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Abstract

The growth of smart phones and PDAs coupled with the emergence of Web

Services as the de facto technology for supporting seamless heterogeneous in-

tegration has led to an emerging focus on mobile services. This emergence of

mobile services necessitates service selection mechanisms that are accurate and

efficient. Service selection involves matching of a user’s requirements against

the available services in the user’s environment. It is well established that ac-

curacy in service matching is improved by the use of semantics as opposed to

simpler approaches such as keyword / interface matching. Semantic matching

is performed by semantic reasoners. Current approaches to semantics based

service selection tend to perform matching using external / remote high perfor-

mance servers, because reasoning is a computationally complex and resource

intensive activity that does not scale well to mobile devices.

However, there are several advantages of performing semantic service match-

ing on-board the mobile device. For instance, on-board matching avoids the

overheads associated with the provision and maintenance of external servers

to perform matching remotely. Additionally, continuous network access to a

remote server has been shown to be a relatively higher drain on a mobile de-

vice’s battery power when compared to processing activities. Furthermore, a

connection may not always be available since mobile devices suffer from in-

termittent connectivity and frequent disconnection. There may also privacy

xix



concerns with transmitting sensitive data to a third party remote server (e.g.

a user’s shopping preferences and habits).

Therefore, in this thesis we propose and develop a novel light-weight and

adaptive approach for on-board semantic mobile matching. This thesis makes

two significant contributions. Firstly, due to computational complexity, cur-

rent reasoners cannot perform matching of large ontologies on mobile resource

constrained devices. Therefore, we propose and develop mTableaux which en-

ables mobile semantic matching by performing optimisations of the well-known

Tableaux algorithm that is used in many of the state-of-the-art open source

and commercial reasoners today. These optimisations result in improving the

computational efficiency of the semantic reasoning process with a specific fo-

cus on scaling to mobile devices, without significantly reducing result accuracy.

Secondly, current reasoners typically produce only a positive or negative result

under an “all or nothing” principle in which the matching task must be com-

pleted in full before a result is provided. Therefore, we propose and develop an

adaptive and incremental approach to deliver the outputs of a reasoning task.

This allows a mobile user to get valid partial results from a reasoner depending

on constraints such as changing context, time or availability of computational

resources.

We have implemented our proposed light-weight and adaptive reasoning

strategies, and conducted extensive experimental performance evaluations which

clearly demonstrate that our strategies improve response time and enable in-

cremental matching. Our performance evaluations clearly demonstrate that

the efficiency improvements in response time do not compromise accuracy.

This evaluation includes tests on a resource constrained mobile device and

a comparison of our approach against commercial and open source reasoners

in desktop environments, using two realistic application scenarios as well as

publicly available ontologies.

xx



In summary this dissertation has addressed the problem of enabling efficient

and accurate mobile reasoning on small devices to meet dynamic resource levels

and user needs in mobile environments. The research done over the course of

this dissertation has been published in one international journal paper, seven

conference papers and one workshop paper.
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Chapter 1

Introduction

1.1 Preamble

Today, a range of mobile devices are penetrating the market, such as hand

held Personal Computers (PCs)1, Personal Digital Assistants (PDAs)2, smart

phones3, devices in vehicles4 and other wearable devices (de Freitas and Lev-

ene, 2003; Billinghurst and Starner, 1999). More recently, the sale of smart

phones has exploded (Gartner, 2008). Thus, there are exciting potential oppor-

tunities to develop innovative mobile applications to meet specific user needs.

The power of a smart mobile device lies in its interaction capability (Weiser,

1991). That is, its ability to communicate, share information and interact

with the user’s environment in a way which is meaningful to the user, thus

enabling “communication on the move” (Zabariadis and Doshi, 2004). These

software applications on mobile devices must seamlessly adapt and interact

with the surrounding environment in keeping with the pervasive computing

vision (Ferscha, 2009; Satyanarayanan, 2001).

Another key technology that has emerged in recent years is Web Ser-

vices, which is defined as “a software system designed to support interoperable
1http://www.silicon.com/technology/mobile/2006/02/13/analysis-what-is-a-smart-

phone-39156391/ (accessed May 2009)
2http://reviews.cnet.com/pdas/ (accessed May 2009)
3http://www.cnet.com/smartphones/ (accessed May 2009)
4http://reviews.cnet.com/gps/ (accessed May 2009)

1



CHAPTER 1. INTRODUCTION 2

machine-to-machine interaction over a network”5. Web Services are the nat-

ural evolution of the World Wide Web, from a source of information to an

open medium for facilitating complex software interactions across the Web

using open standards. This transformation provides an open distributed envi-

ronment for dynamic interactions between different / heterogeneous software

components.

The integration of the service oriented paradigm with mobile / pervasive

computing is leading to increasing research focus into mobile services. A key

focus of mobile services is on discovering and accessing external services from

mobile devices, leveraging the communication capabilities of these devices.

A key challenge is to identify services that are relevant to the user’s chang-

ing context (El-Sayed and Black, 2006), such as location (Dietze et al., 2009;

Doulkeridis and Vazirgiannis, 2008), and device connectivity levels / QoS (Ni-

azi and Mahmoud, 2009; Dietze et al., 2009; Preuveneers and Berbers, 2008a;

Mokhtar et al., 2008; Vu et al., 2007, 2005), etc. A second emerging focus in

mobile / pervasive services is to leverage the increasing computational capa-

bilities of today’s mobile devices to host services (Aijaz et al., 2009; Schmidt

et al., 2008; Tergujeff et al., 2007; Srirama et al., 2006; Asif et al., 2007) that

may be accessed by both the user and other devices typically in a localised

area.

This thesis focuses on developing infrastructure to support pervasive ser-

vices to be deployed on mobile devices. We take an important step in enabling

pervasive services on mobile devices to be enhanced with semantic reason-

ing capabilities to support more sophisticated matching of user requests with

service capabilities (Peng et al., 2008; El-Sayed and Black, 2006).
5http://www.w3.org/TR/ws-arch/ (accessed May 2009)
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1.2 Motivations

In this section, we motivate the need for on-board semantic reasoning on mo-

bile devices. As stated in the previous section, Web Services provides an open

standard for interacting with heterogeneous software applications and infor-

mation sharing over the Internet. In the context of mobile or pervasive services

there are two primary modes of operation:

1. static services which are hosted on centralised / remote high-end servers;

2. mobile services which are hosted on the devices themselves.

However, while Web Services enables a client user or application to interact

with a provider application, a mechanism is required to select a service from

potentially many services available, which best meets the requirements of the

user (Trastour et al., 2001). For instance, consider the following situations

which would require a mechanism to match user requirements with advertised

service descriptions:

• Discovery of services in a local precinct: A mobile user has just

arrived in Sydney airport and wishes to discover service descriptions

about a WiFi Internet cafe;

• “Infrastructure-less” peer-to-peer (P2P) information sharing:

A large group of students are on a field trip in a remote location where

there is no infrastructure to provide fixed or mobile Internet access.

Therefore, the students form an ad-hoc mobile network to facilitate col-

laboration of field results. A student wishes discover data which is hosted

remotely on another student’s device in his local area (Chatti et al.,

2006);

• On-device services management: There is an abundance of services

and applications which can be installed or removed from a mobile user’s
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own device on a needs basis. For example, Google6 and Yahoo7 offer

many mobile applications such as blogging, news, finance and sports. For

instance, the Apple iPhone8 has thousands of “apps. for everything”9.

With more and more mobile applications being published as services, the

user needs a mechanism to help find the application which meets his or

her particular requirements.

When a mobile device needs to search for a particular service, such as in the

in the examples above, this presents additional challenges for service matching

mechanisms. Small mobile devices are typically resource constrained in terms

of processing power, memory capabilities, screen size, battery life, etc. Despite

this, due to the dynamic nature of mobile environments, mobile users require

an answer quickly (Roto and Oulasvirta, 2005), while maintaining a high level

of result accuracy (Kargin and Basoglu, 2007).

Early mechanisms for service matching involved keyword and interface

matching approaches such as the Universal Description and Discovery Inte-

gration (UDDI)10, which was a centralised registry of Web Services. However,

UDDI failed obtain widespread usage and support (Hartman and Reynolds,

2004; SysCon, 2005). A key problem with keyword based approaches is that

they do not provide accurate results (Bernstein and Klein, 2002). Improved

accuracy can be achieved by capturing semantics (Abramowicz et al., 2008).

To overcome this problem, semantic languages (Martin et al., 2007) were de-

veloped to describe Web Services (Li and Horrocks, 2004; Hepp, 2006). These

languages improve accuracy of matching (Bernstein and Klein, 2002), by using

semantic reasoners (Gonzalez-Castillo et al., 2001).

Most current service matching approaches off-load the matching process

to remote servers which perform this process on behalf of the mobile device
6http://www.google.com/mobile (accessed May 2009)
7http://www.yahoo.com/mobile (accessed May 2009)
8http://www.apple.com/iphone (accessed May 2009)
9http://www.apple.com/iphone/apps-for-everything (accessed May 2010)

10http://uddi.xml.org (accessed May 2009)
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(Li et al., 2001), such as Doulkeridis and Vazirgiannis (2008); Baousis et al.

(2008); de Andrade et al. (2007); Chen et al. (2006); and Suraci et al. (2007).

However, this thesis aims to support matching of user requests with service

descriptions using semantic reasoners, on-board the mobile device. In order to

motivate this aim, we will now revisit each of the scenarios from earlier in this

section:

• Discovery of services in a local precinct: Currently, Sydney airport

provides touch screen kiosk terminals which provide information about

retail outlets and services provided in the airport, as illustrated in figure

1.1. This allows a user to locate an Internet cafe as described earlier

in this section. Touch screens suffer from poor scalability (only one

person can use them at a time), a fixed location (the user must walk to a

touch screen) and support only very simple searches. With the increasing

abundance of PDAs and smart phones, we propose these kiosks offer

semantic service descriptions for download by small devices (either using

short range communications technologies as part of a bluetooth or a WiFi

connection). For example, when a mobile user walks past a kiosk, his

or her mobile device can download service descriptions and the user can

then perform sophisticated semantic matching when required, as the user

walks around the airport. This approach is a natural extension of the

current kiosk model, in which a kiosk is simply deployed and does not

require the significant cost or considerations associated with centralised

server provision for semantic discovery requests which has additional

overheads of reliability, security and maintenance;

• “Infrastructure-less” P2P information sharing: Semantic match-

ing would enable more accurate matching of user requests for specific

field results to those results which have been collected by other students.

This semantic matching process would need to be completed on-board

the mobile user’s device since there is no high-end server available in a
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remote environment, nor is it physically or financially feasible to provide

one;

• On-device services management: Semantic descriptions would allow

mobile users to install applications which more accurately suit their re-

quirements. Since the decision is about applications on-board the device

itself, matching too, should occur on-board.

Figure 1.1: Sydney airport store finder kiosk

Each of the scenarios above, motivate the need to support on-board seman-

tic reasoning, rather than providing a centralised high-end server because this

provision is either not possible / feasible or has significant cost drawbacks. We

summarise the main drawbacks of a server based approach for these scenarios

as follows:

• Availability: in some environments it is not physically possible nor fea-

sible to provide centralised server infrastructure and associated network

infrastructure (Srirama et al., 2007). In these cases communication takes

place via temporary Peer to Peer (P2P) networks between mobile nodes

(Gehlen and Pham, 2005; Choi et al., 2005);

• Battery Usage: continuous network connectivity involved in a remote

server approach results in a high cost to battery usage. In fact, net-

work communication requires more battery usage than CPU processing
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(Reaghunathan et al., 2002). Additionally, in keeping with Moore’s law

(Moore, 2006, p. 90 - 114), technological advances in hardware process-

ing capability continues to outstrip the progress in battery capacity;

• Disconnection: mobile devices suffer from intermittent connectivity

and frequent disconnection, especially when mobile users are on the move

(they may move out of network range) (Ott and Kutscher., 2004). Match-

ing may be delegated to a higher end static node in the network which

itself may be inaccessible due to connectivity issues. Reliance on a con-

tinuous connection to a high-end server means that the matching task

is prone to failure when the network connection or service to which the

matching is delegated, becomes unavailable;

• Cost: significant costs may arise from providing centralised infrastruc-

ture to perform service matching. In particular, a centralised scheme

would need to be reliable, secure and would require maintenance. Relia-

bility considerations involve providing wireless network connectivity over

a large area and capacity to handle rapid increases in the number of mo-

bile user’s attempting to perform matching at the same time. Providing

the necessary infrastructure / redundancy to avoid performance delays

or server failures (Wang and Hu, 2008) during peak times, may result in

significant costs to the end user. Cost is a significant factor which influ-

ences whether a user is likely to utilise a mobile service and studies have

clearly shown that the benefit must exceed the costs involved (Kargin

and Basoglu, 2007);

• Privacy: improved accuracy in service discovery and matching can be

achieved by utilising contextual data relating to the user’s environment.

This contextual data may relate to the user’s current situation, or the

user’s previous requests and habits. However, current and historical

context data can in some cases be extremely sensitive. Transmitting this
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information to a third party server and reasoning on this data could raise

privacy concerns for the mobile user, in terms of whether the server itself

and the mode of transmission is trustworthy (Kleemann, 2006).

Employing a decentralised approach in which the matching occurs on the

mobile device itself overcomes the drawbacks listed above. On-board reason-

ing alleviates the availability and disconnection problems because no network

connection is required once the service descriptions have been downloaded

onto the mobile device. Service descriptions can be exchanged by mobile node

peers, provided by a short-range download point (such as a kiosk or shopping

centre entrance) or downloaded previously from the Internet (e.g. at home

or work). Descriptions can be stored on removable secondary storage media

such as an Secure Digital (SD) card which is inexpensive and can store several

gigabytes of data. Battery usage is minimised since CPU processing utilises

less energy than network transmission (Reaghunathan et al., 2002). Costs are

minimised if no server or network provision is required, apart from tempo-

rary short-range network transmission for service description download. Any

number of devices can be deployed without requiring additional provision of

infrastructure to support increases in capacity for scalability and the costs as-

sociated with this. Privacy concerns are alleviated since all processing occurs

on-board the device. Sensitive data and conclusions drawn from this data are

never transmitted to an external party.

However, although on-board semantic reasoning provides improved accu-

racy and overcomes the aforementioned drawbacks, it has not been adopted

because current semantic reasoners scale poorly (Zacharias et al., 2007) and are

too resource intensive to be deployed on resource constrained mobile devices.

For instance, Zoric et al. (2007b) found that matching with the assistance of

a reasoner is 3-4 times more time consuming than without a reasoner even

in desktop environments. As such, logic reasoners which perform semantic

matching cannot easily be ported to resource constrained devices. Figure 1.2
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illustrates an out of memory error when reasoning is attempted using the Pel-

let11 reasoner on a small device. Thus, the current state-of-the-art with respect

to mobile service matching is to either use keyword based technologies which

trade-off-accuracy to achieve higher performance or alternatively to have an

external service infrastructure to manage semantically driven semantic match-

ing.

Figure 1.2: Not enough memory to perform semantic matching on a HP iPAQ
PDA using standard Pellet reasoner

Current reasoners are resource intensive primarily because they adhere

to strict notions of generating correct and complete results (Fensel and van

Harmelen, 2007). However, mobile environments introduce a new set of pri-

orities for information use. The need for correct information is important but

it is equally necessary for information to be provided with a quick response

time. Therefore, our approach is to relax these notions of completeness to

obtain substantial performance improvements without significantly reducing

accuracy. Our approach is two fold, firstly we propose and develop strategies

which significantly improve the efficiency of mobile reasoning by relaxing the

guarantee for completeness. In addition, we introduce flexibility by proposing

and developing a resource-adaptive priority matching approach. This approach

prioritises the user requirements based on importance to the user and incre-

mentally matches the most important inference conditions first. The reasoner
11http://clarkparsia.com/pellet/ (accessed May 2009)
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can then be stopped at any stage to obtain a partial result, without complet-

ing the matching task in full, as is required by current reasoners. In the next

section we outline the specific objectives of this thesis, underpinned by the

motivations described in this section.

1.3 Objectives and Contributions

We aim to provide accurate and fast on-board matching of mobile user require-

ments with mobile services. Improved matching accuracy can be achieved by

utilising semantic languages. However, semantic reasoning is significantly re-

source intensive. Therefore, current reasoners cannot be ported to mobile

resource constrained devices. Generally, current mobile systems offload pro-

cessing to high-end servers (Li et al., 2001). However, continuous access to

reliable network and server infrastructure is not possible in all situations and

may come at a significant financial cost which may be passed on to the end

user. These drawbacks can be overcome if matching occurs on-board the mo-

bile device itself. We summarise the contributions of this thesis as follows:

1. The proposal and development of optimisation and caching strategies to

enable and improve the efficiency of on-board mobile reasoning. The

optimisation strategies focus on improving performance efficiency by re-

laxing the strict adherence to completeness. The caching strategy stores

the results of previous requests so that they can be used in similar future

requests. Given the growth of secondary storage media, we incorporate

caching mechanisms to semantic matching tasks in order to improve re-

sponse time;

2. The proposal and development of a resource adaptive priority reasoning

strategy. This strategy supports incremental reasoning which can be in-

terrupted prematurely if there are insufficient resources or time available
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to continue matching. It also provides a weighted degree of match to the

user, based on the matching completed;

3. The evaluation of the optimisation / caching and the adaptive inference

strategies. We evaluate our optimisation and caching strategies by both

comparing these with other widely used reasoners which do not run on a

resource constrained mobile device and performing matching tasks on a

resource constrained device using these strategies. We also evaluate our

priority based, incremental adaptive inference strategy by performing

various priority based matching tasks on a resource constrained device

under certain time constraints. These evaluations demonstrate the sig-

nificant performance improvements which our proposed approaches bring

to mobile semantic reasoning, thus, enabling matching on a resource con-

strained device.

This research has resulted in (Steller et al., 2009b,a,c; Steller and Krish-

naswamy, 2009, 2008b,a,c; Steller et al., 2008, 2006).

1.4 Thesis Structure

This thesis is structured into seven chapters. Chapter 2 contains a review

of related research. In this chapter we provide a review of matching mech-

anisms including semantic languages and associated reasoners which provide

greater accuracy for matching than simple approaches such as keyword match-

ing. Since the main goal of our thesis is to facilitate accurate and efficient

mobile matching, we provide a review of current approaches for service match-

ing and categorise these based on whether they support semantic matching

and perform matching on-board a mobile device. However, while semantic

matching improves accuracy compared to keyword based approaches, it is a

computationally complex and resource intensive task due to an emphasis on re-

sult completeness. Therefore, it does not scale well to mobile devices. As such,
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we identify a need for a mobile semantic reasoning approach which trades ac-

curacy with performance efficiency, to support matching of user requests with

semantic service descriptions in realistic scenarios.

In Chapter 3 we provide a background of Description Logic and the Tableaux

inference proof algorithm, which are widely used by current open source and

commercial semantic reasoners. This background is required in order to un-

derstand the contributions of our dissertation which are presented in Chapters

4 and 5.

In Chapter 4, since current reasoners are too computationally complex

to perform matching of large ontologies on resource constrained devices, we

propose and develop optimisation and caching strategies for the Tableaux in-

ference proof to enable mobile reasoning by improving response time without

significantly reducing accuracy. We propose and develop two optimisation

strategies which limit the size of the reasoning task based on the user request

and the service description being checked in the matching process. We also

propose and develop a strategy which caches the evaluations of the reasoner

so that these can be used to improve response time of similar reasoning tasks.

Additionally, current reasoners provide only a match or failed match result,

and require that the matching task be completed in full before any result is

provided based on an “all or nothing” principle. Therefore, in Chapter 5, we

propose and develop our resource adaptive inference strategy which takes into

account important user constraints in a mobile environment such as time and

resources. Our strategy incrementally matches conditions in the user request

in priority order of importance to the user. The matching process can be

interrupted based on user constraints such as available time and resources to

provide a match result based on the matching completed.

In Chapter 6 we detail the prototype implementation of our proposed

strategies from Chapters 4 and 5 and present extensive experimental validation

for our contribution. We provide an evaluation of computational performance
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efficiency and accuracy of our strategies against other currently available se-

mantic reasoners in the desktop environments in which these reasoners operate

in. We also provide an evaluation of response time efficiency of our strategies a

mobile device. Our experiments demonstrate that our optimisation / caching

strategies improve response times without compromising result accuracy and

that our adaptive inference strategy effectively enables incremental reasoning.

In Chapter 7 we conclude the dissertation and summarise our key contri-

butions and findings. We also outline future directions for this work.



Chapter 2

A Review of Service Matching

for Mobile Environments

2.1 Introduction

There has been considerable growth and proliferation of mobile devices. For

instance, world wide sales growth of smart phones was 29 percent in the first

quarter of 2008 alone (Gartner, 2008). In Australia, laptop sales outstripped

desktop PCs in 2008 and smart phones are expected to account for 57 percent

of the market, which is up from 16 percent in the previous year (Buchanan,

2009). Veijalainen (2008) states that the number of mobile subscribers world

wide is reaching the 3 billion mark, with the most significant growth being

in developing countries such as India and China, where mobile devices are

the only mode of access to the Internet. In India for instance, Sridhar (2007)

shows that the growth of mobile subscribers has been exponential in the last

10 years.

This provides significant opportunities for new mobile applications which

meet the need of mobile users to access to relevant information in their en-

vironment. There has already been substantial growth in the development of

14
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new mobile applications. For instance, the apple iPhone1 has thousands of

“apps. for everything”2.

The growth in the number of mobile devices, computational capability of

these devices and in the availability of advanced networking and communica-

tion infrastructure lays the foundation for “pervasive computing” (Zabariadis

and Doshi, 2004; Ferscha, 2009; Satyanarayanan, 2001). Central to the vision

of pervasive computing is that the environment will be highly populated with

networked devices such that these can be gracefully integrated with human

users (Satyanarayanan, 2001). Environments may include the home, car, air-

port, office etc, populated with devices such as home appliances, PCs, smart

phones, PDAs, projectors, GPS systems etc. Han et al. (2006) suggests that

a majority of the workforce spend at least 20 percent of their time away from

their desk and that the productivity of these workers can be improved by 30

percent when proper mobile technologies are deployed.

In order to support the interaction of heterogeneous applications in an en-

vironment with a high level of mobility, Xiaosu and Jian (2005) advocate the

use of a Service Oriented Architecture (SOA) such as Web Services (WS)3.

Web Services enable loosely coupled interoperability for machine-to-machine

interaction over the World Wide Web using open standards. This provides

the necessary open distributed environment that allows dynamic interactions

between different / heterogeneous software components. In the context of

leveraging the Web Services paradigm to support mobile users, there are prin-

cipally two new modes of operation:

1. External / remotely hosted Web Services accessed by mobile clients;

2. Mobile hosted Web Services.

Advances in computational capabilities and networking provisions mean

that mobile devices are increasingly capable of hosting their own Web Services
1http://www.apple.com/iphone (accessed May 2009)
2http://www.apple.com/iphone/apps-for-everything/ (accessed May 2010)
3http://www.w3.org/TR/ws-arch/ (accessed May 2009)
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(Aijaz et al., 2009; Schmidt et al., 2008; Tergujeff et al., 2007; Srirama et al.,

2006; Asif et al., 2007). In addition, services can be migrated to another

device if a mobile node moves out of an available range (Kim and Lee, 2007;

Preuveneers and Berbers, 2008b).

However, as we identified in the previous chapter, the problem remains in

terms of how to match user requirements with services available. In addition,

as described in Section 1.2, due to the challenges of infrastructure availabil-

ity, the costs involved for its provision, the battery usage involved for network

communication and privacy concerns about transmitting sensitive user data, a

centralised server for matching is not always appropriate or applicable. There-

fore, the main focus of this thesis is to support on-board matching of a user

request with service descriptions using a mobile device. Due to their inherent

dynamic environment, mobile users also have an increased need for relevant

information and services to be accessed relatively quickly, which we discuss as

follows:

1. Accurate / relevant matching: mobile users require useful and accu-

rate matching of their needs against the available services (Kargin and

Basoglu, 2007). In a dynamic mobile environment the matching process

must take into consideration the information which is currently available

in that environment to accurately match a service which is currently

relevant to the user in terms of the user’s current needs and situation.

In addition, mobile devices often have a small display terminal, making

it more difficult for a mobile user to choose from several match results,

compared to a large PC screen (Peng et al., 2008). Accuracy and rele-

vance is important because the user is likely to want to act immediately

on match results;

2. Efficient / fast matching: the performance of the matching process

is a key consideration in mobile environments. A mobile user will often

require services related to a task that the user is currently undertaking
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or about to undertake (i.e. the user will act on the results immediately).

In addition, mobile environments are extremely dynamic, implying there

are many factors and events which may easily draw the user’s attention

away from the mobile device. Roto and Oulasvirta (2005) suggests that

mobile users generally have a tolerance of 5 to 15 seconds in response

time.

Improved accuracy with respect to matching can be best achieved using

semantic languages (Thanh and Jorstad, 2005) such as the Web Ontology

Language (OWL)4 to describe user requests and services. This enables the

accurate selection of a service from potentially, many services available, de-

pending on which service best suits the user’s requirements (Trastour et al.,

2001). However, the use of semantics requires the deployment of semantic

reasoners which are considerably resource intensive (Zacharias et al., 2007).

For instance, Zoric et al. (2007b) found that matching with the assistance of

a reasoner is 3-4 times more time consuming than without a reasoner in desk-

top environments. This has prevented the use of semantic processing on small

resource constrained devices. Therefore, the main focus of this thesis is to

propose and develop strategies for light-weight and resource-adaptive seman-

tic inference, such that the requirements of performance / response time needs

of mobile services users, is underpinned by accurate matching.

This chapter presents a review of service matching approaches for mobile

environments. The chapter is organised as follows: Section 2.2 outlines mech-

anisms which are used for matching requests with service descriptions ranging

from keyword / interface matching to semantic based matching. In Section 2.3

we detail reasoning approaches which are used for semantic inference proving

/ matching. In Section 2.4 we review current matching approaches for mobile

environments and categorise these based on their support for semantics and

on-board mobile matching. Finally, in Section 2.5 we summarise the chapter.
4http://www.w3.org/TR/owl-features/ (accessed May 2009)
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2.2 Services Matching Mechanisms

In this section we will provide an overview of semantic approaches for matching.

In Section 2.2.1 we will provide an overview of the Semantic Web languages.

Then in Section 2.2.2 we will provide an overview of the approaches used to

describe Web Services semantically using these Semantic Web languages.

2.2.1 Semantic Web

As discussed in the previous section, a mechanism is required to select a service

from the available pool of potentially many services, by matching these with

the requirements of the user. Typical mechanisms for achieving this involves

using string based keywords or key and value pairs, to compare services against

requests (Raman et al., 1999). For example, a user specifies a request as a set

of keywords or phrase which is then matched to keywords about a service using

string comparison. This can produce inaccurate results due to the existence

of synonyms and homonyms (Bernstein and Klein, 2002). It is challenging for

a matching mechanism to completely and always understand the user’s real

intent with keyword input. A single word often has several meanings depending

on the context in which the word is used (Peng et al., 2008).

Another typical mechanism matches services by interface, also known as

table based matching (Bernstein and Klein, 2002). Moreover, a user request

is defined in terms of required inputs and outputs of a service and the data

types of each. For instance, with respect to Web Services, the Web Service

Description Language (WSDL)5 is used to describe the inputs and outputs of

a Web Service using XML data types. These inputs and outputs can be used

as part of the matching process to match service capabilities / functionality

with a user request. These approaches are generally useful when the user

has previous knowledge of the service and wishes to discover which device the

service is located on, in order to connect to it. However, in extremely dynamic
5http://www.w3.org/TR/wsdl (accessed May 2009)
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environments where the user is unlikely to have used the service previously,

interface based matching does little to improve accuracy over keyword based

approaches because it does not capture what information is expected by inputs

or provided by outputs beyond data type. For instance, an input which has a

string data type does not reveal much about service functionality. In addition,

services with different goals may share similar service interfaces (Bernstein and

Klein, 2002).

Semantic Web (SW) languages provide a more declarative mechanism for

describing services in terms of their functionality and behaviour using seman-

tics. Improved accuracy for service matching with user requests can, therefore,

be achieved by adopting a semantic language to describe services and user re-

quests (Abramowicz et al., 2008; Bernstein and Klein, 2002). The Semantic

Web6 (Sheth et al., 2005) is designed to support the classification of data for

machine processing (Palmer, 2001) and has been supported by many indus-

try partners including Sun Microsystems, Hewlett Packard, IBM and Nokia7.

The first semantic language was the XML based Resource Description Frame-

work (RDF)8 language which classifies data into a graph structure of nodes

and relations. The Web Ontology Language (OWL)9 was built on RDF to

provide increased expressiveness and definition of constraints. An OWL doc-

ument is called an ontology (Singh and Huhns, 2005). Ontologies can be used

by software applications to infer new information from existing data (Palmer,

2001) which may have extended relationships across many ontologies. The

OWL language provides three sublanguages, each with increasing expressive-

ness: OWL-Lite, OWL-DL and OWL-Full, respectively. OWL-Lite enables

the classification of a hierarchy and supports simple constraints (e.g. cardinal-

ity constraints of 0 and 1 only). OWL-Lite is the least expressive of the OWL

languages and it is easier to provide tool / application support for OWL-Lite
6http://www.w3.org/2001/sw (accessed May 2009)
7http://www.w3.org/2004/01/sws-testimonial (accessed May 2009)
8http://www.w3.org/RDF/ (accessed May 2009)
9http://www.w3.org/2004/OWL (accessed May 2009)
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than for the other OWL sublanguages and computations using OWL-Lite are

more efficient. OWL-DL corresponds to Description Logic (DL) (Baader et al.,

2005) and “offers the maximum expressiveness while retaining computational

completeness (all conclusions are guaranteed to be computable) and decid-

ability (all computations will finish in finite time)” (W3C, 2004). Moreover,

OWL-DL is more expressive than OWL-Lite and tools / applications can still

complete computations for every feature of OWL-DL. Finally, OWL-Full offers

the maximum level of expressiveness but has no computational guarantees. In

other words, it is possible to create definitions using OWL-Full which software

applications cannot compute a result about (W3C, 2004). Each sublanguage

is an extension of its simpler predecessor (e.g. OWL-DL is an extension of

OWL-Lite).

The question that arises is that given ontological descriptions of services

and requests, how can this information be leveraged to perform matching. The

simplest approach is to use an ontology as a mechanism for classification of

terms to create a taxonomy. Examples of such taxonomies include WordNet10,

OpenCyc11, DOLCE12 and SUMO13. Ontology data can be queried using the

Semantic Protocol and RDF Query Language (SPARQL)14 as proposed in

Bernstein and Klein (2002). Another approach is to compare terms in an

ontology using distance metrics such as edge counting (Jiang and Conrath,

1997; Resnik, 1999) or probabilistic models (Lin, 1998) as proposed in Doulk-

eridis and Vazirgiannis (2008); and Hliaoutakis et al. (2006). These approaches

are extremely efficient to compute a result, however, they do not take com-

plex constraints into consideration which can be used to infer new information

(Bernstein and Klein, 2002).
10http://wordnet.princeton.edu/perl/webwn (accessed May 2009)
11http://www.opencyc.org (accessed May 2009)
12http://www.loa-cnr.it/DOLCE.html (accessed May 2009)
13http://www.ontologyportal.org (accessed May 2009)
14http://www.w3.org/TR/rdf-sparql-query (accessed May 2009)
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Alternatively, software applications can be used to make inferences using

semantic knowledge. These are called semantic inference provers or semantic

reasoners (Baader et al., 2003, p. 20). An inference is the act of deriving

new information from the facts which are explicitly defined (Palmer, 2001).

This involves checking whether a particular graph of data meets a certain con-

straint definition. Most current OWL reasoners support OWL-DL, including

the open source and commercial semantic reasoners such as Pellet15, KAON216,

FaCT++17 or RacerPro18. Semantic reasoners are required in order to make

effective use of the full expressiveness supported by OWL-DL (Baader et al.,

2005). Therefore, in order to provide mobile users with accurate service match-

ing our thesis will focus on describing services using OWL-DL and develop an

efficient semantic reasoner to perform inference based matching on a mobile

device.

In the next section we will provide an overview of frameworks which are

designed specifically for describing Web Services using semantics.

2.2.2 Semantic Web Services

In terms of matching user requests against service descriptions, there are a

number of languages which are designed specifically for describing services

using semantics. One approach is to use OWL Services (OWL-S) (McIlraith

et al., 2001) upper ontologies which have been designed for describing services

using OWL. OWL-S can be used to describe a service at three different levels:

• Service Profile: which uses semantic concepts to describe a service

in terms of its type, its functional properties including inputs, outputs,

preconditions and results (IOPRs) and non-functional properties such as

quality of service;
15http://clarkparsia.com/pellet (accessed May 2009)
16http://kaon2.semanticweb.org (accessed May 2009)
17http://owl.man.ac.uk/factplusplus (accessed May 2009)
18http://www.racer-systems.com (accessed May 2009)
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• Service Model: which is used to compose several services into larger

composite services and processes;

• Service Grounding: which is used to bind the semantic service profile

to an actual concrete, invokable Web Service.

An alternative approach for describing services is the Web Service Mod-

elling Ontology (WSMO)19, which provides the Web Service Modelling Frame-

work (WSMF) (Fensel and Bussler, 2002) comprising four main elements:

• Ontologies: which is used to describe the terminology used by the

Goals, Web Service Descriptions and Mediators;

• Goals: which is used to define problems which the Web Service solves

or define user objectives that a potential service should solve;

• Web Service Descriptions: which is used to define the semantic de-

scription of the Web Service

• Mediators: which is used to define the logic expressions and rules to

handle interoperability such as connecting different concepts in the On-

tologies, different Goals, different Web Services Descriptions and Goals

to Web Service Descriptions.

Another alternative for describing services is to use the WSDL-S20 lan-

guage. It is designed as a light-weight approach, adding semantic annotations

to properties such as inputs and outputs of a Web Service, described in its

WSDL document. Thus WSDL-S is focused on describing a service as an

operation.

Services can also be described using the Semantic Web Services Framework

(SWSF) which is made up of the Semantic Web Services Language (SWSL) and

the Semantic Web Services Ontology (SWSO). This framework is concerned
19http://www.wsmo.org (accessed May 2009)
20http://www.w3.org/Submission/WSDL-S (accessed May 2009)
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with the specification of a Web Service using First Order Logic (FOL) and

rules based on the logic programming paradigm. Like OWL-S, it provides a

Service Profile, Process Model and Grounding.

The Semantic Annotations for WSDL (SAWSDL)21 describes services by

extending WSDL to support semantic annotations, using any semantic lan-

guage. Unlike WSDL-S, it does not address service annotations to service

implementations including bindings, services and end-points.

The various Semantic Web Services (SWS) frameworks described in this

section are designed for describing an actual invokable service. These ap-

proaches generally describe a service as a set of constraints which can be used

to specify service types, inputs and outputs. Some of these frameworks also

make use of the First Order Logic (FOL) based languages such as Semantic

Web Rule Language (SWRL)22 to specify the preconditions and effects of ser-

vices. Our research is focused on OWL constraint matching, and rule languages

are not the focus of our research. In addition, while we focus on constraint

matching in OWL to match user requests against service descriptions, we do

not restrict our approach to only matching of SWS service descriptions such

as OWL-S profiles, which are designed to represent only concrete invokable

services. Though this kind of matching is supported by our approach, we also

wish to support semantic matching of service descriptions beyond those that

are invocable (e.g. goods in a supermarket). To illustrate further, a mobile

user may wish to locate a shopping centre which has a children’s playground

for his/her child to play on while he/she shops. This is not a Web Service but

a “real world” centre. It is conceivable that such descriptions with the most

up-to-date content can be easily delivered to mobile devices via network com-

munications such as short range bluetooth or WiF, as previously described in

Chapter 1. Therefore, our approach aims to support a broad range of semantic

matching.
21http://www.w3.org/2002/ws/sawsdl (accessed May 2009)
22http://www.w3.org/Submission/SWRL/ (accessed May 2009)
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In this section, we have identified the need to support semantic matching

using OWL-DL (Baader et al., 2005) descriptions, in order to achieve a high

level of accuracy in matching. However, a decision procedure / inference proof

algorithm is required to use these languages in order to prove or disprove

inferences about knowledge, described using OWL-DL. These algorithms are

implemented in applications known as reasoners. We now provide an overview

of reasoning approaches using semantics in the following section.

2.3 Reasoning Approaches

In this section we will provide an overview of different reasoning algorithms

and associated logics used to prove or disprove inferences.

Propositional logic (O’Donnel et al., 2006, p. 109) allows the specification

of truth toward certain objects or combinations of objects. For instance, using

propositional logic, it is possible to write a statement defining that a vehicle is

a car or truck. First Order Logic (FOL) (Galton, 1990; Kelly, 1997) extends

propositional logic, to add relationships between objects, which are also called

nodes in FOL, and adds the ability to define quantified constraints over these

relationships. In FOL a relationship, which is also known as a predicate (Kelly,

1997), can have any number of arguments. For instance, using FOL it is

possible to write a sentence defining that a car is something that has doors

and four wheels. FOL is an undecidable logic (Church, 1936), meaning that a

solution cannot always be found.

Due to the fact that FOL is undecidable, some decidable subsets have been

identified. One such subset is known as Description Logic (DL) (Baader et al.,

2003) which supports sound and complete reasoning. DL restricts predicates

(known as roles in DL (Baader et al., 2003)) to atomic unary predicates only

(i.e. they can only have one argument) (Kelly, 1997). DL can have vari-

ous levels of expressiveness, using the informal naming convention as follows.

The most basic possible level is called Attributive Language AL. This basic
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language supports atomic concepts, negation, intersection, universal quantifi-

cation and limited existential quantification. Other constructors can be added

for extra expressiveness including U union, E full existential quantification,

N number restrictions and C compliment (negation). The level of expressive-

ness supported is written using the notation: AL[U ][E ][N ][C]. As described

previously in Section 2.2.1, OWL-DL is based on Description Logic (DL).

The Semantic Web languages are inspired by DL. OWL-DL version 1.123 is

equivalent to DL SHOIN (D), which is an alternative naming convention. In

SHOIN (D), S is an abbreviation for ALC, with role transitivity, H role hi-

erarchy (subsumption), O nominals (value restrictions), I inverse roles, N
(unqualified) number restrictions and (D) datatype properties containing data

values (literals) and data types. OWL 2.024 which was made a WC325 recom-

mendation in November 2009, supports DL SHOIQ which adds Q qualified

number restrictions.

Since Description Logic is decidable, there are a number of reasoners which

support DL inference. Early reasoners, which were based on structural DL

subsumption algorithms, were efficient (Borgida and Patel-Schneider, 1994;

Heinsohn et al., 1994) but incomplete (Baader et al., 2003, p. 80) and could

not handle arbitrary knowledge such as ontologies (Doyle and Patil, 1991).

This was because they compared the syntactic structure of two concepts rather

than providing a resolution based decision proof to compare the semantic in-

terpretation of these concepts. Examples of structural provers include Classic

(Patel-Schneider et al., 1991), Loom (MacGregor, 1991) and Grail (Rector

et al., 1997). Alternatively, complete and sound inferences can be achieved

using the Tableaux (Calvanese et al., 2001; Horrocks and Sattler, 2007) deci-

sion resolution procedure, which takes account of semantic interpretation. It
23http://www.w3.org/TR/2004/REC-owl-features-20040210/ (accessed May 2009
24http://www.w3.org/TR/owl2-overview/ (accessed February 2010)
25http://www.w3.org/ (accessed February 2010)
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attempts to prove an inference by refuting it and demonstrating that a con-

sistent interpretation of the logic can no longer be generated. The Tableaux

algorithm “has dominated recent DL research” (Baader et al., 2003, p. 322)

because it has desirable properties of soundness (Hollunder et al., 1990) and

completeness (Baader et al., 2003, p. 87), it ensures termination (Baader and

Hanschke, 1991; Buchheit et al., 1993; Sattler, 1996) with an arbitrary set of

ontologies, and is an efficient resolution procedure (Hollunder et al., 1990).

It is efficient because it minimises the amount of space used by utilising an

expansion tree and employs various optimisation strategies (Tsarkov et al.,

2007; Horrocks and Patel-Schneider, 1999). Tableaux is implemented widely

in many semantic reasoners such as Pellet26, FaCT++27, RacerPro28.

Another known FOL subset which makes DL decidable are Horn clauses

(Horn, 1951). FOL Horn clauses are rule based approaches also known as

logic programs, which differ from DL constraint resolution which is used with

OWL-DL (Grosof et al., 2003). DL constraint resolution is concerned with

determining whether there is an inferred relationship between class concept

definitions and whether a node is a type of a particular class. Conversely, rule

based approaches such as FOL Horn, allow the specification of rules which sug-

gest that some goal or conclusion is true if the rule conditions are met. The

Semantic Web Rule Language (SRWL)29 is a rule language for the Semantic

Web. These FOL reasoners implement one of two kinds decision resolution pro-

cedures known as either backward chaining or forward chaining. In backward

chaining (Smith et al., 1986) the reasoner is asked if a particular goal is true,

and constructs a backtracking proof tree to check each condition of the goal.

Prolog30 and Lisp (Steele, 1990) are examples of backward chaining reasoners.

In forward chaining, rules are specified and if the conditions of any rule are
26http://clarkparsia.com/pellet (accessed May 2009)
27http://owl.man.ac.uk/factplusplus (accessed May 2009)
28http://www.racer-systems.com (accessed May 2009)
29http://www.w3.org/Submission/SWRL/ (accessed May 2009)
30http://www.swi-prolog.org (accessed May 2009)
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met, a fact is either added or removed from the knowledge base. The RETE

(Forgy, 1982) algorithm is generally used as the forward chaining inference

proof. Jess31 and Clips32 are examples of forward chaining reasoners which

use RETE. More recently, with the development of the Semantic Web, some

Semantic Web reasoners support Horn FOL reasoning. The Jena33 RDF infer-

ence prover supports both forward and backward chaining using its own rule

language. In addition, both Pellet34 and KAON235 support forward chain-

ing using the SWRL language using RETE, in addition to OWL constraint

inference resolution.

Datalog (Ceri et al., 1989) has been used as a DL decision resolution proce-

dure (Hustadt et al., 2007) for OWL-DL. Datalog is a forward chaining query

and rule language for deductive databases that syntactically is a subset of

Prolog. It is a query language for relationship databases based on first-order

logic (Ajtai, 1989). Datalog supports Horn clause logic and is a simplified

version of general Logic Programming (LP) (Lloyd, 1987). Datalog employs

strategies for efficient reasoning when querying large scale database data since

Prolog36 is a Horn clause reasoner, which we will discuss later in this section.

KAON237 (Hustadt et al., 2004) is an OWL-DL reasoner which reduces rea-

soning tasks to a disjunctive Datalog (Eiter et al., 1997) program. This allows

for the application of disjunctive database techniques and optimisations to DL

reasoning.

As described in Section 2.2.2 some Semantic Web Service approaches,

utilise rules for expressing the preconditions and effects of a particular Web

Service. Rules are supported as an addition to the support for DL constraint

based matching which determines whether a particular node in an ontology
31http://www.jessrules.com (accessed May 2009)
32http://clipsrules.sourceforge.net/ (accessed May 2009)
33http://jena.sourceforge.net/ (accessed May 2009)
34http://clarkparsia.com/pellet/ (accessed May 2009)
35http://kaon2.semanticweb.org/ (accessed May 2009)
36http://www.swi-prolog.org (accessed May 2009)
37http://kaon2.semanticweb.org (accessed May 2009)
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meets the constraints specified in a class concept definition. As stated in Sec-

tion 2.2.1, in this thesis we are addressing the need to support DL constraint

resolution on-board small mobile devices, to support a broad range of service

matching, rather than rule resolution. In terms of DL resolution, the Tableaux

algorithm is the most commonly used decision procedure (Baader et al., 2003,

p. 322) used by open source and commercial reasoners including Pellet, Rac-

erPro and FaCT++. However, as discussed Section 1.2, despite its efficiency,

the Tableaux algorithm is considerably resource intensive (Zacharias et al.,

2007; Fensel et al., 2008). Therefore, the Tableaux algorithm in its current op-

erational state does not scale to small resource constrained mobile devices as

we determined through our preliminary testing / evaluation (see Figure 1.2 in

Section 1.2). While accuracy and completeness of results is an important con-

sideration to reasoners, performance efficiency is equally important in mobile

environments.

Having discussed the different logics and reasoning approaches, in the next

section, we will provide an overview of the current techniques used for service

matching.

2.4 Semantic Service Matching in Mobile En-

vironments

In this section we describe current techniques which support service matching.

We will categorise these techniques in terms of whether they support se-

mantic matching for greater accuracy / reliability over simple matching such as

keyword based approaches and whether they support efficient / fast matching

deployable on a small resource constrained mobile device or require a static

/ high-end server based node to perform matching. These approaches can be

categorised using the taxonomy presented in Figure 2.1.
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Figure 2.1: Categorisation of current matching approaches

As shown on the left vs the right side of this figure, matching approaches

generally utilise either keyword / interface based matching mechanisms or se-

mantic inference based matching which implies the use of a semantic language

such as those presented in Section 2.2.1 and a reasoner to make inferences on

the semantics. As we discussed Section 2.2.1, semantic inference matching is

more accurate than simple keyword or interface matching. In addition, we cat-

egorise each of these approaches into those where the matching is completed

using:

1. a remote / external server, which performs matching on behalf of the

resource constrained device. Typically these are centralised statically

deployed servers. This may also include desktop PCs or laptops;

2. an on-board a mobile device, which are typically resource constrained;

3. a hybrid approach, which typically requires that processing is pre-emptively

completed on a high-performance machine before matching can then take

place on a resource-constrained mobile node.
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The focus of this dissertation is to support semantic matching on-board a

mobile device, which is highlighted in Figure 2.1. We will now describe current

service matching techniques according to the categories presented in the figure.

2.4.1 Keyword / Interface Matching Using Remote Ser-

vers

Early architectures for service matching which use keyword / interface match-

ing include Jini (Arnold et al., 1999; Helal, 2002); Service Location Protocol

(SLP) (Guttman, 1999; Helal, 2002), Salutation (Helal, 2002), UDDI38 and

LDAP (Howes and Smith, 1995). These architectures support string-based

key and attribute matching only, and operate using a static centralised direc-

tory node to perform matching.

2.4.2 Keyword / Interface Matching On-board a Mobile

Device

There are various approaches (Su and Guo, 2008) which support simple match-

ing which can be deployed on-board a mobile device in a distributed environ-

ment. Service Location Protocol (SLP) (Guttman, 1999; Helal, 2002), and

Salutation (Helal, 2002) can also operate in a peer-to-peer (P2P) environment

without a static node. UPnP39 (Helal, 2002) operates in a peer-to-peer envi-

ronment and supports keyword matching.

Ratsimor et al. (2002); Koodli and Perkins (2002); and Ververidis and

Polyzos (2005) simply compare services based on a Universal Unique Identifier

(UUID) assigned to them. Shim et al. (2009); and Liang et al. (2007) convert

service descriptions into a 128-bit integer using a hash function and compare

these integers for service matching. Islam and Shaikh (2008) match using

service name and type. Konark (Lee et al., 2003) utilises keywords and a Web
38http://uddi.xml.org/ (accessed May 2009)
39http://www.upnp.org/ (accessed May 2009)
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Service Description Language (WSDL) defined service interface for matching.

SSD (Sailhan and Issarny, 2005) also performs string and WSDL interface

matching along with Quality of Service (QoS) metrics. Blefari-Melazzi et al.

(2007) compares WSDL interfaces and the required device capabilities of the

service. LSD (Li and Lamont, 2005) compares services based on location using

a native Service Location Extension (SLE) message.

Srirama et al. (2008) performs matching based on keywords and categori-

sations similar to UDDI, including the North American Industry Classification

System (NAICS) and United Nations Standard Products and Services Code

(UNSPSC). PDP (Campo et al., 2006) associates each service with a type,

defined in a native classification hierarchy and matches based on these types.

The benefit of these approaches is that no static or remote infrastructure is

required. The matching process occurs on-board the mobile devices themselves

and uses the information gathered from other devices within network range.

The disadvantage is that these approaches do not support semantic reasoning

which is more accurate than keyword / interface based matching.

In the next section we will discuss semantically driven approaches which

utilise reasoners to perform semantic inferences while matching.

2.4.3 Semantic Inference and Matching Using a Remote

Server

There are a number of early approaches that support semantics but typically

either require a static or remote, high-performance server to perform the in-

ference matching and are, therefore, not suited for on-board mobile matching.

CoBrA (Chen et al., 2004) was one of the early middleware architectures

which utilises semantics and context to reason about users and situations in

smart ubiquitous spaces on a static node. The Task Computing Project (TCP)

(Masuoka et al., 2003) utilises OWL-S for modelling services for smart meeting

room scenarios. Integrated Global Pervasive Computing Framework (IGPCF)
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(Singh et al., 2005) offers web service discovery using semantics on the web

but assumes that pervasive users are permanently connected to the Internet.

Luo et al. (2005, 2006) adds OWL-S descriptions to the UDDI service reg-

istry which performs inferences when a service description is published to it.

DReggie Chakraborty et al. (2001) extends Jini to support semantic match-

ing using Prolog40 for reasoning. LARKS (Sycara et al., 2002) is designed to

match service descriptions with requests, using its own semantic description

language. This approach uses matching mechanisms ranging from keyword

matching through to distance based ontology comparisons and logic rule con-

straint evaluations. The matching mechanism used will depend on the level of

accuracy required.

The CMU Matchmaker (Srinivasan et al., 2005) provides inference based

reasoning to compare OWL-S service profiles with requests, which can be

stored in a back-end UDDI registry. Matching is based on service type and

the inputs and outputs of the service, using RacerPro41 to perform inferences.

Bener et al. (2009) proposes a matchmaking algorithm which also takes pre-

conditions and effects into consideration using SWRL. Stuckenschmidt and

Kolb (2008) defines a reasoning approach which supports partial matching of

services against requests where there is insufficient time to complete the full

matching process. However, this is achieved by reducing the number of condi-

tions in the request. Matching is still performed on a standard reasoner such

as Pellet.

Semantic Web Engineering - Environment and Tools (SWE-ET) (Bram-

billa et al., 2006) combines the CEFREIEL Glue42 discovery engine with the

WebRatio43 framework to support WSMO Semantic Web Service discovery.

The SWE-ET supports semantic reasoning using F-logic (Kifer et al., 1995)
40http://www.swi-prolog.org/ (accessed May 2009)
41http://www.racer-systems.com (accessed May 2009)
42http://glue.cefriel.it (accessed May 2009)
43http://www.webratio.com (accessed May 2009)
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supported by Flora-2844 with the XSB inference engine45 based on Prolog,

which offers flexibility to handle a wide range of scenarios. The Internet Rea-

soning Service (IRS)-III 46 (Domingue et al., 2008) is a Semantic Web Service

broker and reasoning environment which is again based on WSMO but has

the added functionality of importing OWL ontologies. The brokering server

runs a HTTP Lisp reasoner (Riva and Ramoni, 1996) and utilises both forward

and backward chaining rules. DIANE47 (Kuster and König-Ries, 2008) is an

environment for automated service discovery and matching which uses its own

service profile language to describe a service as a set of effects. It supports a

subset of logic without any rules or quantifiers and provides “fuzzy” matching

of conditions in the user request against the service description, to provide

ranked service results.

There are also architectures which have been designed specifically for mo-

bile clients, but require a remote server to perform matching. Broens et al.

(2004); and Doulkeridis and Vazirgiannis (2008) utilise semi-OWL and RDF

documents to express service descriptions and perform matching on a cen-

tralised server repository such as UDDI48 or ebXML49. Baousis et al. (2008);

de Andrade et al. (2007); and Chen et al. (2006), support matching of mobile

services, but rely on the CMU matchmaker (Srinivasan et al., 2005) described

earlier in this section, which uses a UDDI server back-end. Jeon et al. (2008)

matches semantically described personal preferences using OWL and SWRL

roles on an external server. Suraci et al. (2007); and Srirama et al. (2007) sup-

port OWL-S service matching on a high-end node. Bianchini et al. (2006) is an

approach which provides UDDI based matchmaking of semantically described

services in a mobile environment based on location and device capabilities.
44http://flora.sourceforge.net (accessed May 2009)
45http://xsb.sourceforge.net (accessed May 2009)
46http://technologies.kmi.open.ac.uk/irs/ (accessed May 2009)
47http://hnsp.inf-bb.uni-jena.de/DIANE (accessed May 2009)
48uddi.xml.org (accessed May 2009)
49http://www.ebxml.org (accessed May 2009)



CHAPTER 2. SERVICE MATCHING IN MOBILE ENVIRONMENTS 34

Veijalainen et al. (2006) performs mobile semantic service matching. How-

ever, matching was performed on laptops which are not resource constrained

(as opposed to PDAs / mobile phones). Wang and Hu (2008) is a P2P se-

mantic OWL-S matching architecture which attempts to reduce the number

of inference checks required, by performing an initial keyword search to limit

the number of services which are semantically matched. Niazi and Mahmoud

(2009); Wolowski et al. (2007); Zoric et al. (2007a); El-Sayed and Black (2006);

Almeida et al. (2006); and Sycara et al. (2002) matches services described in

OWL using the Jena50 forward chaining inference engine. Peng et al. (2008)

delegates OWL service matching to a resource capable machine and uses Rac-

erPro51 to perform all reasoning. AIDAS (Toninelli et al., 2008) performs

matching of mobile user preferences and device capabilities for services using

the Pellet reasoner. Gaia (Ranganathan and Campbell, 2003) is a semanti-

cally driven context mobile middleware which performs matching utilising the

FaCT++52 reasoner. Patel and Chaudhary (2009); De and Moessner (2008);

and Wei et al. (2008) support semantic queries and matching by making use

of Jess53 which is a forward chaining First Order Logic (FOL) reasoner.

Agostini et al. (2007); Mokhtar et al. (2008); and Bouillet et al. (2008)

perform all inferences offline on a high-performance server, before matching

is later completed on-board a resource constrained device. These approaches

can be considered hybrids, but since they require a high-performance server,

we have listed them in this section.

All of the semantically driven approaches described in this section have

been shown to operate on a high-performance machine or require such a ma-

chine to perform pre-processing before the matching occurs. Most of the ap-

proaches utilised a reasoner such as the Jena inference prover, Jess, RacerPro,

FaCT++, Pellet, Prolog or Lisp. The use of these reasoners is typically a
50http://jena.sourceforge.net/ (accessed May 2009)
51http://www.racer-systems.com/ (accessed May 2009)
52http://owl.man.ac.uk/factplusplus/ (accessed May 2009)
53http://www.jessrules.com/ (accessed May 2009)
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resource intensive operation. More recently, the HermiT54 (Motik et al., 2009)

reasoner has been developed to provide more optimised Tableaux semantic DL

reasoning using OWL. However, like other similar reasoners such as RacerPro,

FaCT++ and Pellet, HermiT has been developed for the desktop / server envi-

ronment. None of the approaches described in this section performed semantic

inference matching on-board a resource constrained mobile device.

