 43, 10, 42), (4, 36, 35, 12, 37, 8, 43, 15, 39, 17, 40, 13, 42, 29, 38), (6, 35, 30, 43, 25, 42,
7, 40, 33, 36, 39, 22, 38, 31, 37), (4, 34, 5, 38, 42, 33, 43, 28, 37, 14, 41, 23, 40, 27, 35), (3, 40, 31, 41, 5, 43, 13, 38,
15, 34, 19, 39, 35, 18, 42), (1, 35, 25, 34, 12, 36, 21, 42, 27, 39, 28, 38, 37, 32, 40), (4, 41, 40, 8, 36, 7, 35, 15, 42,
17, 37, 25, 38, 9, 43), (5, 37, 42, 35, 41, 34, 22, 40, 12, 38, 16, 36, 31, 43, 39), (3, 36, 23, 37, 11, 41, 21, 35, 8, 34,
27, 38, 39, 12, 43), (19, 36, 40, 35, 26, 37, 24, 34, 39, 30, 42, 43, 41, 20, 38), (6, 36, 22, 41, 13, 34, 42, 28, 35, 19,
37, 29, 40, 30, 38), (5, 36, 34, 7, 37, 35, 43, 29, 39, 9, 40, 24, 41, 12, 42), (2, 41, 19, 43, 21, 34, 11, 40, 26, 39, 18,
38, 35, 20, 42), (2, 34, 3, 41, 36, 17, 35, 24, 38, 23, 42, 22, 37, 40, 43), (2, 37, 18, 43, 24, 36, 38, 10, 41, 28, 34, 40,
42, 4, 39), (1, 37, 27, 43, 34, 10, 40, 5, 35, 3, 38, 32, 36, 14, 39), (8, 39, 37, 33, 41, 18, 34, 32, 43, 16, 40, 15, 36, 11,
42), (4, 37, 30, 36, 13, 35, 34, 38, 8, 41, 39, 32, 42, 19, 40), (1, 36, 28, 40, 20, 39, 16, 35, 23, 34, 30, 41, 15, 37, 43)}

(15, 37, 49) {(1, 46, 9, 44, 21, 42, 31, 48, 49, 18, 38, 6, 40, 4, 47), (5, 43, 46, 16, 39, 37, 41, 31, 45, 17, 42, 34, 49, 6, 47), (2, 39,
41, 38, 36, 46, 31, 40, 9, 42, 47, 12, 48, 28, 45), (11, 39, 12, 41, 23, 47, 32, 42, 13, 44, 25, 43, 45, 24, 48), (11, 40,
14, 47, 37, 46, 32, 43, 21, 39, 30, 38, 45, 36, 49), (8, 38, 15, 47, 33, 49, 10, 45, 20, 48, 40, 27, 39, 24, 43), (6, 44, 33,
42, 43, 19, 48, 22, 49, 7, 38, 26, 47, 13, 45), (2, 41, 48, 16, 44, 14, 39, 17, 38, 11, 45, 3, 40, 28, 43), (7, 41, 9, 48, 10,
44, 40, 19, 49, 26, 39, 15, 46, 18, 43), (4, 38, 5, 49, 46, 25, 45, 37, 40, 36, 43, 10, 39, 32, 44), (1, 39, 46, 26, 44, 11,
41, 14, 38, 35, 49, 24, 47, 27, 45), (10, 38, 43, 33, 45, 29, 49, 17, 46, 12, 44, 22, 39, 13, 41), (8, 42, 19, 46, 28, 38,
21, 41, 22, 40, 29, 47, 43, 14, 48), (8, 39, 42, 40, 30, 41, 19, 44, 43, 12, 38, 37, 49, 47, 46), (5, 40, 12, 42, 36, 41, 24,
38, 34, 46, 7, 45, 35, 47, 48), (1, 38, 20, 49, 9, 45, 22, 46, 35, 42, 2, 47, 41, 18, 44), (6, 42, 22, 47, 38, 27, 41, 20, 40,
17, 44, 35, 39, 29, 43), (1, 41, 5, 44, 38, 13, 43, 35, 48, 21, 46, 14, 42, 3, 49), (9, 43, 37, 48, 17, 41, 25, 38, 39, 49,
21, 40, 32, 45, 47), (5, 39, 34, 45, 42, 37, 44, 48, 32, 41, 16, 49, 43, 27, 46), (11, 43, 41, 40, 38, 49, 12, 45, 18, 48,
46, 24, 42, 44, 47), (2, 40, 26, 45, 46, 4, 42, 7, 39, 44, 28, 49, 15, 43, 48), (13, 40, 34, 47, 25, 49, 45, 30, 44, 41, 46,
38, 42, 15, 48), (2, 46, 3, 44, 20, 47, 19, 45, 48, 26, 43, 22, 38, 32, 49), (7, 40, 10, 47, 8, 41, 42, 20, 39, 19, 38, 31,
44, 36, 48), (11, 42, 49, 31, 43, 39, 36, 47, 16, 40, 45, 41, 29, 44, 46), (4, 43, 20, 46, 33, 39, 45, 23, 40, 8, 44, 27, 42,
29, 48), (1, 40, 39, 18, 42, 16, 38, 23, 49, 8, 45, 15, 41, 3, 48), (4, 39, 47, 21, 45, 16, 43, 34, 48, 6, 46, 10, 42, 26,
41), (3, 39, 6, 41, 49, 40, 25, 48, 42, 28, 47, 7, 44, 23, 43), (1, 42, 46, 13, 49, 14, 45, 44, 2, 38, 48, 30, 47, 40, 43),
(4, 45, 5, 42, 23, 39, 9, 38, 29, 46, 40, 33, 48, 27, 49), (3, 38, 33, 41, 35, 40, 15, 44, 49, 30, 42, 25, 39, 31, 47), (17,
43, 30, 46, 23, 48, 39, 28, 41, 34, 44, 24, 40, 18, 47)}

(15, 39, 49) {(20, 45, 25, 48, 31, 41, 46, 36, 43, 37, 42, 24, 40, 30, 49), (5, 45, 48, 18, 43, 25, 44, 33, 49, 13, 46, 23, 40, 14, 47),
(2, 43, 29, 47, 37, 46, 26, 45, 33, 41, 13, 40, 42, 4, 48), (3, 44, 23, 47, 22, 43, 39, 46, 20, 41, 8, 40, 48, 36, 49), (5,
44, 14, 49, 16, 45, 7, 42, 43, 32, 46, 18, 41, 22, 48), (11, 41, 35, 46, 43, 21, 48, 23, 42, 32, 45, 36, 44, 24, 49), (4, 40,
10, 47, 19, 48, 33, 42, 41, 26, 43, 5, 49, 39, 45), (16, 44, 41, 17, 47, 36, 42, 30, 46, 24, 43, 19, 49, 29, 48), (4, 41, 34,
