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Abstract

Genetic manipulation of human cells through the delivery of functional genes
such as plasmid DNA (pDNA) and short-interfering RNA (siRNA) is an attractive
approach to treat many critical diseases with single or multiple gene defects, including
carcinoma; precisely and efficiently. Despite their potential effect, naked therapeutic
genes are rapidly degraded by nucleases, non-specific to the target cells; in addition to
exhibiting low cellular uptake, and poor transfection efficiency. Hence, the development

of safe and efficient gene carriers is undeniably crucial for the success of gene therapy.

Recent studies have been focused on developing smart nanoparticles for
excellent delivery of transgenes and siRNAs into cancerous cells of an animal model
through active and passive targeting. The precipitation reaction is one of the facile and
convenient ways to synthesize nanoparticles, which an insoluble salt is formed upon the
mixture of two water-soluble salts. In this study, we aim to develop the potential salt
crystals with nano-size diameters having the capacity of adsorbing negatively charged
plasmid DNA and siRNA, effectively carrying them across the plasma membrane and
finally leading to efficient gene expression and silencing of the target (reporter as well

as endogenous) gene(s), respectively, in mammary carcinoma of mammalian cells.

The generated insoluble salts have been subjected to a rigorous screening
process based on observation of particle morphology under optical microscope,
determination of growth kinetics, particle diameters and electrostatic affinity towards
the negatively charged pDNA/siRNA, qualitative and quantitative estimation of cellular
endocytosis rate and finally assessment of transfection efficacy in case of transgene

expression and knockdown by target siRNAs. Among the screened precipitates,
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strontium sulfite, strontium fluoride, and magnesium sulfite have shown the best
potency in aiding cellular delivery of reporter gene/siRNA, in addition to proficient
transgene expression and silencing effect into both mice and human mammary

carcinoma cells.

Our in vivo discoveries revealed efficiency of nanocrystals with the ability to
efficiently transport pDNA as well as siRNA into 4T1-induced tumor model through
biodistribution assays and tumor regression activities. Strontium sulfite, strontium
fluoride, and magnesium sulfite improve the genetic material delivery, demonstrated
through regression of tumor growth activity. Protein coating enhances the nanocarrier
activity through the involvement of active targeting via ligand-receptor interactions. It is
hoped that the potential nanoparticles can be applied for conceivable nano-vector

application in the clinical setting for cancer treatment in the future.
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1.1 Introduction

The use of genes for the therapeutic applications has increased vastly due to its
tremendous potential as a future strategy for clinical applications. Gene therapy
involves delivery of a therapeutic gene within a vector, enabling it to transcribe and
translate into a therapeutic protein of interest within a particular cell. Genetic
manipulation of human cells through delivery of functional genes such as plasmid DNA
(pDNA) and short-interfering RNA (siRNA) is an attractive approach to treat cancers
and many critical diseases with single or multiple gene defects (including cystic
fibrosis, Alzheimer's disease, and carcinoma) precisely and efficiently. Strategies of
gene therapy involve substitution of non-functional or mutated genes including p53,
RB1 and BRCA-1 genes and down-regulation of over-expressed proto-oncogenes and
anti-apoptotic genes through introduction of target siRNAs (MAPK, ROS1 and Bcl-2
siRNA). The establishment of genetic modification on carcinoma tissues of breast

demonstrated a comparable reduction in tumor growth both in vitro and in vivo (1).

Despite their potential outcome, naked therapeutic genes are rapidly degraded by
nucleases, non-specific to the target cells, exhibit low cellular uptake, and poor
transfection efficacy. Hence, the development of safe and efficient gene carriers is
utterly fundamental to the success of gene therapy. Recent studies are focusing on
efficient gene carrier for cancer treatment by incorporating the means of active and
passive targeting. Active targeting is achieved through conjugation of nanoparticles to
ligands that are highly tumor specific. Passive tissue targeting is accomplished by
utilizing the distinctive biochemical and physiological characteristics of the tumor

microenvironment. At the size lower than 500 nm, nanoparticles can easily penetrate
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through the ‘leaky' capillary system of malignant tissues without permeating the intact
endothelium of the normal tissues, a phenomenon known as enhance permeability and
retention (EPR) effect. Additionally, morphological changes in the lymphatic system of
malignant tissues resulted in inadequate lymphatic drainage, extending the retention

time of genetic materials within the tumor tissue surrounding (2).

Nanoparticles have emerged as one of the novel gene delivery systems for
delivery in targeted manner. The most significant advantage of the nanoparticles is
providing specified gene delivery to the intended area, increasing the effectiveness of
gene therapy while at the same time, reducing the side effects of non-specific delivery.
Precipitation reaction is one of the facile and convenient ways to synthesize
nanoparticles, in which an insoluble salt is formed after mixing two water-soluble salts
(3). Such reaction is represented schematically below, where A and B are two different

cations, while X and Y are two different anions:

AX (soluble) + BY (soluble) a AY (solid) + BX (soluble)

The reaction proceeds to the right by a driving force derived from precipitation
of a product (AY). The formation of a precipitate is illustrated with an example in

equation form below:

BaCl, (soluble) + Na,SO, (soluble) a BaSO, (solid) + 2NaCl (soluble)

The advantages in comparison with other methods include requiring only simple
equipment, ability to prepare and control particle size and composition at near ambient
temperature and pressure. Recent development has shown favorable transfection

activities using the nanoparticles prepared from precipitation method including CaCO;,
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Fe30,, and BaSO,. The approach would pave a new way for efficient, low toxicity and
large-scale synthesis of inorganic nanoparticles with well-controlled dimensions and

properties (3).

1.2 Research objectives

To develop potential salt crystals with nano-size diameters having the attributes of:
1. Adsorbing negatively charged pDNA and siRNA;
2. Carrying them across the plasma membrane;
3. Leading to efficient transgene expression and silencing of the target (reporter

as well as apoptotic) gene(s), in breast cancer cells both in vitro and in vivo.

1.3 Research hypotheses

Nanoparticles fabricated based on precipitation reaction of the potential salt
crystals will have strong affinity towards pDNA and small interfering RNA (siRNA).
pDNA- or siRNA-bound nanocrystals can be transported efficiently to cancer cells both

in vitro and in vivo, with subsequent therapeutic efficacy.

References:

1. Das SK, Menezes ME, Bhatia S, Wang X-Y, Emdad L, Sarkar D, et al. Gene
Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol
[Internet]. 2015 Feb [cited 2016 Mar 4];230(2):259-71. Available from:
http://doi.wiley.com/10.1002/jcp.24791

2. Kudera S, Maus L, Zanella M, Pelaz B, Zhang Q, Parak WJ, et al. Inorganic
Core—Shell Nanoparticles. In: Reference Module in Materials Science and
Materials Engineering. 2016.

3. Noguera C, Fritz B, C1??ment A. Precipitation mechanism of amorphous silica
nanoparticles: A simulation approach. J Colloid Interface Sci. 2015;448:553-63.
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2.1 Overview of breast cancer

Cancer is a group of diseases, characterized by uncontrollable cell growth, local
tissue invasion and distance metastases (1). It was estimated that in the year 2012, 14.1
million new cases of cancer were diagnosed, 8.2 million of people died due to cancer,
and 32 million people were living with cancer globally (2). In Malaysia, cancer is the
third leading cause of death, after septicemia and cardiovascular diseases. National
Cancer Registry (NCR) in 2006 reported that cancer incidence rate for males was 128
cases per 100 000 people while incidence rate for females was 135 cases per 100 000
people. Most common carcinomas among Malaysian populations were breast,
colorectal, lung, cervix, and nasopharynx with cancer incidence in Malaysia augmented
from 32,000 to 37,400 new cases from the year 2008 to 2012, and cancer-related

mortality stood at 21,700 deaths in 2012 from 20,100 deaths in 2008 (3).

Breast cancer is the disease of uncontrolled cell division in the mammary
tissues. It is the leading cause of cancer affecting women worldwide and is also
associated with the primary causes of cancer-related deaths among women. In the year
2012 alone, there were about 1.67 million women diagnosed with breast cancer
annually, and more than 522 000 died due to cancer. Breast cancer ranks the fifth cause
of mortality from cancer worldwide, with a higher frequency of death recorded in
women of less developed nations (4). In Malaysia, carcinoma of the breast is the most
commonly diagnosed cancer in women, with the national pattern of age-standardize
incidence rate (ASR) being 39.3 per 100,000 populations. The rate was higher among
Chinese, having 46.4 cases per 100 000 people, followed by Indian and Malay with

respective 38.1 and 30 cases per 100 000 populations.
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Figure 2.1: Trends in incidence of female breast cancer worldwide. Adapted from: Ferlay J, Soerjomataram I, ervik M, et al.
GLOBOCAN 2012 V01, Cancer Incidence and Mortality Worldwide: IARC CancerBase. 2013; 11.
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The incidence of cancer was also the highest in the female age group of 50-59 (5).

Risk factors for breast cancer include female gender, alcohol consumption,
obesity, increasing age, environmental (radiation exposure), endocrine (early menarche,
nulliparity, late age at first childbirth and estrogen therapy) and genetic factors (family
history and mutations of genes including BRCAL, BRCA2 and p53) (6). Breast cancers
that are detected early by physical examination, mammography and ultrasound often

have a higher percentage of curability than the later stages (5).
2.2 Current management of breast cancer

Treatment of choice for breast cancer depends on the stages and the types of
cancers, which often comprises of surgery and radiotherapy, endocrine therapy and
chemotherapy. Surgical treatment for breast cancer remains one of the ideal therapies
with high curative rate especially for solid breast tumors, particularly in situ and early
stages with minimal invasion towards surrounding tissues. The invasive procedure of
mastectomy of the breast (defined by the removal of breast tissues) may be preferred for
advanced disease presentation with aggression towards the lymph nodes and
metastasized regions (7). Radiotherapy utilizes high-energy x-rays and other radiations
to kill cancer cells through external and internal radiation, involving respective radiation
energy emitted by machine and radioactive substances in needles or wires.
Radiotherapy is often used as an adjuvant treatment following breast—conserving
surgery to minimize the reoccurrence of cancer in the mammary tissues, in addition to
the conditions when invasive procedure bears the disability and disfigurement

consequences (1). Hormone receptor-positive breast cancer represents the majority of
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the breast cancer cases, with approximately 65% cases involving estrogen receptor
positive (EGF+) and progesterone receptor positive carcinoma. The endocrinal therapy
often acts as an adjuvant and neoadjuvant between various treatment such as pre-and
post-surgery that increases the curability rate through selective estrogen receptor
modulator drug, tamoxifen and aromatase inhibitors, including anastrozole (8).
Chemotherapy utilizes chemical agents, known as cytotoxic drugs, which are associated
with cellular apoptosis through induction of DNA damage or interference with DNA
synthesis or other crucial steps in cell division. The cytotoxic agents are usually used as
an adjuvant therapy in the earlier stages of cancer upon surgery, and quite often as a
maintenance therapy and palliative therapy for the later stages. Chemotherapy is offered
as a single or more commonly, combined treatment of platinum groups, anthracycline

antibiotics, and taxanes (9).

2.3 Mutation in breast cancer

Extensive research on the genetic basis of human diseases with complete
sequencing of the human genome revealed many vital genes as possible targets in gene
therapy programs. Cancer is the result of an accumulation of single or multiple gene
defects, from down-regulation of tumor suppressor genes to up-regulation of proto-
oncogenes and anti-apoptotic genes, hence promoting uncontrollable cell replication.
Tumor suppressor genes are divided into two groups: promoters and caretakers. pS3, an
example of promoter tumor suppressors is involved in inhibition of cell proliferation,
whereas caretaker genes, including BRCA1 and BRCA2, ensure the integrity of the
genome, especially in DNA repair (10). MLH1 and MSH2 are frequently studied

caretaker genes, involved in mismatching DNA bases during DNA repair that was mis-
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incorporated during DNA replication. The mutation is hence associated with a dramatic

increase in the rate of point mutations (11). It is believed that more than 50% of mutated

or missing occurs in patients with cancer (12). The up-regulation of proto-oncogenes

and anti-apoptotic genes is linked with greater cell replication whereby oncogenes,

mutated and cancer-causing forms of proto-oncogenes typically increase the activity of

encoded protein, hence driving the activity of cell growth or loss in the regulatory

process to initiate proliferation genes such as MAP kinase and Ras (13). The up-

regulated anti-apoptotic genes (including Bcl-2 and Fas) enhance the survivability of the

cells overexpressing such genes, hence increase the opportunity to acquire the cellular

mutation that eventually leads to cancer (14).

Types of genes  Genes

pS3
T BRCAL,
umor BRCA2
suppressor
genes
Rb
PTEN
INK4
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Main functions

Initiate transcription of Cdk inhibitor p21 and GADDA45
that blocks cell cycle progress by acting as a general
inhibitor of Cdk/cyclin complexes.

Apoptosis is facilitated through activation of many genes
including BAX and NOXA, destabilizing mitochondrial
membrane to assist cytochrome C release and thus
triggering the apoptotic cascade of caspase activation.

pS3 transcriptional target genes, p53R2, encodes
ribonucleotide reductase, essential for both DNA
replication and repair.

BRCA 1 controls G2/M DNA damage-induced
checkpoints via activation of Chk1 kinase, thus inducing
signaling downstream of Chk1.

BRCAZ2 controls G2/M by acting with novel protein,
BRCA-associated factor 35 (BRAF35), binding to
branched DNA structure.

Blocks the passage through restriction point at Gi by
preventing transcription genes associated with DNA
synthesis and cell cycle progression.

Dephosphorylates PIP at 3 position of inositol to yield
PIP.. Countering the action of PI3-kinase and Akt
(related to cell survival).

Encodes Cdk inhibitor p16 (controls passage through G2
restriction point) that inhibits Cdk4/cyclin D activity that



Proto-
oncogenes

Apoptotic
genes

WT1

MADR2

APC

HER?2

EGFR

VEGF

BCR-
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MAP
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Bcel-2

Literature review | Chapter 2

inactivates Rb via phosphorylation.

Inhibit transcription of growth factor-inducing genes,
such as the gene that encodes insulin-like growth factor
I1, activates autocrine growth factor.

Encode SMAD transcription factors which are activated
by TGF-B signaling, causing inhibition of cell
proliferation.

Binds to B-catenin, which has functions in cell adhesion
and signal transducer shuttling to the nucleus with
response to Wnt signaling, essential for tumorigenesis.
Attachment of APC to microtubules interacts with
cytoskeletal architecture.

Type 1 transmembrane growth factor receptor associated
with activation of intracellular signaling pathways via
extracellular signals by dimerization and
transphosphorylation domains to form phosphorylated
tyrosine residues.

Phosphorylated EGFR induces receptor dimerization,
leading to cell proliferation via kinase-activating
autophosphorylation or trans-phosphorylation sites.

Phosphorylated VEGF initiates receptor dimerization and
activation of tyrosine kinase, in addition to induction of
cellular process associated with the growth-factor
receptor, including cell proliferation, survival, and
migration.

Activates signal transduction pathways including
RAS/MAPK, PI-3 kinase, JAK-STAT, and Src pathway.
Ras, Jun-kinase, and PI-3 kinase are commonly
associated with cell proliferation.

Phosphorylation causes activation of RAS-RAF-MEK-
ERK pathway, involved in cell proliferation.

Encodes integral outer mitochondrial membrane protein,
which regulates cell death by controlling mitochondrial
permeability. Inhibits caspase activity by either blocking
release of cytochrome ¢ from mitochondria or apoptosis-
activating factor (APAF-1).

Table 2.1: Examples of genes associated with carcinoma cell survival (15) (16) (17)
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~ NUCLEUS

Figure 2.2: Different Cyclin-CDK complexes involved in regulating different cell cycle
transitions: Cyclin-D/CDK4 or CDKG6 for G1 progression, Cyclin-E/CDK2 for the G1-S
transition, Cyclin-A/CDK2 for S-phase progression, Cyclin-B/CDK1 for G2
progression and Cyclin-A/CDK1 for entry into M phase. Cyclins associate with CDKs
to regulate their activity and the progression of the cell cycle. CDK/Cyclin and the
transcription complex that includes Rb and E2F are pivotal in controlling cell cycle
checkpoint. The Rb-HDAC repressor complex binds to the E2F-DP1 transcription
factors, inhibiting the downstream transcription. E2F activity consists of a
heterodimeric complex of an E2F polypeptide and a DP1 protein. Phosphorylation of
Rb by CDK dissociates the Rb-repressor complex, permitting transcription of phase
genes encoding for proteins that amplify phase switch, required for replication. Under
non-stressed conditions, p21 is expressed at low levels, thus enabling cell cycle
progression. Under stress condition, p21 expression is increased through p53 dependent
and independent pathways. Increased p21 binds and inactivates Cyclin/CDK activity,
thus halting cell cycle activity (16).
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2.4 Gene therapy in breast cancer

Gene therapy is designed to modify cancer cells at the molecular level, in which
many gene therapy strategies are being assessed through replacement of down-regulated
genes associated with missing/non-functional gene activity, or down-regulation of the
over-expressed genes, as previously discussed. The involvement of genes as part of
therapeutic regimen could be harnessed in potential treatment approaches particularly
over chemotherapy, which is often associated with low selectivity and high cytotoxicity

(24).

In the normal circumstances, DNA breakdown, UV, stress signal and oncogenes
activate p53, forming phosphorylated tetrameric p53. The phosphorylated p53 can bind
the transcriptional factor and enable the RNA polymerase activity transcribing a number
of genes involved in inducing growth arrest (p21, GADD45), DNA repair (p53R2) and
apoptosis (FAS, NOXA, BAX) via different mechanisms (25). Regulation of p53 is
performed by MDM2 by ubiquitylation of p53 to initiate proteasome-dependent p53
degradation. The “loss of function” p53 causes the inability to initiate such response,
hence growth of the tumor (26). Mutation in tumor suppressor genes, including p53
protein, resulted in missing or loss of function that interferes the ability of mutated cells
to undergo apoptosis. Therefore the wild genotype, normal p53 genes is directly
introduced into the cancer cells to provide a gene replacement for the non-functional

ones (27).

Page | 13
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Figure 2.3: p53 pathway upon activation signals. The expression of p53 is controlled by
rapid ubiquitin/proteasome-dependent degradation, mainly caused by MDM2, often
over-expressed in many cancers. Adapted from Bakhtiar A, Sayyad M, Rosli
R, Maruyama A, Chowdhury EH. Intracellular delivery of potential therapeutic genes:
prospects in cancer gene therapy. Curr Gene Ther. 2014; 14(4):247-57.
Down-regulation of proto-oncogenes and anti-apoptotic genes is induced by gene
silencing activity to inhibit expression of specific genes that are involved in cell growth
and proliferation, through the incorporation of endogenous small interfering RNAs
(siRNAs) that modulate RNA interference process (RNA1), a post-transcriptional gene
regulatory mechanism (24). siRNA is a 21-25 base pairs RNA strand, which upon
cellular internalization, unwinds and incorporates into RNA-induced silencing complex
(RISC), a stable protein-RNA complex. siRNA is subsequently directed to target
mRNA resulting in mRNA degradation and interruption of protein synthesis of the
targeted gene (28). Long dsRNAs are cleaved by endoribonuclease Dicer into short
dsRNA duplex, also known as siRNA. RISC contains Argonaute 2 (Ago-2) that cleaves

and releases one strand of dsRNA to form activated RISC with single strand RNA

(guide siRNA). The complex will next direct the target mRNA recognition via
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complementary base pairing, followed by cleavage of mRNA between bases 10 and 11

by Ago-2 to induce mRNA degradation and silencing of the gene (29) (30).

Figure 2.4: Diagram of RNAi pathway upon exposure of siRNA in a numerical manner.
(1) Endogenous targeted siRNA enters the cell and (2) is incorporated into RISC. (3)
Formed complex is directed to target mRNA, causing (4) mRNA to degrade, hence
interrupting protein synthesis. Adapted from: Bakhtiar A, Othman [, Zaini A &
Chowdhury EH. Development of novel barium inorganic nanoparticles for delivery of
plasmid DNA and siRNA to breast cancer cells. Nano Today Conference, UAE. 2015.

2.5 Vectors for gene therapy

As discussed earlier, the manifestation of wild-type tumor suppressor genes and
siRNAs shows promising treatment option in cancer therapeutics with direct targeting
approach. Nonetheless, many barriers are existing in the biological structures that
impede the proposed gene activities involving extracellular barriers such as endo- and
exonuclease attack resulting in the short half-life of DNA/siRNA in the circulatory
system, ranging from 1.2 to 21 minutes upon parenteral delivery of naked genetic loads
(31). Genes are non-specific to the targeted site and have low cellular uptake, deemed

by their negatively-charged forms. Non-specific plasma protein interactions will also

Page | 15



Literature review I Chapter 2

bring in premature degradation of genes, in addition to reticuloendothelial system (RES)
entrapment, in which upon intravenous delivery, naked genes are often phagocytosed by
mononuclear phagocyte system (examples include Kupffer cells and macrophages) (32).
The eliminatory process mediated by blood component interactions results in greater
particle accumulation in RES organs, liver, and kidney. The negative surface charge of
naked genomic structures increases the clearance activity from the system in

comparison to neutral and positively charged particles (30).
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Figure 2.5: Extracellular and intracellular barriers faced by gene vectors. Among the
extracellular hurdles including nuclease are associated with premature degradation of
vectors while circulating macrophages, and monocyte induce RES elimination.
Intracellular barriers include difficulties in internalization of gene-vector via
endocytosis and release of the gene from the endosomal cavity. Adapter from:
Mitragotri S, et al. Overcoming the challenges in administering biopharmaceuticals:
formulation and delivery strategies. Nature Reviews Drug Discovery. 2014, 13: 665-
672.

Page | 16



Literature review | Chapter 2

Subsequent target genes must further overcome intracellular barriers involving
inefficient cellular binding for internalization to form endosomes, followed by
endosomal escape and for transcription/ translation activity inside the cytosol or nuclear
cavity (33). Hence, developing efficient delivery structure is vital as part of defense
mechanism for genetic materials and to ensure a targeted delivery approach. The ideal
vectors should be able to transport “object of interest” to the desired area, improving the
protection against premature degradation, ensuring the specific organ targeting and

helping endosomal escape while simultaneously minimizing the side effects (33,34).

PLASMA MEMBRANE

Figure 2.6: Proposed nucleic acid-loaded-vector pathway in vitro. Internalised
complexes via active or passive extracellular transportation form endosome containing
the bound genetic materials (shown as DNA). Endosomal escape of the complexes
should release the genetic content which will enter the nuclear cavity to instigate
transcription process. Adapted from Kylie M. Wagstaff, David A. Jans.
Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer. Biochemical
Journal 2007, 406 (2): 185-202.
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Types of viral delivery Functions

The viral has the ability to transfect both dividing and non-
dividing cells with little host specificity hence can be
delivered to various tissues. It can transport large DNA, up to
38kb, although cannot integrate into the host genome, hence,
gene expression is temporary. The virus triggers natural
immunologic responses, causing serious side effects including
death, associated with adenovirus, limit the clinical
application to localized gene therapy.

Adenovirus

The viral carrier has similar features like adenovirus but with
the lack of replication and pathogenicity, hence safer than
Adeno-associated adenovirus. Integration of AAV into the specific site on
virus (AAYV) chromosome 19 was noticeable with long-term expression in
vivo. The vector production, however, is complicated with
limited gene carrier capacity.

The vector has the ability to transfect dividing cells as they
can pass through nuclear pores in mitotic cells. It is useful for
ex vivo transfection of somatic cells based on ability to
integrate linearly into host cell genome. Additionally, the
removal of viral genes will create approximately 8kb space
for gene incorporation.

Retrovirus

The vector is known as a disabled infectious single copy

(DISC) virus as when propagated into complementing cells,

viral particles can infect subsequent cells to replicate

permanently their own genome without producing infectious

(HSV) particles. The virus can transport up to 150kb DNA with
potential as gene carrier especially for the nervous system
based on their neuronotropic characteristic.

Herpes simplex virus

The virus has the ability to integrate both dividing and non-
dividing cells, with the long-term stable expression of the
transgene, low immunogenicity and accommodate large
genes, up to 8kb.

Lentivirus

The vector has the ability to transport larger capacity of DNA
(>25kb). Used for high-level cytoplasmic expression of

Pox virus transgene, which utilizes homologous recombination. Safety
features of the virus are still largely unknown due to their
complex structures.

A type of herpes virus that can be used for large DNA
transportation into target cells. It is suitable for long-term
retention in cells forming extrachromosomal circular plasmid
in the latent state of host nucleus.

Table 2.2: Most common viral delivery systems for gene therapy (35)(36)(37)(38)(39)
(40)(41)

Epstein-Barr virus
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Intensive research in the last three decades led to the development of many
carriers which are classified into two distinctive groups: viral and non-viral vectors.
Viral systems are by far the most efficient means of DNA/RNA delivery to mammalian
cells, which comprise of available successful gene delivery systems, such as retrovirus,
adenovirus, adeno-associated virus and lentivirus (42). The effectiveness of a viral
particle is the result of its highly evolved and specialized structure composed of a
protein coat surrounding a nucleic acid core. Such a highly organized structure can
prevent viral particles from unwanted interactions with serum components while
promoting subsequent internalization by cells, escape from endosomes, and release of

genetic material from the viral load either before or after entering the nucleus (43).

Modification of viral vector was performed by deleting the parts of the genome
to cause derangement of their replication, allowing them to be much safer (44).
Nonetheless, their marked immunogenicity causes the activation of the inflammatory
response, leading to degeneration of transduced tissues, in addition to viral toxin
production, insertional mutagenesis and limited DNA carrying capacity. Additional
production and packaging problem, along with high recombinant cost, limit their
successful applications in laboratory and clinical research (34,42). Limitation in cell
mitosis for the retrovirus, contamination with adenovirus and packaging constraint of
AAV further lessen the appeal for a potent viral application (45). Therefore, the ideal
vector incorporating the safety and efficacy aspects is still lacking. Development of a
non-viral approach devouring the beneficial virus-like properties and lacking the
disadvantageous aspects would emerge as the most attractive one for implementation in
research laboratories and gene therapy. Non-viral vectors, generated from various

biocompatible materials, utilize innovative fabrication approaches to safely deliver the
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gene cargo (46). Ideally, negatively charged pDNA/siRNA molecules should be
condensed with cationic reagents of non-viral structures to allow the formation of the
complexes carrying net positive charges. The resulting composite thus interacts
electrostatically with anionic heparan sulfate proteoglycans (syndecans) on the cell
surface and reach the cytoplasmic side in the form of endosomes through endocytosis
(33)(47). The extremely low pH and enzymes within the late endosomes usually bring
about the degradation of entrapped pDNA/siRNA and associated complexes. Finally,
pDNA or siRNA that survives both endocytic processing and cytoplasmic nucleases
must dissociate from the condensed complexes either before or after nuclear

translocation through the nuclear pore or during cell division (48).

Despite articulation of low transfection efficacy in comparison to viral carriers,
their cost-effectiveness, low immunogenicity, an unlimited size of transgenic DNA to of
viral vectors have made them highly promising for gene delivery (34)(33). The system,
which comprises of all physical-chemical system without viral presence are often
divided into three categories, physical methods, synthetic or natural biocompatible
particles and inorganic particles. The physical method introduces a physical force to
overcome the cytoplasmic membrane and facilitate in intracellular gene transfer by
directly introducing the genes into the cells, such as ballistic DNA injection,
electroporation, sonoporation, hydroporation and magnetofection (49)(50). The
internalized genetic materials via physical methods can only be utilized for local
delivery; hence, a more diverged gene transportation may fulfill the broader

requirement (51).
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Types of. non-viral Functions
delivery
-Membrane-like surface with encapsulated nucleic acids inside
lipid structure. There are three types of liposome: cationic,
anionic and neutral. Cationic liposome/lipoplexes are commonly
used based on high affinity with the cell membrane,
nonpathogenic and non-immunogenic characteristics.
Liposome -e.g. Lipofectamine, SilentFect, DharmaFECT
-Short half-life (several hours) associated with non-specific
binding to serum proteins. Neutral or anionic liposomes are used
to prevent instability related to interaction of plasma protein.
Conjugation of hydrophilic PEG may increase the stability of
liposome, up to 72 hours.
-The approach of polymer-based delivery utilizes
polyethyleneimine (PEI), poly (lactide-co-glycolide) (PLGA),
poly (amidoamine) (PAMAMs) dendrimers or cell-penetrating
peptide (CP-peptides).
-Polymers are associated with low toxicity to cells, with low
transfection efficiency.
-Most polymers are poorly biodegradable, including PEL
Hydrophobic nature of PLGA decreases the effectiveness in
gene delivery. PAMAMs are positively charged; hence improve
the transfection efficiency of the genetic material.
-PAMAM dendrimers, however, have the tendency to
accumulate in the liver, associated with RES activity.
-The natural-derived polymer of CP-peptides is non-toxic but
prone to premature degradation.
-Include gold nanoparticles (AuNPs), FesO4 NPs, and silica-
based NPs. Inorganic carriers have high stability in the
Inorganic particles circulatory system with low interaction with microbes.
-However, they are associated with little nucleic acid binding,
reducing transfection activity in gene therapy.
Table 2.3: Examples of non-viral delivery system for gene therapy (52)(53)(34)

Polymers

Synthetic or natural biodegradable particles consist of cationic polymers,
cationic lipids or peptides. The low toxicity of many polymers leads to non-toxic waste
and avoidance of accumulation of intracellular polymer (54)(55). Cationic polymers,
most standard nano-scale transportation system, prevent degradation of genetic
materials through condensation process into polyplexes, either entrapped inside the
polymeric matrix or conjugated onto the particles surfaces. Examples of cationic

polymers include Poly(Lactic-co-Glycolic Acid)(PLGA), Polylactic acid (PLA),

Page | 21



Literature review | Chapter 2

chitosan, dendrimers and polyethyleneimine (PEI) (56). Cationic lipid, in the form of
lipoplex upon complexation of lipid and nucleic acid, often formed by partial
condensation of nucleic acid with ordered substructure and irregular morphology, to
form cationic liposomes, lipid nanoemulsion, and solid lipid nanoemulsion (57).
Cationic peptides contain residues including lysine and arginine, which can condense
DNA and siRNA into compacted structure (58). The ability for lysing the endosomal
cavity derived from the peptide sequence from protein transduction domains. Nuclear
localization signals may be further improved by short peptide sequence obtained from
viral proteins (53). Polyplexes exposure with serum protein may induce aggregation,
severely limiting the ability to reach the targeted site for endocytosis process, in
addition to the robustly stabilized structure of polyplexes prevents an efficient release of
genetic load (59). Highly unstable lipoplex structure often prematurely disintegrate
before reaching the tumor site, therefore reducing the amount available for cellular

expression (60).

LIPOSOME CATIONIC POLYMERS DENDRIMERS

S

CP PEPTIDES INORGANIC
NANOPARTICLES

Figure 2.7: Examples of non-viral carriers utilised for gene therapy. Adapted from
Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled Nanoparticles for Multimodality
Tumour Imaging. Theranostics 2014; 4(3): 290-306.
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Nanoparticles have emerged as one of the novel gene delivery systems for
delivery in targeted manner. Nanoparticles defined as solid carriers having the size of 1-
1000 nm are receiving considerable interest due to numerous advantages over many
other carriers. The most significant advantage of the nanoparticles is providing specified
delivery to the specified area, increasing the effectiveness of gene therapy while
concurrently reducing the side effects of non-specific delivery (61). Nanoparticles with
sizes up to several hundred nanometers can enter the cells via membrane-bound vesicles
through endocytosis process. Steps of endocytosis comprise of three main phases:
formation of membrane vesicles with particle load, endosomal delivery of the cargo into
the cell and distribution to intracytoplasmic organelles (62). Inorganic nanoparticles, an
engineered structure varying in size, shape and porosity able to protect entrapped
molecular content from degradation, examples include calcium phosphate, silica, gold
and iron oxide. Inorganic particles are conveniently prepared and display low toxicity,
with the ability to be surface-functionalized (63)(64). Additionally, high genetic
material loads of inorganic particles are associated with high porosity and size of
materials. However, many inorganic particles are non-biodegradable, namely gold and
iron oxide, hence unable to efficiently disintegrate intracellularly to release genetic

content (65).

