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Abstract

This thesis investigates the potential of energy harvesting through fluid-elastic galloping

through studying the energy transfer between the body and the fluid.

This was carried out by numerically integrating a previously derived Quasi-Steady State

(QSS), and via Direct Numerical Simulations (DNS) of the fluid-structure system.

A review of the literature identifies a need for new scaling parameters to better represent

fluid-elastic galloping. New governing non-dimensional parameters for galloping namely,

the combined mass-stiffness, Π1 and the combined mass-damping Π2 are formulated using

natural time scales of the linearised QSS model. These new dimensionless groups provide

a far better collapse of the predicted power output from the galloping of a square cross

section in comparison with the classical parameters, regardless of whether the data comes

from the QSS or DNS models. These time scales also provide a linear estimate of the

frequency of the system, which is shown to match the frequency measured during the DNS

simulations while Π1 > 10.

A comparison between the quasi-steady state and direct numerical simulation data,

reveals that the quasi-steady state model provides a good approximation of the power

output at high Π1. However, the QSS approximation deviates from the DNS predictions at

low values of Π1 because the QSS model does not model vortex shedding which becomes

more significant as Π1 decreases. However, the QSS model provides a reasonable prediction

of the value of Π2 at which maximum power is produced. Both the error in predicted

maximum power between the QSS and the DNS models and the relative power of the

vortex shedding are quantified and scale approximately to 1/
√

Π1 .

A semi-empirical search for an optimal body cross section for the extraction of energy

is also presented. A hybrid rectangular/triangular body is used, to deliberately test the

hypothesis that inhibition of the reattachment of the shear layers can promote large forces,
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velocities, and therefore energy extraction. It is shown that two features control the energy

extraction: the proximity of the shear layer to the body; the velocity of the flow in the

shear layers. Both can be controlled by the amount of tapering of the afterbody, and a

balance needs to be found between the two to optimize the geometry for energy extraction.

Comparison of results from the QSS and DNS models shows similar trends of maximum

power being increased as the body becomes more tapered. However, the difference between

the QSS and DNS models increases exponentially as the tapering is increased. Inspection

of time averaged flow-field data show that the flow in the true fluid-structure situation

is not quasi-static, violating the primary assumption of the QSS model. However, the

QSS model still provides a reasonable initial qualitative approximation to design galloping

energy harvesting systems.
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Nomenclature

Symbol Description

a1, a3, a5, a7 Coefficients of the polynomial to determine Cy

A Displacement amplitude

A = DL Frontal area of the body

c Damping constant

c∗ = cD/mU Non-dimensionalised damping factor

CL = FL/0.5ρU2DL Lift force coefficient

CD = FD/0.5ρU2DL Drag force coefficient

Cy = Fy/0.5ρU2DL Transverse force coefficient

D Characteristic length (side length) of the cross section of the

body

El Subscript denoting integration over a single element

f =
√

k/m/2π Natural frequency of the system

fg Frequency of galloping

fs Frequency of vortex shedding

fQSS Frequency predicted by the QSS model

flin Linear frequency

fDNS Frequency predicted by DNS simulations

FL Instantaneous lift force

FD Instantaneous drag force

Fy Instantaneous transverse force

F0 Amplitude of the oscillatory force due to vortex shedding

Continued on next page →
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← Continued from previous page

Symbol Description

F Fourier transform of velocity

g Index of the data points inside each element in the ξ-direction

h Variable indicative of resolution of macro-element mesh

i Index of the data point being considered during construction of

the Lagrange polynomial in the ξ-direction

J Jacobian operator for coordinate transformation

j Data point index in computational space in η-direction

k Spring constant

m Mass of the body

ma Added mass

m∗ = m/ρD2L Mass ratio

N The non-linear convection term in the NavierStokes equations,

(V · ∇)V

n Timestep count to the current timestep

n Unit vector in the direction normal to a boundary

Pd Power dissipated due to mechanical damping

Pin = ρU3D/2 Energy flux of the approaching flow

Pm Dimensionless mean power

Pt Power transferred to the body by the fluid

Ps Surface pressure

Ptrial Trial solution for pressure

q Data point index in computational space in the ξ-direction

R Residual formed when substituting trial solution into governing

equations

Re Reynolds number

s Data point index in computational space in the η-direction

t Time

U Freestream velocity

Continued on next page →
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← Continued from previous page

Symbol Description

Ui Induced velocity

U∗ = U/fD Reduced velocity

vbody Instantaneous transverse velocity of the body

Vm Velocity magnitude of the flow

V Non-dimensional velocity vector, u/U

Vtrial Trial solution for velocity

V∗ Intermediate normalised velocity vector at the end of the ad-

vection sub-step

V∗∗ Intermediate normalised velocity vector at the end of the pres-

sure sub-step

Vbody Transverse velocity of the body, ẏ/U

V
(n+1)†
body First approximation of Vbody at the end of the timestep during

the convection substep of the elastically mounted body.

V
(n+1)‡
body Second approximation of Vbody at the end of the timestep during

the convection substep of the elastically mounted body.

V
(n+1)′
body Approximation of Vbody at the end of the timestep after relax-

ation during the elastically-mounted cylinder convection sub-

step

V(n) Normalised velocity vector at timestep n

V(n+1) Normalised velocity vector at timestep n + 1

V̂∗ Vector of V∗ at the node points

∆Vbody Change in Vbody over one timestep

∆V
†
body First approximation of change in Vbody over one timestep during

the elastically-mounted body convection substep

x Cartesian coordinate in the freestream flow direction, positive

downstream

y Cartesian coordinate transverse to the flow direction and span

direction

Continued on next page →

v



← Continued from previous page

Symbol Description

ybody Transverse cylinder displacement

y
(n+1)†
body A first approximation to ybody at the end of the timestep during

the elastically-mounted body convection substep

y, ẏ, ÿ Transverse displacement, velocity and acceleration of the

body/cylinder

Y = y/D Non-dimensional transverse displacement

Ẏ = m∗ẏ/a1U Non-dimensional transverse velocity

Ÿ = m∗2Dÿ/a21U
2 Non-dimensional transverse acceleration

∆τ The non-dimensional timestep

ǫ Under-relaxation parameter used during the elastically-

mounted body convection substep

η Coordinate axis in computational space

ξ Coordinate axis in computational space

Γ1 = 4π2m∗2/U∗2a21 First dimensionless group arising from linearised,

non-dimensionalised equation of motion

Γ2 = c∗m∗/a1 Second dimensionless group arising from linearised,

non-dimensionalised equation of motion

λ Inverse time scale of a galloping dominated flow

λ1,2 Eigenvalues of linearised equation of motion

ωn = 2πf Natural angular frequency of the system

ωs Vortex shedding angular frequency

Π1 = 4π2m∗2/U∗2 Combined mass-stiffness parameter

Π2 = c∗m∗ Combined mass-damping parameter

ρ Fluid density

ϕ Strain rate tensor

θ = tan−1 (ẏ/U) Instantaneous angle of incidence (angle of attack)

ζ = c/2mωn Damping ratio
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Chapter 1

Preliminary remarks

Fluid-structure interactions occur in many situations in our everyday lives. From the

blood flow through our veins to the flight of an A-380 airbus, fluid structure interactions

have a significant influence. Vibrations are an important phenomenon which have either a

desirable or otherwise effect, in mechanical systems, both in nature and engineering.

Flow induced vibrations are one type of the significant phenomena occurring as a result

of fluid structure interactions. In this broader class of flow induced vibrations, fluid-elastic

galloping is one commonly visible phenomenon in nature. Fluid-elastic galloping in partic-

ular has been widely researched during the past century due to the adverse effects caused

on civil structures where vibrations created through fluid-elastic galloping leading to failure

either through high peak loads or the cumulative effect of fatigue. One such classic exam-

ple used in the engineering field is the collapse of Tacoma Narrows bridge on November

7th 1940. Another example is the vibrations created by galloping on transmission lines

due to ice deposition (Parkinson & Smith, 1964). Due to such adverse effects caused by

fluid-elastic galloping, extensive research has been conducted to understand its mechanism

in order to control and suppress these vibrations.

With detrimental environmental impact of fossil fuel, the search for alternative energy

sources with minimal environmental impact has become an important area of research in the

modern world, and researchers conducting studies on flow induced vibrations are moving

towards investigating the possibility of harvesting energy from these vibrations; hence,

finding mechanisms to excite and sustain these vibrations is paramount (Barrero-Gil et al.,
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2010).

One such research group at the University of Michigan has conducted extensive research

on energy extraction through Vortex Induced Vibrations (VIV) (Bernitsas et al., 2008, 2009;

Raghavan & Bernitsas, 2011; Lee & Bernitsas, 2011). However, VIV is a resonance type of

phenomenon where the vibrations occur when the vortex shedding frequency aligns with

the natural frequency of the system. This phenomenon is known as “lock-in”.

In contrast, fluid-elastic galloping is a “velocity dependent and damping controlled ”

mechanism (Päıdoussis et al., 2010); thus, it operates over a wide range of natural frequen-

cies and flow speeds. More in-depth discussion on the mechanism of fluid-elastic galloping

is presented in section 2. The fact that galloping operates over a wide range of natural

frequencies provides fluid-elastic galloping an advantage over VIV as a mode of energy

extraction.

Although extensive research has been conducted in the area of fluid-elastic galloping,

the area of energy harvesting through fluid-elastic galloping is quite new where the concept

was proposed very recently by Barrero-Gil et al. (2010). Thus, more fundamental work is

needed in this area, particularly on the energy transfer between the fluid and the body.

To bridge the gap of existing knowledge the following approach has been employed in

the work presented in this thesis. A review of literature is presented in chapter 2 where the

mechanism of galloping and the theoretical model which describes galloping is extensively

discussed with reference of existing literature; also the gaps of current knowledge on energy

transfer during galloping are identified. Based on these identifications of the gaps of the

current knowledge, the objectives are defined.

The study is presented in two phases. Phase 1 is focused on understanding the governing

mechanical parameters followed by phase 2 where the possibility of achieving a higher power

output though inhibition of shear layer reattachment is investigated.

The tools employed to carry out this study are discussed in chapter 3, where the method-

ology and validation are presented. Here, the quasi-steady state model is introduced and

the method of numerical integration in order to solve this model is discussed followed by

the presentation of equations which are used to calculate average power. Direct Numerical

Simulations(DNS) at low Reynolds numbers are carried out for both stationary and oscil-

lating bluff bodies. The models and numerical algorithms employed to carry out the DNS

3



1. PRELIMINARY REMARKS

are presented, followed by a convergence and validation study.

An inadequacy of the traditional scaling parameters used to describe galloping is iden-

tified in the literature review; a new set of non-dimensionalised scaling parameters namely

Π1 and Π2 is formulated from the linearised Quasi-Steady State (QSS) model and presented

in chapter 4. These parameters are then compared with the existing scaling parameters.

The influence of these parameters on mean power is then discussed in Π1 and Π2 space

followed by a comparison between the QSS and DNS data.

The influence of Π1 and Π2 on fluid-elastic galloping is further investigated in this

chapter through a study on the influence of the new scaling parameters on the frequency

response. An expression for the galloping frequency is formulated based on Π1 and Π2

using the eigenvalues of the linearized system. The frequency data obtained from this

model are compared with data obtained using other approaches. The limitations of this

linear frequency model are identified and the region where this model can be applied are

identified and quantified.

The results and discussion on the work carried out on phase 2 are presented in chapter

5. As hypothesised, inhibition of the shear layer re-attachment could lead to higher power

output based on the data presented in Luo et al. (1994); the testing of this hypothesis is

carried out here.

The shear layer re-attachment is inhibited systematically by tapering away the top and

bottom trailing edges of the square cross section. The static body results, QSS predictions,

the predictions from the fluid-structure interaction simulations and the underpinning fluid-

mechanics are discussed. This chapter concludes with presentation of some fundamental

design considerations which will be used to obtain an efficient energy harvesting system

through control of the shear layer reattachment.

Finally, the conclusions obtained from this study are presented in chapter 6.
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Chapter 2

A review of the literature

2.1 Fluid-elastic galloping

Fluid-elastic galloping is one of the common observable flow-induced vibration modes of a

slender body. This phenomenon is most common in civil structures, such as buildings and

iced-transmission lines. The term “aeroelastic galloping” is commonly used as the body

is driven by wind. However, this mechanism can occur on a slender body immersed in a

fluid, provided that the conditions to sustain the galloping mechanism are satisfied. This

work is based on a general Newtonian flow, thus the term “ fluid-elastic galloping” is used

throughout this thesis.

2.1.1 Excitation of galloping

Päıdoussis et al. (2010) describe galloping as a “velocity dependent and damping controlled”

phenomenon. Therefore, in order for a body to gallop, an initial excitation has to be given

to that body. While this excitation is mainly caused by the force created from vortex

shedding, other fluid instabilities may contribute to this initial excitation. When a bluff

body moves along the transverse direction of a fluid flow, it generates a force along the

transverse direction. This force, also termed as the induced lift, is a result of the fluid flow

and the motion of the body. When this body is attached to a flexible system (i.e. a system

that can be modelled by a spring, mass and damper), the induced lift becomes the forcing

component of the system. Galloping is sustained if the induced lift is periodic and in phase
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2. A REVIEW OF THE LITERATURE

with the motion of the body.

Figure 2.1: Induced angle of attack generated on a square prism due to the resultant of free-

stream velocity of the fluid U and transverse velocity ẏ of the body. Velocity components

presented here are relative to the cross section (assuming the body moves downwards).

A square cross section can be used as an example to further explain the galloping

phenomenon. Figure 2.1 illustrates the motion of the body at a given instant. The induced

angle of attack is formed on the square cross section as a result of the free stream velocity

vector U and the transverse velocity vector of the body ẏ. An angle of attack implies

that there will be a non-zero lift force on the body. This transverse force also known as

the induced lift generates in the same direction as the transverse velocity of the body as

illustrated in figure 2.1 in a body under the influence of galloping. Though the illustration

is a square prism, this mechanism can also be observed on any body that can have an angle

of attack. The sign convention in this figure (and generally used in this scope of research)

states that downward direction is positive. Further explanation as to how the transverse

forcing is generated is provided in section 2.1.3

2.1.2 Quasi-steady state theory

The vibrations experienced in iced electric transmission lines was the key phenomenon

which compelled researchers into studying fluid-elastic galloping. Some of the earlier work

by Glauert (1919) and Den Hartog (1956) led to the pioneering study on galloping by

Parkinson & Smith (1964) which produced a mathematical model for a system under the

influence of fluid-elastic galloping. A non-linear oscillator model was developed by Parkin-
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2.1.2. QUASI-STEADY STATE THEORY

son & Smith (1964) to predict the response of the system. Since then, this model has been

widely used in almost all subsequent studies on galloping. Essentially, the model assumes

the flow is quasi-steady. This means that the instantaneous induced lift force of the oscil-

lating body is equal to that of the lift force generated by the same body when static at the

same induced angle of attack. For the quasi-steady assumption to be valid, the conditions

below have to be satisfied.

• The velocity of the body does not change rapidly

• There is no interaction between vortex shedding and galloping

Both of these conditions imply that the vortex shedding frequency must be much higher

than the galloping frequency.

The oscillator equation was solved using the Krylov and Bogoliubov method (Parkinson

& Smith, 1964). The results obtained from experiments, carried out at Re = 22000 and

a mass ratio (m∗) around 1164 had a good agreement with the theoretical data which is

shown in figure 2.2. The details of this quasi-steady model are provided in section 2.1.2.

Figure 2.2 shows the comparison of the scaled amplitude of oscillation between the

mathematical model and the experimental data of Parkinson & Smith (1964). The data

shows a good agreement between the model and the experiments.

Quasi-steady state oscillator model

A simple transversely oscillating system with external driving force could be modelled with

a spring mass damper system which can be expressed as,

mÿ + cẏ + ky = Q, (2.1)

where the forcing term Q is the external force which drives the system.

Thus, the quasi-steady equation of motion of a transversely oscillating body under

galloping, with linear springs and damping can be expressed by replacing the forcing term

with the induced force (explained in section 2.1.2),

mÿ + cẏ + ky = Fy, (2.2)

7



2. A REVIEW OF THE LITERATURE

nA
2β Ȳs

nA
2β
U

Figure 2.2: “Collapsed amplitude-velocity characteristic. Theory: stable limit

cycle, unstable limit cycle. Experiment (×) β = .00107, (◦) β = .00196, (△)β =

.00364,(▽) β = .00372, +1 β = .0012, +2 β = .0032 Reynolds numbers 4, 000 − 20, 000 ”.

Figure extracted from Parkinson & Smith (1964). nA
2β Ȳs is the dimensionless displacement

amplitude parameter and nA
2β U is the reduced velocity.β is the damping ratio and n = 1

m∗
.

The experimental data shows a good agreement with the theoretical model.
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2.1.2. QUASI-STEADY STATE THEORY

where the forcing term Fy is given by

Fy =
1

2
ρU2ACy. (2.3)

As explained in section 2.1.2, the quasi-steady assumption uses the stationary Cy data

for varying angles of attack as inputs to the oscillator equation. Parkinson & Smith (1964)

used a 7th order curve fit (retaining only the odd powers) to interpolate the stationary

Cy data as a function of the angle of attack. The order of the polynomial can be chosen

arbitrarily depending on the study. For example Barrero-Gil et al. (2009, 2010) used a

3rd order polynomial in order to simplify the analytical model. However, Ng et al. (2005)

pointed out that a 7th order polynomial is sufficient as higher order polynomials do not

provide a significantly better result. When using a 7th order polynomial, the lift coefficient

is expressed as a function of the angle of attack θ in the model as,

Cy(θ) = a1

(
ẏ

U

)
− a3

(
ẏ

U

)3

+ a5

(
ẏ

U

)5

− a7

(
ẏ

U

)7

. (2.4)

By substituting this forcing function into the oscillator equation (Eq:2.2) the quasi-

steady state (QSS) model can be obtained as

mÿ+cẏ+ky=
1

2
ρU2A

(
a1

(
ẏ

U

)
−a3

(
ẏ

U

)3

+a5

(
ẏ

U

)5

−a7
(
ẏ

U

)7
)
. (2.5)

The current study is focused on the low Re region, and it is an established fact that

in this region the vortex shedding will be well-correlated along the span and therefore will

provide a significant forcing. Joly et al. (2012) introduced an additional sinusoidal forcing

function to the model in order to integrate this forcing by vortex shedding. By the addition

of this forcing Joly et al. (2012) managed to obtain accurate predictions of the displacement

amplitude even at low mass ratios, where the galloping is significantly suppressed by the

vortex shedding to the point that it is no longer detectable. However, the strength or

the amplitude of this sinusoidal forcing needed to be tuned in an ad hoc manner, and the

relationship between this forcing and the other system parameters was not clear. Thus in

the current study this forcing is not used.

