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Abstract

A simultaneous localisation and mapping (SLAM) system continu-

ously explores the environment to causally estimate the ego-motion

of a robot and map the environment. Visual SLAM using a single

video camera is particularly challenging. Although visual SLAM al-

lows incorporating thousands of features into the system to improve

the accuracy, this gain comes with a computational overhead. This

thesis advances the state of the art in visual SLAM in terms of effi-

ciency, accuracy and robustness.

First, a sub-pixel refinement algorithm is presented to permit efficient

pose estimation in monocular SLAM. The algorithm extends spatial

domain Gauss-Newton parameter estimation into the frequency do-

main. Then corresponding features are sub-pixel refined by estimating

the affine parameters between the two surrounding patches. Here, the

correct frequency range is selected by identifying a direct relationship

between the Gabor phase response and the frequency response of a

Gaussian multiplied image patch. Further it is shown how parameter

estimation can be made more accurate by operating in the frequency

domain, which naturally gives rise to a multi-resolution optimisation

framework.

Next, a novel method is proposed to handle the dimensionality of

the SLAM problem which permits the handling of a large number of

parameters. The proposed method dramatically reduces the compu-

tational complexity of the Kalman-filters by reducing the dimension-

ality as information is acquired. The validity of the method is proved



by applying it to monocular SLAM, where there are a large number

of dimensions in the filter that are not subject to process noise (the

landmark locations). This has the effect of reducing the cost of run-

ning a filter or allowing a single filter to process a much larger set of

landmarks.

Then, the dimensionality reduction is extended into a relative formu-

lation, which is extensible into a large-scale system. The formulation

uses the higher degree of linearity available with the relative formu-

lation to build a Kalman-filter based reduced SLAM system. An

un-delayed method for adding features to the filter is also introduced.

Then the effect of the number of features used in the system on the

final estimation uncertainty is analyzed, and it is shown that the ac-

tual number of dimensions that has to be optimised is far less than

the number of original dimensions in the problem.

Finally, we introduce a novel method to retrieve the pose estimation

Jacobian on limited platforms through an efficient partitioning of the

matrix, which removes the Jacobian computation overhead. Instead

of recalculating the Jacobian every time, we show how it can be pre-

calculated and saved for later retrieval.
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Chapter 1

Introduction

In this Chapter first we give a brief introduction SLAM. A more thorough analysis

can be found in Chapter 2. Then we introduce the main contributions of this

thesis.

1.1 Simultaneous Localisation and Mapping

In robotics, SLAM is the computational problem of constructing a map of an

unknown environment while simultaneously tracking the trajectory of the robot

in that environment. As humans, we can estimate the location of ourselves within

a given environment very easily through relative measurements of the objects,

which we perceive through our eyes.

A moving robot acquires information related to its environment using its sen-

sors. The environment is usually described using physical features. Such features

can be points, edges or any other form of physical cues that can be easily ex-
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tracted from the environment and then tracked to obtain a measurement of the

relative transformation the robot experiences due to its own movement. Tracking

is necessary to measure the movement of the robot relative to those features.

Due to sensor noise it is impossible to compute the actual state of the system

directly. As a result, the robot has to maintain a belief about its state. The

state is the set of parameters the robot maintains to describe both its environ-

ment composed of landmarks and the relative poses of the its trajectory. If the

environment is known, determining the pose of the robot, or given the robots

trajectory, mapping its environment is quite straightforward. In an unknown

environment, simultaneously localising the pose while mapping the environment

is rather complicated. There will always be an uncertainty associated with the

robots belief due to sensor noise. The accuracy of the estimation depends on the

nature of the underlying algorithm and the sensors used.

The camera as a sensor has received much attention in robotics as a low-

cost and feature-rich alternative for SLAM. A single camera is a bearing-only

sensor, which is small, reliable and cheap. However, bearing-only SLAM is hin-

dered by the feature initialisation problem, where the depth of a newly mapped

landmark cannot be determined from a single measurement, demanding multiple

bearing-only measurements in combination. Combined information from mul-

tiple measurements may be ill-conditioned, making the estimation much more

complex compared to estimating those with bearing and range sensors. If two or

more cameras are used together to obtain measurements, the range information

can be directly computed.

1.1.1 Monocular SLAM

Monocular SLAM is the particular problem where the only sensor used is a single

camera. As a single camera is a bearing-only sensor, the feature depths and the

robot poses can only be recovered up to a scale as there is no reference available

at the initialisation stage to make relative measurements. The scale of the system
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is usually governed by the scale that the system assumes at initialisation.

Visual SLAM relies on image feature matching. The corresponding features

are matched between images to compute the pose. In recent dense systems, those

correspondences can even be all pixels of the images. After matching a sufficient

number of correspondences, the relative camera pose between such frames can be

computed using a minimal set of five points in closed form or incrementally. The

estimated pose then can be used to estimate the depth of matched features in the

monocular case, or to refine the measured depths if it is available.

After feature initialisation, a robot can continuously estimate its ego-motion

using inter-frame feature matches. Already initialised features which appear again

on a new frame are used to estimate the relative pose of that frame. If the

number of initialised features that appear on the new frame drops below a given

threshold, a new set of features is initialised where the depths can be estimated

using already estimated relative pose (with respect to those initialised landmark

correspondences) of the new frame. The optimisation is done simultaneously with

estimating the camera pose while refining the landmark estimates.

In visual SLAM, the features on a frame are described using the colour or the

texture of the surrounding area of a given feature and then matched by searching

for similar colour or texture patterns in another frame. The information extracted

in this manner to describe a given feature is called a descriptor. Changing the

viewing location, which changes the perspective projection, can lead to mismatch-

ing of such features, as the descriptor also changes due to the projection. There

are different methods to make the descriptors more robust to perspective changes.

However sophisticated the method is, it will consume more processing time, hence

the type of the descriptor has to be chosen depending on the application. Even

if the descriptor is reasonably invariant to perspective projections, there can be

mismatches which would corrupt the final estimation. If the number of correct

matches of such a system is much greater than the number of mismatches, random

sample consensus (RANSAC) is used to select a reasonable estimation. RANSAC

selects a camera pose which agrees with the majority of the matches from a set

3



of pose hypotheses estimated from different subsets of feature matches selected

randomly.

The inter-frame pose computed in this manner cannot maintain the consis-

tency of a SLAM system when the map grows, as such estimates do not account

for the uncertainties associated with the measurements. The sensor noise makes

the landmarks and the camera poses inter-dependent on each other. With asso-

ciation of uncertainties, the solution of such a system can be broadly categorised

into two paradigms: filtering and bundle adjustment.

In filtering, the uncertainty relationships are represented explicitly using a

covariance matrix or an information matrix. This allows updating of the sys-

tem through sequential measurements. In bundle adjustment, the measurements

starting from the beginning have to be used as a batch to solve a linear system

of equations. Although it is not explicitly maintained, the covariance structure

of the filtering approach implicitly becomes embedded into bundle adjustment

through its constituent equations, making both methods theoretically equivalent.

1.2 Contributions

1.2.1 Corner Matching Refinement for Monocular Pose

Estimation

Because of the inter-dependent nature of parameters in SLAM, reducing the mea-

surement noise affects the accuracy of the whole system. To improve the accuracy

of the system, descriptor-based feature matching which works at pixel level may

not be adequate and sub-pixel level information may be needed. A number of

applications already use something better than pixel-sampled information. Al-
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though sub-pixel methods have been used extensively for stereo matching, most

of these techniques are based on the assumption that the 2-D image motion,

resulting from 3-D camera motion can be described using a simple translation

model.

As a solution, in Chapter 3 we present a novel method for refining the coordi-

nates of correspondences directly. Given some coordinates in the first image, our

goal is to maximise the accuracy of the estimate of the coordinates in the second

image corresponding to the same real world point without being too concerned

about which real world point is being matched. We parametrise the image signal

around a selected feature using the six-parameter affine model with an additional

parameter to compensate for energy changes of the signal. In pose estimation,

since the illumination between two consecutive frames will not change signif-

icantly, the effect of the seventh parameter is trivial for our application. By

optimising in the frequency domain, it is possible to achieve improved results and

a faster convergence rate. The fast convergence is a result of the multi-resolution

nature that naturally arises with such an approach, as explained later.

1.2.2 Reduced Dimensionality Extended Kalman Filter

for SLAM

Filtering cannot be easily extended to large scales as the complexity of the filter

grows rapidly, making it extremely difficult to maintain a large covariance matrix

explicitly. To handle this complexity to some extent, filter-based SLAM systems

maintain only the current pose estimate with all the landmarks of interest as the

state. This representation marginalises out previous camera poses, connecting

all state elements with each other, making the covariance matrix dense, leading

to a fully connected graph. Because of this, the filter complexity grows at least

quadratically with new observations, quickly making the problem intractable.
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The quadratic growth can be handled by dividing the whole problem into

small tractable sup-maps while separately maintaining global consistency. De-

velopments like parallel tracking and mapping (PTAM) and dense tracking and

mapping (DTAM) take this further, by noticing the possibility of working with

an active set of landmarks by separating tracking from mapping. In these sys-

tems, the tracker works with a local set of landmarks while the map maintains

the global consistency through bundle adjustment. Full bundle adjustment in

PTAM adjusts the poses using the measurements of all key-frames. It exploits

the sparseness inherent in the structure from the motion problem to reduce the

computational complexity. Without maintaining all landmark descriptors in this

manner, one could even use a more efficient sparse matrix system as the back

end to build a globally consistent map. As efficient as sparse matrix methods

are, they still have limitations and are not used to process all frames of a video,

as this would generate much denser graphs with high connectivity which would

overwhelm these approaches. Hence they are restricted to using sparsely sampled

key frames.

To overcome the complexity of filter-based SLAM, Chapter 4 explains a method

to reduce the dimensions which are not subject to process noise of the extended

Kalman filter (EKF) by identifying dominant modes of the filter. The method

can be used in general to reduce the dimensionality of the EKF irrespective of its

application without being limited to SLAM. In Chapter 4 we describe a method

to reduce the dimensionality of each node of a graph-based SLAM system, as the

graph optimisation problem we are considering is nearly linear with the number

of nodes and as it combines the information from multiple frames to give richer

key frames. The most complex operation in such a system is the Kalman filtering

within each node, which imposes an upper limit on the maximum number of land-

marks that each node can handle. Our approach can reduce the dimensionality

of Kalman filters used in each node, increasing the number of features a node can

handle leading to a more accurate estimation. As we suggest in the discussion,

such a dimensionality-reduced graph can even be used in a multi-camera set-up

more efficiently than a key-frame based sparse matrix method.
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Here we consider the dimensionality reduction of the conventional extended

Kalman filter for SLAM, where all past camera poses are marginalised out from

the system, making the only camera pose maintained in the system change dy-

namically. Therefore the only variables that are not subject to process noise will

be landmarks. We show how to reduce the dimensionality of such a system by

treating the parameters of the camera separately from the landmarks.

1.2.3 Reduced Dimensionality Extended Kalman Filter

for SLAM in a Relative Formulation

Marginalising previous camera poses from the EKF leads to the particular prob-

lem of linearization errors being permanently embedded into the system, as those

previous poses which had been linearised at a particular point, which might not

be correct, cannot be re-linearised to accommodate information acquired through

new measurements. This makes the system deviate from the correct solution,

making the assumed Gaussian uncertainty distribution invalid.

To avoid the non-linearity problem, particle-filtering has been used in the

filtering paradigm to efficiently represent multi-model distributions. However the

exponential growth of the number of particles with the dimensionality of the

problem limits applicability of the particle-filter in real-time systems. Bundle

adjustment, on the other hand, keeps the whole camera trajectory thus avoiding

the non-linearity problem.

With the dimensionality reduction technique described in Chapter 4, system

complexity can be maintained at a manageable level. The system described pre-

viously assumes marginalisation of previous camera poses, so the non-linearity

problem will continue to exist. However, as we can reduce the dimensionality, it

is possible to retain all camera poses without marginalising them. This enables

re-linearization to accommodate new information. Chapter 5 presents a novel rel-
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ative formulation of the EKF-SLAM in a reduced dimensional framework, where

all previous camera poses are maintained in the system.

Although recent developments have shown that the amount of information

fused improves the accuracy of the system, still this improvement has not been

quantitatively analysed. We investigate further the effect of the amount of infor-

mation on the uncertainty of the system.

The relative formulation represents each landmark relative to its initialised

coordinate frame instead of using a globally-privileged coordinate system. This

representation greatly relieves the system from its inherent non-linearity limita-

tion. We also show that this method, which uses measurements from all camera

frames, can yield more accurate results compared to systems like double window

optimisation, which assumes some spatial or structural sparseness.

1.2.4 Monocular Image Space Tracking on a Computa-

tionally Limited MAV

Chapter 6 introduces an efficient-front end for monocular SLAM. This work has

been completed as a collaborative project with the Center for Robotics and

Intelligent Machines (RIM) at Georgia Institute of Technology and the

Computer Science and Artificial Intelligence Laboratory (CSAIL) at

Massachusetts Institute of Technology.

The front-end is used for camera-based navigation for computationally limited

micro air vehicles (MAVs). Our approach is derived from the recent development

of parallel tracking and mapping algorithms. Unlike previous results, we show

how the tracking and mapping processes can operate using different representa-

tions. This reduces the computational cost of using the same model for both.

Our primary contribution is to show how the cost of tracking the vehicle pose
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can be substantially reduced by estimating the camera motion directly in the

image space rather than in the world co-ordinate space. Here we estimate the

camera motion efficiently through a novel Jacobian partitioning method enabling

real time on-board feature tracking.
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Chapter 2

Background

This chapter explains the advancements in SLAM starting from the basics. Here

we describe important work that has been done during past few years in the fields

relevant to the material presented in this thesis.

2.1 Simultaneous Localisation and Mapping

As mentioned in the introduction, the full-state of a SLAM system consists of

the camera trajectory and the landmarks. The landmarks can be any thing that

can be readily extracted from the environment to represent a particular part or

a section of it. Therefore, the landmarks can be a set of 3 − D points, lines or

other objects which can be tracked continuously to obtain a relative estimation

of the camera pose. Pose changes in 3 − D can be represented as rigid body

transformations in SE3, or if the scale matters as a similarity transformation in

Sim3.
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The effect of sensor noise makes it necessary to represent the state of the

system probabilistically. In other words, at a given time what we have is only

an understanding about the true state of the system to some level of certainty,

which can be described only as a probabilistic value rather than an absolute

state. When more measurements are made our understanding increases, in turn

increasing the probability of that being correct.

2.1.1 Probabilistic Framework for SLAM

As one of the earlier probabilistic frameworks for SLAM, the seminal paper by

Smith et al. [1988] describes a representation of spatial relationships of SLAM

which makes their inherent uncertainties explicit. In this framework, all spa-

tial relationships are tied together in a representation called a stochastic map.

It contains estimates of spatial relationships, their uncertainties and the inter-

dependencies of the state. The proposed state contains the current robot loca-

tion in 2−D and the feature locations extracted from the environment which in

contrast to maintaining the full trajectory retains only the current pose as it has

been used widely in the earlier systems as explained in following paragraphs. In

this representation, the camera pose and the landmark estimates are formed into

a vector called the state and their uncertainties are represented using an explicit

covariance matrix. The diagonal values of the covariance matrix represent the

variance of a variable with itself, while the off-diagonals represent the variances

with each other. Newly initialised landmarks are appended to the state using a

set of new parameters with a large covariance block appended to the covariance

matrix. The initial covariance is set to a large value as there is a larger uncer-

tainty associated with the belief of the new variable. In particular, the main

contribution of this work is showing that the first and the second moments of the

actual distribution are sufficient for reasonably modelling the relationships and

quantities of the map.

Computing the actual values of the spatial variables requires knowledge of the
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complete probability density function, which will not generally be available. This

is caused by the non-linear relationships that exist between the system variables.

The usual approach is to approximate the non-linear function through a truncated

Taylor expansion, as as shown by Smith et al. [1988] and Durrant-Whyte [1988].

The Jacobians are always understood to be evaluated at the estimated mean of

the given variables. The covariance also has to be transformed using the Jacobian

of the function at the mean.

As the camera is moving, Smith et al. [1988] use a process model which de-

scribes how components of the system’s state vector change (as a function of

time in a continuous system, or by discrete transitions). The process model ex-

trapolates the current state estimate to obtain a prediction of the next state by

applying the dynamics of the system. When spatial information is available, that

information is fused into the system to update this predicted state. The new

information is added through a measurement model. With respect to new mea-

surements, the estimations can be represented as a probability distribution given

the measurements. Estimating the new mean in this manner naturally leads to

a Kalman filtering (Kalman [1960]) framework. The information transfer of a

Gaussian distribution remains Gaussian for a linear system, so that the result

is optimal. Approximating non-linear systems through a truncated Taylor series

expansion leads to a sub-optimal solution to the problem, as shown by Maybeck

[1982].

The work by Leonard and Durrant-Whyte [1992] also uses an extended Kalman

filter, where a sparse set of features extracted using its sensors is used to repre-

sent the environment. Information is fused into the system using a measurement

model through a linearised projection function. After each measurement, the

next state is predicted using a dynamic model. Although this system is quite

similar to the system by Smith et al. [1988], the key insight is the use of only a

subset of landmarks which are visible at a time. This makes the Jacobian of the

observation model sparse, making the computations less intense.

The work by Davison et al. [2007] uses a Kalman filter for SLAM in a purely
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vision set-up using a single camera. The key contribution of this work is to show

that it is possible to achieve real-time localisation and mapping with a single

freely moving camera as the only data source. The method achieves the efficiency

required for real-time operation by using an active guided approach to feature

mapping and measurement, a general motion model for smooth 3 − D camera

movement to capture the dynamical priori information inherent in a continuous

video stream, and a novel top-down solution to the problem of monocular feature

initialisation. The feature matching is done by restricting the search area on the

image by gating the uncertainty of each landmark onto the camera image through

the measurement function. Marginalising the previous camera poses to maintain

only the current pose significantly reduces the complexity. However the total size

of the map representation is still in the order of O (N2), where N is the number of

features and the complete SLAM algorithm has a O (N2) complexity. This means

that the number of features which can be maintained with real- time processing

is bounded to around 100.