Carbonate apatite (CO3 AP) nanoparticles emerge as one of the most recently
studied inorganic nanoparticles, with biodegradable properties and similarity to hard
body tissue components (66). The high efficiency of apatite particles in transporting
genetic materials and drugs both in vifro and in vivo is attributed to on its
responsiveness to pH changes, disintegrating the structure upon exposure to acidic pH

(67). The derivation of hydroxyapatite particles showed enhanced transgene expression
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in both cancer and primary cells (68). The factors influencing the formation of CO3 AP
include modifying the ‘supersaturation’ in the bicarbonate-buffered medium of calcium,
phosphate and DNA content (69). However, CO3 AP nanoparticles still less efficient
comparatively to viral delivery, in addition to stability issues which is associated with

the release of CO; by the interaction of carbonate ions (70).

2.6 Active and passive tumor targeting

Current techniques for cytotoxic therapy with nanoparticles are based on active
and passive tumor targeting. Active targeting builds on the nanoparticles conjugated to
tumor biomarker ligands, which are specific for tumor extracellular carbohydrates and
receptors, such as peptides and antibodies. The coated nanocarriers will recognize and
bind to the targeted cells through ligand-receptor interaction, followed by subsequent
internalization of targeted conjugates by receptor-mediated endocytosis (71)(72).
Protein coating is associated with improvement in the pharmacokinetics of the particles,

preventing the complexes from RES uptake for subsequent elimination process (73).

Passive tissue targeting is achieved by taking the advantage of the biochemical
and physiological properties of the tumor microenvironment, which differs from the
normal tissues (74). At the size of approximately 100 nm, nanoparticles can easily
penetrate through the ‘leaky’ capillary system of malignant tissues without passing
through the intact endothelium to the normal tissues, due to a phenomenon known as
Enhance Permeability and Retention (EPR) effect (75). Furthermore, the morphological

changes in the lymphatic system of malignant tissues will result in inadequate lymphatic
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drainage, causing more retention time of the drugs within the tumor microenvironment

(76).
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Figure 2.8: Passive Tissue Targeting achieved by EPR effect

2.7 Fabrication of nanoparticles via precipitation reaction

Precipitation reaction has emerged as one of the most recent approaches in
synthesizing nanoscale materials, which exhibit many unique and exciting physical and
chemical properties. It involves the reaction of chemical reactants with other reactants
in an aqueous solution forming insoluble ionic products (77). The desired chemicals
react and self-assemble to produce a supersaturated solution, resulting in particle

nucleation and ultimately into nanosized particles (78). Crystalline solids, the products
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of precipitation reaction may be suspended throughout the liquid or sedimented at the

bottom of the solution (79).

Salt AX Salt BY Salt AY
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N > ., .. =
Solution Suspension Precipitation

Figure 2.9: Generation of salt crystals through precipitation reaction

The formation of particles is accompanied by growth and aggregation of the
particles, causing large-sized crystals (80). Thus, optimization in pH, the concentration
of reactants, time and temperature or incubation is vital in fabricating ideal
nanoparticles. Particle formation is accelerated as the concentration of reactants
escalates, acting as a driving force for the chemical reaction. The increment in pH,
temperature and incubation time shifts the ionization equilibrium towards the forward
direction, and the rate of reaction is therefore enhanced. Besides, incorporation of
magnesium salt causes a decrement in the size of the particles, suggesting apparently
that incorporation of various salts decelerated particles growth to a significant extends

(81)(82).

Binding of inorganic crystals to DNA or siRNA suggests the involvement of
ionic interactions between salt crystals and DNA or siRNA (83). Studies have reported

the high amount of non-thiol-mediated (nonspecific) binding of both single- and
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double-stranded DNA to nanoparticles, suggested by the mechanism of ion-induced
dipole dispersive interactions, which negative charge of DNA represented by phosphate
group induces dipoles in the highly polarizable particle (84)(85). The vicinity of NPs is
influenced by local ions and protein ligands (86)(87). As many proteins are charged,
electrostatic interactions between them and NP may occur, in addition to local
hydrophilic and hydrophobic patterns existing on the particle surface, resulting in
protein adsorption called, namely protein corona (88)(89). Adsorbed proteins, therefore,
alter the parameters of NPs, including hydrodynamic diameter and colloidal stability

(90).

Cellular uptake is highly dependent on NPs size, charge and ligand binding. It
was found that the adsorption efficacy and concentration of saturated particles differ
with particle sizes, with optimal efficiency achieved with less than 100nm.
Additionally, spherical particles of similar size were internalized 500% more compared
to rod-shaped particles, possibly due to the greater time required for membrane
wrapping for elongated particles (91). Manipulation of particles to produce nanosized
compounds confers many benefits over microparticles. Nanoparticles have in general
relatively higher intracellular uptake compared to microparticles. Tests were done on
the rat intestinal model, where the formulation of nano- and microparticles were
compared. There were 15 to 250 greater folds of uptake of 100 nm size particles in
comparison with 1 and 10 pm microparticles. Also, the penetration of nanoparticles was
found across the submucosal layers while larger size microparticles were mostly

localized in the epithelial lining (92).
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Ideally, neutral charged NPs are necessary to prevent unwanted particle-
biological interactions, namely non-specific adsorption of serum protein onto the
surface of particles, leading to aggregation and elimination from RES, subsequently
reduced genetic material transportation to the targeted site, in addition to inefficient
tagging and detection of NPs (93). Studies by Verma et al. showed that neutral and
negatively charged nanoparticles adsorbed less on the negatively charged cell
membrane surface and consequently displayed lower levels of internalization in

comparison with positively charged particles (94).

2.8 Barium salt as potential vector

Barium compounds have been associated with many applications in the medical
field. The insoluble component of this alkaline earth metal is non-toxic, allowing many
types barium salts being used in clinical and cosmeceutical areas (95). Barium sulfate
(BaSO4) has low toxicity and high opacity for x-ray imaging, thus being used as a
radiocontrast agent for digestive tract (96). Studies by Dempsey et al. proved that
barium titanate nanoparticles exhibited promising future in biological imaging due to
properties such as nontoxic, non-bleach and having narrow, multi-directional signal
spectrum. Barium crystals complex also has a significant cell association and uptake of
DNA, although it is often associated with low cellular uptake upon internalization,
hence requires concomitant ligand coating such as cationic polymer PEI, resulting in an
8-fold increment of cellular uptake by modification of zeta potential of barium particles

(97)(98).
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2.9 Strontium salt as potential vector

Strontium compound, also an alkaline earth metal has recently been found to be
beneficial for patients with osteoporosis and fractures, often act as calcium substitution
for hydroxyapatite particles (99). Strontium inhibits bone resorption while
simultaneously stimulating bone growth, six times more efficient than placebo.
Strontium ranelate, a combination of strontium with ranelic acid, was found to be aiding
bone growth, increasing bone density, and lessen vertebral, peripheral and hip fractures
(100). Studies by Ravi et al. found that incorporation of strontium into bone cement in
vivo, improved bone formation and decreased bone resorption (99). Strontium is also
used for superficial radiotherapy for bone cancer treatment due to beta emission and
long half-life. The beta particles are accountable for its therapeutic effect penetrating
within 3 to 4 mm in bone and 6 to 7mm in soft tissues (101). Qian et al. showed in their
study on the effectiveness of strontium carbonate as the carrier for the drug (etoposide).
Etoposide-strontium carbonate complexes displayed high loading ability and
encapsulation efficiency (102). The release of etoposide from its carrier was showed
highest at pH 3.0, therefore potentially being pH-sensitive. The healthy kidney
eliminates the majority of absorbed element; hence patients with renal insufficiency are
at risk of accumulating this metals. High strontium is associated with accumulation of
strontium in bone and presence of osteomalacia, with uptake is shown to be dose

dependent with distribution is often in newly formed bone (103).
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2.10 Calcium salt as potential vector

Calcium salt is the most abundant compound in human due to its vital
importance in signaling many cellular pathways and mineralization of bone, teeth.
Medically, the alkaline metal compounds are frequently used in an antacid as calcium
carbonate, whereas other calcium salts such as calcium lactate and calcium gluconate
are widely used as calcium supplements for hypocalcemic patients, pediatric patients
and pregnant patients (104). Sokolova et al. proved that calcium phosphate
nanoparticles are efficient as non-toxic carriers to transport compounds of interest
across the cell membrane due to their dissolution behaviors under an acidic condition in
the lysosome after internalization by the cell. As calcium phosphate concentration
increases, more particles are internalized by the cells, providing more release of particle

load (64)(105,106).

2.11 Magnesium as potential vector

Magnesium, an alkaline earth metal is vital for many essential metabolic
reactions, including energy productions, nucleic acid and enzyme synthesis, ion
transport across the cell membrane and cell signaling. Pharmaceutically, magnesium
compounds are used as antacids, laxatives, treatment of eclampsia and asthma.
Magnesium carbonate and magnesium phosphate are used widely for magnesium
supplementary in patients with hypomagnesemia (107). Lellouche et al. reported
antimicrobial and antibiofilm activities on Escherichia coli and Staphylococcus aureus
bacteria by nano-sized magnesium fluoride, whose actions are influenced by

nanoparticles sizes (108). Magnesium phosphate with sizes of approximately 100nm
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showed efficient in vitro DNA transfection in HeLa cells and dissolved in mild acidic

pH of 5 therefore indicated possible release of pDNA in the endosome (109).

2.12 Iron as potential vector

Iron is the key component in oxygen transportation and storage due to the
formation of complexes with molecular oxygen in hemoglobin and myoglobin. Iron is
also used for electron transport and energy metabolism as a component of cytochrome
(a heme-containing compound). Some heme-containing enzymes are also beneficial as
antioxidants, protecting cells from free radicals (110). Ferrous oxide nanoparticles were
reported by Dresco et al. to increase the sensitivity of daunorubicin against cancer cells
and initiate apoptosis through caspase 8-poly(ADP-ribose) polymerase (PARP)

pathway. In vivo studies showed significant inhibition of tumor growth in mice (111).
2.13 HEPES as inert buffer media

HEPES buffer, also known as N-2-hydroxyethylpiperazine-N-2-ethane sulfonic
acid) is a zwitterionic organic buffering agent frequently used in cell culture media.
Supplementing 10-25mM HEPES improves buffering competency of cell culture with
limited effect on biochemical reaction, being stable chemically and enzymatically and
expressed low visible and ultraviolet (UV) light absorbance (112) (113). HEPES buffer
has low metal binding constant and is therefore suited to investigate metal-dependent
interactions. Various nanostructures, including zinc oxide, were readily synthesized in
HEPES buffer solution. HEPES contains two free nitrogen atoms (piperazine group)
and terminal hydroxyl groups, playing a crucial role as a reactant and surfactant to

prevent the transition metal oxide nanoparticles from aggregation (114) (115).
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3.1 Introduction

Non-viral vectors have been intensively explored in the recent years due to their
excellent safety features, ease of production, low cost, and unlimited carrying capacity,
in contrast to the viral counterparts. Nonetheless, their lack of efficiency leads to an
extensive search for alternative strategies for synthesizing novel nanoparticles that

would overcome the hurdles to achieve an ideal genetic material delivery.

Inorganic nanoparticles have emerged as potential non-viral vector candidates
based on numerous cellular and animal studies with the current focus being on
constructing particles with biodegradable properties. The readily available inorganic
nanoparticles (NP), including gold, silver and iron oxide particles are not efficiently
degraded in the biological systems, in addition to extensive structural sizes due to
aggregation, which is associated with low gene transportation activity into the targeted
areas. Recent experimental studies have explored the potential activity of inorganic NPs
of carbonate apatite (COs; AP) with excellent biodegradable properties and
comparatively small in size (£300nm), involving modest fabrication methods. Its
responsiveness to pH changes allows the transportation process with the ability to
disintegrate upon exposure to the acidic environment inside the endosomal cavity.
Although pH-sensitive CO; AP is a very efficient non-viral vector, it is still less
efficient than viral vectors. Hence, it is of our interest to explore the other types of
biodegradable inorganic nanoparticles with vast delivery improvement, but similarly

excellent safety and productivity features of CO3 AP.
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Alkaline earth metals are often elaborated in the fields of electrical and medical
industries based on their ability for controllable synthesis to form different
morphological configuration with scalable production. The metals, including barium,
strontium, calcium and magnesium, however, have yet to be extensively elaborated in
the areas of gene delivery, hence inspiring us to design the project. The fabrication of
NPs was performed based on proposed chemical reaction of two soluble components
within an inert environment, also including the salts from non-metal groups comprising
sulfate, sulfite, fluoride, carbonate and phosphate. Additionally, the efficient production
of iron NPs for the current biomedical experimental design was also explored through

analogous precipitation reaction.

In the initial stage of the project, salts were screened following fabrication of
salt particles based on precipitation reactions, through microscopic observation and
spectrophotometric analysis. Subsequent size and charge evaluation of the precipitated
crystals was performed by Zetasizer and scanning electron microscopy (SEM), which
showed various sizes and shapes of the particles formed, with variation in sizes and
shapes also seen with different salts incorporated. The size characterization of salt
crystals was influenced by various physical factors including pH, temperature, and time
of incubation, on top of variation in concentration of soluble salts. High temperature
and pH, prolonged incubation time and concentrated salts are associated with shifting of
ionization equilibrium to the forward, hence generating more particles and subsequently
larger forms of aggregates. Ferrous salt crystals create bigger particle sizes and
increased numbers based on the qualitative and quantitative analysis, escalating at 60°C,
60 minutes incubation, basic pH of 9, and 10mM salt concentration. Magnesium salts

form smaller crystals numbers, with lowest values seen at the temperature of 4°C, zero
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incubation period, acidic pH of 4 and 2mM salt concentrations. Spectrophotometric
analysis of barium and strontium salts were comparable to CO3 AP particles, defining
the probability of a similar range of particle sizes, established further through
interpretation via Zetasizer. The absorbance of >0.4 is likely to have the size of more

than 500nm, which may reflect in low efficiency in vitro and in vivo experimentation.

Efficiency in adsorption of negatively charged pDNA and siRNA towards
fabricated NPs was >80% for most of the barium and strontium salts despite being
negatively charged, owing to the proposed electrostatic interactions between the genetic
materials and the cationic regions of salt particles. Barium, strontium, and magnesium
salts are likely to be successful in vitro based on their ideal sizes and high binding

affinity.

Attachment of ligands, e.g. fibronectin or transferrin on the surface of NPs
reveals size reduction of the salt crystals with less negative charges, endorsing a
potential improvement of particles in cellular internalization through active and passive
targeting. Salt combinations, however, magnifies the sizes of complex particles with
more negative charges. Salt combinations are unlikely to influence adjunctive effect on
intracellular transfection, associated with repulsion with the negatively-charged cellular

surface.
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3.2 Methods and materials

3.2.1 Fabrication of NPs based on precipitation reaction

Each type of NPs was prepared by incorporating Sul of 1M of cation-providing
salts: barium chloride (BaCly) (Sigma-Aldrich, USA), strontium chloride (SrCl)
(Sigma-Aldrich, USA), calcium chloride (CaCly) (Sigma-Aldrich, USA), magnesium
chloride (MgClb) (Sigma Aldrich, USA) or iron (II) chloride (FeClz) (Sigma-Aldrich,
USA) into 10ul HEPES-buffered media (pH adjusted to 7.5) (Sigma-Aldrich, USA) and
mixing Syl of 1M of anion-providing salts: sodium sulfate (Na2SO4) (Sigma-Aldrich,
USA), sodium sulfite (Na;SO3) (Sigma-Aldrich, USA), sodium fluoride (NaF) (Sigma-
Aldrich, USA), sodium carbonate (NaxCOs) (Sigma-Aldrich, USA) or sodium phosphate
(Na2POs) (Sigma-Aldrich, USA). The mixing process was followed by subsequent 30
minutes incubation at 37°C and addition of FBS-supplemented DMEM media (Sigma-
Aldrich, USA) to obtain the final volume of Iml particle suspension. Absorbance at
320nm wavelength was measured for all fabricated NPs spectrophotometrically (UV
1800 Spectrophotometer, Shimadzu, Japan) upon generation of NPs, with concern to
COs AP. Preparation of COs AP particles involves dissolving 44mM of sodium
bicarbonate with DMEM powder in miliQ water, adjusted to pH 7.4 upon mixing of
SmM exogenous CaCl; to form 1ml particle suspension, at same incubation time and
temperature. Following 30 minutes incubation of CO3 AP, 10% FBS was introduced to
the generated CO3 AP particles to prevent further aggregation. Microscopic visualization
and spectrophotometric analysis were acquired using the optical microscope (Olympus,
Japan) and microplate reader (Biorad, USA) to visualize the presentation of particle
formation.
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The spectrophotometric determination was done in triplicates and plotted into a

graph with mean+SD.
Salts BaClz SrClz CaClz MgCl FeCl2
Barium Strontium
Naz2S04 sulfate sulfate
(BaS0Os) (SrSO4)
Barium Strontium Calcium Magnesium Ferrous
Naz2SO3 sulfite sulfite sulfite sufite sulfite
(BaS03) (SrS03) (CaS03) (MgS03) (FeSO3)
Barium Strontium Calcium Magnesium
NaF fluoride fluoride fluoride fluoride
(BaF») (SrF2) (CaF») (MgF>)
Barium Strontium Calcium Magnesium Ferrous
Na2CO3 carbonate carbonate carbonate carbonate carbonate
(BaCO3) (SrCO:3) (CaC0») (MgCO3) (FeCOs)
Barium Strontium Calcium Magnesium Ferrous
Na3POg4 phosphate phosphate phosphate phosphate phosphate
(Baz(PO4)2)  (Sr3POs)2)  (CasPOs4)2)  (MgzPOs))  (FesPOs)2)

Table 3.1: Inorganic salt crystals generated from proposed precipitation reaction. The
mixing of soluble salts was performed in HEPES-buffered media, projecting various
types of precipitates.

3.2.2 Assessment of NPs growth via spectrophotometric analysis

Chapter 3

Manipulation of concentration of reacting salts on NP generation effect was

performed through addition of BaCl,, SrClz, CaCla, MgCl or FeClz ranging from 2ul to

10ul of 1M into HEPES media with subsequent mixing of fixed Sul of 1M NazSOs,

NazS03, NaF, Na;COs; or NaPO4. Consequently, the experiment on particle growth

involving fixed Sul of 1M BaCly, SrCl,, CaCla, MgCl or FeCl, versus 2pul to 10ul of 1M

NaxSOs, NaxSOs, NaF, Na,CO3 or NaPO4, was executed prior to incubation for 30

minutes at 37°C.
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Time-dependent analysis was performed by addition of 5ul of 1M BaCl,, SrClo,
CaCly, MgCl; or FeCl> to 10ul HEPES-buffered media (pH 7.5) and mixing with 2ul of
IM NazS0Oj4, NaxSO3, NaF, NaxCO3; or NaxPOas, followed incubation at 37°C for 0, 30,
and 60 minutes and subsequent mixing of serum-supplemented DMEM. pH-dependent
experiment was initiated by preparation of HEPES-buffered media with various pHs of
4,5,6,7, 8 and 9 upon introduction of 5ul of 1M BaCl,, SrCl,, CaCl,, MgCl or FeCl,
and 2ul of 1M Na»S04, NaxSO3, NaF, NaxCO3 or NaPOs, and incubation at 37°C for 30
minutes. Experimental studies on the influence of temperature changes involve
incubation of generated salt crystals at various temperatures, 4°C, 37°C and 70°C
following mixing of 5ul of 1M BaCl,, SrClz, CaClz, MgClz or FeClz» and 2ul of 1M
NaxSOs, NaS0s, NaF, NaxCOs3 or NaPOy, at fixed pH and incubation time. CO3 AP
was included individually in each experiment as a positive control. Experimental studies

were completed in triplicates and analysis was carried out as graphs with mean+SD.

3.2.3 Size estimation and zeta potential measurement of NPs

Size and zeta potential measurement of fabricated NPs utilizing Zeta Sizer
(Malvern, Nano ZS, UK) were executed following 30 minutes incubation to form the
crystal precipitates. A preliminary study involving the formation of NPs was performed
by mixing of 5ul of IM BaClz, SrClz, CaClz, MgClz or FeClz> and 2ul to 10ul of 1M
NaS04, NaS03, NaF, NaxCOs or Na;PO4 in HEPES media, followed by incubation at
37°C for 30 minutes. The generated salt crystals were maintained on ice prior to
observation under Zetasizer. A refractive index (RI) ratio of 1.325 (measured in
DMEM media by refractometer) was used to calculate particle sizes and zeta potential.

Analysis of data was done using Zetasizer software 6.20 and all salt samples were
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measured in duplicate and shown as mean+SD. The size and morphology of selected
nanocrystal samples were visualized through Field Emission scanning electron
microscopic (Hitachi S-4700 FE-SEM, Japan) observation. NPs were centrifuged at
15,000 RPM for 10 seconds, followed by removal of supernatant and resuspension with
milli-Q water. Salt particle suspensions were maintained under ice before microscopic
observation. 1l of each sample was placed onto carbon tape on the sample holder to
dry (at room temperature), followed by platinum sputtering of the dried samples for 30
seconds. Microscopic observation of sputtered NPs was done using FE-SEM, with

optimal image achieved at 10-15kV.

3.2.4 Binding affinity of pDNA and siRNA towards NPs

A study involving binding affinity of genetic materials, pDNA and siRNA
towards NPs includes qualitative and quantitative measurement of fluorescence-labeled
pDNA and siRNA. Ipg pGFP, green fluorescence protein pDNA was labeled non-
covalently with propidium iodide (PI) at 1:1 ratio, added to Syl of 1M BaCl,, SrCly,
CaCl,, MgCl or FeCly, followed by incorporation of 2ul of 1M Na>SO4, Na;SOs, NaF,
NaxCO3 or NaPO4 in 10ul HEPES-buffered media to generate respective salt
precipitates. The chemical reactions were maintained at 37°C for 30 minutes, followed
by mixing of DMEM media to form the final volume of Iml salt suspension. CO3 AP
was kept as the positive control for the study, incorporating pGFP: PI of the similar
ratio. Microscopic visualization was achieved by the addition of fabricated salt crystals
to 24-well plate (Nunc, Denmark), and observed under fluorescence microscope
(Olympus, Japan) through PI filter. Quantitative measurement of NPs-bound pDNA

involved multi-label plate reading of supernatant representing the bound fraction of
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DNA (Victor X5, Perkin Elmer) following centrifugation of fabricated NPs at 15,000
RPM for 5 minutes. The 100ul supernatant was aspirated and transferred into 96-well
plate (Nunc, Denmark), prior to fluorescence intensity measurement. 1pg/ml ethidium
bromide, EtBr (Sigma-Aldrich, USA) was added in 100ul to each well of pDNA loaded
with differentially formulated particle preparation medium. Experiments involving
binding affinity of siRNA-NPs were established throughout introduction of 100nM AF
488 negative siRNA (fluorescence siRNA, Qiagen, Germany) into Sul of 1M BaCl,,
SrCl,, CaCly, MgCly or FeCly upon mixing of 2ul of 1M Na»SOs, NaSOs, NaF,
NayCO3 or NaPOs in 10ul HEPES-buffered media with same incubation time and

temperature. Each experiment was done in triplicates and analyzed with mean+SD.

3.2.5 Influence of ligand coating on morphology and size of NPs

The impact of ligand coating on structural changes of selected NPs was
demonstrated by glazing fibronectin protein (rat plasma, Sigma-Aldrich, USA) onto the
fabricated particles. 1ug fibronectin was introduced after mixing Sul of 1M BaCl,, SrCl,
or MgClx with 2ul of 1M NaSO4, Na;SO; and NaF in 10ul HEPES-buffered media
before additional 10 minutes incubation to coat the NPs, followed by the brief mixture
of DMEM media to form the final volume of 1ml suspension (Table 3.2). The analysis
was performed through size measurement and zeta potential using Zeta Sizer. Electron
microscopic visualization through FE-SEM was conducted on selected NPs after
centrifugation of the particles solution at 15,000 RPM for 5 minutes and upon
resuspension of supernatant to Iml of miliQ water. Resuspended particles were kept on
ice prior to microscopic observation at 10-15kV to prevent further formation

aggregation.

Page | 48



Salt selection and optimisation | Chapter 3

Salt Regimen for analysis
Sul of 1M BaCl,, 2ul of 1M NaySOs, in 10ul HEPES media, followed by
addition of DMEM to achieve 1ml
Sul of 1M BaCly, 2ul of 1M Na»SOs3, in 10ul HEPES media, followed by 1ug
BaSOs3  fipronectin and addition of DMEM to achieve 1ml

Sul of 1M BaCly, 2ul of 1M Na»SOs3, in 10ul HEPES media, followed by 1ug
transferrin and addition of DMEM to achieve 1ml

Sul of IM BaCly, 2ul of IM NaF, in 10ul HEPES media, followed by
addition of DMEM to achieve 1ml

Sul of 1M BaCly, 2ul of 1M NaF, in 10ul HEPES media, followed by 1pg
fibronectin and addition of DMEM to achieve 1ml

5ul of 1M BaClz, 2ul of 1M NaF, in 10ul HEPES media, followed by 1pg
transferrin and addition of DMEM to achieve 1ml

BaF:

Sul of 1M SrCl, 2pul of IM NaxSOs, in 10ul HEPES media, followed by

addition of DMEM to achieve 1ml

Sul of IM SrCl,, 2ul of 1M NaxSOgs, in 10ul HEPES media, followed by 1ug
SrS04 fibronectin and addition of DMEM to achieve 1ml

5mM SrClp, 2pl of 1M NaxSOs, in 10ul HEPES media, followed by lug

transferrin and addition of DMEM to achieve 1ml

Sul of 1M SrClz, 2ul of IM NaxSOs, in 10ul HEPES media, followed by
addition of DMEM to achieve 1ml

5mM SrClp, 2ul of 1M NaxSOs, in 10ul HEPES media, followed by 1pg
SrS0s fibronectin and addition of DMEM to achieve 1ml

Sul of 1M SrCly, 2pul of 1M NaySOs3, in 10ul HEPES media, followed by 1ug
transferrin and addition of DMEM to achieve 1ml

Sul of IM SrCl, 2ul of 1M NaF, in 10ul HEPES media, followed by addition

of DMEM to achieve 1ml

Sul of 1M SrCl, 2pl of 1M NaF, in 10ul HEPES media, followed by 1ug
SrF2  fibronectin and addition of DMEM to achieve 1ml

S5ul of 1M SrClz, 2ul of 1M NaF, in 10ul HEPES media, followed by 1ug
transferrin and addition of DMEM to achieve 1ml

Sul of 1M MgCla, 2ul of IM NazSOs, in 10ul HEPES media, followed by
addition of DMEM to achieve 1ml

Sul of IM MgCla, 2ul of 1M NazSOs in 10ul HEPES media, followed by 1pug
fibronectin and addition of DMEM to achieve 1ml

Sul of 1M MgCly, 2ul of 1M Na;S0O3, in 10ul HEPES media, followed by 1pug
transferrin and addition of DMEM to achieve 1ml

MgSOs

44mM NaxCO3, SmM CaCls, added to DMEM media, final volume of 1ml
44mM NaxCOs3;, SmM CaCl;, added to DMEM media, followed by lug
COs Ap fibronectin, final volume of 1ml

44mM NaxCOs3;, SmM CaCl;, added to DMEM media, followed by lpg
transferrin, final volume of 1ml

Table 3.2: Generation of ligand-coated NPs via transferrin or fibronectin
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3.2.6 Effect of salt combination on morphology and size of NPs

Manipulation of the NPs exploiting combination of two inorganic salts was
performed by allowing the mixing of two individual salt crystals, to carry out
quantitative experimental studies of salt combinations. Two selected insoluble salts
individually formulated (Table 3.3), were mixed in HEPES-buffered media, before
additional incubation at 37°C for 30 minutes. DMEM medium was subsequently
introduced into the particles to form the final volume of 1ml suspension, with analysis

performed to obtain size estimation and zeta charge of the hybridized particles.

Group Combination regimen

BaS03+ SrSOs3 [Sul of IM BaClz + 2pl of 1M NazSOs and 5ul of 1M SrClz
+ 2ul of 1M of Na;S0s] in 10pul HEPES buffered media,
with the final volume of DMEM adjusted to Iml

SrSOs + SrF2 [Sul of 1M SrClo+ 2ul of 1M of NaxSOs and Sul of 1M SrCl,
+ 2ul of 1M NaF] in 10ul HEPES buffered media, with the
final volume of DMEM adjusted to 1ml

SrSOs + MgSO0s3 [Sul of 1M SrClz + 2ul of 1M NazSO3 and Sul of 1M MgCl,
+ 2ul of 1M NaxSOs3] in 10ul HEPES buffered media, with
the final volume of DMEM adjusted to 1ml

SrF: + BaF: [Sul of 1M SrCl> + 2ul of 1M NaF and 5ul of 1M BaCl, +
2ul of 1M NaF] in 10ul HEPES buffered media, with the
final volume of DMEM adjusted to 1ml

BaSOs + MgSOs [Sul of IM BaClz+ 2pl of 1M NazSOs and 5ul of 1M MgClz
+ 2ul of 1M NaxSOs3] in 10ul HEPES buffered media, with
the final volume of DMEM adjusted to 1ml

Table 3.3: Combination salt regimen through mixing of two salt precipitates. Mixing of
two insoluble salts was performed following 30 minutes incubation, and the mixture
was further incubated for 10 minutes upon addition of DMEM medium.
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Visional observation of above salt combination in comparison with single salts
crystals using FE-SEM was also made following resuspension of salts with 1ml miliQ

water after centrifugation at 15,000 RPM for 5 minutes, and maintained at 4°C.

3.3 Results

3.3.1 Fabrication of NPs based on precipitation reactions

Experimental studies on the fabrication of NPs were performed to observe the
formation of salt particles. Spectrophotometric measurement demonstrated absorbance
ranging from 0.3 to 2.1 at 320nm wavelength upon generation of salt precipitates
(Figure 3.1). High absorbance intensity was observed for fabricated ferrous crystals,
with the highest value seen with FeSO3 and Fe3(PO4). salt particles upon 30 minutes
incubation. Barium salts are also associated with high absorbance volume, varying
from 0.5 to 1.0, followed by strontium salts at the range of 0.4 to 0.8. Small crystals
sizes were seen with CaCO3z and MgF», comparable to those of CO3 AP, showing the
absorbance of approximately 0.3. Calcium and magnesium salts showed low overall
intensity, with detection ranges from 0.3 to 0.6. Na>SO4 and Na;POy4 are similar with
respect to larger particle sizes and number, referring to high absorbance data in
comparison with other anion-providing salts. Based on the figure, NaF and Na,CO; are
linked with the modest formation of particles. CO3 AP particles are more likely to be
smaller in particle numbers and sizes, determined by lower absorbance intensity at the

similar wavelength in comparison to other generated salts crystals.
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Visualization of each type of fabricated NPs was determined using optical microscope,
revealing the generation of salt particles varying in size and numbers (Figure 3.2).
Microscopic observation of all NPs represents similarities with spectrophotometric
evaluation at 320nm of earlier experiments. Barium and strontium salt crystals are
associated with an immense number of particles. Generated ferrous salts demonstrated
enormous particle sizes up to 10um. Comparative studies on size and number estimation
of NPs further showed that the particles incorporated with calcium and magnesium salts
were generally smaller in sizes and fewer in numbers, as similarly interpreted by
spectrophotometric analysis. Concentrated salt particles visualized under the images
also established the involvement of Na>SO4 and NaxPOg in leading to the high number

and sizes of particles formed.

The actual sizes of each particle were determined in the subsequent experiment

involving Zeta Sizer.
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Figure 3.1: Absorbance intensity of NPs formed by precipitation reaction. Addition of
Sul of IM (a) BaCly, (b) SrCl,, (¢) CaCl,, (d) MgCl) or (e) FeCl, into 10ul HEPES
buffered media (pH adjusted to 7.5) followed by mixing of 5ul of 1M Na>SO4, Na;SOs3,
NaF, Na>xCOs or NazPOy, generated various salt crystals upon 30 minutes incubation at
37°C. Subsequently, serum-supplemented DMEM media was added to achieve 1ml
particle suspension. Absorbance at 320nm wavelength was measured for all fabricated
NPs using spectrophotometer with reference to CO3 AP.
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e)

FeSO3
Figure 3.2: Microscopic observation of NPs formed by precipitation reaction. Syl of 1M (a) BaCly, (b) SrCly, (c¢) CaCly, (d) MgCl») or (e)
FeCl, was introduced into 10ul HEPES buffered media, followed by mixing of 5ul of 1M NaxSO4, Na;SOs, NaF, Na;CO; or NazPOs,
generating various salt crystals upon 30 minutes incubation at 37°C. Subsequently, FBS-containing DMEM media was added to achieve
Iml particle suspension. Image was captured at 10X resolution, with reference to (f) CO3 AP.

