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Abstract

This thesis conducts three exercises on volatility modeling of financial assets. We are

essentially interested in the estimation and forecasting of daily volatility, a measure of the

strength of price movements over daily intervals. Two of the exercises are in the realm

of high frequency data: modeling and forecasting realized volatility which is constructed

from intra-day returns. The other exercise is concerned with discrete stochastic volatility

modeling using daily returns. The main focus of each exercise is to represent the high

degree of volatility persistence, which is an important stylized fact of daily volatility.

In the first exercise, daily realized volatility of the Yen/USD exchange rate is modeled

through an autoregressive and moving-average fractionally integrated (ARFIMA) process.

We differ from previous studies by averaging across a set of ARFIMA and ARMA models

with different orders of autoregressive and moving-average polynomials. The vehicle used

to execute this averaging exercise is Bayesian model averaging, through which part of the

uncertainty introduced by model selection is integrated out. We examine the practical use-

fulness of our method by conducting a rolling-sample estimation, and the results indicate

the weighted average forecast out-performs that of a single model at long-term horizons

by providing smaller mean squared forecast errors.

The second exercise is concerned with Bayesian estimation of a long memory stochas-

tic volatility (SV) model. We use a high-order moving-average process to approximate

the fractional integration specified for the latent log volatility. As such, the long memory

SV model can be expressed in a state-space form, which facilitates the implementation of

viii
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Markov chain Monte Carlo (MCMC) simulation when parameters and latent volatility are

estimated. We update the set of memory parameter and volatility of volatility parameter

in one block in the MCMC algorithm, by using the hessian matrix. A Monte Carlo study

indicates in general, when the posterior mean is treated as a point estimator of parameters,

our Bayesian method compares well with classical methods. Furthermore, the Bayesian

estimator tends to outperform the popular frequency quasi maximum likelihood estimator,

according to the root mean square error criterion, with small and medium sample size. An

empirical analysis of the daily Yen/USD exchange rate spanning 26 years is conducted,

and the degree of persistency in volatility is found to be consistent with that from the first

exercise when high frequency data are used.

In the third exercise, we look at the long memory property from a different angle.

There has been a large literature using specifications other than fractional integration to

mimic the long memory property in time series analysis, although there are few applica-

tions to realized volatility. In this exercise, regime switching models are fitted to daily

realized volatility of the JPY/USD exchange rate from 1996 to 2009. Both in-sample

fit and out-of-sample forecasting are used to compare across the three types of models,

including ARFIMA, regime switching and sum of short memory processes. An extensive

recursive estimation over one year suggests that regime switching is superior in capturing

the dynamics of the time series examined, and generating more accurate out-of-sample

forecasts.
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Chapter 1
Introduction

Modeling and forecasting volatility of asset returns is a crucial aspect of modern fi-

nancial theory. The literature in volatility modeling is voluminous. There are numerous

modeling approaches available based on different assumptions about the underlying data

generating process. In general, the popular GARCH and stochastic volatility (SV) models

treat volatility as a latent process; this methodology is naturally related to the Mixture

of Distributions Hypothesis dating back to Clark (1973). Both GARCH and SV models

have been extensively examined theoretically and successfully applied in practice since the

1980’s. The latency of volatility introduces some difficulties in estimation, especially for

SV models, since one cannot observe the realization of volatility but its approximation.

In recent years, attention has shifted to incorporating high-frequency data into volatil-

ity modeling following the advent of highly informative intraday data. GARCH and SV

models are capable of dealing with low frequency data, such as daily or weekly data, al-

though when facing tick-by-tick data, they are too restrictive to capture the rich dynamic

implied by intraday returns. In particular, various market microstructure effects render

the straight implementation of either approach cumbersome if not infeasible. One of the

popular responses in the recent literature is to construct a consistent volatility estima-

tor, i.e. realized volatility, by cumulating squared intraday returns. According to the

well-established quadratic theory and empirical evidence, an appealing feature of realized

volatility is that it can be treated as observable rather than latent, and modeled in a sim-

1
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ilar way to economic variables. This allows a wide array of time series analytical methods

to be applied to realized volatility, for example, the well-developed ARMA models, or

nonlinear specifications.

This thesis conducts three exercises on volatility modeling, with two of them in the

framework of realized volatility (Chapters 3 and 5) and the other in the discipline of

SV models (Chapter 4). We focus on the long memory property of volatility, which is

a well-recognized stylized fact of returns, with consistent evidence obtained from both

low-frequency and high-frequency data. A good understanding of volatility persistence is

critical in obtaining successful volatility forecasts.

In Chapter 3 we conduct a Bayesian model averaging exercise on daily realized volatil-

ity of the Yen/USD exchange rate. Our exercise differs from previous studies in the aspect

of model selection. We choose to deal with an overall averaged model rather than a single

model with predetermined orders of autoregressive and moving average terms. In real-

ized volatility modeling, a common practice is to select a single model from the family

of autoregressive fractionally integrated moving-average (ARFIMA) models. While this

is computationally convenient, an inappropriate choice of the order of autoregressive and

moving-average terms can result in a biased estimate of the memory parameter. To avoid

this bias, it is desirable to take account of the uncertainty in model selection.

In terms of methodology, Bayesian model averaging (BMA) is used due to its inherent

formality and coherency. The implementation of BMA is straightforward once one obtains

Bayesian estimates of each model. This is because the marginal likelihood, the criterion

for Bayesian model selection, is a byproduct of estimation for each single model. Posterior

model probabilities, a summary of data evidence in support of each model specification, are

used to determine the weight allocated to each model. Statistical inference for the memory

parameter and out-of-sample predictions are the weighted averages over the corresponding

quantities from the individual models considered. Models to be averaged across include

both long memory and short memory specifications, namely, ARFIMA and ARMA models

with different orders of autoregressive and moving-average terms. It is clear that the overall

model nests single models, so a more general specification is dealt with, allowing robust
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statistical inference, because uncertainty due to single model selection, is integrated out in

a consistent way. With the empirical exercise conducted, we address the question whether

additional computational cost of dealing with a number of models rather than a single

model, can be justified. This question is of practical relevance and is addressed from

two aspects: posterior inference on the memory parameter, and forecasting performance

evaluated at different horizons. First, a simulation study, with various data generating

processes, is considered, and second comparisons of forecasting performance are made

between BMA and single models. Both aspects support the usefulness of Bayesian model

averaging.

