
OPTIMIZATION OF CONTROLLED MARKOV
CHAINS WITH APPLICATION TO DAM

MANAGEMENT

A thesis submitted for the degree of

Doctor of Philosophy

By

Daniel McInnes

B.Sc.(Hons)

Supervisors: Dr. Boris Miller (Monash University)

Dr. Kais Hamza (Monash University)

School of Mathematical Sciences,

Monash University.

April 2015

i

c© Copyright 2015

by

Daniel McInnes
B.Sc.(Hons)

ii

Certificate of Originality

I hereby declare that this submission is my own work and

that, to the best of my knowledge and belief, it contains no

material previously published or written by another person

nor material which to a substantial extent has been accepted

for the award of any other degree or diploma of a university or

other institute of higher learning, except where due acknowl-

edgement is made in the text.

I also declare that the intellectual content of this thesis is the

product of my own work, even though I may have received

assistance from others on style, presentation and language

expression.

Daniel McInnes

iii

Copyright Notices

Under the Copyright Act 1968, this thesis must be used only

under the normal conditions of scholarly fair dealing. In par-

ticular no results or conclusions should be extracted from it,

nor should it be copied or closely paraphrased in whole or

in part without the written consent of the author. Proper

written acknowledgement should be made for any assistance

obtained from this thesis.

I certify that I have made all reasonable efforts to secure copy-

right permissions for third-party content included in this the-

sis and have not knowingly added copyright content to my

work without the owner’s permission.

iv

v

Abstract

Continuous-time Controlled Markov Chains are a useful model for many processes

where it is necessary to alter the future behavior of the chain in a probabilistic

way based on the current state. This project examines the techniques required

to find the set of optimal controls for each state of the chain given a set of per-

formance criteria, in both the unconstrained and constrained cases. We focus

on the control of systems where there is a finite control horizon, the dynamics

are non-stationary, and there are no apriori stability conditions. This will be

demonstrated with a series of increasingly complex models which describe the

management of a single dam or a system of arbitrarily connected dams. In these

models a variety of controls are used: a price is imposed on water consump-

tion in order to reduce overall water use, controlled transfers between dams are

imposed to maintain system balance and controlled releases are allowed to re-

duce the chance of catastrophic flood. High performance numerical computing

techniques are used for the solution of these problems and we demonstrate that

implementable optimal control strategies can be computed.

vi

vii

Acknowledgements

I would first like to thank Dr. Boris Miller for his longsuffering and patient

instruction and supervision over the previous three-and-a-half years. Boris

has ensured that I understood the basics and then stretched me by prompting

me to write papers from very early in the PhD. Subsequently I have been

able to take the lead with some papers and the joint work between us has

taught me many things, not only about the mathematics of stochastic control

theory, but about the publication process, its highs and lows, and the need for

perseverance. The multiple opportunities to present research at international

conferences largely stems from Boris’s early insistence that I write and pub-

lish, so I am very grateful to him for his foresight and for the funding to do all this.

I also must thank Dr. Kais Hamza, who is the second supervisor for this

project. Kais is not an expert in optimal control theory but he is certainly an

expert in stochastic processes and much of what I know I owe to his patient

and thorough instruction during my undergraduate and honours years. I have

had little occasion to bother Kais over the last few years but was always aware

of where to go if I needed help with difficult questions and his advice at the

regular progress seminars has lead to improvements in what we considered in

our models, especially more complex inflow distributions.

The other main contributors to the academic process have been Professor

Kate Smith-Miles and Professor Fima Klebaner, whose comments at the

regular progress seminars have helped to ensure that the PhD project was on

track, properly resourced and supported. Dr. Simon Clark, the post-graduate

coordinator, must also be mentioned for his sound advice and help with regards

viii

to the general needs of the PhD student.

Many other people within the School of Mathematical Sciences have helped in

various ways over the past three years. Gertrude Nayak, the school manager, has

been a great help, especially with approving funding for the many conferences

that I have attended and general advice on the administrative procedures to

follow. Likewise, Rosie Frigo has handled the large file of forms and expense

statements post trip and has always ensured that all was in order. Linda

Mayer has organized the battery of progress seminars and other paperwork with

courtesy and professionalism. I thank them all for their work.

Lastly, but most importantly, I thank my wife Yoko and my daughters Kaila

and Rianah for their continuous support and for putting up with a perpetual

student for so long. Without their support this project would not have been

started, let alone completed.

ix

Contents

Declaration iii

Abstract v

Acknowledgements vii

Chapter 1 Introduction 1

1.1 Review of the current research . 4

Chapter 2 Inhomogeneous continuous time controlled Markov chains and

their optimization methods 7

2.1 Outline of mathematical and research methods 7

2.2 Inhomogeneous continuous time Markov chains 8

2.3 Generator of the ICTMC . 10

2.4 Controlled ICTMCs . 10

2.5 The basic dam model . 13

2.5.1 General definitions . 13

2.5.2 Dynamics . 13

2.5.3 Infinitesimal generator . 15

2.5.4 Boundaries of optimal consumption 17

2.5.5 Dynamic programming equation 18

Chapter 3 Control of a single dam with simple counting process inflows 25

3.1 Initial numerical solution . 25

3.2 Performance criterion . 26

3.3 The dynamic programming equations and solutions for a large dam 27

3.4 Numerical example . 30

x

3.5 General comments on the results 33

3.6 Further analysis of the results . 36

3.6.1 Starting in the lowest state 37

3.6.2 Starting in the highest state 38

Chapter 4 Control of a system of dams with simple counting process inflows 41

4.0.3 Structure . 43

4.1 Model of the controlled dam system 43

4.1.1 Dam system dynamics . 44

4.1.2 Controlled dam system as a system of controlled Markov

chains . 46

4.2 Derivation of controlled demand functions 48

4.3 Dynamic programming and optimal control 49

4.3.1 Extension to d dams . 49

4.4 Performance criteria . 50

4.5 Computational methods . 52

4.6 Numerical example . 54

4.7 Further analysis of results . 57

4.7.1 Starting in the lowest joint state 57

4.7.2 Starting in the highest joint state 58

4.8 Conclusion . 59

Chapter 5 Control of a single dam with compound Poisson inflows and

provision for flood control 61

5.1 Introduction . 61

5.2 Dam model . 61

5.2.1 Inflows and outflows . 62

5.2.2 Semi-Martingale model of the process X(t) 64

5.3 Controlled water use via price control and controllable release . . 69

5.4 Dynamic programming equation and its solution 69

5.4.1 Performance criteria for the dam model 73

5.4.2 Form of the optimal controls 74

5.5 Numerical results - flood control only 76

xi

5.5.1 Case 1: inflow rate lower than consumption rate 77

5.5.2 Case 2: inflow rate higher than consumption rate 78

5.6 Numerical results - price and flood control 78

5.7 Further analysis of results . 85

5.7.1 Starting in the lowest state 85

5.7.2 Starting in the highest state 86

5.8 Conclusion . 87

Chapter 6 Finding feasible controls for a dam under control resource con-

straints 89

6.1 The constrained problem as a convex optimization problem 90

6.2 Consistency of constraints . 91

6.3 Example showing consistency of constraints 94

6.3.1 Performance criteria . 94

6.3.2 System of ODE’s . 95

6.3.3 Numerical example . 98

6.4 Concluding remarks . 98

Chapter 7 Computational aspects including the use of parallel and high

performance computing 101

7.1 Programming languages . 102

7.2 Computational aspects considered 102

7.3 The 2-dam model . 103

7.3.1 System dynamics . 104

7.3.2 Dam system as a system of connected controlled Markov

chains . 105

7.4 Derivation of controlled demand functions 107

7.5 Dynamic programming and optimal control 108

7.5.1 Performance criteria . 108

7.6 Computational aspects . 109

7.7 Numerical results . 113

7.8 Final remarks . 115

xii

Conclusion 117

Appendix A Mathematica code for model in Chapter 4 123

References 128

1

Chapter 1

Introduction

Not only do dams represent some of the most impressive achievements

of engineers over the centuries, but their vital role in supplying water

to towns and cities, irrigating dry lands, providing a source of power

and controlling floods is more than sufficient to rank dam-building

among the most essential aspects of man’s attempt to harness, control

and improve his environment [53].

The above quote from Norman Smith’s, A History of Dams, provides a

succinct overview of both the importance of dams and the various uses that they

have been put to. Moreover, man’s interest in building these structures dates

from antiquity. One of the oldest known civil engineering structures discovered

is the remains of a dam near Helwan, 20 miles south of Cairo. Known in Arabic

as ‘Sadd el-Kafara’, or ‘Dam of the Pagans’, it was discovered in 1885 and is

thought to date from between 2950 and 2750 B.C. [53]. Its apparent purpose

was purely to hold water. Herodotus (in Herodotus: The History, Book 2,

Chapter 99) [23] recounts a tale of a dam being built across the Nile by King

Men, believed to have lived sometime between 3500 and 2850 B.C., to protect

the city of Memphis from flood caused by the Nile breaking its banks. According

to Smith, the damming of the Nile is most unlikely to have occurred, however,

Herodotus no doubt saw a flood levee designed to divert flood flows. Smith

also provides a great deal of information about the use of dams for irrigation in

many places in ancient Mesopotamia, including Ur, Babylon and Assyria, and of

2

course their construction by the Romans and others [53].

It suffices to say that the control of often unpredictable water resources has

been one of the major considerations for the development of human civilization,

especially with the building of large cities. While not a history thesis, the

historical importance and use of dams along with their continued importance

provides excellent motivation to consider the attributes that a model of a dam,

or indeed dam system, should have. Ideally we would like to be able to build

models of dams which provide water for human consumption, irrigation and

power while reducing the risk of flooding. We would like to be able to achieve

these aims under diverse and possibly extreme climatic conditions and do so in a

way that provides us with the maximum flexibility in management of the resource.

From a mathematical point of view, this thesis deals with the development

of tools based on the optimal control of continuous-time controllable Markov

chains (CMC) and their application to the control of complex systems, in this

case dams. The applicability of the method is wider, as evidenced by its use

in internet congestion control [32], but in this thesis the application to dams

will provide an interesting environment in which to display the utility of this

method. The main question in this thesis is how to optimally control a large

dam (or system of dams) with non-stationary inflows and outflows on a finite

time horizon. This is approached via controlled Markov chains, as originally

presented in [18, 32]. The research takes especially [32] as a base and further

develops the tools for arbitrarily connected systems with more complex dynamics

and considers the feasibility of constraints.

The body of the thesis will be based around six chapters, three of which

present the content of published articles in conference proceedings [37, 38, 39].

The other chapters extend the work presented in these published papers.

The first chapter will provide a concise description of what continuous-time

controlled Markov chains are and the methods used in their optimization. This

3

will provide necessary background for all of the thesis, but will not deal with

the feasibility of constraints. This will be left to Chapter 6, where this topic is

discussed in some detail.

The following five chapters will fully present the methods and results of

papers [37, 38, 39] and extend this published work in the direction of control

under constraints. The actual control under constraints is not addressed because

of the computational skill required to obtain results, but feasibility is addressed.

The chapters present the material in the order in which it was completed,

except for the details of [39], which deals with computational aspects and will

be presented last. The other chapters follow a natural progression in terms of

growing complexity and maturity of the models and results presented. Note

that overflow of dams was not considered in the early models presented in

Chapters 3, 4 and 7, but is dealt with in Chapters 5 and 6. In the early models

we just let the dam overflow, being more concerned with using a price on

water to maintain water in the dam. You could imagine that if the dam was

full then it would be up to customer consumption, evaporation and overflow

to deal with this, clearly not a reliable strategy. These models were built

when Australia was going through severe drought and the threat of overflow

was essentially zero. For that reason we focussed only on maintaining water

in the dam via a price control on consumption. We added controlled release

mechanisms to the models in Chapters 5 and 6 at about the time that extremely

high water levels in the Wivenhoe Dam west of Brisbane, Australia, led to

significant loss of life and widespread damage despite a realease program. These

models are an attempt to incorporate a more flexible and proactive release regime.

The final chapter will be the conclusion, which will summarize the material

and emphasize how this work has filled a gap in the knowledge of the optimal

control of complex systems, such as dams.

4

1.1 Review of the current research

Markov chains have found application in many areas of science and mathematics

since they model random processes in which the current state of the process

depends only upon the previous state. This current research involves the use of

continuous-time controlled Markov chains. These are Markov chains in which

the transition probabilities for the transitions between states of the chain can be

modified via a control to achieve certain performance criteria.

In general problems of this type are approached as Markov decision processes

(MDP) in either discrete or continuous time. Discrete time models make

obvious sense in the case of discrete time observations or where there are

discrete decision epochs. Piunovskiy [47] provides many interesting examples

of these processes on finite time horizons, infinite time horizons with total or

discounted loss, average loss on an infinite time horizon, and control under

constraints [45, 48]. The work under constraints is of particular relevance to this

thesis, although studied here in the discrete time case. The types of problems

approached in this way include control of epidemics [46, 61], inventory control

[6], supply chain optimization [60], and many others. An interesting example

of both discrete and continuous time Markov chains being used for decision

support in hospital bed management can be found in [50]. Of course, the

discrete-time case for water resource control has received significant attention,

two examples of which are Sniedovich [54] and, Karbowski and Magierra [27].

Sniedovich used dynamic programming to solve a variance-constrained problem

and Karbowski and Magierra used various techniques on both finite and infinite

time horizons to solve a two criteria optimal reservoir management problem.

Another example of a discrete time optimal control model for dams was studied

by Ozelkan et.al. via linear-quadratic dynamic programming (LQ) under the as-

sumption of stationarity of the inflow process and applied to an existing dam [44].

For continuous-time Markov decision processes (MDP) there is abundant

literature available (see for example [7], [11] and [28]). Miller et.al state that

these processes have found application in communications engineering, queuing

5

systems and control of epidemics [34]. Of course, dams have not escaped such

study and a range of papers have been written where the inflow process is a

Wiener process or a compound Poisson process and the dam has either finite

or infinite capacity (for examples see [2],[4],[8],[19] and [62].) It has been noted

that a Wiener process is not very realistic for modeling inflows but simplifies

some calculation [19]. Non-negative Levy processes as a general class have also

been tried [3], but in general, compound Poisson processes are used.

The key point of commonality in most of the above examples is that they

use very simple threshold control models. They use a long-run average criterion

as the principal optimality criterion. Such models generally assume an infinite

time horizon for control and stationary inflow data. However, in the case

of dams, as with other natural systems that depend on variable inflows, the

inflows are non-stationary, varying with seasonal rains. The long time horizon

requires that inflows be greater than or equal to outflows or the system will

run out of water in finite time, but in the short term usage may well exceed

inflows. It is also clear that short term water availability is extremely important

and that some account needs to be taken of this in the optimality conditions.

Finally, the long-term average criterion does not consider the costs of transient

states and the resources required for these transitions on a finite time interval [32].

As already stated, there is a large body of literature on MDP dealing with

the case of optimization problems on an infinite time horizon. The research into

the area of optimization of controlled Markov chains on a finite time horizon

is more limited; as early as 1968 Bruce Miller [36] was researching Markov

decision processes on a finite planning horizon. His paper considered a finite

state continuous time controlled Markov chain where the returns are generated

by maximizing the expected return on a finite time horizon. He was able to find

necessary and sufficient conditions for optimality and to show that a piecewise

constant policy is optimal in this particular control problem.

6

More recent work in this area has been done by Robert Elliott [17] and by

Elliott et.al [18] on control with hidden Markov models (HMM). HMM deals

with Markov chains which are hidden in a noisy observation process. Another

example of control in partially observed jump processes is given by Ceci et

al. [14]. For example, you may wish to find a signal sent via radio in a noisy

channel. The signal itself can be modeled as a Markov chain but the observed

signal must be somehow filtered to estimate this original signal. The main tool

used is that of reference probability methods. This is a method which takes the

noisy observation process, say {Yk} for k ≥ 0, under the real world probability

measure P on (Ω,F) and transforms this process via a change of measure to a

sequence of i.i.d. random variables under the new ideal measure P̄. Under P̄ the

estimation is relatively easy and the result can be transformed back to the real

world problem via a reverse measure change.

The most recent research relevant to this project is being done by Boris Miller

et.al [32, 33, 34, 35]. This research takes as a basis the works of Robert Elliott

et.al [5, 18, 17] and considers problems of optimal control under constraints. Some

specific examples of applications to queuing systems have already been solved [32]

but this has not been applied to a system with relatively complex dynamics such

as a large dam. This project fits into the development of the theory and modeling

required to deal with the optimal control of such systems, including extending

and building new methods to deal with multidimensional connected systems.

7

Chapter 2

Inhomogeneous continuous time controlled Markov chains

and their optimization methods

In line with the general outline given in the introduction, the following gives a

detailed account of how the optimal stochastic control problem is posed and the

methods used in its solution.

2.1 Outline of mathematical and research methods

The mathematical methods involved in this project encompass many areas of

pure and applied mathematics as well as probability. The problem is given in

a stochastic setting, however, many problems can be reduced to deterministic

equivalents by taking taking the expectations and considering the solution on

average. Thus, a wide range of techniques will be employed.

In the first instance, it is necessary to state the problem in a form that can be

solved via dynamic programming. The development of dynamic programming as

a systematic optimization tool is largely due to Richard Bellman. The principle

of optimality owes its name to Bellman and states in the discrete time case (see

[10]) that if {u0, ..., uN−1} is the optimal control law for the control problem,

then if we start in state x at time i and want to minimize the cost to go from

i to N , the control law {ui, ..., uN−1} is optimal for the truncated problem. In

continuous time this would mean that if u(t), t ∈ [0, T] is the optimal control

function, then u(t), t ∈ [s, T] is the optimal control function for the truncated

problem. It follows that if we have an optimal terminal state, then we can

optimize the function of states and controls step by step back from this terminal

8

state. This is the essence of one of the main dynamic programming techniques.

In this thesis we make extensive use of the martingale description of a

continuous Markov chain, with a finite state space in RN+1. Assume that we

have a continuous time jump process {X(t), t ∈ [0, T]} with piecewise constant

right continuous paths defined on a probability space {Ω,F ,P}. Then define

the state space of this process to be the unit vectors in RN+1, ei such that

X(t) = {0, ..., 1, ..., 0}, with unity in the ith position [18].

2.2 Inhomogeneous continuous time Markov chains

We begin by assuming that we have N + 1 ∈ Z+ states, such that at any time

t ∈ [0, T], T < ∞, that state of the process takes its value from the set, S =

{0, 1, 2, ..., N − 1, N}. Further, there is an exact correspondence between the set

S and X(t), given that if the process is in state i ∈ S at time t, then X(t) = ei.

For simplicity, we define the inhomogeneous continuous time Markov chain with

respect to the set S, keeping in mind the correspondence with the process X(t).

Definition 2.1. (ICTMC). An inhomogeneous continuous time Markov chain

is a tuple C = (S,R) where: S = {0, 1, 2, ..., N} is a finite set of states, and

R(t) = [Ri,j(t) ≥ 0] ∈ R(N+1)×(N+1) is a time dependent rate matrix, where

Ri,j(t) is the rate of transitions from state i to j, i, j ∈ S, at time t ∈ [0,∞)[22].

The term “intensity” is used interchangably with “rate” throughout.

We define the diagonal matrix E(t) = diag[Ei(t)] ∈ R(N+1)×(N+1), where

Ei(t) =
∑

j∈S Ri,j(t) for i, j ∈ S, i 6= j. This is the total exit rate out of state i

at time t. For completeness we give the probability measures for waiting time in

state i and the transitions from state i to j (Refer to [22] for all proofs of the

following properties).

9

Let {Z(t)|t ≥ 0} be an inhomogeneous Poisson process with arrival rate R(t).

The probability of k arrivals in the interval [t, t+ ∆t] is given by:

P {Z(t+ ∆t)− Z(t) = k} =

[∫ t+∆t

t
R(s) ds

]k
k!

e−
∫ t+∆t
t R(s) ds, k = 0, 1,

It follows from this that if k = 0,

P {Z(t+ ∆t)− Z(t) = 0} = e−
∫ t+∆t
t R(s) ds = e−

∫ ∆t
0 R(t+s) ds, (2.1)

which is the probability of no arrivals. Now let Wi,j(t) be a random variable

representing the waiting time until the transition from state i to state j, with rate

Ri,j(t) at time t. Then the probability that the waiting time until the transition

occurs before ∆t is

P {Wi,j(t) ≤ ∆t} = 1− Pr {Z(t+ ∆t)− Z(t) = 0} = 1− e−
∫ ∆t
0 Ri,j(t+s) ds, (2.2)

from equation (2.1). We now can state some fundamental transition probabilities

for an ICTMC. The first is the probability that the waiting time in state i will be

less than ∆t, which is clearly one minus the probability of any exits out of state

i in the interval ∆t:

P {Wi(t) ≤ ∆t} = 1− e−
∫ ∆t
0 Ei(t+s) ds, (2.3)

where Ei(t) is the total exit rate out of state i at time t as defined above. The

second is the probability that the chain will transition from state i to state j,

i 6= j, at any time in the future after time t, with transition rate Ri,j(t):

Pi,j(t) =

∫ ∞
0

Ri,j(t+ τ)e−
∫ τ
0 Ei(t+s) ds dτ. (2.4)

The final one is the probability that the chain will transition from state i to state

j, i 6= j, in the interval ∆t after time t, with rate Ri,j(t):

Pi,j(t,∆t) =

∫ ∆t

0

Ri,j(t+ τ)e−
∫ τ
0 Ei(t+s) ds dτ. (2.5)

10

So, ICTMCs are well defined processes, which are especially useful for modelling

systems where the transition rates between states vary through time. Of course

in this construction the Markov property holds as for continuous time Markov

chains, that is E
[
X(t)|FX

τ

]
= E [X(t)|X(τ)] for τ < t, using the representation

given by X(t) [26].

2.3 Generator of the ICTMC

Here we use the representation of the ICTMC, X(t), as described in the

introduction to Section 2.2, and denote rate of transitions out of state i by the

parameter αi(t) = Ei(t); if the present state is X(t) = {0, ..., 1, ..., 0}, with unity

in the ith position at time t, the next state will be X(t + h) = {0, ..., 1, ..., 0},
with unity in the jth position at time t + h for j 6= i. This occurs with

probability pij(t+ h) = Pi,j(t, h) independently of the history of the process and

of the time until the next jump. Transitions from i to i have zero probability [12].

Define qij(t) = αi(t)pij(t) as the expected number of jumps from i to j per

unit of time spent in i. The (N + 1) × (N + 1) matrix of these values gives the

Q(t) matrix of the process, with the exception that we define qii(t) = −
∑
j 6=i

qij(t),

such that the rows sum to zero,

Q(t) =

−
∑
j 6=1

q1j(t) q12(t) q1n(t)

q21(t) −
∑
j 6=2

q2j(t) q2n(t)

...

...

qn1(t) qnn−1(t) −
∑
j 6=n

qnj(t)

.

2.4 Controlled ICTMCs

Given a ICTMC, we add a control parameter u ∈ U , where U is a compact set in

a complete metric space, such that the rate of transition out of state i to another,

11

νi(t, u), now also depends on u. It follows that each element of the matrix Q now

also depends on u.

Assumption 2.2. We assume the following to be true of the entries of the matrix

A(t, u) = Q(t, u)T ([18] Chapter 12, [17]):

1. aji(t, u) ≥ 0, ∀j 6= i;

2. ajj(t, u) = −
∑
i 6=j

aij(t, u);

3. A(t, u) is continuous on [0, T]× U ; and

4. For a given u ∈ U and an initial probability distribution P (0) of X0, the

probability column vector P (t) = (P 1
t , ..., P

n
t), P i

t = P(Xt = ei), satisfies

the forward Kolmogorov equation

dP (t)

dt
= A(t, u)P (t). (2.6)

A(t, u) is called a time dependent generator of the process X(t) and so for

different u we have a family of such generators.