In attempts to improve the scalability of filter-based SLAM, Eustice et al.

[2005] showed that there is a special structure in the covariance matrix when it

is viewed in its information form. A filter which uses an information matrix is

called an information filter. By exploiting this special structure, they managed

to improve the scalability of the problem, where the filter which arises is called

the sparse extended information filter (SEIF). The key to scalability in the infor-

mation form are the strong and weak constraints of the information matrix which

naturally arises in SLAM. It has been shown that the time-projection creates the

weak constraints. Furthermore, by bounding the number of non-zero off-diagonal

elements those link the camera pose with landmarks, it was possible to enforce

an exact sparsity in the information matrix. The method maintains two sets of

landmarks as active features and passive features where the weak links created

between the camera pose and those passive landmarks are pruned. By enforcing

an upper bound on the number of active features, it is possible to control the

resulting fill-ins of the information matrix. However, ignoring the dependence

relationships in, the SEIF sparsification strategy leads to inconsistent covariance

estimates. Rather than heuristically ignoring the weak links between the camera
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and the inactive landmarks, Walter et al. [2007] gave a more probabilistic ap-

proach to the problem to improve the inconsistency of covariance estimates. They

termed this framework the exactly sparse extended information filter (ESEIF).

This work showed that there is an implied conditional independence between the

inactive landmarks and the camera, given the active landmarks. Generally, as a

consequence of this enforced sparsification of information filters, the SLAM pos-

teriori significantly underestimates the uncertainty of the state estimate. It has

been shown that this inconsistency is a natural consequence of imposing condi-

tional independence between the robot pose and a subset of the map. The main

contribution of these systems is in showing the inherent sparse structure of a

SLAM system which is not directly evident from the conventional Kalman filter.

Despite the scalability problem, marginalising previous camera poses from

the system leads to inconsistencies of the final solution, as shown by Bailey et al.

[2006a] and many other authors. At each marginalisation step, the linearization

error of the marginalised variable is backed into the system, making the final

solution drift from the absolute, hence deviating the system from the assumed

Gaussian probability distribution and making the filter invalid.

In order to model non-Gaussian distributions, by extending the insight of ES-

EIFs, Montemerlo et al. [2002] introduced a factored solution to the simultaneous

localization and mapping problem (FastSLAM), which showed that all individual

landmark estimation problems are independent if one know the robots path and

the correspondence variables. The system handles the deviation from a Gaussian

distribution through a particle filtering approach, where each particle represents

a guess of the robot’s path. FastSLAM represents the conditional landmark esti-

mates using Kalman filters, where the update is done through extended Kalman

filters. In this case, the observation model remains Gaussian as a consequence

of the use of sampling to approximate the distribution over the robots pose. Al-

though this solves the non-linearity problem, with the number of particles the

complexity of the system keeps growing, limiting the scalability of the system.

In contrast, the structure from motion (SFM) maintains all camera poses and
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landmarks with their measurements to form a large system of equations. The

main advantage of SFM is the possibility of re-linearization of the Jacobian, as all

parameters are preserved in the system, yielding the ideal solution. However, in

the original form, the system grows very fast and soon becomes intractable. With

improved computational power of modern computers and with recent efficient

algorithms, maintaining the full trajectory is possible with trivial compromises.

Eade and Drummond [2007] use a hierarchical bundle adjustment algorithm,

in which multiple observations sharing a nearly-linear observation model are co-

alesced into nodes containing high-dimensional, rich observations, and the rela-

tions between these high-dimensional observations are optimised at the global

level. Therefore optimising the linear parts of the parameter space proceeds re-

cursively, permitting global optimisation at orders-of-magnitude less costly than

bundle adjustment. This shows that it is possible to combine sub-maps gener-

ated through running a local Kalman filter to form locally linear nodes to form

a globally optimal solution. When the camera moves to a new region, making

the current filter estimate non-linear, the system marginalises out the latest cam-

era pose to form a locally linear node, which contains only the set of landmarks

initialised within that region. To make the estimates in the new region, a new

Kalman filter is formed. Global constancy is maintained by estimating the inter-

node similarity transformations using shared landmarks. This forms a graph to

solve the SLAM problem.

Using SFM, Klein and Murray [2007] achieved real time performance for small

augmented reality (AR) work spaces by splitting tracking and mapping into two

separate tasks, processed in parallel threads on a dual-core computer, where one

thread deals with the task of robustly tracking erratic hand-held motion, while

the other produces a 3−D map of point features from previously observed video

frames. The method adopts a stereo initialisation strategy, and occasionally

makes use of local bundle updates for real-time performance on a local map.

The method is different in that they attempt to build a long-term map in which

features are constantly re-visited. They use two levels of bundle adjustment,

one at local level and the other at global level when it is affordable. This is
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the first implementation which can accommodate thousands of landmarks from

the environment. De-coupling tracking from mapping enables this scalability.

However, in order to preserve global consistency, doing a global bundle adjustment

limits the scalable of the system.

Instead of solving the system of equations directly as in the conventional SFM

approach, later work identified that there is a sparse structure in the Jacobian of

the problem similar to that of the sparse structure of the information matrix in

SEIF. In filtering, the weak links are created because of marginalisation, so the

sparsity has to be enforced by removing those links. As SFM does not marginalise

the poses, it naturally preserves a sparse pattern, as shown by Dellaert and Kaess

[2006] in their square root filter for SLAM. This is a consequence of each camera

pose in a SLAM system being connected only with a subset of landmarks, leading

to a band-diagonal Jacobian structure. The square root filter solves the system

of equations directly through elimination, without calculating the pseudo inverse

as it has been done in the direct solvers, enabling efficient sparse matrix methods

to be used for calculations.

Later, Klein and Murray [2007] showed how parameters can be appended in-

crementally into the system, which only changes a subset of parameters. This

approach appends new parameters and then obtains the reduced form of the lin-

ear system through incremental QR decomposition. The fast incremental matrix

factorization provides an efficient and exact solution.The key insight of this sys-

tem is in showing that there is only a subset of parameters that needs updating

in a SLAM system. Kaess et al. [2012] extend this idea to build a novel data

structure, the Bayes tree, that provides an algorithmic foundation enabling a

better understanding of existing graphical model inference algorithms and their

connection to sparse matrix factorisation methods. Similar to a clique tree, a

Bayes tree encodes a factored probability density, but unlike the clique tree it is

directed and maps more naturally to the square root information matrix of the

SLAM problem. Though incremental smoothing and mapping (ISAM) is quite

efficient in solving exploratory problems, it could become less efficient when there

are loops. Loops make optimisation less efficient as it connects more parameters
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together. By using some heuristics for variable re-ordering it can be partially

avoided (Kaess et al. [2012]).

Due to practical problems such as loop closure, SLAM systems can update

only a subset of parameters within real-time constraints. Therefore, any sub-

optimal solution will embed linearization errors into the system. This made

it necessary to investigate more linear models. By representing all landmarks

relative to its initialised camera frame Sibley et al. [2010] showed that the non-

linearity of the model can be reduced significantly. They derived a new relative

bundle adjustment framework, which instead of optimising in a single Euclidean

space, works in a metric space defined by a connected Riemannian manifold.

The fact that the variables in bundle adjustment are defined relative to a single

coordinate frame has a large impact on the algorithms iterative convergence rate.

This is especially true at loop closure, when large errors must propagate around

the entire loop to correct for global errors that have accumulated along the path.

In this approach, landmarks are represented relative to their initialised camera

frame, allowing the frames to change minimally affecting the landmarks initialised

on each frame.

Relative representation enables more efficient SLAM implementations, where

only the most recent subset of parameters can be optimised instead of the whole

system with minimal degradation to obtain comparable results with full bundle

adjustment. In their work on double window optimisation for SLAM Strasdat

et al. [2011] show how to take advantage of this linear relative representation. In

order to achieve constant-time operation, the double window optimisation frame-

work dynamically defines a sub-set of all key-frames as the active window over

which to apply optimisation. In the optimisation the key-frames and points vis-

ible on those frames are included. Instead of bundle adjusting all frames and

points, they define an outer window where points are marginalised out to yield

constraints between frames. The resultant system is an approximation, because

binary links between frames do not fully encode the nonlinear connections be-

tween frames and points. Nevertheless, it is capable of yielding reasonably ac-

curate results. For better estimation accuracy, the front end of the system uses
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dense image alignment. This system shows that with an accurate front end, it

is possible to achieve near optimal results without full-bundle adjustment when

implemented in a relative formulation.

Extending this notion Engel et al. [2013] track dense image patches with a non-

negligible gradient to continuously estimate a semi-dense inverse depth map for

the current frame, which in turn is used to track the motion of the camera using

dense image alignment. Each estimate is represented as a Gaussian probability

distribution over the inverse depth and this information is then propagated over

time, and updated with new measurements as new images arrive. Even though

global consistency is not explicitly maintained, the system yields accurate results,

as the front-end tracker estimates the relative poses quite accurately through

dense image alignment.

The large-scale direct monocular SLAM (LSD-SLAM) method by Engel et al.

[2014a] not only locally tracks the motion of the camera but also allows building

consistent, large-scale maps of the environment. The method uses direct image

alignment coupled with filtering-based estimation of semi-dense depth maps. The

global map is represented as a pose graph consisting of key-frames as vertices with

3−D similarity transforms as edges, elegantly incorporating the changing scale of

the environment and allowing the detection and correction of accumulated drift.

Recent work on SLAM shows how accuracy improves with the information

content used in the optimisation. This indeed is the reason for the current trend

towards more denser systems. It is quite evident that this is the case as the

underlying estimation problem is fully governed by the motion of the camera.

This thesis investigates the dimensionality of the problem and how information

flows from high-dimensional parameter space to update the camera pose.
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2.2 Feature Matching and Pose Estimation

Image feature matching is an extremely important step in any SLAM system, as

the accuracy of the final estimate is highly dependent on the matching accuracy.

In monocular SLAM, when the system is initialised, correct matching is crucial

to prevent the system deviating from the correct solution.

When the system is initialised with two or more camera frames, feature

matches have to be used to solve for the relative pose between the frames and to

recover the depth of each landmark in the environment. There are both closed

form solutions as well as incremental methods to do this. Depending on the algo-

rithm, a minimal number of matches are required to get the solution. If there are

more matches than the minimal number required, a linear least squares minimiza-

tion problem must be solved. When there are a large number of matches with

outliers, random sample consensus (RANSAC) which iteratively generates a hy-

pothesis of the parameters of a mathematical model from a set of observed data,

can be used. Civera et al. [2009] introduce a method for embedding RANSAC

withing the Kalman filter by temporarily updating the filter using a single ran-

domly selected feature point to generate a hypothesis. Inliers of the hypothesis

with the highest consensus score are then used to update the filter to obtain the

final estimate.

One of the oldest and most common methods of pose estimation is to use 8-

point correspondences. The classic paper by Longuet-Higgins [1987] shows how 8-

points can be used for computing the essential-matrix. The method uses 8-points

compute the structure of the scene from two views with calibrated cameras. If

8-point correspondences are known, the method involves solving 8 simultaneous

equations for the essential matrix. The algorithm is very easy to implement and

can be solved quickly. The main property of the method is the possibility of

nicely encapsulating the epipolar geometry of the image configuration. If the two

cameras used are uncalibrated, a set of equations for the fundamental-matrix can

be solved as shown by Faugeras [1992] and Deriche et al. [1994]. However this
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method is regarded as inferior to existing iterative algorithms as it shows a higher

sensitivity to noise. Hartley [1997] later showed that the 8-point algorithm can

yield solutions as good as any other pose estimation algorithm if the problem

is conditioned properly. It is shown in this paper that a simple transformation

(translation and scaling) of the points in the image before formulating the linear

equations leads to great improvement and hence to the stability of the result.

When RANSAC is used, we can assume better performance if the number of

points used in the hypothesis generation is small, as this reduces the probability of

selecting outliers when generating the hypothesis. To this end it has been shown

that a solution can be obtained, using either 7, 6 or 5 points. A good explanation

of the 7-point algorithm can be found in the paper by Maybank et al. [1992]. The

6-point algorithm gives a unique solution and was presented by Philip [1996]. The

5-point algorithm proposed by Nistér [2004] consists of computing the coefficients

of a tenth degree polynomial in closed form and subsequently finding its roots.

This shows better numerical stability compared to the other methods.
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Chapter 3

Corner Matching Refinement for

Monocular Pose Estimation

Many tasks in computer vision rely on accurate detection and matching of visual

landmarks (e.g. image corners) between two images. In particular, for the calcu-

lation of epipolar geometry from a minimal set of five correspondences, the spatial

accuracy of matched landmarks is critical, because the result is very sensitive to

errors.

The most common way of improving accuracy is to calculate a sub-pixel lo-

cation independently for each landmark, in the hope that this reduces the re-

projection error of the point in space to which they refer. In this chapter we

present a method for refining the coordinates of correspondences directly. Given

some coordinates in the first image, our goal is to maximise the accuracy of the

estimate of the coordinates in the second image corresponding to the same real

world point, without being too concerned about which real world point is being

matched.
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In this chapter we show how this can be achieved as a frequency domain

optimization between two image patches to refine the correspondence by estimat-

ing affine parameters. We select the correct frequency range for optimization by

identifying a direct relationship between the Gabor phase-based approach and

the frequency response of a patch. Further, we show how parametric estimation

can be made computationally efficient by operating in the frequency domain.

Finally, we present experiments which demonstrate the accuracy of this ap-

proach, its robustness to changes in scale and orientation, and its superior per-

formance compared to other sub-pixel methods.

3.1 Introduction

Calculating the 3 −D structure from an image sequence depends on accurately

computing the motion of the camera. This in turn requires reliable feature ex-

traction and matching. Therefore, as discussed in this chapter, accurate feature

matching plays a very important role in accurate monocular pose estimation. A

particular problem that drives this work is that of calculating the essential-matrix

that describes the epipolar geometry of two images for which the internal camera

parameters are known. This can be done from a minimal set of five correspon-

dences between the two images using a polynomial solving algorithm, as described

by Nistér [2004] which can generate up to ten essential matrices, or by iterative

optimization of the residual error, as shown by Zhang et al. [2010]. In either case,

the hypothesis generated from five matches is very sensitive to the accuracy with

which the matches are extracted from the images.
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3.1.0.1 Monocular Pose Estimation

The sensitivity of essential-matrix calculation to errors in the data correspon-

dences is partly a consequence of nonlinear error propagation with depth, which

leads to a deviation from the desirable Gaussian uncertainty representation. In

other words, depending on the depth to each physical point, the pixel error varies.

Different parametrisation techniques have been proposed to reduce this non lin-

earity to achieve better results, as shown by Montiel et al.. The inverse depth

parametrisation is capable of greatly reducing the non-linearity of error prop-

agation with depth. Although these methods are capable of making the pose

estimation less sensitive to pixel noise, it still remains the major source that

corrupts the final pose estimate, according to Civera et al. [2007].

To better explain the problem, a small experiment was conducted. In this

experiment, 100 3 − D landmarks were randomly generated around a specified

average depth (20 relative units) from the first camera and distributed uniformly.

These points were then projected onto a second camera with a translation of

1 unit away from the first camera. An isotropic measurement noise was then

added to the projected locations. These projected points with their original

correspondences were then used to compute the least squares approximation to

the essential-matrix between the two views from which the translation and the

rotation were recovered and compared with the ground truth. It can be seen

that both translation and rotation errors increase rapidly when the average noise

level is increased. Figure 3.1 shows the results of a simulation experiment that

illustrate this point. The graphs show how the translation and rotation error

changes when the pixel errors increased gradually.
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(a) Translation error versus noise

(b) Rotation error versus noise

Figure 3.1: Pose estimation error (estimated from two artificially projected cam-

era frames) versus maximum noise magnitude
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Most importantly, it can be seen that the translation estimate is more suscep-

tible to pixel noise than the rotation. If the depth is further increased, the noise

starts to dominate the estimated pose. For RANSAC based pose estimation, if

the percentage of correct matches is relatively low, there is a very small chance

of all five correspondences being selected to form the correct hypothesis in any

iteration. This makes sub-pixel refinement extremely useful for accurate pose

estimation, especially when the average scene depth is relatively large.

3.2 Previous Work

Most sub-pixel methods to date are for registering two images rather than for

refining two feature matches. These assume a 2 − D motion resulting from a

motion in 3 − D that can be described using a simple translation model. They

have shown extremely high accuracy. Later some of these methods were extended

to sub-pixel matching of two feature points, where usually one of the points in the

first image is specified in advance and the corresponding point in the second image

is searched. Widely used sub-pixel methods can be categorized as interpolation-

based (correlation interpolation, intensity interpolation and geometric methods)

as shown by Tian and Huhns [1986], Berenstein et al. [1987], phase correlation,

and differential methods (optical flow and parameter optimization) as shown by

Tian and Huhns [1986].

In the interpolation correlation method, sub-pixel registration accuracy is

achieved through a discrete correlation function between two images and then fit-

ting an interpolation surface to samples of this function. After this the maximum

of this surface is searched accurately (Dvornychenko [1983], Anuta [1970]). The

accuracy of interpolation-based methods depends on the quality of the used in-

terpolation algorithm, but interpolation methods fail when handling projectively

transformed images. On the other hand Foroosh et al. [2002] show that phase

correlation can work well for sub-pixel registration. Conventional phase corre-
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lation techniques fail when the matching window under consideration becomes

relatively small. Recent work by Shibahara et al. [2007] has shown the necessity

to fit a function to the phase correlation measurement in order to obtain satis-

factory results under such constraints. Although both of these methods can be

extended to sub-pixel patch matching/refinement, their applicability is limited

to simple translation models, and any affine transformation needs to be recti-

fied separately at a prior stage. Differential methods use a constraint equation

under intensity conservation assumption, as shown by many authors, including

David [1987], Berthold and Brian [1981] and Nagel or handle the problem as an

optimization problem over a set of parameters, as shown by Bergen et al. [1992],

which works well under local patch deformations.