2.4.4 Semantic Inference and Matching On-board a Mo-

bile Device

In this section we review matching approaches which both support semantics

and operate using a mobile device. Chakraborty et al. (2006); Nedos et al.

(2006) are approaches which match services based on semantic service types

defined in a hierarchy. However these approaches use explicit subclass rela-

tions only (such as OWL-Lite) and do not support semantic reasoning and

inference proof. As we described in Section 2.3, semantic reasoners are soft-

ware applications which implement a decision procedure to determine whether

or not a semantically described service matches a user request. In the context

of mobile users, the semantic matching which aims to enhance accuracy must

be supplemented by fast response times as well. As we described in Section

1.2, current open source and commercial reasoners such as Pellet55, KAON256,

FaCT++57 or RacerPro58 are considerably resource intensive (Zacharias et al.,

2007; Zoric et al., 2007b) and thus cannot function on small resource con-

strained devices. This was illustrated previously in Figure 1.2 in Section 1.2,

where we attempted to perform matching of a user request to locate a printer

against a semantic service description, using the standard Pellet reasoner on
54http://hermit-reasoner.com/ (accessed May 2009)
55http://clarkparsia.com/pellet (accessed May 2009)
56http://kaon2.semanticweb.org (accessed May 2009)
57http://owl.man.ac.uk/factplusplus (accessed May 2009)
58http://www.racer-systems.com (accessed May 2009)
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a HP iPAQ PDA. The matching process failed to complete because there was

insufficient memory available.

These issues of resource constraints have motivated an emerging body of re-

search in developing reasoners for mobile devices. Therefore, we review mobile

reasoning approaches which are used for matching a semantically described

service with a user request.

Kleemann and Sinner (2006) is an approach to service matching which uses

KRHyper (Kleemann, 2006), which is a novel Tableaux reasoner for First Or-

der Logic (FOL) for deployment on resource constrained devices. In order to

use DL with KRHyper it must be transformed into a set of disjunctive first or-

der logic clauses. It implements the standard Tableaux optimisation strategies

of backjumping, semantic branching, Boolean constraint propagation, lazy un-

folding and absorption (Tsarkov et al., 2007), used by today’s commercial and

open source reasoners. Performance comparisons show that KRHyper provides

performance which is compariable to RacerPro59 but tends to provide the same

or better response time for test cases which contained 10 or fewer subsump-

tion checks, and did not perform as well for larger tests (Kleemann, 2006). All

tests had short branch sizes with less than 25 Tableaux proof steps, because

the test ontology was not deeply nested. KRHyper still exhausts all memory

when the reasoning task becomes too large for a small device to handle and

fails to provide any result.

Ruta et al. (2008a,b) supports distance based, ranked, matching of requests

to services using a DL mobile reasoner implemented in Java 2 Micro Edition

(J2ME)60 which supports short range (bluetooth) ad-hoc networks. It achieves

acceptable performance by restricting the OWL-DL language to a subset. Ad-

ditionally, the ontology structure is constrained so that it can be reduced to

set comparisons in order to downscale the computational demand of inference

algorithms to meet the capabilities of handheld computing devices.
59http://www.racer-systems.com (accessed May 2009)
60http://java.sun.com/javame/index.jsp (accessed May 2010)
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Gu et al. (2007) is a framework which provides an RDF/OWL parser, rea-

soner and sRDQL query engine for information matching such as a shopping

assistance application which uses a user’s context to provide suggestions to

the user about products which may suit their needs based on previous us-

age patterns. This framework runs on the user’s mobile device using J2ME.

This framework provides acceptable performance by supporting a subset of

the OWL language known as OWL-Lite61 as mentioned in Section 2.2.1. The

reasoner in the framework uses a forward chaining (see Section 2.3) approach

which supports rule based reasoning, such as SWRL62. As mentioned in Sec-

tion 2.3, in this thesis we are addressing the need to support DL constraint

resolution on-board small mobile devices, to support a broad range of service

matching, rather than rule resolution.

As we outlined in Section 2.2 our main focus is on matching semantically

described service descriptions against user requests, using a mobile inference

prover / reasoner to provide a greater level of accuracy, compared to simple

matching techniques such as keyword or interface matching. There is a grow-

ing emphasis on this need which has given rise to several mobile reasoning

approaches. The main drawback of these approaches was that in the case of

Ruta et al. (2008a); and Gu et al. (2007), acceptable performance on a re-

source constrained mobile device was only achieved by restricting the OWL

language to a subset, to reduce the resource demands on the device, such as

proposed in Hitzler and Vrandecic (2005). KRHyper support the full range

of OWL-DL constructs and provides accurate results. It does not introduce

new optimisation strategies beyond those implemented by current DL reason-

ers and is, therefore, prone to exhaustion of available memory when reasoning

with larger ontologies. Therefore, the above approaches for mobile semantic

reasoning either:
61http://www.w3.org/TR/owl-features/ (accessed May 2009)
62http://www.w3.org/Submission/SWRL/ (accessed May 2009)
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1. use OWL-Lite or another subset of the OWL-DL language, thereby sup-

porting reduced expressiveness compared to OWL-DL;

2. use the standard Tableaux in a mobile setting, which still exhausts all

memory when reasoning with large ontologies.

However, reasoner support for OWL-DL achieves a greater level of match-

ing accuracy when compared to using subsets of OWL-DL, because these sub-

sets are less expressive. As such, there is a need for an OWL-DL reasoning

approach which is efficient / light-weight and therefore scalable for a mobile

device. While accuracy is important, efficiency must also be considered as

an important goal. Therefore, in the remainder of this thesis we propose and

develop optimisation strategies to provide more efficient reasoning for OWL-

DL on a mobile device without significantly reducing accuracy. In addition,

we propose and develop an adaptive inference strategy which takes account of

constraints such as user preferences, time and resources during the matching

process.

2.5 Summary

In this chapter we have reviewed various approaches for matching service de-

scriptions with user requests. Keyword and interface based matching are less

accurate when compared with semantic based approaches because it is very

difficult to capture the user’s intent using keywords. Alternatively, semantic

descriptions capture the functionality and behaviour of services using seman-

tics. OWL-DL63 is a semantic language which is based on Description Logic

(DL) and it provides the maximum expressiveness without losing computa-

tional completeness and decidability. Semantic reasoners allow new informa-

tion to be inferred from the semantic descriptions so that service descriptions

can be matched with user requests, even if these are described using a different
63http://www.w3.org/TR/owl-guide/ (accessed May 2009)
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syntax. However, semantic reasoning is considerably resource intensive and a

review of current techniques, which match user requests with services, has re-

vealed that current semantic matching techniques generally delegate matching

to a static / high-end server. There is an emerging body of research focusing

on the development of mobile reasoners. However, current mobile reasoners

either support only a subset of OWL-DL, such as OWL-Lite, thereby reduc-

ing expressiveness or exhaust the available memory when reasoning with large

ontologies. Thus, there is no reasoner which enables efficient / light-weight

reasoning on a mobile device for large ontologies while maintaining OWL-DL

expressiveness. Therefore, in this thesis will propose and develop strategies to:

• enable efficient / light-weight reasoning on a mobile device without sig-

nificantly reducing accuracy;

• support adaptive reasoning so that the reasoning process can be inter-

rupted based on user constraints such as available time or resources and

provide a match result based on the computations performed up to the

point of interruption.

In order to understand our strategies, we must first provide an overview of

the necessary background of Description Logic (DL) and the Tableaux infer-

ence proof, which our strategies are based on. We will present this overview

in the next chapter.



Chapter 3

Background

3.1 Introduction

As previously discussed in Section 1.3 we identified the need for efficient and

accurate mobile service selection, where matching occurs on-board a small re-

source constrained device. In order to achieve a high level of accuracy, services

and the user request they are matched against must be described semantically

(Bernstein and Klein, 2002) using a language such as Web Ontology Language

(OWL)1.

Service Matchmaker

Semantic 

Inference 

Prover

Matching 

Engine

User Request 

(OWL Ontology)

Advertisement 

Database 

(Ontology)

Service Description 

(OWL Ontologies)Context / 

Resource 

Discovery

Main focus of this dissertation

Figure 3.1: Generic Service Selection Model

Most semantic service matching architectures are a variation of the generic

matchmaker shown in Figure 3.1 which is adapted from Paolucci et al. (2002).
1http://www.w3.org/TR/owl-features (accessed May 2009)

40



CHAPTER 3. BACKGROUND 41

The Advertisement Database contains semantic service descriptions about ad-

vertised services. The Matching Engine coordinates the matching process. The

Semantic Inference Prover performs the actual match check. Generally, archi-

tectures utilise an existing semantic inference prover such as Pellet2, KAON23,

FaCT++4 or RacerPro5. Some architectures such as Doulkeridis and Vazir-

giannis (2008) also utilise context, such as user preferences and device capabil-

ities, as attributes during the matching process. These contextual attributes

are obtained by the Context / Resource Discovery module. The focus of our

contributions, outlined in this dissertation, is on the Semantic Inference Prover,

which is highlighted in yellow in the figure.

Figure 3.2 illustrates the interaction between the components of the service

selection process.

Semantic Inference Prover matches the user request against the 

current service description 

Check another service?
Yes

No

User submits request to Matching Engine

Matching Engine submits the user request and a service 

description from the Advertisement Database to the Semantic 

Inference Prover for matching

Report results to user

Main focus of this dissertation

Figure 3.2: Generic Service Selection Component Interaction
2http://clarkparsia.com/pellet (accessed May 2009)
3http://kaon2.semanticweb.org (accessed May 2009)
4http://owl.man.ac.uk/factplusplus (accessed May 2009)
5http://www.racer-systems.com (accessed May 2009)
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The matching process begins when the user submits a semantic request to

the matchmaker. The Matching Engine selects a service description from the

database of advertised service descriptions and submits this description to the

Semantic Inference Prover for matching against the request. The Semantic

Inference Prover will check whether a semantic correspondence exists between

the service description and the user request. After checking a particular ser-

vice description, the matching engine will also determine whether or not there

are more service description against the user request. Once all service descrip-

tions have been checked, a ranked set of results for each service description is

returned to the user.

In our approach, we propose that the Semantic Inference Prover will per-

form matching, taking into account the adequacy of the time / resources avail-

able to continue matching, before checking each user requirement / condition

in the request. This operation is presented in Figure 3.3, which illustrates the

sub-operations for the Semantic Inference Prover.

Semantic Inference Prover

Yes

Is there enough 

time / resources to 

continue matching the 

current service?

Check next request condition against current service 

No

Figure 3.3: Proposed Adaptive Inference Prover Process

Most current Semantic Inference Provers are based on the Tableaux de-

cision procedure decision proof which has “dominated DL research” (Baader

et al., 2003, p. 322). Tableaux is used to prove or disprove an inference. This

procedure constructs a search tree, in which inference matches are searched for.

As discussed in Chapter 1, although Tableaux is considered to be a relatively

efficient inference proof, current semantic reasoners are still far too resource
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intensive and scale poorly to small resource constrained devices (Zacharias

et al., 2007; Kleemann, 2006). These devices, typically lack sufficient memory

or processing capabilities to perform semantic matching.

Therefore, in this thesis we propose and develop cost efficient optimisa-

tion strategies for the widely used Tableaux algorithm (Baader et al., 2003, p.

322) for semantic reasoning, to enable it to operate effectively on a mobile de-

vice. Our proposed optimisation strategies form mobile Tableaux (mTableaux)

which enables mobile semantic reasoning on resource constrained devices. mTa-

bleaux is based on the premise that the constraint of completeness for reasoners

can be relaxed, to obtain considerable performance improvements, without sig-

nificantly reducing the validity of the inference process. In a mobile setting,

the need for correct information is important but it is equally necessary for

information to be provided with a quick response time. For instance studies

such as Roto and Oulasvirta (2005), have shown that the users’ attention shifts

elsewhere after 10-15 seconds because mobile environments are typically very

dynamic. Therefore, mTableaux enables mobile semantic reasoning by reduc-

ing completeness as a trade-off for efficiency. In addition, mobile users have

certain interests, habits and preferences which influence what they will do in

the future (Kurkovsky et al., 2005). This suggests that users may perform

requests which are similar to previous requests they have performed. Most

current semantic reasoners provide no persistent caching of previous inference

checks (Zacharias et al., 2007). Therefore, in mTableaux the results from pre-

vious requests are stored in a cache so that they can be reused when the user

performs similar requests in the future.

Finally, in order to provide a result, current reasoners must complete the

entire matching process in full, otherwise no result is provided. In addition,

they provide a result as either a successful or unsuccessful match, with no in-

termediate / incremental levels of matching. A “no match” result is provided

in the case that any request condition in the inference check fails, even if that



CHAPTER 3. BACKGROUND 44

particular requirement is not very important to the user. Therefore, to cater

for resources and user requirements, another significant contribution of our re-

search is to propose and develop an adaptive reasoning strategy, which enables

“anytime” matching which has the innovative capacity to provide incremental

matching of a request to a service, driven by constraints such as user prefer-

ences, time and availability of resources. Using our proposed approach, the

match result given to the user is based on the extent of the processing com-

pleted. This ensures that a result is provided, even if it is less accurate due to

there being insufficient time or resources available to complete the matching

process in full.

In this thesis, to enable mobile semantic reasoning we propose and develop

the following strategies:

Optimisation: This strategy aims to achieve improved computational perfor-

mance as a trade-off with completeness of the inference checking. While

accuracy is important, it is equally necessary in a mobile environment

for information to be provided with a quick response time. We hypothe-

sise that these strategies will provide significant performance gains while

maintaining a high degree of accuracy / validity;

Caching: This strategy enables caching which stores the results of previous

requests, so that these can be used in similar, future requests. Given the

growth of secondary storage media, we incorporate caching mechanisms

to semantic inference checks in order to improve response time;

Adaptive Inference: This strategy enables adaptive inference which sup-

ports incremental priority matching. Under this strategy an inference

check may be interrupted prematurely based on user constrained such as

insufficient resources or time available to continue matching. A weighted

degree of match is provided to the user based on the computations /

inference checks performed up to that point in time.
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This chapter and the thesis focuses on providing readers with the necessary

theoretical background for presenting the contributions of this research. This

chapter is included for the purposes of improving clarity and comprehensibility

of the main contributions of this research.

This chapter is organised as follows. Section 3.2 will provide an overview

of semantic inference provers. In Section 3.3 we will provide an overview of

relevant Description Logic (DL) notation. Section 3.4.2 details the Tableaux

algorithm and its transformation / expansion rules which are used for inference

proof. Section 3.5 details the process by which Tableaux transformation /

expansion rules are executed using a branching search tree control mechanism.

Our light-weight mTableaux optimisation and caching strategies apply to the

Tableaux algorithm’s transformation rules and will be outlined in Chapter 4.

Our adaptive inference strategy applies to the Tableaux search tree and will

be outlined in Chapter 5.

3.2 Semantic Inference Provers

The focus of this thesis is on semantic inference proof which is implemented

by semantic reasoners. Semantic reasoners utilise semantic languages to prove

or disprove a conjectured inference. Semantics can be represented using the

Web Ontology Language (OWL)6, which is serialised into Resource Description

Framework (RDF)7 documents represented in XML. The principle workflow

of the semantic inference process is shown in Figure 3.4. The steps given in

the figure are a generic representation and may differ depending on specific

reasoner implementations. For instance some reasoners may combine one or

more steps.

OWL ontologies which are stored as RDF/XML serialised files must be

parsed into main memory using an RDF/XML Parser. Examples of publicly
6http://www.w3.org/TR/owl-features (accessed May 2009)
7http://www.w3.org/RDF (accessed May 2009)
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OWL Reasoner

XML/RDF 

Parser
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Figure 3.4: Generic Semantic Reasoner Process

available RDF Parsers include the ARP RDF Parser provided with Jena8 and

the RDF Parser provided with OWL-API9. The parsed RDF documents are

stored in an OWL Repository, which allows the OWL constructs to be queried

from main memory. Jena and OWL-API both include OWL repositories in

their implementation. However, an OWL repository provides querying of ex-

plicit data only. Therefore, in order to draw new inferences from the data

it needs to be loaded into reasoner. The Reasoner Loader iterates through

all of the data contained in the OWL Repository and loads these into the

OWL Reasoner’s knowledge base. There are several different open source and

commercial reasoners which may be used to perform reasoning on ontologies

including Pellet10, KAON211, FaCT++12 and RacerPro13. Client interaction

with reasoners differ depending on the reasoner used. For instance, RacerPro is

designed for deployment on a server and interaction occurs over HTTP. Alter-

natively, Pellet allows client applications to interact with it directly using Java

API method calls and also supports server deployment like RacerPro. Each

reasoner is compatible with different XML/RDF Parsers and OWL Reposi-

tories, and contain their own Reasoner Loader components. Further details

about the Pellet implementation will be given in Section 6.2, as we use this
8http://jena.sourceforge.net (accessed May 2009)
9http://owlapi.sourceforge.net (accessed May 2009)

10http://clarkparsia.com/pellet (accessed May 2009)
11http://kaon2.semanticweb.org (accessed May 2009)
12http://owl.man.ac.uk/factplusplus (accessed May 2009)
13http://www.racer-systems.com (accessed May 2009)
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open source reasoner for the implementation and evaluation of our proposed

strategies.

As previously described in Section 2.2.1, the OWL language has three sub-

sets: OWL-Lite, OWL-DL and OWL-Full. OWL-DL is based on Description

Logic (DL) (Baader et al., 2005) and is the language subset which provides the

“maximum level of expressiveness while retaining computational completeness

and decidability, and can thus support accurate matching”(W3C, 2004). As

a result, most of the commercial and widely used semantic reasoners support

the OWL-DL language including Pellet, RacerPro and FaCT++. Thus, we

focus on OWL-DL expressiveness in this thesis.

In addition, the World Wide Web Consortium (W3C) provides Semantic

Web Services (SWS) also called OWL-S, which is specifically designed to de-

scribe Web Services (WS) (Martin et al., 2007). SWS is designed to facilitate

matching of a request for functionality with Web Service offers. These allow

a service provider or requester to describe a service or request using a pro-

file. This profile allows the specification of a service description or request

in terms of a set of service types, inputs, outputs, preconditions and effects.

Service types, inputs and outputs are described using OWL class concept defi-

nitions while preconditions and effects are described using rule languages such

as the Semantic Web Rule Language (SWRL)14. Our research is focused on

OWL matching, and therefore, relates to matching service types, inputs and

outputs. Rule languages are not the focus of our research.

In addition, while we focus on OWL matching, we do not restrict our

approach to only matching of SWS profiles, which represent concrete services

which can be invoked by remote requests over the Internet. While our approach

will support this kind of matching our aim is to support a broader range of

semantic matching. We wish to also support constraint based matching of
14http://www.w3.org/Submission/SWRL (accessed May 2009)
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OWL-DL service descriptions beyond those that are invokable (e.g. a search

for the location of a movie cinema).

In the next section we will provide an overview of the Description Logic

language, which OWL-DL is based upon (Baader et al., 2005).

3.3 Description Logic Language

In the following we provide an overview of the formal definitions for Description

Logic (DL) (Baader et al., 2003) since this is the logic language which OWL-

DL is based upon (Baader et al., 2005), as described in the previous section.

Furthermore, current Tableaux inference provers for the Semantic Web such

as Pellet, RacerPro and FaCT++, use OWL-DL. DL is a decidable subset of

First Order Predicate Logic (FOL), as described in Section 2.3. DL defines a

knowledge base K which comprises a set of triples as shown in Equation 3.1.

K = 〈C,R,X〉 (3.1)

In Equation 3.1, C is a set of class definitions, R is a set of role15 definitions

and X is a set of individuals16. A knowledge base K has two parts, a TBox T
which contains the terminological knowledge and an ABox A which contains

assertional knowledge. The TBox contains all class definitions C and the role

definitions R. Classes define sets of individuals with common characteristics.

Roles define the nature of relations between individuals. The ABox contains

all individual assertions X . An individual can be a member or instance of

classes and can have connections to other individuals using the roles defined in

the TBox. We provide an overview of formalised TBox knowledge (class and

role definitions), ABox knowledge (individuals) and the semantics associated

with this knowledge in the next subsections.
15A role can also be called a relation or property (Stuckenschmidt and Harmelen, 2002)
16An individual can also be called a node or an object (Stuckenschmidt and Harmelen,

2002)
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3.3.1 Terminological Knowledge (TBox)

Classes describe common properties of real world objects. They can be or-

ganised into super and subclass hierarchies in order to support abstraction as

defined in Definition 3.1, and they are contained in the TBox.

Definition 3.1. Class concepts can be defined in the TBox T using the form:

C1 v C2 where C1 and C2 are class concepts, that could be read C1 is a subclass

of C2.

Definition 3.1 is known as a general concept inclusion (GCI) axiom (Baader

et al., 2003, p. 18) and implies that C1 contains a subset of the individuals

contained in C2. A GCI is transitive, meaning that C1 v C2 and C2 v C3

implies C1 v C3. Class equivalence is captured by GCI axioms, such that

C1 v C2 and C2 v C1 implies C1 ≡ C2, which is read as C1 is equivalent to

C2. A formal definition will follow later in this section.

In order to define the formal semantics of class concepts, we consider an

interpretation I that consists of a non-empty set ∆I (the domain of the in-

terpretation) and an interpretation function, which assigns every atomic class

C a set CI ⊆ ∆I . An interpretation I satisfies TBox T iff CI1 ⊆ CI2 for each

C1 v C2 ∈ T where C1 and C2 are class concepts. Such an interpretation is

called a model I of T . A concept C is satisfiable with respect to T iff there

is a model I of T with CI 6= ∅ (Tsarkov and Horrocks, 2005). For instance,

Coffee v Beverage, implies that Coffee is interpreted to be a subset or equal to

Beverage.

The interpretation function is extended by DL constructors. The DL con-

structors available differ depending on the level of expressiveness supported by

a particular DL sub-language. For the purposes of this dissertation we con-

sider the DL SHOIN language because this is used by the OWL-DL version

1.1 standard17, which our proposed strategies are based upon. The SHOIN
17http://www.w3.org/TR/2004/REC-owl-features-20040210 (accessed May 2009)
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DL concept constructors (Baader and Sattler, 2001, p. 496) are defined in Ta-

ble 3.1 where I denotes an interpretation. The concept constructors, in Table

3.1, include top18, bottom19, negation20, conjunction21, disjunction22, universal

quantification23, existential quantification24 and unquantifed number restric-

tion which includes at-most25, at-least26 and exact27 number restrictions.

Name DL Syntax Semantics
Top >I ∆I
Bottom ⊥I ∅
Negation (¬C)I ∆I\CI
Conjunction (C1 u C2)I CI1 ∩ CI2
Disjunction (C1 t C2)I CI1 ∪ CI2
Univeral quant. (∀R.C)I {xr ∈ ∆I | ∀xp.(xr, xp) ∈ RI → xp ∈ CI}
Existential quant. (∃R.C)I {xr ∈ ∆I | ∃xp.(xr, xp) ∈ RI ∧ xp ∈ CI}
At-most (≤ nR)I {xr ∈ ∆I

∣∣∣|{xp ∈ ∆I |(xr, xp) ∈ RI}| ≤ n}
At-least (≥ nR)I {xr ∈ ∆I

∣∣∣|{xp ∈ ∆I |(xr, xp) ∈ RI}| ≥ n}
Exact (= nR)I {xr ∈ ∆I

∣∣∣|{xp ∈ ∆I |(xr, xp) ∈ RI}| = n}

Table 3.1: Some Description Logic Concept Constructors

Since the constructors given in Table 3.1 give semantics to class concepts

by creating interpretations I, we can say two class concepts C1 and C2 are

equivalent by writing C1 ≡ C2, if CI1 = CI2 for all interpretations I. For exam-

ple, the concept ∀ sellsProduct.Coffee u ∀ sellsProduct.Beverage is equivalent to
∀ sellsProduct.(Coffee u Beverage), which defines a coffee shop selling coffee,

where coffee is a beverage. This is because applying the constructors to both

concepts generates the same knowledge in K.
18Top is called thing in OWL-DL, which means universally everything
19Bottom is called nothing in OWL-DL
20Negation is called complement in OWL-DL
21Conjunction is called intersection in OWL-DL
22Disjunction is called union in OWL-DL
23Universal quantifier is called all values from, in OWL-DL
24Existential quantifier is called some values from, in OWL-DL
25At-most number restriction is also called max cardinality in OWL-DL
26At-least number restriction is called min cardinality in OWL-DL
27Exact number restriction is called cardinality in OWL-DL
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Roles are used in DL to form a structure between classes. Roles are binary,

and can be defined by restricting their domain and range or as a sub-relation

of another relation as defined in 3.2.

Definition 3.2. Roles can be defined in the TBox T using one of the following

forms:

(a) R v C1×C2 where C1 and C2 are class concepts. This could be read as R

has the domain C1 and range C2.

(b) R1 v R2 where R1 and R2 are roles. This could be read as R1 is a subset

or equal to R2.

The Definition 3.2(a) specifies that if a role R connects an individual x1 to

an individual x2 in the ABox A, where the domain of R is class C1 and the

range of R is class C2 in the TBox T , then x1 must be a member of C1 and x2

must be a member of C2. The Definition 3.2(b) specifies that R1 is a subrole of

R2 which implies that the set of connections such that x1 connects to x2 using

the role R1, is a subset of the connections such that x1 connects to x2 using

the role R2, where x1 and x2 are some individuals which belong to the ABox

A. For instance sellsCoffee v sellsProduct implies that the role sellsCoffee is

interpreted to connect either a subset of or the same set of individuals that

are connected by sellsProduct.

In order to define the formal semantics of roles, we consider an interpreta-

tion function which assigns to every role a binary relation RI ⊆ ∆I ×∆I . An

interpretation I satisfies TBox T , with respect to roles iff RI1 ⊆ RI2 for each

R1 v R2 ∈ T where R1 and R2 are roles. If such an interpretation I can be

found, with RI 6= ∅, then R is satisfiable with respect to T .
The interpretation function for roles is extended by DL role constructors.

OWL-DL28 supports the role constructors (Baader and Sattler, 2001, p. 499)

listed in Table 3.2.
28http://www.w3.org/TR/2004/REC-owl-features-20040210 (accessed May 2009)
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Name DL Syntax Semantics
Inverse R−I {(xp, xr) ∈ ∆I ×∆I | (xr, xp) ∈ R−I}
Transitive R+I ⋃

n≥1(R+I)n
Symmetric symm(R)I {(xp, xr) ∈ ∆I ×∆I | (xr, xp) ∈ RI}
Functional func(R)I {xr ∈ ∆I

∣∣∣|{xp ∈ ∆I |(xr, xp) ∈ RI}| ≤ 1}
Inverse Functional invFunc(R)I {xp ∈ ∆I

∣∣∣|{xr ∈ ∆I |(xr, xp) ∈ RI}| ≤ 1}

Table 3.2: Some Description Logic Role Constructors

The constructors given in Table 3.2 specify inverse roles R−, transitive roles

R+, symmetric roles symm(R), functional roles func(R) and inverse functional

roles invFunc(R). For example, given sellsProduct v Cafe × Coffee, in TBox

T , which implies the role sellsProduct has the domain Cafe and range Coffee,

iff sellsProduct− ≡ productSoldBy then productSoldBy v Coffee × Cafe is true

for T .
An interpretation I which satisfies the TBox T for all concepts C and

roles R in T is called a model I of T . In other words, a model of T is an

interpretation of T which does not contain any contradictions.

3.3.2 Assertional Knowledge (ABox)

Individuals are generally used to represent real world objects and are specified

as instances of class concepts. An individual is defined by its membership to

a class and by its relations to other individuals. Individuals are defined in

Definition 3.3.

Definition 3.3. Individuals can be defined in the ABox A using one of the

following forms:

(a) C(x) where C is a class concept and x is an individual. This could be read

as x is an instance of C.

(b) R(x1, x2) where R is a role and where x1 and x2 are individuals. This

could be read as x1 is connected to x2 by R.
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The Definition 3.3(a), implies that the individual x is a member of the class

C, in the ABoxA. The Definition 3.3(b) implies that individual x1 is connected

to individual x2 by the role R, in the ABox A. In addition, x2 is said to be an

R-neighbour of x1. For example, if InstantCoffee and BobsCafe are individual

names and Coffee is a class concept definition, then Coffee(InstantCoffee)means

InstantCoffee is a type of Coffee and sells(BobsCafe, InstantCoffee) means that

BobsCafe sells InstantCoffee. The ABox A is a finite set of such assertions. The

TBox imposes semantic relationships between the concepts and roles used in

the ABox.

ABoxes are given semantics by extending interpretations to individual

names. An interpretation maps each individual name x to an element xI ∈ ∆I .

DL does not impose a unique name assumption, therefore, x1 and x2 are only

considered distinct if specified such that x1 6= x2 where x1 and x2 are indi-

viduals and an interpretation I satisfies x1 6= x2 iff xI1 6= xI2 . For instance,

two individuals Coffee and Tea are not considered distinct unless specified as

Coffee 6= Tea.

The interpretation I satisfies the concept assertion C(x) if xI ∈ CI and

satisfies the role assertion R(x1, x2), if (xI1 , xI2 ) ∈ RI . An interpretation sat-

isfies the ABox A with respect to a TBox T if in addition to being a model

of A, it is a model of T . Thus, a model of A and T is an abstraction of the

concrete world where the following is valid:

• the concepts are interpreted as subsets of the domain as required by the

TBox;

• the membership of the individuals to class concepts, and their relation-

ships with one another in terms of roles, comply with the assertions of

the ABox (Baader and Sattler, 2001, p. 64).

As such, in a model I, concepts are interpreted as subsets of the domain ∆

as required by the T and the membership of individuals to concepts and their

relationships with one another, using roles, conform to the assertions in A.
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For example, suppose the TBox contains the class concept definition ∀
sellsProduct.Coffee and the ABox contains Coffee(InstantCoffee), and sellsProd-

uct(BobsCafe, InstantCoffee) where BobsCafe and InstantCoffee are individuals.

Then an interpretation I can be constructed which is a model of ABox A
with respect to TBox T , because InstantCoffee is an instance of the class Cof-

fee. However, if the ABox contained the assertion ¬Coffee(InstantCoffee) rather
than Coffee(InstantCoffee), meaning the InstantCoffee is an instance of the nega-

tion of Coffee, then an interpretation of ABox A cannot be constructed with

respect to TBox T . This is because ∀ sellsProduct.Coffee requires InstantCoffee
to be an instance of Coffee, thus, creating a contradiction which invalidates

the model.

Description Logic provides the basis to facilitate accurate matching of ser-

vice requests with available services. However, matching requires the ability to

check the validity of an inferred membership of an individual to a class. Such

inference proof can be achieved using the Tableaux algorithm. As discussed

previously Tableaux “has dominated recent DL research” (Baader et al., 2003,

p. 322). This is primarily due to the fact that it can deal with highly expres-

sive logics and reason with an arbitrary knowledge base, such as an ontology

(Baader et al., 2003, p. 322). In addition, Tableaux incorporates many opti-

misation strategies which ensure efficient performance (Tsarkov et al., 2007),

while retaining completeness, soundness, decidability and termination (Baader

et al., 2003, p. 84). Furthermore, most current reasoners for the Semantic Web,

such as FaCT++ (Tsarkov and Horrocks, 2006), Pellet (Sirin et al., 2007) and

RacerPro29, utilise the Tableaux algorithm. Therefore, our optimisation and

adaptive reasoning strategies are built on the Tableaux algorithm. The next

section provides the necessary background to readers about Tableaux.
29http://www.racer-systems.com/products/racerpro (accessed May 2009)
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3.4 Tableaux

In our research, we propose and develop strategies which provide efficient and

accurate matching of a service description against a user request. In order to

support a high level of accuracy our approach involves performing semantic

matching using an inference prover. In this section we introduce and provide an

overview of the Tableaux algorithm which is an inference proof for Description

Logic (DL). Our proposed mTableaux optimisation and caching strategies,

which we will present in Chapter 4, apply to the Tableaux inference proof

provided in this section.

3.4.1 Inference

The power of semantic representation means that explicit definitions and as-

sertions can be used to infer new definitions and assertions using inference.

Proving or disproving a conjectured inference, requires a decision proof. Truth

tables were used as an early decision proof for propositional logic (O’Donnel

et al., 2006, p. 109), which is a less expressive logic when compared to DL

(Gore, 1998). However, truth tables are not feasible for logics containing a

large number of propositional variables, and cannot solve more expressive log-

ics such as DL. As a result, Tableaux was developed to provide a decision proof

for more expressive logics with greater efficiency than truth tables. There are

many different variants of Tableaux which support different logics (Gore, 1998),

such as Modal Logics (Gore, 1998; Girle, 2001), Nonmonotonic Logics (Gore,

1998), Propositional Logic (Kelly, 1997), First Order Logic (Fitting, 1996) and

Description Logic (Baader et al., 2003). Tableaux continues to be widely used

as a DL decision proof.

Current Semantic Web reasoners use the OWL-DL language, which was

discussed in Chapter 2 (see Section 2.2.1), since this is more expressive than
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OWL-Lite, while also maintaining computational completeness and decidabil-

ity (Baader et al., 2003, 84), which is not thought to be possible using OWL-

Full (W3C, 2004). OWL-DL corresponds to DL, therefore, in order to reason

with OWL-DL we focus on Tableaux for DL. OWL-DL is used to create an

ontology which contains the set of logical constructs which directly correspond

with the DL knowledge base.

Tableaux proves that semantic knowledge is satisfiable which means that

there are no contradictions in the logic. Thus, Tableaux is known as an

(un)satisfiability decision proof algorithm because inferences are proven by

refuting the inference and proving this is not satisfiable. The negation of the

conjectured inference is added to the knowledge base, and if after applying

rules which implement the semantic interpretation I of the knowledge (which

was described in Section 3.3), the knowledge base is unsatisfiable, then the

inference is proven. Otherwise, it is disproven. As such, Tableaux reduces an

inference check to be an (un)satisfiability problem.

Most current semantic reasoners use the Tableaux decision proof, includ-

ing Pellet30, FaCT++31 and RacerPro32. Since inferences are reduced to an

unsatisfiability problem, this means they must be performed on an consis-

tent knowledge base, in order to be accurate. Therefore, before performing

any inference checks, current reasoners perform a satisifiability check on the

knowledge base, to ensure its consistency. If the knowledge base is consistent,

these reasoners generally then check every possible inference, thus, making all

implicit inferences explicit. The processes involved are known as classification

(Baader et al., 2003, p. 72) which generates the complete TBox T and re-

alisation (Baader et al., 2003, p. 47) which generates a complete ABox A.
The classification phase compares every pair of class concept definitions from

the TBox to see if they have a subclass relationship. The realisation phase
30http://clarkparsia.com/pellet (accessed May 2009)
31http://owl.man.ac.uk/factplusplus (accessed May 2009)
32http://www.racer-systems.com (accessed May 2009)
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performs an inference check between every individual in the ABox and every

class in the TBox, to see if the individual is a member of the class.

In the next section we provide a formal overview of the Tableaux inference

proof. We restrict our overview to the proving or disproving of a single conjec-

tured inference, since this is the feature which we require a semantic reasoner

to perform. Moreover we focus on the matching of a single service description

against a user request in our approach as illustrated earlier in Figure 3.3 in

Section 3.1.

3.4.2 Tableaux Inference Proof

Tableaux is a decision procedure which can provide inference proof for ex-

pressive logics such as DL while maintaining computational completeness and

decidability, and provides reasonable performance. This is because it encom-

passes many optimisation strategies Tsarkov et al. (2007) which are employed

by current semantic reasoners.

As stated in the previous section, the Tableaux decision procedure proves

that a DL knowledge base is satisfiable and all inference checks are reduced to

an (un)satisfiability problem for an ABox A. ABox A inference checks can be

about the relationship between class concepts, roles and individuals. Tableaux

proves or disproves an inference by refuting it. Therefore, checking the validity

of the inference C(x), is reduced to the Equation 3.2.

A |= C(x) iff A ∪ {¬C(x)} is inconsistent (3.2)

As discussed previously in Section 3.3, the semantics of DL definitions and

assertions in the knowledge base are modelled as an interpretation I. Interpre-
tation I is mapped to definitions and assertions in the knowledge base using

DL constructors. In order to create an interpretation, Tableaux has transfor-

mation rules which directly correspond to the DL constructors which we will

discuss later in this section. Thus, an ABox A is expanded by application of
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transformation rules to create ABox A′, while conforming to the TBox T . The
expanded A′ is obtained from A by replacing each concept assertion C(x) in

A with the assertion C ′(x), where C ′ is the expansion of C in TBox T . A is

consistent with respect to T iff its expansion A′ is consistent with respect to

T . Consistency is not achieved if an expansion into a complete interpretation

I fails due to a logical contradiction. An ABox A contains a contradiction

iff one of the following situations occur (Baader et al., 2003, p. 86), (Tsarkov

et al., 2007, p. 282):

1.
{
C(x),¬C(x)

}
⊆ A for some individual name x and some concept name

C. This means that the individual x is asserted to be a member of both

a class concept C and its negation ¬C in the ABox A, thus creating a

contradiction;

2.
({

(≤ n R)(xi)
}
∪
{
R(xi, xj) | 1 ≤ j ≤ n + 1

}
∪
{
xj 6= xk | 1 ≤ j ≤

k ≤ n + 1
})
⊆ A for individual names xi, xj, xk, and a role name R.

This means that the individual xi is specified to adhere to the definition

{≤ n R}, where this definition implies that xi must have no more

than n connections to other individuals, by role R. However, xi is in

fact connected to at least n+ 1 number of distinct individuals xj where

1 ≤ j ≤ n+ 1, which contradicts ≤ n R;

3.
{
⊥(x)

}
⊆ A for some individual x. This means that x is asserted to the

type nothing / bottom. For instance, suppose there is an individual x

which is asserted to have the types Ci and Cj such that Ci(x) and Cj(x)

and these concepts are disjoint such that Ci ⊆ ¬Cj. This would imply

⊥(x), due to a contradiction;

Therefore, an inference is proven if its negation is asserted to the ABox A,
and a complete expansion of A into A′ contains a contradiction, meaning that

a complete interpretation I of A cannot be constructed. Alternatively, if A is

fully expanded into an A′, where A′ does not contain a contradiction, meaning
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that a sound and non-contradictory interpretation I has been constructed,

then the inference is disproven.

In practise, Tableaux expansion occurs by constructing a labelled comple-

tion graph, known as an expansion tree G (Baader et al., 2003, p. 323). This

tree imposes ordering on the application of expansion rules. Successive ABox

states resulting from expansions are maintained using labels. Two labels exist

for the two kinds of ABox A assertions. The A assertion C(x), where the

individual x is a member of the class concept C, is denoted by C ∈ L(x),

such that L(x) is a type label for x. The assertion R(x, y) where R is a role

connecting individuals x1 and x2, is denoted by R ∈ L(〈x1, x2〉) such that L
is the edge label for connections between x1 and x2. The contents of labels

depend on branch point nodes in the expansion tree G, which we will discuss

in Section 3.5 of this chapter.

Expansion occurs by application of Tableaux transformation rules which

are applied until the model I is fully expanded. Tableaux transformation

rules correspond to the DL constructors. We will now introduce each Tableaux

transformation rule. The conjunction transformation rule is given in Figure

3.5.

u-rule: if 1. C1 u ... u Cn ∈ L(x), and
2. {C1, ..., Cn} * L(x)

then L(x)← L(x) ∪ {C1, ..., Cn}

Figure 3.5: Conjunction Transformation Rule (Tsarkov et al., 2007, p. 283)

The conjunction rule is applied to an assertion where an individual x is

asserted to be a member of a class concept definition C1 u ... u Cn, 1 ≤ i ≤ n

which is a conjunction. However, the rule is only applied when x is not already

asserted to be a member of all of the conjunctive elements Ci. Application of

the conjunction rule results in x being asserted as a member of each conjunctive

element Ci.
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The disjunction transformation rule is given in Figure 3.6.

t-rule: if 1. C1 t ... t Cn ∈ L(x), and
2. {C1, ..., Cn} ∩ L(x) = ∅

then L(x)← L(x) ∪ {C} for some C ∈ {C1, ..., Cn}

Figure 3.6: Disjunction Transformation Rule (Tsarkov et al., 2007, p. 283)

The disjunction rule is applied to an assertion where an individual x is

asserted to be a member of a class concept definition C1 t ... t Cn, 1 ≤ i ≤ n,

which is a disjunction. However, the rule is only applied when x is not asserted

as a member of any of the disjunctive elements Ci. Application of the rule

results in x being asserted as a member of one of the disjunctive elements Ci.

The existential quantifier transformation rule is given in Figure 3.7.

∃-rule: if 1. ∃R.C ∈ L(xi), and
2. there is no R-neighbour xj of xi such that R ∈ L(〈xi, xj〉)

where C ∈ L(xj)
then create a new node xj with L(〈xi, xj〉) = {R} and L(xj) = {C}

Figure 3.7: Existential Quantifier Transformation Rule (Tsarkov et al., 2007,
p. 283)

The existential quantifier transformation rule is applied when an individual

xi is asserted to be a member of an existential quantifier definition of the form

∃R.C. However, it is only applied if xi does not have an R-neighbour xj, where

xj is asserted to be a member of the class concept C. An R-neighbour means

that xi is connected to the individual xj by the role R. When the ∃-rule is

applied it creates a new R-neighbour xj, for xi, and asserts that xj is a member

of C.

The universal quantifier transformation rule is given in Figure 3.8.

The universal quantifier transformation rule is applied to an assertion where

an individual xi is asserted to be a member of a class concept definition ∀R.C,

which is a universal quantifier. However, the rule is only applied when xi has at
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∀-rule: if 1. ∀R.C ∈ L(xi), and
2. there is some R-neighbour xj of xi such that R ∈
L(〈xi, xj〉) where C /∈ L(xj)

then L(xj)← L(xj) ∪ {C}

Figure 3.8: Universal Quantifier Transformation Rule (Tsarkov et al., 2007, p.
283)

least one R-neighbour xj, where xj is not asserted to be a member of the class

concept C and an R-neighbour implies that xi is connected to the individual

xj by the role R. Application of the ∀-rule results in all R-neighbours xj, of

xi being asserted as members of the class concept C.

The minimum cardinality transformation rule is given in Figure 3.9.

≥-rule: if 1. ≥ n R ∈ L(xi), and
2. there are no R-neighbours xj of xi such that R ∈
L(〈xi, xj〉) where xj 6= xk, 1 ≤ j ≤ k ≤ n

then create new nodes xj with L(〈xi, xj〉) = {R}, and xj 6= xk,
1 ≤ j ≤ k ≤ m, so that m = n

Figure 3.9: Minimum Cardinality Transformation Rules (Tsarkov et al., 2007,
p. 283)

The minimum cardinality transformation rule is applied to an assertion

where an individual xi is asserted to be a member of a class concept definition

≥ n R. This definition requires that xi must have at least n number of distinct

R-neighbours xj. An R-neighbour of xi implies that xi connects to another

individual xj using the role R. Therefore, the ≥-rule is fired / applied if xi

does not have n number of R-neighbours where no two R-neighbours xj and

xk, 1 ≤ i ≤ j ≤ k, are the same. When the rule is applied it creates additional

distinct R-neighbour individuals for xi, to meet the required n number of R-

neighbours.

The maximum cardinality transformation rule is given in Figure 3.10.

The maximum cardinality transformation rule is applied to an assertion

where an individual xi is asserted to be a member of a class concept definition
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≤-rule: if 1. ≤ n R ∈ L(xi), and
2. there are R-neighbours xj of xi, such that R ∈
L(〈xi, xj〉), 1 ≤ j ≤ m, where m > n and there is
a pair of R-neighbours which is not declared xj 6= xk,
1 ≤ j ≤ k ≤ m

then for some pair xj , xk which is not declared xj 6= xk,
Merge(xj , xk) for 1 ≤ j ≤ k ≤ m, where,
Merge(xj , xk): 1. for all neighbours xp of xj , such that L(〈xj , xp〉):

(a) set L(〈xk, xp〉)← L(〈xk, xp〉)∪L(〈xj , xp〉);
(b) set L(〈xp, xk〉) ← L(〈xp, xk〉) ∪ {R−s } iff

Rs ∈ L(〈xj , xp〉);
(c) set L(〈xj , xp〉)← ∅

2. for all neighbours xj of xp, such that L(〈xp, xj〉):
(a) set L(〈xp, xk〉)← L(〈xp, xk〉)∪L(〈xp, xj〉);
(b) set L(〈xk, xp〉) ← L(〈xk, xp〉) ∪ {R−s } iff

Rs ∈ L(〈xp, xj〉);
(c) set L(〈xp, xj〉)← ∅

3. set L(xk)← L(xk) ∪ L(xj);
4. set L(xj)← ∅;
5. set xk 6= xy for all individuals xy where xj 6= xy

Figure 3.10: Maximum Cardinality Transformation Rule (Tsarkov et al., 2007,
p. 283)

≤ n R. This class concept defines that xi cannot connect to more than n

number of individuals via role R. Therefore, the ≤-rule will be applied /

fired if xi has more than n number of R-neighbours, where at least one pair

of R-neighbours are not declared as distinct (i.e. distinct individuals cannot

be merged / combined). An R-neighbour of xi is an individual xj which xi

connects to using the role R. If the conditions for the ≤-rule are met then

the rule attempts to merge each pair xj and xk of R-neighbours from xi, into

a single individual, where xj and xk are not declared as being distinct, in

order to meet the maximum cardinality requirement. This involves merging

the individual xj into xk as follows. Any role Rs relations which connect xj

to some other individual xp, are changed to connect xk to xp instead, and

the inverse role R−s is set to connect xp to xk. Inverse roles were discussed in

Section 3.3. Additionally, any role Rs relations which connect some individual

xp to xj, are changed to connect xp to xk instead and the inverse R−s is set to
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connect xk to xp. The type label contents for the individual xj is also moved

to the type label for xk. Finally, if there are any declarations which set xj to

be distinct from some other individual xy then xk is set to be distinct from xy.

Usually there will be many transformation rules which are simultaneously

applicable. Most current implementations of Tableaux maintain a ToDo list

of assertions which Tableaux transformation rules are applicable to (Tsarkov

et al., 2007, p. 293), in order to avoid checking all assertions for this applica-

bility. If a transformation is applicable to a particular assertion, by meeting

the conditions of the rule (which were defined earlier in this section), then

the assertion is added to a ToDo list, meaning the rule is ready to be fired /

applied. ToDo lists are employed by current reasoners and group assertions

by transformation rule type. For instance, the ∀-rule may be applied to all

applicable ∀R.C assertions first, then the ∃-rule is applied to all applicable

∃R.C terms, etc.

The order in which transformation rules are applied does not affect cor-

rectness, however, it can have a significant impact on efficiency (Tsarkov and

Horrocks, 2005). Different reasoners give different priorities to transformation

rule types, in terms of the order in which they are applied. Empirical analysis

shows the t-rule and ∃-rule should be given the lowest priority, because these

are the most costly rules (Tsarkov and Horrocks, 2005) in terms of perfor-

mance. The t-rule increases the size of the search space because each of its

disjunct elements represent alternative expansions to explore (which we will

describe in more detail, later in this section). The ∃-rule increases the size of

the search space by generating new individuals. The performance impact for

the application order of the t-rule and the ∃-rule also depends on the knowl-

edge in the ABox A and TBox T (obtained from an ontology) over which the

reasoning is being performed. In addition, some reasoners, such as Pellet33,

apply the u-rule and the ∀-rule on a class concept C as soon as C is added to
33http://clarkparsia.com/pellet (accessed May 2009)
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L(x) where x is an individual in A, rather than adding these to the ToDo list

(Tsarkov et al., 2007, p. 298).

In this section, so far we have discussed the Tableaux transformation rules

which are designed alter the state of an ABox in order to model the semantics

implied by the Description Logic constructs. However, some transformation

rules can generate multiple possible alternative ABox states. The u-rule, ∃-
rule, ∀-rule and ≥-rule are said to be deterministic rules because these rules

deterministically transform the ABox A to another single ABox A′ state. The
∃-rule and ≥-rule are also said to be generator rules, because these cause new

individuals to be created in A. However, the t-rule and ≤-rule are said to

be non-deterministic because they expand the ABox A into a finite number

of ABoxes A1, ..., Am but only one of the new ABoxes needs to be consistent

in order for the original ABox to be consistent. Therefore, Tableaux must

expand each ABox A1, ..., Am, until either a consistent one is found or all

have been expanded. A mechanism is required which controls expansion of

non-deterministic transformation rules because each finite expansion state may

need to be explored in order to find a consistent ABox. This control mechanism

is known as an expansion tree G. We will provide an overview of the expansion

tree in the remainder of this section. Then in Section 3.5 we will discuss this

mechanism in greater detail.

The Tableaux expansion tree G is used to guide the search through possible

ABox expansions which can be generated by non-deterministic transformation

rules, until a consistent expansion can be found. The expansion tree is consid-

ered to be fully expanded when no more expansion rules can be applied. Every

assertion in a label L or in the ToDo list of transformation rules to apply, is

associated with a branch point node b in the expansion tree G, to which the

assertion is said to depend upon. This dependency is defined as follows (the

first two points relate to the labels L and the last point relates to the ToDo

list):
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1. A concept C1 ∈ L(x) depends on a branching point bi if C1 was added

to L(x) at that branching point bi or if C1 depends on another concept

C2, and C2 depends on the branching point bi. A concept C1 ∈ L(x)

depends on a concept C2 when C1 was added to L(x) by the application

of a deterministic transformation rule that used C2;

2. A role R ∈ L(〈x1, x2〉) depends on a branching point bi if R was added to

L(〈x1, x2〉) at that branching point bi or if R depends on concept C2, and

C2 depends on the branching point bi. A role R ∈ L(〈x1, x2〉) depends

on a concept C2 when R was added to L(〈x1, x2〉) by the application of

a deterministic expansion rule that used C2;

3. An assertion C1(x) in the ToDo list depends on the branch point bi or

concept C2 which C1 ∈ L(x) depends on.

For example if C was asserted as a type to x2 implying C ∈ L(x2), due to the

expansion of ∀R.C ∈ L(x1), then C ∈ L(x2) depends on ∀R.C ∈ L(x1), where

C is a class concept, R is a role relation and x1, x2 are individuals.

When a contradiction occurs, which is caused by the existence of the asser-

tion C ∈ L(x) or a R ∈ L(〈x1, x2〉), then the ABox A is restored to its earlier

state at the branch point bi, where the assertion causing the clash depends on

bi or another concept C2 where C2 depends on bi. Then another branch can

be explored to try and alleviate the cause of the clash.

For instance, let bi and bi+1 be two branch points, where bi is an ancestor of

bi+1. Thus, the branch point bi appears at a level less than bi+1 in the expansion

tree G. Assume adding C to the label L(x1), generates a clash, because the

label already contains the negation of C (i.e. ¬C ∈ L(x1)). In addition, assume

C depends on bi, meaning that the ABox A is restored to branch bi. Restoring

to branch point bi means that any assertion which depends on branch point

bi+1, is removed, where an assertion may be a class concept C in the label

L(x1); or role R in the label L(〈x1, x2〉); or assertion C(x) in the ToDo list,
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for all individuals x1 and x2 in the ABox A. In addition, any assertion which

was added to a label L or ToDo list before bi, but was removed after bi, must

be added back to the label or ToDo list when the ABox A restored to bi. For

instance, application of the ≤-rule may remove an edge R from an edge label

L(〈x1, x2〉), due to the merger of x2 with another individual. If this merger

occurs at branch bi+1 and the ABox is being restored to an earlier branch bi,

then the edge R should be added back to L(〈x1, x2〉).
The Tableaux decision procedure has been highly optimised using various

strategies (Tsarkov et al., 2007) which are generally incorporated as standard

in the current semantic reasoners, such as FaCT++, Pellet and RacerPro.

Tableaux also ensures that the desirable properties of soundness, completeness,

consistency, termination and decidability are upheld (Baader et al., 2003, p.

85). However, despite its efficiency, Tableaux remains a resource intensive op-

eration which challenges mobile reasoning. In the next section we provide an

example to illustrate the way in which Tableaux proves an inference, by apply-

ing transformation rules. This example will show that some rules contribute

to the inference proof, while others do not, which motivates our proposed op-

timisations to enable Tableaux to function on mobile devices. This will form

the basis for our mTableaux optimisation strategies, which are presented in

Chapter 4 in order to enable mobile inference checks.

3.4.3 Example Inference Proof

We will now illustrate Tableaux using an example. Let there be a consistent

ABox A, where {x0, x1, x2, x3, x4, x5, x6, x7} ⊆ A and xi are individuals. The

individuals are explicitly asserted to be members of class concept definitions,

such that, L(x3) = {C1,¬C4, C4 t C5}, L(x4) = {C2}, L(x5) = {C2, C3},
L(x6) = {∀R3.(¬C1 t ¬C2}, L(x7) = {C1}. This is illustrated in Figure

3.11. Also suppose that the individuals also have the role relations which
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are illustrated in the figure, such that an individuals xi connects to another

individual xj using the role Rp.

x6

x0

x1 x3

R2

R1

x4 x5x2

R2 R1

R1

x7

R3

R3

3 1 2{ .(     )}R C C∀ ¬ ¬{ }1 4 4 5,  ,      C C C C¬ L(x6) =L(x3) =

L(x5) = {C2, C3}L(x4) = {C2} L(x7) = {C1}

Figure 3.11: Tableaux Proof Example: ABox

Suppose we wish to check the validity whether the individual x0 is a member

of the class concept definition C0, such that C0(x0), where C0 ≡ ∃R2.(≥ 1R2)u
∃R1.(C1 u ∃R1.(C2 u C3)). For instance, the first part of the definition C0

implies that these exists an individual x0 which connects to another individual

xr using rule R2 and xr connects to a maximum of one individual using role

R2. In order to perform this inference check, Tableaux asserts the negation of

the inference to the ABox A, which involves adding ¬C0 to the type label of

the individual x0, such that L(x0)← L(x0)∪{¬C0}. The negated definition of

C0 is ¬C0 ≡ ∀R2.(≤ ∅R2)t∀R1.(¬C1t∀R1.(¬C2t¬C3)). The ABox A is then

expanded into ABoxes A1, ..., Am, 1 ≤ j ≤ m, by applying transformation

rules. If no clash free expansion Aj can be found, then the inference is proven.

The application of transformation rules to check the validity of C0(x0), is

illustrated in Figure 3.12. Note, in the figure, the transformation rule and

the assertion it is applied to, are highlighted in blue. The transformation /

action which was completed by the rule is highlighted in purple. If the rule

application lead to a clash, this is highlighted in red. The contradiction is

given to the right of the red clash highlight.
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Figure 3.12: Tableaux Proof Example: Tableaux Transformation Rule Expan-
sion
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In this example, the inference process begins at branch node b0. The action

of adding ¬C0 as a type for the individual x0, in order to perform the inference

check C0(x0) makes the t-rule applicable to this assertion, because the defini-

tion ¬C0 is a disjunction. Therefore, after the ∀-rule is applied to an assertion

which was already in the ABox, t-rule is applied to ¬C0 ∈ L(x0) at branch

node b0, resulting in the creation of a new branch point node b1 which is added

to the expansion tree G. This makes b1 (left side in the figure) the currently

active branch node. Then, the t-rule asserts the first disjunct element mem-

ber, which is ∀R2.(≤ ∅R2), as a type for the individual x0, by adding it to the

type label, such that L(x0) ← L(x0) ∪ {∀R2.(≤ ∅R2)}. The element member

is a universal quantifier definition. Therefore the ∀-rule is then applied to it.