Remark 2.3. In Markov chain theory, this generator matrix conventionally has

rows which sum to zero and is usually termed the Q matrix. In control theory the

transpose of this matrix is used such that A = QT , and this is the notation used

above and throughout the thesis.

Remark 2.4. While termed a controllable ICTMC, in general the resulting pro-

cess is not Markovian. The controls at time t < T may depend on the entire

history of the process up to time t.

The process X(t) generates a family of right continuous sigma algebras FX
t =

σ{X(s) : s ∈ [0, t]}. We assume that there exists a set of admissible controls,

Ū = {u(·)}, which is the set of FX
t predictable processes in U . So, let the jump

times of the process X(t) on [0, t] be written as τk, k = 1, ..., N(t), where N(t) is

the total number of jumps on [0, t], then the states from time zero until t, X t
0 are

X t
0 = {(X(0), 0), (X(τ1), τ1), ..., (X(τN(t)), τN(t))}.

Now, the assumption means that for τN(t) < t ≤ τN(t)+1, u(t) = u(t,X t
0) is

a measurable function of X t
0 and the current time t [18, 32]. This allows the

12

probability measure P on {Ω,F} to extend naturally to the controlled chain for

each u ∈ Ū , which is based on the theorem of Ionescu Tulcea (see [33]).

To derive the dynamic programming equation we use the semi-martingale

representation of a controlled Markov chain, where u(s) is FX
t predictable, which

has the form

Xu(t) = X(0) +

∫ t

0

A(s, u(s))Xu(s−)ds+ M u(t) (2.7)

where X(0) is a random initial condition with a given distribution and M u(t) :=

{M 1(t), ...,M n(t), ...} is a square integrable (FX
t ,Pu) martingale with quadratic

variations

〈M u〉(t) =

∫ t

0

diag(A(s, u(s))Xu(s−))ds

−
∫ t

0

[A(s, u(s))(diag(Xu(s−)))

+(diag(Xu(s−)))AT (s, u(s))]ds.

(2.8)

The derivation of this representation of an uncontrolled continuous-time Markov

chain is given in [18] and depends on representations given in [59], and a result

from Pliska [49](Section 3) which gives us that for each admissible control policy,

a Markov process exists. It follows that for each admissible control policy, the

above representation is valid (see especially Theorem 2 of [33] for a proof of this

using the theorem of Ionescu Tulcea).

The method of defining the infinitesimal generator of the controlled Markov

chain, A(t, u(t)), is of considerable importance in this model. For the models

given in Chapters 5 and 6, the derivation of A(t, u(t)) is given in each chapter,

since its derivation is more complex than in the models given in the preceding

chapters. It is instructive, however, to explicitly prove the simpler form of the

generator since it brings together the dynamics of the model and informs the

proofs given in Chapters 5 and 6. Since the generators of the models in all other

chapters are minor extensions of that used in Chapter 3, we now derive the

generator used in the next chapter in detail.

13

2.5 The basic dam model

2.5.1 General definitions

We begin by assuming that we can discretize the level of water in a single large

dam into N + 1 ∈ Z+ levels. So at any time t ∈ [0, T], T <∞, we let the integer

valued random variable, L(t) ∈ {0, 1, 2, ..., N − 1, N}, describe the state of the

dam. At the same time we can represent the dam by a controlled jump Markov

process with piecewise right-continuous paths, X(t) ∈ RN+1, on the probability

space {Ω,F ,P}, with state space, S = {e0, e1, ..., eN−1, eN}, where each of the

ei, i = 0, ..., N is a unit vector with 1 in the ith position and zeros elsewhere. So,

we have the relation

I {L(t) = i} = I {X(t) = ei} , (2.9)

which will be used in the later proof of the generator.

We also assume that we can alter the probability of jumps in this process

through a price on water and make the following assumptions about the control,

p(t,X(t)).

Assumption 2.5. Assume that the set of admissible controls, P̄ = p(·) is a set

of FX
t -predictable controls taking values in P = {p ∈ [pmin, pmax]}.

Remark 2.6. If the history of the jump process from time 0 to t is denoted X t
0,

then assumption 2.5 ensures that our control, p(t,X t
0) is predictable with respect

to t and X t
0.

2.5.2 Dynamics

We now consider the inflows and outflows of the simple dam model proposed in

Chapter 3. Our first assumption is that there can be no outflows when the dam

is at its lowest level, L(t) = 0, and no inflows will be counted when at the highest

level, L(t) = N . Then we assume that the inflows to the dam can be modeled as a

simple time-inhomogeneous Poisson process with intensity λ(t)I {L(t) < N} ≥ 0,

14

where I {·} is an indicator function. Such counting processes have the semi-

martingale representation,

I(t) =

∫ t

0

λ(s)I {L(s) < N} ds+MI(t),

where MI(t) is a square-integrable martingale. Since I(t) is a sub-martingale it

follows from Doob’s decomposition theorem that I(t) has the unique decompo-

sition I(t) = MI(t) + a(t), where MI(t) is a martingale and a(t) is a predictable

increasing process [52]. So, assuming that L(s) < N , for all s ≤ t, the process

has independent increments and

E [I(t)] =

∫ t

0

λ(s) ds.

The outflows from the dam consist of evaporation with intensity, µ(t,X(t)) >

0, which is a time and state dependent, and controlled consumption with intensity,

C(t) = C(t, p(t,X(t))) > 0, which depends on the time and state dependent price

of water, only if L(t) > 0. Similarly to the case of the inflows, we assume that

this process can be modeled as a time-inhomogeneous Poisson process with inten-

sity (C(t, p(t,X(t))) + µ(t,X(t)))I {L(t) > 0} and so it has the semi-martingale

representation,

O(t) =

∫ t

0

(C(s, p(s,X(s))) + µ(s,X(s)))I {L(s) > 0} ds+MO(t),

where MO(t) is a square-integrable martingale. Again this follows from Doob’s

decomposition theorem since O(t) is clearly a sub-martingale. The proof is as

for the representation of the inflows.

Then, with the above dynamics, we can now define L(t) = I(t)−O(t) as the

dam level process.

Remark 2.7. We assume that I(t) and O(t) are processes whose jumps do not

occur at the same instant. This implies that the mutual quadratic variation,

〈MI ,MO〉t = 0.

15

Remark 2.8. The semi-martingale representation has a nice probabilistic in-

terpretation which helps to make sense of the model and its inflow and outflow

intensities in terms of real processes. The semi-martingale representation gives

the transition time distributions of the states in terms of their dependence on the

average inflow and outflow intensities. From it we also can obtain the distribution

of the transition state (see Theorem 1 in [33]).

2.5.3 Infinitesimal generator

Proposition 2.9. Let the intensity of controlled consumption and evaporation

in each state L(t) ∈ {0, ..., N} be Ci(t, p(t,X(t))) and µi(t,X(t)) respectively.

Then the infinitesimal generator of the controlled Markov chain X(t) has the

form,

A(t, p(t,X(t))) =

−λ(t)
C1(t, p(t, e1))+

µ1(t, e1))
... 0 0

λ(t)
−(λ(t) + C1(t, p(t, e1))+

µ1(t, e1))
... 0 0

0 λ(t) ... 0 0

...

0 0 ...
CN−1(t, p(t, eN−1))+

µN−1(t, eN−1)
0

0 0 ...
−(λ(t) + CN−1(t, p(t, eN−1))+

µN−1(t, eN−1))

CN (t, p(t, eN))+

µN (t, eN)

0 0 ... λ(t)
−(CN (t, p(t, eN))+

muN (t, eN))

.

(2.10)

Proof. We can define an increment of the dam level process as ∆L(t) = ∆I(t)−
∆O(t), where ∆ is an operator defined as ∆h(t) = h(t)−h(t−). Then if L(t−) =

k and L(t) = k + 1, we define a vector f such that I {L(t−) + ∆I(t) = k + 1} =

16

I {X(t−) + f = ek+1}. Then f has −1 in the kth position, 1 in the (k + 1)th

position and zeros elsewhere:

f = (0, 0, 0, ..., 0, −1︸︷︷︸
k

, 1︸︷︷︸
k+1

, 0, ..., 0, 0, 0)T .

From this we can construct an (N + 1) × (N + 1) matrix, A+, which captures

the effect of inflows on an infinitesimal increment of time starting in any state

k ∈ {0, ..., N − 1}, such that

A+ =

−1 0 0 ... 0 0 0

1 −1 0 ... 0 0 0

0 1 −1 ... 0 0 0

...

0 0 0 ... −1 0 0

0 0 0 ... 1 −1 0

0 0 0 ... 0 1 0

. (2.11)

Likewise, if L(t−) = k + 1 and L(t) = k, then we can construct a vector g

such that I {L(t−)−∆O(t) = k} = I {Xt− + g = ek}. Then g has 1 in the kth

position, −1 in the (k + 1)th position and zeros elsewhere. So

g = (0, 0, 0, ..., 0, 1︸︷︷︸
k

, −1︸︷︷︸
k+1

, 0, ..., 0, 0, 0)T .

We now construct an (N + 1)× (N + 1) matrix, A−, which describes the effect of

outflows on an infinitesimal increment of time starting in any state k ∈ {1, ..., N},
such that

17

A− =

0 1 0 ... 0 0 0

0 −1 1 ... 0 0 0

0 0 −1 ... 0 0 0

...

0 0 0 ... −1 1 0

0 0 0 ... 0 −1 1

0 0 0 ... 0 0 −1

. (2.12)

Then we have the following expression for ∆X(t), ∆X(t) = A+X(t−)∆I(t)+

A−X(t−)∆O(t), recalling that I(t) and O(t) have unit jumps. Since the matrix

A(t, p(t)) has bounded entries, the number of jumps is finite with probability one

(w.p.1), so we can write the following relation for X(t) without doubts about the

existence of the sum: X(t) = X(0) +
∑

τ≤t ∆X(τ), so

X(t) = X(0) +
∑

τ≤t[A
+X(t−)∆I(t) + A−X(t−)∆O(t)]

= X(0) +

∫ t

0

A+X(τ−) dI(τ) +

∫ t

0

A−X(τ−) dO(τ)

= X(0) +

∫ t

0

[λ(τ)A+ + (C(τ, p(τ)) + µ(τ))A−]X(τ−) dτ +M(t)

= X(0) +

∫ t

0

A(λ(τ), C(τ, p(τ)), µ(τ))X(τ−) dτ +M(t).

(2.13)

The matrix A is clearly of the form given in equation (2.10).

2.5.4 Boundaries of optimal consumption

In this model we use a time and dam level dependent price to modify the demands

of customers. However, it is difficult to find the optimal price p(t,X(t)) directly

and so we optimize the price control through a process of optimizing the con-

sumption. This requires some relationship between the price being charged for

water and the customers’ reaction to that price. So for all of the models presented

we have assumed that each customer reacts to the impost of a price on water by

minimizing a quadratic utility function, which best describes the desire to limit

deviations from their demanded consumption needs. Let there be n customers

each with their own seasonal demand intensity, x̄i(t), i = 1, ..., n, and let r ∈ [0, 1]

be a minimum demand intensity reduction target, such that (1 − r) × 100% is

18

the maximum percentage of their demand allowed. The reduction target r is

imposed prior to any consideration of price control and may be thought of as a

reduction target imposed by an external regulator. This means that the customer

may receive less than their demanded water even with a zero price if this target

is not zero. Also let xi be the optimal demand intensity for each customer having

taken in to account the price on water. Then, each customer minimizes the utility

function

f(xi) = [((1− r)x̄i(t)− xi)2 + p(t,X(t))xi]I {xi ≥ 0} ,

such that xi = arg min
xi

f(xi). Solving this gives

xi(t, p(t,X(t))) = max

{
(1− r)x̄i(t)−

p(t,X(t))

2
, 0

}
,

and so the total optimal intensity of demand for all customers is defined as

C(t, p(t,X(t))) =
n∑
i=1

xi(t). (2.14)

Since p(t,X(t)) ∈ [pmin, pmax], we can define natural boundaries for the opti-

mal demand intensity by substituting pmin and pmax into equation (2.14). So

C(t, p(t,X(t))) =

Cmin(t), if p(t,X(t)) = pmax

C(t, p(t,X(t))), if pmin < p(t,X(t)) < pmax

Cmax(t), if p(t,X(t)) = pmin.

(2.15)

With this definition in place, the optimal price for water in each state can be

recovered after solution of the optimal control problem.

2.5.5 Dynamic programming equation

While the general idea of dynamic programming was introduced in section 2.1,

we now consider the procedure in detail. We begin by stating that in practice

dynamic programming is a procedure used to minimize a general performance

19

criterion of the Markov chain states and controls, that is

min
p(·)

J [p(·)],

where

J [p(·)] = Ep
[
φ0(X(T)) +

∫ T

0

f0(s, p(s,X(s)), X(s)) ds

]
, (2.16)

φ0(X(T)) = 〈φ0, X(T)〉 is the terminal cost,

f0(s, p(s,X(s)), X(s)) = 〈f0(s, p(s,X(s)), X(s)〉

is a cost function (the cost of control) when the system is in state X(s) at time

s ∈ [0, T], and 〈·, ·〉 is the standard inner product. If we now set X(s) = ei, for

i = 0, ..., N , then we obtain the vector

f0(s, p(s,X(s))) = (f0(s, p(s, e0)), ..., f0(s, p(s, eN)))). (2.17)

Assumption 2.10. (a) Each of the functions f0(·, ·, ei) is continuous on [0, T]×
[pmin, pmax] and bounded below;

(b) Each element of the set of vectors {Ai(t, p, f0(t, p, ei)}, where Ai is the ith

column vector of A and p ∈ P , is convex for any i = 0, ..., N and t ∈ [0, T]. This

means that for each of these functions, the infimum exists.

Next we define the value function

V (t, x) = inf
p(·)

J [p(·)|X(t) = x] (2.18)

where

J [p(·)|X(t) = x] = Ep
[
φ0(X(T)) +

∫ T

t

f0(s, p(s,X(s)), X(s)) ds|X(t) = x

]
.

(2.19)

This is interpreted as the cost of transitions from state X(t) = x at time

t to state X(T) at the terminal time T . By Assumption 2.10 the performance

20

criterion (2.16) is bounded below, so the infimum in (2.18) exists, and there is a

minimizing sequence of controls {pk(·)}. Since for each of the controls pk(·) we

have the function

J [pk(·)|X(t) = x] = 〈φ̂k(t), x〉

with continuous φ̂(k)(t), then we can write the function

V (t, x) = lim
k
〈φ̂(k)(t), x〉 = 〈φ̂(t), x〉,

with a measurable column vector-valued function φ̂(t) = (φ̂0(t), ..., φ̂N(t)) ∈
RN+1.

Now let φ(t) = (φ0(t), ..., φN(t)) ∈ RN+1 be a column vector of measurable

functions giving the transition costs for each state, then we have the dynamic

programming equation with respect to this function φ(t), in conventional form:

〈φ′(t), x〉+ min
p∈P̄

[〈φ(t), A(t, p)x〉+ 〈f0(t, p), x〉] = 0, (2.20)

with terminal condition φ(T) = φ0 [18, 10]. Since the function

H(φ, t, p, x) = 〈φ(t), A(t, p)x〉+ 〈f0(t, p), x〉

is continuous for any (t, p) ∈ [0, T]× P̄ and affine in φ for any (t, x) ∈ [0, T]× S,

then the function

H (φ, t, x) = min
p∈P̄

H(φ, t, p, x)

is Lipschitz in φ with the constant L = max(t,p,x) ‖A(t, p)x‖ and continuous in t

for any x ∈ S.

Remark 2.11. By setting x = ei, i = 0, ..., N , we get a system of ordinary

differential equations

dφi(t)

dt
= −H (t, φ(t), ei), i = 0, ..., N, (2.21)

21

with terminal condition φ(T) = φ0. The right-hand side of Equation (2.21) is

clearly Lipschitz in φ.

Proposition 2.12. With Assumptions 2.2 and 2.10 holding, equation (2.20) has

a unique solution on [0, T] [51].

The optimal control is then characterized as in the following theorem [18, 15,

32].

Remark 2.13. As long as Proposition 2.12 holds, the following theorem says

that φ(t) = φ̂(t).

Theorem 2.14. Let φ(t) be the solution of the system of equations (2.21), then

for each (t, x) ∈ [0, T]×S there exists p0(t, x) ∈ P̄ such that H(t, φ, p, x) achieves

a minimum at p0(t, x). Then

1. There exists an FX
t -predictable optimal control, p̂(t,X t

0) such that V (t, x) =

J [p̂(·)|X(t) = x] = 〈φ(t), x〉.
2. The optimal control can be chosen as Markovian, that is

p̂(t,X t
0) = p0(t,X(t−)) = arg min

p∈P̄
H(t, φ, p,X(t−)).

The following proof is given in [32] and is included for completeness of pre-

sentation.

Proof. Let SD[0,T] be the space of all piecewise constant functions X(t) such that

X(t) = {X(t) ∈ S, t ∈ [0, T]}.

1. Consider the space of ω = X(t) ∈ SD[0,T]. For each (t, ω) = (t,X(t)) ∈
[0, T]× SD[0,T] there is a p0 ∈ P̄ such that

H (φ(t), t, X(t)) = H(φ(t), t, p0, X(t)) = min
p∈P̄

H(φ(t), t, p,X(t)).

According to Wan and Davis (1979, Theorem 4.2) [57] there exists p̂(t,X t
0)

which belongs to the class of FX
t predictable controls and such that for any

(t,X(t)) ∈ [0, T]× S,

p̂(t,X t
0) = arg min

p∈P̄
H(φ(t), t, p,X(t)).

22

Also, according to the same theorem, the control can be chosen as a Markov

type control, p̂(t,X t
0) = p0(t,X(t−)).

2. It still must be shown that this control, p̂(t,X t
0) is optimal. Since p̂(·) is a

predictable control then for any initial condition X(0) ∈ S there exists a

unique solution of the martingale problems (2.7) and (2.8). That is to say

that there exists a process X p̂(t) ∈ SD[0,T] that satisfies

dX p̂(t) = A(t, (X p̂)t0)X p̂(t−) dt+ dM p̂(t), (2.22)

where M p̂(t) is a square integrable FX
t martingale with quadratic variation

given by (2.8).

Take some admissible control p(s,X(s)) and the corresponding solution

Xp(·) of the martingale problems (2.7) and (2.8) such that Xp(t) = x.

We then apply Ito’s formula to the process 〈φ(t), Xp(t)〉, where φ(t) is the

solution of (2.20) and add to both sides of the equation

∫ T

t

〈f0(s, p(s)), Xp(s)〉 ds.

We then have

〈φ(T), Xp(T)〉 − 〈φ(t), x〉+
∫ T
t
〈f0(s, p(s)), Xp(s)〉 ds

=

∫ T

t

[〈φ′(s), Xp(s)〉+H(φ(s), s, p(s), Xp(s))] ds+

∫ T

t

〈φ(s), dMp(s)〉.

If we now take the expectation of this equation we find that since φ(s) is a

continuous deterministic function, the integral over the martingale is equal

to zero and the expectation of the first integral on the right-hand side is

nonnegative because of (2.20), which is of the same form. So,

J [p(·)|X(t) = x] = Ep
[
〈φ(T), Xp(t)〉+

∫ T

t

〈f0(s, p(s,X(s))), Xp(s)〉 ds
]

≥ 〈φ(t), x〉 = V (t, x).

(2.23)

Note that the same calculations with the control p̂(t,X t
0) = p0(t,X(t−))

23

and Equation (2.22) give the equality J [p̂(·)|X(t) = x] = V (t,X), which

completes the proof.

The case of finding feasible solutions given some constraints on the perfor-

mance criteria will be dealt with in detail in Chapter 6, so further discussion will

be deferred until then. In the next chapter we present a basic dam model and

the solution results based on the methods of this chapter.

24

25

Chapter 3

Control of a single dam with simple counting process

inflows

The material presented in this chapter was written for and presented at the “18th

IFAC World Congress” held in Milan between the 28th of August and the 2nd

of September, 2011 [37]. This chapter presents the basic model upon which all

the subsequent models have been built and was also the first attempt at the

numerical solution of the optimal control problem. The model and its derivation

is explained in detail in Chapter 2, so nothing further will be added here; however,

a few words of explanation about the numerical solution are in order. After the

presentation of the results, a few comments will follow stressing the weaknesses

of this model and the need for the enhancements later developed.

3.1 Initial numerical solution

The numerical solution method used for this model differs from that used in

subsequent models in that a quite naive programming method was employed. All

the numerical work was done using Mathematica 7 and this model was somewhat

of an experiment in how to efficiently write code and solve the problem posed.

Having no prior programming experience, the code for this model was written

specifically for a controlled Markov model with a fixed number of states and was

not capable of being altered except in some details of parameters. In effect this

meant that the general definitions of the optimal controls were calculated prior

to writing the code and then the differential equation for each state was written.

Some regularity in the form of the differential equations made the automation

of this process possible but in retrospect it did not allow for experimentation

26

with different numbers of states or of different performance criteria without

rewriting much of the code. It was also written as a purely serial program

despite there being quite powerful automatic methods for parallelization in

Mathematica. This did not significantly change the computation speed given

the small number of states in this model but was certainly a deficiency when

considering extending the model to larger numbers of states or connected systems.

As stated, the model used here is the basic model given in Chapter 2, with

all the definitions and assumptions as given there. The first new element that

must be defined for the numerical solution is the specific performance criteria to

be used.

3.2 Performance criterion

The goal of optimization in the context of this problem is to minimize some

cost function of the Markov chain states and the price controls. Such a

function should minimize the difference between the actual customer demand,

C̄(t), and the optimal demand, C(t, p(t,X(t))). It should also minimize the

average probability that the dam falls below a prescribed level during the

control interval, and the probability that the dam is below a prescribed level

at the terminal time. These are expressed as the perfromance criteria listed below.

The three specific criteria for this dam problem have the same form as in

equation (2.16). The first is the mean square deviation of the total customer

demand for water and the water actually supplied. Let C̄(t) = (1− r)
∑n

i=1 x̄i(t),

where n is the number of consumption sectors then:

J1[p(·)] = Ep
{∫ T

0

(
C(s, p(s,X(s)))− C̄(s)

)2
ds

}
. (3.1)

27

The second gives the average probability that the dam level falls below level

M ≤ N over the interval [0, T]:

J2[p(·)] = Ep
{∫ T

0

M∑
i=0

Xi(s)ds

}
. (3.2)

The third criterion gives the probability that the dam is below level M ≤ N

at time T :

J3[p(·)] = Ep
{

M∑
i=0

Xi(T)

}
. (3.3)

The linear combination of J1 and J2 gives us an integral cost function

J1[p(·)] + J2[p(·)] = Ep
{∫ T

0

f0(t, p(t,X(t)), X(t))dt

}
, (3.4)

where

f0(t, p(t,X(t)), X(t)) =
∑N

i=0〈(C(t, p(t, ei))− C̄(t))2, ei〉
+
∑M

i=0〈l, X(t)〉,
(3.5)

where l = (1, 1, ..., 1, 0, ..., 0) with M + 1 first units. This integral cost function

appears in the dynamic programming equation and the terminal criterion is ac-

counted for as the initial conditions in the solution of the dynamic programming

equations.

3.3 The dynamic programming equations and solutions for a

large dam

Using the results of the previous sections we can now show how the optimal

control problem for a large dam is solved. Let us take equations (2.21) and eval-

uate these with the matrix A(t, p(t,X(t))) and the function f0(t, p(t,X(t)), X(t)).

Doing so, we get the following dynamic programming equations:

28

0 = φ′0(t) + minC0(·){λ(t)(φ1(t)− φ0(t)) + (C0(t, p(t, e0))− C̄(t))2}+ 1

0 = φ′1(t) + minC1(·){(C1(t, p(t, e1)) + µ1(t, e1))(φ0(t)− φ1(t))+

λ(t)(φ2(t)− φ1(t)) + (C1(t, p(t, e1))− C̄(t))2}+ 1

.