Fes(PO4) CO; AP
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3.3.2 Assessment of NPs growth via spectrophotometric analyses

Concentration-dependent analysis was initially performed following adjustment
of BaCly, SrCl,, CaCl,, MgCl; or FeCl, concentration from 2ul to 10ul of 1M with fixed
Sul of IM of anion-providing salts consisted of Na>SOs, NA>SO3, NaF, Na,CO;3 or
NaPO4 within HEPES-buffered media (pH 7.5), prior to incubation for 30 minutes at
37°C and addition of DMEM medium to achieve final volume of 1ml suspension.
Determination of absorbance intensity was performed at 320nm wavelength. At 2mM,
relative absorbance values amongst all NPs studied showed low intensity, specifically
with salts containing fluoride and carbonate ions. Superior intensity was seen with a
gradual escalation in salt concentration, particularly at 10mM, reaching a maximum
level of 2.4 with Fe>SO; and Fe3(POs); salts. Higher cation-providing salt concentrations

induced greater particle sizes and numbers, especially with barium and strontium salts.

The second phase of the concentration-dependent study was to investigate the
influence of anion-providing salt concentration on NPs formation, which was also
determined spectrophotometrically. Similarly, the absorbance intensity was augmented
as the concentration of Na;SO4, NaxSOs3, NaF, NaxCOs or NaPO4 was increased, as seen
in Figure 3.3. At 10mM, absorbance intensity was generally more than 0.5, with
exception to magnesium NPs, with an average of 0.3. High cation-providing salt
concentration escalated absorbance level especially with Na>SO;s salts, in comparison
with other anion-providing salts. Comparative studies with CO3 AP revealed that 2mM
of anion-providing salt concentrations mimicked the absorbance data articulated by the

COs3 AP particles with no adjustment on CO3 AP-forming salt concentration.
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To obtain the ideal absorbance ranging from 0.3 to 0.4, in reference to CO3 AP,
the optimal concentration for cation-providing salts ranges from 2 to SmM. Large salt
sizes and numbers were seen with ferrous NPs, with FeoSO; and Fe3(POs4), giving
intensities of more than 2.0 from 2mM onwards. Incorporation of Na>SO4 and Na>SOs
into the particle structures was associated with greater absorbance intensity, particularly

with ferrous, strontium and barium salts.

Based on both experimental designs determining the ideal concentrations of both
cation- and anion-providing salts, it is projected that the ranges of salts concentrations
should be of 2 to 5SmM. However, we have proposed to maximize the cation-providing
salt concentration for subsequent experiments to increase the probability for more
electrostatic interactions between the negatively charged pDNA and siRNA.
Additionally, anion-providing salts will remain at the minimal concentration of 2mM to

maintain the overall crystals sizes of <500nm.

Spectrophotometric reading of NPs suspension was done to assess their growth
in the different arrangement of external variations to optimize the formation of salt
particles. The time-dependent analysis was initially executed through maneuvering of
crystal’s incubation time, with fixed salt concentration and pH condition. Following
mixing of 2 soluble salts, various incubation intervals were introduced, from 4 to 60
minutes upon absorbance measurement at 320nm wavelength. Based on Figure 3.5, each
salt demonstrated higher absorbance intensity with increasing of incubation interval.
Low crystals formation was seen at 4 minutes, portrayed by low absorbance reading. As

incubation time was extended, the level was intensified for all 21 salts.
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Figure 3.3: Effect of cation-providing salt concentration on NPs formations. Various concentrations of (a) BaCl,, (b) SrCl,, (c) CaCly, (d)
MgCl) or (e) FeCl, was introduced (2ul, Sul and 10ul of 1M) into 10ul HEPES buffered media (pH 7.5), followed by mixing of Sul of IM
NazS04, Na2SOs3, NaF, Na;COs or NazPOs, generating various salt particles upon 30 minutes incubation at 37°C. Subsequently, FBS containing-
DMEM media was added to achieve final volume of 1ml particle suspension. Absorbance at 320nm wavelength was obtained using
spectrophotometer with reference to CO3 AP.
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Figure 3.4: Effect of anion-providing salt concentration on NPs formations. 5yl of 1M (a) BaCl,, (b) SrCl, (c) CaCly, (d) MgCl,) or (e)
FeCl, was introduced into 10ul HEPES buffered media (pH adjusted to 7.5), followed by mixing of different concentration of Na>SOa,
NA2SOs, NaF, NaxCO3 or NazPOs (2ul, 5ul and 10ul of 1M), generating various salt particles upon 30 minutes incubation at 37°C.
Subsequently, FBS containing-DMEM media was added to achieve final volume of 1ml particle suspension. Absorbance at 320nm was
measured for all fabricated NPs using spectrophotometer with reference to CO3 AP.
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Salt fabricated via 30 minutes incubation is emitted absorbance of <0.5, similarly
achieved with CO3 AP, with exception of salts containing sulfate and phosphate ions.
Upon 60 minute incubation, superior absorbance level was seen for all the salts tested

especially with ferrous and barium salts, of intensity up to 2.5.

Evaluation of pH-dependent analysis was executed through manipulation of
HEPES pH upon incorporation of two soluble salts, with fixed incubation time and
temperature (30 minutes, 37°C). Acidic pH resulted in overall lower particle number and
smaller size reflected by low absorbance level (Figure 3.6). As pH was gradually
increased, the absorbance level of NPs intensified almost 3-fold higher than the lowest
pH tested, with intensity up to 2.9 demonstrated with FeSOs;. Fluoride-based NPs
exhibited minimum increment at 320nm wavelength, in comparison with other crystals.
At pH 7.5, the absorbance intensity of salt crystals was >0.5, with exception to salts

containing sulfate and sulfite, exposing higher intensity upon 30 minutes of incubation.

The importance of temperature on NPs generation was determined through
modification of incubation temperature from 4°C to 60°C. Each type of generated salts
showed intensified absorbance at 60°C, especially with ferrous salts having the
absorbance ranging from 1 to 4, signifying massive particle numbers and sizes, as seen
in Figure 3.7. At 4°C, the absorbance of each salt valued at approximately 0.2, except
ferrous salts. The fabricated salts presented minimum 3-fold more increment from at
60°C than at 4°C, with 7-times growth anticipated with BaSO3, representing a maximum
increase by temperature adjustment. At 37°C, most salts revealed absorbance intensity of

<0.5, with exception to sulfate and sulfite-containing salts.
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Figure 3.5: Effect of incubation time on NPs formations. Sul of 1M (a) BaCla, (b) SrCl, (c) CaCla, (d) MgCl,) or (e) FeCl, was introduced
into 10ul HEPES buffered media (pH 7.5), followed by mixing of 2ul of 1M NaxSO4, NaxSO3, NaF, NaxCOs3 or NazPOs, generating various
salt crystals upon incubation at 37°C at varying time points (0, 30 and 60 minutes). Subsequently, FBS containing-DMEM media was

added to achieve final volume of Iml particle suspension. Absorbance at 320nm was measured for all fabricated NPs, with reference to
COs AP.

Page | 60



Salt selection and optimisation | Chapter 3

[==
wn
1
—
wn
1
o
n
1

1.0+

p—
=]
1

Absorbance (320nm)
e
(9]
1

Absorbance (320nm)
Absorbance (320nm)

(=]
(=]

b) pH c)
Barium salts Strontium salts Calcium salts
1.5+

N
1

¢

CO,; AP
Na;PO,
Na,CO,4
NaF

Na,SO,
Na,SO,

1.0+

Absorbance (320nm)
Absorbance (320nm)
— ')
[ [

b bt

d) pH e) Time (hour)

Magnesium salts Ferrous salts
Figure 3.6: Effect of pH adjustment on NPs formations. 5ul of 1M (a) BaCly, (b) SrCl, (c) CaCly, (d) MgCl,) or (e) FeCl, was introduced
into 10pl HEPES buffered media (pH ranging from 4.5-9.5), followed by mixing of 2l of 1M Na>SO4, Na;SOs, NaF, Na;CO; or NazPOq,

generating various salt crystals upon 30 minutes incubation at 37°C. Subsequently, serum containing-DMEM media was added to achieve
final volume of 1ml particle suspension. Absorbance at 320nm was measured for all fabricated NPs, with reference to CO; AP.
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Figure 3.7: Effect of incubation temperature on NPs formations. 5ul of 1M (a) BaCl, (b) SrCl, (¢) CaCly, (d) MgCl,) or (e) FeCl, was
introduced into 10ul HEPES buffered media (pH 7.5), followed by mixing of 2ul of 1M NaxSOs, NaxSOs3, NaF, Na;CO3 or NazPOs,
generating various salt crystals upon 30 minutes incubation at 37°C. Subsequently, FBS containing-DMEM media was added to achieve
final volume of 1ml particle suspension. Absorbance at 320nm was measured for all fabricated NPs, with reference to CO3; AP.

Page | 62



Salt selection and optimisation | Chapter 3

Similarly, CO3 AP demonstrated higher particle size and number, represented by greater
absorbance level with a gradual rise in temperature. The overall modification of pH,
temperature, and time analysis enables us to summarize the ideal conditions for
subsequent experiments: 37°C for 60 minutes incubation with the pH adjusted to 7.5 and

37°C.

3.3.3 Size estimation and zeta potential measurement of NPs

Determination of average size of each type of NPs was accomplished by
introduction of two soluble salts in HEPES media with subsequent incubation for 30
minutes (as performed earlier), followed by particle size and zeta potential
characterization via Zeta Sizer system. Salts forming cationic regions of the inorganic
compounds; BaCl,, SrCl,, CaCl,, MgCl, or FeCl, were fixed at 5ul of 1M, with the
intention to observe particle size changes with manipulation of concentrations of anion-
providing salts, Na;SO4, NA>SO3, NaF, NaxCO3; or NaPOs, at 2ul and 10ul of 1M,

prior to incubation period to generate the desired crystals.

The average size of NPs increased with greater concentration, predominantly
noticed with Na>SOs. Fluoride salt crystals are associated with smaller salt size, ranging
from 7 to 128nm at 2mM and 36 to 491 at 10mM. It was revealed that ferrous and
barium NPs groups formed largest structural salts in comparison to others, with
dramatical increase upon exposure to greater concentration of anion-providing soluble
salts. At 2mM, BaSO4 generated largest diameter of 734nm upon incubation, with size
increment of almost three-fold at 10mM. Fabrication of magnesium salts is associated

with smaller size, with <100nm at anion-providing salts concentration of 10mM.
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Salt Formulation . N Size (d.nm) Zeta (mV)
anion-providing salt

2mM 734+41 -8
il 10mM 1974+32 -10
2mM 506+19 -11
BasSO: 10mM 1418433 220
BaF 2mM 218429 -6
2 10mM 345428 -15
2mM 243+18 -12
Eibs 10mM 315452 -16
2mM 345461 -15
Ba3(PO4): 10mM 344449 -16
2mM 721434 -8
Sty 10mM 14554201 9
2mM 471438 7
Sl 10mM 158672 -11
SeF 2mM 10620 -8
882 10mM 491435 9
2mM 142430 -6
Ll 10mM 301427 7
2mM 129+39 7
Sr3(PO4): 10mM 190431 8
2mM 15+0.4 -6
Ll 10mM 131+44 -8
2mM 6+0.3 -8
Ll 10mM 129+18 -10
2mM 20+11 -9
Ll 10mM 127421 218
2mM 20+4 210
Ca3(POq): 10mM 200+19 -12
2mM 98+13 -7
MgSOs 10mM 178431 -8
2mM 7+0.4 -7
MgF> 10mM 36+1.9 7
2mM 5435 7
MgCOs 10mM 15423 -9
2mM 6+1.1 -8
Mg3(PO4)2 10mM 40+4 -8
2mM 532+82 210
FeSO; 10mM 12324321 10
2mM 470455 -11
FeCO; 10mM 1572461 12
2mM 313419 210
Fe3(POs): 10mM 1008210 -12
CO; AP - 321451 210

Table 3.4: Particle size and zeta potential of NPs. Fabricated particles were analyzed
using Zetasizer to obtain average size and charge of each type of crystals, with reference
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At the initial concentration of 2mM, calcium salt also revealed small crystal structures,
ranging from 6 to 22nm. Through further increment in concentration, size was increased
dramatically to almost ten-fold, with regards to Caz(PO4),. CO3 AP as control revealed
similarity in size while comparing with sizes of most of the salts at 2mM concentration,
with 10mM associated with much greater size. Concurrent Zeta Sizer measurement
showed zeta potential of the NPs, with average negative charges. Earlier size
characteristic studies showed no correlation with the zeta potential of the NPs. The
charge potential demonstrated more negative domains for barium salts particles with
increasing in concentration, showing -20mV at 10mM of Na>SOs3 salts. However, the
trend was not equivalent to other NPs, as minute changes in zeta activity observed at

higher salt concentration.

FE-SEM images were acquired to assess the morphological features of selected
salt crystals. Formation of NPs is associated with the generation of sphere-shaped
particles, varying in sizes with the size distribution comparable to that measured by Zeta
Sizer. The particles are mostly in aggregated form, possibly due to centrifugation phase
to remove the soluble salts. Fe3(SO4), particles demonstrated large particles size of
3um, followed by barium salts with sizes ranging from 260nm to 650nm. 90nm of salt
diameter was revealed with MgSOs3, concurring the small salt size earlier demonstrated
with Zeta Sizer. Particle sizes ranging from 100nm to 400nm was seen with strontium

salts, with the smallest diameter obtained from SrF».
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Figure 3.8: SEM visualization of selected NPs. Generation of salts was based on chemical reaction between two soluble components. The
salts were incubated for 30 minutes at 37°C and centrifuged at 15,000 RPM for 10 seconds, followed by supernatant removal and
resuspension of pelette with 1ml milli-Q water. Fabricated salt crystals were kept on ice prior to microscopic observation. Iul of
resuspeded solution was placed onto carbon tape of sample holder and dried at room temperature, followed by platinum sputtering of each
nanocrystals samples for 60 seconds. Sputtered samples were observed at aprroximately 10-15kV.
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3.3.4 Binding affinity of pDNA and siRNA with towards NPs

In the second stage of the project, pDNA binding affinity towards the
nanocrystals was studied, whereby particles with nano-size dimensions were
investigated based on their abilities to adsorb fluorescence-labeled pDNA or siRNA
using the fluorescence microscope as well as fluorescence plate reader. Investigation of
binding affinity demonstrated efficient adsorption of pPDNA towards barium, strontium,
calcium and magnesium salt particles through intensity emitted by PI-pDNA bound to
the complexes, as seen in Figure 3.9. Ferrous salts had a weak affinity towards pDNA,
reflected by low fluorescence-stained pDNA-ferrous complexes. Additionally, all salts
containing NazPOs depicted low intensity, indicating inefficient binding between the
genetic material and carriers probably due to the electrostatic repulsion between ions
phosphate and nucleic acid. Adsorption of stained pDNA and NPs further revealed

greater activity seen with strontium salt groups, predominantly on SrF».

The binding affinity of pDNA and siRNA seen via fluorescence microplate
reader overall showed similar adsorption trend for all the NPs examined upon 30
minutes of incubation (Figure 10, Figure 11). Quantitative analysis on pDNA-binding
activity towards salt particles revealed most efficient gene adsorption towards SrF» and
BrF>, with 90% of the pDNA bound corresponded to the fluorescence microscopic
images from the earlier studies (Figure 3.10). Approximately >70% of the siRNA
confined to both salts, in comparison with CO3; AP of >80% for both nucleic acids
(Figure 3.11). BaSO3 and SrSOs revealed superior siRNA adsorption than of pDNA,

presented with 70% and 90% for respective pDNA and siRNA.
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a) BaSOq4 BaSOs BaF, BaCOs

b) SrSO3 SrCO; S13(PO4)>
C) CaS0s3 CaCOs3
d) MgSO; MgF» MgCO3 Mg3(PO4)

FeSO3 FeCOs3 Fe3(PO4)2 COs AP
Flgure 3.9: Fluorescence microscopic observation for binding affinity of pDNA towards NPs. 5ul of 1M (a) BaCl, (b) SrCly, (c) CaCl,, (d)
MgCD) or (e) FeCl» was introduced along with PI-stained pDNA (1:1 ratio) into 10ul HEPES buffered media, followed by mixing of 2ul of 1M
NaxSO4, NA>SO3, NaF, NaxCO3 or NaxPOs, generating various salt crystals before 30 minutes incubation at 37°C. FBS containing-DMEM
media was added to achieve Iml solution. Image was captured at 10X resolution under P1I filter, with reference to (f) CO3; AP.
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Figure 3.10: Fluorescence analysis for binding affinity of pDNA towards NPs. 5ul of 1M (a) BaCly, (b) SrCl,, (c) CaCla, (d) MgCl,) or (e)
FeCl, was introduced along with Pl-stained pDNA (1:1 ratio) into 10ul HEPES buffered media, followed by mixing of 2ul of 1M NaySOs,
NaxS0Os3, NaF, Na,COs or NazPOs, generating various salt crystals before 30 minutes incubation at 37°C. FBS containing-DMEM media was
added to achieve 1ml solution, with reference to (f) CO3; AP. Quantitative measurement of NPs-bound pDNA was achieved with multi-label

plate reader following centrifugation of fabricated NPs at 15,000 RPM for 5 minutes and aspiration of 100ul into 96 well-plate, prior to
fluorescence intensity measurement.
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Figure 3.11: Fluorescence analysis for binding affinity of siRNA towards NPs. 5ul of 1M (a) BaCl, (b) SrCl,, (c) CaCl,, (d) MgCl,) or (e)
FeCl, was introduced along with fluorescence siRNA (AF 488) into 10ul HEPES buffered media, followed by mixing of 2ul of 1M NaxSOs,
NazS03, NaF, Na;COs or NazPOs, generating various salt crystals upon 30 minutes incubation at 37°C. FBS containing-DMEM media was
added to achieve 1ml solution, with reference to (f) CO3 AP. Quantitative measurement of NPs-bound siRNA was achieved with multi-label
plate reader following centrifugation of fabricated NPs at 15,000 RPM for 5 minutes and aspiration of 100ul supernatant into 96 well plate, prior
to fluorescence intensity measurement.
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Similarly following the microscopic images, ferrous salts showed minimum
binding affinity with 10-20% adsorption with the genetic loads. Incorporation of
Na3POy4 to form salt particles is associated with the lowest binding affinity towards both
pDNA and siRNA, in comparison to other anion-providing salts. Strontium-forming
NPs complexes overall presented high adsorption activity with genes, ranging from 50
to 90% (Figure 3.10 and 3.11). With reference to weak intensified structures seen in the
fluorescence microscope, calcium salt crystals displayed 30-60% incorporation of
pDNA and siRNA into the salt structures upon 30 minutes of incubation. The
consistency of salts demonstrating >70% nucleic acid adsorption affinity was observed

for BaSO4, BaSO3, BaF2, SrSO4, SrSO3, SrF2, and MgSOs.

3.3.5 Influence of ligand coating on morphology and size of NPs

The study of ligand coating was performed to grasp the impact of coating on the
structural changes of NPs, through observation of selected salts coated with transferrin
or fibronectin. Upon fabrication of the NPs, transferrin or fibronectin was introduced
into the particle solution after formation of salt crystals, forming the outer layer of the
crystals, followed by subsequent analysis of size measurement and zeta potential. All
NPs demonstrated size reduction and less negative zeta potential with transferrin and
fibronectin coating (Table 3.5). The most size reduction was seen with MgSOs crystals,
a third from its original size of 98nm, with similar reduction trend perceived with CO3
AP nanoparticles. Fibronectin protein adherence to the particle surfaces is associated

with smaller salt particles in comparison to transferrin, with exception to SrSOa.
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Salt Formulation Size (d.nm) Zeta (mV)

Uncoated 506+34 -11

BaSOs3 Transferrin-coated 483449 -7
Fibronectin-coated 441+77 -2

Uncoated 218435 -6

BaF: Transferrin-coated 206+38 0
Fibronectin-coated 102+29 1

Uncoated 721494 -8

SrSO4 Transferrin-coated 518+£72 -4
Fibronectin-coated 623+71 -1

Uncoated 471+£30 -7

SrSOs Transferrin-coated 348+41 -2
Fibronectin-coated 331+£36 1

Uncoated 10612 -8

SrF2 Transferrin-coated 95+11 -5
Fibronectin-coated 7349 -2

Uncoated 98+10 -7
MgSO3 Transferrin-coated 78+3 1
Fibronectin-coated 3044 3

Uncoated 321+38 -10

COs3 AP Transferrin-coated 221+27 -7
Fibronectin-coated 196+66 -2

Table 3.5: Particle size and zeta potential of NPs with coating of transferrin or
fibronectin. Fabricated NPs were observed using zetasizer to obtain average size and
surface charge of each type of particles, with reference to CO3; AP.

Observation of coated salt crystals through SEM analysis shows three selected
salts, SrSOs3, SrF> and MgSO; with comparable size reduction after adherence of
fibronectin protein in reference to uncoated salt particles (Figure 3.12). Observation of
size showed minimal declination of salt size up to two-third from the uncoated particles
size, concurring the results attained from earlier analysis using Zetasizer. Additionally,
the image of NPs revealed appearance of aggregates on the surface of the crystals,
suggesting the possible coating of the protein-ligand forming the outer layer of the

crystals.
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Figure 3.12: SEM visualization of selected NPs (a) uncoated and (b) coated with fibronectin. 1pg fibronectin was incorporated into
the fabricated salt particles with additional 10 minutes incubation prior to observation under microscope. The coated salt particles
were centrifuged at 15,000 RPM for 10 seconds, followed by supernatant removal and resuspension of pelette with 1ml milli-Q
water. Fabricated salt crystals were kept on ice prior to microscopic observation. 1pul of resuspeded solution was placed onto carbon
tape of sample holder and dried at room temperature, followed by platinum sputtering of each nanocrystals samples for 60 seconds.
Sputtered samples were observed at aprroximately 10-15kV.
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3.3.6 Effect of salt combination on morphology and size of NPs

Manipulation of nanocrystals was done through the combination of two types of

inorganic salt particles for prospective synergistic effect. The probable augmentation of

the effect was addressed by the impression of improving the target structure for superior

genetic material binding of the selected particles, which individually showed immense

adsorption affinity in the earlier experiments. Qualitative and quantitative experimental

studies of salt combinations were accomplished through the generation of two separate

forms of inorganic materials, followed by mixing and collectively incubating at 37°C

for 30 minutes. The hybrid salt particles were analyzed by the Zeta Sizer alongside their

individual salt particles to exercise the size comparison assay in addition to the

measurement of zeta potential activity. Ratification of the size modification of salt

combinations was done on SEM at 15kV.

Salt Formulations Size (nm) Zeta potential (mV)
BaSOs; 506+78 -11
SrSO3 471449 -7

StF» 10621 -8
MgSOs3 98=+11 -7
BaF; 218432 -6
BaSO3+ SrSO; 15254232 -29.3
SrSOs + SrF» 1459+198 -24
SrSOs; + MgS0s 1135+188 -27
SrF> + BaF» 667+£89 -17
BaSO3 + MgSO0; 773+121 -21
COs AP 321+66 -10

Table 3.6: Particle size and zeta potential analysis of salt combinations. Fabricated NPs
were detected using Zetasizer to obtain average size and charge of each particles, with

reference to CO3; AP.
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Evaluation of size modification with salt combination demonstrated the
generation of larger particles with stronger negative domains, as seen in the average
particle size determination and zeta potential analysis than with single counterparts of
the earlier experiments. Hybridization of BaSO3 and SrSO; resulted in largest average
sizes, with salt diameter seen approximately 1525nm, in contrast to 506nm and 471nm
of individualized BaSO; and SrSO;3 control. Co-mixture of SrSO; and SrF» also
demonstrated bigger particle size of 1459nm. Minimal salt diameter of co-precipitated
salt particles was seen with SrF> + BaF, with approximately half of the largest salt
combinations, 667nm. Based on this study, it is likely that all possible salt combinations
will form large-structured particles with more negative domains existing in the
structures. Large particles with greater negative charges may impede with salt
efficiency in transporting genetic materials and which were confirmed in vitro studies

over the next chapter.

16,05V 4. 6mm x70.0k SE &0 5 (

SrF> + BaF» BaSO3;+MgSO0s

Figure 3.13: SEM images of salt combinations: SrF,» + BaF, and BaSO3;+MgSOs.
Formation of salt combinations was based on two separate insoluble salts formed by
respective chemical reactions with 30 minutes incubation at 37°C. The suspensions
were centrifuged, followed by removal of supernatant and resuspension of pelette with
milli-Q water. 1l of resuspeded solution was placed onto carbon tape of sample holder
and dried at room temperature, followed by platinum sputtering of each nanocrystals
samples. Sputtered samples were microscopically observed at aprroximately 10-15kV.
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3.4 Discussions

Fabrication of NPs was initially commenced through the incorporation of two
soluble salts at SmM to visualize the proposed precipitation reaction of salt crystals. The
solubility properties of NPs are highly critical to prevent premature degradation of the
crystals. Hence, the formation insoluble crystals are compulsory to generate stable
nanocarriers (1). CaSOs, MgSO4, and FeSO4 were not involved in the salt selection
(Figure 3.1) due to their high water solubility features. Additionally, FeF is slightly
soluble in water, thus was excluded too from the studies (2). NPs generated from the
mixture of soluble components were confirmed based on visualization and absorbance
features of individual salt. Superior absorbance intensity, associated with more
distinctive precipitates observed through microscopic imaging is related to greater
particle number and sizes (3). Multiple nucleation events that occur in the solution
mixtures were followed by more significant particle growth to form the larger particles

seen as detectable aggregates under the microscope (4).

Particle aggregates are often irreversible, except with introduction of a new
environment, hence ultimately preventing the untimely disintegration of salt crystals.
Peptization is a reversible process involving dispersion of aggregates to form individual
particles, often occurring upon stirring and shearing which allows scattering of salt
crystals and may prevent sedimentation of salts at the bottom of the container (5).
Barium and ferrous larger salts formation may be resulted from efficient particle
nucleation due to practical phase transformation, hence creating more salt aggregates
(6). Magnesium and calcium crystals generate small aggregates, hence lowering

insolubility features in comparison to their alkaline earth metal counterparts, barium,
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and strontium, associated with higher atomic radius down the group. The size of the
atom 1is influenced by the number of layers of the inner electrons which fit around the
atom, thus forming larger particles (7). NaxSOs, NaxSOs, and NazPOs, which are
involved in the formation of more precipitates, may also be based on the atomic radius,
which consists of a greater number of layers of electrons, resulting in increased
generation of salt particles (8). The demonstrated diagram, however, may not determine
the actual sizes of NPs, as the optical microscopic images can show the large particles
(>50um). Prediction on actual sizes was elaborated in subsequent Zetasizer and SEM

analysis.

Optimization of pH, concentration of reactants, incubation temperature or
incubation time, is vital in fabricating ideal nanoparticles. Particle formation is
accelerated as the concentration of reactant is escalated, which acts as a driving force
for the chemical reaction (9)(10). Turbidity and particle diameter as shown in Figure
3.1 and 3.2 depended on the concentration-dependent response demonstrated between
the inorganic salts which are self-assembled in a supersaturated solution, resulting in
particle nucleation and formation of nano-sized crystals. Investigation on the effect of
concentration showed that particle formulations made increasing concentration of any
salts exhibited greater particle growth regardless of cation- or anion-providing salt
inclusion (turbidity measurement as seen in Figures 3.3 and 3.4). The study thus
suggested the dependency of particle growth on reactant concentrations when the time
of incubation, the temperature of incubation, pH, and concentration of the remaining
salts remain constant. FeSO3 and Fe3(PO4)> demonstrated higher absorbance intensity,
with a greater number and bigger particles sizes than any other salts with increasing

soluble ferrous salt concentration. Greater ferrous salts concentrations are associated
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with more agglomeration possibly due to attraction by Van der Waals forces, promoting
stronger attraction between the crystals’ cationic and anionic domains (11). Barium and
strontium NPs further demonstrated higher absorbance intensities with increasing of
cationic salt concentration than calcium and magnesium NPs, could also be associated
with the mass and density characteristics of salts from the alkaline earth metal. The
densities of Na,SO4 and Na,SOz are greater, reflecting the superior absorbance value
with increasing metallic group concentration (12). Carbonate and fluoride-incorporated
NPs exhibited overall lower absorbance and thus smaller particles numbers and sizes in
comparison with other generated inorganic salts, due low ionization density which

enhances as down the non-metal periodic group (13).

Highly basic pH, elevated temperature and prolonged incubation time shift the
ionization equilibrium towards the forward direction and hence, the reaction rate is
significantly enhanced (14) The time-dependent analysis evaluates the impact of
incubation time. Most reactions occur immediately due to a high probability of
collisions between reacting ions inside the aqueous solution, generating precipitates. As
the time progresses, more reactions can take place to form more number of particles of
large size owing to the development of a highly supersaturated solution (16)(17).
Accelerated particle growth of NPs at basic pH was signified by high absorbance
intensity, as seen from Figure 3.6 (18). The phenomenon may be explained by pH-
dependent salt ionization to a greater degree, resulting in faster development of
supersaturation and leading to increased particle growth (19). Temperature dependent
analysis reveals the proportional increment of salt crystals number and size, explained
by higher absorbance intensity as temperature rises. Influence of temperature on the

formation of NPs may be explained by the introduction of kinetic energy for stimulating
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the chemical reaction between two reactants, resulting in faster nucleation activity and
deposition of end product into larger precipitates. Low temperature reduces the rate of
nucleation and growth, as shown at 4°C, hence amending the reaction rate to progress at
a much slower rate (20). High absorbance intensity visualized throughout external and
internal experimental assessment of salt crystals is related to increased number and size
of NPs, which may improve their binding affinity for genetic materials while
simultaneously obstructing the internalization process through endocytosis and reducing

distribution efficiency via passive transport in the biological system (21)(22).

The relationship between absorbance intensity and particle sizes was described
by observation of crystals particle diameter via Zeta Sizer analysis. It is proposed that
high absorbance intensity is coherent to larger particle diameter and number. Ferrous
salts particles are of biggest size diameter amongst the 21 crystals salts, demonstrating
size ranges from 500 to 1500nm, which correlates with high absorbance intensity from
previous experiments. Augmentation of anion-providing salt concentration resulted in
the greater size of NPs, as similarly proven by absorbance determination. Besides
ferrous salt particles, barium and strontium crystals generate larger particle sizes,
forming precipitates especially from the mixture of Na;SOs, Na SOz, and NaszPOa.
Studies done by Perrault et al. on the effect of nanoparticles sizes ranging from 10 to
100nm on passive tumor targeting reported that particles with 20-100nm diameter
stipulated excellent tumor accumulation and could be used for localizing leaky
vasculature (23). Also, with smaller sizes, they had longer circulation time and
concomitantly higher tumor accumulation (24). Large molecules were readily detected
by the reticuloendothelial system (RES) and removed quickly from the circulatory

system by the liver sequestration. Hence, size limitation remains helpful parameters to
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enable NPs to escape the RES with the size of <500nm, in addition to net charge to be
as neutral as possible (25). Although pDNA and siRNA adsorption efficiency of
nanocarriers are highly dependent on particle sizes and numbers, too large particle sizes
may hinder the cellular uptake activity of NPs hence reducing the amount of
internalized crystals (26). Comparative design studies on various salts and COs AP
nanoparticles also demonstrated net negative charge of the salt crystals, which could be
rapidly opsonized and cleared by macrophages of RES (21,27). However, the net charge
of NPs might be transient depending on the surrounding environment of the electrolytes
that can unselectively bind to the salts. Optimization of size and zeta charge is a vital
strategy to enable the system to be sustained in the circulatory system for an extended

period, modulating pharmacokinetics and bioavailability of NPs (28).

Fabrication of nanocrystals was initially commenced with adjusting the
concentration of both soluble salts to form salt particles with diameter of less than
500nm. Salts forming the cationic region of particles BaCl,, SrCl,, CaCl,, MgCl, or
FeCl, and the anionic domains (Na>SOs, Na;SO3, NaF, Na,COs3 or NazPO4) were ideal
at SmM and 2mM, respectively, generating the average size of 50nm to 400nm (using
Zetasizer Malvern ZS), based on Table 3.4. Zeta potential measures the net charge on
the particle surface and is an influential physical factor, impacting particularly in vivo
strategies, including treatment pharmacokinetics and biodistributions. Attachment of
nanoparticles to the cell membrane is dominantly affected by the surface charge of
particles, which often consists of negatively charged syndecans, influencing the
intracellular transportation of NPs complexes of pPDNA and siRNA, eventually targeting
the gene activity (29)(30). FE-SEM enables visualization of the estimated size of NPs

in addition to understanding the morphological structure of crystals, often in semi-
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spherical forms. Large particles such as FeSOs; and BaSO3; emerged in the forms of

larger clusters of aggregates.