Recently considerable attention has been given to more complex models of

motion with a set of parameters because of their ability to provide a good ap-

proximation to local 2−D motions. Because of their noise sensitivity and better

convergence, parametric motion models have been extended to the frequency do-

main in the work of Kruger and Calway [1996]. These methods use the shift

invariance of the magnitude spectra to separate the translation component from

the other four affine parameters. The translation is estimated using the phase

correlation between two affine-rectified images.

In the frequency domain, the phase of a signal bears most of the information

compared to the magnitude spectra as it has been shown by Hayes et al. [1980].

On the other hand, the phase has shown much robustness to noise, as Fleet and

Jepson [1993] show. According to this insight, it is possible to obtain better

results if phase is not discarded and is used in the optimization equation by

optimising all six affine parameters simultaneously.
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Figure 3.2: Signal synthesis from magnitude and phase spectra respectively.

Figure 3.2 shows a signal synthesised from the magnitude and the phase spec-

tra. When the original image signal on the left-hand side is re-synthesised from

the magnitude and the phase spectra respectively, more information can be re-

covered from the phase than the magnitude. The frequency response of a signal

can be analysed from the Fourier transform.

To improve the accuracy of the generated hypothesis, descriptor-based fea-

ture matching which works at pixel level may not be adequate, and sub-pixel

level information may be needed. A number of applications already use some-

thing better than pixel-sampled information. Sub-pixel methods have been used

extensively for stereo matching (Scharstein et al. [2001], Matthies et al. [1989]).

However most of these techniques are based on the assumption that the 2 − D
image motion, resulting from 3 − D camera motion can be described using a

simple translation model (Donate et al. [2011]). Widely used sub-pixel meth-

ods are interpolation-based (correlation interpolation, intensity interpolation and

geometric methods) (Berenstein et al. [1987]), phase correlation and differential

methods (optical flow and parameter optimization) (Tian and Huhns [1986]).

Phase correlation works well for sub-pixel registration, but conventional phase

correlation techniques fail when the matching window under consideration be-

comes small. Recent work has shown the necessity to fit a function to the

phase correlation measurement in order to obtain satisfactory results under such
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constraints (Shibahara et al. [2007]). Although these methods can be extended

to sub-pixel patch matching/refinement, their applicability is limited to simple

translations, and any affine transformation needs to be rectified separately at a

prior stage. Differential methods use a constraint equation under intensity con-

servation assumption (David [1987], Berthold and Brian [1981], Nagel) or handle

the problem as an optimization over a set of parameters (Bergen et al. [1992]),

which works well under local patch deformations. Therefore, in recent years

considerable attention has been given to more complex motion models based on

parameter estimation (Campani and Verri [1992]). Such methods are based on hi-

erarchical or multi-resolution approaches limit their applicability in time-critical

applications. Because of its noise sensitivity and better convergence, the paramet-

ric motion model has been extended to the frequency domain (Hsu et al. [1993];

Kruger and Calway [1996]). Such frequency domain approaches have shown bet-

ter performance and noise tolerance compared to spatial domain methods. These

methods use the shift invariance of the magnitude spectra to first estimate the

four non-translation affine parameters. The translation is then estimated using

phase correlation between affine-rectified images.

In the frequency domain, the phase of each frequency contains much more

information than the magnitude (Duan and Robert [1989], Hayes et al. [1980]),

and shows better robustness to noise (Fleet and Jepson [1993]). By not discarding

phase, and simultaneously optimising all six parameters it is possible to obtain

better results. We parametrise the signal using the six-parameter affine model

with an additional parameter to compensate for energy changes of the signal. By

doing the optimisation in the frequency domain, it is possible to achieve improved

results and a fast convergence rate.
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3.3 Contributions

In this work we develop a frequency domain Gauss Newton optimization frame-

work for sub-pixel image alignment. This work is completely novel as we draw a

relationship between the conventional Gabor filter and the frequency response of

a Gaussian multiplied image patch to do the sub-pixel alignment in the frequency

domain. The main contributions are as follows:

• For sub-pixel refinement, we represent the local affine transformations in the

frequency domain and optimise over all affine parameters simultaneously,

using both magnitude and the phase information.

• We model the local transformations of a projectively transformed image

pair by an affine transformation, selecting a 32x32 patch around two cor-

responding corners and try to refine the second corner position by affine

warping the frequency spectrum of the first patch and changing the phase

of the second.

• In order to further increase accuracy, we re-sample the second patch using

the estimated translation.

• We derive a relationship between the Gabor filter phase difference and the

frequency representation of a Gaussian weighted image patch and use this

to select the effective frequency range for optimization.

• Using several sub-sampling stages in the frequency and spatial domains, we

obtain better sub-pixel accuracies (down to 0.1 pixels under moderate affine

transformations) and better convergence.

• These sub-pixel refined correspondences are then used to achieve a more

stable and accurate pose estimate.
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3.4 Gabor Filter

In his seminal work, starting from the uncertainty principal Gabor [1946] derived

that a Sin-modulated Gaussian patch can act as the signal that can be represented

covering a smallest area in the time-frequency plane. The Sin-modulated Gaus-

sian signal later used as a filter known as the Gabor filter has many applications

in wavelet analysis.

Two properties of the Gabor filter have to be tuned, depending on the ap-

plication. These are the variance of the Gaussian kernel and the frequency of

the modulated sinusoid. The frequency of the modulation controls the precision

of the filter. This frequency is known as the principal frequency of the filter.

A complex Gabor filter is defined as the product of a Gaussian kernel times a

complex sinusoid, i.e:

Gabor (x;σ, k0) = eixk0G (x;σ) (3.1)

Usually, the standard deviation σ of the Gaussian distribution is chosen such

that it removes the DC response of the filter, which is known as the one octave

bandwidth of the filter, as shown in Section 3.5.2. What is important is the

frequency response of this filter. In the frequency domain, the Gaussian function

remains a Gaussian. The effect of the frequency modulation is to shift it in

the frequency domain by the amount specified by the principal frequency of the

modulation. Therefore, it is equivalent to analysing a particular portion of the

signal in the frequency domain around the principal frequency.

In image processing, the Gabor filter, when defined as a function of the spatial

location of the image and the frequency of the filter, is known as the Gabor scale

space, where the standard deviation is selected with respect to the tuning or the
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principal frequency such that:

S (x, λ) = Gabor (x;σ (λ) , k (λ)) ∗ I (x) (3.2)

where, ∗ is the convolution operator and λ is the scale parameter. Here, since we

are not changing the scale of the filter the scaling parameter remains constant.

As it can be assumed that the scale change of SLAM is comparatively small, the

effect of neglecting the scale difference is minor. In the next section we give the

mathematical derivation of our method in detail.

3.5 Estimation of Affine Transformations

In this section we provide the mathematical derivation of the frequency domain

affine parameter estimation. First we start with an intuitive explanation of the

method that has been developed.

As explained earlier, the Gabor filtering of an image is the convolution of the

image with a Sin-modulated Gaussian. This makes the frequency response of the

filter another Guassian, shifted by the modulated frequency. Lower the frequency,

higher will be the precision of the filter in identifying more subtle variations of

the image signal. However, the filter cannot start with a very small frequency,

as this would lead to aliasing, making the response useless, as shown in Section

3.5.2. As a result, in practice, a Gabor filter bank is usually used with varying

frequencies ranging from a lower frequency to a higher frequency. As the image

is 2−D the filter has to be directionally tuned, as describe by Fleet and Jepson

[1990] to obtain the response along a particular direction, as shown in Figure 3.5.
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Figure 3.3: Directionally tuned Gabor filters.

Image alignment using a Gabor filter bank is expensive, as it is necessary to

obtain those responses in each direction. In addition, it is not easy to so finely

sample all directions around a given point in the image. Here we note that the

responses for the given range of frequencies of an image patch can be directly

obtained using the convolution theorem.

Figure 3.4: Frequency response of a Gaussian multiplied image patch.
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Consider a Gaussian multiplied image patch. As can be seen from Figure

3.5, the frequency response of a Gaussian multiplied image patch becomes the

convolution between the frequency response of the image patch and the Gaussian

kernel in the frequency domain. Physically what has happened is, the Fourier

transformation is shifting the Gaussian signal in the frequency domain over the

frequency response of the image patch to generate responses at each frequency.

If we take a particular point in the frequency domain of this convolution re-

sponse, it can be seen that it is nothing other than a Gabor filter response which

has the same Gaussian envelope as the original Gaussian, but modulated by a

sinusoid with the same tuning frequency as that of the selected point. This ob-

servation indicates that it is possible to obtain the responses of a Gabor filter

bank directly by reading a particular point on the frequency domain of a Gaus-

sian multiplied patch. The tuning frequency is the frequency at that selected

frequency location and the direction of the filter is the selected direction in the

frequency domain. We use this property to derive a frequency domain Gauss-

Newton optimization framework.

To present the affine parameter model in the frequency domain, we make use of

the affine theorem in frequency (Bracewell et al. [1993]). Given two image patches

I0(x̄) and I1(x̄) surrounding two corresponding corners, which are related by an

affine coordinate transformation I1(X̄) = I0

[
A−1

(
X̄ − b̄

)]
, their 2 − D Fourier

transforms are related by:

Î1(ū) = |det (A)| e−jū·b̄Î0

(
AT ū

)
(3.3)

The shift invariance property of the magnitude spectra of Equation 3.3 enables

the estimation of b̄ to be separated from the estimation of A (Kruger and Calway

[1996]). However, discarding phase information is a great waste, as the phase

carries a good deal of information in the frequency domain, which can be used

to achieve more stable and fast estimations by simultaneously optimising all six
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parameters.

Here we use the six parameter affine model with an additional parameter.

The seventh parameter compensates for energy changes caused by different local

illumination conditions. If we select β̄ = {β1 . . . β7} to be the parameter set and

absorb the |det (A)| of Equation 3.3 into β7 we have:

β7Î1(ū) = e−jū·b̄Î0

(
AT ū

)
where A =

(
β1 β2

β3 β4

)
and b̄ =

(
β5

β6

)
(3.4)

(3.5)

This can be rearranged to yield:

β7e
jū·b̄Î1 (ū) = Î0

(
AT ū

)
(3.6)

Thus, the error r, for a frequency ū can be written as:

r
(
ū, β̄

)
= β7e

jū·b̄Î1 (ū)− Î0

(
AT ū

)
(3.7)

The above equation enables us to model the affine transformation as a phase

change of Î1 and a warp of Î0 with respect to matrix A. The Jacobian Ji of the

partial derivatives of r with respect to βi can then be computed easily using the

chain rule. The computed full Jacobian then becomes:

[J1, J2, J3, J4, J5, J6, J7] =

[
−∂I0

∂u
u, −∂I0

∂u
v, −∂I0

∂v
u, −∂I0

∂u
v, −β7Ĩ1u, −β7Ĩ1v, Ĩ1

]
(3.8)
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Given a set of frequencies {uj}, the errors r(uj) and the Jacobian Jij can

be used to obtain the parameters β̄ that minimise E =
∑

j ‖r(uj)‖2 using the

Gauss-Newton method.

3.5.1 Iterative Refinement

After initialising the set of parameters by setting A to be the identity matrix and

b̄ to a zero vector, we use the Gauss-Newton method to warp the frequency patch

Î0 with respect to the first four parameters β1 . . . β4 and phase shift the patch Î1

with the remaining two parameters β5 and β6.

Warping is done by sub-sampling the original frequency patch using bi-linear

interpolation. After optimising for two or three iterations in the frequency do-

main, we extract the parameters β5 and β6, which correspond to a translation

in the spatial domain in x and y directions, respectively. These two parameters

are then used to re-sample the second patch (patch I1) in the spatial domain at

the new refined position using spatial sub-sampling. The Fourier transform of

this re-sampled patch is then used to re-estimate a new set of affine parameters.

This routine is continued until sufficient accuracy is achieved. According to ex-

perimental results, two spatial sampling steps are usually sufficient to reduce the

average pixel error down 0.1 pixels.

3.5.2 Aliasing and the DC Response

Two issues need to be addressed in order for the frequency domain optimization

to work in practice. Firstly, the method as presented is sensitive to edge effects on

the border of the image patch. Secondly, the presence of a large DC component

in the signal causes issues at low frequencies (those where ‖u‖ is small).
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In order to remove edge effects from an image patch, we multiply the patch

by a Gaussian weighted window G(x, y) centred on the detected landmark before

computing the Fourier transform. The patch also contains a large DC component,

which appears as a large spike at u = 0 in the frequency domain. The frequency

domain convolution that results from Gaussian windowing spreads this out along

small frequencies. To overcome this issue, the DC component of the Gaussian

windowed patch is removed, yielding a new patch I ′ defined as:

I ′(x, y) = G(x, y)

(
I(x, y)−

∑
x,y G(x, y)I(x, y)∑

x,y G(x, y)

)
(3.9)

This results in a patch with 0 DC coefficient that fades towards 0 at the

boundaries. The frequency response of the Gaussian multiplied patch, F [I ′], has

a direct relationship with the Gabor filter with an identical Gaussian support.

We use this relationship to select the useful frequency range (in order to eliminate

possible aliasing effects) for the optimization in a multi-resolution manner.

Multiplying the patch by a Gaussian in the spatial domain is equivalent to

convolving it by a Gaussian in the frequency domain, as explained earlier. This

turns the values of the Fourier transform of I ′ into responses of the original patch

(with applied DC offset) to complex Gabor filters. This interpretation can be

used to select the useful frequency range for the optimization.

Because the phase of a particular Gabor filter response changes linearly under

spatial translations of the signal, this has been used for spatial disparity esti-

mations (Fleet et al.). The phase disparity is useful only if the displacement is

smaller than a half a wavelength of the tuning frequency (Fleet et al.), i.e the

domain of convergence for the phase is ±π as shown in Figure 3.5.2.
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Figure 3.5: Aliasing in the frequency domain.

This imposes an upper limit over the useful frequency range. If we assume a

maximum displacement of d pixels for a 1 − D signal, this criterion suggests a

frequency f such that f ≤ 1/2d. In the 2−D case we can meet this criterion by

limiting the useful frequency range radially to a maximum of 1/2d radius. After

estimating the translation (and other parameters) using small frequencies for

large displacements, this can then be refined by gradually increasing the radius,

incorporating higher frequency responses in the optimization.
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Figure 3.6: One octave bandwidth to eliminate the DC response.

Although, spatial subtraction in Equation 3.9 can greatly reduce the signal

being corrupted by the DC component, for better results we have to impose a

lower frequency limit. We select the minimum frequency using the one octave

bandwidth criterion 3.6, as suggested in the literature (Fleet and Jepson [1993])

for Gabor filter-based disparity estimations. The one octave bandwidth in the

frequency domain for the Gabor filter shows that, to eliminate the effect of the

DC part of the signal, the spatial support is:

σ =
1

2πf

(
2α + 1

2α − 1

)
(3.10)

If we select the frequency f keeping the spatial support σ constant, in order

to eliminate any DC distortion, the minimum frequency should be:

f ≥ 1

2πσ

(
2α + 1

2α − 1

)
(3.11)
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Combining the minimum and the maximum criteria for frequency selection

gives the useful frequency as follows:

1

2d
≥ f ≥ 1

2πσ

(
2α + 1

2α − 1

)
(3.12)

At the end of each iteration we can expect the displacement d to reduce, which

in turn expanding the useful frequency range without aliasing. Higher frequencies

carry finer details about the translation, which improves the resolution of the final

estimate. This naturally enables a multi-resolution framework for refinement

without any additional computations.

Figure 3.7 summarises the steps we use to sub-pixel refine a target corner

position with respect to the given reference corner.
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Figure 3.7: Iterative optimization based on sub-sampling in the frequency and
the spatial domains.

3.6 Experiments

In this section we apply the proposed refinement method to refine corner cor-

respondences and compare the results with the results of the spatial domain

Gauss-Newton counterpart. The spatial method performs an iterative Gauss-

Newton optimisation over all six affine parameters to minimise the sum of the

squared differences between I0 and the affine transformed I1, sampled with bi-

linear interpolation such that:

∑
X̄

I1(X̄)− I0

[
A−1

(
X̄ − b̄

)]
(3.13)
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In order to compare the two methods, here we apply them to sub-pixel refine

the matches between synthetically generated images and use the refined matches

for parameter estimation. First, we estimate the affine transformation between

two images after sub-pixel refinement. Next, homographies are estimated and

finally it is used to estimate the epipolar geometry.

3.6.1 Synthetically Generated Transformations

We first perform an experiment to demonstrate the improvement that can be

achieved through refinement in a situation where the ground truth transformation

is known. Synthetic data is generated first by transforming a reference image

using a known affine transformation through bi-linear interpolation. To remove

the interpolation artifacts, both images in the pair are down-scaled by a factor of

two. Then FAST features are extracted from the first image and projected onto

the second, using the same transformation.

The projected corners are rounded-off to the nearest integer pixel. The raw

pixel errors are calculated as the distance between the ground truth and the

rounded-off positions. Figure 3.9 shows the typical performance.

Here, the average unrefined pixel error is 0.4102. The two methods are then

used to refine the coordinates of a match in the second image. The spatial method

reduces the average error to 0.2423, while the frequency-based method reduces it

further to 0.1454.
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(a) Original image

(b) Transformed image

Figure 3.8: Reference image pairs.
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(a) Error distribution after spatial domain refinement

(b) Error distribution after frequency domain refinement

Figure 3.9: The error distributions.
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3.6.2 Homography Estimation

Here, two images of the Graffiti database shown in Figure 3.6.2 were used. Then

the FAST features were extracted from both images and were using histogram

intensity patches (HIPS Taylor and Drummond). Then the inliers were selected

by applying RANSAC to these raw matches and kept fixed. The inliers were then

refined using both spatial and frequency methods.

The matches were then used to estimate the homography, first with raw

matches, then spatially refined matches, and finally the frequency refined matches

minimising
∑

i r
2
i where ri =

√
‖xi −Hyi‖2 + ‖yi −H−1xi‖2/2. Each xi is a

homogeneous image coordinate of a FAST feature in image 1 and yi is the cor-

responding homogeneous image coordinate of the refined location in image 2.