Presence of hysteresis

Parkinson & Smith (1964) observed a hysteresis region when the displacement amplitude
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was plotted as a function of the reduced velocity. Essentially two amplitudes were observed

for the same reduced velocity depending on the initial condition. This fact is quite vital

for energy harvesting as two values of energy levels can be present for the same reduced

velocity. Thus, care is required in considering the initial conditions of the system to gain a

higher power output.

Although hysteresis was observed in the amplitude data of Parkinson & Smith (1964),

the studies carried out by Barrero-Gil et al. (2009) and Joly et al. (2012) at much lower

Reynolds numbers (159 ≤ Re ≤ 200), did not show any hysteresis. Luo et al. (2003)

concluded that hysteresis was present due to the presence of an inflection point in the Cy

curve which was only observed at high Reynolds numbers (Parkinson & Smith (1964) data)

and was not present at lower Reynolds numbers. It was further explained by Luo et al.

(2003) that the cause of this inflection point was the intermittent reattachment of the shear

layer at certain angles that occurred at high Reynolds numbers.

Figure 2.3 shows the vorticity contours of a square cross section obtained at various

points of the vortex shedding cycle, at Re = 1000 at θ = 2◦ obtained from Luo et al.

(2003)using the diffusion-vortex method and vortex-in-cell method. The points 7 and 11

show the intermittent shear layer reattachment which causes the hysteresis in the Cy vs. θ

curve at high Reynolds numbers.

2.1.3 Induced force and the shear layers

The quasi-steady model has already been validated and re-validated by many studies

(Parkinson & Smith, 1964; Barrero-Gil et al., 2009; Luo et al., 2003) and proven to model

galloping. Since this model essentially assumes that the system is quasi-steady, the mean

flow-field data of static body simulations at various angles of incidence can be used to

analyse the behaviour of the instantaneous flow field of a galloping system at the same

instantaneous induced angle.

Päıdoussis et al. (2010); Parkinson & Smith (1964); Barrero-Gil et al. (2010) and many

other published studies state that a system which sustains galloping should satisfy the

10
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Figure 2.3: Vorticity contours of the square cross section at key points of time trace of Cy

for Re = 1000, θ = 2◦ extracted from Luo et al. (2003). The intermittent shear level is

visible in points 7 and 11.
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Figure 2.4: Illustration of the top and bottom shear layers.

(a) (b) (c)

Figure 2.5: Shear strain rate magnitude contours of time averaged flow field on a stationary

square section at Re = 200 at different incidence angles. (a) 2◦ (Cy increases),(b) 4◦ (Cy

peaks) and (c) 6◦ (Cy decreases). The bottom shear layer comes closer to the bottom wall

and reattaches as the angle of incidence increases.

condition that ∂Cy/∂θ > 0, i.e, an upward motion from the equilibrium position should

induce an upward lift force. The mean induced lift (Cy) occurs due to the unbalanced

pressure distribution on the top and bottom sides of the afterbody of the cross section

(refer figure 2.4) when a small transverse velocity is given (Parkinson, 1989). This pressure

difference of the afterbody is a result of the relative proximity of the top and bottom shear

layers (illustrated in figure 2.4) to the respective sides of the body.
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Contour plots of the shear strain rate magnitude which is directly proportional to shear

stress, for a static square cross section at various incidence angles as shown in figure 2.5

clearly shows the behaviour of the shear layers at either sides of the body. Data are

presented for three key incidence angles of 2◦, 4◦ and 6◦, for Re = 200 and taken from

DNS simulations using the spectral element method. In comparison with figure 4.1 these

points can be identified as being in regions where Cy initially increasing, Cy is maximum

and Cy decreases. Note that these data and plots are obtained from the current study for

the purpose of providing a better illustration.

As the angle of incidence (θ) increases clockwise from 2◦ to 6◦, it can be clearly observed

in figure 2.5 that the bottom shear layer comes closer to the bottom wall of the body

compared to the top shear layer. The shear layer nearer to the body creates higher suction

compared to the shear layer at the opposite side, as the higher velocity in the shear layer

implies a lower pressure, from a simple Bernoulli-type argument. This pressure imbalance

between the top and bottom sides of the body creates a downward force which with the sign

convention introduced in figure 2.1 is positive. As the angle is further increased to θ = 4◦,

the bottom shear layer comes even closer and therefore the pressure difference becomes

greater leading to a higher Cy. The induced lift force Cy, becomes maximum when the

shear layer near to the wall just reattaches at the trailing edge. As θ is further increased at

θ = 4◦ (figure 2.5 (b)), the recirculation region formed by the reattachment of the bottom

shear layer shrinks in size resulting in a reduction of the velocity near the wall, and therefore

an increase in pressure. This implies a reduction of the pressure imbalance between the

top and bottom surface leading to the reduction in Cy. This theory has been discussed

in Parkinson (1989). The variation of Cy vs θ is presented in figure 4.1. As the body is

connected to an oscillatory system (discussed in section 2.1.1), this shear layer behaviour

also harmonizes with the cyclic behaviour of the system providing the driving force to the

system so that the motion of galloping is sustained. Even though both galloping and VIV

depend on the behavior of the shear layers in either side of the body, Galloping depends

on the proximity of the shear layers to body where as VIV depends on the shedding of

the vortices. As galloping depends on the force generated as a result of proximity of the

shear layers to the body, galloping is dependent on the motion of the body where as VIV

is dependent on the vortex shedding. Hence, VIV is dependent on the vortex shedding

13
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frequency and “lock-in” while galloping is present for larger frequencies.

2.1.4 Governing parameters of galloping

From the published literature, it is observed from the earlier works such as Parkinson &

Brooks (1961); Luo et al. (1994) and more recent studies such as Luo et al. (2003); Barrero-

Gil et al. (2010); Joly et al. (2012) that classical VIV parameters have been incorporated to

describe galloping. These parameters are the reduced velocity U∗ which is the velocity of

the flow normalised by the natural frequency of the system and ζ which is the damping ratio

based on the linear system in a vacuum. Both these parameters contain a natural structural

frequency component. As VIV is a resonant type of phenomenon these parameters are

suitable for VIV. However, as galloping is not a resonance-type phenomenon driven by

the natural frequency, but a velocity driven phenomenon, these normalisations might not

be suitable for galloping. This can be clearly observed in Barrero-Gil et al. (2010). In

this study, which is focused on energy harvesting, the power extracted by the system

presented using these current parameters does not collapse well. Therefore, it is necessary

to formulate new parameters which effectively describe galloping, particularly the energy

transfer between the fluid and the body as it is the focus of this study.

2.1.5 Frequency response

It is clear that the cyclic motion of the shear layer will harmonize with the mechanical

system of a body under the influence of galloping. Therefore, the frequency response

should be close to the natural frequency of the system ωn (Päıdoussis et al., 2010). This is

significantly different from the VIV mechanism, where the primary frequency comes from

the periodic forcing of the vortex shedding. Hence, in the QSS model the natural frequency

of the system can be identified as the frequency of oscillation. However, it should be noted

that this is valid in the regimes where the conditions discussed in section 2.1.2 are satisfied.

The experimental studies carried by Bouclin (1977) concluded at high reduced velocities

with large inertia (where the natural frequency is very low), the motion of the body controls

the frequency of the system rather than the vortex shedding. The structural damping has

no effect provided that it is small. This study also concluded that as the inertia and the

reduced velocity get lower, there is some interaction between vortex shedding and galloping.
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When this occurs the frequency is mainly governed by vortex shedding.

2.1.6 Fluid mechanics governing the galloping response

As discussed in subsection 2.1.3 the driving force of a galloping system is the asymmetrical

placement of the shear layers at either sides of the body. As a consequence, it is clear

that a significant afterbody is needed for the shear layer interaction to sustain galloping.

Parkinson (1974, 1989) and Bearman et al. (1987) have discussed well the importance of

the length and the shape of the body for galloping in their reviews. It is also highlighted

in Parkinson (1974) that the most important physical parameters for galloping are the size

relative to the characteristic height and the shape of the afterbody. Manipulating the shape

of the afterbody and thereby manipulating the shear layer interactions with the body, gives

the ability to control the galloping response.

Blevins (1990) provided a good comparison of the shapes which are prone to galloping

based on the work by Parkinson & Brooks (1961), Nakamura & Mizota (1975) and Naka-

mura & Tomonari (1977). The reproduction of Blevins’s data can be found in Päıdoussis

et al. (2010) and presented in figure 2.6. Here the induced angle is represented by α and

the transverse force coefficient is represented by Cfy. In order for galloping to sustain, the

direction of both these quantities should be same and thus have to satisfy the condition of

∂Cfy

∂α
> 0 (2.6)

Naudascher & Wang (1993), Ruscheweyh et al. (1996), Deniz (1997) and Weaver &

Veljkovic (2005) also provide data on different cross sectional shapes. Alonso et al. (2009)

carried out wind tunnel tests on biconvex and rhomboidal cross sections. This study

concluded that the galloping stability is dependent on the angle of attack. The aspect ratios

where galloping is sustained in these cross sections were identified. Studies were further

carried out by Alonso for elliptical cross sections (Alonso et al., 2010) which concluded

that galloping is Reynolds number dependent for elliptical cross sections. The study of

triangular cross sections carried out by (Alonso et al., 2005) isolated the angles of attack

where galloping is sustained. The regions of stability for galloping at different angles of

attack and the static force coefficients are presented in these studies with regards to the

cross section involved. Luo et al. (1994) carried out an interesting study where the influence
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Figure 2.6: “The transverse force coefficient for various sections in steady smooth or turbu-

lent flow (after Blevins (1990))” obtained from Päıdoussis et al. (2010). Here the induced

angle is represented by α and the transverse force force coefficient is represented by Cfy.

In order for galloping to sustain, the direction of both of these quantities should be same

and thus have to satisfy the condition of
∂Cfy

∂α > 0.
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of the afterbody on galloping was investigated. The sides of a square section was chamfered

gradually delaying the shear layer re-attachment, and two trapezoidal cross sections and

one isosceles triangle was obtained. The Cy vs. θ plots revealed that the maximum value of

Cy increased as the chamfering angle increased (i.e when the cross section was transformed

from a square to a isosceles triangle). Another interesting observation was that the incident

angle where maximum Cy occurred increased as the chamfering angle increased. Inhibition

of the shear layer reattachment leads to higher Cy at higher induced angles which leads to

higher induced velocities.

The power transfer from fluid to the body can be defined as,

Pm =
1

T

∫ T

0
Fy ẏdt, (2.7)

From equation 2.7 it can be seen that power transfer could be increased by increasing

either Fy or ẏ or both. From observations of Luo et al. (1994) it can be seen that inhibition

of shear layer reattachment will lead to higher Fy occurring at higher induced velocities,

which is beneficial for energy harvesting because as shown in equation 2.7, power is a

function of both Fy and the velocity of the body. Kluger et al. (2013) concluded that the

best cross sectional shape for their “vibro-wind” energy harvester was a trapezoidal cross

section. However, this study has not revealed the underpinning fluid mechanics in detail

such as the behaviour of the shear layers which makes an optimum cross section.

While many of these previous studies have investigated the influence of different body

shapes on the galloping response, very few have systematically varied the shape of the

body with the aim of deliberately amplifying the galloping. If galloping is to be used as

an energy harvesting mechanism, finding an optimum body shape which produces large

transverse velocities is desirable.

2.1.7 Galloping as a mechanism of energy harvesting

The focus of fluid-elastic galloping research in the past was on understanding and developing

methods to suppress it, due to the adverse effects on civil structures. However, recently the

focus of research has been redirected to develop mechanisms to excite galloping rather than

suppressing it. This is due to the recent demand for alternative energy sources with minimal

environmental impact. Thus, this demand for alternative energy has lead researchers to
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develop ways of extracting useful energy from flow induced vibrations.

Bernitsas and his group in the University of Michigan have made significant progress on

using VIV as potential candidate for energy extraction. Bernitsas et al. (2008) introduced

the concept of using VIV as a mode of energy extraction. The group have developed

a device called VIVACE converter based on this concept. The work has been further

expanded to focus on various aspects (such as Reynolds number effects, damping effects

etc.) in Bernitsas et al. (2009); Raghavan et al. (2009); Raghavan & Bernitsas (2011); Lee

et al. (2011). This group has studied extensively on the effect of the mechanical parameters,

the Reynolds number effects and the bottom boundary conditions of the VIVACE converter

in order to obtain efficient energy output using VIV as an energy harvesting mechanism.

In contrast, the research carried out investigating the possibility of energy harvesting

using fluid-elastic galloping is quite limited. Barrero-Gil et al. (2010) conducted the pi-

oneering study on energy harvesting using fluid-elastic galloping. The key consideration

investigated in this study was that unlike VIV, fluid-elastic galloping is not dependent on

a synchronisation or a “lock-in” mechanism. Therefore, it can operate on a wide spectrum

of frequencies giving fluid-elastic galloping an advantage over VIV as a mechanism of en-

ergy harvesting. The study incorporated the QSS model where the Krylov and Bogoliubov

method was used to solve the equation. This study used a 3rd order polynomial rather than

a 7th order polynomial for simplification purposes which would have lead to less accurate

quantitative results. However, this initial work showed that galloping can indeed used as a

candidate for energy harvesting .Vicente-Ludlam et al. (2014) quantitatively showed that

there is a link between the optimal electrical load resistance and the flow speed. This

study was built on Barrero-Gil et al. (2010) taking the QSS model as the mode of data

acquisition. Similar to Barrero-Gil et al. (2010) this study also incorporated a low order

3rd order polynomial for the QSS model which again restricted the quantitative accuracy of

the results. Since the work was mainly qualitative, it was identified that the understanding

is primary and therefore step-by-step research has to be conducted in order to properly un-

derstand the link between energy transfer in the galloping mechanism and an experimental

prototype should be developed to test the engineering performance.

Kluger et al. (2013) from Cornell university have produced a prototype called ”Vibro-

wind” energy harvester which essentially uses the galloping mechanism. The mechanism
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used here differ slightly from the traditional transversely oscillating body, where the os-

cillating body is connected with a cantilevered beam. Thus, there is both translational

and rotational motion in the system. It was concluded that the amplitude of the galloping

oscillator which couples the rotational motion with the translational motion was always

less than the amplitude of a body under a pure translational motion. As the present study

is focused on theoretical aspects of the energy transfer, motion of the body is kept purely

translational.

2.1.8 Review summary and statement of objectives

It is clear that more investigations should be carried out on energy transfer of a galloping

system, particularly to develop efficient energy harvesting systems. More fundamental

research is needed to explore the underpinning effects of mechanical and fluid dynamic

parameters influencing the energy transfer of a galloping system to fill the gaps of the

existing knowledge base. Thus, the objectives of the current research, spread over two

phases, are defined as follows.

Phase 1: Understand the governing mechanical parameters of the system

and isolate regions of parameter space where a good power transfer can

be obtained

Päıdoussis et al. (2010) describes galloping as a “velocity dependent damping controlled

phenomenon”. Yet, so far the scaling parameters used in studies are the traditional VIV

parameters which are the damping ratio ζ and the reduced velocity U∗ (Barrero-Gil et al.,

2010) which has a embedded frequency component. Thus the following objectives are

defined for this phase

• Formulate a new set of scaling parameters based on the natural time-scales of the

system.

• Investigate the influence of these parameters on mean power transfer.

• Isolate the regions where high power transfer can be obtained.
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• Investigate the relationship between these new scaling parameters and the frequency

response of the system.

Phase 2: Understand the fluid mechanics of the system and optimise and

control these mechanics to obtain a higher power transfer

Luo et al. (1994) showed that inhibition of shear layer reattachment can lead to higher peak

Fy at higher induced angles and therefore higher transverse velocities. Thus, from equation

2.7, it can be hypothesised that a higher mean power can be obtained by inhibition of the

shear layer reattachment. Hence, the following objectives were defined for phase 2.

• Obtain QSS power data by systematically delaying the shear layer and investigate

the influence on power.

• Identify the relationship between the flow structures and the mean power output

through analysis of the flow-field.

• Provide design considerations for a galloping energy extraction system based on pas-

sive control of the shear layers.

The stated aims are addressed by the following sections. Objectives of phase 1 are

addressed in chapter 4. A new set of scaling parameters namely the combined mass stiffness

Π1 and the combined mass damping Π2 are formulated from the linearised QSS model.

The power data is obtained from numerically solving the QSS model and direct numerical

simulations are presented through the new parameters and compared against the classical

VIV parameters. Furthermore, an expression for the frequency of the system is formulated

in terms of Π1 and Π2. The data obtained through this model are compared against data

acquired through QSS model and DNS.

Chapter 5 addresses the objectives of phase 2, where the possibility of achieving higher

power transfer through the inhibition of shear layer reattachment is investigated. The

inhibition of the shear layer reattachment is achieved by altering the afterbody of the

square cross section. The mean power data of these cross sections obtained using the

QSS model and DNS are analysed and compared. Key regions of the Cy vs. θ curve

which significantly influences the power transfer are analysed and compared. Through this
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comparison, design considerations for an efficient galloping energy harvesting system are

discussed.
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Chapter 3

Methodology and validation

3.1 Introduction

An overview of the modeling and the computational methods used for the investigation of

flows past square or similarly buff cross sections in this study are presented in this chapter.

This study uses well established techniques to model and study fluid elastic galloping.

Therefore, only a brief overview is provided together with relevant references where the

development and vigorous validation has been presented.

This chapter is presented in the following order. The equations used to model the

system are presented and discussed. Next, a brief discussion of the techniques used for

direct numerical simulations are presented, followed by the problem formulation and the

discussion of the parameters used. Finally, validation data are presented and discussed to

demonstrate the accuracy of the direct numerical simulations.