0 = φ′M(t) + minCM (·){(CM(t, p(t, eM)) + µM(t, eM))(φM−1(t)− φM(t))+

λ(t)(φM+1(t)− φM(t)) + (CM(t, p(t, eM))− C̄(t))2}+ 1

.

0 = φ′N(t) + minCN (·){(CN(t, p(t, eN)) + µN(t, eN))(φN−1(t)− φN(t))+

(CN(t, p(t, eN))− C̄(t))2}.
(3.6)

Here we take C(t, p(t,X(t))) as the control for ease of calculation. Since

C(t, p(t,X(t))) depends linearly on the price, p(t,X(t)) can be recovered for

each state after solution.

As mentioned in Section 3.2, the terminal conditions account for the J3

criterion by attaching a reasonable but significant cost to all states less than the

prescribed state M . That is, for Xi(T) ≤ M , i = 0, ...,M , φi(T) = K, where K

the cost penalty for ending in this state. For all Xi(T) > M , i = M + 1, ..., N ,

φi(T) = 0. The size of K must be significant enough to ensure that the solution

is sensitive to the criterion whilst still being reasonable.

Now, C(t, p(t,X(t))) =
∑n

i=1 xi(t, p(t,X(t))), where xi(t, p(t,X(t))) is defined

as in Section 2.5.4. We need the minimum of this function in each of the above

equations (3.6) for each t. The absolute maximum of C(t, p(t,X(t))) occurs when

29

the price is the stipulated minimum set by the regulator, that is

Cmax(t) = (C̄(t)− pmin
2

)×
I(C̄(t)− pmin

2
≥ 0),

(3.7)

where pmin is the minimum price. The absolute minimum occurs with the maxi-

mum stipulated price and so is

Cmin(t) = (C̄(t)− pmax
2

)×
I(C̄(t)− pmax

2
≥ 0),

(3.8)

where pmax is the maximum price and I(·) is an indicator function, which is

equal to one if the condition is true or zero if false. If the minimizing function

is below or above the absolute minimum or maximum respectively, then we take

the absolute minimum or maximum as the minimizing function. So, considering

each equation, we minimize it and find the conditions which give us the correct

minimizing function.

From the first, differentiating with respect to C0(t, p(t, e0)) gives us

C0(t, p(t, e0)) = (1− r)C̄(t) (3.9)

which implies that C(t, p(t, e0)) is equal to the minimum reduced demand target.

For Ci(t, p(t, ei)), i = 1, ..., N , the minimizing equations are given by

Ci(t, p(t, ei)) = C̄(t) +
φi(t)− φi−1(t)

2
. (3.10)

The functions Ci(t, p(t, ei)), i = 0, ..., N can be summarized as follows:

1. C0(t, p(t, e0)) = C̄(t) is greater than Cmax(t) for all t and nonzero price

p(t, e0), so we take Cmax(t) as the minimizing function.

2. For the remainder of the equations, the minimizing function is given by the

following definition:

30

Ci(t, p(t, ei)) =

Cmax(t), if C̄(t)+
φi(t)−φi−1(t)

2
> Cmax(t),

C̄(t) + φi(t)−φi−1(t)
2

,

if Cmax(t) ≥ C̄(t)+
φi(t)−φi−1(t)

2
≥ Cmin(t),

Cmin(t), if C̄(t)+
φi(t)−φi−1(t)

2
< Cmin(t).

(3.11)

With these minimizing equations, the system (3.6) is now a system of ordinary

differential equations, which can be solved numerically.

3.4 Numerical example

For this example, Mathematica 7 was used to solve the system of ODE’s and

provide plots which demonstrate the effect of the optimal price control on con-

sumption. The following functions and parameters were used as the basis of the

model:

• N = 20;

• M = 10;

• T = 1;

• maximum price, pmax(t) = 2.5, and minimum price, pmin(t) = 2;

• inflow function, λ(t) = sin(2πt) + 10;

• natural loss function at the maximum level, µL(t) = − sin(2πt) + 2.5;

• natural loss function at lower levels, µi(t) = L−i
L
µL(t) for i = 1, ..., L− 1;

• demand functions, x̄1(t) = cos(2πt) + 4.5, x̄2(t) = 0.3 cos(2πt) + 3.5 and

x̄3(t) = 0.5 cos(2πt) + 5;

• r = 0.25; and

• K = 100.

31

The above parameters give us a one year control period for a dam with

twenty levels. The regulator has stipulated that the maximum price to be

charged is 2.5 (dollars per kiloliter, say) and the minimum is 2. We have a

minimum reduction target of 25% off uncontrolled demand and have limited the

water that can be consumed above net natural flows to 20%. Natural losses are

mostly due to evaporation and this largely depends on the surface area of the

dam. For this simple model we have assumed that the losses decrease linearly,

however, for any real dam this would require significant modeling in itself. We

also have a terminal cost penalty of 100 if the dam level is at or below level 11 at

time T = 1. This penalty would be paid by the dam manager to the regulator.

Recall that the J2 criterion added a unit cost to the running transition cost of

each level. This was found to be too low a cost and the solution was insensitive

to it, so for each state where such a cost applied, it was multiplied by K = 100.

Figure 3.1 shows the demand functions and the unweighted mean natural

losses along with the inflow function. Clearly total demand and loss exceeds

inflows and so the necessity of controlling the demand is well demonstrated,

particularly if the dam starts in a low level. Figure 3.2 gives the maximum and

minimum consumption curves used to decide the optimal consumption function

for each level in this model. Again, it is clear that the uncontrolled demand is

well above the maximum consumption.

After the solution of the system of ODE’s, the solutions were substituted

back into the consumption equations, Ci(t, p(t, ei)), i = 0, ..., 20. From these

equations the optimal price functions were easily found. Figure 3.3 shows the

weighted average of controlled demand and the original demand over the control

period, assuming that the dam started in level 11. The weighting is given by the

probability that the dam was in state i at time t and was found by solving the

forward Kolmogorov equation,

dP (t)

dt
= A(t, p(t,X(t)))TP (t) (3.12)

32

with initial condition,

P (0) = e10.

So, the weighted average of controlled demand is

N∑
i=0

Pi(t)Ci(t, p(t, ei)),

where Pi(t) is the probability of the dam being in state i at time t. Figure 3.4

shows four of the controlled demand functions and the shape of these functions

explains why the weighted average of controlled demand is not a smooth

function. The probabilities are smooth but the multiplication by non-smooth

functions leads to a rather irregular curve. Even so, it is clear that the control is

effective on the control period.

Figure 3.5 gives an indication of the nature of the price functions produced

by the optimization. Each function is piecewise continuous with few jumps on

the control period. As the state changes one need simply change to the price

function for that state. Clearly price does not increase monotonically as the

dam level gets lower. The price depends on the state and time in a very complex

way due to the different criteria we want dam performance to meet. Figure 3.10

gives the solution curves of the ODE system. Since the solutions depend on the

difference between the current state, the state below and the state above, we can

see that there will be frequent sign changes because the solution curves are so

close together. Figures 3.6, 3.7 and 3.8 show the price structure at various times

on the control period. It is clear that the prices reflect this behavior of the ODE

system solutions.

Figure 3.9 shows the cumulative controlled consumption in states 1, 5, 10,

15 and 20. They are monotonically increasing so our prices have not altered

the general nature of outflows. It is likely that the differing demands of each

customer in the dam is causing the price behavior we see. Note that the

cumulative consumption in each state shown is almost the same. This is due

33

0.2 0.4 0.6 0.8 1.0
Time HyearsL

5

10

15

Flows HkLL

Natural inflow

Demand and mean natural loss

Figure 3.1: Demands, mean natural flows and losses.

0.2 0.4 0.6 0.8 1.0
Time HyearsL

7

8

9

Consumption HkLL

MinimumConsumption

MaximumConsumption

Figure 3.2: Maximum and minimum consumption curves.

to the optimal consumption rate falling within a very narrow band between its

maximum and minimum at any given time. This may not be a practical strategy

to control the dam level, due to the non-monotonic changes in price, but does

demonstrate emphatically the difficulty of finding a practical strategy to control

the dam level primarily through price. We must also consider other types of

control.

3.5 General comments on the results

At this stage we have shown that it is possible to find optimal price functions

for a dam with twenty states while taking into account a number of important

performance criteria. This provides a solid framework to model larger, more

34

0.2 0.4 0.6 0.8 1.0
Time HyearsL

2

4

6

8

10

12

14

Demand HkLL

Controlled demand

Uncontrolled demand

Figure 3.3: Uncontrolled consumption and average controlled consumption.

0.2 0.4 0.6 0.8 1.0
Time HYearsL

7.0

7.5

8.0

8.5

9.0

9.5

Demand HkLL

Optimal demand in state 20

Optimal demand in state 15

Optimal demand in state 10

Optimal demand in state 5

Figure 3.4: Optimal demand in states 5,10,15 and 20.

0.2 0.4 0.6 0.8 1.0
Time HyearsL

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Price H$�kLL

Price in state 20

Price in state 15

Price in state 10

Price in state 5

Figure 3.5: Optimal price functions for states 5,10,15,and 20.

35

0 5 10 15 20
Dam Level H1-21L1.0

1.5

2.0

2.5

3.0

Price H$�kLL

Figure 3.6: Price against dam level at t=0.25.

0 5 10 15 20
Dam Level H1-21L1.0

1.5

2.0

2.5

3.0

Price H$�kLL

Figure 3.7: Price against dam level at t=0.5.

0 5 10 15 20
Dam Level H1-21L1.0

1.5

2.0

2.5

3.0

Price H$�kLL

Figure 3.8: Price against dam level at t=0.75.

0.2 0.4 0.6 0.8 1.0
Time HyearsL

2

4

6

8

Cumulativeconsumption HkLL

Figure 3.9: Cumulative consumption for states 1,5,10,15,20.

36

0.2 0.4 0.6 0.8 1.0
Tim e H years L

- 50

50

100

150

ΦH t L

Figure 3.10: Dynamic programming ODE solution curves.

realistic systems. An improvement would be to increase the number of states so

as to improve the smoothness of the resulting price function as it moves from

state to state. This would make such a strategy more attractive to implement,

however, numerically this will be far more computationally intensive and so we

must find efficient means of simultaneously solving large systems of differential

equations. Another improvement would be to increase the number of dams in

the system and have them coupled together such that water can be moved under

control between dams. If there were N states in each dam and M dams, this

would lead to a system of NM differential equations which need to be solved

simultaneously. To this end we will try to implement this with high performance

computing techniques (HPC), such as parallel computing, and Chapter 7 gives

detail on the progress of these efforts.

3.6 Further analysis of the results

The development of the model and numerical solution method presented in this

chapter provided a good basis for further work but there were some obvious defi-

ciencies considering the results. The main deficiency is clearly seen in Figures 3.6

to 3.8, showing the optimal water price at specific times during the control period.

There is no monotonicity in the prices. One would reasonably expect that as the

level of water in the dam decreased that the price would monotonically increase

but this clearly does not occur in this model. Figure 3.10 along with the defi-

nition of the optimal consumption functions given in Equation (3.11) explain this.

37

0.2 0.4 0.6 0.8 1.0
Time H years L

20

40

60

80

100

120

Φ H t L

Figure 3.11: ODE system solution curves with no control applied.

The solution curves of the differential equations for the states are quite

nonlinear and the solution curve for state i may be crossed at multiple points

by the solution curves for states i − 1 and i + 1. The optimal consumption

definitions for each state depend on the difference between these curves, that

is the absolute difference and the sign, and so there is a rapid changing of the

prices. It is instructive to compare the ODE system solutions presented above

with those found with no control. Figure 3.11 shows solutions with no price

control applied. There is a much more linear character to the solutions without

controls and this implies that most of the nonlinearity in the controlled case

comes from the controls themselves. From a practical point of view this would

not be an attractive control solution.

On the other hand, if we consider extreme initial conditions, such as starting

with the dam being either almost empty or full, we find that from a probabilistic

perspective, the control is effective.

3.6.1 Starting in the lowest state

If we begin in the lowest possible state, which signifies that the dam is near

empty, then we find that the probabilities of remaining in this state decline to

approximately 25% by the end of the control period, as seen in Figure 3.12. The

probability declines rapidly to this level but still remains the most likely outcome,

although very closely matched with the level increasing to level 1. The probabili-

ties of increasing above level 1 decrease in order. Compare this with Figure 3.13,

38

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 3.12: State probabilities against time starting in state L(0)=0.

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 3.13: State probabilities against time starting in state L(0)=0 with no
control.

which gives the transition probabilities with no control applied. There is a signif-

icant decrease in the probability of staying in level 0, to approximately 40%, but

there is a wide gap from this to the probability of increasing to level 1. Clearly

the controlled solution gives a better outcome and the control does affect the

transition probabilities.

3.6.2 Starting in the highest state

Likewise, if we begin in the highest state, when the dam is near full, then we find

in the controlled case that the probability of remaining in this state falls quite

rapidly at first and the more slowly until it is a little under 20% at the end of

the control period, as shown in Figure 3.14. It remains the most likely outcome

for most of this time. On the other hand, if we compare with the case where

no controls are applied, we find that the probability of remaining in the highest

39

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 3.14: State probabilities against time starting in state L(0)=20.

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 3.15: State probabilities against time starting in state L(0)=20 with no
control.

state drops very rapidly and is about 10% at the end of the control period, as

seen in Figure 3.15. This is certainly intelligible considering that in this model

there is only a control to reduce water consumption but not to control potential

flooding. So here the control has the effect of making the probability of flood

more likely and is a significant weakness of this model. This is addressed in later

models.

40

41

Chapter 4

Control of a system of dams with simple counting process

inflows

This chapter is the result of a paper written for and presented at the “Interna-

tional Conference on Computer Science, ICCS 2011”, held from the 1st to the 3rd

of June, 2011, at Nanyang Technological University, Singapore. It came about

as a natural extension of the dam, described by the model in Chapter 3, being

connected to another dam, perhaps with different dynamics. In order to connect

the two dams a transfer control was introduced. This allowed the state and time

dependent transfer of water in both directions, but in only one direction at a time.

One approach to the representation of this system is to construct a single

generator for the entire coupled system and treat it as a single controlled Markov

chain. This has the disadvantage of resulting in a generator matrix which has

dimensions ((N + 1)× (M + 1))× ((N + 1)× (M + 1)) for two controlled Markov

chains with N + 1 and M + 1 states respectively. Also, taking the same example,

the state space of the coupled chains has dimensions (N + 1) × (M + 1) and so

the representation of the system of ODE’s is cumbersome, especially their setup

for numerical work.

The approach that we have taken is to consider the state space first, not the

generator of the coupled chain, and use tensors to simplify the representation.

The joint state of the connected chains can be viewed as the direct product of

the states of the individual chains. When represented in this way, it is a simple

operation to take the derivative with respect to time of the direct product of the

42

states and find a system of differential equations in terms of the infinitesimal

generators of the individual subcomponents of the system. Computationally both

representations give the same result with the same computational challenges,

but this representation is more compact and easier to write for computational

purposes.

The infinitesimal generator is only slightly modified in this case and the

transfer control is simply added to the outflow process, in all states where

outflows are possible, and to the inflow process, where inflows come from other

dams. However, this is for only one dam in the system so we then have a

separate generator for each dam in the system. Here it must be stated that the

dependence on the state is more precisely dependence on the joint state of the

system. The same applies to price, which for simplicity we took to be a single

price on water for the whole system. This joint state dependence of the price

could be replaced by separate prices for each dam dependent only on the state

of the relevant dam with only minimal changes to this model.

The practical and numerical challenge here was that the size of the resulting

system is (N + 1)d for d dams each with N + 1 states. So, for example, if N = 20

and d = 2 then we will have a set of 441 nonlinear ODE’s to solve. If d = 3 then

there are 9261 ODE’s, and so on. There is little that can be done about this

aspect of the numerical solution other than using High Performance Computing

(HPC) and parallelization where possible. This is discussed in Chapter 7. The

challenge is obtaining the set of ODE’s in a systematic way.

In this chapter we consider the optimal management of a system of d dams

via a state and time dependent price control and flow controls between dams

in the system. The level of each dam in the system is approximated by N + 1

discrete levels and each is then modeled as a continuous-time controlled Markov

chain. The general approach to the solution of this type of problem is to

reduce the stochastic problem to a deterministic one with integral and terminal

optimality criteria and then solve it via dynamic programming. This type of

43

problem has been solved for server queuing systems by Miller [32] and in general

by Miller et. al. [35, 34].

4.0.3 Structure

In Section 4.1 we detail the method of modeling a multi-dam system as linked

continuous-time controlled Markov chains. Section 4.2 provides details of the

key innovation of this model and explains how state dependent consumption

functions are derived for each dam given our price feedback control. In Sec-

tion 4.4 we consider a general performance criterion and the general solution

of this problem as developed in [32, 35, 34]. Section 5 develops the specific

performance criteria appropriate to this setting.

Section 6 will discuss some issues dealing with the numerical solution and

the application of parallelization to parts of the solution. Section 7 will give a

numerical example for a system with only two dams so that the solutions can

be readily visualized. The final section will outline future directions for research

and enhancement of this model and solution method.

4.1 Model of the controlled dam system

In order to model the dam system, we make some assumptions about the

behavior of each dam. We assume that each dam has a natural inflow process,

independent of flows into other dams. We likewise assume that natural losses

from each dam due to evaporation are independent of evaporative losses in other

dams. In terms of consumption, we assume that the consumption in each dam

is controlled by a time and state dependent price and therefore depends on the

joint state of the system. Likewise, cross-flows between dams are time and state

dependent and depend on the joint state of the system.

For each dam, we approximate its level by discretizing it into N + 1 states,

N <∞, and then let Li(t) ∈ {0, ..., N}, i = 1, ..., d, be an integer valued random

variable describing the level of dam i at time t. Using the martingale approach

[18] we describe the N + 1 possible levels in each dam by unit vectors in RN+1,

44

giving us Si =
{
e

(i)
0 , ..., e

(i)
N

}
for each i = 1, ..., d.

All processes are defined on the probability space {Ω,F ,P}. Specifically, we

define Xi(t), i = 1, ...d, where {Xi(t) ∈ Si, t ∈ [0, T]} for T <∞, as a controlled

jump Markov process with piecewise constant right-continuous paths. Clearly this

represents the process of change in the level of each dam on the interval [0, T]. Let

the joint state be defined as X(t) = X1(t)⊗X2(t)⊗...⊗Xd(t) and assume that X(t)

generates a family of right continuous σ-algebras, FX
t = σ {X(s) : s ∈ [0, T]} .

We make the following assumption about the control, p(t,X(t)), and the transfer

controls, u(i→j)(t,X(t)), between dams i and j, for i, j = 1, ..., d and i 6= j.

Assumption 4.1. Assume that the set of admissible controls, P̄ = p(·) and

Ū =
{
u(i→j)(·) : i, j = 1, ..., d; i 6= j

}
are sets of FX

t -predictable controls taking

values in P = {p ∈ [pmin, pmax]} and U = {u ∈ [0, 1]} respectively.

Remark 4.2. Assumption 4.1 ensures that if the number of jumps in the ith dam

up to time t ∈ [0, T] is N(t), τk is the time of the kth jump and

X t
i,0 =

{
(Xi,0, 0), (Xi,1, τ1), ..., (Xi,N(t), τN(t))

}
is the set of states and jump times, then for τN(t) ≤ t < τN(t+1) the controls

p(t,Xt
0) and u(i→j)(t,Xt

0) are measurable with respect to t and Xt
0 [18, 32].

4.1.1 Dam system dynamics

In this approach it is supposed that the inflows and outflows of each dam in

the system can be approximated by general FX
t -predictable counting processes

with unit jumps and let the inflow into dam i be Y
(i)
in (t). It is assumed that the

natural component of this has a deterministic intensity, λi(t) ≥ 0. The intensity of

inflow components from other dams are the result of the water transfer controls,{
u(j→i)(t) : j, i = 1, ..., d; j 6= i

}
. So for the ith dam the inflow process has the

following form:

Y
(i)
in (t) =

∫ t

0

(λi(s) +
d∑
j=1

u(j→i)(s))I {Li(s) < N} ds+M
(i)
in (t), (4.1)

45

where M
(i)
in (t) is a square integrable martingale with quadratic variation

〈M (i)
in 〉t =

∫ t

0

(λi(s) +
d∑
j=1

u(j→i)(s))I {Li(s) < N} ds.

For the outflow process in each dam there is a natural component and com-

ponents due to consumption and water transfer controls. Let the outflow from

dam i be Y
(i)
out(t) and let the intensity of evaporation from dam i be µi(t,X(t)),

such that the intensity depends on the joint state of the process. The intensity

of outflows from water transfers are
{
u(i→j)(t,X(t)) : i, j = 1, ..., d; j 6= i

}
and

the intensity of outflow from consumption is the controllable consumption rate

Ci(t, p(t,X(t))), which depends on the current price of water and the intensity of

customer demands. This will be derived in the next section. So, in similar form

to Y
(i)
in (t),

Y
(i)
out(t) =

∫ t

0

(µi(s,X(s)) + Ci(s, p(s,X(s))) +
d∑
j=1

u(i→j)(s,X(s)))I {Li(s) > 0} ds

+M
(i)
out(t),

(4.2)

where M
(i)
out(t) is a square integrable martingale with quadratic variation

〈M (i)
out〉t =

∫ t

0

(µi(s,X(s))+Ci(s, p(s,X(s)))+
d∑
j=1

u(i→j)(s,X(s)))I {Li(s) > 0} ds.

It follows that the approximate dynamics for the ith dam are governed by the

equation

Li(t) = Y
(i)
in (t)− Y (i)

out(t). (4.3)

It should be emphasized that the dynamics of each dam clearly depend on the

dynamics of the other dams.

In essence by splitting each dam intoN levels we are saying that the mean time

between level changes of the continuous flow processes correspond with the mean

time between jumps in our counting process approximations. The martingale

46

terms provide the random perturbation about this mean and, importantly, the

mean of the martingale terms is zero.

4.1.2 Controlled dam system as a system of controlled Markov chains

The above approximation of the dam system dynamics allow us to make the

following proposition with respect to each dam in the system.

Proposition 4.3. Given the approximate dynamics for the ith dam, as stated

in 4.1.1, in a system of d dams, the controlled process for this dam is represented

by a controlled Markov chain with (N + 1)d states and, taking into account the

representation of the system as tensors, the (N + 1)× (N + 1) matrix describing

the generator of the ith dam is,

47

Ai(t, p(t,X(t)), u(i→j)(t,X(t)), u(j→i)(t,X(t))) =

− λi(t)

−
∑
j 6=i

u
(j→i)
i (t,X(t))

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

... 0 0

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

+ λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t)))

... 0 0

0

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

... 0 0

...

0 0 ...

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

0

0 0 ...

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

+ λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t)))

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

0 0 ...

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t)))

.

The column number corresponds to the current state of the ith dam and the

column entries add to zero. This generator is constructed in such a way that if

the ith dam is empty, then no outflows are possible, and if the ith dam is full,

then no inflows are possible.

Proof. The proof of this proposition is accomplished in the same way as for the

generator of a controlled Markov chain for a single queuing system given by Miller

[32]. The only difference is that the chains are linked via water transfer controls

48

and a price for the joint states, however, as all controls are FX
t -predictable, this

does not affect the proof.

4.2 Derivation of controlled demand functions

As already stated, the key innovation of this model is the use of a time and state

dependent feedback control, p(t,X(t)), to take into account the active seasonal

demands of consumers. It is more intuitive and makes calculation easier to find

p(t,X(t)) through the effect it has on consumption in each dam. For the ith

dam, the resulting controlled demand is denoted Ci(t, p(t,X(t))). Here we show

how we take the price of water into account through controlled consumption. To

be clear, we are looking for a single price structure for all users of the dam system.