42, 44, 12, 45, 19, 46, 25, 49, 6, 48, 24, 47), (7, 44, 28, 47, 34, 40, 35, 48, 41, 14, 43, 11, 42, 12, 46), (12, 40, 31, 46,
27, 42, 29, 44, 39, 48, 32, 47, 15, 41, 43), (1, 43, 13, 48, 28, 42, 5, 40, 3, 47, 39, 41, 38, 44, 49), (1, 45, 21, 42, 31,
44, 27, 41, 10, 43, 9, 40, 47, 33, 46), (10, 45, 11, 47, 16, 43, 20, 40, 39, 42, 15, 44, 18, 49, 46), (6, 42, 26, 48, 27, 49,
47, 30, 44, 9, 45, 41, 36, 40, 43), (2, 42, 19, 40, 11, 44, 37, 41, 28, 45, 38, 43, 48, 8, 46), (3, 46, 34, 45, 47, 9, 42, 16,
41, 25, 40, 37, 49, 15, 48), (7, 40, 16, 46, 38, 47, 26, 49, 41, 24, 45, 22, 42, 20, 48), (5, 41, 19, 44, 40, 33, 43, 23, 49,
45, 27, 47, 48, 14, 46), (3, 42, 10, 44, 17, 48, 49, 7, 47, 12, 41, 40, 15, 43, 45), (4, 44, 8, 49, 32, 40, 45, 18, 47, 31,
43, 7, 41, 9, 46), (9, 48, 34, 44, 35, 45, 29, 40, 18, 42, 25, 47, 46, 22, 49), (1, 41, 3, 43, 8, 45, 14, 42, 48, 46, 21, 49,
35, 47, 44), (2, 40, 22, 44, 32, 41, 29, 46, 15, 45, 37, 48, 30, 43, 49), (6, 44, 13, 42, 38, 48, 12, 49, 17, 40, 46, 45, 23,
41, 47), (1, 40, 27, 43, 34, 49, 31, 45, 2, 47, 8, 42, 46, 44, 48), (2, 41, 6, 46, 17, 42, 45, 13, 47, 43, 4, 49, 40, 26, 44),
(1, 42, 35, 43, 28, 49, 38, 40, 21, 41, 30, 45, 44, 20, 47), (6, 40, 28, 46, 11, 48, 10, 49, 42, 47, 21, 44, 43, 17, 45)}

(15, 45, 55) {(3, 50, 13, 55, 35, 47, 52, 4, 48, 38, 54, 22, 49, 14, 53), (18, 53, 22, 50, 46, 55, 24, 52, 49, 40, 51, 20, 47, 30, 54),
(3, 47, 27, 46, 8, 49, 54, 7, 55, 33, 48, 51, 34, 50, 52), (8, 50, 17, 46, 11, 47, 10, 49, 38, 55, 21, 54, 48, 32, 53), (1,
49, 16, 51, 5, 50, 33, 46, 21, 53, 29, 48, 18, 55, 52), (7, 50, 18, 49, 39, 51, 13, 46, 28, 55, 23, 48, 21, 52, 53), (3, 48,
52, 11, 50, 23, 51, 38, 47, 19, 49, 27, 55, 5, 54), (13, 47, 54, 26, 50, 24, 49, 36, 51, 32, 46, 39, 52, 17, 53), (7, 48, 26,
47, 45, 54, 10, 50, 16, 46, 31, 55, 53, 24, 51), (1, 46, 26, 55, 4, 51, 43, 50, 48, 24, 54, 35, 52, 41, 47), (11, 48, 47, 16,
52, 23, 53, 28, 50, 25, 55, 32, 54, 20, 49), (9, 48, 40, 47, 42, 49, 50, 20, 52, 19, 54, 15, 46, 43, 53), (5, 49, 41, 48, 43,
52, 40, 54, 8, 51, 55, 44, 46, 20, 53), (1, 50, 15, 51, 52, 30, 48, 45, 46, 4, 49, 43, 47, 36, 54), (1, 48, 42, 52, 2, 47, 39,
50, 35, 49, 46, 3, 51, 31, 53), (2, 46, 34, 53, 12, 55, 9, 54, 44, 50, 27, 51, 28, 48, 49), (6, 48, 20, 55, 45, 50, 42, 46,
12, 52, 15, 47, 17, 54, 53), (6, 46, 40, 53, 35, 51, 44, 47, 23, 49, 31, 54, 55, 10, 52), (12, 47, 22, 46, 48, 37, 51, 26,
53, 50, 54, 43, 55, 34, 49), (2, 53, 47, 29, 46, 10, 51, 9, 49, 44, 52, 27, 54, 11, 55), (13, 48, 14, 51, 21, 47, 46, 18, 52,
37, 55, 30, 53, 15, 49), (8, 47, 49, 32, 52, 9, 46, 51, 42, 55, 40, 50, 36, 53, 48), (3, 49, 51, 29, 54, 16, 53, 41, 50, 32,
47, 34, 48, 36, 55), (7, 47, 24, 46, 14, 50, 51, 11, 53, 37, 49, 29, 55, 22, 52), (1, 51, 2, 54, 13, 52, 36, 46, 35, 48, 17,
49, 30, 50, 55), (21, 49, 25, 53, 39, 55, 47, 37, 54, 51, 30, 46, 52, 29, 50), (6, 49, 28, 52, 34, 54, 12, 51, 22, 48, 25,
47, 50, 19, 55), (6, 47, 28, 54, 23, 46, 38, 53, 51, 17, 55, 16, 48, 12, 50), (5, 47, 33, 49, 53, 27, 48, 55, 14, 54, 46, 19,
51, 25, 52), (5, 46, 37, 50, 38, 52, 45, 49, 55, 41, 54, 42, 53, 19, 48), (7, 46, 25, 54, 39, 48, 31, 47, 51, 45, 53, 33, 52,
26, 49), (4, 50, 9, 47, 18, 51, 6, 54, 52, 8, 55, 15, 48, 10, 53), (2, 48, 44, 53, 46, 41, 51, 33, 54, 4, 47, 14, 52, 31, 50)}
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(15, 47, 59) {(13, 49, 40, 58, 36, 51, 38, 59, 25, 50, 20, 57, 17, 48, 55), (3, 54, 15, 48, 32, 49, 18, 55, 28, 58, 35, 56, 27, 57, 59),
(12, 51, 24, 50, 42, 54, 53, 13, 59, 30, 48, 45, 52, 14, 57), (1, 53, 25, 52, 49, 29, 48, 33, 51, 17, 50, 45, 54, 10, 55),
(4, 48, 5, 55, 40, 52, 50, 29, 58, 34, 59, 35, 54, 22, 53), (19, 52, 31, 55, 34, 51, 48, 41, 59, 47, 50, 26, 56, 30, 57),