The ∀-rule asserts the universal quantifier’s role filler class concept definition

≤ ∅R2 to all individuals which x0 connects to using the role R2. x0 connects to

one such individual x1 using the role R2 (see Figure 3.11). Therefore ≤ ∅R2 is

asserted as a type for x1, such that L(x1)← L(x1)∪{≤ ∅R2}. This definition
≤ ∅R2 is a maximum cardinality restriction which the ≤-rule is applicable

to. The definition requires that x1 is connected to zero individuals using the

role R2. However, x1 is in fact connected to the individual x2 using the role

R2, which violates the requirement causing the ≤-rule to detect a clash. This

clash means that the attempted ABox A expansion has failed and a backjump

is required to try an alternative branch.

A backjump will restore the reasoner to branch point b1 because ≤ ∅R2 ∈
L(x1) which caused the clash depends on branch b1 as it was added when b1 was

the active branch point node. Note restoring to branch node b1, implies that

all assertions which were added at or after b1, are discarded (e.g. ∀R2.(≤ R2)

depends on b1 and is thus discarded). The branch b1 was created by the t-rule
for the disjunction ∀R2.(≤ ∅R2) t ∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3)) which is a

type for x1. This disjunction has two disjunct elements, and only the first
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has so far been evaluated. Therefore, the second disjunct element, which is

∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3)), is then added as a type for x1.

This process continues, until all ABox expansion possibilities have gener-

ated a clash. This is proven if a disjunction which depends on branch point

node b0 in the expansion tree G, has generated a clash for all of its disjunc-

tive elements. In Figure 3.12, the application of the t-rule on the disjunction

¬C2 t ¬C3 ∈ L(x5) generated a branch node b6, and clashed for both ex-

pansions. Branch node b6 depends on the second expansion (right side in the

figure) of branch node b4 because the disjunction ¬C2 t ¬C3 was added as a

type for the individual x3 at the second expansion (right side in the figure)

of b4. Therefore, the second expansion of b4 has generated a clash. The first

expansion of b4 also generated a clash due to a contradiction of the concept

¬C1 for the individual x3. The branch node b4, thus, clashes for all possible

expansions. The node b4 depends on the second expansion of b1 because it was

generated by the application of ¬C2t¬C3 which was added as a type to x0 at

the second expansion of b1. Thus the second expansion of b1 generates a clash.

The first expansion of b1 also generated a clash due to the class concept ≤ ∅R2

added to the individual x1. The node b1 now clashes for both expansions. The

node b1 depends on b0 because it was added when b0 was the active branch

node. This proves that b0 and all possible expansions which depend on b0 have

generated a clash. Therefore, all attempts to construct a consistent model

have led to a contradiction, where the negation of C0 is added as a type for

the individual x0. This proves that x0 can be inferred to be a member of the

class concept C0.

In this example, it can be seen that many transformation rules were applied

which did not contribute to the clashes which proved the inference. In Figure

3.13 the transformations / expansions which contributed to the proof of the

inference are highlighted in yellow and circled. The reason we know this, is

because in order to prove the inference we assert its negation and attempt
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Figure 3.13: Tableaux Proof Example: Highlighting the transformations which
were necessary to prove the inference
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to prove a clash exists for every possible expansion. As such we asserted

∀R2.(≤ ∅R2) t ∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3)) as a type for x0. The first

disjunction element was proven to clash by applying the ≤-rule at branch point

node b1 to ≤ ∅R2. Therefore, ≤ ∅R2 and all assertions which it depends on

contributed to the clash. The second disjunct element of the negated inference

was proven when the last disjunction at branch node b6 in Figure 3.13 clashed

for both disjunct elements. Therefore, this disjunction ¬C2 t ¬C3, and all

assertions which it depends on, contributed to the clash. Note, the disjunctions

C4 t C5 ∈ L(x3) and ¬C1 t ¬C2 ∈ L(x7), generated a clash for the first

expansion, but did not contribute to the inference proof because they did not

generate a clash for the second expansion.

Applying the ∀-rule on ∀R3.(¬C1 t¬C2) ∈ L(x6), the t-rule on C4 tC5 ∈
L(x3), ¬C1 t ¬C2 ∈ L(x7) and ¬C2 t ¬C3 ∈ L(x4), and any transformations

which resulted from these transformations, did not assist in proving the in-

ference. In more realistic examples, disjunction element members would often

contain other definitions which would result in the subsequent application of

transformation rules to these definitions. For instance, suppose there is a class

concept definition C4 ≡ ∃R1.C6 and C4tC5. The application of C4tC5 would

result in the additional application of the ∃-rule on C4. In addition, in realis-

tic scenarios, the ABox which is filled by assertions from an ontology, would

generally contain a much greater number of individuals which have definitions

asserted as their types. In this case, there would be a much greater number

of transformation rules applied, which may not be useful in proving the infer-

ence. Therefore, in this thesis, we propose that the elimination of these rule

applications / inference checks would considerably improve efficiency without

reducing accuracy. As a significant contribution of our research, we propose

and develop mTableaux which incorporates strategies which reduce the appli-

cation of transformation rules to assertions which do not aid in the inference

proof, without compromising the validity of the inference proof.
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In this section we have provided an overview of the Tableaux algorithm

and all of its transformation rules. In the next section we will provide further

explanation of the process of expansion using the Tableaux expansion tree G.
This explanation will be required in order to understand Chapter 5, which

alters the order in which Tableaux expansion occurs, to enable adaptive rea-

soning to provide intermediate results from inferencing processes which are

interrupted due to limits of time, resources, or other user constraints.

3.5 Tableaux Expansion Search Tree

As discussed in Baader et al. (2003, p. 313) and Cormen et al. (2001, p. 540)

the Tableaux algorithm performs expansion in depth-first order. Therefore,

in the next section will provide a more detailed discussion of the depth-first

expansion which is used to control the expansion process of current Tableaux

reasoners using search tree branching.

3.5.1 Tableaux Depth-First Expansion

As described in Section 3.4.2, Tableaux applies transformation rules which

expand the ABox A according to the semantics imposed by the DL language

constructors (see Section 3.3). More specifically Tableaux imposes an ordering

on the expansions generated by subsequent application of transformation rules,

using an expansion tree G. This tree contains branch point nodes b. The

application of t-rule to a disjunction, gives rise to a new branch point node

in the tree and the tree is expanded in depth-first order. Expansion occurs

either until no more expansions are possible or a clash is detected causing a

backjump so that an alternative earlier branch can be explored. Using this

tree expansion, Tableaux proves an inference by asserting its negation, and if

a fully expanded tree cannot be constructed due to clashes, then the inference
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is proven, otherwise it is disproven. This depth first tree expansion process is

illustrated in algorithmic form in Algorithm 3.1.

Algorithm 3.1 TableauxTreeTraverse(A, G)
Inputs: ABox A, ExpansionTree G
Outputs: Boolean allExpansionsClash
1: Let ClassConcept clash← null
2: while moreTableauxRulesToApply(A,G) = true do
3: clash← ApplyTableauxRules(A,G) \*standard Tableaux rules*\
4: if clash 6= null then
5: Let openBranchFound← BackJump(clash,A,G)
6: if openBranchFound = false then
7: return true
8: end if
9: end if

10: end while
11: return false

The algorithm continues applying transformation rules until no more rules

can be applied, by looping on the moreTableauxRulesToApply algorithm.

Let moreTableauxRulesToApply be an algorithm (which is not shown) that

returns true if there are more transformation rules to apply, otherwise it

returns false. As we discussed in Section 3.4.2, an assertion which has a

transformation rule applicable to it is stored in the ToDo list. Therefore,

moreTableauxRulesToApply returns true while the ToDo list is not empty.

The ApplyTableauxRules34 algorithm applies all applicable transformation

rules to the ABox A. The ApplyTableauxRules algorithm will apply the ap-

propriate transformation rules to the assertions in the ToDo list and remove

them from this list. The application of a transformation rule to A may result

in a contradiction (clash), in which case the class concept which caused the

clash is returned by ApplyTableauxRules. When a clash occurs at branch

bi+1, the reasoner jumps back to an earlier branch point bi in G and explores

an alternative branch which might alleviate the cause of the clash. Back-

jumping is a standard Tableaux optimisation (Tsarkov et al., 2007, p. 294)
34The ApplyTableauxRules function applies the standard Tableaux transformation rules

as outlined in Section 3.4.2 and is therefore not shown
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which is employed by current reasoners. Backjumping is carried out by the

BackJump algorithm which we will describe later in this section (see algo-

rithm 3.3). BackJump returns true if an alternative branch has been found,

in which case TableauxTreeTraverse continues applying more transformation

rules. This process repeats until either every branch alternative generates a

clash or no more transformation rules can be applied to the current branch.

In Algorithm 3.2 we show an algorithmic implementation of the application

of the t-rule transformation, which creates a new branch point node.

Algorithm 3.2 ApplyDisjRule(C, x, A, G)
Inputs: ClassConcept C, Individual x, ABox A, ExpansionTree G
Outputs: ClassConcept clash
Pre-conditions: C is a disjunction added as a type to x, such that C ∈ L(x),

C ≡ (E1 t ... t Em) and x ∈ A
1: Let bj be newly created branch node
2: Let bi be the last added branch node to G (highest branchID(bi) for all
bi ∈ G)

3: branchID(bj)← branchID(bi) + 1
4: G ← G ∪ {bj}
5: createdByAssertion(bj)← C(x)
6: depOnBranch(bj)← depOnBranch(C)
7: depOnBranch(E1)← bj
8: L(x)← L(x) ∪ {E1} \*adds E1 as a type for x*\
9: if {E1,¬E1} ⊆ L(x) then

10: return E1 \*immediate clash*\
11: end if
12: return null

In the algorithm, t-rule, being applied to the next disjunction class con-

cept definition C which is a type for the individual x, from the ToDo list of

applicable t-rules. The algorithm creates a new branch point node bj which is

added to G and adds one of the disjunct elements of the disjunctive concept C

as a type for the individual x, which implements the functionality of the t-rule
(see Section 3.4.2). Each new bj is given an identifier by the algorithm, which

an ascending depth count integer. Let branchID(bj) denote this identifier for

the branch point node bj. Each branch point node, is also associated with the

assertion which, after having the t-rule to it, resulted in the branch node’s
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creation. Let createdByAssertion(bj) denote the type assertion C(x) which

the t-rule was applied to, which resulted in the creation of a new branch bj.

The algorithm 3.2 then adds the first disjunct element E1 from the disjunctive

concept C as a type for individual x. As discussed previously in Section 3.4.2,

whenever an assertion is added to or removed from the ABox A or ToDo list,

this action is said to depend on a branch point node. An assertion is said to

depend on bj if it was added to a type or role label L or the ToDo list, at

branch point bj or by the application of a deterministic transformation rule

on a class concept C where C depends on bj. Let depOnBranch(C) denote

the bj which C depends on. The disjunct element E1 depends on the new

branch point bj, so the algorithm also makes this assertion. If adding E1 to x

causes a clash, E1 is returned by the algorithm, as the class concept which has

generated the clash.

As discussed previously in this section and in Section 3.4.2 current Tableaux

reasoners employ dependency directed backjumping (Tsarkov et al., 2007, p.

294). Under this approach, when a clash detected by the Tableaux expansion

tree (see Algorithm 3.1 earlier in this section), Tableaux backjumps to the ear-

lier branch which the clash depends on and attempts to explore an alternative

branch to alleviate the clash. This functionality is shown in Algorithmic form

in Algorithm 3.3.

This algorithm, obtains the branch point node bj, which the clashing con-

cept clash depends, given by depOnBranch(clash). As discussed in Section

3.4.2 a branch has m number of possible expansions, each representing a sepa-

rate ABox state. If any one expansion fails to generate a clash, then the model

is considered consistent. The value m is equal to the number of disjunct ele-

ments contained in the disjunctive concept which gave rise to the branch point

bj, by application of the t-rule.
Let HasNext(bj) denote whether branch point bj has any remaining un-

expanded branches (disjunct elements). In the algorithm, if it is the case that
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Algorithm 3.3 BackJump(clash, A, G)
Inputs: ClassConcept clash, ABox A, CompletionGraph G
Outputs: Boolean openBranchFound
1: Let BranchNode bj ← depOnBranch(clash)
2: while true do
3: if bj = null then
4: return false
5: end if
6: *\ if bj has unevaluated branches *\
7: if HasNext(bj) then
8: RestoreTo(bj,A,G)
9: Let clashDetected← ApplyNext(bj)

10: if clashDetected = false then
11: return true
12: end if
13: else
14: bj ← depOnBranch(bj)
15: end if
16: end while

there are un-expanded branches, the reasoner state is restored its previous state

when bj was the active branch, using the RestoreTo algorithm, which we will

describe later in this section. Then the algorithm performs the next expansion

from branch point bj. Let ApplyNext(bj) perform this expansion, which is

not shown. Assuming that bj was created by applying t-rule to a disjunctive

assertion D(x), meaning that createdByAssertion(bj) = D(x), where D is a

disjunction and x is an individual, then another unapplied disjunct element of

D is added as a type for x. If this action results in a clash, then the concept

which generated the clash is returned by ApplyNext. In the case that there

are no more expansions for branch point bj and HasNext(bj) returns false

then Algorithm 3.3 jumps back to an earlier branch point bi where bj depends

on bi. Then it attempts to expand any un-expanded branches for bi, if there

are any, otherwise it continues attempting to expand ancessorts of bj, until the

top most branch is reached (i.e. bj is equal to null). If the top most branch

is reached this means that there are no more branches to explore and that all

branches led to a clash, thereby proving the inference being checked, holds.
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The RestoreTo algorithm restores the reasoner state to an earlier state.

The reasoner state is made up of the ABox and the ToDo list of assertions

which have transformation rules applicable to them. The ABox state is main-

tained using type and role labels L. Therefore, the RestoreTo function restores

all of the labels L and the ToDo list to a previous state. Restoring to branch bj

means that if any assertion which was added to a type label L or ToDo list at

or after branch point bj, is removed. In addition, if an assertion was removed

from a label L or the ToDo list at or after bj, but was added before bj, then

this assertion is added back, by a restore. Such removals can be performed by

transformation rules such as a merger of a pair of individuals xr and xp, by ≤-
rule, which combines xp into a individual xr, and discards xp. Any assertions

which are removed during a restore are permanently discarded. This func-

tion is provided in Algorithm 3.4, which makes use of another sub-procedure

provided in Algorithm 3.5.

Algorithm 3.4 RestoreTo(bj, A, G)
Inputs: BranchNode bj, ABox A, CompletionGraph G, where bj is the branch

node identifier to restore A to
1: for all xr ∈ A where xr is an individual do
2: L(xr)← RestoreSet

(
L(xr), bj

)

3: for all xp ∈ A where xp is an individual do
4: L(〈xr, xp〉)← RestoreSet

(
L(〈xr, xp〉), bj

)

5: end for
6: end for
7: ToDo← RestoreSet(ToDo, bj)
8: for all bi ∈ G do
9: if branchID(bj) < branchID(bi) then

10: remove bi from G
11: end if
12: end for

Algorithm 3.4 obtains all of the labels and the ToDo list passes these to Al-

gorithm 3.5 which actually performs the restore to branch node bj. Algorithm

3.4 does this by looping every individual in the ABox, passing the type label

for each individual to RestoreSet as an input set S. In addition, for every

individual, every other is looped, so that every role label can be obtained and
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Algorithm 3.5 RestoreSet(S, bj)
Inputs: Set S, BranchNode bj
Outputs: Set S
1: for all si ∈ S do
2: Let BranchNode bs denote the depOnBranch(si) for when element si

was added to S
3: Let BranchNode br denote the depOnBranch(si) for when element si

was removed from S (or branchID(br) = −1, if not removed yet)
4: if branchID(bj) ≤ branchID(bs) then
5: remove si from S \*s was added after bj, remove it*\
6: else if branchID(bs) < branchID(bj) and

branchID(bj) ≤ branchID(br) then
7: S ← S ∪ {si} \*si was removed after bj, add it back*\
8: end if
9: end for

10: return S

also passed to RestoreSet as an input set S. The ToDo list is then passed to

RestoreSet as an input set S.

Algorithm 3.5 removes any branch points in G which were added after bj,

removes any assertion which was added to the set S after bj and adds back

any assertion which was removed from S at or after bj, but added before bj,

where bj is the branch point node passed to RestoreSet.

In the next section we provide an example of the tree expansion for the

standard Tableaux algorithm.

3.5.2 Tableaux Expansion Example

In this section provide an example which illustrates the operation of depth-

first tree expansion and dependency directed backjumping. For this example,

assume the ABox shown in Figure 3.14. In this ABox, let x0, x1 and x2

be individuals, and let C1, C2 and C3 be class concepts. The individual x0

connects to x1 and x2 using the role R1. The individual x0 has the class type

C3, x1 has the class type C1 and x2 has the class types C1 and C2.

We perform an inference check on this ABox to establish whether C0(x0)

holds, where C0 is a conjunction of the form C0 ≡ (∃R1.(C1 u C2) u C3). We
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Figure 3.14: Tableaux Branching Example: ABox

illustrate the branch directed expansion which proves the inference in Figure

3.15. In the figure, the branch point identifier branchID(bk) for any given

branch point bk, is shown as subscript, where k is the identifier. In addition,

shaded nodes represent nodes which were already created by a previous step

in the Figure, while non-shaded nodes indicate those created by the current

the step.

Since Tableaux proves inference by refutation, C0 is transformed into a

disjunction of the form ¬C0 ≡ (∀R1.(¬C1 t ¬C2) t ¬C3). This disjunction

is added at branch point b1, therefore, ¬C0 depends on branch b1. In Figure

3.15, step a, the t-rule is applied to this disjunction, at branch point b1. This

results in the creation of a second branch point b2 and the expansion of the

first disjunct element ∀R1.(¬C1 t¬C2) of the disjunction, which is added as a

type to x0. The ∀-rule will then be applied to this disjunct element definition

and will add ¬C1 t ¬C2 as a type to individuals x1 and x2 (this is not shown

in the figure, because we are only focusing on tree expansion using the t-rule,
the other transformations were explained in Section 3.4.2). The ¬C1 t ¬C2

definitions added to x1 and x2 depend on ∀R1.(¬C1 t ¬C2) which depends

on b2. In step b, the t-rule is then applied to ¬C1 t ¬C2 ∈ L(x1). This

creates a new branch node b3 and adds the first element ¬C1 as a type for x1,

which generates a clash. Since the clash was generated by ¬C1, which depends

on branch point b2, the reasoner backjumps to b2, meaning all assertions and

branch point nodes after branch b2 are removed. In step c, the next unapplied

expansion for branch b2 is then applied, which is second element ¬C2 of the
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Figure 3.15: Tableaux Branching Example: Standard Tableaux Expansion
Search Tree

disjunction ¬C1 t ¬C2 ∈ L(x1). This did not generate a clash. Therefore,

in step d, the t-rule is applied to the next unapplied disjunction, which is

¬C1 t ¬C2 ∈ L(x2). This results in the creation of a new branch node b4 and

the first element ¬C1 in the disjunction is add as a type for the individual

x2, which generates a clash. The concept ¬C1 depends on b3, so the reasoner

backjumps to b3. In step e the next unexpanded branch for b3 is expanded,

which is the second disjunct element ¬C2 of the disjunction ¬C1t¬C2 ∈ L(x2).
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Therefore ¬C2 is added as a type for x2, which generates a clash. There are

no further expansions for the disjunction ¬C1 t ¬C2 at branch node b3, and

the disjunctino depends on branch b2. Therefore, the reasoner backjumps to

explore an alternative expansion of b2. In step f, the expansion to branch

node b2 is evaluated, which is the second disjunct ¬C3 from the disjunction

(∀R1.(¬C1 t ¬C2) t ¬C3) ∈ L(x0). This results in adding ¬C3 as a type

to x0 which generates a clash. There are no more unexplored branches, and

all explored branches have now generated a clash, therefore, the inference is

proven.

In this example we have illustrated Tableaux branch expansion for an in-

ference check. It can be seen that expansion is depth-first, and the order in

which a particular expansion possibility for a branch point node is expanded

is arbitrary. However, when inference proof is used to match a user request

against a service description, particular conditions in the request may have

a different level of importance to the user. Therefore, in our proposed adap-

tive inference strategy, matching occurs in order of importance, rather than

depth first / arbitrary. We will describe our adaptive strategy in Chapter 5.

However, first, in the next chapter, we will describe our proposed approach

to enable inference proof on-board a mobile device, using optimisation and

caching strategies.

3.6 Summary

In the previous chapter we outlined the need to utilise semantic reasoning in

order to provide accurate matching of user requests with service descriptions

on-board small resource constrained mobile devices. However, semantic match-

ing is considerably resource intensive. Therefore, in order to achieve efficiency

we will propose optimisation and caching strategies in Chapter 4, as a key

contribution of our thesis. In Chapter 5 we will also present our adaptive in-

ference strategy which takes resources and user constraints into consideration
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to enable priority based, incremental anytime matching. However, in order

to understand these key contributions we first presented an overview of se-

mantic inference provers used to complete semantic matching, in this chapter.

Semantic inference provers reason with the OWL-DL language for the great-

est accuracy while retaining computational completeness and this language is

based on Description Logic (DL). Therefore, in this chapter, we also provided

an overview of the DL notation. Finally, most DL inference provers utilise

the Tableaux decision procedure to prove or disprove an inference. Therefore,

our key contributions are based on the Tableaux algorithm. As a result, we

also provided an overview of the Tableaux algorithm. In the next chapter we

will outline our optimisation and caching strategies to enable on-board mobile

inference.



Chapter 4

mTableaux: Light-Weight

Mobile Inference

4.1 Introduction

In the previous chapter we provided an overview of the Description Logic (DL)

language and the Tableaux algorithm, which is used in current reasoners to

perform inference checks. As previously discussed Tableaux decision procedure

is the most widely used DL reasoning algorithm (Baader et al., 2003, p. 322).

However, semantic reasoning is considerably resource intensive and current

architectures fail to provide efficient on-board mobile reasoning with expressive

Description Logics (DL). Therefore, in this chapter we present our approach

to enable light-weight mobile inference. We achieve this by proposing and

developing optimisation and caching strategies which we call mobile Tableaux

(mTableaux). The mTableaux algorithm and the research presented in this

chapter have been published in Steller et al. (2009c); Steller and Krishnaswamy

(2009, 2008a,c,b) and Steller et al. (2008).

The chapter is organised into the following sections. In Section 4.2 we

provide an overview of our mTableaux optimisation strategies and in Sections

4.3, 4.4 and 4.5 we formally describe each of our mTableaux optimisation

84
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and caching strategies, as the main contribution for this chapter. Finally, the

chapter is summarised in Section 4.6.

4.2 mTableaux

In the following subsections we provide an overview of our mTableaux strate-

gies by describing our optimisation strategies and our caching strategy.

4.2.1 mTableaux Optimisation Strategies

Our proposed mTableaux strategies enable on-board mobile service matching

by optimising an inference proof which checks whether a user request matches

a semantic service description. Tableaux is used to prove or disprove the

inferred membership between a class concept definition and an individual.

A class concept is a definition of one or more logical constraints which an

individual must meet in order to be inferred as a type of this class concept.

Therefore, in our approach a user request is defined using a class concept. An

individual is used to represent a real world object and its properties. Therefore,

in our approach a service definition is represented as an individual and its role

relations. This follows the approach used to specify and match requests with

services in (Stuckenschmidt and Kolb, 2008) using Description Logic (DL). As

such, the focus of our approach is to provide efficient checking of the inferred

relationship between a class concept and an individual. Moreover, Tableaux

is used to check whether a request class concept C can be inferred to be a

type for the service description individual x, written as C(x), as described

in Section 3.4.2. In order to improve the efficiency of the Tableaux decision

procedure, we propose two heuristics to selectively control the application of

Tableaux transformation rules:

1. Selective application of transformation rules (ST): Rather than

applying transformation rules to all assertions in A, as in standard
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Tableaux, these rules are applied only to membership assertions which

relate to the service description individual x, or membership assertions

about individuals which x connects to, using roles specified in the request

definition C;

2. Selective application of the disjunction transformation rule (SD):

Rather than applying the t-rule to all disjunctive assertions in A, as in
standard Tableaux, the t-rule is applied only applied on those disjunc-

tions which contain a reference to a class concept which also exists in the

user request definition which is a class concept C;

For example, suppose the mobile user is searching for an Internet cafe,

which is defined as any individual x which sells Internet and Coffee, where sells

is a role, and Internet and Coffee are class concepts. The ST strategy, applies

transformation rules to assertions about the individual x, and any individuals

connected to x by the role sells. This is because the Internet and Coffee part

of the request is relevant to individuals connected to x by role sells. ST does

not apply transformation rules to any other individuals in A including those

individuals which x connects to by roles other than sells such as hasPlayGround.

Assume, the class concept Coffee is in fact a conjunction Coffee ≡ InstantCoffee

u GroundCoffee. The SD strategy applies the t-rule to any assertion which

contains Coffee, Internet, InstantCoffee or GroundCoffee, such as InstantCoffee

t GroundCoffee(x), but not to an assertion which does not, such as Tea t
HotChocolate.

Our optimisation strategies eliminate the application of transformation

rules to some assertions. Since standard expansion of an ABox A involves

exhaustively applying all transformation rules until no more rules can be ap-

plied, our ST and SD strategies do not fully expand the completion graph. As

such, the ST and SD strategy do not guarantee completeness (Baader et al.,

2003, p. 87) but retain soundness (Baader et al., 2003, p. 85). Moreover, when

the ST and SD strategies are enabled they may fail to successfully prove that
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a service description matches a user request which it does in fact semantically

match (i.e. our strategies may produce false negatives). However, the strate-

gies will never prove that a service description matches a user request which

it does not semantically match (i.e our strategies will not produce false posi-

tives). This is because the Tableaux algorithm proves inferences by searching

for contradictions. If the completion graph is not fully expanded, then these

contradictions may not always be found. However, in the case that they are

found, the positive inference is valid.

4.2.2 mTableaux Caching Strategy

Mobile users have certain interests, habits and preferences which typically in-

fluence their activities. As such, a user’s previous activities are often a good

indicator for which activities the user will carry out in the future (Kurkovsky

et al., 2005). Therefore, a user may often perform requests for services which

are similar to services requested in the past. Current reasoners treat every

inference check as being independent of previous inference checks. Most OWL

reasoners cache the result of inference checks rather than the evaluations which

led to the match result and they generally do not store any cached informa-

tion to secondary storage (Zacharias et al., 2007). However given the growth of

secondary storage media / devices, this becomes a feasible option. Most small

devices such as PDAs and mobile phones have secondary Secure Digital card

memory which is inexpensive and can store several gigabytes of data. There-

fore, we propose a caching strategy which records any matches found during

previous requests to improve the response time of similar requests performed

subsequently.

The Tableaux inference checking process is used in our approach to compare

a service description against a user request. In some cases there is only one

way of evaluating a request condition against a particular service description,

and in other cases there are many ways of evaluating the request condition.
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A particular request condition is fulfilled by the service description if every

way of evaluating the condition matches the service description. Every time a

match occurs, the definitions and assertions which have generated this match

are stored in the cache.

During an inference checking process, the cache is checked to see if it con-

tains the request condition currently being checked. There are two situations

which may occur:

1. The request condition being compared against the service description is

stored in the cache as having matched for every sub-condition of this

condition. In this case, the condition is not evaluated again. Instead, it

is assumed that the service description meets the request. However, since

some request conditions are time sensitive, the user can specify that the

cache may only be used in this way if the cache entry was stored after a

specific time/day. For instance, the user may be searching for an Internet

cafe which has a computer that is currently available for use. If the user

sets an expiry time for a particular sub-condition then the time stamp for

the cache entry must not exceed this limit in order to avoid re-evaluating

it;

2. The request condition being compared against the service description

is stored in the cache as having matched for some but not every sub-

condition, or the user specified time limit for the condition was not met.

In this case, the condition is re-evaluated. However, those definitions and

assertions which previously contributed to the positive match finding, are

evaluated in priority to other definitions and assertions. This allows the

match to be found more efficiently for the current inference.

For instance, suppose a user requests a cafe which sells Tea and Coffee,

where sells is a role, and Tea and Coffee are class concepts. Assume this is

compared with a service description x which connects to an individuals y and
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z using the role sells. Assume also that y has the type Tea and z has the types

Tea and Coffee. During the inference checking process y is found to match

the Tea condition and individual z matches both Tea and Coffee. Therefore,

individual z matches for both possibilities / conditions in the request and

individual y does not. In subsequent inference checks, individual z can be

used to generate a clash immediately without needing to re-evaluate sells Tea

and Coffee. Alternatively, if z did not exist, then y could be used, but since

it did not generate a clash for all possibilities, it will be re-evaluated, but this

evaluation will occur before evaluating over other individuals.

The order in which simultaneously applicable transformations are applied,

does not impact on completeness or soundness (Tsarkov and Horrocks, 2005).

Therefore, our caching strategy does not compromise completeness or sound-

ness. However, if a match of a request condition to a service description is

recorded in the cache, and the service description is subsequently changed,

then this can lead to incorrect positive match findings (i.e. false positive).

This is addressed by the ability for the user to specify a cache expiry time

for request features / conditions. However, if the user does not specify an

expiry for a cached request condition which has subsequently changed, then

soundness is breached.

Our mTableaux strategies are focused on optimising a single inference

check. Thus, the focus is on whether an individual x can be inferred to be

a member of the class concept type C. The class C defines the user request

and the individual x defines the a service description. As noted in Section

3.4.1, DL semantic reasoners perform classification (Baader et al., 2003, p.

72), (Tsarkov et al., 2007, p. 301) and realisation (Baader et al., 2003, p. 47).

The classification phase compares every possible pair of class concept defini-

tions from the TBox to see if they have an inferred subclass relationship. The

realisation phase performs an inference check between every individual in the

ABox and every class class in the TBox, to see if the individual is a member
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of the class. Therefore, the realisation phase alone results in performing m×n
inference checks where m is the number of classes in the ABox and n is the

number of individuals in the ABox. This is despite the fact that the user

is only interested in matching a single request concept with a single service

individual. Performing inference checks for classes and individuals which are

unrelated to the request or potential service does not add significant improve-

ment / value to the service selection process. Therefore, our premise is that

in order to improve performance efficiency in mobile environments these can

be precluded. For instance, we have shown in our empirical evaluation in Sec-

tion 6.4.2 that performing realisation significantly increases the response time

required to perform an inference. Our architecture matches a request descrip-

tion C against several potential service descriptions, as separate successive

inference operations.

In addition, current Tableaux reasoners perform a consistency check on an

ontology before performing any inference checks about knowledge contained

within the ontology. If it is found that an ontology is not consistent, then the

reasoner reports an error and will not perform any inference checks on that on-

tology until the contradiction is resolved. This is because Tableaux performs

inference checks by asserting the negation of an inference to the knowledge

base and that proving a contradiction (clash) exists for every possible expan-

sion. If this were performed on an inconsistent ontology, then false positive

inference results would be found. As such, a consistency check only needs to be

performed once, on a given set of knowledge contained in an ontology. In addi-

tion, a consistency check is resource intensive, because it involves applying all

applicable transformation rules on any definition and assertion in the knowl-

edge base, until no more transformation rules can be applied. Many of these

transformation rules will be applied to definitions and assertions which do not

relate to the user request or the service description being checked. Performing
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ontology consistency checks has a high performance cost. In Figure 1.2 in sec-

tion 1.2 we attempted to perform a consistency check for a realistic scenario on

a mobile device and this failed to complete. As such, in the context of mobile

semantic reasoning, performing an inference check on an inconsistent ontology

to provide a result with reduced accuracy is still preferable to having no re-

sult at all. Therefore, since a consistency check is effectively a safety check,

we do not perform this check on ontologies used by our approach. We make

the assumption that ontologies containing service descriptions, have already

been checked for consistency before they are made available for reasoning on

a mobile device.

In the remaining sections of this chapter, we define each of our mTableaux

strategies.

4.3 Selective Transformation Rule Applica-

tion (ST)

As discussed previously, we use the Tableaux decision procedure to prove or

disprove an inferred match. In order to ensure Tableaux inference proof is

efficient in terms of time, in this section, we propose and develop our selec-

tive transformation rule application (ST) strategy. This strategy significantly

optimises an inference check which is performed by the Tableaux decision pro-

cedure. As discussed in Section 3.4, Tableaux inference proof involves the

application of transformation rules, which model the semantic interpretation

of definitions and assertions. These rules are applied until the inference is

proven or until no more transformation rules can be applied. Our proposed

ST strategy, involves limiting the number of transformation rules applied to

improve efficiency, while maintaining a high degree of accuracy. However, as

stated earlier this strategy does not guarantee completeness, which means that

not all positive inferences may be provable under this optimisation. However,
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no negative inferences will be incorrectly proved as being a positive match

through the use of this strategy. Since the ST strategy limits evaluation of

some transformation rules it may not detect every possible clash, indicating a

positive match for a particular request requirement. However, if a clash found

then this is valid. Thus, the premise is that we reduce accuracy to improve

performance efficiency, with the caveat that we aim to minimise the accuracy

loss in the way we perform the optimisation.

4.3.1 Approach and Assumptions

In this section we describe the approach and assumptions of the Selective

Transformation Rule Application (ST) optimisation strategy. In order to op-

timise the Tableaux inference proof procedure, this strategy eliminates the

application of some transformation rules, to reduce the size of the proof task.

The goal of our proposed ST strategy, is to evaluate only a subset of the

individuals in the ABox. The premise of our strategy is that during an inference

check process which is comparing a request Cj with a service description xi,

we begin by evaluating only the service description xi. When we encounter

a universal quantifier definition of the form ∀R.C, where R is a role and C

is a class concept, we need to further evaluate all R-neighbours of xi. An R-

neighbour of x is an individual y which xi connects to by role R. We will now

describe our approach in more detail.

As described previously, we are using the Description Logic (DL) language,

in which knowledge is contained in a TBox T and ABox A. The TBox T
contains class concept definition, such that T = {C1, C2, ..., Cm | (1 ≤ j ≤
m)}. The ABox A contains individuals xi. These individuals can be asserted

to be a type of a class concept Cj. In addition, a role can be asserted to

connect one individual to another. These assertions are also contained in the

ABox A. As described in Section 3.4.2, ABox assertions are maintained using

labels, such that class assertions Cj(xi) are expressed as Cj ∈ L(xi) and role
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assertions R(xi, xk) are expressed as R ∈ L(〈xi, xk〉). In standard Tableaux,

a transformation rule is applicable to a class concept Cj ∈ T which has been

asserted as a type for an individual xi ∈ A.
In our ST strategy, we evaluate only a subset of the individuals in the

ABox A. This means we apply transformation rules to class concepts asserted

as types for only a subset of the individuals in A. Let ST denote this subset

of individuals in the ABox, such that ST ⊆ A. For instance, if x1 is asserted

to be a member of the classes C1 and C2, and x1 ∈ ST , then transformation

rules can be applied to these two assertions C1(x1) and C2(x1). Otherwise,

our strategy does not apply the rules. Note ST only contains individuals, not

assertions.

Now the question remains as to how to decide which individuals xi are to be

included in the set ST for evaluation during the inference checking process. As

described previously, Tableaux proves or disproves an inferred membership of

an individual xi to a class Cj, by adding the negation of class ¬Cj, to the type

label for xi. Transformation rules are then applied until it is established that a

consistent A cannot be generated, which proves the inference. Therefore, ST
must contain the individual xi because it is clearly relevant to the inference

check. Then during the inference checking process, neighbours of xi are added

to ST when a universal quantifier is encountered, where a neighbour is an

individual which xi connects to by some role R.

Adding additional individuals to ST is an iterative process as follows. A

new iteration adds more individuals to ST when no more transformation rules

can be applied, thus making more transformation rules applicable. In each

iteration, if any individual xi ∈ ST has a universal quantifier ∀Rr.C asserted

as a type in its type label, then any individual which xi connects to using the

role Rr, is also added to ST . In addition, if any individual xi ∈ ST has a

universal quantifier ∀Rp.C where Rp subsumes Rr, then any individual which

xi connects to by role Rp is also added to ST . Adding a new iteration of
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individuals to ST is specified in Equation 4.1, where xi and xy are individuals

and Rr and Rp are roles.

ST = ST ∪ ⋃

xi∈ST
xy, where

xy /∈ ST and ∀Rr.C ∈ L(xi) and
(
Rr ∈ L(〈xi, xy〉) or Rp ∈ L(〈xi, xy〉) where Rr v Rp

)

(4.1)

For example, a mobile user searching for an WiFi Internet cafe defines the

request containing ∃ sells.(Internet u WiFi) and this request is matched against

the service description individual netcafe. This request definition is negated to

give ∀ sells.(¬Internet t ¬WiFi), and added as a type for the individual netcafe.

Assume that netcafe is connected to another individual inet by the role sells,

and inet is a member of the class types Internet and WiFi. Applying the ∀-rule
on ∀ sells.(¬Internet t ¬WiFi) will add the disjunction ¬Internet t ¬WiFi to

the type label of inet. inet will then need to be in ST , in order to apply the

t-rule to the disjunction which will generate the clashes required to prove the

inference. This is why any individual to which netcafe connects by role sells,

is added to the set of relevant individuals ST .
We complete the process of applying all transformation rules before adding

another iteration of individuals to ST , because applying transformations to

assertions about individuals which are closer to the service description indi-

vidual xi, are more likely to generate a clash, where xi is the individual which

is being checked for inferred membership to the request class Cj. Therefore, in

each iteration, we add individuals which are n+1 number of role relations away

from xi, where n is the number of iterations performed. It is also notewor-

thy that, the application of transformation rules may add additional universal

quantifiers ∀Rp.C as types to individuals xi already in ST . If this occurs and
then in that case that xi is connected to any individuals xy by role Rr, these

xy will be also added to ST at the next iteration.
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The universal quantifier is the only definition type which is used for select-

ing new individuals to add to ST . This is because of the effect of the ∀-rule
which is applied to it. As described in Section 3.4.2, the only way an ABox

can be changed is be the application of transformation rules. Since we are only

interested in generating the clashes required to prove the inference, we only

need to evaluate the individual being checked for inferred membership to the

user request class, and any additional individuals which are changed by trans-

formation rules acting on the user request. The ∀-rule applied to an individual

xi, asserts class types to individuals which xi connects to by a role relation and

these asserted class types may relate to the user request. Alternatively, the

rules applied to a conjunction C1 u C2, disjunction C1 t C2, minimum cardi-

nality restriction ≥ nR, maximum cardinality restriction ≤ nR or existential

quantifier ∃R.A only make one of the following changes to the ABox:

• Assert class concept definitions: Class concepts are asserted as types

to the individual they are applied to, which are already in ST ;

• Create new individuals: New individuals are created with empty type

labels and no outgoing role relations, which implies that these new indi-

viduals have no asserted types to apply transformations to;

• Combine existing individuals: Generally, if individuals can be com-

bined without generating an immediate clash, then applying transforma-

tion rules to these individuals will not cause a subsequent clash in typical

mobile service matching scenarios;

• Create a new individual with a single class type: New individuals

are created and a single class concept is added as a type to the individual.

We assume that the concepts in the TBox do not contain any obvious

contradictions such as C u ¬C. In the case that a transformation rule

adds a consistent concept as a type to an individual with no other types

or outgoing relations, it will not generate a clash.
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In the following explain why each of the possible definition types (conjunc-

tion, disjunction, minimum / maximum cardinality restrictions, existential /

universal quantifier) are used or not used for selecting new individuals to add

to ST :

• The ∀-rule is applied to a universal quantifier ∀R.C which is asserted as a

type to an individual xi. It will add the additional class concept C to all

neighbours which xi connects to via role R. The concept C may be part

of the user request and adding C to each neighbour may cause a clash

to be generated. Therefore, all neighbours of xi, which are connected by

role R, are added to ST as discussed earlier in this section.

• The u-rule is applied to a conjunction C1 u C2 which is asserted as a

type to an individual xi. It will add more class concepts as types for xi

only. If the u-rule is being applied to a class concept added as a type to

xi, this means xi is already in ST . Therefore, no additional individuals

should be added to ST , due to the existence of a conjunction. For

instance, assume a user wants to find a store serving either tea or coffee,

which after negation becomes a conjunction of the form ¬Tea u ¬Coffee,
compared against the service individual xi. The u-rule will add both

¬Tea and ¬Coffee as a type label to xi, but not any other individual.

• The t-rule is applied to a disjunction C1tC2 which is asserted as a type

to an individual xi. It will add more class concepts as types for xi only.

If the t-rule is being applied to a class concept added as a type to xi, this

means xi is already in ST . Therefore, no additional individuals should

be added to ST , due to the existence of a disjunction. For instance,

assume a user wants to find a store which sells Internet and coffee (an

Internet cafe), which after negation becomes a disjunction of the form

¬Internet t ¬Coffee, compared against the service individual xi. The
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t-rule will add either ¬Internet or ¬Coffee as a type label to xi, but not

any other individual.

• The ∃-rule is applied to an existential quantifier ∃R.C which is asserted

as a type to an individual xi. It will generate a new individual xy and

a connection from xi to the new individual xy using the role R. It will

then add a class concept C to a new individual xy. Since xy is a new

individual, it has no outgoing relations and C will be the only class type

asserted to it. Therefore, if C is a consistent concept meaning it does not

contain any obvious contradictions, then applying a transformation rule

to it, will not generate a clash and xy should not be added to ST . As

stated previously, we assume any downloaded ontology is consistent (i.e.

it contains consistent concepts). We also assume that a valid request

will not contain a condition as well as its negation such as ¬Tea u Tea,

since this does not make sense. Therefore, all concepts in the TBox

T , including C, are assumed to be consistent. For instance, assume

a request for a cafe contains ∀ sells.(Coffee t Tea), which when negated

becomes an existential quantifier ∃ sells.(¬ Coffee u ¬Tea). If the request
is being matched against an individual xi, then this existential quantifier

is asserted as an additional type to xi. The ∃-rule will create a new

individual xy and will connect xi to xy using the role sells. It will then

add ¬Coffee u ¬Tea to the type label of xy. Since xy has no other types

or role relations, there is nothing for ¬Coffee u ¬Tea to clash with. The

only way the ∃-rule will generate a clash is if it violates a (≥ n R)

definition which is also asserted as a type for xi, however, xi is already

in ST meaning such a clash is already detectable by our strategy.

• The ≥-rule is applied to a minimum cardinality restriction ≥ n R which

is asserted as a type to an individual xi. It will create new individuals xy

and will connect xi to the new individuals xy using the role R, in order

to meet the requirement that xi must have least n number of R relations
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to other individuals. Since the individuals are newly created, they will

not have any class types or role relations asserted to them. Therefore,

there are no transformation rules to apply to them. For instance, assume

a user is searching for an appartment building which only has one floor,

by specifying a maximum cardinality restriction, ≤ 1 hasFloor, which

when negated becomes a minimum cardinality restriction ≥ 2 hasFloor.

Assume, that xi connects to an individual xy using the role hasFloor.

The ≥-rule will create an additional individual xz to which xi connects

by role hasFloor. The only way this will generate a clash is if it violates

a ≤ n R definition which is also added to the type label for xi, however,

xi is already in ST meaning such a clash is already detectable by our

strategy.

• The ≤-rule is applied to a maximum cardinality restriction ≤ n R which

is asserted as a type to an individual xi. It will merge pairs of individuals

into a single individual, such that given the pair xy and xz, the individual

xz will be merged into xy and xz will be removed. This occurs to meet the

requirement that xi must have no more than n number of R relations to

other individuals. In order for a merger of a pair to occur, the pair xy and

xz cannot be declared as distinct from each other such that xy 6= xz. In

the absence of any declaration between the two individuals, the merger

can only take place if it does not generate a clash. In our proposed

ST strategy, the merged individual xy is not added to ST . We suggest

that when an individual connects to several individuals using the same

role, these individuals are usually similar in their characteristics (defined

in terms of which classes are added as types). Usually these individuals

cannot be merged because they are explicitly declared as unequal, or their

merger generates an immediate contradiction. For instance, if CarYard

connects to BlueCar and RedCar, using the hasCar role, both cars are likely

to be similar, unless there is a declaration such as BlueCar 6= RedCar or
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Blue 6= Red, and Blue is added as a type to BlueCar and Red to RedCar.

Either situation would generate an immediate clash. Therefore, we do

not add successfully merged individuals to ST , although this violates

absolute completeness.

As described earlier in this section, a transformation rule can only be ap-

plied to a class membership assertion about an individual xi iff xi ∈ ST . This
condition is added as the first condition for each transformation rule as shown

in Figure 4.1, where the other two conditions for each rule are the same as in

standard Tableaux.

Furthermore, as described in Section 3.4.2 current Tableaux semantic rea-

soners employ the backjumping optimisation strategy. In this strategy, all

assertions added to the type or edge label L, and to the ToDo list depend on

a branch point node bi in the expansion tree G. When a backjump to branch

point bi occurs, all assertions which were added at or after bi, are removed.

That means, a branch point bi+1 with a level equal to or exceeding bi, is re-

moved. As a result, our ST set of individuals which can be evaluated, must

also support the backjumping functionality. Therefore, when an individual x

is added to ST it depends on the most recent branch point node bi which has

the highest level in G. In the case that a backjump to branch point bi occurs,

any individual x ∈ ST , which depends on a branch point bi+1 (where bi+1 has

a level which is equal to or higher than bi) is removed from ST .
In the next section we will illustrate the operation of the ST optimisation

strategy, using the example from Section 3.4.3.

4.3.2 Example

In this section we refer to the inference checking example which was provided

in section in Section 3.4.3. This example checks whether the class concept C0

definition can be inferred to be a type for the individual x0. In our mTableaux

approach, the inference checking process is used to check whether the user
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u-rule: if 1. xi ∈ ST , and
2. C1 u ... u Cn ∈ L(xi), and
3. {C1, ..., Cn} * L(xi)

then L(xi)← L(xi) ∪ {C1, ..., Cn}

t-rule: if 1. xi ∈ ST , and
2. C1 t ... t Cn ∈ L(xi), and
3. {C1, ..., Cn} ∩ L(xi) = ∅

then L(xi)← L(xi) ∪ {C} for some C ∈ {C1, ..., Cn}

∃-rule: if 1. xi ∈ ST , and
2. ∃R.C ∈ L(xi), and
3. there is no R-neighbour xj of xi such that R ∈ L(〈xi, xj〉)

where C ∈ L(xj)
then create a new node xj with L(〈xi, xj〉) = {R} and L(xj) = {C}

∀-rule: if 1. xi ∈ ST , and
2. ∀R.C ∈ L(xi), and
3. there is some R-neighbour xj of xi such that R ∈ L(〈xi, xj〉)

where C /∈ L(xj)
then L(xj)← L(xj) ∪ {C}

≥-rule: if 1. xi ∈ ST , and
2. ≥ n R ∈ L(xi), and
3. there are no R-neighbours xj of xi such that R ∈ L(〈xi, xj〉)

where xj 6= xk, 1 ≤ j ≤ k ≤ n
then create new nodes xj with L(〈xi, xj〉) = {R}, and xj 6= xk,
1 ≤ j ≤ k ≤ m, so that m = n

≤-rule: if 1. xi ∈ ST , and
2. ≤ n R ∈ L(xi), and
3. there are R-neighbours xj of xi, such that R ∈ L(〈xi, xj〉),

1 ≤ j ≤ m, wherem > n and there is a pair of R-neighbours
which is not declared xj 6= xk, 1 ≤ j ≤ k ≤ m

then for some pair xj , xk which is not declared xj 6= xk,
Merge(xj , xk) for 1 ≤ j ≤ k ≤ m
/*for Merge see Figure 3.10, Section 3.4.2*/

Figure 4.1: mTableaux Transformation Rules for the ST Optimisation Strategy
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request C0 matches the service description x0. In this inference check, C0 is

negated and added as a type to x0. If all attempts to expand the ABox using

transformation rules, fail due to a contradiction, then the inference is proven.

The negation of the definition C0, added as a type to x0 is ¬C0 ≡ ∀R2.(≤
0R2)t∀R1.(¬C1t∀R1.(¬C2t¬C3)). Figure 4.2 shows the example from Section

3.4.3, however, we highlight in yellow, the transformations which are performed

when using our proposed ST strategy performs. Any transformations which

are eliminated by our ST strategy, have a red line through them. We also

show new iterations of individuals being added to the set ST . Only those

individuals which are contained in ST , are evaluated by our strategy. Initially,

ST contains only the individual x0, because this is the service description

individual which the inference check is about. Thus, it is clear that in our

approach reduces the size of the matching problem, which we hypothesise will

significantly improve response time.

As shown in the figure, all definitions which are added as types to x0

are evaluated first. The ∀-rule is not applied to ∀R3.(¬C1 t ¬C2) which is

added to x6, because x6 is never added to the set ST . The t-rule is applied

to ∀R2.(≤ 0R2) t ∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3)) ∈ L(x0), and the ∀-rule to

∀R2.(≤ 0R2) ∈ L(x0), as in the standard Tableaux example in Section 3.4.3.

At this point a clash has not been generated, and there are no more rules to

apply on the individuals in ST , which includes only x0 at this stage. Therefore,

another iteration of individuals are added to ST . Since x0 has the universal

quantifier definition ∀R2.(≤ 0R2) as a type, the individual x1 which x0 connects

to by role R2 is added to ST after no more transformation rules can be applied

to the individuals already in ST . Now the ≤-rule can be applied to ≤ 0R2

which is added to x1, and this generates a clash. This process continues until

all clashes are detected and the inference is proven.

As is shown in Figure 4.2, the individuals which were not evaluated include

x2, x6 and x7. That is, transformation rules were not applied to definitions
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added as types to those individuals. This is because none of the individu-

als contained in the set ST connected to x2, x6 or x7 using a role that was

specified in a universal quantifier, added to them as a type. For instance, the

disjunction ¬C1 t¬C2 added to the individual x7 was not applied. If applied,

this disjunction would only have generated a clash for only the first expansion

and not the second, and therefore, would not have contributed to the inference

proof. In larger examples, we hypothesise that eliminating transformations

which are unlikely to affect the outcome of an inference check will lead to a

significant performance gain, with minimal impact on accuracy.

In this section we presented our ST optimisation strategy, to enable more

efficient matching of service descriptions x with user requests C, using a

Tableaux inference check. Our ST strategy eliminates the application of some

Tableaux transformation rules to assertions based on which individuals these

assertions are about. That is, transformation rules are only applied to a subset

of individuals in the ABox, where ST is a set containing this subset. However,

an individual xi ∈ ST may still have many disjunctions added to its type

label. As discussed in Section 3.4.2, the t-rule is non-deterministic, meaning

that it generates a number of possible / alternative ABox expansions, thereby

increasing the size of the search space (Tsarkov and Horrocks, 2005). There-

fore, reducing the number t-rule applications considerably reduces the size of

the inference task.

Some of the disjunctions added to the type label of an individual xi ∈ ST
may not be relevant to the inference check comparing the user request with

a service description. Therefore, in the next section we propose our Selective

Disjunction Rule Application (SD) optimisation strategy, which complements

our ST strategy. We hypothesise that our SD strategy will add to the im-

provements in efficiency by further reducing the number of transformation

rule applications.
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4.4 Selective Disjunction Rule Application -

(SD)

In this section we propose and develop our Selective Disjunction Rule Appli-

cation (SD) strategy. The SD strategy eliminates the application of the t-rule
to some disjunctions to improve efficiency, while maintaining a high degree of

accuracy. This strategy, does not guarantee completeness, which means that

not all positive inferences may be provable. However, as stated in Section 4.2,

no negative inferences will be incorrectly proven as being a positive match

through the use of this strategy. This is because Tableaux proves inferences

by searching for clashes. Since the SD strategy limits the evaluation of some

t-rule applications, it may not detect all possible clashes, which prove a pos-

itive match for a particular feature in the user request. However, if a clash

found by our strategy, then this is valid. Thus, we reduce accuracy in order

to improve performance efficiency, however, we aim to minimise any loss to

accuracy.

4.4.1 Approach and Assumptions

Our SD optimisation strategy proposes an approach to improve the efficiency

of a Tableaux inference check, without significantly reducing accuracy. This

strategy achieves increased efficiency by eliminating the evaluation of some

disjunctions. During the inference checking process, when a disjunction is

encountered, it is only evaluated if it contains a class concept that is also

found as part of the user request.

The reason our proposed SD strategy seeks to reduce the number of dis-

junctions which are evaluated, is due to the fact that evaluating a disjunc-

tion, by application of the t-rule, significantly increases the size of the search
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space (Tsarkov and Horrocks, 2005). This occurs because the t-rule is non-

deterministic, and generates a finite number of expansions which must each be

explored to prove that a non-contradictory expansion cannot be constructed.

Our proposed SD strategy evaluates only those disjunctions which contain a

class concept which is also found somewhere in the user request. This strategy

based on the premise that an ABox is assumed to be consistent, before the

negation of the conjunctured inference is asserted to the ABox. That is, as

previously discussed, Tableaux proves that a potential service individual x

matches a user request class definition C by asserting ¬C as a type for x. The

inference is proven when every attempt to fully expand A into a consistent

A′ fails, due to the occurrence of a contradiction. Therefore, the subsequent

failure to construct a consistent expanded ABox A′ is directly attributable

to the inclusion of the negation ¬C. For instance, assume a mobile user is

requesting an Internet cafe defined as ∃sells.Internet and ∃sells.Coffee. During

the inference process, a disjunction of the form Tea t Coffee can be evaluated,

because Coffee also appears in the user request. However, a disjunction Pizza

t VideoGame, need not be be applied because neither Pizza nor VideoGame

appear in the request.

The decision about whether or not to evaluate disjunctions is thus a two

stage process:

1. At the beginning of the inference check process, all the class concept

definitions specified in the user request are extracted and stored in a set

of class concepts, let SD denote this set;

2. During the inference checking process, when a disjunction is encountered,

all the class concept definitions specified in the disjunction are extracted.

If any of the extracted definitions are contained in SD, then the t-rule
is applied to the disjunction, otherwise it is not.

First we will describe the process of extracting the class concepts from the

user request class concept. The class definitions are extracted from the request



CHAPTER 4. MTABLEAUX: LIGHT-WEIGHT MOBILE INFER. 106

definition and added to the set SD using Algorithm 4.1. The set SD is filled

using the call GenSD(¬C) where C is the user request. We negate the request

C because its negation will be added as a type for the service description x.