So, considering the ith dam, let there be n sectors, or consumers, each with

their own seasonal demand intensity, x̄i,k(t), for k = 1, ..., n. In order to have some

control on this demand intensity we want to set an optimal demand intensity for

each sector, which we denote xi,k, for k = 1, ..., n. Now we define in what sense we

want this target to be optimal by defining the utility function as minxi,k fi,k(xi,k)

where fi,k(xi,k) = (xi,k − (1 − r)x̄i,k(t))
2 + p(t,X(t))xi,k, and r is a minimum

demand reduction target. To find the minimum we differentiate and solve for

xi,k, giving

xi,k(t, p(t,X(t))) = ((1−r)x̄i,k(t)−
p(t,X(t))

2
)I

{
(1− r)x̄i,k(t)−

p(t,X(t))

2
≥ 0

}
.

This is the optimal intensity of demand for the kth sector. It follows that for the

ith dam, the total optimal intensity of demand is

Ci(t, p(t,X(t))) =
n∑
k=1

xi,k(t, p(t,X(t))). (4.4)

We now have a vector of optimal demand intensities for the ith dam.

Since we also know that p(t,X(t)) ∈ [pmin, pmax], we can now also define max-

imum and minimum optimal demand intensities for the ith dam in the following

49

way:

Ci,max(t) =
n∑
k=1

xi,k(t, pmin) ≥ Ci(t, p(t,X(t))) =
n∑
k=1

xi,k(t, p(t,X(t)))

≥ Ci,min(t) =
n∑
k=1

xi,k(t, pmax).

(4.5)

These equations allow us to define piecewise functions for the solution of

Ci(t, p(t,X(t))) in the dynamic programming equations.

4.3 Dynamic programming and optimal control

In Chapter 2 the solution for the optimal control of a single server queuing system

was developed via dynamic programming. This method can be extended to

systems defined by multiple controlled Markov chains. Since with the extension

to d connected dams we are still dealing with essentially one controllable Markov

chain, the results from Chapter 2 carry over with only the slight modifications

required for the increased number of controls. As these are mostly trivial

extensions of the results already given we will focus here on the representation

of the controllable Markov chain and how this affects the results already given.

4.3.1 Extension to d dams

There are two ways to extend these results to d dams. The first is to find the in-

finitesimal generator of the controlled Markov chain for the entire system, writing

the entire set of possible joint states as a vector and solving as in section 2.5.5.

While this is possible it presents practical problems. Firstly, the generator is of

the form

G = A1⊗I⊗I⊗...⊗I+I⊗A2⊗I⊗...⊗I+...+I⊗I⊗...⊗Ad−1⊗I+I⊗I⊗...⊗I⊗Ad,

which is a matrix of dimensions (N + 1)d × (N + 1)d. With a large number of

states and dams this is a rather complex matrix to construct for computational

use. The representation used here is much more convenient, since it deals with

50

the generators of each dam separately, and relies on Theorem 2.14.

We consider the value function V (t,x) = 〈φ(t), x1⊗ x2⊗ ...⊗ xd〉, where φ(t)

is a tensor of order d. From Theorem 2.14 we know that there exist optimal

Markovian controls that satisfy V (t,x) = 〈φ(t),x〉. So, considering that

d〈φ(t),X〉
dt

=
〈dφ(t),X〉

dt
+〈φ(t), A1X1 ⊗X2 ⊗ ...⊗Xd +X1 ⊗ A2X2 ⊗ ...

⊗Xd + ...+X1 ⊗X2 ⊗ ...⊗ AdXd〉,

we minimize 〈φ(t),X〉, taking into account the order-d tensor or performance

criteria, f0(t, p(t,X(t)), u(l→m)(t,X(t))), and solve the resulting system of ODE’s:

〈dφ(t),X〉
dt

= − min
p(·),u(l→m)(·)

[〈φ(t), A1X1 ⊗X2 ⊗ ...⊗Xd

+X1 ⊗ A2X2 ⊗ ...⊗Xd + ...

+X1 ⊗X2 ⊗ ...⊗ AdXd〉

+ 〈f0(t, p, u(l→m)),X〉].

(4.6)

where we use unit vectors e
(k)
i , i = 1, ...N for xk, k = 1, ..., d. The actual method

of computing this will be considered in Section 4.5.

4.4 Performance criteria

Performance criteria define in what way we want the management policy for the

dam system to be optimal. For a problem with many dams we consider four

different performance criteria. The first type gives the mean squared difference

of the optimal consumption in each joint state and in each dam, and the total

customer demand each dam. For a d dam system, we have

51

J1(t, p(t,X(t)),X(t)) = Ep
[
(C1(t, p(t,X(t))−

∑n
k=1 x1,k(t))

2
]

·
·
·

Jd(t, p(t,X(t)),X(t)) = Ep
[
(Cd(t, p(t,X(t))−

∑n
k=1 xd,k(t))

2
]
,

(4.7)

where each of the Ji, i = 1, ...d are tensors of order d.

The second type of performance criteria concerns controlled transfers between

dams. We consider the difference squared of the natural inflows and transfers into

each dam and the customer demand and evaporation in each dam. For a d dam

system the criteria have the form

J1+d(t, u
(j→1)(t,X(t)),X(t)) = Eu

[(
λ1(t) +

∑d
j=1 u

(j→1)(t,X(t))

−
∑d

j=1 u
(1→j)(t,X(t))−

∑n
k=1 x1,k(t)

−µ1(t,X(t)))2]
·
·
·

J2d(t, u
(j→d)(t,X(t)),X(t)) = Eu

[(
λd(t) +

∑d
j=1 u

(j→d)(t,X(t))

−
∑d

j=1 u
(d→j)(t,X(t))−

∑n
k=1 xd,k(t)

−µd(t,X(t)))2] ,
(4.8)

where each of the Ji+d, i = 1, ...d is a tensor of order d. The idea here is to

maintain balance between inflows and outflows via these transfers. This simple

quadratic criteria is just to demonstrate the method but clearly criteria more

suited to a particular dam system could be developed. The above criterion is

that used in the numerical example. It would have been better to include the

controlled consumption in this criterion, however, while using Mathematica to

solve this in conjunction with parallel computing techniques, it was not possible

52

to find a method to solve for a criteria with multiple controls. Also, note that

we treat water transfer intensities separately in the performance criteria but

what we would observe is the difference between these intensities as a single flow

intensity. This is explained in section 4.6.

The third type of performance criteria is a single criterion which gives the

sum of the average probability that the level of each dam in the system falls

below level M ≤ N over the interval [0, T]:

J2d+1(t, p(t,X(t)), u(l→m)(t,X(t)),X(t)) =
d∑
l=1

(
Ep,u

[∫ T

0

M∑
k=1

Xl,k(s)ds

])
.

(4.9)

As with the other criteria, this is a tensor of order d.

Now we define f0(t, p(t,X(t)), u(l→m)(t,X(t)),X(t)) =
∑2d+1

k=1 Jk(·). This is

then used in the dynamic programming equation. A final criterion concerns the

terminal state. We consider the sum of the probabilities that the level of each

dam is below level M ≤ N at time T :

J2d+2(t, p(t,X(t)), u(l→m)(t,X(t)),X(t)) =
d∑
l=1

(
Ep,u

[
M∑
k=1

Xl,k(T)

])
. (4.10)

This last criterion gives us the terminal conditions for the solution of the system

of ODE’s given at (4.6).

In this section we consider the control resources of the entire dam system to be

unconstrained, however, it is possible to consider the problem with constrained

control resources. This type of work has been done by Miller et.al. [35] and uses

the Lagrangian approach to find the optimal weighting of each criterion.

4.5 Computational methods

With the results of 4.3.1 and 4.4, we can solve the system numerically. So far,

all the numerical work we have done has been using Mathematica 7. Clearly

53

the numerical solution of this problem will be implemented differently in dif-

ferent languages, however, there are some common issues to deal with in any

implementation. The first is how to handle expressions like

〈φ(t), A1X1⊗X2⊗ ...⊗Xd +X1⊗A2X2⊗ ...⊗Xd + ...+X1⊗X2⊗ ...⊗AdXd〉,

recalling that φ(t) is a tensor of order d and all of the Xk are unit vectors.

In Mathematica 7 this is handled via the repeated use of a generalized inner

product such that

〈φ(t), A1X1 ⊗X2 ⊗ ...⊗Xd〉 = 〈Xd, 〈Xd−1, 〈..., 〈X2, 〈A1X1, φ(t)〉〉...〉〉〉.

This may be an abuse of notation since an inner product gives a scalar, however,

the implementation produces the correct result. In general, this calculation would

be carried out as follows, where AT refers to the transpose of a matrix A:

Xd

(
Xd−1

(
....
(
X2 (A1X1φ(t))T

)T
...

)T)T

.

All other calculations involving the extraction of a the tensor element corre-

sponding to a particular joint state, or operations on a particular state, are

handled in the same way.

Another issue is the minimization operation involved in each ODE in the

system. In the case we have with the integral performance criteria given,

these minimizations can all be carried out prior to solving the ODE system.

Essentially we have to minimize over Cl(t, p(t,X(t)),X(t)) and u(l→m)(t,X(t))

in (4.6). Due to the particular structure we have, we simply take the partial

derivatives with respect to these controls and minimize, since the minimizations

will be separable. If the performance criteria were not such nice integral criteria

we may have to minimize during the solution of the ODE system, resulting in

far more complex calculations.

54

In the case we have, the actual time of solution of the ODE system is much

less than that taken to carry out the minimizations. Since these are done prior to

the ODE system solution, they can be done separately in parallel. Mathematica

7 has good support for parallelization and we have parallelized the minimization

operations. As yet, this has only been tested on a dual core machine but the

results are promising. We have access to a computer cluster and will implement

the program on this cluster and report on the results when available. Mathe-

matica has been useful for experimenting and prototyping but in future work we

plan to rewrite this program in Fortran or C. The code for the model used in this

chapter is included as Appendix A.

4.6 Numerical example

We include a two dam system model as a numerical example of our results

so far. Table 4.1 is a list of parameters and functions corresponding to those

defined in previous sections and a value K. The values of the performance

criteria for the probability of the dams falling below level M during and at

the end of the control interval are multiplied by K to make the solutions more

sensitive to these criteria. The first subscript refers to the first or second dam as

appropriate. The values given for α1 and α2 correspond to an allowance of an

extra 20% consumption above net natural flows in each dam. The performance

criteria (4.7), (4.8) and (4.9) are included in the ODE system definition,

while (4.10) is dealt with by the terminal conditions. On a dual-core processor

desktop, for three runs the calculations took on average 575.18 CPU seconds in

serial and 71.39 CPU seconds with some parallelization, an increase in speed of

around eight times.

Figures 4.1 to 4.3 give the type of price structure achieved, noting that this

is not a surface but a lattice of prices. It is clear that the slightly higher demand

on dam one seems to bias the price structure to behave more responsively to

changes in dam one, which is reasonable. The structure is also quite stable,

except at the end. With the control objectives largely achieved by t = 1, the

55

prices move towards the minimum.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dam 1 level

1
2

3
4

5
6
7
8
9
10
11
12
13
14
15

Dam 2 level

1.

1.25

1.5

1.75

Price H$L

Figure 4.1: Prices at t=0.

A similar result holds for transfers between dams. Figure 4.4 gives the

intensity of selected flows between dam one and two. This is defined as

u(1→2)(t,x)− u(2→1)(t,x) taken at the states specified in figure 4.4. That is, it is

the net intensity of flows between the dams. If the intensity is positive, then it

is a flow from dam one to two and if negative, from dam two to one. This graph

shows that there is a clear bias toward transfers into dam one where the demand

is higher. One can also observe the quadratic nature of the performance criteria

at work. This may not be realistic but we are simply demonstrating the method

at this stage. We will work on better performance criteria in our future research.

Figure 4.5 shows the effects of these controls on the total demand. It shows

the total original demand for the system and a weighted average of the total

controlled demand. The weighted average is given by

2∑
l=1

(
N∑
i=1

N∑
j=1

P {Dam l is in state [i, j] at time t} × Cl[i, j](t)

)
.

56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dam 1 level

1
2

3
4

5
6
7
8
9
10
11
12
13
14
15

Dam 2 level

1.

1.25

1.5

1.75

Price H$L

Figure 4.2: Prices at t=0.5.

The probabilities are found by solving the Kolmogorov forward differential

equations for each dam given the solution to the system of equations (4.6). It

clearly shows that on average there would be a significant reduction in water use

in the system using this method of feedback price control.

Table 4.1: Model parameters and functions.

Parameters Parameters
N = 15 r1 = r2 = 0.25
M = 5 α1 = 0.91
n1 = 3 α2 = 1.82
n2 = 3 K = 150

pmax = 1.75
pmin = 1.00

Natural flows Demands
λ1(t) = sin(2πt) + 10 x1,1(t) = cos(2πt) + 4.5

λ2(t) = sin(2πt+ π
6
) + 9 x1,2(t) = 0.3 cos(2πt) + 4.5

µ1,N(t) = − sin(2πt) + 4.5 x1,3(t) = 0.5 cos(2πt) + 5
µ2,N(t) = − sin(2πt+ π

6
) + 3.5 x2,1(t) = cos(2πt) + 5

x2,2(t) = 0.4 cos(2πt) + 4
x2,3(t) = 0.3 cos(2πt) + 4

57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dam 1 level

1
2

3
4

5
6
7
8
9
10
11
12
13
14
15

Dam 2 level

1.

1.25

1.5

1.75

Price H$L

Figure 4.3: Prices at t=1.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Time HyearsL

D
am

1<
-

>
D

am
2

fl
ow

s

State H10,15L
State H10,12L
State H10,9L
State H10,6L
State H10,3L
State H10,1L

Figure 4.4: Selected flows between dams 1 and 2.

4.7 Further analysis of results

4.7.1 Starting in the lowest joint state

As with the previous models it is instructive to consider how the controls affect the

probabilities in extreme states, since these are the states that we are attempting

to avoid. So, we take the initial state of the dam system to be essentially empty

in both dams, that is, L(0) = (1, 1). If we apply the optimal controls, shown

in Figure 4.6, we find that the probability of remaining in this state at the end

of the control period falls to approximately 5%. On the other hand, with no

controls, as shown in Figure 4.7, the probability falls to a little under 20%. From

58

0.0 0.2 0.4 0.6 0.8 1.0
10

15

20

25

30

35

Time HyearsL

D
em

an
d

HM
L

L

Controlled demand

Total demand

Figure 4.5: Total original demand and controlled demand.

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 4.6: State probabilities against time starting in state L(0)=(1,1).

a management perspective there is a clear advantage in applying the optimal

control strategy, which for this model is the price control on water.

4.7.2 Starting in the highest joint state

If we start with both dams in the system in the highest state, that is in near

overflow conditions, then by applying the optimal controls we can reduce the

probability of remaining in this state to under 5%, as shown in Figure 4.8. How-

ever, without the price on water, the reduction in the probability is greater, as

shown in Figure 4.9. So, from a management point of view it is better not to

apply the price control in the highest state, which makes intuitive sense since the

customers will be able to use up to their desired level of water. This demonstrates

the weakness of this model, in that we did not incorporate any other method to

reduce water in the dam apart from actual consumption by customers. This mo-

tivated further work on introducing controlled release strategies in conjunction

59

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 4.7: State probabilities against time starting in state L(0)=(1,1) with no
price control.

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 4.8: State probabilities against time starting in state L(0)=(15,15).

with a price on water so that there would be a balance between water conserva-

tion and overflow prevention. This forms part of the subject of the models given

in chapters 5 and 6.

4.8 Conclusion

In this chapter we have developed a model for managing water use in a dam

system via a dynamic feedback price control. We have shown via a numerical

example that the resulting price structure is ‘reasonable’ in that the prices

are generally high when the water level is low and low when high, taking into

account the bias toward the dam with greater demand. In this chapter we con-

sidered users without connection to a dam suited to their particular needs. More

60

0.2 0.4 0.6 0.8 1.0
Time H years L

0.2

0.4

0.6

0.8

1.0

Distribution

Figure 4.9: State probabilities against time starting in state L(0)=(15,15) with
no price control.

realistic is the presence of a relation between a particular customer and a particu-

lar dam or even the variable and controllable structure of customer-dam relations.

Following on from this work, we were encouraged to introduce more seasonable

variability to the natural inflows and outflows by comments made in conference

and seminar presentations. This is the topic of the next chapter.

61

Chapter 5

Control of a single dam with compound Poisson inflows

and provision for flood control

5.1 Introduction

In this chapter we introduce some major innovations to the model outlined in

Chapter 2 and [37]. In particular we introduce a time-inhomogeneous inflow pro-

cess to the dam model as well as a time and state dependent water release control.

We also include an overflow state to explicitly take into account the probability

of overflow. In section 5.2 we detail the dynamics of the new model and give a

proof of the form of the infinitesimal generator of the continuous-time control-

lable Markov chain (CCMC) which describes the dam process. In section 5.3 we

describe how the price control dependent consumption, C(t, p(t,X)), is derived.

Section 5.4 deals with the solution of the problem via dynamic programming and

in Sections 5.5 and 5.6 we give some numerical results.

5.2 Dam model

We assume that we can approximate the level of a large finite dam by discretizing

the volume of the dam into N + 1 ∈ N levels and denote the level at any time

t ∈ [0, T], T < ∞, by an integer valued random variable L(t) ∈ {0, ..., N} [16].

Figure 5.1 gives a stylized depiction of the approximate flow process with the

overflow level marked. We designate the level L(t) = N as an overflow or flood

state in this model.

If we let each level be represented by the set of unit vectors S = {e0, e1, ..., eN}
in RN+1, then we can define a random vector X(t) ∈ S on [0, T] to represent this

62

0.0 0.2 0.4 0.6 0.8 1.0
Time HtL0

5

10

15

20

Dam level

Figure 5.1: Approximate dam level process with overflow level.

level at any time t. Note that this means that I {L(t) = i} = I {X(t) = ei} where

I is an indicator function. All processes are taken to be defined on the standard

probability space, {Ω,F ,P}.

5.2.1 Inflows and outflows

Inflows

We will assume that the process of inflows to the dam can be approximated by

a time-inhomogeneous compound Poisson process, I(t). We will further assume

that this natural inflow is the result of rain events which arrive randomly accord-

ing to the time-inhomogeneous counting process R(t) with intensity λ(t). The

resulting distribution of jumps in the dam level will be given by Z(t). If we desig-

nate the maximum jump size as Zmax ∈ N, then Z(t) ∈ {1, 2, 3, ..., Zmax−1, Zmax},
with P {Z(t) = j} = qj(t) independent of R(t) and the state of the dam. Then,

if τk is the time of the kth jump, I(t) =
∑R(t)

k=0 Z(τk).

The semi-martingale representation of I(t) is

I(t) =

∫ t

0

λ(s)E [Z(s)] ds+M(t)(i), (5.1)

where M(t)(i) is a square-integrable martingale. The expectation of this process

is E [I(t)] = λ(t)E [Z(t)].

If we consider the jumps of this process, then the size of each jump is given by

the random variable Z(t). Relating this to the level of the dam, it is clear that if

a jump occurs at time τ when the dam is at level L(τ) and L(τ) +Z(τ) ≥ N − 1,

63

then the dam is overflowing. It follows that from the perspective of dam dynamics

we should include jumps greater than N − 1−L(τ) in an overflow state, N . The

problem of how to deal with the overflow will be dealt with in further research

because it cannot be dealt with in the probabilistic sense we have here. Applying

this we can represent the inflows in the following way, where τ is the jump instant

of I(t):

I(t) =
∑
τ≤t

Z(τ). (5.2)

Now, Z(τ) can take the values from 1, ..., Zmax, so we define a sum of indicators

of i ≤ Z(τ) and then rewrite (5.2) as

I(t) =
∑
τ≤t

Zmax∑
i=1

I {i = Z(τ)} i. (5.3)

Outflows

Outflows will be controlled explicitly by controlled releases and implicitly via a

price on the resource. Outflows from the dam will be assumed to comprise of

natural losses due to evaporation, the consumption of the various dam users,

controlled water releases as well as overflows if the inflows exceed the dam capac-

ity. We will approximate the natural losses by a general counting process with

state dependent intensity, µ(t,X(t)). The consumption will be another counting

process which depends on a price control, p(t,X(t)), which depends on the cur-

rent state of the dam, and its intensity will be denoted, C(t, p(t,X(t))). Here

p(t,X(t)) is taken to be a FX
t -predictable control in the compact set [p, p]. A

state and time dependent controlled counting process with controllable intensity

ν(t,X(t)), will represent controlled water releases and is a FX
t -predictable con-

trol in the compact set [νmin, νmax], where νmin and νmax are the minimum and

maximum release rates respectively. The semi-martingale form of these processes

is known and is given by

O(t) =

∫ t

0

(µ(s,X(s)) + C(s, p(s,X(s))) + ν(s,X(s)))I {L(s) > 0} ds+M(t)(o),

64

where M(t)(o) is a square-integrable martingale. Here, as with the inflows, we

can rewrite the outflow process as

O(t) =
∑
η≤t

I {L(η) > 0}∆O(η), (5.4)

where the η are the jump instants for the outflow process and ∆O(η) = 1.

5.2.2 Semi-Martingale model of the process X(t)

Proposition 5.1. The infinitesimal generator, A(t, p(t,X(t)), ν(t,X(t))), of the

controllable Markov chain, X(t), has the form

A(t, p(t,X(t)), ν(t,X(t))) =

−λ(t)
C(t, p(t, e1)) + µ(t, e1)

+ν(t, e1)
... 0 0

λ(t)q1(t)
−(λ+ C(t, p(t, e1))

+µ(t,X(t)) + ν(t, e1))
... 0 0

λ(t)q2(t) λ(t)q1(t) ... 0 0

...

λ(t)qN−2(t) λ(t)qN−3(t) ...
C(t, p(t, eN)) + µ(t, eN)

+ν(t, eN)
0

λ(t)qN−1(t) λ(t)qN−2(t) ...
−(λ(t) + C(t, p(t, eN))

+µ(t, eN) + ν(t, eN))
0

λ(t)
∑Zmax

k=N qk(t) λ(t)
∑Zmax

k=N−1 qk(t) ... λ(t) 0

.

Remark 5.2. In Markov chain theory, this generator matrix conventionally has

rows which sum to zero and is usually termed the Q matrix. In control theory the

transpose of this matrix is used such that A = QT , and this is the notation used

throughout this paper.

65

Remark 5.3. While termed a controllable Markov chain, in general the resulting

process is not Markovian. The controls at time t < T may depend on the entire

history of the process up to time t.

Proof. The following proof an adapted version of a proof given for the form of

the infinitesimal generator of a controllable queuing system (see [32] section 3,

especially section 3.1 and the proof of Proposition 2). In the original proof the

inflows were given as a Poisson type counting process with unit jumps. Here

we give the proof for a complex inflow process, given by a time-inhomogeneous

compound Poisson process.

Given the inflows and outflows as defined, we can now give the dynamics of

the dam level process as L(t) = I(t) − O(t) and the change in the process as

∆L(t) = ∆I(t) − ∆O(t), which simply follows the principle of conservation of

mass [44]. Recall that I {L(t) = i} = I {X(t) = ei} and then define a vector fk,i

such that if L(t) = k, then I {L(t) + ∆I(t) = k + i} = I {X(t) + fk,i = ek+i}. In

this case the vector fk,i will have −1 in the kth entry, 1 in the (k+ i)th entry and

zero for all other entries, that is

fk,i = (0, 0, ..., 0, −1︸︷︷︸
k

, 0, ..., 0, 1︸︷︷︸
k+i

, 0, ..., 0)T .