Our second exercise on realized volatility is conducted in Chapter 5, where we exper-

iment with a nonlinear time-series specification, regime-switching model, to capture the

high degree of volatility persistence. The conventional method of modeling long memory

property is via fractional integration: e.g., fractional integrated GARCH (Baillie, Boller-

slev and Mikkelsen (1996)), long memory SV models (Harvey (1998) and Breidt, Crato

and deLima (1998)), and the ARFIMA specifications used in realized volatility (Andersen,

Bollerslev, Diebold and Labys (2001, 2003)). We propose to use alternative specifications

of modeling realized volatility, motivated by the following observation. There is a large

literature in applying nonlinear models to mimic the long memory property in GARCH

and SV models, and in some applications both in-sample fit and out-of-sample forecasting

appear promising. Most of these applications are on daily squared returns or daily ab-

solute returns, which were popular volatility proxies prior to the introduction of realized

volatility. Commonly used alternative models include structural breaks, regime switching

and sum of short memory processes. However, there have been few applications of these

alternatives applied to realized volatility. To our knowledge, one exception is Barndorff-

Nielsen and Shephard (2002a) who propose a multi-factor SV specification to capture the

long memory property in realized volatility. We argue that since realized volatility is re-

garded as a superior proxy for latent volatility compared with squared or absolute daily

returns, we expect these promising results obtained from low frequency data to hold when

high frequency data are examined.

Our empirical exercise on daily realized volatility of the Yen/USD from 1996 to 2009
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provides clear evidence of the superior performance of regime switching specifications,

in terms of in-sample fit and out-of-sample forecasting. We conduct an extensive recur-

sive estimation based on one year rolling samples. Three types of models are considered:

ARFIMA, regime switching and multi-factor SV models. There are few comparisons of

these alternatives when applied to realized volatility in the literature. Our recursive estima-

tions indicate advantages of regime switching over ARFIMA models, especially according

to residual diagnostics and long-term forecasting. We argue this might be due to the flexi-

bility implied by regime switching, by allowing level and innovation variance i.e. volatility

of volatility, to switch between regimes. Given a time series spanning over a decade, it

might be too restrictive to assume volatility dynamics are fully characterized by a set of

constant memory, autoregressive and moving average parameters, as in the specification

of fractional integration.

In Chapter 4 we propose a Bayesian estimator of long memory SV models. There is a

large literature in the estimation of long memory SV models by classical methods, although

few Bayesian estimators have been proposed. Our aim is to compare the performance of

the proposed Bayesian estimators with that of classical counterparts. Volatility is treated

as genuinely latent in SV models; this assumption is appealing in theory but renders the

likelihood evaluation difficult, especially for classical methods. The SV model is one of

the most successful areas of application for Bayesian methods, because it allows volatility

to be treated as a parameter via data augmentation. Moreover, posterior simulation

methods such as Markov chain Monte Carlo (MCMC) simulation facilitate the availability

of posterior volatility estimates by integrating out the uncertainty of other parameters.

Volatility estimates obtained by the classical method are conditional on the point estimates

of other parameters, and this implies additional uncertainty. In comparison, Bayesian

estimation is based on a state space form of SV model, with fractional Gaussian noise

being approximated by a moving average process of high order. We propose to update

the parameters of interest in one block to improve estimation efficiency, because a block

updating scheme is helpful in variance reduction. In particular, a hessian matrix, obtained

from quasi maximum likelihood estimation, is used to construct the proposal density for

the random walk Metropolis-Hastings algorithm when MCMC is implemented.
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A Monte Carlo simulation study is conducted in Chapter 4 and the result suggests the

performance of the proposed estimator is comparable to that of classical methods. Our

estimator outperforms the classical counterpart in terms of root mean square error for

most of the parameter settings, with small and medium size samples. We argue that the

parameter settings of the Monte Carlo study are of more practical relevance compared with

previous studies: this is because variance of innovations to volatility are chosen at values

which are empirically realistic. A sensitivity analysis is conducted to examine the impact

of parameter values on estimation, the result of which is useful for empirical applications

of long memory SV model.

The rest of this thesis is organized as follows: Chapter 2 reviews some important

questions in volatility modeling, including the Mixture-of-Distributions Hypothesis, styl-

ized facts of returns with an emphasis on the long memory property, and the basic frame-

work of SV models and realized volatility modeling. The questions reviewed are selective

since our aim is to provide the basic background relevant to the chapters which follow. A

Bayesian model averaging exercise is conducted on realized volatility in Chapter 3. Chap-

ter 4 proposes a Bayesian estimator of a long memory SV model, while Chapter 5 seeks to

use the specification of regime switching to capture the long memory property in realized

volatility. Chapter 6 concludes.



Chapter 2
Literature Review

2.1 Introduction

Statistical analysis of asset prices is difficult given the observation that asset prices

are non-stationary as manifested by increased variance of prices over time. It is of more

practical relevance to examine asset returns, i.e. changes in prices, because much empirical

evidence suggests that returns can be modeled by stationary processes. Asset returns are

commonly measured and modeled with fixed regular frequency, such as monthly, weekly

and daily. For returns over short intervals such as daily, the first moment is not of primary

interest in most cases, as within a frictionless continuous time framework the no-arbitrage

requirement generally guarantees that the return innovations are of an order of magnitude

larger than the mean return. Consequently, the second moment of returns, i.e. return

volatility, is usually the focus. Volatility is an important economic variable: for example,

the original ARCH model of Engle (1982) provides a tool for measuring the dynamics of

inflation uncertainty. Furthermore, most of the important developments and applications

in volatility modeling and forecasting have occurred in financial economics.

Our focus in this review is on volatility of daily returns, and return volatility is defined

as the standard deviation of returns. Conceptually, volatility measures the speed at which

prices are changing, i.e. the intensity of return variation. A small standard deviation

implies a low chance of a large price movement, and in particular, a small likelihood

6
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of a large price fall. The risks from two alternative investments can be contrasted by

comparing their standard deviations. Indeed volatility is commonly treated as a measure

of risk, and risk management is a crucial aspect of modern financial econometrics, as noted

by Campbell, Lo and MacKinlay (1997, p. 3):

“... what distinguishes financial economics is the central role that uncertainty

plays in both financial theory and its empirical implementation. ... Indeed

in the absence of uncertainty, the problems of financial economics reduce to

exercises in basic microeconomics. The very existence of financial economics

as a discipline is predicated on uncertainty”.

All this highlights the importance of volatility modeling. In particular, according to Shep-

hard (1996), there are two motivations for return volatility models: empirical stylized facts

and the pricing of contingent assets. Volatility is a key input to the pricing of derivative se-

curities, for such markets are sometimes characterized as “volatilities are traded”. Return

volatility is time-varying as conjectured by finance theory and acknowledged in empirical

evidence.1 The challenging aspect of volatility modeling is that it is inherently latent.