Algorithm 4.1 GenSD(Ci)
Inputs: ClassConcept Ci
Outputs: Set SD
1: Let SD ← ∅
2: if Ci = ¬Cj then
3: SD ← {Cj} \*remove any leading negations*\
4: else
5: SD ← {Ci}
6: end if
7: if Ci = ∀R.Cj then
8: SD ← SD ∪GenSD(Cj)
9: else if Ci = ∃R.Cj then

10: SD ← SD ∪GenSD(Cj)
11: else if Ci = C1 u ... u Cm then
12: for all Cj from C1 u ... u Cm, 1 ≤ j ≤ m do
13: SD ← SD ∪GenSD(Cj)
14: end for
15: else if Ci = C1 t ... t Cm then
16: for all Cj from C1 t ... t Cm, 1 ≤ j ≤ m do
17: SD ← SD ∪GenSD(Cj)
18: end for
19: end if
20: Let W contain all subclasses of Cj, such that Ck v Cj for all Ck ∈ W
21: SD ← SD ∪W
22: return SD

The algorithm receives a class concept Ci as an input parameter, where

Ci is initially the user request. Ci is added to the set SD, after removing

any leading negations. We remove negations from all class concept definitions

in SD (and from all concepts extracted from disjunctions) because, in this

proposed optimisation, a concept C compared to a concept ¬C should be

considered equal. For instance, if a disjunction contains ¬C, and C ∈ SD,
the disjunction is still applied. If the class concept Ci is actually a universal

quantifier ∀R.Cj or existential quantifier ∃R.Cj definition then Cj is extracted

and passed back to GenSD for evaluation using a recursive call, and any class

concepts which have been extracted, and returned by GenSD are added to
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SD. If the class concept Ci is a conjunction or disjunction, each conjunctive

or disjunctive class concept element is passed back to GenSD using a recursive

call and the extracted concepts are added to SD. The reason we make recursive

callbacks to GenSD, is because the class concept definitions Cj passed back

to GenSD, all relate to the user request, and these class concepts Cj may

be asserted as a type to x or another individual by a transformation rule as

described in Section 3.4.2. In addition, all subclasses of the input concept Ci

are also added to SD. For instance, if the user request for an Internet cafe

is defined as ∃ sells.(Coffee u Tea), this is negated to become ∀ sells.(¬Coffee
t ¬Tea), and added to the service description x. Applying the ∀-rule to this

definition, will add ¬Coffee t ¬Tea to any individual y, which connects from

x by the role sells. Thus, GenSD must extract Coffee and Tea and add these

to SD, so that the disjunction ¬Coffee t ¬Tea which is relevant to the user

request, can be evaluated by this proposed SD strategy.

Now that we have described how the set SD is populated, we describe how

the decision to evaluate a disjunction is made using this set. Our proposed SD

strategy deems a disjunctionD applicable for evaluation if any of its disjunctive

elements are contained in SD, as defined in Algorithm 4.2. This algorithm is

initiated by a the call ApplyDisj(D,SD) where D is the disjunction to check.

Algorithm 4.2 ApplyDisj(D,SD)
Inputs: ClassConcept D, Set ST
Outputs: Boolean applyDisj
1: for all Ci from D where D = C1 u ... u Cn, 1 ≤ i ≤ n do
2: if Ci ∈ SD then
3: return true
4: else
5: Let W contain all subclasses of Ci, such that Cj v Ci for all Cj ∈ W
6: if Cj ∈ ST for any Cj ∈ W then
7: return true
8: end if
9: end if

10: end for
11: return false
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The algorithm loops through each class concept element of the disjunction

and if any of these elements, or a subclass of these elements are contained in SD
then the disjunction is evaluated. In other words, the t-rule can be applied to

such a disjunction. Figure 4.3 illustrates the modified t-rule definition, which

contains an extra condition specifying that ApplyDisj(C1t ...tCn,SD) must

return true, in order to apply the disjunction C1 t ... t Cn. The other two

conditions are the standard Tableaux conditions for the t-rule as stated in

Section 3.4.2. It is noteworthy that if our proposed SD strategy is used in

conjunction with our ST strategy (see Section 4.3), then the t-rule will also

include a fourth condition, which was specified in Section 4.3, requiring that

the individual xi must be contained in the set ST , where C1 t ... t Cn was

added to the type label of xi.

t-rule: if 1. ApplyDisj
(
(C1 t ... t Cn),SD) = true, and

2. C1 t ... t Cn ∈ L(xi), and
3. {C1, ..., Cn} ∩ L(xi) = ∅

then L(xi)← L(xi) ∪ {C} for some C ∈ {C1, ..., Cn}

Figure 4.3: mTableaux t-rule Transformation for SD Optimisation Strategy

In the next section we will illustrate the operation of the SD optimisation

strategy using the example from Section 3.4.3.

4.4.2 Example

In this section we refer to the inference checking example which was provided

in section in Section 3.4.3. This example checks whether the class concept C0

definition can be inferred to be a type for the individual x0. In our architecture,

the inference checking process is used to check whether the user request C0

matches the service description x0. In this inference check, C0 is negated and

added as a type to x0. If all attempts to expand the ABox using transformation

rules fails due to a contradiction, then the inference is proven. The negation
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of the definition C0, added as a type to x0 is ¬C0 ≡ ∀R2.(≤ 0R2)t∀R1.(¬C1t
∀R1.(¬C2 t ¬C3)).

When our proposed SD strategy is enabled, it must first extract all the

class concept definitions from the user request and add these to the set SD.
The contents of SD extracted from ¬C0, using the algorithm GenSD (see

Algorithm 4.1 defined in the previous section), is shown in Figure 4.4.

SD
∀R2.(≤ 0R2) t ∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3))
∀R2.(≤ 0R2)
≤ 0R2
∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3))
(¬C1 t ∀R1.(¬C2 t ¬C3))
C1
∀R1.(¬C2 t ¬C3)
(¬C2 t ¬C3)
C2
C3

Figure 4.4: Example Contents of the Set SD

During the inference checking process a disjunction is only evaluated if one

of its disjunctive members are contained in SD. Figure 4.5 illustrates the

ABox expansions involved to check the validity of the inferences by applying

transformation rules. This figure is identical to Figure 3.12 from Section 3.4.3,

which illustrates the inference checking process using standard Tableaux, ex-

cept that only the transformations which are highlighted in yellow are applied.

Any disjunctions which are eliminated by our SD optimisation strategy, are

shown in the figure as being crossed out with a red line. As is shown in the

figure, the t-rule is not applied to the disjunction C4 tC5, because neither C4

nor C5 are contained in the set SD. If applied, this disjunction would have

generated a clash for C4, but not C5, and therefore, would not contribute to

the inference proof. The example still successfully proves that C0 can be in-

ferred to be a type for x0. Therefore, in this example, our SD optimisation has

reduced the number of evaluations required to prove the inference to improve

response time without reducing accuracy. In realistic scenarios there will be
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Figure 4.5: Selective Disjunction (SD) Optimisation Strategy Example
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many individuals which have disjunctive definitions asserted to them as types.

Therefore, we hypothesise that this optimisation will improve response time

while maintaining a high / acceptable level of accuracy for reliable semantic

reasoning.

When the ST and SD optimisation strategies are used together, they elim-

inate the application of transformation rules to certain definitions. However,

even when both optimisation strategies are enabled, there are some transfor-

mation rules applied which do not assist in proving the inference. For in-

stance, in the example the ∀-rule was applied to ∀R1.(¬C2 t ¬C3), resulting

in ¬C2 t ¬C3 to be asserted as a type for individuals x4 and x5. This was

because x3 connects to both x4 and x5, using role R1. Since both disjunctions

depend on ∀R1.(¬C2 t ¬C3), only one disjunctions needs to generate a clash

for both expansions in order to prove that this universal quantifier generated

a clash. However, there is no way of knowing which disjunction will generate

a clash for all expansions. In realistic data sets, x3 may connect to many more

individuals using role R1 than just x4 and x5. Determining which disjunction

generates a clash for all expansions, may thus result in significant processing.

However, previous requests may help to indicate which of these disjunctions

should be evaluated first. Thus, a cache of all assertions which have generated

a clash during previous inference checks can help to improve response time.

In addition, if particular parts of a service description are unlikely to change

frequently, such a cache could be used to avoid some expansions all together.

In the next section we will propose our caching strategy, which addresses this

need.

4.5 Caching Strategy (CS)

In the previous sections we have described our proposed strategies for optimis-

ing a Tableaux inference check which is used by our mTableaux to compare

a service description with a mobile user’s request. In this section we outline
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a strategy which caches previous user requests and uses this information to

reduce the response time of subsequent requests.

Entries in the cache are used to avoid re-evaluating parts of an inference

check which have already been evaluated in previous inference checks. There-

fore, our proposed CS does not compromise completeness or soundness, unless

the ontology has changed since the entry has been stored in the case. However,

to alleviate the limitation of out of date information, we allow users to asso-

ciate a time limit with request attributes. If an entry relating to a condition

was stored in the cache before this user specified time, then the condition must

be re-evaluated, to ensure completeness and soundness for this condition. In

the next section we will detail our proposed strategy. In the case that the user

does not specify expiry times for the conditions in the request, our proposed CS

strategy may prove inferences which are no longer positive if the description of

a service has changed since it was cached. However, this strategy will not prove

negative inferences because only positive match results are stored in the cache.

If a request is not found in the cache then the standard Tableaux matching

process occurs. In the next section we will detail our propose strategy.

4.5.1 Approach and Assumptions

The daily lives of users are influenced by their interests, habits and preferences.

It is, therefore, likely that users will request services which are similar to

services requested in the past. In this section, we propose a caching strategy

which records matches found during previous requests to improve the response

time of similar requests performed subsequently. For instance, a user may have

previously made a request to find a store in a shopping centre which sells CDs

relating to particular style of music. The user may subsequently seek similar

CDs from the same genre of music in the future (Kurkovsky et al., 2005).
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Caching mechanisms have been used by some reasoners to cache the results

of particular inference checks in main memory (Tsarkov et al., 2007). How-

ever, current reasoners treat every inference check as being independent of

previous inference checks. Most OWL reasoners cache the result of inference

checks in memory only and do not store these to secondary storage (Zacharias

et al., 2007). However, today’s mobile devices such as PDAs and phones have

substantial amounts of secondary Secure Digital card memory which is inex-

pensive and can store several gigabytes of data. Therefore, we hypothesise

that a caching strategy that leverages secondary storage will improve response

time in a mobile setting, where processing power and main memory is resource

constrained, by avoiding re-processing of requests which are similar to those

performed in the past. Current reasoners do not cache the transformation rule

applications which generated clashes. The novel aspect of our caching strategy

(CS) is that we persistently cache the Tableaux transformations which have

generated a clash during an inference check. Depending on the level of com-

pleteness required for a particular condition in the user request, our strategy

uses a cached entry to:

1. generate an immediate clash during an inference check;

2. re-order the application of transformation rules, such that those which

are stored in the cached entry are applied first.

We will describe our caching strategy (CS) in more detail in the remainder of

this section.

In our proposed CS strategy, when a part of the user request is found to

match a particular service description, the definitions and assertions which

were evaluated to come to this finding, are stored in a cache. Whenever a

definition or assertion is evaluated in subsequent inference checks, our CS

strategy will check to see if these are contained in the cache. If this is found

to be the case, then either these definitions and assertions will not need to
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be re-evaluated, or they will be evaluated before others, in order to improve

response time (depending on the time validity of the cached entry).

While most definitions and assertions which define a service, are generally

static or do not change very often, it is possible that some parts of the service

description have changed since the last time a request was compared against

this service. In other words, it is possible some entries in the cache can become

out of date. Therefore, we associate a time stamp with every entry in the cache.

The user can also associate a time stamp with particular time sensitive request

conditions. If the cache entry was stored before the user specified time limit

(i.e. expiry time) for a particular request condition, then this condition must

be re-checked against the service description, to ensure accuracy. However, the

definitions and assertions which were evaluated to find the match previously,

will be given increased priority, and evaluated before other definitions and

assertions. For instance, a user may request an Internet cafe, which has a

computer that is currently available for user. The part of the request which

defines an Internet cafe is considered unlikely to change, while the availability

condition is considered time sensitive and must be re-evaluated if last checked,

over 15 minutes ago.

In addition, we discussed in Section 3.4.2, there may be more than one

way of evaluating a request condition. For instance, a negated request for an

Internet cafe may contain the definition ∀sells.Coffee, where sells is a role and

Coffee is a class concept. The Coffee class concept may be defined in the TBox

T as InstantCoffee u GroundCoffee. This implies that the coffee requirement is

only satisfied if both InstantCoffee and GroundCoffee are met. However, in our

proposed caching strategy (CS), every match is stored in the cache. Therefore,

if the InstantCoffee was found to match a service description, we store this in

the cache, even if GroundCoffee did not match the service. This is because the

user may subsequently perform a request which contains InstantCoffee but does

not require GroundCoffee. We will also store the Coffee class concept in the
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cache, but only as a partial match. Thus, in our cache we distinguish between

a full and partial match. A particular request condition does not need to be

re-evaluated if it is contained in the cache as a full match (and has not expired

according to the time validity).

Since our proposed CS strategy supports time bounded request conditions

and differentiates between a full and partial match in the cache, this means

that one of two situations may occur:

1. In the case that a request condition is stored in the cache as a full match

and falls within the user specified time limit, then the condition is as-

sumed to match and is not re-evaluated;

2. In the case that a request condition is stored in the cache as a partial

match or its time stamp exceeds the user specified time limit, then the

condition must be re-evaluated. However, all definitions and assertions

which gave rise to the (partial) match finding previously, are stored in

the cache and given priority so that they are applied before others.

Now that we have provided an overview of our proposed CS strategy, we

will provide a more formal description of the structure of the cache in the next

section.

4.5.2 Cache Structure

As described in Section 3.4.2, Tableaux proves an inferred match between a

user request and service description, by asserting the negation of the request

to the service individual, and applying transformation rules which generate

expansions, until a contradiction is established for every possible expansion.

Thus, whenever a clash occurs, this contributes to a match for a condition in

the request. As such, whenever a clash occurs, we store the definitions and

assertions which have generated the clash in the cache. This means storing the

definition which contradicts another definition, plus all the definitions which
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the clashing definition depends on. In Tableaux, a class concept definition

Cj asserted as a type for an individual x, may depend on another concept

or a branch point node b in the expansion tree G. A branch point node b is

created by a non-deterministic transformation rule such as the t-rule which is

applied to a disjunction Ci t Cj which is a type for the individual x. When a

transformation rule is applied to a class concept Cj which generates an obvious

contradiction, then Cj is stored in the cache as a full clash (i.e. a full match).

In addition, Cj may depend on another class concept Ck. Alternatively, Cj

may depend on a branch node b, where b was created by applying a disjunction

CktCp which is a type for the individual x and the disjunct element Ck was the

element which was last evaluated (i.e. added as a type to the individual x). In

either case, we say that the assertion Cj(x) depends on Ck(x). All assertions

which Cj(x) depends on are also stored in the cache. These dependencies are

marked in the cache as partial clashes (i.e. a partial match), unless all possible

expansions have been evaluated and have generated a clash.

The cache for our proposed CS strategy, is structured as a set of tuples,

which take the form shown in Equation 4.2. In this equation: Ci(xr) and Cj(xp)

are assertions. The second element Cj(xp) is an assertion which depends on

the assertion in the first assertion Ci(xr). t is a time stamp indicating when the

cache entry was added. s indicates the status of the clash which was generated,

which is either true for a full clash (i.e. a full match for Ci(xr)) or false for a

partial clash (i.e. a partial match for Ci(xr)).

CSCache = {ζ1, ..., ζn} where

ζ =
〈
Ci(xr), Cj(xp), t, s

〉
such that

Cj(xp) is assertion which depends on the assertion Ci(xr),

t is the date/time when the tuple ζ was added to CSCache

s is true if all possibilities for Ci(xr) clashed or false otherwise

(4.2)
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For example, suppose there a negated request for an Internet cafe ¬ UserRe-

quest which contains ¬Coffee t ¬InternetRequest. In addition, assume ¬Internet-
Request is a disjunction, such that ¬InternetRequest ≡ (∀ hasComm.¬WiFi

t ¬Internet). Suppose that the class concept ¬WiFi generated a clash. In

this case, ¬WiFi is stored in the cache. The class concept ¬UserRequest is

also stored in the cache because one of its sub-conditions generated a clash

(i.e. a match). These concepts are stored as follows. Let t denote the

current date/time. Firstly, the clashing concept ¬WiFi, which has no de-

pendants, is stored as 〈¬WiFi, null, t, true〉. The last status field is set

to true because ¬WiFi generated a clash for all possible expansions (there

was only one possible expansion for ¬WiFi). Additionally, ¬WiFi depends

on ∀ hasComm.¬WiFi (which has only one possible expansion) leading to

the tuple 〈∀ hasComm.¬WiFi, ¬WiFi, t, true〉 being added to the cache. ∀
hasComm.¬WiFi depends on ¬InternetRequest which results in the tuple 〈¬Inter-
netRequest, ∀ hasComm.¬WiFi, t, false〉 being added to the cache. This time

the status field was set to false indicating a partial match, because ¬Internet-
Request is a disjunction which has two possible expansions and only one has

been found to clash so far. Finally, ¬InternetRequest depends on ¬UserRequest
which results in the tuple 〈¬UserRequest, ¬InternetRequest, t, false〉 being
added to the cache. Again the status is false because ¬InternetRequest has

only partially clashed.

Now that we have defined the structure of our cache, we will detail storage

and retrieval from our cache in the next section.

4.5.3 Cache Storage and Retrieval

New tuples are added to the cache whenever a clash occurs, during the in-

ference checking process. More specifically, when a clash is generated, the

assertion which has given rise to the clash is stored in the cache, as well as

all the assertions which it depends on. Cache retrieval occurs whenever a new
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disjunction element is applied during the inference checking process. If the

disjunction element being applied is found in the cache, and this element has

generated a full clash, then we know that this request condition has generated

a clash for all subsequent expansions in a past request. As long as the cache

entry was added after a user specified time constraint, then the reasoner imme-

diately generates a clash without having to apply all of the expansions again.

Alternatively, if the cache entry was added before the user specified expiry

time, or did not generate a full clash (for all expansions), then all assertions

which are dependant on the entry, are retrieved, and transformation rules are

applied to these assertions in priority to all other assertions. Now we will first

describe cache storage, followed by cache retrieval.

Cache Storage

As mentioned previously in this section, the cache is a set of tuples. The cache

is serialised and stored to file on persistent secondary storage such as an SD

card on a mobile device. The cache is loaded into main memory whenever

an inference checking process begins, and stored back to secondary storage

whenever the inference check is completed.

Algorithm 4.3 defines the process involved for adding new tuples to the

queue when a clash occurs. During the inference checking process, a clash

may be generated when a transformation rule is applied to an assertion C(x).

When a clash is generated, a call is made to Algorithm 4.3 where the clashing

assertion C(x) is passed as the first parameter and a value of true is passed

as the second parameter status indicating that this is the first call to the

algorithm (in subsequent recursive calls status is false).

The main functionality of the algorithm is to store the assertion which has

generated the clash to the cache, as well as to store all assertions which the

clash generating assertion depends on as separate entries in the cache. This oc-

curs using recursive call backs. The algorithm makes use of the AddCacheEntry
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Algorithm 4.3 ClashDetected
(
Cj(xp), status

)

Inputs: Assertion Cj(xp), Boolean status
1: if status = true then
2: AddCacheEntry

(
Cj(xp),null, true

)

3: status← false
4: end if
5: Let Ci(xr)← dependsOn

(
Cj(xp)

)

6: if Ci(xr) 6= null then
7: Let fullClash← false
8: if

(
Ci(xr) = C1 t ... t Cn(xr), 1 ≤ k ≤ n

)
and(

s = true, for all 〈Ck(xr), α′, s〉 ∈ CSCache, for any α′
)

then
9: fullClash← true \*Cj(xp) depends on an assertion Ci(xr) where Ci

is a disjunction and all of its disjunct element assertions Ck(xr) have
been found to clash*\

10: end if
11: AddCacheEntry

(
Ci(xr), Cj(xp), fullClash

)

12: ClashDetected
(
Ci(xr), status

)

13: end if

algorithm, which is defined in Algorithm 4.4, to actually add an entry to the

cache. Thus, Algorithm 4.3 first adds to the cache, the assertion which gen-

erated the obvious clash when a transformation rule was applied to it. The

algorithm then obtains the assertion Ci(xr) which Cj(xp) depends on. Let

dependsOn
(
Cj(xp)

)
denote the assertion which Cj(xp) depends on. If Ci is a

disjunction, then the fullClash attribute is set to true if all of the disjunct

elements of the disjunction Ci are contained in the cache and marked as full

matches. If all elements of the disjunction Ci are not marked as full clashes

then this implies that there is at least one possible expansion for Ci which has

not yet been found to generate a clash, which means our proposed CS strategy

cannot avoid evaluating Ci(xr). The assertions Ci(xr) and Cj(xp) are added

to the cache using a call to AddCacheEntry.

Algorithm 4.4 adds a new entry to the cache. That algorithm is invoked

using the call AddCacheEntry
(
Ci(xr), Cj(xp), s

)
, where Ci(xr) and Cj(xp) are

assertions such that Ci(xr) depends on Cj(xp) and s is the status field which

is set to true if entry is for a full clash (i.e. a full match) or false otherwise

(i.e. a partial match). If there is already an entry in the cache the pair Ci(xr)
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Algorithm 4.4 AddCacheEntry
(
Ci(xr), Cj(xp), s

)

Inputs: Assertion Ci(xr), Assertion Cj(xp), Boolean s
1: remove

〈
Ci(xr), Cj(xp), t′, s′

〉
from CSCache for any t′, s′

2: if reached memory limit for CSCache then
3: remove all 〈α′, α′′, t′′, s′〉 ∈ CSCache, for any α′, α′′, s′ where

t′′ is the oldest date/time stamp in CSCache
4: end if
5: Let t← current date/time stamp
6: CSCache← CSCache ∪

〈
Ci(xr), Cj(xp), t, s

〉

and Cj(xp) then this is removed, because the existing entry will be replaced

by the new entry. In addition, since small devices have varying amounts of

available storage, it is possible that the cache might be full. If this is the case,

the entries which share the oldest time stamp are removed. Finally the new

entry is added to the cache.

Cache Retrieval

As described in Section 4.5.1, a cache entry about an assertion contains a

marker to signify whether or not it represents a full or partial clash. In the

case that it is marked as a full clash then it can be used to immediately generate

a clash in the reasoner, without further evaluating the assertion by applying

transformation rules. This is provided the time stamp associated with the

cache entry indicates that it falls within any user specified age limit. This im-

plies that for an assertion Ci(xr), there is an entry in the cache 〈Ci(xr), α, t, s〉,
where t must be greater than the user specified age limit / expiry time, s must

be true and α can be any value. This will cause an immediate clash for Ci(xr).

If this occurs, then the reasoner will not evaluate Ci(xr) any further.

Alternatively, if the entry is marked as a partial clash, or the user specified

age limit was not met, the assertion Ci(xr) must be fully evaluated by the

reasoner. The remainder of the subsections describing the caching strategy

are concerned with these assertions which are contained in the cache, but

must be re-evaluated. Priority will be given to any assertions which depend
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on Ci(xr) and generated a clash previously, to improve response time. These

assertions are retrieved from the cache and associated with a weight value

to indicate this increased priority. The weight value is calculated when the

cache entry is retrieved only. It is not stored in the cache because it would

require updating whenever entries are added or removed from the cache. In

addition, it is influenced by which assertion Ci(xr) is being retrieved from the

cache. For instance, if retrieved assertion Ci(xr) represents a full clash in the

cache it is given a weight value of 1 and the weight value of all dependant

assertions form a proportion of this value. Let weight
(
Ci(xr)

)
be the weight

value associated with an assertion Ci(xr), where 1 ≤ weight
(
Ci(xr)

)
≤ 0.

The assertions retrieved from the cache and their associated weight values

form pairs as defined in Equation 4.3. It is noteworthy to mention that all

assertions in the reasoner which are not found in a cache entry have a default

weight of zero.




〈
C1(x1), weight

(
C1(x1)

)〉
, ...,

〈
Cn(xm), weight

(
Cn(xm)

)〉


 where

1 ≤ i ≤ n, 1 ≤ r ≤ m

(4.3)

The process of retrieving the set of assertions and weight value pairs from

the cache, is specified in Algorithm 4.5. This algorithm retrieves all dependant

assertion and weight value pairs for the assertion Ci(xr) and returns a set P
as an output, which contains dependant assertion and weight value pairs. The

algorithm is invoked using the call GetDependants
(
Ci(xr), 1

)
, where Ci(xr)

is the disjunction element being applied by the reasoner and 1 is the highest

weight value which should be associated with an assertion if all of its possible

expansions were found to generate a contradiction previously. This second

parameter u is always initially 1.
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Algorithm 4.5 GetDependants(Ci(xr), u)
Inputs: Assertion Ci(xr), double u, where xr is an individual which is a mem-

ber of the class concept Ci
Outputs: 〈Set P , double w〉
1: Let P ← ∅
2: LetD be a set of assertions Cj(xp), for all

〈
Ci(xr), Cj(xp), t, s

〉
∈ CSCache

where t and s can be any value
3: Let w ← 0
4: if D 6= ∅ then
5: for all Cj(xp) ∈ D do
6: if Ci ≡ C1 t ... t Cn, 1 ≤ j ≤ n then
7: u← u/n \*all Cj are disjunct elements of Ci, where Cj(xp) ∈ D*\
8: end if
9: Let weight

(
Cj(xp)

)
← u

10: P ← P ∪



〈
Cj(xp), weight

(
Cj(xp)

)〉




11: Let 〈P ′, w′〉 ← GetDependants
(
Cj(xp), u

)

12: P ← P ∪ P ′
13: if Ci ≡ C1 t ... t Cn, 1 ≤ j ≤ n then
14: w ← w + w′ \*sum dependant disjunct weights*\
15: else if w′ > w then
16: w ← w′ \*take highest weight of dependants*\
17: end if
18: end for
19: else
20: return 〈P , u〉 \*no dependants*\
21: end if
22: return 〈P , w〉

The algorithm, obtains from the cache, all the assertions Cj(xp) which are

dependant on Ci(xr), where Ci(xr) is passed as a parameter to the algorithm.

Assertions which depend on Ci(xr), are retrieved by getting all tuples from

the cache which contain Ci(xr) in the first field and storing all dependants

Cj(xp) into a set D, where Cj(xp) is an element contained in the second field

of the tuple where Ci(xr) is the first field. Thus, D is the set of obtained

dependants for Ci(xr). The algorithm then loops each of these assertions

Cj(xp) ∈ D. It allocates weight values to each Cj(xp), where a weight value

indicates the normalised number of possible expansions of Cj(xp) which are

stored in the cache as generating a full clash. Normalised implies that all values

are between 0 and 1. If Ci is a disjunction then any assertions which directly
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depend on Ci(xr) will represent disjunct elements of Ci. In this case, the

current weight value u is divided by the number of disjunct element members

which the disjunction Ci, contains (whether or not these are stored in the

cache as dependants for Ci). This is because each disjunct element represents

an alternative expansion which depends on Ci and all alternative expansions

must generate a full clash in order to prove a full clash (i.e. a match) for an

assertion Ci(xr) about the disjunction Ci. In the algorithm, the weight of the

current Cj(xp) is set to be the current weight value u.

Each Cj(xp) and its weight value pair are added to the set P , which will

be returned as an output by Algorithm 4.5. The current Cj(xp) and nor-

malised weight value u is then passed to GetDependants, which is invoked

using a recursive call. This will recursively retrieve the dependants of each

Cj(xp) in the same way until all dependants have been evaluated. This call to

GetDependants will return a new set P ′ of assertion and weight value pairs,

and a value w′ which is the highest weight value associated with an assertion

in P ′. P ′ is added to the current set P . If the current class concept Ci is

a disjunctive assertion, this means all dependant assertions Cj(xp) relate to

disjunctive elements Cj, so each w′ is summed and the total w is used. Oth-

erwise w is the highest weight value w′ of those weights associated with the

dependants Cj(xp). We take the highest weight to cater for conjunctions, for

which there may be multiple dependants, each representing a conjunct ele-

ment, however only one of these needs to generate a full clash to prove a full

clash for the conjunction to which it is a member of. Finally, after looping all

dependant assertions of Ci(xr) in the cache, the set P and value w are returned

as outputs for the algorithm.

During the inference checking process, the weight values weight
(
Ci(xr)

)

will be used to determine the priority for which assertion Ci(xr) to evaluate

next. Current Tableaux reasoners employ an unordered ToDo list of assertions

to evaluate (i.e. by applying transformation rules to them) as described in
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Section 3.4.2. We replace the ToDo list with queues which order assertions by

weight value. It is noteworthy that the value w is only used by GetDependants

to hold the weight value of the assertion which the parameter Ci(xr) depends

on, to manage the recursive calls. It is not used by the reasoner for the

matching process.

Our priority queues which make use of weight values weight
(
Ci(xr)

)
for

assertions Ci(xr) will be discussed in the next section.

4.5.4 CS Weighted Queues

In the case that an assertion is obtained from the cache, as having generated

a clash in the past, but has either generated a partial clash or the assertion

was stored in the cache before the user specified age limit, then this assertion

must be evaluated before the others in order to improve response time. In

the previous section we described how assertions are obtained from the cache

and allocated with weight values. These weight values are used to indicate

a priority level. Assertions with the highest priority are evaluated first. Any

assertion which was not found in the cache, has a priority weight value of zero,

meaning these will be evaluated last. Thus, we establish weighted queues for

ordering assertions by weight value. These queues replace the unordered ToDo

list of assertions which is employed by current reasoners.

The ToDo list, which current reasoners employ, contains all assertions

which can have transformation rules applied to them. However, as discussed

previously, the t-rule, which is applied to disjunctions, is a non-deterministic

rule. This means it gives rise to many possible expansions which must each be

checked in order to prove every possible expansion generates a contradiction.

This significantly increases the size of the search space. Therefore, in our CS

strategy, we have two queues. One queue contains disjunctive assertions and

the second queue contains all the other assertions. Let Qd be the weighted

queue which contains disjuntive assertions and let Qo be the weighted queue
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which contains any other assertion. The main idea is that we apply assertions

from Qo, then we apply only a single disjunction in Qd, which may add more

assertions to Qo. We continue this process, until all assertions are applied.

The weight value weight
(
C(x)

)
of any assertion C(x) begins at zero.

Weight values might then be increased by Algorithm 4.5 which retrieves asser-

tions from the cache, as described in the previous section. Assertions are added

to their respective queue, whenever these are added to the ABox A. This may

occur when an ontology is loaded into the ABox A, or when a transformation

rule adds additional assertions to the ABox A. However, as stated in Section

3.4.2 the ∀-rule and u-rule are applied to assertions containing universal quan-

tifiers or conjunctions as soon as these are added to the ABox A. As a result,

these assertions are not added to the ToDo list by current reasoners and are,

therefore, not added to our queues either. Both queues Qo and Qd are ordered
in descending weight

(
C(x)

)
order which is defined in Equation 4.4.

Q =



〈
C1(x1), weight

(
C1(x1)

)〉
, ...,

〈
Cn(xm), weight

(
Cn(xm)

)〉


 where

weight
(
Ci(xr)

)
≥ weight

(
Cj(xp)

)
, 1 ≤ i ≤ j ≤ n, 1 ≤ r ≤ p ≤ m

(4.4)

The considerations discussed in this section with regard to assertion re-

ordering using our queues, is illustrated more formally in Algorithm 4.6. This

algorithm is given the ABox, expansion tree and the two queues as input pa-

rameters. It uses the queues to determine which assertion to apply next and

applies the appropriate transformation rule to it. If the application of a trans-

formation rule causes a clash then the class concept which has generated the

contradiction is returned as output. Let ApplyTransformationRule1 denote

an algorithm which applies the appropriate standard Tableaux transformation
1The ApplyTransformationRule function applies the standard Tableaux transformation

rules as outlined in Section 3.4.2 and is therefore not shown
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rule the single assertion which is provided to it as an input parameter and

returns a class concept if a clash was generated or null otherwise. It is note-

worthy that these transformation rules will also encompass the optimisation

strategies defined in sections 4.3 and 4.4 if these are enabled.

Algorithm 4.6 ApplyTableauxRules(A, G, Qo, Qd)
Inputs: ABox A, ExpansionTree G, Queue Qo, Queue Qd
Outputs: Boolean clashDetected
1: Let Ci(xr) be the assertion in Qd with the highest weight

(
Ci(xr)

)

2: while Qo 6= ∅ do
3: Let Cj(xp) be the assertion in Qo with the highest weight

(
Cj(xp)

)

4: if weight
(
Cj(xp)

)
= 0 and(

Ci(xr) 6= null and weight
(
Ci(xr)

)
> 0

)
then

5: break out of while loop \*apply next disjunction instead*\
6: end if
7: remove

〈
Cj(xp), weight

(
Cj(xp)

)〉
from Qo

8: Let clash← ApplyTransformationRule
(
Cj(xp),A,G

)

9: if clash 6= null then
10: return clash
11: end if
12: end while
13: if Qd 6= ∅ and Ci(xr) 6= null then
14: remove

〈
Ci(xr), weight

(
Ci(xr)

)〉
from Qd

15: Let clash← ApplyTransformationRule
(
Ci(xr),A,G

)

16: end if
17: return clash

Algorithm 4.6 applies all assertions in Qo which have a weight higher than

zero, until a clash occurs. If there are no more assertions in Qo with a weight

higher than zero, but there is a disjunctive assertion in Qd with a weight higher

than zero, then one disjunctive assertion is applied. The ApplyTableauxRules

algorithm will be called by the inference checking process until there are no

more transformation rules to apply or there is a clash for every expansion.

More specifically, the algorithm loops while the queue Qo is not empty.

It retrieves the assertion Cj(xp) from Qo which has the highest weight value

weight
(
Cj(xp)

)
in the queue. If this assertion Cj(xp) has a weight which is

higher than zero, then it removes Cj(xp) from the queue Qo and applies the
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appropriate Tableaux transformation rule to it. If applying the transformation

rule to the assertion Cj(xp) generates a clash, then the algorithm stops and

returns the clashing concept. In the case that the next Cj(xp) from Qo has a
weight of zero, but the disjunction queue Qd contains assertions which have a

weight higher than zero, then the algorithm breaks out of the loop to apply

the next disjunctive assertion instead. As such, if the disjunction queue Qd

is not empty, the disjunctive assertion Ci(xr) with the highest weight value

weight
(
Ci(xr)

)
is retrieved from the queue Qd and removed. The t-rule is

applied to Ci(xr). If applying the transformation rule to the assertion Ci(xr)

generates a clash, the clashing concept is returned.

As described in Section 3.4.2 previously, whenever an assertion C(x) is

added to the ToDo list, it is associated with the current branch point node

bi+1 in G, known as a dependency. When the reasoner backjumps to an earlier

branch point node bi, an assertion C(x) ∈ ToDo is removed from the ToDo

list if C(x) depends on a branch node bi+1 (i.e. bi+1 was added at or after bi).

Since our queues Qo and Qd, which were described in this section, replace the

ToDo list, the same dependencies and backjumping functionality applies to

our queues Qo and Qd. As such, when the reasoner backjumps to an earlier

branch point node bi an assertion C(x) ∈ Qo or C(x) ∈ Qd is removed from

its queue if C(x) depends on a branch node bi+1 (i.e. bi+1 was added at or

after bi). In the next section we illustrate our caching strategy (CS) using an

example.

4.5.5 Example

When our proposed caching strategy (CS) is enabled, all assertions which

generate clashes and those assertions which these depend on, are stored in the

cache. Assume that the user performs the inference check where the service

description x3 was matched against the user request definition ∃R1.(C2 uC3).

Assume the inference checking process was executed at 10am on 2009-10-01.
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The inference checking process involves asserting the negation of C3 as a type

for x3, where ¬C3 ≡ ∀R1.(¬C2t¬C3), on the ABox from the previous example

in Section 3.4.3. This request is illustrated in Figure 4.6 and it comprises a sub-

part of the inference example from Section 3.4.3 using standard Tableaux. In

the figure, the class concept ¬C2 which is asserted as a type for the individual

x4 generates a clash and the concepts ¬C2 and ¬C3 which are asserted as

a types for the individual x5 both generate a clash. These assertions and

the assertions which these depend on, are stored in the cache. The resulting

cache entries are illustrated in figure 4.7. The nodes shaded in yellow indicate

transformations which contributed to a full clash in the cache.

( ){ }1 2 3.     R C C∪ ∀ ¬ ¬

b1

b2b2

b1

{ }2C∪ ¬L(x4)

L(x4){ }2 2,C C¬ ⊆

L(x4)

backjump

backjump

-rule:∀ L(x3)( )1 2 3.     R C C∀ ¬ ¬ ∈

-rule: 2 3    C C¬ ¬ ∈L(x4)
{ }3C∪ ¬L(x4)

-rule: 2 3    C C¬ ¬ ∈L(x4)

( ){ }1 2 3.     R C C∪ ∀ ¬ ¬L(x5)

{ }2C∪ ¬L(x5)

L(x5){ }2 2,C C¬ ⊆

-rule: 2 3    C C¬ ¬ ∈L(x5)

{ }3C∪ ¬L(x5)

L(x5){ }3 3,C C¬ ⊆

-rule: 2 3    C C¬ ¬ ∈L(x5)

b0

clash clash

clash

Inference check of: C3(x3), by refutation: ¬C3(x3)

( ){ }1 2 3    R C C∀ ¬ ¬ ∈ L(x3)i.e. check if:

results in a clash being generated for all expansions

Rule applied to assertion

Action of rule

Figure 4.6: First Example CS Inference Check

Assume now that the user request from the standard Tableaux example

in Section 3.4.3, is being performed with the proposed CS caching strategy

enabled. This example checks whether the class concept C0 definition can be

inferred to be a type for the individual x0, by asserting the negation of C0

as a type for x0, where ¬C0 ≡ ∀R2.(≤ 0R2) t ∀R1.(¬C1 t ∀R1.(¬C2 t ¬C3)).

Assume that there is no user specified age limit on the request conditions



CHAPTER 4. MTABLEAUX: LIGHT-WEIGHT MOBILE INFER. 129

CSCache
{〈
∀R1.(¬C2 t ¬C3)(x3),¬C2 t ¬C3(x4), 2009-10-01T10:00, false

〉
,

〈
∀R1.(¬C2 t ¬C3)(x3),¬C2 t ¬C3(x5), 2009-10-01T10:00, true

〉
,

〈
¬C2 t ¬C3(x4),¬C2(x4), 2009-10-01T10:00, false

〉
,

〈
¬C2(x4), null, 2009-10-01T10:00, true

〉
,

〈
¬C2 t ¬C3(x5), C2(x5), 2009-10-01T10:00, true

〉
,

〈
¬C2 t ¬C3(x5), C3(x5), 2009-10-01T10:00, true

〉
,

〈
¬C2(x5), null, 2009-10-01T10:00, true

〉
,

〈
¬C3(x5), null, 2009-10-01T10:00, true

〉}

Figure 4.7: Example Caching Strategy (CS) Cache Entries

retrieved from the cache. Figure 4.8 presents the same Tableaux expansion

process as in 3.4.3, except that when the reasoner attempts to apply the def-

inition ∀R1.(¬C2 t ¬C2)(x3) it detects that this has generated a clash for all

expansions (i.e. a full clash) previously. Thus, the caching strategy eliminates

the application of transformation rules to ∀R1.(¬C2t¬C2)(x3) and its depen-

dants. The eliminated transformations have a red line through them in the

figure, while the transformations which were applied are highlighted in yellow.

Alternatively, assume the user does specify an age restriction stating that

the request condition ∃R1.(C2tC3) being matched against x3, must have been

stored in the cache after 11am on 2009-10-01, otherwise it needs to be re-

evaluated. The negated condition ∀R1.(¬C2 t¬C3)(x3) is stored in the cache,

but it does not meet this time stamp expiry. Therefore, assertions which

depend on ∀R1.(¬C2 t ¬C3)(x3) are retrieved from the cache, and associated

with weight values in the queues, indicating their level of priority.

This gives rise to the queue of disjunctions Qd and the queue of all other

assertions Qo shown in Figure 4.9. The ∀R1.(¬C2 t ¬C3) definition asserted
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Figure 4.8: Second Example CS Inference Check
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to x3 is applied first. This adds the disjunction ¬C2t¬C3 to x4 with a weight

of 0.5 (i.e. partial clash) and to x5 with has a weight of 1.0 (i.e. full clash).

Queue Qd Weight
¬C2 t ¬C3(x5) 1.0
¬C2 t ¬C3(x4), 0.5

Queue Qo Weight
∀R1.(¬C2 t ¬C3)(x3) 1

Figure 4.9: Example Caching Strategy (CS) Queues

Using this queue gives rise to the application of transformation rules which

are illustrated in figure 4.10. This is identical to the inference check from

Section 3.4.3 except that the disjunction ¬C2 t ¬C3 which is added as a type

to x5, is applied before the same disjunction which is added to x4. This is a

re-ordering of transformation rule application. Since ¬C2 t ¬C3(x5) clashes

for all expansions, there is no need to evaluate the disjunction added to x4,

because the inference is proven. The eliminated transformations are shown in

the figure as having a red line through them.

As such, it can be seen from this example, even if the user specified age limit

is exceeded, the cache can still significantly reduce the number of transforma-

tion rules applied. Therefore, as illustrated in the example presented in this

section, we hypothesise that our CS caching strategy will lead to a significant

performance gain when cache entries generate an immediate clash during an

inference check and will also lead to gains in response time when cache entries

are used to re-order transformation rule application, without compromising

accuracy.

4.6 Summary

In this chapter we presented our optimisation and caching strategies which

we call mobile Tableaux (mTableaux) to enable on-board mobile inference /

reasoning, which form a key contribution of our thesis. Our strategies include:

1. Selective Application of Tableaux Transformation Rules (ST);
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2. Selective Disjunction Transformation Rule Application (SD);

3. Caching Strategy (CS).

The ST and SD strategies limit the number of Tableaux transformation

rules which are applied to reduce the size of the reasoning task, without signif-

icantly compromising result accuracy. The ST strategy applies transformation

rules to a subset of individuals only. These individuals are selected based on

the service description being checked. Additionally, the SD strategy limits the

number of disjunctions applied, since disjunctions generate Tableaux tree ex-

pansions, giving rise to many branch possibilities to evaluate. A disjunction is

only evaluated if it contains a class concept which relates to the user request.

Furthermore, CS caches the evaluations which gave rise to match findings for

previous request to service description comparisons. The cache is used to re-

duce the response time of subsequent comparisons which are similar to those

performed previously. Depending on the level of completeness required for par-

ticular conditions in the user request, a cache entry can be used to generate an

immediate match, or it can be used to re-order the evaluations completed by

the Tableaux algorithm, so that those which contributed to a match finding

previously, are applied first. We hypothesis that our optimisation and caching

strategies will lead to a significant improvement in response time. We will

present a comprehensive performance evaluation to validate this hypothesis in

Chapter 6.

In addition, to cater for resource and user requirements, we provide an

adaptive inference strategy which enables priority based matching of the re-

quirements in the user request. Our strategy can be interrupted at any stage

during the matching process depending on user constraints such as available

time or computational resources, to provide a match result based on the pro-

cessing completed up to the point of interruption. This forms another key

contribution of our thesis, and will be outlined in the next chapter.



Chapter 5

Adaptive Strategies for Mobile

Inference

5.1 Introduction

In the previous chapter we outlined our approach to light-weight inference to

enable accurate and efficient mobile matching of service descriptions with user

requests. This involved the proposal and development of optimisation and

caching strategies for the Tableaux decision proof. In this chapter we extend

our light-weight strategies to take account of user and resource constraints,

by proposing an adaptive inference strategy. Our proposed strategy supports

“anytime” (Wache et al., 2004) matching with an innovative capacity to provide

incremental / partial matching of a request to a service description.

The Tableaux expansion procedure, which we detailed in Section 3.5, is

widely used as the proof algorithm for current reasoners (Baader et al., 2003,

p. p. 322). In this Tableaux procedure, expansion occurs in a depth-first order

with no particular assessment of priorities for the expansion evaluations. In

addition, while partial matching have been employed by semantic matching

approaches (Skoutas et al., 2007; Lu, 2005; Srinivasan et al., 2005), seman-

tic reasoners do not support this functionality. Current Tableaux reasoners

134
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require that the matching task is completed in full before the match result

is given, otherwise no result is provided. Thus they operate on an “all or

nothing” principle. Furthermore, if any condition in the user request fails to

match the service description, a negative inference match result is given, even

if the requirement was not a significant feature for the user. We see these

characteristics of current semantic reasoners (that may not have any bearing

on suitability for desktop environments) provide an opportunity for further

optimisation of performance in resource constrained environments. Therefore,

in our adaptive inference strategy, we propose modifications to the Tableaux

algorithm to enable:

• prioritised matching of requirements in the user request based on impor-

tance of these to the user;

• anytime inference in which the reasoner can be stopped prematurely

depending on constraints such as resource or time constraints, thereby

providing incremental results;

• support for a metric that specifies a weighted degree of match which

indicates the strength of the match based on the extent of the evaluation

/ processing actually completed, thereby supporting partial degree of

matching.

The contributions in this chapter have led to the following research publi-

cations: (Steller et al., 2009b,a).

The remainder of this chapter is structured as follows. In Section 5.2 we will

review other related research in the area of incremental, priority based, “any-

time” reasoning. In Section 5.3 we will provide an overview of our resource-

aware adaptive strategy and our proposed modifications to the Tableaux algo-

rithm. This section will also contain an illustrative example and complexity

comparison between standard Tableaux and our proposed strategy. In Section

5.4 we detail the notation and representation of weighted disjunctions and their
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dependencies which will be used throughout this chapter. In Section 5.5 we will

discuss the association of user specified weight values with conditions in the

user request. These are used to generate additional weight values used by our

proposed strategy. In Section 5.6 we will detail the way the next disjunction

to expand is selected, which involves queues and priority based algorithms. In

Section 5.7 we discuss the way our adaptive strategy maintains state. Finally

in Section 5.8 we discuss the way in which a degree of match value is calculated

by our strategy.

5.2 Adaptive Reasoning Approach

Current reasoners such as Pellet1, RacerPro2, FaCT++3 and KAON24 are

considerably resource intensive (Fensel et al., 2008) and do not scale to small

resource constrained devices. This is rooted in underlying assumptions of cur-

rent systems for logic reasoning. Current reasoners assume completeness and

correctness of the knowledge which is being reasoned upon and emphasise com-

pleteness and correctness in the inferences made about this knowledge. How-

ever, in dynamic and distributed mobile environments this focus on complete

and correct knowledge brings significant computational overhead. Thus, while

accuracy of inference results are important, performance efficiency should also

be taken into consideration by reasoners. In this thesis, we develop strate-

gies for mobile semantic reasoning which aim to balance the trade-off between

completeness of inference reasoning with acceptable levels of accuracy and

computational performance. In this section we will provide a review of current

research in the areas of fuzzy logic and approximation, which is taken into

consideration by our approach.
1http://clarkparsia.com/pellet/ (accessed May 2009)
2http://www.racer-systems.com/ (accessed May 2009)
3http://owl.man.ac.uk/factplusplus/ (accessed May 2009)
4http://kaon2.semanticweb.org/ (accessed May 2009)
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Fuzzy logic5 (Zadeh, 1965, 1975; Konar, 2005) is a technique which deals

with imprecise reasoning rather than traditional crisp binary logic. Gener-

ally fuzzy logic is used to reason under uncertainty, where uncertainty values

can be associated with definitions in Description Logic and reasoning can pro-

vide a strength of membership result between zero and one (Lukasiewicza and

Straccia, 2009; Stoilos et al., 2008; Li et al., 2006; Giugno and Lukasiwicz,

2002; Straccia, 2005). Ragone et al. (2008), and Kuster and König-Ries (2008)

employ a fuzzy approach to support imprecise / partial matching of a user

request against a service description. The main drawback of these approaches

is that they do not perform matching of the conditions in the user request

in priority order. In addition, they do not support an incremental reasoning

approach which can be interrupted prematurely based on user constraints such

as resource and time limits.

There is an emerging body of research which does attempt to address

the need for incremental reasoning which is known as approximate reason-

ing (Rudolph et al., 2008). Under this approach a subset of the user request is

compared against the service description and the match result is said to be an

approximation of the full user request. The size of those subset is incremen-

tally increased and compared with the user request until the full request has

been checked. The process can be stopped at any increment and is, thus, con-

sidered to be “anytime” (Wache et al., 2004). This avoids the need to match

a request with a service description in full (Fensel and van Harmelen, 2007),

before providing a result and trades accuracy with efficiency (Fensel et al.,

2008).

There are a number of approaches which support approximate reasoning

with Description Logic which can be used for matching user requests with

semantically described service descriptions, using current reasoners which gen-

erally employ the Tableuax algorithm (Stuckenschmidt and Harmelen, 2002;
5http://plato.stanford.edu/entries/logic-fuzzy/ (accessed 18-01-2010)
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Stuckenschmidt and Kolb, 2008; Schlobach et al., 2007; Wache et al., 2005).

There are also approximate reasoning techniques designed specifically for the

Datalog inference algorithm used by the KOAN2 reasoner6 (Rudolph et al.,

2007; Hitzler and Vrandecic, 2005). However, these approaches still provide

only a binary result indicating a match or no match and do not support prior-

ity ordering of conditions in the user request based on the importance of these

to the mobile user. Iranmanesh et al. (2009) addresses this by associating

priority values with conditions in the request, based on both heuristics and

user specified importance values. These can be used for determining the order

in which queries are executed and to provide a degree of match value when

reasoning is stopped.

The main feature of these approaches is that they successively compare

subsets of the user request against the service description. The same request

is compared against the service description many times and in each comparison

additional conditions are added to the request until the full request is compared

against the service description. The previous comparisons are abstractions of

the subsequent comparisons. The main drawback of this kind of approach is

that it may result in repeated re-evaluation of earlier parts of the user request,

each time a successive approximation is evaluated.

For instance, suppose a mobile user is searching for a cafe with WiFi In-

ternet, which is specified as a request definition ∃ sells.(Coffee t (Internet u
∃ hasComm.WiFi)). Suppose the priority of these requirements to the user, is

for Internet access followed by coffee then WiFi access. Under current approx-

imate reasoning approaches, this would result in three inference checks to a

reasoner:

1. ∃ sells.Internet

2. ∃ sells.Coffee

3. ∃ sells.( Internet u ∃ hasComm.WiFi)
6http://kaon2.semanticweb.org/ (accessed May 2009)



CHAPTER 5. ADAPTIVE STRATEGIES FOR MOBILE INFER. 139

As such the Internet requirement is checked twice, because in step three

the service description must match both Internet and ∃ hasComm.WiFi. Thus,

step 3 is a continuation of step 1. However, the reasoner state at step 1

is discarded at step 2. In larger matching tasks which may be completed

in realistic scenarios, this may result re-evaluation of many expressions. To

alleviate the need for re-evaluation, we propose an adaptive inference strategy

which incorporates modifications to the Tableaux algorithm itself. This is

a different approach from current approximate reasoning techniques which

perform incremental reasoning at the query level. Thus, the novel aspect of

our proposed strategy, is that we modify the Tableaux algorithm to support

priority driven expansion, rather than depth-first expansion, while adhering to

the Tableaux transformation rules defined in Section 3.4.2. Under our proposed

strategy the inference checking process be interrupted at any stage to provide a

weighted degree of match result to the user, depending on user constraints such

as resources or time. We will present our proposed strategy in the remainder

of this chapter as a key contribution of this dissertation.

5.3 Adaptive Inference Strategy

In Section 3.5 we provided an overview of expansion for the standard Tableaux

algorithm and an example. In this section we will provide an overview of the

modified Tableaux algorithm functioning with our adaptive inference strategy.

This section contains our modifications to enable “anytime” priority based

matching. We will follow this with an example and brief complexity compari-

son between our adaptive strategy and the standard Tableaux algorithm.
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5.3.1 Adaptive Tableaux Expansion

As discussed previously, a user request is represented as a class concept C and a

service description is represented as an individual x. We use the Tableaux algo-

rithm to prove or disprove that the inference C(x) holds. The request will likely

be a conjunction of many class concept definitions representing conditions,

which may each contain additional conjunctions representing sub-conditions

of the request. As such, a request C containing many conditions is represented

as C ≡ C1 u C2 u ... u Cn, 1 ≤ i ≤ n. We will assign weights representing

the level of importance of each conjunct element Ci in the request later in this

chapter. As outlined in Stuckenschmidt and Harmelen (2002), each conjunct

element Ci subsumes the conjunction C as a whole, such that C1 u C2 ⊆ C1

and C1 u C2 ⊆ C2. Therefore, an inference check (C1 u C2)(x) is equivalent

to checking that C1(x) and C2(x) are each valid. A subset can be defined as

Ci ⊆ Cj, given some class concept Ci and Cj, iff X ⊆ Y , where X is a set

containing individuals xr where Ci(xr) holds and Y is a set containing those

individuals xp where Cj(xp) holds.

Tableaux performs inference checking by refutation, where an inference

C(x) is checked by adding {¬C} as a type for x. A negated conjunction be-

comes a disjunction, such that if C ≡ C1 u C2 then ¬C ≡ ¬C1 t ¬C2. As

discussed in Section 3.5 the t-rule which is applied to disjunctive assertions,

gives rise to Tableaux tree G expansion. Each disjunct element of the disjunc-

tion represents an alternative expansion possibility to check. An inference is

only proven if every tree expansion which depends on the request C in the

inference check, generates a clash. Therefore, each conjunction in C for the

inference check C(x), will after negation, result in the creation of a new branch

point node in G and each conjunct element that is a member of any of these

conjunctions will result in a new branch edge in G. Since we are associating

weights of importance with each conjunct element in the request, and match-

ing must be in conjunct priority order, this means tree expansion order will
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be driven by weights rather than depth first without any specific order as in

current reasoners.

Figure 5.1 illustrates the main process of our adaptive inference strategy.

The boxes highlighted in yellow indicate those processes which are introduced

by our proposed strategy while un-shaded boxes indicate those which are stan-

dard Tableaux operations.

Establish Weighted Disjunction Dependencies

Normalise Disjunction Weights

Establish Branch Point Node Identifiers

More Tableaux Rules to 

Apply & Enough Time / 

Resources Remaining?

Clash Detected?

Yes

Update Weighted 

Disjunction Queues

Calculate / Update 

Degree of Match

Clashing Concept 

Depends on Weighted 

Disjunction?

Perform Standard 

Tableaux Backjump

Yes No

Yes

Apply Tableaux Rules 

-rule -rule ≥-rule

≤-rule -rule

∀ ∃

-rule

Return Degree of Match

No

Introduced by our Adaptive Inference Strategy

Figure 5.1: Adaptive Inference Strategy Process
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The first operation in the figure establishes the dependencies between dis-

junctions which have been given weight / priority values by the user. These

dependencies will be used by the other operations in our strategy. In the sec-

ond operation the weight values associated with disjunctions are normalised so

that they can be used to calculate a degree of match value. In the third oper-

ation branch point nodes, which are generated as part of Tableaux expansion,

are given identifiers. Our proposed adaptive inference strategy introduces new

identifiers for branch nodes. After these operations the inference reasoning

process begins and continues until there are either no more Tableaux trans-

formation rules to apply or there is insufficient time / resources to continue

matching. When matching ends a degree of match value is provided. During

matching the standard Tableaux transformation rules are applied (these rules

were outlined in Section 3.4.2). The disjunction rule has been modified as

part of our adaptive inference strategy to take account of the user specified

weights, associated with disjunctions, in deciding which disjunction to apply

next. This involves the use of several queues / ordering mechanisms and se-

lection priorities. If the application of Tableaux rule generates a clash then

our adaptive backjump process is invoked. If the clashing concept depends on

a weighted disjunction then certain updates to the disjunction queues occur.