(16, 51, 21, 54, 46, 53, 39, 50, 35, 52, 59, 40, 48, 43, 58), (6, 54, 20, 52, 44, 50, 10, 48, 31, 59, 28, 56, 51, 35, 55),
(2, 49, 58, 37, 54, 9, 55, 8, 56, 43, 59, 18, 57, 29, 51), (4, 55, 26, 59, 36, 52, 7, 57, 9, 56, 50, 16, 53, 5, 58), (9, 48,
22, 55, 46, 50, 36, 53, 32, 57, 34, 49, 56, 18, 58), (3, 48, 50, 11, 55, 51, 54, 34, 52, 47, 57, 22, 59, 20, 53), (9, 49, 19,
48, 36, 55, 56, 20, 58, 42, 59, 45, 51, 39, 52), (4, 56, 24, 57, 28, 53, 42, 49, 16, 54, 41, 55, 47, 58, 59), (6, 53, 18, 51,
20, 49, 43, 55, 39, 57, 52, 54, 33, 58, 56), (4, 54, 18, 50, 21, 58, 13, 56, 59, 24, 49, 48, 34, 53, 57), (3, 50, 31, 54, 44,
49, 39, 59, 29, 52, 12, 58, 14, 56, 57), (6, 51, 37, 50, 59, 9, 53, 10, 58, 23, 48, 7, 56, 22, 52), (19, 58, 31, 49, 57, 42,
48, 20, 55, 21, 52, 56, 53, 37, 59), (1, 51, 32, 55, 33, 52, 10, 56, 34, 50, 27, 48, 53, 40, 54), (7, 49, 54, 11, 59, 23, 50,
8, 57, 40, 51, 26, 52, 58, 53), (1, 58, 6, 49, 50, 13, 48, 18, 52, 38, 56, 29, 54, 27, 59), (1, 48, 28, 51, 10, 49, 5, 54, 55,
2, 56, 3, 52, 4, 50), (2, 57, 25, 56, 32, 59, 5, 52, 42, 51, 14, 50, 53, 27, 58), (2, 53, 31, 51, 8, 52, 13, 57, 58, 7, 55,
42, 56, 16, 59), (6, 48, 37, 55, 12, 50, 43, 54, 56, 45, 53, 21, 49, 8, 59), (1, 56, 23, 53, 29, 55, 15, 58, 45, 49, 3, 51,
13, 54, 57), (12, 48, 16, 57, 45, 55, 25, 49, 26, 58, 22, 51, 52, 28, 54), (4, 49, 46, 52, 37, 56, 48, 39, 58, 24, 54, 26,
53, 59, 51), (11, 52, 53, 41, 49, 37, 57, 55, 59, 54, 17, 58, 51, 44, 56), (11, 49, 36, 56, 31, 57, 46, 48, 59, 15, 51, 43,
52, 24, 53), (10, 57, 35, 48, 25, 51, 41, 52, 32, 58, 44, 53, 33, 49, 59), (1, 49, 38, 53, 8, 48, 58, 25, 54, 50, 5, 56, 17,
55, 52), (2, 48, 57, 33, 56, 46, 59, 7, 51, 30, 53, 55, 50, 15, 52), (19, 51, 27, 52, 23, 55, 49, 22, 50, 33, 59, 44, 57, 38,
54), (9, 50, 58, 54, 48, 24, 55, 14, 59, 17, 53, 49, 15, 57, 51), (3, 55, 38, 50, 6, 57, 36, 54, 39, 56, 15, 53, 51, 46, 58),
(11, 48, 21, 59, 12, 53, 47, 54, 32, 50, 41, 57, 23, 49, 51), (11, 57, 26, 48, 52, 17, 49, 12, 56, 40, 50, 19, 55, 30, 58),
(7, 50, 57, 43, 53, 14, 49, 27, 55, 44, 48, 38, 58, 8, 54), (2, 50, 28, 49, 30, 52, 16, 55, 58, 41, 56, 47, 51, 23, 54), (5,
51, 50, 30, 54, 14, 48, 47, 49, 35, 53, 19, 56, 21, 57)}

(15, 49, 57) {(2, 52, 23, 50, 28, 51, 24, 57, 12, 53, 54, 9, 55, 5, 56), (3, 51, 16, 54, 57, 18, 53, 22, 52, 49, 56, 13, 50, 19, 55), (10,
50, 42, 55, 11, 54, 49, 57, 46, 51, 53, 16, 52, 12, 56), (7, 50, 40, 52, 55, 23, 56, 30, 51, 12, 54, 19, 57, 37, 53), (20,
50, 53, 43, 55, 31, 56, 41, 54, 45, 52, 34, 57, 29, 51), (8, 50, 29, 52, 19, 53, 34, 54, 21, 56, 38, 51, 57, 20, 55), (2, 53,
23, 57, 48, 52, 36, 54, 43, 50, 37, 56, 25, 51, 55), (3, 54, 13, 55, 26, 57, 33, 52, 50, 14, 51, 49, 53, 6, 56), (1, 52, 17,
56, 19, 51, 32, 55, 45, 50, 38, 54, 48, 53, 57), (1, 51, 37, 55, 33, 53, 26, 50, 2, 54, 30, 57, 52, 35, 56), (4, 50, 5, 57,
13, 51, 45, 56, 9, 52, 25, 54, 10, 55, 53), (1, 53, 30, 50, 47, 57, 17, 55, 28, 56, 24, 52, 51, 22, 54), (4, 52, 18, 51, 43,
56, 50, 39, 57, 6, 54, 17, 53, 14, 55), (7, 55, 50, 33, 51, 23, 54, 40, 53, 13, 52, 32, 57, 11, 56), (6, 50, 31, 57, 16, 56,
51, 8, 54, 32, 53, 25, 55, 38, 52), (11, 50, 41, 57, 44, 53, 24, 54, 39, 51, 34, 55, 22, 56, 52), (7, 51, 47, 53, 41, 52, 20,
56, 57, 22, 50, 49, 55, 18, 54), (4, 51, 48, 50, 34, 56, 29, 53, 35, 55, 36, 57, 7, 52, 54), (2, 51, 31, 54, 44, 55, 12, 50,
32, 56, 42, 53, 52, 3, 57), (3, 50, 51, 5, 54, 28, 57, 10, 52, 39, 55, 15, 56, 36, 53), (11, 51, 27, 57, 55, 46, 56, 18, 50,
15, 52, 14, 54, 20, 53), (21, 51, 40, 56, 39, 53, 45, 57, 35, 50, 27, 55, 54, 37, 52), (6, 51, 54, 15, 53, 8, 52, 47, 56, 14,
57, 25, 50, 16, 55), (5, 52, 30, 55, 56, 27, 54, 35, 51, 42, 57, 21, 50, 46, 53), (15, 51, 17, 50, 54, 33, 56, 48, 55, 21,