3.1.1 Parameters used

The findings in this study are presented in two categories i.e. high and low Reynolds num-

bers, so as to study the system at laminar and turbulent flow regimes. One of the main

objectives in this study is to capture the essential flow physics which governs galloping

accurately through direct numerical simulations. Detailed data could be obtained on sen-

sitive parts of the flow-field such as the shear layer through by computational methods, in

particular Direct Numerical Simulation (DNS) compared to experimental methods. How-
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ever, DNS becomes computationally intractable at high Reynolds number. Thus, a major

portion of the study was carried out in the laminar range where the flow is laminar and two

dimensional. It is possible to carry out 3-dimensional simulations at the turbulent regions.

However, this demands a large number of nodes (in the range of millions) and a longer

computational time (in the range of months for a single simulation) to gain an accurate

result and thus, the laminar 2-dimensional regime was selected.

A second modelling technique employed is the numerical integration of a low-order, but

nonlinear, equation of motion derived using a quasi-static assumption (Parkinson & Smith,

1964). This model only requires force data obtained from static body simulations or experi-

ments. Therefore, although a majority of the study is focused on the low Reynolds number

regime, some results are presented using inputs from published data at high Reynolds

numbers to this low order model to provide a comparison between high and low Reynolds

number cases.

One crucial factor is the selection of a suitable Reynolds number for the “low” Reynolds

number regime for the simulations to be valid. Studies by Tong et al. (2008) and Sheard

et al. (2009) reveal that the approximate value of 3-dimensional transition of the wake for

a stationary square cross section is Re = 160. Barrero-Gil et al. (2010) concluded that a

high value of a1 or the initial gradient of the Cy vs. θ curve should be high to gain an

efficient energy harvesting through galloping. Joly et al. (2012) showed that this gradient

is significantly higher at Re = 200 compared to Re = 160. Furthermore, Leontini et al.

(2007) concluded that the oscillation of the bluff body essentially stabilizes the wake, for

example the the limit of three-dimensional transition of an oscillating circular cylinder can

be as high as Re = 280, compared to the transition Reynolds number of Re ≃ 190 for

a stationary cylinder. As the essential flow physics such as the formation of the Kàrmàn

vortex street is common for both a circular and square bluff body, it can be assumed that

the wake is also stabilised for oscillating square cross sections. Thus, Re = 200 was selected

as the Reynolds number for the “low” Reynolds number region as a compromise between

keeping the flow strictly two-dimensional, and providing a high enough lift to generate

vigorous galloping.

Re = 22300 was defined as the “high” Reynolds number in this study, which matches

the pioneering study of galloping by Parkinson & Smith (1964). Therefore, the aerody-
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namic data for a stationary square section at this Reynolds number was obtained from the

literature as input to the QSS model. For the high Re tests, predictions of power output

were obtained using the coefficients of the Cy vs. θ curve from Parkinson & Smith (1964) as

inputs to the QSS model. Stationary Cy data at different angles of attack used as inputs to

the QSS model were obtained for the low Reynolds number regime using direct numerical

simulations.

The average power was obtained by using equation 3.1, and the averaging was done

over no less than 20 galloping periods. The mass ratio m∗ was kept at 1163 for Re = 22300

(Similar to Parkinson & Smith (1964)). Considering previous studies (Robertson et al.,

2003; Joly et al., 2012) m∗ was kept at m∗ = 20 which was a level of inertia not so

high as to suppress galloping and not so low for vortex shedding to dominate and weaken

galloping as observed by Joly et al. (2012). The reduced velocity U∗ was kept U∗ ≥ 40

to keep the natural frequency of the system far from the frequency of vortex shedding

to ensure that the primary mode of flow-induced vibration was galloping as opposed to

vortex-induced vibration (VIV). These parameters were used throughout this study unless

specified otherwise.

3.2 Quasi-steady model

The quasi-steady state model discussed in section 2.1.2 was used to obtain oscillator re-

sponse data. The quasi-steady state model has proven its ability to obtain accurate gallop-

ing response data (as also discussed in section 2.1.2). Therefore, a large number of cases can

be modelled in a small amount of computational time. The oscillator equation consists of

a spring, mass and damper oscillator expression with a 7th order interpolation polynomial

in terms of the body velocity (or equivalently, the instantaneous incidence angle) as the

forcing function (equation 2.5), obtained from a curve fit of aerodynamic data (i.e. Cy as

a function of the incidence angle).

Solving the quasi-steady state equation

The quasi-steady model being an ordinary differential equation can be solved using different

solving methods. Vio et al. (2007) showed that numerical integration provides accurate
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data, and this technique is employed here. A fourth-order Runge-Kutta ODE solving

scheme was used in solving the quasi-steady state oscillator equation. The built in ‘ode45’

function in MATLAB was used primarily to solve the QSS equation while in some cases

‘ode15s’ function was used when the equation became more stiff (restricted to a small time

step).

3.3 Calculation of average power

The ideal potential amount of harvested power output is represented as the dissipated

power due to mechanical damping before losses in any power take-off system are included.

Thus the mean power output can be expressed as

Pm =
1

T

∫ T

0
(cẏ)ẏdt, (3.1)

where T is the period of integration and c is the mechanical damping constant.

The work done on the body by the fluid is equal to this quantity, defined as

Pm =
1

T

∫ T

0
Fy ẏdt, (3.2)

where Fy is the transverse (lift) force.

The two definitions of the mean power provide two vital interpretations of power trans-

fer. Equation 3.1 shows that the power is proportional to the mechanical damping and the

magnitude of the transverse velocity. At first glance one may assume that the power can

be increased by increasing damping. In a practical power extraction device, the significant

component of damping would be due to the electrical generator and therefore, an increase

in damping would be due to the increase of the load or electrical resistance. Yet this per-

ception of damping is not quite accurate as very high damping would result in reducing

the velocity amplitude which then would not result in a higher energy output according

to equation 3.1. In consequence, a balance needs to be struck where the damping is high,

but not to the extent that it will affect power output adversely by overly suppressing the

motion of the body.

On the other hand, equation 3.2 shows that a higher power is attained during situations

where the transverse force Fy and the transverse velocity are in phase. Hence, a simple
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increase in the magnitude of the force or the velocity is not satisfactory to attain a higher

power transfer. A higher power output can be obtained when there is a smaller phase

difference between the force and the velocity.

3.4 Direct numerical simulations (DNS)

Direct numerical simulations were employed to obtain the stationary data to be used as

inputs to the QSS model and to obtain fluid-structure interaction (FSI) predictions to be

compared with the QSS model at low Reynolds numbers. A high-order spectral element

code which simulates two-dimensional laminar flows was used to obtain the DNS data. This

code essentially solves the Navier-Stokes equations in an accelerated reference frame that

accelerates with the body. A three-step time-splitting scheme also known as a fractional

step method was used for temporal discretisation. A predictor-corrector method was used

for the FSI data where an elastically mounted body was involved. A description of the

spectral element method in general can be found in Karniadakis & Sherwin (2005). This

code has been very well validated in a variety of fluid-structure interaction problems similar

to that studied in the current study (Leontini et al., 2007; Griffith et al., 2011; Leontini

et al., 2011; Leontini & Thompson, 2013). An overview of the algorithm is presented in

the following subsections which is described in detail by Leontini (2007).

3.4.1 Governing equations

In this study, the following key assumptions were made to carry out the direct numerical

simulations.

• To formulate the differential equations to an infinitesimally small fluid section, the

fluid was assumed to be a continuum. This assumption is valid for all macro flows as

is the case in this study.

• To avoid the modelling acoustic wave propagation, it was assumed that the density

of the fluid is constant. The fluid is incompressible. This particular assumption is

usually valid for Mach numbers (ratio of the speed of sound to the speed of fluid flow

) less than 0.3.
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3.4.1. GOVERNING EQUATIONS

• The fluid was assumed to be an Newtonian fluid, which means that the shear stress

is directly proportional to the strain rate.

The assumptions used are quite standard and further information can be found in White

(1999).

These assumptions lead to the Navier-Stokes equations as the equations which govern

the motion of a Newtonian, incompressible fluid.

∂u

∂t
+ (u · ∇)u = −∇pf

ρ
+

µv

ρ
(∇2u) , (3.3)

and continuity,

∇ · u = 0 . (3.4)

The velocity vector field is represented by u, time by t, the pressure field by pf , fluid

density by ρ and the dynamic viscosity by µv. In the Navier-Stokes equation (3.3) the left

hand side represents the inertial forces and the right hand side represents the forces from

pressure and vscous stresses. The net mass flux into the fluid element is specified to be

zero by the continuity equation (3.4).

These equations are generalised by non-dimensionalisation. In the case of bluff body

wake flows, the equations are typically non-dimensionalised by using the characteristic

length of the body i.e the frontal projected height D, and the free-stream velocity U .

For cases investigating fluid structure interactions the equations are modified to be

solved in an accelerated reference frame. The frame of reference is attached to the body.

Therefore, an extra term is added to the Navier-stokes equations which represents the

acceleration of the body. Thus, the equations can be written as,

∂V

∂τ
= −∇P +

1

Re
(∇2V)− (V · ∇)V +

dVbody

dτ
, (3.5)

∇ ·V = 0 . (3.6)

The non dimensional terms are defined s follows: V = u/U , τ = tU/D, P = pf/(ρU2),

Re = ρUD/(µv) and Vbody = vbody/U , and vbody being the velocity of the body.
dVbody

dτ ,

represents acceleration of the body, or ÿ.

The Navier-Stokes equations are coupled with the oscillator differential equation

27



3. METHODOLOGY AND VALIDATION

ÿbody
D

+ 2ζ
√
k∗

ẏbody
D

+ k∗
ybody
D

=
π

2

CL

m∗ , (3.7)

Where ζ is the damping ratio, k∗ = kD2/mU2 and CL = Flift/(0.5ρU2D). The lift

coefficient per unit length of the body is CL, the transverse displacement of the body is

given by ybody, the characteristic length scale of the body is D, k is the spring constant and

the mass per unit length of the body is represented by m. The general form of this linear

oscillator equation can be found in books such as Naudascher & Rockwell (1994). The

final form of the coefficients were constructed by non-dimensionalising the general linear

oscillator equation.

3.4.2 Temporal discretisation: Time-splitting

The problem was discretised in order to solve equations 3.5, 3.6 and 3.7 in both space

and time. A three-step time splitting method was used for the temporal discretisation.

This scheme, also known as the fractional step method, was used to separately integrate

the terms in the right hand side of the Navier-Stokes equation (Karniadakis & Sherwin,

2005). The overall integration of one time-step is split into three substeps. An approximate

solution of the Navier-Stokes equation is gained by this scheme.

The body acceleration, along with the convective acceleration terms, is integrated

through the whole time step in order to obtain an initial approximation of the intermediate

velocity field. This velocity field is used as the initial condition for the integration of the

pressure. A secondary intermediate velocity field is obtained as a result of this pressure

integration substep. This secondary velocity field is then used as the starting condition for

the integration of the diffusion term which results in the final velocity field.

The three semi-discretised substep equations are as follows:

V∗ −V(n) −∆Vbody = −
∫ τ+∆τ

τ
(V · ∇)Vdτ (3.8)

V∗∗ −V∗ = −
∫ τ+∆τ

τ
∇Pdτ (3.9)

V(n+1) −V∗∗ =
1

Re

∫ τ+∆τ

τ
∇2Vdτ, (3.10)
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3.4.2. TEMPORAL DISCRETISATION: TIME-SPLITTING

The current time step is represented by n and the intermediate velocity fields at the

end of the convection and pressure substeps are V∗ and V∗∗ respectively. The change in

the body velocity over a time step is given by ∆Vbody =
∫ τ+∆τ
τ

dVbody

dτ dτ .

The addition of these three substep equations reduces to the integrated form of the

Navier-Stokes equation in equation 3.5.

Figure 3.1: Sketch of the integration of the time splitting scheme.(a), (b) and (c) represents

the convection, pressure and diffusion sub steps. The intermediate time steps are repre-

sented by (✳) and (✳ ✳). The areas hatched in (a), (b) and (c) are the same as the area

marked by the same hatching in (d).
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Integration of the substep equations

The integration methods of the pressure, convection and diffusion sub steps are presented

in this subsection.

The convection substep

As the system involves free oscillation, a coupling between the oscillation equation (equation

3.7) and the Navier-Stokes equations had to be employed. As a result, the body dynamics

had to be solved at each time-step.

An iterative predictor-corrector scheme was employed to obtain the solution of the

coupled equations. The initial iteration being the “predictor” step was obtaining approx-

imations for all the quantities involved in the integration. A quadratic extrapolation was

used to obtain an initial estimate of ∆Vbody from three previous time step values of Vbody .

Therefore, a non-dynamical approximation can be obtained.

V
(n+1)†
body = 3V

(n)
body − 3V

(n−1)
body + V

(n−2)
body , (3.11)

The dagger (†) indicates that the value is an initial approximation eg. V
(n+1)†
body . Thus,

∆V
†
body was obtained by a simple subtraction of the value at the current time step.

The approximated position of the body at the next time step can be obtained by carrying

out an integration of the body velocity over the time step. A third-order Adams-Moulton

method was used to perform the integration. Therefore, the final equation describing the

position of the body is given by,

y
(n+1)†
body − y

(n)
body

∆τ
=

1

12
(5V

(n+1)†
body + 8V

(n)
body −V

(n−1)
body ). (3.12)

The transverse displacement of the body is denoted by ybody.

In order to obtain an approximation for V∗, a solution was obtained for equation 3.8

using the previous approximated quantities.

By using a third-order Adams-Bashforth scheme and incorporating the approximation

of equation 3.11 for ∆V
†
body the first approximation for V∗ was obtained using the equation,

V∗ −V(n) −∆V
†
body

∆τ
=

1

12
(23N(V)(n) − 16N(V)(n−1) + 5N(V)(n−2)) . (3.13)

30



3.4.2. TEMPORAL DISCRETISATION: TIME-SPLITTING

The explicit integration method was only used for the first approximation and for the

subsequent iterations a semi-implicit method was used for V∗.

This step was followed by solving the remaining substep equations in order to obtain

an approximation for V(n+1)†, and then the “predictor” portion of the predictor-corrector

method was completed.

The body velocity approximation V
†
body , was updated commencing the “corrector” cycle

of the predictor-corrector method. This was carried out using a third-order integration

scheme.

V
(n+1)†
body −V

(n)
body

∆τ
=

1

24
(25ÿ

(n+1)
body − 2ÿ

(n)
body + ÿ

(n−1)
body ) . (3.14)

∆V
†
body was updated using the recalculated value of V

(n+1)†
body . The velocity was inte-

grated over a time step in order to obtain the position of the body. For the first correction

cycle a third order Adams-Moulton method was used which completed the first iteration

of the predictor-corrector method.

y(n+1)† − y(n)

∆τ
=

1

12
(5V

(n+1)†
body + 8V

(n)
body −V

(n−1)
body ) , (3.15)

Slight modifications were employed to the subsequent iterations in order to improve

numerical stability. However, the iterations proceeded in a similar manner. As the approx-

imations for ∆V
†
body and V(n+1)† were available, further correction steps were carried out

using third-order Adams-Moulton scheme .

V∗ −V(n) −∆V
†
body

∆τ
=

1

12
(5N(V)(n+1)† + 8N(V)(n) −N(V)(n−1)) . (3.16)

The two remaining substeps were then solved to obtain a new approximation of V(n+1)†.

The first correction step was carried out by employing 3.14 to obtain a second estimate

for the velocity of the body V
(n+1)‡
body . A relaxation equation (equation 3.17) was used for

the velocity of the body prior to using equation 3.15 since the equations were quite stiff.

V
(n+1)′
body = V

(n+1)†
body + ǫ(V

(n+1)‡
body −V

(n+1)†
body ) , (3.17)

V
(n+1)‡
body and V

(n+1)†
body represent the most current and previous approximations respec-

tively. The under relaxation parameter is represented by ǫ which controls the proportion
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of the correction which is considered in each iteration. The final approximation at the

end of the relaxation process is represented by V
(n+1)′
body and was used in equation 3.15 for

completing the correction cycle and hence, the iteration.

A set of convergence criteria were specified until which the iteration was continued.

The lift force of the body, the velocity of the body and the fluid velocity were required to

converge to the required convergence criteria. A series of convergence studies were carried

out in order to obtain the convergence criteria (Pregnalato, 2003). The solution converged

typically within 3−4 iterations and the iteration count exceeded 10 only in very rare cases.

The procedure to obtain the solution for V∗ (velocity field at the end of the convection

substep) in a nutshell is as follows. A predictor-corrector method was employed, where

the primary predictor cycle was first employed. This was followed by obtaining an approx-

imation for ∆Vbody which was calculated using equation 3.11. From this approximation

(∆Vbody ) the position of the body was approximated using equation 3.12.

Next, using an explicit Adams-Bashforth scheme, an approximation was obtained for

V∗ by solving the substep equation (equation 3.13). The predictor cycle was completed by

solving the remaining substep equations to arrive at the first approximation of V(n+1).

Then, the primary corrector step was initiated by calculating the forces of the body

from the current approximation of V(n+1). Using these forces together with the current

approximations of the velocity and the displacement of the body and the equation of

motion of the body (eq:3.7) an approximation for the acceleration of the body at the

end of the timestep was obtained. By integrating this acceleration over the timestep using

equation 3.14 the corrected approximation of ∆Vbody was obtained. Using equation 3.15 the

corrected approximation for y
(n+1)
body was obtained by integrating the velocity over a timestep

and using the recent value of ∆Vbody . The primary corrector step and the primary iteration

was completed once this step was completed. All the remaining iterations were carried out

in a similar manner with an under relaxation presented in equation 3.17.

The pressure substep

The pressure equation was solved in two parts in order to find solutions to the two unknowns

i.e. the pressure field and the velocity field at the end of the timestep.

The integration of the pressure substep was initiated by formulating equation 3.9 in
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terms of a second-order Adams-Moulton scheme which gives,

V∗∗ −V∗

∆τ
= −1

2
(∇P (n+1) +∇P (n)) . (3.18)

The equation was further reduced by considering that the RHS is equal to ∇P (n+1/2).

