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Abstract

Deciphering genetic interactions is of fundamental importance in computational systems

biology, with wide applications in a number of other associated areas. Realistic modeling

of these interactions poses novel challenges while dealing with the problem. Further,

learning these interactions using computational methods becomes increasingly complex

with the adoption of advanced and more realistic modeling techniques. In this thesis,

we propose methods to address this challenge using a graphical model having sound

probabilistic underpinnings, commonly known as dynamic Bayesian networks.

Inference of genetic interactions is usually carried out using DNA microarray data.

This data provides snapshots of mRNA expression levels of a large number of genes

from a single experiment. However, the number of samples from such experiments is

small, and additionally, they contain missing values and noise. Bayesian networks are

considered as one of the most promising ways by which these issues can be tackled.

However, traditional Bayesian networks have their own limitations; for example, they

neither take time information into account nor can they capture feedback. Further, accu-

rate determination of the direction of regulation requires a significant number of tests to

be performed. Dynamic Bayesian networks (DBN) are extensions of Bayesian networks

that can effectively address these limitations.

In this thesis, we develop novel techniques for gene regulatory network reconstruc-

tion using DBN based modeling approach. We start with a basic DBN based model, and

improve it so that it can represent and model both instantaneous and time-delayed ge-

netic interactions. Initially, we aim to detect the occurrence of instantaneous and single-

step time-delayed interactions, and subsequently this approach is further extended to

model the instantaneous and multi-step time-delayed interactions. This approach of
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modeling both instantaneous and multi-step time-delayed genetic interactions is supe-

rior to traditional DBN based GRN reconstruction techniques, where only the time de-

layed interactions are learnt.

In addition to modeling interactions, one needs a learning mechanism for inferring

genetic interactions. To facilitate detection of nonlinear gene to gene interactions (in ad-

dition to linear interactions), which are prevalent in all genetic networks, we propose

using well known properties, including fundamental results related to information the-

oretic measures for testing conditional independence relations in a DBN. This enables

us to formulate efficient learning techniques for reconstructing GRNs. Using these the-

oretical underpinnings, we first implement simple hill-climbing techniques that enable

detection of various types of interactions among genes. Subsequently, we use these re-

sults to devise novel score and search based evolutionary computation techniques, which

can effectively explore a significantly larger search space.

We carry out investigations using both synthetic networks as well as real-life net-

works. For real-life network study, we use four different microarray data sources, cover-

ing three organisms, namely, yeast, E. coli and cyanobacteria. We use networks of varying

sizes, ranging from five-gene small networks (yeast) to large scale networks of cyanobac-

teria (730 genes). The evaluation of the performance is carried out using four widely used

performance measures. For some networks where we do not have sufficient informa-

tion for calculating these performance measures, we use literature mining for perform-

ing comparative evaluations of the proposed approaches. For the large scale network

of cyanobacteria, we use gene ontology (GO) based analysis of gene functionalities, in

addition to degree distribution analysis of the inferred network.

Due to the inherent difficulties associated with inferring GRNs using DNA microar-

ray data, it is often supplemented by other sources of data; for example, genomic data and

protein-protein interaction data. In this thesis, we propose a framework that jointly learns

the structure of a GRN and a protein-protein interaction network (PPIN). Using this pro-

cess, the GRN reconstruction technique can effectively make use of the vast wealth of

knowledge available from these external sources of data. This knowledge is fed to the

GRN reconstruction process probabilistically, thereby enabling it to weigh each different

data source according to the reliability of that source. The approach is applied on yeast

networks where four different interaction data sources and a number of genomic data

sources are used. Together with the novel modeling and learning techniques proposed in

this thesis, the probabilistic integration of different types of knowledge sources and the
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co-learning of GRN with PPIN represents a significant step towards the reconstruction of

GRNs using DBNs.
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Chapter 1

Introduction

The diverse functions of any living cell are carried out through the concerted activity of

many genes and gene products, coordinated through molecular networks involving in-

teracting proteins, RNA, and DNA molecules. With the advent of high-throughput and

functional genomics, a system level view of the complex biological systems responsi-

ble for the successful functioning of all living organisms has now become a possibility.

The understanding of these complex systems is of tremendous importance in develop-

ing new methods for various applications, such as treating complex diseases, creating

environment-friendly green fuels, and designing new drugs [16, 65]. Inevitably, this dis-

cipline, known as systems biology, has therefore become a recent trend in molecular cell

biology research [38, 75, 83, 137, 205, 239].

In the cell of any living organism, there are thousands of genes interacting with each

other, at any given time, to accomplish complicated biological tasks. Gene regulatory net-

works represent gene-gene regulatory relations in a genome and are models that display

causal relationships between gene activities [29]. A regulatory network can be viewed

as a cellular input-output device, and typically contains the following components at

minimum (see Figure 1.1) [165, 201]:

1. An input signal reception and transduction system (component 1 in the figure) that

mediates intra and extracellular cues. Usually, more than one signal affects a given

target gene.

1
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2. A core “GRN component” complex (component 2 in the figure) composed of trans-

acting regulatory proteins and cognate cis-acting DNA sequences. Functionally

similar components may be associated with more than one target gene, which re-

sults in similar gene-expression patterns.

3. Primary molecular outputs (RNA and protein) from target genes, as shown in com-

ponent 3 in the figure. The net effects are changes in cell phenotype and function

(component 4 in the figure). Direct and indirect feedbacks also typically exist.

More realistic networks often contain multiple levels of regulation, with the first-

level gene products regulating expression of another group of genes, and so on.

Beyond GRN boundaries are signalling responses and feedbacks. These do not

involve regulation of gene expression, rather act directly on proteins and protein

machine assemblies (indicated by dashed arrows). It may be noted here that there

can be feedback loops from primary outputs (RNAs) directly onto the mechanisms

of gene expression themselves, and in these special cases, there can be arrows from

component 3 to component 2 directly.

Input Signals

Primary Outputs 
(changed RNA and 

protein 
components)

Terminal Outputs 
(changed cell 
behaviors and 

structures)

1 2 3 4

GRN 
Component

Figure 1.1: Schematic of a gene regulatory network

Over the past decades, molecular biology has been extremely successful at identifying

and cataloging the functional components of cells, and also genes, RNA transcripts, pro-

teins, metabolites etc. Despite extensive knowledge of individual components, we are far

from understanding how cells work, and how their functioning could be easily manipu-

lated for the betterment of mankind [189]. As has been said, gaining an understanding

of how the genetic interactions occur and how they form networks of regulations is of

tremendous importance to understanding the overall mechanisms of living cells. Ubiq-

uitously, the understanding is facilitated by developments in the DNA microarray tech-

nology, which enables us to measure expression levels for a large number of genes at the
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same time. These expression levels, under certain conditions, are basically a snapshot

of the expression levels of genes at a given instant of time. With a large enough set of

snapshots, it should theoretically be possible to uncover the underlying gene regulatory

network (GRN). Researchers have applied microarray technology to study diseases such

as Huntington’s disease [249], HIV [186], and cancer [240]. However, numerous factors

within the biological networks, e.g., various levels of time delays, stochastic behavior and

feedback loops, complicate their modeling and inference mechanism. The modeling pro-

cess is also plagued by the well known dimensionality problem of microarrays, namely,

large number of genes and very few samples available from microarrays. Moreover, the

gene-expression measurements are noisy, due to variations among different individu-

als, low quantities of some RNAs and measurement errors. As a result, the solution to

this problem cannot depend solely on approaches from experimental biology; rather, it

calls for a synergy of multiple disciplines that includes biology, computer science, and

so forth. This thesis is devoted to addressing some of these challenges by developing

sophisticated statistical machine learning approaches using dynamic Bayesian networks

for reconstructing gene regulatory networks.

1.1 Motivation

Early approaches related to understanding genetic interactions essentially worked on a

gene by gene basis. They consisted of gathering information about a single gene (or a

single chemical reaction related to the genes under study) via biological experiments,

and analysis of the obtained information afterwards. Although limited successes were

achieved by such lab-based approaches, they were time and resource consuming, and

hence could not be scaled for large sized genomes. Moreover, prediction of unobserved

properties could not be done using these techniques. With the development of DNA mi-

croarray technology and other high-throughput experiments, understanding of genetic

regulations has entered the next stage, from being simply a molecular biology approach

to a data driven, computational approach.

Computational approaches to learning genetic regulations can be model based (e.g.,

BN based methods [76, 176], differential equation based methods [17, 78]); and also there

can be approaches having no specific model (relevance network based methods [139,261],



CHAPTER 1. INTRODUCTION 4

clustering based methods [71, 178]). Early approaches used relatively simple techniques,

like clustering and boolean network based methods. Although simple techniques like

clustering can work on large scale genomes, they work on a coarse level, and thus it

becomes difficult to obtain deep levels of understanding about a particular organism

under study. Techniques having medium complexity (compared to simpler clustering

based methods), such as boolean network based methods and linear differential equation

based methods, have also been used for reconstructing gene networks. However, they

were also limited in scope due to various deficiencies. For example, boolean model based

methods [132, 207] assume that genetic interactions can be described by boolean logic,

which is hardly practical. Linear differential equation based methods [226, 253] assume

linearity of interactions. This is also not true for genetic regulations, in general. Hence,

recent approaches to understanding genetic interactions usually de advanced techniques

such as BN (Bayesian network) based methods and nonlinear ODE (ordinary differential

equation) based methods. Artificial neural network based methods [112, 137] have also

been used, but they usually require lots of data samples for accurate reconstruction, and

because microarray data samples are small in length, they generally do not perform well

for GRN reconstruction.

Advanced computational techniques for reconstructing GRNs, e.g., nonlinear ODE

based methods [115, 162], have the benefit that they can model detailed quantity infor-

mation changing over a period of time, but these suffer due to the need of learning large

number of model parameters. For large scale networks, the number of parameters that

these methods need to estimate becomes significantly high, and due to the low number

of samples and limited computational resources, correctly estimating these models be-

comes increasingly difficult. Also, due to these constraints, often the results produced

by these methods bear no qualitative difference from linear approximation based tech-

niques [176]. Following the seminal work by Friedman et al. [76], there has been great

interest in inferring genetic interactions using Bayesian network based methods. How-

ever, using basic BN based models for reconstructing GRNs also has its own limitations:

1. BN based methods are static, and they do not take the dynamics information present

in time series microarray data into account.

2. Techniques based on BN based models cannot model feedback loops.
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3. When BN based methods use linear dependency measures like PCC (Partial Corre-

lation Coefficient), they fail to discover nonlinear genetic interactions.

4. Most BN based methods restrict studies to smaller scale networks. However, bi-

ological networks being large scale, there is a need to assess the performance of

algorithms on large scale networks.

5. Because microarray data is limited, it would be advantageous to integrate various

prior knowledge available from different sources. Currently there is a dearth of

techniques that can integrate multiple sources of prior knowledge.

6. They fail to effectively search the large and multi modal search space.

The first two problems are specific to static BN based methods, whereas the other

problems apply to most GRN reconstruction techniques in general. The BN specific

problems can be solved using its extension called dynamic Bayesian networks (DBN).

Solving the rest of the problems listed above requires a careful consideration of the steps

involved in reconstructing GRNs. Computationally, reconstructing a GRN from data con-

sists of two steps: (i) a modeling technique1, and (ii) a learning technique. In this thesis,

we focus on both these steps. We use the improved DBN model rather than using BN

as the modeling technique, and also address other limitations listed above to devise a

reconstruction technique that improves the current state of GRN inference.

This proposed research is highly significant for at least three reasons. Firstly, it repre-

sents a significant step towards a systems-level understanding of the eukaryots such as

the yeast cell cycle. When we are able to infer system dynamics, protocols, and the design

principles of the eukaryotes, we will be able to extend to other larger datasets such as the

cyanobacteria dataset. Secondly, it provides novel methods that will underpin the mod-

eling of systems-level biological processes and their underlying mechanisms. Thirdly,

the statistically supported gene network model established in this study will seed similar

studies for other organisms and could expedite the discovery of new strategies for a wide

variety of diseases and production of biofuels. Very recently, genes that are responsible

for nerve related problems such as migraine have been discovered [30]. If we can deduce

the regulatory relationships between these genes, we can cure those diseases by under-

standing the interactions amongst different genes. Moreover, application of the methods
1This excludes relevance network based methods, where there is no model to choose.
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to real-life biological data like cyanobacteria will help us to stimulate carbon-dioxide se-

questration and biofuel production capability of these organisms and this should have

profound impacts on both the energy crisis and natural stability.

1.2 Aims and Objectives

The specific aims and objectives that we set out for this thesis are as follows:

1. To develop novel techniques that harness the power of DBN modeling, and use

MI/CMI based detection of nonlinear regulatory interactions in a manner such that

inferred interactions using the technique are statistically significant. Quantitative

assessment of the method using real-life biological datasets.

2. To the best of our knowledge, for BN/DBN based GRN reconstruction, either in-

stantaneous or time-delayed interactions (but not both) based modeling have been

used ubiquitously. Our second objective is to devise a modeling framework to en-

hance the basic modeling techniques used by earlier approaches so that it can han-

dle both instantaneous and time-delayed interactions among genes. Exploring dif-

ferent avenues by which this model can be used for GRN reconstruction.

3. To devise novel techniques for joint learning of multiple-step time-delayed and in-

stantaneous interactions to realize the biological fact that multiple regulators can

regulate genes simultaneously, with varying time delays.

4. To develop stochastic search methods using local heuristics for optimizing the net-

work search so that it can explore the huge search space efficiently.

5. To enhance the GRN model to include the influence of neighborhood proteins by

fusing the knowledge from protein-protein interaction data into the process of GRN

reconstruction.

6. To study large scale gene regulatory networks. Although gene regulatory networks

are significantly large, in practice, GRN reconstruction algorithms are usually as-

sessed using smaller sub-networks. While these sub-networks aid in proving the

concepts behind the reconstruction technique, in real-life scenarios, larger networks

are of greater importance. One objective of this thesis is the study and mining of
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meaningful biological insights from large scale biological networks of important

organisms, e.g., cyanobacteria.

7. Although quantitative analysis techniques are straightforward for GRNs, due to

scarcity of exact knowledge about the networks, it sometimes becomes difficult to

assess the performance of reconstruction techniques quantitatively. Hence, one of

the objectives of this research is to compile knowledge sources which can aid in the

assessment of large scale GRNs, and use this knowledge for assessing reconstruc-

tion algorithms.

1.3 Contributions

In order to achieve the aims and objective outlined in the previous section, the research

work reported in this thesis makes the following contributions:

1. A novel DBN based GRN reconstruction technique, that uses information theo-

retic quantity based conditional independence tests to infer regulatory interactions

among genes. Due to the conditional independence tests embedded into the algo-

rithm, the interactions inferred by the approach are statistically significant, unlike

various threshold based techniques. Moreover, the use of MI/CMI for regulatory

interaction assessment ensures that the algorithm can detect nonlinear regulatory

interactions. This algorithm, called Bayesian Information Theoretic GRN Recon-

struction (BITGRN), and the associated preliminary results for both synthetic and

real-life data, were presented and published in the Proceedings of the 11th Interna-

tional Conference on Artificial Intelligence and Applications (AIA’2011) [157].

2. We propose a novel modeling framework that can represent both instantaneous and

to begin with - single step time-delayed genetic interactions, for providing a better

representation of the biological processes. To harness the benefits of the proposed

model, we present two structure learning algorithms. The first of these operates

in two stages, and uses a methodology similar to BITGRN; the other algorithm

employs a score and search based evolutionary approach. Both these algorithms

use the proposed modeling framework, and sequentially learns the two types of

genetic interactions. Preliminary results using the first approach, i.e., using the CI
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test based technique of BITGRN, was presented and published in the Proceedings of

the 24th Australasian Joint Conference on Artificial Intelligence (AI’2011) [152]. The

contributions from the second approach, which uses genetic algorithm based search

and an information theory based scoring metric, was presented and published in

the Proceedings of the 2011 IEEE Congress on Evolutionary Computation (IEEE

CEC’2011) [153].

3. Based on the modeling framework developed in the previous contribution, we pri-

marily focus on improving the learning aspect of reconstructing a GRN in this con-

tribution. The first part of this work is modeling related, where we extend the

framework proposed in the previous contribution to incorporate higher order time-

delayed interactions. Subsequently (and more importantly in the second part of

this work), we propose a novel scoring function (called the CCIT metric) that en-

ables detection of both instantaneous and time-delayed interactions simultaneously

rather than sequentially. This results in reconstruction techniques which are more

realistic and accurate. The initial results using this approach were presented and

published in the Proceedings of the 18th International Conference on Neural Infor-

mation Processing (ICONIP’2011) [158]. Due to the very good performance of the

approach on different genetic networks, we later published a thorough study of the

proposed approach in a journal article in BMC Systems Biology [154].

4. The results from the CCIT-based scoring metric in 3. above use a hill-climbing local

search approach for exploring the network space. Due to the incorporation of the

multiple step time-delayed interactions, the already large search space for the BN-

based modeling becomes even larger. To efficiently explore this huge search space,

we propose an evolutionary optimization technique incorporating network motifs

whose identification enables us to effectively explore a significantly larger search

space. This algorithm, and preliminary results using the algorithm, have been ac-

cepted for presentation at the Genetic and Evolutionary Computation Conference

(GECCO 2013) [155].

5. Microarray data is noisy and the number of samples from microarray is usually

very low. Due to these problems, it should be beneficial to the reconstruction pro-

cess to use various alternate sources of knowledge in addition to using microarray
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data. For this, we propose to incorporate the knowledge obtained from protein-

protein interaction networks and other diverse data sources. We propose an iter-

ative, co-learning based fusion algorithm where the present estimate of the gene

regulatory network is used for the estimation of the protein-protein interaction net-

work for the next stage, and vice versa. The method and results obtained by ap-

plying the method were presented and published in the Proceedings of the 19th

International Conference on Neural Information Processing (ICONIP’2012) [156].

6. In order to attain the previously mentioned objective of studying larger scale gene

regulatory networks, we study a 730 gene network of Cyanothece sp. ATCC 51142.

This cyanobacteria is capable of carbon-dioxide sequestering, and it is also capable

of producing environment-friendly biofuels. Typical for microarray experiments,

the data for this network contains 24 samples. The genes were selected based on

a 2-fold change cutoff, and they are responsible for performing some major tasks

of the organism such as energy metabolism, respiration, nitrogen fixation, protein

translation and photosynthesis, along with several other tasks.

7. One of the ways to qualitatively assess large scale GRNs is to use ontological in-

formation from diverse sources. However, the ontological resources are scattered

and thus it is difficult to combine ontology information to make assessments. The

Systems Biology group at Monash University has built a GO database for cyanobac-

teria. This GO database has been used in this research for functional category anal-

ysis of the large cyanobacteria network mentioned in the previous contribution.

The analysis of this important organism using the database has been presented in

our journal article [154]. The database is publicly accessible and can be used by any

researcher for analyzing cyanobacteria genes.

1.4 Organization of the Thesis

The thesis is organized in seven chapters. While Chapter 1 (Introduction) and Chapter

7 (Conclusion), respectively, provide the introduction and the conclusion to the thesis,

organization of the remaining chapters is as follows.
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Chapter 2 Background and Literature Review. In this chapter, we provide a detailed discus-

sion covering both biological and mathematical background. A literature review,

which reviews various modeling and reconstruction techniques of GRNs, is also

presented. Further, we also describe the basics of the modeling technique that we

use in this thesis, i.e., Bayesian networks, and methods that are used for recon-

structing GRNs using Bayesian networks.

Chapter 3 Information Theoretic Bayesian Approach for Genetic Network Reconstruction.

This chapter uses DBN based modeling to propose a novel information theory

based GRN reconstruction technique. Rather than using linear dependency mea-

sures such as PCC, we use MI/CMI based regulatory interaction assessment in a

DBN framework, and apply important mathematical properties of MI/CMI to for-

mulate conditional independence tests. These rigorous statistical tests ensure that

the arcs inferred by the proposed algorithm are highly accurate with correct direc-

tion of the arcs, and they can detect nonlinear interactions. We test and show the

effectiveness of the algorithm using both synthetic and real-life GRNs.

Chapter 4 Realistic Modeling of Genetic Interactions. Chapter 4 proposes a more realistic

modeling approach to biological interactions, by allowing both instantaneous and

time-delayed arcs in DBN based modeling of GRNs. For this, first we propose a

novel framework that can model both instantaneous and single-step time-delayed

genetic interactions. Subsequently, we present two different learning algorithms

that make use of the proposed modeling framework and sequentially learn the two

types of genetic interactions. Both these algorithms are assessed using both syn-

thetic networks and real-life networks of yeast and E. coli.

Chapter 5 Joint Learning of Instantaneous and Multi-Step Time-Delayed Interactions. This

chapter focuses primarily on learning GRNs, and specifically, it extends the model-

ing framework proposed in Chapter 4 to model both instantaneous and multi-step

time-delayed genetic interactions. Further, it proposes a novel scoring metric that

can score both instantaneous and time-delayed genetic interactions simultaneously.

This scoring metric, with the instantaneous and multi-step time-delayed interac-

tions based modeling, is applied to synthetic networks, and also real-life networks
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of yeast, E. coli and cyanobacteria. Finally, we also propose an evolutionary frame-

work (GA based) using the proposed modeling technique and the scoring metric,

for effectively exploring a significantly larger search space. The effectiveness of the

algorithm is shown using both synthetic networks and real-life networks of yeast

and E. coli.

Chapter 6 Co-Learning of GRN and PPIN. This chapter proposes a fusion based co-learning

algorithm for learning GRNs and PPINs. We employ a disjunctive approach to the

co-learning using the Bayes theorem. An iterative fusion of information among the

GRN and PPIN structures is proposed, that makes novel use of Bayesian marginal-

ization for integrating multiple sources of prior knowledge. Different yeast net-

works are used for assessing the effectiveness of the proposed algorithm.

In the next Chapter, we provide necessary background information for this thesis

work and also carry out an extensive review of the available literature related to GRN

modeling and reconstruction.



Chapter 2

Background and Literature Review

One of the major objectives in systems biology research is the elucidation of genetic reg-

ulatory interactions occurring within the cell. The work of Kauffman et al. [110] is one of

the first attempts aimed at this objective, which provided a mathematical formalism for

describing GRNs. With the advent of DNA microarray and other data sources, early ap-

proaches based on simulation [200] have been replaced by more robust techniques which

reconstruct the gene networks from the expression dynamics of the associated genes.

Broadly speaking, there are two classes of GRN reconstruction algorithms [16, 79]: those

based on the ’physical interaction’ approach that aim to identify interactions among tran-

scription factors and their target genes (gene-to-sequence interaction), and those based on

the influence interaction approach that relate the expression of a gene to the expression

of the other genes in the cell (gene-to-gene interaction), rather than relating it to sequence

motifs found in its promoter. Typically, the ensemble of influence interactions are used to

model genetic networks.

In this chapter, we discuss the biological background behind gene regulations and

also mathematical fundamentals that are used for the reconstruction of GRNs. Further,

we review various techniques available in the literature which have been used for mod-

eling and reconstructing these networks. In this thesis, since we use Bayesian networks

and its derivative, dynamic Bayesian networks for the modeling of genetic regulatory

networks, a detailed discussion on different BN based strategies is also presented. The

rest of the chapter is organized as follows. In Section 2.1, we provide a brief introduc-

tion to the biological concepts related to gene regulatory networks. Section 2.2 describes

12
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relevant mathematical quantities commonly employed by different GRN reconstruction

techniques. Next, in Section 2.3, we review different modeling and learning methods

which are commonly used for reconstructing GRNs. Finally, we review the techniques

used by BN/DBN based reconstruction methods in Section 2.7.

2.1 Fundamentals of Microbiology

We begin with a brief overview of the basic concepts of molecular biology that are rele-

vant to this thesis. More details can be found in other molecular biology textbooks (for

example, see [6, 118, 133]).

2.1.1 Cell

Cells (see Figure 2.1) are the fundamental working units of every living system. The cell

was discovered by Robert Hooke in 1665. There are two types of cells: eukaryotic and

prokaryotic. Eukaryotic cells (e.g., plants, animals, fungi, protozoa, algae) are charac-

terised by the presence of membrane enclosed subcellular organelles (plasma membrane,

nucleus, mitochondria, ribosomes, Golgi apparatus etc.). A basic eukaryotic cell also con-

tains plasma membrane, glycocalyx (components external to the plasma membrane), cy-

toplasm (semifluid, salty; takes up most of the cell volume), cytoskeleton (microfilaments

and microtubules that suspend organelles, give shape, and allow motion). Prokaryotes

(e.g., bacteria and archaea), on the other hand, are molecules surrounded by a membrane

and cell wall. Prokaryotic cells lack characteristic eukaryotic subcellular membrane en-

closed ”organelles,” but may contain membrane systems inside a cell wall. Prokaryotic

cells may also have photosynthetic pigments, (e.g. in cyanobacteria). Some prokaryotic

cells have external whip-like flagella (see figure) for locomotion or hair like pili for ad-

hesion. Prokaryotic cells come in multiple shapes like cocci (round), baccilli (rods) and

spirochetes (helical cells).

Although a cell is the fundamental unit of all living organisms, it is complicated in

terms of both its structure and function. Such complexities are mainly embodied in and

regulated by three biological sequences: DNA, RNA and Protein.
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Figure 2.1: Illustration of a Cell. Source: [72].

2.1.2 DNA

DNA (see Figure 2.2) stands for deoxyribonucleic acid which is a structure of sugar, phos-

phate and a base combined into a complex double helix. The two strands in the helix are

complementary to each other, which means that each DNA strand contains the template

information for synthesis of a new copy of the other strand. The DNA is situated in

the nucleus, and organized into chromosomes. Every cell must contain the genetic in-

formation and the DNA is therefore duplicated before a cell divides (a process called

replication).

The chemical structure of DNA is shown in Figure 2.3. The building blocks of DNA

are the 5-carbon sugar deoxyribose linked together by phosphodiester bonds forming

two strands of sugar-phosphate backbones on the outside of the double helix. Each ribose

also binds one of four alternative bases: adenine (A), guanine (G), cytosine (C) or thymine

(T). The opposing strands are held together by base-pairing between the two strands: G

is always paired with C by three hydrogen bonds and A is always paired with T by two

hydrogen bonds.

DNA carries the genetic information of a cell and consists of thousands of genes.

Each gene serves as a recipe on how to build a protein molecule (via an intermediate

step where RNA is produced). Proteins perform important tasks required for proper

functioning of the cell, or serve as building blocks. The flow of information from the

genes determines the protein composition and thereby the functions of the cell.
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Figure 2.2: Illustration of DNA.
Source: [144]. Figure 2.3: Chemical Structure of DNA. Source: [143].

2.1.3 RNA

The chemical structure of RNA is very similar to that of DNA, with two major differ-

ences: (1) RNA contains the sugar ribose, while DNA contains the slightly different sugar

deoxyribose (a type of ribose that lacks one oxygen atom), and (2) RNA has the nucle-

obase uracil while DNA contains thymine. Unlike DNA, most RNA molecules are single-

stranded and can adopt very complex three-dimensional structures (see Figure 2.4).

RNA can be of three types: 1. tRNA (transfer RNA), 2. rRNA (ribosomal RNA) and

3. mRNA (messenger RNA). Transfer RNA (tRNA) serves as the physical link between

the nucleotide sequence of nucleic acids (DNA and RNA) and the amino acid sequence

of proteins. Ribosomal RNA (rRNA) is the RNA component of the ribosome, and it is

essential for protein synthesis in all living organisms. Finally, messenger RNA (mRNA)

is a large family of RNA molecules that convey genetic information from DNA to the

ribosome, where they specify the amino acid sequence of the protein products of gene

expression. Following transcription of mRNA by RNA polymerase, the mRNA is trans-

lated into a protein. However, there are other types of RNAs that do not translate to

proteins. These are called non-coding RNAs. A special type of small, non-coding RNA,

called miRNA (micro RNA), has recently been discovered [263] to play important roles

in post-transcriptional gene regulation.
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Figure 2.4: Illustration of RNA. Source: [245].

2.1.4 Protein

Proteins are the most versatile and powerful molecules in the body. Proteins are the

building blocks of all cells and execute nearly all cell functions. The multiplicity of func-

tions performed by proteins arises from the huge number of different three-dimensional

shapes they adopt. Structurally, proteins are polymers of amino acids, joined together by

peptide bonds in a long chain, also called a polypeptide chain. Some proteins consist of

more than one polypeptide chain and they frequently associate with each other to form

larger protein complexes. An example of a protein (hemoglobin) is shown in Figure 2.5.

Figure 2.5: Example of a protein (hemoglobin). Source: [243].
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2.1.5 Gene

A gene is a piece of DNA fragment which contains genetic information. Genes hold the

information to build and maintain an organism’s cells and pass genetic traits to offspring.

Genes tell cells how to work, control our growth and development, and determine what

we look like and how our bodies work. They also play a role in the repair of damaged

cells and tissues. The instructions contained in genes get implemented via the proteins.

A diagram of a gene in relation to the DNA and chromosome 1 is shown in Figure 2.6.

Figure 2.6: Gene. Source: [242].

2.1.6 Central Dogma of Molecular Biology

Although a cell is the fundamental unit of all living organisms, it accomplishes various

tasks needed for the successful functioning of the respective organisms using the above

mentioned biopolymers, i.e. DNA, RNA and protein. The central dogma of molecular

biology describes the flow of genetic information within a biological system, in partic-

ular among DNA, RNA and proteins. According to the central dogma, the process of

conversion of DNA to protein constitutes the following two major steps (see Figure 2.7).

1. Transcription: In all eucaryotic cells a DNA never leaves the nucleus, instead the

genetic code (the genes) is copied into RNA which then is decoded (translated) into

proteins in the cytoplasm. Transcription is the process whereby the DNA serves as

a template to make RNA. The resultant messenger RNA has a nucleotide sequence

that is complementary to the DNA from which it was transcribed.
1The DNA is ribbon-like in structure, but normally exists in a condensed form called chromosomes.
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2. Translation: Translation is the actual synthesis of a protein under the direction of

mRNA. During this process, the nucleotide sequence of an mRNA (messenger RNA)

is translated into the amino acid sequence of a protein.

Figure 2.7: Illustration of the Central Dogma of Molecular Biology. Source: [241].

2.1.7 Gene Expression

In all organisms, there are two major steps separating a protein-coding gene from its

protein: first, the DNA segment on which the gene resides must be transcribed from

DNA to messenger RNA (mRNA); second, it must be translated from mRNA to protein2.

The process by which information from a gene is used in the synthesis of a biologically

functional gene product (RNA or protein) is called gene expression.

Gene expression differs both temporally and spatially [25,234]. The temporal expres-

sion of a gene refers to the process that a gene expresses (or is regulated) at the appropri-

ate time and keeps itself silent otherwise [19, 234]. It also indicates a gene has different

expression patterns at different times [4]. For example, the expression patterns of tumor

suppressor gene p53 are different at different stages, in modulating cellular functions

such as DNA repair, cell cycle arrest, and apoptosis. There is also spatial control of gene

expression [198, 234]. Although cells from the same organism have identical genomes,

2RNA-coding genes must still go through the first step, but are not translated into protein.
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cells in the different parts of an organism may have different gene expression patterns

due to the various functions they fulfill [51, 63, 220].

2.1.8 Gene Regulation

Gene Regulation is the process by which the expressions of a gene is regulated by the

expression of a set of parent genes (called transcription factors). There are two types

of regulation: positive and negative. Given two genes X and Y, if an expression level

of Y is affected by the expression level of X, we say X regulates Y. If an increase in the

expression level of X leads to an increase in the expression level of Y, it is a positive

regulation; otherwise, it is a negative expression. DNA microarray technology allows us

to measure the amount of RNA associated with many genes in parallel, thus facilitating

the discovery of genetic regulations.

It may be noted here that epigenetic modifications (histone modifications, DNA methy-

lation), in addition to direct transcription factor based regulations, ultimately regulate

gene activity and expression during development and differentiation, or in response to

environmental stimuli. However, the effect of these modifications is not direct, and hence

they are not directly factored into the discovery of genetic regulations.

2.1.9 Gene Regulatory Networks

Gene regulatory networks (see Figure 2.8 for a schematic representation) are collections of

regulatory relations among genes in a genome and they serve as the models that display

causal relationships between gene activities [29]. As we know from the central dogma of

molecular biology, genes act as the source for producing proteins. These proteins execute

various cellular functions. One of the many functions that these proteins (called tran-

scription factors3) perform is that they promote or inhibit the expressions of other genes.

Thus, we see that although genes do not interact directly with each other, their prod-

ucts (synthesized proteins) in conjunction with other components of the cell regulate the

expression of genes in the network. A network depicting these regulatory relationships

among genes, where the intermediate components are not taken into account, is called a

gene regulatory network .

3Some proteins are not involved in regulation, and thus are not transcription factors.
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Figure 2.8: Schematic view of a gene regulatory network

Although GRNs are composed primarily of genes regulating other genes, recent dis-

coveries show that [263] miRNAs can downregulate gene expression by base-pairing

with the 3’ untranslated regions (3’UTRs) of target messenger RNAs (mRNAs). It was

found that in animal cells, miRNAs regulate their targets by translational inhibition and

mRNA destabilization. However, it is still unclear whether all organisms show this same

behavior. Together with the fact that miRNA regulation data is scarce, it is yet not a fully

viable technique for regulatory network reconstruction.

2.1.10 DNA Microarray data

DNA microarrays are 2D arrays of different DNA sequences that allows us to measure

in parallel (using gene chips) the amount of RNA associated with many genes and deter-

mine which genes are expressed in a particular cell type (see Figure 2.9). There are two

main types of microarrays. One is the spotted microarray where two different experi-

mental conditions (each with its own label) are hybridized to one array. With this fabri-

cation method, only relative gene expression values can be estimated. The other type of

microarray is the oligonucleotide array where each different condition is hybridized to

one array. The absolute values of gene expression can be estimated with this fabrication

method. In each cell of this array there is a single stranded DNA sequence or collection of

DNA sequences. If the contents of one cell is taken which has been stocked with a given

condition, after washing the microarray, the reading of what mRNAs were transcribed

can be obtained. This is because the mRNAs that were transcribed at that condition will
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bind to its specific cell. By knowing what each cell represents, the level of transcription

of every gene in the genome in a particular cell and at a particular condition can be mea-

sured. Thus, using DNA microarray based gene expression profiling experiments, the

expression levels of thousands of genes can be simultaneously monitored. Microarray

datasets are commonly very large (contains thousands of genes’ expression values), and

analytical precision is influenced by a number of variables. Statistical challenges include

taking into account effects of background noise, missing observations and appropriate

normalization of the data.

Figure 2.9: A DNA Microarray

It may be noted here that some of these limitations of traditional DNA microarray

technologies can be alleviated with a recent technology called NGS (Next Generation Se-

quencing), which builds on the characteristic that the bases of a small fragment of DNA

can be sequentially identified from signals emitted as each fragment is re-synthesized

from a DNA template strand. NGS based techniques usually deliver higher quality data

with better sensitivity, accuracy and broader dynamic range compared to microarray

data. On the other hand, microarray based techniques are widely used, well known, and

relatively inexpensive. Integrated genomics approaches can be used to combine NGS

and gene expression data, which can then be used to interrogate for genes with both a



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

regulation event and a change in the mRNA abundance. This way, we can find the in-

stances where regulation patterns affect gene expression levels. However, this integrated

approach is still not well established, but this is a promising future direction.

In the next subsection, we introduce functional enrichment analysis using gene ontol-

ogy, which can complement traditional microarray analysis.

2.1.11 Gene Ontology and Functional Enrichment Analysis

Gene Ontology (GO) is a set of associations from biological phrases to specific genes

that are either chosen by trained curators or generated automatically. GO is designed

to rigorously encapsulate the known relationships between biological terms and and all

genes that are instances of these terms. The GO associations allow biologists to make

inferences about groups of genes instead of investigating each one individually.

To centralize and disseminate a wealth of prior knowledge about known genes, the

Gene Ontology [14] database was formed, which allows researchers to assign attributes

to groups of genes that emerge from their experiments or analyses. The Gene Ontology

(GO) project [23] is a collaborative effort to address the need for consistent descriptions

of gene products in different databases. It provides an ontology of defined terms repre-

senting gene product properties.

GO terms are organized hierarchically such that higher level terms are more general

and thus are assigned to more genes, and more specific terms are related to parents by

either “is a” or “part of” relationships. The relationships form a directed acyclic graph

(DAG), where each term can have one or more parents and zero or more children [53]

(see Figure 2.10). The terms are separated into three categories/ontologies:

1. Cellular Component, which describes where in the cell a gene acts, what organelle

a gene product functions in, or what functional complex an enzyme is part of.

2. Molecular Function, which describes activities, such as catalytic or binding activi-

ties, that occur at the molecular level. It defines the function carried out by a gene

product (one product may carry out many functions).
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3. Biological Process, which is a series of events accomplished by one or more ordered

assemblies of molecular functions. Examples of biological process terms are cellular

physiological process or signal transduction, DNA replication, limb formation, etc.

Figure 2.10: Gene Ontologies. Sections of the three ontologies are represented schemat-
ically with only term names shown. The biological process ontology is shown on the
left side (dark blue background), the molecular function ontology is shown in the center
(light blue background), and the cellular component ontology is shown on the right side
(yellow background). Source: [53].

GO annotations can be used to complement traditional microarray analysis. Once low

level analysis is complete and a group of differentially expressed or significantly affected

genes is selected, enrichment of GO attributes within the group can be assessed. Many

tools exist to address this problem. Given a background gene set (i.e., all genes on the

array), and a subset of interesting genes (e.g., all those that are differentially expressed),

the task of these analysis programs is to identify which GO terms are most commonly

associated with this subset and test the claim that this association (enrichment) is sig-

nificantly different from what would be expected by chance, based on the proportions of

genes out of the total having each attribute. Examples of tools to determine whether such

over-representation is significant in general can be found at [130].
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2.1.12 Protein-Protein Interaction Networks

Interactions between proteins are important for the majority of biological functions. Many

of the most important molecular processes in the cell, such as DNA replication, are car-

ried out by large molecular machines that are built from a large number of protein com-

ponents organised by their protein-protein interactions. Protein-protein interactions oc-

cur when two or more proteins bind together (see Figure 2.11). There are various types

of protein interactions depending on various criteria. If a protein can form stable crys-

tal structure of its own (without any other associated protein) in vivo, then the com-

plexes formed by such proteins are called “non-obligate protein interaction”. On the

other hand, some proteins cannot create a crystal structure alone, but can be found as a

part of a protein complex which creates a stable crystal structure. Such protein complexes

are called “obligate protein interaction”. Also, there are transient protein interactions

which form and break down transiently in vivo, whereas permanent complexes don’t

show such behavior but is typically dissociated by proteolysis. Typically, the obligate in-

teractions (protein-protein interactions in an obligate complex) are permanent, whereas

non-obligate interactions have been found to be either permanent or transient [10].

