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Abstract

Kernel density estimation is one of the most important techniques for understanding

the distributional properties of data. It is understood that the effectiveness of such

approach depends on the choice of a kernel function and the choice of a smoothing pa-

rameter (bandwidth). This thesis has undertaken some important topics in bandwidth

selection for kernel density estimation for data that behave in various nature. The first

issue evolves around selecting appropriate bandwidth given the characteristics of the

local data in multivariate setting. In Chapter 3, the study proposes a kernel density

estimator with tail-adaptive bandwidths. The study derives posterior of bandwidth

parameters based on the Kullback-Leibler information and presented an MCMC sam-

pling algorithm to estimate bandwidths. The Monte Carlo simulation study shows

that the kernel density estimator with tail-adaptive bandwidths estimated through

the proposed sampling algorithm outperforms its competitor. The tail-adaptive ker-

nel density estimator is applied to the estimation of bivariate density of the paired

daily returns of the Australian Ordinary index and S&P 500 index during the period

of global financial crisis. The results show that this estimator could capture richer dy-

namics in the tail area than the density estimator with a global bandwidth estimated

through the normal reference rule and a Bayesian sampling algorithm.
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The second research project investigates bandwidth selection for multimodal distri-

butions or data that exhibits clustering behaviours. Chapter 4 proposes a cluster-

adaptive bandwidth kernel density estimator for data with multimodality. This

method employs a clustering algorithm to assign a different bandwidth to each clus-

ter identified in the data set. The study derives a posterior of bandwidth parameters

based on the Kullback-Leibler information and presented an MCMC sampling algo-

rithm to estimate bandwidths. The Monte Carlo simulation study shows that when

the underlying density is a mixture of normals, the kernel density estimator with

cluster-adaptive bandwidths estimated through the proposed sampling algorithm out-

performs its competitor. When the underlying densities are fat-tailed, the combined

approach of tail- and cluster-adaptive density estimator performs the best. In an em-

pirical study, bandwidthmatrices are estimated for the cluster-adaptive kernel density

estimator of eruption duration and waiting time to the next eruption collected from

Old Faithful greyer, which is often analysed due to its clustering nature. The results

again shows clear advantage of the proposed cluster-adaptive kernel density estimator

over traditional approaches.

The third topic extends the Bayesian bandwidth selection method to volatility models

of financial asset return series. The study is motivated by the fact that only limited at-

tention in the literature has been invested on the estimation of nonparametric nonlin-

ear type of volatility models through a Bayesian approach. Chapter 5 presents a new

volatility model called the semiparametic nonlinear volatility (SNV) model. Based on

financial return series of major stock indices in the world, the performance of the pro-

posed volatility model against the competing models are examined in both in-sample
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and out-of-sample periods. The proposed model and the Bayesian estimation method

show strong and convincing performance results. The study also evaluates the empiri-

cal value-at-risk (VaR) performance of the competing models. The proposed volatility

model shows the best performance in most cases.
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Chapter 1

Introduction

1.1 Motivation and aim of the thesis

Kernel density estimation is one of the most important techniques for understanding

the distributional properties of data. It is understood that the effectiveness of such an

approach depends on the choice of a kernel function and the choice of a smoothing

parameter (as known as bandwidth).1 Although these two issues cannot be treated

independently, it is widely noted that the performance of kernel density estimation is

mainly affected by the choice of bandwidth, and only in an minor way, by the choice

of kernel (for example, Scott 1992, Wand & Jones 1995).2

The traditional kernel density estimation method aims to obtain a bandwidth to min-

imise a pre-specified distance function between the true density function and its den-

sity estimator. The most well-known method in this category is the least squared

1See Izenman (1991) for a discussion
2However, Marron & Nolan (1988), Vieu (1999), Horová et al. (2002) among others, have examined

the kernel function choice.
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cross-validation to choose the bandwidth by minimising the integrated squared error

(Rudemo 1982, Bowman 1984). However, such an approach is difficult at best because

the true density function is unknown.

An alternative method is the likelihood cross-validation which minimises the

Kullback-Leibler information of two densities f (x) and f̂ the density estimator intro-

duced by Duin (1976). As shown by Zhang, King &Hyndman (2006), the optimisation

of the Kullback-Leibler function does not depend on the true density function.

While conventional studies have focused on estimating a fixed bandwidth (or global-

bandwidth) for all data of a sample (see Jones et al. 1996, for a survey), other investi-

gations such as Terrell & Scott (1992) and Sain & Scott (1996) have promoted the idea

of data-driven adaptive bandwidths in density estimation. It allows the bandwidth

to vary at different data points. The problem has been extensively investigated in

univariate settings. However, less attention appears to have been paid to data-driven

methods for adaptive bandwidth estimation for multivariate data. One of the main

difficulty is the curse of dimensionality, in which the number of bandwidth parame-

ters increases dramatically with the dimension of the data. In addition, the existing

literature does not provide an efficient computation algorithm that is flexible enough

to choose bandwidths when dealing with multivariate data.

The first two research topics are motivated by such problems and aim to provide a

multivariate data-driven bandwidth estimation method that allows for certain degree

of flexibility for the bandwidth to be dependant on the observations in the sample.

2



Bayesian Sampling for Smoothing Parameter Estimation

The first research topic aims to address the necessity for appropriate smoothness in

low density regions of the underlying density function by proposing the tail-adaptive

kernel density estimator. Empirically, most financial analysts believe U.S. stock mar-

ket has a leading effect on most other stock markets world wide. Using a kernel den-

sity estimator of bivariate stock-index returns, it is possible to derive the conditional

distribution of the return in one market for a given return in the U.S. market, and

thereby better understand how the two stock markets are correlated. As the marginal

densities of individual stock-index returns often exhibit leptokurtosis and heavy tails,

the kernel density estimation of the bivariate density of stock-index returns may re-

quire different bandwidths to be assigned to the observed returns in different density

regions. To estimate such bandwidths, we adopt the MCMC algorithm proposed by

Zhang et al. (2006), where bandwidths are treated as parameters.

In the second topic, the tail-adaptive kernel density estimator is extended and used to

estimate multi-modal densities, where each mode may have different dispersion. The

concept of multi-modality is closely related to that of “cluster” in clustering analy-

sis. As defined by Hartigan (1975, p205), “Clusters may be thought of as regions of

high density separated from other such regions by regions of low density”. The ba-

sic idea of density-based clustering is to identify the association of observations and

the corresponding empirical modes by finding the connected components in the level

set. This study proposes a cluster-adaptive kernel density estimator that address the

multi-modality issue. In order to find the modes in the observed data, we employ one

of the density-based clustering algorithms called CRA proposed by Cuevas et al. (2000,

2001) to automatically search the clusters in the data set, where multi-modality exists.

3
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This means we are able to leverage the clustering information obtained from the CRA

algorithm to automatically allocate different bandwidth matrices to each cluster in the

data set, where the bandwidths parameters are estimated through a proposed MCMC

algorithm. In an empirical application, we applied the cluster-adaptive kernel density

estimator to the Old Faithful greyer data. The results showed a clear advantage of the

proposed cluster-adaptive kernel density estimator over traditional approaches.

Further extension of the Bayesian kernel density bandwidth estimation technique to

the estimation of financial volatility is carried out in the third topic. Empirical evi-

dence has shown that the volatility of financial asset returns is often highly persistent

and asymmetrically distributed. The existing literature has focused on parametric es-

timation of ARCH (Engle 1982) and GARCH (Bollerslev 1986) models, as well as their

extensions. A nonparametric estimation method for volatility models usually aims at

addressing the strong parametric assumption of ARCH and GARCH models, such as

the linearity assumption in the volatility equation (e.g. Pagan & Schwert 1990) and

the distribution function of error term (e.g. Engle & Gonzalez-Rivera 1991).

Recently, a nonlinear nonstationary heteroscedastic (NNH) model was proposed (Park

2002) as an alternative class of volatility models. The NNH model assumes the condi-

tional variance as a known parametric nonlinear function of a persistent explanatory

variable. Han & Park (2008) extended the NNH model by allowing the ARCH(1) com-

ponent in the model, while Han & Zhang (2012) proposed a nonparametric version

of the NNH model called the nonstationary nonparametric volatility (NNV) model.

4
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The NNV model assumes that the nonlinear function of the regressor the model is un-

known and employs Nadaraya-Watson estimator. It is well known that the Nadaraya-

Watson estimator’s performance depends on its bandwidth. However, the bandwidth

selection issue was not discussed in details by Han & Zhang (2012).

To fill in this gap, we propose a new volatility model, which combines the ARCH(1)

model and the NNV model, and aim to develop a Bayesian sampling algorithm to

estimate bandwidth. In addition, our Bayesian technique allows the error term to

follow an unknown distribution, which we estimate through the kernel method.

The empirical performance of the proposed SNV model and the Bayesian estimation

method are evaluated and compared against the NNV models and ARCH-NNH mod-

els through alternative bandwidth selection methods. Based on financial return data

of eight major global stock markets, both in-sample and out-of-sample performance

are examined. Through the calculation of the loss functions given by Patton (2011),

the Bayesian method shows strong performance results in in-sample period and even

stronger result in out-of-sample period.

In addition, the empirical VaR performance of the competing models are examined.

The proposed SNV model with standard Gaussian density showed the best perfor-

mance in most cases. The empirical performance of the proposed SNVmodel is highly

competitively comparing to the existing NNV and ARCH-NNH models.

5
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1.2 Outline of the thesis

The structure of the rest of the thesis is as follows. In Chapter 2, an extensive literature

review is provided. It identifies the motivations for the topics presented in this the-

sis. In Chapter 3, we propose the tail-adaptive kernel density estimator and examine

its performance via Monte Carlo simulation studies. We investigates the dependence

of daily returns of the Australia stock market on the U.S. market. In Chapter 4, we

propose to extend the tail-adaptive kernel density estimator by allowing it to be adap-

tive across clusters. The performance of this density estimator is investigated through

Monte Carlo and empirical studies. In Chapter 5, we propose an alternative semi-

parametric volatility model, which is estimated through Bayesian sampling. We show

that the proposed model offers more flexibility and is highly competitive against its

competitors. The conclusion of this thesis is presented in Chapter 6.

6



Chapter 2

Literature Review

2.1 Introduction

This chapter provides a brief introduction of the Markov chain Monte Carlo (MCMC)

simulation technique, which is employed in the subsequent studies of the thesis. We

present a survey of the literature on kernel density estimation method and its related

applications.

Through an extensive survey of the previous studies in kernel density estimation and

related applications, several obvious gaps have been identified and require further

investigation. It is found that the bandwidth plays an important role in determin-

ing the overall performance of the kernel density estimator. Studies have suggested

that the bandwidth parameter be dependent on the sample points. For example, a

large bandwidth is required in the area that need high degree of smoothing (and vice

versa). This problem has been addressed in the univariate case. However, extension

to higher-dimension is not straightforward mainly due to computational difficulties

7
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when dealing with a large number of parameters. We therefore wish to remedy this

issue via a Bayesian sampling approach.

In addition, it is found that application of a kernel-based semiparametric and non-

parametric methods on financial volatility estimation is becoming more popular with

promising empirical performance over traditional parametric methods. It motivates

us to propose an alternative Bayesian model to estimate financial volatility models

with an unknown error distribution.

The following of this chapter is organised as follows. The next section provides review

of literature on multivariate kernel density estimation and discusses the motivation

of an adaptive density estimator. Section 2.3 discusses the possibility of combining

density-based clustering technique and adaptive density estimation. In Section 2.4,

we present a review of the literature on semiparametric and nonparametric financial

volatility models and discuss the motivation for a new and general model.

2.2 Markov Chain Monte Carlo simulation

Let f (x) denote a density function and f̂ its estimator. The MCMC is a well known

technique for solving problems involving high dimensional integrations. As described

by Robert & Casella (1999) that the “MCMC method for the simulation of a distribu-

tion f is any method producing an ergodic Markov chain θt whose stationary distri-

bution is f ”.

8
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Let θ be the parameter vector to be estimated. According to Bayes theorem, the poste-

rior density of θ is

π(θ|y) =
p(θ)p(y|θ)∫
p(θ)p(y|θ)

, (2.2.1)

where π(θ) is the prior of θ, p(y|θ) is the likelihood of y given θ, and
∫
p(θ)p(y|θ) is a

normalising constant.

Bayesian inference focuses on the features of the posterior density, such as moments

and quantiles, which can be expressed in terms of expected value of functions θ under

the posterior density of θ. For example, the expectation of k(θ) is

Eπ(θ|y)[k(θ|y)] =
∫

k(θ)π(θ|y)dθ. (2.2.2)

However, the analytical expression of Eπ(θ|y)[k(θ|y)] is often intractable because the

normalising constant is often unknown.

To fix this problem, we could simulate from the posterior and approximate (2.2.2)

through Monte Carlo simulation. This involves drawing a sequence of independent

random numbers, θi , for i = 1,2, · · · ,N , from π(θ|y) and estimating (2.2.2) by

Eπ(θ|y)[k(θ|y)] ≈
1
N

N∑
i=1

k
(
θi

)
. (2.2.3)

Based on the law of large numbers, the above approximation is able to produce an

accurate result by increasing the sample size N . However, the posterior is often non-

standard. This makes it difficult to draw independent random numbers.

9
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Tierney (1994) presented that a reversible Markov chain has a unique stationary den-

sity π(x) with the following properties that form the theoretical fundamentals of the

ergodic theorem for MCMC simulations:

1) Irreducibility, which states that x can reach any point in x(i), for i = 1,2, . . . ,M, with

a positive probability in finite time, regardless of the starting value.

2) Aperiodicity, which prevents the Markov chain going through different set of states.

Gilks et al. (1996) showed that it is not necessary for the posterior sample to be inde-

pendent to produce reliable approximation of (2.2.2) if π(θ|y) is the stationary transi-

tion density for the Markov chain sampling process.

2.2.1 Metropolis-Hastings algorithm

In the application of MCMC, an important question is how to draw random samples

from the posterior density, which is often complex and non-standard. In order to

solve this problem, an algorithm was introduced by Metropolis, Rosenbluth, Rosen-

bluth, Teller, Teller et al. (1953) and generalized by Hastings (1970). This algorithm is

called the Metropolis-Hasting algorithm and aims to integrate complicated functions

by generating random numbers.

Let q(θ|θ(i)) denote a proposal density and θ(i) as current state. To draw a sample of

random variables θ, the proposal density must be specified as a suitable density, e.g.

the Normal density. A candidate θ̃ is sampled from q(θ|θ(i)) and accepted as the new

10
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state θ(i+1) with an acceptance probability α(θ(i), θ̃) given by

α(θ(i), θ̃) =min
{

π(θ̃|y)q(θ(i)|θ̃)
π(θ(i)|y)q(θ̃|θ(i))

,1
}
, if π(θ(i)|y)q(θ̃|θ(i)) > 0,

=1, otherwise,

(2.2.4)

where π(θ|y) is the posterior of θ given y.

It is shown that α(θ(i), θ̃) does not depend on the normalising constant of π(·) because

it appears in both numerator and denominator. The acceptance probability is calcu-

lated and compared to a random number u drawn from a uniform density U (0,1). If

α(θ(i), θ̃) > u, θ̃ is accepted as the new state θ(i+1) = θ̃; otherwise, the new state is

set to the current state θ(i+1) = θ(i). If the proposal density is symmetric, it leads to

q(θ1|θ2) = q(θ2|θ1), and the acceptance probability reduces to π(θ̃|y)/π(θ(i)|y).

During each iteration, a candidate is drawn through a random-walk process:

θ̃ = θ(i) + τϵ,

where ϵ is the standard normal and independent of θ(i), and τ is a tuning parameter.

This algorithm is the random-walkMetropolis algorithm because the proposal density

is symmetric. The acceptance probability is

α(θ(i), θ̃) = min
{

π(θ̃|y)
π(θ(i)|y)

,1
}
.

The random-walk Metropolis algorithm is often used due to its simplicity.

In addition to the random-walk Metropolis algorithm, the independent Metropolis-

Hastings algorithm requires the candidate to be independent of the current state. It

11
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implies that the proposal density meets the condition that q(θ̃|θ(i)) = q(θ̃). The accep-

tance probability of the independent Metropolis-Hastings algorithm is

α(θ(i), θ̃) = min
{
π(θ̃|y)q(θ(i))

π(θ(i)|y)q(θ̃)
,1

}
.

Another specification of the Metropolis-Hastings algorithm is the Gibbs sampler,

which makes use of the full conditional posterior of each variable in MCMC simu-

lations. If the conditional posterior has a closed form of a known distribution, the

candidate can be directly sampled from the conditional posterior and is always ac-

cepted as a new state. However, in some cases, the full conditional posterior of latent

variables is non-standard and makes the Gibbs sampler infeasible. The Metropolis-

Hastings algorithm can be applied to draw samples in this circumstance. More gen-

erally, one can use both algorithms to sample the variables of interest. A specific

example is the Bayesian estimation of stochastic volatility models whose sampling

procedure is a hybrid procedure and involves sampling latent volatilities by using a

Metropolis-Hastings algorithm and sampling parameters by using a Gibbs sampler

(see for example, Kim et al. 1998).

2.2.2 Convergence of MCMC algorithm

In practice, it is important to ensure the MCMC algorithm achieves reasonable con-

vergence because a simulated chain should converge geometrically to the stationary

posterior density π(·) according to the ergodic theorem. Let {θ(i)}, for i = 1,2, . . . ,N ,

denote a Markov chain which is sampled from the conditional posterior π(θ|y). This

12
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chain can be summarized in terms of ergodic averages:

f̄N (θ̂) =
1
N

N∑
i=1

f (θ(i)),

where f (θ) is a real function of θ. Roberts (1996) showed that the central limit theo-

rem of the ergodic average should hold under the condition that

√
N

{
f̄N (θ̂)−Eπ

(
f (θ(i))

)}
−→N (0,σ2

f ),

where convergence is in distribution as N −→∞ and σf is a positive value.

In order to check the mixing performance of simulated chains, Geyer (1992) and

Roberts (1996) suggested estimating σ2
f by using a batch mean method, which di-

vide the sequence
{
θ(i)

}
, for i = 1,2, . . . ,N into m, batches and each batch contains n

iterations in the sense that N =m×n. The mean of kth batch θ̄k is computed as

θ̄k =
1
n

kn∑
j=(k−1)n+1

f (θ(i)),

for j = 1,2, . . . ,n, where n should be sufficiently large so that
{
θ̄k

}
, for k = 1,2, . . . ,m,

are independent and identically distributed as N (Eπ[f (θ)],σ
2
f )/n. The batch mean

estimate of σ2
f is computed as

σ̂2
f =

n
m− 1

m∑
k=1

(
θ̄k − f̄N (θ̂)

)2
.

Therefore, we can estimate the standard error of f̄N by
√
σ̂2
f /N which is commonly

used to check for the convergence of a simulated Markov chain. Based on σ̂2
f , Kim,

13
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Shepherd & Chib (1998) presented a simulation inefficiency factor (SIF) to measure

the convergence performance. The SIF is a ratio of the variance of the sampledmean to

the variance of the sample mean from a hypothetical sampler that draws independent

random observations from the posterior distribution:

SIF =
σ̂2
f

σ̃2
f

, (2.2.5)

where σ̄2
f is computed as

σ̃2
f =

 1
N − 1

N∑
i=1

[f (θ(i))− f̄N (θ̂)]2
 .

Theoretically, the smaller the SIF is, the better convergence the sampler achieves. Note

that none of the available methods can guarantee that a sampler achieves convergence

(Tsay 2005). Therefore, one need to plot the sampled path, its autocorrelation func-

tion (ACF) and histogram to visually confirm that the simulated chain has achieved

reasonable convergence. In general, the convergence of a sampler is independent of

the starting value. However, it may take a long time for the sampler to achieve the

convergence if the starting value is too far away from the true value. This requires

us to use a burn-in period which is discarded in order to reduce the effect of starting

value on the simulated chains. In the current literature, there exists no method to

determine the length of burn-in period because the convergence may vary in different

algorithms and also is subject to different data. As suggested by Brooks (1998), a prac-

tical suggestion is to keep on track of the convergence diagnostics of the sampler and

then decide how long the iterations should be used in simulations.
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2.3 Multivariate kernel density estimation

Let x = (x1,x2, · · · ,xd)′ denote a random vector with density f (x) defined in Rd , and

let {x1,x2, · · · ,xn} represent a sample of independent random vectors drawn from f (x).

The general multivariate kernel density estimator is given by

f̂ (x) =
1

n|H |1/2

n∑
i=1

K
(
H−1/2(x − xi)

)
=
1
n

n∑
i=1

KH (x − xi) (2.3.1)

where KH (x) = |H |−1/2K(H−1/2x) with K(·) is a multivariate kernel function and H is a

symmetric and positive definite matrix which is called the bandwidth matrix.

Three important choices have to be made when using a multivariate density estimator

(Wand & Jones 1995, p94). They are, the form of a kernel function K(·), the choice of

smoothing parameterisation and the choice of the bandwidth matrix H .

The kernel function is often chosen to be a symmetric multivariate density function,

and a very popular choice is the multivariate standard d-variate normal density

K(x) = (2π)−d/2 exp
{
−1
2
x′x

}
, (2.3.2)

and it is chosen to be the kernel function in our case.

The choice of smoothing parameterisation generally refers to the type of bandwidth

matrix H to be used for a multivariate kernel density estimation. That is whether one

should choose a diagonal or full bandwidth matrix. A full bandwidth matrix provides

more flexibility as it allows for different degrees of smoothing in each dimension and
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the possible correlation between each pair of dimensions. A diagonal bandwidth ma-

trix is less flexible as it does not allow for correlation between dimensions. However,

the full bandwidth matrix introduces more parameters to be chosen. In fact, a full

symmetric matrix has d(d + 1)/2 different parameters, while a diagonal matrix has

only d parameters. It is very obvious that the additional number of parameters to be

chosen increases quickly as the dimension increases. As a consequence, more data

is needed and the computation becomes more intensive. Therefore, the advantage of

using a full bandwidth matrix can quickly disappear as the number of dimensions

increases.

The last choice is to select the bandwidth matrix with respect to certain criterion. This

is of crucial importance because the bandwidth matrix controls the amount and di-

rection of multivariate smoothing. It is generally accepted that the performance of

a kernel density estimator depends mainly on the choice of bandwidth, and only a

minor way of by the choice of the kernel function (Izenman 1991, Scott 1992, Wand

& Jones 1995, Simonoff 1996). Therefore, several criterions are employed in the liter-

ature to evaluate the performance of the bandwidth selection.

2.3.1 Least square cross-validation

The basic idea of least square cross-validation (LSCV) is to choose a bandwidth by

minimising the integrated squared error (ISE) (Rudemo 1982, Bowman 1984). The

ISE of a kernel density estimator is given as (Scott 1992, Wand & Jones 1995)

ISE{f̂H (x)} =
∫ [

f̂H (x)− f (x)
]2
dx. (2.3.3)
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The ISE is a random variable that depends on the true unknown density function, the

type of estimator and the sample size (Scott 1992). In most cases, it is sufficient to

examine the average of the ISE, which is called the mean integrated squared error

(MISE)

MISE{f̂H (x)} = E

{∫ [
f̂H (x)− f (x)

]2
dx

}
. (2.3.4)

In univariate case, Wand & Jones (1995) presented the specification for the asymptotic

MISE as

AMISE
{
f̂H (x)

}
=

1
nh

R(K) +
1
4
h4µ2(K)2R(f ′′), (2.3.5)

where µ2 =
∫
x2f (x)dx and R(f ′′) =

∫
f ′′(x)2dx. Under certain smoothness conditions

on the density f (Wand & Jones 1995), the AMISE of a multivariate kernel density

estimator is given as

AMISE{f̂H (x)} =
1
n
|H |−1/2

∫
K(x)2dx+

1
4
µ2(K)2

∫
tr2

{
H∇2f (x)

}
dx, (2.3.6)

where tr(·) denotes the trace of a matrix and ∇2f (x) denotes the Hessian matrix of f (x).