According to Andersen, Bollerslev, Christoffersen and Diebold (2006): “This departure

of finance from standard microeconomics is even more striking once one recognizes that

volatility is inherently unobserved, or latent, and evolves stochastically through time”.

The search for volatility model specification and selection is always guided by the

salient feature of volatility being latent and time-varying. There is a voluminous litera-

ture on return volatility modeling, so the review in this chapter cannot be exhaustive. The

literature on asset volatility and risk management has grown considerably in the last 20

years: Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), Hamil-

ton (1994) and Engle (1995)2 provide comprehensive surveys on ARCH models; Bates

(1995) covers empirical regularities regarding derivative securities and implied volatilities;

1The Mixture of Distributions Hypothesis, dating back to Clark (1973), attributes the variability of
speculative returns to the intensity of relevant news arrivals. Early evidence on fluctuations in return
standard deviations can be found in Merton (1980), and those references given in Taylor (1986, p. 38) on
various assets including stocks and futures. It is a well-recognized fact that financial asset return volatility
is time-varying, the evidence of which is persistent across assets, time periods and countries. We will
discuss more on these in Section 2.2 and 2.3.

2The book of Engle (1995) is an extensive collection of GARCH papers.
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Taylor (1994), Ghysels, Harvey and Renault (1996) and Shephard (1996, 2005) are ex-

cellent surveys on stochastic volatility models; Poon and Granger (2003) and the book

length treatment of Knight and Satchell (2007) are concerned with volatility forecasting;

Andersen et al. (2006) and Andersen, Bollerslev, Christoffersen and Diebold (2007) are

also concerned with volatility forecasting in the role of risk management but with an em-

phasis on high frequency data. Some recent surveys discuss volatility in a rather general

and broad context, for example, Barndorff-Nielsen and Shephard (2007), Shephard and

Andersen (2009) and Andersen, Bollerslev and Diebold (2010). The surveys of Andersen

and Benzoni (2009) and McAleer and Medeiros (2008) are mainly concerned with realized

volatility.

This chapter concerns the basic concepts of volatility modeling, relevant to Chapters

3, 4 and 5. The treatment in this thesis is exclusively univariate, although a multivariate

framework, involving time-varying volatility and also time-varying covariance, plays an

important role in analyzing returns of a portfolio.3 The rest of this review is organized

as follows: Section 2.2 discusses the Mixture-of-Distributions Hypothesis (MDH) as it

provides a convenient theoretical explanation for changing levels of return volatility, which

has motivated the formulation of some of the most widely used empirical discrete-time

volatility models including ARCH/GARCH and stochastic volatility models. Section 2.3

focuses on stylized facts of daily returns, as a useful volatility model needs to accommodate

these empirical facts, especially when a key objective of volatility modeling is to generate

accurate volatility forecasts. Section 2.4 and 2.5 review the developments of two popular

strands in volatility modeling: the stochastic volatility model and realized volatility. The

former is the building block for the long memory stochastic volatility model considered in

Chapter 4, and the latter is the focus of Chapters 3 and 5. Section 2.6 concludes.

3According to Shephard (1996, p. 41): “Most of macro-economics and finance is about how variables in-
teract, which, for multivariate volatility models, means it is important to capture changing cross-covariance
patterns. Multivariate modeling of means is difficult and rather new: constructing multivariate models of
covariance is much harder, dogged by extreme problems of lack of parsimony”.
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2.2 Mixture-of-Distributions Hypothesis

The Mixture-of-Distributions Hypothesis (MDH), pioneered by Clark (1973), is a way

to conceptualize the distributional characteristics of asset returns. Let yt denote financial

returns, defined over a unit time interval, for example, daily.4 Under this assumption,

returns are governed by an event time process which can be formulated as

yt = µyst + σys
1/2
t εt (2.1)

where st is a strictly positive process reflecting intensity of the information flow in the

market, µy represents the mean response of the variable per news event, σy is a scale

parameter and εt is assumed to be i.i.d. N(0, 1). Furthermore, st is assumed to be unob-

servable to the econometrician, and σy is constrained at unity to ensure the identifiability

of the latent process st.

It is clear that returns on a given trading day are normally distributed conditioning

on st since yt|st ∼ N(µyst, σ
2
yst). Consequently, the unconditional distribution of returns

is a mixture of normals. According to Praetz (1972), an i.i.d. mixture of a Gaussian term

and an inverted Gamma distribution for the variance will produce Student’s t distributed

returns. Student’s t distribution has fatter tails than normal distribution. As such, MDH

is compatible with the fat-tailed unconditional distributions found for finance returns. It is

a common observation that the normality assumption is violated in the marginal distribu-

tions of daily returns.5 Empirical evidence on heavy tails of the marginal distributions of

asset returns dates back to the early 1960s, see Mandelbrot (1963) and Fama (1963). This

feature of leptokurtosis has important implications for risk management, as thick-tailed

distributions indicate frequent occurrence of returns with extreme magnitudes.

When returns are measured over short horizons such as daily or weekly, µy is negligible

4Suppose closing prices are recorded on each trading day, let pt be the price recorded on trading day
t (ignoring the dividend.) Throughout, the compound return is defined as yt = log(pt) − log(pt−1). See
Taylor (1986, Ch. 1) for discussions on other types of return definitions used in the literature. Another
commonly used definition, simple return, is defined as y′

t = (pt − pt−1)/pt−1. As discussed in Taylor
(1986, pp. 12-13), researchers who have studied both the compound return and simple return find that the
important conclusions are the same for each type of return.

5Returns over a month or more have unconditional distributions much closer to the normal shape than
daily returns.
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or can be fixed at a constant level. Thus, the driving force of yt is the state variable st.

The state variable represents the number of news arrivals. Intuitively, days with high

information flow imply high likelihood of large price moments, so st indicates the strength

of return variation. Furthermore, if st is assumed to be a positively autocorrelated process,

by allowing for more realistic temporal dependencies in the underlying information arrival,

the formulation in (2.1) is able to mimic observed volatility clustering in financial markets.

This last feature is another important stylized fact of returns, i.e. the tendency for large

returns to be followed by future returns of large magnitude, and small returns to be

followed by additional small ones.