The divergence of equation 3.18 was taken. Using equation 3.6, continuity was applied to

the velocity field at the end of the pressure substep which resulted in the pressure field

having a Poisson equation of the form of

∇2P (n+ 1

2
) =

1

∆τ
∇ ·V∗ . (3.19)

This equation can be solved at the middle of the timestep for the pressure field. There-

fore, this pressure field can then be back-substituted to equation 3.18, together with the

simplified RHS, to solve for the velocity field V∗∗, at the end of the substep.

The diffusion substep

Numerical stability of the solution scheme has to be considered for the diffusion substep

although the equation for diffusion is linear. Therefore, the Crank-Nicholson scheme or the

second order Adams-Moulton scheme which is a semi-implicit scheme and unconditionally

numerically stable is employed. Thus this formulates the final equation (eq 3.10) of the

time splitting scheme as,

V(n+1) −V∗∗

∆τ
=

1

2Re
(∇2V(n+1) +∇2V(n)) . (3.20)

The integration over the timestep is obtained from the solution of this equation for

V(n+1), thus completing the time splitting scheme and the timestep.

Spatial discretisation: Spectral element method

The spatial discretisation was done using a nodal based spectral-element method. This

method is a member of the finite-element class. The computational domain is separated

into a series of macro elements and then a continuous solution is obtained over each element.

Mesh refinement can be done in the areas where high gradients are experienced, which is
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also known as h-refinement. It was necessary that all elements to be quadrilateral. Yet,

the elements were not restricted from having curved sides.

The calculation of the residual R initiates the solution process. All the terms of the

governing equations (the Navier-Stokes equation eq 3.5) were moved to the LHS. Thus,

the resulting expression is,

∂V

∂τ
+∇P − 1

Re
(∇2V) + (V.∇)V − dVbody

dτ
= 0 . (3.21)

A trial solution is substituted into equation 3.21. The RHS of the equation would be

zero if the trial solution is the exact solution of the equation. If the trial solution is not

the exact solution but an approximation to the exact solution which is the case in general,

then the RHS will be non-zero and a residual will be formed. This residual can be defined

by,

∂Vtrial

∂τ
+∇Ptrial −

1

Re
(∇2Vtrial) + (Vtrial.∇)Vtrial −

dVbody

dτ
= R , (3.22)

The trial solutions for velocity and pressure fields are Vtrial and Ptrial respectively. The

error term which is introduced through the trial function is the residual R. It is clear from

equation 3.22 that the definition of the residual is the governing equation with the trial

solution substituted to the true solution.

In order to effectively distribute the error over the domain, the residual has to be

weighted in order to minimise the maximum local error. To perform this task the inner

product of the residual with a series of weighing functions were taken. The integral of the

product of the weighting function and the residual is the inner product of the residual which

is set to zero. The method employed here is also commonly known as weighted residual

method.

Tensor-product Lagrange polynomials were used for both interpolating trial functions

and weighting functions in the DNS carried out in this study. The order of the polynomials

p can be varied from 2 to 14 in order to further improve grid resolution which is also known

as p refinement. This p refinement coupled with h refinement leads to a method called h−p

method which is used to improve accuracy (Karniadakis & Sherwin, 2005). The method

also can be identified as a Galerkin method as both trial and weighting functions used
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were from the same family of functions. Fletcher (1984, 1991) provides further details on

weighted-residual methods and Galerkin methods.

Lagrange polynomials can be defined as,

Li(ξ) =

p+1∏

g=1
g 6=i

(ξ − ξg)

(ξi − ξg)
(3.23)

The spatial coordinate is ξ and the indices of the data points are represented by i

and g and the number of data points are represented by p + 1. One of the properties of

Lagrange polynomials is that they are equal to unity at the point i and are zero at all the

other points (but not between points). Thus a continuous polynomial which matches the

exact values of the velocity at the node point can be obtained when Li is multiplied by the

velocity at point i and then summing over all points. The tensor-product polynomials in

two dimensions Nq,s(ξ, η) can be defined as the product of the Lagrange polynomial in one

direction Lq(ξ), with that in the other direction, Lq(η).

The outline of the procedure to find the solution is as follows. The process is initiated

by forming the inner product of the residual and the tensor-product Lagrange polynomial

weighting function.

This gives the integral

∫ ∫

Ω
Nk,m(ξ, η) · [∂Vtrial

∂τ
+∇Ptrial−

1

Re
(∇2Vtrial)+(Vtrial ·∇)Vtrial−

dVbody

dτ
]dxdy = 0 ,

(3.24)

The computational domain is represented by Ω. Nq,s(ξ, η) are the weighting functions

as defined in the computational space.

From equation 3.24 it is seen that each term in the equation is multiplied by the

weighting function. Thus, the integral is split into components and the process can be

carried out in each of the substep equations 3.8, 3.9 and 3.10. For example the discretised

equation for 3.13 can be expressed as

1

∆τ

∫ ∫

Ω
Nq,s(ξ, η) · (V∗

trial −V
(n)
trial −∆Vbody)dxdy =

∫ ∫

Ω
Nq,s(ξ, η) · ( 1

12
(23N(Vtrial)

(n) − 16N(Vtrial)
(n−1) + 5N(Vtrial)

(n−2)))dxdy . (3.25)
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This integral can be broken into components. Hence, the first term of the of the LHS

of equation 3.25 can be defined as,

∫ ∫

Ω
V∗

trialNq,s(ξ, η)dxdy . (3.26)

The first term in equation 3.13 can be used as an example to illustrate the process of

obtaining the solution using the spectral element method. In order to calculate the integral

of equation 3.26 over the entire computational domain, the integral is evaluated over each

element separately. After that, the contributions of each element are summed together.

All the quadrilateral elements are mapped to a square ranging between −1 to 1 in both

directions where ξ and η are the orthogonal coordinates of this square. The approximation

of the integral is simplified by defining the internal node points as the points used for

Gauss-Lobatto-Legendre (GLL) quadrature.

A Jacobian is introduced to perform this coordinate transformation and hence, the

integral over each element becomes,

∫ ∫

El
V∗Nq,s(ξ, η)J(ξ, η)dξdη , (3.27)

The Jacobian is represented by J and “El” denotes that the integration is performed

over a single element. The solution of equation 3.27, V∗
trial, can be re-written as a summa-

tion of Lagrange polynomial components. This equation also expresses the tensor-product

Lagrange polynomials representing the weighting functions in directions of ξ and η. There-

fore, the equation can be expressed as,

∫ ∫

El

∑

i,j

V̂∗Li(ξ)Lj(η)Lq(ξ)Ls(η)J(ξ, η)dξdη . (3.28)

The velocity in the nodal points are represented by V̂∗, L is the one-dimensional La-

grange polynomial and i and j represent the node index in directions ξ and η.

The Gauss-Lobatto Legendre (GLL) quadrature can be used to obtain an approximation

to the integral in equation 3.28, taking the definition of the location of the internal points

in the computational domain. Thus approximation of 3.28 can be expressed as,

∑

a,b

Wa,b

∑

i,j

V̂∗
i,jLi(ξa)Lj(ηb)Lq(ξa)Ls(ηb)J(ξa, ηb) . (3.29)
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Wa,b represents the weighting coefficients for GLL quadrature, a and b represent the

position of the node in the directions ξ and η respectively.

Even though equation 3.29 appears to be quite intimidating to deal with, the expression

can be considerably simplified because of the fact that the system is discrete and only the

values at the nodal points are considered. Since for the Lagrange polynomials

 Li(ξa) = δia =





1 i = a

0 i 6= a

. (3.30)

where δia is the Kronecker delta. This substitution leads to a significant reduction of

the non-zero elements in the simulation and leads to a much simpler expression. If the

convection substep (example considered here) is considered, only a single term remains

based on the V∗ term in the convection substep equation which is,

Wq,sJ(ξq, ηs)V̂∗
q,s . (3.31)

All the governing terms can be simplified similarly and this process is repeated over all

elements. A global matrix is assembled by collecting the contribution of each element and

then this matrix system is solved to obtain solutions for the unknown velocity and pressure

fields at the nodal points.

Only the continuity of each function is required across the boundaries, with no condition

imposed on the gradient (this condition is known as C0 continuity), even though the shape

functions are higher-order polynomials within each element. It can be shown that the

method achieves global exponential convergence (Karniadakis & Sherwin, 2005).

The numerical process used for this study has been demonstrated to give exponential

spatial convergence as the number of internal nodes per element is increased (Thompson

et al., 1996).

A Neumann condition for the pressure was applied at all the boundaries except the

outlet. The condition specified the normal gradient of the pressure, the value of which was

calculated from the Navier–Stokes equations (Gresho & Sani, 1987). A Dirichlet condition

for the pressure (p = 0) was enforced at the outlet. The details of the method can be found

in Thompson et al. (2006, 1996).
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Although the physical validity of the outlet boundary condition is not quite true, this

does not turn out to be a significant problem provided that the domain outflow is sufficiently

far away from the body.

3.4.3 Convergence and validation studies

Domain size

A numerical domain similar to that used in Leontini & Thompson (2013) was used as the

numerical domain in the present study where the trailing part of the domain was increased

to capture the long wave lengths associated with the low flow frequencies of galloping. This

selection was done for two reasons. The first reason was that both Leontini & Thompson

(2013) and the present study were carried out using the same numerical solving code. The

second reason was that the cross sections used in both studies are similar. Thus, further

optimisation of the domain need not be carried out as Leontini & Thompson (2013) has

already shown this domain to be adequate for this class of flows.

For all cases, a rectangular domain was employed where the inlet was placed 20D from

the centre of the body, while the outlet was situated 60D away from the centre of the

body. The lateral boundaries were placed 20D away from the centre of the body. The

macro element arrangement of the general domain is shown figure 3.2. The macro element

arrangement near the cross section was altered to cater for different cross sections. The

near wall macro element configuration for the different cross sections are presented in figure

3.3. The domain incorporated was essentially similar to the domain used in Leontini &

Thompson (2013) apart for the long trailing section to capture the long wavelengths of

galloping frequencies.

Boundary conditions

The boundary conditions, regardless of the mesh, were common for all the simulations

performed. A no-slip condition was applied to the cross section wall. This condition ensures

that the velocity is zero at the surface of the cross section. For stationary simulations a

Dirichlet boundary condition is applied to the inlet and lateral boundaries, specifying that

the velocity is the freestream value. For FSI cases a time-dependent Dirichlet boundary

condition was employed for the velocity on the inlet and lateral boundaries. A Dirichlet
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Figure 3.2: Macro element arrangement in the domain for the square cross section geometry.

The inlet extending 20D upstream from the centre of the body, while the outlet extends

60D downstream from the centre of the body. The lateral boundaries were placed 20D

away from the centre of the body.

boundary condition has a specified value for the variables (Kreyszig, 2010) in this case

velocity. The time-dependent Dirichlet condition has to be implemented for the FSI cases

to account for the accelerated reference frame attached to the cross section. Thus, the inlet

boundary was set to u = U and v = −ẏ for FSI cases and v = 0 for stationary cases, where

u, v are the velocities in the x and y directions, respectively.

The outlet which is at the boundary downstream of the body was assigned a Neumann

boundary condition (where the gradient of a property is specified Tu et al. (2008)), ∂V
∂n = 0

where n denotes the unit normal vector. This assumes that the flow does not spatially

evolve while exiting the domain.

Convergence

A series of simulations for the oscillatory cases were carried out in order to ensure the results

were grid independent. This was done by keeping the layout of the macro element the

same and varying the order of the interpolation polynomial (p-refinement). The transverse

velocity amplitudes were compared against various polynomial orders. The time step is
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(a) (b)

(c) (d)

(e)

Figure 3.3: Configuration of the macro elements near the cross section. (a) square, (b)

d
l = 0.75, (c) d

l = 0.5, (d) d
l = 0.25 and (e) triangle.
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Figure 3.4: Mean velocity amplitude (ẏm) (a) and the galloping frequency (fDNs) (b) as

a function of the interpolation polynomial. Data present tU
D = 0.001 (✳) and tU

D = 0.0005

(•). Data acquired Re = 200 Π2 = 0 using FSI direct numerical simulations.

also reduced as the spectral resolution increases to satisfy the Courant condition. The

summary of the results is presented in figure 3.4 .

Figure 3.4 shows the mean velocity amplitude (sub-figure (a)) and the galloping fre-

quency (sub-figure (b)) at different polynomial orders. Two factors namely, the quantitative

accuracy of the data and the computational time had to be considered during the decision

making process to obtain the optimum spatial and temporal resolution. Even though higher

order polynomials gave very accurate data, the time step has to be reduced accordingly to

meet the Courant condition. As galloping is a low frequency phenomenon, a longer time

is taken to achieve the steady oscillating state. Furthermore, as galloping is dependent on

the initial excitation of the flow, the initial development of galloping takes a significant

amount of time. Both of these factors result in long computation times ranging from 1 to

2 weeks or more. Thus a 9th order polynomial was incorporated with tU
D = 0.001 time-step

which produced an acceptable computation time with an acceptable accuracy. A difference

of less than 1% was achieved for both mean velocity amplitude of the body and galloping

frequency using these spatial and temporal parameters.

As Leontini & Thompson (2013) used an 8th order polynomial with a time with a

time step of 0.005, the current study which used a similar mesh as Leontini & Thompson

(2013), incorporated an 11th order polynomial with tU
D = 0.00025 time-step for static cases,

to ensure high accuracy.

As the other cross sections presented in this thesis had relatively small deviation from
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the original square cross section, the FSI simulations were also carried out using these

spatial and temporal parameters.
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Chapter 4

Governing parameters of

fluid-elastic galloping

4.1 Introduction

The review of published literature reveals that fluid-elastic galloping has a potential to be

used as a mechanism for energy extraction (Barrero-Gil et al., 2010). Thus, the following

questions emerge. What are the optimum parameters for energy transfer in a galloping

system? How do they influence galloping?

Another fluid-structure interaction phenomenon, vortex-induced vibration (VIV), has

also been investigated as a candidate for the power extraction from flows. The work from

Bernitsas et al. (2008, 2009); Raghavan & Bernitsas (2011); Lee & Bernitsas (2011) and

others from the same group at the University of Michigan have made significant progress

in this area of research. Therefore it may seem, at least initially, reasonable to present data

from the fluid-elastic problem in the same parameters as typically used in VIV studies,

which can be observed in current literature on galloping (Barrero-Gil et al., 2009, 2010;

Parkinson & Smith, 1964).

However, the data presented in the pioneering study on energy harvesting from galloping

(Barrero-Gil et al., 2010) presented using classical VIV parameters (i.e. U∗, m∗ζ), shows

that the mean power data does not collapse well. Here it is hypothesized that the reason

behind this is the difference in time-scales of VIV and galloping. Thus the work presented
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in this chapter is focused on testing this hypothesis. First, new parameters considering

this difference in timescale are obtained, and then the optimum conditions for mean power

output in terms of these new parameters are found.

Since the the Quasi-steady state model is the primary mathematical model used to

model galloping in this study, the fluid-dynamic characteristics of flow over a static body

are presented and discussed first as it is the main input to the QSS model. Then, the

natural time scales of the system are obtained using the linearised QSS model. Next, the

new non-dimensional governing parameters Π1 ( a type of combined mass-stiffness) and

Π2 (a combined mass-damping), are formulated by non-dimensionalising the QSS model

from these natural time scales. Following this is a comparison of galloping data using the

classical VIV parameters and the new parameters Π1 and Π2. Then, the influence of Π1 and

Π2 and the conditions for an optimum power output are discussed from QSS data. Finally,

the QSS data are compared and discussed against FSI direct numerical simulations and

final conclusions are presented.

4.1.1 Static body results

The main data acquisition tool for galloping is the QSS model. As discussed in chapter

3.2, the input to the QSS model is the lift force as a function of the induced angle of attack

θ. This function is obtained using lift and drag (Cy) data from static body simulations or

experiments, to which a polynomial is fitted. These static body data and the polynomial

coefficients are presented here in figure 4.1 and table 4.1 respectively. Figure 4.1 shows the

plots of time averaged Cy data as a function of θ, as well as the 7th order polynomial fits.

Data were acquired for high and low Reynolds numbers. For high Reynolds numbers, the

static body polynomial data are obtained from Parkinson & Smith (1964) while for low

Reynolds numbers a 7th order non-linear least square regression fit on static body DNS

simulations was used.

There are several differences that can be observed between high and low Reynolds

number data. The peak value of Cy is significantly lower at Re = 200 (Cy = 0.12 at 5◦)

compared to Re = 22300 (Cy = 0.57 at 13◦) . The inflection point present around 8◦

for Re = 22300 is not present at Re = 200. This agrees with the findings of Luo et al.

(2003). Luo et al. (2003) concluded that hysteresis in the system response occurs due to
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Figure 4.1: Lift coefficient, Cy, as a function of incidence angle θ, for a static square cross

section. (a) Data from simulations at Re = 200 and (b) data from Parkinson & Smith

(1964) at Re = 22300. The values at points (•) are acquired from direct numerical simu-

lations . Curves in both plots are 7th-order interpolating polynomials used to interpolate

the fluid forcing for the QSS model.

Case a1 a3 a5 a7

Re = 200 2.32 197.8 4301.7 30311.9

Re = 22300 2.69 168 1670 59900

Table 4.1: Coefficient values used in the 7th order interpolation polynomial for high (Re =

22300) and low (Re = 200) Reynolds numbers. These data are used as input data to

calculate the right-hand side of Eq. 2.5 throughout this study.

the inflection point in the Cy curve. Therefore, hysteresis can not be observed at Re = 200.

The range of incident flow angles where Cy remains positive is narrow at Re = 200

(0◦ < θ ≤ 7◦) compared to Re = 22300 (0◦ < θ ≤ 15◦). This positive range sustains

galloping, as the power is only transferred from the fluid to the supporting structure within

this range of incident angles. This is because the fluid forces are acting in the direction of

velocity of the body, or in phase with, the oscillating body as demonstrated by equation

3.2. Incident angles beyond this range suppress the galloping as power is transferred in the

opposite direction, i.e; from body to fluid. Thus, it is expected that the transferred power

at Re = 200 to be significantly lower than at Re = 22300, because of the relatively low
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values of Cy and the narrow range of positive Cy at Re = 200.