The optimal bandwidth with respect to the AMISE criterion is defined as

ĤAMISE = argmin
H

AMISE
{
f̂H (x)

}
. (2.3.7)

When data are observed frommultivariate normal density with no correlation and the

diagonal bandwidth matrix H = diagonal(h1,h2, · · · ,hd) is used, Scott (1992) showed
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the bandwidth selector that minimises AMISE as

hi = σi

{
4

(d +2)n

}1/(d+4)

, (2.3.8)

for i = 1,2, · · · ,d, and σi is the standard deviation of dimension i and can be replaced

by the sample standard deviation in practice. This bandwidth selector is called the

Normal Reference Rule by Scott (1992). Although in most interesting cases the data

are non-normal and variables are correlated, the Normal Reference Rule is widely

used in the literature due to its practicality.

The least squares cross-validation (LSCV) is first used by Rudemo (1982) and Bowman

(1984) in univariate cases, but can be extended to multivariate cases (Sain, Baggerly

& Scott 1994). It is based on the idea of expanding the MISE of f̂H (x) (Wand & Jones

1995) to be further expressed as

MISE
{
f̂H (x)

}
= E

∫
f̂H (x)

2dx − 2E
∫

f̂H (x)f (x)dx+
∫

f (x)2dx. (2.3.9)

As the last term does not depend on H , minimising the MISE
{
f̂H (x)

}
is the same as

minimising

MISE
{
f̂H (x)

}
−
∫

f (x)2dx = E

[∫
f̂H (x)

2dx − 2
∫

f̂H (x)f (x)dx
]
, (2.3.10)

and an unbiased estimator of it is

LSCV(H) =
∫

f̂H (x)
2dx − 2

n

n∑
i=1

f̂H,i(xi), (2.3.11)
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where

f̂H,i(x) =
1

n− 1

n∑
j,i

KH (xi − xj ), (2.3.12)

is called the leave-one-out density estimator based on the sample without xi . The

technique to choose H that minimises LSCV(H) leads to the LSCV bandwidth selector

ĤLSCV = argmin
H

LSCV(H)

, which is also called the unbiased cross-validation (UCV). However, several studies

have shown that this bandwidth selector has a slow rate of convergence and highly

variable (Nolan & Polland 1987, Park & Marron 1990).

To improve the performance of ĤLSCV, Scott & Terrell (1987) proposed the biased

cross-validation (BCV) method. The objective function of BCV is obtained by using

an estimator to approximate the unknown R(f ′′) in the univariate AMISE. However,

both UCV and BCV have been known that sometimes they have more than one local

minimum (Hall & Marron 1982, Scott 1992). Therefore, one must be careful when

applying these methods in practice. The UCV and BCV estimators were extended

to multivariate settings using a diagonal bandwidth matrix in Sain, Baggerly & Scott

(1994). Their simulation study showed that the BCV method generally performs bet-

ter than the UCV method.

The UCV estimator is also being referred to as a type of plug-in estimator because it

employs an estimator to approximate the unknown quantity in the AMISE criterion.
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Duong & Hazelton (2003) showed a bivariate example of the plug-in bandwidth selec-

tor as an alternative to (2.3.6)

AMISE
{
f̂H (x)

}
=
1
n
|H |−1/2

∫
R2

K2(x)dx+
1
4

∫
R2

xx′K2(x)dx(vech′H)Ψ 4(vechH),

(2.3.13)

where vech is the vector half operator, and Ψ 4 is a 3× 3 matrix given by

Ψ 4 =
∫
R2

vech
{
2∇2f (x)−diag(∇2f (x))

}
vech′

{
2∇2f (x)−diag(∇2f (x))

}
dx, (2.3.14)

and diag(A) is the matrix A with its non-diagonal elements being zero. The method

requires an estimate of Ψ 4 to be plugged-in in order to produce ĤAMISE which aims

to minimise the AMISE criterion function.

The plug-in bandwidth selector proposed by Wand & Jones (1994) sometime fails to

produce finite bandwidths for full bandwidth matrix, and the technique is considered

to be immature, as noted by Duong & Hazelton (2003) and Sain, Baggerly & Scott

(1994). Duong & Hazelton (2003) overcame this disadvantage by providing an alter-

native that always produces a finite bandwidth matrix in bivariate cases. However,

further extension of the plug-in bandwidth selection algorithm to higher dimension

settings is not very well documented.

2.3.2 Likelihood cross-validation

Likelihood cross-validation is another procedure that aims to select an optimal band-

width. Let {x1,x2, · · · ,xn} represent a sample of independent random vectors drawn
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from the true multivariate density f (x) in Rd . The log likelihood is defined as

logL =
n∑
i=1

logf (xi), (2.3.15)

and the estimated log likelihood is written as

logL(H) =
n∑
i=1

log f̂H (xi). (2.3.16)

Kullback-Leibler information is a divergence measure between f (x) and f̂H (x). In this

case, Kullback-Leibler information is defined as

dKL
(
f , f̂H

)
=

∫
Rd

log
[
f (x)

f̂H (x)

]
f (x)dx (2.3.17)

=
∫
Rd

log[f (x)]f (x)dx −
∫
Rd

log[f̂H (x)]f (x)dx, (2.3.18)

which is non-negative. The procedure to minimise dKL is introduced by Duin (1976).

Its statistical properties are discussed in Hall (1982) and Bowman (1984), where its

use in density estimation is discussed in Hall (1987a,b).

The recent study of Zhang et al. (2006) employed this procedure to choose a band-

width matrix that directly maximises the second term in (2.3.18), which can be ap-

proximated by

Ê log
[
f̂H (x)

]
=
1
n

n∑
i=1

log f̂H (xi) =
1
n

n∑
i=1

log

1n
n∑

j=1

KH (xi − xj )

 . (2.3.19)

However, directly maximising (2.3.19) with respect to H results in a matrix of zeros.

As noted by Härdle (1991) and Pagan & Ullah (1999), one way out of this situation is
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to limit the estimation of f̂H on the subset {xj : j , i} to approximate the likelihood

cross-validation based on Kullback-Leibler information

CVKL(H) =
1
n

n∑
i=1

log f̂H,i(xi), (2.3.20)

where f̂H,i(x) is the leave-one-out estimator given in (2.3.12) and can be further ex-

pressed as

f̂H,i(x) =
1

n− 1

n∑
j=1
j,i

|H |−1/2K
(
H−1/2(xi − xj )

)
. (2.3.21)

Therefore, the bandwidth ĤKL is the optimal bandwidth when it satisfies

ĤKL = argmax
H

CVKL(H). (2.3.22)

Hence, the likelihood cross-validation is equivalent to a maximisation problem and

requires a numerical optimisation method in practice. However, the implementation

is difficult as the dimension of the data increases.

One should be aware of the shortcomings when using the likelihood cross-validation

in density estimation. As discussed in Hall (1987a,b), the support of the kernel func-

tion must not be compact, and if the true underlying density has thicker tails, so must

the kernel. This problem is also called the tail effects.

It can be understood by considering a simple situation where we are estimating a den-

sity with long tails. An observation x may locate in the tail of the distribution where

the density is low and data are sparse. If the kernel function is compactly supported

or has thin tails, the estimated density for x will be lower than the true density. In an
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extreme case, the estimated density is very close to zero and log f̂H (x) will approach

−∞, which will dominate the Kullback-Leibler information. Although the normal ker-

nel is not compactly supported, it does have thin tails. Therefore, Kullback-Leibler

information may be misleading in this situation.

As discussed in Härdle (1991), maximising CVKL(H) will force us to choose large band-

width to prevent such cases from happening. This may lead to slight over-smoothing

for the higher density regions. In order to overcome such a disadvantage, it is sensi-

ble to use adaptive bandwidths and allow for different bandwidths for high and low

density regions.

2.3.3 Adaptive bandwidth kernel density estimation

The least square and likelihood cross-validation rules described so far assumes that

the bandwidth matrix to be fixed for all data points. This approach is called global

bandwidth estimator because it applies the same degree of smoothing for all data

points. It works well for many densities, especially for densities that are unimodal

and short-tailed. However, the problem of using a global bandwidth is that the kernel

methods often produce unsatisfactory results for complex or irregular densities.

Sain & Scott (1996) showed a good bimodal example in univariate setting. Consider

a bimodal normal mixture distribution f (x) = 3/4ϕ(x + 3/2) + 1/4ϕ1/3(x − 3/2), where

ϕσ (x − µ) is a normal density with mean µ and variance σ2. This density has two

modes of the same height but different spread. As discussed in Sain (2002), the global

bandwidth selection approach resulted in bandwidth h = 0.248 for sample size 200. If

apply bandwidth selection separately to each mode the smoothing parameters were
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h = 0.403 and 0.175, respectively. This suggested that a global bandwidth selection

method has tomake compromise to eachmode and resulted in under-smoothing of the

first mode and over-smoothing of the second mode. Jones (1990) presented another

graphical illustration of how a global bandwidth could mismanaged a long-tailed den-

sity.

The solution is to have a broader kernel to give more smoothing in regions of low den-

sity where data are sparse and use a narrower kernel for the high density where less

smoothing is necessary near the mode (Silverman 1986, Sain 2002). The response to

the suggestion is to let the bandwidth vary with the data and also with the character-

istics of the density of interest, which is referred to as adaptive bandwidth estimator.

Several versions of adaptive bandwidth estimator has been studied. For example,

Mielniczuk et al. (1989) proposed to use a weighting function on data point x in a

global bandwidth estimator. A more common approach is to make the bandwidth as a

function of local data point.1 Two forms of adaptive bandwidth estimator are common

in the literature (see, for example Scott 1992). The first formmakes the smoothing ma-

trix to depends on the estimation point x and is called the balloon estimator by Terrell

& Scott (1992). The general form of such estimator is given as

f̂B(x) =
1

n|H(x)|1/2

n∑
i=1

K
(
H(x)−1/2(x − xi)

)
=
1
n

n∑
i=1

KH(x)(x − xi), (2.3.23)

where H(x) is the bandwidth matrix at estimation point x. At each estimation point,

the same kernel used to compute the density estimate, which is pointwise equivalent

1Nolan & Marron (1989) discussed this issue from the more general Delta-sequence estimator per-
spective.
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to a global bandwidth estimator given in (2.3.1). This estimator was first introduced

by Loftsgaarden & Quesenberry (1965) as the kth nearest-neighbour (k-NN) estimator.

However, the balloon estimator does not integrate to one and is therefore not a good

choice for estimating the density function f (Terrell & Scott 1992, Izenman 1991).

The second form is called the sample-point estimator and is given by

f̂S(x) =
1
n

n∑
i=1

1
|H(xi)|1/2

K
(
H(xi)

−1/2(x − xi)
)
=
1
n

n∑
i=1

KH(xi )(x − xi), (2.3.24)

where H(xi) is the bandwidth matrix for the sample data point xi . Hence, the band-

width changes with the sample data points, and regardless where the density is going

to be estimated. This type of estimator is introduced by Breiman et al. (1977), who

suggested choosing the bandwidth proportional to f (xi)−1/d . Abramson (1982a,b) pro-

vided the square root law of choosing the bandwidth proportional to f (xi)−1/2, where

a pilot estimate of f is used in practice.

The sample-point estimator is a complete-adaptive estimator because it assigns differ-

ent bandwidths to different sample points, but it is this very flexibility that makes it

difficult to estimate or choose bandwidths for. With multivariate data the complete-

adaptive density estimator assigns n different bandwidth matrices to n observations,

and if a diagonal bandwidth matrix is employed, the number of bandwidths required

will be n×d for d-dimensional data. One way to reduce the level of difficulty involved

is to apply the sample-point estimator to grouped or binned data (see for example,
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Sain & Scott 1996, Sain 2002). Such a density estimator is given as

f̂S(x) =
1
n

m∑
j=1

nj
|H(tj )|1/2

K
(
H(tj )

−1/2(x − tj )
)
=
1
n

m∑
j=1

njKH(tj )(x − tj ), (2.3.25)

where m is the number of bins, nj is the number of data points in the jth bin, tj is

the centre of the jth bin, and Htj is the bandwidth matrix associated with the jth bin.

Therefore, the each bin has a fixed smoothing bandwidth matrix associated to it. By

using LSCV criterion, the bivariate simulation results of Sain (2002) showed that the

binned sample point estimator outperforms the balloon estimator.

2.3.4 Motivation for new adaptive density estimator

By allocating a different bandwidth matrix to each bin, the binned sample-point esti-

mator obviously reduces the number of bandwidths that need to be assigned. How-

ever, the number of bandwidths for the binned sample-point density estimator still

grows exponentially with the dimension. For example, when there are m bins in each

dimension, the number of bandwidths to be estimated is m2 for bivariate data, m3 for

trivariate data, and so on. Hence a key issue of adaptive density estimator is how to

put data into a small number of groups while still preserving the intuition of adaptive

density estimator.

In this thesis, we propose to divide the observations into two regions or groups,

namely a low-density region (LDR) and a high-density region (HDR), and assigning

two different bandwidth matrices to the two regions. (More generally, of course, we

could allocate m percentiles and assign m + 1 different bandwidth matrices.) In this

way, the number of bandwidths to be estimated is obviously reduced. When the true
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distribution is unimodal, the low-density region corresponds to the tails, and intu-

itively, the low-density region should be assigned larger bandwidths than the high-

density region. We call this type of kernel density estimator the tail-adaptive density

estimator.

The idea of dividing observations into low- and high-density regions is not new. Har-

tigan (1975, 1987) defined clusters of observations as regions associated with differ-

ent density values and Hyndman (1996) presented an algorithm for computing and

graphing data in different density regions. A comprehensive review of applications re-

lating to the issue of low-and high-density regions is given in Mason & Polonik (2009).

Samworth & Wand (2010) considered a univariate bandwidth selection method for

high-density region estimation, but we are not aware of any previous work that has

adopted the concept of grouping data into low- and high-density regions as a mecha-

nism for assigning bandwidth matrices for multivariate kernel density estimation, as

we do here.

A major difficulty faced by the practitioner when implementing the (binned) sample-

point estimator is how to assign values to the various bandwidth parameters. Likeli-

hood cross-validation could be used to estimate the bandwidths, but this method is

likely to encounter severe computational difficulties due to the large number of band-

widths involved.

To battle the computation difficulties of estimating large number of bandwidths in

multivariate data, we consider using an adaptation of the Bayesian sampling approach

that has recently been investigated. Brewer (2000) presented a Bayesian sampling pro-

cedure for estimating variable bandwidths in a univariate setting and showed that the
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Bayesian kernel density estimation method produced better performance than the so-

called binning method proposed by Sain & Scott (1996). Kulasekera & Padgett (2006)

discussed Bayes estimation of a global bandwidth for kernel density estimation based

on univariate censored data using an asymmetric kernel. de Lima & Atuncar (2010)

derived a closed form Bayes estimate of a global bandwidth matrix for multivariate

kernel density estimation using an extension of the Bayesian bandwidth selector pro-

posed by Gangopadhyay & Cheung (2002) for univariate density estimation.

Zhang et al. (2006) proposed a Bayesian approach as the numerical solution to this

issue. The Bayesian approach treats the nonzero elements in H as parameters and ob-

tain the posterior density from likelihood cross-validation. Their study employs the

Markov Chain Monte Carlo (MCMC) algorithm in order to estimate H and is appli-

cable to any dimension and with no increased difficulty as the dimension in the data

increases. The simulation results show better performance of the Bayesian approach

comparing to methods proposed by Duong & Hazelton (2003) and the Normal Refer-

ence Rule. Given the advantages of the Bayesian approach, we will apply this method

to the problems in this project.

2.3.5 Concluding remark

As discussed in the Section 2.2.2 and Section 2.2.3, the kernel density estimator with

a global bandwidth is often inadequate for data with complex and irregular densities.

Recent investigations have promoted the idea of data-driven adaptive bandwidth den-

sity estimation. Although the problem has been intensely investigated in univariate

settings, less attention appears to have been paid to data-driven methods for adaptive
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bandwidth estimation for multivariate data. To remedy this problem, we propose the

tail-adaptive density estimator, where data are grouped into low- and high-density

regions and different bandwidth matrices are assigned to observations in different

regions. To estimate the bandwidths, we adopt the MCMC algorithm proposed by

Zhang et al. (2006), where the bandwidths are treated as parameters. The tail-adaptive

density estimator shall also attempt to fix the “tail effect”, fromwhich the global band-

width selection under Kullback-Liebler information usually suffers.

2.4 Density-based clustering

The concept of multi-modality is closely related to the concept of “cluster” in clus-

tering analysis. As defined by Hartigan (1975, p205), “Clusters may be thought of

as regions of high density separated from other such regions by regions of low den-

sity”. Therefore, it is intuitively easy to understand that the true cluster in population

is associated with a mode in f , which can be represented by the empirical modes in

x1,x2, · · · ,xn draw from f . First, a kernel density estimate f̂ (xi) can be obtained. For

an given density level τ chosen by the user, observations with f̂ (xi) > τ are treated as

a level set L(f̂ > τ) and observations with f̂ (xi) ≤ τ are considered as noise.

The basic idea of density-based clustering is to identify the association of the obser-

vations and the empirical modes by finding the connected components in the level

set.2 There are mainly two aspects that need to be addressed. First, how to find the

2Density-based clustering is one branch of clustering algorithms. Please see Berkhin (2006) and Xu
et al. (2005) for a survey of other clustering algorithms.
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connected components in the level set. Second, how to estimated the number of con-

nected components in the level set. We wish to combine these two issues into adaptive

kernel density estimation.

2.4.1 Finding connected components in the level set

Many studies have been focused on estimating the level set. a comprehensive review

of general applications of level set estimators is presented by Mason & Polonik (2009).

In the context of clustering, a classical algorithm to locate clusters is the k-means in-

troduced by MacQueen (1967). It partitions n observations in to k clusters (k ≤ n) by

minimizing the total Euclidean distance between cluster members and the cluster cen-

tres. The algorithm is iterative of two steps. First, k seeds are assigned as cluster means

by the user and each observation is given a cluster membership depending on which

cluster mean is the closest to its location. Next, the cluster means are re-calculated

based on the observations in each cluster. The algorithm iterates until assignment of

cluster membership is not changing. This algorithm is very efficient when the num-

ber of cluster is correctly chosen. However, choosing the wrong cluster number can

produce poor results.

Ester et al. (1996) proposed an algorithm called DBSCAN for spatial data. The algo-

rithm consists of four steps, (a) calculate a kernel density estimate for each observa-

tion; (b) choose a density level τ and obtain the level set with f̂ (xi) > τ ; (c) construct a

graph connecting each observation to other observations in the level set within a dis-

tance r; (d) define the connected components in the graph as clusters. Walther (1997)
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presented a similar method for estimating level set by constructing the union of balls

around the observations in the level set but does not contain noise points.

Another well known clustering method is the single linkage method (Aderberg 1973).

The algorithm starts with n clusters and at each stage it merges two closet points to

form a new cluster. The distance between two clusters are calculated based on the

smallest distance between any members of the two clusters. However, Hartigan (1981,

1985) suggested that asymptotically single linkage is not consistent when dimension

is higher than one. The single linkage method belongs to the hierarchical clustering

approach. Other studies in this direction includes Wong & Lane (1983), who used a

kth nearest neighbours density estimate, and Stuetzle (2003), who presented amethod

using the minimum spanning tree of a sample. Other studies by Klemelä (2004, 2006)

aim to plot the tree structure of multivariate density estimates, and visually identify

the clusters. Hence, hierarchical method requires some form of supervision from the

user to decide when to stop the merging or deciding how many clusters exists.

A graph based clustering method is proposed by Azzalini & Torelli (2007). The algo-

rithm proposed by the study suggested to use a Delaunay triangulation of the obser-

vations in the level set to form the cluster cores. However, the method to search for

the connected components in the graph is not very well documented specially high

dimensional data.

To our purpose, in order to make the kernel density estimator be adaptive on the

modes or clusters, a clustering algorithm is needed to identify the different modes in

the density function and also the number of modes there exists.
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2.4.2 Finding the number of clusters

Automatic detection of the number of clusters in a data set is one of the most challeng-

ing problems in cluster analysis. This problem has been addressed in the literature by

many studies. Please see Gordon (1999) for some classical techniques, and Jain (2010)

for some references of the parametric approach. Tibshirani et al. (2001) proposed

the gap statistic to estimate the number of clusters. The study formalized the elbow

phenomenon often seen in the plot of number of clusters T against within-cluster dis-

persionWT . As T increases,WT decreases and the decrease inWT becomes noticeably

flat after certain value of T . A similar approach presented by Sugar & James (2003)

uses a different measure of within-cluster dispersion. However, both studies require

other clustering algorithm such as k-means to find the connected components.

Burman & Polonik (2009) proposed an algorithm via a kth nearest neighbours ap-

proach. Their method is briefly explained as follows. Let k1, k2 < n, and d̂(x) be the

distance between x to its k1th nearest neighbours. The algorithm has iterative steps:

1. Calculate d̂(xi), for i = 1, . . . ,n, and find the first modal as M1 = argminxi d̂(xj ).

2. Eliminate all observations points that are k2 nearest neighbours of M1. Denote

the remaining data by S1.

3. Find the second modal by M2 = argminxi∈S1 d̂(xj ).

4. Eliminate all data points that are k2 nearest neighbours of either M1 or M2 to

find S1 ⊂ S2.

5. Find the third modal via M3 = argminxi∈S2 d̂(xj ).
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6. Repeat until no candidate mode is found.

Burman & Polonik (2009) suggested that the optimal choice of k which minimizes

MISE can be shown as depends on some quantity of the unknown true density func-

tion. However, the data driven algorithm for the selection of k is not well documented.

A density-based estimation method was proposed by Cuevas et al. (2000, 2001). The

studies presented a level set estimator by forming union of balls around all the ob-

servations in the level set, while the number of clusters is estimated simultaneously.

The algorithm is called CRA by the authors. The basic idea of CRA algorithm is to

approximate the level set L(f̂ > τ) (via kernel density estimation) by a set estimator of

a union of balls (Devroye & Wise 1980) defined by

L̂ =
k∪

i=1

B(xi ,ϵ), (2.4.1)

where xi , i = 1, · · · , k denote the sampling observations that xi ∈ {f̂ > c} (k is random),

and B(xi ,ϵ) is closed sphere or ball centered at xi with radius r ≥ 0 given by

B(xi ,ϵ) = {zi : zi ∈Rd and ∥xi − zi∥ ≤ ϵ}. (2.4.2)

Therefore, the estimator T̂ as a number of connected component of L̂ is defined as

T̂ = T (̂L). (2.4.3)

A connected component of L̂ is associated with a spanning tree with vertices xi and

edges smaller than 2ϵ. In other words, within a connected component of L̂, we can join
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every pair of xi with a path consisting a finite number of edges with length smaller

than 2ϵ. One of the easy way in many ways to calculate ϵ is

ϵ =max
i

min
j,i
∥zi − zj∥/2. (2.4.4)

As discussed in Cuevas et al. (2000) the value obtained from (2.4.4) could be too conser-

vative, which tends to overestimate the number of connected components. Therefore,

a clustering criterion must be assumed in advance. For a connected component to

be recognized as a cluster, it must have at least 5% of the data. This criterion is also

suggested by Cuevas et al. (2000).

2.4.3 Concluding remarks

The motivation for using adaptive bandwidths mainly comes from two aspects. First,

observations in low density region require higher level of smoothing compared to ob-

servations in high density region. Second, the underlying density can be multi-modal,

where each mode may have different direction and spread. We discussed the first

aspect and proposes the tail-adaptive kernel density estimator, in which the observa-

tions are divided into two regions or groups and two different bandwidth matrices are

assigned to the two regions.

We wish to propose a cluster-adaptive kernel density estimator that address the multi-

modality issue. The idea has been briefly discussed in Sain (2002) as a way to reduce

the dimensionality problem raised from the binned adaptive kernel density estimator.

In this project, we wish to extend the tail-adaptive kernel density estimator to be

adaptive on the modes of the density function.
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In order to find the modes in the data, we wish to employ one of the density based

clustering algorithms to automatically search the clusters in the data set where multi-

modality exists. The CRA algorithm proposed by Cuevas et al. (2000, 2001) is closely

linked the kernel density estimation as it requires the kernel density estimation of the

high density region (HDR). Moreover, the calculation of ϵ in the CRA algorithm is

straight forward.

Therefore, we aim to combine the tail-adaptive kernel density estimator and CRA

algorithm to make cluster-adaptive density estimation. This means we are able to use

the clustering information obtained from CRA algorithm to automatically allocate

different bandwidth matrices to each cluster in the data set, where the bandwidths

parameters are estimated through a proposed MCMC algorithm.