Figure 2.11: Protein-Protein Interaction Network (the human interactome). Each point in
the figure represents a protein and each blue line between them is an interaction. Source:
[244].
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2.1.13 Protein Interaction Data

There are a multitude of methods to detect protein-protein interactions. Each of the ap-

proaches has its own strengths and weaknesses, especially with regard to the two perfor-

mance metrics, sensitivity and specificity, of the method. Some of the most used methods

include Yeast two hybrid assay (Y2H), phage display, and protein microarray [254].

Two-hybrid assay (Y2H) is a molecular biology technique that can be used to dis-

cover protein-protein interactions [254] by testing for physical interactions (such as bind-

ing) between two proteins. The premise behind the test is the activation of downstream

reporter genes by the binding of a transcription factor onto an upstream activating se-

quence (UAS). For two-hybrid screening, the transcription factor is split into two sepa-

rate fragments, called the binding domain (BD) and activating domain (AD). The BD is

the domain responsible for binding to the UAS and the AD is the domain responsible for

the activation of transcription [107, 254]. Phage display is a laboratory technique for the

study of protein-protein interactions that uses bacteriophages to connect proteins with

the genetic information that encodes them [254]. Phage display [209] was first described

by George P. Smith in 1985, when he demonstrated the display of peptides on filamen-

tous phage by fusing the peptide of interest on to gene III of filamentous phage. Like the

two-hybrid system, phage display is used for the high-throughput screening of protein

interactions. A protein microarray (or protein chip) is a high-throughput method used to

track the interactions and activities of proteins [145]. Its main advantage lies in the fact

that large numbers of proteins can be tracked in parallel. The chip consists of a support

surface such as a glass slide, nitrocellulose membrane, bead, or microtitre plate, to which

an array of capture proteins is bound [73]. Probe molecules, typically labeled with a fluo-

rescent dye, are added to the array. Any reaction between the probe and the immobilised

protein emits a fluorescent signal that is read by a laser scanner [74]. Protein microar-

rays are rapid, automated, economical, and highly sensitive, consuming small quantities

of samples and reagents [148]. The high-throughput technology behind the protein mi-

croarray is comparatively easy to develop since it is based on the previously-developed

DNA microarray technology [89].

Protein-protein interaction information is collected in several databases that make

the data and the evidence behind it easily accessible and allow different mechanisms
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to query and display the data [12, 36, 100, 166, 188, 193, 216]. These resources are very

useful for researchers interested in checking a small number of particular proteins of in-

terest. However, PPI data can also be used globally for systematic network analyses,

prediction of protein properties, and evaluation of novel datasets of PPIs produced in

a high-throughput fashion. With the objective of creating a resource allowing the selec-

tion of PPIs by experimental confidence cut-offs, Schaefer et al. [193] generated HIPPIE

(Human Integrated Protein-Protein Interaction rEference), a scored human PPI collection

integrated from multiple sources. Following Ceol et al. [36], Schaefer et al. [193] devel-

oped an expertly curated scoring scheme that takes into account the reliability of differ-

ent experimental evidence in the definition of a PPI combining three types of information:

experimental techniques used, number of studies finding the PPI, and reproducibility in

model organisms. HIPPIE currently integrates 72, 916 interactions from several public

PPI resources (scored according to confidence). For comparison, the complete human in-

teractome map has been estimated to contain between 2, 00, 000 and 4, 00, 000 interactions

(according to [26] and [179], respectively) suggesting that the knowledge of the human

interactome is still incomplete.

Several other resources have been created that, like HIPPIE, integrate PPI data from

multiple sources, but do not have a focus on distributing a simple scored dataset (e.g.,

iRefWeb [230]), or do not focus on experimentally verified interactions (e.g., STRING

[225]). Some other databases offer a continuous confidence scoring scheme, (e.g., MINT

[36] and HAPPI [40]), but they do not allow batch scoring of PPI sets or the exclusive

retrieval of high confidence interactions and lack the integration of several important

high-throughput experimental datasets.

2.2 Mathematical Preliminaries

In this section, we present relevant mathematical quantities that are commonly used for

assessing regulatory interactions among genes, thus aiding the reconstruction of gene

regulatory networks.
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2.2.1 Random Variables and Entropy

In probability and statistics, a random variable or stochastic variable is a variable whose

value is subject to variations due to chance (i.e. randomness, in a mathematical sense). As

opposed to other mathematical variables, a random variable conceptually does not have

a single, fixed value (even if unknown); rather, it can take on a set of possible different

values, each with an associated probability. Formally,

Definition 2.1. Random Variable. Given a probability space (Ω, P ), a random variable X is a

function whose domain is Ω. The range of X is called the space of X .

For a random variable X , we use X = x to denote the subset containing all elements

e ∈ Ω that X maps to the value of x. The Shannon information content of an outcome

x is defined to be the logarithm of the multiplicative inverse of the probability of the4

outcome:

h(x) = log2
1

P (x)
(2.1)

and it is measured in bits. The entropy of a random variable X is defined to be the

average Shannon information content of all the outcomes:

H(X) =
∑
x

P (x)log
1

P (x)
(2.2)

with the convention that for P (x) = 0, 0 × log 1
0 ≡ 0 (considering limiting values). Shan-

non entropy is the average unpredictability in a random variable, which is equivalent to

its information content. The concept was introduced by Claude E. Shannon in his 1948

paper ”A Mathematical Theory of Communication” [202, 203].

Next, we move on to the definition of joint entropy and conditional entropy:

Definition 2.2. Joint Entropy. Joint entropy of a pair of two discrete random variables X and

Y is:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.3)

Similarly, conditional entropy is defined as follows:

4In future, unless otherwise stated, we will consider 2-based logarithm.
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Definition 2.3. Conditional Entropy. The conditional entropy Y given a random variable X

(average over X) is:

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y)[log p(y|x)] (2.4)

One very important property of H is, that we always have H(X) ≥ 0.

2.2.2 Kullback-Leibler (KL) Divergence

In probability theory and information theory, the Kullback-Leibler divergence (or relative

entropy) [124] is a non-symmetric measure of the difference between two probability

distributions P and Q. Specifically, the Kullback-Leibler divergence of Q from P is a

measure of the information lost when Q is used to approximate P . Formally,

DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
(2.5)

Similar to entropy, DKL ≥ 0, with equality only if P = Q. One interesting property of

the divergence is that in general the relative entropy is not symmetric under interchange

of the distributions P and Q (i.e., DKL(P ||Q) 6= DKL(Q||P )).

2.2.3 Mutual Information (MI)

MI measures the amount of information that can be obtained about one random variable

by observing another variable [37, 55]. Formally, it is defined by Equation 2.6.

MI (X,Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
(2.6)

where P (x, y) is the cross-time joint probability and P (x), P (y) are the marginal proba-

bilities. In terms of entropy, MI can also be defined as:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.7)

Consider the below data for which, the calculation of MI will be as follows:

H(X) = − (0.3 log 0.3 + 0.7 log 0.7) = 0.8813
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X 1 1 0 1 0 1 1 1 0 1

Y 0 0 1 0 1 1 1 1 0 1

Figure 2.12: Example of calculation of Mutual Information (MI)

H(Y ) = − (0.4 log 0.4 + 0.6 log 0.6) = 0.971

H(X,Y ) = − (0.1 log 0.1 + 0.2 log 0.2 + 0.3 log 0.3 + 0.4 log 0.4) = 1.8464

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) = 0.0059

2.2.4 Conditional Mutual Information (CMI)

CMI is the reduction in the uncertainty of X due to knowledge of Y when Z is given [37],

[55]. The CMI of random variables X and Y given Z is defined in Equation 2.8.

MI (X,Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)
(2.8)

where P (x, y, z) is the cross-time joint probability, P (x, y|z) is the conditional cross-time

joint probability and P (x|z) and P (y|z) represent conditional marginal probabilities.

In terms of entropy, CMI can also be defined as:

MI(X,Y |Z) = H(X,Z) +H(Y, Z)−H(Z)−H(X,Y, Z) (2.9)

Consider the below data, for which the calculation of CMI will be as follows:

X 1 1 0 0 0 1 1 1 0 1

Y 0 1 1 0 1 1 0 1 0 1

Y 1 1 1 0 0 1 1 0 0 1

Figure 2.13: Example of calculation of Conditional Mutual Information (CMI)

H(Z) = − (0.4 log 0.4 + 0.6 log 0.6) = 0.971

H(X,Z) = − (0.3 log 0.3 + 0.1 log 0.1 + 0.1 log 0.1 + 0.5 log 0.5) = 1.685

H(Y,Z) = − (0.2 log 0.2 + 0.2 log 0.2 + 0.2 log 0.2 + 0.4 log 0.4) = 1.922
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H(X,Y, Z) = −(0.2 log 0.2 + 0 + 0.1 log 0.1 + 0.1 log 0.1

+ 0 + 0.2 log 0.2 + 0.1 log 0.1 + 0.3 log 0.3) = 2.446

MI(X,Y |Z) = H(X,Z) +H(Y, Z)−H(X,Y, Z)−H(Z) = 0.19

2.2.5 Other Measures for Assessing Associativity

Other measures like Pearson Correlation Coefficient and Partial Correlation Coefficient

(PCC) can also be used for the analysis of genetic regulations.

Pearson Correlation Coefficient

Correlation between variables is a measure of how well the variables are related. The

most common measure of correlation in statistics is the Pearson Correlation (also called

the Pearson Product Moment Correlation or PPMC), which shows the linear relationship

between two variables [238]. Mathematically,

rxy =
N
∑
xy −

∑
x
∑
y√

[N
∑
x2 − (

∑
x)2][N

∑
y2 − (

∑
y)2]

(2.10)

where N is the number of samples. Correlation values are between -1 and 1. A result of

-1 means a perfect negative correlation, while a result of 1 means that there is a perfect

positive correlation between the two variables. A result of 0 means that there is no linear

relationship between the two variables. In practice, we rarely get a correlation of 0, -1 or

1, and the results fall somewhere in between. The closer the value of r gets to zero, the

greater the variation the data points are, around the line of best fit.

• High correlation: 0.5 to 1.0 or -0.5 to 1.0

• Medium correlation: 0.3 to .5 or -0.3 to .5

• Low correlation: 0.1 to 0.29 or -0.1 to -0.29

PPMC does not differentiate between dependent and independent variables. For exam-

ple, if the correlation between a high caloric diet and diabetes is 0.85, switching the vari-

ables around will also result in the same PPMC. This would mean that diabetes causes a

high caloric diet, which would make no sense.
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Figure 2.14: Different types of Pearson Correlations. (A) Positive correlation, (B) Negative
correlation, (C) Zero correlation.

Partial Correlation Coefficient

A partial correlation corresponds to the correlation between two variables when one vari-

able controls the effect of the other variable. Partial correlations are significant because

they help in determining whether correlated variables are linked directly or otherwise

and to detect whether the correlation is spurious [177]. Formally, the partial correlation

coefficient (rxy.z) between gene X and gene Y given a controlling gene, Z is calculated

using the following equation:

rxy.z =
rxy − rxzrzy√

(1− r2xz)(1− r2zy)
(2.11)

where rxz, rxy and ryz are Pearson correlation coefficients over the expression profiles of

pairs of genes. A zero or a small partial correlation coefficient indicates that the variables

XX

Y Z

XX

Y Z

XX

Y Z

A B C

Figure 2.15: Possible inference results of the causal relations among three variables using
PCC. (A) True/direct interactions, (B) indirect interaction inference, (C) bivariate infer-
ence [256].

are connected by a path that does not have a third variable involved. In most cases a
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partial correlation of the general form rxy.z will turn out smaller than the original cor-

relation rxy. In those cases where it turns out larger, the third variable, Z, is typically

spoken of as a supressor variable on the assumption that it is suppressing the larger cor-

relation that would appear between X and Y if Z were held constant. As an example,

consider Figure 2.15. Variable Y is highly correlated with Z because of the causal effects

from X (Figure 2.15(A)). Pearson correlation may give rise to many false positives as in

Figure 2.15(C), and Figure 2.15(B), which may be probable for methods that do not ac-

count for conditional independence. However, partial correlation tests the correlation

between two variables after the linear effects from the rest of the data are removed, hence

no relationship exists between Y and Z after the effect from X is removed5. Conditional

independence, although by itself is insufficient to denote a causal link, can be a power-

ful tool for removing indirect relationships. Therefore, when inferring the relationship

between two gene expression profiles, the other expression profiles can be taken into ac-

count to discriminate between direct (Figure 2.15(A)) and indirect (Figure 2.15(B) and

(C)) interactions [256].

2.3 Reconstructing Gene Regulatory Networks

Having introduced the mathematical notions required, in the next section we review dif-

ferent techniques used for the modeling and reconstruction of gene regulatory networks.

We start with comparatively simple techniques such as clustering based algorithms and

boolean network based techniques, and then describe approaches with medium-to-high

complexity like graphical Gaussian models, relevance network based methods, differen-

tial equation based models and finally, Bayesian network based methods.

2.3.1 Clustering Based Approaches

One of the main problems that hinder research on gene network reconstruction is the

curse of dimensionality, i.e. there are many genes with only a few samples. A useful ap-

proach to overcome this is to cluster genes with similar expression patterns into clusters,

then infer the regulatory relationship among the clusters. Researchers believe genes with

similar expression patterns have similar functions or are involved in the same biological
5Note that partial correlation only infers undirected relationships.
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events [68]. Clustering based approaches attempt to locate groups of genes that have

similar expression patterns over a set of experiments [9, 22, 71, 147]. The genes in each

group are then postulated to have similar mechanisms of regulation, and are therefore

assumed to be functionally related.

Often, a sequence motif finding procedure is applied to the promoter regions of the

genes in each cluster, in order to find putative binding sites of the clusters common reg-

ulators [257]. The most common clustering approach is hierarchical clustering by Eisen

et al. [16, 71], where relationships among genes are represented by a tree whose branch

lengths reflect the degree of similarity between genes, as assessed by a pairwise simi-

larity function such as Pearson correlation coefficient. For a set of n gene profiles, all

the pairwise correlation coefficients are computed; the highest value (representing the

most similar pair of genes) is selected and a node in the tree is created for this gene pair

with a new expression profile given by the average of the two profiles. The process is

repeated by replacing the two genes with a single node, and all pairwise correlations

among the n − 1 profiles are computed [16]. The process stops when only one element

remains. Clusters are obtained by cutting the tree at a specified branch level. Other tech-

niques for clustering also exist. Someren et al. [210] reduced 2467 yeast genes into clusters

and represented each cluster by a ‘prototype’ gene calculated from the cluster. A linear

model of the prototype genes is then generated by linear regression. D’Haeseleer and

others [33, 44, 64, 71, 80] proposed grouping genes into clusters, and then find the repre-

sentative genes for the clusters. Ram et al. [178] proposed a fuzzy logic based clustering

approach for searching regulatory triplets by means of predicting changes in expression

level of the target over interval time points based on input expression level, and compar-

ing them with actual changes. They applied the method on Saccharomyces cerevisiae data

and 548 activator/repressor regulatory triplets were inferred from the data.

2.3.2 Boolean Network Based Methods

In boolean networks based models [109, 211] each gene is assumed to be a boolean vari-

able, which can be in one of the two states: on or off. The dynamics are modeled over a

discrete series of time points. One of the main objectives of boolean network models is

to study the logical interactions of genes without knowing specific details [113, 207]. It
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uses boolean functions (AND, OR, NOR, NAND etc.) to define the gene relationships.

The state of each gene is determined by these boolean functions of some of the other

genes at the previous time step. Different algorithms have been proposed for inferring

the network structure of such models from observations [3, 132], typically by employing

information-theoretic entities.

Liang et al. [132] proposed REVEAL (REVerse Engineering ALgorithm) which uses

information theoretic principles to reduce the search space and establish how the given

genes are connected in the networks, and then determines the functions that specify the

interactions among genes. To decrease complexity in enumerating all possible state tran-

sitions, a maximum fan-in, k (1 ≤ k ≤ n where n is the number of genes in the dataset),

is applied to each gene. An implementation of the algorithm proved to be capable of

reliably reproducing networks with n = 50 and k = 3 given 100 state transition pairs

(out of 1015 possible pairs). Akutsu et al. [3] later proved that only O(log n) state tran-

sition pairs (from 2n pairs) are necessary and sufficient to identify the original Boolean

network, and extended the Boolean network model to a qualitative network. Although

the simplicity of a Boolean network allows analysis of large networks efficiently, it does

not utilise a lot of useful information such as information related to detailed quantity and

time delay. Several improvements of noolean networks, such as Generalized Logical Net-

works [5], Fuzzy Logic Models [252] and Probabilistic Boolean Networks [208], continue

to be limited by similar constraints.

2.3.3 Differential Equation Based Methods

Differential equations (DE) are the starting point for quantitative modeling of complex

systems. DEs are continuous and deterministic modeling formalisms, capable of describ-

ing non-linear and emerging phenomena of complex dynamical systems. DE models of

gene networks are based on rate equations, quantifying the rate of change of gene ex-

pression as a function of the expressions of other genes (and possibly other quantities).

The general form of the equations, one for each of n genes, is:

dxi
dt

= fi(xi1 , xi2 , . . . xim) (2.12)
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where each xk is a continuous function, representing the gene expression of gene k. Each

fi(·) quantifies the combined effect of its arguments, or regulators, on xi, and it subsumes

all the biochemical effects of molecular interactions and degradation.

The simplest interesting form that the fi(·) quantities can take are linear additive func-

tions [68, 69], for which the above general equation 2.12 becomes:

dxi(t)

dt
= biu(t) + wi1x1(t) + . . .+ winxn(t) (2.13)

where the term biu(t) indicates a controlled external influence on gene i, like an external

perturbation (bi represents the effect of the external pertrurbation on xi and u(t) repre-

sents the external perturbation at time t). The weight parameters (wij) indicate the degra-

dation rate of mRNAs or any environmental effects on gene i’s expression. Other net-

work models exist, which are based on extensions of the linear model (e.g. co-expression

networks [136, 226]). The major limitation of such models is the assumption of linear

relationship because in reality, biological relations are usually highly nonlinear.

Chen et al. in [41] translated the problem of finding a solution to finding the weights

when the number of nonzero weights wij for any given i is at most a fixed constant

k, into a combinatorial problem called Minimum Weight Solutions to Linear Equations,

and showed that it is polynomially solvable in general, although they offered a compu-

tationally expensive algorithm. Yeung et al. [253] used Singular Value Decomposition on

time-course experiments to generate an initial solution and then refined it by using an

optimization technique called robust regression. The solutions were much better than

those from using SVD alone. Experimentally, the authors used very fine sampling times

in that study which allowed them to approximate various dxi
dt values. In [226], Tegner et

al. used the same linear model, but with advanced gene perturbation (over-expression)

technology (described in [78]), and measurements at steady-states. Someren et al. [233]

used clustering of the time-course expression matrix to reduce the dimensionality of the

weight matrix. Hierarchical (progressive) clustering was performed until the resulting

linear system had the smallest error in explaining the whole data, i.e., was close to being

over-constrained. Their approach drew a lot from the success of clustering in identifying
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coregulated clusters of genes through coexpression, but it has its limitations too: the re-

sulting gene network is a network of gene clusters and not genes, and the interpretation

is non-trivial.

The NIR algorithm [78] computes the edges wij from steady-state gene expression

(and based on the observation that for steady state, the rate of change of concentration

will be zero). NIR needs, as input, the gene expression profiles following each pertur-

bation experiment, knowledge of which genes have been directly perturbed in each per-

turbation experiment and optionally, the standard deviation of replicate measurements.

NIR is based on a network sparsity assumption, that is, a maximum number of incoming

edges per gene (i.e., maximum number of regulators per gene), which can be chosen by

the user. The output is in matrix format, where each element (i, j) corresponds to the

edge between genes i and j. Under the steady state assumption, the inference algorithm

reduces to solving equation 2.13 for the unknown parameters wij , that is, a classic linear

regression problem.

The TSNI (Time Series Network Identification) algorithm [17] identifies the gene net-

work (wij) as well as the direct targets of the perturbations. TSNI is applied on time-series

data. To solve equation 2.13, we need the values of the derivatives of the concentrations

of the genes, for each gene i and each time point t. This can be estimated directly from

the time-series of gene expression profiles. TSNI assumes that a single perturbation ex-

periment is performed (e.g., treatment with a compound, gene over-expression) and N

time points following the perturbation are measured (rather than N different conditions

at steady-state as for NIR). For small networks (tens of genes), it is able to correctly infer

the network structure. For large networks (hundreds of genes), its performance is best for

predicting the direct targets of a perturbation (i.e., bi) (for example, finding the direct tar-

gets of a transcription factor from gene expression time series following over-expression

of the factor).

S-System, proposed by Savageau [191], is a well known system for biochemical net-

work and attracted attention for GRN inference from late 90s [115]. For n genes, S-System

model is given by
dxi(t)

dt
= αi

n∏
j=1

x
gij
j − βi

n∏
j=1

x
hij
j (2.14)
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where, Xi is the expression level of the i-th gene. Non-negative parameters αi and βi

are called rate constants and real-valued exponents gij and hij are referred as Kinetic Or-

ders. If gij = 0, it implies that there is no activation or inhibition from gene j to gene

i. If gij > 0, gene j activates gene i and if gij < 0, gene j inhibits gene i. Compared to

gij , the term hij has an opposite effect on the genes i and j. To infer a GRN of n genes

using S-System model, 2 ∗ n(n + 1) parameters must be estimated. For inferring GRN

using S-System, Noman et al. [162–164] used an approach called Trigonometric Differen-

tial Evolution (TDE) approach [162], which could infer a relatively large network of 30

genes. An improvement was proposed in Chowdhury et al. [50], where the authors use

several features for accurate network inference, namely a Prediction Initialization (PI) al-

gorithm to initialize the individuals, a Flip Operation (FO) for better mating of values,

a restricted execution of Hill Climbing Local Search over few individuals and a refine-

ment technique which utilizes the fit solutions of the genetic algorithm for improving

sensitivity and specificity of the inferred network.

Although an attractive approach for GRN reconstruction would be the deduction of

a detailed mathematical description of the entire system in terms of a set of coupled non-

linear differential equations from dynamic (time series) data, in reality, however, multi-

ple parameter sets of nonlinear systems of differential equations can offer equally plau-

sible solutions, and standard optimization techniques in high-dimensional multimodal

parameter spaces are not robust and do not provide a reliable indication of the confi-

dence intervals. More importantly, model selection would be impeded by the fact that

more complex pathway models would always provide a better explanation of the data

than less complex ones, rendering this approach intrinsically vulnerable to over-fitting.

Finally, although S-system and overall differential equation based techniques model de-

tailed quantities changing over time, due to having many network parameters, they need

more measurements and detailed kinetic information. As a result, they can usually model

small biochemical networks [141, 163], e.g., a group of genes of interest.

2.3.4 Relevance Network Based Methods

Relevance networks or correlation networks are essentially model free methods. Rele-

vance networks are networks of highly correlated genes [34, 151]. Edges connect pairs of
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genes with correlation coefficient over a certain threshold. Given a measure of associa-

tion and a threshold value defined, for all pairs of domain variables (X,Y ), association

A(X,Y ) is computed. Variables X and Y are connected by an undirected edge when

association A(X,Y ) exceeds the predefined threshold value. One of the measures of

association is the mutual information (MI) [33, 91]. Correlation networks cluster genes

naturally without a pre-assigned cluster number. Different from the classic clustering

methods, correlation networks keep the strongest pair-wise association between genes,

which contain relevant information for functional interpretation of the genes and their

relationships. However, like clustering, the relationships between genes in a correlation

network are mostly co-regulation, and not causal relationship. Relevance network based

algorithms using information theoretic quantities have been widely used in the litera-

ture [37,258,261]. However, they are mostly threshold based techniques, and determining

the appropriate threshold is difficult and error prone.

The ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) al-

gorithm has been proposed in [139], and it is essentially a model free method. It is a two-

step algorithm; the first step is for network construction and second step is for network

pruning. ARACNE identifies candidate interactions by estimating pairwise gene expres-

sion profile mutual information, MI(X,Y ) that is zero if the joint distribution between

the expression level of gene X and gene Y satisfies P (X,Y ) = P (X)P (Y ). ARACNE es-

timates MI using a Gaussian kernel estimator. Since MI is reparameterization invariant,

ARACNE copula-transforms (i.e., rank-orders) the profiles before MI estimation. After

this step, the MIs are filtered using an appropriate threshold, thus removing many of the

indirect interactions using the data processing inequality (DPI). ARACNE eliminates all

edges for which the null hypothesis of mutually independent genes cannot be ruled out.

TimeDelay-ARACNE [261] tries to extend ARACNE to time-course data. The idea on

which TimeDelay-ARACNE is based comes from the consideration that the expression

of a gene at a certain time could depend on the expression level of other genes at the

previous time point or at very few time points before. TimeDelay-ARACNE is a 3-step

algorithm: it first detects, for all genes, the time point of the initial changes in the expres-

sion; secondly, there is network construction based on time-delayed Mutual Information

calculation; and finally, it performs network pruning using DPI twice. It has shown good
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performance in the reconstruction of small biological directed networks from time series

data.

2.3.5 Graphical Gaussian Models

Graphical Gaussian Models (GGMs) [117, 194] are a class of graphical models related to

correlation networks. They are also known as “covariance selection” or “concentration

graph” models. The key idea behind GGMs is to use partial correlations as a measure

of independence of any two genes conditioned on all other genes 6. Edges in GGMs

represent high conditional dependency, i.e. direct rather than indirect relationships. In

contrast, correlation networks define relationships between genes through standard cor-

relation coefficients. Edges in correlation networks only represent high marginal depen-

dency without telling direct vs indirect relationships. Therefore, GGMs are considered a

more accurate model over correlation networks for gene regulatory network reconstruc-

tion [195]. However, GGMs assume multivariate normality, which is frequently not the

case for real biological systems.

In the following sections, we discuss the formalizations behind the main concepts in-

volved in this thesis: Bayesian networks (BN) and dynamic Bayesian Networks (DBN).

Further, we discuss different algorithms that use BN and DBN based modeling tech-

niques for the reconstruction of GRNs.

2.4 Bayesian Network

We start with some definitions. In the reminder of the thesis, we use capital letters, such

as X,Y, Z, for variable names and lowercase letters x, y, z to denote specific values taken

by those variables. Sets of variables are denoted by boldface capital letters X,Y ,Z, and

assignments of values to the variables in these sets are denoted by boldface lowercase

letters x,y, z. Now, consider a finite set X of n random variables, X = X1, . . . , Xn. We

define the notion of conditional independence as follows:

6Note that partial correlations are related to the inverse of the correlation matrix.
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Definition 2.4. Conditional Independence. Two variables (or set of variables) X and Y are

conditionally independent given Z (written (X ⊥ Y |Z)), if

P (X|Y ,Z) = P (X|Z) (2.15)

Next, we define the notion of Markov assumption which is the bridge between the

graphical representation of a BN and the conditional independence relations that it en-

tails.

Assumption 2.4.1. Local Markov Assumption. In a Directed Acyclic Graph (DAG) G, if

Pa(Xi) denotes the parents of variable Xi, we say that G encodes the local Markov assumptions

over the variable set X of G if, each variable Xi is independent of its non-descendants, given its

parents in G. The set of these assumptions are written asMarkov(G).

Based on the above definitions and assumptions, we can now define Bayesian Net-

works:

Definition 2.5. Bayesian Network. A Bayesian network is a representation of a joint probabil-

ity distribution, consisting of two components. The first component, G, is a directed acyclic graph

(DAG) whose vertices correspond to the random variables X = X1, X2, . . . , Xn, and whose

structure encodes the Markov assumptions Markov(G) over X . The second component, θ, de-

scribes a conditional probability distribution, P (Xi|Pa(Xi)) for each variable Xi inX [168].

The first component (G) of the Bayesian network gives a set of independence condi-

tions between the variables. Formally, G consists of a vertex set, V = {V1, V2, . . . , Vn},

and Vi ∈ V corresponds to a random variable Xi; E = {e1, . . . , em} is the edge set

and ei = (vx, vy) ∈ E is a dependence between vx and vy. The second component,

θ = θ1, . . . , θn is the parameter set storing the conditional joint probability distribution

over X , where θi = θ(Xi|Pa(Xi)) is the conditional probability distribution of Xi given

all the parents of Xi (denoted by P (Xi|Pa(Xi)). These two components specify a unique

distribution over X1, . . . , Xn. The uniqueness can be proved [168] using the following

result:
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Theorem 2.4.1. Chain rule for Bayesian Networks. The independence assumptions derived

from Markov(G) are satisfied by a distribution P (X1, . . . , Xn) if and only if P can be written as

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|Pa (Xi)) (2.16)

where Pa(Xi) is the parent set of gene Xi in G.

An example of a BN is shown in Figure 2.16. The joint probability distribution implied

by the graph is shown in Equation 2.17.

P (A,B,C,D,E) = P (A) ∗ P (B) ∗ P (C|A) ∗ P (D|A,B) ∗ P (E|D) (2.17)

Figure 2.16: A Bayesian Network.

2.4.1 Equivalence Classes of Bayesian Networks

More than one graph can imply exactly the same set of independence relations. For ex-

ample, consider the graphs X ← Y and X → Y . These graphs have the same set of

independence relations. This types of graphs are called equivalent graphs. Pearl and

Verma [169] showed that we can characterize equivalence classes of graphs using a sim-

ple representation. We first define a useful sub-structure that plays a key role in the

definition of graph equivalence.
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Definition 2.6. V Structure. A v-structure is an induced sub-graph of the form X ← Y → Z

(fork v-structure) or X → Y → Z (chain v-structure) or X → Y ← Z (collider v-structure) so

that no edge exists between X and Z.

Based on definition 2.6, we can now define equivalent graphs as follows:

Theorem 2.4.2. Graph Equivalence. Two Bayesian network structures are equivalent if and

only if they have the same underlying undirected graph (termed skeleton) and the same v-structures.

Figure 2.17 shows the equivalence classes for a three variable skeleton A−B − C.

Figure 2.17: The two equivalent classes of the skeleton graph A−B − C

The notion of equivalence is crucial, since when we examine observations from a dis-

tribution, we cannot distinguish between equivalent graphs, under the common scenario

of learning networks. This scenario is violated in two cases: First when we restrict the

allowed networks to a certain structural family, for example trees. Second, when we use

a type of CPDs that prefers a certain directionality in the connections. In both these cases

we might have a preference of one equivalent network over another.

2.5 Dynamic Bayesian Network (DBN)

Considering X to be a set of attributes changing in a temporal process of T time slices, a

DBN represents the joint probability distribution over the variables X[0]
⋃

X[1]
⋃
· · ·
⋃

X[T

−1], where random variable Xi[t] denotes the value of node Xi at time slice t, and X[t]

denotes the set of variables {Xi[t]|1 ≤ i ≤ n}, for 0 ≤ t ≤ T − 1 [77, 248].
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In case of static Bayesian networks, we assume that our data set is composed of inde-

pendent samples from the generating distribution. Unless the process we are watching

is totally memoryless, an observation at time t carries some information on observation

at adjacent times. This is called the Markov property.

2.5.1 Markov Property

The (first-order) Markov property says that given the current observation X[t], the next

observation X[t + 1] is independent of past observations, X[0], . . . ,X[t − 1] (or more

simply: the future is independent of the past given the present). Formally,

P (X[t]|X[t− 1], . . . ,X[0]) = P (X[t]|X[t− 1]) (2.18)

Similarly, we can define the d− th order Markov Property as follows 2.19

P (X[t]|X[t− 1], . . . ,X[0]) = P (X[t]|X[t− 1] . . .X[t− d]) (2.19)

where d ≤ t.

2.5.2 Stationarity

If the Markov assumption holds, the data likelihood can be decomposed as:

P (X[1], . . . ,X[T ]) = P (X[1])
T∏
t=2

P (X[t]|X[t− 1]) (2.20)

Using this formulation, we still have to specify M sets of probability distributions, where

M might be very large. We therefore usually make another simplifying assumption, that

is, the probabilistic model is time invariant. Formally, the stationarity assumption says

thatP (X[t]|X[t−1]) is independent of t. In practice, all the DBN based GRN reconstruction

techniques makes use of the above two assumptions.

A sample dynamic Bayesian network employing the above assumptions is shown in

Figure 2.18. The DBN in the figure is called a third-order Markov DBN.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 44

(A)

A[t-3]

B[t-3]

C[t-3]

A[t-2]

B[t-2]

C[t-2]

A[t-1]

B[t-1]

C[t-1]

A[t]

B[t]

C[t]

(B)

Figure 2.18: A 3rd-order Markov DBN. (A) Unrolled representation. (B) Rolled represen-
tation.

2.6 Advantages of Using Dynamic Bayesian Network Based Re-

construction Methods

Some advantages of using dynamic Bayesian network based reconstruction methods are:

1. One of the main advantages of dynamic Bayesian networks and overall Bayesian

networks in general is the ability to factorize the graph [168]. That is, the value

of each component directly depends on the values of a relatively small number of

components. This greatly simplifies computation in various scenarios.

2. Signal transduction, gene expression and its regulation are stochastic processes

[170, 180, 185]. Thus it is appropriate to use stochastic models like BNs/DBNs for

GRN modeling.

3. Both intrinsic noise (due to stochastic events during gene expression; responsible

for differences between identical reporters in the same cell), and extrensic noise

[170, 180] (due to cellular heterogeneity; causes differences between identical re-

porters in different cells) can be better taken care of using DBN/BN based models.

4. Bayesian networks and dynamic Bayesian networks are based on solid statistical

foundation, and computational algorithms to learn the structures and parameters

of such networks are well understood. As a result, these models have been used

successfully in many applications [43, 92, 134].

5. The idea of using BNs for GRN reconstruction can be thought of as a way to sim-

plify the mathematical description of the biological system by replacing the coupled
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differential equations by simple conditional probability distributions of a standard

form such that the unknown parameters can be integrated out analytically. This re-

sults in a marginal likelihood of closed form that depends only on the structure of

the regulatory network and avoids the over-fitting problem suffered by differential

equation based models.

6. DBNs and BNs allow the combination of highly dissimilar types of data (i.e., nu-

merical and categorical), converting them to a common probabilistic framework,

without unnecessary simplification [104].

7. DBNs and BNs readily accommodate missing data, which is a common problem

when designing microarray experiment based GRN reconstruction techniques [104,

176]. Also, hidden variables in a network are easier to handle use BN/DBN based

techniques [176].

8. BNs and DBNs have the natural capability of weighing each information source

according to its reliability [161].

9. BNs and DBNs are readily interpretable, unlike “black-box” predictors, as they rep-

resent conditional probability relationships among information sources [104].

10. BNs and DBNs can model causal interactions, which is particularly useful for GRN

analysis [7, 19, 88, 168, 206, 235].

11. BNs and DBNs can naturally deal with the stochastic aspects of gene expression

and the noisy measurements of DNA microarray and other data sources because of

its firm statistical footing [176].

12. BNs and DBNs are able to handle a large number of variables with only a few sam-

ples [7, 21, 64, 194]. It is especially useful when learning gene networks, since gene

networks are often plagued by the well known curse of dimentionality problem

(large number of genes but only a few samples).

13. Bayesian networks are capable of estimating the confidence of different features in

networks [76]. The absence of data often leads to a situation where many networks

explain the data equally well. The confidence is useful for measuring whether a

statistical feature of the network is likely to be true [76, 176].
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14. Using information theoretic quantities, dynamic Bayesian networks can capture

many types of relationships among genes: linear, non-linear, combinatorial, stochas-

tic and so on. It remains unclear which types of relationships a gene regulatory

system may pursue. The ability of Bayesian networks to grasp various types of

relationships makes it appropriate for learning gene networks.

Using a good model for the reconstruction completes half of the task only. After a

modeling technique is decided upon, we then have to use a learning strategy for the

identification of regulatory interactions.

In the next section, we will discuss about learning the structure of Bayesian Networks.

Albeit the discussion is mainly based on static Bayesian Networks, extending the reason-

ing to DBNs is very straightforward. For example, for representing dependencies, any

form of CPD we use in a BN can also be used in a DBN. Inference is essentially similar

to the BN case, as it is done on the unrolled network model. Parameter and structure

learning are typically done on the unrolled representation [77], but other than that they

are similar to what is done on static Bayesian networks.

2.7 Learning Bayesian Network Structure

Somewhat generalizing, there are two approaches for finding the structure of GRNs us-

ing DBNs. The first approach poses the learning task as a constraint satisfaction problem.

In this approach, we try to estimate properties of conditional independence among the

variables in the data. Usually this is done using a statistical hypothesis test, such as t-

test or χ2-test. We then build a network that exhibits the observed dependencies and

independencies. The second approach poses the learning task as an optimization prob-

lem, and these are usually called score and search based approaches. We start by defining

a statistically motivated score that describes the fitness of each possible structure to the

observed data. The learners task is then to find a structure that maximizes the score. In

general, this is an NP-hard problem [45,46], and thus we need to resort to heuristic meth-

ods. Although the constraint satisfaction approach is efficient, it is sensitive to failures

in independence tests. Thus, the common opinion is that the optimization approach is a

better tool for learning structure from data.
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2.7.1 Constraint Based Learning

Constraint based learning methods usually use conditional independence tests. At first

we describe three concepts that are vital for constraint based learning.

Assumption 2.7.1. Causal Sufficiency Assumption. The causal sufficiency assumption states

that there are no unobserved variables in the domain that might explain the independencies that

are observed in the data, or lack thereof. It is a crucial assumption for applications that need to

determine the true underlying (causal) structure of the domain.

Assumption 2.7.2. Causal Markov Assumption. It expresses a minimum set of independence

relations that exist between every node and its non-descendants, given a BN model. From these,

and a set of axioms described in [168,215], one can produce the entire set of independence relations

that are implied by that BN model.

Definition 2.7. Faithfulness. A BN graphG and a probability distribution P are faithful to one

another if and only if every one and all independence relations valid in P are those entailed by the

Markov assumption on G.

Definition 2.8. d-separation. Two sets of nodes X and Y are d-separated in Bayesian networks

by a third set Z (excluding X and Y) if and only if every path between X and Y is “blocked”, where

the term “blocked” means that there is an intermediate variable V (distinct from X and Y) such

that:

• The connection through V is “tail-to-tail” or “tail-to-head” and V is instantiated, or

• The connection through V is “head-to-head” and neither V nor any of Vs descendants have

received evidence.

The graph patterns of “tail-to-tail”, “tail-to-head” and “head-to-head” are shown in

Figure 2.19. The minimal set of nodes which d-separates node A from all other nodes is

A’s Markov blanket (MB). The Markov blanket MB(X) of node X in a Bayesian network

is the set of nodes composed of A’s parents, its children, and its children’s parents.