The Mixture-of-Distributions Hypothesis is the foundation of the most widely used

empirical discrete-time volatility models. Andersen et al. (2006, pp. 815-816) provides

an excellent intuitive introduction to the Mixture-of-Distributions Hypothesis. Different

assumptions on the dynamics of st result in various strands of volatility models. For

GARCH models, st is assumed to be fully determined by information up to time t, while

stochastic volatility models assume st to be genuinely latent. Recently, Andersen, Boller-

slev, Diebold and Labys (2000a) and Thomakos and Wang (2003) find that daily returns

standardized by realized volatility are closer to normal than the standardized residuals

from stochastic volatility models, suggesting realized volatility can estimate st more accu-

rately. There is a large literature in seeking an alternative “mixing variable” to represent

st. Clark (1973) observed that trading volume is highly correlated with return volatility

and suggests using volume as a good proxy for st. The papers of Epps and Epps (1976),

Taylor (1982), Tauchen and Pitts (1983), Andersen (1996) and Andersen and Bollerslev

(1997a), are among many others that address this issue.

2.3 Stylized Facts of Assets Returns

An important motivation of modeling return volatility is to capture the stylized facts

of returns. As noted in Ghysels et al. (1996, p. 7): “The search for model specification and

selection is always guided by empirical stylized facts. A model’s ability to reproduce such

stylized facts is a desirable feature and failure to do so is most often a criterion to dismiss
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a specification although one typically does not try to fit or explain all possible empirical

regularities at once with a single model”. This section will briefly discuss some of the most

important stylized facts of asset returns, in particular, the slowly-decaying autocorrelations

observed in absolute or squared daily returns, as this so-called long memory property is a

major focus in the following chapters. Stylized facts about volatility have been extensively

reviewed in the literature. See for instance, Taylor (1986, Ch. 2), Bollerslev et al. (1994)

which is under a general set-up of GARCH models. Excellent discussions within the

framework of stochastic volatility models can be found in Shephard (1996) and Ghysels

et al. (1996). Bates (1995) provides a detailed discussion on stylized facts of volatility

observed in derivative markets.

The aspects to be discussed in this section include: leptokurtosis, i.e. thick-tailed dis-

tributions of returns and time-varying standard deviation, the dynamics of which feature

as volatility clustering and highly persistent shocks to return innovations. All these char-

acteristics are indeed closely related: the time-varying dynamics render an unconditional

distribution of returns made up of mixture of normals with varying standard deviation,

and the mixing causes the higher kurtosis. We intend to ignore other important styl-

ized facts in this section, mainly because they are not relevant to the following chapters.

Ghysels et al. (1996, section 2.2) provides a detailed discussion on other stylized facts,

such as volatility comovements, which is useful in examining international comovements

of speculative markets, and volatility smiles relevant to option pricing.

2.3.1 High Kurtosis

The evidence on leptokurtosis (heavy-tailed return distributions) was documented by

Mandelbrot (1963) and Fama (1963). An explanation of this fact is the varying standard

deviation of returns. As noted in Taylor (1986, p. 47), there is no reason to suppose

that the number of price changes within each day is identical. Neither is it particularly

reasonable to assume that every change in price has the same variance. The literature

prior to the conditionally heteroscedastic models draws from fat-tailed distributions such as

Paretian or Lévy without addressing the conditionality of volatility. Under the framework
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of GARCH and stochastic volatility models, the feature of leptokurtosis fits nicely into

the modeling of conditional variance of returns. To illustrate, suppose the mean of daily

returns is negligible, and daily return yt is formulated as

yt = σtεt εt ∼ i.i.d. N(0, 1) (2.2)

where σt denotes the conditional volatility. Gourieroux and Jasiak (2001, p. 118) relate the

thickness of tails to the dispersion of volatility, and shows mathematically that the condi-

tionally heteroscedastic models are capable of reconciling leptokurtosis with the normality

assumption by distinguishing between the marginal and conditional kurtosis.6

GARCH models specify the conditional variance as a function of past squared or

absolute returns, which is an important assumption because if the variance mixture is

not linked to observed variables, the i.i.d. mixture is indistinguishable from a standard

fat-tailed error distribution (see Andersen et al. (2006, p. 828)). However, empirical ap-

plications typically find that the time varying volatility is not sufficient to account for all

of the mass in the tails in the distributions of daily or weekly returns. Therefore, Stu-

dent’s t distribution is proposed for εt in some applications. Leptokurtosis becomes less

pronounced under temporal aggregation, as the departure from normality is commonly

found to diminish for returns over a month or more.

2.3.2 Volatility Clustering

It is typical for financial time series to exhibit bunching of high and low volatility

episodes. Volatility clustering refers to the feature that large absolute returns are more

likely to be followed by large absolute returns than by small absolute returns, the evidence

of which was first documented by Fama (1965). This fact is also implied by strong positive

autocorrelations found in commonly used volatility approximators, such as squared or

absolute daily returns. Taylor (1986) argues that the autocorrelation found in absolute and

6Intuitively, the unconditional distribution is a mixture of normals, some with small variances that con-
centrate mass around the mean and some with large variances that put mass in the tail of the distribution.
As such, a mixture with fatter tails is formed. See Campbell et al. (1997, p. 478) for more discussion. A
student’s t distribution has fatter tails than normal as it is a mixture of normal distributions with different
variances. However, it is not capable of capturing the volatility clustering.
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squared returns can be explained by time-varying volatility, and that any reasonable model

for returns must be non-linear because a linear process cannot explain the autocorrelation

in absolute returns. Furthermore, the decaying of autocorrelations appears to be slow,

which is why numerous papers have proposed the use of a long memory specification for

the evolution of σt in equation (2.2).

The explanation for volatility clustering is intimately related to MDH, according

to which changes in the level of market activity are the cause of the variances changes.

Information arrivals are nonuniform through time, and it is reasonable to assume the

intensity of information flow is persistent in consecutive trading days. The huge success

of the GARCH group of models is largely due to its ability to mimic volatility clustering

and to integrate the conditional volatility dynamic with unconditional leptokurtosis. The

stochastic volatility model is a capable alternative although its likelihood functions are

more difficult to evaluate, an issue which we will discuss more in Section 2.4.7 Volatility

clustering can be identified by a formal test such as the ARCH Lagrange multiplier test

proposed by Engle (1982). It is also widely documented that ARCH effects disappear with

temporal aggregation; see, for example Diebold (1988) and Drost and Nijman (1993).