53, 28, 52, 43, 57), (8, 56, 44, 51, 10, 53, 27, 52, 42, 54, 29, 55, 24, 50, 57), (9, 51, 36, 50, 44, 52, 26, 56, 54, 47, 55,
40, 57, 38, 53), (1, 50, 9, 57, 4, 56, 53, 31, 52, 46, 54, 26, 51, 41, 55)}

(15, 51, 61) {(12, 57, 19, 56, 25, 61, 38, 53, 52, 43, 55, 49, 54, 35, 59), (1, 52, 56, 40, 55, 39, 58, 31, 61, 22, 53, 28, 57, 38, 60),
(9, 53, 10, 57, 21, 59, 37, 61, 16, 52, 45, 54, 15, 55, 60), (9, 56, 58, 14, 60, 21, 61, 39, 54, 38, 52, 22, 55, 34, 57), (4,
53, 47, 55, 54, 23, 60, 32, 58, 34, 56, 11, 52, 26, 59), (10, 52, 30, 55, 37, 60, 28, 58, 15, 53, 57, 23, 61, 33, 54), (16,
58, 51, 53, 54, 61, 30, 59, 56, 27, 57, 55, 42, 52, 60), (1, 54, 7, 59, 53, 32, 61, 15, 57, 16, 55, 19, 52, 25, 58), (10, 56,
46, 55, 31, 59, 14, 54, 52, 21, 58, 36, 53, 44, 60), (8, 52, 61, 19, 60, 11, 59, 15, 56, 41, 53, 37, 58, 43, 54), (4, 55, 50,
59, 9, 52, 5, 54, 27, 60, 53, 39, 56, 29, 61), (6, 57, 47, 56, 53, 21, 54, 12, 58, 41, 60, 39, 59, 40, 61), (11, 55, 44, 57,
29, 54, 42, 53, 30, 60, 58, 38, 59, 46, 61), (3, 60, 43, 59, 42, 57, 18, 58, 24, 53, 19, 54, 30, 56, 61), (13, 54, 56, 51, 60,
49, 61, 36, 57, 33, 55, 35, 58, 17, 59), (5, 53, 11, 58, 47, 54, 57, 25, 60, 40, 52, 6, 59, 45, 55), (1, 57, 39, 52, 44, 59,
54, 34, 53, 7, 60, 36, 56, 45, 61), (4, 52, 17, 55, 29, 60, 24, 61, 53, 33, 56, 7, 57, 5, 58), (2, 56, 18, 61, 8, 55, 23, 58,
10, 59, 34, 52, 15, 60, 57), (9, 54, 44, 61, 28, 52, 58, 27, 59, 24, 57, 26, 56, 32, 55), (5, 56, 48, 60, 12, 52, 55, 59, 25,
54, 6, 58, 57, 41, 61), (7, 52, 32, 57, 17, 56, 8, 60, 33, 58, 19, 59, 49, 53, 55), (13, 57, 50, 58, 55, 21, 56, 14, 61, 47,
59, 51, 54, 17, 60), (2, 54, 20, 60, 34, 61, 7, 58, 53, 14, 52, 48, 57, 3, 55), (10, 55, 18, 59, 16, 54, 46, 53, 20, 56, 35,
57, 30, 58, 61), (4, 56, 57, 45, 53, 40, 54, 48, 59, 41, 52, 35, 61, 42, 60), (1, 56, 3, 52, 2, 61, 48, 58, 26, 55, 24, 54,
22, 60, 59), (3, 54, 18, 53, 6, 55, 51, 61, 13, 56, 49, 58, 29, 52, 59), (11, 54, 50, 60, 46, 52, 23, 53, 29, 59, 36, 55, 56,
37, 57), (3, 53, 48, 55, 38, 56, 12, 61, 59, 33, 52, 51, 57, 46, 58), (18, 52, 37, 54, 41, 55, 25, 53, 27, 61, 20, 58, 42,
56, 60), (5, 59, 20, 57, 14, 55, 27, 52, 36, 54, 26, 53, 43, 61, 60), (1, 53, 31, 57, 49, 52, 24, 56, 23, 59, 2, 58, 54, 28,
55), (6, 56, 16, 53, 13, 58, 8, 57, 59, 32, 54, 31, 52, 47, 60), (4, 54, 60, 35, 53, 17, 61, 9, 58, 44, 56, 28, 59, 22, 57),
(8, 53, 50, 56, 43, 57, 52, 13, 55, 61, 26, 60, 45, 58, 59), (2, 53, 12, 55, 20, 52, 50, 61, 57, 40, 58, 22, 56, 31, 60)}

(15, 57, 67) {(9, 63, 36, 58, 48, 59, 21, 64, 13, 67, 14, 66, 43, 60, 65), (8, 59, 22, 62, 32, 60, 42, 65, 25, 58, 63, 16, 66, 52, 61),
(5, 61, 14, 64, 32, 67, 12, 58, 17, 60, 62, 49, 59, 9, 66), (16, 64, 24, 63, 26, 61, 57, 59, 35, 60, 49, 58, 40, 62, 67), (1,
62, 11, 65, 43, 61, 9, 58, 4, 66, 57, 67, 21, 63, 64), (4, 63, 12, 66, 26, 58, 51, 61, 64, 10, 65, 7, 62, 20, 67), (1, 61, 16,
62, 65, 57, 58, 41, 59, 56, 67, 28, 63, 50, 66), (6, 61, 50, 67, 48, 60, 16, 59, 65, 34, 62, 27, 63, 18, 64), (4, 59, 58, 35,
65, 18, 66, 25, 60, 13, 63, 54, 62, 45, 61), (5, 63, 42, 59, 24, 58, 8, 60, 53, 66, 65, 28, 61, 29, 64), (4, 62, 35, 63, 46,
64, 28, 59, 52, 58, 27, 60, 5, 67, 65), (19, 60, 40, 61, 25, 64, 20, 65, 22, 58, 66, 42, 67, 45, 63), (10, 66, 13, 62, 18,
58, 37, 60, 59, 47, 64, 53, 65, 15, 67), (2, 61, 39, 67, 24, 66, 19, 65, 5, 58, 32, 59, 62, 44, 63), (17, 65, 38, 63, 20, 59,
51, 64, 23, 60, 26, 62, 66, 37, 67), (3, 59, 38, 66, 41, 67, 49, 63, 51, 62, 42, 61, 48, 65, 64), (8, 64, 43, 63, 30, 59, 53,
62, 10, 60, 51, 67, 47, 58, 65), (12, 62, 19, 64, 17, 63, 67, 46, 58, 50, 60, 24, 61, 49, 65), (3, 58, 54, 66, 63, 52, 62,
37, 64, 50, 59, 43, 67, 31, 65), (1, 58, 64, 2, 60, 11, 63, 31, 61, 33, 66, 48, 62, 5, 59), (7, 58, 53, 61, 44, 59, 25, 63,