We must also consider that k + i may be greater then N . This is the case where

an inflow produces an overflow of the dam. In this case the kth entry of fk,i will

have a −1 and the (N + 1)th entry will have a 1. Now using this fk,i, for each i

we can define a matrix A+
i which captures the effect of the inflow starting in any

state k. This matrix is N + 1 × N + 1, the (N + 1)th state being the overflow

state.

Remark 5.4. Once in the overflow state the process stops, that is, the (N + 1)th

state is absorbing. This is shown by every entry of the last column of each of the

following matrices being zero. The last column represents the transitions out of

the overflow state and it means that there is no possible transition from this state

to any other. In this control scheme, control of transition probabilities stops in

66

this state and other direct control methods must be used. These are not dealt with

in this thesis.

So for i = 1

A+
1 =

−1 0 0 ... 0 0 0 0

1 −1 0 ... 0 0 0 0

0 1 −1 ... 0 0 0 0

...

0 0 0 ... 1 −1 0 0

0 0 0 ... 0 1 −1 0

0 0 0 ... 0 0 1 0

.

For i = 2

A+
2 =

−1 0 0 ... 0 0 0 0

0 −1 0 ... 0 0 0 0

1 0 −1 ... 0 0 0 0

...

0 0 0 ... 0 −1 0 0

0 0 0 ... 1 0 −1 0

0 0 0 ... 0 1 1 0

,

for i = 3

A+
3 =

−1 0 0 ... 0 0 0 0

0 −1 0 ... 0 0 0 0

0 0 −1 ... 0 0 0 0

...

0 0 0 ... 0 −1 0 0

0 0 0 ... 0 0 −1 0

0 0 0 ... 1 1 1 0

,

and so on up to i = Zmax.

67

Likewise, by similar reasoning and recalling that outflows occur only in unit

jumps, we define a matrix A− which captures the effect of outflows:

A− =

0 1 0 ... 0 0 0 0

0 −1 1 ... 0 0 0 0

0 0 −1 ... 0 0 0 0

...

0 0 0 ... 0 −1 1 0

0 0 0 ... 0 0 −1 0

0 0 0 ... 0 0 0 0

.

The first step is to rewrite the expression ∆L(t) = ∆I(t) − ∆O(t) in terms

of the matrices we have defined and the state vector, X(t). The main differ-

ence between the proof given in [32] occurs here, since the representation of the

compound Poisson process in the form of matrices and state vectors is more com-

plicated. So starting with ∆I(t), it is clear that if a jump occurs in the process

R(t), the rainfall arrival process, then there is a corresponding jump in the in-

flows, which is random and given by Z(t). Now, taking the family of matrices,

A+
i , i = 1, ..., Zmax, we define a random matrix, A+

Zt
, which takes as its values

this family of matrices with P
{
A+
Z(t) = A+

i

}
= qi(t). Let ∆Î(t) be the new

representation of ∆I(t), then

∆Î(t) = A+
Z(t)X(t−)∆R(t).

This essentially captures in matrix form the idea that according to the process

R(t), rainfall either occurs or does not, and if it does, then the size of the jump

is random and given by Z(t). Likewise, let ∆Ô(t) be the matrix representation

of ∆O(t), then

∆Ô(t) = A−X(t−)∆O(t),

with a similar interpretation as for ∆Î(t).

68

It follows that ∆X(t) = A+
Z(t)X(t−)∆R(t) +A−X(t−)∆O(t). Now using the

relation

X(t) = X(0) +
∑
τ≤t

∆X(τ),

and recalling that R(t) and O(t) are counting processes we obtain

X(t) = X(0) +
∑

τ≤t[A
+
Z(τ)X(τ−)∆R(τ) + A−X(τ−)∆O(τ)]

= X(0) +

∫ t

0

A+
Z(τ)X(τ−) dR(τ) +

∫ t

0

A−X(τ−) dO(τ).

Now we substitute the semi-martingale representations of the counting

processes R(t) and O(t) into the above equation and take the conditional

expectation with respect to FX
t to obtain

X(t)

= X(0) + E
[∫ t

0
A+
Z(τ)X(τ−)λ(τ) dτ |FX

t

]
+M(t)R

+

∫ t

0
A−X(τ−)(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ))) dτ +M(t)O

= X(0) + E
[
E
[∫ t

0
A+
Z(τ)X(τ−)λ(τ) dτ |Z(τ)

]
|FX

t

]
+M(t)R

+

∫ t

0
A−X(τ−)(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ))) dτ +M(t)O

= X(0) + E

[∫ t

0

Zmax∑
i=1

E
[
A+
Z(τ)X(τ−)λ(τ)|Z(τ) = i

]
P {Z(τ) = i} dτ |FX

t

]
+M(t)R

+

∫ t

0
A−X(τ−)(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ))) dτ +M(t)O

= X(0) + E

[∫ t

0

Zmax∑
i=1

A+
i Xτ−λ(τ)P {Z(τ) = i} dτ |FX

t

]
+M(t)R

+

∫ t

0
A−X(τ−)(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ))) dτ +M(t)O

= X(0) +

∫ t

0

[
Zmax∑
i=1

A+
i λ(τ)P {Z(τ) = i}

+A−(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ)))

]
X(τ−) dτ +M(t)X

= X(0) +

∫ t

0

[
Zmax∑
i=1

A+
i λ(τ)qi(τ)

+A−(C(τ, p(τ,X(τ))) + µ(τ,X(τ)) + ν(τ,X(τ)))

]
X(τ−) dτ +M(t)X ,

69

where M(t)R and M(t)O are the martingales associated with the semi-martingale

form of R(t) and O(t) respectively, and M(t)X is the sum of these. The resulting

matrix under the integral given in the last line has exactly the form of that in

Proposition 5.1 and this last line is also the known form of the semi-martingale

representation of the controlled Markov chain, X(t) [18, 32].

5.3 Controlled water use via price control and controllable release

In order to optimally regulate the demand on water from the dam, we want to

introduce an optimal price on water for each state of the dam at any time. So

the price p(t,X(t)) ∈ [pmin, pmax] is given to customers, who then attempt to

modify their demand to minimize their costs. Since there will be a different price

for each state of the dam, p(t,X(t)) is a vector of price functions. It is more

convenient to define optimal consumption in terms of the optimal price and

then derive equations for optimal consumption and bounds on this consumption

based on the optimal price. This was defined in Chapter 2 and is not modified

for this model.

5.4 Dynamic programming equation and its solution

Here we outline the method of solution for the optimal controls in a single large

dam. This method has been developed in [32] for control of a server router, and

in [37], [38] and [39] for single and multiple dams in a system. In this case we will

find the optimal solution under control constraints and will give the solution for

the single dam. In general, this can be extended to a system of dams by using

the methodology developed in [38] and [39] under the same assumptions as for

a single dam. Here we restate the method with the inclusion of the flood controls.

We start with the general performance criterion

min
p(·),ν(·)

J [p(·), ν(·)], (5.5)

70

where

J [p(·), ν(·)] = Ep,ν
[
φ0(X(T)) +

∫ T

0

f0(s, p(s,X(s)), ν(s,X(s)), X(s)) ds

]
,

and if 〈·, ·〉 is the inner product and φ0 ∈ RN+1, then φ0(X(T)) = 〈φ0, X(T)〉,
f0(s, p(s,X(s)), ν(s,X(s)), X(s)) = 〈f0(s, p(s,X(s)), ν(s,X(s))), X(s)〉.The

term f0(s, p(s,X(s)), ν(s,X(s)), X(s)) is the transition cost of the chain at time

s in state X(s) = ei, for i = 0, ..., N , and so we define

f ∗0 (s, p(s,X(s)), ν(s,X(s))) = (f0(s, p(s, e0), ν(s, e0)), ..., f0(s, p(s, eN), ν(s, eN)))

as the vector of transition cost functions of the Markov chain.

Assumption 5.5. For each i, i = 0, ..., N the components of the transition

cost function f ∗0 (s, p(s,X(s)), ν(s,X(s))) are continuous on [0, T]× [pmin, pmax]×
[0, νmax] and bounded below.

Next we define the value function

V (t, x) = inf
p(·),ν(·)

J [p(·), ν(·)|X(t) = x] (5.6)

where

J [p(·), ν(·)|X(t) = x] =

Ep,ν
[
φ0(X(T)) +

∫ T

t

f0(s, p(s,X(s)), ν(s,X(s)), X(s)) ds|X(t) = x

]
. (5.7)

This is interpreted as the cost of transitions from state X(t) = x at time

t to state X(T) at the terminal time T . By Assumption 5.5 the performance

criterion (5.5) is bounded below, so the infimum in (5.6) exists, and there is a

minimizing sequence of controls {(pk(·), νk(·))}. Since for each set of the controls

(pk(·), νk(·)) we have the function

J [pk(·), νk(·)|X(t) = x] = 〈φ̂k(t), x〉

71

with continuous φ̂k(t), then we can write the function

V (t, x) = lim
k
〈φ̂k(t), x〉 = 〈φ̂(t), x〉,

with a measurable column vector-valued function φ̂(t) = (φ̂0(t), ..., φ̂N(t)) ∈
RN+1.

From this assumption we can consider the value function

V (t, x) = inf
p(·),ν(·)

J [p(·), ν(·)|X(t) = x], (5.8)

which gives the infimal cost from state X(t) = x at some time t < T to state

X(T), and be certain that this infimum exists.

Now, recalling that the state space is made up of the unit vectors in RN+1,

where φ(t) = (φ0(t), φ1(t), ..., φN(t))T ∈ RN+1 is some measurable function giving

the cost for each state, then the following is the dynamic programming equation

with respect to this function φ(t) in conventional form:

〈φ′(t), x〉+ min
p,ν

[〈φ(t), A(t, p, ν)x〉+ 〈f0(t, p, ν), x〉] = 0, (5.9)

with terminal condition φ(T) = φ0 [18, 10]. Since the function

H(φ, t, p, ν, x) = 〈φ(t), A(t, p, ν)x〉+ 〈f0(t, p, ν), x〉

is continuous for any (t, p, ν) ∈ [0, T] × P̄ × [0, νmax] and affine in φ for any

(t, x) ∈ [0, T]× S, then the function

H (φ, t, x) = min
p,ν

H(φ, t, p, ν, x)

is Lipschitz in φ with the constant L = max(t,p,ν,x) ‖A(t, p, ν)x‖ and continuous

in t for any x ∈ S.

Remark 5.6. By setting x = ei, i = 0, ..., N , we get a system of ordinary

differential equations

72

dφi(t)

dt
= −H (t, φ(t), ei), i = 0, ..., N, (5.10)

with terminal condition φ(T) = φ0. The right-hand side of Equation (5.10) is

clearly Lipschitz in φ.

Proposition 5.7. Given Assumption 5.5, equation (5.10) has a unique solution

on [0, T]. This follows from the the fact that the equation is Lipschitz [51].

The following theorem describes the connection between the value function,

V (t, x), and the solution of the system of equations (5.10) as well as some key

features of the optimal controls [15, 18, 32].

Remark 5.8. As long as Proposition 5.7 holds, the following theorem says that

φ(t) = φ̂(t).

Theorem 5.9. Let φ(t) be the solution of the system of equations (5.10), then

for each (t, x) ∈ [0, T]×S there exists (p0(t, x), ν0(t, x)) ∈ P̄ × [0, νmax] such that

H(t, φ, p(t, x), ν(t, x), x) achieves a minimum at (p0(t, x), ν0(t, x)). Then

1. There exist an FX
t -predictable optimal controls, (p̂(t,X t

0), ν̂(t,X t
0)) such

that V (t, x) = J [p̂(·), ν̂(·)|X(t) = x] = 〈φ(t), x〉.
2. The optimal control can be chosen as Markovian, that is

(p̂(t,X t
0), ν̂(t,X t

0)) = (p0(t,X(t−), ν0(t,X(t−))) =

arg min
p,ν

H(t, φ, p(t,X(t−)), ν(t,X(t−)), X(t−)).

Proof. The proof of the theorem is essentially the same as given in Chapter 2,

Section 2.14.

The system of equations (5.10) can be solved numerically to give the minimal

cost to go for each state at any time t ∈ [0, T], given a chosen terminal state

and specific running cost of transitions and controls. From this we can extract

the values of the optimal controls for each state and any time on the control

interval. While we want to minimize over the control p(t,X(t)), in practice we

minimize over the controllable consumption, C(t, p(t,X(t))), since we can easily

73

obtain p(t,X(t)) from this after solving the system of equations (5.10) explicitly

for C(t, p(t,X(t))).

5.4.1 Performance criteria for the dam model

We begin by noting that no controls appear in the generator of this controlled

process for states L(t) = 0, since the dam is empty in this state, and L(t) = N ,

since the dam is in a state of overflow and we stop control in the probabilistic

sense. So we really only have performance criteria for the states L(t) = 1, ..., N−1.

Our main objective here is to provide customers with their demanded water as

far as possible, while at the same time reducing the probability of overflow. This

gives two criteria: the first seeks to minimize the square of the difference between

what customers demand and what they are actually supplied, and the second

seeks to minimize the square of the difference between inflows to the dam and

all outflows so as to keep the dam level as stable as possible. Let the customer

demand (1− r)
∑n

i=1 xi(t) = C̄(t), then the performance criteria are

J1[p(·)] = Ep
[∫ T

0

(
C(s, p(s,X(s)))− C̄(s)

)2
ds

]
. (5.11)

and

J2[p(·), ν(·)] = Ep,ν
[∫ T

0

(λ(s)− µ(s,X(s))− ν(s,X(s))− C(s, p(s,X(s))))2 ds

]
.

(5.12)

and so the vector function of the running cost of control

f0(t, p(t,X(t)), ν(t,X(t)), X(t)) has the following form:

f0(t, p(t, x)), ν(t, x), x) = (C̄(t)− C(t, p(t, x)))2

+(λ(t)− µ(t, x)− C(t, p(t, x))− ν(t, x))2,
(5.13)

for x = e1, ..., eN−1. The first part of the sum expresses that the difference between

what the customer has demanded, less a compulsory reduction of r× 100%, and

what will be supplied should be minimal. The second part of the sum expresses

that the overall flows in and out of the dam should be as balanced as possible.

We treat the terminal conditions as a performance criteria also by setting the

initial conditions of the ODE system such that undesirable states, such as very

74

low or high states, attract a high terminal cost. This is shown in the numerical

example.

5.4.2 Form of the optimal controls

To find the form of the optimal controls we find

min
p(·),ν(·)

H(t, φ(t), p(t, ei), ν(t, ei), ei) =

φi−1(t)(C(t, p(t, ei) + µ(t, ei) + ν(t, ei))

− φi(t)(λ(t) + C(t, p(t, ei) + µ(t, ei) + ν(t, ei))

+
Zmax∑
j=1

φi+j(t)qj(t) + (C̄(t)− C(t, p(t, ei)))
2

+ (λ(t)− µ(t, ei)− C(t, p(t, ei))− ν(t, ei))
2

(5.14)

for i = 2, ..., N − 1. In practice we minimize over C(t, p(t, ei)) because we can

find the explicit form of this from the solutions of the ODE system and extract

p(t, ei) from this. To minimize we take the partial derivatives of equation (5.14)

with respect to C(t, p(t, ei)) and ν(t, ei) to get the following system of two linear

equations:

0 =
∂H(t, φ̂(t), p, ν, ei)

∂C(t, p(t, ei))
= φi−1(t)− φi(t)− 2(C̄(t)− C(t, p(t, ei)))

−2(λ(t)− µ(t, ei)− C(t, p(t, ei))− ν(t, ei))

0 =
∂H(t, φ̂(t), p, ν, ei)

∂ν(t, ei)
= φi−1(t)− φi(t)

−2(λ(t)− µ(t, ei)− C(t, p(t, ei))− ν(t, ei))

(5.15)

The equations here come from convex optimization and apply only if the controls

that give the stationary points are inside the control set. If so then the partial

derivatives are identical except for the term−2(C̄(t)−C(t, p(t, ei))), which implies

that this term must be zero, or C̄(t) = C(t, p(t, ei)). Substituting this into either

of the equations in (5.15) gives

ν(t, ei)) =
φi(t)− φi−1(t)

2
+ λ(t)− µ(t, ei)− C̄(t).

75

Let C∗(t, ei) and ν∗(t, ei) be the form of these minimizing controls, then the

solutions are

(C∗(t, ei), ν
∗(t, ei)) = (C̄(t),

φi(t)− φi−1(t)

2
+ λ(t)− µ(t, ei)− C̄(t)).

However, C(t, p(t, ei)) ∈ [Cmin(t), Cmax(t)] and ν(t, ei) ∈ [νmin, νmax], so C∗(t, ei)

and ν∗(t, ei) are either within these bounds or they are on the boundary. In

the case of C∗(t, ei), since C̄(t) is known beforehand, this means that for each

t ∈ [0, T] we set C(t, p(t, ei)) as

C(t, p(t, ei)) =

Cmin(t), C̄(t) ≤ Cmin(t)

C̄(t), Cmin(t) < C̄(t) < Cmax(t)

Cmax(t), C̄(t) ≥ Cmax(t)

The control ν∗(t, ei) depends on the solution of the system of ODE’s. In this

case, when we solve the ODE system numerically, for each t ∈ [0, T] we set the

definition of ν(t, ei) to be

ν(t, ei) =

νmin, ν∗(t, ei) ≤ νmin

ν∗(t, ei), νmin < ν∗(t, ei) < νmax

νmax, ν∗(t, ei) ≥ νmax

In general, this solution is not the solution of the convex optimization problem be-

cause the optimal controls may not be inside the control set. The solutions given

here will minimize the RHS of equation (5.14). When solving this optimization

problem numerically, we solve for

(C∗(t, ei), ν
∗(t, ei)) = (C̄(t),

φi(t)− φi−1(t)

2
+ λ(t)− µ(t, ei)− C̄(t))

for each time t ∈ [0, T] and then check to see whether or not it is in the control

set. If it is not, then we set the control at that time to be the closest boundary

point. In the cases we have considered this is straightforward because the

control set is rectangular and the edges of the control set are parallel to the

76

axes of the quadratic level set formed by the performance criteria. In more

complex cases where the boundary of the control set is convex but curved, all

possible combinations of the points on the boundary need to be checked for the

minimizing controls. In the numerical example we found that the solutions are

often outside the control set and so the realizable solution is taken to be the

combination of the controls on the boundary of the control set that minimizes

equation (5.14). Clearly this is not the optimal solution but rather the best

possible given the set of controls available.

We now give a numerical example with a focus on the probability of overflow.

5.5 Numerical results - flood control only

To demonstrate the form of the minimizing solutions found above we present a

simple model of a large dam with properties as described in Table 5.1.

Table 5.1: Model parameters, inflows and demands.

Parameters Parameters Inflows & Demands
N = 20 n = 3 λ(t) = −3 cos(4πt) + 7
M = 10 r = 0 µN+1(t) = − sin(2πt) + 1

pmax = 3.00 K = 50 x1(t) = cos(2πt) + 5
pmin = 0 νmax = 20 x2(t) = 0.3 cos(2πt) + 4
νmin = 1 x3(t) = 0.5 cos(2πt) + 5

These inflow, evaporation and demand intensities give us asynchronicity of

peak supply and demand. The parameter K is a cost placed on the undesirable

terminal states and is implemented in the initial conditions of the ODE system

in the following way:

φi(T) =

M

(M − 1 + i)
K i ≤M

0 M < i < L− 1

K i = L− 1

2K i = L

3K i = L+ 1

77

Since the main objective of this chapter is to show how this strategy affects

the probability of overflow, we have set the minimum price on water to zero

and there is no compulsory reduction in water supplied. This ensures that the

customer receives as much water as they demand and that the only difference

is the addition of a controlled release to the system. With this scenario we can

gain a clear picture of how the controlled release affects the overflow probability.

We now give two cases for a clear demonstration of the effect of the controlled

release. The examples are given for the initial state L(0) = 19, the state just

below the overflow state, which is the state of most interest in this analysis

because it is necessary to place the system in an extreme state to test the controls.

The probability of overflow is very high in this state. The difference between these

cases is the inflow rate. In the first case it is as in Table 5.1, which has inflows

being less than outflows across the control period. In the second case the inflows

have been increased so that they are much higher than consumption. In this case

we would naturally expect the probability of overflow to be higher and for the

controlled releases to behave accordingly.

5.5.1 Case 1: inflow rate lower than consumption rate

Figure 5.2(a) gives the optimal release rate compared with the inflow intensity

and consumption of dam level 19. The bold line gives the optimal release rate,

the faint line the optimal consumption, and the dashed line the inflow. The

release rate is roughly proportional to the inflow intensity but the combined

effect of inflow and consumption on the rate is clear. Figure 5.2(b)-(d) show the

release rate by state for low, medium and high intensity inflows. It is clear that

the higher the intensity of inflow the higher the release rate. This is also true of

dam level. Both of these observations are consistent with what one would expect

and this solution method provides a way to obtain results by this reasonable

approximation of the process. Figure 5.3 shows the probability of entering the

overflow state, L(t) = 20, having started in state L(0) = 19, with and without

control. With control it is approximately 32% at the end of the control period

and almost 44% without control, which shows that the control is effective. The

average probability of entering the overflow state is 27% with control versus

78

35.7% without control.

5.5.2 Case 2: inflow rate higher than consumption rate

For a more extreme example, we changed the inflow intensity λ(t) to

λ(t) = −3 cos(4πt) + 25, so that the inflow intensity far exceeds that rate

of consumption and evaporation. Figure 5.4(a) gives the optimal release rate

compared with the inflow intensity and consumption of level 19, with the bold

line being the release rate, faint the consumption rate, and dashed the inflow

rate as above. Now the release rate is at maximum for almost the entire period,

which is the obvious result of such a high inflow rate. Figure 5.4(b)-(d) show

the release rate by state for low, medium and high intensity inflows. It is again

clear that the higher the intensity of inflow the higher the release rate but in this

scenario releases start much earlier and at a higher initial intensity. Figure 5.5

shows the probability of entering the overflow state, L(t) = 20, having started

in state L(0) = 19, with and without control. With control it is approximately

80% at the end of the control period and almost 98% without control, which for

such an extreme scenario is highly significant in terms of flood prevention. The

average probability of entering the overflow state is 68.2% with control versus

89.7% without control. The 68.2% probability of overflow is still very high,

though significantly less than without control. This shows the limitation of a

probabilistic control method. More concrete actions are required before reaching

such a critical state.

5.6 Numerical results - price and flood control

To demonstrate the form of the optimal price controls we present a simple model

of a large dam with properties as described in Table 5.2 and Table 5.3.

The parameters and functions above are for a one year control period for a

dam with twenty-one levels. The twenty-first level is the flood level and if the

dam actually reaches this level then, as stated before, we allow maximum release

and demand. The regulator has set the maximum price as 3.00 (dollars per

kilolitre, say) and the minimum is 0.25. Our control strategy requires that we

79

Figure 5.2: (a)Bold-release rate at N=19, thin-consumption at N=19, dashed-
inflow, (b) Release rates by state, low intensity inflow (t=0), (c) Release rates by
state, medium intensity inflow (t=0.15), (d) Release rates by state, high intensity
inflow (t=0.25).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tim e H years L

P
ro
b
a
b
il
it
y

o
f
o
v
e
rf
lo
w

Figure 5.3: Low inflow rate case: probability of entering the overflow state with
controlled releases (bold) and without (dashed).

80

Figure 5.4: (a)Bold-release rate at N=19, thin-consumption at N=19, dashed-
inflow, (b) Release rates by state, low intensity inflow (t=0), (c) Release rates by
state, medium intensity inflow (t=0.15), (d) Release rates by state, high intensity
inflow (t=0.25), with extreme inflows.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tim e H years L

P
ro
b
a
b
il
it
y

o
f
o
v
e
rf
lo
w

Figure 5.5: High inflow rate case: probability of entering the overflow state with
controlled releases (bold) and without (dashed).