2.3.3 Leverage Effect

Leverage effect, a term coined by Black (1976), refers to the observation that negative

innovations to financial returns tend to increase volatility more than positive innovations

of the same magnitude. This asymmetry is pronounced in stock market data, as shown by

Schwert (1989), Nelson (1991), Campbell and Hentschel (1992), Brock, Lakonishok and

LeBaron (1992) and Poon and Taylor (1992). The effect is small for interest rate and

7Various dynamics of conditional volatility movements can be explained by changing levels of infor-
mation flow: numerous papers documented increased volatility of financial markets around dividend an-
nouncements and macroeconomic data releases; day-of-the-week effects might introduce extra complicity
to the dynamics of time-varying volatility, see for example Baillie and Bollerslev (1989) report overnight
and weekend market closures and their effect on volatility. When returns are examined on high frequency
basis, more complicated dynamics of conditional variance are introduced. A good example is foreign ex-
change markets, where major currencies are traded 24 hours and different time zones can produce strong
seasonal patterns in around the clock trading activity. See Müller, Dacorogna, Olsen, Pictet, Schwarz and
Morgenegg (1990), Baillie and Bollerslev (1990), Harvey and Huang (1991), Dacorogna, Müller, Nagler,
Olsen and Pictet (1993), Andersen and Bollerslev (1997b) and Bollerslev and Ghysels (1996) for detailed
discussions on the intradaily patterns of foreign exchange markets.
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exchange rate series, and Shephard (1996) notes that it is non-standard for currencies

where the asymmetry effects are usually not significant. Taylor (1994) argues there are

plausible theories for a negative correlation between price movements and volatility in stock

models but none for a nonzero correlation in currency models. See also the discussion in

Ghysels et al. (1996, p. 11).

Andersen et al. (2006, p. 803) provide a discussion of various explanations for lever-

age effect. For example, falling stock prices imply an increased leverage of firms and

it is believed that this entails more uncertainty and hence volatility. This asymmetry

effect has motivated many refinements to the basic GARCH and stochastic volatility mod-

els: EGARCH (Nelson (1991)), GJR (Glosten, Jagannathan and Runkle (1993)) and

TGARCH (Zakoian and Rabemananjara (1993)) and asymmetric stochastic volatility mod-

els are the most well known among many others. However, leverage effect complicates the

form of likelihood functions by linking the first moment to the second moment of the

conditional return distribution. Consequently, it is more difficult to undertake parameter

estimation and volatility prediction, especially for stochastic volatility models.

2.3.4 Long Memory

At the intuitive level, a characteristic of a long memory time series process is a

hyperbolic rate of decay for the autocorrelations instead of an exponential rate as implied

by a stationary autoregressive process. To illustrate, a simulated long memory process

in Harvey (1998) indicates the slowly-decaying pattern: at a lag as high as 100, the long

memory autocorrelation is still 0.14, whereas in the autoregressive case it is only 0.000013.

Considerable empirical evidence indicates volatility autocorrelations decay at a rapid rate

for shorter lags, but then at a much slower hyperbolic rate at longer lags, which matches

closely to the theoretical shape of autocorrelations of long memory processes. The evidence

tends to be stronger when volatility is measured with daily and weekly returns recorded

over decades, or when measured using high-frequency data over a few years.
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2.3.4.1 Empirical Evidence

Early evidence is documented in Ding, Granger and Engle (1993), who observe that

for daily S&P500 return series, power transformations of a volatility proxy, absolute daily

returns, |yt|d have quite high autocorrelations for long lags, and strongest temporal de-

pendence is observed with d close to one. Numerous papers afterwards observed similar

patterns for other stock market indices, commodity markets and foreign exchange series;

see for example, Baillie et al. (1996) and Andersen and Bollerslev (1997a). Many estimates

of GARCH models for these series suggest near unit root behavior of the conditional vari-

ance process.8 Estimates of stochastic volatility models show similar persistent patterns

in conditional variance. In recent years, consistent evidence has also been observed from

realized volatility, constructed from intraday returns. Correlogram plots for logarithmic

daily realized volatility series show a distinct hyperbolic decay, e.g. Figure 11.5 in An-

dersen, Bollerslev, Christoffersen and Diebold (2007, p. 529), where the autocorrelations

are significantly positive for all 100 lags when compared with the conventional 95 percent

Bartlett confidence intervals. See also Andersen and Benzoni (2009, p. 567) for a review

of evidence across different assets.

In other words, volatility tends to change slowly, implying that the effects of shocks

take a considerable time to decay. This has important implications in volatility forecasting.

Bollerslev and Mikkelsen (1999) for example, observe that when pricing very long-lived

financial contracts, the long memory volatility approach can result in materially different

prices from those implied by standard GARCH models with exponential decay. The most

common approach to modeling long memory is the fractional integrated process, and we

provide a brief review of this and other approaches in the following subsection.

8This observation motivates the integrated GARCH (IGARCH) model proposed by Engle and Boller-
slev (1986). According to Ghysels et al. (1996, p. 9), there has been a debate regarding modeling persistence
in the conditional variance process either via a unit root or a long memory process. One of the appeal-
ing features of the latter approach is that its inference is not affected by the kind of unit root issues. For
example, a likelihood ratio test of stationarity can be constructed by standard theory, see Robinson (1994).
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2.3.4.2 Approaches to Capture the Long Memory Property of Volatility

Fractional integration There is a long history in time series analysis using fractional

integration to capture slowly-decaying autocorrelations; see Chapter 3 Section 3.2 for de-

tailed discussions on definition and estimation of fractionally integrated processes. The

implementation of fractional integration to GARCH models was first proposed by Baillie

et al. (1996), as FIGARCH, which adapts autoregressive fractionally integrated moving

average (ARFIMA) models developed by Granger and Joyeux (1980) and Hosking (1981)

to long-memory models of conditional variance.9 Another popular long memory GARCH

model is the FIEGARCH proposed by Bollerslev and Mikkelsen (1996), which is a gen-

eralization of the EGARCH model of Nelson (1991). The FIEGARCH model treats the

logarithm of the conditional variance as a distributed lag of past ε2t involving the fractional

difference operator. In parallel to the development within the GARCH framework, Breidt

et al. (1998) and Harvey (1998) proposed the long memory stochastic volatility model,

where log volatility is assumed to follow a fractionally integrated process; see Chapter

4 for detailed discussions on long memory stochastic volatility models. In a continuous-

time framework, Comte and Renault (1998) propose a continuous-time stochastic volatility

model with discrete-time long-memory implications. The continuous time set-up has the

advantage that it can be used for options pricing without excessive computational ef-

fort. Although intuitively appealing, estimation of long memory volatility models is not

straightforward, especially for long memory stochastic volatility, where volatility is gen-

uinely latent.10 Breidt et al. (1998) and Harvey (1998) use quasi maximum likelihood

methods to estimate long memory stochastic volatility models, based on a frequency do-

main representation of the likelihood function, which is computationally simple but not

efficient. Also, implementation of fractional integration renders the smoothing and filter-

9Andersen et al. (2006, p. 805) examine the impulse effect of a time-t shock on the forecast of the
variance h period into the future implied by the GARCH (1,1) model: ∂σ2

t+h|t/∂ε
2
t = kδh with 0 < δ < 1.