2.5 Volatility models for financial returns

Empirical evidence has shown that the volatility of financial asset returns is often

highly persistent and asymmetrically distributed. Early studies have focused on the

parametric approach of ARCH (Engle 1982) and GARCH (Bollerslev 1986) type mod-

els to capture the stylized facts. The nonparametric branch of research on volatil-

ity models has aimed at addressing the strong parametric assumption of ARCH and

GARCH type models, such as the linearity assumption in the volatility equation (e.g.

Pagan & Schwert 1990) and the distribution function of error term (e.g. Engle &

Gonzalez-Rivera 1991).
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More recently, the nonlinear nonstationary heteroscedastic (NNH) model was pro-

posed (Park 2002) as an alternative class of volatility models. The NNH model as-

sumes the conditional variance as a known parametric nonlinear function of a per-

sistent explanatory variable xt. Han & Park (2008) extended the NNH model by al-

lowing the ARCH(1) component in the model, while Han & Zhang (2012) proposed

a nonparametric version of the NNH model called the nonstationary nonparametric

volatility (NNV) model.

2.5.1 ARCH and GARCH models

The autoregressive conditional heteroscedasticity (ARCH) model proposed by Engle

(1982) is the pioneering model that aims to capture the time-varying volatility. Let yt

be the return series, and ut = yt − µ be the innovation at time t, the ARCH model is

defined by

ut = σtεt , ε ∼ i.i.d.(0,1) (2.5.1)

σ2
t = α0 +

q∑
i=1

αiu
2
t−i

where σ2
t is the variance of ut conditional on the information available at time t. This

model is referred to as the ARCH(q) model. The parameters in the volatility equation

must satisfy α0 > 0, and αi ≥ 0, for i = 1,2, · · · ,q, with at least one αi > 0 to guaran-

tee the conditional variance of ut to be strictly positive. The error term εt is assumed

to have zero mean and variance one, and the common choice is the standard normal

distribution. However, there are several problems when fitting a ARCH(q) model to
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financial return series. The main issues is that the order q needs to be large to accom-

modate the high persistence in volatility, which makes the model less parsimonious.

Bollerslev (1986) proposed an extended ARCH model to be the generalized ARCH

(GARCH) model. The GARCH(p,q) model is given by

σ2
t = α0 +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjσ
2
t−j , (2.5.2)

where constraints such as α0 > 0, αi ≥ 0 and βj ≥ 0 are imposed to the conditional vari-

ance is positive. In practice, p and q are chosen to be 1. In fact, GARCH(1,1) is a very

popular volatility model because it is parsimonious while still mimics a ARCH(∞)

process. However, the GARCH model could not capture the leverage effects because

it assumes symmetric effect of positive and negative shocks from (ut−i) on σt. In addi-

tion, the GARCH model produces exponential decay in the autocorrelation function

of squared return and therefore could not take into account of the long memory in

volatility.

To be able to capture asymmetric effect in volatility, Nelson (1991) proposed the expo-

nential GARCH (EGARCH) model

ln(σ2
t ) = α0 +

q∑
i=1

αi
|ut−i |+γiut−i

σt−i
+

p∑
j=1

βj ln(σ
2
t−j ). (2.5.3)

Since εt−i = ut−i/σt−i and σt−i is positive, a positive ut−i will cause the log volatility to

increase by αi(1 + γi)|εt−i |, and a negative ut−i will cause the log volatility to decrease

by αi(1−γi)|εt−i |.
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An alternative model that aims to capture the leverage effect is presented by Glosten

et al. (1993) called the threshold GARCH (TGARCH) model. A TGARCH(p,q) has the

form

σ2
t = α0 +

q∑
i=1

(αi +γiIt−i)u
2
t−i +

p∑
j=1

βjσ
2
t−j , (2.5.4)

where It−i is an indicator function such that

Ij =

 1 if ut−i < 0

0 if ut−i ≥ 0
,

and γi is nonnegative,αi and βj should satisfy similar conditions to those of (2.5.2).

Since γi > 0, a negative shock from ut−i would have a larger impact on σ2
t than a

positive shock of ut−i .

If
∑q

i=1αi+
∑p

j=1βj = 1, themodel is called integrated GARCHmodel (IGARCH) (Engle

& Bollerslev 1986). Comparing with the GARCHmodel, the impact of past squared in-

novations u2
t−1 in IGARCH model is persistent. A special case of IGARCH(1,1) model

is the RiskMetrics defined by

σ2
t = (1− β1)u2

t−1 + β1σ
2
t−1, (2.5.5)

which is well-known for calculating value at risk (VaR).

Empirical studies have found the existence of long-memory in autocorrelations of

squared or absolute returns in financial asset returns (see for example Ding et al.
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1993). This finding has motivated Baillie et al. (1996) to develop the fractionally inte-

grated GARCH (FIGARCH) model, defined by

[1− β(L)]dσ2
t = α + [1− β(L)−ϕ(L)(1−L)d]u2

t , (2.5.6)

where 0 < d < 1, L denotes the lag operator, ϕ(L) = [1 − α(L) − β(L)](1 − L)−1, α(L) =

α1L + α2L
2 + αqL

q, β(L) = β1L + β2L
2 + βpL

p and (1 − L)d is the fractional differencing

operator.

The (G)ARCH type models assumes that the conditional variance of stock returns is

generated from an autoregressive moving average fashioned process. It is well docu-

mented that (G)ARCH type models are capable of capturing volatility clustering. See

Bollerslev et al. (1992) and Bollerslev et al. (1994) for some reviews of ARCH type

models.

2.5.2 Volatility models with covariates

However, the (G)ARCHmodels assumes that volatility of a financial asset returns only

relates to information from its own history. It is commonly believed that the return of

one financial market could be affected by other factors such as volatilities from other

markets. Hence, studies has shown that external variables may contain significant in-

formation for the volatility of a financial series. For example, Lamoureux & Lastrapes

(1990) used trading volumes as an independent variable in their volatility model. En-

gle, Ng & Rothschild (1990) and Engle & Patton (2001) investigated the relationship
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between U.S. treasury bill returns and stock market returns. Other studies has ex-

amined the impact of news from different countries and bid-ask spreads in foreign

exchange markets (Engle, Ito & Lin 1990, Bollerslev & Melvin 1994).

Alternative to the ARCH type models, Park (2002) introduced a class of volatility

model which assumes the conditional variance as a function of some explanatory

variable xt. This model is called the nonlinear nonstationary heteroscedastic (NNH)

model and defined by

σ2
t = f (xt−1), (2.5.7)

xt = ρxt−1 + νt

and the mean equation in (2.5.1) can be re-written as

u2
t = f (xt−1) + ηt

ηt = f (xt−1)(ε
2
t−1 − 1) (2.5.8)

where xt has a unit root with ρ = 1. f (·) is a known nonnegative and nonlinear function

and should belong to the integrable and asymptotically homogeneous function class

(as discussed in Park & Phillips 1999, 2001). Han & Park (2008) combined the NNH

model with the ARCH(1) model. Such model is defined as

σ2
t = αu2

t−1 + f (xt−1), (2.5.9)

xt =
(
1− c

n

)
xt−1 + νt
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where c ≥ 0 and such model is called the ARCH-NNH model. In addition to the NNH

model, the ARCH-NNH model allows for exact unit root in xt as well as near unit

root. The study suggested using the QMLE to estimate the parameters of the model

as long as the parameters are linear in the volatility equation. Hence, the paper used

f (x) = a|x|b with b = 1 as the parametric functional form for f . The forecasting results

show that the ARCH-NNH model out performs GARCH(1,1) and FIGARCH(1,1) in

lower frequency data such as weekly and monthly.

The limitations are that the study only considered f (x) = a|x|b or f (x) = a|x| as the

volatility function and use QMLE to estimate the parameters of the model if the pa-

rameters are linear in the volatility equation.

On the other hand, Han & Zhang (2012) presented a nonparametric version of the

NNH model called the nonstationary nonparametric volatility (NNV) model

σ2
t =m(xt−1), (2.5.10)

where m(·) is smooth but unknown function and m(xt) > 0 for all t. xt is able to follow

the unit root or near unit root process defined in (2.5.9). This model is an application

of the nonparametric cointegration model discussed by Wang & Phillips (2009a,b),

in which m(x) is estimated via the Nadaraya-Watson estimator. It was shown that

the model can generate long memory property in volatility as long as the explana-

tory variable contains a unit root. Han & Zhang (2012) suggested that by choosing

the bandwidth based on QLIKE loss criterion, the NNV model outperforms GARCH

model in both in-sample and out-of-sample evaluation. However, this model assumes
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the volatility is determined only by external variable. We believe it is reasonable to as-

sume that the volatility depends on the historical information contained in the return

series itself.

2.5.3 Nonparametric and semiparametric volatility models

A number studies has promoted the use of a nonlinear function in the volatility equa-

tion in ARCH models. Pagan & Schwert (1990) proposed an nonparametric ARCH

model where

σ2
t =m(u2

t−1), (2.5.11)

where m(·) is estimated via the Nadaraya-Watson estimator defined by

m̂(x) =
∑n

t=1u
2
t Kh(xt − x)∑n

t=1Kh(xt − x)
, (2.5.12)

where Kh(xt − x) = h−1K(x/h) is the kernel density function and h is the bandwidth.

A study by Masry & Tjøstheim (1995) also employed the Nadaraya-Watson estimator.

Härdle & Tsybakov (1997) considered using local polynomial functions to estimate

the ARCH volatility function with the number of lag equal to 1. The study identified

the asymmetric relationship between return and volatility in exchange rate data. Yang

et al. (1999) later proposed another method, which could include the number of lag

up to q. Franke et al. (2004) suggested a bootstrap method can be used to estimate the

nonparametric ARCH(1) model.

However, the ARCH specification is often difficult to capture the dynamic nature of

financial series, since it often requires a large number of lags. Hence, a GARCH setting
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is more appropriate. Engle & Ng (1993) proposed a partially nonparametric GARCH

model defined as

σ2
t = α0 + βσ2

t−1 +m(ut−1), (2.5.13)

wherem(·) is a linear spline function which guarantees continuous. Suchmodel allows

for asymmetric leverage effect. A study by Linton &Mammen (2005) studied a class of

semiparametric ARCH(∞) models, that includes (2.5.13) as a special case (see Linton

2009, for a review).

The performance of the Nadaraya-Watson estimator depends mostly on the choice of

the bandwidth (Härdle 1990), and the bandiwidth selection process is closely related

to bandwidth selection of kernel density estimation. Such Bayesian technique has

been shown to outperform traditional cross-validation methods such as bootstrap and

rule-of-thumb estimators (see Jones et al. 1996, Zhang et al. 2006, for a survey).

Other nonparametric studies includes, Härdle & Tsybakov (1997) considered using

local polynomial functions to estimate the ARCH volatility function with the number

of lag equal to 1. Yang et al. (1999) later proposed another method, which could in-

clude the number of lag up to q. Franke et al. (2004) suggested a bootstrap method

can be used to estimate the nonparametric ARCH(1) model. Since the ARCH speci-

fication is often difficult to capture the dynamic nature of financial series, a GARCH

setting is preferred. For instance, Engle & Ng (1993) proposed a partially nonpara-

metric GARCH model that allows for asymmetric leverage effect. A study by Linton

& Mammen (2005) studied a class of semiparametric ARCH(∞) models, that includes

the partially nonparametric GARCH model of Engle & Ng (1993) as a special case
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(see Linton 2009, for a review). Other nonparametric GARCH(1,1) studies include

Bülmann & McNeil (2002) and Yang (2006), where both suggested improved perfor-

mance over the traditional GARCH(1,1) model.

Another branch of studies has focused on adopting an unknown distribution function

for the error term. The early studies on (G)ARCH models has assumed the distri-

bution of εt in (2.5.1) is conditional normal and parameters are estimated via max-

imum likelihood estimator (MLE). Bollerslev & Wooldridge (1992) suggested if the

first two moments of the underlying GARCH process are correctly specified, the quasi

maximum likelihood estimatior (QMLE) can still produce consistent estimates under

the assumption of conditional normality, even if the error term is not normally dis-

tributed. However, QMLE suffers from efficiency loss in such situation. In fact, many

studies has suggested the normality assumption can be too strong (see French et al.

1987, Badrinath & Chatterjee 1988, Hall & Yao 2003, for example).

Given such constraints under parametric setting, Engle & Gonzalez-Rivera (1991)

showed the efficiency loss under QMLE and introduced the semiparametric GARCH

model, where the density of εt is of an unknown functional form. The paper employed

the discrete maximum penalized likelihood estimation technique and suggested that

semiparametric method is more efficient over QMLE. Drost & Klaassen (1997) devel-

oped a kernel based estimator for the unknown density function of εt and showed the

efficiency bounds of the estimation of the parameters.

A recent study by Zhang&King (2011) proposed a Bayesianmethod to simultaneously

estimate the GARCH parameters and conditional error density without specifying the

error distribution function. The paper assume the density of εt is unknown and is
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approximated by a kernel density function:

f (εt;h) =
1
n

n∑
i=1

1
h
K

(εt − εi
h

)
(2.5.14)

where K(·) is the standard Gaussian density function. Zhang & King (2011) presented

a Bayesian sampling technique which can estimate the GARCH parameters and the

error density simultaneously. The empirical results indicate strong evidence on better

performance achieved by the Bayesian method comparing to traditional parametric

GARCH(1,1) model.

2.5.4 Concluding Remarks

Empirical evidence has shown that volatility of financial asset returns is often highly

persistent and asymmetrically distributed. Early studies have been focused on the

parametric approach of ARCH and GARCH type models to capture the stylized facts.

The nonparametric branch of research on volatility models has aimed at addressing

the parametric assumption of ARCH and GARCH type models, such as the linearity

assumption in the volatility equation and the distribution function of error term. In

addition, the NNH model assumes the conditional variance as a known parametric

nonlinear function of a persistent explanatory variable xt. The NNV model assumes

the nonlinear function of xt in the model to be unknown.

We propose a more general version of the NNV model. We believe that information

from previous asset returns could contribute to today volatility, hence it is reasonable

to allow an linear ARCH(1) component in the volatility equation. The relationship
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between the volatility and the covariate is nonlinear, and is estimated by the Nadaraya-

Watson estimator.

In order to estimate the bandwidth parameters, we adopt the Bayesian sampling

method shown in Zhang et al. (2009) and Zhang & King (2011) to simultaneously es-

timate bandwidth parameter and the linear coefficient through an MCMC algorithm.

Furthermore, instead of imposing any particular parametric assumption on the error

term distribution, we allow the error term distribution to follow an unknown distri-

bution.
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Chapter 3

Bayesian Adaptive Kernel Density

Estimation of Irregular

Distributions

3.1 Introduction

As we discussed in Section 2.2, the performance of global bandwidth kernel density

estimator is limited in some situations, and adaptive bandwidth selection for multi-

variate distributions has received limited attention due to the difficulty of estimating a

large number of bandwidths. In this chapter, we propose to remedy this problem with

an alternative method called the tail-adaptive kernel density estimator, which assigns

two different bandwidth to sample data in low- and high-density regions. In this way,

it will improve the performance of the resulting kernel density estimator while still

restricting the number of bandwidth at a manageable level.
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This chapter is organized as follows. In Section 3.2, we derive the posterior of band-

width parameters and present an MCMC sampling algorithm for estimating these

bandwidths. Sections 3.3 and 3.4 present the results ofMonte Carlo simulation studies

designed to examine the performance of the tail-adaptive density estimator. In these

experiments we consider the issue of bandwidth estimation for univariate, bivariate

and 5-dimensional multivariate density estimation using several density functions de-

signed to have irregular shapes, such as multi–modality, skewness and heavy tails.

To demonstrate the efficaciousness of our proposed technique, we compare the per-

formance of the tail-adaptive density estimator with the Bayesian global bandwidth

estimator and the NRR bandwidth procedure. The results indicate that assigning dif-

ferent bandwidths to LDR and HDR regions can often result in substantial improve-

ments. To illustrate the potential use of our methods for inferential purposes, in Sec-

tion 3.5 we apply the tail-adaptive density estimator to the estimation of the bivariate

density of two asset returns, the continuously compounded daily returns of the All

Ordinaries and S&P 500 indices. Employing the estimated density we can compute,

for example, the value at risk (VaR) for the ALL Ordinaries conditional on the S&P

500 index taking particular values overnight, say, or similar quantities that might be

of interest to market analysts. Section 3.6 concludes the chapter.

3.2 Tail-adaptive kernel density estimator

The concept of grouping observations into low- and high-density regions has been

discussed in many statistical problems. Hartigan (1975, p205) defined a cluster as a

high-density region that is separated from other high-density regions by low-density
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regions. In this project, we are particularly interested in grouping observations into

the low-density region, inside which every observation has a density value less than

or equal to the density of every observation outside the region. In a different situation,

Hyndman (1996) presented a definition for highest density region, and we follow his

definition to define the LDR as follows.

Let α be a threshold value that determines the proportion of the low-density region

relative to the whole sample space. Let L(fα) denote a subset of the sample space, so

that the (100×α)% low-density region is shown as

L(fα) = {x : f (x) ≤ fα},

where fα is the largest constant such that Pr{x ∈ L(fα)} ≤ α.

Let

Ij =

 1 if xj ∈ L(fα)

0 otherwise
,

for j = 1,2, · · · ,n. Let h(1) denote the bandwidth vector assigned to observations inside

L(fα), and h(0) the bandwidth vector assigned to observations outside L(fα). The kernel

density estimator is

f̂h(1),h(0)(x) =
1
n

n∑
j=1

{
IjK

(
(x − xj )./h(1)

)
./h(1)

+ (1− Ij )K
(
(x − xj )./h(0)

)
./h(0)

}
, (3.2.1)
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and its leave-one-out estimator is denoted as f̂h(1),h(0),i(xi)

f̂h(1),h(0),i(xi) =
1

n− 1

n∑
j=1
j,i

{
IjK

(
(xi − xj )./h(1)

)
./h(1)

+ (1− Ij )K
(
(xi − xj )./h(0)

)
./h(0)

}
,

for i = 1,2, · · · ,n. As the low-density region becomes the tail area when the underlying

density is unimodal, we also call (3.2.1) the tail-adaptive estimator for simplicity. The

tail-adaptive density estimator allows for assigning two different bandwidth matrices

to observations inside the low- and high-density regions. Note that the value of α

can be chosen as either 5% or 10%. Then L(fα) can be interpreted as the subset that

contains the data in the tails of the density. Even though f (x) is unknown, fα can be

approximated through the kernel density estimator of f (x) using a global bandwidth.

3.2.1 Posterior of bandwidth parameters

Given h(1) and h(0), the approximate likelihood is

ℓ(x1,x2, . . . ,xn|h(1),h(0)) =
n∏
i=1

f̂h(1),h(0),i(xi). (3.2.2)

as suggested by Zhang et al. (2006), we assume that the prior of each bandwidth to be

the Cauchy density p(h(l)k ) ∝ 1
1+h(l)k ×h

(l)
k

, for k = 1,2, · · · ,d, and l = 0 and 1. The posterior

of h(1) and h(0) for given {x1,x2, . . . ,xn} is

π(h(1),h(0)|x1,x2, · · · ,xn) ∝

 n∏
i=1

f̂h(1),h(0),i(xi)

×
 d∏
k=1

p(h(1)k )× p(h(0)k )

 . (3.2.3)
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The posterior given by (3.2.3) is of non-standard form, and we cannot derive an ana-

lytical expression as the estimate of {h(1),h(0)}. However, we can use the random-walk

Metropolis-Hastings algorithm to sample {h(1),h(0)} from (3.2.3).

Random-walk Metropolis-Hastings algorithm uses a symmetric density, e.g. normal

density, to generate candidates. As long as the Random-walk Metropolis-Hastings

algorithm works, it is generally not necessary to explore other proposal densities.

The sampling procedure is as follows.

1) Obtain an initial kernel density estimator with bandwidths chosen via NRR; and

derive the low- and high-density regions for given α.

2) Assign initial values to h(1) and h(0), which are respectively, the bandwidth ma-

trices given to observations within the low- and high-density regions specified

in Step 1).

3) Let h̃ denote the vector of all elements of {h(1),h(0)}. Use the random-walk

Metropolis-Hastings algorithm to update h̃with the acceptance probability com-

puted through the posterior given by (3.2.3).

4) Derive the low- and high-density regions according the density estimator with

the bandwidth matrices updated in Step 3).

5) Repeat Steps 3) and 4) until the simulated chain of h̃ achieves reasonable mixing

performance.

During the above iterations, we usually discard the draws during the burn-in period,

and record the draws of h̃ thereafter. Let {h̃(1), h̃(2), · · · , h̃(M)} denote the recorded draws.
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The posterior mean (or ergodic average) denoted as
∑M

i=1 h̃(i)/M, is an estimate of h̃.

Once the bandwidth matrices are estimated, the analytical form of the kernel density

estimator is obtained.

3.3 A Monte Carlo simulation study

To investigate the performance of the proposed tail-adaptive kernel density estima-

tor, we approximate Kullback-Leibler information between the density estimator and

its corresponding true density via Monte Carlo simulation. Kullback-Leibler informa-

tion defined in (2.3.18) is a measure of discrepancy between the true density and its

estimator. To approximate Kullback-Leibler information, we draw a large number of

random vectors {x1,x2, . . . ,xN } from true density f (x) and compute

d̂KL

(
f (x), f̂ (x)

)
=

1
N

N∑
i=1

log
(
f (xi)/ f̂ (xi)

)
, (3.3.1)

where f̂ (·) denote a density estimator of f (·). The performance of a bandwidth esti-

mate is examined through the performance of the resulting kernel density estimator.

A bandwidth estimation method is better than its competitor if Kullback-Leibler in-

formation resulted from the former is less than that resulted from the latter.

3.3.1 True densities

We conduct Monte Carlo simulation by simulating samples from six target densities

labeled A, B, C, D, E and F, which are denoted as A1 to F1 for univariate densities,

and A2 to F2 for bivariate densities. Figure 3.1 provides the density plot for univariate
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densities and Figure 3.2 shows the contour plot for bivariate densities. These densi-

ties are of irregular shapes. Density A and B are normal densities with bimodality.

Density E and F are Student t densities with heavy-tail features. Density C and G are

skew-normal and skew-t densities, respectively. Their specifications are explained as

follows.

Density A is a mixture of two equally weighted normal densities with bimodality:

fA (x|µ1,Σ1,µ2,Σ2) =
1
2
ϕ (x|µ1,Σ1) +

1
2
ϕ (x|µ2,Σ2) ,

where ϕ(x|µ,Σ) is a multivariate normal density with mean µ and variance-covariance

matrix Σ. The univariate true density is fA1
(x) = 1/2ϕ(x|2,1) + 1/2ϕ(x| − 1.5,1), while

the bivariate bivariate true density has the following mean vectors and variance-

covariance matrices.

µ1 =

−1.5−1.5

 , Σ1 =

 1 0.3

0.3 1

 , µ2 =
22

 , Σ2 =

 1 −0.9

−0.9 1

 .
Note that this bivariate density was used by Zhang et al. (2006).

Density B is a mixture of two normal densities with different weights but an equal

height at the modes:

fB (x|µ1,Σ1,µ2,Σ2) =
3
4
ϕ (x|µ1,Σ1) +

1
4
ϕ (x|µ2,Σ2) .

The univariate density is fB1
(x) = 3/4ϕ(x| − 1.5,1) + 1/4ϕ(x| − 1.5,1/9), which was dis-

cussed by Sain & Scott (1996). The bivariate density is the same mixture with mean
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Figure 3.1: Density graphs of target univariate densities.
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Figure 3.2: Contour graphs of target bivariate densities.
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vectors and variance-covariance matrices given as follows.