The SGS (Sprites-Glymour-Scheines) algorithm [215] is one of the most studied algo-

rithms using constraint based tests. In this algorithm, the existence of an edge between

two variables, is tested using a number of conditional independence tests. Each of these

conditions is a subset of universal subset U. If Faithfulness holds and there exists an edge,



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 48

A B C

Figure 2.19: The three patterns related to d-separation. (A) tail-to-tail, (B) tail-to-head,
(C) head-to-head.

then all these independence tests should be false. If there is no edge, then there must exist

a subset d-separating them. Assuming that there is no direct edge between nodes X and

Y in the true model, one such subset is the set of parents of one of the nodes. By trying

all possible subsets of U, the SGS algorithm can make a conclusion on the existence of an

edge between every pair of variables in the domain. After the undirected connectivity is

determined, SGS attempts to determine the directionality of these edges. This is done by

examining triples of variables X, Y, and Z, such that there is no subset that includes Z, can

d-separate X and Y. This is repeated for all such triples, and is followed by verification of

acyclic behavior of the graph.

Other algorithms exist in the literature that do not make use of independence tests

but take into account d-separation in order to discover structure from data. Cheng et

al. [43], for example, used mutual information instead of conditional independence tests.

The algorithm requires the ordering of the variables to be given in advance. PC [215] is

another constrained based algorithm, which orders CI tests to improve efficiency.

2.7.2 The Score and Search Paradigm

The algorithms based on a scoring function attempt to find a graph that maximizes the

selected score, which is usually defined as a measure of fitness between the graph and the

data. All of them use the scoring function in combination with a search method in order

to measure the goodness of each explored structure from the space of feasible solutions.

Different learning algorithms are obtained depending on the search procedure used, as

well as on the definitions of the scoring function and the search space.
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2.7.3 Scoring Techniques

Several scoring functions for learning Bayesian networks have been proposed in the lit-

erature. It is common to classify scoring functions into two main categories: Bayesian

and information-theoretic. In general, for efficiency purposes, these scores need to de-

compose over the network structure. The decomposability property allows for efficient

learning algorithms based on local search methods. Moreover, when the learning algo-

rithm searches in the space of equivalence classes of network structures, scoring functions

must also be score equivalent, that is, equivalent networks must score the same.

Bayesian Scoring Functions

The general idea of Bayesian scoring functions is to compute the posterior probability

distribution, starting from a prior probability distribution on the possible networks, con-

ditioned on the data D, that is, P (G|D). The best network is the one that maximizes

the posterior probability. Since the term P (D) is the same for all possible networks, in

practice, for comparative purposes, computing P (G,D) is sufficient. Moreover, as it is

easier to work in the logarithmic space, the scoring functions use the value log(P (G,D))

instead of P (G,D).

Before moving on to the formulation of the scoring functions, some notations will be

introduced: the number of states of the variableXi is ri; the number of possible configura-

tions of the parent set Pa(Xi) of Xi is qi; obviously, qi =
∏
Xj∈Pa(Xi) rj ; wij , j = 1, . . . , qi,

represents a configuration of Pa(Xi); Nijk is the number of instances in the data set D

where the variable Xi takes the value xik and the set of variables Pa(Xi) take the value

wij ; Nij is the number of instances in the data set where the variables in Pa(Xi) take their

j-th configuration wij (i.e., Nij =
∑ri

k=1Nijk). Similarly, Nik is the number of instances in

D where the variable Xi takes its k-th value xik, and therefore Nik =
∑qi

j=1Nijk; the total

number of samples in D is N .

Heckerman et al. [93] proposed the Bayesian Dirichlet (BD) score by making four as-

sumptions on P (G,D). The first one assumes that data D is exchangeable, that is, if

an instance of the data is exchanged with another instance, the exchanged data has the

same probability as the original one. The second assumption assumes that parameters θij
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have a Dirichlet distribution. This hypothesis is convenient because the Dirichlet distri-

bution is closed under multinomial sampling, that is, if the prior distribution is Dirichlet,

the posterior distribution, given a multinomial sample, is also Dirichlet. The third hy-

pothesis imposes that the parameters associated with each variable in the network are

independent, and, moreover, the parameters associated with each instance of the parents

of a variable are also independent. Finally, the fourth assumption states that the density

for the parameters θij depends only on Xi and its parents, that is, on the local structure

of Xi.

Based on the four assumptions, Heckerman et al. [93] showed the following result:

Theorem 2.7.1. Under assumptions 1 to 4, the joint probability P(G, D) can be expressed by the

following formula:

P (G,D) = P (G)×
n∏
i=1

qi∏
j=1

(
Γ (ηij)

Γ (Nij + ηij)
×

ri∏
k=1

Γ (Nijk + ηijk)

Γ (ηijk)

)
(2.21)

The theorem above induces the Bayesian Dirichlet (BD) score defined as:

BD(G,D) = log (P (G)) +

n∑
i=1

qi∑
j=1

(
log

(
Γ (ηij)

Γ (Nij + ηij)

)
+

ri∑
k=1

log

(
Γ (Nijk + ηijk)

Γ (ηijk)

))
(2.22)

where the values ηijk are the hyperparameters for the Dirichlet prior distributions of the

parameters given the network structure, and ηij =
∑ri

k=1 ηijk, and Γ(·) is the Gamma

function.

Another Bayesian scoring functions, called K2, was proposed by Cooper and Her-

skovits [54]. It also relies on several assumptions (multinomiality, lack of missing values,

parameter independence, parameter modularity, uniformity of the prior distribution of

the parameters given the network structure), and can be expressed as follows:

K2(G,D) = log (P (G)) +
n∑
i=1

qi∑
j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑
k=1

log (Nijk!)

)
(2.23)
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From the K2 score, we can readily see that it is a particular case of BD, where the

uninformative assignments are done for the hyperparameters (ηijk = 1). In fact, as Heck-

erman et al. mentioned, specifying all ηijk for all i, j and k is formidable, making the BD

score unusable in practice. However, by considering the additional assumption of likeli-

hood equivalence [93], it is possible to specify the hyperparameters relatively easily. We

first define the notion of likelihood equivalence:

Given a Bayesian network G, the data D can be seen as a multinomial sample of

the joint space B with parameters θB = {θx1,...,xn} , xi = 1, . . . ri, i = 1 . . . n, where

θx1,...,xn =
∏n
i=1 θxi|Pa(xi).

Assumption 2.7.3. Likelihood Equivalence. Given two directed acyclic graphs, G and G′

such that P (G) > 0 and P (G′) > 0, if G and G′ are equivalent then P (θB|G) = P
(
θB|G

′
)

.

Under the likelihood equivalence assumption, it follows that for equivalent DAGs G

and G′ we have P (D|G) = P (D|G′), that is, the data D does not help to discriminate

equivalent DAGs. The result is a scoring function called BDe score, whose expression

is identical to the BD one, but the hyperparameters now can be computed using the

following formula:

ηijk = η × P (xik, wij |G0) (2.24)

where P (·|G0) represents a probability distribution associated with a prior Bayesian net-

work G0 and η is a parameter representing the equivalent sample size.

A particular case of BDe which is especially interesting appears whenP (xik, wij |G0) =

1
riqi

, that is, the prior network assigns a uniform probability to each configuration of

Xi ∪ Pa(Xi). The resulting score is called BDeu, which was originally proposed by Bun-

tine [32]. This score only depends on one parameter, the equivalent sample size η, and is

expressed as follows:

BDeu(G,D) = log (P (G))+

n∑
i=1

qi∑
j=1

log
 Γ

(
η
qi

)
Γ
(
Nij + η

qi

)
+

ri∑
k=1

log

Γ
(
Nijk + η

riqi

)
Γ
(

η
riqi

)


(2.25)

Regarding the term log(P (G)) which appears in all the previous expressions, it is quite

common to assume a uniform distribution (except if we really have information about
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the greater desirability of certain structures) so that it becomes a constant and can be

removed.

Information Theory Based Scoring Functions

Information theory based scoring functions represent another option for measuring the

degree of fitness of a DAG to a data set and are based on codification and information

theory concepts. Coding attempts to reduce the number of elements which are necessary

to represent a message (depending on its probability). Frequent messages will therefore

have shorter codes whereas larger codes will be assigned to the less frequent messages.

Shannon’s source coding theorem [203] (or noiseless coding theorem) establishes the lim-

its to possible data compression. There are several optimal codes that asymptotically

achieve Shannon’s limit, such as the Fano-Shannon code and the Huffman code. To con-

struct these codes one requires as input, a probability distribution over the data, which

can be derived from a Bayesian network. So, given data D, one can score a Bayesian

network graph G by the size of an optimal code, induced by the distribution of G, when

encoding D. This value is the information content of D by G and is given by

L(D|G) = −
n∑
i=1

qi∑
j=1

Nij

ri∑
k=1

Nijk

Nij
log (θijk) (2.26)

Using Gibbs inequality, the value θijk for which Equation 2.26 is minimized is given by:

θijk =
Nijk

Nij
(2.27)

This implies that the Bayesian network that induces a code that compresses D the most

is precisely the Bayesian network that maximizes the probability of observing D. By

applying a logarithm to the likelihood of D given G, we obtain log(PG(D)) = L(D|G)

that is commonly called the log-likelihood of D given G. Observing that maximizing the

log-likelihood is equivalent to minimizing the information content of D by G, we can

define the log-likelihood (LL) score [28] in the following way:

LL(G|D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk

Nij

)
(2.28)
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The LL score tends to favor complete network structures and it does not provide an use-

ful representation of the independence assumptions of the learned network. This phe-

nomenon of overfitting is usually avoided in two different ways. First, by limiting the

number of parents per network variable. Second, by using some systematic penalization

factor over the LL score.

The minimum description length (MDL) scoring function [126, 224] takes the second

approach to prevent overfitting discussed above, preferring simple Bayesian networks

over complex ones. The minimum description length principle (MDL) selects the coding

that requires minimum length to represent the messages. Another more general formu-

lation of the same idea establishes that in order to represent a data set with one model

from a specific type, the best model is the one that minimizes the sum of the description

length of the model and the description length of the data given the model. Complex

models usually require greater description lengths but reduce the description length of

the data given the model (they are more accurate). On the other hand, simple models

require shorter description lengths but the description length of the data given the model

increases. The minimum description length principle establishes an appropriate trade-

off between complexity and precision. In our case, the data set to be represented is D

and the selected class of models are Bayesian networks. Therefore, the description length

includes the length required to represent the network plus the length necessary to repre-

sent the data given the network [27, 60, 126, 224]. In order to represent the network, we

must store its probability values, and this requires a length which is proportional to the

number of free parameters of the factorized joint probability distribution. This number,

called network complexity and denoted as C(G), is:

C (G) =

n∑
i=1

(ri − 1) qi (2.29)

The usual proportionality factor is 1
2 log(N) [181]. Therefore, the description length of

the network is 1
2C(G)log(N). Regarding the description of the data given the model, by

using Huffmann codes its length turns out to be the logarithm of the likelihood function

of the data with respect to the network, i.e., the negative of the log-likelihood. This value

is minimum for a fixed network structure when the network parameters are estimated

from the data set itself by using maximum likelihood. Therefore, by changing the signs
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to deal with a maximization problem, we get the MDL scoring function as follows:

MDL (G,D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk

Nij

)
− 1

2
C(G)log(N) (2.30)

Another way of measuring the quality of a Bayesian network is to use measures based

on information theory. The basic idea is to select the network structure that best fits the

data, penalized by the number of parameters which are necessary to specify the joint

distribution. This leads to a generalization of the MDL scoring function:

GMDL(G,D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk

Nij

)
− C(G)f(N) (2.31)

where f(N) is a non-negative penalization function. Based on this, we can define several

scoring functions:

• If f(N) = 1, we have the Akaike Information Criterion (AIC) scoring function [2].

• If f(N) = 0, we have the log likelihood score.

• If f(N) = 1
2 log(N), we have the Bayesian Information Criterion (BIC), which coin-

cides with the MDL score. However, this quantity is based on the Schwarz Infor-

mation Criterion [197].

As far as the search is concerned, although the most frequently used are local search

methods [32, 60, 61, 93, 154], due to the exponentially large size of the search space, there

is a growing interest in other heuristic search methods such as simulated annealing [93,

255], tabu search [1, 28], branch and bound [227], genetic algorithms and evolutionary

programming [127,153], Markov chain Monte Carlo [87,119], and ant colony optimization

[57, 62].

However, due to the complexity in learning GRNs, simple and straightforward tech-

niques employing the AIC/BIC scores or simple constraint based learning schemes usu-

ally do not obtain good results. Therefore, an ensemble of scoring/constraint based learn-

ing techniques is often used in the recent literature. Ram et al. [176] proposed such an

approach that introduces a causal modeling framework using genetic algorithms. The

framework requires decomposing a GRN into sub models which are the Markov blanket
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graphs of each node of the network. To each of the MBs of the network, following steps

are then sequentially applied.

1. Gene Expression Matrix calculation. Using the dataset, obtain a matrix E corre-

sponding to the set of genes that are affected by gene X (i.e. MB of gene X).

2. Finding causal relations. The causal relationships between genes are defined as

gene X affecting gene Y either directly or indirectly. This step thus create n binary

causal relations.

3. Adjacency matrix calculation. The adjacency matrix (of size n X n where n is the

number of nodes in the MB) is based directly on the binary relation R. The entries

in the matrix get a value of 1, -1 and 0, if the regulation i → j is positive, negative

and nonexistent, respectively.

4. Skeleton matrix calculation. A skeleton matrix S is developed from the adjacency

matrix A to include both the direct and indirect effects observed in the MB. While

matrix element A(i, j) represents only the direct relationship, the corresponding

element of skeleton matrix S also includes the indirect causal relationship between

genes corresponding to X and Y .

5. From skeleton matrix S, the direct and indirect effects are respectively converted as

conditional dependence (CD) and conditional independence (CI) constraints. Zero

order constraints are obtained from the direct interactions while higher order con-

straints are obtained from the indirect interactions via a condition set.

6. Reduced Constraint set calculation. Some tests are not necessary to be implemented

and can be eliminated from the constraint set. In this step, these reductions in

statistical tests is done.

7. Constraints Evaluation. The consistency of the constraints with respect to data is

evaluated in this step. Statistical significance test, namely F-test is conducted to

check if the correlation coefficients differ significantly from zero value. These tests

apply the Bonferroni-corrected p-value threshold to produce satisfactory correla-

tions.
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8. Fitness of the MB. The score of the overall putative network is obtained as a weighted

linear combination of the consistency scores as shown below:

Fitness Score =
∑
i

(w1 × Score1i + w2 × Score2i + w3 × Score3i) (2.32)

Herew1, w2, w3 are weights assigned to each of the three sub model scores such that

w1 + w2 + w3 = 1. As for Score1i , it scores the correctness of the structure based

on partial correlation coefficients. The quantity Score2i scores directions of causal-

ity by employing delay parameters in the partial correlation calculation. Finally,

Score3i scores the sign of regulation (positive/negative regulations).

The above steps are applied on each MB for a particular GRN, and a GA-based search

strategy is employed to find possible GRN networks, the objective being finding the GRN

that maximizes the fitness score (Equation 2.32). Subsequently, a constraint logic mini-

mization (CLM) algorithm was proposed that improves the efficiency further. In addition

to this PCC based scoring method employing CI tests, one can make use of information

theoretic quantities to devise techniques that makes use of CI tests [157]. Finally, infor-

mation theoretic CI tests can also be used in a scoring framework. Examples include [153]

and [154].

Due to the vast popularity of BN based modeling techniques, there are many software

packages for GRN inference that uses BN/DBN as the modeling technique. We discuss a

few of the most popular and publicly available BN/DBN based software packages next.

BANJO

BANJO [255] is a popular gene network inference software that is based on the BN for-

malism and implements both static and dynamic Bayesian networks. It implements both

greedy search and simulated annealing, and a BDe based scoring technique is used. From

a high-level point of view, during searching, an initial “current” network (can be the

empty network, or some other pre-selected network) is selected, and subsequently, the

search process iterates through the following set of steps:
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• Propose a new network that is to be considered. Often, the proposed network is

dependent on the current network, and it represents a local change to it. This is

called the “Proposer” module.

• Check the proposed network for cycles. This is called the “Cycle Checker” module,

and it is optional.

• Compute the score of the proposed network using a pre-defined metric. Called the

“Evaluator” module.

• Decide, possibly stochastically, whether to accept the proposed network (as the new

current network). Called the “Decider” module.

A “Proposer” implements the part of the search algorithm that specifies what pos-

sible change or changes are to be considered at a single search iteration step. There are

two proposer choices: ’RandomLocalMove’, which does addition, deletion, or reversal

of an edge in the current network, selected at random, and ’AllLocalMoves’, which con-

siders all changes arising from a single addition, deletion, or reversal of an edge in the

current network. The task of the cycle checker is to examine (using DFS) whether each

proposed network contains a cycle. If it does, the proposed change is discarded, and the

search goes back to the “Proposer” to request another possible network change. If the

proposed network does not contain a cycle, then the next step in the search is the score

computation performed by an “Evaluator”, which computes the parameters of the con-

ditional probability density distribution to find an overall network score, using the BDe

metric. The “Decider” uses two strategies: a greedy approach, where a network is ac-

cepted if and only if its score is better than or equal to that of the current network (in the

case of ’AllLocalMoves’ option in “Proposer” module, the best local move is considered),

and a Metropolis decider, which uses a Metropolis-Hastings stochastic decision mecha-

nism, where any network with a higher score is accepted, and any with a lower score

is accepted with a probability based on a system parameter known as the ’temperature’.

BANJO outputs a signed directed graph indicating regulation among genes. BANJO can

analyse both steady-state and time series data. In the case of steady-state data, BANJO is

not able to infer networks involving cycles (e.g., feedback loops).
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BNFinder

BNFinder is a software package, which allows Bayesian network reconstruction from

experimental data. It supports dynamic Bayesian networks and, if the variables are

partially ordered, also static Bayesian networks. The BNFinder program is based on a

polynomial-time algorithm for learning an optimal Bayesian network structure [66]. It

works under the following four assumptions:

Assumption 2.7.4. Acyclicity. There is no need to examine the acyclicity of the graph.

Assumption 2.7.5. Additivity. S(G,D) =
∑n

i=1 s
(
Xi, Pa(Xi), D

∣∣
Xi∪Pa(Xi)

)
whereD

∣∣
Xi∪Pa(Xi)

denotes the restriction of D to the values of the members of Xi ∪ Pa(Xi).

To simplify notation, we write s(Pa(Xi)) for s
(
Xi, Pa(Xi), D

∣∣
Xi∪Pa(Xi))

)
.

Assumption 2.7.6. Splitting. s(Pa(Xi)) = g(Pa(Xi)) + d(Pa(Xi)) for some non-negative

functions g, d satisfying Pa(Xi) ⊆ Pa′(Xi)⇒ g(Pa(Xi)) ≤ g(Pa′(Xi)).

Assumption 2.7.7. Uniformity. |Pa(Xi)| = |Pa′(Xi)| ⇒ g(Pa(Xi)) = g(Pa′(Xi)).

Assumption 2.7.4 is valid for DBN in general. Assumption 2.7.5 states that the em-

ployed scoring function decomposes over the variables. Together with assumption 2.7.4,

this assumption allows us to compute the parent set of each variable independently.

Assumption 2.7.6 requires the scoring function to decompose into two components: d,

evaluating the accuracy of representing the distribution underlying the data by the net-

work, and g, measuring its complexity. Finally, g is required to be a monotonically non-

decreasing function in the cardinality of Pa(Xi). The BNFinder algorithm uses the BDe

and MDL scoring function, which satisfy the above constraints.

As stated, BNFinder can learn either dynamic Bayesian networks (from time series

data) or static BNs (from independent experiment data). In the second case it is necessary

to specify constraints on the network’s structure, forcing its acyclicity. A special treatment

is required for experiments, in which the values of some variables were perturbed (e.g.

knockout experiments). Since perturbations change the structure of interactions, learning

procedures have to use data selectively. In perturbation experiment datasets, for scoring

sets of parents of a variable v, it takes into account only the experiments where v was not

perturbed. Finally, a prior distribution on the network structure may be specified through
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assigning weights to potential variable interactions. However, in this case the size of the

regulator sets of each variable may be bounded to a given number and the spaces of

possible conditional probability distributions of selected variables may be restricted to

noisy-and or noisy-or distributions.

Bayes Net Toolbox

The Bayes Net Toolbox (BNT) [159] is an open source Matlab package for directed graph-

ical models. BNT supports many kinds of nodes (probability distributions), exact and

approximate inference, parameter and structure learning and static as well as dynamic

Bayesian models. It can also handle missing data and hidden variables (partial observ-

ability). In BNT, a Bayes net is represented as a structure, which contains the graph, as

well as the CPDs (conditional probability distributions). The graph is represented as an

adjacency matrix, whereas the CPDs are represented as a list of objects. BNT supports

both structure and parameter learning. The parameter estimation routines in BNT sup-

ports computing both a full Bayesian posterior over the parameters, and point estimates

(maximum likelihood or maximum a posteriori). The structure learning routine in BNT

can similarly be classified into four categories, depending on full/partial observability

and calculation of point or Bayes estimates. For fully observed data and point estimates,

it supports K2 and IC/PC algorithms. For Bayesian estimates it uses MCMC techniques.

2.8 Summary

In this chapter, we briefly discussed the biological preliminaries, describing the cell and

its relation to gene regulatory networks. This was followed by elaborating mathematical

quantities used for the reconstruction of these networks. Next, we reviewed various re-

construction techniques, ranging from simple clustering based approaches to parameter-

heavy differential equation based networks, and also Bayesian networks. Further, the

two different paradigms of learning the structure of Bayesian networks were also dis-

cussed. From the literature reviewed, it is observed that compared to various simple

network reconstruction techniques, Bayesian networks are much more robust, and at the

same time achieve very good performance. Moreover, BN models work with much less

parameters compared with the nonlinear differential equation based models. In the next
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chapter, we employ MI/CMI based CI tests for developing an algorithm that leverages

the benefits of DBNs and also has the ability of detecting statistically significant interac-

tions among genes.



Chapter 3

Information Theoretic Bayesian

Approach for Genetic Network

Reconstruction

3.1 Introduction

In the previous chapter, we reviewed different methods used for the reconstruction of

gene regulatory networks, and also discussed the associated challenges. Amongst the

various methods proposed to overcome the difficulties associated with GRN modeling

and inference mechanism, it was observed that the Bayesian network (BN) framework is

widely used [66, 255, 258]. As discussed, the firm statistical basis of Bayesian networks

(BNs) allows them to deal with the stochastic aspects of gene expression and the noisy

measurements of microarray data in a natural way [76, 175]. Moreover, hidden variables

in a network and missing values in the gene expression data are easy to handle using this

formalism.

Although effective in dealing with noise, incompleteness and stochastic aspects of

gene regulation, BNs fail to consider the temporal dynamic aspects that are an impor-

tant part of gene regulatory network modeling [37]. Dynamic Bayesian networks (DBN)

[76, 168], an extension of Bayesian networks, can effectively deal with the temporal as-

pects of such regulatory networks. Along with other advantages, the BN part of a DBN

helps, to some extent, to handle the problem arising due to the curse of dimensionality.

61
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By incorporating network dynamics, we can efficiently handle the temporal aspects of

GRN, and also allow occurrence of feedback loops in the network, which are an integral

part of regulatory networks [20, 122, 247]. Alongside, the temporal regulation relation-

ship implies that the directions of regulations between the genes can be readily inferred.

However, for basic Bayesian networks, this computation can be very time consuming as

large number of conditional independence tests are required. Thus, dynamic Bayesian

networks can be seen as a promising trade-off between over-simplicity and loss of com-

putational tractability.

In learning genetic networks, partial correlation coefficients (PCC) have been com-

monly used to assess genetic interactions [13, 68, 176, 177, 256]. However, these coeffi-

cients quantify linear dependencies. Since the genetic interactions are usually nonlinear,

PCCs are thus unsuitable in reconstructing GRNs. In this research, we therefore propose

to use MI and CMI instead, because MI and CMI are both nonlinear measures and more

suitable to represent the nonlinear genetic interactions. Further, an important advantage

of using MI and CMI is that they are zero if and only if the measurements on any two

systems A and B are statistically independent. This puts them in an advantageous sit-

uation compared to the other commonly used measures, such as partial correlations. A

vanishing MI or CMI does imply that two variables are independent, while for the Pear-

son correlation this does not hold true. Thus, the mutual information can be interpreted

as a generalized measure of correlation, analogous to partial correlation but sensitive to

any functional relationship, not just linear dependencies.

Literature [37, 75, 76, 171, 248] reveals a limited application of MI and CMI based

learning techniques using Bayesian networks based GRN modeling. To date, in rele-

vance networks (not BN/DBN), MI and CMI have been used essentially as threshold

values without involving any modeling. When applied to BN and DBN, they have

merely been used either for learning three node substructures (in constraint based learn-

ing methods [15, 42]) or for pairwise association measures (using threshold based tech-

niques [248]). As we show in this chapter, MI and CMI can be applied in a novel manner

as powerful regulatory association measures within DBN frameworks, for performing

statistical significance tests exploiting the decomposition property of MI. They are also

suitable for identification of the strength of regulatory interactions to allow removal of

spurious or indirect network arcs.
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In this chapter, with a view to using the solid mathematical underpinnings of Bayesian

networks, and also for taking advantage of the temporal dynamics embedded within the

time series microarray datasets, we propose a novel information theory based DBN de-

sign for gene regulatory network reconstruction. The approach employs mutual infor-

mation based conditional independence tests, to systematically search for potential gene

regulators, and builds a network connecting genes to its regulators. With in-built sta-

tistical significance testing, it can capture regulatory relations with good accuracy. The

method is flexible, computationally fast and allows a-priori incorporation of biological

domain knowledge. Due to the use of MI/CMI based CI tests, it can assess nonlinear reg-

ulatory interactions among genes. The proposed approach is validated by carrying out

experiments using both synthetic and real-life data, and comparison with other methods

shows the effectiveness of our approach.

The rest of the chapter is organized as follows. Section 3.2 explains the proposed

methodology and its formalization as an algorithm. Section 3.3 discusses the synthetic

and real-life networks used for validating our approach and also its comparison with two

other techniques. Finally, Section 3.6 concludes with some observations and remarks, and

the motivations behind the developments in the next chapter.

3.2 BITGRN: Bayesian Information Theoretic Gene Regulatory

Network Reconstruction Algorithm

Regulatory relationship can be assessed by using Mutual Information (MI) based CI tests.

Let us consider the mutual information between a gene Xi and its parents, Pa(Xi)

in a Directed Acyclic Graph (DAG) G. According to the decomposition property of MI

(equation 3.1), which asserts that in a DBN, if Pa(Xi) is the parent set of a nodeXi (Xik ∈

Pa(Xi), k = 1, . . . si), and the cardinality of the set is si, the following identity holds [60]:

MI(Xi, Pa (Xi)) = MI (Xi, Xi1) +

si∑
j=2

MI
(
Xi, Xij |

{
Xi1, · · · , Xi(j−1))

})
(3.1)

where Xij denotes the j-th parent of gene Xi. The elements in the decomposition on the

right side can be interpreted as follows. We find the best parent for gene Xi (first term in
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the right side of equation 3.1) by calculating its MI with all the other potential parent can-

didates and select the gene Xj for which MI(Xi, Xj) is maximum. This approach helps

us in discarding potential indirect regulators (parents) of gene Xi. This is because of the

Data Processing Inequality (DPI) [55] which states that, if nodes X and Z are connected

through an intermediate node Y (see Figure 3.1), then,

MI(X,Z) = min{MI(Y,X),MI(Z, Y )} (3.2)

i.e., the lowest MI value corresponds to either the indirect relationship or another weak

Y

Z

X

Figure 3.1: Illustration of the Data Processing Inequality

regulatory relationship. Hence, given two candidate parents Y and Z for X , say, the MI

between X and Y is higher; then Y is considered the better candidate to be the parent

of X . Assessing the MI between a node Xi and the candidate parents in this way helps

to assess how much additional information we get about Xi by adding a candidate as a

parent of this gene, enabling us to identify the best candidate parent.

After the first parent is added and if Xi has more than one parent, there will still

be (entropic) uncertainties about this gene. So we add a second parent. While adding

the second parent, rather than computing the pairwise MI between Xi and all the sec-

ond parent candidates, we calculate the mutual information between Xi and a candi-

date parent conditional on the current parent set of Xi, i.e., we calculate MI(Xi[t +

1], XCPk(Xi)[t]|Pac(Xi[t])), where CPk(Xi) represents an element in the current candi-

date parent set of the node Xi and Pac(Xi) represents the current parent set of Xi. We

continue the insertion of arcs in this manner until the last parent has been included. We

stop the insertion of any additional arcs if each of the remaining variables in the current

candidate parent set, CPk(Xi), does not contribute an appreciable amount of additional

information aboutXi. The question as to how to determine whether the value of the CMI
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represents some statistically significant amount of information is done by applying the

following Theorem of Kullback 3.2.1 [123]:

Theorem 3.2.1. Given a data set D with N samples, if the hypothesis that X and Y are con-

ditionally independent given Z is true, then the statistic 2N ×MI(X,Y |Z) approximates to a

chi-square distribution with df = (rX − 1)(rY − 1)rZ degrees of freedom, where rX , rY and

rZ represent the number of configurations (possible values) for the sets of variables X,Y and Z

respectively. If Z = ∅, the statistic 2N ×MI(X,Y ) approximates to a chi-square distribution

with df = (rX − 1)(rY − 1) degrees of freedom.

Let us fix a confidence levelα and determine the value χ(α, dfik) such thatP (χ2(dfik) ≤

χ(α, dfik)) = α. This evaluation actually represents a statistical test of conditional inde-

pendence [60]. The test would assert that these two variables are dependent, if

2N ×MI(Xi[t+ 1], XCPk(Xi)[t]|Pac(Xi[t]))� χ(α, dfik) (3.3)

The more dependent they are, the larger will be the difference.

On the other hand, if

2N ×MI(Xi[t+ 1], XCPk(Xi)[t]|Pac(Xi[t])) < χ(α, dfik) (3.4)

it would mean that they are independent. Hence, when the maximum CMI value condi-

tioned on the current parent set fails this test, we stop adding parents to this gene.

This approach is summarized in Table 3.1, as the Bayesian Information Theory based

Gene Regulatory Network (BITGRN) reconstruction algorithm. Along with incorpo-

rating the aforementioned concepts, the approach also addresses another important is-

sue: handling weak regulations. It is well known that gene regulations are not equal

in strength and some of the regulations can be quite weak. While adding parents using

the above procedure, if we have added some parents to a gene, and if the remaining un-

certainty is due to some weakly regulating parent, the CMI (between the gene and the

weakly regulating parent, given the already added parents) might not remain statistically

significant. It is to be noted that this can also happen due to noise; however, since the ex-

pression profiles are discretized, the effect of noise would be appreciably low. Hence we

can safely consider that if the CMI value is greater than (β x significance threshold), the
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1. for each gene Xi ∈ X1,...,n do
2. Pac(Xi)← ∅
I Initial empty parent set
3. maxMIik ← 0
4. attemptFailed← false
5. while ((|Pac(Xi)| ≤ maxParents & (attemptFailed = false)) do
I maxParents is the maximum number of parents that is allowed per gene
6. CPk(Xi)← findPromisingParentSet(Xi, Pac(Xi))
7. for each Xk ∈ CPk(Xi) do
8. miik ← 2N ×MI(Xk[t], Xi[t+ 1]|Pac(Xi[t]))
9. if (miik ≥ maxMIik) then
10. maxMIik ← miik
11. maxK ← Xk
12. end if
13. end for
14. j ← |Pac(Xi)|+ 1
15. lik ← χ(α, dfik)
I α is the confidence level

where dfik =

 (ri − 1)(rik − 1)
∏j−1
m=1 rim, j ≥ 2

(ri − 1)(rik − 1), j = 1
and rim = config(Xm), such that Xm ∈ Pac(Xi)

I config(Xm) is the number of possible states/values that gene Xm can take
16. if (((Pac(Xi) 6= ∅) & (maxMIik ≥ β ∗ lik)) | (maxMIik ≥ lik)) then
17. Pac(Xi)← Pac(Xi) ∪maxK
18. end if
19. if (maxMIik < lik) then
20. attemptFailed← true
21. end if
22. end while
23. end for

Table 3.1: Algorithm BITGRN

candidate gene can be treated as a parent. In essence, the β value qualifies the amount of

noise present in the data, and typically has a value in the range [0.2, 0.4].

Referring to Table 3.1, the algorithm iterates for each gene (lines 1-23), trying to add

parents for the current gene under consideration. Lines 2-4 initialize variables, and lines

5-22 iteratively add parents to the current gene under consideration. In line 6, probable

parents for the current gene are selected using the findPromisingParentSet routine. This

routine adds the capability of incorporating any additional information that we have re-

garding that gene. For example, if we have a-priori biological information about a partic-

ular gene violating specified preconditions for becoming a regulator of another gene, this

can be included in the routine to exclude that gene as a potential parent (e.g., most yeast

networks do not have auto regulations1, although they may contain feedback loops).

1a gene regulating itself
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Lines 7-13 find the parent which provides the maximum amount of reduction of uncer-

tainty about the gene under consideration. Lines 14-15 initialize related variables used

for testing conditional independence relations, and finally, lines 16-21 conduct the condi-

tional independence testing, setting required flags to indicate whether iterative addition

of parents to this gene should continue further or not.

3.3 Salient Features of Experimental Setup

DNA microarray datasets are one of the primary tools which are used for the reconstruc-

tion of GRNs. DNA microarray experiments can be divided into two main types: static

and time series. In static expression experiments, a snapshot of the expression of genes

from a number of samples at a given instant in time is measured. For example, in a type

of static microarray experiment where study of the mechanism of a particular disease is

done, researchers measure and compare gene expression levels in tissue samples taken

from individuals with and without the disease. In time series experiments, expression

levels are measured in a single sample at a number of points in time. Compared to static

experiments, time series microarray data has greater scope and application for gene reg-

ulatory network study, since gene expression itself is a temporal process. Most of the ap-

plications of time series microarray experiments can be classified into one of four broad

categories [18]. The first among these is uncovering the dynamics behind various biolog-

ical systems, e.g., the cell cycle or the circadian clock in mouse and humans [18,167,218],

and also various aspects of the biological systems in yeast [49,214]. Secondly, researchers

can use time series experiments to determine genetic responses to various conditions

of interest, such as gene knockouts [260], stress conditions [81], and drug administra-

tion [121, 219]. The third category is development related, where time series expression

experiments can be used to study development at the molecular level, and to identify

genes that control, or play a key role in different stages of development. Study of the

nervous system development and stem cell differentiation [11, 102] are some important

examples of processes that have been studied in this way. Finally, temporal microarray

experiments can be used to shed light on disease progression by revealing the genetic

changes underlying observable symptoms [11, 18, 121]. Thus, temporal expression data
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clearly has the potential to generate a great deal of biological knowledge. Hence, in all

the experiments that we report in this thesis, we will use time series microarray data.

Since our method assumes that data is discrete, in the simulation results described

here, we use the Persist [150] algorithm to discretize the data into 3 levels (corresponding

to normal condition, up regulation and down regulation). The algorithm is based on the

Kullback-Leibler divergence between the marginal and the self-transition probability dis-

tributions of the discretization symbols2. Based on the argument that one discretization

is better than another if the resulting states show more persisting behavior, the method

uses the Kullback-Leibler divergence of the marginal and self-transition probability dis-

tributions of the symbols as the quality measure used for persistence. Persist achieves

significantly higher accuracy than various existing methods (e.g., equal width and equal

frequency histogram methods, k-means and HMM based methods) and is robust against

noise [150].

We used a value of 0.90 for the confidence level (α). Based on the justifications given

later at the end of this section, for the comparison of BITGRN with various other methods,

we have used the beta value of 0.2 for biological and synthetic networks with noisy data,

and a beta value of 0.4 for other networks (synthetic networks having a large number

of time points). The maxParents parameter (i.e., the maximum number of parents a gene

can have) was set to 4. For all the experiments related to synthetic network, we used 3

different datasets for each experiment and combined these 3 datasets using the procedure

described in [222, 250].

We will briefly summarize the idea of dataset combination using Figure 3.2 as an

illustration. In the figure, there are M datasets, and we are trying to asses whether gene

A is a parent of gene B, given that we have already added gene C as a parent. In this

case, since A and C are parent/parent candidate, they act as the antecedent, and thus the

alignment needs to be done in a way so that data at a time point for the parents/parent

candidates gets aligned with data for the child at the next time point. This process is

applicable for all the M datasets (see the figure). The shaded boxes indicate the data

points which will be used for calculating mutual information and conditional mutual

information.
2The concept of symbolic time series analysis is built upon phase-space partitioning for encoding nonlin-

ear system dynamics from observed time series data, followed by construction of a finite state space model
from a symbol sequence [48].



CHAPTER 3. INFORMATION THEORETIC BAYESIAN APPROACH 69

A(t) 

B(t+1) 

C(t) 

Dataset 1 Dataset 2 Dataset M … 

… 

… 

Figure 3.2: Illustration of how multiple sources of data can be combined with an empha-
sis on correct alignment

For the synthetic networks used in this study, we do not presume any prior knowl-

edge; hence, the findPromisingParentSet routine allows self loops (i.e., auto-regulation)

for these networks. However, for real-life networks auto regulations are not common.

Hence, for the real-life networks that we consider in this chapter, when generating candi-

date parents for a gene under consideration, the findPromisingParentSet routine excludes

the same gene, so that it can not be considered as a potential parent.

The evaluation of the proposed technique is carried out by both synthetic networks

and real-life biological networks of Saccharomyces cerevisiae (yeast), and E. coli. The overall

accuracy of the inference method and correctness of the modeling approach is evaluated

by the four well known performance measures, namely Se, Sp, Pr and F, defined next.

The terms, TP, FP, TN and FN, used in the following expressions respectively mean the

number of true positives, number of false positives, number of true negatives and num-

ber of false negatives.

1. Sensitivity(Se): It measures the proportion of true connections which are correctly

inferred by the algorithm. It is defined as follows.