4.1.2 Formulation of the new dimensionless groups Π1 and Π2

The natural time scales of the system can be found by solving for the eigenvalues of the

linearised equation of motion (Eq:2.5), namely

mÿ+cẏ+ky=
1

2
ρU2Aa1

(
ẏ

U

)
, (4.1)

which is a simplified version of the equation of motion presented in equation 2.5 with the

polynomial series for the lift force truncated at the linear term.

Combining the ẏ terms and solving for eigenvalues λ gives

λ1,2 = −1

2

c− 1
2ρUAa1
m

± 1

2

√√√√
[
c− 1

2ρUAa1
m

]2
− 4

k

m
. (4.2)

If it is assumed that the spring is relatively weak, k → 0, a single non-zero eigenvalue

remains. This eigenvalue is

λ = −c− 1
2ρUAa1
m

. (4.3)

Further, if it is assumed that the mechanical damping is significantly weaker than the

fluid-dynamic forces on the body, c→ 0 and

λ =
1
2ρUAa1

m
. (4.4)

In this form, λ represents the inverse time scale of the motion of the body due to the

effect of the long-time fluid-dynamic forces. In fact, the terms can be regrouped and λ

written as

λ =
a1
m∗

U

D
(4.5)

Written this way, the important parameters that dictate this inverse time scale are

clear. The rate of change in the fluid-dynamic force with respect to angle of attack when

the body is at the equilibrium position, ∂Cy/∂θ, is represented by a1. The mass ratio is

represented by m∗. The inverse advective time scale of the incoming flow is represented

by the ratio U/D. Increasing a1 would mean the force on the body would increase more

rapidly with small changes in the angle of attack, θ, or transverse velocity. Equation 4.5

shows that such a change will increase the inverse time scale, or analogously decrease the
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response time of the body. Increasing the mass of the body, thereby increasing m∗, has

the opposite effect. The inverse time scale is decreased, or as might be expected, a heavier

body will respond more slowly.

This timescale can then be used to non-dimensionalize the equation of motion, and to

find the relevant dimensionless groups of the problem. It was suggested by Shiels et al.

(2001); Leonard & Roshko (2001) to use a flow-based timescale such D/U for the charac-

teristic time for flow-induced vibration problems, rather than a structural-based timescale

such as the natural frequency. This point is discussed further in Williamson & Govardhan

(2004). Here, this advective time is further scaled by the mass ratio m∗, as suggested from

the eigenvalues of the linearized equation of motion. Hence, if the non-dimensional time,

τ , is defined such that τ = t(a1/m
∗)(U/D), the equation of motion presented in equation

2.5 can be non-dimensionalized as

Ÿ +
m∗2

a21

kD2

mU2
Y =

(
1

2
− m∗

a1

cD

mU

)
Ẏ − a1a3

m∗2 Ẏ
3 +

a31a5
m∗4 Ẏ

5 − a51a7
m∗6 Ẏ

7. (4.6)

The coefficients can be regrouped into combinations of non-dimensional groups, and

rewritten as

Ÿ +
4π2m∗2

U∗2a21
Y =

(
1

2
− c∗m∗

a1

)
Ẏ − a1a3

m∗2 Ẏ
3 +

a31a5
m∗4 Ẏ

5 − a51a7
m∗6 Ẏ

7, (4.7)

where U∗ is the reduced velocity typically used as an independent variable in vortex-induced

vibration studies and c∗ = cD/mU is a non-dimensional damping parameter.

Equation 4.7 shows there are five non-dimensional parameters that play a role in setting

the response of the system. These are the stiffness (represented by the reduced velocity

U∗), the damping c∗, the mass ratio m∗, and the geometry and Re, represented by the

coefficients of the polynomial fit to the Cy curve, an. The grouping of these parameters

into two groups in equation 4.7 which arise by non-dimensionalising using the natural time

scale of the galloping system, suggests there are two groups besides geometry (represented

by an) and Re that dictate the response: Γ1 = 4π2m∗2/U∗2a21 and Γ2 = c∗m∗/a1. For a

given geometry and Reynolds number, Γ1 can be thought of as a combined mass-stiffness,

whereas Γ2 can be thought of a combined mass-damping parameter. It is assumed that

during galloping the stiffness plays only a minor role because galloping time periods are

significantly large which implies that k → 0. Therefore, Γ2 seems a likely parameter to

collapse the data. In fact, in the classic paper on galloping from Parkinson & Smith
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(1964), galloping data from wind tunnel tests is presented in terms of a parameter that can

be shown to be the same as Γ2.

All of the quantities that make up Γ1 and Γ2 can, in theory, be known before an

experiment is conducted. However, the quantity a1 is a relatively difficult one to determine,

requiring static body experiments or simulations. Here, the geometry is unchanged and

results are only being compared at the same Re. Hence, suitable parameters can be formed

by multiplying Γ1 and Γ2 by a21 and a1 respectively, to arrive at a mass-stiffness parameter

Π1 = 4π2m∗2/U∗2, and a mass-damping parameter defined as Π2 = c∗m∗.

Equation 4.7 can be re-written explicitly in terms of Π1 and Π2 to give

Ÿ + Π1Y = Π2Ẏ −
a1a3
m∗2 Ẏ

3 +
a31a5
m∗4 Ẏ

5 − a51a7
m∗6 Ẏ

7. (4.8)

4.1.3 Comparison of Π1 and Π2 with classical VIV parameters

Figure 4.2 shows the comparison of mean power data at Re = 200 presented using differ-

ent independent variables. Subfigures (a), (c) and (e) show the displacement amplitude,

velocity amplitude and the mean power as a function of the classic VIV parameter, U∗ for

various damping ratios ζ. Subfigures (b), (d) and (f) shows the same data as a function

of Π2, for various, reasonably high values of Π1, as defined above in section 4.1.2. The

data presented using the classical VIV parameters follows the same trends as Barrero-Gil

et al. (2010). Barrero-Gil et al. (2010) and Vicente-Ludlam et al. (2014) observed that the

maximum dimensionless power is achieved at two times the velocity at which the galloping

starts. A similar conclusion can be drawn from the data presented here in figures 4.2.

However, the data presented using the dimensionless group formulated using the natural

time scales of the system shows an excellent collapse for both velocity amplitude and mean

power, showing that the power is essentially dictated by Π2. This implies that unlike VIV

which is a type of resonant phenomenon, the natural frequency of the system which is used

to scale U∗, ζ and Π1 does not have a large influence on the system behaviour in these

cases.

While the velocity and power data collapse well, the amplitude data still shows some

spread. Figure 4.3 shows the displacement amplitude data obtained in figure 4.2 (a), but

rescaled on a length scale that considers the stiffness by incorporating Π1, which essentially
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Figure 4.2: Displacement amplitude, velocity amplitude and dimensionless mean power

data as functions of two different independent variables. Data presented in (a), (c) and (e)

using the classical VIV parameter U∗, obtained at Re = 200 and m∗ = 20 at three different

damping ratios: ζ = 0.075 (×), ζ = 0.1 (◆) and ζ = 0.15 (+). (b) (d) and (f) are the

same data presented using the combined mass-damping parameter (Π2) as the independent

variable. Even though Π1 varies in the range of 0.4 ≤ Π1 ≤ 17.5, it is clear that the power

is a function of Π2 only.
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Figure 4.3: Displacement amplitude data as a function of Π2. obtained at Re = 200 and

m∗ = 20 at three different damping ratios: ζ = 0.075 (×), ζ = 0.1 (◆) and ζ = 0.15 (+).

The dependent variable is scaled with 2
√
Π1

Π2
which is equal to 1

ζ . This scaling is similar to

Parkinson & Smith (1964) and the deviation of data using this scaling at high U∗ could be

observed in Parkinson & Smith (1964).
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reduces the scaling parameter to 1
ζ , shows an excellent collapse. Thus, it is clear that the

displacement amplitude is dependent on both Π1 and Π2. It can be seen that as Π1 and

Π2 → 0, A
D approaches infinity; where for very slack springs the body will need to travel a

larger distance to balance the transverse force.

4.1.4 Comparison of power between high and low Re data

The marked success of the collapse using Π2 for the Re = 200 case, particularly of the mean

power, can also be replicated for the higher Re case at Re = 22300. Figure 4.4 presents the

mean power for high Re cases for selected values of Π1. It is shown that the data collapse

in both cases, demonstrating the validity of using Π2 as an independent variable.
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Figure 4.4: Dimensionless mean power as a function of Π2. Data presented at Re = 22300,

Π1 = 200 (×), Π1 = 2000 (◆) and Π1 = 10000 (+). Hysteresis could be observed at high

Re.

Hysteresis can be observed for the Re = 22300 case. The different solutions can be

obtained by manipulating the initial conditions (initial displacement) of the system. The

upper branch was obtained by giving an initial displacement which was higher than the

expected amplitude while the lower branch was obtained by providing a lower initial dis-

placement than the expected amplitude. Although theory shows a possible third state, it

is an unstable branch which cannot be achieved with a time integration method such as

that employed in this study. This was also observed by Vio et al. (2007).
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4.1.5 Dependence on mass-stiffness, Π1

The results of sections 4.1.3 and 4.1.4 show that the mean extracted power is essentially

a function of a single variable, the combined mass-damping Π2. However, the timescale

analysis of section 4.1.2 showed that a second variable, the combined mass-stiffness Π1

should also play a role. Previous studies (see, for example Bouclin (1977)) have also

indicated a complex interaction between the amplitude and natural frequency, particularly

for high natural frequencies (or equivalently, low values of Π1). Here, the impact of Π1 is

investigated further. Overall, the system behaviour can be separated into two wide regimes;

that for “high” Π1 and that for “low” Π1. These two regimes are further investigated and

explained in this following section.

Figure 4.5 shows the mean power as a function of Π2 for a range of values of Π1. Two

subfigures are shown; subfigure (a) shows data for Π1 ≥ 10, while (b) shows data for

Π1 ≤ 10. In figure 4.5(a), the collapse of the mean power is excellent, showing that for

Π1 ≥ 10, the mean power is independent of Π1.

For low values of Π1 ≤ 10, figure 4.5(b) shows that the predicted mean power increases

as Π1 is decreased, indicating that the mean power is a weak function of Π1 at low Π1

levels. This provides the distinction between high and low Π1 regimes. For high values

where Π1 ≥ 10, the mean extracted power is a function of Π2 only; for low values where

Π1 < 10, the mean extracted power is a weak function of Π1.

Regardless of the value of Π1, the variation of the mean extracted power with Π2 is

essentially the same. With increasing Π2, the mean extracted power initially increases,

before reaching some maximum value and then decreases. This relationship between power

and Π2 can be explained by analysing the time histories of selected cases. Data at Π1 = 10,

m∗ = 20 and Re = 200 are shown in figure 4.6 and are analysed as an example. Values of

Π2 less than (region 1), equal to (region 2), and greater than (region 3) the value where

the mean extracted power is a maximum are analysed as examples.

The instantaneous power from the fluid to the body can be expressed as Pt = Fy ẏ.

Similarly the dissipated power due to the mechanical damping can be expressed as Pd =

(cẏ)ẏ. The time average of these two quantities, described in equations 3.1 and 3.2 must

be equal due to energy conservation.

At region 1 (Π2 = 0.15) the damping is low in comparison with region 2 and 3. While
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Figure 4.5: Dimensionless mean power as a function of Π2 obtained using the QSS model

at Re = 200. (a) High Π1; data presented at four different combined mass-stiffness levels.

Π1 = 10 (m∗ = 20, U∗ = 40) (×), Π1 = 100 (m∗ = 80, U∗ = 50) (+), Π1 = 500 (m∗ =

220, U∗ = 60) (◆) and Π1 = 1000 (m∗ = 400, U∗ = 40) (△). (b) Low Π1; data presented

at Π1 = 10 (×), Π1 = 0.1 (◆), and Π1 = 0.01 (△).
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Figure 4.6: Time histories of Pt, Pd, Fy and θ at Π2 = 0.15, 0.54 and 0.8 from the QSS

model. Data was obtained at m∗ = 20, Π1 = 10 and Re=200. The time histories of Pd

( ) and Pt ( ) are presented for: (a) Π2 = 0.15; (b) Π2 = 0.54; (c) Π2 = 0.8. Time

histories of the instantaneous force Fy for: (d) Π2 = 0.15; (e) Π2 = 0.54; (f) Π2 = 0.8.

Time histories of the instantaneous angle θ for: (g) Π2 = 0.15; (h) Π2 = 0.55; (i) Π2 = 0.8.
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this may lead to larger oscillations, damping is required to dissipate and therefore extract

power according to equation 3.1. Therefore, the low damping in this region leads to a low

mean power output. Fig.4.6 (a) shows that Pd (the power dissipated by damping) becomes

negative over some portion of the cycle. This is caused by the high velocity amplitude

leading to the equivalent incident angle θ to exceed the range where Cy is positive (i.e.

0 < θ < 6◦ as shown in figure 4.1(a)). In this portion of the cycle the fluid-dynamic

force actually opposes the direction of travel and power is transferred from the structure to

the fluid during those times. From an energy perspective, the mechanical damping is not

sufficient to remove the energy transferred from the fluid to the structure through work

during other times of the cycle because Π2 is substantially low. Therefore this excess

energy is transferred back to the fluid as depicted by the negative region of Pd.

At region 3 where Π2 = 0.8 the damping constant is high and a clear sinusoidal signal is

observed for both Pd and Pt in figure 4.6(c). Figures 4.6(f) and 4.6(i) show that equivalent

incident angle θ (which for small values, is proportional to the transverse velocity of the

body) is in phase with Fy. The velocity amplitude in this case is small and θ is within the

range where the fluid-dynamic force increases with the incident angle (i.e. 0 < θ ≤ 5◦ as

shown in figure 4.1(a)). According to equation 3.2, these conditions are suitable for high

power output. However in this case, the high damping limits the velocity amplitude and

results in relatively low fluid dynamic forces.

At region 2 ( Π2 = 0.54), a balance is found between high and low values of damping.

Pd is not a pure sinusoidal signal, however the signal remains periodic. From the time

history graph of Pd, two ‘peaks’ are present in a single half cycle as shown in figure 4.6(b).

In this case, the velocity amplitude actually exceeds the equivalent incident angle where the

fluid-dynamic forces peaks (i.e. θ = 5◦ in figure 4.1 (a)). The dips in Pd between the two

peaks approximately correspond to the time where the transverse velocity is higher than

0.09 (i.e. θ = 5.14) and Fy decreases with increasing transverse velocity. The mean power

output is at its maximum. This is due to the fact that this region is the best compromise

between regions 1 and 3. The damping is high enough to obtain a high power output while

not so high that the motion is completely suppressed.
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Figure 4.7: Dimensionless mean power as a function of Π2 obtained using QSS model at

Π1 = 0.1. Data presented at m∗ = 2 (◆), m∗ = 20 (△) and m∗ = 50 (∗). The mass ratio

does not have an effect on Pm even at low Π1.

4.1.6 Dependence on the mass ratio m∗

While for high values of Π1 it is clear that the mean extracted power is a function of Π2

only, a question arises for low values of Π1; is the variation in the mean extracted power

purely a function of Π1, or is it also a function of the mass ratio m∗? To answer this

question, the model has been solved for a fixed value of Π1, but for varying values of m∗.

This means that Π1 was varied by changing the system stiffness.

Figure 4.7 shows the mean extracted power as a function of Π2, for a fixed Π1 = 0.1,

for three different values of m∗. From the figure it is clear that the results are independent

of m∗, and are functions of Π1 and Π2 only.

4.1.7 Comparison with DNS data

The QSS model assumes that the only force driving the system is the instantaneous lift,

which is same as the mean lift on a static body at the same angle of attack. However,

vortex shedding is also present in this system. Therefore, an essential assumption when

this model is used, is that the effect of vortex shedding is minimal. Hence, the model has

been always used at high Re and at high mass ratios because at those Reynolds numbers

and mass ratios, the vortex shedding does not correlate across the span. This study is

focused on identifying the limiting parameters of the QSS model at low Reynolds numbers
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by providing a comparison with DNS results.

Joly et al. (2012) showed that the displacement data obtained using the QSS assumption

and DNS agree well at low Reynolds numbers, with the modification implemented to the

oscillator equation which accounts for the vortex shedding. These data were obtained at

zero damping levels. However, the current study is focused on the behaviour and the power

transfer of the system. Therefore analysing the behaviour of the system with increasing

damping is of interest.

The comparison between QSS and the DNS results is presented in figure 4.8. The

maximum displacement, velocity and mean extracted power are presented as functions of

Π2. A range of values of Π1 is compared with the QSS model data for Π1 = 10. Figures

4.8(a) and 4.8(b) show little variation with Π1, and the comparison between the QSS model

and the DNS simulations is quite good. However, the mean extracted power shown in figure

4.8(c) reveals that the mean power is influenced by both Π1 and Π2. This is particularly

clear for low values of Π1, where the discrepancy between the QSS model predictions of

power and the DNS simulations is the largest. Comparison of figure 4.8(c) with figure

4.5(a) shows that Π1 has much more influence on the power extracted than predicted by

the QSS model for low Π1 values. In fact, the QSS model predicts that the mean extracted

power should increase with decreasing Π1 when Π1 moves to the low Π1 region (figure

4.5(b)), whereas the DNS simulations show that the mean extracted power decreases with

decreasing Π1.

Figure 4.9(a) clearly shows the dependence of the mean extracted power on Π1. Here,

the maximum power extracted for a given value of Π1, over all values of Π2 (essentially

the value of extracted power at the turning point), is plotted as a function of Π1. These

values were obtained by fitting a quadratic to the data of figure 4.7 and finding the value

of mean extracted power at the turning point. The rapid decrease in the extracted power

as Π1 → 0 is clear.

Figure 4.9(a) also shows that Π1 is important to higher values than predicted by the

QSS model. For the QSS model, the mean extracted power was essentially independent of

Π1 for Π1 > 10, as shown by the open symbols on the figure. However, the mean extracted

power from the DNS data shows a significant dependence on Π1 for Π1 < 250. Even so,

the power extracted during the DNS simulations converges to the value predicted by the
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Figure 4.9: (a) Maximum power and (b) the value of Π2 at maximum power of QSS

data (◦) and DNS data (•), as functions of Π1. For the DNS data, the maximum power

asymptotes to an upper value with increasing Π1, while the value of Π2 where maximum

power occurs is relatively insensitive to Π1. The maximum power of the QSS data remains

relatively constant, as does the value of Π2 where maximum power occurs. The dash curve

( ) of (a) follows the logarithmic fit of the maximum power which is Pmax/ρAU3 =

1.48× 10−4 log(Π1) + 1.9× 10−3. The dashed curve in (b) shows the value Π2 ≃ 0.43.