Additionally, a clash for a weighted disjunction results in the degree of match

being calculated / updated. Alternatively, some disjunctions in the ontology

may not have weight values associated with them. If a clash occurs for a

non-weighted disjunction then standard Tableaux backjumping occurs.

In the remainder of this section we will first formalise Figure 5.1 in al-

gorithmic form. The remainder of the chapter will then focus on presenting

each of these operations in detail. However, some of these operations will be

presented in a different order than that which is shown in the figures because

they rely on terminologies and assumptions described in other operations.
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Algorithm 5.1 presents in algorithmic form, the main Tableaux expansion

tree traversal procedure when using our proposed adaptive inference strategy,

which was illustrated in Figure 5.1. This algorithm is a modification of the

standard Tableaux tree traversal procedure (Algorithm 3.1) which was given

in Section 3.5.1. The main difference is that Algorithm 5.1:

• calls several initialisation procedures;

• returns a degree of match for the inference check rather than a true or

false result;

• continues matching until certain constraints are not met such as available

time or resources;

• utilises a modified backjumping algorithm.

Algorithm 5.1 AdapTableauxTreeTraverse(A, G, ¬C, x)
Inputs: ABoxA, CompletionGraph G, ClassConcept ¬C, Individual x, where
¬C is the negated user request being matched to the service description x

Outputs: Decimal degMatch
1: InitWeightedDisjs(¬C,null)\*Alg. 5.3, Section 5.4*\
2: NormaliseWeights(¬C) \*Alg. 5.8, Section 5.5*\
3: EstablishAdapBranchIDs(¬C) \*Alg. 5.15, Section 5.7*\
4: while moreTableauxRulesToApply(A,G) = true and

HaltCurrInference() = false do
5: clash← ApplyTableauxRules(A,G) \*apply standard Tableaux rules*\
6: if clash 6= null then
7: AdaptBackJump(clash,A,G)
8: end if
9: end while

10: return degMatch(¬C) \*see Section 5.8*\

The InitWeightedDisjs procedure initialises the weighted disjunctions

from the request and dependencies between these and will be described in

Algorithm 5.3 in Section 5.4. For instance, a disjunction may contain several

child disjunctions. The NormaliseWeights procedure normalises the weight

values associated with weighted disjunct elements and will be described in Al-

gorithm 5.8 in Section 5.5. The EstablishAdapBranchIDs procedure creates
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identifiers for disjunctions which will be used as branch point identifiers. This

procedure will be discussed in Algorithm 5.15 in Section 5.7.

After initialisation, Algorithm 5.1 loops while the moreTableauxRules-

ToApply (not shown) and HaltCurrInference (not shown) procedures return

true. In standard Tableaux, which we described in Section 3.5, the more-

TableauxRulesToApply function returns false if no more transformation rules

can be applied to the current branch, otherwise it returns true. In standard

Tableaux, alternative branches are not explored unless a clash is generated for

the current branch. This implies that moreTableauxRulesToApply returns

false if a particular condition in the user request fails the matching process

stops. However, our adaptive inference strategy supports partial matching, in

which matching continues even if a particular condition fails. Therefore, the

moreTableauxRulesToApply function returns false if no more transformation

rules can be applied to any branch, otherwise it returns true. Thus, alternative

branches are explored even if the current branch failed to generate a clash. For

instance, assume a mobile user wants to find a cafe with WiFi Internet, giving

rise to the negated request (¬Internet t ¬WiFi) t ¬Coffee. moreTableaux-

RulesToApply will only result false if all three disjunct elements Internet,

WiFi and Coffee have been expanded and applied. In Section 5.6.2 we will

describe queues which maintain disjunct elements which have not yet been

applied. If these queues are empty, then moreTableauxRulesToApply will

return false. In addition, as we have described in Section 5.1, our adaptive

inference strategy supports “anytime” reasoning, based on user and resource

constraints. Let HaltCurrInference denote a function which returns true if

any user specified constraint is not met. For instance, if the user requires a

result within 30 seconds, HaltCurrInference will return false if the timeout

period of 30 seconds is reached / exceeded.
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The ApplyTableauxRules7 algorithm, applies all the transformation rules

which can be applied to any assertion in the ABox A, for the currently active

branch in G. If the mTableaux strategies, described Chapter 4, are enabled,

then the transformation rules will reflect those specified in the previous chap-

ter, otherwise they are the standard Tableaux transformation rules, with the

exception of t-rule. The t-rule is modified to support our adaptive inference

strategy, and will be described in Section 5.6.1 (see Algorithm 5.9). When

reasoning stops either because there are no more transformation rules to apply

or the process is interrupted due to user constraints, then a degree of match

result is returned. Let degMatch(¬C) denote the degree of match value for the

user request ¬C, based on the processing completed, which will be outlined in

Section 5.8.

If the application of a transformation rule results in the generation of

a clash, then the concept that generated the clash is returned by Apply-

TableauxRules. If a clash has occurred the clashing concept is passed to

AdapBackJump, which is the modified backjump algorithm, defined in Algo-

rithm 5.2. This is the algorithmic representation of the modified backjump

process which was illustrated in Figure 5.1 earlier in this section.

Algorithm 5.2 AdapBackJump(clash, A, G)
Inputs: ClassConcept clash, ABox A, ExpansionTree G
1: if depOnBranch(clash) = null and depOnAdapBranch(clash) 6= null

then
2: \*depends on a branch node created by a weighted disjunction D*\
3: Let D(x)← createdByAssertion

(
depOnAdapBranch(clash)

)

4: clashingConcept(D)← true
5: UpdateQueuesOnClash(D) \*Alg. 5.11, Sec. 5.6.2*\
6: UpdateResultsOnClash

(
D,nrw(D)

)
\*alg 5.21, sec 5.8*\

7: else
8: BackJump(clash,A,G) \*Alg. 3.3, Sec. 3.5.1*\
9: end if

In standard Tableaux, expansion occurs in depth-first order. This means

when a clash occurs and the reasoner jumps back to an earlier branch and all
7The ApplyTableauxRules function applies the standard Tableaux transformation rules

as outlined in Section 3.4.2 and is therefore not shown
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branches and assertions which occurred after this branch can be discarded, be-

cause the branch is fully expanded. However, in our adaptive inference strat-

egy, branch expansion is driven by weight ordering rather than depth-first.

Therefore, there may still be several unfinished branches when a backjump

occurs, which the reasoner will return to finish later, if there is enough time

/ resources. Thus, branches cannot be discarded when a backjump occurs,

unless the branch is fully expanded. As a result, determining which disjunc-

tion to apply next, and therefore, which branch to expand, is handled by the

AdaptApplyDisj algorithm, in Section 5.6.1. If the class concept which gener-

ated a clash, depends on a weighted disjunction, no backjumping is required,

because jumping to another branch is handled by AdaptApplyDisj. Note, the

attribute depOnBranch(C) denotes a standard Tableaux branch node (i.e. a

branch node created as a result of the application of a non-weighted disjunc-

tion), which the assertion of a class concept C, depends on (see Algorithm 3.2

in Section 3.5.1). The attribute depOnBranch(C) is null if C does not de-

pend on a standard branch node (i.e. it depends on an adaptive branch node).

The attribute depOnAdapBranch(C) denotes an adaptive branch node (i.e. a

branch node created as a result of the application of a weighted disjunction,

in our adaptive strategy) which the assertion of a class concept C, depends

on. Every action, such as an assertion, is index (see Algorithm 5.9 in Section

5.6.1) and this dependency is carried forward by transformation rules such the

∀-rule in Algorithm 5.4 as described in 5.4.

Instead of performing standard Tableaux restore, our adaptive inference

strategy calculates / updates the degree of match value for the current ser-

vice being matched against the user request. This occurs using the a call

to UpdateResultsOnClash which is defined in Algorithm 5.21 in Section 5.8.

Let nrw(C) denote the relative normalised weight for the weighted disjunct C,

which will be described in Section 5.5. In addition, let clashingConcept(C)

denote whether a particular disjunct element C of a weighted disjunction C
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has generated a clash or not. This is set to true, when C has lead to a clash,

and will be used for updating the degree of match in UpdateResultsOnClash.

Furthermore, as we have mentioned earlier in this section, queues are used to

maintain weighted disjunctions, which will be described in Section 5.6.2. A call

to UpdateQueuesOnClash (see Algorithm 5.11 in Section 5.6.2) is required to

notify that a particular weighted disjunction element has generated a clash.

This call is required because when determining which weighted disjunction to

apply next, priority is given to those which have already generated clashes for

some disjunct elements.

However, in addition to weighted disjunctions, which are derived from the

user request, there may also be other disjunctions which can be evaluated

by the t-rule. These disjunctions may exist somewhere else in the ontology

and are only applied after no more weighted disjunctions can be applied to a

particular branch expansion. In the case that a clash is generated by a class

concept, which directly depends on one of these non-weighted disjunctions,

then the standard Tableaux backtracking is used (see Algorithm 3.3 in Section

3.3). This continues until all expansions for a non-standard disjunction gener-

ate a clash, thereby generating a clash for any weighted disjunction which this

depends on.

In this section we have provided an overview of the Tableaux algorithm

which has been modified to reflect our adaptive inference strategy, which per-

forms expansions in weight order. In the next section we will illustrate the

main operation of our adaptive inference strategy using an example, before

outlining the details of our strategy in more detail.

5.3.2 Adaptive Tableaux Expansion Example

In this section, we will provide an example of an inference check using our

adaptive inference strategy, which was described in the previous section. This

example can be contrasted with the standard depth-first Tableaux example we
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provided in Section 3.5.2. In this example, we will perform the inference check

on the same ABox was used in Section 3.5.2 and provided again in Figure

5.2. We will also perform the same inference check on this ABox, except that

we will associate weights with each of the conditions in the request. The

example checks whether C(x) holds, where ¬C ≡ ((¬C1 t ¬C2) t ¬C3) and

the associated weights are listed in as listed in Table 5.1.

x2

x0

x1

R1

R1

1 2{ , }C CL(x2) =L(x1) =

{ }3CL(x0) =

1{ }C

Figure 5.2: Adaptive Inference Example ABox

Class Concept Explicit Relative Normalised
Definition Weight w Weight rw Relative

Weight nrw
¬∀R1.(¬C1 t ¬C2) t ¬C3 1.0 1.0

¬∀R1.(¬C1 t ¬C2) 1.0 1.0
¬C1 1.0 1.0 0.5
¬C2 0.4 0.4 0.2

¬C3 0.6 0.6 0.3
Total 1.0

Table 5.1: Example Adaptive Inference Weight Values

The explicit weight is the weight given to each requirement in the request by

the user, while relative and normalised weights are generated by our adaptive

inference strategy. Weight establishment will be discussed in Section 5.5. For

this section, it is sufficient to understand that explicit weight values w are

allocated to the user to specified conditions in the request. Relative rw and

normalised nrw weights are calculated from explicit weights w by the adaptive

inference strategy. Relative weight rw values are used to determine the order
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in which disjunct elements are applied and normalised relative weight nrw

values are used to determine the degree of match. A nrw is given only to

disjunct elements which do not expand into additional sub-disjunctions and

the sum of all nrw values in the request must always equal 1. Thus, the tree

is expanded in rw order. However, in addition to this, the ∀-rule may copy

a disjunction and add it as a type to several different individuals, and only

one disjunction must generate a clash for all disjunct elements to prove the

condition. Therefore, if disjunct elements of a disjunction have been applied,

and have generated a clash, then obviously the next disjunct element of the

same disjunction should be applied in preference to the first disjunct element

of a copy of the same disjunction.

In Section 5.6.2 we will establish three different queues to maintain these

priorities. For the purposes of the section, we will provide informal explanation

to understand the example. Let CQu denote a queue containing disjunctions

which have not yet been applied. Let CQpn denote a queue containing disjunc-

tions where at least one disjunct element has been applied, but has not yet

generated a clash. Let CQpa denote a queue containing disjunctions where at

least one disjunct element has been applied and all disjunct elements which

have been applied have also generated a clash. CQu is ordered in descending

weight order and CQpa in ascending weight order, where the weight for a dis-

junction represents the relative rw of the next applicable disjunct element for

the disjunction. The CQpa queue is favoured over CQu if the next applicable

disjunction has a weight which is lower than the next disjunction in CQu. Ta-
ble 5.2 illustrates the contents of the queues at the beginning of each expansion

step, and the chosen disjunction to apply at each step is highlighted in yellow.

Each expansion step is shown in Figure 5.3. In the figure, shaded nodes rep-

resent nodes which were already created by a previous step, while non-shaded

nodes indicate those created in the current the step. We use different branch

node identifiers for our adaptive inference strategy. Branch node identifiers
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Step Queue Disjunction Next Element Next
rw

a CQu (∀R1.(¬C1 t ¬C2)) t ¬C3 ∈ L(x0) ∀R1.(...) 1.0

b CQu ¬C1 t ¬C2 ∈ L(x1) ¬C1 1.0
¬C1 t ¬C2 ∈ L(x2) ¬C1 1.0

CQpn (∀R1.(¬C1 t ¬C2)) t ¬C3 ∈ L(x0) ¬C3 0.6

c CQpa (∀R1.(¬C1 t ¬C2)) t ¬C3 ∈ L(x0) ¬C2 0.4
¬C1 t ¬C2 ∈ L(x1) ¬C1 1.0

CQu ¬C1 t ¬C2 ∈ L(x2) ¬C1 1.0

d
CQpa ¬C1 t ¬C2 ∈ L(x1) ¬C2 0.4
CQu ¬C1 t ¬C2 ∈ L(x2) ¬C1 1.0

e CQu ¬C1 t ¬C2 ∈ L(x2) ¬C1 1.0
f CQu ¬C1 t ¬C2 ∈ L(x2) ¬C2 0.4

Table 5.2: Example Adaptive Inference Expansion Order

appear in subscript in the figure which are determined based on the depend

and breadth of the branch node. Additionally, if the ∀-rule (see Section 3.4.2)

generates multiple equivalent copies of a disjunction, the branch nodes created

from these disjunctions are given identifiers with a third copy value. Branch

identifiers for our adaptive inference strategy will be explained in detail in

Section 5.7.

As shown in Figure 5.3 step a, the t-rule is first applied to the disjunction

(∀R1.(¬C1 t ¬C2)) t ¬C3 added as a type to x0 because it has a weight of

1.0. From this disjunction, the particular disjunct element which is added as a

type to x0, is ∀R1.(¬C1t¬C2) because this element has a weight of 1.0, which

is higher than the ¬C3 which is 0.6. Application of this element results in the

creation of the branch node b3−0 which has an identifier with a depth value

that has been incremented by one when compared to the branch node b2−0 to

which it depends. After the application of the disjunct element a clash has not

occurred. Therefore, (∀R1.(¬C1t¬C2))t¬C3 is stored in CQpn which contains

disjunctions where not all applied disjunct elements have clashed. Application
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Figure 5.3: Adaptive Inference Expansion Search Tree

of the ∀-rule will add ¬C1 t ¬C2 as a type to the individuals x1 and x2 (not

shown).

In step b, the disjunction ¬C1 t ¬C2, added to x1, is applied. The dis-

junct ¬C1 is applied first and added as a type to x1 because it has a weight

of 1.0. This results in the creation of a branch node b4−0−0 which has an in-

cremented depth value compared to b3−0. In addition, the identifier of b4−0−0

contains a third index value of zero used to differentiate between the two
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equivalent copies of ¬C1 t ¬C2 which were generated by the ∀-rule. Applica-

tion of the disjunct element at step b generated a clash, which results in the

disjunction ¬C1 t ¬C2 ∈ L(x1) and (∀R1.(¬C1 t ¬C2)) t ¬C3 ∈ L(x0) be-

ing moved to the queue CQpa because this queue contains disjunctions where

all applied disjunct element members have generated a clash. In addition,

since the clashing concept ¬C1 depends on a weighted disjunction, a standard

Tableaux backtrack does not occur. Rather, the adaptive inference strategy

selects the next disjunction to be applied. The next applicable disjunct is

¬C3 from (∀R1.(¬C1 t ¬C2)) t ¬C3, which depends on b2−0. Therefore, the

reasoner will change back to branch b2−0 without discarding any branch nodes

from step b because these branch nodes are unfinished (i.e. there are more

nodes to apply which depend on b3−0).

In step c, (∀R1.(¬C1 t ¬C2)) t ¬C3 ∈ L(x0) is applied because the next

element has the lowest weight in CQpa (implying fewer disjunct elements re-

maining to prove the inference). ¬C3 is added to x0 which generates a clash,

and the disjunction is removed from the queues because all elements have now

been applied.

In step d the next applicable disjunction is ¬C1t¬C2 ∈ L(x1) because the

next element ¬C2 has a weight of 0.4 which is lower than the next element

for the disjunction in CQu. Since ¬C2 is the second element, the new branch

node identifier b4−1−0 has an incremented breadth value compared to b4−0−0

from step b. When this next disjunction is applied the element ¬C2 is added

as a type to x1 and the disjunction is removed from the queues because all

elements have now been applied. However, this did not generate a clash.

In step e the other copy of ¬C1t¬C2 (i.e. the copy added to x2), is applied.

This results in the creation of a branch node b4−0−1 which has an incremented

copy value compared to b4−0−0 from step b. Both ¬C1 and ¬C2 generate of

this disjunction generate a clash for x2, as shown in steps e and f.
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Note that both ¬C1 t ¬C2 ∈ L(x1) and ¬C1 t ¬C2 ∈ L(x2), depend on

the same disjunct element ∀R1.(¬C1 t ¬C2) ∈ L(x0), so if either disjunction

generates a clash for all expansions then ∀R1.(¬C1 t¬C2) is proven. If ¬C1 t
¬C2 ∈ L(x1) had generated a clash for both elements as shown in steps b and

d, then steps e and f would not have been required. However, since step d did

not generate a clash, ¬C1 t¬C2 ∈ L(x2) had to be evaluated in steps e and f.

The inference check generated a clash for every expansion, therefore, the

final degree of match returned to the user is 1.0, which indicates a full match.

This is obtained by adding the normalised relative weight nrw, of every dis-

junct element listed in Table 5.1, which generated a clash (i.e. 0.5 + 0.3 +

0.2 = 1.0). Note, element ¬C1, which has a nrw of 0.5, was only added to

the degree of match once, even though it generated a clash for two different

individuals. This is because only one equivalent element of ¬C1 can be used in

the degree of match, because they belong to disjunctions which both depend

on the same definition (i.e. the universal quantifier). One of the key benefits of

the adaptive reasoning strategy is that the reasoning could have been stopped

at any one of the steps. For instance, the degree of match at step c, was 0.8,

because after step c, both C1 and C3 were found to clash, and the sum of their

nrw is 0.8. It took until step f, to find an expansion where both C1 and C2

generated a clash, giving the degree of match result of 1.0.

Based on this example, we hypothesise that a good indication of the degree

of match for a service may be obtained very early in the matching process. If

due to time or resource constraints it is not possible to complete the expansion

process required to find an expansion which produced a full match, then a

partial degree of match result is much more informative to the user than no

result. In addition, since the most important requirements are matched first

(based on user assigned priorities / weights) the degree of match result of 0.8

was found at step c. This is contrary to the example in Section 3.5.2 where

standard depth-first Tableaux expansion was used, where C3 was checked in the
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last step, even though it was more important than C2. Therefore, at step c, the

degree of match would have been only 0.5 using standard Tableaux, compared

to 0.8 using our priority based depth first approach. In the remaining sections

of this chapter, we provide the detail for the functionality of our adaptive

inference strategy, which was illustrated in this section.

Now that we have provided an overview the modifications to the standard

Tableaux algorithm to enable adaptive inference and an example of its oper-

ation, in the next section we provide a brief complexity comparison between

our proposed adaptive inference strategy and standard Tableaux.

5.3.3 Algorithm Complexity Comparison

In Section 3.5.1 we outlined the tree expansion process of standard Tableaux.

Standard Tableaux is a depth-first expansion procedure, which has a worst case

complexity of O(n) where n is the total number of branch point nodes which

can be expanded in the expansion tree G. One of the goals of our proposed

adaptive inference strategy is that matching can be stopped prematurely, de-

pending on user constraints such as available resources or time. However, if

the matching task is allowed to complete in full without exceeding these con-

straints then it will have the worst case complexity of O(n) which is the same

as standard Tableaux. Standard Tableaux has a best case complexity of O(m)

where m is the average number of nodes in a branch in the expansion tree G.
For instance, when matching a user request against a service description which

does not match any requirement in the user request, standard Tableaux will

fully expand one branch expansion of the tree until no more transformation

rules can be applied, then report a failed match. It will not continue searching

for alternative branches, because the first expansion failed to generate a clash.

Alternatively, our adaptive inference strategy, may be stopped early due to

user constraints such as time or resources. Therefore, our proposed strategy
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has a best case complexity of O(1). For instance, matching may stop after

only one expansion.

Moreover, the main idea behind our adaptive inference strategy is to change

the order in which expansions occur, and allow matching to be stopped pre-

maturely. If all conditions in the user request are checked and the matching

task finishes to completion it is likely that the complexity will be the same as

standard Tableaux. However, since mobile users are operating in extremely dy-

namic and constrained environments where resources and time are extremely

limited, these constraints must be considered as important inputs to the match-

ing process.

In the remaining sections of this chapter we will describe in more detail

the way in which weighted disjunctions are represented, the mechanisms for

deciding which disjunction to select, management of reasoner state and de-

gree of match calculations. In the next section we will describe how weighted

disjunctions are represented in our adaptive inference strategy.

5.4 Weighted Disjunction Dependencies

In our adaptive strategy, we distinguish between weighted disjunctions and

non-weighted / standard disjunctions. Weighted disjunctions are those which

are derived from the user request and are associated with a weight. Any other

disjunctions, which might otherwise exist in the knowledge base are considered

to be non-weighted disjunctions and are applied only after no more weighted

disjunctions can be applied in a particular expansion. In this section we de-

fine the notation which we will use when referring to weighted disjunctions

throughout this chapter. Non-weighted disjunctions are applied in the stan-

dard way as described previously in Section 3.5. In Description Logic (see

Section 3.3) a standard disjunction is of the form D ≡ E1 t (E2 u E3), where

D is a disjunction and E1 and (E2uE3) are considered to be disjunct elements

of the disjunction D. In addition, assume E2 ≡ E4 t E5, E3 ≡ E6 t E7. This
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implies that the disjunct element (E2uE3) of D contains additional conjuncted

disjunctions E4 tE5 and E6 tE7. In this section we will establish object and

property notation for weighted disjunctions for ease of description in the re-

mainder of this chapter. We will also re-iterate the situations in which a clash

is generated for a disjunct element which has multiple sub-disjunctions which

depend on it later in the section.

In our adaptive inference strategy, if D is a weighted disjunction, implying

it was derived from the user request and has a weight associated with it, then

D can be considered to be an instance of an object WeightedDisjunction and

the disjunct elements E1, (E2 u E3), E4, E5, E6 and E7 can all be considered

to be instances of an object WeightedDisjunct. These objects and their de-

pendencies which we will define last in this section, are illustrated in Figure

5.4.

WeightedDisjunct

WeightedDisjunction

( ) ( )( )1 3 4 5 6
                E E E E E

WeightedDisjunct

1
E

WeightedDisjunction

3 4
    E E

WeightedDisjunction

5 6
    E E

ChildElems

ChildDisjs

DepOnElemDepOnElem

( ) ( )3 4 5 6
            E E E E

DepOnElem DepOnElem

Figure 5.4: Weighted Disjunction Dependencies

Let D.ChildElems denote a property containing these disjunct element

members of a disjunction D. For instance, in the example above, the disjunc-

tion D has child elements, such that D.ChildElems = {E1, (E2uE3)}. In ad-

dition, a disjunct element member E can itself contain a disjunction, or several
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disjunctions as a conjunction. Let E.ChildDisjs denote the property contain-

ing the set of child disjunctions for an element E. For instance, in the above

example the disjunctionD, contains a disjunct element member (E2uE3) which

is a conjunction and both E2 and E3 are disjunctions, where E2 ≡ (E4 t E5)

and E3 ≡ (E6tE7). Therefore, (E2tE3).ChildDisjs = {(E4tE5), (E6tE7)}.
We also establish a property for the reverse dependency, in order to identify the

disjunction which a disjunct element is a member of, and thus depends on. Let

E.DepOnDisj denote a property the disjunction which a disjunct element E

depends on. For instance, in the example above, the disjunct element (E2uE3)

is a member of the disjunction D, therefore, (E2 uE3).DepOnDisj = D. Fur-

thermore, since a disjunct element can contain, one or more sub-disjunctions let

W.DepOnElem denote the reverse property, such thatW.DepOnElem denotes

the disjunct element which a sub-disjunction W depends on. For instance, in

the example above the disjunction E4 t E5 and E4 t E5 both depend on the

disjunct element (E2 uE3), therefore, (E4 tE5).DepOnElem = (E2 uE3) and

(E6 t E7).DepOnElem = (E2 u E3).

In our strategy, aWeightedDisjunct instance is considered to be equivalent

to / contain the class concept definition which it represents. For instance, sup-

pose there is a user request for an Internet cafe selling WiFi Internet or Internet

on provided desktop PCs, defined as Request ≡ ∃ sells. InternetRequest, where

InternetRequest ≡ ((WiFi u Internet) t (Desktop u Internet)). Since Tableaux

proves inferences by negation, the negated request is ¬Request ≡ ∀ sells.

¬InternetRequest, where ¬InternetRequest ≡ ((¬WiFi t ¬Internet) u (¬Desktop
t ¬Internet)). In our proposed adaptive inference strategy, this request is a

WeightedDisjunct instance equal to the definition ∀ sells.¬InternetRequest.
This instance has two child WeightedDisjunction instances that can be ex-

panded from it, which are ¬WiFi t ¬Internet and ¬Desktop t ¬Internet. How-
ever, although there is a dependency from the WeightedDisjunct to two child

WeightedDisjunction instances, due to the existence of definitions other than
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disjunctions, it is possible that one or more transformation rules (i.e. other

than the t-rule) are applied after the WeightedDisjunct has been evaluated

but before the child disjunctions are evaluated. For instance, the ∀-rule is ap-

plicable to the definition ¬Request ≡ ∀sells. ¬InternetRequest, which expands

¬InternetRequest. Following this, ¬InternetRequest ≡ ((¬WiFi t ¬Internet)
u (¬Desktop t ¬Internet)) is a conjunction, which the u-rule expands into

two separate weighted disjunctions (¬WiFi t ¬Internet) and (¬Desktop t
¬Internet). Only now is the t-rule applicable to each of the weighted disjunc-

tions. For the purposes of the algorithms which we describe in this section, we

need a mechanism to denote the last weighted disjunct element which a class

concept definition depends on (if any). Let depOnAdapDisjElem(Ci) denote

the last weighted disjunct element which the class concept Ci depends on.

For instance, in the above example, depOnAdapDisjElem(¬InternetRequest)
= ¬Request and depOnAdapDisjElem(¬WiFi t ¬Internet) = ¬Request.

Algorithm 5.3 is the procedure for initialising the weighted disjunction

dependencies which have been defined in this section. This procedure is called

by the modified Tableaux adaptive inference tree traverse Algorithm 5.1 which

was presented earlier in Section 5.3.1. The negated class definition which

represents the user request is passed as the first parameter Ci to this algorithm

and a null value is initially passed to the second parameter lastElem. This

second parameter will be used to associate the most recent weighted disjunct

element, with the current class concept definition Ci being evaluated by the

algorithm.

Firstly, the class concept Ci is set to depend on the last weighted dis-

junct element lastElem. In the case that Ci is a disjunction, an instance of

WeightedDisjunction is created to represent this disjunction. In addition, a

new unique identifier is created to fill D.ID. We will explain this D.ID later

in this section. D is set to depend on lastElem which has been passed as a

parameter to the algorithm (initially null). The new disjunction D is added
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Algorithm 5.3 InitWeightedDisjs(Ci, lastElem)
Inputs: ClassConcept Ci, WeightedDisjunct lastElem
1: Let depOnAdapDisjElem(Ci)← lastElem
2: if Ci = (C1 t ... t Cm) then
3: Let D be an instance of WeightedDisjunction
4: Let D.ID be a new unique identifier
5: Let D.DepOnElem← lastElem
6: lastElem.ChildDisjs← lastElem.ChildDisjs ∪ {D}
7: for all Cj where Ci = (C1 t ... t Cm), 1 ≤ j ≤ m do
8: Let E be an instance of WeightedDisjunct
9: Let depOnAdapDisjElem(Cj)← E

10: D.ChildElems← D.ChildElems ∪ {E}
11: Let E.DepOnDisj ← D
12: Let E.ID be a new unique identifier
13: InitWeightedDisjs(Cj, E)
14: end for
15: else if Ci = ∀R.Cj or Ci = ∃R.Cj then
16: InitWeightedDisjs(Cj, lastElem)
17: else if Ci = (C1 u ... u Cm) then
18: for all Cj where Ci = (C1 u ... u Cm), 1 ≤ j ≤ m do
19: InitWeightedDisjs(Cj, lastElem)
20: end for
21: end if

to the set of child disjunctions for the element which D depends on. Then the

algorithm loops on all disjunct elements of Ci and creates a new Weighted-

Disjunct object E to represent each and adds it to the set of child elements

for the new disjunction D. Each disjunct member definition of D, is associated

with the new weighted disjunct E object. The new weighted disjunction E is

set to depend on the disjunction D, and a new unique identifier is created and

stored in E.ID. We will explain this E.ID later in this section. Then there is a

recursive call back to Algorithm 5.3 for each disjunct element, and the element

as well as the new disjunction D which the element depends on, are passed

as parameters. This recursion ensures that the algorithm creates the tree of

dependencies for all sub-disjunctions contained in the user request. In the case

that the parameter Ci is a universal or existential quantifier, such as ∀R.Cj,
the role filler Cj of the quantifier is recursively examined by the algorithm,

because application of a ∀-rule or ∃-rule will add the role filler Cj as a type to
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one or more individuals, and this role filler Cj could contain a sub-disjunction.

In the case that the parameter Ci is a conjunction, each conjunct element of

the conjunction are recursively evaluated, because these elements could also

contain sub-disjunctions.

As we described in Section 3.4.2 and 3.5.1 each disjunct element E member

of a disjunction D represents an alternative expansion, and all expansions of D

must generate a clash in order to prove that D itself generates a clash. There-

fore, all alternatives of a disjunction need to be explored, requiring the use of

the branching expansion tree G. Conversely, as described in Section 3.4.2, only

one expansion of a conjunction Ci needs to generate a clash, in order to prove

that the conjunction Ci clashes. For instance, in the example we just described

earlier in this section, the conjunction ¬InternetRequest contains two conjunct

elements which can be expanded. Each of these conjunct elements are them-

selves disjunctions (¬WiFi t ¬Internet) and (¬Desktop t ¬Internet). Only one

of these disjunctions needs to clash for all expansions, to prove the conjunc-

tion ¬InternetRequest, which they depend on, generates a clash. In addition,

¬InternetRequest depends on the weighted disjunct ¬Request. Therefore, if

¬InternetRequest generates a clash then ¬Request is considered to generate a

clash as well. Thus, if any one of these conjunctive disjunctions generates a

clash for of its all expansions, the other disjunction (in the conjunction) does

not need to be evaluated. Suppose the sub-disjunction (¬Internet t ¬WiFi),

was checked first and generated a clash for both disjunct elements as shown in

Figure 5.5. This proves that the conjunction clashes. The second disjunction

(¬Internet t ¬Desktop), would not need to be checked, because the conjunc-

tion is proven. In the figure, class concept definitions which have been found

to clash are highlighted in yellow.

Additionally, the same disjunction may be copied and added as a type to

many different individuals by the application of a ∀-rule to a universal quanti-

fier class concept definition. All copies then depend on this universal quantifier,
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Figure 5.5: Conjunction Dependency Example

thus if any copy generates a clash for all expansions, this proves the quantifier

clashes, and the others do not need to be evaluated. Therefore, we estab-

lish a unique identifier ID which is shared between all equivalent copies of a

WeightedDisjunction instance, which have been copied by a ∀-rule and de-

pend on the same definition. Let D.ID denote a property containing a unique

identifier which is shared between all equivalent copies of a disjunction D. If a

copy of D is added as a type to several different individuals by the ∀-rule, then
all copies of share the same D.ID. In addition, we also establish a dependency

between all equivalent copies of the disjunct element members. That is, since a

disjunction Dj has disjunct element Ei members, such that Dj ≡ E1t ...tEn,
1 ≤ i ≤ n, then if there are m equivalent copies of the disjunction Dj, then

there are also m copies of each disjunct element Ei, such that equivalent copies

of the element Ei include {E1
i , E

2
i ..., E

m
i }, 1 ≤ j ≤ m. Each copy of Ei

shares the same identifier, such that {E1
i .ID = E2

i .ID, E2
i .ID = E3

i .ID, ...,

Em−1
i .ID = Em

i .ID}. This implies that an E1
i and an E2

i can only share the

same ID such that E1
i .ID = E2

i .ID, iff the disjunctions which they depend on,

also share the same ID, such that E1
i .DepOnDisj.ID = E2

i .DepOnDisj.ID.

Disjunction and disjunct equivalent copy identifiers are illustrated in Figure

5.6, where the shaded boxes indicate equivalent identifiers ID and the non-

shaded boxes indicate weighted disjunctions and disjunct elements.
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Figure 5.6: Weighted Disjunction Unique Identifier

Now we will illustrate this using an example. A mobile user searching for a

WiFi Internet cafe defines the request containing ∃ sells.(Internet u WiFi) and

this request is matched against the service description individual netcafe. This

request definition is negated to give ∀ sells.(¬Internet t ¬WiFi) and added

as a type for the individual netcafe. Assume that netcafe is connected the

individuals inet and cakes by the role sells, and inet is a member of the classes

Internet and WiFi, while cakes is not. Applying the ∀-rule on the definition

∀ sells.(¬Internet t ¬WiFi) (which is a type for inet), will add the disjunction

(¬Internet t ¬WiFi) as a type to both inet and cakes. inet will generate a clash

for both ¬Internet and ¬WiFi because it contains their negation as a type, while

cakes will not. Both copies of the disjunction (¬Internet t ¬WiFi) will share

the same ID value because they are equivalent copies of the same disjunction.

This is illustrated in Figure 5.7, where clashing elements are highlighted in

yellow.

The ∀-rule is applied to a universal quantifier of the form ∀R.Cj. In the

case that the role filler Cj can be expanded to a weighted disjunction D,

this weighted disjunction D will need to be copied to potentially multiple

individuals. All copies of D will share the same D.ID. Therefore, when a

∀-rule is applied, our proposed adaptive strategy will set a marker variable

for the disjunct element E which a class concept Cj depends on, to indicate

that child disjunctions of E will need to be copied. Algorithm 5.4 shows the

procedure for the ∀-rule, using our adaptive strategy. The algorithm receives
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as input Ci which is a universal quantifier definition, which is a type for the

individual xr, where xr is in the ABox A.

Algorithm 5.4 ApplyUnivRule(Ci, xr, A)
Inputs: ClassConcept Ci, Individual xr, ABox A
Outputs: ClassConcept clash
Pre-conditions: Ci ≡ ∀R.Cj
1: for all xp, where R ∈ L(〈xr, xp〉), 1 ≤ p ≤ n do
2: if n > 1 and depOnAdapDisjElem(Ci) 6= null then
3: Let lastElem← depOnAdapDisjElem(Ci)
4: copyAndAssociateChildDisjs(lastElem)← true
5: end if
6: depOnAdapDisjElem(Cj)← depOnAdapDisjElem(Ci)
7: AddType(Cj, xp,A) \*Add Cj as a type for xp, where Ci ≡ ∀R.Cj*\
8: end for

The input class concept Ci is a universal quantifier of the form ∀R.Cj.
The algorithm loops for all individuals xp for which the role filler definition

Cj will added to as a type. As stated above, if the universal quantifier Ci,

where Ci ≡ ∀R.Cj, depends on a weighted disjunction, if Cj can be expanded

to a disjunction D and if there is more than one individual xp which Cj is

being added as a type to, then a copy of the disjunction D will be made when

it is encountered (by the AddType algorithm which is provided later in this

section). Let copyAndAssociateChildDisjs(E) denote a marker which can

be set to true in order to indicate that D will need to be copied, where E is
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the weighted disjunct element which contains D as a child disjunction. This

algorithm also updates the weighted disjunct dependency for Cj in case this

has changed (due to an earlier copy). The class concept Cj is set to depend

on the same weighted disjunct E which Ci depends on, thereby, carrying this

dependency from Ci to Cj. We also assume that these dependencies are carried

forward in the same way for other rules such as the ∃-rule and the u-rule. For
instance, if the u-rule is applied to a conjunction Ci, where Ci ≡ C1 u ...uCn,
1 ≤ j ≤ n, then depOnAdapDisjElem(Cj) ← Ci, for all conjunct members

Cj of the conjunction Ci.

Finally, we invoke the AddType function, which is defined in Algorithm

5.5. This algorithm is used by our proposed inference reasoning strategy,

whenever a transformation rule adds a type C to an individual x, as was is the

case in the ∀-rule detailed in Algorithm 5.4. The main reason for this algo-

rithm, is that it copies anyWeightedDisjunction instances using the function

CopyDisjunction (defined in Algorithm 5.6), which need to be copied (i.e. if

copyAndAssociateChildDisjs is set) when these are added as a type to a par-

ticular individual, as well as adding the C as a type for x. More specifically, if

the class concept being added is actually a weighted disjunction, then a copy

of this disjunction is made if the copyAndAssociateChildDisjs(E) has been

set to true for the disjunct element E which C depends on, by the ∀-rule.
Alternatively, if E is a disjunct element which is a member of a disjunction

which has been copied earlier due to a ∀-rule, then its child disjunctions are

copied and the dependencies updated. Let copied(B) denote a Boolean prop-

erty which is set to true, if a weighted disjunct element B or disjunction B

has been copied previously.

AWeightedDisjunction instance and all of its disjunct elements are copied

by the CopyDisjunction procedure, which is defined in Algorithm 5.6. The

first argument of CopyDisjunction is the weighted disjunction that needs to

be copied, the new copy will be set to depend on the weighted disjunct element
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Algorithm 5.5 AddType(C, x, A)
Inputs: ClassConcept C, Individual x, ABox A
Outputs: ClassConcept clash
1: if C is an instance of WeightedDisjunction and

copyAndAssociateChildDisjs(C.DepOnElem) = true then
2: C ← CopyDisjunction

(
C, depOnAdapDisjElem(C), false

)

3: else if C is an instance of WeightedDisjunct and
isACopy(C) = true then

4: for all D ∈ C.ChildDisjs do
5: CopyDisjunction

(
D,C, true

)

6: end for
7: end if
8: L(x)← L(x) ∪ {C} \*do standard Tableaux add type*\

passed to the second argument, and the third argument denotes whether new

unique identifiers ID should be generated. If the ∀-rule has resulted in the

copying of the disjunction, then all copies share the same identifiers ID because

they will depend on the same universal quantifier, so the third argument is set

to false. Alternatively, if the disjunction is being copied because a parent

disjunction which it depends on was copied earlier by the ∀-rule, then a new

identifier is generated for each copied disjunction (and their elements), so the

third argument is true. They need to be copied because they depend on

different disjunctions, but will not share the same identifier ID.

In this algorithm, let copyCount(D) denote an index indicating the num-

ber of copies of the original disjunction D which have been made. If this has

not been initialised this means that the disjunction D, is the first copy and

is, therefore, set to an index of zero. If D is the first / original copy, then a

copy does not need to be made. The copy count index is passed to a function

UpdateCopyNbr, which will update the identifier for each of the disjunct ele-

ment members of the disjunction, which is used for identifying branch nodes b

in the expansion tree G. We will define the UpdateCopyNbr in Algorithm 5.16

in Section 5.7.1 where we discuss adaptive branch identifiers. If no copy needs

to be made the disjunction D is then returned. However, if a copy does need



CHAPTER 5. ADAPTIVE STRATEGIES FOR MOBILE INFER. 166

Algorithm 5.6 CopyDisjunction(D, DdependsOn, newIDs)
Inputs: WeightedDisjunction D, WeightedDisjunct DdependsOn, Boolean

newIDs
Outputs: WeightedDisjunction D′ \*equivalent copy of E*\
1: if copyCount(D) = null then
2: copyCount(D)← 0
3: for all E ∈ D.ChildElems do
4: \*will update disjunction / branch identifier*\
5: UpdateCopyNbr

(
E, copyCount(D)

)
\*see Alg. 5.16, sec. 5.7.1*\

6: end for
7: return D \*don’t need to copy first time*\
8: end if
9: copyCount(D)← copyCount(D) + 1

10: Let D′ be a copy of D
11: isACopy(D′)← true
12: if newIDs = true then
13: D′.ID ← new unique WeightedDisjunction.ID
14: else
15: D′.ID ← D.ID
16: end if
17: D′.DepOnElem← DdependsOn
18: D′.ChildElems← ∅ \*will add fresh copies*\
19: for all E ∈ D.ChildElems do
20: Let E ′ be a copy of E
21: if newIDs = true then
22: E ′.ID ← a new unique WeightedDisjunct.ID
23: else
24: E ′.ID ← E.ID
25: end if
26: UpdateCopyNbr

(
E ′, copyCount(D.ID)

)
\*see Alg. 5.16, sec. 5.7.1*\

27: isACopy(E ′)← true
28: copyAndAssociateChildDisjs(D′)← false \*default*\
29: E ′.DepOnDisj ← D′

30: end for
31: return D′

to be made (i.e. copyCount(D) is one or more), then a new copy D′ is be gen-

erated. The property isACopy(D′), which we defined earlier in this section, is

set to true to indicate that D′ is a copy. This is used by AddType to indicate

that any disjunctions which depend on the disjunction D, will need to be be

copied and updated to depend on D′, when they are encountered. They are

only copied if encountered to avoid this processing in the event that reasoning
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is stopped earlier, due to constraints such as time or resources. The disjunc-

tion copy D′ is set to depend on the weighted disjunct element DdependsOn,

which was passed as input.

The algorithm will then make a copy all disjunct element E members of

D, add these copies as child elements for the copy D′. It will also set the

copies to depend on D′. If any disjunct element has any child disjunctions

E.ChildDisjs, then the copy E ′ will refer to the same / original child dis-

junctions. These child disjunctions will be copied and dependencies updated if

any E ′ is encountered by the AddType algorithm, which we described earlier

in this section. In addition, copyAndAssociateChildDisjs(D′) is initialised to

false, and can only be set to true be the ∀-rule. The copy index for each E ′ is

updated using the UpdateCopyNbr function as described earlier. We will now

illustrate the process performed by the algorithms presented in this section,

using an example. This example is illustrated in Figure 5.8. Suppose that

all E represent weighted disjunct elements and that all D represent weighted

disjunctions. Directed arrows from an D to a E means that D depends on E,

and directed arrows from a E to an D means that E depends on D (i.e. E is

a disjunct element of D).

In the figure, step a illustrates an initial disjunction hierarchy, established

using Algorithm 5.3. Suppose there is a weighted disjunct E1 containing a

definition of the form ∀R.D1 added to an individual x0 which connects to two

separate individuals x1 and x2 using the role R. D1 is a disjunction such that

D1 ≡ E2tE3 and E2 ≡ D2 where D2 ≡ E4tE5. In step b, the ∀-rule is applied
to ∀R.D1, which will addD1 as a type for x1 and x2. However, D1 is marked for

copying by setting copyAndAssociateChildDisjs(D1.DepOnElem) to true.

When the reasoner attempts to add D1 as a type to the second individual x2,

after having already added D1 to x1, a copy D′1 is generated to be added to x2.

CopyDisjunct in Algorithm 5.6 generates D′1, such that D1.ID = D′1.ID and

both D1 and D′1 both depend on E1. In this step, the disjunct members E2 and
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Figure 5.8: Example Copy Weighted Disjunction Hierarchy

E3 of D1 are also copied to generate E ′2 and E ′3 which depend on D′1. However

the dependencies for E ′2 will not be updated until E ′2 is added as a type to an

individual. At this stage, E ′2 has a reference to the original child disjunction

D2 (i.e. E ′2.ChildDisjs = D2. Copied disjunct elements are marked as copies

such that isACopy(E ′2) and isACopy(E ′3) are set to true, which will indicate

that dependencies will need updating when they are encountered. In step c

assume that the t-rule has been applied to the disjunction D′1 which is a type

for x2, causing E ′2 to be expanded and added as a type to x2. E ′2 still refers

to D2 as its child disjunction, but since E ′2 is marked as a copy, D2 and its

disjunct elements E4 and E5 are copied by CopyDisjunct to generate D′2, E ′4
and E ′5. The new disjunction copy D′2 is then set to depend on E ′2.

Now that we have defined the object hierarchy of dependencies between

weighted disjunctions and disjunct element members, we will use this notation

throughout the rest of this chapter. In the next section, we will detail the
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process by which weights are associated with weighted disjunctions, and in

particular how relative and normalised wright values are generated.

5.5 Weight Establishment

One of the key elements of our adaptive inference strategy is that we allow

the user to assign weight values of importance to each requirement in the

request. Each requirement in the request is as a conjunct element member of

a conjunction or sub-conjunction in the request. As discussed in Section 3.4.2

Tableaux proves an inference by negation. Therefore, a conjunction becomes a

disjunction. As such, in this section we will assume that every disjunct member

which is derived from the user request, has an explicitly user specified weight

value w associated with it, where 0 ≤ w ≤ 1. An explicit weight value of 1 is

the strongest level of importance while a weight value of 0 is the weakest level

of importance. In practise users can enter weights as a value between 1 to 10

which is converted into a w value. Alternatively, request condition priorities

can also be specified as high/medium/low which may correspond to weight

values of 1/0.5/0.1 or even mandatory/non-mandatory 1/0.1. Alternatively,

weights may be gathered implicitly using historical and user profile / preference

data (Jung, 2006; desJardins et al., 2006). For instance, if half of the services

which a mobile user has previously found, are close in proximity to the user,

this a feature could be inserted into future requests with a weight of 0.5.

However, user input mechanisms are not the focus of this thesis. Therefore, we

will assume a value w has been associated with each condition in the request.

In addition to the explicit weight w, we also define relative and normalised

relative weights, which are generated by our adaptive inference strategy, based

on the explicit weight w. Only disjunct elements, i.e. instances of Weighted-

Disjunct defined in Section 5.4, have weights associated with them. Let w(Ei)

denote an explicit weight, rw(Ei) denote a relative weight, nrw(Ei) denote a
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normalised relative weight, where Ei is an instance of WeightedDisjunct,

0 ≤ w(Ei) ≤ 1, 0 ≤ rw(Ei) and 0 ≤ nrw(Ei) ≤ 1.

Relative weight rw is used to define the order in which particular conditions

in the request should be matched against the service description. A relative

weight value for a particular disjunct Ei is offset by the relative weight of the

parent disjunct Ep, where Ep = Ei.DepOnDisj.DepOnElem. The relative

weight of Ei is calculated by Equation 5.1. If there is no Ep, implying that

Ei is the top most element, then rw(Ei) = w(Ei). Generating relative weights

ensures that a particular disjunct element Ei can never be applied before the

disjunction D which it is a member of.

rw(Ei) = w(Ei) × rw(Ep)

where Ep = Ei.DepOnDisj.DepOnElem

(5.1)

Relative weights are established whenever an explicit weight is added to a

concept using Algorithm 5.7, where the first parameter Ei denotes the weighted

disjunct representing the negated condition in the request which a weight is

being associated with and v is the explicit user specified weight.

Algorithm 5.7 AddExplicitWeight(Ei, v)
Inputs: WeightedDisjunct Ei, Decimal v
Pre-conditions: w(Ei) = null
1: w(Ei)← v
2: rw(Ei)← v
3: Let Ep ← Ei.DepOnDisj.DepOnElem
4: while Ep 6= null do
5: Let rwCurrDisj ← ∑

Ec∈Ei.DepOnDisj.ChildElems rw(Ec)
6: if rw(Ep) < rwCurrDisj then
7: v ← rwCurrDisj − rw(Ep)
8: rw(Ep)← rw(Ep) + v
9: Ep ← Ep.DepOnDisj.DepOnElem

10: else
11: break \*break out of loop*\
12: end if
13: end while
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The algorithm sets v to the current explicit w(Ei) weight and relative

weight rw(Ei) associated with Ei. It then adds v to the relative weight for

all parents disjunct elements of Ei. However, a disjunct element, may have

multiple child disjunctions in the case that the disjunct element is a conjunction

containing more than one disjunction. Under standard Tableaux (see Section

3.4.2), if any conjunct member of a conjunction generates a clash, then the

others conjuncts do not need to be evaluated. Therefore, in our algorithm,

when we add v to the relative weight of a particular disjunct element Ei, which

is a member of the disjunction D, then we only increase the relative weight of

the parent element Ep, upon which D depends, by the difference between the

sum of the relative weight of all disjunct members of D and the relative weight

of Ep. In the case that the parent disjunct Ep, only has one child disjunction,

then this increase will be the full amount of v. However, where Ep has multiple

child disjunctions, it is possible that the disjunct members of the other child

disjunctions have already been increased, thus Ep is already increased and no

further increase to Ep is required.

For example, assume the user request for WiFi Internet or desktop Inter-

net, which gives rise to the negated definition ¬Request ≡ (¬WiFi t ¬Internet)
u (¬Desktop t ¬Internet), where w(WiFi) = 0.5, w(Internet) = 0.7 in the first

disjunction and w(Desktop) = 0.3, w(Internet) = 0.9 in the second disjunction.

Assume that all weights have been added using Algorithm 5.7 except for Desk-

top. When Desktop is added this results in the sum of disjunct elements of the

disjunction (¬Desktop t ¬Internet), equalling 1.2. However, the parent ele-

ment ¬Request already has a relative weight of 1.2, such that rw(¬Request) =
1.2, because the weights for other disjunction (¬WiFi t ¬Internet) have already
been added. Therefore, no further increase to w(¬Request) occurs.

Normalised relative weight nrw is used to calculate the current degree of

match between a user request and a service description at any time during the

matching process. Degree of match is described in Section 5.8. Our normalised
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relative weights imply that the sum of all nrw values of the disjunct elements Ei

of a particular weighted disjunctionD is equal to the nrw of the parent disjunct

element Ep, where Ep = Ei.DepOnDisj.DepOnElem, such that Equation 5.2

is true for any Ep. The sum of the nrw values for all leaf weighted disjuncts

Ei is equal to 1.0, where a weighted disjunct is considered a leaf if it does not

contain any further weighted child disjunctions, such that Ei.ChildElems = ∅.

nrw(Ep) =
∑

Ei∈Dy .ChildElems
nrw(Ei)

where Dy ∈ Ep.ChildDisjs
(5.2)

Normalised relative weights are generated using a call to Algorithm 5.8,

after all the explicit weights w(Ei), and thus relative weights rw(Ei) have

been set.

Algorithm 5.8 NormaliseWeights(Ep)
Inputs: WeightedDisjunct Ep
Pre-conditions: nrw(Ep) = 1.0 iff Ep is the top most disjunct
1: for all Du ∈ Ep.ChildDisjs do
2: Let S = ∑

Ei∈Du.ChildElems rw(Ei)
3: Let F ← S/nrw(Ep)
4: for all Ei ∈ Du.ChildElems do
5: nrw(Ei)← rw(Ei)/F
6: NormaliseWeights(Ei)
7: end for
8: end for

When the algorithm is first called the weighted disjunct element Ep con-

taining the user request is passed to it. The request will have a total nrw value

of 1.0, because 1.0 indicates a fully matching degree of match. The algorithm

loops any child disjunctions Du of the disjunct element Ep. For each of these

Du, let F denote the sum of the rw(Ei) values for all disjunct elements Ei of

Du divided by the nrw(Ep) of Ep. The nrw(Ei) value for each disjunct element

Ei of Du is then the rw(Ei) value of the this element divided by F . The algo-

rithm then recursively repeats the process for each of these disjunct elements
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to propagate the normalised result values down to all of the leaf elements. It

is noteworthy that if there are multiple child disjunctions Ep.ChildDisjs for a

disjunct element Ep, this means that the disjunct element Ep is a conjunction

containing more than one sub-disjunctions. In this case, all disjunctions in

Ep.ChildDisjs depend on Ep and only one of these disjunctions needs to gen-

erate a clash for all expansions in order to generate a clash for Ep. Therefore,

the nrw value of Ep is not divided if there are multiple child disjunctions Du.

Rather, the sum the relative normalised weight values, for the disjunct element

members of each of these child disjunctions Du, is the same.

Going back to the example from earlier in this section, using algorithm 5.8

to generate normalised weights, would result in nrw(WiFi) = 0.42, nrw(Internet)

= 0.58 in the first disjunction and nrw(Desktop) = 0.25, nrw(Internet) = 0.75

in the second disjunction. Assume that the service description met the desktop

Internet requirement, but not the WiFi Internet requirement, the end result

is still a degree of match (see Section 5.8) of 1.0, by adding 0.42 and 0.58,

because the user only required desktop Internet or WiFi Internet, not both.

Now that we have defined the weights associated with weighted disjunct el-

ements which represent conditions in the user request, we will use these weights

in the next section to help influence Tableaux expansions. In particular, the

weights are used to assist in determining which disjunction to apply the t-rule
to next, in our adaptive inference strategy.

5.6 Disjunction Selection and Application

In this section we will describe the algorithms and the structures which control

the order in which disjunctions are applied, giving rise to tree expansion. In

Section 5.6.1 we will first provide an overview of our modified t-rule, for our
proposed adaptive inference strategy. In Sections 5.6.2 and 5.6.3 we describe

the algorithms and mechanisms for selecting which disjunction to apply the t-
rule to next. In particular Section 5.6.2 discusses the various queues which we
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used to order weighted disjunctions and Section 5.6.3 discusses the algorithm

which uses these queues to select the next disjunction based on priorities.

5.6.1 Disjunction Rule Application

As discussed previously, one of the key objectives of our adaptive inference

strategy is to prioritise the order in which the conditions in the user request are

matched against the service description. Different conditions are represented as

conjunctions and sub-conjunctions and since Tableaux proves or disproves an

inference by negation, these become disjunctions and child disjunctions. In this

section we discuss our modifications to the t-rule application to disjunctions.

As discussed previously in Section 3.5.1 the t-rule gives rise to expansions

controlled using branches in an expansion tree. This expansion occurs in depth-

first / arbitrary order using standard Tableaux without taking into account

the priority importance of these features to the user. In our adaptive inference

strategies, disjunctions derived from the user request are given weight values.