Se =
TP

TP + FN
(3.5)

2. Specificity (Sp): Specificity is defined as follows.

Sp =
TN

TN + FP
(3.6)
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3. Precision (Pr): Precision is proportional to the inferred connections which are cor-

rect. It is defined as follows:

Pr =
TP

TP + FP
(3.7)

4. F-score (F): Biologically, a good reconstruction algorithm should infer as many

correct arcs as possible, in addition to the criteria that most of the inferred arcs

should be correct. The F-score measure is the harmonic mean of Se and Pr [261] and

represents a compromise between these two objectives:

F =
2 Pr Se

Pr + Se
(3.8)

3.4 Experimental Results Using Synthetic Network

3.4.1 5-Gene Synthetic Network

As a first step towards evaluating the performance of our method, we consider the 5-

gene target network given in Figure 3.3 [187, 190]. For this network, its initial conditions

and S-system model parameters (g and h) are available in the literature [187,222]. We use

the Runge-Kutta integration method to obtain the 3 sets of time series data, each having

30 time points. We use 10 such different combined datasets in our simulations and cal-

culate the above four performance measures using our BITGRN technique and compare

the performance with five different DBN techniques reported earlier, namely, DBN with

nonparametric regression, DBN (NPR) [114], BANJO [255], dynamic programming based

DBN method, DBN(DP) [70] and BNFinder (BDe and MDL) [66]. The results of this com-

parative study are shown in Table 3.2. Referring to Table 3.2, the results for the network

having the best performance measure are given in row 1, whereas the average and stan-

dard deviation of the measures (corresponding to the 5 different combined datasets) is

given in row 2. Row 3 provides the values for the dynamic programming based DBN

method. Rows 4, 5 and 6 give the values for the nonparametric regression based DBN

method, BANJO, and BNFinder methods respectively. We observe that the average val-

ues of sensitivity and F-score of our method are higher than all the other algorithms. In

terms of specificity and precision, BANJO performs better compared to BITGRN. How-

ever, BANJO infers a far fewer correct interactions. Also, with regard to the balance
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between sensitivity and precision, BITGRN performs much better compared to BANJO,

indicating a better overall performance by BITGRN.

pool4 X4(mRNA)

X5

pool1 X1(mRNA)

X2(Enzyme)

pool5

pool2

X3pool3

+ +
- -

+

+

- -

(Inducer Protein)

(Regulator 
Protein)

Figure 3.3: 5-gene target network. Source: [190].

Se Sp Pr F

BITGRN(Best) 0.75 0.92 0.9 0.82

BITGRN 0.67± 0.09 0.86± 0.08 0.82± 0.11 0.74± 0.091

DBN(DP) 0.5 0.89 0.82 0.62

DBN(NPR) 0.67 0.77 0.73 0.70

BANJO 0.47± 0.11 0.97± 0.04 0.93± 0.09 0.62± 0.1

BNFinder+BDe 0.27± 0.09 0.69± 0.12 0.46± 0.14 0.33± 0.097

BNFinder+MDL 0.35± 0.12 0.58± 0.09 0.43± 0.09 0.38± 0.011

Table 3.2: Performance comparison of BITGRN with DBN(DP), DBN(NPR), BNFinder
and BANJO on 5-gene S-system based synthetic network

Effect of beta: To study the effect of beta, we ran the algorithm with different beta val-

ues. The results are shown in Figure 3.4. We observe from the results that increasing the

value of beta has a positive effect on the specificity and precision. This is expected since

an increasing value of beta means a stricter test of conditional independence. However,

as we observe from the other two measures, the number of inferred arcs in the case of

high beta values is low, thereby reducing the value of sensitivity and F-score. We observe

that from the beta value 0.4 onwards, there is a 9 percent increase in specificity and 13

percent increase in precision. On the other hand, in the same region, sensitivity reduces

by 22 percent, and F-score reduces by around 15 percent. The beta value of 0.4 can thus

be considered a suitable cut-off point for a balance of Se, Sp, Pr and F.

3.4.2 20-Gene Synthetic Network

To study the effect of the number of samples and noise, we use a larger network, contain-

ing 20 genes, as shown in Figure 3.5 [163]. The network should also enable us to study the
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Figure 3.4: Effect of changing beta on the 5-gene S-system based network. X-axes: Beta
values; Y-axes: Performance measures.

effect of beta on a larger network. We used the same parameters as described in Noman

et al. [163] (shown in Table 3.3) for data generation. This artificial network models several

types of regulations (for example, cyclic regulation and feedback regulation) commonly

found in biochemical networks, which makes it a standard simulation model [163]. For

our experiments, the number of data points was varied to observe the effect of data points

(20 and 30 data points for each dataset). To study the effect of noise, we added 6 different

levels of noise (random Gaussian noise with zero mean and variance, σ2 = 0.05, 0.1, 0.2).

The results are summarized in Figures 3.6 and 3.7. From the figures, we observe that in-

creasing the number of data points improves the performance of the method, especially

with regard to handling noisy data. As an example, we see from the 60-samples data

(3 × 20) 3.6 that due to the increase of noise from 0.05 to 0.20, the sensitivity falls from

0.4 to 0.33 (for noise with variance 0.1) and then to 0.23 (variance 0.2). However, for the

90-samples data, the decrease is much less (0.4 to 0.35 and then to 0.345). The same is

true for precision, and since F-score is a harmonic mean of these two, it also shows a

similar trend. The specificity values are high for both the datasets, and they remain a
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bit insensitive to noise levels (albeit the same trend is visible also here). With regard to

the beta values, we observe that for the 60-samples data, there is a slightly downward

trend of sensitivity for increasing values of beta. However, precision takes a slightly up-

ward path, and the overall F-score remains largely less sensitive to the beta changes with

a slightly upward trend with increased values of beta. Specificity increases with higher

values of beta. This trend of higher values for the higher beta values is expected since as

mentioned, increasing the value of beta means a stricter conditional independence test.

However, for the higher number of samples, the trend of an increase in performance with

an increase in beta values is much less pronounced; we see a slightly downward trend of

F-score for these datasets, especially for higher noise levels, and an expected downward

trend of sensitivity with increasing beta values (corresponding to stricter conditional in-

dependence tests). This supports our hypothesis that when the noise levels are high, a

very strict conditional independence may not help much. The number of false predictions

decreases with stricter conditional independence tests for the 30 samples per dataset case

also, although this time the slope is less, and for higher noise levels, the increase is even

less pronounced.

G5
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G18

G12
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Figure 3.5: 20-node target network
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αi, βi 10.0

g3,15 = −0.7, g5,1 = 1.0, g6,1 = 2.0, g7,2 = 1.2, g7,3 = −0.8, g7,10 = 1.6,

g8,3 = −0.6, g9,4 = 0.5, g9,5 = 0.7, g10,6 = −0.3, g10,14 = 0.9, g11,7 = 0.5,

gi,j g12,1 = 1.0, g13,10 = −0.4, g13,17 = 1.3, g14,11 = −0.4, g15,8 = 0.5, g15,11 = −1.0,

g15,18 = −0.9, g16,12 = 2.0, g17,13 = −0.5, g18,14 = 1.2, g19,12 = 1.4, g19,17 = 0.6,

g20,14 = 1.0, g20,17 = 1.5, gi,j = 0.0 otherwise

hi,j 1.0 if (i = j), 0.0 otherwise

Table 3.3: Parameter values used for generating data for 20-node S-system network

20 Samples Per Dataset
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Figure 3.6: Effect of beta and noise on the performance of BITGRN using 60 samples (20
samples per dataset) on the 20-node S-system network. X-axes represent the beta values
(0.1 to 0.9). Y-axes represent the corresponding performance measures. The three noise
levels in three different colors are indicated in the legend.

3.5 Experimental Results Using Real-Life Biological Data

3.5.1 IRMA Network

Existing literature has frequently used a dataset from Spellman et al. [214], which was

published in 1998. One of the main problems with this dataset is that it is highly noisy,

and the effect of endogenous genes is quite prominent. Hence, if one takes a small num-

ber of genes for testing, combined with the fact that there is no benchmark network topol-

ogy for the overall gene network, it becomes very difficult to quantitatively assess the

effectiveness of the method. However, it should also be mentioned here that the dataset

of Spellman et al. is still frequently used as a test dataset. The point being emphasized

is that for quantitative assessment, it is better to use datasets which have a better-known

network topology and a relatively less-noisy dataset. As a result, to validate our BITGRN

method with a real-life biological gene regulatory network, we investigate a recent net-

work reported in Cantone et al. [35]. In that significant work, the authors built a network,
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30 Samples Per Dataset
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Figure 3.7: Effect of beta and noise on the performance of BITGRN using 90 samples (30
samples per dataset) on the 20-node network. X-axes represent the beta values (0.1 to
0.9). Y-axes represent the corresponding performance measures. The effect of the three
noise levels in three different colors are indicated in the legend.

called IRMA, of the yeast Saccharomyces cerevisiae, for in vivo benchmarking of reverse-

engineering and modeling approaches. They tested the transcription of network genes by

culturing the cells in the presence of galactose and glucose. The network is composed of

five genes regulating each other; it is also negligibly affected by endogenous genes. The

time series and steady-state expression data are both measured after introducing differ-

ent perturbations to the network. This is one of the first attempts at building a reference

dataset having an accurately known target network [261]. There are two sets of gene pro-

files called Switch ON and Switch OFF for this network, each containing 16 and 21 time

series data points, respectively. The former corresponds to the shifting of the growing

cells from glucose to galactose medium, the latter to the reverse phase. Some edges in

the original network actually represent protein level interactions and since they are not

directly gene-gene regulation, a simplified network is also reported. We compare our

reconstruction method with 4 other methods, namely, TDARACNE [261], BANJO [255],

ARACNE [139], and BNFinder (both BDe and MDL). These methods have previously

been successfully used for reconstructing the networks under consideration.

IRMA ON Dataset

The results for the ON state data are shown in Figure 3.8. Of the total 8 arcs for the orig-

inal network, our method correctly identifies 5 arcs. One arc has a wrong direction. For
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the simplified network, the method recovers 4 edges, all of which are correct. The per-

formance comparison amongst various methods is shown in Table 3.4. From the table,

we can see that BITGRN clearly outperforms all the other algorithms. In terms of sen-

sitivity, BITGRN and TDARACNE perform the best. However, in terms of all the other

performance measures, BITGRN outperforms the other algorithms, both for the original

network and also the simplified network. The effect of beta values on the performance of

the algorithm is shown in Figure 3.9. From the graph, we get observations similar to the

performance on the 20-node synthetic network data with higher noise levels. Both sen-

sitivity and precision continue to decrease with stricter conditional independence tests,

and the F-score thus follows this trend. Sensitivity remains indifferent to the changes in

beta.
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Figure 3.8: Yeast network (ON dataset) and BITGRN inferred network. (A) Target net-
work. (B) Inferred network by BITGRN. (C) Target network, simplified. (D) Inferred
network, simplified.

IRMA OFF Dataset

As has been indicated in Zoppoli et al. [261], the OFF dataset lacks the presence of a

great stimulus, making it difficult to reconstruct the exact network. Even with this lim-

itation of the OFF dataset, our proposed method performs better. The comparison is

shown in Table 3.5. As we can see, for the original network, the F-score and the sensi-

tivity are pretty high compared to the other methods. BANJO performs better in terms
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Figure 3.9: Effect of Beta on the performance of BITGRN, using IRMA ON dataset

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

BITGRN 0.63 0.94 0.83 0.71 0.67 1.0 1.0 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

ARACNE 0.60 - 0.50 0.54 0.50 - 0.50 0.50

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

Table 3.4: Performance comparison of BITGRN based on IRMA ON dataset

of specificity and precision, albeit the F-score and especially sensitivity are much lower

compared to BITGRN. For the simplified network, BANJO only performs better in terms

of the number of false predictions (specificity), and BITGRN performs best in terms of all

the other performance measures. Hence, it can be considered that BITGRN is the better

overall performer.

The effect of beta values on the performance of the algorithm is shown in Figure 3.10.

We get observations similar to the ON dataset, and see that sensitivity continues to fall

overall with increased values of beta. Although precision shows an initial upward trend

with increasing beta, after a certain beta value (in this case 0.2) the performance degrades

with stricter conditional independence tests. Following this trend, F-score initially has an

upward trend, albeit, after a beta value of 0.2, a gradual performance degradation occurs.

Specificity increases with increasing values of beta, rising from 0.71 to 0.82 while the beta

values change from 0.1 to 0.9.
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Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

BITGRN 0.63 0.76 0.56 0.59 0.83 0.89 0.71 0.77

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44

ARACNE 0.33 - 0.25 0.28 0.60 - 0.50 0.54

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

Table 3.5: Performance comparison of BITGRN based on IRMA OFF dataset

Effect of Beta− IRMA OFF
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Figure 3.10: Effect of Beta on the performance of BITGRN, using IRMA OFF dataset

3.5.2 SOS DNA Repair Network of E. coli

We analyze the well known SOS DNA Repair Network in Escherichia coli as shown in

Figure 3.11(A). This GRN is well known for its responsibility of repairing the DNA if

it gets damaged. It is the largest, most complex, and best understood DNA damage-

inducible network to be characterized to date.

The expression of the genes in the SOS regulatory network is controlled by a complex

circuitry which involves the RecA and LexA proteins [149]. Normally, LexA acts as the

master repressor of more than 20 genes, including lexA and recA genes. This repression

is done by its binding to the interaction sites in the promoter regions of these genes.

When DNA damage occurs, one of the SOS proteins, RecA, acts as a sensor. By binding

to single-stranded DNA, it becomes activated, senses the damage and mediates LexA

autocleavage [149]. The drop in LexA levels in turn stops the repression of the SOS genes

and activates them. When the damage has been repaired, the level of activated RecA
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drops and it stops mediating LexA autocleavage. LexA level in turn increases, starting

repression of the SOS genes, and the cell then returns to its normal state.

The expression datasets of the SOS DNA repair system were obtained from Uri Alon

Lab [8]. These data are expression kinetics of 8 genes, namely uvrD, lexA, umuD, recA,

uvrA, uvrY, ruvA and polB. Four experiments were carried out with various UV light

intensities (Exp. 1 and 2:5Jm−2, Exp. 3 and 4:20Jm−2). In each experiment, the above

8 genes were monitored (along with other genes) at 50 instants which are evenly spaced

by 6 minutes intervals.

The results corresponding to Experiment 1 are presented in Figure 3.11(B). Along

with our result, we include the results from BANJO, TDARACNE and BNFinder in Fig-

ure 3.11(C)-(F) and the target network in 3.11(A). From the results in Figure 3.11, we

observe that our method correctly identifies lexA as one of the ’hub’ genes for this net-

work. Again, the exact ground truth for this network is not precisely known, and hence it

has not been possible to calculate the well known performance measures. Instead, using

the known interactions obtained from the literature [116, 163], an analysis of correct and

incorrect predictions by our method was carried out and it is shown in Table 3.6. We

observe that four inferred interactions by our proposed method are correct. It success-

fully infers lexA as the regulator of uvrA, ruvA and umuD. Also, considering the indirect

regulation of RecA through LexA, one more interaction, namely recA→polB can also be

considered correct. In contrast, 3 of the 5 identified interactions by TDARACNE [261]

are correct. Both BNFinder+BDe and BNFinder+MDL successfully identify regulation of

ruvA, polB and uvrA by lexA. In addition, the regulation of umuD by recA can also be

considered correct (indirect regulation). Although BNFinder (both BDe and MDL) finds

the same number of correct interactions as BITGRN, they also infer a lot of incorrect arcs

(seven and six incorrect arcs, respectively), when compared to BITGRN. Finally, BANJO

infers the highest number of correct arcs (5); however, in terms of incorrect arcs, it is also

the highest (eight incorrect arcs). Thus, overall we see that the performance of BITGRN

is the most balanced, with respect to the number of correct and incorrect predictions.

Further, considering the results corresponding to Experiments 2, 3 and 4 (see Fig-

ure 3.12 for results corresponding to these experiments), we see that for both Experiments
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Figure 3.11: Reconstruction of SOS DNA Repair Network (Experiment 1). (A) Target
Network. (B) Network Inferred by BITGRN. (C) Network Inferred by TDARACNE. (D)
Network Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network In-
ferred by BNFinder+MDL.
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Figure 3.12: Reconstruction of SOS DNA Repair Network (Experiments 2, 3, 4). (A) Ex-
periment 2. (B) Experiment 3. (C) Experiment 4.

2 and 3, BITGRN correctly infers lexA as one of the main hubs. BITGRN infers five cor-

rect arcs for Experiment 2, and two from the Experiment 3 dataset. For Experiment 4, it

infers three correct and three incorrect arcs.

To find out a ’consensus’ value for beta, we consider Figures 3.4, 3.6, 3.7, 3.9 and 3.10.

The results come from both synthetic and real-life biological data, and contain both noise-

free (the 5-gene synthetic network results) and noisy datasets (20-gene synthetic net-

work and the IRMA datasets), and also, large datasets (the synthetic datasets) and small

datasets (IRMA datasets). We observe from the graphs that for noiseless data usually

the higher the beta value, the better is the performance. However, as we see from Fig-

ure 3.4, increasing beta value has negative effects on the true arcs discovered, and thus
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Regulator Target correct/

incorrect

uvrA correct

lexA umuD correct

ruvA correct

recA polB correcta

uvrD uvrY incorrect

uvrY recA incorrect

uvrY lexA incorrect

umuD uvrD incorrect
a correct considering indirect
regulation of RecA through
LexA

Table 3.6: Analysis of individual interactions inferred by BITGRN - SOS DNA Repair
Network

there is a need for a balance between true arcs versus correct predictions. For the noisy

and real-life datasets (which inherently contain some noise), we observe that the need

of a balance is even more evident. Considering Figures 3.6, 3.7, 3.9 and 3.10, and tak-

ing a disjunctive approach, we observe that when the number of samples is low or the

data is noisy, starting from beta value 0.2, there is usually an overall downward trend in

the performance measures, thus suggesting a beta value of 0.2. Similar consideration for

noise-free datasets suggest a value of 0.4 for beta. It may be noted here that the specificity

value will always increase with increasing values of beta; however, usually for BITGRN,

the specificity values are consistently higher compared to other approaches due to rigor-

ous statistical significance based conditional independence tests, so the effect of higher

specificity for higher values of beta is of comparatively less significance.

3.6 Summary

In this chapter, we proposed BITGRN, a novel MI/CMI based dynamic Bayesian network

learning framework for reconstructing gene regulatory networks. The method employs

CI tests pertaining to information theoretic quantities to find statistically significant ge-

netic interactions, thereby reconstructing gene regulatory networks with high accuracy.
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Studies on both synthetic and real biological datasets showed good performance. Even in

cases where other algorithms perform poorly due to a lack of stimulus, the BITGRN algo-

rithm performed much better compared to other related algorithms. The high accuracy of

the proposed approach is clearly demonstrated with the aid of simulation experiments.

The method is flexible in the sense that it can allow the incorporation of additional biolog-

ical knowledge, and a ’tunable’ parameter makes it capable of handling weak regulations

which is particularly true for gene regulatory networks. We also prescribed the values

that should be used in different scenarios based on simulation studies.

Nevertheless, currently the proposed approach can only model time-delayed interac-

tions among genes. However, in biological systems, genes may interact with other genes

either almost instantaneously, or with time delay. In the next chapter, we extend the

concepts and methods developed in this chapter to incorporate both instantaneous and

time-delayed interactions for a more accurate and realistic GRN modeling.



Chapter 4

Realistic Modeling of Genetic

Interactions

4.1 Introduction

In the previous chapter, we proposed a novel algorithm which learns the structure of a

GRN employing MI/CMI based CI tests. A standard DBN based modeling technique

was used where it was assumed that all gene-gene interactions in the GRN are time-

delayed. However, in any biological system, various genetic interactions occur concur-

rently amongst different genes with some interactions being time-delayed and some oc-

curing almost instantaneously. To the best of our knowledge, there is no systematic study

reported on modeling these two types of genetic interactions together. In this chapter,

we propose a modeling framework which, unlike standard DBN based GRN reconstruc-

tion techniques, provides more accurate and realistic representation of the biological pro-

cesses - by modeling both instantaneous and time-delayed interactions.

When considered from a biological perspective, instantaneous regulations in GRNs

represent the effect when a change in the expression level of a regulator gene is carried

on to the regulated gene (almost) instantaneously1. In these cases, the effect will be re-

flected almost immediately in the regulated gene’s expression level [158]. On the other

hand, in cases where regulatory interactions are time-delayed in nature, the effect may be

1The time it takes to carry the effect will always be greater than zero. However, if the delay is small
enough so that the regulated gene is affected before the next data sample is taken, it can be considered an
instantaneous interaction.

83



CHAPTER 4. REALISTIC MODELING OF GENETIC INTERACTIONS 84

 

G1(0)

G2(0)

G3(0)

G1(1)

G2(1)

G3(1)

G1(tn)

G2(tn)

G3(tn)

Time 0 Time 1 Time tn

Figure 4.1: Proposed network structure for the BN based modeling. Arcs between genes
across time slices (time-delayed interactions) are accompanied by arcs within time slices
(instantaneous interactions).

seen on the regulated gene after some time. To the best of our knowledge, the currently

existing techniques that use time series data make simplifications and assume that the

interactions can be either of these but not both, i.e., they assume that either the effect is

instantaneous or it maintains a d-th order Markov relation with its regulator (i.e., regu-

lations occur between two time slices, which may be d time steps apart, d = 1, 2, . . . ).

For example, all BN based GRN reconstruction methods consider the regulatory effects

to be instantaneous and cannot model time-delayed interactions directly. In contrast, de-

veloping dynamic probabilistic networks [77] requires defining an initial network and a

transition network. This type of representation also does not capture both types of in-

teractions. DBN based methods assume that regulations occur with a certain amount

of time delay. Thus, they cannot model instantaneous interactions. In this chapter, to

model realistic genetic interactions, we unify the approaches of BN and DBN in a sys-

tematic manner and propose a framework shown in Figure 4.1 for capturing both types

of interactions.

In this chapter, to achieve the objective of capturing both instantaneous and time-

delayed interactions, we first describe a modeling framework that can represent both

these interactions. However, to harness the power of the modeling framework, one needs

a learning strategy. The learning for this modeling framework, in general, can be accom-

plished in two ways: by utilising the information theory based concepts developed in

the previous chapter, or employing a score and search strategy. We investigate both these

approaches. For learning based on the proposed framework, we first present a two-phase

GRN inference algorithm that can sequentially learn these two types of interactions. Next,

we employ a score+search based approach, using a decomposable scoring metric and a

genetic algorithm based evolutionary strategy for searching the large space of possible
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solutions. We assess the performance of both the algorithms, using synthetic networks

as well as real-life biological networks, with regard to the four well known performance

measures used in the previous chapter. The results from these sequential learning ap-

proaches prove that both these types of interactions are necessary and essential for accu-

rate and realistic modeling.

The rest of the chapter is organized as follows. In Section 4.2, we present the frame-

work that we propose for representing both instantaneous and time-delayed interactions.

Section 4.3 explains the proposed methodology and its formalization using information

theoretic quantities. Section 4.4 discusses the synthetic and real-life networks used for

assessing our approach and also its comparison with other techniques. Section 4.5 pro-

poses a GA based strategy using the proposed framework, and its evaluation is shown

in Section 4.6. Section 4.7 concludes with some observations and remarks.

4.2 The Modeling Framework

To employ information theoretic quantities to the problem of reconstructing a GRN from

data that can capture both instantaneous and time-delayed interactions, let us model

a GRN containing n genes (denoted by X1, X2, Xn), with a corresponding microarray

dataset having tn time points. A DBN based method would try to find associations

between genes Xi and Xj by taking into consideration the data xi1, . . . , xi(tn−1) and

xj2, . . . , xjtn or vice versa (small case letters mean data values in the microarray). This

will effectively enable it to capture single-step (corresponding to a first-order Markov as-

sumption) time-delayed interactions. On the other hand, a BN based strategy would use

the whole tn time points and it would capture regulations that are deemed to be effective

instantaneously.

Now, let us double the number of nodes in the way shown in Figure 4.2. The first n

nodes of this new network model will correspond to the data xk1, . . . , xk(tn−1) whereas

the second half will contain xk2, . . . , xktn , k = 1, 2, . . . , 2n. Hence, from this data, if we use

the BN formalism to construct a final network where we see, for example, edgeX1 → X
′
2,

we conclude that the time-delayed interaction betweenX1 andX2 is recovered. Similarly,

if we find that X2 → X5, we say that the instantaneous interaction between X2 and X5 is

recovered. In this way, we can capture both types of interactions.
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It should be noted that, along with this formalism, the following four assumptions

are also mandatory to ensure consistency:

Assumption 4.2.1. DAG Constraint. The intra-slice portion of the network must be a DAG.

In other words, since the leftmost n-columns are representative of the Bayesian network (instan-

taneous interactions), this portion must correspond to a network that does not contain any cycle.

The second assumption ensures that information flows in the correct direction.

Assumption 4.2.2. Information flow constraint. The inter-slice arcs must not contain any

backward arcs. All arcs from genes in a particular time point must go to genes which are in a time

point later than the current gene under consideration.

Further, we also make the following first-order Markov assumption to account for

single-step time-delayed interactions:

Assumption 4.2.3. First-Order Markov Assumption. The first-order Markov assumption

says that given the current observationX[t], the next observationX[t+ 1] is independent of past

observations,X[0], . . . ,X[t− 1] (or put more simply: the future is independent of the past given

the present). Formally,

P (X[t]|X[t− 1], . . . ,X[0]) = P (X[t]|X[t− 1]) (4.1)

Next, we need to make the stationarity assumption, which is necessary for the BN/DBN

based reconstruction techniques:

Assumption 4.2.4. Stationarity. The transition probability P (X[t]|X[t− 1]) is independent of

t. In other words, interactions remain in existence irrespective of time.

X1 X2 . . . Xn X
′
1 X

′
2 . . . X

′
n

X1 0 1 . . . 0 1 0 . . . 1

X2 0 0 . . . 1 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Xn 0 0 . . . 0 0 1 . . . 1

Figure 4.2: The adjacency matrix based approach for the representation
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Under Assumptions 4.2.1- 4.2.4, this DBN based model encodes the joint probability

distribution over the random variables (corresponding to the genesX1, . . . , Xn)X[0]
⋃
X

[1]
⋃
. . .X[T ], which is defined by Equation 4.2.

P (x[0], . . . ,x[T ]) =
T∏
t=1

P (x[t]|x[t− 1]) (4.2)

Finally, the transition probability defined by this network model is defined as follows.

P (x[t]|x[t− 1]) =
n∏
i=1

P (xi[t]|Pa(Xi[t])) (4.3)

Here, as we already defined in the previous chapter, the uppercase letters denote

genes (i.e., random variables corresponding to the gene’s expression value), lowercase

letters denote specific values taken by these variables, and boldface letters denote sets of

variables. Xi[t] denotes the expression value of gene Xi at time t.

We will demonstrate the application of this modeling framework in two ways. First,

for smaller scale networks and for the purpose of demonstrating the concept of the de-

tection of two types of interactions, we apply a two-phase hill-climbing search based

approach using the information theoretic properties introduced in the previous chapter.

Next, we propose a more sophisticated score and search based algorithm, using a suitable

evolutionary search technique, that should cope better with more complex networks. We

explore both these approaches in the following sections.

4.3 GRN Reconstruction with Contemporaneous Arcs Using In-

formation Theory

4.3.1 The Search Strategy for Time-Delayed Interaction Detection

We employ the same search strategy for the inter-slice (time-delayed) arcs as we proposed

in the previous chapter: using MI/CMI based conditional independence tests. As we ex-

plained in the previous chapter, regulatory relationships can be assessed by using Mutual

Information (MI) based CI tests. A low value of MI between two genes implies the genes

are conditionally independent while on the other hand, a high MI value, means a higher
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likelihood of a relation between the genes. This interaction may be a direct or indirect

relation. This poses a problem which, however, can be overcome by using the Data Pro-

cessing Inequality (DPI) [60], which states that if nodes A and C are connected through

an intermediate node B, then MI(A,C) = min{MI(B,A),MI(C,B)}, i.e., the lowest MI

value is always for the indirect relationships. Hence, while adding the first parent, we

calculate pair-wise MI between the gene under consideration, and all the parent candi-

dates. The parent candidate which has the highest MI with the gene under consideration

is ultimately selected as the parent.

Next, while adding subsequent parents, we calculate how much additional informa-

tion we get about Xi by adding a candidate parent (Xj) as a parent of this gene, using

MI(Xi, XCPk(Xi)|Pac(Xi)), where XCPk(Xi) represents genes that are in the current can-

didate parent set of the gene Xi and Pac(Xi) represents the current parent set of Xi. The

candidate gene which can best explain the unexplained uncertainty of Xi relative to the

current parent set of this gene is added as the parent of Xi.

However, merely getting a high MI value does not suffice to make it statistically sig-

nificant. To assess whether the gain in information is statistically significant, we use the

theorem of Kullback [123]. According to the theorem, for a particular confidence level α,

determining the value of χ(α, dfik) such that

p(χ2(dfik) ≤ χ(α, dfik)) = α (4.4)

represents a statistical test of conditional independence [60]. Here dfik represents the

degrees of freedom defined by the following equation:

dfik =


(ri − 1)(rik − 1)

∏j−1
m=1 rim, j ≥ 2

(ri − 1)(rik − 1), j = 1

(4.5)

where rim is defined by:

rim = config(Xm),

Xm ∈ Pac(Xi)

(4.6)
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here config(Xm) is the number of possible states/values that gene Xm can take. Based

on the theorem, we can say that the test for statistical significance would assert that the

genes are dependent if, in a data set containing N elements,

2N.MI(Xi, XCPk(Xi)|Pac(Xi))� χ(α, dfik) (4.7)

Conversely, the genes are conditionally independent if

2N.MI(Xi, XCPk(Xi)|Pac(Xi)) < χ(α, dfik) (4.8)

Thus, if the maximum CMI value for the current candidate parent set fails this test,

we stop adding parents to gene Xi.

4.3.2 Finding the Directions of Instantaneous Arcs

The arcs corresponding to time-delayed interactions in the network can be deduced uniquely

since for this part, we are effectively calculatingMI(Xk[t], Xi[t+1]|Pac(Xi[t])). However,

this is not the case with instantaneous (intra-slice) arc additions. Since MI is symmetric,

the directions of the instantaneous arcs cannot be uniquely determined. To determine the

direction of the instantaneous arcs, we use the directionality index, DIXY .

The Directionality Index [131] between genes X and Y is defined as:

DIXY =
MIX→Y −MIY→X
MIX→Y +MIY→X

(4.9)

where the quantities MIX→Y and MIY→X are defined by the following equations:

MIX→Y =
1

N

N∑
δ=1

MIδX→Y (4.10)

MIY→X =
1

N

N∑
δ=1

MIδY→X (4.11)

Here, the quantities in the left side of the equation 4.10 and 4.11 quantify the information

that is gained from the gene X (or Y) about the gene Y (or X) at some later point in time

and N is the maximal later point.
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If we assume that the quantity Xδ (or Yδ) is an observable derived from the state of

the gene X (or Y) δ steps in the future, i.e., Xδ : xt+δ = xt (or Yδ : yt+δ = yt), MIδX→Y

and MIδY→X can be defined in terms of Conditional Mutual Information (CMI) by the

following equations:

MIδX→Y = MI (X,Yδ|Y ) (4.12)

MIδY→X = MI (Y,Xδ|X) (4.13)

The value of DIXY ranges from -1 to +1. A positive value means that the direction of

regulation betweenX and Y is fromX to Y , whereas a negative value implies the inverse

direction.

Although Directionality Indices can be used for deducing the direction of regulation,

due to the finite size of the data, it may be erroneous. As a result, while applying the

direction suggested by the directionality index, if any of the conditions listed in part 1

of this Section is violated (e.g., the direction violates the DAG property), we reverse the

direction suggested by the directionality index and, if it does not violate the properties,

we apply that direction to the corresponding edge.

The approaches described in the previous paragraphs are summarized in Table 4.1

as a 2-phase algorithm called GRNCIT (learning GRNs with Contemporaneous arcs us-

ing Information Theory). In the first phase, the inter-slice (time-delayed interactions)

portion of the network is built. The second phase builds the intra-slice (instantaneous

interactions) portion and the directionality index is applied to each instantaneous arc to

determine the direction of interactions. The two networks are then combined to give

a final gene regulatory network. The graphRemainV alid(·) subroutine checks that any

resulting configuration obtained by various operations satisfy the assumptions listed in

Section 4.2. Finally, the findPromisingParentSet(·) subroutine, as described in the pre-

vious chapter, adds the capability of incorporating any additional information that we

have regarding a particular gene. For example, if we have a-priori biological informa-

tion about a particular gene violating specified preconditions for becoming a regulator of

another gene, this can be included in the routine to exclude that gene as a potential par-

ent. In addition, unlike various synthetic networks which are based on S-system based

dynamics, real-life biological networks mostly do not contain auto regulation, and this
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information can be used by this routine. Finally, for the instantaneous arc additions, it ad-

ditionally bars duplicate testing of arc additions (e.g., if a gene has already been added as

a parent of another gene with time-delayed interaction, then there is no need to consider

it as a potential parent for the instantaneous interactions).

Phase 1:

for each gene Xi ∈ Xn+1,...,2n do
CPk(Xi)← findParentCandidates(Xi, Pac(Xi))
find Xk ∈ CPk(Xi) for which MI(Xk[t], Xi[t+ 1]|Pac(Xi[t])) is maximum
if ((maximumMI ≥ χ(α, dfik)) and graphRemainV alid(Xk, Xi)) then
Pac(Xi)← Pac(Xi) ∪Xk

end if
continue inclusion until the above test fails

end for

Phase 2:

for each gene Xi ∈ X1,...,n do
CPk(Xi)← findParentCandidates(Xi, Pac(Xi))
find gene Xk ∈ CPk(Xi) for which MI(Xk, Xi|Pac(Xi)) is maximum
if (maximum MI ≥ χ(α, dfik)) ) then

if ( DIXkXi > 0 and graphRemainV alid(Xk, Xi)) then
Pac(Xi)← Pac(Xi) ∪Xk

else if (graphRemainV alid(Xk, Xi)) then
Pac(Xk)← Pac(Xk) ∪Xi

end if
end if
continue inclusion until the above test fails

end for

combine the two networks and get final network, G

Table 4.1: Algorithm GRNCIT

4.4 Experimental Results for GRNCIT

We evaluate GRNCIT by both synthetic networks and real-life biological networks of

Saccharomyces cerevisiae (yeast) and E. coli. We applied the four performance measures

used previously, namely sensitivity (Se), specificity (Sp), precision (Pr) and F-score (F) for

assessing the overall performance of the algorithm.

We used the Gaussian Kernel estimator to calculate MI [139, 261] from continuous

data. The maximum value of the lag-parameter (δ) for the directionality index calcula-

tions was set to 5 [131]. As our method uses discrete data for the statistical significance

tests, we used the Persist [150] algorithm to discretize the data into 3 levels. The value of

confidence level (α) used was 0.9. For all the experiments related to synthetic network,
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we used 3 different datasets for each experiment and combined these 3 datasets using the

procedure described in Chapter 3, Section 3.3 [222, 250].

4.4.1 Synthetic Network

5-Gene Synthetic Network

As a first step towards evaluating the performance of our method, we consider the 5-

gene target network given in Section 3.3, Chapter 3 (see Figure 3.3) . We use the R-

K integration method to obtain 3 sets of time series data, each having 30 time points.

We use 5 such different ’combined’ datasets in our simulations and calculate the above

four performance measures using our technique and compare the performance with five

other DBN based techniques, namely, BITGRN [157], DBN(DP) [70], DBN(NPR) [114],

BANJO [255], and BNFinder (BDe and MDL) [66]. The results are shown in Table 4.2,

where we observe that the values of Se and F-score of our method are higher than the

corresponding values of the other methods. The Sp and Pr values are also quite high.

Overall, we observe that although for the Sp and Pr values BANJO performs best, the

other two performance measures for this method are much lower. As a result, GRNCIT

achieves the overall best performance.

Se Sp Pr F

GRNCIT(Best) 0.83 0.85 0.83 0.83

GRNCIT(Average) 0.8± 0.09 0.82± 0.04 0.80± 0.02 0.80± 0.05

BITGRN 0.67 0.86 0.82 0.74

DBN(DP) 0.5 0.89 0.82 0.62

DBN(NPR) 0.67 0.77 0.73 0.70

BANJO 0.47± 0.11 0.97± 0.04 0.93± 0.09 0.62± 0.1

BNFinder+BDe 0.27± 0.09 0.69± 0.12 0.46± 0.14 0.33± 0.097

BNFinder+MDL 0.35± 0.12 0.58± 0.09 0.43± 0.09 0.38± 0.011

Table 4.2: Performance comparison of GRNCIT with BITGRN, DBN(DP), DBN(NPR),
BANJO and BNFinder on the 5-gene synthetic network
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Effect of the Number of Data Points and Noise

To study the effect of the number of data points and noise, we use the larger network

shown in Chapter 3, Section 3.3, Figure 3.5. The network is composed of 20 nodes.

We used the same parameters (see Table 3.3) as described by Noman et al. [163] for

data generation. The number of data points was varied to observe the effect of data

points (20 and 30 data points for each dataset). To study the effect of noise, we added

6 different levels of noise (random Gaussian noise with zero mean and variance, σ2 =

0, 0.01, 0.02, 0.05, 0.1, 0.2). Each experiment was repeated using 5 different datasets and

the averages of these results are shown in Figure 4.3. Rectangles are used in the figure for

the results from the 20 data points experiment whereas triangles represent results from

the 30 data points experiment. Vertical lines denote standard deviation. From the fig-

ure, we observe that increasing the number of samples increases both the accuracy of the

method and the noise performance. For higher levels of noise, the more the number of

data points, the better is the performance. Moreover, for low values of noise, the perfor-

mance measures are similar for both the datasets, indicating that the method performs

well with small data samples in these cases.

Se Sp

Pr F

X-axes: noise(variance), Y-axes: performance

Figure 4.3: Effect of noise and data points on the performance of GRNCIT applied to
the 20-node synthetic network. X-axes represent the variance values of the 6 noise levels
used. Y-axes represent the corresponding performance measures. Rectangles - 20 data
points (per dataset) experiment, triangles - 30 data points (per dataset) experiment. Ver-
tical lines denote standard deviations.
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4.4.2 Real-life Biological Data

IRMA Network

We use the 5-gene IRMA network presented in Figure 3.8(A), Section 3.5.1 for the initial

evaluation of GRNCIT on real-life data. As described already, the network is composed

of five genes regulating each other, and there are two sets of gene profiles called Switch

ON and Switch OFF for this network, each containing 16 and 21 time series data points,

respectively. A ’simplified’ network, ignoring selected protein level interactions, is also

reported in Figure 3.8(C).

IRMA ON Dataset

There are a total of 8 arcs in the original IRMA network. Using the ON dataset, our

method correctly identified 6 arcs, corresponding to a sensitivity, precision and F-score of

0.75. For the simplified network, the method correctly recovered 4 arcs. The performance

comparison amongst various methods is shown in Table 4.3. From the table, we can

clearly see that the overall performance of our method is satisfactory. It infers the highest

number of correct arcs, and the F-score is also very high. However, the number of false

inferences also increases, thereby a decrease in the specificity and precision measures

compared to BITGRN is observed.

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

GRNCIT 0.75 0.88 0.75 0.75 0.67 0.89 0.67 0.67

BITGRN 0.63 0.94 0.83 0.71 0.67 1 1 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

ARACNE 0.60 - 0.50 0.54 0.50 - 0.50 0.50

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

Table 4.3: Performance comparison of GRNCIT based on IRMA ON dataset
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IRMA OFF Dataset

The overall performance of the algorithms using the OFF dataset is shown in Table 4.4.