Figure 3.11 shows the distribution of the residual errors of each of the three

schemes (raw, spatial and frequency) applied to this image pair. The average raw

errors are as follows:

• Unrefined - 0.6342

• Spatial domain refinement - 0.3464

• Frequency domain refinement - to 0.2285.
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(a) Original Image

(b) Synthetically transformed image

Figure 3.10: Original and transformed images.
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(a) Unrefined

(b) Spatial

(c) Frequency

Figure 3.11: Residual error distribution for the first image pair in Graffiti database
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3.6.3 Pose Estimation

As discussed in Section 3.1.0.1, pose estimation from an essential-matrix is ex-

tremely sensitive to matching errors, and benefits from sub-pixel refinement. For

a set of image pairs, we estimated essential-matrices using the five-point pose

algorithm for FAST corner matches. Then the symmetric point to line error was

calculated for each correspondence. The matches were then refined using the

frequency domain and the spatial domain methods and the essential-matrix was

re-estimated. Further, we compared the results with the sub-pixel coordinate es-

timation of SIFT difference of Gaussian features matches. Table 3.1 summarises

those errors. Figure 3.12 shows two of the image pairs used for the pose estima-

tion.

Figure 3.12: Two image pairs used for pose estimation

Residual error in pixels for image pairs

P1 P2 P3

HIPS Raw 0.447879 0.571511 0.535419
Refined 0.360749 0.384233 0.373508

Sub-pixel
SIFT

0.541322 0.435442 0.690141

Table 3.1: Comparison of frequency-based refinement with sub-pixel features from
SIFT.
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3.7 Discussion

In this work we have extended the affine parameter estimation for match refine-

ment that operates in the frequency domain. Importantly, we have shown the

ability of the newly proposed method to refine correspondences in a coarse-to-fine

multi-resolution manner in the Fourier domain.

Experimental results establish the effectiveness of the proposed method for

modeling local patch deformations which can be used for sub-pixel refinement.

Such locally refined corners are then used to estimate the global monocular pose

with improved accuracy. As a post-processing step, after a less accurate but fast

descriptor-based feature-matching stage, our method can be used for efficient

sparse match refinement.

However, due to the fixed size of the Gaussian weighting function, we found

that the refinement accuracy is sensitive to scale changes if it is more than 20−
30%. If the image pair contain scale changes larger than this, it is necessary to use

image pyramids with at least two layers per octave. Further, if the translation

is large compared to the minimum half wave-length of the selected frequency

band, the solution degenerates as the Hessian matrix in Gauss-Newton algorithm

becomes ill-conditioned. Therefore, the accuracy of the final result depends on the

coarse-to-fine frequency tuning of the optimization. Fortunately, in practice, the

feature detection and matching methods used in this chapter give correspondences

that are well within the convergence band of our algorithm.

With front end discussed in this section, next we introduce a dimensionality

reduction technique for EKF-SLAM in the next chapter. We follow the conven-

tional EKF-SLAM formulation where we keep only the current camera pose in

the filter by marginalizing out all previous camera poses.
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Chapter 4

Reduced Dimensionality

Extended Kalman Filter for

SLAM

The computational complexity of the Kalman filter grows at least quadratically

with the number of dimensions in the filter. This is a particular problem for

applications like SLAM, where it is not possible to run a single filter on a large-

map with many thousands of landmarks.

In this chapter we present a method for dramatically reducing the compu-

tational complexity of the Kalman filters by reducing the dimensionality as in-

formation is acquired. We apply it to monocular SLAM, where there is a large

number of dimensions in the filter that are not subject to process noise (the land-

mark locations). This has the effect of reducing the cost of running a filter or

allowing a single filter to process a much larger set of landmarks.
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Our approach also has a role to play within modern efficient sparse matrix

approaches for SLAM where local information is coalesced into key-frames using

Kalman filters. It also has general applicability to filtered measurement of static

quantities where there are large numbers of dimensions that are not subject to

process noise.

Despite the fact that there are efficient sparse matrix methods for SLAM, we

propose the method in this chapter as an alternative filter-based approach which

will be useful as a local solution to a large graph-based SLAM system or any

Kalman filter-based application with dimensions that are not subject to process

noise in general. In the next chapter we show how to extend this to much larger

scales using a relative formulation.

4.1 Introduction

A SLAM system continuously explores the environment to causally estimate the

ego-motion of a robot and to map the environment. Many successful SLAM algo-

rithms represent the stochastic nature of the robot motion and the measurement

models, together with noisy sensor data in a probabilistic manner, tracking the

joint posteriori over the vehicle pose and the map.

The filtering approach for SLAM maintains only the current camera pose

with all landmarks of interest as the state (Davison et al. [2007], Azarbayejani

and Pentland [1995], Jin et al. [2003], Chiuso et al. [2002]). This representa-

tion marginalises previous camera poses, which in turn connect all state elements

with each other, making the covariance matrix dense, leading to a fully connected

graph. With new observations, the filter complexity grows at least quadratically,

quickly making the problem intractable. This quadratic growth can be handled by

dividing the whole problem into small tractable maps while separately maintain-

ing global consistency (Eade and Drummond [2007]). Developments like parallel

50



tracking and mapping (PTAM) (Klein and Murray [2007]) and dense tracking

and mapping (DTAM) (Newcombe et al. [2011]) take this further by noticing the

possibility of working with an active set of landmarks by separating tracking from

mapping. In these systems the tracker, works with a local set of landmarks while

the map maintains global consistency through bundle adjustment. Full bundle

adjustment in PTAM adjusts the pose with respect to all key-frames. It exploits

the sparseness inherent in the structure-from-motion problem to reduce the com-

plexity. Without maintaining all landmark descriptors in this manner one could

even use a more efficient sparse matrix system (Thrun et al., Walter et al. [2007],

Dellaert and Kaess [2006], Kaess et al. [2008], Kaess et al. [2012]) as the back

end to build a globally consistent map. As efficient as sparse matrix methods

are, they still have limitations and are not used to process all frames of video

as this would generate much denser graphs with high connectivity, which would

overwhelm the approaches. Hence, they are restricted to using sparsely sampled

key-frames.

On the other hand, coalescing observations into independent local key-frames

by building a graph of local nodes, and optimising the resulting graph (Davi-

son et al. [2007]) effectively overcomes the problem with key-frames in order to

maximise the amount of information available. Because the information is ac-

quired locally, the problem is nearly linear, and therefore a Kalman filter was

used to combine information from multiple frames to give rich key-frames that

know something about the inverse depth of landmarks as well as their image

location. Hence, the Kalman filter still has a role to play.

In this chapter we present a method to reduce the dimensionality of the ex-

tended Kalman filter (EKF) for SLAM by identifying dominant modes of the

filter. The method proposed can be used in general to reduce the dimensionality

of the EKF irrespective of its application, without being limited to SLAM. We are

particularly interested in reducing the dimensionality of each node of the SLAM

system mentioned in the previous paragraph (Eade and Drummond [2007]), as

this graph optimization problem is nearly linear with the number of nodes and

as it combines the information from multiple frames to give richer key-frames.
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The most complex operation in such systems is the Kalman filtering within each

node, which imposes an upper limit on the maximum number of landmarks each

node can handle. Our approach can reduce the dimensionality of Kalman filters

used in each node, increasing the number of features a node can handle, leading

to a more accurate estimation (Clemente et al. [2007]). As we suggest in the dis-

cussion such a dimensionality reduced graph can even be used in a multi-camera

set-up more efficiently than a key-frame based sparse matrix method.

Here we consider the particular class of Kalman filters where the process noise

is zero for a large number of dimensions. To handle large fixed-size data sets which

change dynamically, a reduced Kalman filter (Farrell and Ioannou [2001]) is used

in weather forecasting. Localization and mapping differ from this, as the state

vector size grows with time. In addition in SLAM there is a large number of

dimensions with zero process noise. If the process noise is zero, the filter’s n

dimensional state vector can be regarded as a point in a n − D space, with a

hyper ellipse representing its uncertainty, given by the covariance matrix. After

several observations, the uncertainty in some directions in this space will reduce,

making further information along the same directions obsolete. This implies that

information has to be fused only along other directions where enough evidence

is not yet available. In other words, observations contain useful information only

along directions we are very uncertain about. Using these principal modes we

reduce the dimensionality of the EKF and maintain a reduced state It should be

noted that our method is fundamentally different from sub-mapping approaches,

as we are removing only less uncertain directions of the filter, indirectly main-

taining all features of the filter in contrast to removing inactive landmarks as is

done in sub-mapping.

We re-parametrise the filter in terms of uncertainty and work with a reduced

number of uncertain dimensions, maintaining a covariance matrix only in this

reduced space (see Section 4.5). This re-parametrization takes place repeatedly

whenever the filter has enough information about a degree of freedom (it has

a sufficiently small singular value) such that it can freeze that dimension and

remove it from the filter (see Section 4.4.2). This process frees up computational
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capability, which in turn we can use by adding more state variables (corresponding

to the locations of additional landmarks) to the filter (see Section 4.4.1). Camera

pose (and possibly velocity) in the EKF are subject to process noise, hence are

not suitable for dimensionality reduction because the process noise introduces

uncertainty in those variables. In Section 4.5.1 we show how such variables can

be handled within our reduced framework. Section 4.6 gives a complexity analysis

of the system and Section 4.7 provides experimental results. Then we conclude

(see Section 4.8) by explaining how our method can be used for multiple camera

SLAM.

4.2 Background

In the past, the EKF has been successfully employed by many structure from

motions (SFM) algorithms (Azarbayejani and Pentland [1995], Jin et al. [2003]).

Causal integration or recursive estimation of SFM has enabled highly accurate

real-time reconstruction of the environment while localising the camera (Chiuso

et al. [2002]). The main reason for the success of recursive SFM algorithms is the

possibility of capturing many features for motion estimation. The feasibility of

EKF for real-time monocular SLAM was demonstrated first by Davison [2003].

The EKF maintains a full covariance matrix of size n×n for n landmarks. In this

setting, the computational cost for updating the state becomes O(n2) for each

observation, making real-time operation infeasible if the number of landmarks

exceeds more than 100. For this reason the operation of the system has to be

limited to room-size environments (Eade and Drummond [2006]).

To overcome the scaling problem, extensive research has been undertaken by

the robotics community (Bosse et al. [2003], Montemerlo et al. [2002], Leonard

and Feder [2001]). Dividing the environment into sub-regions with a manageable

number of features is one way of handling the complexity of the problem. A

separate EKF has to be used to maintain sub-maps of features in each region.
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The success of such an approach relies on the method used for inferring migration

from one sub-map to another. This has been successfully done by treating each

sub-map as a node of a graph by coalescing observations into independent local

coordinates, and optimising the resulting graph globally (Eade and Drummond

[2007]). However, still there is an upper limit to the number of landmarks that

can be associated in pose estimation within a given node. It has been shown

that the accuracy of the estimated pose can be effectively increased by increas-

ing the number of landmarks used. Some other approaches show the possibility

of pruning weak links of the inverse covariance matrix to achieve a sparse ap-

proximation that allows efficient and scalable SLAM (Thrun et al., Walter et al.

[2007]). Later, sub-optimal solutions for SLAM have been suggested which ex-

ploit the probabilistic nature of the problem by assuming the camera motion to

be known to make each observation independent (Eade and Drummond [2006],

Montemerlo et al. [2002]). However, it has been shown that such approaches

could become inconsistent with time (Bailey et al. [2006b]). Other approaches

try to reduce the dimensionality by identifying higher order structures with a

small dimensionality in the environment (Brunskill and Roy [2005]). Fusing in-

formation gathered from existing landmarks to create higher order structures can

only reduce the dimensionality of the problem locally as the number of such struc-

tures also increases with time. The possibility of approximating high-dimensional

discrete distributions to a tractable representation has been previously employed

successfully to reduce the computational complexity for recognising places based

on their appearance (Cummins and Newman [2008]).

4.3 Overview of the Kalman filter

The Kalman filter (Kalman [1960]) is the optimal solution to estimation and

prediction tasks in which the measurement and process noise are Gaussian and the

system dynamics are linear. It is used to estimate the underlying state of a system

under noisy measurements. In the literature there are different formulations of the
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filter, and the most widely known derivation uses the state space model including

the original paper it-self. Although the full derivation is beyond the scope of this

work, we give the basic form of the final result for clarity.

Consider any dynamic system, where {t, t− 1, t− 2, . . . , 0} are the time steps

taken by the system and t is the current time step. Let xt represent the state

of the system and zt the measurement, both at time t. Also let u and v be

the process and measurement noise of the system with covariances Q and R

respectively. Then the process model f which relates the state xt−1 at time t− 1

with the state prediction xt|(t−1) at time t, and the measurement model h which

relates the state prediction xt|(t−1) with the measurement at time t of the filter

respectively are:

xt|(t−1) = f
(
x(t−1)

)
+ u

zt = h
[
xt|(t−1)

]
+ v

(4.1)

The extended Kalman filter linearises these models around the current state.

If the process and measurement Jocobians are F and H respectively, the standard

derivation shows that if the state covariance is Σ, the predicted state xt|(t−1) and

the predicted covariance Σt|(t−1) of the system have to be updated using the

Kalman gain:

Kt = Σt|(t−1)H
T
(
HΣt|(t−1)H

T +R
)−1

(4.2)

In the alternate formulation, the objective of the Kalman filter is to minimise

the mean squared error between the actual and estimated data. Thus, it provides

the best estimate of the data in the mean squared error sense. The Kalman filter

is commonly known as a recursive least squares (RLS) filter, and the alternate

derivation draws similarities to the chi-square merit function. With Gaussian

measurement noise, the chi-square merit function of the Kalman filter can be
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written as:

χ2 =
n∑
i=1

[
zi − h (x̃i)

σi

]2

(4.3)

Representing the chi-square in the vector form and using the notation of the

Kalman derivation, this can be written as:

χ2 =
[
zt − h

(
xt|(t−1)

)]
R−1

[
zt − h

(
xt|(t−1)

)]T
(4.4)

Minimising the chi-square merit function leads to the Kalman gain such that:

Kt =
(

Σ−1
t|(t−1) +HTR−1H

)−1

HTR−1 (4.5)

It can be shown that these two forms of the Kalman gain in Equation 4.2 and

Equation 4.8 are mathematically equivalent.

Equation 4.2 gives the standard form of the Kalman gain. By inserting ΣtΣ
−1
t

and RR−1 into that we obtain:

Kt = ΣtΣ
−1
t Σt|(t−1)H

TR−1R
(
HΣt|(t−1)H

T +R
)−1

= ΣtΣ
−1
t Σt|(t−1)H

TR−1
(
HΣt|(t−1)H

TR−1 + I
)−1

= Σt

(
I +HTR−1HΣt|(t−1)

)
HTR−1

(
HΣt|(t−1)H

TR−1 + I
)−1

= ΣtH
TR−1

(
I +HTR−1HΣt|(t−1)

) (
I +HΣt|(t−1)H

TR−1
)−1

= ΣtH
TR−1

(4.6)

The information form of the covariance update for the filter is given by:

Σ−1
t = Σ−1

t|(t−1) +HR−1HT (4.7)
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By substituting the inverse of the information form of the covariance update in

Equation 4.7 into Equation 4.8 we obtain:

Kt =
(

Σ−1
t|(t−1) +HTR−1H

)−1

HTR−1 (4.8)

This is the same as the gain calculated from the chi-square equations, confirming

that the gains are indeed equivalent.

Although these two forms are mathematically equivalent, we note that there

is an important difference between them with respect to the space which they are

operating on, which is the key insight which leads to our reduced dimensionality

Kalman filter. Let us consider the part in the Kalman gain that has to be

inverted. In both forms, the inverted part is a form of an information matrix as

it inverts the sum of two covariance matrices. In Equation 4.2 the information

matrix (HΣt|(t−1)H
T + R)−1 works in the space of the measurement vector, by

projecting the system covariance Σt|(t−1) through the measurement Jacobian H

as HΣt|(t−1)H
T onto the measurement space. In contrast, the information matrix

(Σ−1
t|(t−1) +HTR−1H)−1 in Equation 4.8 works in the space of the state vector of

the filter by first projecting the measurement covariance R through the Jacobian

transpose HT as HTR−1H onto the space of the state vector.

Although mathematically equivalent, these two representations can lead to

different complexities when matrices are inverted. Let us assume that there are

n filter dimensions and m observations at a given time. Equation 4.2 requires

inverting a m×m matrix while Equation 4.8 requires inverting a n× n matrix.

The Kalman filter is usually updated in the space of the measurements, which

leads to the gain Equation 4.2. If there are more state variables than the number

of measurements at a given time such that n > m, using Equation 4.2 will be

more efficient. However, if the state vector of the filter is sufficiently small at a

given time, updating in the space of the state variables using Equation 4.8 is more

efficient. In practice, the state dimensionality is comparatively large. If the size

of the state vector can be kept small enough to make n < m, Equation 4.8 can be

used to update the filter efficiently irrespectively of the number of measurements.
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In the next section we describe a method that can formulate an alternate state

vector which has a smaller dimensionality compared to the original. To do so, we

assume the special class of Kalman filters where the process noise is zero, so the

state can be represented as:

xt|(t−1) = xt−1

zt = h
[
xt|(t−1)

]
+ v

(4.9)

The goal is to reduce the dimensionality of the state vector of the system to make

its size smaller compared to the measurement vector.

4.4 Reduced Dimensionality Kalman Filter

If we limit our attention to a filter with zero process noise where the state can

assumed to be static, it is possible to represent the mean of this distribution as a

point in n−D space with its uncertainty given by the covariance matrix as a hyper

ellipse. Measurement information continuously reduces this uncertainty along

some directions. With time, gradually the uncertainty along many directions

becomes comparatively small, making further information along those directions

redundant or less useful. Hence, if the filter starts at t = 0 with a totally unknown

state and continues gathering information until t = tk, the mean state of the filter,

xtk can be frozen and future changes to the mean can be represented as offsets

from this mean. This enables decomposing the covariance matrix into reasonably

certain and mostly uncertain dimensions by singular value decomposition. Let

the covariance of the EKF be Σtk at t = tk. Then:

Σtk = UDUT (4.10)
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where, U is the set of singular vectors of Σtk and D is the diagonal matrix of sin-

gular values. The singular vectors represent de-correlated uncertainty directions

with variances proportional to their singular values. We partition D as Ds, the

significant (large) set and Di the insignificant (small) set.