81

Table 5.2: Model parameters.

Parameters Parameters
N = 20 n = 3
M = 7 r = 0.1

pmax = 3.00 K = 50
pmin = 1.5 νmax = 15
νmin = 0

Table 5.3: Model functions.
Natural flows & Demands
λ(t) = 3 cos(4πt) + 6

µN+1(t) = − sin(2πt) + 1.5
x1(t) = cos(2πt) + 6.5

x2(t) = 0.3 cos(2πt) + 5.5
x3(t) = 0.5 cos(2πt) + 5

reduce consumption by 10% off uncontrolled demand. Natural losses are assumed

to be due to evaporation which depends on the level of the dam. For this simple

model we have assumed that the evaporation losses decrease linearly as the dam

level falls. We have a terminal cost penalty of 100 if the dam level is at or below

level M = 7 at time T = 1 as well as a penalties of 100, 200 and 300 for levels

18, 19 and 20 respectively, taking level 17 as the “safety level”. These penalties

would be paid by the dam manager to the regulator. We add these costs to the

respective states over the entire control period in order to penalize falling into

these states, on average. The innovation of this model is the time-inhomogeneous

compound Poisson inflow and the probabilities of the different jump sizes, the

qj(t), were derived from rainfall data from the Terang station in Victoria,

Australia [43]. There are 104 years of monthly rainfall data for this station

(years 1887-2000) and from this a frequency distribution of monthly rainfall was

derived. In this model we are allowing a maximum jump of up to 3 levels in the

dam due to inflows and we used this rainfall frequency distribution as a proxy

for the frequency of jumps sizes in the inflow process. While this is rather crude

it serves the purpose of having a seasonal profile for the sizes of jumps in our

dam. Figure 5.6 shows the probabilities of the jump sizes by month. It shows

clear seasonality and is sufficiently complex to make the inflow process interesting.

82

The system of ODE’s (5.10) was solved using Mathematica 8 on a desktop

computer and gave the price structures for the control period, as shown in

Figure 5.7. A general feature of this price structure is that it is constant over the

control period. This is because our control solution for consumption is to give

the customer the maximum possible amount of water to balance the possibility

of flood. This leads to the minimum price always being applied. It would be up

to the regulator to set this minimum price to give a fixed maximum water usage.

This makes sense since we want to maintain the dam at level M but do not want

the dam level to rise above about 90% full. This means that a minimum price,

set by regulators, is sufficient in the case of there also being a controlled release.

The optimal minimum price to maintain the water level is a question for future

research.

Heavy penalties were placed on controlled water releases above state N − 2

since this is wasted water. Figure 5.8 shows the effects of this control for

approximately 90% full, 95% full and 100% full compared to inflow intensity.

There is a clear relationship between the intensity of inflows and the intensity of

controlled releases. In general, as the state of the dam increases, the intensity

of controlled releases also rises and has the general shape of the inflow intensity

up to νmax. This result is certainly reasonable and is essentially what one would

expect to occur.

Finally, Figure 5.9 shows the controlled intensity of demand when the dam is

almost empty, 25% full, 50% full, 75% full and 100% full. Again, this shows that

prices are affecting consumption mainly when the dam is below the ”safety level”.

In Figure 5.10 we have taken an average of the optimally controlled consumption,

weighted by the probability of being in each state, and compared it with the

original total demand of the dam users. It clearly shows that the price controls

have had the desired effect of reducing overall consumption by moderating the

users demands. Moreover, it has the same general shape as the original demand

which would be desirable form the customers point of view, since they could

adapt to the lower level of supply with roughly the same seasonal characteristics.

83

0.1

0.2

0.3
0.4

0.5

0.6
0.6

0.7 0.7
0.8

0.80.9

2 4 6 8 10 12

1.0

1.5

2.0

2.5

3.0

Figure 5.6: Assumed inflow jump density by month and inflow jump size. The
horizontal axis gives the month and the vertical the jump size. The contours
represent the changing probabilities of the jump sizes through time.

5 10 15 20
0

1

2

3

4

5

Dam Level H 2 - 20 L

P
ri

ce

Figure 5.7: Price structure over control interval.

84

0.0 0.2 0.4 0.6 0.8 1.0
Time HyearsL

5

10

15

20
Release HkLL

Full

~95% Full

~90% Full

Inflow intensity

Figure 5.8: Controlled releases at about 90%, 95% and 100% full.

0.2 0.4 0.6 0.8 1.0
Time HyearsL

10

11

12

13

14

15

16

Demand HkLL

Full

75% full

50% full

25% full

Near empty

Figure 5.9: Controlled demands for various levels.

85

0.2 0.4 0.6 0.8 1.0
Time HyearsL

12

14

16

18

Demand HkLL

Controlled demand

Uncontrolled demand

Figure 5.10: Average optimal demand and original demand.

5.7 Further analysis of results

5.7.1 Starting in the lowest state

If we start the system in the second to lowest state, state 1, then we are relying on

the price control through moderation of consumption to decrease the probability

of remaining in this state. Figure 5.11 shows the result of this control on the state

probabilities for states L(t) = 0 and L(t) = 1. By the end of the control period

the probability of remaining in state 1 is of the order of 25% with or without

control. On the other hand, the probability of the dam level decreasing to state

0 is of the order of 45% with control and more then 50% without control. Given

that this is an indirect control, the result is reasonable, since our performance

criteria state that the difference between what the customers demand and what

they are supplied should be minimal. It demonstrates that the control works as

intended.

86

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Time H years L

P
ro

b
ab

il
it

y

Figure 5.11: Probabilities of states L(t) = 1 (with control - thin, without control
- thin dashed) and L(t) = 0 (with control - bold, without control - bold dashed).

5.7.2 Starting in the highest state

When we start in state 20, the highest state in the numerical model, we find
that control is less effective. Figure 5.12 shows that state probabilities for L(t) =
20 and L(t) = 21. The probability of staying in state 20 drops essentially to
zero very quickly, with or without control, while the probability of entering the
overflow state heads to 45% without control, but 50% with control. This is readily
explained with reference to the performance criteria. In the highest state there
is no lack of water but the performance criteria relating to demand, which would
try to keep the level high, is still active. This leads to more water being available
at a time when we want it to be used. This scenario may actually be better in
the case where a price control is used to allow the maximum water allocation to
each user. When exactly this should be the case is a question for further research,
that is to find the decision point for demand levels that tells us whether to use
the price control or not.

87

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Time H years L

P
ro

b
ab

il
it

y
of

ov
er

fl
ow

Figure 5.12: Probabilities of states L(t) = 21 (with control - thin, without control
- thin dashed) and L(t) = 20 (with control - bold, without control - bold dashed).

5.8 Conclusion

In this chapter we have given a new model for dam management via optimal price

controls and controlled water releases when the dam has a time-inhomogeneous

compound Poisson inflow process. We have shown that under some reasonable

assumptions about evaporation and jump probabilities we can obtain price

structures for the dam at any time and in any state. Furthermore, these price

structures result in significant reductions in total demand but do not alter the

general seasonal form of the demands on average. We have also shown that

a controlled release can help to reduce the risk of reaching a dangerously full

state and that we can find both the optimal timing and the optimal amount

of water to release. The results that we have obtained give simple forms for

the controls and are readily computed even for larger systems with the help of

high performance computing (HPC) [39]. They provide a control strategy which

is sensible in terms of the controls behaving in a logical way with respect to

88

demand and flood control. In general the controls may be suboptimal depending

on the limits of the controls sets. The next innovation will be to use essentially

the same model and show how to demonstrate the existence of feasible solu-

tions for the resource constrained problem, which will be done in the next chapter.

89

Chapter 6

Finding feasible controls for a dam under control resource

constraints

In Chapter 5 we considered the control of a dam with time-inhomogeneous inflows

without constraints on the performance criteria. This chapter has as its base the

model given in chapter 5, however, we introduce constraints on the performance

criteria. These constraints result from imposition of controls on resources. Ex-

amples of this would include regulated maximum discharge rates or maximum

shortfalls in the water delivered to customers, regardless of the physical capac-

ity of the system. The introduction of constraints on the performance criteria

leads to the immediate question of whether or not any feasible controls exist,

that is controls that meet the constrained performance criteria and are within

the bounds of the control set. In other words, we want to know whether a bal-

ance can be found between the competing criteria that allows realizable control

solutions to be found. This chapter gives the methods to show the consistency of

the constraints, which is a criterion for establishing the existence of feasible solu-

tions to the constrained optimal control problem in the case where the problem

is a convex optimization problem [9]. Finding the optimal control solution under

constraints will not be shown here. To show consistency of the constraints and

hence find feasible solutions is a relatively simple numerical procedure, as will be

90

shown, however, the finding of the values for the Lagrange multipliers that give

the optimal solution is not trivial. Examples given in [34] and [40] show that

convergence to the optimal solution for just two criteria can be problematic and

that specialized knowledge of how to apply algorithms in lower level program-

ming languages is needed. However, showing the consistency of constraints is a

necessary first step in the constrained optimization procedure and so is given in

full detail with respect to dams. The following sections follow the details of [34]

and are adapted with specific reference to the dam control problem of Chapter 5.

6.1 The constrained problem as a convex optimization problem

What follows is the general approach to this problem. A specific example is given

in section 6.3. As in previous chapters we assume that all processes are defined

on the probability space {Ω,F ,P} and consider the process {X(t), t ∈ [0, T]} to

be a controlled jump Markov process with piecewise constant right-continuous

trajectories, which represents the state of the dam at time t. Now, let the right-

continuous set of complete σ-algebras generated by X(t) be denoted

{
FX
t

}
= σ {X(s) : s ∈ [0, T]} .

Furthermore, let the controls for this dam be denoted as in Chapter 5 so that

p(t,X(t)) is the time and state dependent price of water, and ν(t,X(t)) is the time

and state dependent water release rate. Let these controls be in some compact

metric space U = [pmin, pmax] × [0, νmax]. We make the following assumption

about the set of admissible controls, which is a convexity condition [34]:

Assumption 6.1. The set Ū of admissible controls {(p(·), ν(·))} is the set of

FX
t -predictable controls that take values in U . This means that if N(t) is the

number of state changes of the process X(t) and X t
0 is the history of the process

91

from time zero to time t ∈ [0, T] such that

X t
0 = {(X(0), 0), (X(τ1, τ1), ..., (X(τNt), τNt)}

is the set of all states and jump times, then for τNt < t < τNt+1 the controls

(p(t,X t
0), ν(t,X t

0)) are functions of the current time t and X t
0 [18, 13].

Following the arguments of [34], if Assumption 6.1 holds then the constrained

Markov control problem can be written as a convex optimization problem. It

follows that for any set of multipliers γ̄ = (γ0, γ1, ..., γM) such that (γm ≥ 0, m =

0, ...,M), where M + 1 is the number of criteria, the dynamic programming

equation

〈φ′(t), x〉+ min
p,ν

[〈φ(t), A(t, p, ν)x〉+ 〈f0(t, p, ν), x〉] = 0, (6.1)

with terminal condition φ(T) = φ0, as given in Chapter 5, can be solved, if only

numerically. Certainly for the criteria we have used for dam control, the vector

of values of the criteria J̄(Ū(·)) = (J0(Ū(·)), ..., JM(Ū(·))) belongs to a bounded

convex set in J ∈ RM+1, and the solution of (6.1) gives the minimum of the

linear form K (γ̄, J̄) = 〈γ̄, J̄〉. So we have

min
J̄∈J

K (γ̄, J̄) = min
Ū(·)
〈γ̄, J̄〉.

In this form the constrained optimal control problem can be seen as a finite

dimensional convex optimization problem.

6.2 Consistency of constraints

We now consider how to test the consistency of constraints. This means that

we need to show that for a system of constraints Jm, for m = 1, ...,M , the

92

Jm ≤ 0, ∀m. Note that γ0 is the multiplier of the criterion describing the objective

function and so is set to zero when considering the consistency of the system of

constraints. The following proposition gives a criterion for the consistency of the

system of constraints [34].

Proposition 6.2. Let

Γ0 =

{
γ : γ0 = 0, γ1 ≥ 0, ..., γM ≥ 0;

M∑
m=1

γm = 1

}
.

Then, the system of inequality constraints Jm(Ū(·)) ≤ 0 is consistent if and only

if

max
Γ0

min
J̄∈J

K (γ̄, J̄) ≤ 0. (6.2)

Proof. The proof is given here for completeness and closely follows that given in

[34]. We begin by assuming that (6.2) holds and so the function

min
J̄∈J

K (γ̄, J̄)

is continuous and concave in γ̄ [63], and so it achieves a maximum over the

compact set Γ0 at some γ̄∗ ∈ Γ0. Let Ū∗ be the point where the function K (γ̄∗, J̄)

achieves the minimum over J , then for any γ̄ ∈ Γ0 we have

〈γ̄, J̄(Ū∗)〉 ≤ 〈γ̄∗, J̄(Ū∗)〉 ≤ 0,

which implies that Jm(Ū∗) ≤ 0, ∀m = 1, ...,M.

Now assume that there exists Ū∗ such that Jm(Ū∗) ≤ 0, ∀m = 1, ...,M, then

for any γ̄ ∈ Γ0

min
Ū
〈γ̄, J̄(Ū)〉 ≤ 〈γ̄, J̄(Ū∗)〉 ≤ 0,

93

and this implies (6.2).

The next proposition gives a stronger condition for consistency.

Proposition 6.3. The system of inequality constraints Jm(Ū(·)) ≤ 0 is strongly

consistent and satisfies the Slater condition [9] if and only if

max
Γ0

min
J̄∈J

K (γ̄, J̄) < 0. (6.3)

This is equivalent to the statement that there exists Ū0 such that Jm(Ū0) <

0, ∀m = 1, ...,M [34, 40].

Proof. Again we follow the proof given in [34]. If (6.3) holds then for any γ̄ ∈ Γ0

we have

〈γ̄, J̄(Ū∗)〉 ≤ 〈γ̄∗, J̄(Ū∗)〉 < 0,

which implies that Jm(Ū∗) < 0, ∀m = 1, ...,M.

Now assume that there exists Ū0 such that Jm(Ū0) < 0, ∀m = 1, ...,M, then

for any γ̄ ∈ Γ0

min
Ū
〈γ̄, J̄(Ū)〉 ≤ 〈γ̄, J̄(Ū0)〉 ≤ max

m

{
J̄m(Ū0)

}
≤ C < 0,

and this implies (6.3).

As stated earlier, we do not deal with the procedure for finding the optimal

control solutions for the dam problem in Chapter 5 in this thesis, but simply note

that the consistency of the constraints implies that an optimal solution exists,

based on Section 3.3 of [34] and classical results given in [21] and [29].

94

6.3 Example showing consistency of constraints

We take as the example the model given in Chapter 5.

6.3.1 Performance criteria

The first criterion is the mean square difference of some fixed proportion of the

water demanded by customers and water optimally supplied, representing a mea-

sure of how well the customers demanded water needs are being met. This is

subject to the square of this difference being less than some amount, say α > 0,

with α being greater than the minimum possible value of this criterion. Let the

customer demand (1− r)
∑n

i=1 x̄i(t) = C̄(t), then

J1[p(·)] = Ep
{∫ T

0

(
C(s, p(s))− C̄(s)

)2
ds

}
, (6.4)

with J1[p(·)] ≤ α.

The second criterion is the mean square difference between inflows and out-

flows, and is an expression of the requirement for balance between inflows and

outflows in the system. This should be less than some given quantity, say β > 0,

with β greater than the minimum possible value of the criterion:

J2[p(·), ν(·)] =

Ep,ν
{∫ T

0

(λ(s)− µ(s,X(s))− C(s, p(s,X(s)))− ν(s,X(s)))2ds

}
, (6.5)

with J2[p(·), ν(·)] ≤ β.

Clearly the constraints can be rewritten as

J1[p(·)]− α ≤ 0, (6.6)

95

and

J2[p(·), ν(·)]− β ≤ 0. (6.7)

6.3.2 System of ODE’s

To find the form of the controls, we set γ0 = 0, as in Proposition 6.2 and consider

the slightly modified set of differential equations (6.8) from Chapter 5. Here we

have only two criteria, so the multiplier for the first will be γ and the second

(1− γ), such that γ+ (1− γ) = 1 as required by Proposition 6.2. We are looking

for the value of γ which gives the maximum value of the constrained criteria, so

we will set γ = 0, solve the system and then increment γ by a fixed amount, say

1/m, and solve again. Continuing this until γ = 1 will give us m+ 1 solutions of

the system for γ ∈ [0, 1]. In this way we approximate a continuous function in γ

and then look for the maximum. So the required equation is

min
p(·),ν(·)

H(t, φ(t), p(t, ei), ν(t, ei), ei, γ) =

φi−1(t)(C(t, p(t, ei) + µ(t, ei) + ν(t, ei))

− φi(t)(λ(t) + C(t, p(t, ei) + µ(t, ei)

+ ν(t, ei)) +
Zmax∑
j=1

φi+j(t)qj(t)

+ γ[(C̄(t)− C(t, p(t, ei)))
2 − α]

+ (1− γ)[(λ(t)− µ(t, ei)− C(t, p(t, ei))

− ν(t, ei))
2 − β]

(6.8)

for i = 1, ..., N−1. In practice we minimize over C(t, p(t, ei)) because we can find

the explicit form of this from the solutions of the ODE system and extract p(t, ei)

from this after. To minimize we take the partial derivatives of equation (6.8)

with respect to C(t, p(t, ei)) and ν(t, ei) to get the following system of two linear

96

equations:

0 =
∂H(t, φ̂(t), p, ν, ei, γ)

∂C(t, p(t, ei))
= φi−1(t)− φi(t)− 2γ(C̄(t)− C(t, p(t, ei)))

−2(1− γ)(λ(t)− µ(t, ei)− C(t, p(t, ei))

−ν(t, ei))

0 =
∂H(t, φ̂(t), p, ν, ei, γ)

∂ν(t, ei)
= φi−1(t)− φi(t)

−2(1− γ)(λ(t)− µ(t, ei)− C(t, p(t, ei))

−ν(t, ei))

(6.9)

As in Chapter 5, these equations are from the convex optimization procedure

and apply only if the controls at the stationary points are inside the control

set. If they are then the partial derivatives are identical except for the term

−2γ(C̄(t)− C(t, p(t, ei))), which implies that this term must be zero, or C̄(t) =

C(t, p(t, ei)). Substituting this into either of the above gives

ν(t, ei)) =
φi(t)− φi−1(t)

2(1− γ)
+ λ(t)− µ(t, ei)− C̄(t).

Let C∗(t, ei) and ν∗(t, ei) be the form of these minimizing controls, then the

solutions are

(C∗(t, ei), ν
∗(t, ei)) = (C̄(t),

φi(t)− φi−1(t)

2(1− γ)
+ λ(t)− µ(t, ei)− C̄(t)).

However, C(t, p(t, ei)) ∈ [Cmin(t), Cmax(t)] and ν(t, ei) ∈ [νmin, νmax], so C∗(t, ei)

and ν∗(t, ei) are either within these bounds or they are on the boundary. In

the case of C∗(t, ei), since C̄(t) is known beforehand, this means that for each

97

t ∈ [0, T] we set C(t, p(t, ei)) as

C(t, p(t, ei)) =

Cmin(t), C̄(t) ≤ Cmin(t)

C̄(t), Cmin(t) < C̄(t) < Cmax(t)

Cmax(t), C̄(t) ≥ Cmax(t)

The control ν∗(t, ei) depends on the solution of the system of ODE’s. In this

case, when we solve the ODE system numerically, for each t ∈ [0, T] we set the

definition of ν(t, ei) to be

ν(t, ei) =

νmin, ν∗(t, ei) ≤ νmin

ν∗(t, ei), νmin < ν∗(t, ei) < νmax

νmax, ν∗(t, ei) ≥ νmax

As in chapter 5, these solutions are in general not the solutions of the convex

optimization problem. They will minimize the RHS of equation (6.8) for the

allowable set of controls but will not provide the optimal solution in an absolute

sense. As stated above, the convex optimization procedure only applies when the

controls at the stationary points are inside the control set. In many cases this is

not the case and so we have to check at each time t ∈ [0, T] to see whether this is

the case and, if not, check combinations of controls on the boundary of the control

set. Our set of controls is rectangular and the axes of the level set formed by the

performace criteria are parallel to its edges, so this procedure is straightforward.

At each time t we solve for the controls using the convex optimization procedure,

test to see whether the resulting control is inside the control set and, if not, set the

control to have the closest boundary value. The above cases give the definitions

of the controls for each γ in the numerical solution.

98

6.3.3 Numerical example

For this example we have taken the increment of γ as 1/100 so that we end up

with 101 solutions for the system (6.8). The model has the following equations

and parameters as inputs taken directly from Chapter 5:

Table 6.1: Model parameters, inflows and demands.

Parameters Parameters Inflows & Demands
N = 20 n = 3 λ(t) = −3 cos(4πt) + 7
M = 10 r = 0.1 µN+1(t) = − sin(2πt) + 1

pmax = 3.00 K = 50 x1(t) = cos(2πt) + 5
pmin = 1.5 νmax = 15 x2(t) = 0.3 cos(2πt) + 4
νmin = 1 x3(t) = 0.5 cos(2πt) + 5

Figure 6.1 shows the value of the constrained performance criteria against γ

for α = 4 and β = 100 at time t = 0. It clearly shows that the values of the

criteria are greater than zero for all γ and so the constraints are inconsistent

in this case. If we change the value of β to β = 225, while keeping α = 4

constant, we get Figure 6.2. This shows that the values of the criteria are less

than zero for all γ and so the constraints are consistent in this case. Because of

the relatively small value of α, changing it makes little difference to the overall

picture. Figure 6.3 shows that the values of the criteria are still mostly above

zero, which means that we should constrict our search for controls to the set of

values of γ where the values of the weighted mixed criteria are less than zero.

6.4 Concluding remarks

In this chapter we have given the theoretical background and the numerical pro-

cedure for testing a system of inequality constraints for consistency. We have

used a very simple case here with just two criteria to demonstrate the method.

It would clearly be more difficult with more criteria, requiring more complicated

99

0.2 0.4 0.6 0.8 1.0
Γ

5

10

15

20

25

30

35

Criteria value

Figure 6.1: Criteria value as a function of γ with α = 4 and β = 100.

procedures to find the maximum than shown here. Also, we have used the ex-

ample of a single dam with only 21 levels, so the solution for each step of γ

was quite fast. With connected systems or large numbers of levels this would be

a time consuming calculation. In the next chapter we describe approaches for

increasing the speed of computation of the solutions of these models.

100

0.2 0.4 0.6 0.8 1.0
Γ

- 80

- 60

- 40

- 20

Criteria value

Figure 6.2: Criteria value as a function of γ with α = 4 and β = 225.

0.2 0.4 0.6 0.8 1.0
Γ

- 20

-10

10

20

30

Criteria value

Figure 6.3: Criteria value as a function of γ with α = 25 and β = 100.

101

Chapter 7

Computational aspects including the use of parallel and

high performance computing

The contents of this chapter were presented at the 50th IEEE Conference on

Decision and Control and European Control Conference (CDC-ECC) held in

Orlando, Florida, USA, between December 12-15,2011. The purpose of this

chapter is to outline the numerical procedures which we have used to solve the

problem of two connected dams. The reason this model was chosen is that with

connected systems the number of differential equations to be simultaneously

solved becomes large very quickly, even when the number of states in the

individual parts of the system are quite small. In general, if we have N levels

in each part of the system and we connect d different parts, then we will

generate a system of Nd differential equations. So, whereas for a single dam 100

levels may provide a quite fine discrete approximation, for two connected dams

with 100 levels we have 10000 differential equations to solve simultaneously.