From the table, we observe that the four performance measures of our method are either

higher than, or comparable to the other methods. In terms of specificity and precision

BANJO performs better; however, one of the reasons behind this is that BANJO infers

only a few arcs (evidenced by a low sensitivity value). When compared to BITGRN, for

the simplified network the performances are comparable, and for the original network

structure, it performs either equal to, or better than BITGRN.

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

GRNCIT 0.63 0.82 0.56 0.59 0.83 0.84 0.63 0.71

BITGRN 0.63 0.76 0.56 0.59 0.83 0.89 0.71 0.77

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44

ARACNE 0.33 - 0.25 0.28 0.60 - 0.50 0.54

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

Table 4.4: Performance comparison of GRNCIT based on IRMA OFF dataset

4.4.3 SOS DNA Repair Network of E. coli

Next, we analyze the well known SOS DNA Repair Network in Escherichia coli as pre-

sented in Section 3.5.2; the network is controlled by a complex circuitry which involves

the RecA and LexA proteins [149] as master repressors and master sensors, respectively.

When DNA damage occurs, RecA acts as a sensor, and becomes activated after sensing

the damage and mediates LexA autocleavage [149], which in turn stops the repression of

the SOS genes and activates them. When the damage has been repaired, the level of acti-

vated RecA drops and it stops mediating LexA autocleavage. LexA level thus increases

afterwards, starting repression of the SOS genes, and the cell then returns to its normal

state. We used the same four datasets used in the previous chapter for the reconstruc-

tion of this network (obtained from the website of Uri Alon Lab [8]). The eight genes,
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namely uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA and polB, were investigated for the

experiment.

The results corresponding to Experiment 1 are presented in Figure 4.4(B). Along with

our result, we include the results from BANJO, TDARACNE and BNFinder in Figure 4.4(C)-

(F) and the target network in 4.4(A). From the results, we observe that our method cor-

rectly identifies lexA as the ’hub’ gene for this network. Again, since the exact ground

truth for this network is not precisely known, it is not possible to calculate the well known

performance measures. Instead, using the known interactions obtained from the litera-

ture [116,163], an analysis of correct and incorrect predictions by our method is obtained

and shown in Table 4.5. From the experiment 1 dataset, GRNCIT successfully infers lexA

as the regulator of uvrD, umuD, ruvA and recA. Further, considering the indirect reg-

ulation of RecA through LexA, one more interaction, namely recA→uvrY, can also be

considered correct. In contrast, 3 of the 5 interactions identified by TDARACNE [261]

are correct. Both BNFinder+BDe and BNFinder+MDL successfully identify regulation

of ruvA, polB and uvrA by lexA. In addition, the regulation of umuD by recA can also

be considered correct. BITGRN, in comparison to GRNCIT, infers one less correct arc (3

direct and 1 indirect arcs). Overall, compared to these methods, GRNCIT infers the high-

est number of correct predictions (5 arcs). Although BANJO also infers 5 arcs, 3 of these

correct inferences are direct regulations (via lexA) and 2 are indirect (via recA) whereas

4 of the 5 correct inferences by GRNCIT are direct regulations, the remaining correct arc

being an indirect regulation.

The results corresponding to Experiments 2, 3 and 4 are shown in Figure 4.5. From

the figure, we observe that for Experiments 2 and 3, GRNCIT infers 6 correct and 7 in-

correct arcs (compared to 5 correct and 4 incorrect arcs for Experiment 2, and 2 correct

and 5 incorrect arcs for Experiment 3, by BITGRN). For Experiment 4 GRNCIT infers 5

correct and 8 incorrect arcs whereas BITGRN infers 3 correct and 3 incorrect arcs. From

the results, we see that for all the datasets, GRNCIT increases the number of correct pre-

dictions. However, at the same time, the number of incorrect predictions also increases.

In this chapter, so far, we have proposed and assessed an information theory based

hill-climbing algorithm that captures both instantaneous and time-delayed interactions.

We have observed from the results that compared to the only single-step time-delayed
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Figure 4.4: Reconstruction of SOS DNA Repair Network (Experiment 1) by GRNCIT.
(A) Target Network. (B) Network Inferred by GRNCIT. (C) Network Inferred by
TDARACNE. (D) Network Inferred by BANJO. (E) Network Inferred by BNFinder+BDe.
(F) Network Inferred by BNFinder+MDL.
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Figure 4.5: Reconstruction of SOS DNA Repair Network by GRNCIT (Experiments 2, 3,
4). (A) Experiment 2. (B) Experiment 3. (C) Experiment 4.
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Regulator Target correct/

incorrect

uvrD correct

lexA recA correct

ruvA correct

umuD correct

recA uvrY correcta

uvrA uvrD incorrect

uvrA lexA incorrect

uvrA umuD incorrect

uvrA recA incorrect

umuD recA incorrect

polB recA incorrect

polB uvrY incorrect
a correct considering indirect reg-
ulation of RecA through LexA

Table 4.5: Analysis of individual interactions inferred by GRNCIT - SOS DNA Repair
Network

regulation approach by BITGRN, it infers a larger number of true positives. However, we

see that along with increasing the number of true positives, the number of false positives

also increases. Hence, in the following sections of this chapter, we build a score+search

based algorithm for reconstructing GRNs. We first show how a well known decompos-

able scoring metric can be adapted to the problem of modeling and capturing both instan-

taneous and time-delayed interactions. A genetic algorithm (GA) based search strategy

using the scoring metric is then proposed that systematically searches for regulators of a

gene that may influence it instantaneously or in a time-delayed fashion and scores them,

eventually creating a GRN that more realistically represents the underlying biological

regulations. The proposed approach is validated by carrying out experiments using both

synthetic and real-life data. The comparison with other methods shows the superiority

of our proposed approach in discovering meaningful regulatory relationships.
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4.5 Genetic Algorithm Based Search

4.5.1 The Scoring Technique

In contrast to greedy/hill-climbing approaches [54, 157], which usually achieve good re-

sults for smaller search spaces but usually fail to perform better for larger networks, a

score+search approach can traverse a larger search space and can provide better results in

case of larger networks. There is obviously a trade-off in such a decision. The compu-

tational time and complexity increases, both due to repeated scoring and searching. De-

signing a strategy that can efficiently search through the space thus becomes important.

The scoring function should also have some desirable properties, for example, decompos-

ability. We use a modified form of the MIT (Mutual Information Tests) score proposed

by de Campos [60], which can work with the representational framework described in

the previous section. The MIT score, which is a decomposable scoring metric, relies on

the decomposition property of MI (Equation 3.1) and a theorem of Kullback [123]. It is

similar to those metrics which are based on maximizing a penalized version of the log-

likelihood, such as BIC/MDL. However, the penalty component in this case is specific

rather than global for each variable and its parents, and takes into account not only the

complexity of the structure but also its reliability. Also, though the score+search strategy

based on MIT has similarities with learning algorithms based on independence tests, it

has an additional strength in that the tests are not only used to decide whether the vari-

ables under consideration are independent or not, but they also quantify the extent to

which they are. The experimental results in [60] show that MIT systematically outper-

forms other scores such as the Bayesian scores and that it should be the score of reference

within those based on information theory.

Formally, the MIT score is defined as follows:

gMIT (G : D) =

n∑
i=1

Pa(Xi)6=φ

2N.MI(Xi, Pa(Xi))

− max
σi

si∑
j=1

χα,liσi(j) (4.14)

where Pa(Xi) refers to the parent of gene Xi in graph G, N is the number of data points

and si denotes the number of parents of gene Xi. σi = (σi(1), . . . , σi(si)) denote any
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permutation of the index set (1, . . . , si) of the variables Pa(Xi) = Xi1, . . . , Xisi and liσi(j)

is defined as follows:

liσi(j) =


(ri − 1)(riσi(j) − 1)

∏j−1
k=1 riσi(k), j = 2, . . . , si

(ri − 1)(riσi(1) − 1), j = 1

(4.15)

The computation of each penalty component (the second term on RHS of Equation 4.14)

can be done using the following identity,

max
σi

si∑
j=1

χα,liσi(j) =

si∑
j=1

χα,liσ∗i (j) (4.16)

where σ∗i is any permutation of Pa(Xi) satisfying riσ∗i (1) ≥ riσ∗i (2) ≥ · · · ≥ riσ∗i (si). Equa-

tion 4.16 says that the desired permutation of the parents is the one where the first parent

has the highest number of states, the second parent has the second highest number of

states, and so on. Clearly, this simplifies the computation.

Referring to the assumptions in Section 4.2, it should be made clear here that the

scoring should not add up the scores for the same regulations multiple times (which is

the usual behavior of a scoring metric). This requirement helps in bringing diversity in

the networks. Consider for example, a GRN where geneX has two parents, A andB and

A has a stronger regulatory effect on X . Now, consider two candidate solutions. In the

first solution, X has both an intra-slice (instantaneous) and an inter-slice (time-delayed)

arc from A, with the intra-slice arc carrying stronger regulation. In the second solution,

X has an inter-slice arc from A and an inter-slice arc from B (lower in strength than

regulationA). Now, if we just add up individual scores, it is obvious that the first network

will achieve a better score (the penalty being the same in both cases). This behavior is not

desirable; hence we decide that in the case of multiple arcs for the same interaction, only

the arc with the highest MI will contribute to the overall score.
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4.5.2 The Search Strategy

A genetic algorithm (GA), applied to explore this structure space, begins with a sample

population of randomly selected network structures and their fitness calculated. Itera-

tively, crossovers and mutations of networks within a population are performed and the

best fitting individuals of the population are kept for future generations.

During crossover, two random edges are chosen and swapped between them. Mu-

tation is applied on an individual edge of a network. For our study, we incorporate the

following three types of mutations:

1. Deleting a random edge from the network.

2. Creating a random edge in the network.

3. Changing direction of a randomly selected edge.

As both the crossover and mutation operations directly affect the structure of the net-

work, the conditions listed in Section 4.2 need to be satisfied whenever an edge is created

or manipulated.

In the search process, if for five consecutive generations the best score is not increasing

then we aggregate the best 5 networks by taking a majority voting scheme (three out of

five). The overall algorithm, called GRNCGA (learning GRNs with Contemporaneous

arcs using Genetic Algorithm), that includes the modeling of the GRN and the stochastic

search of the network space using GA is shown in Table 4.6.

4.6 Experimental Results for GRNCGA

We evaluate our proposed method by both synthetic network and real-life biological net-

work of Saccharomyces cerevisiae (yeast). However, due to the lack of availability of bio-

logical information regarding which interactions are instantaneous and which are time-

delayed, it is not possible to investigate the performance of the approach on the basis of

whether an individual arc is instantaneous or not. As a result, the overall accuracy of

the inference method and correctness of the modeling approach is evaluated by the con-

ventional performance measures, i.e., using Se, Sp, Pr and F. Similar to the experimental
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1. Create initial population of network structures. For each individual, genes and set
of parent genes are selected based on a Poisson distribution and edges are created
such that the resulting network complies with the conditions listed in Section 4.2.

2. Evaluate each network and sort the chromosomes based on the fitness score.

(a) Generate new population by applying crossover and mutation on the previous
population. Ensure that assumptions listed in Section 4.2 are not violated.

(b) Sort each individual using the fitness function.

(c) If the best individual score has not increased for five consecutive generations,
aggregate the 5 best individuals using a majority voting scheme. Ensure that
assumptions listed in Section 4.2 are not violated.

(d) Take best individuals from the two populations based on fitness score and
create the population of elite individuals for next generation.

3. Repeat steps a) - d) until the stopping criteria (800 generations in our case) is
reached.

When the GA stops, take the best chromosome and reconstruct the final genetic
network. /

Table 4.6: Genetic algorithm (GRNCGA)

setting we have used throughout, we used the Persist [150] algorithm to discretize contin-

uous data into 3 levels. The confidence level (α) was set to 0.9. The number of individuals

in the population was set to 50 for all the experiments. For all the experiments related to

synthetic network, we used 3 different datasets for each experiment and combined these

3 datasets using a known procedure described in [222].

4.6.1 Synthetic Network

As a first step towards evaluating the performance of GRNCGA, we consider the 5-

gene target network given in Chapter 3, Section 3.3, Figure 3.3. For this network, its

initial conditions and the S-system model parameters (g and h) are available in litera-

ture [187], [222]. We use the R-K integration method, to obtain the 3 sets of time series

data, each having 30 time points. We compare the performance of our method with

five other techniques reported earlier, namely, BITGRN [157], DBN(DP) [70], DBN(NPR)

[114], BANJO [255] and BNFinder (BDe and MDL) [66]. Referring to Table 4.7, the re-

sults for the network having the best performance measure are given in row 1 whereas

the average and standard deviation of the measures (corresponding to the 5 different GA

runs) is given in row 2. The values corresponding to BITGRN are given in row 3. Rows
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4-8 correspond to results obtained from DBN (DP), DBN( NPR), BANJO, BNFinder (BDe)

and BNFinder (MDL), respectively.

Se Sp Pr F

GRNCGA(Best) 0.92 0.77 0.79 0.85

GRNCGA 0.80± 0.79± 0.78± 0.79±

(Average± Std Dev) 0.094 0.036 0.019 0.047

BITGRN 0.67 0.86 0.82 0.74

DBN(DP) 0.5 0.89 0.82 0.62

DBN(NPR) 0.67 0.77 0.73 0.70

BANJO 0.47± 0.11 0.97± 0.04 0.93± 0.09 0.62± 0.1

BNFinder+BDe 0.27± 0.09 0.69± 0.12 0.46± 0.14 0.33± 0.097

BNFinder+MDL 0.35± 0.12 0.58± 0.09 0.43± 0.09 0.38± 0.011

Table 4.7: Performance comparison of GRNCGA with BITGRN, DBN (DP), DBN (NPR),
BANJO and BNFinder, on the 5-gene Synthetic Network

From the table, we observe that the average values of the sensitivity and F-score of

our method are much higher compared to the corresponding values of the other meth-

ods. Again, we see that BANJO performs better in terms of specificity and precision,

but the other two measures of BANJO are very low. Also, the standard deviations of the

performance measures are lower for GRNCGA compared to BANJO, indicating a more

consistent performance of the proposed method.

4.6.2 Effect of Number of Samples and Noise

To study the effect of the number of samples, we use the larger 20-node network [163]

presented in Chapter 3, Section 3.3, Figure 3.5. We use the same parameters as described

in [163] for data generation. The number of samples was varied to observe the effect

of the number of samples (20 and 30 samples for each dataset). To study the effect of

noise, we added 6 different levels of noise (random Gaussian noise with zero mean and

variance, σ2 = 0, 0.01, 0.02, 0.05, 0.1, 0.2). Each experiment was repeated 5 times and the

averages of these results are shown in Figure 4.6.

From the figure, we can observe that due to the increase in the size of the network (at

the same time using the same or fewer samples as in the 5-gene network in the previous

subsection), the performance suffers, but not significantly. Also, for a given sample size,
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Figure 4.6: Effect of noise and number of samples on the performance of GRNCGA us-
ing the 20-node synthetic network. X-axes represent the 6 noise levels (corresponding
variance values) used. Y-axes represent the corresponding performance measures. Rect-
angles - 20 data points (per dataset) experiment, triangles - 30 data points (per dataset)
experiment. Vertical lines denote standard deviations.

an increase in noise level does not significantly deteriorate the performance of network

reconstruction. We also observe that increasing the number of samples significantly im-

proves the accuracy of the method in network reconstruction. Further, the increase in

sample size also aids in better handling of noise. For higher levels of noise, the perfor-

mance is better with a higher sample size. Moreover, for lower noise levels, the sensitiv-

ity, specificity and F-score remain almost unaffected for different sample sizes, indicating

the robustness of the method at low noise levels.

4.6.3 Real-Life Biological Data

The first real-life biological network that we consider for investigation is the well known

IRMA network already described in previous chapters. In short, for this network there

are two sets of gene profiles called Switch ON and Switch OFF, each containing 16 and 21

time series data points, respectively. The former corresponds to the shifting of the grow-

ing cells from glucose to galactose medium, the latter to the reverse phase. Some edges

in the original network actually represent protein level interactions and are not directly

contributing to gene-gene regulation. A ’simplified’ network, ignoring these interactions,

is also reported in [35]. To compare our reconstruction method, we consider 5 recent

methods, namely, BITGRN [157], TDARACNE [261], BANJO [255], ARACNE [139], and
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Figure 4.7: Yeast network and inferred network by GRNCGA. (A) Target network. (B)
Inferred network by our method (best case). (C) Target network (simplified). (D) Inferred
network (simplified), best case. Dashed (–) arcs mean intra-slice (instantaneous) arcs,
dash-dotted (-.-) arcs mean inter-slice (time-delayed) arcs.

BNFinder [246], which have previously been used for reconstructing the networks under

consideration.

IRMA ON dataset

The results for the ON dataset are shown in Figure 4.7. In the figure, dashed lines mean

intra-slice arcs and dash-dotted lines mean inter-slice arcs. Of the total eight arcs in the

original network, our method correctly identified six arcs (the best performing network),

corresponding to a sensitivity, precision and F-score of 0.75. Four of these were inferred

by our method as time-delayed regulations and two were inferred as instantaneously

active regulations. The best performing network corresponding to the simplified repre-

sentation has five correct arcs (out of six), two of them were inferred as instantaneous

and the remaining three as time-delayed. The overall performance comparison amongst

various methods is shown in Table 4.8. The average and standard deviation correspond

to the 5 different runs of the GA. We observe that the overall performance of GRNCGA

is satisfactory, with the highest number of true predictions, and high values of the other

performance measures.
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Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

GRNCGA(Best) 0.75 0.88 0.75 0.75 0.83 0.95 0.83 0.83

GRNCGA 0.73± 0.83± 0.68± 0.70± 0.80± 0.90± 0.73± 0.76±

(Average± Std Dev) 0.054 0.027 0.044 0.044 0.072 0.027 0.06 0.058

BITGRN 0.63 0.94 0.83 0.71 0.67 1 1 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

ARACNE 0.60 - 0.50 0.54 0.50 - 0.50 0.50

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

Table 4.8: Performance comparison of GRNCGA based on IRMA ON dataset

IRMA OFF dataset

As already stated, the overall performances of all the algorithms suffer to some extent for

the OFF dataset, due to the lack of ’stimulus’. The comparison amongst various methods

is shown in Table 4.9. As we can see, for the simplified network, BITGRN and BANJO

perform comparatively better. However, for the original network, the F-score, sensitivity

and precision are higher compared to the other methods, thereby outperforming them.

Specificity value, although not the best in all cases, is also quite satisfactory, implying

that the inference of false positives is not high.

4.6.4 SOS DNA Repair Network of E. coli

We also analyze the SOS DNA Repair Network in Escherichia coli, presented in Section 3.5.2.

As discussed, the network is controlled by a complex circuitry involving the RecA and

LexA proteins [149] as master repressors and sensors, respectively, which act as the ’hub’

genes for the network. We used the same four datasets used in the previous chapter for

the reconstruction of this network (from Uri Alon Lab [8]). As usual, the eight genes,

namely uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA and polB, were investigated for the

experiment.
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Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

GRNCGA(Best) 0.75 0.82 0.67 0.71 0.83 0.89 0.71 0.77

GRNCGA 0.65± 0.78± 0.60± 0.62± 0.77± 0.87± 0.66± 0.71±

(Average± Std Dev) 0.054 0.033 0.051 0.052 0.088 0.027 0.059 0.065

BITGRN 0.63 0.76 0.56 0.59 0.83 0.89 0.71 0.77

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

ARACNE 0.33 - 0.25 0.28 0.60 - 0.50 0.54

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

Table 4.9: Performance comparison of GRNCGA based on IRMA OFF dataset

The results corresponding to Experiment 1 are presented in Figure 4.8(B). Along with

our result, we include the results from BANJO, TDARACNE and BNFinder in Figure 4.8(C)-

(F) and the target network in 4.8(A). The results corresponding to the other experiments

are shown in Figure 4.9. As already stated, the exact ground truth for this network is not

precisely known, and hence it is not possible to calculate the well known performance

measures. Instead, using the known interactions obtained from the literature [116, 163],

an analysis of correct and incorrect predictions by our method is obtained and shown in

Table 4.10.

Considering results corresponding to Experiment 1, we observe that our method cor-

rectly identifies lexA and recA as the ’hub’ genes for this network. Also, we observe that

five interactions inferred by GRNCGA are correct. It successfully infers lexA as the reg-

ulator of uvrA, uvrD and umuD. Moreover, considering the indirect regulation of RecA

through LexA, two more interactions, namely recA→uvrY and recA→polB can also be

considered correct. In contrast, 3 of the 5 interactions identified by TDARACNE [261] are

correct. Most of the interactions identified by BNFINDER+BDe and BNFinder+MDL are

incorrect (4 correct versus 6 incorrect for the MDL approach, and 4 correct versus 7 incor-

rect for the BDe based approach). Both these approaches successfully identify regulation

of ruvA, polB and uvrA by lexA. In addition, the regulation of umuD by recA can also be

considered correct. However, compared to these methods, GRNCGA infers the highest
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Figure 4.8: Reconstruction of SOS DNA Repair Network (Experiment 1). (A) Target Net-
work. (B) Network Inferred by GRNCGA. (C) Network Inferred by TDARACNE. (D)
Network Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network In-
ferred by BNFinder+MDL.

number of correct predictions (same as BANJO, although BANJO infers 8 incorrect arcs).

The number of incorrect predictions is also low (4) for our method.

Next, considering the results corresponding to the other experiments (Figure 4.9),

we observe that for Experiment 2, GRNCGA infers 5 correct arcs and 6 incorrect arcs.

As a comparison, GRNCIT infers 6 correct arcs and 7 incorrect arcs for this dataset, and

BITGRN infers 5 correct and 4 incorrect arcs. For Experiment 3, GRNCGA infers 6 correct

and 4 incorrect arcs (compared to 6 correct and 7 incorrect for GRNCIT, and 2 correct and

5 incorrect for BITGRN). Finally, GRNCGA infers 6 correct and 8 incorrect arcs whereas

GRNCIT infers 5 correct and 8 incorrect arcs, and BITGRN infers 3 correct and 3 incorrect

arcs. When we compare these results with those from BITGRN and GRNCIT, we observe

a trend that with the incorporation of instantaneous interactions, the number of correct

interactions increases (as seen from GRNCIT). However, at the same time, the number

of incorrect predictions also increases in GRNCIT. The score+search strategy employed by

GRNCGA checks the incorrect predictions by GRNCIT to some extent.



CHAPTER 4. REALISTIC MODELING OF GENETIC INTERACTIONS 109

(A)

uvrD

lexA

umuD

recA

uvrA uvrY

ruvA

polB

(B)

uvrD

lexA

umuD

recA

uvrA

uvrY ruvA

polB

(C)

uvrD

lexA

umuD

recA

uvrA

uvrY

ruvA

polB

Figure 4.9: Reconstruction of SOS DNA Repair Network by GRNCGA (Experiments 2, 3,
4). (A) Experiment 2. (B) Experiment 3. (C) Experiment 4.

Regulator Target correct/

incorrect

uvrD correct

lexA umuD correct

uvrA correct

recA
polB correcta

uvrY correcta

uvrA lexA incorrect

uvrD ruvA incorrect

umuD recA incorrect

ruvA uvrY incorrect

a correct considering indirect

regulation of RecA through

LexA

Table 4.10: Analysis of individual interactions inferred by GRNCGA - SOS DNA Repair

Network
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4.7 Summary

In this chapter, we proposed a DBN based modeling framework that can represent both

instantaneous and single-step time-delayed regulations among genes. We used the frame-

work with two different learning approaches: a greedy hill-climbing based approach

using information theoretic quantities, and also a score+search based GRN reconstruc-

tion algorithm, such that both these approaches can model both instantaneous and time-

delayed interactions among genes. The final reconstructed networks using our proposed

modeling scheme show better performance compared to other methods. This indicates

that our method is a more biologically relevant approach compared to both, methods

that do (i) only instantaneous and (ii) only time-delayed interaction modeling. Also,

to improve confidence on the ability of the methods to reconstruct meaningful GRNs,

we have analyzed different networks using both synthetic data and real-life biological

data of yeast and E. coli. It was observed that increase in the number of samples helped

to maintain accuracy of network reconstruction. By applying the technique to networks

containing noisy data, we showed the robustness of the methods in the presence of noise.

Although both instantaneous and time-delayed interactions have been considered in

this chapter, the time-delays are considered to be single-step delays. Further, the learning

has been carried out in a sequential manner. The next chapter is devoted to exploring

these issues.



Chapter 5

Joint Learning of Instantaneous and

Multi-Step Time-Delayed

Interactions

5.1 Introduction

Realistic and accurate reconstruction of gene regulatory networks is very crucial for cor-

rect understanding and interpretation of genetic interactions. Usually, modeling of gene

regulations using the BN or DBN formalism has taken the view that genes interact ei-

ther instantaneously or with a certain time delay. In the previous chapter, we elaborated

the point that in biological systems both instantaneous and time-delayed interactions oc-

cur, and thus it is vital to model both these types of interactions in a single modeling

framework. We also showed the effectiveness of the modeling framework by using two

different learning strategies which learn these interactions - albeit sequentially. However,

since biological regulations, both instantaneous and time-delayed, occur simultaneously

in various living organisms, we need to develop a learning framework that is able to

learn both these types of interactions simultaneously. This would result in a more accu-

rate representation of gene regulatory networks.

In this chapter, we primarily focus on improving the learning strategy for GRN re-

construction. In this process, we also extend the modeling framework proposed in the

previous chapter to model multi-step time-delayed interactions. To develop a learning

111
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strategy that evaluates both instantaneous and time-delayed interactions between genes

jointly, we propose a novel scoring metric having firm mathematical underpinnings that,

unlike other recent methods, can score both types of interactions concurrently and takes

into account the reality that multiple regulators can regulate a gene jointly, rather than in

an isolated pair-wise manner. Due to the nature of the scoring metric, while reconstruct-

ing the network using time series data, the learning framework that we propose needs

special alignment mechanism, which is also elaborated in this chapter. Further, a gene

regulatory network (GRN) inference method employing a local search that makes use of

the modeling framework and the scoring metric is also presented.

Due to the extension of the approach to multi-step time-delayed interactions, the al-

ready large search space becomes even larger and multi-modal. Exploring the search

space using simple hill climbing or basic genetic algorithm based approaches runs the

risk of not being able to achieve the globally optimal target. For this reason, subsequently,

we also propose a novel two-stage genetic algorithm that uses frequently occurring sub-

graphs (called network motifs) in the first stage, to detect the common patterns evident in

different optimal solutions, and then combines these patterns in the second stage to ob-

tain an optimal solution. Although evolutionary algorithms, in general, cannot guarantee

global optima, our design allows us to explore a much larger search space compared to

the basic GA based approaches, thereby having a much higher probability of obtaining

a better solution. Using the scoring function proposed for joint learning, we apply the

algorithm to both synthetic networks and real-life networks of E. coli to show the effec-

tiveness of the algorithm.

The rest of the chapter is organized as follows. In Section 5.2, we provide the reason-

ing behind extending the modeling framework to multi-step time-delayed interactions,

and its differences from other methods (these methods are related to our approach, but

not directly comparable to our objective or what we achieve). Section 5.3 shows the mod-

ified representational framework, explains the scenarios that may complicate the use of

the framework, and provides examples to clarify the usage. Section 5.4 proposes the scor-

ing metric called CCIT (Combined Conditional Independence Tests) which takes full ad-

vantage of the proposed representational framework. Experimental evaluation and dis-

cussion of the proposed approach are presented in Section 5.5. Finally, from Section 5.8

through to Section 5.10, we present and evaluate the mDBN approach which uses the
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concept of network motifs that can explore a much larger search space compared to naive

GA search, thereby encouraging convergence to the near-optimal solution. Section 5.11

concludes the chapter.

5.2 Modeling Multi-Step Time-Delayed Interactions

In the previous chapter, we considered only single-step time-delayed interactions (along

with instantaneous interactions) for modeling GRNs. The algorithms proposed to cap-

ture these interactions showed good performance, indicating that there are indeed var-

ious type of interactions occurring in biological systems. However, in terms of biology,

modeling only single-step time-delayed interactions (along with instantaneous interac-

tions) means that all genes which regulate their target genes with a single-step time-delay

take almost the same amount of time for their regulatory relation to take effect. This as-

sumption is restrictive, because different genes may take different amounts of time for

the effect of regulation to take place. In fact, as has been pointed out in several arti-

cles [58, 248, 262], the timing of regulations can vary widely among different regulators,

and thus it is appropriate to allow different regulations to have different time delays (see

Figure 5.1).

A
B

D

Time tn

C

A A

D D
C C

B
B

Time tn-1Time tn-2

Figure 5.1: Network structure with both instantaneous and multi-step time-delayed in-
teractions

To the best of our knowledge, prior works on inter-slice (equivalent to time-delayed

interactions in GRNs) and intra-slice (instantaneous interactions) connections in the dy-

namic probabilistic network formalism [59, 77] have modelled a DBN using an initial

network and a transition network employing the first-order Markov assumption, where

the initial network exists only during the initial period of time and subsequently the dy-

namics is expressed using only the transition network. Realising that a d-th order DBN
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has variables replicated d times [70], a first-order DBN for this task1 is therefore usually

limited to around 10 variables. If a second-order DBN model is chosen, it can mostly

deal with 6-7 variables [70]. Since our proposed approach does not replicate variables,

we can study any complex network configuration without limitations on the number

of nodes, unlike the ’replicate layers for each order’ approach of Eaton et al. [70]. Zou et

al. [262], while highlighting the existence of both instantaneous and time-delayed interac-

tions among genes while considering the parent-child relationships of a particular order,

did not account for the regulatory effects of other parents (having a different order of reg-

ulation than the current one) on that particular child. This is in violation of the biological

reality that parents with various orders of regulation can jointly regulate a child. Our

proposed learning method supports multiple parents to regulate a child simultaneously,

with different orders of regulation. Moreover, the limitation of detecting genetic interac-

tions such as A ↔ B, which are prevalent in genetic networks [37], is also overcome in

the proposed method. We present the modified representation (modeling) framework in

the next section. Furthermore, with this extension, the interpretation and the use of the

framework becomes more complex, and these are also elaborated in the next section.

5.3 The Modified Representational Framework

Let us model a gene network containing n genes (denoted by X1, X2 . . . , Xn) with a cor-

responding microarray dataset having N time points. A basic DBN based GRN recon-

struction method would try to find associations between genes Xi and Xj by taking into

consideration the data xi1, . . . , xi(N−δ) and xj(1+δ), . . . , xjN or vice versa (small case let-

ters mean data values in the microarray), where 1 ≤ δ ≤ d. That is, it will take into

consideration the d-th order Markov rule, for a gene having a maximum order of regula-

tion d with its parents. This will effectively enable this model to capture at most d-step

time-delayed interactions. Conversely, a basic BN based strategy would use the entire set

of N time points and it will capture regulations that are effective instantaneously.

Now, to represent both instantaneous and multiple step time-delayed interactions,

we consider an adjacency matrix based structure as shown in Figure 5.2, which is an

extended version of the representation framework proposed in Section 4.2. The zero

1A tutorial can be found at http://www.cs.ubc.ca/∼murphyk/Software/BDAGL/dbnDemo hus.htm.

http://www.cs.ubc.ca/~murphyk/Software/BDAGL/dbnDemo_hus.htm
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entries in the figure denote no regulation. For the first n columns, the entries marked

by 1 correspond to instantaneous regulations whereas for the last n columns non-zero

entries denote the order of regulation. As an example, the entry 1 in the cell (X1, X2)

means X1 has (almost) instantaneous regulatory effect on X2. Similarly, the entry d in

the cell (Xn, X
′
2) means Xn regulates X2 with a d-step time delay. Using this represen-

tation, we do not need to replicate layers of interactions for each increment in the order

of regulations, making it efficient and particularly suitable for representing GRNs, where

higher-order regulations are quite common.

X1 X2 . . . Xn X
′
1 X

′
2 . . . X

′
n

X1 0 1 . . . 0 2 0 . . . 1

X2 0 0 . . . 1 d 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Xn 0 0 . . . 0 0 d . . . 1

Figure 5.2: The updated adjacency matrix for the representation of instantaneous and
multiple-step time-delayed interactions

Complications in the alignment of data samples can arise if the parents have different

orders of regulation with the child node. To clarify, we describe an example where we

have already assessed the degree of interest in adding two parents (say genes B and C,

having third and first order regulations, respectively) to the gene under consideration,X .

Now, we want to assess the degree of interest in adding gene A as a parent of X with a

second order regulatory relationship; that is, we want to compute2 MI(X,A2|{B3, C1}),

where superscripts on the parent variables denote their order of regulation with the child

node.

There are two possibilities to consider. The first corresponds to a scenario where the

time series data is not periodic. In this case, we cannot use all the N samples for MI

computation, rather we are restricted to using (N − δ) samples where δ is the maximum

order of regulation that the gene under consideration has, with its parent nodes (3 in

this case). Figure 5.3 shows how the alignment of the samples can be done for the current

example. In the figure, we haveN samples and since δ = 3, we can effectively use (N−3)

samples. The
√

symbol inside a cell denotes that this data sample will be used for MI

2Throughout this thesis, we use Mutual Information (MI)/log-likelihood based Conditional Indepen-
dence tests for analysis of regulatory interactions.
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1 2 3 4 . . . N-3 N-2 N-1 N

A
√ √ √

. . .
√ √

X
√

. . .
√ √ √ √

B
√ √ √ √

. . .
√

C
√ √

. . .
√ √ √

Figure 5.3: Sample points used for the calculation of the Mutual Information (MI)

computation, whereas empty cells denote that these data samples will not be considered

for computing the MI. Similar alignments will need to be done for the other case, where

the data is considered to be periodic (e.g., datasets of yeast compiled by Cho et al. [49]

show such cyclic behavior [248]). However, we can use all the N data samples in this

case, where the data is shifted in a circular manner.

The interpretation of the results obtained from an algorithm that uses this framework

can be done in a straightforward manner. Using this framework and the aligned data

samples, if we construct a network where we observe, for example, arc X1 → X
′
n having

order δ, we conclude that the time-delayed interaction between X1 and Xn is inferred

and X1 regulates Xn with a δ-step time delay. Similarly, if we find an arc X2 → Xn, we

say that the instantaneous interaction between X2 and Xn is inferred and a change in the

expression level of X2 will almost immediately effect the expression level of Xn. Finally,

to ensure consistency in the resulting Bayesian networks, the following four assumptions

must also be followed by any resulting DBN structure:

Assumption 5.3.1. DAG Constraint. The intra-slice portion of the network must be a DAG

(directed acyclic graph). In other words, since the left most n-columns are representative of the

Bayesian network (instantaneous interactions), they must correspond to a network with no cycles.

The second assumption ensures that information flow goes in the correct direction:

Assumption 5.3.2. Information flow constraint. The inter-slice arcs must not contain any

backward directed arcs. All arcs from genes in a particular time point must must be directed

towards genes in a later time point with reference to the current gene under consideration.

The stationarity assumption is also necessary for the BN based reconstruction tech-

niques:
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Assumption 5.3.3. Stationarity. The transition probability P (X[t]|X[t− 1]) is independent of

t. That is, interactions remain existent irrespective of time.

Finally, we need to make the d-th order Markov assumption to work with d-step time-

delayed interactions:

Assumption 5.3.4. d-th Order Markov Assumption. The d-th order Markov assumption

states that given the current observationX[t], the next observationX[t+ 1] is independent of all

the past observations until the most recent d observations,X[t− 1], . . . ,X[t− d]. Formally, the

d-th order Markov Property can be defined as follows:

P (X[t]|X[t− 1], . . . ,X[0]) = P (X[t]|X[t− 1] . . .X[t− d]) (5.1)

where d ≤ t.

The joint probability distribution and the transition probabilities of this model are

defined in a similar manner as discussed in Section 4.2 of the previous chapter.

5.4 The Proposed Scoring Metric, CCIT

We share the same idea with MIT (Mutual Information Tests) [60] and MDL (the Mini-

mum Description Length principle) for developing a scoring metric that can score both

instantaneous and time-delayed interactions simultaneously: to use the MI/log-likelihood

measure between a node X , and its parents, Pa(X), for measuring the degree of associ-

ation between them, and penalizing the structural complexity. The first part aims at

minimizing the Kullback-Leibler (KL) divergence between the joint distribution corre-

sponding to the original network (pD) and the graph under consideration (pG), according

to the following equation:

argmin
G∈Gn

KL(pD, pG) = argmax
G∈Gn

n∑
i=1

PaG(Xi)6=φ

MI(Xi, PaG(Xi)) (5.2)

which is equivalent to maximizing the log-likelihood (i.e., the higher the MI/log-likelihood

score, the better the network). In our approach, calculation of the MI/log-likelihood score
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is done in a manner which is similar to the approaches in MIT/MDL, with a major dif-

ference: calculation of score (using MI/log-likelihood) in the presence of joint regulation.

To make the notion clear consider Figure 5.1. Using MIT, the MI part for scoring for gene

B is3 MI(B, {A0, D0}) + MI(B,C1) (similar calculations of log-likelihood are used for

MDL). As we can see, the calculation of MI/log-likelihood for the zero-order interactions

do not take into account the parents who regulate it with time delay. Unlike the approach

in basic MIT and other approaches where zero and higher-order interactions are scored

separately and then combined, in our approach, we also condition (during computation)

on those parents which have different orders of regulation with the target gene. The

marginal probability for each node of this model thus becomes:

P (X[t]|X[t− 1], . . . ,X[t− d]) =
n∏
i=1

P (Xi[t]|Pa(Xi[t])) (5.3)

The term Pa(Xi[t]) in the above equation represents the parents of gene Xi at time

t, which can be in the same time-slice or in one of the d previous time-slices (d is the

maximum order of regulation) of geneXi at time t. Thus, using our approach, the scoring

function for B will calculate MI(B, {A0, D0} ∪ {C1}). Scoring in this manner enables us

to score both instantaneous and time-delayed interactions simultaneously, rather than

considering these two types of interactions in an isolated manner, making it especially

suitable for problems like reconstructing GRNs, where occurrence of joint regulation is a

common phenomenon.

The idea of penalizing complex structures is ubiquitous, finding its place in most of

the scores like BIC, MIT and MDL. The penalization component for BIC and MDL are

global, whereas for MIT it is specific for each variable and its parents. Being local in na-

ture, the MIT scheme usually outperforms the other two [60]. In this scheme, the localised

penalty is based on a theorem of Kullback [123], which says that for a particular confi-

dence level α, the quantity 2N.MI(Xi, Xj |Pa(Xi)) − χα,lij represents a statistical test of

conditional independence, where lij is the degrees of freedom of a chi-squared distribu-

tion, and χα,lij is the statistical significance threshold. The more positive the value is, the

more likely is that Xi and Xk are related (given the current parent set, Pa(Xi)) and vice

3It should be noted here that MIT/MDL are basic scoring metric for BNs, which can be extended to score
both Static and Dynamic BNs separately. Here, we are discussing MIT/MDL applied to a network having
both zero and higher-order interactions
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versa. Thus, adding up the MI quantities for all the genes (multiplied by 2*number of

samples) and subtracting the corresponding local penalization measures effectively con-

stitute a series of conditional independence (CI) tests, and this scheme is used for scoring

using MIT.