62, 39, 66, 47, 60, 54, 64), (23, 59, 37, 63, 39, 65, 47, 61, 30, 62, 46, 60, 36, 64, 66), (3, 63, 60, 34, 61, 7, 59, 15, 58,
42, 64, 35, 66, 44, 67), (3, 61, 60, 56, 58, 10, 63, 7, 66, 30, 64, 27, 65, 50, 62), (9, 62, 17, 61, 55, 67, 58, 23, 65, 26,
59, 18, 60, 12, 64), (2, 62, 38, 61, 20, 58, 45, 66, 51, 65, 56, 64, 4, 60, 67), (7, 60, 14, 63, 65, 46, 59, 55, 66, 31, 64,
15, 61, 22, 67), (12, 59, 67, 64, 57, 60, 55, 63, 32, 65, 14, 62, 56, 66, 61), (22, 63, 57, 62, 25, 67, 54, 59, 61, 65, 45,
60, 64, 40, 66), (8, 62, 55, 65, 41, 60, 58, 34, 59, 45, 64, 11, 61, 35, 67), (15, 60, 52, 65, 24, 62, 29, 58, 19, 61, 23,
63, 40, 67, 66), (6, 60, 29, 63, 33, 65, 40, 59, 11, 66, 34, 67, 18, 61, 62), (1, 63, 47, 62, 33, 59, 29, 66, 28, 58, 13, 65,
37, 61, 67), (8, 63, 15, 62, 64, 38, 60, 44, 58, 33, 67, 19, 59, 17, 66), (6, 58, 11, 67, 26, 64, 44, 65, 21, 62, 41, 61, 10,
59, 63), (6, 66, 32, 61, 13, 59, 64, 33, 60, 30, 65, 16, 58, 38, 67), (1, 60, 66, 36, 59, 31, 58, 39, 64, 34, 63, 56, 61, 54,
65), (2, 65, 6, 59, 39, 60, 31, 62, 58, 30, 67, 27, 61, 46, 66), (3, 60, 22, 64, 41, 63, 53, 67, 23, 62, 43, 58, 61, 21, 66),
(14, 58, 21, 60, 28, 62, 36, 65, 29, 67, 52, 64, 49, 66, 59), (2, 58, 55, 64, 48, 63, 61, 36, 67, 9, 60, 20, 66, 27, 59)}
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(15, 57, 69) {(4, 59, 66, 63, 40, 61, 62, 10, 68, 46, 67, 8, 58, 33, 64), (6, 63, 22, 59, 51, 62, 35, 58, 64, 15, 61, 30, 68, 33, 67), (4,
61, 44, 64, 24, 60, 11, 66, 68, 18, 63, 48, 67, 21, 65), (10, 61, 11, 68, 58, 51, 69, 25, 64, 28, 63, 24, 62, 38, 65), (2,
59, 21, 62, 11, 64, 66, 42, 61, 28, 68, 12, 65, 27, 69), (4, 60, 27, 64, 6, 66, 52, 62, 59, 13, 61, 37, 63, 55, 68), (3, 64,
32, 66, 58, 59, 42, 60, 41, 65, 8, 61, 56, 69, 68), (2, 64, 63, 15, 62, 22, 69, 5, 67, 56, 59, 47, 61, 48, 66), (2, 60, 13,
69, 48, 59, 68, 27, 58, 39, 65, 55, 66, 4, 67), (20, 58, 30, 59, 31, 66, 36, 68, 26, 61, 25, 60, 69, 37, 64), (8, 62, 36, 65,
58, 23, 60, 17, 66, 12, 67, 15, 59, 16, 63), (6, 59, 10, 63, 58, 40, 62, 69, 19, 61, 51, 64, 67, 37, 60), (19, 58, 56, 64,
43, 67, 27, 66, 51, 63, 30, 60, 26, 65, 68), (3, 59, 38, 67, 10, 69, 26, 58, 22, 61, 43, 62, 57, 63, 60), (5, 58, 45, 62, 18,
60, 50, 61, 34, 68, 43, 69, 66, 23, 63), (3, 65, 37, 58, 46, 60, 28, 62, 68, 54, 59, 45, 61, 20, 67), (9, 65, 28, 58, 42, 64,
35, 69, 54, 60, 66, 45, 63, 26, 67), (6, 61, 21, 66, 35, 60, 40, 67, 32, 63, 39, 69, 55, 62, 65), (10, 64, 50, 67, 55, 61,
52, 63, 36, 60, 62, 33, 69, 30, 66), (9, 58, 41, 59, 49, 69, 32, 68, 14, 60, 16, 65, 44, 67, 66), (6, 58, 14, 66, 46, 63, 43,
65, 67, 42, 62, 48, 64, 29, 69), (9, 61, 53, 64, 40, 59, 23, 62, 37, 66, 22, 60, 68, 21, 63), (11, 59, 60, 21, 58, 47, 66,
25, 62, 56, 68, 31, 65, 46, 69), (19, 60, 38, 58, 50, 66, 61, 49, 64, 39, 68, 47, 65, 51, 67), (7, 59, 17, 65, 22, 64, 21,
69, 20, 63, 61, 39, 62, 9, 68), (8, 59, 57, 68, 24, 66, 13, 64, 52, 65, 69, 58, 53, 67, 60), (7, 58, 13, 62, 41, 63, 33, 60,
45, 67, 47, 64, 61, 35, 65), (7, 60, 55, 58, 36, 64, 57, 69, 8, 66, 34, 65, 59, 63, 67), (16, 58, 34, 63, 54, 67, 62, 29, 61,
27, 59, 43, 66, 18, 69), (1, 62, 54, 58, 67, 25, 68, 38, 69, 24, 61, 59, 39, 66, 65), (5, 60, 43, 58, 57, 61, 31, 62, 66, 26,
59, 69, 63, 11, 65), (2, 61, 32, 58, 52, 59, 14, 64, 18, 67, 36, 69, 53, 63, 65), (16, 66, 19, 59, 32, 60, 53, 62, 26, 64,
41, 68, 63, 31, 67), (1, 60, 65, 64, 8, 68, 37, 59, 24, 58, 15, 69, 61, 5, 66), (1, 63, 56, 60, 31, 64, 45, 69, 42, 65, 15,
66, 44, 59, 67), (1, 68, 17, 63, 7, 66, 40, 65, 61, 54, 64, 5, 62, 34, 69), (25, 63, 35, 67, 41, 69, 52, 60, 47, 62, 58, 44,
68, 45, 65), (12, 58, 49, 66, 53, 59, 20, 60, 61, 17, 62, 44, 63, 38, 64), (3, 58, 4, 63, 49, 67, 30, 64, 23, 61, 68, 20, 65,