QSS model as Π1 increases.

Figure 4.9(b) shows the value of Π2 at which the turning point, and therefore the

maximum power output, occurs. The open symbols show the value predicted by the QSS

model, the closed symbols show the value predicted by the DNS. The two are not the same,

with a value around 0.41 predicted by the DNS (shown with a dashed line) and a value

above 0.5 predicted by the QSS model. However, both models show that while the power

extracted is a reasonably strong function of Π1, the value of Π2 at which this maximum

power occurs is relatively unaffected.

In an effort to further quantify the performance of the QSS model, the percentage

between the QSS and DNS extracted power data as a function of Π1 was calculated using

the equation

% error =

∣∣∣∣
Pm(QSS) − Pm(DNS)

Pm(DNS)

∣∣∣∣× 100. (4.9)

The results of this calculation are plotted in figure 4.10, along with a power-law best

fit of % error = 138.697Π−0.6
1 . The figure clearly shows that as Π1 increases, the error

between the QSS and DNS models quickly decreases. However, at low values of Π1, the

discrepancy between the two can be quite large, around 30%.
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Figure 4.10: The percentage error between the maximum power obtained using DNS data

and predicted by QSS model as a function of Π1. The deviation between them is large for

low values of Π1. The dash curve ( ) follows the power law fit of the percentage error

which is %error = 138.697Π−0.6
1 .

A likely reason for this discrepancy at low Π1 is the influence of the vortex shedding,

which is not accounted for in the QSS model. To investigate this further, frequency spectra

for the body velocity from DNS cases at varying values of Π1, at a value of Π2 = 0.47 (close

to the value at which the mean extracted power is a maximum), have been produced. They

are presented, along with the original time histories in figure 4.11.

This figure shows the velocity signals at Π1 = 0.8 and Π2 = 10, 60, 250 and 1000 and

the corresponding spectrum. The spectral data shows a significant frequency component

around fd/U = 0.156 which can be identified as the vortex shedding frequency. The

magnitude of the frequency component at the vortex shedding frequency clearly reduces

as Π1 is increased. This indicates that the influence of vortex shedding is much more

prominent at low Π1, therefore resulting in larger deviations from quasi-steady state results.

This builds on the work of Joly et al. (2012), which was conducted at zero damping, that

implied that mean extracted power would be influenced by vortex shedding at low mass.

The transverse forcing signal and the respective spectrum are presented for the same cases in

figure 4.12. The comparison of figures 4.11 and 4.12 clearly shows that even though vortex

shedding has a high significant relative forcing the system tend to select the galloping

frequency as the frequency of oscillation.
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Figure 4.11: Velocity signal (left) and the corresponding power spectrum (right) of the

DNS data at four values of Π1 at Π2 = 0.47. (a) and (b) Π1 = 10, (c) and (d) Π1 = 60,

(e) and (f) Π1 = 250, (g) and (h) Π1 = 1000. fg and fs represents galloping and vortex

shedding frequencies respectively. U∗ is kept at 40 therefore the mass ratio increases as Π1

increases. It is evident that the influence of vortex shedding reduces as the inertia of the

system increases.
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Figure 4.12: Transverse force Fy signal (left) and the corresponding power spectrum (right)

of the DNS data at four values of Π1 at Π2 = 0.47. (a) and (b) Π1 = 10, (c) and (d) Π1 = 60,

(e) and (f) Π1 = 250, (g) and (h) Π1 = 1000. fg and fs represents galloping and vortex

shedding frequencies respectively. U∗ is kept at 40 therefore the mass ratio increases as Π1

increases. It is evident that the influence of vortex shedding reduces as the inertia of the

system increases.
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Figure 4.13: The relative contribution of the vortex shedding as a function of Π1. The

relative power of the vortex shedding decreases as Π1 increases. The dash curve ( )

follows the power law fit of the percentage error which is Relative power = 0.977Π−0.52
1 .

This influence is explicitly shown here. Figure 4.13 plots the relative intensity of vortex

shedding and galloping in the spectra of figure 4.11 which essentially shows the relative

contribution of vortex shedding of the galloping system at the give Π1.

Similar to the discrepancy between the QSS and DNS mean extracted power shown in

figure 4.10, the relative strength of the vortex shedding is seen to be large at small values

of Π1, and quickly decreases as Π1 is increased. The figure shows that the relative power

of the vortex shedding frequency to the galloping frequency varies like 0.977Π−0.52
1 .

The difference between the power predicted by the QSS and DNS models scales with

Π−0.6
1 ; the relative power at the vortex shedding frequency scales with Π−0.52

1 . These

scalings are quite similar, and both are close to 1/
√

Π1. While not unequivocal, this

correlation strongly indicates this discrepancy is due to the influence of the vortex shedding,

even though the vortex shedding and galloping frequencies remain separated by around the

same amount for all values of Π1 presented in figure 4.11. The data presented in figure 4.13

also give some indication of the magnitude of any vortex shedding correction term that

might be added to the QSS model in an effort to decrease the discrepancy between it and

the DNS simulations.

Further information can be gained by observing the flow field. Non-dimensionalised

flow field data at values of Π2 close to where maximum power is produced at different Π1
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(a)

(b)

(c)

(d)

Figure 4.14: Vorticity plots of the flow at arbitrary instants at Π2 = 0.47. (a) Π1 = 10, (b)

Π1 = 60 (c) Π1 = 250 and (d) Π1 = 1000 at Re = 200. Contours show vorticity at levels

between ±1.

are presented in figure 4.14. The figure shows a clear wavelength of the wake as Π1 is

increased. Qualitatively, this can be interpreted as showing that at high Π1, the vortex

shedding is simply superimposed over the path of motion of the cylinder. It shows a decrease
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in amplitude of the path of the body at low Π1, which may be due to the higher levels

of non-linear interaction between the vortex shedding and galloping. Such an argument is

consistent with the data of figure 4.13 that show the increasing influence of vortex shedding

on the velocity of the body as Π1 decreases. Taken together, this also goes some way to

explaining the discrepancy between the output power predicted by the QSS and DNS

models at low Π1, highlighted in figure 4.10.

4.2 Frequency response of the system

The new governing parameters (Π1 and Π2) formulated in section 4.1.2 using the linearised

QSS equation show that the velocity amplitude and mean power output are effectively a

function of a single parameter, Π2. The amplitude of the displacement also collapses if the

second parameter, Π1, is also used to scale the amplitude.

Here the frequency response of the body is investigated in terms of these two new

parameters.

4.2.1 Formulating the linear frequency of the system

The process was initiated by considering the eigenvalues of the linearised QSS model

(Eq:4.1), which can be found in equation 4.2. The term under the square root (equa-

tion 4.10) of this equation can be used to express the frequency of the system provided

that the eigenvalues are complex.

If this condition (presence of complex eigenvalues)is satisfied, the imaginary component

can be identified as the frequency of the system.

f =

√√√√
[
c− 1

2ρUAa1
(m)

]2
− 4

k

(m)
. (4.10)

By substituting c∗, m∗ and U∗ equation 4.10 can be non-dimensionalised as

f =

√[
c∗
(
U

D

)
− 1

2

a1
m∗

(
U

D

)]2
− 4

(
U

D

)2 2π

U∗ . (4.11)

This can then be rewritten as

flin =

√(
U

D

)2 (
c∗ − a1

2m∗

)2
− 4

(
U

D

)2( 2π

U∗

)2

. (4.12)
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By taking the factor of U/D to the left-hand side

flinD

U
=

√
(
c∗ − a1

2m∗

)2
− 4

(
2π

U∗

)2

. (4.13)

Expanding terms gives

flinD

U
=

√
c∗2 − 2c∗a1

2m∗ +
a21

4m∗2 −
16π2

U∗2 . (4.14)

Multiplying through by m∗ gives

flinDm∗

U
=

√
c∗2m∗2 − c∗m∗a1 +

a21
4
− 16π2m∗2

U∗2 . (4.15)

By substituting Π1 and Π2 appropriately the expression of the linear frequency is re-

duced to

flinDm∗

U
=

√
Π2

2 −Π2a1 +
a21
4
− 4Π1. (4.16)

Thus, a non-diemnsionalised expression for the frequency of the system can be formu-

lated from Π1 and Π2, which is defined as the linear frequency flin of the system.

Note that flin is nondimensionalised using the same timescale as was used to arrive

at Π1 and Π2, namely m∗(D/U). This definition of flin provides a natural limit; when

the quantity below the square root in equation (4.16) becomes positive, flin will not be a

frequency, but a prediction of the growth rate of the amplitude of the body (a complex

quantity, generated by a negative number under the square root, is required to produce an

oscillation).

4.2.2 Comparison of predicted frequencies using different approaches

Predictions for the frequency of the system were obtained using three different techniques

namely the predictions of the linearised QSS model, predictions from the full QSS model

and DNS. For given values of Π1 and Π2 the linear frequency flin was found by solving

equation 4.10. fQSS was obtained by performing a power spectrum analysis on the time

trace of the velocity of the body obtained by numerically solving the quasi-steady state

equation. fDNS was obtained using a similar technique as fQSS however, the velocity data

was obtained through DNS simulations of fluid-structure interactions. Data were obtained

at a constant undamped natural frequency of f = 0.025 (U∗ = 40).

66



4.2.2. COMPARISON OF PREDICTED FREQUENCIES USING DIFFERENT
APPROACHES

1.4

1.6

1.8

2.0

2.2

2.4

2.6

     

× 10
-2

 0.01

 0.1

 1

 10

 0.1  1  10  100  1000

Π1

fiDm∗

U

fiD

U

(a)

(b)

Figure 4.15: Frequency data as a function of Π1, (a) without and (b) with scaling with

m∗. Frequency obtained using QSS simulations, DNS simulations and the linear frequency

equation (Eq:4.12). fi is the type of frequency i.e. fDNS,fQSS,flin. Data present flin

(•), fQSS (▲) and fDNS (×) at Π2 = 0.15, Re = 200 and undamped natural frequency,

f = 0.025 ( ).

The three frequency predictions are presented as a function of Π1 in figure 4.15 at a

constant Π2of 0.15. Here, the undamped natural frequency was kept constant at f = 0.025

(U∗ = 40). Thus, Π1 was varied by varying m∗. Data in figure 4.15 (a) is presented without

the scaling of m∗ and 4.15 (b) is presented with the scaling of m∗. The dilation of different

frequencies as Π1 reduces, can clearly observed in figure 4.15 (a) without the scaling of m∗.

The DNS frequency fDNS , deviates from fin for low values of Π1. However, it converges

to fin around Π1 = 10. In comparison, both flin and fQSS converge to fin much quicker,

around Π1 = 1, with flin converging slightly quicker than fQSS. One noticeable fact is that
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the linear frequency deviates from fin and reduces rapidly for values of Π1 less than 1 in

comparison with fQSS. One possible explanation for this effect is the contribution of the

higher-order nonlinear terms present in the forcing in the QSS model presented in equation

2.5. For small values of Π1, these terms will start to have a significant effect. As these

nonlinear terms by definition are not included in flin, their relatively larger impact will

make the linear frequency prediction less accurate. Furthermore, the ratio of flin
fqss

(figure

4.16) shows the deviation becoming larger as the system approaches the region of high

power transfer (Π2 0.4−0.5). This can be an indication of the non-linearities of the forcing

becoming more prominent in the the region of higher power transfer.

0.1 1 10 100 1000

Π2

Π1

flin
fQSS

Figure 4.16: Contour plot of flin
fQSS

in Π1 Π2 space. A deviation between the flin and

fQSScan be observed for Π1 < 10. The deviation becomes larger as the system approaches

the region of high power transfer (Π2 0.4− 0.5).

Figure 4.17 shows the time traces of transverse velocity ẏ and the induced angle θ

obtained using the QSS model, at the two extreme cases of Π1. The time traces at Π1 =
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Figure 4.17: Time histories of ẏ and θ at Π2 = 0.2 and U∗ = 40 obtained from the QSS

model . The time histories presented for : (a) and (c) at Π1 = 1000; (b) and (d) at

Π1 = 0.001 representing the two regions of frequency response. It is clearly evident that as

Π1 decreases the system becomes non-sinusoidal.
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1000 and Π1 = 0.001 are presented in figures 4.17 (a) and (c) and figure 4.17 (b) and (d)

respectively; Π2 = 0.2 is constant, and the reduced velocity is fixed at U∗ = 40 so that Π1

is varied by varying the mass ratio m∗.

Comparing figures 4.17 (c) and (d), with the respective Cy vs. θ plot (figure 4.1(a)) it is

clearly seen that at Π1 = 0.001 (figure 4.17 (d)) the body sustains induced angles which fall

into the non-linear region of the Cy vs. θ curve for long periods of time in a single oscillation

cycle. In contrast the same period of time is significantly less when Π1 = 1000. Thus, it is

clear that the non-linearities of the forcing terms start dominating as Π1 decreases.

The underpinning reason for this phenomenon is that as Π2 is fixed, m∗ decreases as

Π1 reduces. Thus at Π1 = 1000 the system has comparatively high inertia (m∗ = 201) and

therefore needs a greater force to accelerate, which results in the body oscillating such that

its velocity generates an instantaneous angle of attack θ which fall within the linear region

of the Cy vs. θ curve over the majority of the galloping cycle.

At Π1 = 0.001, the inertia of the body is relatively low (m∗= 0.2). As a result the

body accelerates quickly to high velocities gaining higher induced angles quickly, and these

high velocities are sustained for the majority of the time of a galloping period. These high

velocities correspond to induced angles which falls in the non-linear region of the Cy vs. θ

curve (figure 4.1).

Thus, at high Π1 the significant forcing of the oscillatory system is governed by the

linear terms of the forcing. As Π1 drops to a significantly low level, the non-linear terms of

the forcing start affecting the system. As the linear frequency model does not account for

the non-linear terms of the forcing function, a significant deviation of the linear frequency

from the QSS frequency can be observed.

Spectral analysis of the DNS data at low Π1

The power spectral data of the velocity signals between Π1 = 0.3 and Π1 = 1 presented in

figure 4.18, shows the galloping signal becoming weaker and the vortex shedding becoming

more dominant as Π1 decreases. One interesting fact which can be observed on the vortex

shedding frequency is that it slightly increases as Π1 reduced. This can be clearly observed

by comparing the frequency values at the peaks which represent the vortex shedding of

figures 4.18 and 4.11. The peak at the vortex shedding shifts to the right as Π1 reduces
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Figure 4.18: Velocity signal (left) and the corresponding power spectrum (right) of the

DNS data at four values of Π1 at Π2 = 0.15. (a) and (b) Π1 = 1, (c) and (d) Π1 = 0.5,

(e) and (f) Π1 = 0.4, (g) and (h) Π1 = 0.3. fg and fs represents galloping and vortex

shedding frequencies respectively. U∗ is kept at 40 therefore the mass ratio decreases as

Π1 decreases.
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indicating some interaction between vortex shedding and galloping. This phenomenon is

very subtle however, a significant difference can be observed by comparing figures 4.11 (h)

(Π1 = 1000) and 4.18 (h) (Π1 = 0.3).

Comparison of flin and fQSS in Π1 Π2 space

The data of figure 4.15 show how the various frequency measurements vary with respect

to Π1 for a single value of Π2 = 0.15. Here, this data is extended over a range of values of

Π2 to produce contours of frequency as a function of Π1 and Π2.

0.1 1 10 100 1000

Π2

Π1

Figure 4.19: Contour plot of flinDm∗

U in Π1 Π2 space.

Figures 4.19, 4.20, 4.21 show the non dimemsionalised flin fQSS and fDNS respectively.

Essentially, both frequencies tend to be functions of Π1, with very little dependence on Π2.

This is shown by the essentially straight vertical contours in figures 4.19, 4.20, 4.21.

The lower boundary of Π1 for the DNS results was limited Π1 = 10. As discussed in

72



4.2.2. COMPARISON OF PREDICTED FREQUENCIES USING DIFFERENT
APPROACHES
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Figure 4.20: Contour plot of
fqss
f in Π1 Π2 space.

section 4.2.2, vortex shedding becomes more dominant and galloping becomes weaker as

Π1 reduces. Further, as Π2 increases the galloping signal further weakens. Because of this,

it was difficult or impossible to obtain a reliable galloping signal through DNS simulations

as Π2 increases. Thus, the lower boundary of Π1 was set where DNS data can be obtained

across the range of Π2 considered for power transfer (Π2 015− 0.8). The ratio between flin

and fDNS over this range is presented in figure 4.22. The figure shows that over this range,

the ratio is between 0.9 and 1, showing a good agreement between the two frequencies.

Thus, the expression formulated for the frequency presented in equation (4.16), formed by

linearising the equation of motion and using the newly formulated parameters Π1 and Π2,

can be used as a model for prediction of the frequency of an energy harvesting system.
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Figure 4.21: Contour plot of fdns

f in Π1 Π2 space.
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Figure 4.22: Contour plot of flin
fDNS

in Π1 Π2 space. The linear frequency flin provides a

good prediction of the DNS frequency over the range of Π1 plotted here.

4.3 Summary of analysis of power transfer using the QSS

model

Suitable scaling parameters for galloping have been formulated. These parameters Π1, a

combined mass-stiffness, and Π2, a combined mass-damping, were formulated through the

natural time-scales found from the linearised quasi-steady state model.

The power transfer of a square body under fluid-elastic galloping was analysed by

solving the quasi-steady state oscillator model equation using numerical integration. Power

data were presented in terms of both traditional VIV and the newly formulated scaling

parameters. A good collapse for predicted output of power was obtained using the newly

formulated dimensionless groups (Π1, Π2) in comparison with the classical VIV parameters

,i.e., ζ and U∗. The collapsed data using the dimensionless groups strengthens the argument
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that the velocity amplitude and the power transfer of the system do not depend on the

natural frequency of the system over a large range of natural frequencies.