Figure 4.1: An uncertainty ellipsoid in 3−D around a pinned point x, where d1

represents the most uncertain direction.

U is also partitioned as Us, vectors corresponding to Ds and Ui, vectors cor-

responding to Di. Σt can now be written in block form:

Σtk =
[
Us Ui

] [ Ds 0

0 Di

][
UT
s

UT
i

]
(4.11)
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Therefore, the original covariance matrix becomes:

Σtk = UsDsU
T
s + UiDiU

T
i (4.12)

As the second term of the above expression is comparatively small, the column

space of Us can be used as the reduced space ignoring small singular vectors. Let

the significant vectors Us extracted at t = tk be Ustk and x′t be the reduced state

which is Gaussian distributed in the reduced space with a mean x′t at t(≥ tk).

The reduced mean x′t relates to the original state mean xt as:

xt = xtk + Ustkx
′
t (4.13)

New state x′t represents the variations of the original state around the point

xtk along the directions of the column space of Ustk . Initially we start with xtk
being a zero vector, indicating our knowledge about uncertainty is zero along

corresponding singular vectors in Ustk . Subsequent observations can be projected

onto the derived reduced space to gather information about the new state x′t.

The projected covariance matrix Σtk is obtained as:

Σ′tk = UT
stk

(
Σtk − UiDiU

T
i

)
Ustk (4.14)

The dimensionality of x′t can be kept quite small, compared to the original

state xt. For all time steps t(≥ tk), information can be collected to update x′t

by changing its mean and the covariance. This makes the reduced state time-

dependent. To obtain the prediction equation in the reduced space, the linearised

EKF states at time steps t and t− 1 can be decomposed according to Equation

4.13. As we are assuming zeros process noise, the process model becomes the
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identity. Substituting the decomposed states into the process equation yields:

xtk + Ustkx
′
t =

(
xtk + Ustkx

′
t−1

)
(4.15)

making the predicted state same as the previous state:

x′t = x′t−1 (4.16)

Similarly, if the measurement is zt with the model Jacobian Ht and measure-

ment noise vt, the update equation, after substitution becomes:

zt = Ht (xtk + Ustkx
′
t) + vt (4.17)

which can be modified as:

zt −Htxtk = HtUstkx
′
t + vt (4.18)

Here zt −Htxtk becomes the modified observation and HtUstk the projected Ja-

cobian.

This decomposition can be better explained using a pictorial representation.

As shown in Figure 4.4, the filter covariance matrix can be represented using a

few of its significant singular values by compromising the accuracy a little.
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(a) Mean and the covariance of origi-

nal the Kalman filter

(b) Decomposition using SVD
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Using the reduced space extracted from the covariance matrix, the original

mean vector and the covariance matrix can be reduced as shown in Figure 4.4.

(c) Reduced mean

(d) Decomposition using SVD

In a Kalman filtering set-up, this reduced space representation can be used to

efficiently fuse new information obtained through continuous measurements.

The dimensionality reduction described so far works only when the state is

static. As the camera pose keeps changing it is necessary to account for these

changes through a different approach as described later.

63



4.4.1 Adding New Landmarks

The computational saving achieved by reducing the dimensionality of the filter

can be spent by admitting more variables into the filter to be measured (thus

increasing its dimensionality again). A new variable l, can be directly added to

the reduced state to obtain an augmented state. This requires increasing the

size of x′t and appending rows and columns to Ust and Σ′t. The augmented state

estimate x̂′t and reduced vector space Ûstk now can be modified as:

x̂′t =

(
x′t

l

)
Ûstk =

(
Ustk 0

0 I

)
(4.19)

with the covariance:

Σ̂′t =

(
Σ′t 0

0 σ

)
(4.20)

where σ is the initialising uncertainty. It has to be noted that this augmentation

also increases the dimensionality of the original space by the same number of

dimensions. Therefore, the frozen mean xtk has to be augmented with zeros to

obtain a modified mean x̂tk . The relationship between the state estimate in the

original space and the reduced space becomes:

x̂t =

(
xt

l

)
=

(
xtk
0

)
+

(
Ustk 0

0 I

)(
x′t

l

)
(4.21)

Here we have used the “hat” to denote augmented vectors and matrices. For

clarity we can simply remove the “hat” and use these variables to replace their

un-augmented counterparts.
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4.4.2 Iterative State Reduction

With continuous augmentations the reduced state x′k|k will also start growing.

To keep the dimensionality of x′k|k manageable, we decompose it continuously by

distributing newly learned knowledge over the frozen mean xtk and select a new

reduced basis. Let us decompose Σ′t as shown in Equation 4.32 at a time step

t = tn(≥ tk) and denote the new basis by U ′stn . Let x′′t be the new state, Gaussian

distributed with a mean x′′t . Thus x′t for any t(≥ tn):

x′t = x′tn + U ′stnx′′t (4.22)

By substituting this into Equation 4.31 we can have:

xt = xtk + Ustk
(
x′tn + U ′stnx′′t

)
(4.23)

The above equation can be simplified as:

xt = xtk + Ustkx
′
tn + UstkU

′
stnx′′t (4.24)

The reduction in Equation 4.24, distributes the information learnt up to tn over

xtk to obtain an updated mean xtn such that:

xtn = xtk + Ustkx
′
tn (4.25)

With this the original reduced basis gets rotated towards the new basis to

yield a new reduced basis Ustn as:

Ustn = UstkU
′
stn (4.26)
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This distribution can be done on a frame-to-frame basis after each update, which

makes the reduced basis Ustn and the frozen mean xtn time-dependent.

In practice, the significant set of vectors will remain around 20, as all other

singular values are very small or zero. Irrespective of the size of the original state,

this makes it possible to keep the reduced space dimensionality bounded.

4.5 Dimensionality Reduction in SLAM

Camera state and new features have to be handled separately when reducing the

dimensionality in SLAM. A state vector x, composed of the camera and all the

map features, can be written as:

x =
(
xTc , y

T
1 , y

T
2 , ..., y

T
n

)T
(4.27)

where a scene 3 −D point i is represented using a vector yi and the camera by

xc.

4.5.1 Reduction with the Camera

To model the desired variation while retaining the ability to do standard opera-

tions on the camera, here we perform reduction only upon landmark states. As

the first step, landmarks observed up to time t = tk are decomposed, keeping the

camera state intact by directly transferring it onto the reduced space. Transfer

stacks the camera on top of the reduced state, which initially represented only

the variation of landmarks.
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Let us represent the state at time tk, which is composed of camera parameters

xctk and the landmarks ytk as a Gaussian:

xtk =

(
xctk
xytk

)
Σtk =

(
Σctk

Σctkytk

Σytk ctk
Σytk

)
(4.28)

For dimensionality reduction, first the covariance matrix of landmarks Σytk
,

can be decomposed according to Equation 4.11 and then significant dimensions

Usytk can be extracted as the reduced space. As described earlier, we fix the

current state of the landmarks xytk . In addition to the steps described in the

previous section, to directly transfer the camera, x′ytk
onto the reduced space we

have to extend its dimensions. Therefore, the reduced vector space Usytk has to

be extended by adding a set of orthogonal axes. Let the augmented reduced state

be x′tk and the vector space be Ustk . Then:

x′tk =

(
xctk
x′ytk

)
Ustk =

(
I 0

0 Usytk

)
(4.29)

The fixed point also has to be augmented with a set of zeros as we are trans-

ferring camera parameters onto the reduced space. The modified fixed point then

becomes:

xtk =

(
0

xytk

)
(4.30)

The original state xt relates to the reduced state at t ≥ t1 through:

xt =

(
0

xytk

)
+

(
I 0

0 Usytk

)(
xct

x′yt

)
(4.31)
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The covariance in the reduced space can be easily obtained by projecting the

original covariance onto the reduced space Ustk :

Σ′tk = UT
stk

(
PW
k −

(
0 0

0 UiyDiyU
T
iy

))
Ustk (4.32)

Camera dynamics can be incorporated by working on this space where we

have augmented the full camera state instead of its variations.

4.5.2 Prediction in the Reduced Space

When landmarks are static, the prediction involves estimating the camera and

its covariance with cross-covariances (Civera et al. [2009]). As we transfer the

camera directly onto the reduced state x′t, camera parameters can be predicted

in the usual manner while keeping x′yt unchanged to obtain the predicted state

x′t|(t−1). The process noise corresponding to the camera has to be added to the

camera covariance block in the reduced covariance Σ′t to obtain the predicted

covariance Σ′t|(t−1).

4.5.3 Measurements in the Reduced Space

State updating is done by projecting the measurement model onto the reduced

space. Measurement model Jacobian Ht, can be projected onto reduced space

by a right multiplication. For clarity, if we drop the subscript t and denote the
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Jacobian as H:

Hs = HUstk (4.33)

The innovation covariance can be written as:

Ss = HsΣt|(t−1)H
T
s + I (4.34)

Therefore, the reduced Kalman gain becomes:

Ks = x′t|(t−1)H
T
s S
−1
s (4.35)

If the predicted measurement is h, the reduced state can be updated as:

xt = xt|t−1 +Ks(z − h) (4.36)

4.6 Complexity Analysis

When all landmarks are static, the prediction simply becomes predicting camera

parameters according to a dynamic model. As we directly transfer the camera

onto the reduced space, the prediction complexity remains the same. Dimen-

sionality of the camera covariance remains the same as it is not reduced. The

covariance of landmarks stays intact as landmarks are static. The matrix block

that represents the cross-covariances between landmarks and camera needs to be

multiplied by the camera Jacobian. Let the dimensionality of the camera and

landmarks to be nc and nl respectively. Let nd be the dimensionality of the re-

duced space. In the reduced space, the complexity of this multiplication becomes

O(n2
cnd) compared to the O(n2

cnl) complexity in the original space.
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Updating the state requires inverting the innovation covariance of the filter.

Let nL and nD be the dimensionality of full states including the camera in the

original space and in the reduced space, respectively. The complexity of updat-

ing with a single landmark becomes O(n2
L) in the original space. To obtain the

Kalman gain, the innovation covariance has to be inverted. The complexity of

inverting an n dimensional matrix is O(n3). However, with the sequential in-

novation Kalman filter formulation (Evensen [2003]), if the number of current

measurements is limited to some number nm which is smaller than the state di-

mensionality, the overall complexity reduces to O(nmn
2). In SLAM, the number

of observable features nm at a given time is smaller compared the total num-

ber of landmarks. This reduces the complexity of the inversion from O(n3) to

O(nmn
2). When information is projected onto the reduced space, that informa-

tion is distributed over all reduced states, making a sequential approach impos-

sible. Therefore, complexity has to remain cubic in the reduced space. However,

dimensionality of the reduced space is extremely small compared to the original

space, where the complexity is O(n3
D). Most importantly, the proposed method

keeps nD around 20 irrespective of the original state dimensionality nL.

4.7 Experiments

In order to prove the validity and accuracy of the method proposed, first we used

synthetically generated data. In the experimental set-up we generated a set of 3−
D landmarks along with a synthetic camera sequence. All landmarks were inverse-

depth coded. At each time step t, we projected the 3 − D landmarks onto the

corresponding camera plane Ct. Each projected feature was added with random

Gaussian noise with a unit pixel standard deviation. To make the comparison

a fair one, we used the same set of generated noisy data points to evaluate the

accuracy of both scenarios. These projected noisy feature points with their data

associations in the previous image were used to estimate camera parameters in

an EKF set-up. To evaluate the reduced dimensional EKF, we shifted from the
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standard filter to the reduced filter after learning the environment for some time.

After each estimation step, inverse depth was extracted and normalised by the

mean inverse depth to remove scaling ambiguity. Synthetic ground truth data

were also normalised in a similar manner.

When calculating the average inverse depth from estimated landmarks, to ob-

tain a meaningful average depth, selected features need to be sufficiently certain.

In other words, if there are newly initialised landmarks with highly uncertain

depth estimates, the average will become erroneous. If the estimated depth for a

landmark is ρ such that ρ > 0 with a covariance Σρ to avoid such situations, we

set the selection criteria of the landmark to be:

ρ−
√

Σρ > 0 (4.37)

In our experiment we took the difference between the estimated inverse depth

ρe and the ground truth ρg for each selected landmark after normalization. Then

we divided this difference by the inverse depth covariance of the estimated land-

mark in order to give a lower weight to landmarks with higher uncertainty. To

remove the error induced by the scale of the covariance (due to multiplication),

the result has to be multiplied by the average inverse depth again. Let xe and xg

be the averages for estimated and ground truth inverse depths respectively. If n

is the number of landmarks, the final RMS error for each frame can be obtained

as:

ERMS =

√√√√∑[(
ρe
xe
− ρg

xg

)
xe√
Σρ

]2

÷ n (4.38)

Figure 4.2 shows the RMS error of estimated inverse depths against the frame

number. The vertical line indicates the instance we started reducing the dimen-

sionality of the system. Until the environment is learnt sufficiently for reduction,
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we have to rely on the standard EKF. The dotted line graph shows the error of

the EKF-based landmark estimation and the full-line graph shows the error of

the reduced dimensional EKF (RDEKF) based landmark estimation. The graphs

clearly indicate that the proposed RDEKF yields similar or better results com-

pared to the standard EKF. Other than the dimensionality reduction, selecting

dominant modes bundles the movement of individual landmarks along the global

trend of the system. The error reduction can be attributed to the outlier tolerance

we gain through dimensionality reduction.
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(e) Dataset 1 (f) Dataset 2

Figure 4.2: RMS error of landmark estimations with conventional EKF and pro-

posed reduced dimensionality EKF.

Figure 4.3: Time complexity of the update step for a real data sequence

.
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Figure 4.7 shows the time taken by the update step of the Kalman filter for

real data. Here we have considered only the update step, as predictions are almost

the same for both methods. In the figure, the values have been slightly median-

filtered to remove sudden spikes that occur in measuring the time complexity.

The graph clearly shows that we can keep the execution time of the RDEKF

almost linear.

4.8 Discussion

In this chapter we introduced a dimensionality reduction technique to handle the

complexity growth of the extended Kalman filter. Although the Kalman filter is

no longer the state-of-the-art with current sparse matrix methods, we believe the

Kalman filter has still considerable potential, especially for collaborative SLAM.

The PTAM has later been extended to accommodate multiple trackers to map

the environment through a sub-mapping approach (Robert et al. [2011]). It would

be very efficient if it is possible to replace the back end of such a system with

a new sparse matrix method. However, such a back-end will impose some other

limitations in a multi-camera set-up. When multiple cameras are updating the

same sub-map, it is impossible to do a bundle adjustment within that sub-map in

an incremental fashion, making methods like incremental smoothing and mapping

(ISAM) (Kaess et al. [2012]) less appropriate, as they cannot have multiple roots.

The possible solution of merging maps together requires marginalising all camera

poses from each map to build a secondary map only with landmarks before fusing

them together (Cunningham et al. [2010]). This marginalization becomes tedious

when the graphs are large.

We propose a method of representing SLAM as a graph of coalesced obser-

vations (Eade and Drummond [2007]) as a solution. Such a graph can be eas-

ily extended to accommodate multiple cameras, each coalescing its information
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into a selected node, and global consistency can be maintained separately. This

method represents observations relative to an active node and has some similar-

ities with relative bundle adjustment (Sibley et al. [2010]) where landmarks are

represented relative to their observed coordinate system. However, as the camera

is marginalised from each node when coalescing observations, multiple camera

information can be fused independently into each node. Compared to exist-

ing methods which require camera marginalization from a large bundle-adjusted

graph (Cunningham et al. [2010]), fusing information into a node will be much

more efficient. However, fusing new information should be done only along uncer-

tain directions. Our dimensionality reduction technique can be used to identify

such directions, which in turn increases the number of landmarks that can be

handled by each node for improved accuracy (Strasdat et al. [2010a]).

When extending the method we propose in this chapter to large scales, the

solution drifts away as the linearization errors are permanently baked into the

system as the system marginalises old camera poses. In addition, here we have

assumed a camera-centered coordinate system. In the next chapter we show how

our method can be extended to large scales by retaining all camera poses in the

filter. We further extend the method using the relative formulation of landmarks

to make it more linear inspired by relative bundle adjustment (RBA) for SLAM.
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Chapter 5

Reduced Dimensionality

Extended Kalman Filter for

SLAM in a Relative Formulation

In vision-based SLAM, the number of features used plays a central role on the

accuracy of the final pose estimate, as argued in the previous chapter. Increasing

the number of features increases the accuracy of the final pose estimation, but

increases the dimensionality of the underlying optimization problem.

In this chapter we analyse the effect of the number of features incorporated

into the system on the final estimation uncertainty. We show that the actual

number of dimensions that has to be optimised is far less than the number of

variables in the problem, extending the work in previous chapter. This is true,

as the structure of the problem is entirely determined by the camera motion

rather than the number features encompassed. The number of features used only

determines its noise tolerance.
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Furthermore, we extend this notion to build a consistent real-time SLAM sys-

tem for medium-scale environments, and the computational complexity of the

filter is kept manageable by reducing the dimensionality as information is ac-

quired.

By fusing information only along the most uncertain directions of the filter,

we show how filter complexity can be reduced dramatically.

In this chapter, we represent landmarks in a relative formulation as being

different from the method introduced earlier. We also formulate the problem by

including all camera poses, without marginalising them. This makes the problem

more linear, yielding more accurate results, enabling extension of the dimension-

ality reduction to medium-scale problems.

Using experimental results, finally we prove that our method can handle more

information and yield more accurate estimates compared to the state-of-the-art

methods.

5.1 Introduction

In a SLAM system, with time, the number of measurements of landmarks in

the environment increases rapidly. This becomes problematic for SLAM systems

which work in real time, imposing an upper limit on the maximum number of

landmarks that can be handled by the system. In contrast, it is the amount

of information acquired that improves the accuracy of the final relative pose

estimation of the system. Hence, reducing the number of features increases the

speed, compromising estimation accuracy.