However, porting this idea of local penalization directly to a gene regulatory network

which suffers with dimensionality problem, has the problem of over-penalization. This

can be exemplified using Figure 5.1. The penalty component for gene B according to

MIT, will be: χα,4 + χα,12 + χα,36, assuming the special case where we have 3 levels of

discrete data (the details of how these penalization components can be computed will be

shown later). For a Bayesian network design having thousands of samples available, this

penalization is not a problem. However, for GRN reconstruction with samples ranging

between 20-50, this penalization is too high. To remedy this situation, we propose to ap-

ply the penalization only on a per-order of regulation basis. Using this modified scheme,

the penalization will be 2χα,4 + χα,12, which constitutes considerable savings, thereby

obtaining a better prediction ratio (in terms of sensitivity and specificity).

The approaches described above are summarised as a scoring metric, named CCIT

(Combined Conditional Independence Tests) in Equation 5.4. The score, when applied

to a graph G containing n genes (denoted by X1, X2 . . . , Xn), with a corresponding mi-

croarray dataset D, can be expressed as:

SCCIT (G : D) =

n∑
i=1

Pa(Xi)6=φ

 2Nδi .MI(Xi, Pa(Xi))−
δi∑
k=0

(max
σki

ski∑
j=1

χα,liσki (j)
)

 (5.4)

Here ski denotes the number of parents of gene Xi having a k step time-delayed regu-

lation and δi is the maximum time delay that gene Xi has with its parents. The parent set

of gene Xi, Pa(Xi) is the union of the parent sets of Xi having zero time-delay (denoted

by Pa0(Xi)), single-step time-delay (denoted by Pa1(Xi)) and up to parents having the

maximum time-delay (δi). This is defined as follows:

Pa(Xi) = Pa0 (Xi) ∪ Pa1 (Xi) · · · ∪ Paδi (Xi) (5.5)
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The number of effective data points, Nδi , depends on whether the data can be consid-

ered to be showing periodic behavior or not (e.g., datasets from Cho et al. [49] can be

considered as showing periodic behavior [248]). In the case of aperiodicity, Nδi is deter-

mined by subtracting, from the total length of the time profile (N ), the maximum order

of the time-delay that the gene under consideration has with its parents (δi).

Nδi =


N if data is periodic

N − δi otherwise

(5.6)

Finally, σki = (σki (1), . . . , σki (ski )) denote any permutation of the index set (1, . . . , ski )

of the variables Pak(Xi) and liσki (j), the degrees of freedom, is defined as follows:

liσki (j)
=


(ri − 1)(rσki (j)

− 1)
∏j−1
m=1 rσki (m), for 2 ≤ j ≤ ski

(ri − 1)(rσki (1)
− 1), for j = 1

(5.7)

where rp denotes the number of possible values that geneXp can take (after discretiza-

tion, if the data is continuous). If the number of possible values that the genes can take

is not the same for all the genes, the quantity σki denotes the permutation of the parent

set Pak(Xi) where the first parent gene has the highest number of possible values, the

second gene has the second highest number of possible values and so on.

5.4.1 Some Properties of CCIT Score

In this section, we present several useful properties of the proposed scoring metric. The

first among these is the decomposability property, which is especially useful for local

search algorithms:

Proposition 5.4.1. CCIT is a decomposable scoring metric.

Proof. This proposition is evident as the scoring function is, by definition, a sum of local

scores.

Next, we show in Theorem 5.4.1 below that CCIT takes joint regulation into account

while scoring and it is different from three related approaches, namely MIT [60] applied
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A A

B B

C C

D D
t = t0 t = t0 + 1

Figure 5.4: Network used for theorem 5.4.1

to: a Bayesian Network (which we call MIT0); a dynamic Bayesian Network (called

MIT1); and also a naive combination of these two, where the intra-slice and inter-slice

networks are scored independently (called MIT0+1). For this, we make use of the de-

composition property of MI, defined next:

Property 5.4.1. (Decomposition Property of MI) In a BN, if Pa(Xi) is the parent set of a node

Xi, and the cardinality of the set is si, the following identity holds [60]:

MI (Xi, Pa (Xi)) = MI (Xi, Xi1) +

si∑
j=2

MI
(
Xi, Xij |

{
Xi1, . . . , Xi(j−1)

})
(5.8)

Theorem 5.4.1. CCIT scores intra-slice and inter-slice arcs concurrently, and is different from

MIT0, MIT1 and MIT0+1.

Proof. We prove by showing a counter example, using the network in Figure 5.4. We ap-

ply our metric along with the three other techniques on the network, describe the work-

ing procedure in all these cases to show that the proposed metric indeed scores them

concurrently, and finally show the difference from the other three approaches. The net-

work in Figure 5.4 has 4 interactions, 2 of these are instantaneous and 2 are time-delayed

(with δ = 1). We assume a non-trivial case where the data is supposed to be periodic (the

proof is trivial otherwise). Also, we assume that all the gene expressions were discretized

to 3 quantization levels.

1. Application of MIT in a BN based framework:

sMIT0 = 2N.MI(B, {A0, D0})− (χα,4 + χα,12) (5.9)
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2. Application of MIT in a DBN based framework:

sMIT1 = 2N{MI(B,C1) +MI(A,D1)} − 2χα,4 (5.10)

3. A naive application of MIT in a combined BN and DBN based framework:

sMIT0+1 = 2N{MI(B, {A0, D0}) +MI(B,C1) +MI(A,D1)} − (3χα,4 + χα,12)(5.11)

4. Our proposed scoring metric:

sCCIT = 2N{MI(B, {A0, D0} ∪ {C1}) +MI(A,D1)} − (3χα,4 + χα,12) (5.12)

The concurrent scoring behavior of CCIT is evident from the first term in RHS of 5.12.

Also, the inclusion of C in the parent set in the first term of the RHS of the equation ex-

hibits the manner by which it achieves the objective of taking into account the biological

fact that multiple regulators may regulate a gene jointly.

Considering 5.9 and 5.10, it is also obvious that CCIT is different from bothMIT0 and

MIT1. To show that CCIT is different fromMIT0+1, we consider 5.11 and 5.12. It suffices

to consider whether MI(B, {A0, D0}) + MI(B,C1) is different from MI(B, {A0, D0} ∪

{C1}). Using 5.8, this becomes equivalent to considering whether MI(B, {A0, D0}|C1) is

the same as MI(B, {A0, D0}), which are clearly inequal. This completes the proof.

5.5 Experimental Results Using the CCIT Metric

We evaluate our proposed method by studying both synthetic networks and real-life bio-

logical networks of Saccharomyces cerevisiae (yeast), E. coli and cyanobacteria. The overall

accuracy of the inference method and correctness of the modeling approach is evaluated

by the four widely used performance measures introduced in Chapter 3, namely, Se, Sp,

Pr and F. Since our method uses discrete data for the statistical significance tests em-

bedded in the scoring function, we applied the Persist [150] algorithm to discretize the

data into 3 levels. The confidence level (α) is set to 0.9. We will use a local search in the

DAG space with the classical operators of arc addition, arc deletion and arc reversal. The
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starting point of the search is always an empty graph. The parameters for all the other

methods that are used for comparison are set to their default values given in their user

manuals.

5.5.1 Synthetic Network

Synthetic network using differential equation based models

For performing studies using synthetic networks, we generated 3 random networks of

size 10, 25 and 50 using the GeneNetWeaver (GNW) tool [196]. This tool has been used to

generate in silico benchmarks in the DREAM (both DREAM3 [172] and DREAM4 [173])

challenge initiative. The tool is able to obtain biologically plausible network topologies

(and also biologically plausible network dynamics) of a given size by extracting random

sub-networks of Saccharomyces cerevisiae and E. coli [138, 196]. We used the tool to gen-

erate time series data as in the DREAM4 challenge with ten different perturbations for

each experiment. Initial and final timestamps for the simulations were 0 and 1000, re-

spectively, and the time step was 50. One of the objectives of this experiment was to test

the usefulness of the proposed approach in the presence of noise in mRNA expression

levels. We experimented under various noise levels that are likely to be present in the

expression data. To mimic a real-life noisy environment, as in Noman et al. and Kimura

et al. [116, 163], we added 5 different noise levels to the data samples (random Gaussian

noise with zero mean and variance, σ2 = 0.0, 0.01, 0.02, 0.05, 0.10). The performance,

measured by the four performance measures, corresponding to the three different sized

networks is reported in Figure 5.5. Figure 5.5(A) shows the performance variation as a

function of network size and noise level. The X-axes represent the noise levels while the

Y-axes represent the corresponding performance measures (Se, Sp, Pr, F). In Figure 5.5(B)-

(D), we compare our approach with three other methods, namely TDARACNE, BANJO

and BNFinder (BDe and MDL) using the F-score (results corresponding to other measures

are provided in Appendix B). It is evident from the results that there is no clear winner

in all the cases. Some methods perform well in some cases, while others outperform it in

other cases. However, it is clear that our proposed approach, albeit not always the best,

it is always among the top performers and has consistently superior performance.
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Figure 5.5: Reconstruction of synthetic networks generated using the GeneNetWeaver
tool [196]. (A) How performance of our method varies with network size and noise
(Red(*) - 10 gene; Green(o) - 25 gene; Blue(square) - 50 gene). The X-axes represent the 5
levels of noise used, whereas the Y-axes represent the corresponding performance mea-
sures (see text). (B)-(D) Comparison of performance with 3 other methods for the 10,
25 and 50-gene network. Red(+) - CCIT, Green(o) - BANJO, Blue(x) - BNFinder+BDe,
Cyan(square) - BNFinder+MDL, Magenta(diamond) - TDARACNE. X-axes - noise lev-
els, Y-axes - F-score. See text for details.
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Probabilistic Network of Yeast

We use a sub-network from the yeast cell cycle, shown in Figure 5.6, taken from Husmeier

et al. [98]. The network consists of 12 genes and 11 interactions. For each interaction, we

randomly assigned a regulation order of 0, 1, 2 or 3. We used two different conditional

probabilities for the interactions between the genes, namely, the noisy regulation accord-

ing to a binomial distribution and the noisy XOR-style co-regulation. For the binomial

distribution dependent noisy regulation, the parameters were set as follows: excitation:

P(on|on) = 0.9, P(on|off) = 0.1; inhibition: P(on|on) = 0.1, P(on|off) = 0.9. For the noisy

XOR-style co-regulation the parameters were set as: P(on|on, on) = P(on|off, off) = 0.1,

P(on|on, off) = P(on|off, on) = 0.9 [98]. Eight confounder nodes were also added, result-

ing in the total number of nodes to be 20.

CLN2

CLN1 RNR3 SR04 RAD51 SVS1 ALK1 CLB2 MY01

CDC5

ACE2

MNN1

Figure 5.6: Yeast cell cycle sub-network [98]

We used 30, 50 and 100 samples, generated 5 datasets in each case and compared our

approach with two other DBN based methods, namely BANJO [255] and BNFinder [246].

Since these methods detect only regulations of order 1, while calculating performance

measures for these methods, we ignored the exact orders for the time-delayed interac-

tions in the target network. We could not apply TDARACNE [261] to this network since

the generated data has two levels of discrete values and TDARACNE returns error when

applied to such datasets. We show the results for this network in Table 5.1, where we

observe that our method, coupled with a high precision, outperforms the other two in

terms of both sensitivity and specificity. The F-score is also the best in all the cases. This

points to the strength of our method in discovering complex interaction scenarios where

multiple regulators may jointly regulate target genes with varying time delays.
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N=30 N=50 N=100

Se Sp Pr F Se Sp Pr F Se Sp Pr F

Proposed 0.62± 0.992± 0.57± 0.59± 0.80± 1.0± 0.79±0.79±0.82± 1.0± 0.76±0.79±

Method 0.12 0.0045 0.11 0.11 0.04 0.0 0.07 0.05 0.06 0.0 0.03 0.04

BNFinder 0.53±0.996±0.68±0.59± 0.62± 0.997± 0.74± 0.67± 0.69± 0.997± 0.74± 0.72±

+BDe 0.04 0.0006 0.02 0.02 0.04 0.0019 0.13 0.06 0.08 0.0007 0.06 0.07

BNFinder 0.51±0.996± 0.63± 0.56± 0.60± 0.996± 0.68± 0.63± 0.65± 0.996± 0.69± 0.67±

+MDL 0.08 0.0006 0.07 0.08 0.05 0.0022 0.15 0.09 0.0 0.0 0.04 0.02

BANJO 0.51± 0.987± 0.49± 0.46± 0.55± 0.993± 0.57± 0.55± 0.60± 0.995± 0.61± 0.61±

0.08 0.01 0.2 0.15 0.09 0.0049 0.23 0.16 0.08 0.0014 0.09 0.08

Table 5.1: Comparison of CCIT-based method with BANJO and BNFinder on the yeast
sub-network

Synthetic Network of Glucose Homeostasis

In higher eukaryotes, glucose homeostasis is maintained via a complex system involving

many organs and signaling mechanisms. The liver plays a crucial role in this system by

storing glucose as glycogen when blood glucose levels are high, and releasing glucose

into the bloodstream when blood glucose levels are low. To accomplish its task, the liver

responds to circulating levels of hormones, mainly insulin, epinephrine, glucagon, and

glucocorticoids [128].

Le et al. [128] conducted an extensive review of the literature regarding the biologi-

cal components affecting perinatal glucose metabolism. Based on the study, a Bayesian

Network model of glucose homeostasis containing 35 nodes and 52 interactions (shown

in Figure 5.7) was constructed. We used the model for generating datasets of varying

size (50, 75 and 100 samples), having first and second-order regulations using the Bayes

Net Toolbox [159]. The random multinomial CPDs used by this approach of data gen-

eration were obtained by sampling from a Dirichlet distribution with hyperparameters

chosen by the method4 described in [47] with a corresponding Equivalent Sample Size

4The method works as follows: for a variable Xi with k states, a basis vector is constructed for
P (Xi|Pa(Xi)) by normalizing the vector

(
1
1
, 1
2
, · · · , 1

k

)
. For the j-th instantiation pa(Xi) of Pa(Xi), samples

are obtained for the probability corresponding to this instantiation by using θij ∼ Dirichlet(sαij) where s is
the equivalent sample size and the αij ’s are obtained by shifting the basis vector to the right j places where
j modulo k is not one.
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N=50 N=75 N=100

Se Sp Pr F Se Sp Pr F Se Sp Pr F

Proposed 0.50 0.9812 0.54 0.52 0.46 0.9914 0.71 0.56 0.54 0.9906 0.72 0.62

Method

BNFinder 0.48 0.9488 0.29 0.37 0.52 0.9506 0.32 0.39 0.56 0.9557 0.36 0.44

+BDe

BNFinder 0.54 0.948 0.31 0.40 0.56 0.9395 0.29 0.38 0.54 0.9369 0.27 0.37

+MDL

BANJO 0.52 0.97 0.44 0.47 0.48 0.9838 0.57 0.52 0.54 0.9881 0.67 0.60

Table 5.2: Comparison of CCIT-based method with BANJO and BNFinder on the glucose
homeostasis network

(ESS) value of 10. The choice of this prior distribution for the conditional parameters en-

sures a reasonable level of dependence between d-connected variables in the generative

structure [47].

We compare our method with the three other methods that were used previously

for comparison, namely BANJO [255] and BNFinder [246] (using BDe and MDL). While

calculating performance measures for these methods, we ignored the exact orders for

the time-delayed interactions in the target network. Similar to the probabilistic network

of yeast, we could not apply TDARACNE for this network due to error occurring be-

cause TDARACNE is unable to cope with the discrete data. The results are shown in

Table 5.2. We observe that, both in terms of specificity and precision, our method out-

performs others. The F-score is the highest in all the cases, indicating a good balance

between sensitivity and precision.

IPACPA GPA

CBA CBB

FA0

FA3HN1CRP SB1 PG1

EBHACC ALB

ALKAA1AC3 AAT

FAS

FB1 GDH

GLK

G6D

G6P

G6T

GLS

GL4 HK2 IP1

LCP PEP

PF2

PYK TAT TFN

Figure 5.7: Synthetic network of glucose homoeostasis
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5.5.2 Real-Life Biological Data of saccharomyces cerevisiae (IRMA)

To validate our method with a real-life biological gene regulatory network, we investi-

gate the IRMA network reported in Cantone et al. [35]. As stated in previous chapters,

there are two sets of gene profiles called Switch ON and Switch OFF for this network,

each containing 16 and 21 time series data points, respectively. A ’simplified’ network,

ignoring some internal protein level interactions, is also reported in [35]. To compare

our reconstruction method, we consider 3 other methods, namely, TDARACNE [261],

BANJO [255] and BNFinder [246] (both BDe and MDL).

IRMA ON Dataset

The performance comparison amongst various method based on the ON dataset is shown

in Table 5.3. We observe that our method clearly outperforms the others. There are no

false predictions and precision is the highest. The sensitivity and F-score measures are

also very high. One important observation that we make is that the CCIT based ap-

proach outperforms the competing algorithms in terms of specificity, precision and F-

score, whereas for other algorithms we saw that it lost ground to these methods (e.g.,

BANJO) for both specificity and precision. This implies that the positive effects of a rig-

orous statistical significance test is evidenced more clearly when the CCIT-based scoring

is used, which were less pronounced when we had been using other algorithms.

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

Proposed Method 0.63 1.0 1.0 0.77 0.67 1.0 1.0 0.80

GRNCGA 0.73± 0.83± 0.68± 0.70± 0.80± 0.90± 0.73± 0.76±

(Average± Std Dev) 0.054 0.027 0.044 0.044 0.072 0.027 0.06 0.058

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

Table 5.3: Performance comparison of CCIT-based method using IRMA ON dataset
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IRMA OFF dataset

As is usually the case, due to the lack of stimulus, the overall performances of all the al-

gorithms suffer when we use the OFF dataset. The comparison among different methods

is shown in Table 5.4. Again, we observe that our method reconstructs the gene network

with high precision. Specificity is also high, implying that the inference of false positives

is low.

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

Proposed Method 0.50 0.94 0.80 0.62 0.50 0.90 0.75 0.60

GRNCGA 0.65± 0.78± 0.60± 0.62± 0.77± 0.87± 0.66± 0.71±

(Average± Std Dev) 0.054 0.033 0.051 0.052 0.088 0.027 0.059 0.065

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44

Table 5.4: Performance comparison of CCIT-based method using IRMA OFF dataset

5.5.3 Yeast KEGG Pathway Reconstruction

In order to test the proposed method’s performance on yeast S. cerevisiae cell cycle, we

selected an eleven gene network of the G1-phase: CLN3, CDC28, MBP1, SWI4, CLB6,

CDC6, SIC1, SWI6, CLN1, CLN2, CLB5. The data used was obtained from the cdc28 ex-

periment of Spellman et al. [214]. In the later stage of the G1-phase, the CLN3-CDC28

protein kinase complex activates two transcription factors, MBF and SBF, and these pro-

mote the transcription of some genes important for budding and DNA synthesis [56,261].

Entry into the S-phase requires the activation of the protein kinase Cdc28p through bind-

ing with CLB5 or CLB6, and also the destruction of SIC1 [52]. Also, SWI4 becomes as-

sociated with SWI6 to form the SCB complex that activates CLN1 and CLN2 in late G1.

MBP1 forms the MCB-binding factor complex with SWI6, which activates DNA synthe-

sis genes and S-phase cyclin genes CLB5 and CLB6 in late G1 [261]. In budding yeast,

commitment to DNA replication during the normal cell cycle requires degradation of the
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Figure 5.8: Reconstruction of Yeast KEGG Pathway [108]. (A) Target Network. (B) Net-
work Inferred by proposed approach. (C) Network Inferred by TDARACNE. (D) Net-
work Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network Inferred
by BNFinder+MDL.

cyclin-dependent kinase (CDK) inhibitor SIC1. The G1 cyclin-CDK complexes CLN1-

CDK1 and CLN2-CDK1 initiate the process of SIC1 removal by directly catalyzing SIC1

phosphorylation at multiple sites [192, 261].

In Figure 5.8(B)-(F), we report network graphs reconstructed by our proposed ap-

proach, TDARACNE, BNFinder(BDe and MDL) and BANJO. We also report the KEGG

pathway [108] of the cell cycle in yeast in 5.8(A). Since the ground truth for this network

is not known, instead of applying performance measures as a means of determining net-

work accuracy, we refer to the available correct interactions obtained from the KEGG

pathway [108] and identify which of the predicted interactions are correct or otherwise.

We observe from the results that our approach correctly identifies the regulation of SWI4-

SWI6 and MBP1-SWI6 complex by the CLN3-CDC28 complex. Also, the proposed ap-

proach infers that the SWI4-SWI6 complex regulates the CLN1-CLN2-CDC28 complex,

which is correct. Two more interactions inferred by our approach (CLN1→CLN2 and

CLB5-CLB6-CDC28→CDC6) are also correct based on the KEGG pathway. Overall we

observe that none of the methods perform particularly well on this network. However,

the number of correct predictions by our method (5) is higher than the other three meth-

ods.
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5.5.4 SOS DNA Repair Network of E. coli

We analyze the previously studied SOS DNA repair network in Escherichia coli as shown

in Figure 5.9(A), which is one of the largest, most complex, and best understood DNA

damage-inducible network to be characterized to date.

For our current simulation study, we selected the same 8 genes namely uvrD, lexA,

umuD, recA, uvrA, uvrY, ruvA and polB, which were studied in the previous chapters.

All four experimental datasets corresponding to various UV light intensities (Exp. 1 and

2:5Jm−2, Exp. 3 and 4:20Jm−2) were considered (separately) for our study.

The results corresponding to Experiment 1 are presented in Figure 5.9(B). Along with

our result, we include the results from BANJO, TDARACNE and BNFinder in Figure 5.9(C)-

(F) and the target network in 5.9(A). From the results, we observe that our method cor-

rectly identifies lexA and recA as the ’hub’ genes for this network. Again, the exact

ground truth for this network is not precisely known, and hence it is not possible to cal-

culate the four performance measures used for other networks. Instead, using the known

interactions obtained from the literature [116, 163], an analysis of correct and incorrect

predictions by our method is obtained and shown in Table 5.5. We observe that most

of the interactions inferred by our proposed method are correct. It successfully infers

lexA as the regulator of uvrD, umuD, uvrA and recA. Also, considering the indirect reg-

ulation of RecA through LexA, three more interactions, namely recA→uvrY, recA→loxA

and recA→polB can also be considered correct. In contrast, 3 of the 5 identified inter-

actions by TDARACNE [261] are correct. Most of the interactions identified by BANJO

and BNFinder+MDL are incorrect. BNFinder+BDe successfully identifies regulation of

ruvA, polB and uvrA by lexA. In addition, the regulation of umuD by recA can also be

considered correct. However, compared to these methods, our proposed method infers

the highest number of correct predictions. The number of incorrect predictions for our

method is also very low.

The results for the other three experiments are also satisfactory (see Figure 5.10). We

observe that for these experiments, the CCIT-based approach correctly infers 6 (4 direct,

2 indirect), 4 (all direct) and 3 (all direct) interactions from experiments 2, 3 and 4, respec-

tively. The number of incorrect predictions from these datasets are 4, 4 and 5, respectively,
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Figure 5.9: Reconstruction of SOS DNA Repair Network (A) Target Network. (B) Net-
work Inferred by proposed approach. (C) Network Inferred by TDARACNE. (D) Net-
work Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network Inferred
by BNFinder+MDL.

fewer than the incorrect predictions from GRNCGA. Finally, we observe that for all these

results, the approach correctly identifies lexA as the ’hub’ gene.

5.5.5 Network Analysis of Strongly Cycling Genes in cyanobacteria, Cyan-

othece sp. ATCC 51142

To study our approach on a large scale network, we use a network of a strain of cyanobac-

teria, namely Cyanothece sp. strain ATCC 51142 [217]. Cyanobacteria are oxygen evolving

photosynthetic prokaryotes. They play a key role in harvesting solar energy and carbon
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uvrA uvrY ruvA polB
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Figure 5.10: Reconstruction of SOS DNA Repair Network by CCIT-based scoring tech-
nique (Experiments 2, 3, 4). (A) Experiment 2. (B) Experiment 3. (C) Experiment 4.
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Regulator Target correct/

incorrect

LexA

uvrD correct

umuD correct

recA correct

uvrA correct

uvrY correcta

RecA polB correcta

lexA correcta

uvrD ruvA incorrect

polB recA incorrect
a correct considering indirect reg-
ulation of RecA through LexA

Table 5.5: Analysis of individual interactions inferred by CCIT-based method - SOS DNA
Repair Network

sequestration. They also have the capability of producing biofuel by using the energy

from the sun, and combining carbon-dioxide and water. They have become increasingly

important recently, due to the possibility of using cyanobacterial pond to naturally se-

quester carbon-dioxide at source.

The microarray data corresponding to the genes were collected from two publicly

available genome-wide microarray datasets of Cyanothece, performed in alternating light-

dark (LD) cycles with samples collected every 4h over a 48h period: the first one start-

ing with 1h into dark period followed by two DL cycles (DLDL), and the second one

starting with two hours into light period, followed by one LD and one continuous LL

cycle (LDLL) [237]. In total, there were 24 samples. Using a threshold filter with a 2-

fold change cutoff, 730 genes were selected for the analysis. The genes are responsi-

ble for performing the major tasks of energy metabolism and respiration, nitrogen fixa-

tion, protein translation and folding, and photosynthesis, along with several other tasks.

The result obtained using our method is shown in Figure 5.11. The degree distribution

is shown in Figure 5.12. To compare our result with the other methods, we applied

BANJO, BNFinder(BDe and MDL) and TDARACNE. The results of all the three except

BNFinder(BDe) were not satisfactory (for example, the BNFinder+MDL method returns
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an empty network when applied; other methods also had similar issues). As a result, we

compare our method only with BNFinder+BDe.

Similar to well studied datasets (e.g., yeast [214], E. coli [8, 184]), the microarray data

set for cyanobacteria also has very few samples. Moreover, not being a well-studied or-

ganism, it requires caution in the interpretation of results. We note that GRN reconstruc-

tion studies of cyanobacteria reported earlier (e.g., [142, 217, 229]) commonly emphasize

an evaluation criteria, namely functional enrichment analysis of sub-networks. Further,

another common feature noted for genetic networks [88, 105, 106] is that transcriptional

regulatory networks possess the scale free nature of the network topology5. Since we

have limited samples and also because the ground truth is unknown, we have therefore

carried out the evaluation of the inferred network using both: (i) statistical means, i.e.,

GO functional enrichment analysis (using both p = 0.05 and p = 0.10), and (ii) R2 mea-

sure of the power-law fit of the network to establish its scale free nature.
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Figure 5.11: Network inferred by CCIT-based approach

The enrichment analysis was done by using gene ontology (GO) database (compiled

using two sources: one from the Cyanobase database [111], and another from genome-

wide amino sequence matching using the Blast2GO software suite [86]; the compiled

database is available as supplementary information of our journal article [154], and freely

available online), where every GO term appearing in each sub-network is assessed to find

out whether a certain functional category is significantly over-represented in a certain

sub-network/cluster, more than what would be expected by chance. The Cytoscape [204]

5We clarify that different processes, including genetic networks, will generate scale free networks. How-
ever, if a network obtained using microarray data is scale free, it indicates that it is modeling the underlying
biological process more accurately.
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plugin BiNGO [135] was used for GO functional category enrichment analysis. For

BiNGO, we use the combined and filtered gene set as the reference set, the hypergeo-

metric test as the test for functional over-representation, and False Discovery Rate (FDR)

as the multiple hypothesis testing correction scheme. A step by step tutorial of how this

analysis can be done is shown in Appendix A.

First, we present the results corresponding to p = 0.05. The network obtained by

BNFinder+BDe has 16 sub-networks each containing at least 3 genes. Of these, 6 sub-

networks have significantly enriched functionalities (as determined by the GO functional

enrichment test). Of the other 10, we compute the 3 most densely connected hubs for each

sub-network, and in 2 of 10 such sub-networks, the hubs have defined significantly en-

riched functionalities. On the other hand, in our result, there are 14 sub-networks in total

having at least 3 genes. Of these, 3 sub-networks have defined enriched functions (the

largest sub-network has the role of nitrogen fixation according to the enrichment test). Of

the other 11, we compute the 3 most densely connected hubs for each sub-network, and

in 5 of the 11 such sub-networks, the hubs have defined significantly enriched function-

alities.

The results corresponding to p = 0.10 show that for BNFinder+BDe, 7 sub-networks

have enriched functionalities (as determined by the test). Of the other 9, we compute

the 3 most densely connected hubs for each sub-network, and in 2 of the 9 such sub-

networks, the hubs have defined enriched functionalities. In contrast, the result using our

approach has 5 sub-networks with defined significantly enriched functions (the largest

sub-network has the role of nitrogen fixation, similar to the p = 0.05 case). Of the other

9, we compute the 3 most densely connected hubs for each sub-network, and in 6 of the

9 such sub-networks, the hubs have defined significantly enriched functionalities.

We also test the networks to assess whether they are scale free, using a power-law

fit. The R2 value of the fit corresponding to our network is 0.93, which is a better fit

compared to BNFinder+BDe (0.62).
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Figure 5.12: Degree distribution analysis of the resultant network of Cyanothece. We used
a power-law fit which yields R2 = 0.93. The result confirms that the inferred network is
scale free.

So far in this chapter, we have introduced an extended modeling framework that

can simultaneously represent instantaneous and multi-step time-delayed genetic interac-

tions. Incorporating this framework, we implemented a local search based GRN recon-

struction algorithm using a novel scoring metric called CCIT that supports the biolog-

ical truth that some genes may co-regulate other genes with different orders of regula-

tion. However, the improved framework takes multiple step time-delayed interactions,

and that means the search space becomes even larger compared to just single-step time-

delayed regulations (note that instantaneous interactions are present throughout along-

side). This huge search space will undoubtedly have multiple local optimal solutions.

When explored using evolutionary strategies, due to the phenomena of genetic drift, the

stochastic variations caused by the genetic operators can result in a population drift to

any of these multi-modal peaks [95, 99]. The net effect is that convergence may slow

down, and in the worst case, it may get stuck in a local optima. Using a simple local

search strategy is not ideal in these scenarios, and thus in the next few sections of this

chapter, we will build a novel genetic algorithm based evolutionary two-stage multi-

threaded search strategy which explores a significantly larger search space. In the next

few sections, we will first elaborate why a multi-threaded strategy is beneficial, and af-

terwards we will present our design and assess its performance.
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5.6 Improving the Search Strategy

As has already been stated, BNs are very effective in dealing with noise, incompleteness

and stochastic aspects of gene regulation; however, due to several complexities in learn-

ing static BNs (e.g., Chickering [45] showed that learning BNs using BDe scoring metric

is NP-complete), when it comes to learning BNs and DBNs, most authors have resorted

to greedy hill-climbing techniques [152], evolutionary frameworks (such as genetic algo-

rithms [84,153,176]), metaheuristic methods (simulated annealing [236]), and local search

methods (e.g. Tabu search [232]). One major problem with learning BNs and DBNs us-

ing the meta optimization frameworks is the multi-modal nature of the search space due

to which basic evolutionary strategies often lead to local optima. Although increasing

the population size might appear to be an easy option, in practice, increasing the pop-

ulation size does not help because few individuals can continue to dominate the search

procedure. This problem is compounded by the computational overhead arising due to

increasing the population size [140]. To explore the whole search space so as to improve

the chance of converging to the global optima, and at the same time keeping computa-

tional resources in check, we propose executing parallel threads of Genetic Algorithms

(GA), and then combining relevant patterns from these solutions, which is more likely to

obtain the globally optimal/near-optimal GRN. To elaborate the effect of parallel execu-

tion, we follow Goldberg et al. [85], and propose that the search space for the objective

function f(·) can be denoted by ω. Now, assuming,

• f(·) has m optima in ω (i.e., the search space is divided into m regions termed ωi’s,

such that ω = ω1 ∪ ω2 . . . ∪ ωm), and one of them is the global optima; and

• each run of GA converges to one optima, which is either local or global,

the probability P that at least 1 of k GA runs converges to the global optima is:

P =


1− (m−1m )k if k > 1

1
m if k = 1

(5.13)

assuming independence and uniform distribution. For example, with m = 6 and k = 3,

the parallel search has a higher probability (0.42) of convergence to the global optima,
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compared to 0.17 from a single-thread approach. Also, in terms of diversity, the proba-

bility that all the k threads of GAs will converge to the same solution is significantly less

( 1
mk

) than a run without parallel execution ( 1
m , k > 1). These observations are valid even

if the search space is not uniform.

However, the benefits of running multiple threads of GA in parallel is pretty intuitive,

and similar effects can be achieved even if we run a non-parallel GA multiple times (or

even using multiple threads of GA simultaneously). Unlike these naive approaches, our

proposed method makes novel use of the multiple solutions resulting from these paral-

lel threads and extracts the structural similarity patterns so that this information can be

used subsequently, thereby fully exploiting the benefits of running in parallel threads.

This technique of getting representatives from the entire search space, and using the in-

formation subsequently, increases the ability of our method to converge to the global

optima compared to these naive approaches. Similar approaches have been used in other

research areas, for example, for protein structure prediction problems [99], where par-

allelly running multiple threads of memetic algorithms and finding ’memes’ from these

threads were shown to produce significantly better solutions.

One important local property of networks is network motifs, which are recurrent

and statistically significant subgraphs that repeat themselves among various networks.

Each of these subgraphs, defined by a particular pattern of interactions between vertices,

may reflect a framework in which particular functions are achieved efficiently, and thus

present interesting functional properties. Network motifs have recently acquired atten-

tion as an important means to uncover structural aspects of complex networks [96, 99].

In the remainder of this chapter, we propose a novel two-stage genetic algorithm (GA)

based framework using the concept of network motifs. Briefly, the motifs, in the form of

frequent subgraphs occurring across a pool of ’local’ optimal solutions will capture the

characteristics of these solutions in the first stage. In the second stage that follows, these

local characteristics are combined to obtain the globally optimal/near-optimal solution.

Some of the benefits of the proposed approach include:

1. A higher probability of covering the entire search space.

2. Avoiding going deeper inside a local optima, thereby reducing computational ef-

fort. To see how we gain reduction in our approach, consider Figure 5.13. In the
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figure, unlike solution (individual) A, solutions B, C and O (local optima) will have

a similar score since they are quite close together (similar for O, F, E and D). In our

approach, during the first stage of execution, rather than continuing execution until

we reach solution O, we detect when execution reaches solutions B/C (or D/F/E),

i.e., near an optimal solution. We find the common trends present in these solutions

and use this information in subsequent calculations.

Figure 5.13: One of the benefits of our proposed motif based approach. We do not need
to continue execution until we reach an optima. This example considers a minimization
problem.

3. The approach builds a knowledge base ab initio, i.e., without any prior informa-

tion. Although no prior external knowledge other than the micorarray data is used,

the second stage combines the implicit knowledge acquired from different search

regions to increase the probability of convergence to the global optima.

Finally, the whole algorithm runs in parallel threads so there is no additional computa-

tional cost incurred in using the proposed framework.

5.7 Techniques for Frequent Subgraph Mining

In this section we discuss the different frequent subgraph mining techniques that can be

used for identifying motifs. Informally, these motifs are the frequent subgraphs occurring

across a pool of networks. For a frequent subgraph mining technique to be appropriate

for our purpose, it should have some desirable properties such as: (i) the ability of detect-

ing overlapping subgraphs, (ii) the ability of detecting approximate subgraphs (i.e., the

connectivity within each subset of nodes is not exactly consistent between graphs), and

(iii) the technique should be scalable to large scale gene regulatory networks.
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Tian et al. developed a query based subgraph matching technique called Substructure

Index-based Approximate Graph Alignment (SAGA) [228], where an index on small sub-

structures of the graphs are stored in a database. The query graph is broken up into small

fragments and then the database is probed using a matching algorithm to produce hits

for substructures in the query. This technique allows for node gaps, node mismatches

and graph structural differences and does not require any constraints to be designed in

advance. However, the disadvantages are that one has to maintain a database of small

structures and that it is query based. In applications such as graph mining in biologi-

cal networks, its possible that we want to extract subgraphs without having identified

queries.

GraphScope [223] is another method for finding coherent clusters in graphs over time.

It assumes the sequence of graphs are bipartite. It then partitions this sequence into

segments using an information theoretic criterion and then finds clusters within each

segment. This is an interesting approach but it is limited by the fact that since it partitions

the sequence of graphs into segments, it can only find clusters in neighboring time points.

However, we seek to find recurring subgraphs that may not occur in adjacent or nearby

time points.

Frequent subgraph mining techniques which decompose the networks into smaller

pieces and apply pattern expansion techniques have been proposed in Kuramochi et

al. and Yan et al. [125, 251]. Techniques which perform frequent set mining and sub-

sequently check for connectivity have also been proposed [120]. However, these ap-

proaches encounter scalability issues when applied to massive biological networks [96].

Interpretability issues also arise because in many cases a discovered frequent dense sub-

graph may not represent a tight association among its nodes. These two issues can be

solved by the CODENSE algorithm, proposed by Hu et al. [96]. Using the concept of co-

herent dense subgraphs, this algorithm produces frequent subgraphs having much bet-

ter interpretability compared to other algorithms. Also, the design of CODENSE can

solve the scalability issue. Instead of mining each biological network individually, CO-

DENSE compresses the networks into two metagraphs and performs clustering in these

two graphs only. Thus, CODENSE can handle any large number of networks. More-

over, unlike most other frequent subgraph mining algorithms, CODENSE can discover

overlapping subgraphs. One limitation of this algorithm is that it finds subgraphs from a
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global static graph constructed from all the original graphs. Thus, it is unable to capture

interactions that occur locally to a few neighboring graphs.

5.8 Identifying the Motifs

To find the characteristics or the commonly occurring patterns that exist in various local

solutions, we use frequent subgraph mining, available from graph theory. We note that

when a genetic algorithm nears an optimal solution, the speed of convergence slows

down considerably. Hence, when we detect that for a thread of GA the best solutions

are almost the same for a number of generations, or a majority of the individuals in the

current population have almost a similar structure (and thus a similar score), we consider

that the search is nearing an optimal solution and use these solutions to find common

’patterns’ (we call these common patterns motifs) present across them. Formally, the

local (or global) optima detection (i.e., whether the search has reached near a local/global

optima) can be defined by Equation 5.14.