Transferrin and fibronectin adsorption on NPs surfaces was studied to observe
the influence of adherence of proteins on the features of the crystals. The alteration in
size forming smaller particles of <100nm in diameter with presence of protein ligands
improves the functionality of the crystals for greater in vitro and in vivo performance.
Protein adsorption helps in the neutralization of charge ion of nanocrystals, hence
compacting the salt ionic structure and stabilizing the crystals forms (31). Fibronectin
coating enhances further size reduction than transferrin, possibly by high affinity for
electrostatic interactions with NPs, associated with improvement of binding site
influenced by up-regulation of integrin a5B1 receptor in both carcinoma cells lines (32).
Images generated from FE-SEM demonstrated generation of smaller particle clusters
with less smooth surface, which may indicate the outer layer of coating. Modification of
zeta potential with ligand coating with less negative charges is likely to improve further
the biodistribution characteristics of NPs (33). As the particles become more neutral,
they will have lower risks of premature degradation in the blood circulation by
preventing from binding of scavenging plasma protein onto the crystals surfaces, which
otherwise promotes elimination of particles through mononuclear phagocyte system

(MPS) (34).

The impact of combining two different particle suspension on the size and zeta
potential performed on the resulted hybrid salt particles revealed minimal three-fold
increment of size through Zetasizer observation. The hybridized particles are unlikely to

execute well in vivo due to enlarged sizes, posing augmented risks of forming larger
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clumps of aggregates which may cause capillary blockade and embolism (35). Positive
charge domains of coprecipitates often form aggregates with presence of negatively

charged serum proteins upon parenteral administration (36).

Adsorption of fluorescence-labeled pDNA and siRNA towards NPs revealed a
superior binding affinity with barium, followed by strontium, calcium and magnesium
salt crystals in respective orders. The efficient binding activity of NPs, with
approximately 95% of maximum binding is coherent with both individual nucleic acids,
in comparison to 10-20% of binding affinity to iron NPs. Binding affinity is possibly
associated with the ionic strength between positive charge of alkaline earth metal
groups and anionic genetic materials increases down the group (37). The degree of
binding of nucleic acids with each type of NPs might affect subsequent gene expression
or silencing efficacy associated with the lower amount of pDNA or siRNA transported

intracellularly (38).
3.5 Conclusion

Our investigation on the formation of insoluble salts from the mixture of two
soluble components consisted of BaCl,, SrCl,, CaCl,, MgCl> or FeCl,, and NaxSOs,
NaS03, NaF, NaxCO; or Na3POs in an aqueous solution. Additionally, we also
observed the factors associated the NPs formation, such as salt concentrations, pH,
temperature and time of incubation. Greater cation- or anion-providing salt
concentration was associated with larger size and number of precipitates, reflected by
higher absorbance or turbidity of particle suspension. Basic pH, high temperature and

longer incubation time were associated with higher absorbance intensity or enhanced
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particle growth. Absorbance intensity was significantly related to NPs size, with larger
particles sizes often seen with high absorbance data. Most NPs had net negative charge,
which might reflect in lower interactions between negatively charged nucleic acids.
Incorporation of protein coating improved the charge to be almost neutral, hence, might
help in improving cellular internalization activity by promoting receptor-ligand
interactions, on top of diminution of salt diameter. Combination of salts particles

however vastly increased the size, enforcing more negative charged structures.

Genetic material adsorption assay demonstrated high efficiency with salt
crystals down the alkali earth metal groups. The stronger ionic interactions achieved
with barium and strontium was proven to be high, as 95% of pDNA or siRNA was
complexed to the designated salts. Subsequent intracellular experiment will show the
relationship between adsorption activities and internalization advantage of the
complexes. Additionally, exploration of protein coating and hybridization activity in
manipulating the cellular activity of target genes in transfected cells will be done in

Chapter 4.
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4.1 Introduction

The efficiency of nanocarriers is initially determined by their ability in
promoting safe and efficient intracellular activity. A significant barrier to the non-viral
delivery is the low uptake of pPDNA/siRNA across the plasma membrane of a cell owing
to the inappropriate and ineffective interactions of the nucleic acid biological vehicle
with the cellular membrane. The ideal carriers should interact electrostatically with
anionic heparin sulfate proteoglycans (syndecans) on the cell surface to be endocytosed
into the cells in the form of endosomes. Active targeting activity is achieved through
attachment of affinity ligands (peptides or antibodies) that only bind to specific
receptors on the cellular surface. The utilization of proteins in accomplishing active
targeting relied on the over-expression of specific receptors on the tumor cells.
Nanocarriers should recognize and bind to the target cells through ligand-receptor
interactions, followed by internalization of targeted conjugates via receptor-mediated

endocytosis.

The carrier coated inside endosomal pocket should be able to disintegrate and
release the entrapped pDNA/siRNA by exploiting the acidic environment of the late
endosomes. The disintegration process should commence before the lysosomal activity
of the intracellular lysosome, which induces premature degradation or exocytosis of the
complexes into the extracellular matrix. Surviving pDNA should be able to initiate
transcription process inside the nuclear cavity while siRNA binds to its target mRNA
within the cytoplasmic region of carcinoma cells. The safety profile of the NPs should
bear no toxicity risk to the cells through the exclusion of genetic loads to evaluate the

potential for treatment interference by salts dispositions. The safety features are highly
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important to ensure safe gene transporter activity for future biological distributions.

In this study, the salt crystals fabricated based on Chapter 3 were individually
evaluated in various intracellular experimentation to observe their carrier activities in
improvising cellular uptake, pDNA expression, and siRNA knockdown activity.
Additionally, each salt was recognized for its solubility features in the acidic
environment, mimicking the late endosomic pH of 3.5. Herein, we demonstrated that
selected barium and strontium salts efficiently adsorbed to the cellular surface,
promoting better genetic expression of pDNA and silencing activity of siRNA
complexes through solubilization of salt crystals in acidic pH. Crystal salts fabricated
with Na,CO; and Na;PO, is associated with minimal nucleic activity throughout all
observed salts owing to low cellular uptake. Cellular viability assay of salt crystals up to
72 hours presented consistently high cell density treated with selected strontium and
magnesium salt particles in comparison with untreated control groups and COs; AP.
High cytotoxicity was revealed with all barium salts treatment groups, demanding
exclusion of the NPs for animal studies despite their effectiveness in vitro. Influence of
transferrin and fibronectin protein in active targeting effect revealed their importance in
further enhancing the cellular uptake and gene expression activity, via coating of protein
ligands onto the selected salts, as performed in the earlier studies. Salt combination
pursuit based on selected salts discovered almost similar in intracellular gene activity

without adjunctive effect in comparison to individual salts.

The selected salts based on the exclusion criteria from various in vitro studies
were SrSOs, SrF,, and MgSOs;, which will be applied and further elaborated in vivo in

Chapter 5.
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4.2 Methods and materials

4.2.1 Cellular uptake efficiency of NPs

MCF-7 and 4T1 cells from exponentially growth phase were seeded at 50,000
cells per well into 24-well plates the day before transfection. A total volume of 1ml
from each type of NPs loaded with green fluorescence protein plasmid DNA (pGFP)
(Addgene, USA) and supplemented with DMEM-powdered medium (Sigma-Aldrich,
USA) was introduced into each well. Ipg pGFP was simultaneously added with
propidium iodide (PI) (Sigma-Aldrich, USA) at 1:1 ratio, into Sul of 1M BaCl,, SrCl,,
CaCl,, MgCl, or FeCl,, followed by incorporation of 2ul of 1M Na,SO4, Na;SOs,
NaF, Na,CO; or Na,POy in 10ul HEPES-buffered solution (Sigma-Aldrich, USA) to
generate respective salt precipitates (Table 4.1). The chemical reaction was maintained
at 37°C for 30 minutes, followed by mixing of DMEM medium to form a final volume
of 1ml particle suspension. Analysis of cellular uptake efficiency with siRNA was
performed by introduction of 10nM of AF 488 siRNA (Qiagen, Germany) to 5Sul of
IM BaCl,, SrCl,, CaCl,, MgCl, or FeCl, followed by incorporation of 2ul of 1M
Na,;S04, Na,SO;, NaF, Na,CO; or Na,PO4 in 10ul HEPES media, followed by
incubation at 37°C for 30 minutes. DMEM media was mixed into the precipitates to

form 1ml final volume of salt suspension.

COs AP, set as positive control for the studies was generated from addition of
pGFP:PI and 5SmM exogenous CaCl, sequentially into prepared DMEM medium,
followed by incubation for 30 minutes at 37°C and addition of 10% FBS to the

suspension. The salt particles were incubated with seeded carcinoma cells for 4 hours,
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prior to the salt removal and washing of the cells with 10mM EDTA in 1X PBS.
Fluorescence microscopic observation (Olympus, Japan) was performed immediately
after washing upon substitution of particulate-containing media with 100pul of serum-

supplemented media.

Barium salt Strontium salt  Calcium salt Magnesium Ferrous salt
salt
BaSO4 SrSO4 CaSO3 MgSO; FeSOs
B21803 SI’SO3 Can MgF2 FeC03
Ban SI’FQ CaCO3 MgCO3 Fe3(P04)2
BaC03 SI’CO3 Ca3(PO4)2 Mg3(PO4)2
Ba3(PO4)2 SI'3(PO4)2
Table 4.1 Salts experimented for cellular uptake activity of pPDNA- and siRNA-loaded
NPs

4.2.2 Cytotoxicity profiles of selected NPs

Cytotoxicity of NPs was determined by cell viability assay, following incubation
of transfected cells for 24 to 72 hours. Selected salts from earlier studies were
individually evaluated for cytotoxicity at different time point, based on the fraction of
the viable cells using MTT solution. Sul of 1M BaCl,, SrCl, or MgCl, was incorporated
into 2pul of 1M Na,S0O4, Na,SOs or NaF without nucleic acid. Fabricated NPs, following
30 minutes of incubation at 37°C were treated onto MCF-7 and 4T1 cells, with CO; AP
alongside as control. Absorbance of the resulting formazan solution was determined
spectrophotometrically at 595 nm wavelength using microplate reader (Beckman
Coulter, USA) with reference to 630 nm. Analysis was made using three independent

results, expressed in graph as mean+SD of cell viability.
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Salt Regimen for analysis

Sul of IM BaCl,, 2ul of IM Na,SO; in 10ul HEPES media,
BaSO; followed by addition of FBS-supplemented DMEM media to attain
Iml particle suspension

Sul of IM BaCl,, 2ul of 1M NaF in 10ul HEPES media, followed
BaF, by addition of FBS-supplemented DMEM media to attain 1ml
particle suspension

Sul of IM SrCl,, 2ul of 1M Na,SO4 in 10ul HEPES media,
SrSO4 followed by addition of FBS-supplemented DMEM media to attain
Iml particle suspension

Sul of IM StCl,, 2ul of 1M Na,SO; in 10ul HEPES media,
SrSO; followed by addition of FBS-supplemented DMEM media to attain
Iml particle suspension

Sul of IM SrCly, 2ul of 1M NaF in 10ul HEPES media, followed
SrF, by addition of FBS-supplemented DMEM media to attain 1ml
particle suspension

S5ul of IM MgCl,, 2ul of 1M Na,SO; in 10ul HEPES media,
MgSO; followed by addition of FBS-supplemented DMEM media to attain
Iml particle suspension

44mM Na,CO3; and 5SmM CaCl, added to DMEM media to
CO; AP achieve final volume of 1ml particle suspension with addition of
10% FBS

Table 4.2: Groupings for NPs cytotoxicity and solubility analysis

4.2.3 Gene expression activity of selected NPs

1ml suspension of each type of salt particles loaded with reporter genes, pGFP
or luciferase reporter vector (pGL3) pDNA or target genes, p53 and supplemented with
DMEM media, was introduced into each well containing approximately 50,000 MCF-7
or 4T1 cells seeded in the previous day. 1ug pGFP, pGL3 or p53 was mixed with Sul of
IM BaCl,, SrCl, or MgCl, before addition of 2ul of 1M Na,SO4, Na,SOs or NaF to
generate respective salt precipitates in 10ul HEPES media (Table 4.3). The chemical

reaction was maintained at 37°C for 30 minutes, followed by addition of serum-
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supplemented DMEM media to achieve 1ml of salt suspensions. CO3; AP as the positive
control was prepared with the incorporation of pPDNA and 5SmM exogenous CaCl, into
prepared DMEM media, and incubated at similar conditions prior to addition of 10%

FBS to the suspension.

Each wells containing transfected cells was incubated for 4 hours, before
removal of complexed media and brief washing with 10mM EDTA in 1X PBS upon
substitution with 1ml serum-containing DMEM media. Subsequent incubation was
maintained for 48 hours prior to observation of gene expression through fluorescence
microscope (pGFP) and luciferase reporter assay (pGL3) using a commercial kit
(Promega, USA) and photon counting (Beckman Coulter, USA). Quantitative luciferase
assay was repeated thrice and expressed in a graph as meantSD of luminescence

activity/mg of protein.

For p53 gene expression activity, the addition of 50ul of MTT (S5mg/ml in 1X
PBS) (Sigma-Aldrich) to each treated wells was performed after 48 hours incubation to
form formazan crystals by metabolically active cells. Media containing MTT was
aspirated post 4 hours incubation, with formed formazan crystals in each well was
dissolved by mixture of 300ul dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA)
solution. Media containing only siRNA (no salt) represented the negative control for the
study. Quantitative measurement of formazan crystals, in the form of optical density
(OD), was presented at 595nm wavelength with reference to 630nm using microplate

spectrophotometer (Biorad, USA).
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Salt Regimen for analysis

Sul of IM BaCl,, 2ul of 1M Na,SOs, reporter pDNA (1pg pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

Sul of IM BaCly, 2ul of 1M NaF, reporter pDNA (1pg pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

Sul of IM  SrCl,, 2ul of 1M NazSOs, reporter pDNA (1pg pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

Sul of IM  SrCl,, 2ul of 1M Na,SOs, reporter pDNA (1pg pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

Sul of IM  SrCl,, 2ul of IM NaF, reporter pDNA (1pg pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

Sul of IM MgCly, 2ul of 1M NaySOs, reporter pDNA (1pug pGFP or
pGL3) or target gene (p53) added to 10ul HEPES media, prior to
incubation, followed by addition of serum-supplemented DMEM
media to achieve 1ml suspension

44mM Na,COs3, SmM CaCl, reporter pDNA (1pg pGFP or pGL3) or
CO; AP target gene (p53), added to DMEM media, final volume of 1ml,
addition of 10% FBS to achieve 1ml suspension

BaSO3

Ban

SrSO4

SI'SO3

Sl‘Fz

MgSO:;

Table 4.3: Groupings for intracellular gene expression analysis with salt particles as
vectors

4.2.4 siRNA silencing activity of selected NPs

Intracellular siRNA activity via selected salts was further elaborated through
siRNA-loaded NC complexes. MAPK siRNA (Qiagen, USA) was incorporated into the
proposed vectors to observe siRNA-induced knockdown activity upon treatment,
following internalization of siRNA-particles complexes. 10nM MAPK siRNA was
introduced to 5ul of 1M BaCl,, SrCl, or MgCl, followed by incorporation of 2ul of IM
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Na,SO4, Na,SO; or NaF in 10ul HEPES media, followed by incubation at 37°C for 30
minutes. DMEM media was mixed into the precipitates to form 1ml final volume of salt
suspension. CO3; AP as the positive control was prepared addition of MAPK siRNA and
SmM exogenous CaCl, to the DMEM-powdered media, with similar incubation order
and addition of 10% FBS into the suspension. Incubation of transfected cells was
maintained for 4 hours, followed by removal of media, cell washing with EDTA in 1X

PBS and substitution with 1ml serum- supplemented DMEM media.

Subsequent incubation was performed for 48 hours, before addition of 50ul of
MTT (5mg/ml in 1X PBS) (Sigma-Aldrich, USA) to each treated well to form formazan
crystals by metabolically active cells. Medium containing MTT was aspirated post 4
hours incubation, with the formed formazan crystals in each well was dissolved by
mixing with 300ul dimethyl sulfoxide (DMSO) (Sigma-Aldrich, USA) solution. Media

containing only siRNA (no salt) represented the negative control for the study.

Quantitative measurement of formazan crystals, in the form of optical density
(OD), was done at 595nm wavelength with reference to 630nm using microplate
spectrophotometer (Biorad, USA). The cell viability of siRNA-loaded NCs and naked

siRNA (without NCs) was calculated based on the equation:

% cell viability: ~ OD loaded NCs — OD reference ~ x 100

OD naked siRNA — OD reference

Each experiments was done in triplicates and expressed in graph as mean£SD of

cell viability.
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Salt Regimen for analysis

Sul of 1M BaCl,, 2ul of 1M Na,SO; with 10nM MAPK siRNA
added to 10ul HEPES media, prior to incubation, followed by
addition of serum-supplemented DMEM media to achieve 1ml
particle suspension

Sul of IM BaCl,, 2ul of 1M NaF with 10nM MAPK siRNA added to
10ul HEPES media, prior to incubation, followed by addition of
serum-supplemented DMEM media to achieve 1ml particle
suspension

Sul of 1M SrCly, 2pul of 1M Na,SO4 with 10nM MAPK siRNA added
to 10ul HEPES media, prior to incubation, followed by addition of
serum-supplemented DMEM media to achieve 1ml particle
suspension

Sul of 1M SrCly, 2pl of 1M Na,SO3 with 10nM MAPK siRNA added
to 10ul HEPES media, prior to incubation, followed by addition of
serum-supplemented DMEM media to achieve 1ml particle
suspension

5ul of 1M SrCly, 2ul of 1M NaF with 10nM MAPK siRNA added to
10ul HEPES media, prior to incubation, followed by addition of
serum-supplemented DMEM media to achieve 1ml particle
suspension

Sul of 1M MgCl,, 2ul of IM Na,SOs; with 10nM MAPK siRNA
added to 10ul HEPES media, prior to incubation, followed by
addition of serum-supplemented DMEM media to achieve 1ml
particle suspension of serum-supplemented DMEM media to 1ml

44mM Na,COs, 5SmM CaCl,, 10nM MAPK siRNA added to DMEM
CO3 AP | edia, final volume of 1ml with addition of 10% FBS

BaSO3

Ban

SI'SO4

SI'SO3

Sl‘Fz

MgSO:;

Table 4.4: Groupings for intracellular siRNA knockdown analysis with salt
particles as vectors
4.2.5 Cell lysis, total protein estimation by Quick-start Bradford assay, SDS-PAGE

and Western blot

MAPK-siRNA treated cells (as previous study) were individually lysed with IP
lysis buffer (Appendix 1) and subjected to centrifugation process at 13,000 RPM for 20
minutes at 4°C. Supernatant comprising protein sample was collected and 5ul was

aspirated to estimate the total amount of proteins through bovine serum albumin (BSA)
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assay kit based on the manual. In the initial step, BSA protein was used to create the
standard curve, which was used to calculate the total protein concentration of cellular
lysates, based on their absorbance intensities. The remaining samples were aliquoted

and stored in -80°C upon subsequent SDS-PAGE and Western blot.

The cellular lysates containing 30pg of total protein were mixed with 10ul of
10X loading dye (Appendix 2) and subjected to SDS-PAGE using stain free mini
protein SFX gels (15 wells) in 1X running buffer (Appendix 3) at 0.0lamp/gel. 7ul
precision plus protein standards-dual color was used as molecular weight marker to
establish the molecular weight of the sampled proteins. Transfer of protein samples
from gel to the 0.2um PVDF membranes attached to trans-blot turbo transfer pack
through trans-blot turbo transfer system was performed for 7 minutes at 1.3 amp,
followed by blocking in 5% skimmed milk in 1X TBST (Appendix 4) for 1 hour at
room temperature. The membrane was next incubated with primary antibodies
(pPMAPK, TMAPK, pAKT, TAKT and GAPDH as loading reference) at 4°C overnight
with gentle shake followed by washing in 1X TBST for 5 times to remove unbound
primary antibodies. HRP-conjugated goat anti-rabbit secondary antibody Ig G (1:3000)
was introduced into the membrane for 1 hour with mild agitation, before washing for 5

times in 1X TBST to again eliminate the unbound antibodies.

The membrane was exposed to mixture of ECL (Appendix 5) for 5 minutes

before observation of bands through chemiluminescence signals using XRS Chemidoc

system (Bio-Rad, USA).
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Name Company Molecular Clonality Antibody

weight dilution

P-p44/42 . : 44 kDa _
MAPK Cell signalling 47 kDa Monoclonal 1:2000
44/42 MAPK  Cell signalli 44 kDa Monoclonal 1:1000

p ell signalling 47 kDa onoclona :

P-Akt . . 60 kDa )
(Ser473) Cell signalling Monoclonal 1:2000
Akt (pan) Cell signalling 60kDa Monoclonal 1:1000
GAPDH Cell signalling 37kDa Monoclonal 1:3000

Table 4.5: Antibodies used for Western blot analysis

4.2.6 Solubility of NPs in acidic environment

The solubility assessment of selected NPs in the acidic environment was
determined over the introduction of hydrochloric acid (HCI) to propose the acidification
process the crystal suspensions. HCl was integrated into the fabricated salt crystals
(Table 4.2) to attain a gradual acidic pH from 7.5, 6.5, 5.5, 4.5 to 3.5. Each pH
adjustment was escorted by absorbance measurement at 320nm wavelength

(Spectrophotometer MS).

The experiment was performed in triplicates, expressed as meantSD of

absorbance.
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4.2.7 Influence of protein coating on NPs-mediated gene delivery

Analysis on the impact of protein coating on transfection activity of NPs was
made performed by incorporation of fibronectin or transferrin protein (Sigma-Aldrich,
USA) onto selected fabricated NPs through incubation of 10 minutes, forming a coated
layer on the particle surface. 1pug pGL3 was added to Sul of 1M BaCl,, SrCl, or MgCl,
followed by incorporation of 2ul of 1M of Na,SO4, Na,SO; or NaF in 10ul HEPES-
buffered media, generating respective salt precipitates. The chemical reactions were
sustained at 37°C for 30 minutes, followed by the introduction of 1uM fibronectin or
transferrin protein with incubation prolonged for 10 minutes, before final mixing of
DMEM medium. The addition of protein to CO3; AP particles was done followed by
incubation for 10 minutes and subsequent supplementation of 10% FBS into the particle

suspension.

Transfected MCF-7 and 4T1 cells with prepared complexes were incubated for 4
hours, followed replacement of treatment media with 1ml serum-supplemented DMEM
media after washing with EDTA in 1X PBS. The cells were further cultured for 48
hours prior to luciferase expression by commercial kit and photon counting. The treated
cells were lysed and centrifuged, followed by harvesting of supernatant from the lysate
to investigate the intracellular luminescence intensity. The analysis was done based on

triplicates, expressed in a graph as mean+SD of luminescence activity/mg of protein.
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Salt Regimen for analysis

BaSO; 5ul of 1M BaCl,, 2ul of 1M Na,SOs, in 10ul HEPES media, followed b
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of 1M BaCl,, 2ul of 1M Na,SOs, in 10ul HEPES media, followed by
1ug fibronectin and FBS-supplemented DMEM media to achieve 1ml

Sul of 1M BaCly,, 2ul of 1M Na,SOs3, in 10ul HEPES media, followed by
1 pg transferrin and FBS-supplemented DMEM media to achieve 1ml

BaF, 5ul of IM BaCl,, 2ul of 1M NaF, in 10ul HEPES media, followed by
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of 1M BaCl,, 2ul of 1M NaF, in 10ul HEPES media, followed by
1 ng fibronectin and FBS-supplemented DMEM media to achieve 1ml

Sul of 1M BaCl,, 2ul of 1M NaF, in 10ul HEPES media, followed by
1 pg transferrin and FBS-supplemented DMEM media to achieve 1ml

SrSO; 5Sul of 1M SrCl,, 2ul of 1M Na,SOy, in 10ul HEPES media, followed by
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of IM SrCl,, 2ul of IM Na,SQOy, in 10ul HEPES media, followed by
1 ng fibronectin and FBS-supplemented DMEM media to achieve 1ml

Sul of IM SrCl,, 2ul of 1M Na,SQOy, in 10ul HEPES media, followed by
1 pg transferrin and FBS-supplemented DMEM media to achieve 1ml

SrSO;  5Sul of 1M SrCly, 2pul of 1M Na,SOs, in 10ul HEPES media, followed by
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of IM SrCl,, 2ul of 1M Na,SOs, in 10ul HEPES media, followed by
1 pg fibronectin and FBS-supplemented DMEM media to achieve 1ml

S5ul of 1M SrCly, 2ul of 1M Na,SOs, in 10ul HEPES media, followed by
1 pg transferrin and FBS-supplemented DMEM media to achieve 1ml

SrF,  5ul of IM SrCly, 2ul of 1M NaF, in 10ul HEPES media, followed by
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of 1M SrCly,, 2ul of IM NaF, in 10ul HEPES media, followed by 1pg
fibronectin and FBS-supplemented DMEM media to achieve Iml

Sul of 1M SrCl,, 2pul of 1M NaF, in 10ul HEPES media, followed by 1pg
transferrin and FBS-supplemented DMEM media to achieve 1ml

MgSO;  5Sul of IM MgCly, 2l of 1M Na,SOs3, in 10ul HEPES media, followed by
addition of FBS-supplemented DMEM media to achieve 1ml

Sul of IM MgCl,, 2ul of 1M Na,S0Os, in 10ul HEPES media, followed by
1 pg fibronectin and FBS-supplemented DMEM media to achieve 1ml

Sul of 1M MgCl,, 2ul of 1M Na,SOs, in 10ul HEPES media, followed by
1 ug transferrin and FBS-supplemented DMEM media to achieve 1ml

CO3AP 44mM Na,CO;z;, SmM CaCl, added to DMEM media to achieve final
volume of 1ml with addition of 10% FBS

44mM Na,CO;, SmM CaCl, added to DMEM media to achieve final
volume of 1ml with 1pg fibronectin addition of 10% FBS

44mM Na,CO3;, SmM CaCl, added to DMEM media to achieve final
volume of 1ml with 1pug transferrin addition of 10% FBS

Table 4.6: Groupings for influence of protein coating on NPs gene carrier activity
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4.2.8 Effect of salt combination on NPs gene delivery

Quantitative experimental studies of salt combinations were executed by
incorporation of two separate forms of selected inorganic salt particles, mixed and
incubated at 37°C for 30 minutes while maintained at pH 7.5. 500ng of pGL3 was
incorporated into each selected inorganic salt (Table 4.7), before salt mixing and
incubation for 10 minutes, before addition of serum-supplemented DMEM media to

form a final volume of 1ml particle suspension for cellular transfection.

Treated MCF-7 and 4T1 cells were incubated for 4 hours, followed by
replacement of treatment media with 1ml fresh serum-supplemented DMEM medium
upon washing with EDTA in 1X PBS. The cells were further culturing for 48 hours and
subsequent luciferase expression activity. Cells were lysed and centrifuged, followed by
aspiration of the supernatant from the lysate for intracellular luminescence intensity

observation via luminometer.

The analysis was performed in triplicates and expressed in a graph as mean+SD

of luminescence activity/mg of proteins.
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Combination regimen

B3S03 + SI'SO3

SrSO; + SrF,

SI'SO3 + MgSO3

Ser + Ban

BaSO; + MgSO3

[500ng pGL3 to Sul of IM BacCl, + 2ul of IM Na,SO; and
500ng pGL3 to Sul of 1M SrCl, + 2ul of IM of 1M Na,S0s]
in 10ul HEPES buffered media, followed by addition of
DMEM to achieve 1ml

[500ng pGL3 to 5ul of IM SrCl, + 2ul of IM of Na,SO; and
500ng pGL3 to Sul of 1M SrClI, + 2ul of 1M NaF] in 10ul
HEPES buffered media, followed by addition of DMEM to
achieve 1ml

[500ng pGL3 to Sul of IM SrCl, + 2pl of 1M Na,SO;3 and
500ng pGL3 to Sul of 1M MgCl, + 2ul of IM Na,SOs] in
10pl HEPES buffered media, followed by addition of DMEM
to achieve 1ml

[500ng pGL3 to Syl of IM SrCl, + 2ul of 1M NaF and 500ng
pGL3 to 5ul of 1M BaCl, + 2ul of IM NaF] in 10ul HEPES
buffered media, followed by addition of DMEM to achieve
Iml

[500ng pGL3 to 5ul of IM BaCl, + 2pl of 1M Na,SO; and
500ng pGL3 to Sul of 1M MgCl, + 2ul of IM Na,SOs] in
10pl HEPES buffered media, followed by addition of DMEM
to achieve 1ml

Table 4.7: Combination salt regimen through mixing of two salt precipitates

4.3 Results

4.3.1 Cellular uptake efficiency of NPs

Cellular uptake activity of pGFP-bound NPs was determined through

microscopic observation of pGFP-NPs, with free pGFP and unloaded NPs serving as

negative control. MCF-7 cells treated with free pGFP and vacated NPs both showed no

fluorescence activity following 4 hours of incubation. Transfected cells with PI-labeled

pDNA-NPs demonstrated high fluorescence intensity upon washing with 10mM EDTA

in 1X PBS (Figure 4.1). SrSOs-transfected cells are associated with superior

fluorescence activity, visualized in MCF-7 cells. Additionally, barium, strontium, and

Page | 102



In vitro efficacy and safety assessment of NPs | Chapter 4

magnesium salt crystals revealed a better cellular uptake activity, especially with
BaSO,, BaSOs, BaF,, SrSO4, SrSOs, SrF, and MgSO; with comparable fluorescence
detection in those of CO3 AP, in comparison to calcium and ferrous salts. Similarly, AF
488 fluorescence siRNA-particles complexes treated cells (Figure 4.2) revealed
enhanced fluorescence activity with barium, strontium and magnesium transporter
complexes, highest seen with SrSO;. The cellular uptake efficiency of SrSOs; was
comparable with CO3; AP, known efficient nanocarrier. High cellular uptake of siRNA—
transfected NPs studies on human breast carcinoma cells was further seen with BaSQy,

BaSO0s3, BaF;, SrSO4, SrSO;, SrF, and MgSO; NPs.

Incorporation of Na,COs; and NazPO, into particle complexes revealed no
intracellular fluorescence activity of both pDNA and siRNA, signifying low uptake of
nucleic acid salt crystals into MCF-7 cells, excluding SrCO; particles. Furthermore, no
fluorescence intensified cells seen post-ferrous salts treatment suggesting insignificant

cellular internalization of nucleic acid salt particles.

Based on the nucleic acid —salt transfection activity, we have concluded the salts

which are likely to succeed in in vitro studies and hence will be our focus for the

subsequent experiments: BaSOs, BaF,, SrSO4, SrSOs, SrF,, and MgSOs.
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Ba803 Ban

SrSO; SrF»

SI’3 (P 04)2

Ca803 Can CaCO3

d) - - -
MgSO; MgF, MgCO;

e) f)

FeSO3 FGCO3 Fe3(P04)2 CO3 AP
Figure 4.1: Fluorescence microscopic images of cellular uptake with pGFP-loaded NPs by MCF-7 cells. Each type of pGFP-NPs complexes
was transferred onto 50,000 seeded cells, followed by incubation for 4 hours. Images were captured upon washing with EDTA in 1X PBS.
(a) barium NPs, (b) strontium NPs, (¢) calcium NPs, (d) magnesium NPs, (e) ferrous NPs and (f) CO; AP NP
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a) ----

BaSO4 Ba803 Ban BaC03 Ba3(PO4)2

b) ---

SI'SO4 SI'SO3 SI'F2

c) - - -
Ca803 Can CaC03

d) - - -
MgSO3 Mng MgCO3

e) f)

FGSO3 FGCO3 Fe3(P04)2 CO3 AP
Figure 4.2: Fluorescence microscopic images of cellular uptake with AF 488 siRNA-loaded NPs by MCF-7 cells. Each type of siRNA-NPs
complexes was transferred onto 50,000 seeded cells, followed by incubation for 4 hours. Images were captured upon washing with EDTA in
1X PBS. (a) barium NPs, (b) strontium NPs, (c) calcium NPs, (d) magnesium NPs, (e) ferrous NPs and (f) CO; AP NP
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4.3.2 Cytotoxicity profile of selected NPs

Cytotoxicity studies of NPs were evaluated based on MTT assay, without
genetic load incorporation into the complexes. Selected salts based on earlier cellular
uptake study were individually used to treat MCf-7 and 4T1 cells for 24 to 72 hours.
Untreated cells were set as a control (100% of viability) at each different time point (not

included in the graph).