19, 62), (2, 58, 25, 59, 33, 66, 56, 65, 49, 68, 15, 60, 64, 7, 62), (13, 63, 19, 64, 16, 61, 18, 58, 60, 51, 68, 22, 67, 24,
65), (6, 62, 30, 65, 14, 69, 31, 58, 29, 67, 61, 12, 60, 48, 68), (4, 62, 16, 68, 64, 9, 59, 18, 65, 57, 67, 14, 63, 12, 69),
(1, 59, 64, 17, 69, 47, 63, 2, 68, 53, 65, 54, 66, 41, 61), (7, 61, 38, 66, 20, 62, 64, 55, 59, 34, 67, 13, 68, 23, 69), (1,
58, 61, 33, 65, 32, 62, 12, 59, 28, 66, 57, 60, 34, 64), (27, 62, 46, 61, 36, 59, 29, 60, 44, 69, 28, 67, 68, 50, 63), (3,
61, 14, 62, 49, 60, 39, 67, 69, 50, 59, 35, 68, 42, 63), (5, 59, 46, 64, 69, 9, 60, 10, 58, 17, 67, 23, 65, 29, 68), (3, 66,
29, 63, 62, 50, 65, 48, 58, 11, 67, 52, 68, 40, 69)}

(15, 63, 73) {(10, 68, 14, 71, 55, 64, 69, 50, 72, 13, 66, 30, 70, 22, 73), (6, 67, 12, 73, 26, 68, 33, 64, 11, 66, 72, 46, 69, 52, 70),
(9, 71, 11, 67, 64, 18, 68, 60, 69, 41, 72, 22, 66, 16, 73), (1, 66, 6, 72, 69, 51, 64, 25, 73, 39, 65, 7, 70, 14, 67), (5, 65,
27, 70, 39, 67, 69, 12, 66, 14, 64, 30, 73, 51, 71), (3, 69, 59, 70, 23, 67, 48, 66, 54, 72, 65, 16, 68, 28, 71), (5, 70, 66,
42, 67, 27, 71, 26, 69, 6, 65, 46, 73, 11, 72), (7, 71, 24, 65, 36, 67, 41, 66, 31, 73, 68, 55, 70, 34, 72), (15, 67, 16, 71,
57, 70, 40, 64, 49, 73, 72, 55, 66, 23, 68), (4, 67, 71, 61, 65, 41, 64, 20, 68, 40, 66, 17, 72, 38, 73), (10, 66, 20, 69,
17, 73, 14, 72, 42, 64, 50, 65, 52, 68, 71), (6, 64, 16, 69, 68, 51, 72, 39, 66, 7, 73, 40, 65, 42, 71), (1, 72, 19, 68, 4,
71, 56, 65, 60, 66, 3, 70, 2, 67, 73), (15, 64, 53, 70, 51, 65, 32, 66, 46, 68, 36, 73, 19, 67, 72), (9, 70, 73, 35, 64, 61,
67, 37, 66, 53, 71, 25, 69, 40, 72), (10, 64, 66, 15, 73, 32, 67, 47, 71, 43, 65, 17, 68, 50, 70), (2, 69, 4, 66, 18, 71, 46,
64, 47, 72, 44, 67, 68, 3, 73), (4, 64, 26, 67, 54, 71, 72, 21, 66, 5, 68, 62, 69, 53, 65), (9, 67, 10, 72, 26, 65, 23, 64,
22, 69, 39, 71, 73, 44, 68), (8, 72, 49, 71, 30, 65, 69, 56, 68, 45, 70, 24, 64, 34, 73), (8, 69, 49, 67, 13, 65, 28, 72, 33,
73, 43, 66, 71, 20, 70), (12, 64, 43, 69, 27, 66, 51, 67, 52, 72, 68, 63, 65, 37, 70), (1, 68, 66, 25, 65, 14, 69, 31, 72, 3,
64, 56, 70, 33, 71), (18, 67, 25, 68, 61, 73, 52, 71, 59, 65, 38, 64, 70, 63, 69), (3, 65, 45, 71, 41, 68, 39, 64, 32, 70,
47, 66, 73, 56, 67), (8, 66, 58, 71, 65, 11, 69, 34, 68, 48, 70, 41, 73, 55, 67), (21, 64, 60, 73, 24, 68, 30, 72, 56, 66,
36, 70, 44, 69, 71), (16, 70, 71, 63, 67, 45, 64, 62, 65, 48, 69, 33, 66, 29, 72), (15, 69, 57, 73, 53, 72, 27, 64, 58, 67,
22, 65, 68, 21, 70), (6, 68, 53, 67, 34, 65, 70, 26, 66, 35, 69, 7, 64, 37, 73), (7, 67, 21, 73, 62, 66, 61, 70, 69, 10, 65,
31, 71, 13, 68), (1, 65, 29, 64, 73, 27, 68, 49, 66, 59, 67, 30, 69, 28, 70), (19, 65, 73, 23, 72, 58, 70, 43, 67, 24, 66,
44, 71, 36, 69), (13, 64, 31, 70, 19, 71, 34, 66, 57, 67, 33, 65, 47, 69, 73), (20, 67, 35, 68, 37, 69, 58, 65, 49, 70, 60,
72, 64, 28, 73), (20, 65, 67, 28, 66, 50, 73, 45, 69, 23, 71, 48, 64, 36, 72), (1, 64, 52, 66, 67, 50, 71, 2, 65, 12, 68, 59,
72, 61, 69), (2, 66, 9, 65, 44, 64, 59, 73, 54, 70, 68, 22, 71, 35, 72), (5, 64, 65, 21, 69, 13, 70, 42, 68, 43, 72, 37, 71,
60, 67), (2, 64, 54, 69, 66, 38, 71, 32, 72, 25, 70, 46, 67, 29, 68), (5, 69, 24, 72, 70, 17, 67, 40, 71, 15, 65, 54, 68, 47,
73), (8, 65, 35, 70, 18, 73, 58, 68, 64, 63, 66, 45, 72, 62, 71), (9, 64, 19, 66, 65, 18, 72, 57, 68, 31, 67, 62, 70, 38, 69),
(4, 70, 67, 38, 68, 8, 64, 17, 71, 29, 69, 42, 73, 63, 72), (11, 68, 32, 69, 55, 65, 57, 64, 71, 12, 72, 48, 73, 29, 70)}

(15, 67, 79) {(14, 72, 34, 78, 62, 70, 22, 69, 23, 76, 74, 33, 73, 52, 79), (17, 69, 59, 73, 27, 68, 72, 22, 78, 52, 71, 49, 76, 42, 79),
(1, 73, 30, 70, 8, 78, 68, 9, 76, 46, 79, 10, 77, 34, 74), (3, 69, 39, 71, 70, 14, 73, 50, 76, 67, 72, 57, 68, 34, 75), (9,