Even though m∗ is an independent parameter as shown in equation 4.8, the results

showed that the system is essentially a function of Π1 and Π2 only. This seems to be

explained by inspection of equation 4.8, which shows that m∗ only has an impact on the

forcing terms which are non-linear in relation to the body velocity. For these terms to be

appreciable, the velocity of the body (and therefore the induced angle of attack) needs to

be very high, which appears not to be the case for the range of parameters tested here.

In comparison with the direct numerical simulation data, it can be concluded that

the QSS model provides a good estimate of the power output of the system when Π1 is

relatively high. However, at low values of Π1, the prediction is not close due to the fact

that the QSS model does not account for the influence of vortex shedding which is seen

to be relatively increasing as Π1 is decreased. However, the QSS model does provide a

reasonable prediction of the value of Π2 at which maximum power is produced. Both the

error in predicted maximum power between the QSS and the DNS models, and the relative

power of the vortex shedding have been quantified and scaled similarly to 1/
√

Π1.

From the eigenvalues of the system from the linearised QSS model, an expression for

the frequency of the system was formulated in terms of Π1 and Π2 which was defined as

the linear frequency flin.

Comparison of frequency data obtained using the QSS model, linear frequency and

DNS simulations shows a deviation from the undamped natural frequency of the system

at Π1 < 10. The linear frequency showed a rapid decrease with further decreases in Π1 for

Π1 < 1. It is concluded that when Π1 drops to a significantly low level, the non-linear terms

of the forcing function of the system start affecting the system. As these non-linearities

are not accounted in the linearised QSS model which is used to formulate flin, a significant

deviation of the linear frequency from the QSS frequency can be observed.

The linear frequency agreed well with the DNS results within the boundaries of con-

sideration. The lower boundary of Π1 was limited to Π1 = 10 as it was the lower limit

where DNS data can be obtained across the range of Π2 considered for power transfer

(Π2 0.15− 0.8). However, as Π1 considered for energy transfer are Π1 > 10, it can be con-

cluded that expression formulated for the frequency of the system obtained using the newly
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formulated parameters Π1 and Π2 can be used as a model for prediction of the frequency

of an energy harvesting system.
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Chapter 5

Optimization of the cross

section for power extraction

5.1 Introduction

Galloping is due to an increase in mean induced lift force Cy with an increase in the

instantaneous induced angle of attack. This instantaneous angle of attack is directly related

to the transverse velocity - an increase in angle of attack implies an increase in velocity.

This increase in mean lift force is created by an increase in the difference in mean pressure

on the upper and lower sides of the body. The mean pressure on each side of the body

is related to the structure of the mean shear layer, in particular to the separation and

potential reattachment of this shear layer, and the size of any resulting recirculation region.

An increase in angle of attack forces one shear layer (the lower one in figure 2.4) closer to

the wall, meaning a high speed region is placed close to this wall. A simple consideration

of Bernoulli’s equation shows that this high speed region should result in a region of low

pressure. This low pressure on the upper side results in a positive pressure difference

between the lower and upper sides, and thus a positive mean lift. The fact that this mean

lift occurs as a function of the angle of attack, and therefore the transverse velocity, implies

that this transverse forcing should be in phase with the transverse velocity.

From equation 3.2 discussed in section 3.3 it is clear that the power transferred from

fluid to the body is a function of the induced forcing Fy and the transverse velocity ẏ.
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The sign of the average power represents the direction of power transfer; positive power

represents the power transfer from fluid to the body, negative power represents power

transferring from body to the fluid. Thus, according to equation 3.2 it can be deduced

that if there is a scenario where both high induced forcing and high transverse velocities

are present, higher power output can be achieved.

This can be related directly to the shape of the Cy vs. θ curve. To optimize power

transfer this curve should,

• have a high gradient ∂Cy/∂θ at θ = 0

• a large maximum Cy

• this maximum Cy should occur at a high value of θ

All of these features can be influenced by the cross section of the body which is galloping.

Therefore, if the geometric features of the cross section that influence these curve features

can be identified, an informed search for an optimal cross section for power extraction

can be undertaken. The major features of the body that influence these Cy vs. θ curve

parameters are discussed below.

Luo et al. (1994), showed that the afterbody of the cross section has a direct impact

on the Cy vs. θ curve. One interesting observation of this study was that inhibiting the

shear layer re-attachment results in a higher peak induced force coefficient Cy occurring at

high induced angles (high transverse velocities). The opposite of this result was discussed

by Robertson et al. (2003) where long rectangular cross sections did not exhibit galloping

due to shear layer reattachment at low θ. Furthermore, Luo et al. (1994) have discussed

the impact of the reattachment of the shear layer at the trailing edge. As θ is further

increased beyond the angle at which reattachment occurs, the enclosed “bubble” region of

the separated reattached shear layer shrinks in size reducing the difference in suction in

the top and bottom sides of the body and results in a reduction in Cy (refer section 2.1.3).

Therefore, it can be hypothesised that a higher power transfer can be obtained by

inhibiting the shear layer re-attachment.

Here, the influence of the shear layer and its reattachment on the mean power is dis-

cussed. It is crucial to keep the shear layer closer to the body for galloping; if it moves
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too far from the body, the relationship between a separated shear layer inducing a high

velocity, and therefore low pressure, is lost. Thus, a cross section which has a straight

initial section (which provides some initial streamlining) followed by a slanting section to

inhibit the shear layer, had to be considered for analysis. Therefore, a cross section which

is a hybrid of a rectangle and a triangle is considered, as illustrated in figure 5.1. This

cross section was essentially developed by slating the afterbody of the square section as

illustrated in figure 5.1. The cross section is transformed gradually by manipulating the

ratio of two lengths, the first being the length of the straight section, and the second be-

ing the streamwise length of the entire body. This cross section provides the flexibility of

gradually inhibiting the shear layer reattachment while having the initial streamlining of

the shear layers to keep the shear layers reasonably close to the body to sustain galloping.

The DNS data for both stationary and FSI cases were obtained at Re = 200. The force

data are presented for each stationary cross section. This is followed by presentation of

extracted power curves, calculate from the QSS model using this force data for each new

body. Based on the QSS power data, an optimum cross section for power extraction, from

the family of cross sections that have been tested, is identified.

The main features of the generated Cy vs. θ curves for the new bodies are identified

and linked to the flow structure present by analysing the mean surface pressure and flow

velocity data. Following this, a comparison is made between QSS and DNS mean power

on the cross section which provides an optimum mean power.

A final summary is presented outlining that the behaviour of the shear layers is a

controlling factor for mean power output. The preliminary design considerations to obtain

an optimum power output should therefore focus on the manipulation of these shear layers.

5.2 Influence of the shear layers

In a typical cross section which sustains galloping, the induced lift Cy increases with in-

creasing induced angle θ until it reaches a maximum value of Cy where the shear layer

reattachment occurs. The lift force then decreases as θ is further increased. The underly-

ing mechanism for this behaviour is discussed in detail in section 2.1.3.
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Selection of the cross section

d

l

Figure 5.1: Illustration of the hybrid cross section (combination of a square and a triangle)

obtained by tapering the afterbody of the square. The afterbody was changed by changing

the ratio of d
l . Hence, data were obtained for d

l = 1, 0.75, 0.5, 0.25 and 0 were considered

in this study.

Several key factors have been considered leading to the selection of a suitable cross

section for this analysis. These key factors are:

• The cross section should have a bluff front face with sharp upstream corners for the

flow to separate at the leading edges;

• As the proximity of shear layers to the body plays a vital role in creating Cy (Parkin-

son, 1989), the cross section should have a basic level of streamlining.

• The cross section should consist of a geometric profile in the afterbody, to inhibit or

delay the shear layer reattachment.

The square cross section which is considered as the base cross section in this study

satisfies the first two criteria of the selection process. Therefore, in order to inhibit the

shear layer reattachment, the top and bottom sides of the trailing edges of the square are

tapered off and a hybrid cross section of a rectangle and a triangle (illustrated in figure

5.1), i.e, a pentagon is produced. This cross section satisfies all criteria in the cross section

selection process. Another advantage of this cross section is the inhibition of the shear
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layer can be varied systematically by varying one variable which is d
l . The ratio d

l was

varied from 1 to zero in increments of 0.25 where 1 is the square cross section and 0 is an

isosceles triangle.

5.3 Static body results

d
l a1 a3 a5 a7 Overlap range

0 -2.30617 -269.075 -59.2929 4.74389

20.5◦ − 23.5◦

-5.08342 -56.5390 -160.505 -105.773

28.6◦ − 28.7◦

4.40685 19.9213 22.8894 7.68556

0.25 -0.605146 -19.4346 -82.4463 -94.4226

30.1◦ − 30.2◦

2.50538 9.91021 10.2712 3.94112

0.5 1.44734 4.83885 -166.900 -983.072

14◦ − 16◦

1.51455e 15.8476 52.5465 62.8067

0.75 1.76938 35.2630 -345.562 -10072.7

11.03◦ − 11.11◦

1.77553 43.0120 262.983 638.484

Table 5.1: Coefficient values used in the 7th order interpolation polynomial at Re = 200.

Data present for d
l = 0 − 0.75 at increments of 0.25. Multiple polynomials were used to

attain a better fit. The plot of the compound fit is presented in figure 5.2. The “Overlap”

range refers to the range of angles which the transition of the two polynomials take place.
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Figure 5.2: Induced lift coefficient Cy at different angles for selected cross sections. Data

presented for cross sections, (a) square, (b) d
l = 0.75, (c) d

l = 0.5, (d) d
l = 0.25 and (e)

triangle. Points (•) are predicted from the static body simulations and the curves are the

compound 7th order polynomials.

Stationary time averaged Cy results were obtained for cross sections where d
l = 1,

0.75 ,0.5, 0.25 and 0 using DNS at Re = 200. Table 5.1 shows the coefficients of the

7th order curve fitting for each cross section. In order to achieve a better fit, piecewise

interpolation using multiple 7th order polynomials were incorporated for a single cross

section. During the curve fitting process more importance was given to accurately fitting

the positive portion of the Cy curve, as the power transfer from the fluid to the body only

occurs in this region.

The Cy vs. θ curves in figure 5.2 show that the peak value of Cy shifts to the right as

d
l is increased, hence, the peak Cy occurs at higher induced angles. These data agree with

Luo et al. (1994) where the peak of the maximum Cy value was shifted to higher induced
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angles when reattachment was delayed on a trapezoidal body. As θ is proportional to the

transverse velocity of the body via tan θ = ẏ
U , the peak value of Cy occurs at high induced

velocities as d
l is decreased. Therefore, bodies with a short straight section, or small d

l ,

satisfy one of the three conditions required to optimize the power transfer.

However, a complicating factor is the appearance of a negative region on the Cy vs. θ

curves for cross sections where d
l ≤ 0.25. Here, initially Cy decreases as θ is increased and

only increases after reaching a minimum, nonzero value of θ. The presence of this negative

portion is an indication of unfavourable power transfer, i.e. power transferred from body

to the fluid as the direction of the force and velocity vectors are out of phase. This implies

that when the induced angle of attack is low (when the transverse velocity is low), power

transfer is from the body to the fluid, but when the transverse velocity is high, power

transfer is from the fluid to the body. This means that the direction of power transfer can

be different at different points in the oscillation cycle. This will be further discussed in the

upcoming section 5.5.

5.4 QSS Mean power output

 0

 0.01
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 0.03

 0.04

 0.05

 0.2  0.4  0.6  0.8 1.0

Π2
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Figure 5.3: Dimensionless mean power obtained using QSS model as a function of Π2. Data

presented for five selected cross sections, square (△), d
l = 0.75 (+), d

l = 0.5 (◆), d
l = 0.25

(×) and triangle (●) at Re = 200, Π1 = 100.

Mean power output predictions are obtained for these different cross sections using
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L CASES

the QSS model and the stationary lift data shown in figure 5.2 used as inputs to the

QSS model. Figure 5.3 shows the mean power vs. Π2 for different cross sections namely

d
l = 1, 0.75, 0.5, 0.25 and 0. The cross sections are divided into two classes; high (dl > 0.25)

and low (dl ≤ 0.25). The general trends of power follows the trends observed in section 4.1.3

for the square body in both classes. The mean power first increases, then peaks, and then

reduces as Π2 is increased. For high d
l , the overall shape of the curves is similar, however

as d
l is decreased, the amount of power increases. For low d

l , the overall curve shape is

markedly different; power first increases with Π2, then peaks, and then drops dramatically.

The power extracted also appears to decrease with a decrease in d
l . Furthermore, negative

regions of the Cy vs. θ curves in figure 5.2 appear in the low d
l cases. The change in the

trend of power, and the appearance of a negative region in the Cy, for the low d
l cases

clearly indicates that there is a distinct change in the flow structure for these cases. This

fact is further investigated in section 5.5.

5.5 Investigation of flow characteristics at low d
l cases

The analysis of the mean power and the static body results showed that there is a significant

change in the flow structure at low d
l cases. As the change in mean Cy is the only input from

the fluid dynamics in the QSS model, the distinct features in the Cy vs. θ curves provide

an indication of the change in flow structure which results in the distinct change in mean

power discussed in section 5.4. The main difference between high and low d
l cases is the

presence of the negative region in the Cy vs. θ curves. Thus, it is of interest to investigate

the underpinning reason for the negative region in the low ratios of d
l . The triangle (dl = 0)

which produced the largest negative region out of the cross sections considered, is taken as

the representative of the low d
l cases for further investigation.

5.5.1 Surface pressure

The driving force of galloping is the induced force Fy created as a result of the freestream

velocity of the fluid and the transverse velocity of the body. As discussed in section 2.1.3

the pressure difference of the upper and lower sides of the body (figure 2.4) creates this

induced force as a result of the relative proximities of the shear layers to the respective
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sides. Thus, here, surface pressure data on the time averaged flows on the stationary cross

section is analysed.

Time averaged (to filter out the influence of vortex shedding) surface pressure data on

the top and bottom surfaces of the cross sections at θ = 4◦, θ = 16◦ and θ = 21◦ were

obtained for the isosceles triangle. These angles correspond to the regions of the Cy vs θ

curve of the triangle where: Cy is negative, but increasing in magnitude; Cy is negative,

but decreasing in magnitude and Cy is significantly positive.

Figure 5.4 shows the surface pressure of the top and bottom surfaces of the body (dl = 0)

as a function of the distance from the leading edge. At θ = 4◦, the pressure on the bottom

of the body is greater than the top at practically all distances. As a result, a pressure

difference is created and a force is generated in the upward direction which according to

the sign convention in figure 2.1, is against the velocity of the body, hence giving a negative

Cy.

As θ is increased to 16◦, (figure 5.4 (b)) the gap between the surface pressure at the

leading edge of the top and the bottom sides reduces. For small distances downstream from

the leading edge, the pressure on the top surface is greater than that on the bottom. This

effect results in a reduction of the magnitude of Cy (although it is still negative).

As θ is further increased to 21◦, (figure 5.4 (c)) the surface pressure on the top side

becomes greater than the bottom over the majority of the body. Therefore, the net effect

of the pressure difference is a positive Cy which is the driving force Fy, now in phase with

the velocity of the body.

5.5.2 Velocity profiles at the points of flow separation

Flow separation at the leading edge is equally vital as the afterbody of the cross section

for galloping, as it creates the shear layers which sustain it. Two wall jets are created from

the top and bottom leading edges. A clearer explanation of the behaviour of the pressures

at the top and bottom edges can be gained from a comparison of the velocity profiles of

the top and bottom wall jets.

Thus, mean velocity magnitude data of the flow were obtained along two lines parallel

to the front wall of the cross section, one starting at the top and the other starting at the

bottom leading edges of the cross section, spreading outward as illustrated in figure 5.5.
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Figure 5.4: Surface pressure of top (✳) and bottom (◆) surfaces of the static triangular

cross section at (a) θ = 4◦, (b) θ = 16◦ and (c) θ = 21◦ A clear pressure difference is visible

between the top and bottom surfaces. The top surface comparatively has more negative

pressure compared to the bottom surface and reduces as θ is increased and vice versa

occurs at the bottom surface. Thus, initially the effective force is upwards which results in

a negative Cy. The effective Cy becomes positive as θ is increased.
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The lengths of these lines were equal to the width of the cross section. Data were obtained

for the same cases presented earlier i.e. isosceles triangle (dl = 0) at θ = 4◦, θ = 16◦ and

θ = 21◦.

Figure 5.5: Illustration of the lines along which the flow velocity magnitudes have been

extracted. The data have been extracted along a line starting from the separation points

in the outward direction (shown with arrows) for the top and bottom surfaces.

The maximum velocity magnitude in the top wall jet at θ = 4◦ (figure 5.6 (a)) is higher

than that in the corresponding bottom wall jet, leading to a lower pressure at the top edge.

However, the velocity magnitude in the bottom wall jet becomes greater than that in the

top wall jet at θ = 16◦. The difference between the top and bottom velocity magnitude in

these wall jets tends to increase as θ is increased to 21◦, where the velocity magnitude at

the bottom is greater than at the top (figure 5.6 (c)). This effectively creates the pressure

difference (according to the Bernoulli’s principle ) shown in figure 5.4 (c), which leads to a

positive Cy and results in a forcing which is in phase with the velocity of the body.

5.5.3 Mean streamlines

The shear layers of the body can be visualised using the magnitude of the strain rate tensor

The strain rate is directly proportional to the shear stress and so it will be high in the shear

layers. Instantaneous flow-field data consists of vortex shedding on top of the shear layers.

Hence, the flow-field data are time averaged over a vortex shedding cycle to filter out the

vortex shedding .
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Figure 5.6: Velocity magnitudes of the flow along a line parallel to the front surface spread-

ing towards top ( ) and bottom ( ) boundaries (figure 5.5). These two lines (for the

top and bottom surfaces) start from the top and bottom leading edges of the triangular

cross section. Data present (a) α = 4◦, (b) α = 16◦ and (c) α = 21◦.

The strain rate tensor of the flow can be expressed as,
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Figure 5.7: Contours of the magnitude of the shear strain rate of time averaged flow field

on the stationary isosceles triangle (dl = 0) at Re = 200 at different incidence angles. (a)

4◦ ( negative value of Cy that is further decreasing with increasing θ), (b) 16◦ ( negative

value of Cy that is increasing with increasing θ) and (c) 21◦ (a significantly positive value of

Cy). The bottom shear layer comes closer to the bottom wall and as the angle of incidence

increases.