µ1 =

−1.5−1.5

 , Σ1 =

 1 1/2

1/2 1

 , µ2 =
1.51.5

 , Σ2 =

1/3 1/6

1/6 1/3

 .
Density C is a mixture of two skew-normal densities:

fC (x|µ1,γ1,µ2,γ2,Σ) =0.5× 2ϕ(x|µ1,Σ)Φ (γ ′1(x −µ1))

+0.5× 2ϕ(x|µ2,Σ)Φ (γ ′2(x −µ2))

where Φ(·) is the cumulative density function of a multivariate standard normal dis-

tribution, and γ1,γ2 ∈ Rd are the shape parameters determining the skewness. This

distribution was proposed by Azzalini & Valle (1996) and the conventional normal

density can be obtained when γ1 = γ2 = 0. The univariate density fC1
has the follow-

ing parameter values: µ1 = −0.5, µ2 = 0, α1 = −9 and α2 = 9. The bivariate density has

the following parameters values:

µ1 =

−0.5−0.5

 , α1 =

−9−9
 , µ2 =

00
 , α2 =

99
 , Σ =

 1 0.3

0.3 1

 .
Density D is a Student t distribution denoted as td (x|µ,Σ,ν):

fD (x|µ,Σ,ν) = Γ ((ν + d)/2)
(νπ)d/2Γ (ν/2)|Σ|1/2

[
1+

1
ν
(x −µ)′Σ−1(x −µ)

]−(d+ν)/2
,

which has the location parameter µ, dispersion matrix Σ and degrees-of-freedom ν =

5. The parameter vector of the univariate density fD1
(x) is (0,1,5)′, while bivariate
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density fD2
(x) has the following parameters:

µ =

00
 , Σ =

 1 0.5

0.5 1

 .
Density E is a mixture of two Student t densities with degrees of freedom ν = 5:

fE (x|µ1,µ2,Σ,ν) = 0.5 td (x|µ1,Σ1,ν) + 0.5 td (x|µ2,Σ2,ν) .

The univariate density fE1
(x) = 0.5 t1(x|−2,1,5)+0.5 t1(2,1,5), and the bivariate density

fE2
(x) = 0.5 t2(x|µ1,Σ1,5) + 0.5 t2(µ2,Σ2,5), where

µ1 =

−20
 , Σ1 =

 1 −0.5

−0.5 1

 , µ2 =
20

 , Σ2 =

 1 0.5

0.5 1

 .
Density F is a skew-t density proposed by Azzalini & Capitanio (2003):

fF (x|µ,Σ,α,ν) = 2 td(x|µ,Σ,ν)Td(x̃|ν + d), (3.3.2)

where

x̃ = γ ′ω−1(x −µ)
(

ν + d

(x −µ)′Σ−1(x −µ) + ν

)1/2
,

ω is a diagonal matrix with diagonal elements the same as those of Σ, and Td(·|ν + d)

is the cumulative density of the Student t distribution with ν + d degrees of freedom.

The density given by (3.3.2) is able to capture heavy tailed property with ν = 5 and

moderately skewness. The univariate density fF1(x) has parameters µ = 0, α = −2 and
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Σ = 1. The bivariate density fF2(x) has the following parameters:

µ =

00
 , γ =

−20
 , Σ =

1 0

0 1

 .
The density graph of each of the six univariate densities is presented in Figure 3.1,

while the contour plot of each of the six bivariate densities is given in Figure 3.2. We

can find that these densities exhibit a variety of different distributional properties.

3.3.2 Accuracy of our Bayesian bandwidth estimation

We generated samples of sizes n = 200,500,1000 from each of the six univariate den-

sities, as well as samples of sizes n = 500,1000,2000 from each of the six bivariate

densities. The kernel function for estimating univariate densities was chosen to be the

univariate standard Gaussian density known as the Gaussian kernel, and the product

of univariate Gaussian kernels was used as the kernel function for estimating mul-

tivariate densities. The bandwidth matrix in estimating multivariate densities was

chosen to be a diagonal matrix.

First, we estimated the diagonal bandwidth matrices for our proposed tail-adaptive

kernel density estimator with α = 0.05 and 0.1. Second, we consider the kernel den-

sity estimator with a global bandwidth (matrix), which was estimated through two

existing selection or estimation methods, namely the NRR discussed by Scott (1992)

and the Bayesian sampling technique presented by Zhang et al. (2006).

In terms of our proposed tail-adaptive density estimator used for each generated sam-

ple, we applied the random-walk Metropolis-Hastings algorithm to the update of all
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Table 3.1: MCMC results obtained based on a sample generated from density F

Bandwidths Mean Standard Batch-mean SIF Acceptance
deviation standard deviation rate

h
(1)
1 1.1121 0.3184 0.0157 24.32 0.28

h
(1)
2 1.6432 0.3816 0.0164 18.57

h
(0)
1 0.2505 0.0469 0.0019 17.13

h
(0)
2 0.4196 0.0675 0.0018 7.35

bandwidths in the univariate situation (or all components of the bandwidth matrices

in the bivariate situation) with the acceptance probability calculated through (3.2.3).

There are 3,000 iterations during the burn-in period, and the recorded period con-

tains 10,000 iterations. We computed the batch-mean standard deviation discussed

by Roberts (1996) and the simulation inefficient factor (SIF) discussed by Kim et al.

(1998) to monitor the mixing performance (or loosely speaking, the convergence per-

formance). Both indicators are explained in details in Zhang et al. (2006). As the simu-

lated chain is a Markov chain, the SIF value can be roughly interpreted as the number

of draws needed so as to produce independent draws. Therefore, a small SIF value usu-

ally indicate good mixing performance. In addition, a plot of the sample path of each

parameter, together with its autocorrelation function (ACF) and histogram graphs is

also presented for visual inspection of the mixing performance.

Consider a sample generated from fF2(x) with the probability of the low-density re-

gion α = 0.05 and sample size n = 1000. Figure 3.3 presents graphs of the sample

path, its ACF and histogram of each bandwidth. Table 3.1 presents a summary of the

MCMC results, in which we found that the SIF values are very small, and the batch-

mean standard deviations are respectively, much smaller than their counterparts of
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Figure 3.3: Plots of posterior draws obtained through our proposed sampling algorithm for
tail-adaptive bandwidths in kernel density estimation with α=0.05: (a) h(1)1 ;

(b) h(1)2 ; (c) h(0)1 ; and (d) h(0)2 .
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overall standard deviations. These indicators show that the mixing performance of

the proposed sampling algorithm applied to the tail-adaptive kernel density estima-

tor is very good and acceptable.

The estimates of bandwidths are also sensible. Note that fF2 is a fat-tailed density

with left skewness in one dimension and a certain degree of symmetry in the other

dimension (see Figure 3.2). We found that the tail-adaptive density estimator clearly

captures the fat-tailed feature of the true density. For example, the estimates of both

components of h(1) for observations inside the low-density region are respectively,

much larger than the estimates of both components of h(0) for observations outside

this region.

In order to examine the performance of the proposed tail-adaptive density estimator

with different bandwidth matrices assigned to the low- and high-density regions, we

also derived global bandwidths (or bandwidth matrices for the bivariate situation)

through the NRR and the Bayesian sampling method. However, we do not report the

estimated bandwidths, but the resulting Kullback-Leibler information.

We generated N=100,000 random numbers (or vectors for the bivariate situation)

from the true density and calculated the estimated Kullback-Leibler information

defined by (3.3.1). For the six univariate densities, Table 3.2 presents the esti-

mated Kullback-Leibler information between the true density and each density es-

timator resulted from each bandwidth estimation method. Among all six densities

considered, the tail-adaptive density estimator with bandwidths estimated through

Bayesian sampling and low-density probability 0.05 clearly performs better than the

global-bandwidth estimator with bandwidth selected through NRR; and the former
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Table 3.2: Estimated Kullback-Leibler information for univariate densities

Kullback-Leibler information

Global-bandwidth Tail-adaptive bandwidths

Density n NRR Bayesian α = 0.05 α = 0.10

fA1
200 0.0374 0.0238 0.0311 0.0388
500 0.0127 0.0070 0.0070 0.0069

1000 0.0091 0.0033 0.0031 0.0032
fB1

200 0.1137 0.0506 0.0399 0.0371
500 0.0545 0.0134 0.0157 0.0181

1000 0.0368 0.0136 0.0126 0.0105
fC1

200 0.2094 0.0837 0.0738 0.0781
500 0.0688 0.0567 0.0332 0.0349

1000 0.0478 0.0246 0.0161 0.0142
fD1

200 0.0322 0.0602 0.0280 0.0340
500 0.0170 0.0457 0.0210 0.0230

1000 0.0118 0.0285 0.0139 0.0152
fE1

200 0.0974 0.1019 0.0445 0.0377
500 0.0491 0.0536 0.0336 0.0273

1000 0.0283 0.0256 0.0117 0.0123
fF1 200 0.0670 0.0695 0.0364 0.0401

500 0.0578 0.0798 0.0282 0.0355
1000 0.0143 0.0153 0.0091 0.0102

clearly performs better than the global-bandwidth estimator with bandwidth esti-

mated through Bayesian sampling except Density A1. When the Bayesian estimation

of a global bandwidth performs worse than the NRR of a global bandwidth for Den-

sities D1 to F1, our proposed Bayesian estimation of tail-adaptive bandwidths out-

performs the NRR. Table 3.2 also shows that there is no obvious difference between

different choices of α, which is the probability of the low-density region.
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Table 3.3: Estimated Kullback-Leibler information for bivariate densities

Global-bandwidth Tail-adaptive bandwidth

Density n NRR Bayesian α = 0.05 α = 0.10
fA 500 0.2878 0.0858 0.0772 0.0748

1000 0.2382 0.0617 0.0498 0.0467
2000 0.1981 0.0402 0.0339 0.0338

fB 500 0.1201 0.0499 0.0444 0.0442
1000 0.0826 0.0349 0.0332 0.0337
2000 0.0653 0.0256 0.0219 0.0217

fC 500 0.1126 0.0930 0.0783 0.0768
1000 0.0924 0.0689 0.0559 0.0558
2000 0.0900 0.0648 0.0497 0.0498

fD 500 0.1171 0.0946 0.0464 0.0449
1000 0.0809 0.0769 0.0286 0.0312
2000 0.0590 0.0565 0.0242 0.0270

fE 500 0.1436 0.1072 0.0623 0.0530
1000 0.1038 0.1088 0.0328 0.0397
2000 0.0782 0.0666 0.0262 0.0282

fF 500 0.1169 0.1641 0.0520 0.0545
1000 0.0781 0.0657 0.0261 0.0306
2000 0.0708 0.0637 0.0237 0.0242

The estimated Kullback-Leibler information for bivariate densities is given in Ta-

ble 3.3. Among all six densities considered, the tail-adaptive density estimator ob-

viously performs better than global-bandwidth density estimator with bandwidth ma-

trix estimated through either the NRR or Bayesian sampling. Note that Bayesian es-

timation of a global bandwidth matrix performs slightly worse than NRR in the case

of fF2 with sample size 500, our proposed Bayesian estimation of tail-adaptive band-

width performs clearly better than the two competitors. The results also indicate that

the performance of the tail-adaptive density estimator is not very sensitive to different

values of the probability of low-density region.

The mean integrated squared error (MISE) was also used to examine the performance

of tail-adaptive density estimator. We numerically approximate the MISE through

200 data sets for each the bivariate densities with sample size 500, 1000 and 2000.
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Table 3.4: Estimated MISE (×100) for bivariate densities

Global-bandwidth Tail-adaptive bandwidth

Density n NRR Bayesian α = 0.05 α = 0.10
fA 500 1.8482 0.4945 0.4415 0.4401

1000 1.5546 0.3354 0.2920 0.2901
2000 1.2875 0.2230 0.1875 0.1854

fB 500 0.6526 0.2718 0.2612 0.2606
1000 0.4927 0.1828 0.1738 0.1727
2000 0.3595 0.1164 0.1101 0.1089

fC 500 0.8812 0.6022 0.5422 0.5422
1000 0.7059 0.4208 0.3694 0.3804
2000 0.5589 0.2868 0.2600 0.2692

fD 500 0.3250 0.6573 0.2782 0.2638
1000 0.2152 0.5121 0.1796 0.1737
2000 0.1489 0.3915 0.1219 0.1245

fE 500 0.4022 0.3722 0.1919 0.1822
1000 0.3039 0.2980 0.1279 0.1242
2000 0.2207 0.2283 0.0840 0.0844

fF 500 0.3331 0.7560 0.3092 0.2966
1000 0.2229 0.6150 0.2054 0.2022
2000 0.1496 0.4856 0.1386 0.1437

Table 3.4 shows that the lower-adaptive estimator always outperforms the global-

bandwidth estimator.

3.4 Tail-adaptive density estimation for high dimensions

Our proposed Bayesian sampling algorithm for estimating bandwidths (or bandwidth

matrices in multivariate situations) in tail-adaptive kernel density estimation is appli-

cable to data of any dimension. In this section, we aim to examine the performance

of the tail-adaptive estimator with bandwidth matrices estimated through Bayesian

sampling in comparison with its two competitors, namely the NRR and Bayesian esti-

mation of a global bandwidth matrix proposed by Zhang et al. (2006).
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3.4.1 True densities

We consider four target densities labeled G, H, I and J. Density G is a mixture of two

multivariate normal densities:

fG (x|µ1,µ2,Σ1,Σ2) =
1
2
ϕ (x|µ1,Σ1) +

1
2
ϕ (x|µ2,Σ2) ,

with location parameter vectors specified as µ1 = (−1.5,−1.5,−1.5,−1.5,−1.5)′ and µ2 =

(2,2,2,2,2)′ and both variance-covariance matrices of the form

Σ =
1

1− ρ2



1 ρ ρ2 ρ3 ρ4

ρ 1 ρ ρ2 ρ3

ρ2 ρ 1 ρ ρ2

ρ3 ρ2 ρ 1 ρ

ρ4 ρ3 ρ2 ρ 1


, (3.4.1)

where ρ = 0.3 for Σ1 and ρ = −0.9 for Σ2.

Density H is a multivariate skew-normal densities:

fH (x|µ,Σ,α) = 2ϕ (x|µ,Σ)Φ (γ ′(x −µ)) ,

where Σ is defined by (3.4.1) with ρ = 0.9, µ = (−0.5,−0.5,−0.5,−0.5,−0.5)′, Φ(·) is

the standard normal cumulative density, and the skewness parameter vector γ =

(−9,−9,−9,−9,−9)′.

Density I is a mixture of two multivariate Student t densities:

fI (x|µ1,µ2,Σ1,Σ2,ν) = 0.5 td (x|µ1,Σ1,ν) + 0.5 td (x|µ2,Σ2,ν) ,
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where µ1 = (−2,0,−2,0,−2)′, µ2 = (2,0,2,0,2)′, ν = 5, and both Σ1 and Σ1 are defined

by (3.4.1) with ρ = −0.5 and ρ = 0.5, respectively.

Density J is a multivariate skew-t densities:

fJ (x|µ,Σ,α,ν) = 2td (x|µ,Σ,ν)Td (x̃|ν + d) ,

where µ = 0, ν = 5, Σ is a d × d identity matrix, and x̃ is defined by (3.3.2) with

γ = (2,0,2,0,2)′.

3.4.2 Accuracy of our Bayesian bandwidth estimation

We generated samples of sizes n = 500,1000,2000 from each of the five-dimensional

densities.

We calculated Kullback-Leibler information between the true density and its estima-

tor resulted from each of the three bandwidth estimation methods. We note that MISE

was not presented in this case. MISE is extremely time consuming to compute, and in

the bivariate case shown above, the MISE results are very consistent with the Kullback-

Leibler information. Hence we believe calculating MISE again in this case is not nec-

essary.

Table 3.5 presents the estimated Kullback-Leibler information between the true den-

sity and its estimator resulted from each of the three bandwidth estimation methods.

We found that our proposed Bayesian estimation of the tail-adaptive bandwidth ma-

trix obviously outperforms the NRR for choosing a global bandwidth matrix in kernel

density estimation. Moreover, we found that the former clearly performs better than
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Table 3.5: Estimated Kullback-Leibler information for 5-dimensional densities

Global-bandwidth Tail-adaptive bandwidth

Density n NRR Bayesian α = 0.05 α = 0.10
fG 500 0.8923 0.4280 0.4026 0.4004

1000 0.7705 0.3093 0.2848 0.2825
2000 0.6933 0.2489 0.2343 0.2300

fH 500 0.4559 0.3438 0.3212 0.3179
1000 0.4041 0.2892 0.2613 0.2582
2000 0.3355 0.2226 0.2033 0.1987

fI 500 0.5943 0.5674 0.3446 0.3187
1000 0.4994 0.4814 0.2891 0.2666
2000 0.4395 0.4255 0.2274 0.2072

fJ 500 0.6107 0.5755 0.3226 0.3033
1000 0.5969 0.4415 0.2538 0.2284
2000 0.5050 0.3937 0.1971 0.1773

Bayesian estimation of a global bandwidth matrix. These findings are consistent with

what we found in the bivariate situation.

For all sample sizes of each density considered, we found that the tail-adaptive kernel

density estimator with α = 0.1 slightly outperforms the same estimator with α = 0.05.

However, we would be reluctant to make a decision as to whether the former performs

better than the latter because such a difference resulted from the two different proba-

bility values is marginal.

3.5 An application of the tail-adaptive density estimator

In this section, we apply the proposed tail-adaptive kernel density estimator to the

estimation of bivariate density of stock-index returns. We obtained the daily closing

index values of the S&P500 index in the U.S. stock market and the All Ordinaries
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Table 3.6: Descriptive statistics of the daily continuously compounded returns of the
S&P500 index and All Ordinaries (AORD)

Series n Mean Standard Skewness Kurtosis Correlation
deviation

S&P500 1155 -0.0058 0.7034 -0.2197 11.1613 0.6171
AORD 1155 0.0015 0.5779 -0.3955 6.4593

(AORD) in the Australian stock market, where the sample period is from the 2nd Jan-

uary 2006 to the 16th September 2010 excluding non-trading days. The AORD contin-

uously compounded return was matched to the overnight S&P500 return. In financial

economics, most researchers believe that the density of financial asset returns has a

higher peak and heavier tails than the normal density. If a global bandwidth is used

for kernel density estimation, the use of a global bandwidth is likely to over-smooth

the density due to the existence of observations in the tail areas. The use of complete-

adaptive bandwidths may not be attractive in applications due to the large number of

bandwidth parameters. Therefore, we wish to apply the tail-adaptive kernel density

estimator to the estimation of bivariate-return density.

Let xt denote the closing index at date t. The daily continuously compounded returns

in percentage form was computed as (lnxt − lnxt−1)×100. The sample size is n = 1155.

The sample period covers the period of current global financial crisis, where there

are some extreme observations. Table 3.6 presents some basic descriptive statistics.

We found that both return series have mean values around zero, a certain degree of

negative skewness and excessive kurtosis. As shown in the scatter plot of the bivariate

observations given in Figure 3.4, the daily returns of both indices are correlated with

the Pearson correlation coefficient 0.6171. We can visually identify many extreme
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Figure 3.4: A scatter plot of daily continuously compounded daily returns of S&P500 and
AORD in percentage form during the period from the 2nd January 2006 to
16th September 2010
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return values in Figure 3.4, which indicates that the joint density of the bivariate index

returns has very heavy tails during the sample period.

We used our Bayesian sampling algorithm to estimate bandwidths matrices for the

tail-adaptive kernel density estimator of the bivariate index returns, where the prob-

ability of low-density region was chosen to be 5%. We also applied the Bayesian sam-

pling algorithm proposed by Zhang et al. (2006) and NRR to the estimation of global

bandwidth matrix for the kernel estimation of the bivariate return density.

There were 3,000 iterations in burn-in period and 10,000 iterations in the recorded

period for both sampling algorithms. Table 3.7 presents a summary of the results,

where the batch-mean standard deviation and SIF measures indicate very good mix-

ing performance of both samplers. Moreover, we calculated the log marginal like-

lihood of Newton & Raftery (1994) for each of the two density estimators so as to

decide which is favored against the other. The log marginal likelihood for our tail-

adaptive kernel density estimator is -1657.14, which is obviously larger than -1719.64,

the log marginal likelihood for the global-bandwidth kernel density estimator. Thus,

we have found strong evidence supporting our tail-adaptive density estimator against

the global-bandwidth density estimator.

With the estimated tail-adaptive bandwidth matrices given in the 3rd column of Ta-

ble 3.7, we calculated the tail-adaptive density estimator of the bivariate index re-

turns, whose density surface and contour graph presented in the 1st row of Figure 3.5.

Moreover, the 2nd row of Figure 3.5 presents the same set of graphs produced by

the global bandwidth matrix estimated via the Bayesian sampling algorithm of Zhang

et al. (2006). The last row of Figure 3.5 presents the same set of graphs produced by
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Figure 3.5: Surface graphs and contour plots of the three density estimators produced by
(a) tail-adaptive bandwidths with α = 5%; (b) Bayesian global bandwidth; and
(c) NRR bandwidth. In each surface graph, the x-axis represents return in
percentage, and the y-axis represents density. In each contours plot, both axises
represent return in percentage.

−2 −1 0 1 2

−2

−1

0
1

2

0.2

0.4

0.6

0.8

1.0

(a) Tail−adaptive bandwidth Contour of (a)

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−2

−1

0
1

2

0.0

0.2

0.4

0.6

0.8

(b) Bayesian global bandwdith Contour of (b)

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−2

−1

0
1

2

0.0

0.2

0.4

0.6

0.8

(c) NRR bandwidth Contour of (c)

−2 −1 0 1 2

−
2

−
1

0
1

2

71



Bayesian Sampling for Smoothing Parameter Estimation

Table 3.7: A summary of MCMC results obtained through our proposed Bayesian sam-
pling algorithm to the tail-adaptive kernel density estimator of the S&P500 and
AORD returns

Bandwidths Mean Standard SIF Acceptance log marginal
deviation rate likelihood

NRR h1 0.2171
h2 0.1783

Bayesian global h1 0.1795 0.0113 5.63 0.21 -1719.64
bandwidth h2 0.2485 0.0121 5.89

Tail-adaptive h
(1)
1 0.5533 0.2217 39.30 0.27 -1657.14

bandwidth h
(1)
2 0.5552 0.1140 19.97

with α = 0.05 h
(0)
1 0.1221 0.0161 15.39

h
(0)
2 0.1547 0.0174 13.55

the global bandwidth matrix estimated via NRR. Both the density surface and the

contour produced via the tail-adaptive estimator is obviously different from those

produced via each global-bandwidth density estimator. Both the density surface of

contour plot of the tail-adaptive density estimator show that this estimator captures

richer dynamics than the other two density estimators.

Let xt denote the S&P500 return and yt the AORD return. We used the bandwidth

matrices estimated through our tail-adaptive density estimator to estimate the condi-

tional density of AORD return given that the S&P500 return equals a certain value.

Such a conditional density is expressed as

f (y|xt = x) =
f (y,x)
fx(x)

,

where f (y,x) is the joint density of (yt ,xt), and fx(x) is the marginal density of xt. Ac-

cording to Holmes et al. (2010) and Polak et al. (2010), bandwidths estimated through

a joint density can also be used for the purpose to compute conditional density. As

72



Bayesian Sampling for Smoothing Parameter Estimation

market analysts are often concerned with the left tail of the density of stock-index re-

turns, we computed the conditional density of AORD returns given that the S&P500

return is at each of the quantiles of 10%, 7.5% 5%, 2.5%, 1% and 0.5%, which are cor-

responding to percentage return values of -0.73, -0.89, -1.13, -1.52, -2.24 and -2.74,

respectively. The graph of each conditional density is presented in the 1st columns of

Figure 3.6 and Figure 3.7, from which we can visually understand the distributional

properties of the AORD return given that the U.S. stock market finished daily trading

with the S&P500 index return at a certain value.

With the tail-adaptive bandwidth matrices estimated via our Bayesian sampling algo-

rithm, we are able to estimate the conditional probability of the form

Pr{yt ≤ y|xt ≤ x} =
Pr{yt ≤ y,xt ≤ x}

Pr{xt ≤ x}
. (3.5.1)

Such a calculation can be done simply by replacing the Gaussian kernel with its cumu-

lative density function. The interpretation of (3.5.1) is also clear and meaningful to

market analysts. Given that the U.S. stockmarket went down beyond x%, the probabil-

ity that the Australian stock market would drop beyond y% is approximated through

(3.5.1). We found that Pr{yt ≤ 0|xt ≤ 0} = 0.67. It means that when the U.S. stock

market finished daily trading with a negative return, there was a 67% chance that the

Australian stock market would also drop. Given that such a chance is more than 50%,

we could say that the Australian stock market followed the U.S. stock market during

the global financial crisis.
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Figure 3.6: Each graph in the left column represents the conditional density given that the
S&P500 return is at the chosen value. Each graph in right column represents
the conditional CDF computed through (3.5.2) at different y values for a given
x value marked by the vertical line, while the horizontal line marks the y value
that is the same as the chosen x value.
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Figure 3.7: Each graph in the left column represents the conditional density given that the
S&P500 return is at the chosen value. Each graph in right column represents
the conditional CDF computed through (3.5.2) at different y values for a given
x value marked by the vertical line, while the horizontal line marks the y value
that is the same as the chosen x value.
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With the tail-adaptive kernel density estimator estimated through our Bayesian sam-

pling algorithm, we are able to estimate the conditional cumulative density function

(CDF) of yt for given xt = x:

F(y|xt = x) = Pr{yt ≤ y|xt = x} =
∫ y

−∞

f (z,x)
fx(x)

dz. (3.5.2)

The conditional CDF was estimated in the same way as we estimated f (y|xt = x) with

the Gaussian kernel function for yt replaced with the Gaussian CDF function. The

interpretation of (3.5.2) is clear and meaningful to market analysts. Given that the

U.S. stock market finished daily trading with the S&P500 index return being at x%,

the probability that the Australian stock market drops beyond the same daily return

level is indicated by (3.5.2).