These differential equations are non-linear in general and the computational

resources required to numerically solve the system is high. As the computa-

tional difficulty of problems with high dimensionality is a common criticism of

the dynamic programming solution method, this is an important area to examine.

102

7.1 Programming languages

From the beginning of this project all models have been written and solved

in Mathematica 7 or 8. As a high level scripting language there is a general

consensus that it will not perform as well as lower level languages such as C,

C++ or FORTRAN in terms of speed, however, with limited programming

skills and the ability to do quite complicated calculations with minimal coding

it has provided a good environment in which to test ideas. The performance

difference with other programming languages has not been tested and we make

no pretensions as to this being the best possible result, indeed the performance

we have achieved using Mathematica may likely be improved by writing the

code in a lower level language. Even so, the techniques we have employed are

available in all of these languages and so our solution methods could be readily

implemented in them.

7.2 Computational aspects considered

In this chapter we focus on two aspects in particular that have improved the

speed of numerical solutions. The first is parallelization of parts of the code. The

motivation for trying this was advice and training received during attendance at

Super Computing 2010 (SC10) in New Orleans, USA, between 13-19 November,

2010. At a poster presentation many helpful comments were received about the

possibility of using parallel computing and a workshop provided all the basic

knowledge to try and implement it. This was in the context of programming

with C or C++ but with Mathematica it was discovered that most of the

parallelization could be done automatically with only a few changes in the code.

This is outlined in this chapter.

103

The second aspect is the use of High Performance Computing (HPC), which

was the special focus of the conference in New Orleans. This area of computing

has seen a revolution in terms of the size of problems that can be solved in a

reasonable time frame. We have compared solution times with a desktop PC

and with the Monash University HPC Center’s Monash Sun Grid (MSG). We

show that the use of HPC dramatically improves the speed of solution for dam

models with a large number of states, especially systems of connected dams.

More importantly, these larger problems cannot be solved on PC desktops due

to memory problems and so HPC is the only viable platform available. In this

chapter we detail some of the experiments we have done with both with and

without parallelization on the MSG.

7.3 The 2-dam model

This model is covered in depth in Chapter 4, so here we give a brief account of

the model. We begin by making some simplifying assumptions about the dams.

First we assume that each dam has independent natural inflow and outflow

processes. Secondly we assume that the consumption in each dam depends on

a time and joint-state dependent price. We likewise assume that water transfers

between dams depend on time and the joint-state of the dams.

We approximate the level in each dam by discretizing it into N + 1 levels or

states, N < ∞, and let Li(t) ∈ {0, ..., N}, i = 1, 2 be an integer valued random

variable describing the state of dam i at time t. The martingale approach in

[18] allows us to describe the N + 1 states by the unit vectors in RN+1, giving

Si = {ei0, ..., eiN} as the set of unit vectors for dam i.

104

Define Xi(t), i = 1, 2, where {Xi(t) ∈ Si, t ∈ [0, T]} for T < ∞ on the

probability space {Ω,F ,P}, as a controlled jump Markov process with piecewise

right-continuous paths. This process is for the change in level of dam i. We make

the following assumptions about the price control, p(t,X(t)) and the transfer

control, u(i→j)(t,X(t)), between dams i and j, i, j = 1, 2 and i 6= j.

Assumption 7.1. Assume that the set of admissible controls, P̄ = p(·) and Ū ={
u(i→j)(·) : i, j = 1, 2; i 6= j

}
are sets of FX

t -measurable controls taking values in

P = {p ∈ [pmin, pmax]} and U = {u ∈ [0, 1]} respectively, where X = X1 ⊗X2.

Remark 7.2. If the history of the jump process from time 0 to t is denoted

Xt
0 = (X1)t0⊗ (X2)t0, then assumption 7.1 ensures that our controls, p(t,Xt

0) and

ui,j(t,X
t
0) are measurable with respect to t and Xt

0 (for detail see [38]).

7.3.1 System dynamics

For this model we assume that we can approximate the inflow and outflow

processes of each dam by general FX
t -measurable counting processes with unit

jumps, Y i
in(t) and Y i

out(t), i,= 1, 2, respectively. The intensity of inflows comes

from the deterministic intensity of natural inflows, λi(t), and the intensity of

inflows from the other dam, uj,i(t). The intensity of outflows comes from

the deterministic intensity of evaporation, µi(t), the intensity of consumption,

Ci(t) = Ci(t, p(t),Xt) and the intensity of transfers to the other dam, ui,j(t).

This gives us two processes,

Y
(i)
in (t) =

∫ t

0

(λi(s) +
d∑
j=1

u(j→i)(s))I {Li(s) < N} ds+M
(i)
in (t),

105

where M
(i)
in (t) is a square integrable martingale with quadratic variation

〈M (i)
in 〉t =

∫ t

0

(λi(s) +
d∑
j=1

u(j→i)(s))I {Li(s) < N} ds

and

Y
(i)
out(t) =

∫ t

0

(µi(s,X(s)) + Ci(s, p(s,X(s))) +
d∑
j=1

u(i→j)(s,X(s)))I {Li(s) > 0} ds

+M
(i)
out(t),

where M i
in(t) and M i

out(t) are square integrable martingales. So now the approx-

imate dynamics for each dam in our model are given by

Li(t) = Y i
in(t)− Y i

out(t).

For a more detailed explanation of these approximations please see [38].

7.3.2 Dam system as a system of connected controlled Markov chains

With the approximations in 7.3.1, recall that the infinitesimal generator of each

component of the dam system has the form given in Chapter 4, Section 4.1.1:

106

Ai(t, p(t,X(t)), u(i→j)(t,X(t)), u(j→i)(t,X(t))) =

− λi(t)

−
∑
j 6=i

u
(j→i)
i (t,X(t))

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

... 0 0

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

+ λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t)))

... 0 0

0

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

... 0 0

...

0 0 ...

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

0

0 0 ...

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

+ λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t)))

Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t))

0 0 ...

λi(t)

+
∑
j 6=i

u
(j→i)
i (t,X(t))

− (Ci(t, p(t,X(t)))

+ µi(t,X(t))

+
∑
j 6=i

u
(i→j)
i (t,X(t)))

.

The column number corresponds to the current state of the ith dam and the

column entries add to zero. The two generators for the system proposed here

are clearly connected through transfers and the definitions of the controls being

107

dependent on the joint state of the system.

7.4 Derivation of controlled demand functions

The key innovation of this model is the use of a time and state dependent

feedback control, p(t,X(t)), to take into account the active seasonal demands of

consumers. It easier to find p(t,X(t)) through the effect it has on consumption

in each dam. For the ith dam, the resulting controlled demand is denoted

Ci(t, p(t,X(t))). Here we show how we take the price of water into account

through controlled consumption. We are looking for a single price structure for

all users of the dam system. This is not a necessary element of the model and

different pricing structures could apply to different components of the system or

even different sectors. In this case the number of price controls would need to be

increased.

So, considering the ith dam, let there be n sectors, or consumers, each with

their own seasonal demand intensity, x̄i,k(t), for k = 1, ..., n, recall that the

optimal consumption for each dam is defined as in Section 4.2, such that for the

ith dam, the total optimal intensity of demand is

Ci(t, p(t,X(t))) =
n∑
k=1

xi,k(t, p(t,X(t))). (7.1)

and, since we also know that p(t,X(t)) ∈ [pmin, pmax]:

Ci,max(t) =
n∑
k=1

xi,k(t, pmin) ≥ Ci(t, p(t,X(t))) =
n∑
k=1

xi,k(t, p(t,X(t)))

≥ Ci,min(t) =
n∑
k=1

xi,k(t, pmax).

(7.2)

108

These equations allow us to define piecewise functions for the solution of

Ci(t, p(t,X(t))) in the dynamic programming equations.

7.5 Dynamic programming and optimal control

The method of solution follows that given in Chapter 4, Section 4.3.1, with the

following performance criteria:

7.5.1 Performance criteria

For this example with two dams we have four types of performance criteria.

The first type seeks to minimize the difference between the customer’s seasonal

demand intensity and the optimal demand intensity:

J1(t, p(t,X(t)),X(t)) = Ep
(C1(t, p(t,X(t))−

n∑
k=1

x1,k(t)

)2
 ,

and

J2(t, p(t,X(t)),X(t)) = Ep
(C2(t, p(t,X(t))−

n∑
k=1

x2,k(t)

)2
 .

The second type considers the difference squared of the natural inflows and trans-

fers into each dam and the customer demand and evaporation in each dam:

J3(t, u(i→j)(t,X(t)),X(t)) =Eu
[(
λ1(t) + u(2→1)(t,X(t))

−u(1→2)(t,X(t))−
n∑
k=1

x1,k(t)

−µ1(t,X(t)))2]

109

and

J4(t, u(i→j)(t,X(t)),X(t)) =Eu
[(
λ2(t) + u(1→2)(t,X(t))

−u(2→1)(t,X(t))−
n∑
k=1

x2,k(t)

−µ2(t,X(t)))2] .
The third type is to minimize the probability that on average either dam falls

below level M :

J5(t,X(t)) =
2∑
l=1

(
Ep,u

[∫ T

0

M∑
k=1

Xl,k(s)ds

])
.

The fourth type is to minimize the probability the either dam is below level M

at the terminal time T :

J6(t,X(t)) =
2∑
l=1

(
Ep,u

[
M∑
k=1

Xl,k(T)

])
.

Here, for the J5 and J6 criteria, the expectation is taken under the probability

measure induced by the set of optimal controls.

In the current example, the control resources are unconstrained so

f0(t, p(t,X(t)), u(1→2)(t,X(t)), u(2→1)(t,X(t)),X(t)) is simply the sum of the first

four criteria. The fifth criterion is added as a running cost on each state of the

chain below level M on the control period and the sixth as a cost on the terminal

states below level M .

7.6 Computational aspects

Given the system of differential equations (4.6), we must write efficient code to

solve the system and obtain the optimal controls. In the first instance we wrote

110

the code to solve the system in a serial fashion and the results of this have been

included as a numerical example in [38]. In serial, however, the time taken to

solve the system and calculate the controls can be considerable for a two dam

system with a large number of states in each. For example, it took approximately

45 minutes to solve for a two dam system with 20 states in each dam on the

office desktop computer. It was desirable to reduce this substantially. Parallel

computing was the obvious way forward because there were parts of the code

that could clearly be parallelized. In this section we discuss the main points of

how our code was parallelized.

The ideas presented here are taken from a tutorial on parallel computing given

at Supercomputing 2010 (SC10) [56]. Since this is not intended as a technical

exposition of parallel computing in general, we will limit discussion to the par-

allelization of our dam system code. The first step was to identify parts of the

code that could be easily run in parallel. This was comprised of two different

types of code in general. The first type was where code simply constructed a

definition. For example, the following code defines the J1(t, p(t,X(t)),X(t)) per-

formance criteria. It seeks to minimize the difference between the demand for

water in dam one, the sum of the xk(t), and the optimally supplied water, taking

into account the level of both dams, C1(i, j)(t), that is dam one is in level i and

dam two in level j. The Mathematica code for the serial definition is

J_1=Table[(c_1[i][j][t]-Sum[x[k][t],

{k,1,nsector[1]}])^2,{i,1,L},{j,1,L}].

The key point to note is that since we are simply defining this criterion and

no calculation is taking place, we can safely define this criterion for each joint

state in parallel. The following code is for the same definition but parallelized:

J_1=WaitAll[Table[ParallelSubmit[{i,j},

111

(c_1[i][j][t]-Sum[x[k][t],

{k,1,nsector[1]}])^2],{i,1,L},{j,1,L}]].

The command ParallelSubmit submits each element of the definition to the

next available Mathematica kernel and WaitAll ensures that no code after this

command is executed until all the definitions have been made. This is not so

important here but becomes important when the value of a definition is changed

as a result of this calculation. If code is executed before all new values are

assigned, errors result. So this command is for safety and reliability of execution.

The second type of code that could be parallelized involved calculations which

included variables that would not be evaluated until a later point. For example,

in our problem we must minimize over each control individually. The solution is a

function that involves some combinations of Φ(i, j)(t), which are the running costs

of the joint states. However, these Φ(i, j)(t) are to be solved for as the solution

to a system of ODE’s at a later time and so we can do these minimizations in

parallel without affecting the values of Φ(i, j)(t). The following code finds the

minimizing function for consumption in the first dam, C1(i, j)(t), in serial:

S_1=Table[s_1=Solve[D[EQ[[i,j]],

c_1[i][j][t]]==0,c_1[i][j][t]];

c_1[i][j][t]/.s_1,{i,1,L},{j,1,L}].

Compare this with the parallelized code:

S_1=WaitAll[Table[ParallelSubmit[{i,j},

s_1=Solve[D[EQ[[i,j]],c_1[i][j][t]]==0,

c_1[i][j][t]];c_1[i][j][t]/.s_1],

{i,1,L},{j,1,L}]]

112

You will notice that the commands are the same and used in the same way

as for simple parallel definitions.

The last element which must be considered is the distribution of vari-

able and function definitions to all available processors, in our case

Mathematica kernels. This is accomplished by executing the command

DistributeDefinitions[...,...,...], where the arguments are all of the

variable and function definitions which must be available to each kernel in the

subsequent calculation, separated by commas. At least in Mathematica, the

process of parallelizing code is relatively simple, although experimentation is

required. One aspect that needs to be considered is the computational overhead

of parallelization. Every call to a different kernel and transfer of data between

kernels takes time and some parts of the code may not be worth parallelizing

if they already execute very quickly. In our example there were a number of

very simple definitions that could be parallelized but the resulting performance

was either a very minimal increase in speed or it was slightly slower. We found

that it pays to focus on the areas of code that seem to take the most time when

executing in serial.

All of this can be accomplished in various other programming languages, but

the ease of implementation may differ considerably. We have used Mathematica

7.0 due to familiarity with this package and its relative ease of use. Implementing

this in C, for example, would be more difficult but the execution would very likely

be faster. For the purpose of preliminary experimentation Mathematica has been

sufficient, however, we may need to write our problem in a lower level language

like C at a later point depending on the size of the dam system we want to model.

113

7.7 Numerical results

The results of this section were obtained on a desktop computer with an

IntelrCoreTM2 Duo CPU E8600 3.33Ghz processor and 3.49GB of RAM. The

operating system was Microsoft Windows XP Professional version 2002, Service

Pack 3 and the numerical software was Wolfram Mathematica version 7.0.0,

Microsoft Windows 32-bit. Having a dual-core processor results in Mathematica

being able to run two computational kernels in parallel. This was an ideal

environment to perform some numerical experiments with parallel computing to

see what the performance gains are like by parallelizing sections of appropriate

code. After this, the code was run on the Monash Sun Grid (MSG), a high

performance computer.

The basic idea was to see the difference in CPU seconds used between the

Mathematica code executed in serial and in parallel. The code used solved

for the optimal controls in a two dam system, found the probability of the

dam system being in a particular state at any time t ∈ [0, 1] and compared

the original demand with an average optimal consumption weighted by these

probabilities. From these results one can obtain all of the pertinent performance

characteristics of the optimal system. This code was executed in series and

parallel three times each for dams with 3, 4, ..., 9, 10 states in each, and the mean

time calculated. The results of this are shown in Table 7.1.

From Table 7.1 we can see that when the dams have three levels each, the

performance is marginally worse with the parallel code since there is a lot of

computational overhead for a very small number of equations to solve. However,

it is clear from the column showing ’Speedup’ that there is a rapid increase in

performance with the increase in states. For interest we also ran the two versions

114

Table 7.1: Mean CPU seconds for serial and parallel execution of Mathematica
code.

States per dam Serial Parallel Speedup
3 1.74 1.97 0.88
4 3.47 3.46 1.00
5 6.97 5.93 1.18
6 12.34 8.83 1.40
7 20.08 11.00 1.83
8 33.85 15.29 2.21
9 54.05 19.13 2.83
10 84.36 23.92 3.53

of code once at 15, 20 and 25 levels. For 15 levels the approximate speedup

was 8.69 times, for 20 levels it was approximately 16.24 times, and at 25 levels

Mathematica ran out of memory.

For a very small amount of change in the original serial code there is clearly

a significant gain in execution speed. As stated, we have also executed these

two versions of our code on the head node of the MSG, the university’s grid

computer. These results for one run are for dams with 10, 20,...,50 levels in

each and shown in Table 7.2, although serial calculations were aborted once

the calculation time exceeded that of the largest parallel calculation. This node

consists of a Sun X4600 chassis with 8 Opteron quad-core CPUs for a total

of 32 cores. Each core has 2GB of RAM [1]. These calculations were carried

out on one CPU (4 cores with 8GB RAM). You will note that for 10 levels

the parallel calculations on the desktop desktop are faster. This is apparently

due to hardware differences, especially processor speed. While not shown, the

calculations for 20 levels were also approximately twice as fast on the desktop,

so for a number of levels that a desktop can handle, desktop performance is

115

Table 7.2: CPU seconds for serial and parallel execution of Mathematica code on
the MSG.

States per dam Serial Parallel Speedup
10 308.19 48.79 6.32
20 4639.55 316.76 14.65
30 > 21636.5 1882.44 -
40 - 6235.81 -
50 - 21636.5 -

comparatively good.

Of course, the MSG can handle much larger systems. In this application we

want to control water consumption in a two dam system with an annual storage

fluctuation of up to 20%. Since dam levels are usually quoted in 0.1% increments,

this would require up to 200 levels per dam (a system of 40000 ODEs), an

extremely demanding task computationally. Probably 0.5% changes in level are

fine enough for our purposes and this would give up to 40 levels in each dam (a

system of 1600 ODEs), which took under two hours for a single CPU on the MSG.

7.8 Final remarks

In this chapter we have considered a model for the optimal control of a system

of two dams through the agency of state and time dependent price and water

transfer controls and some of the computational aspects of its solution. We have

explained the use of parallel computing in our work as a means for reducing

calculation speed and making larger systems more tractable. Parallel computing

presents real opportunities to attempt to solve problems with a larger number of

116

states in each dam and more dams. This chapter was the result of work done in

2011, however, the methods shown in this are the backbone of the solution for

all subsequent models produced. Over time the code for each model has become

more or less standardized in format with parallelization used in much the same

places. This does not mean that attempts at parallelization have always been

successful. Mathematica provides an excellent environment to try things with

relatively limited programming skills. The downside of this is that much of

what it is doing is hidden and cannot be readily altered. As a result, where

parallelization has worked for certain calculations in one model, it has failed in

a subsequent model with no clear reason as to why. This is definitely a point in

favor of trying to solve the problem in another language such as C where there

is far greater control over how exactly the parallelization is being implemented.

This must be balanced with the much larger investment in time required for such

an implementation.

117

Conclusion

The optimal control of resources, such as water, is a major challenge in an

increasingly resource constrained world. It is more challenging when the supply

of the resource is difficult to predict and demands are changing seasonally. This

thesis has demonstrated some optimal control strategies and solution methods

that may be of use in such settings. For this purpose we have chosen dams

because of the complexity of the dynamics and interactions between supply and

customer demands. We have deliberately avoided trying to model any specific

dam so as to make the methods found as general as possible while still providing

reasonable solutions when viewed from a common sense point of view. It would

be misleading to provide examples where these methods perform very well but

fail to show where they do not, and such cases must also exist. Each situation

needs to be evaluated on its own merits as to the applicability of these methods.

We stated in the introduction that ideally we would like to be able to build

models of dams which provide water for human consumption, irrigation and

power while reducing the risk of flooding. We would like to be able to achieve

these aims under diverse and possibly extreme climatic conditions and do so

in a way that provides us with the maximum flexibility in management of the

resource. The papers presented in this thesis have shown that such models can

be built and that in general they give results that ‘make sense’, at least in terms

118

of the specific performance criteria chosen.

Mathematically, this thesis has dealt with the development of tools based on

the optimal control of continuous-time controllable Markov chains (CMC) and

their application to the control of complex systems. As stated, the applicability

of these methods is much wider than shown here, as evidenced by its use in

internet congestion control [32]. The main question was how to optimally control

a large dam (or system of dams) with non-stationary inflows and outflows on

a finite time horizon, under constraints. This was approached via controlled

Markov chains, as originally presented in [18, 32]. We have shown that it

is possible, subject to computing power, to model an arbitrarily sized and

configured system under control resource constraints and obtain optimal pricing

and water release strategies which are reasonable in terms of the application.

In Chapter 2 the basic solution method for the unconstrained case was

given in full detail. Essentially we solve the stochastic optimal control problem

by taking expectations and using dynamic programming. This gives a system

of ordinary differential equations that have solutions at all times during the

control period. The great advantage of this method is that given a set of

system parameters, unique optimal solutions can be found using well established

numerical procedures.

Chapter 3 gave the first model of an abstract dam based on these methods. It

had only a time-inhomogeneous simple counting process for inputs and outputs

and no provision for water release to control flooding. The optimal prices found

were reasonable, in that prices were generally higher in the lowest states, but

this was not uniform and made the solution forms difficult to interpret. The

119

ODE solutions showed that there was a significant number of points where the

solutions for each state crossed, leading to irregularity in prices.

The next attempt, given in chapter 4 was to try to join two abstract dams

together. This was successfully achieved and the price solutions were more

regular than in the single dam case described in Chapter 3. This was because

the system allowed for the transfer of water between dams and so there was more

regularity to the ODE solutions. This model did not deal with flood prevention.

Chapter 5 detailed a significant increase in the complexity of the dynamics of

the model. It introduced a time-inhomogeneous compound Poisson process for

inflows and a controllable release for flood prevention. The time-inhomogeneous

compound Poisson process was required for the possibility of a level jump

distribution to give the probabilities of jumping more than one level in the

event of extreme inflows. This is an increase in the flexibility of the model

and no particular jump distribution is assumed. We have used some rainfall

data to build a distribution but this could be fitted for any location. Likewise,

the possibility of controlled release improves the flexibility of the model,

especially the control of transition probabilities in the highest states. This

was not done under constraints and the task of finding feasible solutions to

the optimal control problem under constraints was dealt with in the next chapter.

In Chapter 6 we considered the question of how to demonstrate the existence

of optimal control solutions in the constrained optimal control problem. The

model used had essentially the same dynamics of that given in the previous

chapter but the performance criteria were a system of inequality constraints.

The results given in that chapter provide a numerical method for establishing

120

the existence of optimal solutions by showing that the system of inequality

constraints is consistent. Finding the optimal controls under constraints was not

done here due to the increased complexity of the numerical methods needed to

solve the problem. This requires some programming ability in languages such

as C++ or FORTRAN due to the difficulty in getting the solutions to converge

near the points of optimality.

The final chapter, Chapter 7, was dedicated more to the computational as-

pects of this project. It took the model presented in Chapter 4 and explored the

use of high performance computing (HPC) and of parallelization of computation

to enable the solution of large systems, especially connected systems. It was

shown that HPC and parallelization provide significant benefits in computational

time compared with desktop computing and that there is scope to improve the

efficiency by rewriting the Mathematica code in a lower level language.

In summary, the main achievements of this work have been:

• The use of a semimartingale model for dam management. This model allows

for control in a non-stationary environment on finite time frames and for

the ability to build models with connected dams, each with their own active

users. The method of building models of connected dams is quite intuitive

and simplifies the construction of the numerical system to be solved.

• The optimal control problems considered are numerically tractable, espe-

cially with the use of high performance computing. It is well known that

the curse of dimensionality is a major problem for discrete MDP problems

121

and for continuous MDP problems. The method shown here is also com-

putationally intensive but has been reduced to the solution of a system of

ODEs, the size of which may be large, and can be controlled by judicious

discretization of the dam levels.

• The introduction of the compound Poisson process for modeling inflows.

This has allowed a significant increase in the flexibility of modeling because

it is possible to include the seasonality of inflows. It fits very well with the

semimartingale model used and the numerical methods developed.