As discussed in Section 5.4, we call these weighted disjunctions and call all

other disjunctions occurring in the ontology, non-weighted disjunctions. In

our adaptive strategy tree expansion occurs in weighted disjunction order.

The main difference in our approach is that the t-rule creates a new branch

node bk in the expansion tree G for every disjunct element member of a dis-

junction which is applied, whereas standard Tableaux creates a branch point

node bk for each disjunction (rather than a disjunct element).

We do this to allow the reasoner to jump between simultaneously open

branches by selecting a particular branch node bk to jump to. As we men-

tioned in Section 5.3.1, in our adaptive strategy the t-rule jumps to different

branch node depending on which weighted disjunct element is being applied

next. The t-rule is re-applied for every weighted disjunct element member

of every weighted disjunction. If a clash occurs and the clashing concept de-

pends on a weighted disjunct element, then a backjump and reasoner restore
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(which discards branches and assertions in standard Tableaux) does not oc-

cur. Rather, the t-rule is applied to the next applicable disjunct element

of a weighted disjunction according to its weight, and our propose strategy

will move to the relevant branch bk without discarding branches. This func-

tionality for handling weighted disjunctions is reflected in Algorithm 5.9 which

illustrates the t-rule, which has been modified to enable our adaptive inference

strategy.

Algorithm 5.9 AdaptApplyDisj(A, G)
Inputs: ABox A, CompletionGraph G
Outputs: ClassConcept clash
1: Let D(x)← GetNextDisj(A,G) \*see Algorithm 5.12, Section 5.6.3*\
2: if D is an instance of WeightedDisjunction then
3: Let E ← NextElem(D)
4: Let bk be newly created BranchNode
5: G ← G ∪ {bk}
6: G.activeAdapBranch← bk
7: createdByAssertion(bk)← E(x)
8: depOnAdapBranch(bk)← depOnAdapBranch(D.DepOnElem)
9: depOnAdapBranch(E)← bk

10: AssignAdapBranchID(bk, E) \*see Algorithm 5.17, Section 5.7.1 *\
11: appliedConcept(E)← true \*set by Algorithm 5.9 Section 5.6.1*\
12: AddType(E, x,A) \*do L(x)← L(x)∪{E}, see Alg. 5.5 Sec. 5.4*\
13: if {E,¬E} ⊆ L(x) then
14: return E \* immediate clash *\
15: end if
16: else
17: \*apply standard Tableaux t-rule*\
18: Let clash← ApplyDisjRules

(
D(x),A, G

)
\*see Alg. 3.2 Sec. 3.5.1*\

19: Let bk be the new BranchNode created by ApplyDisjRules
20: adapBranchID(bk)← adapBranchID(G.activeAdapBranch)
21: return clash
22: end if
23: return null

In the algorithm, the function GetNextDisj, which is defined in Algorithm

5.12 in Section 5.6.3, is called to obtain the next assertion D(x) to apply the t-
rule to. Obviously this assertion will be a disjunction D that has been asserted

as a type for a particular individual x. If D is a weighted disjunction, then

the next disjunct element to apply is obtained using a call to NextElem(D)
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(presented in Section 5.6.2). This function returns the disjunct element mem-

ber of D which has not yet been applied and has the highest relative weight.

A new branch node bk is created and this is added to the expansion tree G. In
addition, bk is set to be the new active adaptive inference branch node in the

expansion tree, where G.activeAdapBranch denotes this active branch node.

This is set because our adaptive inference strategy may have multiple simul-

taneously unfinished branches in the tree and the ABox state will reflect the

currently active branch. This will be explained further in Section 5.7.

The t-rule then associates branch dependencies used by our adaptive in-

ference strategy. Let createdByAssertion(bk) denote the assertion E(x) which

when applied, resulted in the creation of the new branch node bk. We refer to

a branch node created due to the application of a weighted disjunction, as an

adaptive branch node. Alternatively, we call a branch created by application

of a standard / non-weighted disjunction, a standard branch node. In Section

3.5.1 we defined depOnBranch(w), which denotes the standard branch node

which a class concept w, or role w, depends on. We record the last adap-

tive branch dependency separately. Let depOnAdapBranch(w) denote the

last adaptive branch node which w depends on, where w is a class concept C,

role R or another branch node bk. In the algorithm, the new adaptive branch

node bk is set to depend on the branch node which P depends on, where P is

the parent element of E, such that P = E.DepOnElem, using the weighted

disjunction notation defined in Section 5.4. In addition, the algorithm calls

AssignAdapBranchID(bk, E), which assigns a unique identifier with the new

branch node bk. AssignAdapBranchID is discussed in Section 5.7.1. Let

appliedConcept(E) denote whether or not the weighted disjunct element E

has been applied. This is set to true by the algorithm for any E which is

applied by the t-rule. This is used in Section 5.6.2 to determine the next

disjunct element of a disjunction D to apply. Finally the algorithm adds the
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weighted disjunct E as a type to the individual x as in standard Tableaux,

and if this generates a clash, the clashing concept is returned.

If the disjunction D being applied is a non-weighted disjunction then it

is applied in the standard way, using a standard call to ApplyDisjRules,

which we defined in Algorithm 3.2, Section 3.5.1. However, as will be outlined

in Section 5.6.3 non-weighted disjunctions are only applied after all weighted

disjunctions have been applied. When applying non-weighted disjunctions, the

only difference with our adaptive strategy, compared to standard Tableaux, is

that non-weighted disjunctions C are also associated with an adaptive strategy

branch identifier depOnAdapBranch(C). This is because in the case that

application of a non-weighted disjunction generates a clash for all expansions,

the adaptive inference strategy will need to determine which weighted disjunct

this depends on, in order to update degree of match.

In this section we provided an overview of our modified approach to the

t-rule to incorporate our adaptive inference strategy. This modified t-rule
utilises an algorithm called GetNextDisj to obtain the next disjunction to

apply. This algorithm utilises queues to determine which disjunction to apply

next. The queues will be explained in the next section, before theGetNextDisj

algorithm itself in Section 5.6.3.

5.6.2 Disjunction Ordering and Queues

In this section we define iterators and queues which establish ordering of

weighted disjunctions. Firstly, we define the NextElem(D) function, in Equa-

tion 5.3 which returns the next disjunct element of a weighted disjunction

D, which has not yet been applied by the t-rule. This is contrary to current

Tableaux where the next disjunct element to apply is usually selected in the or-

der that it appears or using some other heuristic but does not take importance

to the user into account.
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NextElem(D) = E such that

max
(
rw(E)

)
where E ∈ D.ChildElems and

appliedConcept(E) = false

(5.3)

Equation 5.3 returns the weighted disjunct element contained in D.Child-

Elems, which has both the highest relative weight and applied−Concept(E)

set to false, where appliedConcept(E) is set by the t-rule when an E is

applied in Algorithm 5.9 in Section 5.6.1.

Now we establish an iterator and several queues which will be used to

determine which disjunction which the t-rule applies next. These queues

replace the ToDo list of standard Tableaux (see Section 3.4.2), which is used to

determine which assertions to apply the transformation rules to. However, we

must first consider some factors which influence disjunction application order:

• A disjunction can only be applied (or re-applied) after it has been added

as a type to an individual in the ABox A. For instance, if a negated

request is of the form (¬InternetRequest t ¬Cafe) and ¬ InternetRequest

≡ (¬WiFi t ¬Internet), then the disjunct element ¬InternetRequest must

be applied, before (¬WiFi t ¬Internet) is applicable;

• As we have stated in Section 5.1, our adaptive inference strategy con-

tinues matching requirements in the user request even if some condition

fails, only stopping when other constraints such as resources or time are

exhausted. Since conjunctive conditions in the request become disjunc-

tions when negated, expansion of weighted disjunctions must continue

under our strategy, even if one branch expansion failed to generate a

clash;

• As described in Section 3.4.2 and in Section 5.4, in the case that the

∀-rule is applied to a universal quantifier which contains a disjunction in
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its role filler, such as ∀R.(E1 t E2) which is a type for an individual xr,

then a copy of E1tE2 is added to all individuals xp, 1 ≤ p ≤ m, which xr

connects to using role R. Recall from Section 5.4 that these disjunctionD

copies share the same unique identifier D.ID. These copied disjunctions

E1tE2 depend on ∀R.(E1tE2), meaning that only one disjunction needs

to generate a clash for all expansions in order to clash for ∀R.(E1 tE2).

Therefore, in the case that E1 is a weighted disjunct which generated a

clash, then E2 of the same disjunction copy should be applied before E1

of another copy of the disjunction E1 tE2, even through E2 has a lower

weight than E1;

• Non-weighted disjunctions are only applied after no more weighted dis-

junctions can be applied for a particular expansion.

In order to control which weighted disjunction to apply next we establish

an iterator and due to the considerations described above we establish three

separate queues for weighted disjunctions and a fourth queue for non-weighted

disjunctions:

• Let DisjElemIter be an iterator which contains all weighted disjunct

element Ei members from weighted disjunctions which have been added

as types to individuals;

• Let the following queues contain weighted disjunctions D which have

been added as types to individuals, but have not yet had all of their

disjunct elements applied, such that:

CQu contains a weighted disjunction D where no disjunct element Ei

member of D has been applied yet;

CQpa contains a weighted disjunction D where at least one disjunct el-

ement Ei member of weighted disjunction D has been applied and

all Ei which have been applied have also been found to generate a

clash;
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CQpn contains a weighted disjunction D where at least one disjunct el-

ement Ei member of D has been applied but at least one of the

applied Ei did not yet generate a clash.

• Let DQ denote a queue which contains all other non-weighted disjunc-

tions which have been added as a type to an individual and have not yet

been applied. Recall, non-weighted disjunctions are those which were

not derived from the user request and they are applied in the standard

Tableaux way.

We store weighted disjunctions in separate queues from non-weighted dis-

junctions because of our preference to apply non-weighted disjunctions only

after all weighted disjunctions have been applied for an expansion. The three

separate weighted disjunction queues arise from the fact that several equivalent

copies of the same disjunction can exist due to the application of the ∀-rule
as described earlier in this section. In the case that a disjunct element fails

to clash for a particular weighted disjunction copy, then another copy of the

same disjunction in the un-applied disjunctions queue will be evaluated next.

In the case that all copies of the same weighted disjunction fail to generate a

clash for at least one disjunct element, the strategy returns to partially eval-

uated disjunctions to continue checking these, due to our support for partial

matching. In addition, a particular copy of a disjunction where all evaluated

disjunct elements have clashed, is favoured over a copy of the same disjunc-

tion where all applied elements have not yet clashed, giving rise to the need

for two separate partially applied queues. We will explain these priorities in

more detail in the next section. The remainder of this section concentrates on

defining the structure of our iterator and queues.

The structure of iterator DisjElemIter is defined in Equation 5.4.
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DisjElemIter = {E1, ..., En | (1 ≤ i ≤ n)} where

Ei is an instance of WeightedDisjunct and

rw(Ei) ≥ rw(Ej), 1 ≤ i ≤ j ≤ n, and

no Ei.ID occurs more than once in ElemElemIter

(5.4)

The iterator DisjElemIter will be used to control which weighted dis-

junction to apply next. It is not used for and does not contain non-weighted

disjunctions. Rather DisjElemIter contains all the unique weighted dis-

junct element Ei members of all the weighted disjunction identifiers D.ID

added as types to individuals in the knowledge base’s ABox A. That is, if

the ∀-rule generates adds multiple copies of the same disjunction sharing the

same D.ID, only one copy of the disjunct elements from D are added to

DisjElemIter. However, as we will explain in Section 5.6.3, these elements

will remain in the queue until either all copies of D have been evaluated, or

a D has generated a clash for all expansions. The DisjElemIter is ordered

in descending rw(Ei) order. Let DisjElemIter.NextElem denote a prop-

erty that holds a disjunct element which is contained in DisjElemIter, such

that DisjElemIter.NextElem ∈ DisjElemIter. This element will be used

to maintain the current iteration of the iterator DisjElemIter and the al-

gorithm which controls this, will be described in the Section 5.6.3. Having

defined DisjElemIter, we now define each of our four queues. First we will

define the queues which hold weighted disjunctions CQu, CQpa, CQpn, then we

will define the queue for non-weighted disjunctions DQ.
As described earlier in this section, the queues CQu, CQpa, CQpn contain

weighted disjunctions. A particular weighted disjunction is added to only one

of these queues depending on its current state. The iterator DisjElemIter

defined above, will be used to obtain a particular unique identifier D.ID of a

weighted disjunction D (see Section 5.4) to apply next, which will be explained
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in Section 5.6.3. Given a Di.ID, a specific assertion Dj(xr) about a weighted

disjunction Dj copy which has the identifier Di.ID, will be selected by the

queues, such that Dj.ID = Di.ID. This motivates the structure of these

three queues CQu, CQpa, CQpn, which are made up of disjunction identifier

Di.ID and DSeti pairs. Let DSeti be a set containing assertions Dj(xr) about

equivalent copies of a weighted disjunction Di and where xr is an individual

to which Dj has been added as a type, such that Di.ID = Dj.ID, where

{Di(xr), Dj(xp)} ⊆ DSet, 1 ≤ i ≤ j ≤ n, 1 ≤ r ≤ p ≤ q.

We now define each of the weighted disjunction queues. The structure of

CQu which contains weighted disjunctions where no disjunct elements have

been applied, is presented in Equation 5.5.

CQu =
{
〈D1.ID,DSet1〉, ..., 〈Dn.ID,DSetn〉

}
, 1 ≤ i ≤ n where

DSeti =
{
D1(x1), ..., Dm(xq)

}
, 1 ≤ j ≤ m, 1 ≤ r ≤ q

Dj is an instance of WeightedDisjunction, xr is an individual

every 〈Di.ID,DSeti〉 pair has a distinct Di.ID value

(5.5)

In CQu, the weighted disjunction assertions in the set DSet are un-ordered.

However, if the caching strategy CS (see Section 4.5) is used in conjunction

with our adaptive inference strategy, then an instance of the CS queue Q is

used in place of DSet for ordering un-applied disjunctions based on the cache.

The structure of CQpa which contains weighted disjunctions where at least

one disjunct element has been applied and all applied elements have been found

to clash, is given in Equation 5.6.
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CQpa =
{
〈D1.ID,DSet1〉, ..., 〈Dn.ID,DSetn〉

}
, 1 ≤ i ≤ n where

DSeti =
{
D1(x1), ..., Dm(xq)

}
, 1 ≤ j ≤ m, 1 ≤ r ≤ q

Dj is an instance of WeightedDisjunction, xr is an individual

rw
(
NextElem(Dj)

)
≤ rw

(
NextElem(Dk)

)
,

for all Dj(xr), Dk(xp) ∈ DSeti, 1 ≤ j ≤ k ≤ m

every 〈Di.ID,DSeti〉 pair has a distinct Di.ID value

(5.6)

In CQpa the set DSet contains weighted disjunction assertions which are

in ascending order by relative weight of the next disjunct element of the dis-

junction to apply, where next element was defined earlier in this section. The

reason the order is ascending is as follows. The DSet contains all equivalent

copies of a weighted disjunction added as types to different individuals and if

any disjunction generates a clash for all disjunct elements then the others do

not need to be checked. All disjunctions in this queue have generated a clash

for all applied disjunct elements. Therefore, the goal is to select the disjunction

with the fewest remaining disjunct elements to evaluate, in order to prove a

clash for all elements. This is the disjunction with the lowest next applicable

element relative weight.

The structure of CQpn which contains weighted disjunctions where at least

one disjunct element has been applied but not all applied elements have been

found to clash, is given in Equation 5.7.
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CQpn =
{
〈D1.ID,DSet1〉, ..., 〈Dn.ID,DSetn〉

}
, 1 ≤ i ≤ n where

DSeti =
{
D1(x1), ..., Dm(xq)

}
, 1 ≤ j ≤ m, 1 ≤ r ≤ q

Dj is a WeightedDisjunction, xr is an individual

degMatch(Dj) ≥ degMatch(Dk),

for all Dj(xr), Dk(xp) ∈ DSeti, 1 ≤ j ≤ k ≤ m

every 〈Di.ID,DSeti〉 pair has a distinct Di.ID value

(5.7)

In CQpn the set DSet contains weighted disjunction assertions which are

in descending order by the degree of match degMatch(D) for the disjunction

D. The degree of match is the sum of the normalised relative weight nrw

for the disjunct elements of a disjunction which has been found to clash and

will be presented in Section 5.8. For example, assume there is a weighted

disjunction ¬InternetRequest ≡ (¬Internet t ¬WiFi t ¬Service t ¬FreeUse),
where nrw(¬Internet) = 0.4, nrw(¬WiFi) = 0.3, nrw(¬Service) = 0.2 and

nrw(¬FreeUse) = 0.1. Assume the disjunction is added as a type to the in-

dividuals PayInternet and FreeWiFiInternet due to application of a ∀-rule on ∀
sells.¬InternetRequest, generating two equivalent copies. Assume the disjunc-

tion added to PayInternet generated a clash for ¬Internet giving a degree of

match of 0.4 and the disjunction added to FreeWiFiInternet generated a clash

for both ¬Internet and ¬WiFi giving a degree of match of (0.4 + 0.3 = 0.7).

When checking which of the two disjunctions to apply next, the disjunction

added to FreeWiFiInternet should be applied first because it has a higher de-

gree of match (i.e 0.7) than the one added to PayInternet (i.e. 0.4). A higher

degree of match for a disjunction indicates that a larger number of its disjunct

elements have been successfully matched so far.

Now that we have defined our three weighted disjunction queues, we will

define functions which can be called on these queues:
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• Let CQ.Contains(Di.ID) be a function which can be used to determine

whether or not the queue contains any more assertions about weighted

disjunctions which have the unique identifier Di.ID. As such, CQ.Con-
tains(Di.ID) returns true if 〈Di.ID,DSeti〉 ∈ CQ, DSet 6= ∅, or false
otherwise;

• Let CQ.GetNext(Di.ID) be a function which obtains the next assertion

about a weighted disjunction which has the unique identifierDi.ID. This

is defined as the assertion D1(x1), where D1(x1) ∈ DSeti (i.e. D1(x1) is

the first assertion in DSeti according to ordering) and 〈Di.ID,DSeti〉 ∈
CQ;

• Let CQ.Add
(
Dj(xr)

)
be a function which adds an assertion Dj(xr) to the

queue. Dj(xr) is added to aDSeti, such thatDSeti ← DSeti∪
{
Dj(xr)

}
,

for the DSeti where 〈Dj.ID,DSeti〉 ∈ CQ. A new DSeti may be created

if one does not already exist for Dj.ID;

• Let CQ.Remove
(
Dj(xr)

)
be a function which removes an assertionDj(xr)

from the queue. An assertion Dj(xr) is removed from DSeti, where

Dj(xr) ∈ DSeti and 〈Dj.ID,DSeti〉 ∈ CQ.

• Let CQ.RemoveAll(Di.ID) remove all assertions Dj(xr) ∈ DSeti about
the disjunctions Dj which have the unique identifier Di.ID, from the

queue, such that the pair 〈Di.ID,DSeti〉 (i.e. Dj.ID = Di.ID);

• Let CQ.IsEmpty be a property which can be used to determine whether

or not the queue contains anymore weighted disjunctions. It returns true

if CQ = ∅ or DSeti = ∅ for all 〈Di.ID,DSeti〉 ∈ CQ, or false otherwise.

This completes our discussion of the weighted disjunction queues. Now we

define the queue DQ which contains non-weighted disjunctions, which were

not derived from the user request. The structure of this queue is given in

Equation 5.8.
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DQ =
{
D1(x1), ..., Dn(xq)

}
, 1 ≤ j ≤ m, 1 ≤ r ≤ q where

Di is a non-weighted disjunction of the form Dj ≡ E1 t ... t Ez
xr is an individual

(5.8)

DQ contains assertions about non-weighted disjunctions which have been

added as types of individuals, which have not yet had the t-rule applied to

them. The queue DQ is un-ordered. However, if the caching strategy CS (see

Section 4.5) is used with our adaptive inference strategy, then an instance of

the CS queue Q is used in place of DQ for ordering non-weighted disjunctions

which have not been applied, according to the cache.

We have now defined the iterator and the queues used in our adaptive in-

ference strategy to hold disjunctions. We will now illustrate the way in which

disjunctions and their disjunct elements are added to their respective queue,

and the disjunct element iterator, when they are added as a type to an indi-

vidual. Let AddType be an algorithm which is called whenever a class concept

C definition is asserted as a type to an individual x, shown in Algorithm 5.10.

Algorithm 5.10 AddType(C, x, A)
Inputs: ClassConcept C, Individual x, ABox A
1: if C is an instance of WeightedDisjunction then
2: CQu.Add

(
C(x)

)

3: for all Ei ∈ C.ChildElems do
4: if Ej /∈ DisjElemIter for any Ej where Ej.ID = Ei.ID then
5: DisjElemIter ← DisjElemIter ∪ {Ei}
6: end if
7: end for
8: if rw(DisjElemIter.NextElem) > rw

(
NextElem(C)

)
then

9: DisjElemIter.NextElem← NextElem(C)
10: end if
11: else if C ≡ E1 t ... t En then
12: DQ ← DQ∪ {C}
13: end if
14: \∗ add the type C to x, by calling AddType(C, x,A) defined in Algorithm

5.5 in Section 5.4 ∗\
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In the AddType algorithm, in the case that the class concept definition C

being added as a type to the individual x is a weighted disjunction, it is added

to the un-applied disjunction queue CQu. In addition, all disjunct elements

Ei of the disjunction C are added to the element iterator DisjElemIter pro-

vided it does not already contain other elements which share the same Ei.ID.

Furthermore, if the relative weight of the next disjunct element NextElem(C)

of the weighted disjunction C, is higher than the relative weight of the next ele-

ment in the iteratorDisjElemIter.NextElem, thenDisjElemIter.NextElem

is set to NextElem(C). This is because DisjElemIter.NextElem is now ap-

plicable disjunct with the highest relative weight. Alternatively, in the case

that C is a non-weighted disjunction, it is added to DQ. The disjunction C is

then added as a type for x, as in standard Tableaux. It is noteworthy, that we

also defined an AddType procedure in Algorithm 5.5 in Section 5.4 for adding

types to individuals. Algorithm 5.10 presented in this section can be assumed

to be in addition to Algorithm 5.5. Therefore, Algorithm 5.10 calls Algorithm

5.5 on the last line, to add the type.

When a clash is detected during the inference check and this clash depends

on a weighted disjunct element Ei, of a weighted disjunction D, then the

UpdateQueuesOnClash algorithm is called as was shown in Algorithm 5.2 in

Section 5.3.1). We will now define UpdateQueuesOnClash in Algorithm 5.11.

The reason for this algorithm is as follows. As described earlier in this

section, we have separate queues for partially applied weighted disjunctions

where not all disjunct elements have generated a clash CQpn compared to

those where all applied elements have clashed CQpa. When a disjunction in

CQu is applied for the first time, it is moved to CQpn which contains partially

applied disjunctions where applied elements have not yet generated a clash

(this move will be described in the next section). When a clash occurs, the

UpdateQueuesOnClash algorithm will move it from CQpn to CQpa if all ap-

plied disjunct elements now clash. A weighted disjunct element E is known to
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Algorithm 5.11 UpdateQueuesOnClash(Ei)
Pre-conditions: Ei generated a clash
Inputs: WeightedDisjunct Ei
1: clashingConcept(Ei)← true
2: if clashingConcept(Ej) = true for all Ej ∈ Ei.DepOnDisj.ChildElems

where appliedConcept(Ej) = true and
there exists some Ej ∈ Ei.DepOnDisj.ChildElems

where appliedConcept(Ej) = false then
3: \*all applied disjunct elements of Ei.DepOnDisj now clash*\
4: CQpn.Remove(Ej.DepOnDisj)
5: CQpa.Add(Ej.DepOnDisj)
6: else if clashingConcept(Ej) = true and
appliedConcept(Ej) = true, for all Ej ∈ Ei.DepOnDisj.ChildElems
then

7: \*if all elements clashing*\
8: CQu.RemoveAll(Ei.DepOnDisj.ID)
9: CQpa.RemoveAll(Ei.DepOnDisj.ID)

10: CQpn.RemoveAll(Ei.DepOnDisj.ID)
11: UpdateQueuesOnClash(Ei.DepOnDisj.DepOnElem)
12: end if

have generated a clash iff clashingConcept(E) = true, which is set by Algo-

rithm 5.2 in Section 5.3.1) as well as UpdateQueuesOnClash itself. A disjunct

element is known to have been applied iff appliedConcept(E) = true which is

set by Algorithm 5.9 in Section 5.6.1.

Alternatively, it may be the case that all disjunct element members of the

disjunction D which E is a member, have now been applied and also clash.

In this situation no further copies of D need to be applied. As described in

Section 5.4, all disjunctions with the same D.ID depend on the class concept

/ branch node, so if one of these disjunctions has generated a clash for all of its

disjunct members, then the others do not need to be evaluated. Therefore, all

equivalent copies of D sharing the same unique identifier D.ID are removed

from the queues. In addition, when all disjunct elements of a disjunction D are

clashing, this means that the parent disjunct P for D has effectively generated

a clash as well, because D depends on P . Therefore, UpdateQueuesOnClash

performs a recursive call back to update these parent disjunct elements.
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In this section we have described the iterator and queues used by our adap-

tive inference strategy to store disjunctions. The iterator is a weight ordered

place holder to determine which disjunct element to apply next. The queues

provide ordering of weighted disjunctions in various states and another queue

contains non-weighted disjunctions. These iterator and queues will be used in

the next section, which describes the procedure for determining which disjunc-

tion to apply next and the considerations involved.

5.6.3 Disjunction Application Selection

In the previous section we detailed an iterator and queues which we used to

order disjunctions which the t-rule is applicable to, by taking weight into ac-

count. In this section, we will provide the mechanisms which use these queues

to select the next disjunction to apply the t-rule to. In addition, at the begin-

ning of the previous section we identified the fact that the ∀-rule may create

several copies of the same disjunction added as types to different individuals

and if one of these copies generates a clash for all expansions then the others

do not need to be evaluated, because they depend on the same universal quan-

tifier definition. In standard Tableaux this implies that the reasoner evaluates

a particular disjunction until a disjunct element fails to generate a clash, then

it begins evaluating another copy of the same disjunction. However, since our

strategy supports partial matching, the reasoner will need to return to these

disjunctions in the case that no disjunction can be found where all disjunct

elements generate a clash.

This gives rise to the following priorities for selecting which particular

equivalent copy of the same disjunction (which is added as a type to a dif-

ferent individual) to apply next:

1. The highest priority is given to a weighted disjunction D copy in the

queue CQpa which contains only weighted disjunctions where all of the

applied disjunct element Ei members of D have also generated a clash;
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2. Second highest priority is given to a weighted disjunction D in the queue

CQu, which contains only weighted disjunctions which have not yet been

applied;

3. Third priority is given to a weighted disjunction D in the queue CQpn
which contains weighted disjunctions where at least one applied disjunct

element Ei member of D has failed to generate a clash;

4. The lowest priority will be given to disjunction D in the queue DQ which

contains non-weighted disjunctions which have not yet been applied.

The reason that copies of the same weighted disjunction D in CQpa are

given the greatest priority, is that these have the fewest remaining disjunct

element Ei members to check in order to prove a clash for the entire disjunction.

Weighted disjunction copies in CQu are favoured over those in CQpn, because a
disjunction which has not had any of its disjunct element Ei members applied,

has a chance of generating a clash for every Ei, while disjunctions in CQpn do

not. Non-weighted disjunctions in DQ have the least priority because they

are not related to the user request and are not associated with a weight value.

These non-weighted disjunctions, however, will be applied after all weighted

disjunctions, if there are sufficient remaining time or resources, in order to

preserve completeness.

The priorities will give rise to the following example of disjunction selec-

tion. Assume there is a weighted disjunction ¬InternetRequest ≡ (¬Internet t
¬WiFi t ¬FreeUse). Assume the disjunction is added as a type to the individ-

uals Coffee, PayInternet and FreeWiFiInternet due to application of a ∀-rule on

∀ sells.¬InternetRequest, generating three equivalent copies. These copies will

initially be added to the un-applied queue CQu. Assume that the disjunction

added to Coffee, was selected and the ¬Internet disjunct was applied did not

generate a clash. Rather than continuing to evaluate the same disjunction,
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another un-applied disjunction from CQu is evaluated. Assume the disjunc-

tion added as a type to PayInternet is applied and that this generates a clash

for the disjunct element ¬Internet. Evaluation of the same disjunction then

continues because the first applied element has generated a clash, however,

assume the next element ¬WiFi fails to generate a clash. The last disjunction

which is a type for FreeWiFiInternet is then evaluated, and assume that both

¬Internet and ¬WiFi clash. The last disjunct element ¬FreeUse is then evalu-

ated and generates a clash thereby proving a clash for the whole disjunction

¬InternetRequest.
In the remainder of this section we will detail the GetNextDisj algorithm

and the sub-algorithms which it uses. This is used by the t-rule to obtain the

next disjunction to apply, which was provided in Algorithm 5.9 in Section 5.6.1.

GetNextDisj and its sub-algorithms take account of the queue priorities which

we detailed earlier in this section. GetNextDisj is provided in Algorithm 5.12.

Algorithm 5.12 GetNextDisj(DisjElemIter, CQu, CQpa, CQpn, DQ)
Inputs: Set DisjElemIter, CompletionQueue CQu, CompletionQueue CQpa,

CompletionQueue CQpn
Outputs: Assertion D(x)
1: Let Dj(xr)← createdByAssertion(G.activeAdapBranch)
2: if Dj.ChildDisjs = ∅ and DQ 6= ∅ then
3: \*cannot expand the last weighted disjunction Dj any further*\
4: Let D1(x1) denote D1(x1) ∈ DQ where DQ =

{
D1(x1), ..., Dn(xn)

}

5: remove D1(x1) from DQ
6: return D1(x1)
7: else if (CQu.IsEmpty 6= true or CQpa.IsEmpty 6= true or
CQpn.IsEmpty) 6= true then

8: return GetNextWeightedDisj(DisjElemIter, CQu, CQpa, CQpn)
9: end if

Algorithm 5.12 returns the next disjunction to apply as well as the indi-

vidual which it has been asserted as a type of. Therefore, the output of the

algorithm is an assertion of the form D(x) where D is a disjunction which may

be weighted or non-weighted and x is an individual.

The algorithm retrieves the last weighted disjunction which was applied. If

this disjunction cannot be further expanded then a non-weighted disjunction is
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returned. Alternatively, if the last applied weighted disjunction can be further

expanded (i.e. has child disjunctions) or there are no non-weighted disjunctions

to apply, then an assertion about another weighted disjunction is retrieved

using a call from GetNextWeightedDisj, which is defined in Algorithm 5.13

Algorithm 5.13 GetNextWeightedDisj(DisjElemIter, CQu, CQpa, CQpn)
Inputs: Set DisjElemIter, CompletionQueue CQu, CompletionQueue CQpa,

CompletionQueue CQpn
Outputs: Assertion D(x)
1: while CQu.IsEmpty 6= true or CQpa.IsEmpty 6= true or

CQpn.IsEmpty 6= true do
2: Let Ek ← DisjElemIter.NextElem
3: Let Di ← Ek.DepOnDisj
4: Let Dj(xp)← TryGetFromQueue(Ek, CQu, CQpa, CQpn)
5: if CQu.Contains(Di.ID) 6= true and CQpa.Contains(Di.ID) 6= true

and CQpn.Contains(Di.ID) 6= true then
6: DisjElemIter.NextElem← Ek−1 \*de-iterate*\
7: remove Ek from DisjElemIter
8: end if
9: if Dj(xp) 6= null then

10: DisjElemIter.NextElem← NextElem(Dj)
11: end if
12: if there exists Ek+1 ∈ DisjElemIter then
13: DisjElemIter.NextElem← Ek+1 \*iterate*\
14: end if
15: if Dj(xp) 6= null then
16: return Dj(xp)
17: end if
18: end while

The purpose of this algorithm is to control the iterator DisjElemIter in

order to obtain the next weighted disjunction to apply, from one of the weighted

disjunction queues CQu, CQpa, CQpn (which were defined in Section 5.6.2). The

mean idea is that next weighted disjunct element to apply, is obtained from

the iterator DisjElemIter.NextElem, where this element is a member of a

weighted disjunction Di. An assertion Dj(xp) about a copy of Di is obtained

from one of the queues, such that Dj.ID = Di.ID. Then the iterator is moved

to its next element and the assertion Dj(xp) is then returned, to be applied.

We will now explain the algorithm is more detail. Algorithm 5.13 loops

while any of the weighted queues CQu, CQpa, CQpn are not empty and until an
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assertion is found. The next weighted disjunct element Ek is obtained from

the iterator. Ek is a member of which is a disjunct member of a weighted

disjunction Di. The disjunction Di is used to obtain a specific assertion of the

formDj(xp) and remove it from the queues, using a call to TryGetFromQueue

(which is outlined in Algorithm 5.14 later in this section), where Dj is an

equivalent copy of Di such that Di.ID = Dj.ID. TryGetFromQueue may

fail to obtain an assertion (e.g. the last copy of Di may have been removed

from the queues because it generated a clash for all elements). If there are

no longer any assertions in the queues about a copy of Di, then the current

element Ek is removed from the iterator DisjElemIter and the iterator is

moved to the previous element. If TryGetFromQueue obtained an assertion

Dj(xp), the next element in the iterator DisjElemIter is set to be the next

element to apply Dj (i.e. this may be different Ek). For instance, if the next

disjunct element in the iterator is E1 which is a member of Dj ≡ E1 tE2 and

TryGetFromQueue finds that there an assertion Dj(xp) where E1 has already

generated a clash and E2 has not yet been applied, then this assertion Dj(xp)

will be selected over some other assertion Dj(xp+1) where neither disjunct

element has been applied. Therefore, the iterator is changed to reflect that E2

is the next applied element which will be applied. Then DisjElemIter iterates

to the next element. The assertion Dj(xp) obtained by TryGetFromQueue is

then returned, so that the t-rule can be applied to it.

We will now discuss the algorithm TryGetFromQueue which is passed the

current element Ei in the iterator, and the weighted disjunction queues CQu,
CQpa and CQpn. This procedure is defined in Algorithm 5.14.

The purpose of the algorithm is to obtain an assertion Dj(xp) where Dj

is an equivalent copy of a disjunction Dz which Ei is a member of, such that

Dz.ID = Dj.ID. The algorithm takes the priorities for selecting which order

to check each queues into consideration, which we discussed at the beginning

of this section. First the CQpa queue is checked, which contains disjunctions
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Algorithm 5.14 TryGetFromQueue(Ei, CQu, CQpa, CQpn)
Inputs: WeightedDisjunt Ei, Queue CQu, Queue CQpa, Queue CQpn
Outputs: Assertion Dj(xp) where Dj is a weighted disjunction
1: if CQpa.Contains(Ei.DepOnDisj.ID) then
2: Let Dj(xp)← CQpa.GetNext(Ei.DepOnDisj.ID)
3: if rw

(
NextElem(Dj)

)
≥ rw(Ei.ID) then

4: CQpa.Remove
(
Dj(xp)

)

5: return Dj(xp)
6: end if
7: else if CQu.Contains(Ei.DepOnDisj.ID) then
8: Let Dj(xp)← CQu.GetNext(Ei.DepOnDisj.ID)
9: if CQpa.Contains(Dc.ID) 6= true,

for all Dc ∈ Dj.DepOnElem.ChildDisjs where Dc.ID 6= Dj.ID then
10: CQu.Remove

(
Dj(xp)

)

11: return Dj(xp)
12: end if
13: else if CQpn.Contains(Ei.DepOnDisj.ID) then
14: Let Dj(xp)← CQpn.GetNext(Ei.DepOnDisj.ID)
15: Let T ← ∑

Ed∈Dj .ChildElems nrw(Ed) where appliedConcept(Ed) 6= true
16: if

(
degMatch(Dj)+T

)
> degMatch(Dj.ID) and

(
degMatch(Dj) +T

)

> degMatch(Dy), for all Dy ∈ Dj.DepOnElem.ChildDisjs then
17: CQpn.Remove

(
Dj(xp)

)

18: return Dj(xp)
19: end if
20: end if
21: return null

where all applied elements have clashed. If CQpa contains any assertion Dj(xp)

about an equivalent copy of Dz, then this is obtained and removed from the

queue. However, this only occurs if the next disjunct element of Dj which

has not yet been applied / evaluated, has a weight which is less than or equal

to the disjunct element Ei passed to this algorithm. As discussed in Section

5.6.2, disjunctions Dj are stored in CQpa in descending relative weight rw(Ei)

order since a lower weight indicates fewer remaining disjunct elements which

have not been applied or generated a clash.

If CQpa did not contain an assertion Dj(xp), then the queue CQu is checked
which contains disjunctions where no elements have been applied. If CQu con-

tains an assertion Dj(xp) where Dj is an equivalent copy of Dz, it is obtained



CHAPTER 5. ADAPTIVE STRATEGIES FOR MOBILE INFER. 195

and returned. However, in the case that Dj depends on a parent disjunct el-

ement Dp which contains multiple child disjunctions, and an alternative child

Dc has already been applied and is contained in CQpa, then this must be given

preference over Dj. For example, assume the algorithm is attempting to re-

trieve an assertion about the disjunction D1. Assume that D1 is a conjunct

member of a conjunction E1 such that E1 ≡ (D1 uD2) and E1 is a weighted

disjunct element. In the case that an assertion about D2 is already contained

in CQpa, the disjunction D1 is not applied. This is because all evaluated dis-

junct elements of D2 have clashed and if the remaining elements clash, then

E1 is proven to clash meaning that D1 does not need to be evaluated.

If CQu did not contain an assertion Dj(xp), then the queue CQpn is checked,
which contains disjunctions where not all applied elements have clashed. If

CQpn contains an assertion Dj(xp) about an equivalent copy the disjunction

Dz then it is obtained and returned. However, it is possible that evaluating

the remaining un-applied elements of Dj will not increase the current degree

of match (even if evaluating these generates a clash). This is the case when

the degree of match for an equivalent copy of Dz is higher than the sum of the

degree of match for the Dj in the retrieved assertion Dj(xp) and the normalised

relative weight nrw(Ed) for all Ed where Ed is an element of Dj which has

not yet been applied / evaluated. It is the same case for alternative child

disjunctions Dy where Dy ∈ Dj.DepOnElem.ChildDisjs. In this situation

a disjunction Dj is discarded / not applied. There is no point in applying a

disjunction if this cannot increase the degree of match for the current match

check. Note appliedConcept(Ed) is set by Algorithm 5.9, Section 5.6.1 and

degMatch(Dj) is set by Algorithm 5.21 in section 5.8.

If an assertion Dj(xp) about a weighted disjunction was not found by Al-

gorithm 5.14, then the GetNextDisj algorithm, will iterate DisjElemIter, to

the next disjunct in the iterator a weighted disjunction is found or all disjunc-

tions have been applied.
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This completes our discussion of how our adaptive inference strategy selects

the next disjunction to the t-rule to, based on disjunction weight. However,

because the t-rule generates new expansions in the expansion tree, the effect

of applying the t-rule in disjunction weight order is that there may be multiple

simultaneous expansion branches which are open / unfinished at one time. The

t-rule may further expand any of the open branches, thus jumping between

these. This requires a new approach to branch identifiers and management of

the mTableaux ABox state. This will be discussed in the next section.

5.7 Adaptive Tableaux State Management

As we have discussed in this chapter, our adaptive inference strategy associates

weights with conjunctive concepts which form conditions in a user request, and

proves or disproves an inferred match by negating the conjunction to become a

disjunction. In the previous section we detailed the way in which our strategy

selects the next disjunction to apply the t-rule to based on these weights. Since

the t-rule gives rise to branch expansion in the expansion tree, this expansion

occurs in weight order, meaning that there may be several unfinished branches

open at one time. Under our strategy, the reasoner will jump between these

branches until they are all finished (or until constraints such as available time

and resources are no longer met). Conversely, as was discussed in Section 3.5

standard Tableaux employs depth-first expansion. When a standard Tableaux

reasoner changes from a branch node bi+1 to an earlier branch bi, to continue

expansion of an alternate branch, any branches and assertions which occurred

after bi are discarded. Since our adaptive strategy is not depth-first, several

modifications to the branch expansion scheme are required. For instance,

assume that the weight ordered application of disjunctions, gives rise to the

expansion shown in Figure 5.9, where circles are branch nodes and the number

contained in the circles indicates the order of branch expansion.
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Figure 5.9: Adaptive Inference Branching Example

In this figure, there is an initial branch expansion comprising nodes 1, 2

and 3. Assume that branch node 3 generates a clash. Then branch node 4

is expanded from node 1 and assume that branch node 4 generates a clash.

Finally, branch node 5 is created as an expansion from branch node 2. In

standard Tableaux, a jump from branch node 3 to branch node 1 (in order to

expand branch node 4), would discard all of the state changes which occurred

after branch node 1, before expanding branch node 4. However, the jump

from branch node 4 back to branch node 2 (in order to expand branch node

5), would result in the need to re-apply all transformations which occurred be-

tween branch 1 and 2, since these were discarded. Therefore, in order to cater

for weight directed expansion, without requiring re-evaluation of transforma-

tion rules, in this section we propose a novel approach for state management

in the reasoner. Under our approach, the state of several different unfinished

branches are simultaneously maintained, such that the reasoner can jump be-

tween branch states. This replaces the standard Tableaux reasoner restore

operations which are not performed by our adaptive strategy (see Algorithm

5.2 in Section 5.3.1).

Catering for multiple unfinished branches, requires the modification of the

following components of standard Tableaux:

• Branch point node identifiers, which we will discuss in section 5.7.1;
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• Sets used to maintain ABox state, including type and role labels and

the ToDo list of assertions which transformation rules are applicable to,

which we will discuss in section 5.7.2.

5.7.1 Branch Point Node Identifiers

Standard Tableaux uses branch identifiers to identify which branch node a

particular assertion depends on. This is used to determine which branch to re-

store the reasoner state to, when a back jump occurs, as shown in Section 3.5.

Since standard Tableaux is depth-first, it identifies branches using a number

/ counter which is increased every time a new branch is created (i.e. a depth

count). However, in our proposed adaptive strategy, there may be simultane-

ously open branches which the reasoner needs to jump between, in order to

complete the expansion in weight directed order. Therefore, a depth counter

is not sufficient to uniquely identify branch nodes in our proposed strategy.

In our adaptive inference strategy, we establish an adaptive branch identi-

fier to replace the standard Tableaux depth count, where an adaptive branch

node refers to a branch node created by application of a weighted disjunction.

Recall from Section 5.3.1 that non-weighted disjunctions are applied in the

standard Tableaux way, after no more weighted disjunctions can be applied

for a particular expansion. Therefore, our modified branch identifiers relate

only to adaptive branch nodes. Let adapBranchID(bk) denote an adaptive

branch identifier for a branch node bk. The structure of a adaptive branch

identifier is shown in Equation 5.9. We use the notation “-” to represent a

hyphen in our branch identifiers e.g. 3-0-1 and these are illustrated below.

The square braces indicate an optional part of the adaptive branch identifier.

adapBranchID(bk) = depth(bk) “-” breadth(bk)
[
“-” copyNumber(bk)

]

(5.9)
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Let depth(bk) denote a depth count for a branch node bk in the expan-

sion tree G, which is the same as standard Tableaux branch node identifiers.

However, in addition our adaptive identifiers introduce a breadth count and

optional copy number in order to maintain uniqueness. Let breadth(bk) de-

note the breadth count for a branch node bk. The breadth(bk) increases for

every new branch node bk which has the same depth(bk). Furthermore, recall

from Section 5.4 that application of the ∀-rule may result in several copies of

a weighted disjunction being added as types to several different individuals.

When the t-rule is applied to each of these disjunctions, this will create a

separate branch node for each. The copyNumber(bk) is an optional additional

identifier used to uniquely identify each of these separate branch nodes, which

are generated by applying separate copies of the same disjunction.

Our adaptive strategy determines adaptive branch identifiers by first asso-

ciating a depth depth(Ei) and breadth breadth(Ei) identifier to each disjunct

element member Ei of each of the weighted disjunctions Dj and child disjunc-

tions Dj which are derived from the user request. These are used to establish

an initial adaptive branch identifier associated with each disjunct Ei. Only

weighted disjunct elements are given identifiers (i.e. not non-weighted disjunc-

tions). In the case that an element is copied and added as a type to multiple

different individuals by the ∀-rule, then this rule will generate the additional

copyNumber(Ei) and associate it with the disjunct element Ei, and append

this to the branch identifier for Ei. The full branch identifier associated with

Ei will then be transferred to the branch node bk when this is created by ap-

plication of the t-rule generates a bk for the element Ei. If a weighted disjunct

element Ei has not been copied as a result of a ∀-rule and it does not depend

on a weighted disjunct Ej which has been copied as a result of a ∀-rule, then
it does not have a copyNumber(Ei), since there is only one equivalent copy of

Ei.
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It is noteworthy, that the depth(Ei) values of 0 and 1 are reserved. All

explicit assertions which are loaded into the reasoner from an ontology are

set to depend on an adaptive branch node dependency identifier of 0-0, such

that adapBranchID
(
depOnAdapBranch(Cy)

)
= 0-0, where Cy is added to the

type label for some individual xr. Then any assertions which are added due any

pre-processing performed by the reasoner such as immediate application of ∀-
rules and u-rules or other pre-processing related to the standard Tableaux opti-

misation strategies (Tsarkov et al., 2007) are given an adaptive branch node de-

pendency identifier of 1-0, such that adapBranchID
(
depOnAdapBranch(Cy)

)

= 1-0, where Cy is added to the type label for some individual xr. When our

adaptive inference strategy performs an inference check, which results in the

negation of the user request definition Cz being added as a type to the ser-

vice description individual xp, this assertion depends on the adaptive branch

identifier 2-0, such that adapBranchID
(
depOnAdapBranch(Cz)

)
= 2-0.

An example of branch identifiers is as follows. Assume, a negated user

request becomes the disjunction ¬Request ≡ (¬RetailOutlet t ∀ sells.¬Internet-
Request) and ¬InternetRequest ≡ (¬WiFi t ¬Internet). This will result in the

initial disjunct element identifiers such that adapBranchID( ¬Request )=2-0

where ¬Request is aWeightedDisjunct, adapBranchID( ¬RetailOutlet )=3-0,

adapBranchID( ¬InternetRequest )=3-1, adapBranchID( ¬WiFi )=4-0, adap-

BranchID( ¬Internet )=4-1. However, assume that ∀ sells.¬InternetRequest is
added as a type to an individual JimsInternet which connects to inet and coffee

using the role sells. Application of the ∀-rule will add a copy of ¬Internet-
Request to both inet and coffee. When this occurs each copy of ¬Internet-
Request is given a copy number starting at zero, so that the disjunct element

copy added to inet is given a copyNumber of 0 and the disjunct element added

to coffee is given a copyNumber of 1. This results in the final identifiers

such that ¬InternetRequest added to inet has a adapBranchID of 3-1-0 and

¬InternetRequest added to coffee has a adapBranchID of 3-1-1. Since there
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will be two copies of ¬InternetRequest, this means there will be two copies of

¬WiFi and ¬Internet, which depend on each ¬InternetRequest copy (since they

are elements of ¬InternetRequest). Therefore, the final identifiers for the ¬WiFi

element added to inet will be 4-0-0 and the copy added to coffee will be 4-0-1.

The final identifiers for ¬Internet element added to inet will be 4-1-0 and the

copy added to coffee will be 4-1-1.

In addition to a unique identifier, each weighted disjunct element, and thus

adaptive branch node, will also have a set of identifiers which it depends upon,

as we mentioned in Section 5.3.1. Let adapDepBranchIDs(Ei) denote the set

of adaptive branch identifies adapBranchID(Ei) which a disjunct element Ei

depends on. Dependant identifiers for Ei will include the branch identifier for

disjunct Ei itself, as well as the identifiers of all parent disjunct elements which

Ei depends on, as defined in Equation 5.10. Identifiers in the dependency set,

are in ascending order.

adapDepBranchIDs(Ei) = adapBranchID(Ei) ∪ adapDepBranchIDs(Ej)

for all Ej, where Ej = Ei.DepOnDisj.DepOnElem,Ej 6= null, and

IDy ≤ IDz, for all IDy, IDz ∈ adapDepBranchIDs(Ei)
(5.10)

For instance, in the example we just described, the disjunct element ¬WiFi

depends on ¬InternetRequest which depends on ¬Request. As mentioned pre-

viously, there are two equivalent copies of ¬InternetRequest and its dependant

element ¬WiFi. One copy of these elements will be added to the individual

inet, therefore, the branch identifier dependency for ¬WiFi can be defined such

that adapDepBranchIDs(¬WiFi) = {0-0, 1-0, 2-0, 3-1-0, 4-0-0}, where ¬WiFi

∈ L(inet).
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We will now provide the algorithm which allocates the initial depth and

breadth counts and dependencies to each disjunct element of weighted disjunc-

tions arising from the user request, in Algorithm 5.15. We will then detail the

allocation of copyNumber(Ei) by application of the ∀-rule, followed by trans-

ferring branch identifiers from weighted disjunctions to new branches, as well

as generating dependencies.

Algorithm 5.15 EstablishAdapBranchIDs(Ei)
Inputs: WeightedDisjunct Ei
1: if breadthCount

(
depth(Ei)

)
= null \*not yet set for depth(Ei)*\ then

2: Let breadthCount← 0
3: else
4: breadthCount

(
depth(Ei)

)
← breadthCount

(
depth(Ei)

)
+ 1

5: end if
6: breadth(Ei)← breadthCount

(
depth(Ei)

)

7: Let Ep ← Ei.DepOnDisj.DepOnElem
8: if Ep = null \*first disjunct element*\ then
9: depth(Ei)← 2

10: Let adapBranchID(Ei)← depth(Ei) + "-" + breadth(Ei)
11: else
12: depth(Ei)← depth(Ep) + 1
13: Let adapBranchID(Ei)← depth(Ei) + "-" + breadth(Ei)
14: end if
15: for all Du ∈ Ei.ChildDisjs do
16: for all Ej ∈ Du.ChildElems do
17: EstablishAdapBranchIDs(Ej)
18: end for
19: end for

The disjunction derived from the negated user request definition is passed

to Algorithm 5.15 as input Ei. The notation for weighted disjunction and

disjunction properties was detailed in Section 5.4. Let breadthCount(d) denote

a property which maintains a global breadth count for each depth level d. If

the breadthCount(d) has not yet been set for a depth d, then it is initialised

to zero, otherwise it is incremented. The breadth of the element Ei is set

to the breadth count for the current depth level. If Ei is the first disjunct

element, meaning it does not depend on any parent disjunct elements, then it

is initialised to a depth of 2, since 0 and 1 are reserved as mentioned earlier in

this section. Alternatively, if Ei is not the first element, and it does depend on
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parent elements, then the depth is incremented. The initial adaptive identifier

for Ei is then set (which does not yet include a copyNumber(Ei)). Finally,

the algorithm loops all child disjunctions Du which depend on Ei, and then

all disjunct elements Ej of each Du, and recursively passes Ej as the input to

EstalishAdapBranchIDs, so that each child element can be assigned with an

initial branch identifier.

Now we will discuss the allocation of copyNumber(Ei) which is assigned

when a disjunct element Ei is copied by the ∀-rule. Algorithm 5.16 updates

the copyNumber(Ei) for a weighted disjunct element Ei. It is called whenever

a duplicate copy is made a disjunct element Ei. This occurs when the ∀-
rule adds Ei as a type to multiple individuals, or if Ei depends on a disjunct

element which have been added as a type to multiple individuals. When called,

Algorithm 5.16 is provided with a copy index which is incremented each time

another copy of Ei is generated and added as a type to an individual. This copy

index copyNumber(Ei) is then appended to the adaptive branch identifier.

Algorithm 5.16 UpdateCopyNbr(Ei, copyIndex)
Inputs: WeightedDisjunct Ei, Integer copyIndex
1: copyNumber(Ei)← copyIndex
2: adapBranchID(Ei)← depth(Ei) + "-" + breadth(Ei) + "-"

+ copyNumber(Ei)

Now we will discuss the transferal of identifiers from disjunct elements to

adaptive branch nodes. Each weighted disjunct element Ei of each weighted

disjunction Du, represents an alternative expansion in the tree, which must

be explored. Therefore, in our adaptive strategy, when the t-rule is applied

to a disjunction Du, it generates a new adaptive branch node bk in order to

explore the expansion Ei. Therefore, Algorithm 5.17 is called by the t-rule
(which was defined in Algorithm 5.9 in Section 5.6.1) and transfers the adaptive

branch identifier adapBranchID(Ei) from Ei to the new branch new bk. It

also establishes the set of adaptive branch identifiers adapDepBranchIDs(Ei)

which Ei, and thus bk, depend on. The algorithm receives as input the newly



CHAPTER 5. ADAPTIVE STRATEGIES FOR MOBILE INFER. 204

created adaptive branch node bk and the weighted disjunct element Ei which

resulted in the creation of bk.

Algorithm 5.17 AssignAdapBranchID(bk, Ei)
Inputs: BranchNode bk, WeightedDisjunct Ei
1: Let Ej ← Ei.DepOnDisj.DepOnElem
2: Let brID ← depBranchID(Ei)
3: adapBranchID(bk)← adapBranchID(Ei)
4: if Ej = null then
5: adapDepBranchIDs(Ei)← {brID}
6: else
7: adapDepBranchIDs(Ei)← adapDepBranchIDs(Ej) ∪ {brID}
8: end if
9: adapDepBranchIDs(bk)← adapDepBranchIDs(Ei)

In the algorithm, if Ei is the top most weighted disjunct element which

does not have a parent disjunct element Ej, then the dependency set includes

only the adaptive branch identifier for Ei. Alternatively, if Ei does depend on

a parent disjunct element Ej, then the dependency set for Ei is equal to the set

for Ej with the additional inclusion of its own branch identifier. Finally, the

set of branch identifiers which Ei depends on, is transferred to the new branch

bk. It is noteworthy that the adaptive identifiers will always be established for

disjunct elements Ej, before elements Ei which depend on Ej, because parent

disjunctions are always applied before child disjunctions, in relative weight

order (see Section 5.5).

In this section, we have detailed our proposed identifiers and dependencies

for adaptive branch nodes in our expansion tree. These identifiers support

unique identification of these nodes, even when multiple unfinished branch

expansions exist in the expansion tree, which is not supported by standard

Tableaux. We will use these in the next section to manage branch node directed

reasoner state.
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5.7.2 Labels L and ToDo List State

As we discussed at the beginning of this section, in our adaptive reasoning

strategy, there may be simultaneous unfinished branches in the reasoner. Our

adaptive strategy requires a mechanism to jump between separate branch

nodes, without having to re-apply the transformations which led to a particu-

lar state at a particular branch node. This requires modifications to standard

Tableaux, which only has one active branch, and discards branches and as-

sertions which occur after a branch which the reasoner is jumping back to.

Our strategy maintains simultaneous states associated with each branch node,

such that when the reasoner jumps between branch nodes, the state reflects

the current branch node.