We used the above-mentioned quantiles of the S&P500 return and derived the condi-

tional CDF values as follows.

Pr{yt ≤ −0.73|xt = −0.73} = 0.27, Pr{yt ≤ −0.89|xt = −0.89} = 0.22,

Pr{yt ≤ −1.13|xt = −1.13} = 0.24, Pr{yt ≤ −1.52|xt = −1.52} = 0.06,

Pr{yt ≤ −2.24|xt = −2.24} = 0.12, Pr{yt ≤ −2.74|xt = −2.74} = 0.11.

The interpretation of these values is clear. Even though the Australian stock market

followed the U.S. stock market during the global financial crisis, the probability that

the Australian market had a larger drop than the U.S. market was at most 27%.

Each graph in the second columns of Figures 3.6 and 3.7 plots the curve of the condi-

tional CDF function of yt given that xt takes each of the above six values. With these
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graphs, we are able to approximate different probability values implied by (3.5.2) for

different values of y. For example, we computed the one-day VaR of the AORD re-

turn conditional on the overnight U.S. market behavior. Given the S&P500 at each

of the quantiles of 10%, 7.5% 5%, 2.5%, 1% and 0.5%, the one-day VaRs at the 95%

confidence level for every $100 investment on the AORD are respectively, $1.3668,

$1.3620, $1.5421, $1.5428, $2.6800 and $3.2810. Moreover, conditional on the ob-

served S&P500 return on the 17th September 2010, which is the next day out of the

sample, we calculated that the one-day VaR at the 95% confidence level for every $100

investment on the AORD is $0.5326. Thus, this type of graphs is useful for us to under-

stand the distributional behavior of the All Ordinaries return in the Australian stock

market conditional on the overnight S&P500 return in the U.S. stock market.

Moreover, we evaluated the performance of the VaR computed by the proposed

method to the VaR obtained through IGARCH (Riskmetrics) model. We followed the

steps described in Bao et al. (2006) and calculated the check function of Koenker &

Bassett Jr (1978). The existing data period is used as the learning set and we fore-

casted daily 5%VaR of AORD from 17th September 2010 to 5thMay 2011.1 The check

function computed by IGARCH and our proposed method are 0.0356 and 0.0344, re-

spectively. Lower value of check function indicates that the VaR produced based on

overnight S&P500 return could bemore effective than the conventional VaR computed

from previous market information of AORD itself. Future research could be carried

out in this direction.
1Please see Bao et al. (2006) for a detailed discussion.
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3.6 Conclusion

This chapter proposes a kernel density estimator with tail-adaptive bandwidths,

which are assigned to the low- and high-density regions, respectively. We have de-

rived the posterior of bandwidth parameters based on Kullback-Leibler information

and presented an MCMC sampling algorithm to estimate bandwidths. The Monte

Carlo simulation study shows that the kernel density estimator with tail-adaptive

bandwidths estimated through our proposed Bayesian sampling algorithm outper-

forms its competitor, the kernel density estimator with a global bandwidth estimated

through either the normal reference rule discussed in Scott (1992) or the Bayesian

sampling algorithm proposed by Zhang et al. (2006). The simulation result also shows

that the improvement made by the tail-adaptive kernel density estimator is especially

obvious when the underlying density is fat-tailed. Even though the probability of the

low-density region α has to be chosen before we carry out the sampling procedure, we

have found that performance the low-density adaptive kernel estimator is not sensi-

tive to the changes of such probability values. Therefore, it is the users’ choice on what

the probability of the low-density region should be. Future study could include such

a probability value as an additional parameter to be estimated through the sampling

procedure.

We applied the tail-adaptive kernel density estimator to the estimation of bivariate

density of the paired daily returns of the Australian Ordinary index and S&P500 in-

dex during the period of global financial crisis. The tail-adaptive density estimator

captures richer dynamics in the tail area than the density estimator with a global
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bandwidth estimated through the normal reference rule and a Bayesian sampling al-

gorithm. With the tail-adaptive bandwidths estimated through our proposed Bayesian

sampling algorithm, we have derived the estimated conditional density and distribu-

tion of the Australian index return given that the U.S. market finished daily trading

with different return values. We have found that during the global financial crisis,

even though the Australian stock market followed the U.S. stock market, there was no

more than 27% chance that the former market had a larger drop than the latter. The

graphs of the conditional density and distribution enable market analysts to approxi-

mate various probability values conditional on the behavior of the U.S. stock market.

By estimating a separate bandwidth for data in high density region, our method can

also be viewed from mode estimation in clustering analysis. However, even our algo-

rithm can be implemented to data in any dimension, the curse of dimensionality is a

significant limitation of kernel density estimation itself. A recent study by Ferraty &

Vieu (2006) suggested that by introducing some suitable proximity measure between

data inside the kernel, this problem can be attacked from a functional setting even

for data with infinite dimension. This is a significant discovery in clustering analy-

sis. Therefore, future researches shall be done for possible extension of the proposed

method to mode-estimation in high dimensional data.
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Chapter 4

Bayesian Adaptive Kernel Density

Estimation for Multimodal

Distributions

4.1 Introduction

The performance of global bandwidth kernel density estimator is limited when the

underlying distribution is multimodal. In this chapter, we propose to remedy this

problem with a method called the cluster-adaptive kernel density estimator, which

assigns a different bandwidth to sample data in each cluster.

This chapter is organized as follows. In Section 4.2, the study derives the posterior

distribution of the cluster-adaptive density estimator bandwidth parameters and de-

scribes an MCMC sampling algorithm for estimating the bandwidths. Sections 4.3

and 4.4 present the results of Monte Carlo simulation studies designed to examine the
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performance of the mode-adaptive density estimator. In these experiments we con-

sider the issue of bandwidth estimation for univariate, bivariate and 3-dimensional

multivariate density estimation using densities designed to have multiple modes with

skewness and heavy tails. To demonstrate the efficaciousness of our proposed tech-

nique we compare the performance of the tail-adaptive density estimator with the

Bayesian global bandwidth estimator and the NRR bandwidth procedure. The results

indicate that. In Section 4.5 we apply the mode-adaptive density estimator to the

estimation. Section 4.6 concludes the chapter.

4.2 Adaptive kernel density estimator

In order to identify the clusters in the data, we employ the CRA cluster algorithm pro-

posed by Cuevas et al. (2000, 2001). The CRA clustering algorithm is briefly described

as follows:

1. Initialize the cluster membership vector m of size n to be a zero vector. Let

m1 = 1.

2. Obtain the estimated level set of high density region {f̂ > c}. Define data point

in the high density region to be xj , j = 1,2, · · · , k − 1, and data points in the low

density region to be xj , j = k,k+1, · · · ,n, where k−1 is the sample size of the level

set of high density region.

3. Loop on i = 1, · · · , k − 1,
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(a) Start with ball center in (2.4.1), zi . Find the minimum distance,

di =min
i

min
j
∥zi − zj∥,

for j from i + 1 to k and remember the location of j where the distance is

minimum and exchange xi +1 with xj .

(b) If di ≤ 2ϵ, then xi and xi+1 are in the same connected component and let

mi+1 =mi .

(c) If di > 2ϵ, then xi+1 starts a new connected component and letmi+1 =mi+1.

(d) End of loop.

4. The estimated number of cluster t =mk .

5. The membership of the data in the low density region, mi , i = k +1, · · · ,n, can be

assigned equal to the its nearest neighbor in the existing connected components.

Alternatively, we can let those data points to be in an independent set of low

density region.

6. If there exist any connect component with size less than 5% of the sample size, it

is too small to be a meaningful cluster. Therefore, it can be merged to its nearest

neighbour component, and let t = t − 1.

7. Lastly, construct data clusters based on mi , i = 1, · · · ,n, and let T̂ = t.

The CRA algorithm described by Cuevas et al. (2001) also involves bootstrapping to

create artificial clusters mainly for small sample problems.
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4.2.1 Posterior of bandwidth parameters

The Bayesian approach treats all parameters and data of a statistical model as random

quantities. Let x denote the vector of observed data, let θ denote the vector of pa-

rameters. Denote the likelihood as p(y|θ) and a prior density as p(θ), and the Bayes

theorem gives the posterior density of θ as

π(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)

. (4.2.1)

The denominator of (4.2.1) is the normalizing constant, which is most of the time

unknown. Therefore, the Bayesian inference is focused on

π(θ|y) ∝ p(y|θ)p(θ). (4.2.2)

Markov Chain Monte Carlo (MCMC) is described by Gelman et al. (2004) as “a gen-

eral method based on drawing values of θ from approximate distributions and then

correcting those draws to better approximate the target posterior distribution”. Here,

we denote the vector of non-zero elements in the bandwidth matrix as h, and treat it

as the unknown parameters where we can estimate them through MCMC simulation.

In order to make the bandwidth selector to be adaptive with respect to different clus-

ters, let ωj represent the cluster membership for xj , and define H(ωj ) as the adaptive

bandwidth matrix depending on cluster membership of xj . The possible values of

ωj for j = 1, · · · ,n, are integers 1, · · · ,T , where T is estimated by the CRA clustering.

Hence, there are a total of T bandwidth matrices to estimate.
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Moreover, it is also possible to combine the cluster-adaptive and tail-adaptive shown

in Chapter 3. Simply by allowing xj in LDR to have their own membership, e.g. T +1.

In such a case, there is one additional bandwidth matrix to be estimated. We call the

resulting estimator cluster+tail adaptive bandwidth kernel density estimator.

Therefore, the general form of kernel estimator based on cluster can be written as

f̂H(ωj )(x) =
1
n

n∑
j=1

|H(ωj )|−1/2K
(
H(ωj )

−1/2(x − xj )
)
, (4.2.3)

and the leave-one-out estimator is

f̂H(ωj ),i(xi) =
1

n− 1

n∑
j=1
j,i

|H(ωj )|−1/2K
(
H(ωj )

−1/2(xi − xj )
)
, (4.2.4)

If the bandwidth matrix is diagonal, define h(ωj ) = (h1(ωj ),h2(ωj ), · · · ,hd(ωj ))′ as the

vector of adaptive bandwidths for the sample point j. The prior of each component of

h(ωj ) is chosen to be

p(hk(ωj )|λ) ∝
1

1+λh2k(ωj )
, (4.2.5)

for k = 1, · · · ,d, where λ is a hyperparameter controlling the shape of the prior density.

By Bayes theorem, the posterior of h(ωj ) is

π(h(ωj )|x1,x2, · · · ,xn) ∝
n∏
i=1

f̂h(ωj ),i(xi)×

 d∏
k=1

1

1+λh2k(ωj )

 . (4.2.6)

The likelihood in the posterior is flat when the elements of h are large. Nonetheless,

the prior penalises the large updates of h by giving low prior probability. We found
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that the MCMC results are insensitive to the values of the hyperparameter λ. Hence,

we assume λ = 1.

4.2.2 Metropolis-Hastings Algorithm

The posterior given by (4.2.6) has a non-standard form. The important issue here

is how to draw random numbers from this posterior. One way of this is to use the

random-walk Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953, Hastings

1970).

Denote H(q),q = 1, · · · ,T , as the bandwidth matrices. The sampling procedure is as

follows

1. At iteration i, given current state H (i)(q).

2. For q = 1 to T ,

(a) Sample a candidate H̃(q) from a proposal candidate density α(H̃(q)|H (i)(q))

which is normal. Therefore, each element of H (i)(q) is updated through

h̃ = h(i) + τϵ,

where ϵ ∼N (0,1), and τ is a tuning parameter.

(b) Accept H̃(q), with probability δ(H̃(q),H (i)(q)) where

δ(H̃(q),H (i)(q)) = min
{
1,

π(H̃(q)|x)
π(H (i)(q)|x)

}
.

(c) If H̃(q) is accepted, the next state is H (i+1)(q) = H̃(q).
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(d) If H̃(q) is rejected, the next state is H (i+1)(q) =H (i)(q).

3. End of iteration.

Therefore, the whole MCMC algorithm for estimating cluster based adaptive band-

width can be described as follows

1) Derive an initial kernel estimator of f with a global bandwidth chosen through

NRR or estimated through the sampling algorithm of Zhang et al. (2006).

2) Based on the initial density estimator, apply the CRA clustering algorithm and

assign cluster membership to sample data.

3) Based on the cluster membership, estimate cluster-adaptive bandwidths via

Random-walk MH algorithm.

4) Run MH algorithm for 3,000 iterations as a burn-in period, and the following

10,000 iterations be recorded.

5) After each iteration, if there are any successful updates to the values of the band-

width matrix parameters, obtain new density for x, and then re-run CRA clus-

tering algorithm.

6) Obtain the mean and other statistics based on the simulated posterior sample.

Random-walk MH algorithm uses a symmetric density, e.g. normal density, to gener-

ate candidates. As long as the Random-walk MH algorithm works, it is generally not

necessary to explore other proposal densities.
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4.2.3 Convergence Diagnostics

The samples drawn from the posterior π(θ|y) form a sequence denoted by {θi : i =

1,2, · · · ,M}, whereM is the number of recorded iterations. We are interested in param-

eters which are estimated through the ergodic averages in the form of θ̄ = 1
M

∑M
i=1θ

i .

The central limit theorem of ergodic averages shows

√
M

(
θ̄ −Eπ(θ

)
→N (0,σ2

f ), (4.2.7)

where σf is positive and constant. However, the algorithms is inefficient if σf is too

large comparing to the variance of θ draw from π(·). Kim et al. (1998) shows the

simulation inefficient factor

SIF =
σ2
f

varπ(θ)
, (4.2.8)

in order to measure the efficiency of the MCMC estimating of Eπ(θ). The varπ(θ) is

the variance of the posterior sample mean,

varπ(θ) =
1

M − 1

M∑
i=1

(
θi − θ̄

)
. (4.2.9)

Roberts (1996) showed the batch mean for estimating σ2
f as follows. Given sufficient

large n that makes M =m ∗n, let

θk =
1
n

kn∑
i=(k−1)n+1

θi , (4.2.10)
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for k = 1,2, · · · ,m. The σ2
f can be estimated by

σ̂2
f =

n
m− 1

m∑
i=1

(
θk − θ̄

)2
. (4.2.11)

4.2.4 Restricted bin-adaptive estimator

In addition to cluster-adaptive estimator, we propose an alternative bin-adaptive esti-

mator for multimodal distributions. In the study of Sain (2002), the density of x was

calculated based on bin center tj , j = 1, ...,m as shown in (2.3.25). Bins were defined

as equal spaced mesh points over the support of the density. If there are m bins on

each dimension, md number of bins are created in total. Even if diagonal bandwidth

matrix is used, the number of parameters to estimate in total is md+1. This approach

therefore requires d to be small due to the curse of dimensionality.

The advantage of using bin center tj instead of xj is that the former is computationally

less intensive. In this study, we are more concerned about the accuracy of the estima-

tion rather than the computation time, hence we still propose to use xj instead of tj for

bandwidth selection. To be able to apply the binning algorithm to high-dimensional

data, we have to make compromise on the number of bandwidths to estimate. We

propose the restricted bin-adaptive estimator. Let m be the number of bins on each

dimension and τj,k be the bin membership for the jth observation on dimension k.

Hence for any k, the possible values of τj,k are 1,2, . . . ,m. The restricted bin-adaptive

kernel density estimator can be shown as

f̂RB(x) =
1
n

n∑
j=1

1
h(τj,1)h(τj,2) · · ·h(τj,d)

K

(
x1 − xj,1
h(τj,1)

,
x2 − xj,2
h(τj,2)

, · · · ,
xd − xj,d
h(τj,d)

)
, (4.2.12)
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and the leave-one-out estimator is

f̂RB,i(xi) =
1

n− 1

n∑
j=1
j,i

1
h(τj,1)h(τj,2) · · ·h(τj,d)

K

(
xi,1 − xj,1
h(τj,1)

,
xi,2 − xj,2
h(τj,2)

, · · · ,
xi,d − xj,d
h(τj,d)

)
,

(4.2.13)

where h is diagonal bandwidth matrix, defined h(τj ) = (h(τj,1),h(τj,2), · · · ,hd(τj,d))′ as

the vector of adaptive bandwidths for the sample point j. Under this restriction, a

separate bandwidth parameter is used in each bin on each dimension. This means the

total number of bandwidth parameters to estimate ism×d. Hence in high dimensional

data, the number of bandwidths to estimate is much less than md+1.

The MCMC algorithm for bin-adaptive bandwidth estimation is relatively strait-

forward, because the bin membership can be assigned at beginning of the algorithm

and fixed throughout the estimation process. There are several ways to assign bin

memberships. The equal-distance-binning method given by Sain (2002) is very easy

to apply. It works very much like a histogram, where the bin-width are the same for

all bins. However, the number of data points in each bin can be very different. For

example, a bin near the mode is going to have a lot more data points than a bin in

the tail. If the underlying density is multimodal or fat-tailed, there maybe bins with

zero data points. From a computation point of view, bins with very few data points

can results in highly varying estimates. To avoid this problem, we suggest using an

equal-proportion-binning algorithm, where the number of data points in each bin are

equal. As a result, a bin near the mode will have equal data points to a bin in the tail.
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4.3 A Monte Carlo simulation study

To investigate the performance of the proposed tail-adaptive kernel density estima-

tor, we approximate Kullback-Leibler information between the density estimator and

its corresponding true density via Monte Carlo simulation. Kullback-Leibler informa-

tion defined in (2.3.18) is a measure of discrepancy between the true density and its

estimator. To approximate Kullback-Leibler information, we draw a large number of

random vectors {x1,x2, . . . ,xN } from true density f (x) and compute

d̂KL

(
f (x), f̂ (x)

)
=

1
N

N∑
i=1

log
(
f (xi)/ f̂ (xi)

)
, (4.3.1)

where f̂ (·) denote a density estimator of f (·). The performance of a bandwidth esti-

mate is examined through the performance of the resulting kernel density estimator.

A bandwidth estimation method is better than its competitor if Kullback-Leibler in-

formation resulted from the former is less than that resulted from the latter.

4.3.1 True densities

We conduct Monte Carlo simulation by simulating samples from six target densities

labeled A, B, C, D, E and F. Figure 4.1 shows the contour plot for bivariate densities.

These densities are multimodal. Density A to D are normal densities. Density E and F

are Student t densities. Their specifications are explained as follows.

Density A is a mixture of two equally weighted normal densities with bimodality:

fA (x|µ,Σ) =
1
2
ϕ (x|µ1,Σ1) +

1
2
ϕ (x|µ2,Σ2) ,
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Figure 4.1: Contour graphs of target bivariate densities.
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where ϕ(x|µ,Σ) is a multivariate normal density with mean µ and variance-covariance

matrix Σ are given as

µ1 =

−1.5−1.5

 , Σ1 =

 1 0.3

0.3 1

 , µ2 =
22

 , Σ2 =

 1 −0.9

−0.9 1

 .
Density B is a mixture of two normal densities with different weights but an equal

height at the modes:

fB (x|µ,Σ) =
3
4
ϕ (x|µ1,Σ1) +

1
4
ϕ (x|µ2,Σ2) .

where

µ1 =

−1.5−1.5

 , Σ1 =

 1 1/2

1/2 1

 , µ2 =
1.51.5

 , Σ2 =

1/3 1/6

1/6 1/3

 .
Note that Density A and B are also used in Chapter 3.

Density C is a bi-modal normal density with different weights and spread on each

mode:

fC (x|µ,Σ) = 3
4
ϕ (x|µ1,Σ1) +

1
4
ϕ (x|µ2,Σ2) .

where

µ1 =

−1.50
 , Σ1 =

1 0

0 1

 , µ2 =
1.50

 , Σ2 =

 1/3 3/10

3/10 1/3

 .
Density D is a mixture of three normal densities with trimodal feature and different

orientations:

fD (x|µ,Σ) = 1
2
ϕ (x|µ1,Σ1) +

1
4
ϕ (x|µ2,Σ2) +

1
4
ϕ (x|µ3,Σ2) .
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where

µ1 =

00
 , Σ1 =

3 2

2 3

 , µ2 =
 3

−3

 , Σ2 =

 1 −0.9

−0.9 1

µ3 =
−33

 .
Density D is designed to allow two of the three clusters to have the same covariance

matrix to reduce the differences among the clusters, which would allow the competing

estimators, e.g. the global bandwidth estimators, to enjoy more advantage.

Density E is another tri-modal mix but with different covariance matrices, which is

contrast to Density D. Density E is a mixture of three Student t densities the :

fE (x|µ,Σ,ν) =
1
3
td (x|µ1,Σ1,ν) +

1
3
td (x|µ2,Σ2,ν) +

1
3
td (x|µ3,Σ3,ν) .

where td (x|µ,Σ,ν) denotes Student t distribution. The degrees of freedom ν is 5. The

location parameter µ and dispersion matrix Σ are specified as follows:

µ1 =

−66
 , µ2 =

00
 , µ3 =

 6

−6

 , Σ =

1 ρ

ρ 1

 ,
where ρ = −0.9,−0.75 and −0.5 for Σ1,Σ2 and Σ3, respectively.

Density F is a mixture of two Student t densities with degrees of freedom ν = 5:

fF (x|µ,Σ,ν) =
4
5
td (x|µ1,Σ1,ν) +

1
5
td (x|µ2,Σ2,ν) .

where

µ1 =

 2

−2

 , Σ1 =

4 0

0 4

µ2 =
−22

 , ,Σ2 =

0.5 0

0 0.5

 .
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The contour plot of each of the six bivariate densities is given in Figure 4.1. We

can find that these densities exhibit different distributional and clustering properties.

Density A to D are normal densities, while density E and F are Student t densities. In

addition, the clusters in each density are designed to have different concentrations.

4.3.2 Accuracy of our Bayesian bandwidth estimation

We generate samples of sizes n = 500,1000,2000 from each of the six bivariate densi-

ties. The kernel function for estimating multivariate densities was chosen to be the

product of univariate Gaussian kernels was used as the kernel function for estimating

multivariate densities. The bandwidth matrix in estimating multivariate densities is

chosen to be a diagonal matrix. We wish to examine the performance of the proposed

cluster and cluster+tail adaptive bandwidth kernel density estimator with five other

kernel density estimators: two global bandwidth matrix estimators, namely the NRR

method by Scott (1992) and the Bayesian method presented by Zhang et al. (2006);

the tail-adaptive kernel density estimator discussed in Chapter 3 with α = 0.05 and

the proposed restricted bin-adaptive bandwidth kernel density estimator with m = 6.