Approximately 50-80% surviving viable cells were seen upon treatment with
BaSO; and BaF, for 24 hours, determining high cellular toxicity with salts exposure.
Additionally, BaSO; and BaF, on MCF-7 cells were associated with a superior
cytotoxicity compared to that in 4T1 cells. The viability of cells, however, rose after 48
to 72 hours of incubation. Strontium salt crystals demonstrated significantly high cell
viability in both cells lines at 24 hours, ranging from 110% to 140%, with viability
remaining eminent on day 3, ranging from 90% to 95%. MgSOs treatment showed
almost similar cell viability as untreated cells (100%), with low cytotoxicity of 5% to

10% cellular death on day 3, which was comparable to the cells treated with CO3; AP.
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Figure 4.3: Cytotoxicity of selected salts on MCF-7 cells. 50,000 of MCF-7 cells were seeded, treated with NPs and incubated for 24 to 72
hours, with media substitution following first 4 hours of incubation. Subsequently, 50ul of MTT was incorporated into the treated cells,
with media containing MTT aspirated after 4 hours incubation and addition of 300ul DMSO. Spectrophotometric reading of viable cells
was observed at 595nm wavelength with reference of 630nm. Each type of salts was individually compared with CO; AP.
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Figure 4.4: Cytotoxicity of selected salts on 4T1 cells. 50,000 of 4T1 cells were seeded, treated with the NPs and incubated from 24 to 72
hours, with media substitution following first 4 hours of incubation. Subsequently, 50ul of MTT was incorporated into the treated cells,
with media containing MTT aspirated after 4 hours incubation and addition of 300ul DMSO. Spectrophotometric reading of viable cells
was observed at 595nm wavelength with reference of 630nm. Each type of salts was individually compared with CO3; AP.
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4.3.3 Gene expression activity of selected NPs

Qualitative images to observe the impact of gene-loaded particle complexes was
microscopically visualized following 48 hours of incubation, via intensity of the fluorescence
emitted by pGFP-NPs-transfected cells under fluorescence microscope. Gene expression
activity was determined by fluorescence-expressing cells, with reference to naked pGFP and
unloaded NPs. It was revealed that cells treated with naked pGFP or unloaded NPs (Appendix
7) did not show any fluorescence activity after 48 hours of incubation. MCF-7 cells were seen
GFP-positive following intracellular delivery of pGFP using the NPs of selected salts, BaSOs,
BaF,, SrSO4, SrSO;, SrF, and MgSO;, with reference to CO; AP (Figure 4.3). Similar
observation on the remaining 14 salts from the earlier study revealed null cellular
fluorescence intensity with exception of BaSO,, implying the possibility of inefficient gene

expression with association to low cellular uptake activity (Appendix 7).

Efficiency of salt crystals was further explored with incorporation of luciferase
reporter gene pDNA, pGL3 into the crystals complexes, releasing intracellular luminescence
activity upon successful transcription inside the nucleus. High level of bioluminescence
intensity was emitted by different mammary carcinoma cells, MCF-7 and 4T1 cells
transfected with pGL3-loaded BaSOs, BaF,, SrSO4, SrSO;, SrF, and MgSO3; NPs. 4T1 cells
showed slightly higher detection of luciferase expression upon treatment of gene-NP
complexes in comparison with MCF-7 cells, similarly seen with CO; AP possibly due to
inherent variability in light emission (Figure 4.4). Maximum emission of cellular
luminescence activity was identified with pGL3-loaded SrF,, with 2 folds gap in RLU/mg

protein with SrSO4 and COs; AP. Additionally, strontium salts demonstrated a superior
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activity in comparison to barium and magnesium salts. Salts structured by NaF revealed
greater luminescence emission in comparison to other anion-providing salts. Further
exploration on the remaining 14 salts showed low cellular luciferase activity, with
approximately 100 times less than SrF,, with exception of BaSO, with comparable

luminescence intensity, with selected salts.

Effect of p53 loading in the selected nanocarriers was explained with cell viability
assay. Based on Figure 4.5, direct delivery of p53 gene into the cells led to inefficient
cytotoxicity in both types of mammary carcinoma cells upon 48 hours of incubation, which
might be influenced by low cellular uptake of the naked plasmid via passive diffusion.
However, complexed p53 plasmid with selected salts showed variations in percentage of cell
viability. Treated MCF-7 and 4T1 cells demonstrated more than 90% of cell death with p53-
loaded BaF, or MgSO;, which is 5 times greater than CO; AP. Cell death was more
prominent with barium particles in comparison with strontium particles, possibly owing to the
toxicity effect of barium salts. All selected salts conferred greater cytotoxicity effect on both
tumor cells in comparison to CO3; AP, suggesting their potential applications in cancer gene

therapy in vivo.

All selected salts were found associated with an improved gene system based on
various qualitative and quantitative experimentations, as compared to the established delivery
system of CO3; AP. Despite its involvement with excellent gene delivery activity, BaSO4 will
not be further investigated for in vivo application due to its large particle size (explained in

Chapter 3).
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Naked pGFP CO; AP BaSO; BakF,
SI‘SO4 SI‘SO3 Sl’Fz MgSO3
30 pm

Figure 4.5: Fluorescence microscopic images of gene expression activity of pGFP-NPs in MCF-7 cells. Each type of pGFP-loaded
selected NP complexes, BaSOs, BaF,, SrSO4, SrSO;, SrF, and MgSOs, in addition to naked pGFP and CO; AP as control, was used to
transfect seeded MCF-7 cells, which were subsequently incubated for 4 hours and washed with 10mM EDTA in 1X PBS, followed with ond
incubation period of 48 hours and observation under FITC-filtered fluorescence microscope.
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Figure 4.6: Luminescence intensity of pGL3-complexed NPs treated with MCF-7 and
4T1 cells. Each type of pGL3-loaded selected salts, BaSOs, BaF,, SrSO4, SrSO;, SrF;
and MgSO; was transferred into prepared wells containing seeded 50,000 MCF-7 or
4T1 cells and incubated for 48 hours, with serum-supplemented media substitution
following first 4 hours of incubation and treatment with SmM EDTA in 1X PBS. The
transfected cells were lysed after the removal of media, followed by lysate
centrifugation at 15,000 RPM at 4°C for 10 minutes. 100ul supernatant was aspirated
for estimation of relative luminescence activity/mg of protein.

100-
Bl MCF-7
— 80+ 4T1
e
= 60-
%
S 40+
T
© 204
0- 0 o ~ _ = ~
N D KV P PP LV P 4
> \g
\&i&&qo"" T 57 o g‘@&poos
&7 ¥

Figure 4.7: MCF-7 and 4T1 cell viability upon treatment with p53-NP complexes. Each
type of p53-loaded selected salts, BaSOs, BaF,, SrSO4, SrSOs, SrF, and MgSO; with
reference to COs; AP, was transferred into prepared wells containing seeded 50,000 cells
and incubated for 48 hours, with serum-supplemented media substitution following first
4 hours of incubation and treatment with SmM EDTA in 1X PBS. Subsequently, 50ul
of MTT was incorporated into the treated cells, with media containing MTT aspirated
after 4 hours incubation and addition of 300ul DMSO. Spectrophotometric reading of
viable cells was performed at 595nm wavelength with reference of 630nm.
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4.3.4 siRNA silencing activity of selected NPs

Knockdown of MAPK gene expression in MCF-7 and 4T1 cells with MAPK
siRNA was investigated for 48 hours, revealing a reduction in cell viability. MAPK
siRNA loaded with selected salts showed lower cell viability in comparison with naked
siRNA, hence proving the selected salts as potential nano-vectors. Effect of siRNA-
loaded NP complexes on cytotoxicity was more noticeable with MCF-7 cells, based on
higher cellular death in comparison to 4T1 cells, as shown in Figure 4.6. siRNA loaded
into MgSO3; demonstrated high efficacy in stimulating cytotoxicity, with <10% of cell
viability of both tumor cells lines. SrSO, revealed minimal cellular toxicity, of
approximately 20% in both cell lines, which was lowest amongst the selected
experimental salts. Cytotoxicity was more prominent with the salt crystals containing
SO;” than those having SO4> and F~. Most salts are associated with greater cytotoxicity

upon treatment with cells than CO; AP, with exception to SrSOy.
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Figure 4.8: MCF-7 and 4T1 cell viability upon treatment of siRNA-loaded NPs. Each
MAPK siRNA-loaded selected salts with reference to CO; AP was transferred into the
cells and incubated for 48 hours, with serum-supplemented media substitution
following first 4 hours of incubation and treatment with 5SmM EDTA in 1X PBS.
Subsequently, 50ul of MTT was incorporated into the cells 4 hours before media
removal and addition of 300ul DMSO. Spectrophotometric reading of viable cells was
observed at 595nm wavelength with reference of 630nm.
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4.3.5 Cell lysis, total protein estimation by Quick-start Bradford assay, SDS-PAGE

and Western blot

Assessment of MAPK expression was further observed through Western blot
analysis of MAPK-siRNA-treated MCF-7 and 4Tl cells with and without the
involvement of nanocarriers. We have selected three salts for this study, SrSO3, SrF,,
and MgSO; based on earlier experiments involving cytotoxicity and nucleic acid
transporting efficacy evaluation. The analysis was performed to detect the endogenous
activity of phosphorylated-p44/42 MAPK (phospho-MAPK), p44,42 MAPK (total-
MAPK), phosphorylated-Akt (Ser473) and Akt (pan), with reference to GAPDH genes.
Based on Figure 4.7, siRNA-loaded SrSO3 and SrF2 demonstrated low band intensity
of 44/42kDa of MAPK, which thus interferes with p44/42-MAPK in treated MCF-7
cells. Additionally, SrfSO; and SrF, also interfered with expression of p44/42 MAPK,
p-Akt and Akt genes, predominantly seen with SrF,. MgSO; and CO3; AP showed lower
interruption on protein expression, with a slight reduction in band intensity. Unloaded
NPs revealed thick band manifestation throughout the analysis in reference to untreated

cells.

Interruption of the expression activity of p44/42 MAPK and Akt genes was
detected with MAPK siRNA-loaded SrSO; and SrF, complexes in 4T1 cells. The
detection of the endogenous activity of proteins was slightly greater in comparison with
MCF-7 cells. Additionally, the band depth was stagnant for p44/42 MAPK, signifying
no interruption on the total MAPK expression. Delivery of MgSOs; and CO; AP

complexed with the siRNA also showed lesser band intensities in comparison with only
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salt particles treatments. Investigation on GAPDH protein showed no changes in the

thickness of observed bands.
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Figure 4.9: MAPK protein expressions following treatment with MAPK-siRNA loaded
NPs in MCF-7 and 4T1 cells. Proteins obtained from collected lysates were run in SDS-
PAGE and transferred to PVDF membrane, followed by incubation with primary
antibodies raised in rabbit against (a) phospho-p44/42 MAPK (b) p42/42 MAPK (c)
phospho-Akt (Ser473) and (d) Akt (pan). HRP-conjugated goat anti-rabbit secondary
antibody was used to detect the chemiluminescence signals. Predicted bands for
pMAPK, TMAPK, pAkt and TAkt are at 44, 42 and 60kDa, respectively. GAPDH was
used as loading marker with bands achieved at 37kDa.
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4.3.6 Solubility of NPs in acidic environment

Dissolution of salt particles upon exposure to the acidic environment was
demonstrated by adjustment of pH in the suspensions of formed NPs complexes, with
COs AP representing the positive control. From the initial pH of 7.5 (in which salt
crystals were formed), spectrophotometric reading revealed efficient dissolution of
BaF,, SrSOs, SrF, and MgSO0;, as seen by a gradual decline of the absorbance intensity,
followed by total crystals dissolution at pH 4.5, which was demonstrated by null
spectrophotometric reading (Figure 4.8). BaSO; and SrSOs showed a decrease in
solubility upon gradual reduction in pH but were not fully dissolvable, seen with high

absorbance data in comparison with other salt crystals and CO3 AP.

4.3.7 Influence of protein coating on NPs-mediated gene delivery

The outcome of intracellular gene activity as a result of transferrin or fibronectin
coating of NPs was demonstrated in both human and mice mammary carcinoma models,
based on luminescence intensity/mg of protein after 48 hours of incubation period. Both
proteins predominantly fibronectin significantly improved the bioluminescence activity
through complexion onto NPs surface (Figure 4.9). Greater cellular luminescence
intensity was associated with strontium and magnesium salts, with minimal 10-fold
augmentation in both cell lines. Fibronectin-coated salts showed the highest
enhancement in RLU/mg of protein with 100X increment seen with SrSO4 and MgSO;
in MCF-7 and 4T1 cells. Protein coating stimulated minimal improvement in BaSO;
particles transfection of both cell lines, as similarly seen with CO3; AP. The importance

of protein binding in improving cellular internalization of particles complexes is thus
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realised in vitro, which will be further studied in the animal model in Chapter 5 for

enhancement of nucleic acid delivery in in vivo application.
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Figure 4.10: Dissolution of selected salt particles at acidic pH. HCI was incorporated
into the prepared particle suspension following incubation at 37°C for 30 minutes to
achieve pH, of 6.5, 5.5, 4.4 and 3.5. Spectrophotometric reading of suspension was
observed at 340nm wavelength.
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Figure 4.11: Influence of protein coating on luminescence intensity in a) MCF-7 and b) 4T1 cells. 1ug transferrin or fibronectin was
introduced into prepared pGL3-loaded selected salt crystals with reference to CO; AP after 30 minutes incubation at 37°C. Coated salt
particles were subsequently incubated for 10 minutes, followed by inclusion of FBS-containing media to achieve final volume of Iml
particle suspension. The salt complexes were used to transfect into the tumor cells and incubated for 48 hours, with serum-supplemented
media substitution following first 4 hours of incubation. Cells were lysed after removal of media, and the remaining lysate was centrifuged
to obtain the supernatant, which was used to measure the relative luminescence activity (RLU) of the treated cells.
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4.3.8 Effect of salt combination on NPs-mediated gene delivery

The combination of two potential inorganic salts was experimented for possible
synergistic effect on gene delivery. Inorganic salts with efficient nucleic acid binding
and cellular uptake abilities with minimal cytotoxicity effects were selected for salt
combinations studies. According to Figure 4.10, the mixture of potential salt crystals
was associated with no synergistic effect on luciferase activity in both MCF-7 and 4T1
cells. SrF,/BaF, salt particles mixture showed similar luminescence activity with BaF,
in MCF-7 cells but with ten-fold reduction seen in 4T1 cells. Additionally, SrSO;/SrF,
combination revealed inferior intracellular luminescence intensity in comparison to
individual salt, with >10 fold reduction in 4T1 cells. A slight increase of cellular
luciferase activity was seen with SrF,/MgSO; in 4T1 cells, compared to the individual

salts but the activity remained lower than single salt particles in MCF-7 cells.

The salt combination showed overall no beneficial effect on improving luciferase

activity and will thus be excluded from the investigation in animal study (Chapter 5).
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Figure 4.12: Comparison between single and combinations of salt particles on
intracellular luminescence activity in (A) MCF-7 and (B) 4T1 cells. Generation of
single salt was based on reaction between BaCl,, SrCl, or MgCl,, and Na,SO; or NaF
with incorporation of lug pGL3, followed by incubation of 30 minutes at 37°C.
Formation of salt combination was based on mixing of two insoluble salts generated
with 500ng pGL3 incorporated into each type of insoluble salts prior to mixing,
followed by 10 minutes incubation. Serum-supplemented media was added to both NP
complexes to achieve final volume of 1ml suspension. Transfected cells were incubated
for 48 hours before cellular lysis and centrifugation to obtain the supernatant, followed
by measurement of relative luminescence activity (RLU) of treated cells/mg protein.
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4.4 Discussions

An ideal salt complex should be associated with efficient cellular uptake, which
is dependent on the complex salt size and electrostatic interaction between the
negatively charged anionic heparan sulfate proteoglycans (syndecans) of cellular
surface and the complex (1). The NP sizes determine the endocytic pathways for
transportation into the intracellular matrix. The route of biomaterial internalization is
commonly through clathrin- or caveolin-mediated endocytosis, an energy-dependent
process (2). Most cell types utilize these pathways to transport nanosize materials,
including nanoparticles and viruses (3). Caveolae-dependent endocytosis promotes
uptake of molecules ranging from 50 to 80nm in diameter through small invaginations
of the plasma membrane. Clathrin-coated vesicles mediate transportation of larger
molecules, subsequently followed by formation of early endosomes (4)(5). It is
postulated that NPs are commonly engulfed through clathrin-mediated endocytosis in

mammalian cells (6).

Efficient cellular uptake activity is therefore associated with small particle sizes
(<400nm) and positive zeta charge activity, which is involved in the electrostatic
interaction between cellular membranes, prompting effective internalization (7).
Barium, strontium and magnesium salt particles revealed efficient cellular uptake,
defined by fluorescent cells upon endocytosis of fluorescence pDNA/siRNA-
complexes. Washing of cells with EDTA in PBS was vital to remove crystals
depositions on the cellular surface and eliminate false positive results. PI-stained pGFP

ensures stained pDNA-complexes inside the endosomal cavity as the reporter gene
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requires approximately 16 hours to undergo transcription and translation in the
transfected cells to emit fluorescence for microscopic visualization (8)(9). BaSOs;,
BaF,, SrSO4, SrSO;, SrF, and MgSO; most significantly improved the intracellular
delivery of both pDNA and siRNA in comparison to naked pDNA and siRNA based on
their efficiency in binding and condensing the genetic material to form a compacted
structure (10). Low fluorescence intensity of the cells treated with calcium and ferrous
salts was possibly related to low pDNA and siRNA adsorption to the crystals, (11) as
described in Chapter 3. Efficient cellular uptake might further regulate the outcome of
the subsequent intracellular processing of nucleic acid inside the cytoplasmic or nuclear

regions, such as endosomal escape and nuclear translocation (12).

Cytotoxicity profiles of the selected nanocrystals determined by MTT assay
revealed a decline in cell viability with barium-fabricated particles at 24 hours post
treatment. The role of barium salt as a physiological antagonist of potassium, increases
active influx and inhibiting efflux of potassium, by blocking potassium channels of the
Na-K pump in the cell membrane, resulting in cell death. Barium-induced cell damage
is proportional to the barium salt concentration (13). The cytotoxicity effect of barium
proves to be unsafe for the upcoming animal studies, which was prominent during the
first 24 hours of incubation, but later masked by cell replication after 27 hours (14).
High cell viability of strontium NPs is postulated due to its protective effect on
apoptosis. Strontium increases ERK 1/2 phosphorylation to promote cellular
proliferation in addition to activation of Akt pro-survival pathway, enhancing the cell
viability (15). MgSO; has minimal intrusion on cellular volume, with minute changes in

viability of cells at 72 hours. The ideal NPs should exert minimal influence on cellular
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activity to prevent off-target effect (16). In spite of efficaciousness in cellular uptake,
dissolution, and expression, the toxicity of barium salt particles might stimulate
undesirable cellular death, and hence seem to be dangerous for in vivo studies (17).
Besides the selected salts, other formulations were also experimented to observe their
toxicity ranges, with ferrous-salt particles found to be involved in a very prominent
cellular death, causing >60% reduction in cell viability in comparison with non-treated
cells (Appendix 14). Higher iron concentration is linked with free radical formation and

oxidative damage, hence inducing autophagic cell death (18).

Genetic expression of pDNA and siRNA knockdown activity may occur upon
successful internalization of the NPs complexes. Embodied particle complexes, forming
endosomes should efficiently disintegrate to release the genetic content from
degenerated crystals, followed by subsequent transportation to the areas of interest:
nucleus and cytoplasm for respective transcription and translation process (19). To
maximize the availability of genes in the cytoplasmic region, NPs should entirely be
disintegrated before lysosomal fusion with the endosomes takes place, causing
premature degradation of complexes or inducing exocytosis of the complexes into the
extracellular matrix (20)(21). pDNA expressional activity measured through analysis of
reporter gene expression via cellular fluorescence (pGFP) and luminescence activity
(pGL3) with viability assay of target genes through MTT solution (p53) demonstrated
by high gene expression in both MCF-7 and 4T1 cells after 48 hours incubation. pGFP
encodes for an intracellular protein of 26.9kDa exhibiting green fluorescence upon
exposure to light in blue to ultraviolet range, first isolated from jellyfish Aequorea

victoria. Luciferase reporter pDNA, (also known as pGL3) is an oxidative enzyme

Page | 123



In vitro efficacy and safety assessment of NPs | Chapter 4

showcasing cellular bioluminescence properties, first derived from firefly Photinus
pyralis. These reporter genes are transcribed into messenger RNA (mRNA) molecules
inside the nuclear cavity before translation into desired protein occurs inside the
cytoplasm, releasing respective fluorescence or luminescence light (22)(23). Target
gene, p53 is a central regulator of cellular growth, DNA repair, and apoptosis, often
down-regulated in cancer patient due to gene missing or malfunction. The introduction
of wild-type p53 is hence necessary to normalize the regulatory mechanism of ‘guardian
of genome’ gene (24). p53 genes were introduced just before the formation of NPs to
ensure adsorption of the genes into the salt structure. BaSO;, BaF,, SrSO,, SrSOs3, SrF,,
and MgSO; endorsed efficient gene expression as reflected by intensified fluorescence
image and high luminescence activity in both cancerous cells, comparable to established
COs AP NPs (25). High cellular uptake and gene expression are the hallmarks of the
selected NP, supplemented with biodegradable properties to ensure efficient gene
release into the cytoplasm with exposure to acidic pH in late endosome (26)(27).
Excellent expression-promoting activities of those NPs might be partly attributed to
their high cellular uptake, in addition to being pH-sensing for facilitating endosomal

escape and release of the pDNA from the NPs (28).

Investigation on pH-sensitive properties of selected NPs presented in Figure 4.7
was made through exposure of NPs in the acidic environment to mimic the late
endosomal stage. Salt particles formation was commenced at pH 7.5, which was
reduced with the gradual introduction of hydrochloric acid (HCI) in the order to
compare changes in turbidity pH adjustment. Late endosome has pH of approximately

3.5 to 4.5, in which CO3; AP was able to be successfully dissolved and release pDNA
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through proton sponge effect (29). The increment of hydrogen ion (H') within
endosomes triggers incorporation of chloride ion (CI’) into the endosomal cavity,
therefore generating high osmotic pressure across the endosomal membrane and finally,
swelling and rupturing the endosomes (30). SrSO;, SrF, and MgSO; were dissolved
completely at pH 4.5, represented by null absorbance activity. Inefficient escape of
pDNA owing to incomplete particle dissolution might limit the transfection efficiency,

as experienced with SrSOs, thus slightly lowering pPDNA expression (31).

The effectiveness of NPs was further elaborated in the forms of siRNA-mediated
gene knockdown in MCF-7 and 4T1 cells. RNA interference (RNAI) process is a post-
transcriptional gene regulatory mechanism, which may be modulated by endogenous
siRNA. Internalized target siRNA unwinds and is incorporated into RNA-induced
silencing complex (RISC), as stable protein-RNA complex, which will be directed to
the target mRNA to trigger its degradation, thereby interrupting protein synthesis of the
targeted genes (32)(33). Mutation in genes, causing cancer is associated with various
triggers such as up-regulation of proto-oncogenes, genes that are involved in cell
proliferations, resulting in the formation of oncogenes. These proto-oncogenes include
ErbB2, MAPK and PI3K genes, which are overexpressed in malignant cells (34). Up-
regulation of anti-apoptotic genes (genes involved in impeding apoptosis) such as Bcl-2
can also lead to cancer (35). The introduction of siRNAs involved in silencing of these

genes could result in activation of cellular apoptosis (36).

MAPK siRNA was complexed with each type of selected NPs, followed by

transfer into seeded mammary carcinoma cells and incubation for 48 hours to determine
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the cytotoxicity effect. With approximately 10% cell viability, MgSOs; NPs was the
most successful in transporting siRNA in both cell lines, in addition to efficient pPDNA
delivery in earlier studies. A high percentage of cell viability was seen with SrSO4 may
be explained by lower crystals dissolution rate, therefore impeding the efficient
endosomal escape of siRNA into the cytoplasmic region (37). Treatment of human
mammary carcinoma was associated with more cellular toxicity in comparison to mice
carcinoma (38). MAPK siRNA-loaded complexes endorsed efficient cellular death by
inhibition of p44/42 MAP kinase expression in RAS-RAF-MEK-ERK pathway through
silencing of ERK1/2 genes (39). Confirmation of MAPK siRNA action was further
elaborated through Western blot analysis. It is understood that phospho-MAPK and
total-MAPK expression were interrupted by transfection involving MAPK siRNA-

loaded SrSO; and SrF», as seen with a reduction in band intensities (40).

Active targeting is achieved by attachment of affinity ligands that bind to
specific receptors on cellular surface, enabling the nano-vectors to recognize and bind to
target cells through ligand-receptor interactions before being internalized. Receptor
should only be highly expressed in specific cells, e.g. tumor to achieve the precise
targeting (41). Fibronectin receptor is involved in modulating numerous signaling
pathways, including inhibition of ErbB2 signal by inducing proteasome-dependent
proteolytic cleavage of ErbB2 cytoplasmic domains through a6f1 integrin. Over-
expression of the receptor is also associated with increasing carcinomic aggression (42).
It is also suggested to have a critical role in mediating chemotactic and haptotactic
migration, thus contributing to spontaneous metastasis of breast tumor to surrounding

bone tissues (43). Transferrin receptor, an iron importer, is associated with over-
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expression in many malignant cells, including breast tissues up to 100 folds. It is
proposed that the increased expression may be due to higher demands of iron to cater

rapid growth and proliferation of cancer cells (44)(45).

Influence of intracellular effect with transferrin- or fibronectin-coating of NPs
was demonstrated in both human and mice mammary carcinoma models, manipulating
the presence of over-expressed transferrin or fibronectin receptors on tumor cells
surfaces (45)(46). The introduction of transferrin and fibronectin proteins into the NPs
complexes is postulated to involve active transport mechanism into the delivery to pass
through the cell membrane. In the earlier studies, integration of Ipg of
transferrin/fibronectin protein was shown to assist in the reduction of NPs size diameter
with less negatively charged surfaces. The impact of the protein ligands in vitro showed
improvement in relative luminescence value (RLU/mg protein) in comparison with
uncoated NPs. Improvement of gene delivery through the involvement of active
targeting was most significant with MgSOs3 complexes, almost 100 fold increment of
luciferase activity seen with co-delivery of fibronectin and MgSOs into 4T1 cells. Based
on the intracellular experiments, protein coating offered an adjunct effect on improving
genetic transportation. It is therefore expected that the additional benefit would be
similar in animal studies with the active transport playing a huge role in bioavailability

and transtumoral delivery (47).

Selected potential salts were investigated for their ability to magnify the

individual gene carrier activity (48). In Chapter 3, we have discussed the generation of

hybridized NPs, which showed size increment with more negative charge regions in
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overall combinations tested. It is proposed that the positive domains of salt
combinations of SmM of each cation-providing salts may enhance the cellular uptake of
the complexes through efficient adsorption with negatively-charged syndecan domains
(49). However, the structural changes of the salts, seen with larger sizes in comparison
with single salt particles, may also modify the particles stability and disintegration
process, therefore, influence the intracellular expression of transported genes (50).
Particle stabilization is improved with bigger and more complicated structures, thus

requiring a stronger force to induce destabilization process (51).

Qualitative experimental view of co-delivery of salt crystals demonstrated no
improvement of cellular uptake for five different crystal combinations, through
microscopic observations. Additionally, hybridization of NPs had no further
enhancement of luciferase expression, indicating no improvement in the disintegration
of the complexes to release the genetic content. Inefficient delivery might have
happened due to larger salt sizes, impacting gene expression activity (52). The Large
structure of salt combinations could impede the in vivo delivery through IV injection as
the tendency to form more massive aggregation would be higher with increased risk of

clot formation in the blood circulation (53).
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4.5 Conclusion

We have investigated NPs for their ability to transport the genetic materials
intracellularly, through observation of cellular uptake, salt dissolution properties, gene
expression and silencing efficacy. Subsequently, we also studied the viability of NPs to
understand their cytotoxicity profiles in human and mice mammary carcinoma cells.
The cellular experiments showed the efficiency of BaSO3, BaF,, SrSO4, SrSOs3, s> and
MgSO; in intracellular delivery, through microscopic qualitative observation and
quantitative luciferase and MTT assay, accomplishing comparative data with
established CO3; AP particles. Co-delivery of pDNA or siRNA with NPs resulted in
better cellular internalization and efficient endosomal escape of the nucleic acid.
However, naked barium salt particles were associated with high toxicity upon exposure
to MCF-7 and 4T1 cells (50-80% viability at 24 hours incubation), therefore raising
concern for in vivo studies and will be excluded from the subsequent studies (Chapter
5). Additionally, despite being efficacious in cellular studies, the large size of SrSO4
could interfere with intravenous delivery by forming large aggregates and eventually

clots, thus, will also be rejected from animal studies.

Based on the exclusion criteria above, in vivo experiments will only be carried
out for three NPs, SrSOs, SrF,, and MgSO;. Incorporation of fibronectin and transferrin
protein intensified the gene delivery through the proposed active transport route. Both
of the proteins will be further investigated in next chapter to identify the significance of
active targeting in biological systems. Co-delivery of individual NPs demonstrated no

additional benefit in nanocarrier activity of the salt particles, which was evident from no
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further improvement in cellular luminescence intensity, thus was not extensively

explored.

Extracellular region

Figure 4.13: Transferrin receptor. Adapter by Z.M. Qian, H. Li, H. Sun, K. Ho Targeted
drug delivery via the transferrin receptor-mediated endocytosis pathway.
Pharmacol Rev, 54 (2002), p561-587
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5.1 Introduction

Selected salt crystals determined from various experiments in vitro were
introduced in the animal model to appreciate their carrier ability via systemic delivery.
Parenteral administration is associated with inefficient gene transportation, due to the
presence of circulatory monocyte, which is involved in clearance and elimination of
foreign materials by reticuloendothelial systems (RES). Nuclease attack is often
associated with premature degradation of genetic materials, which interactions are
derived through electrostatically bound nuclease and negatively charged pDNA and
siRNA. Scavenging plasma proteins in the circulatory systems tends to bind to uncoated
and hydrophobic vectors, inducing elimination signals from the blood distribution.
Large carrier sizes may encourage the embolization of blood capillaries, causing a life-
threatening blockage in the blood vessel, thus should be omitted from the in vivo

studies.

Determination of nanocarriers in promoting efficient transportation of genes in
vivo was performed by introduction of intravenous injection comprising of gene-loaded
NPs into 4T1 tumor-bearing mice, followed by subsequent observation of gene
deposition in various organs upon different time points. Investigation on the influence
of salt concentration in the formation of salt particles may demonstrate influence on
bioavailability with diverse anionic-providing salt concentration. The internal organ
siRNA deposition was further examined via transferrin and fibronectin-coated NPs in
hope to determine the potential active transport activity upon 4 hours of incubation.
Effect of tumor regression activity of 4T1 cells was reviewed by monitoring tumor

volume measurement for two weeks post treatment. The importance of ideal
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concentration of p53 and MAPK siRNA was performed on mice studies, alongside
protein coating in promoting active transportation and improving biological

distributions into desired organs for effective treatment over a period of 2 weeks.

Experimentation in vivo demonstrated efficient distributions of salt crystals
towards kidney and liver, representing possible involvement of RES uptake for systemic
clearance. Deposition of NPs in tumor tissues is approximately four times lower in
comparison with kidney and liver. Brain siRNA-NPs accumulation is comparatively
high in all salts tested, conceivably passing through blood brain barrier. Adsorption of
protein onto the surface of salt particles enhances the targeting specificity towards
improving tumor tissues accumulation, hence the likely presence of active
transportation. Through biodistribution experimentation, SrSOs; and SrF, are associated
with greater nanocarrier activity upon complexation with genetic material in

comparison to MgSOs and CO; AP.