An example of the inconsistency problem explained in the previous chapter

arises when the uncertainty covariance for each landmark has an elongated shape
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(This is a frequent occurrence because the distance of a landmark from the cam-

era has much greater uncertainty than the position of the landmark in the field of

view). When the cameras orientation estimate drifts from the truth, this covari-

ance structure points in the wrong direction. If the orientation error is corrected

by a loop closure, then the uncertainty ellipse no longer correctly represents the

state of knowledge about the landmarks position, and subsequent observations of

the landmark can lead to false reductions in uncertainty that place the landmark

in the wrong position.

Newer methods like PTAM (Klein and Murray [2007]), ISAM (Kaess et al.

[2008]), DWO (Strasdat et al. [2011]), and coalesced observations SLAM (Eade

and Drummond [2007]) solve this problem by retaining old views and performing

bundle adjustment each time a key frame is added to the view set.

These methods take advantage of the sparsity of the full problem. PTAM

uses the Schur complement, which depends on the fact that each observation

couples a landmark with a camera and there are no observations coupling two

landmarks directly. This reduces the complexity to the cube of the number of

key-frames in the bundle adjustment stage. ISAM further exploits the sparsity

that arises because each landmark is only seen by a (possibly small) subset of the

views in a large SLAM problem. It further orders the variable elimination so that

if future frames that only observe recently observed landmarks, the majority of

calculations can be reused without having to be repeated.

These methods are typically restricted to sparse sampling in time of key-

frames, because the complexity depends on the number of frames in the bundle

adjustment. Key-points are tracked densely in time to minimise the occurrence of

false correspondences and to provide a pose initialisation of the new key-frame for

bundle adjustment. Coalesced observations SLAM uses dense sampling in time by

operating a Kalman filter within the (approximately) linear region around each

key-frame. The range of this linear region is made larger by the use of inverse

depth coordinates for landmarks relative to each key-frame rather than Cartesian

coordinates (either locally or globally). The use of key-frame-relative coordinates
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is possible because the poses of key-frames are retained as optimization parame-

ters.

In the previous chapter we took an alternative approach to reducing the time

complexity of the Kalman filter by observing that the energy spectrum of the

covariance matrix is typically concentrated into a much smaller number of di-

mensions than are present in the filter. This means that the covariance matrix

can be closely approximated by a matrix of reduced rank - i.e. that the SLAM

problem can be parametrised in terms of a small set of dimensions that represent

the degrees of freedom with significant uncertainty.

In this work, we take this approach further and apply it to the full estimation

problem containing all camera poses as well as landmark positions. This approach

has a number of advantages:

• It makes it possible to operate a filter with many thousands of state variables

using a re-parametrization with only a few tens (e.g. 20) of dimensions.

• It enables us to optimise using every frame of the video feed. Further,

we show that it is advantageous to do this because the resulting dimen-

sionality of the filter is reduced, despite the increase in dimensionality of

the underlying state space due to the inclusion of the pose of every cam-

era. Similarly, we show that the approach benefits from observing a greater

number of landmarks in each frame because again the increased information

input results in a lower number of reduced dimensions.

• It allows us to use a camera-relative representation for landmarks, as used

byt Sibley et al. [2010] and Eade and Drummond [2007]. This greatly

relieves the optimization from its inherent non-linearity limitation.

• It produces a more accurate result compared to some state-of-the-art meth-

ods.

This chapter is organised as follows. For clarity, we first repeat some of
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the derivation in the previous chapter to show how to parametrise the filter in

terms of uncertainty and work with a reduced number of uncertain dimensions,

maintaining a covariance matrix only in this reduced space (see Section 5.2).

Then in Section 5.2.1, we show how to decompose the state of the full SLAM

problem to obtain a reduced system. Section 5.3 describes how to represent

the relative kinematic-chain in a filter. Then we describe how landmarks are

initialised efficiently using the sequential nature of the filter-based approach for

SLAM (see Section 5.4). The landmark initialization scheme can be thought of

as a bundle adjustment as we are adding new landmarks to the filter with all its

past observations (see Section 5.5). In the experimental results section (5.6) we

compare the translation accuracy of our system with the state-of-the-art double

window optimization for SLAM. Then we discuss the limitations of the proposed

method (see Section 5.7). Finally we conclude with a summary of the content

(see Section 5.8).

5.2 Reducing the Kalman Filter Dimensions

In SLAM, the structure of the system is governed by the camera motion. Knowing

the camera motion is equivalent to knowing the structure of the environment, as

3−D landmark locations can be readily recovered using that information. In the

previous chapter it has been shown that the filter state xt can be reduced to a

small number of parameters. In this chapter, we give some details of the method

for completeness and clarity.

Let the covariance of the EKF be Σtk at some time instant. Then, as shown

in the previous chapter, it can be decomposed as:

Σtk = UtkDtkU
T
tk

(5.1)
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where Utk is the set of singular vectors of Σtk and Dtk is the diagonal matrix of

the corresponding singular values. The singular vectors represent de-correlated

uncertainty directions with variances proportional to their singular values. We

partition Dtk into Ds(tk)
, the significant set and Di(tk) the insignificant set of the

dimensions. Utk is also partitioned into Us(tk), vectors corresponding to Ds(tk) and

Ui(tk), vectors corresponding to Di(tk).

Let x′t be the reduced state which is Gaussian distributed at time tn(≥ tk), as

before.

The SVD decomposition done in the earlier chapter can work only when the

process noise of the variables that are decomposed is zero. Earlier the pose at each

time has been marginalised from the system to obtain the next pose at t, adhering

to the conventional Kalman filtering approach for SLAM. Pose parameters at t−1

can be marginalised only after obtaining an estimate of the pose parameters at

time t through the process model. As these pose parameters are subject to the

process noise, they have to be treated differently from the landmarks which are

not subject to process noise. However, it can be noted that, if all poses are

retained in the system without marginalization, these parameters will remain

static without being subjected to a process model. In this case, new poses have

to be appended in the same way that the landmarks are appended to the system.

In this work we follow the second approach, where we retain all camera poses,

as this removes the inherent non linearity problem of the Kalman filters.

5.2.1 State Decomposition

As is shown experimentally, the reduced dimensionality can be kept sufficiently

small compared to the original state dimensionality, making above estimation

efficient.
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Different from the previous chapter, here we maintain all camera poses in

the filter state, without any marginalization to reduce the non-linearity problem

Strasdat et al. [2010a] of the conventional filter based solution. When the state

contains the full trajectory of the camera, each camera pose is not subject to

process noise. This is different from the previous formulation where the camera

state has to be treated separately from 3−D scene points as the camera has to

change dynamically as a consequence of the marginalization.

5.2.2 Iterative State Reduction

As has been shown in the previous chapter, with continuous exploration the

reduced state x
′
t size will also start to grow as new variables are appended. Here,

it will grow rapidly than before as we are including the whole camera trajectory

in the system. To keep the dimensionality of x
′
t manageable, we decompose it

continuously by distributing newly-learned knowledge over the previously fixed

state xtk and selecting a new reduced basis. Let us decompose Σ′t as shown in

before, at a time step tn(≥ tk) and denote the new basis by U ′s(tn). By following

the same derivation as in the previous chapter, we can reduce this new state.

5.3 Relative Landmark Representation with the

Full Trajectory

The relative parametrization of SLAM represents each 3−D scene point relative

to its originating coordinate system (relative to the initialised frame), instead

of a globally privileged coordinate system (Sibley et al. [2010]). This renders a

better linearity to the problem as each camera pose can change by minimally

affecting the landmarks initialised on the corresponding frame. Here we use the
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same approach, but within a filtering paradigm.

With this parametrization, at a given time the state vector xt, composes each

camera xci , i ∈ {1, . . . , n} with 3D scene points ycij , j ∈ {1, . . . ,m} initialised on

each frame as given in Equation 5.2.

xt =
(
xc1 , y

c1
1 , y

c1
2 , y

c1
3 , . . . , xcm , y

cm
j , ycmj+1, y

cm
j+2, . . .

)T
(5.2)

Here a 3 − D scene point initialised on the camera ci is defined by a 3 − D
vector ycij . For an incremental update on the camera ck, the scene point ycij has

to be projected all the way through the kinematic chain from ci to ck.

5.3.1 Relative Representation within a Filter

In bundle adjustment as all camera poses under consideration are included in

the optimization with corresponding measurements, a given camera pose can

change consistently. Such a relative formulation will be useless in a filter as the

final transformation can be obtained by changing any incremental pose of the

kinematic chain to project a landmark onto the current frame. In other words

while projecting a landmark from camera ci to ck, the correct transformation can

be obtained by changing any camera pose cj such that i ≤ j ≤ k incrementally.

Although, the uncertainty (covariance) of past camera poses remains small, which

can keep these changes small. However, as there are no past observations as in

relative BA Sibley et al. [2010] to anchor a particular incremental pose within

the chain, it will slowly drift the intermediate estimates.

One possible solution would be to update the filter with past measurements.

This will make it similar to a local bundle adjustment, but with a separately

maintained covariance. In such an approach, using measurements which have

been used already to update the filter could easily lead to an over-confident
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covariance estimate. This can be mitigated by combining the system with a

landmark initialization scheme.

Because of the high non-linearity which could drift the final pose estimate, it

is quite common to initialise new landmarks with a separate information filter,

and later add them into the optimiser (Eade and Drummond [2007], Sola et al.

[2008]). This delayed feature initialization discards some information that can

contribute to improving the filter estimate.

As shown in the Section 5.4, we initialise landmarks using the same delayed

approach with separate information filters. Instead of updating the main filter

only with the current measurement at the time of transfer, while transferring the

newly initialised landmark from each individual information filter, we fuse all past

measurements which were used to update the information filter as a batch when

transferring them to the global optimiser. Newly added landmarks contribute to

updating the underlying filter in a relative BA formulation incorporating all past

measurements and camera poses. This approach is beneficial in three ways. First,

it eliminates the information loss caused by delaying the landmark initialization.

Second, it can anchor each camera pose, eliminating the relative update problem.

Third, this enables us to control the available information per landmark. For in-

stance, after a landmark initialization if there are not enough measurements, the

landmark uncertainty will remain without reducing. With our approach we can

control the number of available measurements to shrink the landmark uncertainty

to a sufficiently small value without hindering the dimensionality reduction. Al-

though this increases the size of the measurement vector used in the optimization,

the dimensionality of the reduced state does not change.
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5.4 Landmark Initialization

At the beginning the system’s main Kalman filter is initialised with triangulated

landmarks. Then on each frame, while updating the main filter, new landmarks

are randomly initialised through independent information filters by setting the

inverse depth to the average inverse depth of the previous frame. Then all newly

initialised landmarks are updated given the camera pose estimates of the main

Kalman filter (Eade and Drummond [2007]).

After accumulating sufficient parallax, landmarks are appended to the main

filter and the filter is updated with all measurements of each newly added land-

mark from its initialization. This brings the uncertainty of the landmark to a

small value while avoiding the same information being fused into the system.

Landmarks are discarded without adding to the main filter if are insufficient

measurements within a past number of frames. When updating the filter, we

use past measurements of newly added landmarks, making our approach locally

similar to bundle adjustment. Although the depth is available at the time of

initialization in stereo SLAM, we add landmarks into the main filter in the same

way by initialising landmarks through a separate information filter for improved

accuracy.

5.5 Updating with Past Measurements

Our method can be thought of as a bundle adjustment within the Kalman filter,

as we are updating the filter with all past observations of a newly added land-

mark. This is theoretically correct, as the Kalman filter can be updated either

sequentially or as a batch (Evensen [2003]), as long as the same measurement is

not used more than once to update the covariance of the filter (which makes the

system over-confident).
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If we retain k past measurements by setting the measurements z̃ =
[
zt, z(t−1), . . . , z(t−i)

]T
and the Jacobian H̃ =

[
Ht, H(t−1), . . . , H(t−i)

]T
with measurement noise for all

measurements ṽ =
[
vt,v(t−1), . . . ,v(t−i)

]T
, The measurement equation in the pre-

vious chapter can be modified as follows:

z̃− H̃x′tk = H̃Us(tk)x
′
t + ṽ (5.3)

In Equation 5.3, H̃Us(tk) acts as a modified Jocobian H̃s for the reduced state.

If the measurement vector size is nm and the reduced state vector size is nd, H̃s

is a nm × nd matrix. Although this requires multiplying two matrices H̃ and

Us(tk)), it can be done very efficiently as H is sparse. The reduced state size nd is

comparatively small, although the measurement size nm can change. Multiplying

both sides of Equation 5.3 by HT
s gives the final reduced update equation which

requires only inverting a nd × nd matrix.

5.6 Experiments

We proved the validity and accuracy of the proposed method by comparing it

with global bundle adjustment and double window optimization. We used the

publicly available New College data-set Smith et al. [2009] in our experimental

set-up. Figure 5.1 shows the real-time results for a large-scale loop closure in that

data-set. Unlike key-frame based SLAM, here we are updating all frames, which

contributes to a much smoother trajectory.

Given that we collect enough information from the environment, the dimen-

sionality of the problem in the reduced space can be kept very small irrespective of

the original dimensionality. Usually the dimensionality can be maintained around
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Figure 5.1: Large loop closure for stereo data.

20 for the New College data set as shown in Figure 5.2. With the number of obser-

vations, the dimensionality can be further reduced, as all observations contribute

to reducing the same underlying structure of the problem with increased accuracy

(it improves the signal-to-noise ratio).
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Figure 5.2: Dimensionality of the problem before and after the dimensionality
reduction. The typical dimensionality after reduction is 20-30.

Furthermore, we compared the relative translation error for the pose estimates

of the New College data-set. Figure 5.3 shows the relative RMS translation error.

We compared the RMS translation error after normalising the translation to be

unit vector against global bundle adjustment by treating global bundle adjust-
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ment as the ground truth. It can be seen that our method yields better accuracy

compared to double window optimization. This accuracy can be attributed to

information fusion on every frame.
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Figure 5.3: Translation error comparison between dimensionality reduced system
and double window optimization

Next we compared the relative translation error of the monocular version of

our systems with the stereo version. As shown in Figure 5.4, as expected, the

stereo system yields far better results compared to the monocular version as the

scale is readily available in a stereo system as the third measurement parameter.

The scale drift is unavoidable in large scale monocular systems, necessitating the

scale to be propagated through the loop after a loop-closure, as suggested in

earlier work (Strasdat et al. [2010b]).

The most important factor to note is how dimensionality changes with the

number of observations per frame. It can be seen that the number of significant

dimensions changes with the number of observations per frame (Figure 5.5). The

higher the number of visible measurements per frame, the higher will be the

information available to recover the underlying structure with less uncertainty.

This aligns with our intuition of reducing dimensionality along less uncertain axes

of the system.

Figure 5.6 shows the experimental results obtained by rotating a camera on a
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Figure 5.4: Stereo and monocular relative translation error.

turn table for an indoor sequence. The system can accurately close the loop for

the given sequence.

5.7 Limitations and Further work

The proposed system produces estimates of all underlying state variables at each

frame, rather than merely producing estimates of the observed landmarks. Here,

the iterative dimension reduction step (performed each frame) remains the most

expensive step of the system.

This means that our system complexity also grows with time and this limits

speed. This limits our current implementation to medium scale SLAM - although

it gives better estimation accuracy.

In our approach, although the update step requires only updating the reduced

set of parameters, the expansion which maps the changes in the reduced space to

the original space has to be done as a whole bundle. Here the older significant

vector space Us(tk) has to be multiplied by the newly-reduced vector space U ′s(tn).
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Figure 5.5: Dimensionality of the reduced system with the number of measure-
ments

If there are nL variables in the system state xtn , the older reduced basis Us(tk) be-

comes a nL by nD matrix if the reduce space dimensionality is nD. Let us assume

that the new reduction Us(tn) is a nD by nD′ matrix. Then the complexity of this

multiplication becomes nL × nD × nD′ .The number of variables grows rapidly,

making this multiplication computationally expensive limiting its applicability to

small to medium scale problems.

One of the solutions that we plan to investigate in future work is to update

only the most recent set of variables by identifying a special structure of the

significant vector space Us(tk) . When updating, this vector space can be modified

using parts of U ′s(tn) related only to the most recent set of variables. However,

when it is necessary to update the whole system, the multiplication has to be

done over all variables, meaning that the complexity of the full problem remains

the same. In addition, the reduction threshold has to be tuned by trial and

error as it depends on factors like the rate of information acquisition and the

filter parameters. If enough information is not received through measurements,

it becomes harder to reduce the dimensionality.
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Figure 5.6: Trajectory of the camera for an indoor monocular sequence

5.8 Discussion

In this chapter we have introduced a dimensionality reduction technique for

SLAM in a relative formulation. By identifying the most significant dimensions

of the filter and updating only those dimensions we reduced the computational

complexity. We applied the method to build a relative SLAM system which can

solve small to medium scale problems accurately and efficiently.

This suggests that the underlying structure of the problem lies on a smaller

dimensionality, although there are a large number of dimensions in the original

problem.

We believe that our approach will shed some light upon the parameter selec-

tion of dense SLAM systems, to make it more efficient by identifying the under-

lying structure to be solved, without doing an exhaustive update.
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Chapter 6

Monocular Image Space Tracking

on a Computationally Limited

MAV

In this chapter we present an efficient method for parallel tracking and mapping,

enabling asynchronous communication between two threads. Our approach is

derived from the recent development of parallel tracking and mapping algorithms,

but unlike previous approaches, we show how the tracking and mapping processes

can operate using different representations. The primary contribution is to show

how the cost of tracking the vehicle pose on-board can be substantially reduced

by estimating the camera motion directly on the image coordinate system rather

than in the world coordinate frame. We demonstrate our method on an Ascending

Technologies Pelican quad rotor, and show that the method is capable of tracking

the vehicle pose with reduced on-board computation but without compromised

navigation accuracy.
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This work has been completed as a collaborative project with the Center for

Robotics and Intelligent Machines (RIM) at Georgia Institute of Tech-

nology and the Computer Science and Artificial Intelligence Laboratory

(CSAIL) at Massachusetts Institute of Technology.

In this work, our contribution is the front end Jacobian partitioning method.