Contours of the magnitude of the strain rate tensor of the time averaged flow-field of

the stationary isosceles triangle at θ = 4◦, θ = 16◦ and θ = 21◦ are presented in figure

5.7. Here, it can be observed that the proximity of the bottom shear layer increases as θ is

increased from 4◦ − 21◦.

By comparing the pressure and the velocity plots together with the flow-field data,

it is evident that there are two mechanisms governing the transverse forcing. The first

mechanism is the pressure difference in each shear layer, created as a result of the uneven

distribution of the flow created due to the profile and positioning (angle of attack) of the

geometry. This uneven distribution creates a different speed wall jet on either side, and a
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simple consideration of Bernoulli’s equation suggests the higher speed jet will have a lower

pressure. This forcing occur out of phase or in the opposite direction of the transverse

velocity of the body, as the lower speed (higher pressure) jet is formed on the lower side

of the body (when the body is travelling down). The second mechanism is the relative

proximity of the top and bottom shear layers. Regardless of the pressure in each shear

layer, that pressure will have a larger influence on the force on the body the closer the

shear layer is to the body. So, there are two ways to manipulate the force from the shear

layers; increase the pressure difference between the shear layers by increasing the difference

between the flow in each shear layer (a “streaming effect”); move the shear layers closer or

further from the body (the “proximity effect”).

Initially at θ = 4◦ the streaming effect dominates. This can be observed comparing

figures 5.7 (a) to (b) and (c). The bottom shear layer is far from the body at θ = 4◦, hence

the proximity effect is low. This results in the negative Cy.

As θ is increased first to θ = 16◦ and then to 21◦, the proximity of the bottom shear

layer to the wall of the body increases (figure 5.7 (b) and (c)), and thus the proximity effect

becomes more dominant. At least for the θ = 21◦ case, this creates the positive region of

the Cy vs. θ curve.

5.6 Fluid-structure interaction (DNS) results

5.6.1 Mean power data

The main limitation of the QSS model as discussed in section 4.1.7 is considering the

induced transverse force Fy as the sole driving force of the system, generated by the relative

proximity of the shear layers (refer section 2.1.3). However, it was concluded in chapter 4

the QSS model provides good agreement between QSS and DNS for power at high Π1 for

the square cross section, even though the relative error increased as Π1 decreased due to

the significant influence of vortex shedding.

A comparison study between QSS and DNS mean power was carried out on the different

cross sections considered at high Π1 (i.e.Π1 = 1000) and presented in figure 5.8.

Both DNS and QSS mean power data (figure 5.8) show similar trends. The maximum

mean extracted power increases as d
l is decreased. These trends provide a reinforcement
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Figure 5.8: Comparison of the maximum power obtained using DNS (•) and the QSS (×)

model as a function of d
l . Data obtained at Π1 = 1000 (m∗ = 201.3) and Re = 200. Similar

trends are present for both QSS and DNS data. A significant reduction in power could be

observed as d
l → 1.

to the hypothesis of attaining a higher power output through inhibition of the shear layer

reattachment.

However, a significant error (calculated using equation 4.9) between QSS and DNS

power could be observed as d
l decreases. The quantified errors presented in figure 5.9

shows an almost linear increase in the % error as d
l → 0.25, with a maximum error of 35%.

5.6.2 Flow-field data

As a significant discrepancy between the QSS and DNS data was observed, further inves-

tigations were conducted in order to identify the cause of this error.

The QSS model assumes that the flow is quasi-static, meaning the instantaneous flow of

the oscillating body at a particular induced angle θ, is similar to that of a stationary body

at the same induced angle. Thus, stream traces of the flow around the oscillatory body at

selected instants of a single galloping cycle were compared against the stream traces of a

similar stationary cross section at the induced angles produced at the considered points of

the galloping cycle. The chosen cross section to perform this task was d
l = 0.25 at Π2 = 0.26

which provided the maximum mean power among all cases considered. Three points of a
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Figure 5.9: The percentage error calculated using equation 4.9 between the maximum

power obtained using DNS data and predicted by QSS model as a function of d
l . The error

reduces significantly as d
l → 1.

galloping cycle was considered. These points corresponded to key instants of the velocity

signal. The points considered were point 1 where ẏ is maximum, point 2 where ẏ is close to

zero with a negative gradient and point 3 where ẏ is close to zero with a positive gradient.

An illustration of these points is presented in figure 5.10.

It should be recalled that the QSS model assumes that only the long-time forces are

important; the fluctuation in time at the frequency of the vortex shedding is assumed to

play no role. Therefore, both stationary and the instantaneous oscillatory flow data were

time averaged over a length of time equal to one vortex shedding cycle in order to filter the

vortex shedding and have an estimate of the mean flow.

Figure 5.11 shows the time averaged stream functions for points 1, 2 and 3 and the

stationary time averaged stream traces of the corresponding induced angles. The time-

averaging was carried out over a period of vortex shedding in oder to filter the effects

of vortex shedding. Comparison between FSI and stationary data at point 1, where the

transverse velocity is at its maximum, (Figure 5.11 (a) and (b)) shows a significant difference

of the stream functions.

In contrast, at point 2 and 3 the stream functions at the leading edge of the FSI

simulations are similar to those of the stationary simulations. At point 2 both the FSI

(figure 5.11 (b)) and stationary case (figure 5.11 (c)) show similar flow behaviour until
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Figure 5.10: Illustration of the time history of velocity depicting the points considered

to obtained time averaged stream traces. The points considered are: point 1 where ẏ is

maximum, point 2 where ẏ is close to zero with a negative gradient and point 3 where ẏ is

close to zero with a positive gradient.

separation. A single circulation bubble at the top is formed in the FSI case where a

symmetrical formation of the circulation bubbles could be observed in the stationary case.

A similar behaviour of the stream functions could be observed between point 3 for FSI

(figure 5.11 (d)) and stationary (figure 5.11 (e)) cases.

According to the assumptions of the QSS theory the flow-fields between the stationary

and FSI cases at points 2 and 3 should be approximately identical as the induced velocities

are zero and therefore the induced angles are zero. However, the observations on the

corresponding FSI cases show a significant difference, indicating a significant deviation

from the quasi-steady assumption.

Thus, from the analysis of the flow data it is clear that the QSS predictions deviates

significantly for mean power predictions at decreasing d
l , as a result of the flow not being

quasi-static. Thus, this violates the assumption of considering the time averaged fluid forces

as the inputs of the oscillatory system creating a significant discrepancy between QSS and

DNS mean power.

However, the QSS model does provide similar trends as the DNS predictions and there-

fore, can be used as a preliminary design and research tool to obtain data and conclusions

to produce efficient galloping energy extraction systems.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Time averaged stream functions of stationary and oscillating flow-fields of

the hybrid cross section (dl = 0.25), averaged over a vortex shedding cycle. (a), (c) and

(e) are the averaged stream functions of the oscillating case at tU
D = 2295.763 (point 1),

tU
D = 2305.897 (point 2) and tU

D = 2325.870 (point 3) . (b), (d) and (f) are the stream

functions of the flow field of the stationary body corresponding to the induced angles of

(a), (c) and (e).
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5.7 Design considerations for a galloping energy extraction

system through inhibition of shear layer reattachment.

From the QSS and DNS results it is clear that inhibition of the shear layer reattachment

leads to higher energy output. However, it is to be noted that even though a higher power

output could be obtained through inhibition of the shear layer reattachment, a region of

adverse power transfer (body-to-fluid) will develop as d
l decreases. This can be observed

through the negative region present in the Cy curves beyond d
l ≤ 0.25. As this negative

region develops the maximum extracted power reduces,which can be observed in the power

curves (figure 5.3) where the maximum power at d
l = 0 is less than d

l = 0.25.

This fact leads to one important design consideration for an optimum cross section.

The optimal design would be a trade off between large positive values of Cy occurring at

high angles of attack where significant power could be generated and the negative regions

of Cy where the power transfer occurs in the opposite direction. Barrero-Gil et al. (2010)

concluded that the first coefficient a1 should satisfy a1 > 0 in order to obtain good operation

of an energy harvesting system, where it is furthermore explained in detailed using the QSS

model together with direct numerical simulations for FSI cases. The conclusion of Barrero-

Gil could be considered as somewhat simplistic as cases of higher power output where

a1 < 0 can be observed in figure 5.3. Thus, a more detailed statement to compliment

Barrero-Gil is to obtain a cross section which produces a Cy vs. θ curve with optimum

balance between negative and positive regions.

As further consideration for future research, DNS and QSS work at 0 < d
l < 0.25

could be carried out to find the optimum ratio of d
l to obtain a maximum power output.

Moreover, further work could be carried out to find ways to reduce the negative portion

of the Cy curve by applying modifications to the cross section which can result in further

optimisation of the geometry.

5.8 Summary

The primary objective of the work presented in this chapter was to test the hypothesis that

higher power output could be obtained by inhibition of shear layer reattachment. This was

done by incrementally tapering off the top and bottom sides of the trailing edges of the

96



5.8. SUMMARY

square cross section. A negative region in the Cy vs. θ curve was observed for d
l < 0.25.

This region resulted in a power loss in a certain portion of the galloping cycle as the driving

force Fy and the velocity ẏ were in opposite directions.

The mean power versus Π2 curves showed an increase in maximum power as d
l was

decreased until d
l = 0.25. At d

l = 0, (
Pm

ρAU3
= 0.0304 at Π2 = 0.021) the maximum power

was less than at d
l = 0.25 (

Pm

ρAU3
= 0.04 at Π2 = 0.028), although the peak value of both

the induced angle and Cy were greater in d
l = 0 compared to d

l = 0.25. Further analysis of

the Cy curve revealed that the negative region of d
l = 0 was greater than that of d

l = 0.25,

hence resulting in a lower maximum power output.

The surface pressure plots and the velocity magnitude profiles at the starting points of

the wall jets revealed that there are two mechanisms governing the transverse forcing. The

first mechanism is the pressure difference in each shear layer, or the “streaming effect”.

The second mechanism was the relative proximity of the top and bottom shear layers, or

the “proximity effect”.

Initially at θ = 4◦ the streaming effect dominated resulting the negative Cy. As θ

increased from θ = 16◦ to θ = 21◦ the proximity effect started dominating resulting in a

positive Cy.

Comparison of the QSS and DNS predictions of maximum power showed similar trends.

The maximum power increased as d
l decreased supporting the hypothesis of attaining higher

power output through inhibition of shear layer reattachment. However, a significant error

between the QSS and FSI simulations were observed as d
l was reduced.

Further investigations carried out using time averaged flow data concluded that the

mean flow of FSI simulations had significant deviations from the DNS stationary simulations

carried out at corresponding induced angles. This shows that the flow is essentially not

quasi-static, violating the primary assumption of considering Fy as the sole driving force

of the system. Yet, the QSS model can be used as a tool to obtain initial approximations

to design galloping energy harvesting systems as QSS data produced similar trends as the

FSI simulations.

In order to obtain an efficient galloping energy harvesting system through inhibition of

shear layer reattachment, one key design consideration is to obtain a cross section which

has the optimum balance between the negative and positive regions of the Cy vs. θ curve.
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Inhibition of the shear layer reattachment through tapering of the trailing edge leads to

higher power. However, as it approaches a triangle, a negative region of Cy emerges in

the Cy vs. θ curve which leads to adverse power transfer. This region keeps increasing

between 0 ≤ d
l ≤ 0.25. Thus as a result an optimum d

l should be obtained in order to get

a balance between the negative and positive regions which leads to an optimal galloping

energy harvesting system.

As for future research this method of attaining high power through inhibition of shear

layer reattachment can be further developed by conducting more detailed investigations

into the geometry to find ways to reduce the adverse power transfer which will lead to

further increases in power output.
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Chapter 6

Conclusions

This thesis explores the potential of obtaining useful energy from fluid-elastic galloping.

This research has employed theoretical modelling and numerical simulations. The study

was primarily focussed on understanding the energy transfer between the fluid and the

structure.

Galloping being a phenomenon of fluid-structure interaction, two main objectives were

identified during the selection of the scope of the research. These were understanding the

underpinning structural parameters of the system, and understanding the fluid mechanics

of the system and thereby attempting to optimise mean power output through manipulation

of these mechanics.

New governing dimensionless groups for galloping namely, Π1 and Π2 were formulated

using the natural times-scales of the linearised quasi-steady state model. Data were ob-

tained for a square cross section. The formulated dimensionless groups Π1 and Π2 provided

a good collapse for the predicted power output in comparison with the classical VIV pa-

rameters i.e. U∗, m∗ and ζ. The data collapse as a result of using the dimensionless groups

reinforce the argument that the velocity amplitude of the system and the power transfer

of the system do not depend on the natural frequency of the system over a large range of

natural frequencies.

Although this new formulation shows that the mass ratio m∗ is an independent param-

eter, the findings show that the system is essentially a function of Π1 and Π2. A close

inspection of equation 4.8 reveals that m∗ only has an impact on the non-linear forcing
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terms in relation to the velocity of the body. Thus in order for these non-linear terms to

be significant, the induced angle of attack and therefore, the velocity of the body needs to

be very large, which is not the case for the rage of parameters which were tested.

It can be concluded, through comparison between the quasi-steady state and direct nu-

merical simulation data, that the quasi-steady state model provides a good approximation

of the power output of the system when Π1 is relatively high. However, the QSS approxi-

mation deviates from DNS predictions at low values of Π1 due to the fact that QSS model

does not account for interaction of the body with the unsteady forces created by vortex

shedding which is shown to increase as Π1 is decreased. However, the QSS model does

provide a reasonable prediction of the value of Π2 at which maximum power is produced.

Both the error in predicted maximum power between the QSS and the DNS models and

the relative power of the vortex shedding have been quantified and scale approximately as

1/
√

Π1.

An expression describing the frequency of the system was produced from the eigenvalues

of the linearised QSS model, in terms of Π1 and Π2. This frequency was defined as the

linear frequency flin of the system. Frequency data obtained through this model were

compared against the QSS model and DNS simulations.

The frequency data obtained through these threee methods, namely, the QSS model,

linear frequency and DNS simulations all showed a deviation from the undamped natural

frequency of the system at Π1 < 10. The linear frequency showed a rapid decrease at

Π1 < 1. It can be concluded that at Π1 where Π1 drops to a significant low level, the

non-linear terms of the forcing function of the system start affecting the system. As these

non-linearities are not accounted in the linearised QSS model which is used to formulate

flin a significant deviation of the linear frequency from the QSS frequency can be observed.

The linear frequency agreed well with the DNS results within the boundaries of consid-

eration. The lower boundary of Π1 was limited to Π1 = 10 as a clear deviation of flin and

fDNS was observed Π1 < 10. However, as Π1 considered for energy transfer are Π1 > 10,

it can be concluded that expression formulated for the frequency of the system obtained

using the newly formulated parameters Π1and Π2 can be used as a model for prediction of

the frequency of an energy harvesting system.

These conclusions support the first objective of this thesis which is: “Understanding
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the governing mechanical parameters of the system and isolate regions where a good power

transfer could be obtained.”

The second objective of this study was focused on optimisation of the governing fluid

mechanics of the system in order to obtain a higher power output. The primary hypothesis

was that inhibition of the shear layer reattachment would result in a higher power output.

The square cross section was systematically tapered off into a hybrid rectangular/triangular

body. The geometry was controlled by the lengh of the rectangular section compared the

length of the triangular section, d
l . By changing the d

l ratio the body could be systematically

tapered.

A negative region in the Cy vs. θ curve was observed for d
l < 0.25. This region resulted

in a power loss in a certain portion of the galloping cycle as the driving force Fy and the

velocity ẏ were in opposite directions.

The mean power versus Π2 curves showed an increase in maximum power as d
l was

decreased until d
l = 0.25. At d

l = 0, the maximum power (
Pm

ρAU3
= 0.0304 at Π2 = 0.021)

was less than at d
l = 0.25 (

Pm

ρAU3
= 0.04 at Π2 = 0.028), although the peak value of both

the induced angle and Cy were greater in d
l = 0 compared to d

l = 0.25. Further analysis of

the Cy curve revealed that the negative region of d
l = 0 was greater than d

l = 0.25, hence

resulting in a lower maximum power output.

Inspection of the pressure and velocity fields revealed that there are two mechanisms

governing the transverse forcing. The first mechanism is the pressure difference in each

shear layer, or the “streaming effect”. The second mechanism was the relative proximity

of the top and bottom shear layers, or the “proximity effect”. The negative region in the

Cy curves at low d
l is caused by the streaming effect dominating.

Comparison of the QSS and DNS predictions of maximum power showed similar trends.

The maximum power increased as d
l decreased supporting the hypothesis of attaining higher

power output through inhibition of shear layer reattachment. However, a significant error

between the QSS and FSI simulations were observed as d
l was reduced.

Further investigations carried out using time averaged flow data concluded that the

mean flow of FSI simulations had significant deviations from the DNS stationary simulations

carried out at corresponding induced angles. This shows that the flow is essentially not

quasi-static, violating the primary assumption of considering Fy as the sole driving force of
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the system. Yet, it can be concluded that the QSS model can be used as a tool to obtain

initial approximations to design galloping energy harvesting systems as the QSS data shows

similar trends to the FSI simulations.

It is concluded that in order to obtain an efficient galloping energy harvesting system

through inhibition of shear layer reattachment, one key design consideration is to obtain a

cross section which has the optimum balance between the negative and positive regions of

the Cy vs. θ curve. Even though the inhibition of the shear layer reattachment through

tapering of the trailing edge leads to higher power, as it approaches a triangle, a negative

region of Cy emerges in the Cy vs. θ curve. This leads to adverse power transfer. This

region keeps increasing between 0 ≤ d
l ≤ 0.25. Therefore, an optimum d

l should be obtained

in order to get a balance between the negative and positive regions which then leads to an

optimal energy transfer.

As for future research this method of attaining high power through inhibition of shear

layer reattachment can be further developed by conducting more detailed investigations

into the geometry to find ways to reduce the adverse power transfer which will lead to

further increases in power output.

These conclusions support the second objective of this study: “Understand the gov-

erning fluid mechanics of the system and to optimise and control these mechanics in order

to obtain a higher power transfer.”
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