As we described in Section 3.5, in standard Tableaux the addition or re-

moval of a class concept from a type label, or role from a role label, depends

on the branch node which was active at the time that the addition / removal

took place. The active branch node bk+1 is that which has the highest identi-

fier, such that branchID(bk+1) ≥ branchID(bk) for all of those branch nodes

bk contained in the expansion tree G, where the branch identifier is a depth

count. This dependency is denoted by depOnBranch(αi) ← bk, where αi is

some element (e.g. an assertion) which depends on bk. Let AS denote a de-

pendency indexed set which may have elements αi added or removed and this

action is indexed using depOnBranch(αi). Dependency indexed sets AS in

standard Tableaux reasoners include:

1. Type labels L(xr) containing class concepts C which have been added as

a type for the individual xr and role labels L(〈xr, xp〉) containing roles

R connecting an individual xr to xp;

2. The ToDo list which contains assertions Cj(xr) that Tableaux transfor-

mation rules are applicable to.
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The set AS is modified to support our adaptive strategy as follows. Addi-

tions or removals of elements to a dependency indexed set AS, will be indexed
by the adaptive branch node bk in the expansion tree G, which they depend on.

An adaptive branch node is a branch node which was created as a result of the

application of a weighted disjunction. Let adapDepOnBranch(αi) denote the

adaptive branch which an element αi depends on. Let G.activeAdapBranch
denote the currently / last active branch adaptive identifier for the expansion

tree G. This is set by the t-rule, when it is applied to a weighted disjunction

resulting in the creation of a new branch node as defined in Algorithm 5.9 in

Section 5.6.1.

In our proposed adaptive strategy, if a particular class concept generates a

clash, and this concept depends on an adaptive branch node, then the reasoner

state will not be changed to an earlier state using a reasoner restore which

discards assertions as in standard Tableaux. Rather, our strategy will retain

the current branch and those actions (e.g. assertions) which depend on it,

when jumping to an alternative branch node.

Additionally, as we discussed in Section 5.6, non-weighted disjunctions can

still be applied, but only after no further weighted disjunctions can be applied

for a particular branch expansion in G. In the situation that a non-weighted

disjunction is applied, this occurs in the same way as in standard Tableaux,

thus creating standard Tableaux branch point nodes bk1 which extend from

adaptive branch point nodes bk which exist earlier in the expansion tree G. El-
ements (e.g. assertions) αi which are added / removed after a non-weighted dis-

junction has been applied, will depend on a standard branch using the standard

dependency depOnBranch(αi) = bk+1, where αi depends on bk+1, as defined in

Algorithm 3.2 in Section 3.5.1. However, in addition to this, these elements αi

will also depend on the last active adaptive branch node G.activeAdapBranch,
such that depOnAdapBranch(αi) = G.activeAdapBranch.
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Having now established that every element added / removed from the set

AS will be indexed by adaptive branch node (in addition to standard branch

node if applicable), we will now describe the way in which the set AS is

modified to support multiple state views. The contents of an instance of AS
contains only those elements which reflect the state, given a last active adaptive

branch node G.activeAdapBranch. We will use a seperate instance of the set

AS to maintain the state of:

1. Each type label L(xr) which contains class concepts C which have been

added as a type for the individual xr and each role label L(〈xr, xp〉) which
contains roles R connecting an individual xr to xp;

2. The DQ queue (which was defined in Section 5.6.2) that contains non-

weighted disjunctions to which the t-rule is applicable to. It is notewor-
thy that if the mTableaux caching strategy (CS) (which was defined in

Section 4.5) is enabled, then DQ will be replaced by the CS Qd. In this

case, Qd will be represented using AS;

3. The standard Tableaux ToDo list which contains all assertions for which

transformation rules are applicable to, excluding assertions about dis-

junctions. Weighted disjunctions are stored in CQu, CQpa or CQpn and

non-weighted disjunctions are contained in DQ as described in Section

5.6.2. It is noteworthy that, if mTableaux caching strategy (CS) which

was defined in Section 4.5, is enabled then the weight ordered CS queue

Qo is used instead of the ToDo list, to maintain all assertions for which

transformation rules are applicable to, excluding assertions about dis-

junctions. In this case, Qo will be represented using AS. Also note,

CQu, CQpa and CQpn do not need to be stored in a dependency indexed

set AS because these contain weighted disjunctions which guide the ex-

pansion process and relative weights ensure that disjunctions are applied

in an order which maintains integrity (e.g. relative weights ensure that
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a parent disjunction is applied before a child disjunction, as defined in

Section 5.5);

4. If our ST mTableaux optimisation strategy, outlined in Section 4.3, is

enabled, then the set ST of individuals which transformation rules are

applicable to, will need to be represented using AS.

Now we will define the multi-state functionality of AS in more detail. The

main approach, is that we will obtain the set of dependencies for the currently

active adaptive branch node G.activeAdapBranch. As defined in the previous

section, given an adaptive branch node bk, the adaptive identifier for this

node is given by adapBranchID(bk). Additionally, the set of identifiers which

bk depends on (including itself), is given by adapDepBranchIDs(bk). The

contents of a set AS is determined by the currently active adaptive branch

node. Moreover, the current state view of AS, contains only those elements

αi which depend on an adaptive branch node identifier, which is contained in

the set of adaptive branch node identifiers for the active adaptive branch node

adapDepBranchIDs(G.activeAdapBranch).

In order to manage this process, we need to record all additions and re-

movals from the set AS. Let AS.added contain all elements αi which have

been added to the set AS. Let AS.removed contain all elements αi which have

been removed from the set AS. All additions and removals αi are indexed by

depOnAdapBranch(αi). When an assertion is added or removed it depends

on the currently active branch at the time that it was added or removed, such

that depOnAdapBranch(αi) ← G.activeAdapBranch. The contents of AS is

returned by Algorithm 5.18, which is given the set AS, and the active branch

bk as input, where bk ← G.activeAdapBranch.
The algorithm returns a set V of elements αi, which represent the state

view of AS, influenced by the active branch node. If V can be obtained from

the cache, then a cached V is returned (the cache will be defined in Algorithm

5.19 later in this section). If V is not in the cache then the returned set is
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Algorithm 5.18 GetState(AS, bk)
Inputs: AdaptiveSet AS, BranchNode bk
Pre-conditions: bk = G.activeAdapBranch
Outputs: Set V
1: if getFromCache(AS, bk) 6= null then
2: return getFromCache(AS, bk)
3: end if
4: Let V ← ∅
5: for all adapIDy ∈ adapDepBranchIDs(bk), such that

adapIDy ≤ adapIDz, 1 ≤ y ≤ z ≤ m do
6: for all αi ∈ AS.added, where

adapBranchID
(
depOnAdapBranchNode(αi)

)
= adapIDy do

7: V ← V ∪ {αi}
8: end for
9: for all αi ∈ AS.removed where

adapBranchID
(
depOnAdapBranchNode(αi)

)
= adapIDy do

10: remove αi from V
11: end for
12: end for
13: AS.cache← V
14: AS.lastAdapBranch← bk
15: return V

constructed by iterating through the set of branch identifiers which bk depends

adapDepBranchIDs(bk), in ascending order. For each adapIDy ∈ adapDep-
BranchIDs(bk), any elements αi in AS.added which depend on adapIDy are

added to V , then any elements αi in AS.removed which depend on adapIDy

are then removed from V . Once V has been constructed it is added to the

cache. Let AS.cache denote an attribute containing the cache for AS. Let

AS.lastAdapBranch denote the branch node bk which the cache depends on.

The main purpose of the cache, is to avoid repeatedly reconstructing the set

AS when successive child branch nodes in G of the same branch are being

visited. Using the cache means that AS only needs to be reconstructed when

the adaptive inference strategy jumps between branches (i.e. a jump from

branch node bo to bk where bo is dependent on at least one different branch

node than bk). Algorithm 5.19 defines the process which attempts to retrieve

a set from the cache.
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Algorithm 5.19 GetFromCache(AS, bk)
Inputs: AdaptiveSet AS, BranchNode bk
Pre-conditions: bk = G.activeAdapBranch
Outputs: Set V
1: if AS.cache = null then
2: return null
3: end if
4: Let depthcurr be the depth value of adapBranchID(bk)
5: Let depthcached be the depth value of AS.lastAdapBranch
6: Let depIDScurr ← adapDepBranchIDs(bk)
7: Let depIDScached ← adapDepBranchIDs(AS.lastAdapBranch)
8: if depthcurr ≥ depthcached and depIDScached ⊆ depIDScurr then
9: AS.lastAdapBranch← bk \*update to current branch*\

10: else
11: AS.cache← null
12: end if
13: return AS.cache

A set AS and the currently active branch bk are passed as inputs to the

algorithm, which returns the last cache entry AS.cache. However, this cached
entry is only returned if bk has a depth value which is the same or equal the

depth of the branch node which the cache depends on AS.lastAdapBranch.
The depth value of an adaptive branch node, is the first number in the iden-

tifier which occurs before the first hyphen (e.g. the depth value of 1-0-0 is

1). Additionally, set of adaptive branch identifiers which the cached adaptive

branch node AS.lastAdapBranch depends on must be a subset of those which

the current branch bk depends on. If these conditions are not met, this implies

that a branch jump (rather than the continuation of a branch) has occurred,

and the cache entry is removed.

Algorithm 5.20 illustrates the procedure involved in adding a new element

αi to a set AS, where bk is the active adaptive branch node.

The element αi being added to AS is set to depend on bk. The element αi is

added to AS.added. It is also added to the cache if there is cache entry for AS
which is valid for the current bk. The procedure is the same when removing an

element αi except that line 3 of Algorithm 5.20 is replaced with remove αi from

AS.cache and line 6 is replaced with AS.removed← AS.removed ∪ {αi}.
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Algorithm 5.20 Add(AS, αi)
Inputs: Set AS, Element αi, BranchNode bk
Pre-conditions: bk = G.activeAdapBranch
Outputs: Set V
1: depOnAdapBranch(αi)← bk
2: if getFromCache(AS, bk) 6= null then
3: AS.cache← AS.cache ∪ {αi}
4: AS.lastAdapBranch← bk
5: end if
6: AS.added← AS.added ∪ {αi}

Now we illustrate an example state view V of AS at branch node bh. In

this example assume that ASu is being used to represent the class concepts Ci

which have been added / moved from the type label L(xr) for an individual

xr, at the branch node bh as illustrated in Table 5.3.

Add/remove concept Ci from ASu bh = depOnAdapBranch(Ci)
AS.added← AS.added ∪ {C1} 2-1
AS.added← AS.added ∪ {C2} 2-3

AS.removed← AS.removed ∪ {C1} 3-1-0
AS.added← AS.added ∪ {C3} 3-1-0
AS.added← AS.added ∪ {C4} 4-0-0

Table 5.3: Example of Adaptive Set AS State Management

The currently active adaptive branch node G.activeAdapBranch has the

identifier of 4-0-0. Assume that the currently active adaptive branch node

depends on the branches with the identifiers such that depOnAdapBranch −
IDs(G.activeAdapBranch) = {2-1, 3-1-0, 4-0-0}. This will result in a state

view GetState(ASu,G.activeAdapBranch) of {C3, C4}. The actions which are

valid for the current state view (i.e. at adaptive branch identifier 4-0-0) are

highlighted in yellow in the table. The class concept C1 is not present in

the state view because although it was added at adaptive branch node 2-1, it

was later removed at adaptive branch node 3-1-0. The class concept C2 was

excluded from the set, because it was added at branch identifier 2-3, which is

not contained in the list of identifiers which the active adaptive branch node

depends on.
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This concludes our discussion on reasoner state management. In this chap-

ter, we have now discussed the way in which we establish weights and use

these to control the order of branch expansion. We have also discussed the

way in which we maintain state in order to support jumping between multiple

unfinished branches without having re-apply transformation rules, as would

be required using standard Tableaux. Our proposed approach enables priority

based ”anytime” incremental matching which can be interrupted at any stage

during the matching process based on to constraints such as time or resources.

In the next section we will outline our weighted degree of match metric, which

can be used to provide a result to the user based on the evaluations / compu-

tations actually completed at the time of interruption.

5.8 Degree of Match

In this section, we define our metric which provides a weighted degree of match

value of service description to the user request. As stated in Section 5.1, our

adaptive inference strategy supports incremental “anytime” matching, which

can be interrupted prematurely based on user constraints such as constrained

time or resources. Therefore, our degree of match is updated incrementally,

every time a condition in the service request is found to match a feature of

the service description. As such, a degree of match result can be provided

based on the processing / computations performed up to the point of the in-

terruption. Additionally, a degree of match ensures that our strategy supports

partial matching, in the case that the service description does not completely

match the user request. These notions of partial service matching have been

widely employed in matching literature such as Skoutas et al. (2007); Lu (2005)

and Srinivasan et al. (2005). However, partial matching is not supported by

current semantic reasoners which provide only a binary true or false result.

A true result is provided only if the service is found to completely match the
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user request. In all other cases a false result is provided and if reasoning is

interrupted early, no result is provided at all.

Now we focus our discussion on how our adaptive inference strategy gen-

erates a degree of match. We maintain a separate degree of match value

for each weighted disjunct element Ei, of every weighted disjunction Dj, and

weighted disjunction identifier Dj.ID for equivalent disjunction copies. Let

degMatch(B) denote the current degree of match for the disjunct, disjunction

or identifier B. The final degree of match for the user request to the service

description is given by degMatch(¬E0) where ¬E0 is the negated user request

represented as a weighted disjunct element. The degree of match value for ¬E0

is calculated as the weighted sum of those request conditions which matched

the service description and is a value between 0 and 1, where 1 indicates a full

match and 0 indicates no match. More specifically, it is the sum of the nor-

malised relative weight nrw(Ei) values for all leaf weighted disjunct elements

Ei (i.e. those which do not contain any child disjunctions) which matched the

service description.

However, as we discussed in Section 5.4 if multiple weighted disjunctions

or equivalent copies of the same disjunction depend on the same weighted

disjunct element Ep, then only one of these disjunctions needs to clash for

all expansions in order to generate a clash for Ep. Therefore, where multiple

weighted disjunctions Dj depend on the same weighted disjunct Ep, only the

disjunction Dj with the highest match value should be used when calculating

the degree of match for Ep. As outlined in Section 5.4, there are two cases

where multiple weighted disjunctions Dj may depend on the same weighted

disjunct Ep:

1. in the case that a weighted disjunct element Ep is a conjunction of mul-

tiple disjunctions Ep ≡ Dj uDj+1, these both depend on the conjunction
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Ep. If any of these disjunctions Dj clash for all expansions, then the con-

junction Ep is proven to clash, and the other disjunctions do not need to

be checked;

2. in the case that a weighted disjunct element Ep is a universal quantifier

Ep ≡ ∀R.Dj, the disjunction Dj may be copied and added as types to

several different individuals. If any of these disjunctions Dj clash for all

expansions, then the universal quantifier Ep is proven to clash, and the

other disjunction copies do not need to be checked.

Therefore, we define degree of match as the is the sum of nrw(Ei) for

all weighted disjunct elements Ei, where Ei has generated a clash andEi has

no child disjunctions, such that clashingConcept(Ei) and Ei.ChildDisjs = ∅.
However, due to the cases we just described where a weighted disjunct element

Ei has multiple dependent disjunctions Dj, only the one disjunction Dj with

the highest sum of nrw(Ec) for all disjunct element Ec members of Dj, where

clashingConcept(E) = true, is added to the degree of match value. This

functionality is captured in Algorithm 5.21, which updates the degree of match

whenever a clash occurs. This algorithm is called by Algorithm 5.2 which we

defined in Section 5.3.1, whenever a weighted disjunct element Ei is found to

clash. The algorithm is given Ei as the first input, and the nrw(Ei) value of

Ei is passed as the second input parameter d, such that d← nrw(E).

The process of the algorithm is as follows. Firstly, if d represents an increase

of the current degree of match for the element Ei, then both Ei and the

disjunction Dj which Ei depends on (is a member of), should be increased

by the difference. If the degree of match for Ei is already higher than d,

this may be because Ei is a conjunction containing other child disjunctions

and one of these has already received a higher degree of match. To cater for

multiple equivalent copies of Dj, due to a ∀-rule, a separate degree of match

value for Dj.ID is also kept. If the degree of match for Dj is higher than the

degree of match for Dj.ID, then Dj is the disjunction copy with the highest
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Algorithm 5.21 UpdateResultsOnClash(Ei, d)
Inputs: WeightedDisjunct Ei, Double d
1: if degMatch(Ei) < d then
2: Let increase←

(
d− degMatch(Ei)

)

3: degMatch(Ei)← degMatch(Ei) + increase
4: degMatch(Ei.DepOnDisj)← degMatch(Ei.DepOnDisj) + increase
5: if degMatch(Ei.DepOnDisj.ID) < degMatch(Ei.DepOnDisj) then
6: degMatch(Ei.DepOnDisj.ID)← degMatch(E.DepOnDisj)
7: d← degMatch(Ei.DepOnDisj.ID)
8: end if
9: else

10: d← 0 \*no increase*\
11: end if
12: Let Ep ← Ei.DepOnDisj.DepOnElem
13: if d > 0 and Ep 6= null and Ep.DepOnDisj 6= null then
14: UpdateResultsOnClash(Ep, d)
15: end if

degree of match. Therefore, the difference is added to the degree of match

for Dj.ID. As such Dj.ID always has the highest degree of match of all

equivalent copies. The variable d, which contains a double value, is then set

to contain the degree of match for Dj.ID and this is recursively propagated to

the weighted disjunct element which Dj depends on. The increase to degree

of match is thereby propagated up until either the top most disjunction is

reached, which represents the negated user request itself, or there is no increase

to propagate. That is, in the case that any Dj has a degree of match which is

equal to or less than Dj.ID, then there is no increase to propagate to parent

elements. The degree of match between a user request ¬E0 and the service

description is degMatch(¬E0), such that 0 ≤ degMatch(¬E0) ≤ 1 where 1

indicates a full match and ¬E0 is the negated user request, which is represented

as weighted disjunct element. This concludes the discussion of our adaptive

inference strategy.
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5.9 Summary

Current semantic reasoners require that a matching task is completed in full

before any result is provided, operating on an “all or nothing” principle. In

the case that the matching process is interrupted before its completion then

no result is provided at all. Additionally, if any condition in the user request

fails to match, then a negative match result is provided, even if this condition

was not a significant requirement to the user. These characteristics provide an

opportunity to introduce a more flexible approach to reasoning in a resource

constrained environment where constraints, such as time and resource avail-

ability, need to be considered. Therefore, in this chapter we have proposed

and developed an adaptive inference strategy. Our strategy supports priority

based “anytime” incremental matching of user requirements and provides a

weighted degree of match value to the user based on the request requirements

checked. The user associates explicit weight values against requirements in the

user request, which is represented as a conjunction. These weight values are

used to generate relative weights used to prioritise the order in which conjunct

elements of the request are evaluated. Since Tableaux proves or disproves an

inference by negating the user request, the conjunction becomes a disjunction

which generates expansion in the Tableaux expansion tree. This implies that

our strategy employs priority based expansion, rather than depth-first expan-

sion which is employed by standard Tableaux. This requires the use of queues

and priorities in order to select which disjunction to expand next while adher-

ing to the constraints implied by Tableaux transformation rules. Furthermore,

weight ordered expansion means that there may be several unfinished branches

in the expansion tree at one time. This requires changes to the way in which

the reasoner maintains state. Our proposed strategy maintains multiple state

views to enable jumping between several different branches in the expansion

tree, in order to complete the matching process in priority order. Weight

ordered expansion continues until the user constraints are exceeded, such as
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insufficient resources or time available. Our incremental approach to calculat-

ing a degree of match means that this metric can be provided to the user at

any stage during the reasoning process.

We have now completed our discussion of our light-weight and adaptive

approach to enable efficient and accurate on-board mobile matching. We have

implemented and evaluated our approach on both mobile and desktop envi-

ronments, which we will present in the next chapter.



Chapter 6

Implementation and Evaluation

6.1 Introduction

In Chapters 4 and 5 we outlined our strategies for light-weight and adaptive

inference to facilitate efficient and accurate matching of user requests with

service descriptions in mobile environments. In this chapter we begin by de-

scribing the implementation of these strategies as an extension to the Pellet

reasoner, in Section 6.2. We then provide two main case studies in Section 6.3

which we then use to evaluate our strategies for efficiency and accuracy. We

provide two main evaluations:

1. In Section 6.4 we evaluate our light-weight mTableaux inference strate-

gies. We first compare our strategies with current reasoners on a desktop

PC, in terms of efficiency and accuracy. This is presented in Section 6.4.2.

We then evaluate mTableaux on a mobile device to show that it improves

computational performance efficiency to enable mobile reasoning on a re-

source constrained device and evaluate which strategies or combination

of strategies work best together. This is presented in Section 6.4.3.

2. In Section 6.5 we evaluate our adaptive inference strategy and show that

it supports incremental, priority based, reasoning and provides a degree

of match result.

218
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The results presented in this chapter have been published in (Steller et al.,

2009c,a; Steller and Krishnaswamy, 2008b).

6.2 Implementation

We have implemented our light-weight mTableaux optimisation and caching

strategies which were outlined in Chapter 4, and our adaptive reasoning strat-

egy which was outlined in Chapter 5 as an extension to the Pellet 1.51 rea-

soner, as a proof of concept of our proposed approach. Pellet 1.5 supports

OWL-DL with SHOIQ expressiveness. We used Pellet because it is an open

source reasoner. Additionally, we selected Pellet over other reasoners such as

FaCT++2 because Pellet is written in Java while FaCT++ is written in C++.

A Java implementation makes Pellet more portable to heterogeneous devices

such as PDAs and mobile phones. In addition, unlike other reasoners, Pellet

was designed from the outset to support OWL-DL based reasoning while most

other reasoners were subsequently modified to support OWL-DL. Therefore,

in keeping with the OWL-DL3 specification, Pellet does not make a Unique

Name Assumption (UNA), provides XML data type reasoning and it has a

small core reasoning engine which is suitable for extensions (Sirin et al., 2007).

Figure 6.1 shows the main components of Pellet with our extensions. The

figure is adapted from Sirin et al. (2007).

Pellet incorporates components from other APIs which are shown in green

in the figure. The components in blue represent Pellet implementations. The

components shown in yellow represent our extensions to Pellet which imple-

ment our proposed strategies from Chapters 4 and 5.
1http://clarkparsia.com/pellet/ (accessed May 2009)
2http://owl.man.ac.uk/factplusplus/ (accessed May 2009)
3http://www.w3.org/TR/owl-features/ (accessed May 2009)
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Figure 6.1: Main components of Pellet with our mTableaux and Adaptive
Inference Strategy extensions

The main functionality of Pellet can be described as follows. The reasoner

can be interacted with directly using an ontology API such as Jena4 or Won-

derWeb OWL API5, or remotely over HTTP using the DL Implementation

Group (DIG)6 (Bechhofer et al., 2003) interface. We interact with Pellet using

Jena because it is a mature API which has undergone continuous development,

growing out of the HP Labs Semantic Web Programme7.

Initially the Jena API loads the definitions and individuals from an XML/-

RDF ontology into the Pellet Knowledge Base component using the Jena

Knowledge Base Service Programming Interface (SPI). Definitions are loaded

into the TBox and individuals are loaded into the ABox (see Section 3.3). Vari-

ous transformations are performed on the definitions in the TBox. These trans-

formations implement the standard Tableaux optimisation strategies (Tsarkov

et al., 2007) described in Section 3.4.

The Jena API can then be used to ask the reasoner whether a particu-

lar individual (service description in the ABox has a particular class concept

definition (user request) as a type. If this is not found in the ABox, then

the Tableaux reasoner performs the satisfiability check operation to prove or
4http://jena.sourceforge.net/ (accessed May 2009)
5http://owlapi.sourceforge.net/ (accessed May 2009)
6http://dl.kr.org/dig/ (accessed May 2009)
7http://www.hpl.hp.com/semweb/ (accessed May 2009)
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disprove the inference (i.e. whether the service description individual matches

the user request definition). The satisfiability check operation repeatedly ap-

plies Tableaux transformation rules to individuals in the ABox, until a clash

(a contradiction) is detected for the label of an individual, or until a clash free

graph is found to which no more transformations are applicable as described

in Section 3.4.

We have extended the Pellet Tableaux reasoner to include our mTableaux

optimisation and caching strategies which were proposed and developed in

Chapter 5 (shown in yellow in Figure 6.1):

• Selective application of transformation rules (ST);

• Selective application of disjunction transformation rules (SD);

• Caching strategy (CS)

We have also extended the Tableaux reasoner to implement our adaptive in-

ference strategy which was proposed and developed in Chapter 5. mTableaux

and our adaptive inference strategy are operational on the Windows Mobile

platform using the Mysaifu8 Java J2SE Virtual Machine (JVM).

In the remainder of this chapter we provide an evaluation of our light-weight

mTableaux and adaptive inference strategies which have been implemented as

extensions of the Pellet reasoner. In the next section we outline two case studies

which we used to evaluate our mTableaux and adaptive reasoning strategies.

6.3 Case Studies

In this section we provide two case studies which we used to evaluate our

light-weight mTableaux and adaptive reasoning strategies. The mTableaux

evaluation is presented in the next section. Each case study utilises separate

ontologies which were used to describe the services available. These ontologies
8http://www2s.biglobe.ne.jp/ dat/java/project/jvm/index_en.html (accessed May

2009)



CHAPTER 6. IMPLEMENTATION AND EVALUATION 222

were downloaded to the user’s mobile device. Later we will present request

definitions which are matched against the service descriptions provided in the

ontologies defined in this section.

6.3.1 Product Case Study 1: Searching for a Movie Cin-

ema / Internet Cafe

Bob is in a foreign city centre and has walked past several stores. While

moving around the city, Bob has passed an information kiosk and several

shop fronts which have short range bluetooth connectivity. This bluetooth

connection allows free download of ontologies containing service descriptions

of products and services offered. Bob’s PDA has automatically downloaded

these ontologies as he passed the kiosk and the ontologies have been stored on

the SD card in his PDA.

Figure 6.2 illustrates one of the service descriptions which is contained in

the ontologies which has been downloaded to Bob’s mobile device. In the fig-

ure, ontology individuals are depicted as ovals, role connections are depicted as

directed arcs and class concept types are depicted as rectangles. An individual

which has a class type is depicted as a directed connection from an individual

to a class using the role owl:hasType.

The individual MovieCin1 represents a service description for a movie cin-

ema with a cafe selling tea / coffee, Internet access and photo printing. The

individual MovieCin1 is a retail outlet which sells the screening of Titanic and

it has a movie cinema Cinema1. MovieCin1 also has a cafe contained within it

represented by the individual MovCafe1. The MovCafe1 individual is specified

as selling 30 products (not all of these are shown in the figure). In particular,

MovCafe1 sells various kinds of food, has Internet access, a photo kiosk and a

public phone. The Internet access has a desktop PC component (as opposed

to only a WiFi hot spot) which has a CD Burner and SD card reader. In

addition, the photo kiosk has an SD card reader and outputs 10x15 inch photo
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Figure 6.2: Part of the Product Case Study ABox

paper print which prints immediately. The Standard Ontology for Ubiquitous

and Pervasive Applications (SOUPA) time ontology (Chen et al., 2005) is used

to specify time such as TimeInstant. MovCafe1 also sells Tea and Coffee. Cof-

fee connects to the Robusta and Arabica individuals which are both types of

CoffeeBean and are specified as being different from each other (unequal). The

ontologies for the product case study contain 204 classes, 241 individuals and

93 roles, which include those specified in the Device, Time, Location, Space

and Geo-measurement ontologies from SOUPA (Chen et al., 2005) which the

product case study makes use of.
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6.3.2 Case Study 2 - Searching for a Printer

Bob walked through the main building of the university campus and his PDA

connected to the university WiFi network and has downloaded the publicly

available ontologies which describe the services on campus. Figure 6.3 shows

one of the service descriptions which are in the ontologies that has been down-

loaded onto Bob’s PDA. Ovals represent individuals, directed arrows represent

role relations and rectangles represent class types. An individual is asserted

to be a member of a class type if this individual has a relation owl:hasType to

the class type.

Printer1

Toner

hasCartridge

DigitalData

SomePaper
input

output

EthernetSupport

WiFiSupport

Printer1Graphics

Printer1Resolution

Printer1Colours

Black
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Figure 6.3: Part of the Printer Case Study ABox

In the figure, Printer1 represents a printer, which is in operation on the

university campus, to which students can print. Printer1 is asserted to have

the class type PeripheralDevice. The printer has various characteristics which

are represented using role relations. For instance, Printer1 produces paper
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based output and receives digital data as input which implies that it is a

printer. Printer1 has toner in its ink cartridge implying that it is a laser printer.

The toner cartridge also has notifications such as one which indicates the

amount of ink remaining. The printer supports the communication protocols

WiFi, Ethernet and fax. The fax protocol is supported by a fax modem,

which also has a phone number implying the printer can send and receive fax

documents. Printer1 has a printer tray which supports various paper sizes

including A4 (the other supported types of paper are not shown). Each paper

type can be associated with a paper remaining notification. Some individuals

which represent notifications, such as ink and paper remaining, may also be

associated with time stamps. We use the Time ontology from SOUPA (Chen

et al., 2005) to specify times although this is not shown in Figure 6.3.

Printer1Graphics is used to define the graphic capabilities of Printer1. It

has a role relation to Printer1Resolution which in turn has relations to vari-

ous resolution metrics (not shown). Printer1Graphics also has a role relation

to Printer1Colours which in turn connects to Black using the hasColour role.

Printer1Colours also has the definition ≤ 1 hasColour and ≥ 1 hasColour which

stipulates that Printer1Colours can only have one hasColour relation. Since

Printer1Colours does have one hasColour role relation to the Black concept, it

can be inferred that ∀ hasColour.Black is valid.

However, this could not be inferred without the cardinality restriction be-

cause OWL has an open world assumption9. The open world assumption is

that the truth-value of a statement is independent of whether or not it is known

by any single observer to be true. This means that the absence of a hasColour

relation does not mean it does not exist. The ontologies used to specify the

printer case study, comprise a total of 141 classes, 337 individuals and 126

roles which includes those from the Device and Time ontologies from SOUPA

(Chen et al., 2005) which the printer case study makes use of.
9http://www.w3.org/TR/owl-guide/ (accessed May 2009)
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We used the case studies outlined in this section to evaluate our light-weight

mTableaux strategies. We present this evaluation in the next section. We also

used these case studies to evaluate our adaptive inference strategy. We will

present this evaluation in Section 6.5.

6.4 mTableaux Evaluation

In this section, we present our evaluation of the light-weight mTableaux op-

timisation and caching strategies. In this evaluation we aim to establish /

address the following main questions:

1. How does mTableaux compare with other widely available reasoners, in

terms of processing time efficiency and accuracy? We evaluate this in

Section 6.4.2, using our case study ontologies as well as other publicly

available ontologies;

2. How does mTableaux perform on a resource constrained mobile device,

in terms of performance efficiency? We evaluate this in Section 6.4.3

using our case study ontologies.

In order to answer these questions, in the next section we will establish user

requests which are matched against the service descriptions in the ontology

which was presented in the previous section.

6.4.1 User Request Definitions for the Case Studies

In this section we will provide the user requests for each of the case studies

from Section 6.3. These were used in our mTableaux performance evaluations

which are presented later in this section.

Case Study 1: ProductRequest

Bob sits down in a park which is out of network range from the download

points which he has passed. He decides that he feels like watching a movie.
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However, while he is waiting for the movie he wants to use the Internet in

order to lookup some accommodation, use a public phone to make bookings

and he wants to download photos from the SD card in his camera and burn

them to CD. As such, Bob defines a request for a movie cinema which has an

Internet cafe and has a public phone. Bob wants to access the Internet using

a desktop PC which supports SD card reading and CD burning. Bob defines

the request definition ProductRequest1. This request was matched against

service descriptions contained in the ontologies from the product case study

in Section 6.3.1 in order to evaluate our light-weight inference strategy. The

request ProductRequest1 and the definitions which it uses are shown in Table

6.1. We also define ProductRequest2 which contains a subset of the conditions

in ProductRequest1 and was used to evaluate our mTableaux caching strategy.

ProductRequest1 is a conjunction of several class concept definitions. Each

definition thus represents a specific condition of the request. Specifically, the

ProductRequest1 contains several conditions / requirements. The first require-

ment is that the service must have RetailOutlet added as a type. The second

requirement is defined in CinemaRequest which specifies that the service must

sell a product which is a MovieScreening and that the service has a relation

to MovieCinema using the role spatiallySubsumes which means it contains a

cinema. The third condition is that Internet is available at the movie cinema

or at another retail outlet contained within the movie cinema centre. Inter-

net availability is specified as selling a product which has Internet as a class

type. The Internet access should also be provided by a DesktopPC because Bob

does not have his own laptop. As such, the Internet must have a component

which matches the PCRequest definition. This definition is met if the product

component is a DesktopPC and the desktop PC must also have the compo-

nents SDReader and CDWriter so that Bob can burn his photos to CD. The

fourth condition specifies that the movie cinema or other retail outlet within

the movie cinema must be a cafe. A cafe is defined as anything which sells
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Class Concept Class Definition
ProductRequest1 ≡ RetailOutlet u

CinemaRequest u
( InternetRequest t
∃ hasRetailOutlet.InternetRequest) u

( CafeRequest t
∃ hasRetailOutlet.CafeRequest) u

( PhoneRequest t
∃ hasRetailOutlet.PhoneRequest)

ProductRequest2 ≡ ( InternetRequest t
∃ hasRetailOutlet.InternetRequest)

CinemaRequest ≡ ∃ sellsProduct.MovieScreening u
∃ spatiallySubsumes.MovieCinema

InternetRequest ≡ ∃ sellsProduct.( Internet u
∃ hasComponent. PCRequest)

PCRequest ≡ DesktopPC u
∃ hasComponent.SDReader u
∃ hasComponent.CDWriter

CafeRequest ≡ ∃ sellsProduct.( ∃ madeFrom.CoffeeBean t
∃ madeFrom.TeaLeaf )

PhoneRequest ≡ ∃ sellsProduct.( FixedLinePhone u
∃ productType.{Service})

Table 6.1: A listing of class definitions specifying the user requests for the
product case study to evaluate our light-weight mTableaux strategies

a product made from CoffeeBean or TeaLeaf. The fifth condition is that the

movie cinema or other other retail outlet inside the cinema must sell a product

which is a FixedLinePhone and the productType must be a Service. Moreover,

Bob does not wish to purchase a phone handset he just wants to use a phone

to make some calls (i.e. a service). Note, a role filler of a existential quantifier

marked with curly parentheses (e.g. {Service} indicates an individual name

Service, rather than a class type.

Case Study 2: PrinterRequest

Bob is at his University campus and needs to print some documents as well

as send a fax from his PDA. Therefore, he submits a request for a black
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and white laser printer which has a fax modem with an active phone number

and the printer must be in operation. His request was matched against the

service descriptions contained in the printer case study ontologies outlined

in Section 6.3.2 in order to evaluate the light-weight inference strategy. The

request is defined in the class concept PrinterRequest1 which makes use of other

class concepts and definitions which are shown in Table 6.2. We also define

PrinterRequest2 which contains a subset of the conditions in PrinterRequest1

and was used to evaluate our mTableaux caching strategy.

Class Concept Class Definition
PrinterRequest1 ≡ ∃ LaserPrinterRequest u

∃ FaxRequest u
∃ BWRequest u
∃ WirelessRequest u
∃ HasInkRequest

PrinterRequest2 ≡ ∃ LaserPrinterRequest u
∃ FaxRequest u
∃ WirelessRequest u
∃ HasInkRequest

LaserPrinterRequest ≡ ∃ input.Digital u
∃ output.Paper u
∃ hasCartridge.{Toner}

FaxRequest ≡ ∃ supportsComm.( Fax u
≥ 1 hasPhoneNumber u
∃ hasPhoneNumber.Integer )

BWRequest ≡ ∃ hasGraphicSupport.(
∃ hasColourSupport.(
∀ hasColour.{Black}))

WirelessRequest ≡ ∃ supportsComm.Bluetooth t
∃ supportsComm.WiFi t
∃ supportsComm.IrDA

HasInkRequest ≡ ∃ hasCartridge.(≥ 1 hasRemainingInk)

Table 6.2: A listing of class definitions specifying the user requests for the
printer case study to evaluate our light-weight mTableaux strategies

PrinterRequest1 is a conjunction of several class concept definitions. Each

definition represents a specific condition / requirement of the request. The

first requirement is that the service must be a laser printer and is defined in



CHAPTER 6. IMPLEMENTATION AND EVALUATION 230

LaserPrinterRequest. The definition of a printer is an individual which connects

to the class concept Digital using the role input and the concept Paper using the

role output which means it receives digital input and produces paper output.

A printer is deemed a laser printer if it has a toner cartridge. The second

requirement is that the printer must also be a fax machine meaning that it

must support the fax communication protocol and have a phone number which

is an integer, so that it can send and receive faxes. The third requirement

specifies that the printer should be black and white only (i.e. the user does

not wish to use a colour printer as this usually requires an extra cost). The

fourth requirement is that the printer must support a wireless protocol which

has been specified as any of bluetooth, WiFi or IrDA. Finally, the Bob wants

to discover an operational printer which he can use (i.e. he does not with to

purchase a printer from a retail store). This requirement has been specified

as requiring that the printer has a remaining ink event since printers which

are not in operation will not have an ink cartridge in them yet. Note, a role

filler of a existential quantifier marked with curly parentheses (e.g. {Black}
indicates an individual name Black, rather than a class type.

We have used the requests specified in this section to evaluate mTableaux

in comparison with other widely available reasoners on a desktop PC. As dis-

cussed previously, the goal of our architecture is to support fast matching and

accurate of service descriptions against user requests. Therefore, we evaluated

mTableaux in terms of efficiency and accuracy compared with other widely

available commercial and open source reasoners. We will presented this eval-

uation in the next section.

6.4.2 Comparison of mTableaux with Other Reasoners

In this section we present our evaluation which has compared mTableaux to

other open source and commercial reasoners in order to establish performance

and accuracy of mTableaux vis-a-vis current state of the art semantic reasoners.
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This evaluation is performed on a desktop environment since many reasoners

are not functional / operational on a mobile device. The main questions that

we investigated are:

1. How does mTableaux compare to other reasoners in terms of response

time efficiency?

2. Since the mTableaux optimisation strategies do not guarantee complete-

ness, what is the impact of mTableaux on accuracy?

As described previously in Section 4.2, under our approach to service

matching, a user request is defined using a class concept definition and a

service description is defined using an individual. Checking whether the user

request matches a service individual thus requires an inference check between

the class concept and individual. Our mTableaux optimisation and caching

strategies improve the efficiency of checking whether an individual matches a

class definition by reducing the completeness of the check (thereby resulting

the potential loss of some accuracy). In this section, we present our evaluation

of the effectiveness of our approach, in terms of improving efficiency without

substantially reducing accuracy. In our evaluation mTableaux is compared

again against other currently available reasoners including FaCT++ 1.1.1110,

RacerPro 1.9.211 and Pellet 1.512.

We performed a separate comparison using each of our case studies as well

as several publicly available ontologies. The publicly available ontologies used

in our comparison include:

1. Galen13 ontology which defines 2751 classes and 416 roles;

2. Tambis14 ontology which contains 188 class concept definitions and 44

role definitions;
10http://owl.man.ac.uk/factplusplus/ (accessed May 2009)
11http://www.racer-systems.com/ (accessed May 2009)
12http://clarkparsia.com/pellet/ (accessed May 2009)
13http://www.cs.man.ac.uk/ horrocks/OWL/Ontologies/galen.owl (accessed May 2008)
14http://www.mindswap.org/ontologies/debugging/miniTambis.owl (accessed May 2008)
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3. Koala15 ontology which contains 23 classes and 5 roles;

4. Teams16 ontology which contains 9 classes and 3 roles.

In each comparison we matched a class concept definition which represents

the user request with a certain number individuals representing service descrip-

tions. Some of these individuals are expected to match the request and others

are not. Moreover, some individuals can be inferred to have the class concept

definition as a type while others cannot. Table 6.3 presents the comparisons

we performed for each ontology and the expected number of matching and

non-matching individuals. For instance, for the product and the printer case

studies, we defined 20 service descriptions. Three of these service descriptions

match the user request while 17 do not. The specific class concept definitions

from the publicly available ontologies of Galen, Tambis, Koala and Teams

were selected for our tests because they are defined as being equivalent to a

complex definition meaning that individuals can be inferred to be members of

these classes. For example BacterialGramPositiveStainResult ≡ {∃ isWithRefer-

enceTo.(effective u ... ) u ... }. In addition we selected concepts which were

as complex as possible, containing several nested conjunctions, disjunctions,

cardinality and quantifier definitions. The Galen, Tambis, Koala and Teams

ontologies did not contain any individuals. Therefore, we created the matching

and non-matching individual for each class concept which was tested in these

evaluations.

It is also noteworthy that as described previously not all individuals in

an ontology represent a service description. Rather some individuals may

represent particular attributes of a service description. For example, assume

there is a service Cafe1 which is connected to the individual Cafe1Location

by the role hasLocation. Cafe1 is a discoverable service while Cafe1Location

is an attribute for Cafe1. All individuals which represent discoverable service
15http://protege.stanford.edu/plugins/owl/owl-library/koala.owl (accessed May 2008
16http://www.mindswap.org/ontologies/team.owl (accessed May 2008)
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Ontology Request Matching Non-Matching Total
Service Service Service
Descriptions Descriptions Descriptions

Product ProductRequest1 3 17 20
Printer PrinterRequest1 3 17 20

Galen

BacterialGram- 1 1 2PositiveStainResult
FailureOfCell-

1 1 2UptakeOfBlood-
GlucoseDueToCell-
InsulinResistance
AcutePulmonary- 1 1 2HeartDisease
LocalAnaesthetic 1 1 2

Tambis small-nuclear-rna 1 1 2
peptidase 1 1 2

Koala MaleStudent- 1 1 2With3Daughters
KoalaWithPhD 1 1 2

Teams MarriedPerson 1 1 2
MixedTeam 1 1 2

16 44 60

Table 6.3: Listing of the class definitions and the number of matching and
non-matching individuals these were compared to, for each ontology

descriptions have the type DiscoverableService and all other individuals do not.

In total, Galen has 55 individuals; Tambis has 11 individuals; Koala has 15

individuals and Teams has 6 individuals. The individuals listed in Table 6.3

represent the subset which are discoverable services.

As discussed previously in Section 4.2, current reasoners perform a realisa-

tion phase. This phase completes an inference check comparing every individ-

ual in the ontology against every class concept definition in the ontology to see

which class types every individual has. Therefore, realisation phase results in

performingm×n inference checks wherem is the number of classes and n is the

number of individuals in the ontology. As discussed in Section 4.2 mTableaux

does not perform realisation because we only need to compare a specific user
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request definition against one service description individual, rather than com-

paring all individuals against all class definitions. Therefore, our performance

evaluation presents two separate result values for mTableaux. One result in-

dicates the time in seconds required to perform the inference check comparing

only those individuals which represent discoverable services indicated by their

membership to the class concept DiscoverableService. This involves the total

number of inference checks for each ontology as shown in Table 6.3. The other

evaluation result for mTableaux indicates the time in seconds required to per-

form full realisation with mTableaux which implies comparing all individuals

against the class concept. This includes the discoverable service individuals

plus all other individuals in the ontology. That is, Galen: 55 individuals;

Tambis: 11 individuals; Koala: 15 individuals and Teams: 6 individuals.

The reasoner comparison evaluation was completed on a Pentium Centrino

1.82GHz computer with 2GB memory with Java 1.5 (J2SE) allocated maxi-

mum of 500MB for each experiment. All times provided in this section are

computed as an average of 10 independent runs.

Figure 6.4 presents the time in seconds to perform the tests for each rea-

soner using the Galen ontology. In this figure mTableaux significantly out-

performed the other reasoners, requiring only 0.67 seconds to perform the 8

inference checks comparing discoverable services. mTableaux with full realisa-

tion almost performed as well as FaCT++ and outperformed RacerPro. Pellet

required more than 40 seconds to complete. FaCT++ was outperformed by

mTableaux but performed slightly faster than mTableaux with full realisation.

RacerPro was slightly slower than FaCT++.

Figure 6.5 illustrates the time in seconds to perform the tests for each rea-

soner using the Product ontology. In this figure mTableaux outperformed the

other reasons, except for FaCT++. mTableaux with full realisation outper-

formed Pellet and RacerPro. RacerPro produced the slowest response-time.
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Reasoner Comparison: Galen Ontology

0

10

20

30

40

50

mTableaux mTableaux

(full realisation)

Pellet FaCT++ RacerPro

Reasoner

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 6.4: Performance comparison of mTableaux with other reasoners using
the Galen ontology
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Figure 6.5: Performance comparison of mTableaux with other reasoners using
the Product ontology

Figure 6.6 illustrates the time in seconds to perform the tests for each

reasoner using the Product ontology. In this figure, mTableaux outperformed

the other reasoners. mTableaux with full realisation out performed Pellet

and RacerPro. FaCT++ could not complete the realisation task and did not

provide a result. RacerPro produced the slowest response-time when compared

to those reasoners which successfully produced a match result.

The inference checks for the Tambis, Koala and Teams ontologies completed

in under 1 second and did not show much variation. Therefore, so we did not

include these results in the figures.

As can be seen from our tests, mTableaux with no realisation performed

better than mTableaux with full realisation in all cases. This is because, in

mTableaux, only service description individuals are being checked against the
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Reasoner Comparison: Printer Ontology
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Figure 6.6: Performance comparison of mTableaux with other reasoners using
the Printer ontology

user request rather than all individuals. Fewer inference checks results in

improved performance. mTableaux with full realisation significantly out per-

formed Pellet in all cases. Since mTableaux is implemented as an optimisation

to the Pellet, this result shows that our optimisation strategies significantly

reduce the size of the reasoning task. mTableaux with full realisation per-

formed at least 50 percent faster than Pellet and in larger tasks such as Galen

the performance improvements were significantly greater than 50 percent. We

also observed that for all evaluations the number of branches applied when

using mTableaux was less than half that of Pellet. We conclude that when

the amount of available memory available is constrained as on a small device,

the performance improvements resulting from mTableaux will be significantly

enlarged. The tests showed that FaCT++ slightly out performed mTableaux

with full realisation, where a result was obtained. We attribute this to the

fact that FaCT++ is written in C++, which performs faster than Java which

mTableaux is implemented in. However, we opted to use Java for its portability

to heterogeneous small mobile devices. Furthermore, on the Printer ontology,

FaCT++ did not complete.

As stated previously, the goal of our architecture is to perform accurate

and fast matching of service descriptions against user requests. As shown in

the tests above our optimisation strategies reduce the size of the reasoning
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task and significantly improve performance. However, as stated in Section 4.2

while optimisation strategies do not guarantee completeness they aim guaran-

tee soundness. This means that it is possible that mTableaux will product false

negative matches (i.e. it may fail to successfully prove a user request matches a

service description). However, mTableaux will not produce any false positives

(i.e. if mTableaux proves that a request matches a service description then

this result is correct). In the remainder of this subsection we will evaluate the

impact which our strategies have had on accuracy. We measure accuracy in

terms of precision and recall (Bernstein and Klein, 2002) of the actual service

description which mTableaux found to match the user request, compared to

the expected results given in Table 6.3.

Recall is a measure of whether all service descriptions which were expected

to match are contained in the list of matching results. It is defined in Equation

6.1 where x denotes the number of matching service descriptions (i.e. which

were expected to match) which were actually proven to match by mTableaux

and n denotes the total number of matching service descriptions (i.e. which

were expected to match). A recall value of 1 means that all matching service

descriptions were successfully proven to match by mTableaux.

recall = x/n (6.1)

Precision is a measure of whether the list of matching service descriptions

returned by mTableaux contains any service descriptions which were not ex-

pected to match. Precision is defined in Equation 6.2 where x denotes the

number of matching service descriptions (i.e. which were expected to match)

which were actually proven to match by mTableaux and N denotes the to-

tal number of service descriptions which were actually proven to match by

mTableaux (i.e. including any which were not expected to match). A pre-

cision value of 1 means that mTableaux did not incorrectly prove that any

non-matching service descriptions matched the user request.
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precision = x/N (6.2)

In Table 6.4 we present the recall and precision results which were obtained

by completing the queries related to the Product, Printer, Galen, Tambis,

Koala and Teams ontologies as defined earlier in this section in Table 6.3.

Reasoner Actual Actual Recall Precision
Positive Negative

mTableaux 16 44 16/16 = 1.0 16/16 = 1.0
Pellet 16 44 16/16 = 1.0 16/16 = 1.0
RacerPro 16 44 16/16 = 1.0 16/16 = 1.0
FaCT++ 15 45 15/16 = 0.937 15/15 = 1.0

Table 6.4: mTableaux Recall and Precision Results

The results show that the actual results were as expected for all reasoners

except that FaCT++. This means that mTableaux successfully proved a match

result for all 16 of the service descriptions which were expected to match.

In addition, mTableaux did not prove a match for any non-matching service

descriptions. The recall and precision results were the same for Pellet and

RacerPro. FaCT++ failed to successfully match one of the positive 16 service

descriptions against the user request. Specifically, it could not match the class

concept MaleStudentWith3Daughters in the Koala ontology, to the matching

individual. This was because FaCT++ 1.1.11 does not match Boolean literal

values which were present in the request class type.

These results show that although mTableaux does not theoretically guaran-

tee completeness for its optimisation strategies, in practise it did not produce

a significant reduction in result accuracy. In fact it did not produce any re-

duction in accuracy. mTableaux did not fail to prove any of the matching

service descriptions to the user request (i.e. it did not reduce recall). In ad-

dition, mTableaux did not prove a match that any service descriptions which

did not match the user request (i.e. it did not reduce precision). Therefore,
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we conclude in data sets representing realistic scenarios such as our case stud-

ies presented in this section, mTableaux does not reduce result accuracy as

measured by recall and precision.

In this section we have demonstrated that:

1. mTableaux is more efficient than other open source and commercial such

as the RacerPro and Pellet reasoners. It performs comparatively with

FaCT++ when full realisation is used and performs faster than FaCT++

when full realisation is not used;

2. In our tests accuracy as measured by recall and precision was not re-

duced by mTableaux. Therefore, we conclude that mTableaux does not

significantly reduce accuracy in realistic data sets such as those in our

evaluation;

We have established that mTableaux outperformed all reasoners except

for FaCT++ in some case, while preserving completeness in our case studies.

Therefore, in the next section we present a performance evaluation to show

how mTableaux performs on a small resource constrained device. We also

show which strategies work best together and the level of overhead incurred

by using each mTableaux strategy.

6.4.3 Mobile Performance Evaluation of mTableaux

In this section, we evaluate our mTableaux optimisation and caching strategies

on a small resource constrained mobile device in order to establish the following

questions:

1. Does mTableaux enable successful completion of a matching task, such

that a result can be obtained (i.e. was available memory was not ex-

ceeded)?

2. Does mTableaux significantly improve performance compared to stan-

dard Tableaux without our optimisation and caching strategies?
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3. Do our optimisation and caching strategies result in significant overhead

in terms of processing time?

4. When a request is matched against a matching and a non-matching ser-

vice description do the optimisation strategies improve processing time

efficiency in both cases?

5. Do different strategies work better for different case studies / inference

tasks? Which mTableaux strategies or combination of strategies work

best?

We used the Product and Printer ontologies from Section 6.3 to evaluate

our mTableaux optimisation and caching strategies in order to investigate the

above questions.

Table 6.5 lists the user request to service description comparisons used in

this section as well as the expected result for each comparison. The com-

parisons involving ProductRequest1 and PrinterRequest1 were performed on a

mobile device and the response time was evaluated as presented later in this

section. The comparisons involving ProductRequest2 and PrinterRequest2 were

stored in the cache which was used in some tests to evaluate the caching strat-

egy (i.e. in the tests where the caching strategy was enabled).

The requests ProductRequest1 and ProductRequest2 from the product case

study were defined in Section 6.4.1. ProductRequest1 is a request for a movie

cinema with Internet cafe. ProductRequest2 is a subset of ProductRequest1

containing only the requirement for Internet access. An excerpt of the prod-

uct case study ontologies was presented in Section 6.3.1, which contained a

service description MovieCin1 that completely matches ProductRequest1 and

ProductRequest1. In addition, the product ontologies also contain a service

description MovieCin2 which does not match the requests ProductRequest1 or

ProductRequest2 because the desktop PC in the Internet cafe does not have an
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Case Request Service Match / No Match
Study Description

1

ProductRequest1 MovieCin1 Match
MovieCin2 No Match (no SD card reader)

ProductRequest2 MovieCin1 Match
MovieCin2 No Match (no SD card reader)

2
PrinterRequest1 Printer1 Match

Printer2 No Match (no ph. number)

PrinterRequest2 Printer1 Match
Printer2 No Match (no ph. number)

Table 6.5: A listing of four user request to service description comparisons and
whether or not they match

SD card reader, which is a requirement in the requests. Note, the individual

MovieCin2 was not shown in the excerpt presented in Section 6.3.1.

The requests PrinterRequest1 and PrinterRequest2 from the printer case

study were defined in Section 6.4.1. PrinterRequest1 is a request for a laser

printer fax machine. PrinterRequest2 is a subset of PrinterRequest1 since it

leaves out the requirement for black and white printing. An excerpt of the

printer case study ontologies was presented in Section 6.3.2, which contained a

service description Printer1 that completely matches PrinterRequest1 and Print-

erRequest2. In addition, the printer ontologies contain a service description

Printer2 which does not match the requests PrinterRequest1 or PrinterRequest2

because the fax machine modem does not have a phone number, which is a

requirement in the the requests. Note, the individual Printer2 was not shown

in the excerpt presented in Section 6.3.2.

In order to evaluate which optimisation strategies work best together we

repeated each of the four match checks from Table 6.5 with different combina-

tions of the optimisation and caching strategies enabled. Table 3.5.2 presents

12 different tests which each have a different combination of strategies enabled.
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As described previously in Section 4.2, our light-weight matching approach in-

corporates two optimisation strategies. These include the selective application

of transformation rule (ST) and selective application of the disjunction trans-

formation rule (SD). Our approach also includes a caching strategy (CS).

The caching strategy works in one of two ways which we denote CSa and

CSb. These modes reflect whether or not particular entries in the cache need

to be re-evaluated or not, as was detailed in Section 4.5. However, we provide a

re-cap as follows. A request is made up of many conditions and subconditions.

Where a request is being matched against a service description and an entry

is found in the cache for a condition or sub-condition of the request, this

cache entry will represent a previous complete or partial match result for this

condition. The entry will also have a time stamp associated with it. mTableaux

will utilise the cache entry for the request condition in one of two ways:

a. if the entry represents a previous complete match for the condition and has

a time stamp which does not exceed a user specified expiry time associated

with the request condition, then it can be used to immediately generate a

match for the condition, without requiring a re-evaluation of this condition;

b. if the entry represents a previous partial match, or the time stamp associ-

ated with the cache entry exceeds the user specified expiry time associated

with the request condition, then this condition must be re-evaluated. How-

ever, the evaluations which proved the match previously, will be prioritised

so that they are evaluated first.