Whereas, to have autocorrelations decay at a hyperbolic rate the volatility model is expected to provide an
impulse effect as ∂σ2

t+h|t/∂ε
2
t ≈ khδ for large values of h. FIGARCH model nests the IGARCH model of

Engle and Bollerslev (1986), however one weakness of FIGARCH model is that the unconditional variance
does not exist.

10Shephard (1996, p. 16) argues that initialization might be problematic in FIGARCH model estimation.
In particular, distribution function f(yt|yt−h, . . . , yt−2, yt−1) has to contain a large amount of relevant data
due to the highly persistent effect of past observations. Meanwhile, likelihood functions of GARCH models
are constructed conditional on y0. As such, initialization of y0 is important, although Baillie et al. (1996)
argue this is not the case.
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ing of volatility computationally more difficult than their short memory counterparts, due

to the length of the state vector.11

In recent years, with the advent of high frequency data, numerous applications treat

realized volatility as an observed proxy for the underlying volatility (see Section 2.5 for

more discussions on realized volatility). In this framework, Andersen et al. (2000a, 2003)

specify a fractionally integrated model to account for the apparent long-memory observed

in daily realized volatility.12

The estimates of the degree of fractional integration, i.e. the memory parameter,

usually take a value in the 0.3-0.48 range, appearing to be stable irrespective of the sam-

pling frequencies of the underlying returns (daily or intra-daily), the sampling periods or

asset classes: see Andersen and Bollerslev (1997a). This finding is consistent with the

assumption that volatility is a stationary but highly persistent process.

Alternative approaches to modeling long memory in volatility There exists an

extensive literature in using alternative methodologies to capture slowly-decaying autocor-

relations. This remains a very active area of current research: see Andersen et al. (2006,

p. 813) and McAleer and Medeiros (2008, pp. 36-37), and the references therein.

In general, two alternatives are available. Firstly, it is possible to approximate the long

memory feature by specifying a volatility process via a sum of short memory processes such

as first-order autoregressive components: e.g. the multi-factor stochastic volatility model

of Chernov, Gallant, Ghysels and Tauchen (2003), 13 the model in Ding and Granger (1996)

which is based on the sum of an infinite number of ARCH models, and the component

GARCH model in Engle and Lee (1999), as well as the related developments in Gallant,

11See Section 2.4 for volatility filtering and smoothing for stochastic volatility models, and Section
4.2.3.1 in Chapter 4 for state space representation of long memory stochastic volatility model.

12The logarithmic transformation has a few appealing features when modeling realized volatility: the
log specification guarantees positive forecast volatilities. In addition, the unconditional distribution of log
realized volatility can be better approximated by Gaussian and is much closer to being homoscedastic.

13Andersen et al. (2010, p. 29) discuss one-factor and multi-factor parametric volatility models. Empiri-
cal evidence suggests that multi-factor models provide major improvements over the traditional one-factor
models. They attribute the advantage of multi-factor models to the fact that the system is allowed to be
defined through a sum of different factors, each following a simple dynamic process, rather than a single
factor with a more complex specification.
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Hsu and Tauchen (1999).14 In more recent work, Barndorff-Nielsen and Shephard (2001),

Bollerslev and Wright (2001), Andersen, Bollerslev and Diebold (2007) and Corsi (2009)

apply the same methodology to realized volatility modeling. Secondly, a possible source of

long memory in financial volatility is infrequent breaks, as discussed in Hyung, Poon and

Granger (2006), or switching between regimes and structural breaks as shown in Diebold

and Inoue (2001). Structural breaks in volatility are also considered, for example by

Schwert (1989) and Andreou and Ghysels (2002), while connections between long memory

and structural breaks are examined by Banerjee and Urga (2005) and Andreou and Ghysels

(2009) (see Chapter 5 Section 5.1 for further discussion).

2.4 Stochastic Volatility Models

GARCH and stochastic volatility (SV) models, referred to as the second generation

of volatility models by Shephard and Andersen (2009), are parametric models for volatil-

ity. In the literature prior to GARCH models, rolling window methods were used to

estimate time-varying volatility. For instance, Officer (1973) used a rolling standard de-

viation of returns measured over some interval of time; Parkinson (1980) and Garman

and Klass (1980) used the difference between daily high and low prices as daily volatility

estimates. The weakness of these methods is that they are not based on formal statistical

models, and the assumption of constant volatility over a rolling window period is coun-

terfactual: see the example discussed in Andersen, Bollerslev, Christoffersen and Diebold

(2007, p. 516), which demonstrates the poor forecasting performance of these “historical”

volatility measures. The same example also indicates the weakness of J.P. Morgan’s Risk-

Metrics (Morgan (1997)) due to its lack of volatility mean-reversion structure, although

RiskMetrics is frequently used by finance practitioners.

14The plots of volatility impulse response functions in Andersen et al. (2006, p. 807) indicate the ability
of component GARCH model to match the hyperbolic decay rate for the long-memory FIGARCH model.
They argue: “if the different components display strong, but varying, degrees of persistence they may
combine to produce a volatility dependence structure that is indistinguishable from long memory over
even relatively long horizons”. As noted in Andersen et al. (2006), there is a long history in time series
analysis for using the sum of a few individual short-memory components to mimic a long memory process.
Granger (1980) first show that the superposition of an infinite number of stationary autoregressive of order
one processes may result in true long-memory process. Tiao and Tsay (1994) provide early results on
modeling and forecasting long-run dynamic dependencies in the mean.
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GARCH models, which pre-date SV models,15 have been tremendously successful in

empirical work and now become a standard toolbox of finance and econometric modeling.

This is because the models are designed to facilitate maximum likelihood estimation. In

recent years, SV models have become more popular, essentially because estimation dif-

ficulties that previously plagued these models can be alleviated by new approaches, in

particular, simulation-based inferences. A further reason for the popularity of SV models

is their use in options pricing, where volatility modeling is useful. We will discuss further

the differences between the two types of models in the following subsections.