70, 66, 78, 40, 73, 20, 79, 63, 77, 61, 74, 42, 75, 72), (38, 69, 61, 71, 42, 72, 74, 45, 76, 47, 79, 59, 75, 70, 77), (7,
74, 56, 77, 29, 72, 38, 73, 79, 25, 69, 50, 70, 28, 78), (5, 74, 48, 68, 65, 69, 26, 76, 20, 71, 32, 73, 75, 27, 78), (7, 71,
19, 70, 38, 78, 32, 75, 79, 54, 76, 43, 77, 28, 72), (9, 71, 51, 78, 19, 77, 55, 69, 20, 75, 63, 70, 24, 72, 79), (7, 68, 16,
76, 60, 71, 31, 78, 39, 74, 32, 72, 70, 48, 73), (4, 72, 5, 71, 73, 58, 79, 56, 78, 12, 76, 33, 68, 13, 77), (6, 69, 52, 74,
79, 18, 71, 25, 72, 12, 73, 17, 76, 56, 75), (11, 73, 46, 69, 72, 35, 70, 36, 74, 62, 79, 32, 68, 43, 75), (6, 76, 70, 67,
69, 35, 73, 25, 74, 18, 75, 58, 77, 60, 78), (2, 69, 56, 68, 51, 76, 53, 70, 18, 72, 73, 55, 71, 8, 77), (14, 69, 74, 38, 71,
64, 79, 19, 72, 62, 75, 21, 73, 45, 78), (14, 74, 17, 72, 31, 79, 36, 78, 26, 68, 45, 71, 69, 28, 76), (7, 70, 61, 68, 40,
77, 54, 69, 48, 72, 71, 10, 78, 23, 75), (11, 69, 73, 60, 72, 21, 68, 47, 77, 20, 74, 64, 70, 34, 76), (10, 73, 67, 71, 50,
77, 48, 76, 69, 30, 75, 26, 79, 16, 74), (4, 78, 29, 75, 46, 70, 54, 72, 64, 77, 69, 66, 68, 37, 79), (23, 68, 58, 78, 41,
70, 56, 73, 64, 76, 40, 69, 51, 75, 74), (2, 68, 19, 73, 13, 72, 6, 74, 77, 44, 76, 58, 71, 27, 70), (6, 68, 11, 77, 15, 75,
36, 72, 43, 79, 78, 54, 74, 26, 73), (1, 72, 59, 71, 65, 75, 38, 68, 73, 47, 78, 17, 70, 21, 77), (5, 69, 70, 47, 74, 66, 76,
65, 78, 49, 75, 14, 71, 15, 79), (1, 71, 47, 72, 55, 74, 78, 70, 45, 77, 31, 75, 68, 4, 76), (3, 68, 55, 76, 38, 79, 33, 72,
46, 77, 73, 53, 71, 35, 78), (6, 70, 13, 75, 48, 78, 30, 68, 69, 15, 76, 27, 79, 7, 77), (5, 75, 37, 78, 64, 68, 36, 73, 65,
70, 12, 71, 21, 76, 77), (11, 71, 75, 47, 69, 37, 77, 27, 72, 65, 79, 66, 73, 24, 78), (21, 74, 60, 69, 44, 75, 76, 39, 70,
32, 77, 66, 71, 48, 79), (13, 69, 31, 76, 59, 70, 40, 75, 16, 73, 49, 79, 68, 63, 74), (9, 74, 49, 69, 62, 68, 50, 78, 13,
71, 30, 76, 79, 41, 75), (2, 74, 31, 73, 5, 76, 62, 77, 12, 68, 46, 71, 79, 67, 78), (21, 69, 32, 76, 22, 74, 44, 73, 37, 71,
57, 75, 45, 72, 78), (1, 70, 31, 68, 76, 57, 74, 41, 72, 66, 75, 39, 73, 61, 79), (9, 69, 53, 68, 28, 73, 74, 11, 79, 40, 72,
51, 77, 25, 78), (2, 71, 4, 70, 55, 79, 3, 72, 49, 77, 53, 75, 78, 73, 76), (4, 74, 70, 43, 73, 34, 69, 7, 76, 36, 71, 41, 68,
17, 75), (1, 69, 79, 44, 68, 77, 39, 72, 61, 76, 71, 3, 73, 15, 78), (9, 73, 22, 71, 40, 74, 35, 76, 37, 70, 42, 69, 43, 78,
77), (1, 68, 49, 70, 20, 72, 2, 79, 77, 57, 73, 42, 78, 55, 75), (6, 71, 68, 67, 75, 35, 77, 23, 72, 58, 74, 27, 69, 8, 79),
(12, 69, 57, 70, 29, 68, 42, 77, 52, 75, 24, 76, 78, 53, 79), (10, 72, 50, 75, 33, 77, 22, 68, 60, 79, 24, 74, 71, 63, 76),
(8, 72, 37, 74, 30, 77, 17, 71, 62, 73, 23, 70, 79, 22, 75), (18, 68, 35, 79, 51, 70, 26, 77, 75, 19, 74, 29, 73, 63, 78),
(3, 74, 68, 39, 79, 23, 71, 44, 72, 52, 70, 58, 69, 19, 76), (15, 70, 68, 20, 78, 57, 79, 28, 75, 64, 69, 24, 77, 65, 74),
(34, 71, 77, 41, 76, 52, 68, 59, 74, 53, 72, 63, 69, 45, 79), (10, 68, 54, 73, 18, 76, 29, 71, 43, 74, 46, 78, 61, 75, 69),
(4, 69, 36, 77, 14, 68, 24, 71, 28, 74, 8, 76, 25, 70, 73), (8, 68, 15, 72, 77, 59, 78, 33, 70, 60, 75, 12, 74, 51, 73), (2,
73, 41, 69, 16, 78, 71, 56, 72, 11, 70, 5, 68, 25, 75), (3, 70, 10, 75, 54, 71, 33, 69, 29, 79, 13, 76, 72, 16, 77), (16, 70,
44, 78, 69, 18, 77, 67, 74, 50, 79, 30, 72, 26, 71)}
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(15, 77, 89) {(3, 79, 68, 81, 26, 85, 75, 84, 12, 78, 5, 86, 87, 16, 80), (9, 82, 67, 81, 63, 89, 74, 83, 21, 79, 10, 88, 32, 78, 86),
(15, 79, 80, 73, 84, 60, 81, 34, 83, 55, 88, 69, 78, 54, 86), (1, 82, 28, 83, 52, 79, 46, 84, 3, 81, 5, 80, 33, 85, 88), (25,
86, 53, 80, 51, 85, 87, 75, 78, 37, 81, 29, 84, 34, 88), (25, 78, 35, 87, 29, 83, 53, 85, 50, 88, 51, 81, 47, 86, 89), (2,