We identified that the measurement Jacobian can be partitioned into two parts.

If we work in the pixel coordinate system, the Jacobian can be partially precal-

culated and saved as a database for fast on-line retrieval as shown below.

6.1 Introduction

Available SLAM algorithms are not suitable for deployment on limited platforms

due to the computational cost. Here we are interested in monocular vision-based,

inexpensive, and potentially disposable micro air vehicles (MAVs) that can be

deployed in a large volume.

Although existing parallel tracking and mapping algorithms are capable of

parallel processing, there is a tight coupling between these two operations. For

instance, the PTAM (Klein and Murray [2007]) front-end requires estimates from

its back-end in a synchronous manner, restricting the deployability of the front-

end on a separate platform.

Solving the complete map is computationally demanding, especially as the

number of landmarks grows large. PTAM addresses the computational cost by

decomposing the computation into two parallel processes, such that a full-rate

camera tracking process that uses the best available information and a map opti-

mization process using a subset of representative camera images, i.e. key-frames.

This decoupling requires sharing a single map in memory where the camera track-

ing process assumes a fixed map while in parallel, the map optimization process
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continuously (if slowly) improves the map. Although proven very successful, this

technique still carries the burden to optimise a growing global map. This dif-

ficulty is amplified in the kinds of low-power processors found in low-cost air

vehicles that lack support for true parallelism.

An easy solution to reducing the cost of on-board computation is to move

the entire pose computation to an off-board processor. Compressed images or

feature-descriptor sets could be sent to a ground station and a pose estimate

could be received in return. However, the wireless communication channel to an

untethered MAV will typically suffer from packet drops, limited bandwidth and

large transmission delays, that make time-critical dependence on the communi-

cation channel unreliable. A complete off-board scheme that includes such an

unreliable communication channel in its control loop is not suitable for a MAV.

To overcome the communication limits while reducing the cost of on-board

computation, only the costly map optimization can be moved to an off-board

processor. A trivial solution is to send the entire map back and forth between

the MAV and ground station, keeping different copies of the same information.

However, once the on-board process is restricted to tracking, this process can

be reformulated in the image space, leading to much reduced computation. The

mapping process can continue to run off-board, and provide asynchronous copies

to the MAV of the updated map as the communication channel permits, where

the updated map is projected into image space and bounded by visibility in the

current frame, specifically for the purposes of fast, on-board pose estimation.

The main contribution of this work is the reformulation of the tracking and

mapping problem when the two processes are physically decoupled and no longer

share the same copy of the map. We introduce monocular image space tracking

(MIST) and show that the tracking process can be entirely in the image coor-

dinate frame for fast computation. We discuss landmark representation in the

image space, data association using such landmarks, fast pose optimization using

pre-computed Jacobians, updating the landmarks frame-to-frame, and forward

projection to compensate for the delay in asynchronous updates from the ground
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Figure 6.1: The MAV occasionally sends the camera image and its own pose
estimate to the ground station for map building. The ground station sends back
a local map in the image space of the MAV for fast pose tracking.
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station.

Our novel approach of asymmetrically distributing SLAM onto separate de-

vices results in a fully scalable robust pose estimation on a computationally and

bandwidth limited MAV, while the globally consistent map of arbitrary size can

still be inferred on the ground. We demonstrate the improvements achieved with

MIST using a monocular camera mounted on an Ascending Technologies Pelican

quad-rotor.

6.2 Background

In the field of autonomous navigation and exploration, the use of planar laser

scanners have shown success in achieving full autonomy for micro air vehicles

(Bachrach et al. [2011] Shen et al. [2011]). However, these methods do not scale

well into inexpensive platforms due to the weight, power requirement, and the

cost of laser scanners. Recent work (Shen et al. [2013], Fraundorfer et al. [2012])

has demonstrated similar exploration capabilities using stereo vision as primary

sensing means. Although abandoning the laser scanner reduces the weight and

power requirements, stereo vision techniques are still computationally expensive.

We would like to push towards the limits of minimal sensor suite and minimal

processing efforts by utilising a monocular camera.

Past work on the use of a monocular camera on a MAV for on-board SLAM

(Weiss et al. [2011]) has used PTAM as a black-box pose estimation unit. How-

ever, originally developed for augmented reality applications in small workspaces

where the explored map is assumed to be small, PTAM’s computational require-

ments would still be a burden on computationally limited MAV platforms explor-

ing a larger area.

Recent work by Forster et al. [2014] reduced the processing requirements
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greatly, and demonstrated robust high frame-rate tracking using a small pro-

cessing unit. Although their SVO method has low frame-to-frame computational

requirements, it is not fully scalable due to the burden of storing a growing map

in the MAV’s memory. In addition, SVO requires a two-core processor for opti-

mal speed for its parallel tracking and mapping design; our system requires only

a single core on the MAV with all of the heavy computational load on the ground

station. Lastly, SVO is currently engineered to use a downward camera. There-

fore, an algorithm that is as fast on a single core processor with a small memory

capacity, that could work with both downward and forward cameras would be

much more desirable.

As opposed to on-board methods, some previous work (Ok et al. [2012], Engel

et al. [2014b], Ta et al. [2014]) has streamed images from the MAV to a more

capable ground station to off-board the computations. However, this strategy

requires aggressive image compression and reduced frame rates, leading to over-

all poor image quality. Computing the pose of the MAV on a ground station,

and streaming it back to the MAV also introduces a large transmission delay in

the pose updates needed by the on-board controllers. There are techniques for

mitigating the controller errors that can result from a delay in the state esti-

mate (Engel et al. [2014b]), but these solutions are ultimately not as robust as a

high-rate on-board state estimation process.

Other previous work (Ni et al. [2007], Frese [2006], Williams et al. [2002])

partitions the SLAM problems to meet different objectives, but our work is novel

in dividing the problem onto two separate devices to meet the requirements of a

computationally limited system.

Following the same notation used in Chapter 4, let xtk represent the state of

the system which includes the camera parameters xctk and landmarks xytk . In a

fully decoupled system, the limited platform should receive landmark estimates

visible on a given camera frame which can be regarded as a local map, which

may not necessarily be the current frame due to the asynchronous nature of

communication. The MAV, should compute the current camera pose xctk given
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the current image, and the transmitted local map of landmarks in the pixel space.

Conversely, on the ground station, we take the smoothing and mapping (SAM)

approach (Dellaert and Kaess [2006]) to solving the SLAM problem. On the

ground station we optimise over a selected subset of key-frames that are far apart

from each other. We do this by occasionally receiving camera images It from the

MAV, and optimising for the maximum a posteriori (MAP) estimates.

6.3 Computation on the MAV

This section explains the main contribution of this chapter. Here we propose a

novel Jacobian partitioning method which enables the pre-calculation of a nor-

malised version of the Jacobian for later direct retrieval. This relieves the com-

putationally limited MAV from computing the Jacobian each time.

We adopt a feature-based approach, where we extract a set of features xytk

from a given image. Those features are matched against the next image for feature

correspondences.

When the landmarks are represented relative to some coordinate system, to do

the feature-landmark association those landmarks have to be projected onto the

current frame through the kinematic chain. As the system has two threads which

work independently, we delegate most of the computations to the server. We are

able to save computations by having the ground station do the initial projection

for the MAV and creating a local map in the image coordinate system. To do

this, the ground station optimises the global map using the latest information

received from the MAV, from which it can maintain a refined 3−D estimation of

landmarks. Then the ground station can predict the next frame and project 3−D
landmarks in the global map onto this frame to create a local map of landmarks

L̄tk . The ground station also discards landmarks that are out of view, so that the
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matching on the MAV uses only a small local map usable in the near-future. Due

to the asynchronous communication that we assume between the two platforms,

the local map L̄tk sent by the ground station will only be available to the MAV

at a some later time t. Therefore, after receiving a map from the ground station,

the MAV has to project the local map L̄tk onto the current frame at time t to

obtain an updated local map L̄t.

In our implementation, we extract FAST (Rosten and Drummond [2006])

corners at 4 pyramid levels and store them in a grid at each pyramid level. We

use the grids to reduce the number of potential matches before comparing the

actual descriptors or enforcing the maximum feature distance in the image space.

6.3.1 Forward Projection

As we allow the MAV to be autonomous, by the time it receives the local map

L̄tk , it may have proceeded a few frames further, as mentioned earlier. In order

to bring this map to the current camera frame of the MAV, the received local

map L̄tk has to be projected through the kinematic chain from frame tk to t. The

MAV can linearly project this received map into its current view by composing

the kinematic chain. We keep computing the kinematic chain using the feature

correspondences that MAV received from the ground station as L̄tk . This forward

projection frees the MAV from time consuming computations, reducing the risk

of crashing with temporary losses in the communication channel.

Let the current frame of the MAV be at the time step t and tk be the time

step where the projections L̄tk from the ground station are available. The forward

projection will bring this map onto the current frame as L̄t. This can be easily

done using between frame feature correspondences.

If the number of visible landmarks of L̄tk goes below a threshold, we also

initialise a new set of landmarks on-board, where the depth of such landmarks
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can be roughly estimated.

Given the measurement Jacobian, the incremental transformation between

frame i and j such that j > i can be easily calculated as follows:

h(xtj) ≈ h(xti) +Hiξij (6.1)

where, h is the measurement function. Since landmarks are directly represented

in pixel coordinates, it is not necessary to do a 3−D to 2−D projection in the

measurement function. The Jacobian is directly looked up from a database, as

discussed later. If more computational power is available the estimation accuracy

can be improved using the 4th order Runge-Kutta method to update the inverse

distance Qj from frame to frame. However, this update is not crucial since the

inverse distance does not change significantly between a few frames. We choose

the inverse distance representation over the inverse depth counterpart for this

reason.

6.3.2 Motion Calculation and Outlier Rejection

Given the data correspondences C(t,t−1), we can calculate the pose xct by max-

imising the posteriori probability:

P (xct |C(t,t−1), L̄t−1) ∝ P (xct |L̄t−1)
∏

P (zjt |xct , xjyt) (6.2)

where zjt is the corresponding image feature of the landmark xjyt . Assuming a

Gaussian priori on the pose xct and Gaussian measurement noise, where R is the

covariance matrix, this is equivalent to minimising the negative log-likelihood:

arg min
xct
‖ xct − xc(t−1)

‖2
Σ +

∑
‖ zjt − h(xct , xyt) ‖2

R (6.3)
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Figure 6.2: Flow diagram of operations done on the MAV.
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where h(xct , xyt) is the measurement function, and zj is the measurement of a

landmark, i.e. the associated feature location.

The current pose xct can be parametrised as an incremental change from

the previous pose xct−1 such that xct = exp(ξ) ⊕ xct−1 , where ⊕ denotes pose

composition in SE(3). Hence, with linear approximation, the observation model

becomes

h(xct , x
j
y) = h(exp(ξ)⊕ xct−1 , x

j
y) ≈ h(xct−1 , x

j
y) +Hjξ (6.4)

where Hj is the 2× 6 Jacobian matrix defined by:

Hj =
∂h(xct , x

j
y)

∂xct
=
∂h(exp(ξ)⊕ xc(t−1)

, xjy)

∂ξ
|ξ=0 (6.5)

Let xjy be a local landmark. In the MIST framework, we represent local

landmarks on the image space as xjy = (uj, vj, Qj), where pj = uj, vj are the

pixel coordinates. Therefore, our tracking problem can be posed as a linear

optimization:

x∗ct = arg min
ξ
‖ xct − x̃ct ‖2

Σ +
K∑
j=1

‖ (zj − pj −Hjξ) ‖2
R . (6.6)

where x̃t is the latest state estimate.

Since there is no perfect data association in practice, we iterate the compu-

tation a few times by re-weighting R based on the residuals. This iteratively

re-weighted least squares (IRLS) framework (Paul and Roy [1977]) serves two

purposes: 1) it reduces the effect of outliers and 2) the final weights can be used

to evaluate the quality of pose tracking. This quality assessment along with the

percentage of successful data associations are used to judge whether a new frame

should be sent to the ground station for a subsequent local map update.
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6.3.3 Jacobian Image

What enables pre-calculating the Jacobian is the special structure identifiable

in the Jacobian matrix Hj used in Equation 6.6. The Jacobian on the pixel

coordinate system can be formulated as:

Hj =

[
∂I

∂p

][
Q 0 −QU −UV 1 + U2 −V
0 Q −QV −1− V 2 UV U

]
(6.7)

where p = (U, V ) are normalised camera coordinates (x/z, y/z). The first three

columns of the Hj correspond to translation parameters and the second three

columns correspond to rotation parameters of ξ, where I = (u, v) are the pixel

coordinates. Thus, the first term, ∂I
∂p

=

[
∂u
∂U

∂u
∂V

∂v
∂U

∂v
∂V

]
, depends on the calibration

model of the camera.

In Equation 6.7, if we divide the first 3 columns of Hj by Q, the result only

depends on the pixel location (where U, V are functions of u, v). Therefore, we

can pre-calculate this matrix at every pixel and store the matrix as an image of

2× 6 matrices that can be used at run-time to reconstitute the Jacobian quickly

from a pixel coordinate and Qj
t for any landmark by retrieving the 2× 6 matrix

at pjt and multiplying the first 3 columns by Qj
t .
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Figure 6.3: Framework showing the ground’s operations in relation to the MAV’s.
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6.4 Computations on Ground Station

6.4.1 Bundle Adjustment

To distinguish between the computations of the ground station from those of the

MAV, let us use X to represent the state. Here we drop the time dependence t

for clarity, assuming state to be current. The ground station computes a global

map of landmarks and key-frame camera poses X given visual measurements by

recovering the (MAP) estimate:

X∗ = argmax
X

P (X|Z)

= argmax
X

∏
i

P (xic)
∏
i,j

P (zij|xic, xjy)

This map-building problem can be posed as inference on a factor graph (Del-

laert and Kaess [2006]). The variable nodes are camera poses xic and the land-

marks xjy while the factor nodes are the prior densities P (xic) on the variable nodes,

and the measurement likelihoods P (zij|xic, xjy) constraining a pose xic and a land-

mark xjy, given the corresponding visual measurement zij. This measurement

likelihood is equivalent to the observation model used on the MAV, described

in Equation 6.4. By eliminating the factor graph, we can solve for all the cam-

era poses and the landmarks. We omit the details of this process, since we use

standard inference techniques for the camera poses and landmarks in the world

co-ordinate frame, rather than inference in the image frame as we do on-board

the vehicle.
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6.4.2 MAV Pose Estimation

Parallel to the process of bundle adjustment, the ground station periodically

receives images from the MAV. We perform a similar pose estimation to that

done on the MAV in the standard world co-ordinate frame to estimate the pose

of the image. This pose optimization is the well-known camera re-sectioning

problem, i.e. computing the optimal camera pose x∗ct given measurements zjt of

known landmarks:

x∗ct = argmax
xct

P (xct | {z
j
t , x

j
y}j=1..m)

= argmax
xct

P (xic)
∏
j

P (zjt |xct , xjy)

where we use the MAV’s pose estimate as a prior P (xic).

One thing to note is that the MAV and the ground station can use different

corner features and feature descriptors, since the MAV pose tracking is repeated

on the ground station. Accurate but computationally expensive methods such as

SIFT (Lowe [2004]) can be used on the ground station in place of the lightweight

algorithms on the MAV.

6.4.3 Projection to View

The ground station can apply the MAV’s camera model to obtain estimated

image coordinates pj on MAV’s image space for each probably-visible landmark

and communicate these rather than the metric locations. Furthermore, at any

given time step, the MAV only needs to know about the landmarks that it is

likely to observe, and the ground station therefore only needs to transmit a map

of these landmarks.
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Therefore, using the optimised MAV pose, we project the landmarks xy onto

the calibrated coordinates (U j, V j):

(U j, V j) = K[Rc
w|tcw]xjyw

and then to in-image pixel coordinates (uj, vj) = f(U j, V j) using f the fish-eye

lens model (Devernay and Faugeras [2001]). Out of these projections pj = (uj, vj)

in pixel coordinates, those within the image boundaries are included as a local

map. This map is then transmitted to the MAV, as illustrated in Figure 6.3.

6.4.4 Adding Key-Frames

The two initial frames are created in a separate initialization process using homog-

raphy with a locally planar assumption, as in Klein and Murray [2007]. During

the initialization stage, all of the frames are transmitted from the MAV to track

a trail of features on the ground station. After initialization, the ground sta-

tion waits for the MAV to send a new frame, while optimising the global map

in parallel. Once a new frame is received, the ground station prepares a new

local map in the image plane of the frame and sends it back to the MAV. Then

the frame’s distances to all other key-frames in the global map are calculated to

judge whether it is far enough from other key-frames to qualify as a new key-

frame. The ground station then searches through all of the known key-frames

to make data associations with the newly received frame. This dense association

stage is critical to building a globally salient map.
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(a) Figure A

(b) Figure B

Figure 6.4: The MAV uses a monocular camera and tracks landmarks in the
image space to estimate its pose
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6.5 Experiments

We autonomously flew an Ascending Technologies Pelican quad-rotor in an un-

known indoor environment, using a 30 fps PointGrey Chameleon camera, a Mi-

crostrain IMU, a Hokuyo laser scanner, and a Gigabyte dual-core i7 to evaluate

MIST as a visual pose estimation module on a MAV. We then analysed the accu-

racy of our pose estimates by comparing them with the pose estimates generated

using PTAM. We also compared the time to pose estimation for MIST, PTAM

running on-board, and PTAM running off-board. The dataset for benchmarking

is collected by hand-carrying the quadrotor around an indoor environment, and

saving camera images and other sensor data using LCM (Huang et al. [2010]).

The saved data is played back at the original intervals on the quad-rotor to simu-

late the MAV flying, while providing the exact same input to different algorithms

used in comparison. For the ground-station, we use a quad-core i7 laptop.

6.5.1 Autonomous Flight using MIST

During the autonomous flight, we ran a laser-scan matching algorithm (Bachrach

et al. [2011]) in parallel. The pose estimates and the occupancy grid from the

laser scan-matcher were treated as ground truth; we obtained metric pseudo-scale

input from the pose estimates, and used the occupancy grid to plan a collision-

free trajectory, as shown in Figure 6.5. The use of the laser-scanner was for these

purposes only, and our algorithm does not require the laser to estimate the pose.