For each generated sample data set, we apply the random-walk Metropolis-Hastings

algorithm to the update of all bandwidths in the univariate situation (or all compo-

nents of the bandwidth matrices in the bivariate situation) with the acceptance proba-

bility calculated through (4.2.6). There are 3,000 iterations during the burn-in period,

and the recorded period contains 10,000 iterations. We then compute the batch-mean

standard deviation and the simulation inefficient factor (SIF) to monitor the mixing

performance (or loosely speaking, the convergence performance). As the simulated
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Table 4.1: MCMC results based on sample data of size 1000 generated from fC

Bandwidths Mean Standard Batch-mean SIF Acceptance
deviation standard deviation rate

Cluster 1/h1(1) 2.40 0.29 0.0100 12.10 0.23
adaptive 1/h2(1) 2.33 0.26 0.0090 12.64

1/h1(2) 8.20 1.68 0.0930 30.61
1/h2(2) 7.48 1.20 0.0606 25.24

Bin h1,1 0.57 0.07 0.0040 28.55 0.21
m = 6 h2,1 0.42 0.07 0.0052 50.22

h3,1 0.35 0.07 0.0054 62.65
h4,1 0.39 0.09 0.0077 73.09
h5,1 0.14 0.02 0.0014 31.42
h6,1 0.12 0.02 0.0016 45.38
h1,2 0.40 0.05 0.0036 42.03
h2,2 0.21 0.04 0.0036 67.57
h3,2 0.14 0.03 0.0032 42.07
h4,2 0.14 0.03 0.0029 78.81
h5,2 0.17 0.03 0.0029 75.25
h6,2 0.28 0.04 0.0035 66.79

chain is a Markov chain, the SIF value can be roughly interpreted as the number of

draws needed so as to produce independent draws. A small SIF value usually indicate

goodmixing performance. In addition, a plot of the sample path of each parameter, to-

gether with its autocorrelation function (ACF) and histogram graphs is also presented

for visual inspection of the mixing performance.

Consider a sample generated from fC(x) with sample size n = 1000. Figure 4.2

presents graphs of the sample path, its ACF and histogram of each bandwidth. Ta-

ble 4.1 presents a summary of the MCMC results, in which we found that the SIF

values are small, and the batch-mean standard deviations are respectively, much

smaller than their counterparts of overall standard deviations. These indicators sug-

gest good mixing performance of the proposed sampling algorithm applied to the

cluster-adaptive and restricted bin-adaptive bandwidth estimator.
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Figure 4.2: Plots of posterior draws obtained through our proposed sampling algorithm for
cluster-adaptive bandwidths in kernel density estimation based on sample data
of size 1000 draw from fC : (a) h1(1); (b) h2(1); (c) h1(2); and (d) h2(2).
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Table 4.2: Estimated Kullback-Leibler information for bivariate densities

Global Cluster-adaptive

Density n NRR Bayesian Tail Bin Cluster Cluster+tail
fA 500 0.2878 0.0858 0.0772 0.0769 0.0691 0.0578

1000 0.2382 0.0617 0.0498 0.0488 0.0465 0.0373
2000 0.1981 0.0402 0.0339 0.0273 0.0273 0.0245

fB 500 0.1201 0.0499 0.0444 0.0586 0.0523 0.0441
1000 0.0826 0.0349 0.0332 0.0413 0.0341 0.0324
2000 0.0653 0.0256 0.0219 0.0239 0.0225 0.0193

fC 500 0.1539 0.1066 0.0918 0.0913 0.0571 0.0680
1000 0.1228 0.0779 0.0663 0.0605 0.0416 0.0380
2000 0.1047 0.0661 0.0512 0.0435 0.0344 0.0315

fD 500 0.3830 0.1210 0.1002 0.1369 0.0837 0.0755
1000 0.2993 0.1204 0.0831 0.1186 0.0650 0.0653
2000 0.2625 0.0776 0.0488 0.0807 0.0443 0.0386

fE 500 0.8582 0.1802 0.0991 0.1386 0.1461 0.0864
1000 0.7429 0.1252 0.0647 0.1075 0.1137 0.0600
2000 0.6510 0.1099 0.0550 0.0903 0.0965 0.0486

fF 500 0.1599 0.1544 0.0882 0.1776 0.1367 0.0708
1000 0.1101 0.1181 0.0522 0.0952 0.0860 0.0355
2000 0.0807 0.1195 0.0411 0.0864 0.0809 0.0334

fC is a bimodal normal density. The left mode (cluster 1) has more weight but more

sparsely distributed, and the right mode (cluster 2) is more densely distributed with

less weight (see Figure 4.1). The cluster-adaptive density estimator clearly captures

the bimodal feature of the true underlying density. The estimated bandwidth of clus-

ter 1 is much larger than those of cluster 2. This is expected as more smoothing is

required for cluster 1 than cluster 2.

One the other hand, the restricted bin-adaptive estimator aims to capture the features

of marginal distributions. Focusing on the horizontal axis (dimension 1), the band-

width of bin 5 and 6 are clearly smaller than bin 1 to 4. This suggests less smoothing

is applied to the right mode on dimension 1. Moreover, bin 1 contains the left tail of

the distribution and its bandwidth is significantly larger. This feature of bin-adaptive
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estimator is similar to the tail-adaptive estimator proposed in Chapter 3. On the ver-

tical axis (dimension 2), the two modes are overlapped. As a result, the estimated

bandwidth on dimension 2 are generally smaller than those of dimension 1.

In order to examine the performance of the proposed cluster-adaptive density esti-

mator, we derived the global bandwidths (or bandwidth matrices for the bivariate

situation) through the NRR and the Bayesian sampling method and report the result-

ing Kullback-Leibler information. We note that MISE was not presented in this case.

MISE is extremely time consuming to compute, and in the bivariate case shown in

Chapter 3, the MISE results are very consistent with the Kullback-Leibler information.

Hence we believe calculating MISE again in this case is not necessary.

We generated N=100,000 random numbers (or vectors for the bivariate situation)

from the true density and calculated the estimated Kullback-Leibler information de-

fined by (3.3.1). The estimated Kullback-Leibler information for bivariate densities is

given in Table 4.2.

Among all six densities considered, the tail-adaptive density estimator consistently

outperforms the global-bandwidth density estimator with bandwidth matrix esti-

mated through either the NRR or Bayesian sampling. Restricted bin-adaptive density

estimator showsmixed performance comparing to tail-adaptive density estimator. For

example, it performs better in fA and fC but performs worse in the other densities.

Cluster-adaptive density estimator shows good performance when the underlying

density is normal. For example, in fA to fD , the cluster-adaptive density estimator

out performs both tail- and bin-adaptive density estimators. However, it performers
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worse than tail-adaptive density estimator in fat-tailed densities such as fE and fF .

When combining cluster and tail adaptive bandwidths, the resulting density estima-

tor shows the best performance. The cluster+tail adaptive density estimator delivers

the lowest Kullback-Leibler information in all data sets considered.

The results suggest that when the underlying density is multimodal, bandwidth se-

lection based on clustering algorithm can produce more satisfactory results compare

to global and bin-adaptive bandwidth selection methods. When the density function

is fat-tailed, tail- and cluster-adaptive bandwidth selection can be combined to make

adaptive bandwidth selections.

4.4 An application to the Old Faithful geyser data

Old Faithful geyser is located in YellowstoneNational Park inWyoming, USA. Azzalini

& Bowman (1990) studied the data of eruption duration and waiting time to the next

eruption collected from August 1st to August 15th in 1985. The data set consists of

272 pairs of observations measured in minutes, the scatter plot is shown in Figure 4.3.

This data set is famous for its feature of multimodality and has been discussed by

many studies (see, for example Scott 1992, Hyndman 1996).

We applied our Bayesian sampling algorithm to estimate bandwidth matrices for the

cluster-adaptive kernel density estimator based on this data set. We also applied the

Bayesian sampling algorithm proposed by Zhang et al. (2006) and NRR to the estima-

tion of global bandwidth matrix for the kernel estimation of the Old Faithful geyser

data.
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Figure 4.3: Scatter plot of eruption time and waiting time to the next eruption (in minutes)
of Old Faithful geyser in Yellowstone National Park, USA.
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Figure 4.4: Surface graphs and contour plots of the three density estimators produced by
(a) Cluster-adaptive bandwidth; (b) Bayesian global bandwidth; and (c) NRR
bandwidth.
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Table 4.3: A summary of MCMC results obtained through the proposed Bayesian sampling
algorithm to the cluster-adaptive kernel density estimator of the Old Faithful
geyser data

Bandwidths Mean Standard SIF Acceptance log marginal
deviation rate likelihood

NRR h1 0.45
h2 5.33

Bayesian global h1 0.15 0.0181 34.07 0.22 -1151.01
bandwidth h2 2.80 0.4381 13.91

Cluster-adaptive 1/h1(1) 0.38 0.0746 14.09 0.28 -1138.26
bandwidth 1/h2(1) 5.13 0.8169 6.94

1/h1(2) 0.40 0.1224 29.04
1/h2(2) 8.90 1.6955 12.58

There are 3,000 iterations in burn-in period and 10,000 iterations in the recorded pe-

riod for both sampling algorithms. Table 4.3 presents a summary of the results, where

the batch-mean standard deviation and SIF measures indicate very good mixing per-

formance of both samplers. Moreover, we calculated the log marginal likelihood of

Newton & Raftery (1994) for each of the two density estimators so as to decide which

is favoured against the other. The log marginal likelihood for cluster-adaptive kernel

density estimator and global kernel density estimator are -1138.26 and -1151.01, re-

spectively. Thus, our cluster-adaptive density estimator is favoured against the global

density estimator.

The estimated cluster-adaptive bandwidths are given in the 3rd column of Table 4.3.

Based on this result, we calculated the cluster-adaptive density estimator of the Old

Faithful geyser data. Figure 4.4 presents the surface and contour plot obtained via

cluster-adaptive, Bayesian global and NRR density estimators. The density estima-

tor produced by NRR has obviously been over-smoothed. As shown in the plot, the
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Bayesian global density estimator has captures more dynamics than the NRR. How-

ever, the main difference of the estimated density based on cluster-adaptive band-

widths is that the height of the density function of the two clusters are approximately

equal. This is because the cluster-adaptive density estimator is able to assign a smaller

bandwidth to the left cluster (cluster 2). However, the global bandwidth density esti-

mator employs only one bandwidth and over-smoothed the left cluster.

4.5 Conclusion

This chapter proposes cluster-adaptive bandwidth kernel density estimator for data

with multimodality. This method employs a clustering algorithm to assign different

bandwidths to different clusters identified in the data set. We derived the posterior

of bandwidth parameters based on Kullback-Leibler information and presented an

MCMC sampling algorithm to estimate bandwidths.

The Monte Carlo simulation study is designed to examine the performance of the

proposed methods when the data exhibits multimodality. The results suggest that

when the underlying density is a mixture of normal, the kernel density estimator with

cluster-adaptive bandwidths estimated through our proposed Bayesian sampling al-

gorithm outperforms its competitor. When the underlying densities are fat-tailed, the

combined approach of tail- and cluster-adaptive density estimator performs the best.

The restricted bin-adaptive density estimator shows mixed performance comparing to

tail-adaptive approach. In an empirical application, we used our Bayesian sampling

algorithm to estimate bandwidths matrices for the cluster-adaptive kernel density es-

timator on the well known data set of eruption duration and waiting time to the next
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eruption collected from Old Faithful greyer which is famous of its clustering nature.

The results show clear advantage of the proposed cluster-adaptive kernel density esti-

mator over traditional approaches.

In summary, by incorporating clustering information and assigning a different band-

width matrix to each cluster, the performance of the kernel density estimator can be

improved. In light of this result, it is intuitive to believe that improved density esti-

mation performance would further facilitate on improving the clustering accuracy. It

should be noted that future research could be undertaken to investigate and provide

more insight on such issue.

104



Chapter 5

Bayesian estimation for a semi-

parametric nonlinear volatility

model

5.1 Introduction

Empirical evidence has shown that the volatility of financial asset returns is often

highly persistent and asymmetrically distributed. The early studies has focused on

the parametric approach of ARCH (Engle 1982) and GARCH (Bollerslev 1986) type

models to capture the stylised facts. The nonparametric branch of research on volatil-

ity models has aimed at addressing the strong parametric assumption of ARCH and

GARCH type models, such as the linearity assumption in the volatility equation (e.g.

Pagan & Schwert 1990) and the error distribution (e.g. Engle & Gonzalez-Rivera 1991).
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Recently, the nonlinear nonstationary heteroscedastic (NNH) model was proposed

(Park 2002) as an alternative volatility model. The NNH model assumes the condi-

tional variance as a known parametric nonlinear function of a persistent explanatory

variable xt. Han & Park (2008) extended the NNH model by allowing the ARCH(1)

component in the model, while Han & Zhang (2012) proposed a nonparametric ver-

sion of the NNH model called the nonstationary nonparametric volatility (NNV)

model.

The NNV model assumes the nonlinear function of xt in the model to be unknown

and employs the Nadaraya-Watson as its estimator. The Nadaraya-Watson estimator

is a well-known nonparametric estimator and its performance is highly dependant on

its bandwidth. However, the bandwidth selection issue was not discussed in details by

Han & Zhang (2012). In this chapter, we propose a new volatility model which com-

bines the ARCH(1) model and the NNVmodel. This study aims to develop a Bayesian

sampling algorithm to select the optimal bandwidth for the Nadaraya-Watson estima-

tor.

This chapter is organised as follows. In Section 5.2, we present the proposed SNV

model and show the posterior distribution of the parameters. Section 5.3 discusses

and outlines the evaluation criterion of the proposed models in relation with alterna-

tive NNV and NNH models based on daily return data from major global financial

markets. Section 5.4 provides the evaluation results in terms of in-sample and out-

of-sample performances, including the value-at-risk forecasting performance. Section

5.5 concludes the chapter.
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5.2 Semi-Parametric Volatility Models

Let yt denote an asset’s return that is modeled as

yt = µ+ut ,

where ut is a conditional heteroscedastic error process defined as

ut = σtεt , (5.2.1)

with εt, for t = 1,2, · · · ,n, being independent and identically distributed (iid) asN (0,1).

As µ reflects the long run average return, it can be pre-estimated by the sample mean

of yt. This is equivalent to pre-centering the sample of observed returns and estimat-

ing the model without µ.

Park (2002) proposed a nonlinear nonstationary heteroscedastic (NNH) model that

specifies the conditional volatility process as

σ2
t = g(xt−1), (5.2.2)

where xt−1 is an exogenous variable. In this model, g(·) is a nonnegative nonlinear

function that comes from the class of integrable and asymptotically homogeneous

functions discussed in Park & Phillips (1999, 2001).
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Han & Park (2008) presented an extension to this NNHmodel by including the lagged

squared error into the conditional volatility:

σ2
t = αu2

t−1 + g(xt−1). (5.2.3)

This model is called the ARCH-NNHmodel and allows xt to have a unit root or a near

unit root.

Han & Zhang (2012) presented a nonstationary nonparametric volatility (NNV)

model, which is a nonparametric version of the NNH model given by

σ2
t =m(xt−1), (5.2.4)

where m(·) is an unknown smooth function and m(xt) > 0 for all t. They suggested

estimating m(xt) by the Nadaraya-Watson estimator defined in (2.5.12).

5.2.1 A semiparametric nonlinear volatility model

We propose to extend Han & Zhang (2012) NNV model by including the lagged

squared error into the nonlinear volatility equation, and the resulting model is

yt = σtεt ,

σ2
t = αy2t−1 +m(xt−1), (5.2.5)

where m(xt−1) is an unknown smooth function, and εt, for t = 1,2, · · · ,n, are iid with

mean 0 and variance 1. As discussed in. We call this model the semiparametric non-

linear volatility (SNV) model.
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As the NNV model is a nonparametric version of the NNH model, the proposed SNV

model can be interpreted as an semiparametric version of the ARCH-NNH model

in (5.2.3), in which the nonnegative nonlinear function g(xt−1) is specified to be an

unknown smoothing function m(xt−1). Further specification is provided below.

As yt = σtεt can be re-written as y2t = σ2
t ε

2
t , we have

y2t = σ2
t + σ2

t ε
2
t − σ2

t

= αy2t−1 +m(xt−1) + σ2
t (ε

2
i − 1). (5.2.6)

Let ηt = σ2
t (ε

2
t − 1) and express y2t as

y2t = αy2t−1 +m(xt−1) + ηt , (5.2.7)

where E(ηt) = 0 due to the fact that E
(
ε2t

)
= 1. This equation can be re-expressed as

y2t −αy2t−1 =m(xt−1) + ηt .

Therefore, conditional on α, we estimate m (xt−1) by the leave-one-out NW estimator:

m̃
(
xt |h

)
=

∑n
i=1;i,tKh

(
xi − xt

)(
y2i −αy

2
i−1

)
∑n

i=1,i,tKh

(
xi − xt

) , (5.2.8)

where Kh

(
·
)
= K(·/h)/hwith K(·) being a kernel function and h a bandwidth. Moreover,

it can be seen that if α is assumed to be zero, the proposed SNV model in (5.2.5)

becomes the same as the NNV model proposed by Han & Zhang (2012).
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Note that as discussed by Han & Zhang (2012), it is not necessary to assume the inde-

pendence of εt and xt. Han & Zhang (2012) provided the asymptotic distribution of

m̃ to be mixed normal. In the proposed SNV model, it is also possible to derive the

asymptotic distribution of α. However, as the focus of this study is to propose a new

algorithm for selecting the optimal bandwidth, we leave it for future research.

5.2.2 Posterior of bandwidth parameters

In the ARCH-NNVmodel given by (5.2.4), Han & Zhang (2012) suggested using cross-

validation to select a bandwidth that minimises the QLIKE loss function. However,

this method cannot be used to choose bandwidth in our model because α is unknown

in (5.2.8). In this paper, we overcome this problem by treating the bandwidth as a

parameter and estimating µ, α and h simultaneously.

If the density of εt is known and denoted as f0(εt), and m(·) is known, the density of

yt will be

p
(
yt
)
= f0

(
yt
σt

)
1
σt
,

where σ2
t = αy2t−1 +m(xt−1).

As f0(εt) is unknown, we propose to approximate it by a Gaussian kernel density given

by

f
(
εt
∣∣∣b) = 1

n− 1

n∑
i=1;i,t

1
b
ϕ
(εt − εi

b

)
,

which is a mixture of (n − 1) normal density functions with a common variance b2

and individual mean values located at the corresponding errors. This Gaussian kernel
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error density was proposed by Zhang & King (2013) for a GARCH(1,1) model without

the exogenous variable in its conditional volatility equation.

As m(xt−1) is also unknown, we propose to plug-in the leave-one-out NW estimator

given by (5.2.8) into the conditional volatility equation of (5.2.5). Thus, the density of

yt is approximated by

p̃
(
yt
∣∣∣b) = 1

n− 1

n∑
i=1;i,t

1
bσt

ϕ

(
yt/σt − yi/σi

b

)
,

where σ2
t = αy2t−1 + m̃

(
xt−1|h

)
.

Let θ =
(
b,α,h

)′
denote the vector of parameters, and y = (y1, y2, · · · , yn)′ denote a vec-

tor of observed returns. The likelihood function of y given θ is approximated as

ℓ
(
y
∣∣∣θ)

=
n∏

t=1

 1
(n− 1)σt

n∑
i=1
i,t

1
b
ϕ
(ut/σt −ut/σi

b

) , (5.2.9)

where σ2
i = αy2i−1 + m̃

(
xi−1

)
, for i = 1,2, · · · ,n.

To facilitate posterior estimation of θ, we need to assume priors of these three param-

eters. The prior of α is assumed to be the uniform density defined on (0,1), which

reflects the restriction imposed on this parameter. The prior densities of h and b are

assumed to be the Cauchy density expressed respectively as

π(h) =
2

π(1 + h2)
, and π(b) =

2
π(1 + b2)

.

The joint prior of θ denoted as π(θ), is the product of these three marginal priors.
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The posterior of θ is (up to a normalizing constant)

π
(
θ
∣∣∣y) ∝ π (θ)× ℓ

(
y|θ

)
, (5.2.10)

from which we sample θ through the random-walk Metropolis algorithm. The sam-

pling procedure is as follows.

Step I Choose arbitrary initial values for θ denoted as θ(0) subject to constraints of

parameters.

Step II Generate a random number vk from N (0,1) and update θ(0)
k through

θ̃
(1)
k = θ

(0)
k + τkvk ,

where τk is a tuning parameter, for k = 1,2 and 3.

Step III Accept θ̃(1)
k with a probability given by

min

1, π
(
θ̃
(1)
k

∣∣∣y)
π
(
θ̃
(0)
k

∣∣∣y)
 , for k = 1,2 and 3.

Step IV If θ̃(1)
k is accepted, let θ(1)

k = θ̃
(1)
k ; otherwise, let θ(1)

k = θ̃
(0)
k .

Step V Repeat Step II to Step IV until the simulated chain
{
θ(i) : i = 1,2, · · ·

}
, achieves

acceptable mixing performance.

Upon completion of this sampling procedure, the ergodic average of each simulated

chain is an estimate of the corresponding component θ.
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5.3 Model Comparison via stock-index Data

5.3.1 Data

We model daily stock-index returns, which are the S&P 500, All Ordinaries, DAX 30,

Dow Jones industrial average, FTSE 100, Hong Kong Hang Seng, Nasdaq 100, and

Nikkei 225. The exogenous variable is the S&P 500 VIX index, which is the implied

volatility calculated based on S&P 500 index options by the Chicago Board Options

Exchange (CBOE) and has been widely regarded as an index of investor sentiment and

market volatility or the “fear index”.

In the literature of GARCH models, it has been of great interest to study the impact

of the VIX index on volatilities. It has been found that the VIX index can obviously

contribute to volatility forecast (see, for example, Fleming et al. 1995, Blair et al. 2001,

Kanas 2012, Han & Zhang 2012). Hence we adopt the VIX index in the purpose of

volatility estimation in this study. It is generally accepted that financial series follows

a unit root process, please see Han & Zhang (2012) for a unit root test of VIX.

The sample period is from 3 January 2007 to 31 May 2012 excluding non-trading days,

where were downloaded from Datastream. As each country has different number of

non-trading days, the total sample size varies depending on the series. The market

indices used and their sample sizes are shown in Table 5.1.
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Table 5.1: Data series and sample sizes

Name Sample size
S&P 500 1363
ASX All Ordinaries (AORD) 1369
DAX 30 (DAX) 1379
Dow Jones Industrials (DJI) 1364
FTSE 100 (FTSE) 1369
Hong Kong Hang Seng (HKHS) 1336
NASDAQ 100 (NASDAQ) 1363
NIKKEI 225 (NIKKEI) 1325

5.3.2 Model Comparison

In order to evaluate the performance of the proposed SNV model, we compare the

in-sample and out-sample forecasting performance of this SNV model with that of

several competitive models.

Han & Zhang (2012) suggested using the cross-validation method, which minimises

the QLIKE loss function to select an optimal bandwidth for the NNV model. The

QLIKE loss function is given by

hQLIKE = argmin
h

1
n

n∑
t=1

 σ2
t

m̂
(
xt−1

) − log σ2
t

m̂
(
xt−1

) − 1 , (5.3.1)

where m̂(·) is the leave-one-out estimator in (5.2.8) with α being set to zero.

As σ2
t is unobservable, a proxy of σ2

t has to be used. Two commonly used proxies are

the squared return and realized volatility (see Hansen & Lunde 2006, Patton 2011, for

example).

The squared return as a proxy of σ2
t has the benefit of being readily available, but

is often volatile. Hansen & Lunde (2006) argued that the realized volatility is more
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reliable than and preferable to the squared return. Han & Zhang (2012) used realized

volatility as the proxy of σ2
t .

1

In addition to hQLIKE obtained through (5.3.1), it is possible to choose bandwidth

through least squares cross-validation (LSCV):

hLSCV = argmin
h

1
n

n∑
t=1

(
σ̂2
t−1 − σ

2
t−1

)2
, (5.3.2)

In our proposed SNV model, it is possible to simultaneously select α and h in (5.2.8)

based on QLIKE and LSCV criteria:

θQLIKE = argmin
θ

1
n

n∑
t=1

{
σ2
t

σ̂2
t

− log
σ2
t

σ̂2
t

− 1
}
,

θLSCV = argmin
θ

1
n

n∑
t=1

(
σ̂2
t − σ2

t

)2
,

where θ is the parameter vector.

The models under comparison in this chapter are given below:

a) NNV model given by (5.2.4) with with its bandwidth chosen via QLIKE cross-

validation.

b) SNV model given by (5.2.5) with bandwidth selected via QLIKE cross-

validation.

c) NNV model with its bandwidth selected through LSCV.

d) SNV model with its bandwidth selected through LSCV.
1The realized volatility data are produced by the realized kernel method discussed in Barndorff-

Nielsen et al. (2008). The data were downloaded from Oxford-Man Institute of Quantitative Finance’s
realized library by Heber, Lunde, Shephard & Sheppard (2009).
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e) NNV model given by (5.2.4) with the standard Gaussian distribution of εt.

f) SNV model given by (5.2.5) with the standard Gaussian distribution of εt.

g) NNV model given by (5.2.4) with the Gaussian kernel density of εt.

h) SNV model given by (5.2.5) with the Gaussian kernel density of εt.