In general, SV models can be cast either in discrete-time or continuous-time. The

first centers on the MHD discussed in Section 2.2. The other approach is to incorporate

diffusions employed by much of modern finance, where price and volatility processes are

modeled jointly through continuous sample diffusions governed by stochastic differential

equations.16 As argued by many researchers, continuous-time SV models are motivated

by convenience and intuition rather than by studies of observed prices. The real-life

scenario is that prices are invariably constrained to lie on a discrete grid, both in the

price and time dimension, even if the underlying process actually evolves continuously

within a no-arbitrage setting. (Section 3.4.1 in Chapter 3 and Section 5.3.1 in Chapter

5 describe the raw tick-by-tick data used in this thesis.) In other words, continuously

recorded data do not exist as real-time price data are not available at every instant, and

it is only feasible to measure return and volatility realizations over discrete time intervals.

This is the major motivation of discrete-time modeling. However, the two perspectives

are closely related because discrete-time SV models can be treated as approximations (but

not exact discretizations) to continuous-time SV models. For example, the initial discrete-

time SV model introduced by Taylor (1982) can be thought of as an Euler discretization of

the continuous counterpart proposed by Hull and White (1987), with returns observed at

equally spaced discrete intervals. Also, the specifications of the most popular discrete-time

15GARCH model is usually attributed to Bollerslev (1986), although it was proposed simultaneously by
Taylor (1986).

16As noted in Andersen et al. (2006, p. 815): “Adopting the rational perspective that asset prices
reflect the discounted value of future expected cash flow, such prices should react almost continuously to
the myriad of news that arrive on a given trading day”. Applications in portfolio and asset pricing that
were cast in continuous-time framework can be dated back as early as Merton (1969) and Black and Scholes
(1973).
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SV models are often rationalized through the discretization of specific continuous-time SV

models. Dassios (1995) examines the issue of approximation accuracy; see also Ghysels

et al. (1996, section 4) for a rigorous discussion of the relationship between discrete and

continuous time SV models.

The remainder of this section focuses on discrete-time SV models by assuming that

prices are only observable at discrete and equally spaced points in time. Section 2.5 deals

with the continuous-time counterpart, which is the underlying assumption of realized

volatility.

2.4.1 Stochastic Volatility Models: Specification

Motivated by MDH, the one-period return is decomposed into an expected conditional

mean and an innovation,

yt = µt + σtεt εt ∼ iid (0, 1) (2.3)

The innovation is expressed as a standardized white noise process scaled by time-varying

conditional volatility. It is implied that prices are observed regularly at fixed time intervals,

e.g. daily closing prices or end-of-the-week prices. Furthermore, the predictable part µt is

negligible, which holds empirically over short intervals such as daily or weekly, and is also

consistent with a no-arbitrage condition. Accordingly, we simplify (2.3) to

yt = σtεt εt ∼ iid (0, 1)

There are, of course, an unlimited number of specifications that may be entertained for

the conditional volatility process. It is desirable for a model to capture the stylized facts

as discussed in Section 2.3. GARCH and SV models have been the two most popular

alternatives in the literature. Basically, the two models differ in the assumption of whether

volatility is observable or latent: the former assumes σ2
t is a deterministic function of past

returns; while the latter assumes σ2
t is not solely determined by the current and lagged

values of yt, but is also driven by additional noise. Both models feature conditional
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heteroscedasticity.17 However, the notions of conditional volatility σt in both models are

not exactly identical, as they do not represent the same information set. The assumption of

GARCH is relatively strong18, but has convenient implications as it facilitates likelihood

evaluation. Although the SV model is difficult to estimate (see below), it is naturally

connected to continuous-time diffusion and this is a strong motivation for its use.

2.4.1.1 Basic Stochastic Volatility Model

The lognormal SV model was first analyzed by Taylor (1982), but was not as popular

as GARCH mainly due to estimation difficulties until the influential works by Harvey,

Ruiz and Shephard (1994), Jacquier, Polson and Rossi (1994), and Kim, Shephard and

Chib (1998). The model is parameterized as

yt = σ exp(ht/2)εt εt ∼ N(0, 1)

ht = φht−1 + ηt ηt ∼ N(0, σ2
η) (2.4)

where the exponential is to ensure positive conditional volatility, and the unconditional

mean of ht is assumed to be zero for the scale parameter σ to be identified. The return yt

is stationary if and only if the conditional volatility is stationary since yt is the product

of volatility and a white noise. All the odd moments of yt are zero. As shown by Taylor

(1986), the kurtosis of yt is 3 exp(σ2
η) ≥ 3. The kurtosis of a normal distribution is 3,

so the model is able to capture the stylized fact of high kurtosis. The autoregression of

order one (AR(1)) for the state variable is to address volatility clustering. Most empirical

applications find the autoregressive coefficient to be close to 1, implying highly persistent

volatility dynamic. The state variable ht is assumed to be normally distributed. As such,

the unconditional distribution of the return is a lognormal mixture of normal distributions,

17The conditional perspective is exclusively relevant in volatility modeling. As discussed in Section 2.3,
volatility clustering is a stylized fact of returns. Therefore, the current level of volatility constitutes critical
conditioning information for volatility forecasts, especially in terms of short-term forecasts. Andersen,
Bollerslev, Christoffersen and Diebold (2007, p. 514) argue that the conditional perspective is exclusively
relevant for most financial risk management purposes. This also explains the weakness of “historical
volatility” methods as they lack the ability to incorporate conditionality. The difference between conditional
and unconditional moments are crucial for time series forecasting.

18Nelson and Foster (1994) argue this assumption is ad hoc on both economic and statistical grounds.
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corresponding to the assumption postulated by Clark (1973). Shephard (1996) interprets

the state variable ht as a representation of the random and uneven flow of new information

into financial markets. See Taylor (1986, 1994) for a detailed discussion on statistical

aspects of the model.

For estimation convenience, equation (2.4) can be linearized as19

log y2t = log σ2 + ht + log ε2t

ht = φht−1 + ηt (2.5)

The latent log volatility ht follows an AR(1) process. The first equation indicates log y2t

is treated as an AR(1) process with an additive white noise. As such, the autocorrela-

tion function of log y2t is similar to that of an ARMA(1,1), which behaves similarly to

the popular GARCH(1,1).20 This autocorrelation structure is important in capturing the

significant autocorrelations at high lags, i.e. the slowly decaying pattern.21 Taylor (1986)

and Harvey (1998) show that for any positive power transformation of |yt|, the autocorre-

lation function has a similar structure. The distribution of log ε2t is heavily skewed with

a long left-hand tail, being far from normal. This causes some problems in estimation:

when εt is close to zero, log ε2t will be a negative number of large magnitude. The mean

and variance of log ε2t are -1.27 and 4.93 respectively, according to the statistical property

of a log χ2 distribution (see Davidian and Carroll (1987, p. 1088)).