Copt =


1 if


F ∗(P (t))− F ∗(P (t+ τ)) = ∆1

F ∗(P (t+ τ))− F 4/5(P (t+ τ)) = ∆2

0 otherwise

(5.14)

where F ∗ (·) returns the best fitness of the population (P (·)) and F 4/5 (·) returns fitness

of 4/5th individual.

To detect the ’common patterns’ or motifs present in the converging individuals, we

use the well known frequent subgraph mining algorithm called CODENSE [96]. As men-

tioned previously, some unique features of CODENSE that make this algorithm particu-

larly suited to our approach is that it can detect overlapping subgraphs, and it also sup-

ports approximate subgraph matching. Moreover, it is scalable to large networks which

is a common feature of biological networks. The CODENSE algorithm is based on two

observations: (i) if a frequent subgraph is dense, then it must be a dense subgraph in the

summary graph (a graph where only frequent edges from the original graphs exist), and

(ii) if the edges in a subgraph show high correlation in their occurrences across a graph

set (called coherent graph), then its second-order graph must be dense. The second-order
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graph is a special type of graph where vertex set of the second-order graph is the edge

set of the original graphs and and an edge connects vertices u and v if the occurrence of

the corresponding edges in the original graphs have a similar pattern.

CODENSE is a five-step algorithm for mining coherent (meaning its edges show high

correlation in their occurrences across a graph set), dense subgraphs. In the first step, it

builds a summary graph which prunes out infrequently occurring edges. The summary

graph contains only those edges which occur in more than l graphs in the graph dataset,

where l is a user-defined support threshold. Then, it identifies dense subgraphs in the

summary graph using a subroutine called MODES which is based on the HCS algorithm

by Hartuv et al. [90].

The original HCS algorithm uses a minimum-cut criteria for finding dense subgraphs.

Instead of using only the minimum-cut criteria of the HCS algorithm, MODES adaptively

uses normalized-cut and minimum-cut criteria for finding dense subgraph. This dense

subgraph is then condensed to a single vertex, and a condensed graph is built connect-

ing this condensed vertex to all the other vertices of the original graph. In the next step,

this condensed graph is re-clustered using the modified HCS algorithm (i.e., two differ-

ent cuts). Once this clustering is done, if any newly discovered dense subgraph contains

condensed vertices, MODES restores the condensed vertices back into subgraphs. Fi-

nally, MODES conducts a few tests on the un-condensed vertices to avoid the repetitive

discovery of already discovered dense subgraphs.

In the third step, CODENSE builds a second-order graph for each dense summary

subgraph obtained from the previous step. Next, CODENSE identifies dense subgraphs

in the second-order graph, which is based on the principle that the high connectivity

among vertices in the second-order graph indicates that the corresponding edges show

high similarity in their occurrences across the original graphs. In the final step, it converts

the second-order subgraphs identified previously to first-order graphs and applies the

MODES subroutine on each of them to get the final motifs.

One issue with the CODENSE based approach is that the output of CODENSE is

an undirected graph. In our case, the transformation of undirected to directed graph

is quite straightforward, since we already know the original graphs in which they are

occurring. As a terminal case, if corresponding to an undirected edge we find evidence
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of both directions in different graphs (e.g., one direction in some graphs and the opposite

direction in others), we take a majority voting scheme to get the direction.

In the next section, we describe the mDBN algorithm, which makes use of the concepts

discussed above.

5.9 mDBN: Motif Based Learning of Gene Regulatory Networks

mDBN (Motif Based Learning of Gene Regulatory Networks using Dynamic Bayesian

Network) is an evolutionary approach that primarily operates in two stages (see Fig-

ure 5.14). These two stages constitute what we call a Master Iteration. In the first stage of

each master iteration, it runs k parallel threads of GA. The GA begins with a sample pop-

ulation of randomly selected network structures and their fitness calculated. Iteratively,

crossover and mutation of networks within a population are performed and the best fit-

ting individuals of the population are kept for future generations. During crossover, two

random edges are chosen and swapped. Mutation is applied on an individual edge of a

network. For our study, we incorporate the following three simple operations:

• Deleting a random edge

• Creating a random edge

• Changing direction of a randomly selected edge

We keep a running track of the best individuals from each generation. If the search has

reached near a local optima (identified using equation 5.14, with ∆1 > 0), then we apply

the CODENSE algorithm to find motifs from the individuals whose fitness scores are

within a close range (i.e., within a ∆1 difference). The undirected substructures obtained

from the CODENSE algorithm are then assigned directions to obtain the final motifs,

which are then used in the second stage of execution for this master iteration.

In the second stage of each master iteration, mDBN takes the motifs obtained from

different threads of execution. The motifs can come from two sources: from GA threads

in the same master iteration, or from the stage-2 GA of the previous master iteration. The

motifs are then fixed into the corresponding positions within the network, and these are

then used as templates for generating the individuals. In order to ensure that the motif
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Figure 5.14: A schematic view of mDBN

based individuals do not dominate the search process, at most 80 percent of the overall

population gets seeded by these template based individuals. Put more clearly, since the

number of motifs generated depends on CODENSE and are not fixed a-priori, for each

motif we generate one individual (the fixed motif portion + random arcs). If the num-

ber of motifs is higher than 0.8 × population size, the best scoring 0.8 × population size

number of individuals are retained, and the rest are discarded. The rest of the population

(0.2 × population size individuals) is then seeded randomly. Also, during the execution

of the GA, if we see that for consecutive 5 generations the scores are not increasing, we

aggregate the five networks using a majority voting scheme with a view to improving the

score. Finally, when we detect that the stage-2 GA has reached an optima (Equation 5.14,

with ∆1 = 0), we take the best solution and the motifs from this GA. Since in this case

∆1 will be zero, we take the individuals who have scores within the range [0,∆2] of the

best score, for the motif calculation. We then test for convergence of the master itera-

tions (the best fitness values from different master iterations are almost the same), and

when it converges, the best scoring individual is taken as the final solution. The reason

behind this iterative execution of the master iterations is that there may be cases where

even with the second stage of computation, the two stage formulation may not converge

to the global optima. To address such cases, we run the master iterations repeatedly until

we see that the results from different master iterations are giving almost similar results

(within a small deviation, ∆). This would indicate a high probability that the algorithm

has reached the global optima.

The overall execution of the approach is summarized as an algorithm in Tables 5.6

and 5.7.
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1: Procedure mDBN

2: prev mi motifs← ∅
3: repeat
4: stage1motifs← ∅
5: for i← 1 . . . k
6: stage1motifs(i)← threadi.GA(∅,∅,∆1,∆2)
7: end for
8: [stage2motifs, stage2scores(t), best indiv(t)]←
9: GA(stage1motifs, prev mi motifs, 0,∆2)

10: prev mi motifs← stage2motifs
11: copt ←check optima(stage2scores,∆1, 0)
12: until (Copt = 1)

13: end Procedure mDBN

Table 5.6: Algorithm mDBN

5.10 Experimental Results for mDBN

We evaluate the overall accuracy of the proposed method by the well known performance

measures of sensitivity, specificity, precision and F-score. For all the experiments, we

used an initial population size of 100, and the τ value was set to 3. The number of threads

(k) was set to 5, and ∆, ∆1 and ∆2 values were set to 0.5. Finally, the crossover and

mutation probabilities were set to 0.5 and 0.1, respectively.

5.10.1 Synthetic Networks

Glucose Homeostasis Network

As already stated in Section 5.5.1, glucose homeostasis is maintained via a complex sys-

tem involving many organs and signaling mechanisms in higher eukaryotes. The liver

plays a crucial role in this system by responding to circulating levels of hormones, mainly

insulin, epinephrine, glucagon, and glucocorticoids [128].

Based on the study of Le et al. [128], a Bayesian Network model of glucose homeosta-

sis containing 35 nodes and 52 interactions was constructed, which has been shown in

Figure 5.7. We used the same model for generating datasets (50 samples) having first-

order and second-order regulations using the Bayes Net Toolbox [159]. The random

multinomial CPDs used by this approach of data generation were obtained by sampling
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1. Create initial population of network structures using parameters stage1motif
and stage2motif . For stage-1 GA, these parameters will be empty. Other-
wise, use the motif templates to produce initial individuals. Ensure that all
assumptions listed in Section 5.3 are satisfied.

2. Evaluate each network and sort the chromosomes based on equation 5.4.

(a) Generate new population by applying crossover and mutation on the
previous population. Ensure that all assumptions listed in Section 5.3
are satisfied.

(b) Evaluate each individual using the fitness function and use it to sort the
individual networks.

(c) If the best individual score has not increased for consecutive 5 times,
aggregate the 5 best individuals using a majority voting scheme. Ensure
that all assumptions listed in Section 5.3 are satisfied.

(d) Take the best individuals from the two populations based on fitness
score and create the population of elite individuals for the next gener-
ation.

3. Repeat steps a) - d) until the stopping criteria (using parameters ∆1 and ∆2)
are satisfied.

When the GA stops:

(a) Take the best chromosome and reconstruct the final genetic network.

(b) Find the motifs for which the local optima test is satisfied. If ∆1 = 0, use
individuals which are within the range [0,∆2] of the best score.

Return motifs, best score and best network. /

Table 5.7: Genetic algorithm with motif based search

from a Dirichlet distribution with hyperparameters chosen by the method described

in [47] with a corresponding Equivalent Sample Size (ESS) value of 10, which ensures

a reasonable level of dependence between d-connected variables in the generative struc-

ture [47, 154, 250].

First, to assess whether the motif based discovery of local patterns indeed provides

accurate estimates of the local structures, we compare a few of the discovered motifs

with the corresponding structure in the target graph. The comparisons are shown in Fig-

ures 5.15, 5.16, 5.17 and 5.18. In these figures, figures (A) represent the relevant portions

of the target network (corresponding nodes have been labeled in red), and figures (B)
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show the discovered motifs. We observe that the motifs are highly accurate. It may be

noted that most of the discovered motifs show similar accuracy.

A B 

Figure 5.15: A motif discovered by mDBN. (A) Target graph (relevant portion). Corre-
sponding nodes are labeled red. (B) Discovered motif. 4 out of 5 arcs in the motif are
correct.

B 

A 

Figure 5.16: Another motif discovered by mDBN. (A) Target graph (relevant portion).
Corresponding nodes are labeled red. (B) Discovered motif. All the arcs in the motif are
correct.

Next, we compare our approach with three other methods, namely regular GA based

on the CCIT score (to find out how much extra gain we achieve in terms of performance

due to the motif based scheme), and two other BN based methods, BANJO [255] and BN-

Finder [246] (using BDe and MDL). While calculating performance measures for these

methods, we ignored the exact orders for the time-delayed interactions in the target net-

work. The results are shown in Table 5.8. We observe that in terms of all the four per-

formance measures, our method outperforms others. We observe that the motif based

strategy increases the precision greatly, compared to the non-motif based approach. Also,

the F-score with mDBN is the highest in all the cases, indicating a good balance between

sensitivity and precision.
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A B 

Figure 5.17: Another motif discovered by mDBN. (A) Target graph (relevant portion).
Corresponding nodes are labeled red. (B) Discovered motif. All the arcs in the motif are
correct.

B A 

Figure 5.18: Another motif discovered by mDBN. (A) Target graph (relevant portion).
Corresponding nodes are labeled red. (B) Discovered motif. All the arcs in the motif are
correct.

Yeast Cell Cycle Sub-network

We use a sub-network from the yeast cell cycle (shown in Figure 5.6), taken from Hus-

meier et al. [98]. The network consists of 12 genes (and eight confounder nodes, resulting

in 20 nodes in total for the analysis) and 11 interactions. For each interaction, we ran-

domly assigned a regulation order of 0, 1, 2 or 3. We used two different conditional

probabilities for the interactions between the genes, namely, the noisy regulation accord-

ing to a binomial distribution and the noisy XOR-style co-regulation, and the parameter

values were the same as those considered in Section 5.5.1 [98, 154].

We used 30 and 50 samples, generated 5 datasets in each case and compared our

approach with the same algorithms used in the previous network study: “GA based

CCIT score”6, BANJO [255] and BNFinder [246]. Since the last two methods detect only

regulations of order 1, while calculating performance measures for these methods, we

6The CCIT score used with basic GA.



CHAPTER 5. JOINT LEARNING OF DIFFERENT INTERACTION TYPES 149

Se Sp Pr F

mDBN 0.54± 0.009 0.99± 0.004 0.70± 0.11 0.61± 0.04

CCIT+GA 0.51± 0.01 0.9812± 0.004 0.54± 0.03 0.52± 0.02

BNFinder+BDe 0.48 0.9488 0.29 0.37

BNFinder+MDL 0.54 0.948 0.31 0.40

BANJO 0.52 0.97 0.44 0.47

Table 5.8: Comparison based on the 35-gene glucose homeostasis network

ignored the exact orders for the time-delayed interactions in the target network. We show

the results for this network in Table 5.9, where we observe that compared to the non-motif

based GA using CCIT (CCIT+GA), there is a steady performance improvement in terms

of all the measures. The sensitivity and the F-score of mDBN are the highest for both

datasets. Also, precision and specificity are quite high, with specificity nearing the best

possible value (1), which indicates that inference of false positives is very low.

N=30 N=50

Se Sp Pr F Se Sp Pr F

mDBN 0.66± 0.992± 0.61± 0.63± 0.84± 0.998± 0.83± 0.83±

0.04 0.004 0.07 0.03 0.04 0.004 0.08 0.03

CCIT+ 0.62± 0.992± 0.57± 0.59± 0.80± 1.0± 0.79± 0.79±

GA 0.12 0.0045 0.11 0.11 0.04 0.0 0.07 0.05

BNFinder 0.53± 0.996± 0.68± 0.59± 0.62± 0.997± 0.74± 0.67±

+BDe 0.04 0.0006 0.02 0.02 0.04 0.0019 0.13 0.06

BNFinder 0.51± 0.996± 0.63± 0.56± 0.60± 0.996± 0.68± 0.63±

+MDL 0.08 0.0006 0.07 0.08 0.05 0.0022 0.15 0.09

BANJO 0.51± 0.987± 0.49± 0.46± 0.55± 0.993± 0.57± 0.55±

0.08 0.01 0.2 0.15 0.09 0.0049 0.23 0.16

Table 5.9: Comparison of mDBN on the yeast sub-network

5.10.2 SOS DNA Repair Network of E. coli

Next, we analyze the SOS DNA repair network in E. coli as shown in Figure 5.19(A),

which is well known for its responsibility in repairing the DNA if it gets damaged.
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The expression kinetics of the same 8 genes previously studied, namely uvrD, lexA,

umuD, recA, uvrA, uvrY, ruvA and polB, was obtained from Uri Alon Lab [8] for this

study, which contains 50 samples evenly spaced by 6 minute intervals. As already stated,

four datasets are available, and the result corresponding to Experiment 1 is presented in

Figure 5.19(B). Along with our result, we include the results from BANJO, TDARACNE

and BNFinder in Figure 5.19(C)-(F) and the target network in 5.19(A). From the results,

we observe that our method correctly identifies lexA and recA as the ’hub’ genes for this

network. The exact ground truth for this network is not precisely known, and hence it

is not possible to calculate the well known performance measures. Instead, using the

known interactions obtained from the literature [116, 163], an analysis of correct and

incorrect predictions by our method is obtained and shown in Table 5.10. We observe

that most of the interactions inferred by our proposed method are correct. It success-

fully infers lexA as the regulator of polB, uvrY, uvrD and uvrA. Also, considering the

indirect regulation of RecA through LexA, five more interactions, namely recA→polB,

recA→lexA, recA→umuD, recA→uvrA and recA→uvrD can also be considered correct.

Overall, we observe that compared to other methods, mDBN infers the highest number

of correct predictions. The number of incorrect predictions is also low.

The results corresponding to other experiments are shown in Figure 5.20. The results

are pretty encouraging, and we observe that for all the experimental datasets the mDBN

approach infers 6 correct interactions (4 direct and 2 indirect for Experiment 2, 3 direct

and 3 indirect for Experiment 3, and 5 direct and 1 indirect interactions for Experiment 4).

When compared to the CCIT-based approach, it inferred 6, 4 and 3 correct interactions,

respectively for these three datasets. Also, the number of incorrect inferences is lower

when we use mDBN. It infers 4, 3 and 5 incorrect interactions for the Experiments 2, 3

and 4, respectively.

5.11 Summary

In this chapter, we extended the modeling framework proposed in the previous chapter

to model both instantaneous and multi-step time-delayed interactions. We also proposed

a novel scoring metric that scores these two types of interactions simultaneously. Further,
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Figure 5.19: Reconstruction of SOS DNA Repair Network (Experiment 1). (A) Target
Network. (B) Network Inferred by mDBN. (C) Network Inferred by CCIT. (D) Network
Inferred by BANJO. (E) Network Inferred by BNFinder+BDe. (F) Network Inferred by
BNFinder+MDL.
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Figure 5.20: Reconstruction of SOS DNA Repair Network by mDBN (Experiments 2, 3,
4). (A) Experiment 2. (B) Experiment 3. (C) Experiment 4.
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Regulator Target correct/

incorrect

polB correct

lexA uvrY correct

uvrD correct

uvrA correct

polB correcta

lexA correcta

recA umuD correcta

uvrA correcta

uvrD correcta

umuD recA incorrect

polB uvrD incorrect

umuD lexA incorrect
a Correct considering in-
direct regulation of RecA
through LexA

Table 5.10: Analysis of individual interactions inferred by mDBN - SOS DNA Repair
Network

we developed a two-stage GA framework that makes use of the above contributions, and

identifies network motifs for obtaining near-optimal solutions.

Biologically, the extension of the modeling framework to multi-step time delays im-

plies that different genes can have different time delays with their regulator genes. The

proposed scoring metric has the decomposability property, and it also implicitly includes

the biological truth that some genes can jointly regulate other genes. Incorporating these

novel features of the scoring metric and the extended modeling framework, we per-

formed experiments on different synthetic networks of varying complexities and also

on real-life biological networks. Our method showed improved performance compared

to other recent methods, both in terms of reconstruction accuracy and number of false

predictions, at the same time maintaining comparable or better true predictions. For our

previously proposed approaches (e.g., GRNCGA) we noted in a number of cases that it

performed satisfactorily in terms of the number of correct predictions (i.e., sensitivity)

and also in the overall balance of sensitivity and precision (i.e., F-score); however, it was
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not the best performer in terms of specificity and precision. From the results for the real-

life experiments, we observe that the performance is greatly enhanced by the new scoring

metric proposed in this chapter.

After improving the network learning by an improved scoring metric, a natural en-

hancement of the overall approach is to improve the search procedure. This becomes

increasingly important due to the incorporation of multi-step time-delayed interactions

in the framework. To improve the search procedure, we proposed a motif based two-

stage genetic algorithm framework where repetitive patterns from multiple local optimal

solutions are obtained in the first stage using graph theoretic algorithms, and in the sec-

ond stage these solutions are combined in a novel way to obtain the near-optimal solu-

tion, thereby having a much higher probability of obtaining a better solution compared

to basic GA based search approaches. For this part also, experiments have been carried

out using both synthetic and real-life gene regulatory networks. The proposed approach

shows better performance compared to the two other DBN based algorithms (BANJO

and BNFinder), and also with the same algorithm without incorporating the newly pro-

posed concept of motifs.

The reconstruction techniques reported in this and the previous chapters were based

on microarray time series datasets. As we mentioned before, DNA microarray data is

noisy, and can contain missing values. Moreover, obtaining large number of samples in

time series data is usually difficult. In the next chapter, to alleviate the effect of these

limitations, we focus our attention on incorporating additional information into the re-

construction process. For this, we propose a novel approach that uses multiple sources of

prior knowledge and protein-protein interaction information with a view to integrating

these into the GRN reconstruction technique.



Chapter 6

Co-Learning of GRN and PPIN

6.1 Introduction

So far, all the efforts towards the reconstruction of gene regulations has been focused on

using the available DNA microarray data. As has been pointed out previously, one of the

main obstacles in deciphering the regulatory relationships is the lack of availability of

sufficient data - both in terms of quality and quantity. The microarray data is inherently

noisy, and moreover, the number of samples from microarray is very low. Further, the

problem is also compounded by the presence of missing values. Due to these difficul-

ties, it would be useful for the GRN reconstruction process to use additional sources of

information rather than relying on microarray data alone.

Attempts to use prior knowledge from location binding data have already been re-

ported [24] for better reconstructing gene regulatory networks. Information from protein-

protein interaction networks (PPINs) has also been used as a source of additional infor-

mation [160,161]. However, due to the fact that the data for PPI may itself be erroneous, it

is often considered appropriate to use diverse knowledge sources for the reconstruction

in conjunction with using protein-protein interaction (PPI) data1. Genomic data, such

as essentiality phenotype information and functional category databases, are considered

important in this regard [104,161]. In this chapter, we present an algorithm for the recon-

struction of gene regulatory networks that incorporates the knowledge obtained from

PPINs and diverse sources of information to improve network accuracy.

1Meaning in addition to PPI data, other information sources should be used during PPIN reconstruction.

154
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The rest of the chapter is organized as follows. In Section 6.2, we discuss related ap-

proaches which have a similar objective as ours, i.e., simultaneous use of DNA microar-

ray and PPI data. Section 6.2.1 describes various formalizations used to model PPINs. We

use the Bayes theorem for formulating the joint probability distribution of our proposed

fusion based approach, and hence this theorem is presented in Section 6.2.2. Next, we

introduce our proposed approach in Section 6.3. Relevant resources that can be used to

probabilistically integrate multiple sources of PPI data are presented in Section 6.4. The

results and comparison of our approach with other approaches are shown in Section 6.5.

Section 6.6 concludes with relevant observations and remarks.

6.2 Background

A number of techniques have been proposed in the literature with a view to using both

microarray and PPI data for reconstructing GRNs and PPINs. Segal et al. [199] proposed

a method for identifying pathways from microarray data and protein-protein interaction

(PPI) data. They proposed a clustering method for grouping genes that could be on the

same pathway based on microarray data and PPI data. For using PPI information, they

used it in a binary manner to indicate whether an interaction is present or not. However,

the quality of each protein-protein interaction, which should be quantified according to

its reliability, is not considered in the approach. Further, their main objective had been to

find co-functioning genes on the same pathway, rather than a fully-fledged GRN-PPIN

network reconstruction.

Nariai et al. [160] propose a static BN based framework, using the concept of for-

mation of protein complexes (from individual gene pairs), which are formed based on

results from principal component analysis (PCA). When a gene is regulated by a protein

complex, the authors use virtual nodes corresponding to protein complexes in the BN

model. In other words, if geneA and geneB make a protein complex and regulate geneC ,

a new variable complexAB is constructed from the expression data of geneA and geneB

(by projecting the expression data onto the first principal component). In the BN model,

then, we consider the relation complexAB → geneC instead of geneA → geneC ← geneB .

They use a non-parametric regression based scoring technique using the Laplace approx-

imation for integrals, and greedy hill-climbing techniques for the search. However, it is
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difficult to interpret the results to know about whether the estimated causal relationships

show gene regulations or protein-protein interactions [161]. Also, the proposed greedy

algorithm only merges protein pairs based on PCA. Modeling a larger protein complex

in the gene network is an important problem which is not dealt with by the approach.

Further, the proposed approach is not flexible enough to use multiple sources of prior

knowledge such as DNA-protein interactions, binding site information, and so on [160].

The improvement of the method, presented in [161], considers it as a three component

model, consisting of: a GRN part (using Bayesian networks), a PPIN part (undirected,

using binary Markov networks), and a structural connection between these two. The

last part realizes the connection between gene regulatory networks and PPINs, giving a

penalty to coexistence of a directed edge and an undirected edge between genes. Not-

ing that physically interacting proteins are often coexpressed [161], this approach tries to

overcome the drawback of estimating the coexpressed relationship as a gene regulation

instead of a protein-protein interaction. These three components are combined as one

statistical model under a Bayes statistics in order to distinguish gene regulations from

protein-protein interactions clearly in the estimated network. Using B-spline based non-

parametric regression and likelihood ratio [104] based approximation of binary Markov

networks, this approach maximizes the joint posterior probability with a view to getting

the optimal GRN and PPIN. However, similar to their first approach [160], the method

works on static Bayesian networks. As a result, they cannot properly use the dynamics

information available from time series data. Also, the model uses parameters for control-

ling the balance between microarray and PPI data, which need to be set up heuristically,

and there is no theoretical means of determining the optimal value of the parameter. Fi-

nally, the calculation of likelihood ratio for probabilistically assessing confidence in pro-

tein interaction pairs is done in a way that gives rise to divide by zero problems. As a

result, the whole process may get dominated by only a few high confidence arcs.

Chaturvedi et al. [39] model time-delayed gene interactions using a skip-chain based

dynamic Bayesian network model, that finds missing edges between non-consecutive

time points based on knowledge from PPIN using Viterbi approximation. However, the

method does not work with multiple sources of prior knowledge (e.g., both PPI data and

TF binding location data). Further, knowledge sources for GRNs and PPINs might con-

tain noisy information and thus unlike Chaturvedi et al. [39], it is better to consider the
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information probabilistically. Again, Hartemink et al. [24] use information from TF bind-

ing location data probabilistically, but the method neither uses multiple sources of prior

knowledge, nor does it use information from the available PPI data. Hence, it happens

to be a purely GRN based technique, and does not deal with PPI networks.

In this chapter, we propose a probabilistic framework for jointly constructing a GRN

and a PPIN. We use information from multiple sources of prior knowledge (PPI data,

functional category data, essentiality phenotype information etc.) probabilistically. Al-

though similar, the proposed approach has major differences from the work of Nariai et

al. [161]. One of the main differences is the formulation of the objective function. Rather

than using a conjunctive approach of formulating the objective function, like the one in

Nariai et al. [161], we employ a disjunctive approach, noting that given the PPIN, the GRN

depends only on the microarray, and does not depend on the PPI data (and vice versa).

Further, compared to [161], where the joint posterior probability of the whole system

(consisting of all the three parts mentioned above) is optimized, our approach in effect

has two parts (the GRN part and the PPIN part, with our information fusion approach

effectively eliminating the need for the structural connection part of Nariai et al. [161]).

For each part, we make use of information from the other part, but optimize the posterior

probability separately (it works iteratively, and uses the current estimation of the GRN

for the estimation of the PPIN for the next stage, and vice versa). This disjunctive ap-

proach essentially allows us to work in parallel for the PPIN and GRN construction, while

maintaining coherent and flexible fusion of information among the parallel threads. The

approach is efficient and naturally amenable to parallel computation. This also has the

advantage that effectively we have to deal with roughly half of the structure space (con-

sidering PPI networks are non-directional) compared to approaches where both networks

are considered simultaneously. Because our method marginalizes over the parameters,

we do not need to include the balance parameter during PPI network’s posterior prob-

ability calculation, as is done in Nariai et al. [161]. Finally, the calculation of confidence

scores for individual protein-protein interactions is done in a way that effectively elimi-

nates the problem of only a few high scoring arcs dominating the whole search process.

We show the effectiveness of our approach by using different networks from yeast.
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6.2.1 Representing Protein-Protein Interactions: Binary Markov Networks

PPIN interactions can be conveniently represented by Binary Markov networks, which

are a type of undirected graphical model. As has been discussed previously, probabilistic

graphical models use a graph based representation as the basis for compactly encoding

a complex distribution over a high-dimensional space. Similar to Bayesian networks,

in this graphical representation, the nodes correspond to the variables (proteins) in our

domain, and the edges correspond to direct probabilistic interactions between proteins.

An example of a Markov network structure is shown in Figure 6.1.

Figure 6.1: Graphical representation of a Markov Network for representing PPINs

There is a dual perspective to interpret the structure of this graph. From one per-

spective, the graph is a compact representation of a set of independencies that hold in

the distribution; these properties take the form A is independent of B given C, denoted

(A⊥B|C), for a subset of variables A,B,C. For example, The independence relations in-

duced from Figure 6.1 are: (i) (A⊥C|B,D), and (ii) (B⊥D|A,C). Also, similar to Bayesian

networks, the other perspective of Markov networks is that the graph structure defines

the factorization of a distribution P associated with it (i.e., the set of factors and the

variables that they represent). The graph, in effect, defines a skeleton for compactly rep-

resenting a high-dimensional distribution: rather than encoding the probability of every

possible assignment to all of the variables in the factor domain, the distribution can be

“broken up” into smaller factors, each over a much smaller space of possibilities. We can

then define the overall joint distribution as a product of these factors. For example, the

factorization induced by the graph in Figure 6.1 is:

P (A,B,C,D) =
1

Z
f1(A,B)× f2(B,C)× f3(C,D)× f4(A,D) (6.1)

Formally, given a set of n nodes, let Y denote any random graph on those nodes and

y denote a particular graph on those nodes. A general form for binary Markov networks
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(A) (B)

Figure 6.2: Illustration of GEO. (A) 250 points in the unit cube. (B) The resulting geomet-
ric graph with a cut-off distance of 0.1. Source: [174].

can then be defined as follows [31, 103, 199]:

P (Y = y) =
1

Z(θ)
e

∑
t
θtst(y)

(6.2)

where θt is the unknown parameter related to st(y), and st(y) is a known vector of graph

statistic (of type t) on y. Z(θ) is the normalizing constant, which ensures that the probabil-

ities sum to unity. The quantities θ are the unknown regression coefficients. Calculation

of the Z(θ) quantity is particularly difficult and intractable because it is defined over the

entire graph search space. Albeit difficult, for our current problem the Z(θ) quantity is

essentially constant for all possible networks, and thus it can be safely ignored when we

do comparison based network searching.

Alternative approaches to PPIN modeling exist. For example, Pržulj [174] proposed a

biologically motivated model for PPINs (called GEO), based on the concept of “geometric

graphs”. To explain the idea of geometric graph, let us assume we have a collection of

points distributed in space. We pick a constant distance ε and say that two points are

“related” if they are within a distance ε of each other. This relationship can be represented

as a graph, where each point in space is a node and two nodes are connected if they are

within distance ε. This is called a “geometric graph”; if the points are distributed at

random, then it is a “geometric random graph” (see Figure 6.2).

To build a GEO that corresponds to the PPIN, Pržulj used a function of the shortest

path length between proteins, as the distance. It was subsequently refined to fit PPINs

even better: by learning the distribution of proteins in the embedding space, or by repli-

cating the principles of gene duplications and mutations in a geometric space [174]. From
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a conceptual point of view, the reason behind the good fit of GEO to PPINs lies in the ob-

servation that all biological entities, including genes and proteins as gene products, exist

in some multidimensional biochemical space (although it is difficult to hypothesize about

the nature or dimensionality of that space). Gene duplications and mutations, when mod-

eled in the biochemical space, a duplicated gene starts at the same point in the space as its

parent and then natural selection acts on either to eliminate one, or cause them to slowly

separate in the space. This means that the child inherits some of the interactors of its

parent, while possibly gaining new connections as well. The further the child is moved

away from its parent in this abstract space, the more different are their biochemical prop-

erties. As noted, it is difficult to substantiate this concept and, more importantly, there is

no provision for incorporating additional sources of knowledge in this approach.

In the next section, we present our proposed approach for fusing multiple sources of

prior knowledge to the GRN reconstruction process. The mathematical results which we

use for the algorithm, makes use of the Bayes theorem. Hence, in the next subsection, we

present this theorem.

6.2.2 The Bayes Theorem

The Bayes theorem can be used to compute conditional probability of dependent events,

and expresses how a subjective degree of belief should rationally change to account for

evidence. Suppose we have q events E1, E2, . . . , Eq such that

Ei ∩ Ej = ∅, for i 6= j

and

E1 ∪ E2 ∪ . . . ∪ Eq = Ω

Such events are called mutually exclusive and exhaustive. To compute the conditional

probability of such events, we need to use Bayes Theorem:

Theorem 6.2.1. Bayes Theorem. Given two events E and F such that P (E) 6= 0, and P (F ) 6=

0, we have

P (E|F ) =
P (F |E)P (E)

P (F )
(6.3)
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Furthermore, given q mutually exclusive and exhaustive eventsE1, E2, . . . , Eq such that P (E) 6=

0 for all i, we have for 1 ≤ i ≤ q,

P (Ei|F ) =
P (F |Ei)P (Ei)

P (F |E1)P (E1) + . . . P (F |Eq)P (Eq)
(6.4)

The first equation in the Bayes Theorem enables us to compute P (E|F ) if we know

P (F |E), P (E), and P (F ); the second equation enables us to compute P (Ei|F ) if we know

P (F |Ej) and P (Ej), for 1 ≤ j ≤ q.

6.3 Fusion of Gene Regulatory Networks and Protein-Protein

Interaction Networks

Consider Figure 6.3, where the symbols Dr, Dp, Gr and Gp denote GRN data, PPI in-

formation, GRN and PPIN, respectively. The dashed arrows among gene regulatory

networks (GRN) and PPINs denote transfer of structural information between the cor-

responding structures.

r0 p0

r1 p1

rN pN

Figure 6.3: Schematic of the fusion based co-learning approach
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From the figure, noting that Gr depends only on Dr and Gp, and similar for Gp, and

using the Bayes theorem and the law of conditional probability, the posterior probability

of the gene regulatory networks and protein interaction networks can be defined by the

following formula:

P (Gp|{Gr, Dp}) ∝
P (Gp)P (Dp|Gp)P (Gr|Gp)

P (Gr)
(6.5)

and similarly for Gr,

P (Gr|{Gp, Dr}) ∝
P (Gr)P (Dr|Gr)P (Gp|Gr)

P (Gp)
(6.6)

Using the above relationships, we can optimize the posterior probability iteratively. In

this chapter, we propose an evolutionary computation based iterative fusion/co-learning

algorithm that achieves this task. We will describe how we calculate different quantities

in these equations, and then provide algorithms that can optimize these quantities.

First, we describe how the P (Dr|Gr) quantity is calculated, using multinomial con-

ditionals and Dirichlet priors. Assuming parameter independence, it can be defined as

follows:

P (Dr|Gr) =

p∏
i=1

qi∏
j=1

|ηij
|ηij+Nij

ri∏
k=1

|ηijk+Nijk
|Nijk

(6.7)

where Nijk is the number of observations in which gene Xi takes the value k, given that

Pa(Xi) has configuration j; qi is the number of possible configurations of parents Pa(Xi);

and ri is the number of possible values of Xi. ηijk are Dirichlet hyperparameters. Finally,

Nij =

ri∑
k=1

Nijk (6.8)

and

ηij =

ri∑
k=1

ηijk (6.9)

Regarding the prior probability of Gr under a given Gp, it can be defined as follows

[161]:
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P (Gr|Gp) ∝ e
−

∑
e(i,j)∈Gr

ξcij
(6.10)

where

cij =


1 if e{i, j} ∈ Gp

2 if e{i, j} /∈ Gp

(6.11)

Similarly, the inverse (P (Gp|Gr)) can be defined as:

P (Gp|Gr) ∝ e
−

∑
e(i,j)∈Gp

ξcij
(6.12)

where

cij =


1 if e(i, j) ∈ Gr

2 if e(i, j) /∈ Gr

(6.13)

and the quantities e(i, j) and e{i, j} denote edges between genes Xi and Xj in the GRN

and the PPIN, respectively.

Before we calculate P (Dp|Gp), let us define a few relevant quantities that are required

in its calculation. First, we discuss the concept of likelihood ratio [104]. As a measure of

reliability, the overlap of information sources (i.e., “interaction datasets”, which could ei-

ther be noisy experimental data or sets of genomic features) with the gold-standards can

be expressed in terms of a “likelihood ratio”. For example, consider a genomic feature f

expressed in binary terms (i.e., ’present’ or ’absent’). The likelihood ratio L(f) is then de-

fined as the fraction of gold-standard positives having feature f divided by the fraction of

negatives having f . For two features f1 and f2 with uncorrelated evidence, the likelihood

ratio of the combined evidence is simply the product2 L(f1, f2) = L(f1)×L(f2). The com-

bined likelihood ratio is thus proportional to the estimated odds that two proteins are in

the same complex, given multiple sources of information.

2For correlated evidence, L(f1, f2) cannot be factorized in this way.
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Now, we formally define likelihood ratio. Assuming yij(k) is an element of Dp that

shows a genomic feature of protein pair Xi and Xj , the reliability of the protein-protein

interaction between genei and genej is then given by the likelihood ratio:

L(i, j) =
P (yij(1), ..., yij(N)|pos)
P (yij(1), ..., yij(N)|neg)

(6.14)

where ‘pos’ and ‘neg’ are respectively the positive and negative sets of protein pairs con-

structed in advance, and N is the number of genomic features that we consider. If each

genomic feature is conditionally independent, the likelihood ratio can be re-written as:

L(i, j) =
P (yij(1)|pos)
P (yij(1)|neg)

...
P (yij(N)|pos)
P (yij(N)|neg)

(6.15)

Now, noting that the likelihood ratio provides noisy evidence regarding the existence

of edges among proteins, we define the l−value of an edge e{i, j} on the interval [0, 1],

which is inversely related to the probability of an edge being present in the true PPIN.

Formally,

l(i, j) =
mini,j{L(i, j)}

L(i, j)
(6.16)

Based on this definition, we define:

β(i, j) =
λe−λl(i,j)

λe−λl(i,j) + 1− e−λ
(6.17)

where λ is the parameter controlling the scale of the truncated exponential distribution,

and acts as a tunable parameter indicating the degree of confidence in the evidence pro-

vided by the prior knowledge. As the parameter λ increases, the mass of this distribution

becomes more concentrated at smaller values of l(i, j); conversely, as λ decreases, the

distribution spreads out and flattens. Rather than using 6.17 in the raw format, we use

marginalization [24] over the parameter λ, to get:

β(i, j) =
1

λH − λL

λL∫
λH

λe−λl(i,j)

λe−λl(i,j) + 1− e−λ
dλ (6.18)

which is numerically tractable.
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Since we have a finite set ofL(i, j) values, we can pre-compute these integrals for each

L(i, j) value and store the results in memory for later use. The computational overhead

associated with marginalizing over λ is thus constant. The net effect of marginalization is

an edge probability distribution that is a smoother function of the reported β(i, j) values

than without marginalization. This results in a much heavier tailed distribution [24],

which is advantageous. Also, using this technique, even when the ‘neg’ set is empty, we

don’t have a likelihood value of infinity (unlike the approach of Nariai et al. [161]), so

only a few high confidence interactions cannot dominate the whole search process.

Based on these definitions, we can now define the probability P (Dp|Gp):

P (Dp|Gp) ∝
∏

e{i,j}∈Gp

β(i, j) (6.19)

Since the β(i, j) values are marginalized probabilities, we do not need to use parametrized

values of the likelihood ratio (L(i, j)α). This novel approach reduces the number of pa-

rameters that we need to consider during computation, and thus saves computation time

(unlike the method described in Nariai et al. [161]).