5.3.3 Evaluation Criterion

In order to evaluate the performance of the above listed volatility models, we em-

ployed nine loss functions shown in Patton (2011),

QLIKE: L(σ̂2
t ,σ

2
t ) =

σ2
t

σ̂2
t

− log
σ2
t

σ̂2
t

− 1 (5.3.3)

MSE: L(σ̂2,σ2) =
(
σ̂2 − σ2

)2
(5.3.4)

MAE: L(σ̂2,σ2) =
∣∣∣σ̂2 − σ2

∣∣∣ (5.3.5)

MSE-LOG: L(σ̂2,σ2) =
(
log σ̂2 − logσ2

)2
(5.3.6)

MAE-LOG: L(σ̂2,σ2) =
∣∣∣log σ̂2 − logσ2

∣∣∣ (5.3.7)

MSE-SD: L(σ̂2,σ2) = (log σ̂ − logσ )2 (5.3.8)

MAE-SD: L(σ̂2,σ2) = |log σ̂ − logσ | (5.3.9)

MSE-prop: L(σ̂2,σ2) =
(
σ̂2

σ2 − 1
)2

(5.3.10)

MAE-prop: L(σ̂2,σ2) =

∣∣∣∣∣∣ σ̂2

σ2 − 1
∣∣∣∣∣∣ (5.3.11)

Patton (2011) discussed the necessary and sufficient conditions on the functional form

of a loss function in order to obtain robust ranking of forecasts derived under different

volatility models. Among these nine loss functions, MSE and QLIKE were found to be
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the most robust. However, our proposed SNV model is estimated through Bayesian

sampling, andModel a to Model d will enjoy a certain degree of home-team advantage

under the MSE and QLIKE criteria. Therefore, in addition to the above nine loss

functions, we consider a neutral evaluation criterion described as follows.

Value-at-risk (VaR) is a commonly used risk measure which reveals the maximum pos-

sible decrease in the value of a portfolio at a pre-determined confidence level. Given

the stochastic process ut in (5.2.1), the conditional distribution function of εt is de-

noted as F
(
εt
)
= P

{
εt ≤ ε|It−1

}
, where It−1 is the information set at time t − 1. At the

confidence level of 100(1−γ)%, the VaR denoted by qt
(
γ
)
is calculated as

qt
(
γ
)
= µ+ σtF

−1
(
γ
)
. (5.3.12)

To estimate the VaR forecasts, F(·) needs to be specified or estimated. For Model e and

Model f , F(·) is the standard Gaussian distribution function. For Model g and Model

h, the density of ε is unknown but is approximated by the Gaussian kernel density.

This enabled us to estimate F(·) based on residuals calculated through ε̂t = ut/σt, for

t = 1,2, · · · ,n.

It is noted that VaR forecast based on SNV model was not discussed in Han & Zhang

(2012). The SNVmodel is fully nonparametric and does not assume any particular dis-

tribution function for ε. Therefore, we used the kernel density estimation technique

to obtain the distribution function of ε. The bandwidth is selected based on likelihood

cross-validation method discussed in Härdle (1990) and Pagan & Ullah (1999).
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To evaluate the VaR forecasting performance, we followed a back-testing procedure

discussed by Bao, Lee & Saltoglu (2006) and calculate the empirical coverage:

γ̂ =
1
T

T∑
t=1

1
{
rt < q̂t

(
γ
)}
, (5.3.13)

where T denotes the number of observations during the out-of-sample period, q̂t(γ) is

the VaR forecast with the nominal coverage being γ , and 1{·} is an indicator function

and equals 1 for a true argument and 0 otherwise.

We also calculated the quantile loss function, which is also known as the check func-

tion defined by Koenker & Bassett Jr (1978):

Q(γ) = E
[
γ − 1

{
rt < qt

(
γ
)}][

rt − qt
(
γ
)]
. (5.3.14)

The check function is calculated based on VaR forecasts during the out-of-sample pe-

riod:

Q̂
(
γ
)
=

1
T

N∑
i=n+1

[
γ − 1

{
rt < q̂t

(
γ
)}][

rt − q̂t
(
γ
)]
. (5.3.15)

5.4 Performance Evaluation Results

For each return series, the sample was divided into in-sample and out-of-sample pe-

riods, where first 1,000 observations were included in the in-sample period and used

for estimation. A one-day-ahead forecast was made. Rolling the sample for estima-

tion forward for one day, we estimated the model and made a one-day-ahead forecast.
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Table 5.2: MCMC results of Model g based on In-sample S&P500 data

Parameters Mean Standard Batch-mean SIF Acceptance
deviation standard deviation rate

Model g α 0.2740 0.0419 0.0012 8.57 0.25
h 4.2272 0.2879 0.0083 8.35 0.32
b 0.0177 0.0161 0.0004 6.06 0.31

This rolling-sample procedure continues until the last observation during the out-of-

sample period was forecast. During both in- and out-of-sample periods, we estimated

Model a to Model h and calculated the loss functions.

We applied the random-walk Metropolis-Hastings algorithm to the update each pa-

rameter with the acceptance probability calculated through (5.2.10). The algorithm

has a burn-in period of 3,000 iterations and a recorded period of 10,000 iterations.

The batch-mean standard deviation in Roberts (1996) and the simulation inefficient

factor (SIF) shown in Kim et al. (1998) are computed to examine the mixing perfor-

mance. As the simulated chain is a Markov chain, the SIF value can be roughly inter-

preted as the number of draws needed so as to produce independent draws. A small

SIF value usually indicate good mixing performance. It can be observed that the value

of α is clearly not zero, which means the proposed SNV model distinguishes itself

from the NNV model proposed by Han & Zhang (2012) where α is set to zero.

The plot of the sample path of each parameter, together with its autocorrelation func-

tion (ACF) and histogram graphs is also presented for visual inspection of the mixing

performance.

To demonstrate the mixing performance, we take the estimation of Model Model g

as an example. We implemented the sampling algorithm to Model G with a sample
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Figure 5.1: Plots of posterior draws obtained through our proposed sampling algorithm for
Model g based on In-sample S&P500 data: (a) α (b) h (c) b
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Table 5.3: In-sample performance evaluation of volatility models for stock returns (Part
One)

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

S&P500
QLIKE 0.2569 0.2208 0.4878 0.4134 0.2622 0.2610 0.2858 0.2829
MSE 18.2302 14.7277 15.0996 11.4952 15.6401 15.3840 14.4595 14.1054
MAE 1.6430 1.5246 1.6349 1.3933 1.5585 1.5490 1.5062 1.4923
MSE-LOG 0.6079 0.5581 1.4401 1.2243 0.6368 0.6336 0.7212 0.7130
MAE-LOG 0.6433 0.6118 0.9854 0.8957 0.6624 0.6602 0.7027 0.6976
MSE-SD 0.3889 0.3354 0.4878 0.3687 0.3591 0.3548 0.3508 0.3446
MAE-SD 0.4202 0.3949 0.5566 0.4876 0.4177 0.4158 0.4235 0.4201
MSE-prop 0.7954 0.4069 0.9328 0.6465 0.7467 0.7496 0.7389 0.7414
MAE-prop 0.5225 0.4719 0.6505 0.5876 0.5225 0.5205 0.5327 0.5286

AORD
QLIKE 0.4503 0.4192 0.5198 0.5120 0.4588 0.4475 0.4533 0.4391
MSE 5.1477 7.3569 2.9214 2.8300 4.2209 3.7434 4.6345 4.3450
MAE 1.2953 1.3078 1.2133 1.1990 1.2588 1.2146 1.2805 1.2486
MSE-LOG 1.3603 1.2450 1.6182 1.5994 1.3941 1.3580 1.3753 1.3256
MAE-LOG 1.0021 0.9261 1.1206 1.1136 1.0279 1.0166 1.0154 0.9948
MSE-SD 0.4091 0.4253 0.3576 0.3485 0.3812 0.3578 0.3952 0.3800
MAE-SD 0.5046 0.4762 0.5314 0.5265 0.5071 0.4966 0.5065 0.4953
MSE-prop 0.5370 0.5676 0.5288 0.4983 0.4990 0.4699 0.5076 0.4898
MAE-prop 0.6111 0.5988 0.6464 0.6392 0.6147 0.6062 0.6116 0.6019

DAX
QLIKE 0.2085 0.1853 0.3345 0.2397 0.2101 0.2026 0.2141 0.2032
MSE 12.7519 12.6825 11.8034 9.5490 13.7176 13.3987 14.5061 14.1982
MAE 1.3710 1.3540 1.3482 1.2452 1.4048 1.3898 1.4246 1.4047
MSE-LOG 0.5141 0.4705 0.9078 0.6333 0.5123 0.5036 0.5157 0.5014
MAE-LOG 0.5753 0.5518 0.7571 0.6299 0.5731 0.5689 0.5734 0.5659
MSE-SD 0.3070 0.2874 0.3616 0.2658 0.3247 0.3154 0.3389 0.3273
MAE-SD 0.3748 0.3639 0.4491 0.3791 0.3786 0.3751 0.3815 0.3760
MSE-prop 0.4995 0.3040 0.7433 0.4475 0.5213 0.4227 0.5717 0.4535
MAE-prop 0.4509 0.4285 0.5420 0.4601 0.4553 0.4458 0.4611 0.4471

DJI
QLIKE 0.2437 0.2041 0.4562 0.2692 0.2461 0.2448 0.2672 0.2641
MSE 13.5443 11.9881 16.5141 10.0750 12.9530 12.7301 12.1741 11.9023
MAE 1.2494 1.2299 1.5173 1.1572 1.2449 1.2370 1.2234 1.2133
MSE-LOG 0.5086 0.4632 1.2132 0.6567 0.5252 0.5220 0.6008 0.5925
MAE-LOG 0.5712 0.5447 0.8927 0.6459 0.5826 0.5807 0.6228 0.6182
MSE-SD 0.2922 0.2637 0.4594 0.2514 0.2856 0.2816 0.2810 0.2757
MAE-SD 0.3468 0.3336 0.4996 0.3557 0.3493 0.3476 0.3576 0.3549
MSE-prop 1.2352 0.5766 1.3643 0.7520 1.1768 1.1864 1.1330 1.1419
MAE-prop 0.5184 0.4681 0.6720 0.5170 0.5174 0.5154 0.5287 0.5250

of 1,000 observation of the S&P 500 daily return. Figure 5.1 presents graphs of the

path of the simulated chain, auto correlation function (ACF) and histogram of each
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Table 5.4: In-sample performance evaluation of volatility models for stock returns (Part
Two)

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

FTSE
QLIKE 0.2955 0.2719 0.3624 0.2737 0.2992 0.2931 0.2972 0.2919
MSE 12.1725 11.7555 6.7436 10.9763 9.9769 9.9625 10.3623 10.3675
MAE 1.4094 1.4015 1.3584 1.3983 1.4060 1.3891 1.4049 1.3907
MSE-LOG 0.8440 0.7724 1.0566 0.7766 0.8529 0.8403 0.8479 0.8369
MAE-LOG 0.7595 0.7267 0.8774 0.7311 0.7709 0.7643 0.7658 0.7600
MSE-SD 0.3992 0.3810 0.3476 0.3739 0.3795 0.3727 0.3838 0.3781
MAE-SD 0.4440 0.4299 0.4778 0.4313 0.4481 0.4430 0.4463 0.4420
MSE-prop 0.3770 0.3289 0.4766 0.3360 0.3897 0.3464 0.3852 0.3479
MAE-prop 0.5020 0.4850 0.5557 0.4868 0.5063 0.4989 0.5034 0.4970

HKHS
QLIKE 0.5468 0.4425 0.6444 0.6267 0.5492 0.5292 0.5484 0.5293
MSE 38.3661 27.3490 13.9994 12.4173 28.5265 26.5870 29.8416 24.8137
MAE 2.6008 2.3328 2.4882 2.4025 2.5317 2.4551 2.5402 2.4375
MSE-LOG 1.7779 1.3716 2.1164 2.0639 1.7865 1.7220 1.7841 1.7212
MAE-LOG 1.1485 0.9580 1.2954 1.2806 1.1549 1.1351 1.1533 1.1362
MSE-SD 0.9448 0.7986 0.8561 0.8046 0.9009 0.8438 0.9075 0.8304
MAE-SD 0.7555 0.6413 0.8192 0.8023 0.7542 0.7357 0.7539 0.7347
MSE-prop 0.5197 0.5273 0.6022 0.5389 0.5150 0.4639 0.5148 0.4632
MAE-prop 0.6400 0.5916 0.6922 0.6781 0.6411 0.6256 0.6405 0.6259

NASDAQ
QLIKE 0.3503 0.3108 0.5448 0.4049 0.3565 0.3543 0.3633 0.3606
MSE 20.0362 21.2053 6.7512 8.2828 16.0591 15.6460 13.4840 13.2775
MAE 1.9614 1.8772 1.6508 1.6821 1.9157 1.9004 1.8857 1.8709
MSE-LOG 1.0153 0.8970 1.7537 1.2254 1.0346 1.0280 1.0581 1.0490
MAE-LOG 0.8514 0.7717 1.1162 0.9502 0.8708 0.8686 0.8851 0.8812
MSE-SD 0.5748 0.5447 0.5124 0.4276 0.5329 0.5248 0.5051 0.4992
MAE-SD 0.5439 0.5025 0.6252 0.5515 0.5483 0.5458 0.5516 0.5484
MSE-prop 0.4687 0.4185 0.6044 0.4403 0.4514 0.4468 0.4561 0.4544
MAE-prop 0.5469 0.5140 0.6360 0.5770 0.5547 0.5530 0.5603 0.5580

NIKKEI
QLIKE 0.4440 0.4983 0.4993 0.4983 0.4473 0.4466 0.4478 0.4467
MSE 26.5937 15.7158 14.2491 15.7158 25.1156 24.5380 25.0473 24.3438
MAE 2.2351 2.0877 2.0440 2.0877 2.2425 2.2399 2.2441 2.2401
MSE-LOG 1.3791 1.5676 1.5715 1.5676 1.3878 1.3838 1.3891 1.3834
MAE-LOG 1.0177 1.1070 1.1078 1.1070 1.0266 1.0271 1.0276 1.0277
MSE-SD 0.7335 0.6388 0.6192 0.6388 0.7180 0.7095 0.7173 0.7066
MAE-SD 0.6393 0.6625 0.6587 0.6625 0.6444 0.6442 0.6449 0.6445
MSE-prop 0.4076 0.4451 0.4471 0.4451 0.4086 0.4074 0.4090 0.4074
MAE-prop 0.5905 0.6235 0.6234 0.6235 0.5934 0.5934 0.5938 0.5937

parameter. Table 5.2 presents a summary of the MCMC results. It is shown that for
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Table 5.5: Out-of-sample performance evaluation of volatility models for stock returns
(Part One)

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

S&P500
QLIKE 0.2284 0.2069 0.6426 0.5108 0.2368 0.2320 0.2469 0.2421
MSE 1.9302 1.6116 2.9737 2.2026 1.9224 1.8482 2.0062 1.9358
MAE 0.8054 0.7445 1.3909 1.0781 0.8104 0.7960 0.8322 0.8195
MSE-LOG 0.6153 0.5571 2.1523 1.6531 0.6510 0.6382 0.6883 0.6755
MAE-LOG 0.6403 0.6033 1.2632 1.0690 0.6582 0.6504 0.6687 0.6612
MSE-SD 0.1696 0.1459 0.4670 0.3259 0.1716 0.1663 0.1813 0.1760
MAE-SD 0.3140 0.2924 0.6197 0.4974 0.3198 0.3150 0.3269 0.3225
MSE-prop 0.3172 0.2778 0.6108 0.5183 0.3107 0.3010 0.3264 0.3158
MAE-prop 0.4733 0.4442 0.6824 0.6155 0.4735 0.4674 0.4812 0.4745

AORD
QLIKE 0.4661 0.3863 0.6407 0.6307 0.4852 0.4865 0.4722 0.4596
MSE 1.3882 1.1948 0.9427 0.8802 1.2555 1.1327 1.3111 1.2584
MAE 0.8028 0.7256 0.8864 0.8682 0.8064 0.7929 0.8012 0.7847
MSE-LOG 1.4742 1.1455 2.1417 2.0964 1.5366 1.5348 1.4911 1.4414
MAE-LOG 1.0458 0.9522 1.3156 1.3053 1.0805 1.0900 1.0579 1.0433
MSE-SD 0.2665 0.2044 0.2961 0.2841 0.2623 0.2508 0.2627 0.2528
MAE-SD 0.4171 0.3759 0.5102 0.5033 0.4274 0.4274 0.4202 0.4129
MSE-prop 0.4026 0.3686 0.4972 0.4943 0.4142 0.4158 0.4063 0.3980
MAE-prop 0.5873 0.5702 0.6766 0.6757 0.6004 0.6053 0.5916 0.5865

DAX
QLIKE 0.1628 0.1651 0.3712 0.2996 0.1645 0.1566 0.1646 0.1645
MSE 3.9370 4.0679 5.7013 4.7543 3.9859 3.8557 4.0050 3.9859
MAE 0.7946 0.8756 1.3575 1.0575 0.8003 0.7932 0.8091 0.8003
MSE-LOG 0.3555 0.3539 0.9666 0.6528 0.3516 0.3379 0.3515 0.3516
MAE-LOG 0.4387 0.4520 0.7907 0.6214 0.4375 0.4317 0.4373 0.4375
MSE-SD 0.1603 0.1743 0.3637 0.2499 0.1625 0.1562 0.1639 0.1625
MAE-SD 0.2572 0.2750 0.4760 0.3634 0.2579 0.2549 0.2594 0.2579
MSE-prop 0.4535 0.4946 0.8999 1.5224 0.4781 0.4477 0.4792 0.4781
MAE-prop 0.4178 0.4300 0.6156 0.5647 0.4272 0.4144 0.4280 0.4272

DJI
QLIKE 0.2289 0.2104 0.5904 0.4081 0.2318 0.2148 0.2454 0.2274
MSE 1.2797 1.1058 2.2880 1.4664 1.2888 1.1372 1.3126 1.1600
MAE 0.6510 0.6072 1.1635 0.8192 0.6580 0.6191 0.6762 0.6360
MSE-LOG 0.5629 0.5196 1.9064 1.2164 0.5825 0.5404 0.6318 0.5863
MAE-LOG 0.6155 0.5854 1.1807 0.9167 0.6265 0.5986 0.6466 0.6166
MSE-SD 0.1302 0.1163 0.3746 0.2159 0.1324 0.1199 0.1396 0.1265
MAE-SD 0.2787 0.2625 0.5466 0.3977 0.2830 0.2683 0.2922 0.2767
MSE-prop 0.4362 0.3828 0.6305 0.4939 0.4112 0.3697 0.4181 0.3782
MAE-prop 0.4974 0.4697 0.6748 0.5932 0.4961 0.4728 0.5043 0.4796

each parameter, the corresponding SIF value is very small, and the batch-mean stan-

dard deviation is much smaller than the standard deviation. Therefore, the simulated

chains have achieved very good mixing status.
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Table 5.6: Out-of-sample performance evaluation of volatility models for stock returns
(Part Two)

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

FTSE
QLIKE 0.3166 0.3037 0.4875 0.3082 0.3283 0.3244 0.3246 0.3203
MSE 1.9455 1.8556 1.4376 1.7195 1.6827 1.6346 1.7118 1.6738
MAE 0.8886 0.8636 1.0237 0.8582 0.8794 0.8731 0.8773 0.8718
MSE-LOG 0.9027 0.8630 1.5014 0.8759 0.9363 0.9232 0.9241 0.9095
MAE-LOG 0.8329 0.8101 1.1094 0.8226 0.8593 0.8564 0.8519 0.8481
MSE-SD 0.2346 0.2234 0.2853 0.2172 0.2237 0.2189 0.2240 0.2196
MAE-SD 0.3912 0.3802 0.5035 0.3833 0.3979 0.3960 0.3953 0.3932
MSE-prop 0.3510 0.3366 0.4637 0.3374 0.3597 0.3540 0.3590 0.3533
MAE-prop 0.5343 0.5229 0.6388 0.5288 0.5479 0.5471 0.5448 0.5438

HKHS
QLIKE 0.5774 0.4351 0.7795 0.8089 0.5895 0.5807 0.5905 0.5850
MSE 7.1413 4.9808 5.3420 5.5694 6.7686 6.3058 6.8244 6.2456
MAE 1.8653 1.3092 2.1244 2.1332 1.8700 1.8172 1.8751 1.8208
MSE-LOG 1.8776 1.3666 2.5974 2.6343 1.9139 1.8797 1.9171 1.8934
MAE-LOG 1.2311 0.9601 1.5382 1.5362 1.2531 1.2411 1.2555 1.2490
MSE-SD 0.7155 0.4841 0.8012 0.8227 0.7096 0.6817 0.7121 0.6819
MAE-SD 0.6990 0.5142 0.8610 0.8592 0.7082 0.6961 0.7097 0.6996
MSE-prop 0.4734 0.4545 0.5944 0.8631 0.4819 0.4755 0.4829 0.4787
MAE-prop 0.6584 0.5862 0.7613 0.8062 0.6669 0.6624 0.6683 0.6657

NASDAQ
QLIKE 0.3834 0.3466 0.8371 0.6281 0.4092 0.4041 0.4121 0.4068
MSE 2.3723 3.3286 3.3016 1.9133 2.2610 2.1803 2.3532 2.2610
MAE 1.0763 1.0031 1.7270 1.2553 1.0973 1.0811 1.1073 1.0902
MSE-LOG 1.1453 1.0572 2.9441 2.0699 1.2276 1.2101 1.2496 1.2298
MAE-LOG 0.9441 0.8531 1.5673 1.3003 0.9980 0.9893 0.9930 0.9857
MSE-SD 0.2928 0.2970 0.6646 0.4081 0.2949 0.2875 0.3032 0.2947
MAE-SD 0.4553 0.4116 0.7794 0.6029 0.4742 0.4686 0.4749 0.4695
MSE-prop 0.3706 0.3301 0.6129 0.5106 0.3914 0.3855 0.3876 0.3822
MAE-prop 0.5687 0.5179 0.7481 0.6826 0.5956 0.5904 0.5875 0.5839

NIKKEI
QLIKE 0.7122 0.5052 0.8692 0.7897 0.7317 0.6906 0.7350 0.6871
MSE 6.5265 13.9616 6.5213 4.7150 6.2636 5.0411 6.2675 5.0536
MAE 1.6694 1.3939 1.9329 1.7749 1.6871 1.6233 1.6930 1.6182
MSE-LOG 2.3192 1.6149 2.8654 2.6568 2.3796 2.3142 2.3904 2.3032
MAE-LOG 1.3497 1.0781 1.5967 1.5294 1.3903 1.3741 1.3964 1.3674
MSE-SD 0.6873 0.4812 0.7853 0.6800 0.6846 0.6278 0.6866 0.6267
MAE-SD 0.6931 0.5347 0.8242 0.7741 0.7099 0.6937 0.7129 0.6906
MSE-prop 1.0077 0.4783 1.1212 0.6280 1.0096 0.5607 1.0108 0.5585
MAE-prop 0.7319 0.6121 0.8194 0.7630 0.7484 0.7078 0.7509 0.7050

Since the values of α and the bandwidth has not particular meanings by themselves

and is not an important factor in model comparison, we have not reported the param-

eter values in the following sections.
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Table 5.7: Empirical coverage of VaR forecast by volatility models for stock returns

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

10% S&P500 0.1077 0.1105 0.1105 0.1105 0.0967 0.0967 0.1077 0.1077
AORD 0.1033 0.1359 0.1033 0.1141 0.0870 0.0842 0.1168 0.1223
DAX 0.1561 0.1667 0.1667 0.1561 0.1429 0.1402 0.1561 0.1561
DJI 0.0854 0.1019 0.1047 0.1047 0.0937 0.0937 0.0882 0.0882
FTSE 0.1196 0.1304 0.1196 0.1304 0.1114 0.1087 0.1223 0.1196
HKHS 0.1642 0.2000 0.1761 0.1910 0.0716 0.0746 0.1701 0.1731
NASDAQ 0.1271 0.1381 0.1326 0.1326 0.0856 0.0912 0.1271 0.1271
NIKKEI 0.1204 0.1636 0.1358 0.1420 0.0586 0.0586 0.1389 0.1420

5% S&P500 0.0580 0.0674 0.0691 0.0718 0.0608 0.0608 0.0580 0.0580
AORD 0.0489 0.0761 0.0489 0.0571 0.0598 0.0598 0.0571 0.0625
DAX 0.1138 0.1323 0.1270 0.1270 0.0926 0.0952 0.1138 0.1138
DJI 0.0523 0.0579 0.0551 0.0551 0.0634 0.0634 0.0523 0.0523
FTSE 0.0679 0.0842 0.0707 0.0870 0.0679 0.0679 0.0734 0.0734
HKHS 0.1045 0.1224 0.1075 0.1164 0.0448 0.0448 0.1075 0.1104
NASDAQ 0.0663 0.1077 0.0718 0.0746 0.0580 0.0608 0.0663 0.0663
NIKKEI 0.0556 0.1080 0.0617 0.0833 0.0340 0.0340 0.0648 0.0895

1% S&P500 0.0166 0.0387 0.0193 0.0276 0.0193 0.0193 0.0166 0.0166
AORD 0.0136 0.0272 0.0190 0.0190 0.0109 0.0109 0.0190 0.0190
DAX 0.0556 0.0635 0.0529 0.0582 0.0423 0.0423 0.0556 0.0556
DJI 0.0165 0.0248 0.0165 0.0193 0.0138 0.0165 0.0165 0.0165
FTSE 0.0190 0.0299 0.0217 0.0299 0.0136 0.0163 0.0217 0.0190
HKHS 0.0478 0.0597 0.0478 0.0478 0.0090 0.0090 0.0478 0.0478
NASDAQ 0.0193 0.0525 0.0193 0.0359 0.0221 0.0276 0.0221 0.0221
NIKKEI 0.0185 0.0432 0.0154 0.0216 0.0123 0.0123 0.0185 0.0247

5.4.1 In-sample Performance Comparison

In-sample values of loss functions are calculated for each return series, and the results

are presented in Tables 5.3 and 5.4. Model a and b are both estimated through the

QLIKE cross-validation method. It is expected that these models to perform well

under QLIKE loss criterion. As expected, Model c and Model d perform the best

under the MSE because they were estimated under LSCV.