Tumor regression studies on 4T1 tumor-induced BALB/c mice revealed efficient
delivery of each target genes-loaded NPs towards halting tumor growth, upon
observation over 28 days. Fibronectin and transferrin coating involve in lowering the
carcinogenic growth rate, with tumor size difference of minimal 150mm’ throughout all
NPs studied. Reduction in cancerous tissues growth rate may be linked to their efficient
adsorption towards specific target receptor, hence greater internalization of complexes
via receptor-mediated endocytosis. Tumor regression studies of SrSOs;, SrF,, and
MgSOs in vivo have proven effectiveness in transporting genetic materials into the

targeted site for subsequently greater gene expression activity.
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5.2 Methods and materials

5.2.1 Time-dependent biodistribution studies

4T1 tumor cells (50,000 cells/mouse) were subcutaneously inoculated into the
mammary gland of 6-8 week old BALB/c mice, before randomly assigned into
different groups, consisted of 5 mice/group. Total volume of 100ul from each salt
particles loaded with AF 488 siRNA and supplemented with DMEM-powdered media
was intravenously administered to each mouse (at right or left caudal tail vein) once
the tumors reach the average size of 13.20 £2.5Imm3. 1uM AF 488, fluorescence-
labeled siRNA was added to Sul of 1M SrCl, or MgCl,, followed by incorporation of
2ul of 1M Na,SO; or NaF in 10ul HEPES-buffered media to generate respective
SrSO;, SrF, and MgSOs salt precipitates. The chemical reaction was maintained at
37°C for 30 minutes, followed by a brief mixture of DMEM-powdered media to form
a final volume of 100ul particle suspension. Transfected cells were inoculated for 4
hours period, followed by mice sacrificial. The inclusion of CO3; AP as the positive
control for the treatment was done by incorporation of 1uM AF 488 siRNA and 5pul of
IM exogenous CaCl, into prepared DMEM-powdered media to form 100ul solution,
at similar incubation condition.

All mice were sacrificed by cervical dislocation following 4 hours incubation
and organ tissues consisting of brains, kidney, liver, lung, spleen and tumor were
harvested immediately and washed with 1X chilled PBS. The tissue culture was
maintained on ice throughout the experiment. 1ml chilled lysis buffer per 500gram of
tissue mass was added after washing, followed by homogenization of organ tissues

using Homogenizer (Eppendorf, Germany), until completely homogenized lysate is
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produced. The tissue lysate was next centrifuged for 10 minutes at 15,000 RPM at
40C. 100ul of centrifuged supernatant was added into 96-well black opti-plate to
measure the fluorescence intensity of AF 488-labeled siRNA with 2030 multilabel
reader Victor TM X5 (Perkin Elmer, USA), using Perkin Elmer 2030 manager

software with Aex = 490nm and Aem = 535nm.

Studies involving time-dependent influential was performed by adjusting the
incubation of SrSO3, SrF,, MgSO; and CO; AP particles upon intravenous transfection
at 1, 2 and 4 hours before mice sacrificial and organ harvestment (Figure 5.1).

Untreated mice group represented negative control for the experiment.

Data was expressed as meantSD of fluorescence intensity /500mg of organ

mass (values were blank-corrected using untreated group).
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Untreated
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4 hours
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Regimen
100ul 1X PBS

Sul of 1M SrCly, 2ul of 1M Na,SO;, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of 1M SrCly, 2ul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

S5ul of 1M MgCl,, 2ul of 1M Na,SOs;, 1uM AF 488
siRNA, in 10ul HEPES buffered media, followed by
addition of DMEM to achieve 100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to achieve 100ul
suspension

Sul of IM SrCly, 2ul of 1M Na,SOs, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM SrCly, 2ul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

S5ul of IM  MgCl,, 2ul of IM Na,SOs, 1uM AF 488
siRNA, in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

44mM NayCOs, Sul of 1M CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to achieve 100ul
suspension

S5ul of IM SrCl,, 2ul of 1M Na,SO3, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100pul suspension

Sul of 1M SrCl,, 2l of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100pl suspension

S5ul of 1M MgCl,, 2ul of 1M Na,SOs;, 1uM AF 488
siRNA, in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to achieve 100ul
suspension

No of mice
15
5

Table 5.1 Mice grouping for time-dependent biodistribution studies.
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5.2.2 Concentration-dependent biodistribution studies

The concentration-dependent analysis was performed by manipulation of anion-
providing salts, Na,SO; and NaF concentration to form the particle complexes, to
demonstrate the influence on nano-vector activity upon increasing in salt
concentration. Syl of 1M SrCl, or MgCl, was mixed with 1uM AF 488 siRNA,
followed by incorporation of 2ul or 5ul of IM Na,SO; or NaF in 10ul HEPES-
buffered media, followed by addition of DMEM to achieve final volume of 100ul salt
suspension (Figure 5.2). Incubation of fabricated salt particles were similarly held at
37°C for 30 minutes, prior to transfection into the mice systemic circulation via
intravenous injection. Mice were sacrificed and organ tissues including brain, kidney,
liver, lung, spleen and tumour were harvested to perform biodistribution analysis, as of
5.2.1. Data was represented as mean+SD of fluorescence intensity /500mg of organ

mass (values were blank-corrected using untreated group).

Figure 5.1: 4T1 tumor injection site on mammary gland of BALB/c mouse via
subcutaneous delivery
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Regimen

100ul 1X PBS

Sul of 1M SrCl,, 2ul of 1M Na,SO3, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

5ul of IM SrCly, 5ul of 1M Na,SOs;, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM SrCl,, 2ul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM SrCl,, Sul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

5ul of 1M MgCly, 2ul of 1M Na,SOs;, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of 1M MgCl,, Sul of 1M Na,SOs;, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to achieve 100ul suspension

No of mice
5
5

Table 5.2: Mice grouping for concentration-dependent biodistribution studies

5.2.3 Influence of protein coating on biodistribution studies

Influence of protein binding on particle surface was initiated by incorporation

of protein coating on NPs complexes to determine the effect of active targeting in vivo.

S5ul of IM SrCl, or MgCl, was mixed with 1uM AF 488 siRNA, followed by

incorporation of 2ul Na,SOs or NaF in 10ul HEPES-buffered media, followed by

addition of DMEM to achieve final volume of 100ul salt suspension. 1uM transferrin

or Fibronectin was incorporated into the generated NPs and incubated for 10 minutes

at 37°C. Subsequent coated, complexed salts were introduced intravenously into the

mice tail vein and incubated similarly at 4 hours. Mice were sacrificed and organ

tissues including brain, kidney, liver, lung, spleen and tumor were harvested to

Page | 142



In vivo efficacy of selected NPs | Chapter 5

perform biodistribution analysis, as of 5.2.1. Data was represented as mean+SD of

fluorescence intensity /500mg of organ mass.

Group

SrSO;

SI'FZ

MgSO

CO;
AP

Regimen

Sul of 1M SrCly, 2ul of 1M Na,SO3, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of 1M SrCly, 2ul of 1M Na,SO3, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by lug fibronectin
and DMEM to achieve volume of 100pl

Sul of IM SrCl,, 2ul of 1M Na,SO3, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by lug transferrin
and DMEM to achieve volume of 100ul

S5ul of IM SrCl,, 2ul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of 1M SrCl,, 2ul of IM NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by 1lug fibronectin
and DMEM to achieve volume of 100ul

Sul of IM SrCly, 2ul of 1M NaF, 1uM AF 488 siRNA, in
10ul HEPES-buffered media, followed by lug transferrin
and DMEM to achieve volume of 100ul

Sul of IM MgCl,, 2ul of 1M Na,SOs3, 1uM AF 488 siRNA,
in 10pl HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM MgCl,, 2ul of 1M Na,SO;, 1uM AF 488 siRNA,
in 10pul HEPES-buffered media, followed by 1ug fibronectin
and DMEM to achieve volume of 100ul

Sul of IM MgCl,, 2ul of 1M Na,SO3, 1uM AF 488 siRNA,
in 10ul HEPES-buffered media, followed by 1ug transferrin
and DMEM to achieve volume of 100ul

44mM Na,COs, Sul of IM CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to obtain 100ul suspension
44mM Na,COs, Sul of IM CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to obtain 100ul suspension
and 1pg fibronectin

44mM Na,COs, 5ul of IM CaCl,, 1uM AF 488 siRNA,
followed by addition of DMEM to obtain 100ul suspension
and 1ug transferrin

No of mice

Table 5.3: Mice grouping for impact of protein coating on biodistribution studies
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5.2.4 Tumor regression studies involving p53-loaded NPs

Approximately 50,000 4T1 cells were inoculated to the mammary gland of each
6-8 week old BALB/c mice through subcutaneous injection, before randomly assigned
into different groups, consisting of 5 mice/group. Once the tumor growth reached
13.20£2.51mm’, 100ul of total suspension by various preparations of salt crystals with
pS3 gene, supplemented with DMEM was intravenously administered into each mouse
(at right or left caudal tail vein). The salts solutions, formed by the mixture of 20ug of
p53 gene with Syl of IM SrCl, or MgCl, was added to 2ul of 1M Na,SOs or NaF in
10ul HEPES-buffered media to fabricate respective SrSOs;, SrF, and MgSOs; particles,
with CO; AP as control, as specified in Table 5.4. Subsequent experiment determining
the influence of p53 concentration through observation of 10 and 20ug p53 gene on
tumor volume was examined via similar NPs regimen. The chemical reaction was
sustained for 30 minutes at 37°C, followed by a brief mixture of DMEM-powdered

media to form final volume of 100ul particle suspension.

Each treatment was repeated two days after the initial treatment regimen. Tumor
growth was supervised every two days, measuring width and length of tumor lump
using Vernier caliper (mm scale) from the treatment day (day 14), and continuously
monitored for two consecutive weeks. Weight of each mouse was observed for any
significant changes. The mice were sacrificed by cervical dislocation at the end of the
study (day 28), followed by postmortem of selected mouse to see any changes in organ

morphology and any potential metastasis.
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The volume of the tumor was calculated using the following formula.

Tumor volume (mm3) = Length x (widthz) /2

The data were presented as mean=SD of tumor volume from each group.

Group
Untreated

SrSO;3

Sl‘Fz

MgSO:;

CO; AP

Regimen
10pg p53 in 100ul DMEM
5ul of 1M SrCly, 2l of 1M Na,S0O3, 20ug p53, in 10ul

HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of 1M SrCl,, 2ul of 1M Na,SO3, 10pug p53, in 10ul
HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

S5ul of 1M SrCly, 2ul of IM NaF, 20ug p53, in 10ul
HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM SrCl,, 2ul of IM NaF, 10ug p53, in 10ul
HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

Sul of IM MgCly, 2ul of 1M Na;SOs, 20pg p53, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100pl suspension

Sul of 1M MgCl,, 2ul of 1M NaSOs, 10pg p53, in
10ul HEPES-buffered media, followed by addition of
DMEM to achieve 100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 20ug p53, followed
by addition of DMEM to obtain 100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 10ug p53, followed
by addition of DMEM to obtain 100ul suspension

Number of mice
10

10

10

10

10

Table 5.4: Mice grouping of p53-loaded NPs for tumour regression studies.
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5.2.5 Tumor regression studies involving MAPK siRNA-loaded NPs

In a separate study, MAPK siRNA was incorporated into the complexes with the
similar manner as p53 gene. 50nM MAPK siRNA was integrated to Sul of 1M SrCl; or
MgCl, with 2ul of 1M Na,SO; or NaF in 10ul HEPES-buffered media. The chemical
reaction was maintained for 30 minutes at 37°C, followed by a brief mixture of DMEM-
powdered media to form the final volume of 100ul particle suspension. CO3; AP and
naked MAPK were used as respective positive and negative control. Effect of MAPK
siRNA concentration on tumor regression was subsequently studied, with 50nM and
100nM MAPK siRNA transfected to each mouse via complexation into various salt

crystals, as shown in Table 5.5.

Each treatment was repeated two days after the initial treatment regimen. Tumor
growth was supervised every two days, measuring width and length of tumor lump
using Vernier caliper (mm scale) from the treatment day (day 14), for two consecutive

weeks. The mice were sacrificed by cervical dislocation at the end of the study (day 28).
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Group
Untreated

SrSO;

SI'F2

MgSO:;

CO; AP

Table 5.5: Mice grouping of MAPK siRNA-loaded NPs for tumor regression studies.
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Regimen
50nM MAPK siRNA in 100ul DMEM

Sul of 1M SrCl,, 2ul of 1M Na,SO3, 50nM MAPK
siRNA in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100pul suspension

Sul of 1M SrCl,, 2ul of 1M Na,SOs, 100nM MAPK
siRNA in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

Sul of 1M SrCl,, 2ul of 1M NaF, 50nM MAPK
siRNA in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

S5ul of IM SrCl,, 2ul of IM NaF, 100nM MAPK
siRNA in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

5ul of 1M MgCl,, 2ul of 1M Na,SO3, 50nM MAPK
siRNA in 10ul HEPES-buffered media, followed by
addition of DMEM to achieve 100ul suspension

Sul of 1M MgCl,, 2ul of 1M Na,SO;3;, 100nM
MAPK siRNA in 10ul HEPES-buffered media,
followed by addition of DMEM to achieve 100pl
suspension

44mM Na,COs;, Sul of 1M CaCl,, 50nM MAPK
siRNA, followed by addition of DMEM to obtain
100ul suspension

44mM Na,COs, 5ul of 1M CaCl,, 100nM MAPK
siRNA, followed by addition of DMEM to obtain
100pl suspension

Number of mice

10

10

10

10

10
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5.2.6 Tumor regression studies involving ligand-coated NPs

Effect of ligand binding on improving nanocarrier activity was performed by
incorporating 100ul of total suspension by various preparations of salt crystals with p53
gene, supplemented with DMEM for intravenous administration into each mouse (at right or
left caudal tail vein). The ligand-bound NPs, formed by a mixture of 20pg of pS3 gene with
Sul of 1M SrCl, or MgCl, was added to 2ul of 1M Na,SO3 or NaF in 10ul HEPES-buffered
media to fabricate respective SrSO3, SrF,, and MgSO; particles, with CO; AP as control, as
specified in Table 5.6. The chemical reaction was sustained for 30 minutes at 37°C,
followed by subsequent incorporation of 1pg Fibronectin or transferrin into the fabricated
salt crystals and incubated for 10 minutes, before addition of DMEM-powdered media to

form a final volume of 100ul particle suspension.

Treatment involving complexed solution was transfected into mice and repeated two
days following the initial treatment regimen. Tumor growth was supervised every two days,
measuring width and length of tumor lump using Vernier caliper (mm scale) from the
treatment day (day 14), for two consecutive weeks. The weight of each mouse was observed
for any significant changes. The mice were sacrificed by cervical dislocation at the end of
the study (day 28), followed by postmortem of selected mouse to see any changes in organ

morphology and any potential metastasis.
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Regimen

Sul of 1M SrCly, 2l of 1M Na,SO3, 20ug p53, in 10ul
HEPES-buffered media, followed by addition of DMEM
to achieve 100ul suspension

Sul of 1M SrCly, 2pul of 1M Na,SO3, 20ug p53, in 10ul
HEPES-buffered media, followed by addition of 1ug
fibronectin and final volume of DMEM to achieve 100ul
suspension

Sul of 1M SrCly, 2pul of 1M Na,SO3, 20ug p53, in 10ul
HEPES-buffered media, followed by addition of 1ug
transferrin and final volume of DMEM to achieve 100ul
suspension

Sul of 1M SrCly, 2l of 1M NaF, 20ug p53, in 10ul
HEPES-buffered media, followed by addition of DMEM
to achieve 100ul suspension

Sul of 1M SrCly, 2l of 1M NaF, 20ug p53, in 10pul
HEPES-buffered media, followed by addition of 1pg
fibronectin and final volume of DMEM to achieve 100ul
suspension

S5ul of 1M SrCly, 2l of 1M NaF, 20pug p53, in 10l
HEPES-buffered media, followed by addition of 1pg
transferrin and final volume of DMEM to achieve 100ul
suspension

Sul of 1M MgCl,, 2ul of 1M Na,SOs, 20pug p53, in 10ul
HEPES-buffered media, followed by addition of DMEM
to achieve 100ul suspension

Sul of IM MgCl,, 2l of IM Na,S0Os, 20pug p53, in 10ul
HEPES-buffered media, followed by addition of 1pug
fibronectin and final volume of DMEM to achieve 100ul
suspension

Sul of 1M MgCl,, 2ul of 1M Na,SOs, 20ug pS3, in 10ul
HEPES-buffered media, followed by addition of 1pg
transferrin and final volume of DMEM to achieve 100ul
suspension

44mM Na,CO;3, 5ul of 1M CaCl,, 20ug p53, followed
by addition of DMEM to obtain 100pul suspension

44mM Na,CO;3, 5ul of 1M CaCl,, 20ug p53, followed
by addition of DMEM to obtain 100ul and 1pg
fibronectin into the suspension

44mM Na,COs, 5ul of 1M CaCl,, 20ug p53, followed
by addition of DMEM to obtain 100ul and 1pg
transferrin into the suspension

Number of mice

Table 5.6: Mice grouping for influence of protein coating on tumor regression studies
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5.3 Results

5.3.1 Time-dependent biodistribution studies

Biodistribution characteristic of selected salt particles was investigated upon 1, 2
and 4 hours after intravenous administration into randomly assigned tumor-bearing
mice. The injections were well tolerated, and mice did not exhibit any alteration in
behavior. Tissue size, color, and morphology remained unchanged, as compared to
PBS-treated mice. High overall accumulation of fluorescence activity was found in the
liver and kidney, followed by brain, lung, spleen and tumor 1-hour post intravenous

delivery.

The kidney was the preferential site for accumulation of siRNA-nanocrystals
with values as high as 2200/mg protein, seen in SrSO; (Figure 5.2). Highest detection of
fluorescence activity in organ tissues was observed at 2 hours, with up to 3-fold
increment detected in respective liver, kidney, brain and tumor tissues. Subsequently,
intensity reduction was observed at 4 hours post treatment, with an approximate
reduction of 50% seen with brain and tumor throughout all nanocarrier tested.
Fluorescence activity remained low for lung and spleen, throughout various hours of
experimental studies. Trans-tumoral delivery in each organ was comparable between all
NPs, including CO; AP particles (studied and showed proven benefit in vivo). SrSO;
has higher siRNA deposition in all organs, particularly lung and spleen, as compared to
all salts tested, with stagnant level throughout 4 hours. MgSOj; is associated with less
efficient siRNA carrier, demonstrating slightly lower fluorescence intensity per tissue

mass.
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Figure 5.2: Biodistribution of AF 488 siRNA-loaded NPs on various organs at different time points. 4T1 tumor induced BALB/c mice
were treated intravenously through tail-vein injection. 100ul suspension formed by mixture of 5ul 1M SrCly/ MgCl, and 2ul 1M
Na,SOs/NaF with 1uM fluorescence-labeled negative siRNA was administered as the tumor volume reached approximately 13.20
+2.51mm’. Mice were sacrificed 1, 2 or 4 hours post intravenous treatment, followed by organ harvestment and organ tissues lysis. The
homogenized tissue lysates were next centrifuged at 15,000 RPM for 30 minutes at 4° C; with 100ul supernatants taken for analysis for
each organs’ fluorescence intensity. Mice were randomly selected and separate at 5 mice/group, data was represented as mean+=SD of the
fluorescence intensity/500mg of tissue mass. 1, 2 and 4 hours of incubation time for organ distributions of (a) SrSOs, (b) SrF,, (c) MgSOs
and (d) CO; AP. ****p<0.0001 and **p<0.01 as compared to CO3; AP of each respective organs.
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4 ]

Figure 5.3: Harvested organs upon treatment and BALB/c mice sacrificial. From top
left to right, tumor tissue, kidneys, liver, lung, spleen. Bottom left: brain.

5.3.2 Concentration-dependent biodistribution studies

Effect of salts concentration on biodistribution profile was independently
observed via intravenous injection of NPs complexed with various concentration of
Na,SO; and NaF (20mM and 50mM, respectively). The treatment was well tolerated,
and mice did not exhibit any alteration in behavior. Tissue size, color, and morphology

remained unchanged, as compared to CO; AP-treated mice.

Effect on sulfite and fluoride concentration modification showed no additional
benefit on trans-tumoural deposition. No vast difference was seen for other organs,
except for lung and spleen of AF 488-loaded SrSO; complexes. SrSOs has higher tissue
fluorescence intensity of each organ in comparison to SrF,, MgSO; and COs; AP.
Fluorescence intensity expressed from magnesium sulfite-treated groups showed data

similarity with CO; AP, with lower liver activity throughout the studies.
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Figure 5.4: Biodistribution of AF 488 siRNA-loaded NPs on various organs with different Na,SOs or NaF concentrations. 4T1 tumor-induced
BALB/c mice were intravenously treated through tail-vein injection. 100ul treatment suspensions, formed with Sul 1M SrCl,/ MgCl, and 2ul 1M
Na,SO3/NaF with 1uM fluorescence-labeled negative siRNA was administered as the tumor size reached approximately 13.20 £2.51mm’. Mice
were sacrificed 4 hours post-intravenous treatment, followed by organ harvesting and tissue lysis. Tissue lysates were centrifuged at 15,000 RPM
for 30 minutes at 4° C; with 100ul of supernatants were observed for fluorescence intensity of each tissues. 5 mice/group were randomly assigned
after tumor induction, and data was represented as mean£SD of the fluorescence intensity/500mg of tissue mass. 20mM and 50mM of sulfite and
fluoride concentration incorporated into (a) SrSO;, (b) SrF, and (c) MgSO;. ****p<(0.0001, ***p<0.001, **p<0.01 and *p<0.05 for each

respective salts, as compared with CO; AP.
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5.3.3 Influence of protein coating on biodistribution studies

Study on biodistribution activity influenced by ligand coating in vivo was
explained through the incorporation of fibronectin and transferrin protein upon formation
of siRNA-loaded particle complexes, generating ligand-coated gene-NPs. To achieve
active targeting manner, 1ug of selected proteins was incorporated into fabricated salts
for 10 minutes incubation prior to the mixture of DMEM media to form complexes
suspension for intravenous delivery into tumor-bearing BALB/c mice, with fixed salt
concentrations and incubation time (4 hours). Ligand-coated NPs consisted of SrSOs;,
SrF, and MgSO; were compared with uncoated ones, with reference to CO; AP particles.
The injections were well tolerated, and mice did not exhibit any alteration in behavior.
Tissue size, color, and morphology remained unchanged, as compared to CO3 AP-treated
mice. Fibronectin protein increasing in fluorescence activity of all organs studied, with a
greater proportional rise at the tumor site, as seen in Figure 5.3. Fibronectin-coated AF
488-NPs complexes enhanced the trans-tumoral activity with up to three-fold increment.
Transferrin protein is also associated with greater improvement in organ tissue
accumulation. Brain and kidney have more fluorescence detection upon transferrin-
coated NPs treatment, in comparison to uncoated ones. Additionally, transferrin protein
improved tumor fluorescence deposition for both SrSO; and COs; AP. Transferrin has
lesser intra-tumoral integration than fibronectin-coated particle complexes. Liver tissue
accumulation was reduced upon transfection with protein-complexed NPs, with
exception to SrF,. Lung and spleen did not show any vast changes in fluorescence
activity from both transferrin or fibronectin-coated in reference to uncoated salts
particles. SrSOs; showed greater detection of fluorescence intensity of most organs in

comparison to SrF,, MgSO; and CO3 AP.
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Figure 5.5: Biodistribution of AF 488 siRNA-NP complexes on various organs with involvement of fibronectin and transferrin coating. 4T1
tumor-induced BALB/c mice were treated intravenously through tail-vein injection. 100ul suspection formed by mixture of Sul 1M SrCly/
MgCl, and 2pl 1M Na,SOs/NaF with 1uM fluorescence-labeled negative siRNA was administered as the tumor volume reached
approximately 13.20 +2.51mm>. Mice were sacrificed 4 hours post treatment, followed by organs harvesting and lysis. Tissue lysates were
centrifuged at 15,000 RPM for 30 minutes at 4° C; with 100ul supernatants taken for observation to detect fluorescence activity in each
organs. 5 mice/group were randomly assigned after tumor induction, and data was represented as mean+SD of the fluorescence
intensity/500mg of tissue mass. Fibronectin and transferrin-coated (a) SrSO3, (b) SrF2, (c) MgSO3 and (d) CO; AP (control). ****p<(0.0001,
*#%p<0.001, **p<0.01 and *p<0.05 as compared to uncoated salts for each respective organs.
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5.3.4 Tumor regression studies involving p53-loaded NPs

Experiment on tumor regression studies was developed to review the path beyond
internalization of target genes, which consisted of disintegration process to release genetic
materials and for transcription process to occur inside the nuclear cavity. Integrated target
genes, p53 with NP complexes were administered intravenously, followed by tumor size
measurement every two days for any changes in tumor volume throughout four weeks from
initial tumor induction. The injections were well tolerated, and mice did not exhibit any
alteration in behavior. Tumor tissue mass and morphology differed based on types of
treatment, as compared to CO; AP-treated mice. The spleen was seen enlarged, with minimal
2-fold size increment for all mice, including control group on day 28 upon mice sacrificial.

No metastasis was visibly observed in lung and liver.

Comparative study on tumor changes with p53-loaded salt particles transfection
showed a reduction in tumor progression over 28 days post tumor induction based on all salts
experimented. In general, all transfected mice showed a decrease in tumor size until day 18,
followed by gradual increase in tumor volume up to day 28. SrF, showed a lower rate of
tumor growth than COs; AP, exhibiting size of 400mm3, followed by SrSOs; and MgSO; as
seen in Figure 5.4. The tumor size of naked p53 was consistently high, similarly seen with
untreated mice group. SrSO3; and MgSO; have higher growth rate in comparison with CO3
AP, indicating less ability in suspending the tumor growth, regarded with respective 600mm”
and 700mm’ upon day 28. The effect of p53 concentration on tumor regression activity was
subsequently performed, inclusive of naked p53 and untreated mice as the experimental
control. According to Figure 5.5, there was no significant alteration in tumor volume of mice

treated with SrF, and MgSOj particles, with respect to the increased amount of the apoptotic
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plasmid involved. The rate of tumor growth, however, decelerated with 20ul p53-SrSO;
complexes in comparison to 10ul p53, with an approximately 100mm’ difference in tumor
volume on day 28. The tumor size of mice transfected with naked p53 or of untreated groups

remained high throughout the study.

5.3.5 Tumor regression studies involving MAPK siRNA-loaded NPs

Studies on tumor volume were comparably done with MAPK siRNA, which
selectively silence MAP Kinase pathway. MAPK siRNA-complexed with SrSOs;, SrF, and
MgSO; NPs were administered intravenously, followed by tumor size measurement every
two days for any changes in tumor mass throughout four weeks from initial tumor induction.
The injections were well tolerated, and mice did not exhibit any alteration in behavior. Tumor
tissue size and morphology differed based on types of treatment, as compared to CO; AP-
treated mice. The spleen was seen enlarged, with minimal 2-fold size increment for all mice,
including control group on day 28 upon mice sacrificial. No metastasis was visibly observed

in lung and liver.

MAPK-loaded NPs displayed slower growth rate through SrSOs, SrF,, and MgSO3,
with comparison to CO3; AP particles, based on Figure 5.8. Tumor volumes of salt crystals
were, at least, 100mm’ smaller compared to control group, with the largest size differential
was seen SrSOs, followed by SrF, and MgSOs. Tumor development in BALB/c mice reduced
up to 200mm’ in size (in comparison with naked siRNA treatment) with incorporation of
MAPK siRNA into the complexes. Treatment involving naked siRNA showed minor changes
with untreated group, representing no effect of siRNA on potentially silencing the MAP

kinase pathway.
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Figure 5.6: Tumor regression studies of p53-loaded NPs on BALB/c mice. 4T1 tumor induced BALB/c mice were treated intravenously
through tail-vein injection with 100pl solution fabricated by 5Sul 1M SrCly/ MgCl, and 2ul 1M Na,SOs/NaF with 20ug p53 in 10pul HEPES
media, as the tumor volume reached approximately 13.20 +2.51mm’ (estimation on day 14). Naked p53 and CO3; AP groups represented
positive and negative control, in addition to untreated group as experimental control. 2" dose was administered after 2 days of 1% treatment
(day 17). Tumor growth was monitored every two days, constantly for two weeks. 5 mice/group were randomly selected after tumor
induction and data was represented as mean+SD. p53-loaded (a) SrSOs, (b) SrF, and (c¢) MgSO;. **p<0.01 and *p<0.05 as compared to

naked p53 group throughout the experiment.
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Figure 5.7: Tumor regression studies of p53 concentration effect on BALB/c mice. 4T1 tumor induced BALB/c mice were treated
intravenously through tail-vein injection with 100ul solution fabricated by Sul 1M SrCl,/ MgCl, and 2ul 1M Na,SOs;/NaF with 10 and
20pg p53 in 10pl HEPES as the tumor volume reached approximately 13.20 +2.51mm’ (estimation on day 14). Naked p53 group and
untreated mice represented experimental negative control. 2" dose was administered after 2 days of 1*' treatment (day 17). Tumor growth
was monitored every two days, constantly for two weeks. 5 mice/group were randomly selected after tumor induction and data was
represented as mean+SD. 10 and 20pg p53 generated with (a) SrSOs, (b) SrF; and (¢) MgSOs. **p<0.01 and *p<0.05 as compared to
naked p53 group throughout the experiment.
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Additionally, all salt particles improved the siRNA activity greater than established CO3

AP particles.

Subsequent experiments following the effect of MAPK siRNA concentration on
tumor volume of BALB/c mice revealed that with 100nM MAPK concentration, tumor
growth rate was superior to 50nM concentration, as seen by siRNA-loaded SrSO; and
SrF, (Figure 5.7). However, tumor volume of MgSO; is smaller upon increasing in
siRNA concentration, with around 100mm’® difference. The mass of tumor remained
less with siRNA-loaded with vector than the naked counterpart. Treatment involving
naked siRNA showed minor changes with untreated group, representing no effect of

siRNA on potentially silencing the MAP kinase pathway.

5.3.6 Tumor regression studies involving ligand-coated NPs

The impact of fibronectin and transferrin coating on tumor size on BALB/c mice
was studied with the incorporation of Iug of protein into p53-loaded particle
complexes, followed by intravenous injection into tumor-bearing BALB/c mice and
tumor size measurement every two days for any changes in tumor volume throughout
four weeks from initial tumor induction. The treatment was well tolerated, and mice did
not exhibit any alteration in behavior. Tumor tissue size and morphology differed based
on types of treatment, as compared to CO; AP-treated mice. The spleen was seen
enlarged, with minimal 2-fold size increment for all mice, including control group on

day 28 upon mice sacrificial. No metastasis was visibly observed in lung and liver.
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Figure 5.8: Tumor regression studies of MAPK siRNA-loaded NPs on BALB/c mice. 4T1 tumor induced BALB/c mice were treated
intravenously through tail-vein injection with 100ul solution fabricated by by Sul 1M SrCl,/ MgCl, and 2ul 1M Na,SOs;/NaF with S0mM
MAPK in 10pl HEPES as the tumor volume reached approximately 13.20 £2.51mm? (estimation on day 14). Untreated, naked siRNA and
CO3; AP groups represented positive and negative control. 2" dose was administered after 2 days of 1* treatment (day 17). Tumor growth
was monitored every two days, constantly for two weeks. 5 mice/group were randomly selected after tumor induction and data was
represented as mean+=SD. MAPK-loaded (a) SrSOs, (b) SrF; and (¢) MgSOs;. *#p<0.01 and *p<0.05 as compared to naked MAPK siRNA
throughout the experiment.

Page | 161



In vivo efficacy of selected NPs | Chapter 5

a) b)
Influence of MAPK concentration on Influence of MAPK concentration on

tumour size of BALB/c mice 800~ tumour size of BALB/c mice
800~

— —— 100nM MAPK-loaded SrSO; e —+— 100nM MAPK-loaded SrF,
) - e
E 600- —=~ 50nM MAPK-loaded SrSO, %600 SOQE?OA;K'Edezd SrF,
- ; -
2 —e— Naked 50nM siRNA E - N ted“ Ts
_g 400- —%— Untreated mice g 400+ Untreated mice
F 5
E 2004 £ 200+
=] =]
= = ¢
0- T 0- T T T T T T T
2 N R D P PR
Days Days (post tumour induction)
¢)
Influence of MAPK concentration on
800- tumour size of BALB/c mice
— —4— 100nM MAPK-loaded MgSO,
@
& 600+ = 50nM MAPK-loaded MgSO,
E —e- Naked 50nM siRNA
-g 400 =¥— Untreated mice
>
é 200+
=]
[
0=

R A S <

Days (post tumour induction)
Figure 5.9: Tumor regression studies of MAPK concentration effect on BALB/c mice. 4T1 tumor induced BALB/c mice were treated
intravenously through tail-vein injection with 100ul solution fabricated by Sul 1M SrCl,/ MgCl; and 2ul 1M Na,;SO;/NaF with 50mM and
100nM MAPK in 10ul HEPES as the tumor volume reached approximately 13.20 +2.51mm’ (estimation on day 14). Uncoated and naked
siRNA represented the negative control group. 2" dose was administered after 2 days of 1% treatment (day 17). Tumor growth was
monitored every two days, constantly for two weeks. 5 mice/group were randomly selected after tumor induction and data was represented

as mean+=SD. MAPK-loaded (a) SrSOs, (b) SrF; and (¢) MgSOs;. **p<0.01 and *p<0.05 as compared to naked MAPK siRNA throughout
the experiment.
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Figure 5.10: Tumor mass seen from excision biopsy of sacrificed BALB/c mouse on
day 28. The enlarged spleen was seen next to the carcinoma tissue.