• Finding feasible solutions for the optimal control problem. In many of the

models developed it is not possible to find the optimal solution in any global

sense because such a solution is not able to be realized with the given set

of controls. It is very important to be able to find the best solution with a

given set of controls, since this is what is required in a practical sense. The

method of solution demonstrated clearly allows us to find feasible solutions.

• The development of the methodology for the solution of the optimal control

problem for dams with constraints. This cannot be achieved analytically

and needs effective numerical methods for its realization. This work shows

how to numerically determine whether or not feasible solutions exists

in the constrained case and explains the general method for finding the

optimal solution in the case where feasible solutions exist. The actual

solution requires significant skill in programming.

We have shown through this series of chapters that it is possible to find

reasonable control solutions for systems with complex dynamics, such as dams,

at least in an abstract setting. We have also shown that while these methods

122

are computationally intensive, HPC and parallel computing offer a way forward

with considerable promise. Further research in this field should begin to focus

on how to control complex systems under constraints when there is incomplete

information. In all the work presented here we have assumed that we at least know

the average intensities of flows for all inputs of the system. It is a more difficult

problem when these are only partly known or known through some other indirect

measurement which introduces ambiguity. The field of the optimal control of

continuous-time Markov chains is still very young and offers many opportunities

for further research into basic methods and applications.

123

Appendix A

Mathematica code for model in Chapter 4

SetSharedVariable@LD;

L = 15;

M = 5;

nsector @1D = 3;

nsector @2D = 3;

Array @x , nsector @1DD;

x @1D@t_ D = Cos@2 * Pi * tD + 4.5;

x @2D@t_ D = 0.3 * Cos@2 * Pi * tD + 4.5;

x @3D@t_ D = 0.5 * Cos@2 * Pi * tD + 5;

Array @y , nsector @2DD;

y @1D@t_ D = Cos@2 * Pi * tD + 5;

y @2D@t_ D = 0.4 * Cos@2 * Pi * tD + 4;

y @3D@t_ D = 0.3 * Cos@2 * Pi * tD + 4;

Array @Λ , 2D;

Λ @1D@t_ D = Sin@2 * Pi * tD + 10;

Λ @2D@t_ D = Sin@2 * Pi * t + Pi � 6D + 9;

Μ@LD@t_ D = -Sin@2 * Pi * tD + 4.5;

For Bi = 1, i £ L - 1, i ++, Μ@L - iD@t_ D =

L - i

L
* Μ@LD@tDF

Ν@LD@t_ D = -Sin@2 * Pi * t + Pi � 6D + 3.5;

For Bi = 1, i £ L - 1, i ++, Ν@L - iD@t_ D =

L - i

L
* Ν@LD@tDF

pmax = 1.75;

pmin = 1;

K = 150;

r = 0.25;

cmax @1D@t_ D = â
i =1

nsectorA1E
Max @H1 - r L * x @iD@tD - pmin � H2 * ΑL, 0D;

cmin@1D@t_ D = â
i =1

nsectorA1E
Max @H1 - r L * x @iD@tD - pmax � H2 * ΑL, 0D;

Α = 3 * pmin �
H2 * H1 - r L * Sum @x @iD@0D, 8i, 1, nsector @1D<D - 2.4 * HΛ @1D@0D - Μ@M D@0DLL;

cmax @2D@t_ D = â
i =1

nsectorA2E
Max @H1 - r L * y @iD@tD - pmin � H2 * ΒL, 0D;

124

cmin@2D@t_ D = â
i =1

nsectorA2E
Max @H1 - r L * y @iD@tD - pmax � H2 * ΒL, 0D;

Β = 3 * pmin �
H2 * H1 - r L * Sum @y @iD@0D, 8i, 1, nsector @2D<D - 2.4 * HΛ @2D@0D - Ν@M D@0DLL;

DistributeDefinitions@L, M , nsector @1D, nsector @2D, pmax , pmin, Α, Β, K , r D;

SetSharedFunction@x @1D, x @2D, x @3D, y @1D, y @2D, y @3D,

Λ @1D, Λ @2D, cmax @1D, cmin@1D, cmax @2D, cmin@2D, Μ@LD, Ν@LDD;

A1 = SparseArray @881, 1< -> - Λ @1D@tD - u2@1D@jD@tD,

81, 2< ® c1 @2D@jD@tD + u1 @2D@jD@tD + Μ@2D@tD<, 8L, L<D;

Table@Al = SparseArray @88l, l - 1< -> Λ @1D@tD + u2@l - 1D@jD@tD,

8l, l< ® -Hc1 @lD@jD@tD + u1 @lD@jD@tD + Μ@lD@tD + Λ @1D@tD + u2@lD@jD@tDL,

8l, l + 1< ® c1 @l + 1D@jD@tD + u1 @l + 1D@jD@tD + Μ@l + 1D@tD<, 8L, L<D, 8l, 2, L - 1<D;

AL = SparseArray @88L, L - 1< -> Λ @1D@tD + u2@L - 1D@jD@tD,

8L, L< ® -Hc1 @LD@jD@tD + u1 @LD@jD@tD + Μ@LD@tDL<, 8L, L<D;

A = Sum @Ak , 8k, 1, L<D;

B1 = SparseArray @881, 1< -> - Λ @2D@tD - u1 @iD@1D@tD,

81, 2< ® c2@iD@2D@tD + u2@iD@2D@tD + Ν@2D@tD<, 8L, L<D;

Table@Bl = SparseArray @88l, l - 1< -> Λ @2D@tD + u1 @iD@l - 1D@tD,

8l, l< ® -Hc2@iD@lD@tD + u2@iD@lD@tD + Ν@lD@tD + Λ @2D@tD + u1 @iD@lD@tDL,

8l, l + 1< ® c2@iD@l + 1D@tD + u2@iD@l + 1D@tD + Ν@l + 1D@tD<, 8L, L<D, 8l, 2, L - 1<D;

BL = SparseArray @88L, L - 1< -> Λ @2D@tD + u1 @iD@L - 1D@tD,

8L, L< ® -Hc2@iD@LD@tD + u2@iD@LD@tD + Ν@LD@tDL<, 8L, L<D;

B = Sum @Bk , 8k, 1, L<D;

Y = WaitAll@Table@ParallelSubmit@8i, j<, Ψ @iD@jD@tDD, 8i, 1, L<, 8j, 1, L<DD;

J1 = WaitAll@Table@ParallelSubmit@8i, j<,

Hc1 @iD@jD@tD - Sum @x @kD@tD, 8k, 1, nsector @1D<DL ^ 2D, 8i, 1, L<, 8j, 1, L<DD;

J2 = WaitAll@Table@ParallelSubmit@8i, j<,

Hc2@iD@jD@tD - Sum @y @kD@tD, 8k, 1, nsector @2D<DL ^ 2D, 8i, 1, L<, 8j, 1, L<DD;

J3 = WaitAll@Table@ParallelSubmit@8i, j<,

HΛ @2D@tD + u1 @iD@jD@tD - Sum @y @kD@tD, 8k, 1, nsector @2D<D - Ν@jD@tDL ^ 2D, 8i,

1, L<, 8j, 1, L<DD;

J4 = WaitAll@Table@ParallelSubmit@8i, j<,

HΛ @1D@tD + u2@iD@jD@tD - Sum @x @kD@tD, 8k, 1, nsector @1D<D - Μ@iD@tDL ^ 2D, 8i,

1, L<, 8j, 1, L<DD;

J5 = WaitAll@
Table@ParallelSubmit@8i, j<, K Boole@i £ M D + K Boole@j £ M DD, 8i, 1, L<, 8j, 1, L<DD;

f0 = Sum @Jl , 8l, 1, 5<D;

EQ =

Partition@Flatten@Table@SparseArray @81, i< ® 1, 81, L<D.HTranspose@A D.Y + Y.B + f0 L.

SparseArray @8j, 1< ® 1, 8L, 1<D, 8i, 1, L<, 8j, 1, L<DD, LD;

DistributeDefinitions@EQD;

II | 2 dam L Level model v2-parallel.nb

125

S1 = WaitAll@Table@
ParallelSubmit@8i, j<, s1 = Solve@D@EQ@@i, jDD, c1 @iD@jD@tDD � 0, c1 @iD@jD@tDD;

c1 @iD@jD@tD �. s1 D, 8i, 1, L<, 8j, 1, L<DD;

DistributeDefinitions@S1 D;

Table@c1 @iD@jD@t_ D = Piecewise@88cmin@1D@tD, S1 @@i, j, 1DD £ cmin@1D@tD<,

8S1 @@i, j, 1DD, cmin@1D@tD < S1 @@i, j, 1DD < cmax @1D@tD<,

8cmax @1D@tD, S1 @@i, j, 1DD ³ cmax @1D@tD<<D, 8i, L<, 8j, L<D;

S2 = WaitAll@Table@
ParallelSubmit@8i, j<, s2 = Solve@D@EQ@@i, jDD, c2@iD@jD@tDD � 0, c2@iD@jD@tDD;

c2@iD@jD@tD �. s2D, 8i, 1, L<, 8j, 1, L<DD;

Table@c2@iD@jD@t_ D = Piecewise@88cmin@2D@tD, S2@@i, j, 1DD £ cmin@2D@tD<,

8S2@@i, j, 1DD, cmin@2D@tD < S2@@i, j, 1DD < cmax @2D@tD<,

8cmax @2D@tD, S2@@i, j, 1DD ³ cmax @2D@tD<<D, 8i, L<, 8j, L<D;

S3 = WaitAll@Table@
ParallelSubmit@8i, j<, s3 = Solve@D@EQ@@i, jDD, u1 @iD@jD@tDD � 0, u1 @iD@jD@tDD;

u1 @iD@jD@tD �. s3D, 8i, L<, 8j, L<DD;

S3 = S3 �. Join@Table@S3@@1, j, 1DD ® 0, 8j, 1, L<D, 8S3@@L, L, 1DD ® 0<D;

Table@u1 @iD@jD@t_ D = Piecewise@880, S3@@i, j, 1DD £ 0<,

8S3@@i, j, 1DD, 0 < S3@@i, j, 1DD < 1<, 81, S3@@i, j, 1DD ³ 1<<D, 8i, L<, 8j, L<D;

S4 = WaitAll@Table@
ParallelSubmit@8i, j<, s4 = Solve@D@EQ@@i, jDD, u2@iD@jD@tDD � 0, u2@iD@jD@tDD;

u2@iD@jD@tD �. s4 D, 8i, 1, L<, 8j, 1, L<DD;

S4 = S4 �. Join@Table@S4 @@i, 1, 1DD ® 0, 8i, 1, L<D, 8S4 @@L, L, 1DD ® 0<D;

Table@u2@iD@jD@t_ D =

Piecewise@880, S4 @@i, j, 1DD £ 0<, 8S4 @@i, j, 1DD, 0 < S4 @@i, j, 1DD < 1<,

81, S4 @@i, j, 1DD ³ 1<<D, 8i, 1, L<, 8j, 1, L<D;

INIT = Flatten@WaitAll@Table@ParallelSubmit@8i, j<, Ψ @iD@jD@1D ==

K Boole@i <= M D + K Boole@j <= M DD, 8i, 1, L<, 8j, 1, L<DDD;

DESYS =

Flatten@WaitAll@Table@ParallelSubmit@8i, j<, Ψ @iD@jD'@tD == - EQ@@i, jDDD,

8i, 1, L<, 8j, 1, L<DDD;

SOL1 =

NDSolve@Join@DESYS, INITD, Flatten@Table@Ψ @iD@jD@tD, 8i, 1, L<, 8j, 1, L<DD,

8t, 0, 1<, Method -> ExplicitRungeKuttaD;

DistributeDefinitions@SOL1D;

Price = Table@pr @iD@jD@tD, 8i, 1, L<, 8j, 1, L<D;

Table@pr @iD@jD@t_ D = 4 Α Β � H2 Β nsector @1D + 2 Α nsector @2DL
HSum @x @kD@tD H1 - r L, 8k, 1, nsector @1D<D + Sum @y @kD@tD H1 - r L,

8k, 1, nsector @2D<D - c1 @iD@jD@tD - c2@iD@jD@tDL �. SOL1, 8i, L<, 8j, L<D;

Partition@Flatten@Table@8i, j, pr @iD@jD@tD<, 8i, 1, L<, 8j, 1, L<DD, LD;

PR = Table@prob@iD@jD@tD, 8i, 1, L<, 8j, 1, L<D;

2 dam L Level model v2-parallel.nb | 3

126

EQ2 = Partition@
Flatten@Table@SparseArray @81, i< -> 1, 81, L<D.HA .PR + PR .Transpose@BDL.

SparseArray @8j, 1< -> 1, 8L, 1<D, 8i, 1, L<, 8j, 1, L<DD, LD;

DistributeDefinitions@EQ2, PR D;

DESYS2 = Flatten@WaitAll@Table@ParallelSubmit@8i, j<,

D@PR @@i, jDD, tD == EQ2@@i, jDD �. SOL1D, 8i, 1, L<, 8j, 1, L<DDD;

INIT2 = Flatten@WaitAll@Table@ParallelSubmit@8i, j<,

prob@iD@jD@0D == Boole@8i, j< == 8L, L<DD, 8i, 1, L<, 8j, 1, L<DDD;

SOL2 = NDSolve@Join@DESYS2, INIT2D, Flatten@PR D, 8t, 0, 1<, PrecisionGoal -> 3D;

IV | 2 dam L Level model v2-parallel.nb

127

128

129

References

[1] Monash Sun Grid Overview. Monash University e-

Research Centre, September 2010. https://confluence-

vre.its.monash.edu.au/display/mcgwiki/Monash+Sun+Grid+Overview,

last accessed 30 March 2015.

[2] M. Abdel-Hameed. Optimal control of a dam using pMλ,τ policies and penalty

cost when the input process is a compound Poisson process with positive

drift. Journal of Applied Probability, 37(2):408–416, 2000.

[3] Mohamed Abdel-Hameed. Control of dams using pMλ,τ policies when the input

process is a nonnegative Lévy process. International Journal of Stochastic

Analysis, 2011:17, 2011.

[4] V. Abramov. Optimal control of a large dam. Journal of Applied Probability,

44(1):249–258, 2007.

[5] L. Aggoun and R. Elliott. Measure Theory and Filtering: Introduction with

Applications. Cambridge University Press, Cambridge, 2004.

[6] S. Sebnem Ahiska, Samyuktha R. Appaji, Russell E. King, and Donald

P. Warsing Jr. A Markov decision process-based policy characterization ap-

proach for a stochastic inventory control problem with unreliable sourcing.

International Journal of Production Economics, 144(2):485–496, 2013.

[7] E. Altman. Constrained Markov Decision Processes. Chapman & Hall/CRC,

Boca Raton, FL, 1999.

130

[8] J. Bae, S. Kim, and E.Y. Lee. Average cost under the pMλ,τ policy in a

finite dam with compound Poisson inputs. Journal of Applied Probability,

40(2):519–526, 2003.

[9] L. Berkovitz. Convexity and Optimization in Rn. John Wiley and Sons, New

York, 2002.

[10] D. Bertsekas. Dynamic Programming and Stochastic Control. Academic

Press, London, 1976.

[11] D. Bertsekas and S. Shreve. Stochastic Optimal Control: The Discrete-Time

Case. Athena Scientific, Belmont, MA, 1996.

[12] D. Bertsekas and J. Tsitsiklis. Introduction to Probability. Athena Scientific,

Belmont, Mass., second edition edition, 2008.

[13] P. Bremaud. Point Processes and Queues, Martingale Dynamics. Springer-

Verlag, Berlin, 1981.

[14] C. Ceci, A. Gerardi, and P. Tardelli. Existence of optimal controls for par-

tially observed jump processes. Acta Applicandae Mathematicae, 74:155–175,

2002.

[15] M.H.A. Davis. Markov models and optimization. Chapman & Hall, 1993.

[16] F. Delebecque and J. Quadrat. Optimal control of Markov chains admitting

strong and weak interactions. Automatica, 17(2):281–296, 1981.

[17] R. Elliott. A partially observed control problem for Markov chains. Applied

Mathematics and Optimization, 25:151–169, 1992.

[18] R. Elliott, L. Aggoun, and J. Moore. Hidden Markov Models: Estimation

and Control. Springer-Verlag, New York, 1995.

[19] M. Faddy. Optimal control of finite dams: Discrete (2-stage) output proce-

dure. Journal of Applied Probability, 11(1):111–121, 1974.

[20] J.A. Filar and K. Vrieze. Competitive Markov Decision Processes - Theory,

Algorithms and Applications. Springer, New York, USA, 1997.

131

[21] W. H. Fleming and R. W. Rishel. Deterministic and Stochastic Optimal

Control. Springer-Verlag, Berlin, Heidelberg, New York, 1975.

[22] Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre. Compositional

modeling and minimization of time-inhomogeneous markov chains. In Mag-

nus Egerstedt and Bud Mishra, editors, Hybrid Systems: Computation and

Control, volume 4981 of Lecture Notes in Computer Science, pages 244–258.

Springer Berlin Heidelberg, 2008.

[23] Herodotus. Herodotus: The History. University Of Chicago Press, reprint

edition edition, 1988. Translated by David Grene.

[24] R. Howard. Dynamic Programming and Markov Processes. John Wiley and

Sons, New York, 1960.

[25] Qiying Hu and Wuyi Yue. Markov Decision Processes With Their Applica-

tions. Springer US, New York, 2008.

[26] Martin Jacobsen. Point Process Theory and Applications: Marked Point and

Piecewise Deterministic Processes. Birkhäuser, Boston, 2006.

[27] Andrzej Karbowski and PrzemysÅaw Magiera. Optimal control of a water

reservoir with expected value-variance criteria. Optimal Control Applications

and Methods, 28(1):3–20, 2007.

[28] M. Kitaev and V. Rykov. Controlled Queueing Systems. CRC, Boca Raton,

FL, 1995.

[29] E. B. Lee and L. Marcus. Foundation of Optimal Control Theory. John

Wiley & Sons, New York, London, Sydney, 1967.

[30] Daniel McInnes. Optimal Management of Dam Systems via Controlled

Markov Chains. Poster presentation at Super Computing 2010 (SC10), 13-19

November, New Orleans., 2010.

[31] Alexander Miller and Boris Miller. Control of connected Markov chains.

application to congestion avoidance in the Internet. In Decision and Control

132

and European Control Conference (CDC-ECC), 2011 50th IEEE Conference

on, pages 7242–7248, 2011.

[32] B. Miller. Optimization of queuing system via stochastic control. Automat-

ica, 45:1423–1430, 2009.

[33] B. Miller, G. Miller, and K. Semenikhin. Methods to design optimal con-

trol of Markov process with finite state set in the presence of constraints.

Automation and Remote Control, 72(2):323–341, 2011.

[34] B. Miller, G. Miller, and K. Siemenikhin. Control of Markov chains with

constraints. In Proceedings of the VIII International Conference ”System

Identification and Control Problems” SICPRO ’09, Moscow, 26-30 January

2009.

[35] B. Miller, G. Miller, and K. Siemenikhin. Torwards the optimal control of

Markov chains with constraints. Automatica, 46:1495–1502, 2010.

[36] B.L. Miller. Finite state continuous time Markov decision processes with a

finite planning horizon. SIAM Journal of Control, 6(2):266–280, 1968.

[37] B.M. Miller and D.J. McInnes. Management of a large dam via optimal price

control. In Proceedings of the 18th IFAC World Congress, volume 18, pages

12432–12438. The International Federation of Automatic Control (IFAC),

IFAC-PapersOnLine, August 2011.

[38] B.M. Miller and D.J. McInnes. Management of dam systems via op-

timal price control. In Proceedings of the International Conference on

Computational Science, ICCS 2011, volume 4, pages 1373–1382. Interna-

tional Conference on Computational Science (ICCS), Procedia Computer

Science,Elsevier, June 2011.

[39] B.M. Miller and D.J. McInnes. Optimal management of a two dam system

via stochastic control: Parallel computing approach. In Decision and Control

133

and European Control Conference (CDC-ECC), 2011 50th IEEE Conference

on, pages 1417–1423. IEEE, IEEEXplore, December 2011.

[40] Boris Miller, Gregory Miller, and Konstantin Siemenikhin. Optimal con-

trol of Markov chains with constraints. In Joint 48th IEEE Conference on

Decision and Control and 28th Chinese Control Conference, pages 512–518,

Shanghai, December 16-18 2009. IEEE.

[41] P.C.D. Milly. An analytic solution of the stochastic storage problem appli-

cable to soil water. Water Resources Research, 29(11):3755–3758, 1993.

[42] P.A.P. Moran. The Theory of Storage. Methuen’s Monographs on Applied

Probability and Statistics. Methuen & Co., Ltd., London; Wiley & Sons,

Inc., New York, 1959.

[43] Masaki Ota. A Stochastic Rainfall Generator for the Hopkins River Catch-

ment. Master Thesis, RMIT University, September 2009. Raw data made

available from Minor Thesis.

[44] E.C. Ozelkan, A. Galambosi, E. Fernández-Gaucherand, and L. Duckstein.

Linear quadratic dynamic programming for water reservoir management.

Applied Mathematical Modelling, 21:591–598, 1997.

[45] A. B. Piunovskiy. Optimal Control of Random Sequences in Problems with

Constraints. Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.

[46] A. B. Piunovskiy. Multicriteria impulsive control of jump Markov processes.

Mathematical Methods of Operations Research, 60:125–144, 2004.

[47] A. B. Piunovskiy. Examples in Markov Decision Processes. Imperial College

Optimization Series, Vol. 2. Imperial College Press, London, 2013.

[48] A. B. Piunovskiy and X. Mao. Constrained Markovian decision processes:

the dynamic programming approach. Operations Research Letters, 27:119–

126, 2000.

134

[49] Stanley R. Pliska. Controlled jump processes. Stochastic Processes and their

Applications, 3:259–282, 1975.

[50] M. Ramakrishnan, D. Sier, and P. G. Taylor. A two-time-scale model for

hospital patient flow. IMA Journal of Management Mathematics, 16:197–

215, 2005.

[51] Georgi E. Shilov. Elementary functional analysis. Dover, 1996.

[52] A.N. Shiryayev. Probability. Springer-Verlag, New York, 1984.

[53] Norman Smith. A History of Dams. Peter Davies, London, 1971.

[54] Moshe Sniedovich. A variance-constrained reservoir control problem. Water

Resources Research, 16(2):271–274, 1980.

[55] South East Queensland Water (seqwater). January 2011 flood event: Report

on the operation of sommerset dam and wivenhoe dam. Online, 2 March

2011.

[56] Q.F. Stout and C. Jablonowski. Parallel Computing 101, 14 November 2010.

Tutorial notes from Supercomputing 2010 (SC10) - electronic copy given to

participants.

[57] C.B. Wan and M.H.A. Davis. Existance of optimal control for stochastic

jump processes. SIAM Journal on Control and Optimization, 17(4):511–

524, 1979.

[58] Byron K. Williams. Markov decision processes in natural resources manage-

ment: Observability and uncertainty. Ecological Modelling, 220(6):830–840,

2009.

[59] E. Wong and B. Hajek. Stochastic Processes in Engineering Systems.

Springer-Verlag, New York, 1985.

[60] Wuthichai Wongthatsanekorn, Matthew J. Realff, and Jane C. Ammons.

Multi-time scale Markov decision process approach to strategic network

growth of reverse supply chains. Omega, 38(1-2):20–32, 2010.

135

[61] Reza Yaesoubi and Ted Cohen. Generalized Markov models of infectious

disease spread: A novel framework for developing dynamic health policies.

European Journal of Operational Research, 215(3):679–687, 2011.

[62] L. Yeh and L.J. Hua. Optimal control of a finite dam: Wiener process input.

Journal of Applied Probability, 24(1):186–199, 1987.

[63] W. Zangwill. Nonlinear Programming: A Unified Approach. Prentice-Hall,

Englewood Cliffs, 1969.