83, 73, 86, 74, 81, 65, 85, 37, 84, 79, 4, 82, 57, 88), (4, 84, 19, 86, 66, 89, 83, 5, 88, 56, 80, 27, 87, 52, 85), (2, 81,
62, 86, 58, 88, 6, 84, 24, 85, 36, 83, 80, 29, 82), (3, 86, 30, 80, 24, 88, 31, 78, 17, 79, 33, 84, 85, 47, 89), (2, 84, 53,
81, 82, 54, 89, 40, 83, 46, 88, 65, 79, 30, 87), (10, 81, 30, 82, 58, 83, 86, 50, 78, 74, 87, 66, 79, 59, 89), (6, 81, 66,
83, 33, 86, 64, 79, 38, 78, 65, 82, 84, 68, 85), (24, 79, 36, 84, 31, 86, 85, 69, 81, 41, 78, 34, 89, 57, 87), (4, 87, 34,
85, 15, 88, 36, 82, 18, 78, 84, 48, 79, 42, 89), (14, 79, 29, 78, 26, 82, 87, 76, 85, 71, 89, 19, 83, 54, 88), (6, 79, 73,
87, 7, 89, 82, 32, 81, 15, 78, 11, 85, 40, 86), (4, 81, 25, 82, 47, 88, 87, 5, 79, 16, 89, 6, 80, 64, 83), (21, 82, 63, 79,
22, 78, 47, 80, 50, 84, 89, 55, 86, 26, 88), (38, 80, 39, 85, 58, 81, 87, 55, 84, 49, 83, 42, 86, 76, 88), (8, 82, 55, 81,
80, 52, 89, 31, 83, 32, 86, 11, 79, 43, 85), (12, 83, 50, 79, 82, 77, 78, 30, 89, 67, 88, 17, 81, 43, 87), (9, 84, 56, 85,
19, 81, 79, 58, 78, 71, 86, 48, 83, 37, 88), (20, 84, 61, 83, 78, 43, 82, 34, 79, 41, 87, 45, 88, 30, 85), (1, 78, 6, 83, 13,
81, 11, 80, 84, 25, 79, 32, 87, 48, 85), (7, 80, 32, 84, 70, 88, 23, 83, 24, 89, 51, 79, 85, 63, 86), (6, 82, 27, 83, 77, 80,
37, 89, 21, 81, 88, 49, 85, 28, 87), (18, 84, 47, 83, 85, 31, 82, 69, 79, 56, 78, 67, 87, 68, 88), (4, 86, 84, 38, 89, 75,
81, 39, 79, 40, 80, 15, 82, 60, 88), (43, 84, 58, 87, 63, 78, 49, 86, 57, 80, 85, 70, 79, 60, 89), (13, 82, 85, 64, 81, 52,
86, 77, 79, 47, 87, 42, 84, 74, 88), (2, 85, 57, 81, 7, 82, 80, 20, 87, 8, 83, 56, 86, 28, 89), (14, 80, 42, 85, 35, 83, 30,
84, 87, 50, 82, 73, 78, 60, 86), (12, 79, 31, 87, 62, 88, 66, 84, 39, 82, 23, 86, 13, 80, 89), (7, 78, 42, 81, 20, 83, 67,
86, 37, 82, 14, 89, 87, 77, 84), (9, 83, 41, 82, 86, 24, 78, 19, 79, 53, 87, 33, 89, 23, 85), (13, 84, 81, 56, 87, 15, 83,
59, 80, 74, 79, 27, 88, 29, 85), (5, 84, 27, 78, 57, 79, 86, 20, 88, 16, 85, 12, 80, 22, 89), (27, 85, 59, 78, 28, 80, 35,
88, 41, 84, 40, 82, 46, 81, 86), (8, 78, 23, 87, 10, 84, 17, 85, 21, 86, 88, 64, 82, 56, 89), (1, 80, 58, 89, 49, 87, 3, 85,
78, 66, 82, 17, 86, 22, 84), (8, 86, 39, 87, 37, 79, 78, 68, 89, 61, 82, 22, 85, 73, 88), (9, 80, 36, 81, 50, 89, 15, 84, 44,
78, 88, 11, 82, 71, 87), (5, 82, 42, 88, 83, 72, 87, 26, 84, 67, 79, 13, 78, 46, 85), (10, 85, 44, 79, 28, 84, 51, 83, 11,
89, 81, 71, 80, 68, 86), (18, 81, 76, 84, 72, 89, 48, 82, 75, 86, 80, 61, 87, 22, 83), (8, 79, 45, 84, 54, 80, 34, 86, 16,
78, 89, 18, 85, 61, 81), (16, 81, 45, 86, 51, 78, 39, 83, 63, 88, 80, 17, 89, 53, 82), (4, 78, 45, 89, 9, 81, 59, 88, 7, 79,
87, 14, 84, 63, 80), (12, 81, 31, 80, 87, 65, 89, 44, 88, 53, 78, 21, 84, 69, 86), (7, 83, 75, 88, 48, 81, 70, 82, 20, 79, 9,
78, 80, 67, 85), (8, 80, 45, 83, 79, 18, 87, 64, 89, 39, 88, 28, 81, 23, 84), (25, 80, 55, 85, 89, 62, 83, 57, 84, 52, 82,
35, 86, 36, 87), (14, 81, 77, 89, 76, 78, 87, 19, 88, 61, 79, 23, 80, 65, 83), (11, 84, 35, 89, 70, 78, 52, 88, 82, 72, 80,
18, 86, 59, 87), (10, 80, 76, 83, 81, 38, 85, 60, 87, 46, 86, 43, 88, 33, 82), (16, 83, 70, 86, 41, 89, 26, 80, 66, 85, 72,
88, 79, 62, 84), (13, 87, 70, 80, 43, 83, 84, 59, 82, 74, 85, 14, 78, 20, 89), (1, 87, 83, 68, 82, 44, 81, 54, 79, 75, 80,
62, 78, 36, 89), (10, 78, 72, 81, 22, 88, 89, 46, 80, 21, 87, 54, 85, 25, 83), (2, 79, 35, 81, 78, 3, 88, 71, 83, 60, 80, 19,
82, 38, 86), (1, 81, 85, 62, 82, 76, 79, 71, 84, 64, 78, 2, 80, 69, 83), (1, 79, 89, 73, 81, 40, 88, 12, 82, 51, 87, 38, 83,
44, 86), (33, 78, 55, 79, 72, 86, 65, 84, 88, 77, 85, 45, 82, 49, 81), (24, 81, 27, 89, 69, 87, 40, 78, 48, 80, 49, 79, 26,
83, 82), (3, 82, 78, 61, 86, 29, 89, 32, 85, 41, 80, 44, 87, 17, 83)}
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