We formed the flight trajectory by clicking waypoints and using a polynomial

trajectory generator (Richter et al. [2013]) to smoothly connect them within the

laser-built occupancy. We controlled the quad-rotor using a nonlinear SE3 con-

troller (Lee et al. [2010]) and increased the frequency of the vehicle pose estimate

by relying on an EKF to fuse in our MIST vision estimates and a 100 hz IMU.
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Figure 6.5: Waypoints are manually clicked to generate a trajectory, and MIST is
used to estimate the pose and follow the trajectory. Laser scan-matching results
are run in parallel and used as the ground-truth.
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In order to align the laser-based poses and the occupancy grid with the vision-

based poses, we transformed the vision-based pose updates in the camera frame

to updates in the robot body frame, and continuously composed to an initial

laser pose. To resolve the scale ambiguity, the vision-based poses and the laser-

based poses were collected between two consecutive local map updates and the

difference in translation is used as a pseudo-scale input to re-scale the map for

the following frames. An alternative to the metric scale estimates from the scan-

matching could be integrating the accelerometer (Weiss and Siegwart [2011]), or

using a single-point range-finder (Engel et al. [2014b]).

As shown in Figures 6.5 and 6.6, while the MAV can reliably follow the tra-

jectory, continuously composing the vision-pose updates on a single initial laser

pose results in the vision-based trajectory eventually drifting away from the laser-

based trajectory as errors accumulate. One source of systematic error between

the vision-based estimates and the laser-based estimates is the approximate trans-

formation between the camera and the laser frame, caused by an approximate

hand-alignment of the camera, the IMU, and the laser on the quad-rotor. An-

other source of approximation error is the linear interpolation performed on the

laser pose estimates when finding the pose chronologically closest to a camera

time-stamp. The last source of error is the heavy dependence on the pseudo-scale

inputs, which corrupt the translation if estimated poorly.

6.5.2 MIST Tracking Accuracy

To evaluate the accuracy of MIST in the presence of external systematic errors,

we collected camera images and sensor data and played them back as identical

inputs to PTAM and MIST. Over a 50 meter trajectory shown in Fig. 6.6, our

pose estimates were approximately as good as the trajectory generated using

PTAM.

We compared the error in rotation and translation of frame-to-frame updates
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Figure 6.6: The laser-based trajectory estimate in red, our pose estimates in green
and the PTAM estimates in blue. During the total travelled distance of 50 meters,
the vision-based trajectory drifts aways from the laser estimates. However, our
method is approximately at least as accurate as PTAM.

in the robot body frame for PTAM and MIST, with the laser scan-matching as

the ground-truth. It can be seen in Figure 6.7 that the performance of our system

is nearly identical to that of PTAM at approximately less than 0.4 degrees of error

in each of roll, pitch, and yaw while the error in translation is under 3 cm.
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Figure 6.7: Errors in translation and rotation for PTAM and MIST, compared to
the laser scan-matching counterpart. It can be seen that the accuracy of MIST
is on par with that of PTAM.

6.5.3 Timing Comparisons

We compared the time to pose estimates between our system, PTAM running

on-board, PTAM with raw streamed images, and PTAM with JPEG-compressed

streamed images. As with the trajectory analysis, pre-recorded LCM messages are

played back on the MAV to simulate the vehicle flying while providing identical

sensor data to different methods. In the case of streaming methods, the time to

pose estimate includes the round-trip transmission time over wi-fi as well as the

pose computation time on the ground station. For MIST and PTAM running

on-board, this time is only the computation time taken since the camera image

was available.

As shown in Figure 6.8, sending uncompressed images takes over 200 ms,

causing the pose estimates to arrive about 8 frames later. This large delay in

transmission makes tracking infeasible, as any rapid motion causes PTAM to lose

113



tracking. On the other hand, streaming JPEG images is relative fast, with the

estimates lagging two frames behind. Although this delay could be moderate for

slow moving vehicles, the transmission delay is not always constant; there are

regions where the delay is more than double, and if a few packets are dropped

at any point during the entire motion, it would cause PTAM to lose track and

cause the vehicle to crash.

In this figure, it can be observed that the time taken for PTAM and MIST

do not differ much. The reason is that on the dual-core i7, the computation

done by PTAM’s mapping process is in fact truly parallel to the tracking thread,

and does not add to the computation time to pose estimate. While this shows

the strength of the parallel design, we emulated a more computationally limited

platform, typically found on low-cost MAVs, by enabling only a single core. We

also quadrupled the play-back speed of the LCM messages so that the camera

images come at 120 hz, while the IMU comes at 400 hz.

As shown in Figure 6.9 on an emulated single-core machine, MIST still retains

a constant time to pose estimates. However, for PTAM running on-board, as the

processor jumps from the tracking process to the mapping process, the time to

pose estimate grows with the growing map, due to increasing difficulty in bundle

adjustment. We also disabled the entire mapping process of PTAM, and run only

its tracker to compare against MIST. The average computation time for MIST

is 3.97 ms, capable of estimating the pose at over 200 hz, while the average for

PTAM tracker is 7.78 ms. It can be seen that the computation time for the

PTAM tracker also grows slowly since it has to project the growing map into its

measurement space.
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Figure 6.9: A single-core computationally limited system is emulated to better
highlight the difference between PTAM running on-board and MIST. It can be
observed that the computation for our tracker remains constant, while PTAM
gradually increases time due to the mapping process. Comparing against only
the tracker process in PTAM, MIST is nearly twice faster.
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6.6 Discussion

We have divided the full SLAM problem into fast monocular image space tracking

(MIST) on the MAV and key-frame-based smoothing and mapping on the ground

station. Using our fully decoupled tracker and mapper design and fast image space

tracking, we are able to compute the pose estimates on the MAV in constant time

while building the growing global map on the ground station. The quality of this

global map is as accurate as PTAM, as shown by the the pose estimates of MIST

and PTAM compared against laser scan-matcher ground-truth.

In future work, we can explore utilising MIST in a multi-robot scenario where

a team of disposable MAVs are needed to navigate a hazardous area. Having a

single ground-station with multiple low-cost MAVs sharing a single map may be

a trivial solution to creating a centralized distributed system.

116



Chapter 7

Conclusion

This thesis mainly focused on reducing the dimensionality of the extended Kalman

filter for SLAM. As information is learnt about the environment, the covariance

matrix in the Kalman filter typically becomes dense, with strong correlations be-

tween the locations of individual landmarks. As a result the covariance matrix

becomes spectrally sparse (with large numbers of small singular values). We pro-

posed an algorithm that takes advantage of this by removing dimensions from

the filter about which we have learned “enough, meaning that their singular val-

ues have become sufficiently small that they are known to the system to a high

precision. This is achieved by maintaining an orthogonal mapping between the

full-dimensional underlying state and the reduced set of dimensions. Results show

that this method yields estimates for the camera pose and map, that are nearly

identical to those of the standard Kalman filter, while reducing the computa-

tional cost. In the initial implementation we marginalized out previous camera

poses from the filter, only maintaining the current pose estimate following the

conventional EKF-SLAM.

Then we extended the proposed reduced dimensionality Kalman filter in to a

117



relative formulation, where each landmark is represented relative to its initialized

camera frame, giving a more linear solution to the problem inspired by the relative

bundle adjustment for SLAM. Because of this high linearity, we showed that the

system can be extended to larger environments. Also we proposed a method to

absorb more information into the main filter by introducing measurements as

a batch when adding landmarks, those maintained in independent filters until

the depth is estimated to a sufficient accuracy. The proposed dimensionality

reduced system can work as an efficient back-end for small to medium scale

SLAM. When the scale of the problem grows, the frame rate starts dropping

as we are propagating the updates in the reduced space to the original space

updating all parameters of the system.

Also in-order to make the front-end more robust towards noise, in this thesis

we proposed a novel frequency domain sub-pixel refinement technique for corner

match refinement in SLAM, extending the spatial domain Gauss-Newton affine

parameter estimation into frequency domain. Our approach draws a relationship

between the Gabor filter frequency response and the frequency response of a

Gaussian multiplied patch. Using this relationship, we showed how to select the

correct frequency range for parameter estimation, eliminating the DC response

and aliasing.

Finally we extended parallel tracking and mapping (PTAM) by Klein and

Murray [2007] to combine a SLAM front-end which can work asynchronously ex-

tracting and tracking features, with an optimization back-end. Being different

from the existing PTAM approach, our method enables asynchronous communi-

cation between the two threads, so the front-end can work independently as a

standalone entity for some period of time until information from the back end

becomes available. We showed how the tracking and mapping processes can oper-

ate using different representations, reducing the computational cost of using the

same model for both, and allowing the two models to be updated asynchronously.

Because of the asynchronous communication, our front end can be deployed on

a separate platform like a quad-rotter which can communicates with a back-end

server for path correction information.
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Though we have presented our reduced dimensionality EKF as a solution to

optimize all SLAM parameters, we believe that it would be much useful if used as

a local solution. For instance when applied to a graph based SLAM system like

coalesced observations SLAM presented by Eade and Drummond [2007], we can

reduce the dimensionality of each node, intern increasing the number of landmarks

each node can handle or it can be used in semi-dense systems to increase the

number of pixels used. Especially in a double window approach as described by

Strasdat et al. [2011], the method can be used to handle the inner window.

Feature based SLAM has become highly accurate due to recent developments

in algorithms and processing technology. Most recent dense methods show the

possibility of improving this accuracy further by dense reconstruction of the en-

vironment, which effectively improves the signal to noise ratio of the system.

Still the dense systems are not capable of handling all parameters jointly. We

believe that our method will shed some light upon enabling joint optimization of

landmarks by identifying the significant set of internal parameters of the system.
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Appendix A

Mathematical Framework

This chapter presents the mathematical notation and framework used throughout

this thesis.

.1 Points and Vectors

A point is a vector in RN Euclidean space. It also can be represented as a point

in RN+1 in Homogeneous coordinates.

Homogeneous coordinates provide a natural way of representing transforma-

tions in projective geometry. Formulas involving Homogeneous coordinates are

more symmetric and simpler compared to their Euclidean counterparts.

In particular a point in 3D is represented using a Euclidean 3-vector or a

Homogeneous 4-vector with the last coordinate usually normalized to one:

(x, y, z) w (x, y, z, 1) (1)
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.2 Rigid Transformations

The transformations of a robot can be represented using a rigid transformation

in 3D.

A rigid transformation preserves the distance between two points. A rigid

transformation T in 3Dis defined such that when operated on a vector x ∈ R3

produces:

T (x) = x
′
=

x
′

y
′

z
′

 = R

xy
z

+ t (2)

where R is an orthogonal transformation and t is the translation of the origin.

The same transformation can be represented more compactly in Homogeneous

coordinates as:

T (x) = x
′

=


x
′

y
′

z
′

1

 =

[
R t

0 0 0 1

]
x

y

z

1

 (3)

The orthogonal transformation R describes a rotation in 3D, where R ∈ SO (3).

.3 Optimizing Systems of Equations

In this section we give an overview of the optimization techniques by starting

from the systems of linear equations and leading to the derivation of the Kalman

filter. Here we give a different perspective to the problem by extending the con-
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ventional least squares solution into dynamic models which leads to the Kalman

filter derivation. Finally we extend that to non-linear models with particular

emphasis on SLAM.

Irrespectively of the method being used, any optimization method tries to

solve a linear system of equation which can be written as Ax = b. In SLAM,

{x1, . . . xn} ∈ x is called the state which includes the camera parameters and the

landmarks. In the expanded form this equation can be written as:



a11x1 a12x2 . . . a1(n−1)xn−1 a1nxn

a21x1 a22x2 . . . a2(n−1)xn−1 a2nxn
...

...
...

...
...

a(m−1)1x1 a(m−1)2x2 . . . a(m−1)(n−1)xn−1 a(m−1)nxn

am1x1 am2x2 . . . am(n−1)xn−1 amnxn





p1

p2

...

p(n−1)

pn


=



b1

b2

...

b(m−1)

bm


(4)

This can be decomposed in to a set of equations where each line corresponds to

a single measurement. The least squares solution to this problem can be obtained

using the pseudo inverse of A such that:

x =
(
ATA

)−1
ATb (5)

This solution, weights each measurement equally. Such a solution will not be

robust enough against noise, so each measurement has to be weighted according

to their importance.

If we represent the uncertainty associated with each measurement explicitly
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such that:

E
(

[Ax− b] [Ax− b]T
)

= Σb (6)

The weighted least squares equation can be obtained as:

(
ATΣ−1

b A
)

x = ATΣ−1
b b (7)

Where
(
ATΣ−1

b A
)

is termed the information matrix Px of the state vector x.

The inverse of this matrix is the covariance matrix of the state (Σx = P−1
x ).

Usually the measurements can be recursive, so the linear system has to be

appended with new information. If we assume the the state to be static, with new

observations a partitioned system with respective to new and old measurements

can be obtained. Let the subscripts “n” represent the new measurements. Then

the equation can be written as:

[
A

An

] [
x
]

=

[
b

bn

]
(8)

If the covariances of the new and old measurements are Σb and Σbn respec-

tively, it can be seen from inspection that the new information matrix becomes:

Px =

[
A

An

][
Σ−1

b 0

0 Σ−1
bn

] [
AT AT

n

]
(9)
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by expanding the matrix blocks as products we get:

Px =
[
AΣ−1

b AT
]−1

+
[
AnΣ−1

bn
AT
n

]−1

(10)

The equation 10 shows that the final information matrix is the sum between

the information of the system already existed and the new information gained

from the measurements. Let Σ̃−1 = AΣ−1
b AT. By inverting this solution we can

obtain the final covariance matrix of the system to be:

Σx = Σ̃x −
(

Σ̃−1
x + ATΣ−1

bn
A
)−1

ATΣ−1
bn
AΣ̃x (11)

In the equation 11, the term
(

Σ̃−1
x + ATΣ−1

bn
A
)−1

ATΣ−1
bn

is known as the gain,

and is usually represented by K.

Through a similar manipulation it can be shown that, with new measurements

the final state should be:

x = x +K (bn − Anx̃) (12)

In this derivation, we have assumed that the system state is not dynamically

changing. So all equations in the system are only measurements. But we can let

the system state to change as well. If the system is evolving dynamically, there

should be a separate set of equations other than the measurements to account for

that dynamic change.

When the system is changing we can categorize the set of equations into blocks

124



as follows, where {k0, k1, . . . , k − 1, k} are the time steps:



A0 0 . . . 0 0

H0 −I . . . 0 0

0 A1 . . . 0 0

0 H1 . . . 0 0
...

...
...

...
...

0 0 . . . 0 Ak




x0

x1

...

xk

 =


b0

b1

...

bk

 (13)

Here {x0,x1, . . . ,xk} are the state vectors at each time step starting from

t = 0 to t = k. Let the corresponding observation vectors to be {b0,b1, . . . ,bk}.
It should be noted that the equations which relates a given state with its previ-

ous state are called predictions. Though the above system is not treating them

separately, the standard Kalman filter treats the measurement and the prediction

updates separately.

When treated separately, the prediction equation of the Kalman filter can be

written as:

xt|(t−1) = A
(
x(t−1)

)
+ u

zt = H
[
xt|(t−1)

]
+ v

(14)

where u and v are the prediction and the measurement noise.

Updating the system using the measurements can be done is a similar manner

as described earlier with a static state. When the system is changing dynamically,

the gain K is called the Kalman gain. This gain formulation is bit different from

the most commonly used Kalman gain derivation. In chapter 4 we explain the

difference between these formulations and show how this difference leads to the

efficient dimensionality reduction technique we present.
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.3.1 The Extended Kalman Filter

In the previous section we assumed linear models. But in SLAM the prediction

and the measurement models are non linear. If we let the prediction and obser-

vation models to be nonlinear (but differentiable) functions f and h respectively,

the prediction and the measurement equations can be written as:

xt|(t−1) = f
(
x(t−1)

)
+ u

zt = h
[
xt|(t−1)

]
+ v

(15)

To use the Kalman filter, these equations has to be linearized.

.3.1.1 Linearization

Rigid transformations are members of the Lie group SE (3). The transformation

C ∈ SE (3) can be represented as:

R ∈ SO (3) , t ∈ R3 (16)

C =

[
R t

0 0 0 1

]
∈ SE (3) (17)

The lie-algebra se (3) is the set of 4× 4 matrices corresponding to differential

translations and rotations. There are 6 generators of the algebra are:
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G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

G3


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0



G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

G5 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 0 0 0

G6 =


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

 (18)

Then elements of se (3) is represented as a multiple of generators:

6∑
i=1

αiGi ∈ se (3) (19)

The exponential map from se (3) to SE (3) is the exponential on a linear

combination of the generators. Let the the first 3 coefficients related to the

translation be u = {α1, . . . , α3} and the remaining 3 related to the rotation be

w = {α4, . . . , α6} so the mapping can be approximated as:

exp

(
6∑
i=1

αiGi

)
= I +

[
wx u

0 0

]
+

1

2!

[
wx

2 wxu

0 0

]
+

1

3!

[
wx

3 wx
2u

0 0

]
+ . . .

(20)
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.3.2 The Jacobians

Let C =

[
R t

0 0 0 1

]
∈ SE (3) and x ∈ R3. Then a transformation is given

by:

y = f(C,x) =
[
R t

] [ x

1

]
= Rx + t

(21)

Differentiating with respect to the vector x is straightforward as y is linear in

x:

∂y

∂x
= R (22)

Differentiating with respect to the generators can be done by expanding the

exponential as:

exp

(
6∑
i=1

αiGi ∈ se (3)

)
= I +

6∑
i=1

αiGi ∈ se (3) (23)

To yield:

∂y

∂α
=
[
G1y . . . G6y

]
(24)
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When a landmark is observed on an image, the projection has to be applied

to bring the transformed coordinate onto the image plane:

z = T (y) (25)

The final Jacobian can be obtained using the chain-rule such that:

∂z

∂α
=
∂z

∂y

∂y

∂α
(26)
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