Finally, the prior probability of Gp is defined to encourage sparsity, using the follow-

ing equation:

P (Gp) ∝ e
∑
e(i,j)

ξp

(6.20)

Based on the above definitions, we propose an iterative Bayesian co-learning algo-

rithm, FusGP. A schematic of the overall execution of the parallel algorithm is shown in

Figure 6.4. The algorithm first generates initial estimates for the GRN and PPIN. The

estimates are then fed to a routine called FGP, which performs the task of co-learning

based fusion. In the next subsection, we describe in detail the working procedure of the

algorithm.
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Thread 1:

Generate Gr0 

using Dr, based 

on GA{R}

Thread 2:

Generate Gp0 

using Dp, based 

on GA{P}

Thread 1:

Generate Grm using 

Dr, Gr(m-1), Gp(m-1), 
based on FGP{R}

Thread 2:

Generate Gpm using 

Dp, Gp(m-1), Gr(m-1), 
based on FGP{P}

Gr0 Gp0

Gr Gp

Figure 6.4: Parallel execution of the FusGP algorithm

6.3.1 The Search Strategy for Initial Network Generation

A genetic algorithm (GA), applied to explore this structure space, begins with a sample

population of randomly selected network structures and their fitness calculated. Itera-

tively, crossovers and mutations of networks within a population are performed and the

best fitting individuals of the population are kept for future generations.

During crossover, two random edges are chosen and swapped. Mutation is applied

on a randomly chosen individual edge of the network. For our study, we incorporate the

following three types of mutations:

1. Deleting a random edge from the network.

2. Creating a random edge in the network.

3. Changing direction of a randomly selected edge.

The genetic algorithm can be called with either of two parameters: R and P . If it is

called with the R parameter, this means it is supposed to build a GRN, given the PPIN.

However, the P parameter denotes constructing a PPIN. In this case, the operations that

the GA can perform become restricted (e.g., Markov networks are non-directional; during
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1. Create initial population of network structures (100 in our case). If input is R, for
each individual, genes and set of parent genes are selected based on a Poisson dis-
tribution and edges are created. On the other hand, if input is P , random binary
Markov networks are generated.

2. Evaluate each network and sort the chromosomes based on the fitness score. If
input is R, use 5.4 for fitness calculation. If input is P , use 6.19 and 6.20 (to get the
posterior) for fitness calculation.

(a) Generate new population by applying crossover and mutation on the previ-
ous population. If input is P , use only the first two operations for mutation.
Otherwise, use all three possible operations.

(b) Evaluate each individual using the fitness function and use it to sort the indi-
vidual networks. If the best individual score has not increased for 5 consecu-
tive times, aggregate the 5 best individuals using a majority voting scheme.

(c) Take best individuals from the two populations based on fitness score and
create the population of elite individuals for next generation.

3. Repeat steps a) - c) until the stopping criteria (400 generations in our case) is
reached.

When the GA stops, take the best chromosome and reconstruct the initial network
(Gr0 or Gp0) to be used for subsequent computation. /

Table 6.1: Genetic algorithm for GRN and PPIN co-learning

mutation, this needs to be taken into consideration). Keeping this in mind, the overall

genetic algorithm for the stochastic search of the network space is shown in Table 6.1.

6.3.2 The Algorithm for Co-Learning, FGP

After the initial networks have been generated, we start the co-learning of the two net-

works in two parallel threads. Based on 6.5 and 6.6, at each step (m) of iteration, one of

the quantities in 6.21 and 6.22 are calculated (based on the input parameter).

P (Gpm|{Gr(m−1), Dp}) ∝
P (Gpm)P (Dp|Gpm)P

(
Gr(m−1)|Gpm

)
P (Gr(m−1))

(6.21)

P (Grm|{Gp(m−1), Dr}) ∝
P (Dr|Grm)P

(
Gp(m−1)|Grm

)
P (Gp(m−1))

(6.22)

Based on the observation that a PPIN cannot give any direction information for use

in a GRN, there are only two possible operations at any particular stage of the algorithm:

adding an edge if it was not there, and vice versa (flip operation). In a similar manner,
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1. Evaluate the network from the previous iteration. If input is R, evaluate score of
Gr(m−1) based on Gp(m−1), using 6.6 for the calculation. If input is P , score Gp(m−1)
based on Gr(m−1), using 6.5.

2. Generate new network by applying flip operation on each possible edge. Store the
score of the changed network, calculated using 6.21 (input is P ) or 6.22 (input is R).

3. Find the changed network with the maximum score. Keep this as the new “best
solution” if score increases compared to the “best solution” from the previous itera-
tion. Otherwise, set the “best solution” from the previous iteration as the new “best
solution” and send an “end flag” to the counterpart thread.

4. Repeat steps 1) - 3) until the stopping criteria (new “best solution” is same as pre-
vious “best solution”, or an “end flag” from the counterpart thread) is reached. /

Table 6.2: Algorithm FGP

since the direction information of a GRN is not useful while constructing a PPIN, only

flip of edge existence operations are permitted while constructing PPINs. The overall

algorithm is shown in Table 6.2.

As has been discussed, integrating diverse sources of PPI data is necessary for a suc-

cessful fusion of GRN and PPIN. In the next section, we discuss two data sources which

can be used to probabilistically integrate multiple PPI data sources.

6.4 Probabilistic Aggregation of Multiple Sources of PPI Data

Lee et al. [129] developed a conceptual framework for integrating diverse functional ge-

nomics data by re-interpreting experiments to provide numerical likelihoods that genes

are functionally linked. This allows direct comparison and integration of different classes

of data. In the framework, functional genomics datasets are first benchmarked for their

relative accuracies; these are used as weights in a probabilistic integration of the data.

Several raw datasets already have intrinsic scoring schemes. These data are rescored with

a log-likelihood based scoring called LLS, then integrated into an initial network (called

”IntNet”). Lee et al. used 8 different sources to construct the initial integrated network,

including physical and gcnetic interaction data sets, mRNA co-expression linkages, func-

tional linkages from literature mining, and computational linkages from two comparative

genomics methods, Rosetta stone (gene fusion) linkages and phylogenetic profiles. Addi-

tional linkages from the genes’ network context using functional genomics data produce
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a ”ContextNet”, which are then integrated with the ”IntNet” to create a final network,

”FinaINet”. Thresholding techniques (scoring higher than the gold-standard small-scale

assays of protein interactions) are then applied on the ”FinalNet” to produce a ”Confi-

dentNet”, with ∼ 34,000 linkages between 4,681 genes. Hierarchical clustering of ”Confi-

dentNet” defined 627 modules of functionally linked genes spanning 3, 285 genes (called

”ModularNet”), approximating the set of cellular systems in yeast.

Jansen et al. [104] proposed a Bayesian approach for integrating interaction informa-

tion that allows for the probabilistic combination of multiple datasets and demonstrated

its application to yeast [67]. This approach can be used for combining noisy interac-

tion data sets and for predicting interactions de novo, from other genomic information.

The basic idea behind the approach is to assess each source of evidence for interactions

by comparing it against samples of known positives and negatives (“gold standards”),

yielding a statistical reliability. Then, extrapolating genome-wide, the chance of possible

interactions for every protein pair can be predicted by combining each independent ev-

idence source according to its reliability. The authors term the results as “probabilistic

interactomes” (PIs), in which each protein pair is associated with a probability measure

for being in the same complex (called likelihood ratio). The procedure not only allows

combining existing experimental interaction datasets (resulting in a PI-experimental or

“PIE”), but also the de-novo prediction of protein complexes from genomic datasets (when

the input data are not interaction datasets per se, resulting in a PI-predicted or “PIP”).

Jansen et al. combined four interaction datasets from high-throughput experiments

into the PIE [82, 94, 101, 231] dataset. PIP was computed from several genomic data

sources: the correlation of mRNA amounts in two expression datasets (one with tempo-

ral profiles during the cell cycle, one of expression levels under 300 cellular conditions),

two sets of information on biological function, and information about whether proteins

are essential for survival [14, 49, 97, 146]. For computing the PIE and the PIP, two dif-

ferent types of Bayesian networks were used: a “naive” network for the PIP and a fully

connected one for the PIE [104].

Finally, the PIP, PIE, and gold standard were combined into a total PI (PIT), which

represents a comprehensive view of the known and putative protein complexes in yeast



CHAPTER 6. CO-LEARNING OF GRN AND PPIN 170

[183]. Because the PIP and PIE data provide essentially uncorrelated evidence for protein-

protein interactions, a naive network was chosen to construct the PIT. The authors veri-

fied their predictions by comparing them against existing experimental interaction data

(not in the gold standard) as well as new TAP (tandem affinity purification) tagging ex-

periments.

6.5 Experimental Results

Since the PPI information needed to build the knowledge base is not available for or-

ganisms like E. coli and cyanobacteria, in this chapter we consider yeast (Saccharomyces

cerevisiae) networks for the evaluation of the proposed approach. We consider two dif-

ferent networks, the KEGG pathway of yeast consisting of 11 genes, and the genetically

modified network of yeast called IRMA. For the KEGG network, we used the cell cy-

cle data obtained from Spellman et al. [214]. Both these networks have been used in the

previous chapter for assessment of reconstruction techniques. For all the experiments,

the λH and λL parameters were set to 1 and 1000 respectively, to avoid problems near

terminal values [24]. The ζp values were set to the log of the cut-off parameter (calcu-

lated to be 600) obtained from the PPIN datasets of Jansen et al. [104], which were used

in this study. Finally, to set the ζ1 and ζ2 parameters, we made the practical assumption

that physical protein-protein interactions should be considered as part of PPIN instead

of GRN, making them mutually exclusive [161], and as a result ζ1 can be set to 0 and ζ2

to∞. To compare our algorithm, we consider two other methods, namely, BANJO [255]

and BNFinder [246] (with both BDe and MDL).

6.5.1 Yeast KEGG Pathway Reconstruction

In order to validate the proposed method’s performance on yeast S. cerevisiae cell cycle,

we selected the eleven gene network of the G1-phase: CLN3, CDC28, MBP1, SWI4, CLB6,

CDC6, SIC1, SWI6, CLN1, CLN2, CLB5. The data used was obtained from the cdc28

experiment of Spellman et al. [214].

In Figure 6.5(B)-(F), we report network graphs reconstructed by our proposed ap-

proach, CCIT-based approach, BNFinder(BDe and MDL) and BANJO. We also report the
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Figure 6.5: Reconstruction of Yeast KEGG Pathway [108]. (A) Target Network. (B) Net-
work Inferred by FusGP. (C) Network Inferred by CCIT based method. (D) Network
Inferred by BANJO.(E) Network Inferred by BNFinder+BDe. (F) Network Inferred by
BNFinder+MDL.

KEGG pathway [108] of the cell cycle in yeast in Figure 6.5(A). Since the exact ground

truth for this network is not known, instead of applying performance measures as a

means of determining network accuracy, we refer to the available correct interactions

obtained from the KEGG pathway [108] and identify which of the predicted interactions

are correct or otherwise. We observe that our approach correctly identifies the regula-

tion of CLN1-CLN2-CDC28 complex by the SWI4-SWI6 complex. Also, the proposed

approach infers that the MBP1-SWI6 complex regulates the CLB5-CLB6-CDC28 com-

plex, which is correct. Some other interactions inferred by our approach (CLN1→CDC28,

CDC28→CLN3 and SWI4→SWI6) are also correct based on the KEGG pathway. Overall,

we observe that none of the methods perform particularly well on this network. How-

ever, the number of correct predictions by our method (7) is higher than the other meth-

ods (the second best among these methods, the CCIT-based approach, inferred 5 correct

interactions).

6.5.2 Real-life Biological Data of yeast, IRMA

To validate our method with another real-life biological gene regulatory network, we

investigate the recent network reported in Cantone et al. [35] called IRMA, which, in
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addition to the original network, contains a ‘simplified’ network, ignoring some protein

level interactions. Since the exact ground truth for this network is known, we use the

four well known performance measures used earlier, namely sensitivity (Se) , specificity

(Sp), precision (Pr), and F-score (F), to assess the algorithms.

IRMA ON Dataset

The performance comparison amongst various method based on the ON dataset is shown

in Table 6.3. We observe that FusGP outperforms the other methods in terms of all the

performance measures. In terms of specificity and and precision, it ties with the CCIT-

based approach. Also, the increase in sensitivity compared to the CCIT-based approach

implies that it correctly learns additional interactions from the protein-protein interaction

network.

Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

FusGP 0.75 1.0 1.0 0.86 0.83 1.0 1.0 0.91

CCIT 0.63 1.0 1.0 0.77 0.67 1.0 1.0 0.80

TDARACNE 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73

BNFinder+BDe 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BNFinder+MDL 0.13 0.82 0.25 0.17 0.17 0.80 0.33 0.22

BANJO 0.25 0.76 0.33 0.27 0.50 0.70 0.50 0.50

Table 6.3: Performance comparison of FusGP based on IRMA ON dataset

IRMA OFF Dataset

The OFF dataset lacks the presence of ‘stimulus’ (applied during the experiments); how-

ever, it contains more samples compared to the ON dataset (21 versus 16). The compari-

son of the performance of the algorithms using the OFF dataset is shown in Table 6.4. We

observe from the results that FusGP and CCIT have the same performance. In fact, for

this dataset having larger number of samples, the information from the PPIN cannot suf-

ficiently influence the score of the GRN, and thus the resultant GRN essentially remains

the same.
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Original Network Simplified Network

Se Sp Pr F Se Sp Pr F

FusGP 0.50 0.94 0.80 0.62 0.50 0.90 0.75 0.60

CCIT 0.50 0.94 0.80 0.62 0.50 0.90 0.75 0.60

TDARACNE 0.60 - 0.37 0.46 0.75 - 0.50 0.60

BNFinder+BDe 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BNFinder+MDL 0.13 0.82 0.25 0.17 0.33 0.80 0.50 0.40

BANJO 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44

Table 6.4: Performance comparison of FusGP based on IRMA OFF dataset

6.6 Summary

In this chapter, we proposed a novel approach for fusing the knowledge from PPINs to

GRNs, and vice versa. We also proposed an algorithm that executes in parallel threads

to achieve a coherent transfer of information during the building of the GRN and PPIN.

Experiments were carried out using different real-life networks of yeast and the results

showed that, in most cases, the information from the PPIN has a positive effect on the

reconstruction accuracy of the GRN method, providing support to the superiority of our

approach. The protein-protein interaction information for other organisms such as E. coli

and cyanobacteria is not rich at this stage, which prohibited us from studying these or-

ganisms. However, when this information for these and other organisms becomes avail-

able in future, the proposed approach can easily be extended to construct accurate GRNs

for these organisms. Along with the extensions proposed in this chapter, the CCIT and

mDBN-based method of inferring both instantaneous and multi-step time-delayed inter-

actions would improve the accuracy of gene regulatory network reconstruction and thus

induce further research in systems biology.
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Conclusion

Gene regulatory networks (GRN) depict the regulatory interactions among the genes in

a living cell. A system level view of gene functionalities provided by these networks

is very important in understanding biological processes. This thesis is devoted to real-

istic modeling and accurate reconstruction of gene regulatory networks using dynamic

Bayesian network (DBN) and information theoretic measures. Dynamic Bayesian net-

work as the modeling technique offers various benefits when used in conjunction with

the noisy and uncertain DNA microarray data. Relevant standalone features of mutual

information (MI) and conditional mutual information (CMI) contribute significantly in

assessing regulatory relations.

Using the DBN modeling technique and the association measures, we first proposed

a novel algorithm called BITGRN (Bayesian Information Theoretic GRN Reconstruction

Algorithm) that uses MI/CMI based conditional independence (CI) tests for inferring

regulatory relations. The algorithm provides a superior performance, since at each point

of the execution of the algorithm, it uses the current estimate of the parents of a gene un-

der consideration, to build the condition set for CMI calculation. However, the algorithm

was only suited to detecting time-delayed interactions. Thus, after evaluating its perfor-

mance, we extended the basic DBN modeling technique to include both instantaneous

and time-delayed interactions. We proposed two approaches, which can use the new

modeling framework, and learn the two types of interactions, albeit sequentially. The

first technique, called GRNCIT (learning GRNs with Contemporaneous arcs using Infor-

mation Theory), uses the properties of MI/CMI in a hill-climbing fashion for CI tests (i.e.,

174
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the approach of BITGRN), and the later technique, called GRNCGA (learning GRNs with

Contemporaneous arcs using Genetic Algorithm), uses similar principles but employs a

score and search strategy. We then improved these learning techniques of GRNCIT and

GRNCGA, by proposing a novel scoring metric called CCIT (Combined Conditional In-

dependence Tests), that can score the two types of interactions simultaneously. Moreover,

a GA based search algorithm was devised that uses the scoring metric and the concept of

network motifs for effectively exploring a significantly larger search space.

Due to the scarcity of the number of samples in DNA microarray data and also be-

cause the data contains noise and missing values, it is considered appropriate to sup-

plement the DNA microarray data using other diverse data sources. For this, we used

protein-protein interaction information and various other genomic data. We devised a

novel co-learning based fusion algorithm that learns a GRN and a PPIN in an iterative

manner, and exchanges structural information between the GRN and PPIN during this

process. The methods developed in the thesis do not depend on the actual time differ-

ence of the individual samples; hence it is not affected by samples taken at irregular time

intervals. As a result, it can be adapted to deal with irregular time intervals.

In terms of performance, we have shown that the method performs well for small

to medium scale and also showed results for a relatively large network containing 730

genes. For still larger networks (say, network containing more than 1000 genes), the per-

formance will depend on the number of samples and their quality. As long as the datasets

used for the experiments are of good quality, the methods should perform similar to the

results for the medium sized network. In terms of computational cost, it can be noted

that all the methods developed in the thesis makes use of the MI and CMI, and then uses

these measures in intelligent ways, either in an iterative manner (in which case if the

network has n genes and t samples, we have to compute O(Kn2) estimations of the mu-

tual information between two vectors of samples having t samples or less, K being the

maximum order of the DBN, which is less than 3), or in evolutionary manner, where the

computational cost is proportional to the number of functional evaluations per genera-

tion (O(Mn2) evaluations, whereM = d.K, K being the number of chromosomes). Since

we have restricted the number of generations, the functional evaluation is also bounded

and hence the computational cost is not high in any case.
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It may be noted here that the largest synthetic network we have done our analysis on

contains 50 genes. Although we can generate larger synthetic networks, the current tools

used for generating synthetic networks usually cannot adequately replicate the real dy-

namics of large-scale biological systems. Also, some methods perform better on synthetic

networks but do not perform well for larger real-life networks. Hence, instead of using

large synthetic networks, we have emphasized on using real-life networks of large-scale

(e.g., cyanobacteria network, containing 730 genes) to assess the performance of the al-

gorithm. The analyses on real-life biological networks are capable of giving more correct

insight on the performance of reconstruction algorithms compared to synthetic networks.

In the following sections, we elaborate on the contributions and observations made

during the development and evaluation of the techniques. Finally, we conclude this the-

sis with future directions for further research.

7.1 Information theory based CI tests for Detecting Time-Delayed

interactions

In Chapter 3, we proposed a novel information theory based GRN learning algorithm,

called BITGRN. The algorithm iteratively adds parents (transcription factors) to a gene

(child) under consideration, and uses MI/CMI based CI tests to assess regulatory in-

teractions. With respect to modeling, although DBNs have been used in various other

approaches, those techniques either did not use MI based association measures or, in

limited cases when they used MI, it was not applied as a means of CI testing as done in

the present research work. They were merely used in a threshold based setup [248], or

for learning three node substructures [15, 42]. Similarly, MI has been used by other tech-

niques, e.g., relevance network based approaches, but these were essentially pairwise

association based analysis techniques, and none of these methods exploited the strength

of MI and CMI as rigorous statistical significance testing tools (i.e., for CI tests). The al-

gorithm was evaluated with the aid of synthetic as well as real-life networks of yeast and

E. coli, and it was observed that this algorithm performed better than other DBN based

techniques, and also compared to model-free techniques (e.g., relevance network based

approaches) which use MI.
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7.2 Realistic Modeling of Genetic Interactions

In Chapter 4, we postulated that in biological gene regulatory networks, interactions can

be time-delayed, or they can be instantaneous. In regular DBN based techniques, it is

assumed that interactions are time-delayed. However, they do not consider instanta-

neous interactions. We proposed a novel modeling framework using the DBN formalism

that can model both these types of interactions. To see whether this proposed modeling

framework can improve the performance of reconstruction experiments, we devised the

following two learning algorithms to learn the two different types of interactions sequen-

tially:

• A greedy hill-climbing approach using the principles proposed in Chapter 3, called

GRNCIT. It directly extends the theoretical results employed in Chapter 3, and

learns the time-delayed interactions at first, and afterwards learns the instanta-

neous interactions, conditional on the already constructed time-delayed interaction

network. Applying this algorithm improved the number of correct predictions, ac-

companied with slight increase in the number of incorrect predictions.

• As an alternative way of utilizing the modeling framework proposed in Chapter 4,

we employed a GA based score and search technique called GRNCGA, using an en-

hanced version (modified so that it can score both instantaneous and time-delayed

interactions, and adheres to the criteria set out by the modeling framework) of the

popular scoring metric called MIT [60]. We again obtained an improved perfor-

mance, both compared to the BITGRN algorithm (Chapter 3) and also the GRNCIT

algorithm (Chapter 4). Although both GRNCIT and GRNCGA performed better

overall compared to BITGRN and other related techniques, the GA based approach

made fewer incorrect predictions compared to GRNCIT.

7.3 Simultaneous Learning of Instantaneous and Time-Delayed

Genetic Interactions

In Chapter 5, we made the following contributions:
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• We extended the modeling framework proposed in Chapter 4, to allow it to model

multi-step time-delayed interactions. The reason behind this is that only single-

step time-delayed interaction implies that all regulations take place with the same

amount of time delay. This assumption, although widely used, is restrictive, and by

removing this limitation, we are effectively allowing different interactions to have

different time delays.

• To allow the learning of instantaneous and time-delayed interactions simultane-

ously, compared to the sequential learning strategy employed by the algorithms

in Chapter 4, we proposed a scoring metric called CCIT. The scoring metric makes

use of the MI/CMI based CI testing principles, and it is also decomposable.

We applied the scoring metric using the extended modeling framework on a wide

range of networks, and it resulted in a better balance between correct and incor-

rect predictions, along with a general increase in the number of correct predictions.

Alongside small to medium sized networks, we also applied it to a large scale com-

mercially important network of cyanobacteria, and GO (Gene Ontology) and de-

gree distribution based analysis was used to show that, indeed, the approach is

capable of making biologically relevant predictions.

• In Chapter 5, we also proposed a new and improved search technique, which is mo-

tivated by the fact that with the adoption of multi-step time-delayed interactions,

the already large search space of the DBN framework becomes even larger. We

used the concept of network motifs to propose a two-stage genetic algorithm that

obtains representative solutions from local optimal solutions in the first stage, and

combines these solutions in the second stage to obtain the globally optimal/near-

optimal solution. We tested the algorithm on a number of networks, and perfor-

mance improvement was observed, indicating that this idea of network motifs com-

bined with the proposed two-stage searching strategy can be used to effectively

explore a significantly larger search space.
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7.4 Using Multiple Sources of Prior Knowledge for Supplement-

ing DNA Microarray Data

In Chapter 6, we proposed a novel approach that can integrate diverse sources of prior

knowledge to be used in conjunction with DNA microarray data for GRN reconstruc-

tion. The proposed algorithm uses a disjunctive approach based on the Bayes theorem,

and works in two threads to construct a GRN and a PPIN simultaneously. During each

iteration, it constructs an improved estimate of the GRN compared to the previous iter-

ation, using the PPIN from the previous step, and vice versa. We assessed the effective-

ness of the algorithm by using a knowledge base where four different PPI data sources

and two genomic data sources were combined probabilistically. We observed that this

co-learning based algorithm successfully integrates this information, and using this ap-

proach increased the inference of correct interactions without an increase in the number

of false predictions. In previous approaches, an increase in the number of correct in-

ferences were accompanied by an increase (usually small, but the trend existed) in the

number of incorrect inferences. This result essentially confirms that external sources of

knowledge indeed enable better reconstruction of GRNs.

7.5 Future Directions

While the thesis has addressed many important issues for realistic representation of ge-

netic interactions and their reconstruction, in this section, we present some selected, po-

tential directions for future research.

• One of the assumptions that is made when using BN/DBN based methods is sta-

tionarity, that is, interactions remain existent irrespective of time. However, in prac-

tice, interactions may change with time. Therefore, one important way of recon-

structing GRNs is using models that have provision for changing the structure over

time. Although intuitive, the use of such models has until recently been plagued

due to the lack of data. There has been a recent interest in DBN methods that are

essentially time varying [182,212,213,259]. However, these approaches are compu-

tationally expensive, and hence using these methods for GRN learning becomes in-

feasible even for moderate sized networks [182,213]. In their 2009 article [213], Song
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et al. proposed a kernel re-weighted l1 regularized auto regressive approach for

modeling such time varying DBNs, and showed its application to learning GRNs.

However, these methods need to make various regularization assumptions to make

them applicable to GRN reconstruction. Hence, further research in this direction

can be pursued.

• The time varying DBN models use just single-step time-delayed interactions be-

tween genes. Although extending it to multi-step time-delayed interactions can

become computationally intensive to the learning routine, a natural and viable ex-

tension can be the allowance of both instantaneous and time-delayed interactions

to such models, and devising efficient techniques that can learn GRNs using such

models.

• During our experiments with co-learning of GRNs and PPINs (Chapter 6), we ob-

served that PPI and other genomic data information is scarce for many organisms.

However, such knowledge sources can play a vital role in accurate reconstruction

of GRNs. To build such knowledge bases one needs to integrate knowledge from

different sources, and compile these into one database. Although such databases

are available for several organisms (e.g., for the human genome [193,230] and for E.

coli [221]), there still remain many organisms for which these integrated knowl-

edge sources are scarce. Building new or improved collections of such knowl-

edge sources will undoubtedly assist in better reconstruction of gene regulatory

networks.

• The recent discoveries mentioned in Section 2.1.9 indicate that microRNA molecules

may constitute a new layer of regulatory control over gene expression programs in

many organisms. The discovery of the roles that miRNA play in conferring robust

GRNs, in particular in the case of feedback and feedforward loops is going to be an

important research trend.



Appendix A

Using BiNGO for GO Based

Enrichment Analysis

In Chapter 5, we used the Cytoscape [204] plugin BiNGO [135] for GO analysis. In this

appendix, we will give a step by step tutorial of how it can be done. For this analy-

sis, we need an annotation database, for example the database we used for the 730-gene

cyanobacteria network study. Let us name this annotation database as ’AnnoDB.txt’.

The input graph should be of a specific format to be recognizable by Cytoscape and

BiNGO, and for simplicity we recommend using the .sif format. sif-format networks

specify nodes and interactions only, and take the general form: nodeX <relationship type>

nodeY, where nodeX is a gene and nodeY is a set of genes. The tag <relationship type> can

be any string.

With these inputs, a GO analysis can be done in the following steps:

1. In Cytoscape: import the network (the .sif network file), using File → import →

network or CTRL+L).

2. Laying out the network using some layout algorithm (Layout menu). The organic

(Layout→Yfile→organic) and force directed (Layout→Cytoscape layout) layouts

are very useful ones for our study.

3. Start Bingo (Plugin→BiNGO). In BiNGO,

(a) Enter a name into the cluster name, check ”get cluster from network”, ”over-

representation” and ”no visualization”.
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(b) In select reference set box choose ”use network as reference set”.

(c) In select ontology file select ”GO Full”.

(d) In select organisms select the annotation database file (AnnoDB.txt).

(e) Leave all other boxes at default (i.e., Hypergeometric test, FDR, significance

level 0.05, overrepresented categories after correction).

4. Now we are ready to do the enrichment analysis. Just select the genes/gene groups

in the graph that are to be analysed for enrichment and click start BinGO. It will

display the functions that are significantly enriched within that group of genes. If

the table is empty, then it means that these genes/gene groups do not have any

significantly enriched functionalities.



Appendix B

Comparing CCIT Performance Using

the GeneNetWeaver Tool

In this appendix, we compare the performance of CCIT with three different algorithms,

using the GeneNetWeaver (GNW) tool [196]. In Chapter 5, we presented the performance

comparison using the F-score. In this appendix, we also present the results corresponding

to the other performance measures. We make observations similar to Chapter 5, that

there is no clear winner in all the cases. However, our proposed approach is among the

top performers and it shows consistent performance.
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Figure B.1: Comparison of performance with 3 other methods for the 10-gene synthetic
network generated using GeneNetWeaver [196]. Red(+) - CCIT, Green(o) - Banjo, Blue(x)
- BNFinder+BDe, Cyan(square) - BNFinder+MDL, Magenta(diamond) - TDARACNE.
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Figure B.2: Comparison of performance with 3 other methods for the 25-gene synthetic
network generated using GeneNetWeaver [196]. Red(+) - CCIT, Green(o) - Banjo, Blue(x)
- BNFinder+BDe, Cyan(square) - BNFinder+MDL, Magenta(diamond) - TDARACNE.
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Figure B.3: Comparison of performance with 3 other methods for the 50-gene synthetic
network network generated using GeneNetWeaver [196]. Red(+) - CCIT, Green(o) -
Banjo, Blue(x) - BNFinder+BDe, Cyan(square) - BNFinder+MDL, Magenta(diamond) -
TDARACNE.



Appendix C

Parametric Settings in Methods Used

for Comparison

In this thesis, we have done the comparison of our approach with three related methods:

BANJO, BNFinder, and TDARACNE. Unless otherwise stated, the parameter settings for

these three methods are given in the following tables:

BANJO Primary Settings

discretizationPolicy q3
discretizationExceptions NONE
searcherChoice Simulated Annealing
proposerChoice AllLocalMoves
minMarkovLag 1
maxMarkovLag 1
equivalentSampleSize 1
maxParentCount 3
maxTime 10 minute

For simulated annealing, the following parameters were used:

BANJO Settings for simulated annealing

initialTemperature 1000
coolingFactor 0.8
maxAcceptedNetworksBeforeCooling 1000
maxProposedNetworksBeforeCooling 10000
minAcceptedNetworksBeforeReannealing 200
reannealingTemperature 500

BNFinder settings are as follows:
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BNFinder Settings

Scoring Function BDe / MDL
Number of parents limit 3
Number of suboptimal parent sets to consider 1
prior pseudocount factor 1

Finally, we used the following settings for TDARACNE:

TDARACNE Settings

N (number of bins in normalization) 15
Delta (maximum time delay) 3
Likehood (fold change to be used for IcE) 1.2
Norm 1 (percentile normalization)
Logarithm 0
Threshold 0
ksd (standard deviation multiplier) 1
DPI tolerance 0



Glossary

Abbreviation Meaning

2D Two-dimensional

AIC Akaike Information Criterion

BD Bayesian Dirichlet (score)

BIC Bayesian Information Criterion

BN Bayesian Network

CD Conditional Dependence

CI Conditional Independence

CLM Constraint Logic Minimization

CMI Conditional Mutual Information

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DE Differential Equation

DFS Depth First Search

DNA Deoxyribonucleic acid

DPI Data Processing Inequality

EA Evolutionary Algorithm

GA Genetic Algorithm

GEO Geometric Graph

GGM Graphical Gaussian Model

GNW GeneNetWeaver Tool

GO Gene Ontology

HMM Hidden Markov Model

Continued on next page. . .

189



GLOSSARY 190

Glossary – Continued

Abbreviation Meaning

KL Kullback-Leibler (divergence)

LL Log-Likelihood

MAP Maximum a Posteriori

MB Markov Blanket

MCMC Markov Chain Monte Carlo

MDL Minimum Description Length

MI Mutual Information

MIT Mutual Information Tests (score)

ML Maximum Likelihood

mRNA Messenger RNA

PCA Principal Component Analysis

PCC Partial Correlation Coefficient

PI Probabilistic Interactomes (for PPIN)

PIE PI-Experimental

PIP PI-Predicted

PIT Total PI

PPI Protein-Protein Interaction

PPIN Protein-Protein Interaction Network

PPMC Pearson Product Moment Correlation

Pr Precision

RNA Ribonucleic acid

Se Sensitivity

Sp Specificity

SVD Singular Value Decomposition

TAP Tandem Affinity Purification Experiment

TDE Trigonometric Differential Evolution

tRNA Transfer RNA

UAS Upstream Activating Sequence

Y2H Yeast Two-hybrid assay
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[61] L.M. DE CAMPOS, J.M. FERNÁNDEZ-LUNA, AND J.M. PUERTA. An iterated local search algorithm

for learning Bayesian networks with restarts based on conditional independence tests. International

Journal of Intelligent Systems, 18(2):221–235, 2003.

[62] L.M. DE CAMPOS, JM PUERTA, ET AL. Learning bayesian networks by ant colony optimisation:

searching in two different spaces. Mathware & soft computing, 9(3):251–268, 2008.

[63] H. DE JONG. Modeling and simulation of genetic regulatory systems: a literature review. Journal of

computational biology, 9(1):67–103, 2002.

[64] P. D’HAESELEER. Reconstructing gene networks from large scale gene expression data. PhD thesis, The

University of New Mexico, 2000.

[65] D. DI BERNARDO, M.J. THOMPSON, T.S. GARDNER, S.E. CHOBOT, E.L. EASTWOOD, A.P. WOJ-

TOVICH, S.J. ELLIOTT, S.E. SCHAUS, AND J.J. COLLINS. Chemogenomic profiling on a genome-wide

scale using reverse-engineered gene networks. Nature biotechnology, 23(3):377–383, 2005.

[66] N. DOJER. Learning Bayesian networks does not have to be NP-hard. Mathematical Foundations of

Computer Science 2006, pages 305–314, 2006.

[67] A. DRAWID AND M. GERSTEIN. A Bayesian system integrating expression data with sequence pat-

terns for localizing proteins: comprehensive application to the yeast genome. Journal of molecular

biology, 301(4):1059–1075, 2000.

[68] P. DHAESELEER, S. LIANG, AND R. SOMOGYI. Genetic network inference: from co-expression clus-

tering to reverse engineering. Bioinformatics, 16(8):707–726, 2000.

[69] PATRIK DHAESELEER, SHOUDAN LIANG, AND ROLAND SOMOGYI. Gene expression data analysis

and modeling. In Pacific Symposium on Biocomputing, 99, 1999.

[70] D. EATON AND K. MURPHY. Bayesian structure learning using dynamic programming and MCMC.

Proceedings of the Twenty-Third Confererence on Uncertainty in Artificial Intelligence (UAI 2007), 2007.

[71] M.B. EISEN, P.T. SPELLMAN, P.O. BROWN, AND D. BOTSTEIN. Cluster analysis and display of

genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25):14863–14868,

1998.

[72] NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION (NCBI). Illustration of a cell. Available

from: http://www.ncbi.nlm.nih.gov/About/primer/genetics cell.html. Last Accessed: 08-05-2013.

[73] EUROPEAN SCIENCE FOUNDATION. Functional Genomics: Protein Arrays Resource Page. Avail-

able from: http://www.functionalgenomics.org.uk/sections/resources/protein arrays.htm. Last Ac-

cessed: 23-05-2013.

[74] THE ANNENBERG FOUNDATION. Rediscovering Biology: Protein Microarrays. Available from: http:

//www.learner.org/courses/biology/textbook/proteo/proteo 11.html. Last Accessed: 23-05-2013.

[75] N. FRIEDMAN. Inferring cellular networks using probabilistic graphical models. Science Signalling,

303(5659):799, 2004.

http://www.ncbi.nlm.nih.gov/About/primer/genetics_cell.html
http://www.functionalgenomics.org.uk/sections/resources/protein_arrays.htm
http://www.learner.org/courses/biology/textbook/proteo/proteo_11.html
http://www.learner.org/courses/biology/textbook/proteo/proteo_11.html


REFERENCES 196

[76] N. FRIEDMAN, M. LINIAL, I. NACHMAN, AND D. PE’ER. Using Bayesian networks to analyze ex-

pression data. Journal of computational biology, 7(3-4):601–620, 2000.

[77] N. FRIEDMAN, K. MURPHY, AND S. RUSSELL. Learning the structure of dynamic probabilistic net-

works. In Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI98), pages 139–147.

Citeseer, 1998.

[78] T.S. GARDNER, C.R. CANTOR, AND J.J. COLLINS. Construction of a genetic toggle switch in Es-

cherichia coli. Nature, 403:339–342, 2000.

[79] T.S. GARDNER AND J.J. FAITH. Reverse-engineering transcription control networks. Physics of life

reviews, 2(1):65–88, 2005.

[80] A.P. GASCH, M.B. EISEN, ET AL. Exploring the conditional coregulation of yeast gene expression

through fuzzy k-means clustering. Genome Biol, 3(11):1–22, 2002.

[81] AUDREY P GASCH, PAUL T SPELLMAN, CAMILLA M KAO, ORNA CARMEL-HAREL, MICHAEL B

EISEN, GISELA STORZ, DAVID BOTSTEIN, AND PATRICK O BROWN. Genomic expression programs

in the response of yeast cells to environmental changes. Science Signalling, 11(12):4241, 2000.

[82] A.C. GAVIN, M. BÖSCHE, R. KRAUSE, P. GRANDI, M. MARZIOCH, A. BAUER, J. SCHULTZ, J.M.

RICK, A.M. MICHON, C.M. CRUCIAT, ET AL. Functional organization of the yeast proteome by

systematic analysis of protein complexes. Nature, 415(6868):141–147, 2002.

[83] C.E. GIACOMANTONIO AND G.J. GOODHILL. A Boolean model of the gene regulatory network

underlying mammalian cortical area development. PLoS computational biology, 6(9):e1000936, 2010.

[84] DAVID E GOLDBERG. Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley Professional, 1989.

[85] D.E. GOLDBERG AND S. VOESSNER. Optimizing global-local search hybrids. Urbana, 51:61801, 1999.
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[120] MEHMET KOYUTÜRK, ANANTH GRAMA, AND WOJCIECH SZPANKOWSKI. An efficient algorithm for

detecting frequent subgraphs in biological networks. Bioinformatics, 20(suppl 1):i200–i207, 2004.

[121] LANEY KUENZEL. Gene clustering methods for time series microarray data. 2010.

[122] DON KULASIRI, LAN K NGUYEN, SANDHYA SAMARASINGHE, AND ZHI XIE. A review of systems

biology perspective on genetic regulatory networks with examples. Current Bioinformatics, 3(3):197–

225, 2008.

[123] S. KULLBACK. Information theory and statistics. Dover Publications, 1968.

[124] S. KULLBACK AND R.A. LEIBLER. On information and sufficiency. The Annals of Mathematical Statis-

tics, 22(1):79–86, 1951.

http://genome.kazusa.or.jp/cyanobase
http://genome.kazusa.or.jp/cyanobase


REFERENCES 199

[125] MICHIHIRO KURAMOCHI AND GEORGE KARYPIS. Finding frequent patterns in a large sparse

graph*. Data mining and knowledge discovery, 11(3):243–271, 2005.

[126] W. LAM AND F. BACCHUS. Learning Bayesian belief networks: An approach based on the MDL

principle. Computational intelligence, 10(3):269–293, 1994.
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