Transferrin and fibronectin protein incorporation are associated with the
reduction in tumor progression, through coating onto all salts. In comparison to
uncoated p53-NP complexes, the tumor mass decreased up to 300mm’ upon 28 days
post tumor induction. Fibronectin showed superiority in assisting tumor shrinkage of
p53-loaded SrSO; and SrF, than by transferrin coating. Nonetheless, transferrin
improves the tumor reduction rate for MgSO; greater than fibronectin-complexed
particles. The changes in tumor growth rate vary between salts and proteins used, with
fibronectin-coated, p53-loaded SrF, showed smallest tumor size of 100mm> on day 28,
in comparison to 180mm’® and 200mm’ of respective SrSOs; and MgSO;, further
indicating that the size reduction assisted by fibronectin is almost 70% from uncoated
SrF,, followed by 40% and 50% on SrSO; and MgSOs. The tumor size of transferrin-

coated, p53-bound MgSO; was 140mm’ on day 28, followed by 190mm’ and 200mm”
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with respect to SrSO; and SrF,, revealing size reduction in association to transferrin is

approximately 70% with MgSOs, followed by 40% of both SrSO; and SrF,.

The size differential from naked p53 delivery in comparison to various
treatments hence verified the vast improvement in genetic delivery in vivo via potential
vectors, in association to ligand coating. Through comparison on different types of p53
delivery, the highest reduction of tumor growth seen with approximately 90% with
fibronectin-coated p53-StF, complexes, determined on day 28 from 950mm® of tumor
size treated with naked p53, followed by 85% reduction by transferrin-coated p53-

MgSO; complexes.
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Figure 5.11: Tumor regression studies for impact of protein coating on BALB/c mice. 4T1 tumor induced BALB/c mice were treated
intravenously through tail-vein injection with 100ul solution fabricated by Sul 1M SrCl,/ MgCl, and 2ul 1M Na;SOs/NaF with 20ug p53 in 10ul
HEPES, followed by addition of 1ug fibronectin or transferrin as the tumor volume reached approximately 13.20 +2.51mm?’ (estimation on day
14). Uncoated NP complexes represented negative control. 2" dose was administered after 2 days of 1* treatment (day 17). Tumor growth was
monitored every two days, constantly for two weeks. 5 mice/group were randomly selected after tumor induction and data was represented as
mean+SD. p53-loaded (a) SrSO3, (b) SrF, and (¢) MgSO;. **p<0.01 and *p<0.05 as compared to uncoated NPs.
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5.4 Discussions

The influence of selected nano-vectors in efficiently transporting genetic material
in vivo was explored in this chapter. Each salt particle with the ability to improve
transportation of the nucleic acid in vitro, in addition to low cellular toxicity was further
studied to understand the impact of each potential nanocarriers in the biological system.
The efficient utilization of genetic material both in vitro and in vivo are often hindered by
their high molecular weight and negative charge, which is associated with instability in
the blood circulation (1). Both pDNA and siRNA are double-stranded nucleic acids with
anionic phosphodiester backbones. Distinctive size, structure and chemistry of pPDNA and
siRNA impose particular requirements for fabricating ideal nanocarriers. The size
differential of pDNA in relation to siRNA results in the different level of electrostatic
interactions with vectors. siRNA has lower ability to generate stable complexes compared
to pDNA duplexes. siRNA is more degradable due to RNA backbone consisting ribose
with a hydroxyl group at the 2’ position of the pentose ring in comparison to a more
stabilized structure of pDNA via deoxyribose. Both types of nucleic acids vary in their
site of action, in which cytoplasmic delivery of siRNA is only required to perform a
silencing activity, in comparison to pDNA, which requires a nuclear transfer for
transgenic expression (2)(3). The inclusion of both pDNA and siRNA was hence

fundamental to appreciate the vector potential of selected salt crystals.

Efficient systemic distribution of gene therapy is impeded by various extracellular
barriers, involving serum endonuclease attack causing premature degradation of gene and
active removal by glomerular filtration, associated with the plasma half-life of <10
minutes (4). Fundamental problems related to potential carriers may further worsen the

inefficiency of gene delivery, including opsonization of nanoparticles with non-specific
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plasma proteins, enabling it to become more visible towards the phagocytic cells (e.g.,
macrophages, monocyte or phagocyte). Following opsonization, phagocytosis may occur,
depending on their surface characteristics, including Zeta charge and hydrophilicity.
Opsonization happened within minutes after intravenous delivery, removes the particles
from the circulatory via mononuclear and polymorphonuclear phagocytic system (5).
Reticuloendothelial system (RES), which is part of the immune response system, is
located in the liver (Kupffer cells), spleen and lung. RES consists of phagocytic cells
including circulatory monocytes and macrophages, binding to the opsonized particles,
which are readily coated with serum protein to trigger the mechanism for RES detection
in the blood circulation (6). The uptake via RES organs depends on particle sizes and
surface characteristics, which hydrophobic particles are preferred ‘objects’ to be taken up

mostly by the liver and spleen (7).

Transportation of particles passing through cancer endothelium region is more
efficient than normal endothelium, associated with leaky vasculature (permeation) and
inefficient lymphatic drainage (retention) of the tumor microenvironment, often referred
to ‘enhanced permeability and retention’ (EPR) effect (8). Nonetheless, EPR effect may
efficiently occur for particles that are not rapidly cleared from the circulatory system for

the opportunity to encounter the leaky vasculature (6).

Biodistribution analysis supports the notion that SrSOs, SrF,, and MgSO; have
little ability to escape RES, according to high fluorescence intensity primarily in liver and
kidney. The rapid translocation into organs was suggested by clearance from the
bloodstream by circulating macrophages, proven as early as 1-hour post injection. As

time progress, the fluorescence kidney saturation remains almost stagnant, implying

Page | 167



In vivo efficacy of selected NPs | Chapter 5

possible little kidney elimination properties. Kidney efficiently excretes particles with
hydrodynamic diameter <35nm via renal filtration and urinary excretion, but larger
particles are often eliminated by the liver (9). It is proposed that the particles with neutral
surface charge have longer circulation time and little accumulation in RES organs (10).
Blood circulatory time may be prolonged by coating with polyethylene glycol (PEG), the
most efficient method to reduce scavenging protein adsorption, hence are likely to avoid
the RES system (11). However, PEG coating may prevent the essential non-bilayer
intermediate formation, thus inhibit the fusion with the cellular and the endosomal
membrane, associated with cellular internalization and endosomal escape, decreasing the

gene activity (12).

Increased fluorescence activity in the brain at 2 hours implies the ability if salt
particles to assist in transportation across the blood-brain barrier (BBB), showing
possible hydrophobic properties of treatment complexes. SrSO; has higher lung and
spleen siRNA deposition of all salts tested, indicating more diverged distribution of the
salt throughout the body. BBB prevents the uptake of most particles, with exception to
small hydrophilic compounds with less than 150Da or highly hydrophobic compounds
with less than 600Da via passive diffusion (13). However, NPs phagocytosis by
monocyte approach may assist in the delivery of gene-loaded NPs into the brain, like
Trojan horses. A BBB-impermeable drug, serotonin embedded into negatively charged
particles showed a greater concentration of serotonin in the brain, up to two-fold than the
free drug (14). Hence, it is also likely that the salt particles are transported via Trojan
horse mechanism, increasing the availability of fluorescence siRNA activity in the brain

tissues.
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Following 4 hours of IV injection, the RES organ is associated with the
majority of NPs uptake with low tumor tissue saturation (Figure 5.1). Upon parenteral
delivery, the availability of siRNA inside the organ tissues, demonstrated by fluorescence
intensity was observed as minimal time as 1 hour to various organs, including tumor site.
Angiogenesis, which promotes the development of irregular blood vessels with
discontinuous epithelium and lack the basal membrane of normal vascular structures,
results in fenestrations inside the capillaries ranging from 200 to 2000nm (15). The
loosely packed endothelial cells facilitate in the diffusion, associated with the enhanced

permeation portion of EPR effect, seen with fluoresced cancer cells.

With the addition of Na,SO; and NaF concentrations, the particle size becomes
larger with zeta potential becomes more negative, due to anionic domains from the sulfite
and fluoride. Concentration increment is related to higher crystal number and greater
volume, which may not have an added benefit to the transfection efficacy due to efficient
clearance of large particles by circulating macrophages. Larger particles are more
efficiently captured by the RES and sequestered by the liver due to opsonization and
protein association on the particle surface (16). The circulatory plasma proteins tend to
bind to larger particulate matter and trigger macrophages response, causing inefficiency
in circulatory transportation (17). Higher concentration is also related increased risk of
salt toxicity, attributed to reduced kidney elimination. Renal excretion would not be
expected for large particles (18), hence, will be highly dependent the liver metabolism

with fecal clearance (19).

Fibronectin receptor, which modulates numerous signaling pathway, are over-

expressed in many tumors, associated with increased carcinoma aggression (20).
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Transferrin receptor, which acts as an iron importer, is also over-expressed in many
malignant cells (100 folds) due to high demands for iron. Additionally, transferrin
receptor is widely studied in BBB targeting, regulates the uptake of iron intracellularly
via transferrin (21), which explains the enhanced bioavailability of fluorescence siRNA
upon coating with transferrin protein. Enhancement in tumor bioavailability was likely
associated with incorporation of active targeting, which specifically transported SrSOs,
SrF, and MgSOj; into the tumor tissues. Modification of nanocarriers with active targeting
moieties (including transferrin and fibronectin) can significantly enhance the
accumulation in cancer tissues and improve the complexes uptake by tumor cells, hence
the anticancer effect. Additionally, with smaller size, transferrin and fibronectin-coated
nanocrystals complexes has better retention activity at the tumor site, therefore, improve

chances for internalization (22)(23).

Tumor regression study on target genes was performed to identify the effect of the
carrier in improving the delivery of genes and subsequently increasing the targeted effect.
p53 is a gene that codes for a protein which regulates the cell cycle, playing a prominent
role in conserving stability of cells by preventing genome mutations. DNA damage and
other stress signals may trigger the increased of p53 proteins, with three primary
functions: growth arrest, DNA repair and apoptosis (24). p53-loaded NPs demonstrated a
reduction in tumor progress, as seen in Figure 5.4 with the comparison to naked p53.
Naked p53 are readily degraded by many endogenous enzymes, therefore, brings to the
importance of nanocarriers in improving the bioavailability in the circulatory system (25).
SrSO;, SrF, and MgSO; particles loaded with the pS3 were able to protect the gene from
early degradation, comparable to CO; AP NPs to improve the amount of salt particles

transported intracellularly and subsequent escape of p53 for transcription inside the
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nuclear cavity to activate the apoptotic mechanism, as referred to tumor size reduction
(26). However, with increasing p53 concentrations, tumor tissue growth remained
stagnant, possibly due to the insufficiency of p53 concentration to further enhance the
pS53-associated cell death (27), hence, a larger concentration of p5S3 may be needed to
promote greater tumor reduction effect. It is also proposed that saturation of excess p53

intracellularly may bring to exocytosis of the genes from the cancer cells (28).

Mitogen-activated protein kinase (MAP kinase) initiate the transmission and
amplification of signals linked to cell proliferation and death. Recent studies have shown
that breast cancers frequently contain an increased proportion of cells with activated form
of MAP kinase (29). p44/42 MAPK siRNA brings to inhibition of MAP kinase
expression via RNA interference (RNAi1), which expression were selectively silenced
through the delivery of double stranded RNA molecules (30). The activation of siRNA
with RNA-induced silencing complex (RISC) via cleaving of dsRNA resulted in an
activated-RISC that targets the specific mRNA for recognition. Argonaute 2, from RISC,

cleaves the mRNA, hence inducing mRNA degradation and gene silencing (31).

Tumor development in BALB/c mice decelerated with the incorporation of
MAPK siRNA into the complexes due to the ability of the complexes to protect naked
siRNA from disintegration by circulating nuclease (32). Without vector, naked siRNA
will be eliminated from the blood within 5 minutes post injection (33). Lower tumor
volume of salt particles in comparison with CO3; AP implies better and longer protection
of the RNA for therapeutic applications. Raising siRNA concentration quicken the tumor
growth activity, as seen with larger tumor mass of 100nM than of 50nM. The divergence

between the concentration and intended effect is caused by off-target mechanism,
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resulted from unintended gene interaction of different gene pathway. The integration of
passenger strand into the RISC induces the off-target activity, which may be prevented by
modifying the seed region, such as 2’-O-methyl ribosyl substitution, hence enhancing the
specificity of siRNA and lessening the off-target effect (34). Additionally, pooling siRNA
with the different region of target mRNA may further reduce the effect and subsequently
improve the silencing activity (35). Prolonged existence of siRNA inside the cells may
also activate the lysosomal activity to degrade or exocytose the nucleic acid

extracellularly (36).

SrF; and SrSO; improve the delivery of p53 and MAPK siRNA more than MgSO3
and COs; AP, demonstrated by greater carcinoma size reduction on day 28. Improved
carrier activity is possibly related to stronger binding with nucleic acid (Figure 3.10 and
3.11), enhancing the transportation of genetic materials into the targeted areas (37). The
high binding affinity of salt particles may also transport more pDNA and siRNA into the
cells, increasing the availability of the nucleic acids for transcription and translation

activity in the nucleus and cytoplasmic region (31).

Transferrin and fibronectin protein coating may protect the salt particles from
non-specific binding with plasma proteins, causing non-specific delivery and uptake into
various organs (38). Additionally, transferrin- or fibronectin-coated NPs is associated
with the reduction in particle structure due to the covalent bond between proteins to the
NPs surface, hence causing shrinkage in salts’ morphology (39)(40). NPs size affects the
accessibility of target organs, the mode of cellular uptake, and efficiency of endocytic
pathway thus is one of the most important parameters to establish the ideal gene vector

(22). Synergistic effect of active transport with the presence of transferrin and
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fibronectin; and the size reduction activity was proven in both tumor fluorescence activity
of biodistribution studies (Figure 5.3) and reduction in tumor growth (Figure 5.8). Size
reduction of NPs also shifted the zeta potential into less negatively-charged particles.
Stronger electrostatic interactions from the cation-providing domains of NPs to the
negatively-charged cellular membrane, in addition to ligand-receptor binding, improves

the gene delivery system (41), as shown with higher cancer distribution and lower tumor

tissue growth.

Dual-ligand system

+

+
+

-+
Electrostatic interaction

Figure 5.12: Proposed dual-ligand system of protein binding and electrostatic
interactions on improving intracellular delivery of genetic material
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5.5 Conclusion

Here we have studied the ability of selected NPs to transport the genetic
materials in the animal model, as proven in vitro backgrounds. The animal study
shows improvement of gene-transporting ability of NPs, especially with SrSO; and
StF,, in comparison to established CO; AP. Higher concentration of Na,SOs and NaF
did not improve the carrier ability of salts, probably size-related. Intravenous delivery
of p53-NPs involving SrSOs, StF,, and MgSOs, of smaller size (<100nm in diameter),
had better anti-tumoral effect in mice when coated with transferrin or fibronectin.
The significant tumor growth reduction suggests the potential characteristics of salt
particles in improvising the therapeutic gene efficacy of both pDNA and siRNA. The
increment of genetic material concentration may not be beneficial to enhance the

silencing efficiency, related to the off-target effect of siRNA.

Further investigations concerning toxicity profile on salt particles may be

advantageous to extend the existing knowledge of the safety manners of prospective

carrier salts in the animal model.
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6.1 Conclusion

Our studies have explored various potential insoluble NPs fabricated from the
different mixture of soluble components in improving the readily available nucleic acid
carriers. We have revealed the association between several external factors such as salt
concentration, pH, temperature and time of incubation in forming various sizes and numbers
of particles, in which we have selected 5:2 ratio of cation-providing salt and anion-providing
salt concentration to form 21 different types of salt particles. Based on the studies, the ideal
condition to fabricate salt crystals is adapted at pH 7.5 with incubation set at 37°C for 30
minutes and simultaneously compared to an established CO3 AP NPs. Further observation
revealed the correlation between absorbance intensity with particle size. Additionally, the NP
size determination demonstrated the significant association of protein coating and co-

precipitation of NPs in modifying the diameter of salt particles.

The efficiency in adsorbing negatively charged pDNA and siRNA is interrelated to
NPs competency in promoting cellular internalization, followed by subsequent gene
expression and siRNA silencing efficacy. Gene expression and silencing activity commence
upon proficient disintegration of BaSOs3, BaF;, SrSOs4, SrSOs;, SrF, and MgSOs; NPs
complexes via exposure of acidic environment in the late endosome, enabling the escape of
pDNA and siRNA from particle structures as well as from endosomes. Reduced cellular
viability upon transfection with BaSO4, BaSOs3, and BaF, in the cytotoxicity assay, affected
the selection of barium crystals despite high efficacy in conveying the genetic materials into
the targeted areas in vitro. Analysis of MAPK siRNA delivery via cellular viability assay and
Western blotting proved SrSO3s, SrF>, and MgSO3 NPs as the superior nucleic acid carrier in

comparison to CO3 AP, hence, they were further investigated in vivo. Gene transportation
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was enhanced with the coating of NPs with ligands involving transferrin and fibronectin via
involvement of active targeting through ligand-receptor interaction, thus stimulating ligand-

mediated endocytosis.

Transportation of the genetic materials in vivo observed via biodistribution studies on
4T1-tumour induced female BALB/c mice demonstrated high fluorescence siRNA
accumulation in the liver and kidney, followed by brain and tumor tissues upon parenteral
administration of siRNA-loaded SrSOs, SrF», and MgSOs particles. We also discovered high
fluorescence intensity in tumor with protein coating, indicating more deposition of siRNA in
the tumor region. The selected particles seemingly improved the targeted delivery of p53 and
MAPK siRNA based on tumor regression studies, seen with reduction of cancer cells growth
following observation over 28 days. Transferrin and fibronectin coating further enhanced the
vector-associated anti-tumoral activity seen with further reduction of tumor lump throughout

the studies.

As the conclusion, SrSO3, SrF», and MgSOs salt particles are proven as excellent
vectors with the ability to adsorb negatively charged nucleic acids, assisting in cellular
internalization and ultimately, improving transportation of various genetic materials into

mammary carcinoma cells, both in vitro and in vivo.
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6.2 Future recommendation

The selected NPs may be further experimented in vivo to investigate the
pharmacokinetic and pharmacodynamic characteristics of the salt particles, which may
determine the dosing range for optimal transfection efficiency with the understanding of the
salts absorption, distribution, metabolism and elimination process. Determination of short-
and long-term toxicity of individual salts may also be beneficial for application in future
clinical studies. Incorporation of PEG into the particle complexes may improve the
availability of salt particles inside the circulatory system, hence, should ideally be explored in
the future. The use of different types of ligand coating could have further augmentation in
active targeting towards tumor cells, or even can enable the targeting of various types of

carcinoma based on their receptor specificity.

We also hoped that the selected NPs could be elaborately investigated as a carrier for
various carcinogenic therapies such as cytotoxic drugs, which are often associated with many
life-threatening side effects (e.g. drug-induced cardiotoxicity, renal toxicity). Accumulation
of drugs in the targeted tumor region may be elevated via efficient nanocarriers, hence
reducing the scavenging drugs in the biological circulation. In different approaches, NPs may
equally enhance other therapeutic treatments of various types of diseases, with issues in drug
stability and toxicity, such as oral delivery of hypoglycemic agents and insulin for

management of diabetes mellitus.
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Appendix 1
IP Lysis Buffer (pH 7.4)

0.025M Tris
0.15M NaCl
0.00IM EDTA
1% NP-40

5% glycerol

1X protease inhibitor

Appendix 2
10X gel loading dye

500mM Tris (pH 7.6)

40% Glycerol

20% SDS

1% Bromophenol blue

5% B-mercaptoethanol (added before use)
50% Glycerol (added before use)

Appendix 3
10X running buffer

250mM Tris

19.2M Glycine
35mM SDS
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Appendix 4

10X TBST buffer (300ml)

7.3g Tris
26.3g NaCl

Appendix 5
5% skimmed milk in 1X TBST

2.5g skim milk
50ml 1X TBST

Appendix 6

Enhanced chemiluminescence (ECL) substrate

10ml Clarity western peroxide reagent

10ml Clarity wastern luminol/enhancer reagent
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Fluorescence images of gene expression activity of pGFP-NPs on MCF-7 cells

Unloaded CO3 AP pGL3-loaded CO3 AP

Unloaded BaSQO3
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Appendix 8

Fluorescence microscopic images of gene expression activity of pGFP-complexed NPs on MCF-7 cells

BaSOq4 BaSOs BaF: BaCOs

SrSO4 SrSO3 SrF SrCOs Sr3(PO4)2

b)

e) -

FeSOs FeCOs Fe3(PO4):2 COs3 AP

Mg3(PO4)2
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Luminescence intensity of pGL3-complexed NPs on MCF-7 and 4T1 cells
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Cell viability of MAPK siRNA-loaded NPs on a) MCF-7 and b) 4T1
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MCF-7 and 4T1 cell viability of Bcl-2, ErbB2, MAPK, PI3K and ROS1 siRNA-loaded
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Appendix 12

Percentage of Cell Viability with Salt Combination on a) MCF-7 and b) 4T1 cells for 24 to 72 hours
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Appendix 13

Effect of different pGL3 concentrations on luciferase activity in MCF-7 and 4T1 cells (Log Scale)
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Appendix 14

Percentage of Cell Viability with salt particles on MCF-7 cells for 24 to 48 hours
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NTRODUCTION

Cancer baleng: to 2 goup of dissases charackrized by
emcoatrolled call division along with inactrration of apop-
fothc processes and sobseguent spread of malignamt cells fo
variow argams of the body. Abmormal coll proliforation & the
mesnlts of mufations I profo-oncopeaes., axt-apopiotic genes
and fumor seppressar genes whils acquisition of metestatic
proparties is dee o the down-megubition of call adhesion
mcaptors, wp-rmhtion of call metity-eakencing recepinrs
and actvatiom of membrazme metallopromases. D:En'-'t
types of cancens are diagnosed depending om the orgam in-
vohved like brexst, beng, colom, ernary bladder, cvary, kid-
=y and prostie cancer. In majority of casss, by the Sme it is
dizgnosed, the patents have already devaloped secondary
tamon (mestses) and if the spread is not controlled, can-
var can lead to mortality [1]. Camear is gms ome of e major
cazses of deatis in the world with about 7.8 million pecpls
deaths owig 1o cancer im 008, According fo the Amesican
Cancar Sockety, in the United States aloss approxmately
1,538,910 now cases hanvs besn reported in the year 2012
Difforent factors that kere bean identified contribuimg to the
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developmant of cancer inclede genstic facton inchding fam-
iby history, sanvironmantal factoms, smch as, sxpoamms o mdis-
tiom, infemss wun expossre and chemicals (rascinogens).
lifustyls and it ralated factors mch as, cigarsto

heavy aleokol intake, obsaity 2nd poor moirition. Seome types
of specific camcars are known to be camed by misctiouns
aZant, urhn.lum.-.]:qnﬂmmm[}mq.hqnmﬁ
vims (HEV), keman imemmedaficioncy vires (HIV), Haili-
cobacser Pyrol and others. Various teatment approaches are
mailshle for cancer depending cm the ype and stge of cam-
'HEIP} bormenal tharagpy, I'I:I.I'El:l'_‘."-i plnlin‘q::." For
breast cancer the treatmeat options imvohee breast-conserving
Surgary, mastechomny alomg with chamotherapy or mdiation
alon or in combimation Lymephedara of the amms iz ang of
the most comzmon side efech msociand with thess medods;
othars are mumbmass or tghiness amd palling or soetching in
the chest wall, arms, or shouldor. Treatmant sirategies avadl-
able for camcer of colon and rectim dopend on temor loca-
ticz and stage. For sarky stage surgery is cozxidered o be &
prizary option with chemoterapy aloss or I combination
with radiation baing opted for e latw shge divass bafors or
after sergary and the side offocts associared with thess meth-
ods am bowel dyifunctica and mowmsace. Lung cancer s
clzifiod as small call or mon-mall call type for selection of
the meatment For wmall cell kng cancer mdiation therapy
zlone or in combization with chemotherapy whereas for
carty stage noo-small call kng cancer, srgery & well as

€ ¥4 Beedbam Scence Pablobery
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chemotherapy or radiation are nsed 2ad advamced stage an-
car is trezied with chemcotherapy alons, mdiaton alone or in
combination [1]. Comrantiomal thorapies available for cancar
wach a5 chemotherapy, sergery and ndiotherapry are asod-
ated with risks of poor murvival e dee v mulitple Hcon
incleding developmant of madstanes to dregs and alse lack in

farget specificity, mmlting in mnaansd side effech on sor-
m-ﬂ:.ugbubiy:-n]hmdh:dm-ﬂmglndnmmuﬂu
therapontic doss [3]. (ene thearapy mvobees amploying dif-
furant types of viral and non-viral camian to thera-
peutc gane(s) of mirest and facilitete the prodoction of thae
desinabls ferapeuiic profuins) rrecoming mltipls biclog-
cal bariars and mcruaaing the efficacy and target
specificity of gemetfic matrizk while decreasing the sida-
aifects. If the cument mayjor hurdle of target specificity could
e overcoma, gens ¢ world b a promising approach

consdering & safety Lml:-mhrm.;upnﬁ:uﬂfhuudﬁ
afects a5 compared o other camantly avadlable srateges
[4]. Depanding on the tharspestic target geae tharapy could
be classified inin theee major catgonios mchding temor
SEPPresIr Eame replacamant therapy, Imomme gese Sempy
and exryme or prodreg-hesed therapy [3]. This meview i
particularty foczied cm e cament progmuss of dalivery of
amargny camoar therapentic gemes potatially capeble of
lﬂnnngl;:tgt-m:tm:ﬂ]hhuﬂlm:ﬁ]lnlhm{m
virn) and animal modek ¢in wval nsing a vamisty of potemt
viral and nem-viral carmiam.

DELIVEEY AND FXPEFSSI0N OF p5d GENE

The pi3 gene balomgs to the chss of tomor supprossar
manes and & comsidered o be oo of the most portamt
ganss playing moles in defending moechanism of temor dewal-
.:pmm[ﬁ] In majority of buman cancer cases it is found 1o

b omixted leading fo activate the umderhying mechanizm
which triggers tumorigeness [7). pi3 i Seapertically im-
poriant gans fior cancer reatment & it is respomsibla for call
cycle progression, DA mpar and ndection of apoptosis
against callnlar siress and demege, and therefore more ofen
rufarred to as “guardian of genome™ [B]. In addiicn, 3 has
a pivotal ok I moreasing the thampestic affects of chama-
thamapy, Rdistharapy and axti-amgiogenesis Serapy [9] The
mechaisms by which pi3 plays crifical roks i 2 il ae
dopicted i (Fig. 1)