Since the caching strategy works in one of these two modes, we will eval-

uate each of these separately. CSa implies that an immediate match will be

generated for entries which represent a complete match. CSb implies that the

request condition will need to be re-evaluated but the evaluations which proved

the match previously will be applied first.

The CS strategy can function in CSa or CSb mode but not both (if an

entry generates an immediate clash for a request condition then this implies
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it is not re-evaluated). Therefore, the 12 tests in Table 3.5.2 represent all

possible combinations of mTableaux optimisation and caching strategies. Test

12 represents normal execution of the standard Tableaux algorithm with none

of our optimisation or caching strategies enabled.

Test Number 1 2 3 4 5 6 7 8 9 10 11 12
Selective Transformations (ST) X X X X X X
Selective Disjunctions (SD) X X X X X X

Cache Immediate Match (CSa) X X X X
Re-Order Evaluations (CSb) X X X X

Table 6.6: A listing of twelve tests, each with a different combination of our
mTableaux optimisation and caching strategies enabled

Finally, in addition to evaluating the two caching strategy modes we also

evaluate each of these modes when either the entire request is cached or only

part of the request is in the cache. Therefore, whenever the caching strategy

is enabled two separate evaluations were conducted where:

1. the match results for the entire request and service description are stored

in the cache;

2. the match results for a subset of the request and the service description

are stored in the cache.

In the remainder of this section, we use mTableaux to compare a request

against a matching and a non-matching service description, for each case study,

as shown in Table 6.5.

Our evaluations were performed on a HP iPAQ hx2700 PDA, with Marvell

PXA270 624MHz processor, 256MB memory (64MB main memory, 192MB

flash ROM) with the Windows Mobile 5.0 operating system. We consider

evaluations in this device to be compariable with currently available small mo-

bile devices such as smart phones and PDAs. For instance, currently available
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HP smart phones include the HP iPAQ 612c17 and HP iPAQ 912c18 which use

the same processor (at slower speeds of 520MHz and 416MHz, respectively), as

the device we performed our evaluations on. Currently available HP PDAs in-

clude the HP iPAQ 11219 and HP iPAQ 21220, which have 624MHz processors

and 64MB and 128MB main memory, respectively.

Our evaluations are performed using the Mysaifu21 Java J2SE Virtual Ma-

chine (JVM). Since memory on the device is used for both the operating sys-

tem and running programs, the Java virtual machine was allocated 15MB of

memory for our tests. As discussed in Section 6.2, mTableaux is implemented

in the Pellet reasoner. In all of our tests, Pellet was running with SHOIN
expressiveness.

We attempted some of these inference checks on a mobile device using the

standard Pellet reasoner. However, as was shown in Figure 1.2 in Section 1.2

the device ran out of memory during the initial consistency check which is

performed by current standard reasoners.

We performed the evaluations of mTableaux, corresponding to the tests

from Table 3.5.2 with different combinations of the optimisation and caching

strategies enabled. The strategies which were enabled for each test are listed

above each test on the graph. Some tests did not complete because there was

insufficient memory to complete them. This is also indicated in the bars on the

graphs. It is noteworthy to mention that in all tests the Java virtual machine

(JVM) always used all of the memory allocated.
17http://h10010.www1.hp.com/wwpc/au/en/sm/WF05a/215348-215348-64929-3352590-

3352590-3544356.html (accessed Dec 2009)
18http://h10010.www1.hp.com/wwpc/au/en/sm/WF05a/215348-215348-64929-3352590-

3352590-3551668.html (accessed Dec 2009)
19http://h10010.www1.hp.com/wwpc/au/en/sm/WF05a/215348-215348-64929-215384-

215384-3544250.html (accessed Dec 2009)
20http://h10010.www1.hp.com/wwpc/au/en/sm/WF05a/215348-215348-64929-215384-

215384-3544059.html (accessed Dec 2009)
21http://www2s.biglobe.ne.jp/ dat/java/project/jvm/index_en.html (accessed May

2009)
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Figure 6.7 presents the response time for matching the request Product-

Request1 against the service description Product1 which was found to success-

fully match the request in all tests which completed.

Product Case Study: Positive Match (Processing Time)
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Figure 6.7: Time in seconds required to perform matching of request Product-
Request1 with service description MovieCin1, for each test

The performance of the optimisation strategies can be seen by looking

at Tests 9-12 where the caching strategy was not enabled. Note for Tests

9-12 the response-time was the same when the request was both partially

cached (i.e. when ProductRequest2 was cached) and fully cached (i.e. when

ProductRequest1 was cached) because the cache is not used in these tests. Test

12, which had no optimisation strategies enabled ran out of memory and failed

to complete after executing for over 300 seconds. Conversely, in Test 9, which

had both the SD and ST optimisation strategies enabled, with no cache, the

matching process required 56 seconds to complete. The SD strategy proved to

be more effective than the ST strategy by comparison in Tests 10 and 11, but

using both provided the best result as shown in Test 9.

In terms of the caching strategy, when the comparison of ProductRequest1

against Printer1 was previously performed (i.e. the results were stored in the

cache), performing the match check for the same request and service descrip-

tion with CSa enabled, produced an immediate clash for all request conditions,
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thus, producing a result in less than 5 seconds as shown in Tests 1-4. Alterna-

tively, Tests 5-8 show performance results when CSb was enabled (and results

from Printer1 cached) which requires a re-evaluation of the cached request re-

quirements but prioritises those which generated a match previously. Tests 5-8

showed significant performance gains by using this prioritisation (compared to

tests 9-12 where no caching was enabled). In addition, Tests 5-8 all completed

with the same response time, which implies that it did not make any difference

which other optimisation strategies were enabled, if the request is previously

cached and CSa or CSb is enabled. Comparing Tests 5-8 to Test 9 shows that

applying only those evaluations in the reasoner which generate a match (de-

rived from the cache) is more efficient than our optimisation strategies. The

extra evaluations which led to a slower response time when comparing Test 5

(fully cached) against Test 9 was due to the fact that MovCin1 had an Internet

cafe which sold 30 products. This meant that each of the 30 products would

need to be searched when matching particular request requirements such as

the requirement for selling Tea or Coffee, which could not be avoided even

when using our ST or SD strategies. Using the cache avoided this additional

search.

Alternatively, when ProductRequest2 was cached, this still improved re-

sponse time when CSa was enabled, compared to without CSa. This can be

seen by comparing Tests 1-4 (with patial cache) against Tests 9-12. Although

the CSa strategy improved response time, the improvement was not significant

as when ProductRequest1 was fully cached since ProductRequest2 only contains

one of the 5 requirements which ProductRequest1 contains. When using the

CSb strategy (with partial cache), there was a slight performance improvement

compared to without CSb enabled which can be seen when comparing Test 5-8

with Tests 9-12. Tests 4 and 8 failed to complete (with partial cache) because

checking the request requirements which were not contained in the cache was
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still too large to complete without the optimisation strategies enabled (i.e.

with ST and SD disabled).

Figure 6.8 presents the performance results when using mTableaux to

match the request ProductRequest1 against the service description MovieCin2

which does not match this request.
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Request1 with service description MovieCin2, for each test

The performance of the optimisation strategies can be seen by looking

at Tests 9-12 where the caching strategy was not enabled. Note for Tests

9-12 the response time was the same when the request was both partially

cached (i.e. when ProductRequest2 was cached) and fully cached (i.e. when

ProductRequest1 was cached) because the cache is not used in these tests. In

Test 12, when no optimisation strategies were enabled, a result could not be

obtained after 300 seconds. Alternatively, in Test 9, which had both the ST

and SD strategies enabled, the matching process was completed in 32 seconds.

The SD strategy was more effective than ST, providing a very similar result

to when both SD and ST were enabled (see Tests 9 and 10). While the ST

strategy improved the response time in Test 11 compared to when no strategy

was enabled in Test 12, ST did not perform anywhere near as well as the SD

strategy for this scenario.

In Tests 1-8 the response time was the same when the request was both

partially cached (i.e. when ProductRequest2 was cached) and fully cached (i.e.



CHAPTER 6. IMPLEMENTATION AND EVALUATION 248

when ProductRequest1 was cached) because although the cache was enabled,

no cache entries were found to improve response time. The reason for this was

that the requirement for a desktop PC with secure digital card reader (which

did not match) was checked very early in the matching process and the cache

only stores positive matches (not negative ones). Since the service description

MovCin1 does not have a secure digital card reader the subsequent request

requirements, where the cache may have helped, were not checked because

the match had already failed. The fact that the check failed early in the

matching process also resulted in the caching strategy providing no significant

improvement in response time when it was operating in with CSa (see Tests 1-

4) or CSb (see Tests 5-8) modes, compared to not having the caching strategy

enabled (see tests 9-12). Most of the processing time was used to prove that the

service description MovCin1 failed to match the requirement for a card reader.

Furthermore, Tests 4 and 8 failed to complete (for both the partially and

fully cached request) because checking the request requirements which were

not stored in the cache was too large to complete without the optimisation

strategies enabled (i.e. with ST and SD disabled).

Figure 6.9 presents the performance results when using mTableaux to

match the request PrinterRequest1 against the service description Printer1,

matches the request.
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The performance of the ST and SD optimisation strategies can be seen

by looking at Tests 9-12 where the caching strategy was not enabled. Note

for Tests 9-12 the response-time was the same when the request was both

partially cached (i.e. when PrinterRequest2 was cached) and fully cached (i.e.

when PrinterRequest1 was cached) because the cache is not used in these tests.

In Test 12, when no strategies were enabled, no result was obtained after 300

seconds. Alternatively, when both ST and SD strategies were enabled in Test

9, the response time was 44 seconds. The ST strategy was more effective than

the SD strategy for this scenario which is shown by comparing Tests 10 and 11.

Enabling both SD and ST (see Test 9) did not provide a major performance

improvement compared to using only ST (see Test 11).

When the CSa caching strategy was used, which implies an immediate

clash can be generated for cached request requirements, there was a significant

improvement in response time when the request was fully cached (compared

to Test 9-12 where no cache was enabled). Tests 1-4 (with full cache) had a

response time of under 5 seconds. When CSb was used in Tests 5-8 (with full

cache), the response time was identical for all of these tests because the ST

and SD strategies could not further reduce the number of evaluations. Tests

5-8 (with the full cache) had a response time of 36 seconds compared with

Test 9 (with no cache) which had a response time of 44 seconds. Thus, CSb

resulted in an improvement (with full cache) but this was not as significant as

the improvement for the product case study, positive test. Thus, the ST and

SD strategies were more effective in reducing the size of the matching problem

with the product case study. This was primarily because the Printer1 service

description had fewer search options for universally / existentially quantified

role relations (arising from the request PrinterRequest1) compared to MovCin1

in the product case study which was selling 30 products to search through.

When the CSa caching strategy was used with PrinterRequest2 in the cache

(meaning PrinterRequest1 was partially cached), the CSa strategy proved very



CHAPTER 6. IMPLEMENTATION AND EVALUATION 250

effective. This was because only the black and white request requirement had

to be evaluated and all others contained in the cache, thereby generating an

immediate clash. When using the CSb caching strategy (with partial cache)

as shown in Tests 5-8, the response time was about the same when ST was

also enabled (compare Test 5 with 9 and Test 7 with 11). Comparing Test

6 (with partial cache) to 10 shows that the SD strategy was more effective

for reducing the size of the matching problem when checking the black and

white requirement which was not cached, than it was for reducing the size of

the problem for matching all requirements. Test 4 and 8 (with partial cache)

failed to complete because the size of the task required to check the black and

white requirement (which was not cached), was too large to complete without

the optimisation strategies enabled (i.e. with ST and SD disabled).

Figure 6.10 presents the performance results when using mTableaux to

match the request PrinterRequest1 against the service description Printer1 which

does not match the request.
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The performance of the optimisation strategies can be seen by looking at

Tests 9-12 where the caching strategy was not enabled. Note for Tests 9-12 the

response-time was the same when the request was both partially cached (i.e.

when PrinterRequest2 was cached) and fully cached (i.e. when PrinterRequest1
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was cached) because the cache is not used in these tests. Test 12, which had

no optimisation strategies enabled, ran out of memory and failed to complete

after executing for over 300 seconds. Conversely, in Test 9, which had both

optimisation strategies ST and SD enabled (but not caching strategy CS), the

response time was 19 seconds. The ST strategy proved to be slightly more

effective than the SD strategy by comparison of Tests 10 and 11. Using ST as

well as SD (see Test 9) provided a performance improvement when compared

to using ST alone (see Test 11).

When the caching strategy was used in CSa mode in Tests 1-4, where the

request PrinterRequest1 was fully cached, performance improvements were ob-

served even though the request PrinterRequest1 does not match the service

Printer2. The reason was that Printer2 did match all requirements in Printer-

Request1 except for the requirement for a phone number and the phone number

was not checked until late in the matching process. Therefore, in Test 1 when

(with full cache), all conditions except for the phone number requirement,

generated an immediate clash without needing to be re-evaluated. Thus, the

reasoner only needed to check the phone number requirement which then failed

to match. The phone number requirement in PrinterRequest1 was not stored in

the cache because the cache only stores positive match results. The variance in

response time for Tests 1-4 (with full cache) was a reflection of how effectively

the optimisation strategies reduced the size of the problem to check the phone

number requirement (which was not in the cache). When the caching strategy

was in CSb mode (with full cache), it required re-evaluation of all cached re-

quirements. Therefore, the performance of CSb (see Tests 5-8 with full cache)

was slower than CSa (see Tests 1-4 with full cache). Like for Tests 1-4 (with

full cache), the variance in response time for Tests 5-8 (with full cache) was

caused by how effective the optimisation strategies were in reducing the size

of the problem to check the phone number requirement (which was not in the

cache). Test 4 and 8 (with full cache) failed to complete because the size of
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the task required to check the black and white requirement, was too large to

complete without the optimisation strategies enabled (i.e. with ST and SD

disabled).

In Tests 1-4, where the PrinterRequest2 request was cached (meaning Printer-

Request1 was partially cached), the black and white requirement also had to

be checked. The variance between Tests 1-4 (with partial cache) was a re-

flection of the effectiveness of the optimisation strategies which were enabled

in each test. This is also the case for Tests 5-8 (with partial cache). The

CSa strategy improved response time which can be seen by comparing Tests 1

(with partial cache) with 9. The CSb strategy slightly improved response time,

when comparing Test 5 (with partial cache) and 9. However, the improvement

was marginal because of the required re-evaluation of the requirements in the

request.

The above positive and negative tests using the product and printer case

studies have shown that our optimisation strategies significantly reduce the

processing time required to perform a matching check using a Tableaux rea-

soner. In fact, without our strategies enabled, a result could not be obtained.

In addition, when the SD strategy was used in isolation, it performed bet-

ter than ST for the product case study 1. Alternatively, the ST strategy

performed better than SD for the printer case study 2. However, the best

response time was achieved in all cases when both the ST and SD strategies

were used together. The caching strategy also improved response time when

used in either CSa or CSb mode. However, the CSa produces better response

times than CSb because CSa does not require re-evaluation of cached entries.

The caching strategies were effective even when only part of the request was

cached but when more request requirements were in the cache this led to more

substantial improvements in response time. The optimisation and cache strate-

gies were effective in improving response times for negative as well as positive
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match checks. In the remainder of this section, we will evaluate the response

time overhead which was created by these optimisation and caching strategies.

Figures 6.11, 6.12, 6.13 and 6.14 present the overhead in processing time

for each of the optimisation and caching strategies which were enabled in each

of the tests presented earlier in this section. Where the caching strategy was

enabled the overhead results represent those which were incurred when the

request was fully cached.
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The figures show the level to which each strategy contributes to the total

overhead for the test. In some tests, some strategies did not contribute any

overhead. For instance, when a match check was performed on the service
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misation and caching strategies enabled for each test when matching Printer-
Request1 against Printer2

descriptions which did match the user request (see Figures 6.11 and 6.13),

only the caching strategy contributed to the overhead for Tests 1-3. The reason

for this was that an immediate match was generated by the caching strategy

operating in CSa mode, for these service descriptions. Therefore, no Tableaux

rules were evaluated / applied meaning that the ST and SD strategies were

not used. Alternatively, for the match checks comparing service descriptions

which did not match the request (see Figures 6.12 and 6.14), Tableaux rules

were applied to check the request condition which did not match the service

descriptions, which was not contained in the cache. Therefore, the SD and ST

strategies were used when checking that request condition.
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We observed that our optimisation and caching strategies use very little

overhead. The selective disjunction transformation (SD) optimisation incurred

the lowest overhead of around 1-2 seconds for all tests where it was enabled.

This represented approximately 0.07% of the response time for the fastest re-

sponse time and approximately 0.02% for the slowest response time, where

ST and SD were enabled. The selective transformation application (ST) op-

timisation generally required 2-3 seconds in all optimisation strategies with

the exception of Test 11 when a negative match was performed. This repre-

sented approximately 0.13% of the total time for the fastest response time and

approximately 0.04% for the slowest response time, where ST and SD were

enabled. ST had an overhead of 16 seconds for the negative match check in

the product case study (see Figure 6.12) and 9 seconds for the negative match

check in the printer case study (see Figure 6.14). We attribute this to the fact

that in Test 11 the ST optimisation is being used without any other optimi-

sation or caching strategy enabled. Also, when a negative match is performed

the ST must exhaustively search for and add all individuals to the set which

can be evaluated before it can stop matching and declare that the service de-

scription did not meet the user request. This overhead was reduced when the

SD optimisation was also enabled motivating the need to enable both the ST

and SD optimisation strategies.

In this section we have demonstrated through our extensive evaluation and

analysis that:

1. mTableaux reduces the size of the inference problem by reducing the

number of expansions performed by the reasoner. Our evaluations show

that mTableaux successfully enables the completion of a matching task

on a small, resource constrained device without exceeding available mem-

ory. Conversely, without the strategies enabled the task could not be

completed;
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2. mTableaux significantly improves the response time to perform matching

when the optimisation and caching strategies were enabled compared to

when these were not enabled. In fact without the strategies enabled the

task could not be completed;

3. mTableaux optimisation and caching strategies used together has mini-

mal extra processing overhead;

4. mTableaux strategies improved performance for inference checks which

both provided a positive and a negative match result;

5. the effectiveness of each optimisation strategy depends on the ontology

which matching is being performed on. Our evaluations showed that

the ST optimisation strategy was more effective in improving efficiency

in the first case study while SD was more effective in the second case

study. Utilising all strategies together provided the fastest / most effi-

cient response-time.

In this section we have shown that our mTableaux strategies, which were

proposed in Chapter 4, successfully optimise semantic reasoning to enable

efficient light-weight matching on a mobile device. In the next section we

present our evaluation of the adaptive inference strategy, which was proposed

in Chapter 5.

6.5 Adaptive Inference Strategy Evaluation

In this section we present our evaluation of our adaptive inference strategy.

This strategy is designed to enable interruption of the matching process in the

case that user constraints such as available time or resources are exceeded.

The match result then takes into consideration the intermediate processing

which has been completed. In this section we show that our strategy effec-

tively meets these aims using time as the constraint to interrupt the matching
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process. However any metric can be used by our proposed adaptive strat-

egy. Specifically, in our evaluation we show that our strategy addresses the

following main questions:

1. Current reasoners require that the entire matching process be completed

under an “all or nothing” principle in which all requirements in the user

request must be checked otherwise no match result is provided to the

user. Does our adaptive inference strategy support anytime matching

which means that the matching process can be interrupted anytime, de-

pending on resource or time constraints?

2. Current reasoners match conditions in the user request in an arbitrary /

depth-first order. Does our adaptive inference strategy support priority

based matching, meaning that the most important request conditions,

as deemed by the user, are matched first?

3. Current reasoners provide a failed match result if any requirement in the

user request fails to match, even if this requirement is unimportant to

the user. Does our adaptive inference strategy support partial matching,

where service descriptions do not completely match a user request?

In order to answer these questions, in the next section we first establish

weighted requests which take into account the importance of each condition in

the user request and establish several different service descriptions to match

the requests against, for each of the two case studies described in Section 6.3.

6.5.1 Weighted User Request Definitions and Service

Descriptions for the Case Studies

In this section we will provide several user requests with weighted conditions

as well as several service descriptions which either completely match a request,

partially match a request or fail to match a request, for the product and printer

case studies described in Section 6.3.
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Product Case Study

Bob is in a foreign city and his mobile device has downloaded various ontolo-

gies as he has passed by download points and shop fronts. Bob wants to watch

a movie, but while he is waiting for the movie to start he wants to use the

Internet. As such, Bob defines a request for a retail outlet, which is a movie

cinema, has an Internet cafe. However, different features / requirements have

a different level of importance to Bob. For instance, the most important fea-

ture to Bob is that the service description be about a retail outlet, the next

important requirement is that the service be a Movie cinema. Internet access

is less important, but still more important than being able to buy some coffee.

This gives rise to ProductRequest1, in Table 6.7 (which contains similar def-

initions to the non-weighted ProductRequest1 from Section 6.4.1). As shown

in the table, each request condition which is defined as conjunctive concept in

the definition, is associated with a normalised weight value, between 0 and 1.

We have also defined three different requests listed in Table 6.7, which leave

out some requirements but incorporate the additional requirement for photo

printing which is defined as a service which outputs photo paper, has an SD

card reader and produces the photos immediately. Note there are two sepa-

rate photo printing definitions used in different requests. The only difference

between these is that they have different weight values of user importance.

Note also, a role filler of a existential quantifier marked with curly parenthe-

ses (e.g. {PhotoPaper10x15} indicates an individual name PhotoPaper10x15,

rather than a class type. In total we have four requests and these make use of

additional weighted class definitions which are defined in Table 6.8.

In our evaluations we will compare the request ProductRequest1 against

eight service descriptions which are given in Table 6.9. One service completely

matches ProductRequest1, six services partially match ProductRequest1 and

one service does not match any condition in ProductRequest1. The degree

of match for each service to the request ProductRequest1 is also given in the
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Class Concept Weight Class Definition
ProductRequest1 ≡ (1.0) RetailOutlet u

(0.9) CinemaRequest u
(0.7) ( InternetRequest t

∃ hasRetailOutlet.InternetRequest) u
(0.4) ( CafeRequest t

∃ hasRetailOutlet.CafeRequest) u
ProductRequest2 ≡ (0.9) RetailOutlet u

(0.7) CinemaRequest u
(0.4) ( InternetRequest t

∃ hasRetailOutlet.InternetRequest) u
(0.1) ( CafeRequest t

∃ hasRetailOutlet.CafeRequest) u
(0.1) ( PhotoRequest t

∃ hasRetailOutlet.PhotoRequest1)
ProductRequest3 ≡ (1.0) ( InternetRequest t

∃ hasRetailOutlet.InternetRequest) u
(0.6) ( PhotoRequest t

∃ hasRetailOutlet.PhotoRequest1)
(0.4) ( CafeRequest t

∃ hasRetailOutlet.CafeRequest)
ProductRequest4 ≡ (1.0) ( InternetRequest t

∃ hasRetailOutlet.InternetRequest) u
(1.0) ( CafeRequest t

∃ hasRetailOutlet.CafeRequest)
(0.6) ( PhotoRequest t

∃ hasRetailOutlet.PhotoRequest2)

Table 6.7: A listing of class definitions representing four user requests and
explicit weights which express the importance of each condition to the user

table. The degree of match is calculated using the technique described previ-

ously in Section 5.8. In our evaluations we will also compare ProductServiceA

against the user requests ProductRequest2, ProductRequest3 and ProductRe-

quest4 and ProductServiceA completely matches all of these requests with a

degree of match of 1.0. Note, ProductServiceA is the same as MovCin1 pre-

sented in Figure 6.2 in Section 6.3.1.
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Class Concept Weight Class Definition
CinemaRequest ≡ (1.0) ∃ sellsProduct.MovieScreening u

(1.0) ∃ spatiallySubsumes.MovieCinema
InternetRequest ≡ ∃ sellsProduct.(

(1.0) Internet u
(1.0) ∃ hasComponent.PCRequest )

PCRequest ≡ (1.0) DesktopPC u
(0.9) ∃ hasComponent.SDReader u
(0.4) ∃ hasComponent.CDWriter

CafeRequest ≡ ∃ sellsProduct.(
(1.0) ∃ madeFrom.CoffeeBean t
(1.0) ∃ madeFrom.TeaLeaf )

PhotoRequest1 ≡ ∃ sellsProduct.(
(1.0) ∃ output.{PhotoPaper10x15} u
(1.0) ∃ hasComponent.SDReader u
(1.0) ∃ duration.{Immediate} )

PhotoRequest2 ≡ ∃ sellsProduct.(
(1.0) ∃ output.{PhotoPaper10x15} u
(0.3) ∃ hasComponent.SDReader u
(0.1) ∃ duration.{Immediate} )

Table 6.8: A listing of class definitions used by the user requests in Table 6.7
and explicit weights which express the importance of each condition to the
user
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Service Match Description
Product-
Request1

Product-
ServiceA

Full
Match
1.0

A movie cinema retail outlet with a cafe which has In-
ternet available on desktop PCs with SD readers and
CD writers and has immediate photo printing services
with SD card reader (Note: ProductServiceA also fully
matches ProductRequest 2, 3 and 4). ProductServiceA
is the same as MovCin1 presented in Figure 6.2 in
Section 6.3.1.

Product-
ServiceB

Partial
Match
0.7

An cafe retail outlet which has Internet available on
desktop PCs with SD readers and CD writers (no
CinemaRequest)

Product-
ServiceC

Partial
Match
0.63

A movie cinema retail outlet (no CafeRequest Internet-
Request or PCRequest)

Product-
ServiceD

Partial
Match
0.83

A movie cinema retail outlet with cafe which has a
photo kiosk with a SD reader and CD writer (no In-
ternet or DesktopPC)

Product-
ServiceE

Partial
Match
0.88

A movie cinema retail outlet which has a cafe with
WiFi Internet (no PCRequest)

Product-
ServiceF

Partial
Match
0.86

A movie cinema retail outlet which has Internet ac-
cess available on desktop PCs with SD readers and
CD writers (no CafeRequest)

Product-
ServiceG

Partial
Match
0.33

A retail outlet selling sweets (no CinemaRequest,
InternetRequest, PCRequest or CafeRequest)

Product-
ServiceH

Failed
Match
0.0

Car wash (no RetailOutlet CinemaRequest, Internet-
Request, PCRequest, CafeRequest)

Table 6.9: A listing of eight service descriptions and their degree of match
when compared to the weighted user request ProductRequest1
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Printer Case Study

Bob is in a university campus and his mobile device has downloaded various

service descriptions as he has moved around the campus. Bob wants to find

a black and white, laser printer which supports wireless connectivity, which is

also a fax machine and has some ink, so he can print some documents and send

some faxes. However, different features / requirements have a different level

of importance to Bob. This gives rise to PrinterRequest1 and PrinterRequest2

(which contain the same definitions as the non-weighted PrinterRequest1 from

Section 6.4.1). These two requests contain the same requirements, but with

different levels of importance associated with them.

In PrinterRequest1 the requirement for the printer to have ink (which im-

plies it is operational) is important and the wireless requirement is not impor-

tant because Bob does not mind also printing from a desktop PC. In Printer-

Request2 wireless support is very important to Bob since the files he needs to

print are on his wireless device, but the fax and ink requirements are rated as

less important. The requests, class definitions which they use, and the weight

values associated with each conjunctive definition, which reflects the level of

importance to Bob, are provided in Table 6.10. Note also, a role filler of a

existential quantifier marked with curly parentheses (e.g. {Black} indicates an
individual name Black, rather than a class type.

In our evaluations, we will compare the request PrinterRequest1 against 4

service descriptions which are given in Table 6.11. One service completely

matches PrinterRequest1, 2 services partially match the user request and 1

service does not match any condition in PrinterRequest1. The degree to which

each service matches PrinterRequest1 is also given in the table. The degree of

match is calculated using the formula given previously in Section 5.8. Note,

PrinterServiceA is the same as Printer1 presented in Figure 6.3 in Section 6.3.2
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Class Concept Weight Class Definition
PrinterRequest1 ≡ (1.0) ∃ LaserPrinterRequest u

(0.9) ∃ HasInkRequest u
(0.7) ∃ FaxRequest u
(0.3) ∃ BWRequest u
(0.1) ∃ WirelessRequest

PrinterRequest2 ≡ (1.0) ∃ LaserPrinterRequest u
(0.75) ∃ WirelessRequest u
(0.5) ∃ BWRequest u
(0.25) ∃ FaxRequest u
(0.1) ∃ HasInkRequest

LaserPrinterRequest ≡ (1.0) ∃ input.Digital u
(1.0) ∃ output.Paper u
(0.2) ∃ hasCartridge.{Toner}

FaxRequest ≡ (1.0) ∃ supportsComm.(
(1.0) Fax u
(1.0) ≥ 1 hasPhoneNumber u
(1.0) ∃ hasPhoneNumber.Integer )

BWRequest ≡ (1.0) ∃ hasGraphicSupport.(
∃ hasColourSupport.(
∀ hasColour.{Black}))

WirelessRequest ≡ (1.0) ∃ supportsComm.Bluetooth t
∃ supportsComm.WiFi t
∃ supportsComm.IrDA

HasInkRequest ≡ (1.0) ∃ hasCartridge.(≥ 1 hasRemainingInk)

Table 6.10: A listing of class definitions representing two user requests, the
class definitions these use, and explicit weights which express the importance
of each condition to the user

Now that we have defined the weighted user requests and service descrip-

tions for each of the product and printer case studies, we will use these in the

next section to evaluate our adaptive inference strategy.

6.5.2 Mobile Performance Evaluation of the Adaptive

Inference Strategy

In this section, we will present the degree of match obtained when comparing

various weighted requests against various service descriptions, from the case
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Service Match Description
Name Printer-

Request1
Printer-
ServiceA

Full
Match
1.0

A laser, fax, black and white, wireless, printer with
a phone number and remaining ink notification.
PrinterServiceA is the same as Printer1 presented in
Figure 6.3 in Section 6.3.2

Printer-
ServiceB

Partial
Match
0.9

A laser, fax, black and white, printer with a phone
number and remaining ink notification (no Wireless-
Request)

Printer-
ServiceC

Partial
Match
0.76

A laser, black and white, wireless, printer with a
phone number and remaining ink notification (no
FaxRequest)

Printer-
ServiceD

Failed
Match
0.0

A phone box (no LaserPrinterRequest, FaxRequest,
BWRequest, WirelessRequest or HasInkRequest)

Table 6.11: A listing of four service descriptions and their degree of match
when compared to the weighted user request PrinterRequest1

studies detailed in the previous section. The results in this section compare

our adaptive inference approach against standard inference / reasoning. In

some evaluations the matching process is finished to completion and in others

the reasoning process is interrupted before completion, either after a particular

request requirement fails to match or after a time out period has elapsed. In

this section, we evaluate the effectiveness of our adaptive inference strategy to:

• provide a degree of match result, rather than a binary true or false

result which standard reasoners provide;

• support adaptive and incremental reasoning which can be interrupted

“anytime” based on user constrained such as available time or resources

to provide a match result based on the computations completed, rather

than the “all or nothing” principle that standard reasoners employ, which

implies that all processing must be completed in order to obtain a result;
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• support priority based reasoning where the most important request re-

quirements / features, to the user, are checked first, rather than the

arbitrary / depth-first ordering used by standard reasoners.

The results presented in this section are an average of two independent

runs, since we performed the tests over two case studies comprising many

service descriptions and requests.

In our first evaluation, we match the weighted request ProductRequest1,

from the product case study against eight different service descriptions Prod-

uctServiceA - ProductServiceH, which were listed earlier in Table 6.7 in Section

6.5.1. We provide results using our adaptive inference strategy as well as stan-

dard reasoning. Two separate sets of results are provided for our adaptive

strategy. In the first, we demonstrate that our adaptive strategy supports

partial matching, by checking all conditions in the user request, even if some

conditions fail (i.e. check all). In the second set of results we stop matching

as soon as one request condition fails (i.e. stop on failure). The results are

illustrated in Figure 6.15.
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Figure 6.15: Comparison of degree of match for standard and adaptive rea-
soning, for matching of ProductRequest1 against ProductServiceA - ProductSer-
viceH
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The figure shows, in Test A, that standard reasoning successfully matched

the service ProductServiceA with ProductRequest1. However, the standard rea-

soner gave a negative match result when comparing services ProductServiceB

- ProductServiceG against ProductRequest1, in Tests B - G, even though these

services partially matched the request. For instance, ProductServiceG is a movie

cinema with Internet access, but does not serve tea / coffee. Therefore, Prod-

uctServiceG would still be of interest to the user, but a standard reasoner pro-

vides the same failed match result as for ProductServiceH which does not meet

any of the requirements in the user request. Alternatively, when the adaptive

inference was used compare all the requirements in the user request against

the service description (check all), it provided the expected degree of match for

all tests (see Table 6.9), and thus successfully supported partial matching. For

instance, the comparison of ProductServiceF with ProductRequest1 gave a de-

gree of match result of 0.86, which means that although ProductServiceF does

not completely match the user request, it matched many of the conditions, and

is thus probably useful to the user. When the adaptive strategy was stopped

after a requested requirement failed to match (stop on failure) the potential

service, the degree of match result was often less than the expected degree of

match for all tests, but still meaningful to the user. In Tests C, G and H the

results for stop on failure and check all were the same. This was because when

a condition in the user request failed to match the service description, match-

ing stopped for stop on failure, however, at that time all remaining conditions

to check did not match the service description either.

In order to illustrate that the adaptive strategy works effective for other

case studies, we now match the weighted request PrinterRequest1 from the

printer case study against four different service descriptions PrinterServiceA -

PrinterServiceD, which were listed earlier in Table 6.11 in Section 6.5.1. The

results are illustrated in Figure 6.16.
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Figure 6.16: Comparison of degree of match for standard and adaptive reason-
ing, for matching of PrinterRequest1 against PrinterServiceA - PrinterServiceD

The figure shows, in Test A, that standard reasoning successfully matched

the service PrinterServiceA with PrinterRequest1. However, the standard rea-

soner gave a negative match result when comparing services PrinterServiceB

and PrinterServiceC against PrinterRequest1, in Tests B and C, even though

these services partially matched the request. For instance, PrinterServiceB is

a laser fax black and white printer with a mobile phone number and ink,

but does not have wireless support. Therefore, PrinterServiceB would still be

of interest to the user, but a standard reasoner provided the same result for

PrinterServiceB as it provided for PrinterServiceD which does not meet any of

the requirements in the user request. Alternatively, when the adaptive infer-

ence was used to check all the requirements in the user request (check all),

it provided the expected degree of match for all Tests (see Table 6.11), and

thus successfully supported partial matching. For instance, the comparison of

PrinterServiceB with PrinterRequest1 gave a degree of match result of 0.9, which

means that although ProductServiceB does not completely match the user re-

quest, it matched many of the conditions, and is thus probably useful to the

user. When the adaptive strategy was stopped after a requested requirement

failed to match the potential service (stop on failure), the degree of match



CHAPTER 6. IMPLEMENTATION AND EVALUATION 268

result was the same for Test B as when all request conditions were checked

(check all), because the wireless condition (which did not match) was the last

to be checked since it was of the least importance to the user. Conversely, in

Test C a slightly reduced degree of match result was provided when using stop

on failure compared to check all, but is still meaningful to the user.

The previous two evaluations clearly demonstrate that our adaptive reason-

ing strategy effectively provides an accurate and meaningful degree to which a

particular service meets a user’s request, based on the processing completed.

This is much more useful to the user, than the standard reasoning approach

which requires that all request conditions be successfully matched against the

service description, otherwise a negative match result is provided to the user.

These previous two evaluations also demonstrate the effect of interrupting the

inference process after one request condition failed to match, showing the ef-

fectiveness of our strategy to support incremental reasoning. We will further

investigate this feature in the next evaluations.

In the following evaluations we present the degree of match results which

were obtained when the inference process was interrupted after 10, 20 and

30 seconds. First we will provide the results obtained for the product case

study. Figure 6.17 presents the degree of match obtained when matching the

request ProductRequest1 against the eight service descriptions ProductServiceA

- ProductServiceH, which were previously listed in Table 6.7 in Section 6.5.1.

These eight comparisons are each shown in the figure as a separate test. As

evidenced in the figure, a degree of match result can clearly be obtained after

any period of processing time. When matching the request ProductRequest1

against many of the service advertisements, such as in Tests C, D, E, F, G,

the greatest proportion of the degree of match result is obtained in the first 10

seconds of the matching process. This was because the most important request

conditions (as deemed by the user) are checked first, and these contribute to a

larger proportion of the degree of match result, than less significant conditions.
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Figure 6.17: Comparison of degree of match for our adaptive inference strat-
egy after a time out period of 10, 20 and 30 seconds, for the matching of
ProductRequest1 against ProductServiceA - ProductServiceH

Alternatively, in some cases, such as Test B, main proportion of degree of

match was not found until after 20 seconds of processing. This was because

the important requirement for a movie cinema, was matched during the first

10 seconds, but failed to match, thereby not adding to the degree of match

result. The ProductServiceH service description in Test H did not meet any

requirement in the user request, so it did not matter when it was stopped.

We also performed the same tests using the printer case study. Figure 6.18

presents the degree of match obtained when matching the request PrinterRe-

quest1 against the four service descriptions PrinterServiceA - PrinterServiceD,

which were previously listed in Table 6.7 in Section 6.5.1.

When matching the request PrinterRequest1 against service descriptions

PrinterServiceA, PrinterServiceB and PrinterServiceC, which was shown in Tests

A, B and C, the greatest proportion of the degree of match result was obtained

in the first 10 seconds, to differing extents. For Tests A, B and C, a degree

of match of 0.6 was obtained in the first 10 seconds, because all three services

matched the requirement for a printer which has ink, which was matched
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Figure 6.18: Comparison of degree of match for our adaptive inference strat-
egy after a time out period of 10, 20 and 30 seconds, for the matching of
PrinterRequest1 against PrinterServiceA - PrinterServiceD

first. The PrinterServiceB service description in Test B, did not match the

wireless requirement which was checked in the time interval from 20-30 seconds

the process. This lead to a reduced increase in the degree of match result

when comparing the Test B which was stopped after 20 seconds to the Test B

which was stopped after 30 seconds of processing. The PrinterServiceC service

description, presented in Test C, did not match the fax requirement which

was checked in the time interval from 10-20 seconds. This lead to a reduced

increase in degree of match when comparing the Test C which was stopped after

10 seconds to the Test C which was stopped after 20 seconds of processing.

However, other conditions (such as . The PrinterServiceD service in Test D

did not meet any requirement, so it did not matter when it was stopped. This

evaluation clearly demonstrates that our adaptive reasoning strategy effectively

supports anytime reasoning, with a range of matching and partially matching

service descriptions.

In the remainder of this section, we evaluate the priority matching employed

by our adaptive inference strategy compared to standard reasoning. Priority
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matching, means that the most important requirements in the user request are

matched first. In this evaluation, we interrupt the reasoner after a time out

period, and present the degree of match obtained when using our adaptive in-

ference strategy and standard reasoning. When standard reasoning is utilised,

the reasoner does not provide any result unless all conditions in the request

were found to match the service description. Therefore, in the following evalu-

ations, we will also provide a theoretical degree of match when using standard

reasoning. The theoretical result is the degree of match which would be ob-

tained based on the request conditions which have been successfully matched

by the standard reasoner. It needs to be noted that this degree of match is

computed based on the conditions / features in the user request evaluated by

the standard reasoners at the time of the interruption. The standard reasoner

chooses conditions in an arbitrary / depth-first order.

First we will present the results for the product case study. Figure 6.19

presents the degree of match obtained when matching ProductRequest1 against

ProductServiceA, which fully matches the request. This request and service

description were previously defined in Table 6.7 in Section 6.5.1.
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Figure 6.19: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 5 - 25 seconds, for matching
ProductRequest1 against ProductServiceA

The figure presents the degree of match obtained in the case where the

matching process is stopped after 5, 10, 15, 20 and 25 seconds, as separate
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tests. As shown in the figure, after 5 seconds the adaptive reasoning strategy

obtains a degree of match value of 0.63, because the requirement for a retail

outlet which is a movie cinema, which were the most important requirements

in the request, were checked first. The theoretical result for the standard rea-

soning approach is 0.12, because the requirement for a desktop PC with SD

card reader and CD writer, was matched by the standard reasoning approach

first. The order in which conditions in a request are matched by the stan-

dard reasoning strategy is arbitrary. However, standard reasoning actually

returned no result when stopped after the first 5 seconds, because it did not

finish matching all of the request. After 25 seconds the matching process was

fully completed, meaning that all requirements in the request were checked.

Since all requirements matched, the adaptive and standard reasoning strate-

gies all return a degree of match value of 1.0 which denotes a full match. This

evaluation shows that our adaptive inference strategy effectively employs pri-

ority matching, which matches the most important requirements in the request

first. For instance, in the case that the reasoner is stopped after 10 seconds, our

adaptive reasoning strategy returns a degree of match of 0.8. Conversely, the

theoretical value for standard reasoning is 0.24, based on the request require-

ments matched in the 10 seconds of processing time. As such, the adaptive

inference strategy effectively prioritises the matching time, to provide a much

better indication of whether a service description matches the user request.

In Figure 6.20 we present the degree of match at at five second time intervals

when comparing ProductRequest2 against ProductServiceA, which fully matches

the request. This request and service description were previously defined in

Table 6.7 in Section 6.5.1.

The figure shows that after 5 seconds, the adaptive inference strategy ob-

tained a degree of match of 0.61, because the important retail outlet and the

cinema requirements was matched, while the theoretical result for standard

reasoning was 0.05, because the less important SD card reader and CD writer
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Figure 6.20: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 5 - 40 seconds, for matching
ProductRequest2 against ProductServiceA

requirements were checked first. As the matching process continued the differ-

ence between the adaptive and standard results narrowed until the complete

result of 1.0 was reached by both approaches was found after 40 seconds.

In Figure 6.21 we present the degree of match at at five second time intervals

when comparing ProductRequest3 against ProductServiceA, which fully matches

the request. This request and service description were previously defined in

Table 6.7 in Section 6.5.1.
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Figure 6.21: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 5 - 35 seconds, for matching
ProductRequest3 against ProductServiceA

The figure shows that in the first three tests, which involve stopping the

reasoner after 5, 10 and 15 seconds, the adaptive inference strategy successfully
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matched the most important request requirements first and achieve a higher

degree of match result and the theoretical standard reasoning result. In the

remaining tests from 20 seconds and above, both the adaptive inference strat-

egy and standard reasoner had matched the same conditions in the request

leading to same degree of match for standard inference (theoretical) and adap-

tive inference. This was because after the first 15s when the remaining request

requirements happened to be matched in the same order, coincidentally.

In Figure 6.22 we present the degree of match at at five second time intervals

when comparing ProductRequest4 against ProductServiceA, which fully matches

the request. This request and service description were previously defined in

Table 6.7 in Section 6.5.1.
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Figure 6.22: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 5 - 35 seconds, for matching
ProductRequest4 against ProductServiceA

The figure shows after 5 seconds, the adaptive inference strategy obtained

a degree of match of 0.37, because the important retail outlet and the cinema

requirements was matched, while the theoretical result for standard reasoning

was 0.07, because the less important SD card reader and CD writer require-

ments were checked first. As the matching process continued the difference

between the adaptive and standard results narrowed until the complete result

of 1.0 was reached by both approaches was found after 35 seconds.
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In order to show that our adaptive inference strategy effectively employs

priority matching across other scenarios, we also performed the same evalua-

tion using the printer case study. In Figure 6.23 we present the degree of match

at five second time intervals when comparing PrinterRequest1 against Printer-

ServiceA, which fully matches the request. This request and service description

were previously defined in Table 6.7 in Section 6.5.1.
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Figure 6.23: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 10 - 30 seconds, for matching
PrinterRequest1 against PrinterServiceA

The figure shows after 10 seconds, the adaptive inference strategy obtained

a degree of match of 0.6, because the important requirement for a printer which

has ink was matched first, while the theoretical result for standard reasoning

was 0.1, because the less important requirement for a black and white was

checked first. As the matching process continued the difference between the

adaptive and standard (theoretical) inference degree of match narrowed until

the complete result of 1.0 was reached by both approaches was found after 30

seconds.

In Figure 6.24 we present the degree of match at five second time intervals

when comparing PrinterRequest2 against PrinterServiceA, which fully matches

the request. This request and service description were previously defined in

Table 6.7 in Section 6.5.1.
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Figure 6.24: Comparison of degree of match for adaptive and standard rea-
soning after a time out period ranging from 10 - 30 seconds, for matching
PrinterRequest2 against PrinterServiceA

The figure shows after 10 seconds, the adaptive inference strategy obtained

a degree of match of 0.34, because the important requirement for a printer

was matched first, while the theoretical result for standard reasoning was 0.19,

because the less important requirement for a black and white was checked

first. As the matching process continued the difference between the adaptive

and standard (theoretical) inference degree of match results narrowed until

the complete result of 1.0 was reached by both approaches was found after 30

seconds.

The previous six evaluations, show that our adaptive inference strategy

effectively implements priority based matching and thus matches the most

important request attributes first, as deemed by the user. If the matching

process is completed in full, and all requested requirements are checked, then

the order in which they are checked does not matter. This is why the theoretical

standard inference and the adaptive inference degree of match results were

identical when the matching task was completed in full. However, due to their

inherent dynamic environment, mobile users are faced with time and resource

constraints. This means that it may often be the case that there is not sufficient

time or resources available to match a user request with a service description

in full. In this situation, a partial result may be still useful to the user. This
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result should make the best use of the time and resources available by matching

the most important request requirements first. Our evaluations verify that our

adaptive inference strategy effectively achieves this. Moreover, the evaluations

presented in this section, show that when the matching process is interrupted

prematurely, our adaptive inference strategy provides a higher degree of match

and, therefore, a more useful and appropriate result to the user, than current

reasoners, by implementing incremental, priority based, matching.

In this section, we have demonstrated that our adaptive inference strategy:

1. supports anytime matching and can be interrupted at any stage during

the matching process. The matching process continues until there is not

enough time or resources available to continue to provide a degree of

match result to the user, based on the processing completed up until the

time of the interruption. Conversely current reasoners are based on an

“all or nothing” principle in which all conditions in the user request must

be checked in order to provide a result;

2. supports priority based matching, meaning that the most important re-

quest conditions, as deemed by the user, are matched first. This ensures

that if the matching process is interrupted early, a higher degree of match

is returned to the user, than if request requirements were matched in an

arbitrary order as with standard inference;

3. supports partial matching, where service descriptions do not completely

match a user request. If a particular requirement in the user request

fails, matching continues provided there is sufficient time and resources

available to do so. Conversely current reasoners provide a failed match

result in the case that any requirement in the user request fails to match,

even if this condition was not important to the user.
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6.6 Summary

In this chapter we presented the experimental evaluation of our light-weight

mTableaux optimisation and caching strategies as well as our adaptive infer-

ence strategy. In our evaluation, we first compared mTableaux with other

widely used reasoners in terms of response time and match result accuracy, on

a desktop PC. This comparison used case studies which we developed as well

as publicly available ontologies. We then provided a performance evaluation

of mTableaux on small resource constrained mobile devices. This evaluation

found that mTableaux successfully enabled mobile inference tasks on-board a

resource constrained mobile device, to enable matching. It showed that using

the optimisation strategies led to significant reductions in response times and

that different strategies worked better for different case studies. However, us-

ing both optimisation strategies together achieved the best results in all case

studies. The caching strategy produced further reductions in response time,

where a request is partially or fully cached.

We also evaluated our adaptive inference strategy, for its effectiveness in

adaptively supporting incremental, priority based matching which can be in-

terrupted based on user constraints, such as time or resource availability, to

provide a degree of match result based on the processing / computations com-

pleted at the time of interruption. We evaluated our strategy using a range

weighted user requests which were compared against partially matching ser-

vice descriptions, from two different case studies. The results show that our

strategy can be effectively be interrupted at any stage during the reasoning

process based on constraints such as limited time or resources and provides a

degree of match result. The strategy was found to match the most important

request requirements first. Therefore, our adaptive strategy produced a higher

degree of match, than would be provided based on the request requirements

matched by standard reasoning approaches, which matches requirements in an

arbitrary order.
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Having presented our theoretical contributions which included our light-

weight mTableaux mobile inference strategies and our adaptive inference strat-

egy, in Chapters 4 and 5, we have now completed the discussion of the contri-

butions of this dissertation along with the evaluation in this chapter. In the

following chapter we conclude this thesis.



Chapter 7

Conclusion

With the increasing focus on mobile applications and services, this thesis has

examined, proposed and developed innovative techniques and applications to

facilitate / enable the operation of semantic reasoners on mobile devices. A key

challenge in enabling mobile semantic reasoning is the computational complex-

ity of today’s state-of-the-art semantic reasoners. In this context, this thesis

has proposed, developed and experimentally evaluated strategies to meet this

challenge of enabling mobile semantic reasoning without significantly reducing

accuracy.

While there has been a substantial body of work in mobile and pervasive

services, the potential role of semantic techniques for mobile environments is

now being increasingly recognised by the emergence of research in this area

(Kleemann and Sinner, 2006; Ruta et al., 2008a; Gu et al., 2007). Leveraging

semantic reasoning to support service selection and matching has the known

usefulness of improved accuracy and relevance to user requests. This disserta-

tion makes contributions to this emerging area of mobile semantic reasoning.

7.1 Research Summary and Contributions

In this thesis we proposed strategies which focused on the aspects of mobile

semantic reasoning with a view to improving the scalability and computational

280
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performance of semantic reasoning techniques for mobile resource constrained

devices. In this context, this thesis makes the following contributions:

• Proposal and development of mTableaux optimisation and caching

strategies to enable and improve the efficiency of on-board mo-

bile reasoning:

Optimisation strategies: Due to the computational complexity of rea-

soning, current semantic reasoners cannot perform matching of large

OWL-DL ontologies on small resource constrained mobile devices. There-

fore, we proposed and developed two optimisation strategies which focus

on improving performance efficiency by relaxing the strict adherence to

completeness. While accuracy is important, these strategies also con-

sider it equally necessary that information by provided with improved

response time. In our evaluation we showed that our strategies pro-

vided a significant performance improvement compared to current com-

mercial and open source reasoners while maintaining a high degree of

accuracy. In addition, an evaluation on a resource constrained mobile

device demonstrated that using both strategies together provides signif-

icant improvements to performance on such a device.

Caching strategy: Many current semantic reasoners cache the results

of a matching task. However, current semantic reasoners do not cache

the evaluations performed as part of the matching process, so that they

can be subsequently used for similar matching tasks. Therefore, given

the growth of secondary storage media, we incorporate caching mech-

anisms to semantic matching tasks in order to improve response time.

We proposed a caching strategy which stores the results of previous re-

quests so that they can be used in similar future requests. Our strategy

supports two main modes of operation where:

1. a cached entry is used in place of the matching process or
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2. a cached entry is used to priorities the application of parts of the

matching process led to a successful match result previously, but re-

quire the re-evaluation of this process in case the service description

has changed.

Our evaluations showed that our caching strategy led to significant per-

formance improvements in both modes of operation;

• Proposal and development of a resource adaptive priority in-

ference strategy. Although many current service matching approaches

support partial matching of user requests against service descriptions,

current semantic reasoners do not. Rather, current reasoners provide

only a positive or negative result and under an “all or nothing” principle

which requires that the matching process be completed in full other-

wise no result is provided. Therefore, our proposed adaptive inference

strategy supports incremental matching of the requirements in the user

request against a service description. This process can be interrupted

prematurely and intermediate results provided to the user. Typical situ-

ations or constraints that may necessitate such intermediate results in a

mobile environment are, the user’s need for immediate results (i.e. lack

of time available), changing user context (e.g. location), as well as device

context (e.g. low battery levels, inadequate memory levels). This strat-

egy supports the association of a level of importance to each requirement

in the user request and matches requirements in importance order. A

weighted degree of match is provided to the user based on the computa-

tions / inference checks performed up to the point at which the matching

process ends. We performed an experimental evaluation comparing our

adaptive strategy with standard approaches on a resource constrained de-

vice under certain time constraints. Our evaluation demonstrated that

our approach provided an equivalent or greater degree of match result



CHAPTER 7. CONCLUSION 283

than standard reasoning approaches at various points of interruption and

effectively supported incremental matching.

The above discussion has highlighted the principal contributions of this

dissertation. In the next section we will briefly discuss future directions of this

work.

7.2 Future Research Directions

The principle contributions of this research were in the semantic reasoner mod-

ule of a service matching architecture. There are several possible future re-

search directions which could extend from our approach:

• In our adaptive inference strategy, presented in Chapter 5, the matching

process may be interrupted prematurely due to limits of time, resources

or other user constraints. We evaluated this strategy in Chapter 6 by

using time as a constraint. This evaluation could be expanded to in-

clude other constraints such as available memory, battery life, etc. In

addition, the decision about whether to interrupt the matching process

or continue matching could include other factors, such as the current

intermediate degree of match, based on those conditions in the user’s

request which have already been compared against the current service

description. For instance, since our strategy is priority ordered, the most

important requirement in the user request will be checked first. If impor-

tant conditions fail to match the current service description, it may be

a better use of constrained time or resources to begin checking another

service description.

• The focus of our contributions were to enable mobile semantic inference

proof. In Chapter 3 we illustrated a generic architecture which may

use our mobile inference proof approach for service matching. In this
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dissertation we did not specify how the additional modules of this archi-

tecture should be implemented. A future research direction could be to

implement the other modules of this architecture, such as the context-

aware realisation module, matching engine and advertisement database

/ repository.

• Constructing user preferences based on the historical usage patterns of

the user and using these preferences for pre-emptive processing could be

another extension of this research. For instance, if the user has previously

searched for sales of baby clothing in shopping centres, the architecture

may begin narrowing down service descriptions about baby clothes on

sale as soon as the user enters the car park of a shopping centre next

time. Such pre-emptive processing would thus be conducted when the

user is not using the device, in order to speed up the matching process

at request-time. Additionally, the user may wish to specify explicit pref-

erences using rules. These rules could be used to pre-select services from

the list of potential services which are each matched against the user re-

quest. For instance, the user may specify a preference for services which

are closer to him or her. In this case, the services which are located close

to the user should be checked first.

• In our architecture we loaded all service descriptions, which have been

downloaded by the user’s device, into main memory. This occured before

the matching process begun. In some cases ontologies containing service

descriptions may be extremely large. These ontologies may be too large

for a resource constrained device to load completely into memory. The

generic architecture for service selection, presented in Chapter 3, could

be extended to utilise strategies for partitioning ontologies into smaller

subsets such as Stuckenschmidt and Klein (2004); Stuckenschmidt and

Schlicht (2009); Grau et al. (2009); Guo and Heflin (2006). Each subset
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may contain similar definitions. Each ontology subset could be loaded

into the reasoner only as required by the matching process.

In conclusion, this thesis takes a step forward in realising the potential of

mobile semantic reasoning and enabling semantic services in a mobile envi-

ronment. The contributions of this research and the possibilities created for

future development have demonstrated the potential of using semantic based

service matching in a mobile setting.
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