The NNV model with ARCH component Model b outperforms NNV model Model a

in most cases. Similarly, Model d with linear ARCH component outperforms Model

125



Bayesian Sampling for Smoothing Parameter Estimation

Table 5.8: Predictive quantile loss of VaR forecast by volatility models for stock returns

QLIKE LSCV Bayesian

NNV SNV NNV SNV NNV SNV NNV SNV

Model a b c d e f g h

10% S&P500 0.2514 0.2528 0.2531 0.2526 0.2276 0.2275 0.2515 0.2514
AORD 0.2010 0.2070 0.2016 0.2029 0.1902 0.1903 0.2023 0.2040
DAX 0.3298 0.3361 0.3366 0.3339 0.2963 0.2967 0.3309 0.3304
DJI 0.2271 0.2263 0.2266 0.2264 0.2068 0.2066 0.2271 0.2271
FTSE 0.2332 0.2358 0.2336 0.2359 0.2187 0.2188 0.2343 0.2341
HKHS 0.2913 0.3076 0.2927 0.2983 0.2587 0.2589 0.2930 0.2940
NASDAQ 0.2576 0.2657 0.2602 0.2604 0.2414 0.2415 0.2579 0.2577
NIKKEI 0.2472 0.2586 0.2485 0.2512 0.2466 0.2448 0.2494 0.2522

5% S&P500 0.1621 0.1663 0.1643 0.1646 0.1429 0.1429 0.1623 0.1622
AORD 0.1240 0.1284 0.1245 0.1252 0.1146 0.1151 0.1249 0.1259
DAX 0.2207 0.2323 0.2285 0.2285 0.1862 0.1864 0.2225 0.2214
DJI 0.1482 0.1489 0.1486 0.1483 0.1272 0.1272 0.1482 0.1482
FTSE 0.1454 0.1500 0.1455 0.1499 0.1317 0.1320 0.1463 0.1460
HKHS 0.1981 0.2143 0.1985 0.2039 0.1554 0.1561 0.1997 0.2010
NASDAQ 0.1645 0.1758 0.1662 0.1672 0.1521 0.1517 0.1648 0.1647
NIKKEI 0.1615 0.1729 0.1615 0.1634 0.1638 0.1615 0.1625 0.1646

1% S&P500 0.0562 0.0674 0.0576 0.0618 0.0438 0.0440 0.0562 0.0561
AORD 0.0352 0.0403 0.0362 0.0365 0.0264 0.0269 0.0364 0.0373
DAX 0.0890 0.1007 0.0828 0.0952 0.0587 0.0575 0.0901 0.0900
DJI 0.0507 0.0557 0.0507 0.0536 0.0378 0.0371 0.0509 0.0507
FTSE 0.0452 0.0480 0.0456 0.0490 0.0343 0.0342 0.0457 0.0456
HKHS 0.0827 0.1020 0.0812 0.0846 0.0390 0.0385 0.0848 0.0859
NASDAQ 0.0563 0.0722 0.0577 0.0621 0.0478 0.0484 0.0569 0.0569
NIKKEI 0.0689 0.0762 0.0684 0.0708 0.0689 0.0645 0.0706 0.0719

c. Improvements by including a linear ARCH component in Bayesian SNV and NNV

models (Model f to h) can also be consistently observed. Model e to h are estimated

through Bayesian sampling and performed the second best under both QLIKE and

MSE measures and only slightly worse than the corresponding home-team models.

This suggests Bayesian method is able to return stable performance and no worse than

the QLIKE and LSCV methods.

We note that in-sample performance between models with standard Gaussian density

(Model e and f ) and Gaussian kernel density function (Model g and h) are mixed. It

is also important to emphasise that the in-sample performance of the proposed SNV
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models (Model e and g) are able to produce similar accuracy as NNVmodels estimated

under QLIKE, Model a and b, based on additional realized volatility information.

5.4.2 Out-of-sample Performance Comparison

The out-of-sample period contains observations after the first 1,000 observation of

each return series are used as out-of-sample period. The one-step-ahead forecast tech-

nique is performed, in which we use a uniform window of sample size 1,000 for all

data series. Tables 5.5 and 5.6 present the loss function values calculated based on

observations in the out-of-sample period for each return series.

For almost all cases, models with a linear ARCH component in the conditional vari-

ance equations such as Model b,d,f and h, outperformed models without such a com-

ponent under the same estimation method. This finding is consistent with in-sample

evaluation shown in Tables 5.2 and 5.3. Therefore, the inclusion of the linear ARCH

component leads to better volatility forecasts and is empirically justified.

Forecasts based on QLIKE method (Model a and b) produced the lowest QLIKE loss

measure in the out-of-sample period. Note that models estimated through QLIKE

methods relies on information from both the VIX index and the realized volatility

information which caused the QLIKE measure to be naturally biased. However, the

LSCV method did not always produce the lowest MSE loss measure (i.e in DAX, DJIA

and NASDAQ return series). This suggests the LSCV method is less reliable compar-

ing to QLIKE method. When additional realised volatility information is available,

QLIKE method is preferred over LSCV.
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Bayesian sampling, which uses the same amount of information as the LSCV method,

performs strongly in both in-sample and out-of-sample periods. The QLIKE loss mea-

sures of Model e to g are very close to those estimated through the QLIKE method.

Bayesian method produced lower MSE loss measures than LSCVmethod in cases such

as S&P 500, DAX, DJIA, NASDAQ and NIKKEI. In NASDAQ and NIKKEI, Bayesian

sampling even performed the best under the MSE loss measure among all three meth-

ods.

5.4.3 Value-at-risk Performance Comparison

Our proposed SNV model is estimated through Bayesian sampling, and Model a to

Model d will enjoy a certain degree of home-team advantage under the MSE and

QLIKE criteria. Therefore, in addition to the above nine loss functions, we VaR as

a neutral evaluation criterion. We note that this is essential a back-testing technique

commonly used in financial econometric analysis. Back-testing is a way to examine

the performance of a model or strategy on past data. As mentioned above, the out-of-

sample period contains observations after the first 1,000 observation of each return se-

ries are used as out-of-sample period. The one-step-ahead forecast is estimated based

on a uniform window of sample size 1,000 for all data series, which is then compared

against actual past data consistent with the back-testing technique.

Table 5.7 presents the empirical coverage γ̂ at nominal rates of γ = 10%,5%, and 1%.

For the three levels of nominal rates, the calculated empirical coverages from all mod-

els are very close to the nominal rates for S&P 500, AORD, DJI, FTSE and NASDAQ.
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All models under-estimated the VaR of DAX returns. Under QLIKE and LSCV meth-

ods, models with a linear ARCH component (Model b and d) under-estimated VaR in

most cases.

For HKHS and NIKKEI series, the Gaussian kernel density (Model g and h) tend

to under-estimate the VaR. Model e and f with a standard Gaussian density over-

estimated VaR in NIKKEI return series.

Among the models estimated through Bayesian sampling, the standard Gaussian den-

sity Model e and f produced marginally more accurate empirical coverage than mod-

els with Gaussian kernel density Model g and h.

Based on the VaR forecast produced by competing volatilitymodels, Table 5.8 presents

the results of their quantile loss defined in (5.3.14). Coinciding with the performance

shown in empirical coverage evaluation, Model b and d produced slightly higher quan-

tile loss than their counterparts (Model a and c).

The proposed Bayesian models with standard Gaussian density (Model e and f ) pro-

duced the lowest quantile loss in almost all cases across all nominal rates. Such result

supports the consistent strong performance of the proposed SNVmodel across various

evaluation criterion.

5.5 Conclusion

In this chapter, we proposed a new volatility model which combines the ARCH(1)

model and the NNV model. We estimated the proposed model based on a Bayesian
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sampling algorithm which selects the optimal bandwidth for the Nadaraya-Watson

estimator.

The empirical performance of the proposed SNV model and Bayesian estimation

method are evaluated and compared against the NNV models based on QLIKE and

LSCV bandwidth selection methods. Based on financial return data of eight major

global stock markets, both in-sample and out-of-sample performance are examined.

Through the calculation of the loss functions given by Patton (2011), the Bayesian

method shows strong performance results in in-sample period and even stronger re-

sult in out-of-sample period.

In addition, we examined the empirical VaR performance of the competing models.

The proposed SNV model with standard Gaussian density showed the best perfor-

mance in most cases. The empirical performance of the proposed SNVmodel is highly

competitively comparing to the existing models.

As for the future research, more study may be carried out to evaluate the potentials

of Bayesian bandwidth selection for the kernel Gaussian density in the SNV model,

such as making the bandwidth adaptive on the local data points. Another area worth

exploring is to build a SNVmodel in high-dimensional setting, which allows potential

spillovers and correlations across different markets.
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Chapter 6

Conclusion

This thesis has devoted to the investigation of several important topics in bandwidth

selection for kernel density estimation based on sample data that may be of irregular

distributions. The first issue evolves in bandwidth selection given the characteristics

of the observed data in multivariate setting. In Chapter 3, we proposed a kernel den-

sity estimator with tail-adaptive bandwidths. We derived the posterior of bandwidth

parameters based on the Kullback-Leibler information and presented an MCMC sam-

pling algorithm to estimate bandwidths. The Monte Carlo simulation study shows

that the kernel density estimator with tail-adaptive bandwidths estimated through

the proposed sampling algorithm outperforms its competitor, the kernel density es-

timator with a global bandwidth estimated through either the normal reference rule

discussed in Scott (1992) or the sampling algorithm proposed by Zhang et al. (2006).

The tail-adaptive kernel density estimator was applied to the estimation of bivariate

density of the paired daily returns of the Australian Ordinary index and S&P500 in-

dex during the period of global financial crisis. The results showed that this estimator
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could capture richer dynamics in the tail area than the density estimator with a global

bandwidth estimated through the normal reference rule and a Bayesian sampling algo-

rithm. With the tail-adaptive bandwidths estimated through our proposed Bayesian

sampling algorithm, we have derived the estimated conditional density and distribu-

tion of the Australian index return given that the U.S. market finished daily trading

with different return values. We have found that during the global financial crisis,

even though the Australian stock market followed the U.S. stock market, there was no

more than 27% chance that the former market had a larger drop than the latter.

The second issue was to investigate adapted bandwidth selection for multimodal

distributions or data exhibits clustering behaviours. Chapter 4 proposed a cluster-

adaptive bandwidth kernel density estimator for data with multimodality. This

method employs a clustering algorithm to assign different bandwidths to different

clusters identified in the data set. We have derived the posterior of bandwidth pa-

rameters based on Kullback-Leibler information and presented an MCMC sampling

algorithm to sample these bandwidths. The Monte Carlo simulation study was de-

signed to examine the performance of the proposed methods when the data exhibits

multimodality. The results showed that when the underlying density is mixture of nor-

mal, the kernel density estimator with cluster-adaptive bandwidths estimated through

our proposed Bayesian sampling algorithm outperforms its competitor. When the un-

derlying densities are fat-tailed, the combined approach of tail- and cluster-adaptive

density estimator performs the best.

In an empirical application, the study estimated bandwidth matrices for the cluster-

adaptive kernel density estimator on the well known data set of eruption duration
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and waiting time to the next eruption collected from Old Faithful greyer, which is

famous of its clustering nature. The results again showed clear advantage of the pro-

posed cluster-adaptive kernel density estimator over traditional approaches. As for

the future research, by incorporating clustering information and assigning a different

bandwidth matrix to each cluster, the performance of the kernel density estimator can

be improved. In light of this result, it is intuitive to believe that improved density es-

timation performance would further facilitate improving the clustering accuracy. It

should be noted that future research may be conducted to investigate and provide

more insight on such issue.

The third topic extends the Bayesian bandwidth selection technique to volatility mod-

els for time series data. The study is motivated by the fact that very limited attention

has been invested on the estimation of nonparametric and nonlinear volatility models

through Bayesian approaches. Chapter 5 introduced a new volatility model, i.e. the

SNV model, which combines the ARCH(1) model and the NNV model (Han & Zhang

2012) estimated via a proposed Bayesian sampling algorithm. This algorithm selects

the optimal bandwidth for the Nadaraya-Watson estimator. Based on financial return

data of eight major global stock markets, both in-sample and out-of-sample perfor-

mance of the proposed model against competing models were examined. Through

the calculation of the loss functions given by Patton (2011), the SNV model and the

Bayesian estimation method showed strong and consistent results.

133



Bayesian Sampling for Smoothing Parameter Estimation

In addition, the study evaluated the empirical VaR performance of the competing

models. The proposed SNV model showed the best performance in most cases. Over-

all, the empirical performance of the proposed Bayesian SNV model is highly compet-

itive compared to the existing nonparametric nonlinear volatility models. More study

may be carried out to evaluate the potentials of Bayesian bandwidth selection for the

unknown density function in the SNVmodel, such as making the bandwidth adaptive

on the local data points. Another area to explore is to build the SNV model in high-

dimensional setting which could allow for potential spillovers and correlations across

different markets.
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Klemelä, J. (2006), ‘Visualization of multivariate density estimates with shape trees’,

Journal of Computational and Graphical Statistics 15(2), 372–397.

Koenker, R. & Bassett Jr, G. (1978), ‘Regression quantiles’, Econometrica 46(1), 33–50.

Kulasekera, K. B. & Padgett, W. J. (2006), ‘Bayes bandwidth selection in kernel density

estimation with censored data’, Journal of Nonparametric Statistics 18(2), 129–143.

Lamoureux, C. G. & Lastrapes, W. D. (1990), ‘Heteroskedasticity in stock return data:

Volume versus garch effects’, The Journal of Finance 45(1), 221–229.

Linton, O. (2009), Semiparametric and Nonparametric ARCH Modeling, in T. Ander-

sen, R. Davis, J. Kreiss & T. Mikosch, eds, ‘Handbook of Financial Time Series’,

Springer: Berlin, pp. 157–167.

Linton, O. & Mammen, E. (2005), ‘Estimating semiparametric ARCH(∞) models by

kernel smoothing methods’, Econometrica 73, 771–836.

143



Bayesian Sampling for Smoothing Parameter Estimation

Loftsgaarden, D. O. & Quesenberry, C. P. (1965), ‘A nonparametric estimate of a mul-

tivariate density function’, The Annals of Mathematical Statistics 36(3), 1049–1051.

MacQueen, J. (1967), Some methods for classification and analysis of multivariate

observations, in ‘Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability’, Vol. 1, p. 14.

Marron, J. S. & Nolan, D. (1988), ‘Canonical kernels for density estimation’, Statistics

& Probability Letters 7(3), 195 – 199.

Mason, D. M. & Polonik, W. (2009), ‘Asymptotic normality of plug-in level set esti-

mates’, The Annals of Applied Probability 19(3), 1108–1142.

Masry, E. & Tjøstheim, D. (1995), ‘Nonparametric estimation and identification of

nonlinear ARCH time series: strong convergence and asymptotic normality’, Econo-

metric Theory 11, 258–258.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. et al.

(1953), ‘Equation of state calculations by fast computing machines’, The Journal of

Chemical Physics 21(6), 1087.

Mielniczuk, J., Sarda, P. & Vieu, P. (1989), ‘Local data-driven bandwidth choice for

density estimation’, Journal of Statistical Planning and Inference 23(1), 53 – 69.

Nelson, D. (1991), ‘Conditional heteroskedasticity in asset returns: a new approach’,

Econometrica 59(2), 347–370.

144



Bayesian Sampling for Smoothing Parameter Estimation

Newton, M. A. & Raftery, A. E. (1994), ‘Approximate Bayesian inference with the

weighted likelihood bootstrap’, Journal of the Royal Statistical Society. Series B

(Methodological) 56(1), 3–48.

Nolan, D. & Marron, J. (1989), ‘Uniform consistency of automatic and location-

adaptive delta-sequence estimators’, Probability Theory and Related Fields 80(4), 619–

632.

Nolan, O. & Polland, D. (1987), ‘U-processes: rates of convergence’, Annals of Statistics

15, 780–799.

Pagan, A. R. & Schwert, G. W. (1990), ‘Alternative models for conditional stock volat’,

Journal of Econometrics 45, 267–290.

Pagan, A. & Ullah, A. (1999),Nonparametric Econometrics, Cambridge University Press,

Cambridge.

Park, B. U. & Marron, J. S. (1990), ‘Comparison of data-driven bandwidth selectors’,

Journal of the American Statistical Association 85(409), 66–72.

Park, J. (2002), ‘Nonstationary nonlinear heteroskedasticity’, Journal of econometrics

110(2), 383–415.

Park, J. & Phillips, P. (1999), ‘Asymptotics for nonlinear transformations of integrated

time series’, Econometric Theory 15(3), 269–298.

Park, J. & Phillips, P. (2001), ‘Nonlinear regressions with integrated time series’, Econo-

metrica 69(1), 117–161.

145



Bayesian Sampling for Smoothing Parameter Estimation

Patton, A. (2011), ‘Volatility forecast comparison using imperfect volatility proxies’,

Journal of Econometrics 160(1), 246–256.

Polak, J., Zhang, X. & King, M. L. (2010), Bandwidth selection for kernel conditional

density estimation using the MCMC method. Manuscript presented at Australian

Statistical Conference, 6-10 December, Fremantle, Western Australia.

Robert, C. P. & Casella, G. (1999), Monte Carlo Statistical Methods, Vol. 58, Springer,

New York.

Roberts, G. O. (1996), Markov chain concepts related to sampling algorithms, inW. R.

Gilks, S. Richardson & D. J. Spiegelhalter, eds, ‘Markov Chain Monte Carlo in Prac-

tice’, Chapman & Hall, London, pp. 45–57.

Rudemo, M. (1982), ‘Empirical choice of histograms and kernel density estimators’,

Scandinavian Journal of Statistics 9(2), 65–78.

Sain, S. R. (2002), ‘Multivariate locally adaptive density estimation’, Computational

Statistics & Data Analysis 39(2), 165–186.

Sain, S. R., Baggerly, K. A. & Scott, D. W. (1994), ‘Cross-validation of multivariate

densities.’, Journal of the American Statistical Association 89(427), 807–817.

Sain, S. R. & Scott, D. W. (1996), ‘On locally adaptive density estimation’, Journal of

the American Statistical Association 91(436), 1525–1534.

Samworth, R. J. & Wand, M. P. (2010), ‘Asymptotics and optimal bandwidth selection

for highest density region estimation’, The Annals of Statistics 38(3), 1767–1792.

146



Bayesian Sampling for Smoothing Parameter Estimation

Scott, D. W. (1992),Multivariate Density Estimation: Theory, Practice, and Visualization,

John Wiley & Sons, New York.

Scott, D. W. & Terrell, G. R. (1987), ‘Biased and unbiased cross-validation in density

estimation’, Journal of the American Statistical Asscoiation 82, 1131–1146.

Silverman, B. W. (1986), Density estimation for statistics and data analysis, Chapman &

Hall, New York.

Simonoff, J. S. (1996), Smoothing Methods in Statistics, Springer, New York.

Stuetzle, W. (2003), ‘Estimating the cluster tree of a density by analyzing the minimal

spanning tree of a sample’, Journal of Classification 20(1), 25–47.

Sugar, C. & James, G. (2003), ‘Finding the number of clusters in a dataset: An

Information-Theoretic Approach’, Journal of the American Statistical Association

98(463), 750–763.

Terrell, G. R. & Scott, D. W. (1992), ‘Variable kernel density estimation’, The Annals of

Statistics 20(3), 1236–1265.

Tibshirani, R., Walther, G. & Hastie, T. (2001), ‘Estimating the number of clusters

in a data set via the gap statistic’, Journal of the Royal Statistical Society: Series B

(Methodological) 63(2), 411–423.

Tierney, L. (1994), ‘Markov chains for exploring posterior distributions’, The Annals of

Statistics 22, 1701–1762.

Tsay, R. S. (2005), Analysis of Financial Time Series, Wiley, New Jersey.

147



Bayesian Sampling for Smoothing Parameter Estimation

Vieu, P. (1999), ‘Multiple kernel procedure: An asymptotic support’, Scandinavian

Journal of Statistics 26(1), 61–72.

Walther, G. (1997), ‘Granulometric smoothing’, The Annals of Statistics 25(6), 2273–

2299.

Wand, M. P. & Jones, M. C. (1994), ‘Multivariate plug-in bandwidth selection’, Compu-

tational Statistics 9(2), 97–116.

Wand, M. P. & Jones, M. C. (1995), Kernel Smoothing, Chapman & Hall, New York.

Wang, Q. & Phillips, P. (2009a), ‘Asymptotic theory for local time density estimation

and nonparametric cointegrating regression’, Econometric Theory 25, 710–738.

Wang, Q. & Phillips, P. (2009b), ‘Structural nonparametric cointegrating regression’,

Econometrica 77(6), 1901–1948.

Wong, M. A. & Lane, T. (1983), ‘A kth nearest neighbour clustering procedure’, Journal

of the Royal Statistical Society. Series B (Methodological) 45(3), 362–368.

Xu, R., Wunsch, D. et al. (2005), ‘Survey of clustering algorithms’, Neural Networks,

IEEE Transactions on Neural Networks 16(3), 645–678.

Yang, L. (2006), ‘A semiparametric GARCH model for foreign exchange volatility’,

Journal of Econometrics 130(2), 365–384.

Yang, L., Hardle, W. & Nielsen, J. (1999), ‘Nonparametric autoregression with mul-

tiplicative volatility and additive mean’, Journal of Time Series Analysis 20(5), 579–

604.

148



Bayesian Sampling for Smoothing Parameter Estimation

Zhang, X., Brooks, R. D. & King, M. L. (2009), ‘A Bayesian approach to bandwidth se-

lection for multivariate kernel regression with an application to state-price density

estimation’, Journal of Econometrics 153(1), 21–32.

Zhang, X. & King, M. L. (2011), Bayesian semiparametric GARCHmodels. Manuscript

presented at Bayes on the Beach, 4-5 October, 2010, Surfers Paradise, Australia.

Zhang, X. & King, M. L. (2013), Gaussian Kernel GARCH Models. Working Paper,

Monash University.

Zhang, X., King, M. L. & Hyndman, R. J. (2006), ‘A Bayesian approach to bandwidth

selection for multivariate kernel density estimation’, Computational Statistics & Data

Analysis 50(11), 3009–3031.

149