P43 gene wan deliversd wing 2 meshar of viral and non-
vinl camriers b difforest types of cancar calk i vire and
in wve. Liposomes are amoxng thess veciors nsed wary offi-
dantly for the delivery purposs. Sysmmic admimistration of
twe lposomepid oompler copdsting of AJHZI-
(DOTMA) md dickeyphospiasdyktimchmme (DOFE)
fogether with fractn promoter-contaming pi3 plaseid, was
muparied to redece not ooly the sme of the primary mmars
bt also proventod the relapee and metastases of 2 malignamt
beman bewast cancer in mude mice [10]. Lipoveme-medixied
dalfvary of CMV-p33 plamid DNA alons was proved mef-
foctive in ing cell death in MDA-ME231 brosst can-
car calls, bt when moubated with setrdiol, the liposomal
P33 complex was shown o inoeass cell killing actvity by
o fold as compared to the wils mnsfected with the comse-
sponding mock vector [11]. The call killing wa frend to be
due o zpoptosds mvolving apopiotic body foreaton, cell
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shrinkage 2nd morwase = fomecence affer fermina] wnd-
labeling. whereas the meckanism for action of eiadiol &
speculated i ba mdistribetion of the gens from cytoplasm o
the neclons which could oconr dering both the wpaks and
postupizie phases. Ant-mnsfarin moepior simgle-chain
antihody Fv fragmant (ScPv)-dimected daolivary of immoe-

nnl.pmm.‘pﬁﬁgmnmyh:mlmtumﬂ:m:-h]:m—
snlted m an mmprovemant of tansfection aficimcy and

inte mmar calls & comparisan with the whals
axtibody camplex or mamsfura moleculs
italf 2 demomsirated In previces smdies, becms scfv i
im]hmmmuﬂhﬂnpmtﬁnglhhtjr[l!].l‘nu-
of wild-type p33 gens, liposomal nanoparticles trgeted by 2
single-chain antbody fragment to the tansfemin recepbor
{'I'ﬂ.:l:F':}mmn:lptnd in comhimation with gemcit-
atine n matashtc panoeatic modal, demonstrating a pro-
longed medisn survivel md ale degsased mmor bordas
compared with sngle dmyg therapy [13] In a recant smdy,
targetd lpid microbabble: ware synthesized to enkance the
tmfection afficiency of wild-typs (wit) pi3 gem o ovaras
cancer calls trough hrsound argeted micobubble de-
struction (UTMLY) tchmiges [14]. Lipid micobubbla con-
juzated with hnfemiring homons-relsaing homons
(LHEHz) and mixed with the pEGFP-NI1-wi p33 phsmid
sigmificanthy anhanced tramsfection aficiency of wt p?3 guns
with higher apopiodis mie & comparkon with ofher toat-
mant groups [14]. b 2 similer attempt to increase the trans-
foctiom efficiancy of pl3 pune, dexman graft-poly (I-
dimetinyd aming) athy] methacrylate) (TPD) vecior was de-
valoped and used to tranafect MCFT breast camcar call lizes,
leading i significantly higher tramsfection sffidency com-
parad to Lipofectming JE {commarcial vector) [15]. In ad-
ditiom, the DPDEGFP-cl-pl3 comphx mocesafelly mns-
mized the tumer growth in MCF7 mnogadt fomor modals
[15). Bireast cancar cells temsbected with wi pi3 DHA (Fr
PI3-DNA}loaded poly(D,L-lctide-co-ghyoouide) mnopars-
chea promoted sestaned and dmificantty Freater axtproki-
mm‘mq.fnmmndm&nmmﬂlnkﬂmpﬂ-ﬂﬂﬂ
or wt pi3-DMA complexed with Lipofectaming ({cozmmer-
cially availsble vecior) segeeing tof the sow mlass of
LHA from the mnoparticks in te il might have conirb-
uted fo the betier effect [16]. Intracallnler delivery of p33
gane wing epidermal mowdh factor receptor (EGTR) targer-
ing peptide-modified thinlamed gelatm sanoparticles signif-
cantly decressed smrvival of pencreatic cancer calls whan
compared with the poutve ceatrol ming Gpofctiz-TNA
complex and other treatmants nuing commarcially availshls
carmiars of p33 gane [17]. Again in a sovel approach sxplos-
ing changes in Epid metabelism and call mezmbrans bicpkye-
icy weually chwarved dur , warface modifed
namoparticles Sormulated with surfactant d:.u:l:-&cjrl:l:lm-th
lmmmoninebmomids (DMAB) and p33 plammid DNA m-
sulbted in greater miemction with the mambrme lipid of m-
man prostate carcinoms oells than with enmodified nanopar-
ticles o wire and noreased uptake by sadothelial cells &
increased tumser acczmmiation, which conld be cormelated to
improved efficacy of p33 mene te v [18]. hlnnirﬂmt:r
spacodled plesmid DNA isolated with
chrometngraphic maivix was ancamnland within |:i1|:-:-.|l
namoparticle: with the me of jmotopic gelatin. The ik wrs
tmmfection rumlfs confimed the kighost pid empraion
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Fig. (1) p33 i sctivaned by dilfesenl alrcai igaali ek & DNA disags md various oncopsis chmce ind nduss vimom machmiisg o
mapoase o fuch sigealy, whesh isslede growth amed, spopioni of DNA nepair. Cirowth srreal it mainly medsisd beagh setrvation of CDE
mhibiied p2] pene, mppresiing. wids mnge of COEL Apopons i ledisial Gesugh acivalion of many genes induding BAX and MOXA,
destabaliping, mtcchondeidl membrass o sssisl cylochome C release md thui tigperng spoplo: cocads of caipees sctivalion. One of pi3
Eaniciplonal gl geacd, pAIRIL e abeaudlaxide raducise, wheth o ciicnlial e both DNA replacalion sid spar. The apeng
ol p33 i controllad by fpid ubigulsiprolessm s-depends] dogradalion, manly cud by Mdud | ofle over-expiesied i@ miny ciibem.
Min] hinds dircetly W pi3 w promate pi3 degradation aed Form & negative foalhack loop w contral te bevel of p53. Mds l-salised p53
suppesasion i mhibiled by he sctien of ARF umes suppressor. ARF blodks isteraction betweoen p53 md Midml by bading o Mdal md
Sieelom daluling ind activaled pi3. ARF cxproimcn o dopendenl an (he wamicnijpion [ades EIF-|, mpelaad by the ichibablanema (Kh)
e aid by e astion of encgencs, DMA demige aclivale prolen kings inchading ATM and ATR 1o phisgharylile p33 al e
mndusi, caunng p53 mcremenl Masl his no cllod o phaighoryliial p53, promoling sofe sipicson &l p53. Prodoin kaass will be mac-
Erve i DN A dimge o spassd. P33 i et dephénphaiyliinl nd dsioyved by the accemulaed Mdsl

with the muparcoided DNA & compared to ofer formub-
tioms, asmablishing 2 potemtial mstained mcleic acid-based
lm'mdﬁrgmn_.lhq_j[lﬂf].ﬁn!:ﬂplnmlmh
of athylmedisming-fmctiomalived single-walled carbon
manoimbe (FFWENTE) was suocewfully tested v win
MCF-T breast cazcar cell Enes wigh highty snkanced activity
of caspane-3, thms strongly supperting the action of induced
apeprosis [20]. Vory meeatly, dolivery of pi3 g using
todegradatls (FHAE) polymens
umzll call hng cancer (BCLC) cells was shown to mduce
apopimis 2nd acounmelae the cslls @ sub-Gl phass with
functional pi3 activity while mératamoral injection of poly-
mer-cammying pid geme in menogmaft model of SCLEC kd o
masked mmor growth mbdhition [21]. Gendicing™, the Bt
gans therapy vimy approved for clinical wee in Chisa, is 2
pi} ademovius for the trestment of head- and meck
suamons el cancor in combimation with adinthoragy [11].
A similar prodnct, Advexin™ i mureatly undar Phase I
clmical trials [23].
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DELIVERY AND EXPRESSION OF THYMIDINE
ETHASE GENE

mast commonly used thrymiding kinase gene for cancer gene
tharapy. It was dolivered mdividually s wull as in combina-
tion with gancyclory (GOV) (2 prodrag) a the meost mec-
cassfl combination wed both v and
1w vive [24]. Fig. (7) ilbesiraies the pro-dmg activation proc-
ws by the expressed HEVik Thymidne kmass gene was
subjected o callular dalhvery ming a varying membar of de-
Irvaring agents with liposomes being oze of them In a way
t introdnee a moninvesve molecnlar maging wchniqo for
menoparticls ware msed fior the dalivery of HEVik and mo-
luculer imaging of gene sxpressiom o probe bresst mocar
procassas [25]. BALB mice were injected with a tripls fa-
tion gene cootainimg the berpes simplex vines trmcakd
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Fig. (2. Thymuding kinse (TK) gene fom Hemes smplen vins (HEV) & delivenad io the mmar cells by @ vieal vectar (genstically-dieral
almi-virei). The HEV-I gens will underge irnicription snd irasilalion lo an sevme, HSV-TE. As poiential peodeag passes Biroagh e
ll, H5¥-TE phasphofylas he pealiag © he monsphoiphiae lorm. Colliler phesphoryliton pricss Torther chinges e Srug 1o te
Ephoipkils e which i lis moofqosial b il DNA, saling 5 DNA chin iemmmaion, DMA ragmenlion and ulimalely el
desth. Byamder efledl helpi in Caalsalmg svislicty m 2ella with na HSV-TK pensi thivugh e melbolic pralud movemenl asioss the

g jenct

gAnciclord, paving a pmﬂfunﬁnlnfﬁxgmn&hl
ary, MOmifcoing ifts md patiant’s epanss 10 gane
therapy reaimant In another simdy, mcombinant adenc-
associated viny-? medisted HEVH pone fransfer along with
ganciclovir for the treatmont of MCF-T breast cancar cells
was amalyzed for the antitemor effect with and without
dexycyching indection [26]. The antitumeer affect of AAV-
mgedizted HS&/GCV gome thorapy under $e Dox induction
fellowing direct intatemor] mjsction was fousd to be wse-
]l mathed for S treatment of breast cancer [16]. In a stody
ming elmeond trgekd microbubble destroction for the
dalivery of EDRP-CD thymiding kinase gane to MCF-T and
L3174T call limes, the recombinant plasmid pEGFP-EDEP-
COTE wa seccemsfully tansfecsd mio MCOF-T and
LE1TT calls with the CDVTE fusion gene baing found 1o be
sxprussed I MCF-7 cells but not expressed @ LE1T4T calls
[27]. Thw calls ware alse treated with the pro-dregs 5-FC and
GCV for ing cywioxic sffect Howevar, transgenic
L3174T calls ware not shown semsitivity to any of the pro-
drugs domonstrating that the KDE promoter could augment
e sxprossicn of CDVTE gana targat in MCF-T calls, and the
targuted killing effoct of the EDP-CINTk gene m MCF-7
cells o wire bad good synergy with expressim of the
daliver the berplex smpkx vims | thymiding kinaw
{5V} gene and pmcyclovi prodrg sysm agamst
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BIMCIE™ mammary carcinoma cells with i
increased apopiosis (about B0%: coll death) after the transfac-
tiom [28]. fa vive results indicated a significant decrease in
fumor e, Domass in apopioss, ad 2 decmease m DHA
syndwsis m the pHEVE'GCV reatment groep with seppres-
sion of metwtasis o bymph nodes and kengs @ compariion
with other groups. In order fo ehance the therapeatic offi-
cacy of HEV-1ek' gancyclovir prodreg systom, baby hamskr
kidngy (BHE) fumom growing as xnografts in sevars com-
bined impremodeficiency diseass (BCID) mice wore wsed 2 &
modal for assesing the adi-tumer actvity after delivary of
simadbis viral wecior [2%]. The reslts were proven to be posd-
tve in expressing FISVek enryme in infecied cells both im
virre amd m vive, which in tom enhemced the proces of pro-
dmg GCV comversion for bystandar affects respomsible for
killing of sumrounding entramsducted tamor calls. In an ibar-
sating mive o enhanos the astitomer efects of HEVAGEV
meconsbinant adenoviral delrary system, momocyte chamsoat-
tractant protein (MCF)-1 was co-delfvered i bapatocolbalar
carcinoma calk (HCC) with rembamt adfmast effect for
adanovirally delivezed MCP-1, a5 thare wa an mnowsed
amti-tmmor afect of the HEV-tk' GOV mystem symergistically
by momitmentisctivation of mamopheges D mmor tismes,
siggesting an effective mmmeotherapy for HCC and other
fmors [30]. In a similar approach, repeated delivery of
HEVE& gene wnder alpha-fatopromin (AFF) promsoter

WﬂEl}nﬂgmmﬁhﬂﬂ{m
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bposomes in the tumors mduced by ming AFP-producmg
(HUEHT) and AFP-nonprodncing (L5180 liver cancer calls,
followsd by GCV treatment sigmificently mhitited the
gowth of emon D the Ever and merkedly improved the
sarvival of animals [31]. The combimed delirary of H5Vek
and brTHF-o fosion genes msing recombinant removial ex-
prassion vector PLESN i SGLETH] masmic cancer calls
rusnlted in oo significat diffarence of call mrdval betasan
the goups after mamtyning the tomfected il m the
FCV-conbining mediem [32] Wheress, i the (v weo siady
&G0V, &-THF-0'GCV and THF-o were thown 1o inhibidt
e fumor gowth with an chvions enhanced andi-mmor a-
tvity of &k-TNF-2/GCV md TNF-o groups [32]. Ina differ-
ant wtudy, the cytostatic activity of sanciclovir elaidic acid
qm{!m‘}-dpﬂhrr{ﬂﬂfjm:mplﬂm
HiVik-] geme-transfected FAGA mammary carcinoma cells
rovealing that B-GCV was meore effectve and cyiostatc than
HSVik-] gene-transfocted mammary carcinoess cells s E-
GOV was fomd o have longer misnton tme then GOV
metbolites [33]. This effect could be dme ® E-GCV
markied stability in kmeem plasea and mach highar ipophil-
ity than GCV [33]. Altheagh mioviral H5V-& geme ar-
apy was Dot efficknt enowgh in bmmem clinical trals doe o
i lack of efficacy with highar riw of side aects, adsnovi-
nl HSV-'GEV dempy was found o be well iolated
without sigmificant safuty issees with an ovarall meam sar-
vival of 706 wesks compared o 39.0 weaks for the stmdard
therapy moup i ghchlasioma meltiforme (EEM), followng
miratumonal mjection of vins-mssociated HEV-& gene and
sobsoquont infrevenom: admimistration of GOV [34].

DELIVEEY AND FXPEESSION OF TNE-EELATED
APQPTOSIS INDUCTN G LIGAND (TRATL) GENE

The tumor mecrosis factor (TNF) miamed apopioss-
mincing ligand (TRAIL) belomgs to the family of temor
mecrogis family and & a typell transmembrng
which inchidas a tumor mcrosiz factor and a Fas igend [35].
Upon hinding to ity recaptors, K1 and B2, the death-indacing
signalimg complex (DISC) i assembled, which = tem, di-
mcts chavage and acthvation of caspases, leading to apopte-
ws. TEAIL & considered to be oo of S most promising
gens tharapentics In cancar mextmant sspecially for i sped-
ficity i ndncing apopbesis and fomicity @ cancar calk m
-:nqlnmwuﬂlmn]t\m [36]. TRAIL is reperted o ba
dalfvared esing both viral and nonvinl gene carrion. Sakmo-
zalla fyphinseriom was desigmed 2 a nox-pathogenic vector
o secute murme TRIAL undar the control of the prokaryotic
radiztics-indncble RecA promoter [37). e vio, afier im-
diation the secmted TRAIL was found fo coese cospans-3-
midisted apoptosis and death of cancar calls. Ja wve, TRAIL
tamor growth and alw mduced risk of death, a5 well & m-
proved the wervival & compared fo imadiskd contols. A
mew delivering xgent nsing mesenchymal stem cells (MECi)
wa developed for the delivery of TRIAL m lmg cancer
calls [36]. A zeaviral vactor, ]E[..u-l:'plp.qunihlmhn!
cyclodextzin (f-CT0) was med to mirodnos the TRIAL gens
fo MECs [38]. Both im viro and i wvo stodiss wers found o
be suppertive for cellubar wptake and signifiamt redwction in
e tmmer size [3B]. In amother stdy, synthesized poly
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{aming-co-gster] fpolymen wem wmwed for delivery of
TRAIL gene supporting the evidencs for dmnificant mhibi-
tioa of tumor growth, with mnimal foxicity bod i wire and
v v [3%]. In order for gene delivery o e brain, a low
mokcular weight potyetrylsaimine (FEy 1 modified with
mrymisic acid (M) was with TRAIL gens o pre-
pare MC- PEjy ¢ DNA mano particles [40]. The msulis ware
proven o he effectve with pene sxpression being higher
both in wiro (ghioblestoma calls) and @ wvo foo MC- FEjy
DM nanoparticles 2s compered o enmedified FE;; yTHA
namoparticle: 2md thers was an improvement in medisn -
vival time of the MC- PE;, /(pORF-RTRAIL a5 compared to
uﬂu;mq:li[-‘rﬂ].huwn 0 improve the fansfection ef-
cisncy, the mrface of TRAIL andior endostatin delvering
zmnt wes modified by applying TIFS-b-(PCL-ran-P{rd)
namoparticles along with polystiryleaniming and daliversd into
buman carvical cancer calls (Fala) [41]. The i o data
showed that the manoparficles could eficienty deliver plas-
s into the oells widh sipmificantly bagher cyiotomicity by
TRIALjsndosttin-loaded nanoparticles in comparison with
uhmmlg-:llp: [41]. Some smdiss bave reported to
doliver TRALL @ combimation with comvenfional che-
moderpeutic agents. Massnchymal sem ik TRAIL
(MECTRAIL) were dalfvared slong with H-flowroeracil in
HCTL14 colon cancer calls leading to significantly nowswed
zpophosis hoth d viro 2nd e vve & compared 1o the dngle-
zpnt waiment [42]. Mismstingly, the HCT116 mencgmit
tmated with 3FU md sysemically delwemd with
MEC:TRALL want info mmission. This effect was pi3 mde-
pandent and modiamd by TRAT.-recepor? wpregalation,
supporting the applicahility of this appreach i pi3-defctve
tumors [41]. The combination of dmenrmbicin and pTRATL
gune 15ed for delfvary ingn bwman ovarin cencer czlls im
vivo was proved i be eficient with higher rutetion tme of
drugs achisving good therapentic effects in inbhiing the
tumor growth and msuling @ signi v prodonged sar-
vival of fumor beaning mice [43). In @ inturesting approach
to farget brin ghioms calls, the combination of pEGFR-
hTEAT. and paclifaxc] was dalivarsd nsng mgiosp-1 modi-
fied cafiomic liposome (ANG-CLE) a5 a camior with an im-
proved cellnbar sptaks and gene exprossiom both in UET MG
calk and BCE: [#4]. The apopions induced by ANG-
CLPPTEXpEGFP-hTRAM. was mom afficent them tingle
madication systam and enmodified co-dalivery system con-
tbuting o simificantty longer medis wmival tme of
bnm temor-barng md mmimali foated with ANG-
CLPPTXPEGFR-ATRAIL & compared to fhe other groups
inchnding commorcal temezslomids group [44). In 2 similar
way o impmwe the tmmsfecton «fficioncy of TRAIL and
pachtaxs]l throngh blood-hmin barmer (BBH) md hiood-
tumer barier (BTE). oRGDyE}pohistiylas giycal)-
polyehykngiming (RED-PE-FET) namoparticles ware pre-
pared for the co-dedivery of TRATL. gune amd paclitaxal,
tharshy producing befwr ant-ghoblasioms afech hoth 1w
mm:.ndumu[ﬂ].

DELIVERY AND EXPRESSION OF p21 GENE
p2l is a vifal rguiator of cell cycle progresion md it
can block cell-cycle progression from the Gl to 5 phess [45)

through inactvation of cyclm'CDE adivity (Fig X pll
gwe was delivered nang retroviml vecior in boeast cancer

calls which is mufated in p53 gene with e menlts showing
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Fig. (3). Dhilrent Cyela-LDK cmplencs are isvelved = regulamg dilfersnl cell cyele tmsitona: Cyels-DVCDES o COKS fee (G pro-
gresien, Cydls-EADKD for e (15 trmiition, Cyela-ACDKD for S-phise peagrainan, Cychs-BUDE] lor (G2 progeeson md Cydin-
ACDED Ger eniry inle M phise. Cyeling sssssiae with CDES i regulne ther actity mnd e peageestion of the call eyce. COE U yelin asl
e branicajilion complex hal indledes b and EIF are jevolal is contslling cdl syele dhickjpoml The Rh-HDAC mepresed aamplex bindi
b e EZF-DP] smnsenptcn (acleri, mhibiliag the dovnatsan Irmscrplion. EIF scivily coniit of & hacmdisen: comples of aa EIF
pulypepiale asd a D] jeolan. Plipherylitan ol Bh by CDE dideisie: e Rb-feproties compley, permiling Wnscriplicn of phise geaci
enciding [of pesisind thil asphfy phae fwilch, regquired fof replication. Linder sos-alrekied condioad, pl1 o supresal & low leveld, the
malbng el oyele progresaca. Usder sreis conditon, pl1 expresiion it moreased thiough pi3 dependest md mdependssil pahwa. In-
ireasad p11 badi snd mactivaies Cvelin/CDK setivity, Gus haling sell cycle oy,

that the owerexpression of p21 @ C3{1)Tag memmary temor
calls resulted @ moreased apoptesis, rednced call prolifaa-
tion ;v and rednced tumor g@owth oo o the
rednced sxpression of cyclns D] and E, and Cdks 1, 4, md 6
midiated by pll [47]. In 2 differcat zppreach, the maponss
of p2l mene promo@r tov mdistion was demomsiraied in
MCF-T hmeast cencer cells wsing adenc-associamd vines
(TAAV) vectors [45]. The mealts thowed that the responsa of
p2l geng promoter tramsduced by rAAY vector was highar
e that trmmiantly transfocted by alectoponation svan with
i low dows of mdiation, indicating that pl] gene promoter
@ combination with a tAAV wector i kighly powntial for

devalopment of 2 low-dose radistion-imdncibles vector i an-

car gane tharapy [45]

DELIVEEY AND EXPEESSION OF FRO-
INFLAMMATORY CYTOEINES

Tha lack of expression of recogirsble timor antgess,
the mabiify of the expressed tameor antigens fo adequatsly
stizzalate the imomne systm or e donm-membation of e
mmene Ty the temors themsabves might contributs
to their survival and sustaimahle growth [49). Temor sxpres-

Page | 197

siom of the penes ancoding pro-infhmmatery cytokine, sach
u mamlocyte macophage colony stembtng factor (G-
C5F) or fow-lke fyTosine konase 3 mceptor Hgand (F1t3L)
and mbsequant imemnization wsing the tmor byate as e
source of mumor-asociated amtigens, could dnmadaly =-
cexe @ blood the mumber of the most pownt antigea-
Presanting dendrific calls (DCs). In one sudy, vaccnstion
with the CT25 coloa carcinema call lysai and the Flt3L-
sncoding ademoviral wector (pAdFIIL) that wemn mjectsd
subcnemeously prevented the tumer growth im a BALBG
mmﬂdnnhup.:ﬁ:mtmufﬂﬂl[iﬂ'] Ima-
dizted  tumer n]ll. UEpreLiing
mmhm-wmhlg-lum;md@nuﬁrmh-mmrm-
ity & pabents with metastatc mehnoma [31].

DELIVERY AND EXPEESSION OF ANGIOTENSING
Alputnﬂm]lnnmhpqhﬂnhnuﬂmnﬁ akermke

in e renni-angioEnsn by hinding with angiotensin
IO type | or type 2 mceptors [52]. Angotemsin I type 2
{ATIE) is an important factor in tumor growth 2s it & known
o inhikit call prolifaration and stieslxte apopiosis [33]. Ina
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moant smdy, @ nomvirel wecter dTAT NP was synthesizod
ming dimerived HIV-1 TAT peptide for the itratracheal
dalfvery of angiotensin I type-] recepior gena in Lewds kg
camgar calls (LLC) [$4]. The msels demonsmaed thar the
ATIR gune wan mecassfilly tansfected inbo the mlls both
i vt and (® v in orthobopic tamor gradhs with 2 marked
mednction in temar growsh ing bohs administration of
dTAT selated ATIE or TWF-mlaid spopioss-
mdncing higand (TRAIL) pDHA [34].

A defective adenovires sxpressing a secwabls an-
piostatm E3 moleculo from the cyrmegalovine promosr
{AdE3) was shown to be efective to deliver the anginstatin
gans a5 AJES solectivaly inhibited andothelial coll prolifm-
tion and disrepted the &XM tramsition induced by M-plass-
promoting factor. A sngls miratumoral mjsction of AJK3
i mt Cf glioma or hemes MDA-MB-131 breat card-
moma sstablished I athymic mice rwnlted o 3 sizmificant
armest of mmar growth with suppression of neovsolarin-
tiom within and at the vicinity of the tamers [33].

DELIVEEY AND EXPRESSION OF INTERLEUETINS

Inframmeonal coinjection of adenovin] vecinn apressng
cytokines, imerlmiin-2 (IL-Z) and IL-12 in mice bearimg
suhontmeon: mammary fumom remibted i effective negmes-
sion of inj and unfrexied distal fomors mdicating that
tha comhinatien of 1.-2 amd IT.-12 is a potent mderar of amti-
tomor mevene respomks Wit the hops m & teatment of
metttic cancer [ 5]

Intatnnsoral injection with adenovins veCim eXpressing
Emman inwrisukin-? gune and wild-type mmam pid gane
driven by the Immon cyomegalovims immediaty sarky pro-
moter led o the regression of % of the twated mmors
without toxicity and demonstrated specific antmmer cyto-
Wtic T hymphocyte (CTL) activity, i 2 transgeaic mowe
mmqrﬂmmmmmﬂnl[ﬂ]

DELIVEEY AND EXPRESSION OF INTERFERONS

Injection of recombinant barester merferon-o (IFN-o)
camymg adenovins inbo syngensic subcufneow tmmors of
bamstor pancratic cancar (PGHAM-1) calls kd #o the suop-
prassion of tumer growth as a revalt of bot cell death and T
call- and patural killer cell-mediated anfitmeor memmnity
without demenstnation of any significant systemic oxicity
[5%]. Diirect intraremor] delhery of muring adeneimal IFN-
B (Ad-mIFN-H) -dhmmllhumml N (Ad-EIFN-)
mhibited the growth of hemas bladder camcar in athymic
mice by activating tumoricidal bost affector calls with
mlFN-f and by suppressing temor-mduced angiopemesis
with WIFN-P [39]. Intrevenous dalivery of recombinant ads-
movirns conhining e buman [FN-beta (hIFN) i mde
momss menogmaft model of humon colorctal cancer liver
metiitees dmificantly prodnced hIFN-bety m the lowar,
mincing apepiods @ the tumors with sienificant regrussion
of temor volme [60]. Similary, systemic dalfeery of the
n:nrmIF‘Thn‘l:{mlﬂ-l—hh]nDI-L‘.n]mmuhdmm—
proved mrvical I symgemeic momss models of colomectal
camcar lver metastases [§0]. Adenovin-medisted dalivary
of miurfaron-y guns was shown to nbdhit the prolifaration of
msopherymgeal carcmama (WPC) call bnes by mdscing Gl
phzsg amrost and call apopiosiz while inframom] admini-
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smafion of AGIFNy suppresed te growth of NPC
sanograits in nede mice [§1].

OTHER GENES DELIVERY AND EXPEESSION

Fsophageal cancor-rulated gene X (ECRGI) knoum to
mgelate wokmse-type plamn activaior mceptor and ax-
tracalbelar patriy fonction with its pobymorphism in xen 4
being associated with cancer relapse, wes deliversd ming
adknovial vector (Ad-ECEGY) mio hepatic cancer calk
[62], tms abering the sxpresiion of neclar factor-kB, ma-
trix. metalloprofimse 1 and E-cadhori and contritmtmg to
mevarss malignamcy phanofype of cencar cells. The mirate-
monl Ad-ECRE? admiwistration Jed to 2 significant inhibi-
tion of mmor growth withest my evidence of omicty in
treated animals [§2].

Fas ligand (FasL) is a cytoking that triggers apoptoss of
Fas-posittos target calls, sach &, Imman glioma calls. Trans-
dnction with recombimest adenovins (rAd) sxpressing FasL
cDHA nnder control of S cytomegalovims promoter (rAd-
CMV-Fal) indeced significant cyintoxicty & Fas-posithe
gicma call lnes wheress mirwmmeord delivery of rAd-
CAMV-Fasl. improved the servival of mis bearing infracranial
globlastema (B [63, 64].

Admovin] delivery of mdncible Caspass-¥ (iCampase-¥)
mndar franscriptional cominol of endothelial call-specific vas-
calar andotielial growth factor recoptor-1 (VEGFRY) poo-
mowr (Ad-hVEGFR2-iCaspase-¥) minoed apoptosis of pro-
lifurating human dermal mdoersolar ssdothelnl call
{HDMECs), mt mot humen tmor cells, TM-SCC-178 (
hnilndlxkqmullmmﬂ Haplz2 (hepeioeal-
Inlar ¢ . PC-1 (prostte ademocarcinoe), SLE
(Eapaonis il'l:-llnl:l MCF-T (tmeast adenocarcinoma) [63]
Moo, local delivery of Ad-BVEGFEI-iCaspase-? fol-
lowed by miraperiinnes] mjecton of AF201ET, 2 dimerizes
drug for acthvation of iCaspane-®, removed mmer Eimoves-
sali and imbibited memografted tmmer growth m all mmer
modals [§3].

In order to develop sfficacious tharapy for msistent pros-
tafw cancer, ulrasomnd (3] contrast agents (microbmbbles)
wam amployed for dmct mimtmaral (IT) injection of ade-
novinl vecm camying piF and A9 gemer undar cxiemal
beam radiztion resuling in prodound temor reduction m DU-
145 (humes prostate cancer cells) rencpafied neds mice
compared to radiation alons [68]. In & similar approach, e
antitemor affects of fumer mecrosis facter (TNF-o) ware
waleated following intnmmenl mjecton of THF -2 plasmid
DNA info muring salid breast carcinoma indsced [§7].

CONCLUSION

{rans therzpy holds 3 great potential & cancer treatmant
with a nember of genes having been axplored along or in
combimation with comventiom] it agants fior
sabancement of their therapentic efficacy i treating cancer.
The mest critical factor in gene delivery is fo smmme high
loval of transgems expresion with geawr specficity rednc-
ing the off-target sfocts on the normal cells. Although vinl
vectars, particalarly ademovims heve bean extensively waed
owing to the degree of efficacy for the pre-clmical mials of
g therapy, their severs Sde-effect: in the confext of the
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CH 1 Ty marmmry tomor cells pal Rebrovral vector [47)
Perrade BAI Bic mice weth CT2% colon coneer FESL Aed el veeker [58§
Fabezis with mcisdaix melores AR [rrcdimizd muied ooy medlencna [#1)
. i Azypoieroen [1
Wild-ype fenale CITHLYE mice with Lewia kg carc- ypel HIV-1 TAT peptides in tadem (4TAT) 4
e {11
=
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cell cxremor, {TOC | mnd. bume o loreci cencer fiver LA T bermn! wsenioyun [, &
e
usopharyrgeal carcinoma (HIC) oenogmlis i mude mece [FH-y e kerent sdeneyn [1]
Iefrmrn weregras of BFLL- 413 { oo bepsions ool BCRd T berun! wdenovum [43)
Fain with mirscramial ghoblasioma iEM) Fuod. e bermnt addenowvarus [63, &4)
rmunedefoeni | 40T mice with 1 enegrafied henors .
(P2, [IMESCE-I T8, o SLK) g it adimasioss 18]
Hede with (1145 {bumas presisis celks 3 pRE, =
e : : F e I M :__'p:- U3 crritstion of microbubblic [t
ST e wiidk mierme brewsd cxrenioms [FRTE] TF-a Mam bubh bex g wirscund. [&7)
Imeme Tespomse of Imman body to the viral proftuins poss a RFFERENCES

mjor compam to the clinical implomontton On the othar
bond, nom-viral counserparts are sl inefficiont in transgena
dalfvery and sxpression predomimantly dne fo &e obsacles
& andosomal scaps and mclear tramlocation of the assod-
ated genetic makrals.
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Appendix 16
Bakhtiar A, et al. 2015 Nano Today Conference, Dubai, UAE.

Development of novel inorganic nano-crystals for delivery
& MONASH of plasmid DNA and siRNA to breast cancer cells

Athirah Bakhtiar, lekhsan Othman, Anuar Zaini, Ezharul Chowdhu1
Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, 47500, Selangor,
Malays

University
Malaysia

3. GENE EXPRESSION EFFICIENCY

i. pGL3-treated cells
(luminescence DNA) were
incubated for 48 hours prior to
observation using luminometer

( INTRODUCTION ]

1. Recent studies have been focused on developing smart
nanoparticles for efficient delivery of transgenes and siRNAs into
cancerous animal model cells through active and passive targeting.

[ REsuLTs & DIScussiONs |

1. PARTICLE SIZE & ZETA POTENTIAL

i. Salt complex centrifuged at 12,000 RPM, supernatant
removed, and palette resuspended in milli-Q water

ii. 5SmM: 2mM of soluble salts ratio
showed enhanced expression

2. Precipitation reaction is one of the facile and convenient ways to compared to 500uM: 200uM ratio

Image 5. MCF-7 cells expressing
synthesize nanoparticles.

P (fluorescence stained)

ii. Salt concentration, incubation period, pH & temperature were mkl; by Tuorescence Microscope

crucial for the formation of crystal precipitates.

Expressions improves with

increasing DNA content

iv. At pH3, strontium & 20000
barium salts disintegrate
drastically, hypothetically

25000

Cationic Salt: | Duration of PH Temperature

Optimal Anionic Salt incubation
Co Ratio
$:2

Salt A Salt B

Lok Barium

30 minutes 7.5 37°C

iii. Barium sulfite-complexed crystals - average size of 500nm

15000

e o e of v releasing the DNA content 10000
(largest), zeta charge of -25m in the cytoplasm for
iv. Strontium fluoride-complexes - average size 150nm, nuclear expression 5000
[AX (Soluble) + BY (Soluble)--> AY (Solid) + BX (Soluble) ] zeta charge of -17mV P i L i
b arg v. Protein coating enhance 0 Apatite
iti in - By Inescence 125ng DNA 100005 DNA
5.« 3. Advantages i. only needs simple equipment 43 Add'.‘"m ()f’pr(neln 2 fL” I_"n?mt scence by MCF-7 cells
ii. ability to prepare & control particle * Slze, mzeta potential Oproving. c‘omplAex = Graph 1. Effect of different DNA concentration
size &composition in near ambient “Neutralises charge cloud of internalisation via active ll::‘orpnuled‘h;lon\;:ﬂmﬂmn;cm;:swll\h o
temperature and pressure. crystals surface by ionic transport luminescence intensity on x cel
= interaction -, sullite
n o"geEIEClN)“ 4. CYTOTOXICITY PROFILE (MCF-7 & 4T1)
i. Viability of treated cells (up to "™ Vg S e e ®

MATERIALS & METHODS \ 2. BINDING & CELLULAR UPTAKE

S i. Propidium iodide added to crystal
[ Salt crystals formation j complexes prior to incubation

1. Nucleic acid (plasmid DNA/siRNA) at 37°C for 30 mins
incorporated to 5mM of soluble salt
(barium/strontium/magnesium chloride) in showed more than 80% siRNA
HEPES-buffered media. incorporated into salt crystals, with
2. 2mM of 2nd soluble salt ( sodium barium and strontium has >90%
sulfite/fluoride) added to form an
insoluble salt.

72 hours), were seen by
MTT assay

ii. Strontium promotes cell
replication by releasing
autocrine growth factor

ii. 5mM: 2mM of soluble salts ratio

iii. Barium stimulates cytotoxicity wen

*Physiological antagonist of K*  xen
iv. Cytotoxicity > 5:2 ratio salt oo~
concentration

iii. siRNA bounded more readily
compared to plasmid DNA

3. The salt CIVSKalsiformedAworc iv. Addition of 1ug protein improves

incubated at 37°C for 30 minutes. cellular uptake activity of complexes

by
fluorescence microscope

Image 5. Plistained barium [
v

CONCLUSION ]
4. Protein (Transferrin/fibronectin) was

added inte the solutl andid bated for — 1. Strontium and barium salts are an efficient nucleic acid
lmcz;gg‘:..lsfgn?gettiloﬁllt ?unf\cr";O)mi‘sl;toe: lon and incubated for = > Y . carrier, with nano-sized structure, >90% binding and efficient

o e L LT cellular uptake, disintegrate rapidly in acidic pH
[ Salt crystals selection :| = < - ’ 2. Further test on normal cells will finalise the selection
s g - P 3. Protein coating enhances the carrier effect of all salt crystals
S = = —
> o304

2524 = g 4. Cytotoxicity profild
=== 3.Gene expression efficiency
_ % 3 2. Binding and cellular uptake

J’ 1. Particle size and zeta potential
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