Volatility filtering and smoothing The specification in (2.5) implies that one cannot

observe volatility but returns, and the log volatility ht is not an exact function of past

returns as in the case of GARCH models. In this sense, volatility is genuinely stochastic.

In time series analysis, the exercise of extracting the latent variable from the observable

can be conducted within the framework of state space models: see Chapter 4 for more on

19It is clear that it is convenient to remove the conditional mean of µt from the return decomposition.
Because the logarithm of the absolute value log |yt| = log |µt + σ exp(ht/2)εt| cannot be decomposed. If
the return is measured over daily or weekly interval, µt is negligible, or one can demean the return prior
to estimation.

20The autocorrelation of squared returns y2
t in GARCH(1,1) model is of the form of an ARMA(1,1).

21It is difficult for an AR(1) model to generate significant autocorrelations at high lags, as its autocor-
relations decay to zero quickly after the first a few lags.
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state-space models. Conditional on different information, the knowledge of volatility varies.

In particular, estimation of ht based on information up to say day t is termed filtering,

and estimation of ht based on all information up to the end of sample is termed smoothing.

Both filtering and smoothing are important for volatility inference. The current level of

volatility is critical in forecasting volatility next period given highly persistent volatility

dynamics. If log ε2t is normal, (2.5) is linear and Gaussian, and filtering can be conducted

with the celebrated Kalman filter (Kalman (1960)).22 While Kalman filter can deliver the

best linear estimator if the normality assumption does not hold, it is inefficient and far

from being optimal, even under the unrealistic assumption that all the parameters are

known. It is not easy to derive the optimal filter, and this is an active and evergrowing

research area. The current focus is on simulation-based algorithms, in particular, particle

filtering. The implementation of particle filtering on discrete SV models has been examined

by Kim et al. (1998) and Pitt and Shephard (1999); see also Johannes and Polson (2008)

and references therein. Alternative filtering schemes, such as importance sampling, have

been discussed by Danielsson (1994) and Sandmann and Koopman (1998).

Extensions of the basic SV models The basic SV model discussed so far is restrictive,

and some extensions have been proposed in the literature. For example, there is no reason

to preclude yt being a vector. In other words, the model is readily available for multivariate

settings as discussed in Harvey et al. (1994). Another possibility is to allow ht to follow a

more complicated ARMA process; see the review in Shephard (1996, section 1.3.4) for other

specifications. Also, ht can be specified to follow a long memory process such as fractional

integration, introduced by Breidt et al. (1998) and Harvey (1998), which is examined in

Chapter 4 with a Bayesian treatment. The leverage effect, discussed in Section 2.3, is an

important stylized fact of returns, especially for equity markets. In the family of GARCH

models, the popular EGARCH model due to Nelson (1991) can capture the asymmetry

of responses. The counterpart is the asymmetric SV model of Hull and White (1987),

which allows for nonzero correlation between the innovations of εt and ηt. One important

refinement of the SV model is closed form representation under temporal aggregation: this

22Harvey (1989) provides a helpful treatment of state space modeling on economic time series.
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is to address the empirical observation that the same asset returns measured at different

frequencies, say daily and weekly, results in different parameter estimates. The model

proposed by Meddahi and Renault (2004) has the advantage of being closed under temporal

aggregation, in either multivariate or cross sectional settings.23

We briefly compare GARCH and SV models before we close this section. In general,

the two models complement each other. The GARCH model is less difficult to estimate,

which is an advantage over the SV model; e.g. even if the distribution of εt, innovations in

the mean equation is misspecified, quasi maximum likelihood estimation is still applicable

as shown by Bollerslev and Wooldridge (1992). The GARCH model, as noted by Shephard

(1996), is less able to handle extremely large changes in returns. Hence, a fat-tailed

distribution of εt is often used to capture the high kurtosis. Another drawback of the

GARCH model is that it is not convenient for option pricing, unlike the SV model which

is naturally suited to a continuous-time setting. However, as derived in a series of papers in

Nelson (1990, 1992) and Nelson and Foster (1994), under certain conditions the GARCH

model converges weakly to a diffusion process. In other words, the diffusion limit of the

GARCH model is a continuous SV model. This justifies the use of GARCH models as an

approximate volatility filter even when we believe SV is the underlying model. In terms

of forecasting performance, no significant difference between these two model types has

been observed in practice; see the discussion in Andersen et al. (2006, p. 814).

2.4.2 Stochastic Volatility Models: Estimation

To evaluate the likelihood function of SV models is difficult due to the latent structure

of volatility. Let the vector of returns be denoted as YT = (y1, y2, . . . , yT ), and collect the

parameters in θ = (σ, φ, σ2
η), then the exact likelihood of the SV model in (2.4) is

f(YT; θ) =
T∏

t=1

f(yt|Yt−1; θ) =
T∏

t=1

∫
f(yt|ht; θ)f(ht|Yt−1; θ)dht

23GARCH type models are not closed under temporal aggregation, which is regarded as a theoretical
drawback by some authors, see Andersen, Bollerslev, Christoffersen and Diebold (2007, p. 534). In partic-
ular, if daily asset returns follow a GARCH (p,q) process, the same process will not be applicable to the
corresponding weekly returns. The weak GARCH class of models proposed by Drost and Nijman (1993)
is an attempt to fill this gap.
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where the density of f(yt|ht; θ) is of closed form, but not the density of f(ht|Yt−1; θ).
24

Therefore, the evaluation of f(yt|ht; θ) requires an integration over the full vector of ht for

t = 1, 2, . . . , T , which is infeasible. An early approach to this problem involves estimating

without necessarily evaluating the likelihood function; for example, Taylor (1986) used

method-of-moments. Estimation methods have been greatly improved since, especially

simulation-based methods, which we will discuss below.

Generalized method-of-moments (GMM) An early example of the implementation

of GMM can be found in Melino and Turnbull (1990) and Andersen (1994), with an exten-

sion by Hansen and Scheinkman (1995) to continuous-time SV models. In general, Monte

Carlo studies (see Jacquier et al. (1994), Breidt and Carriquiry (1996) and Andersen and

Sørensen (1996)), show that GMM performs worse as the degree of volatility persistence

increases. This is not desirable as highly persistent volatility is a stylized fact. Also,

GMM only provides parameter estimates, while it is often the latent volatility that is of

interest. As such, it is necessary to conduct a filtering method conditional on GMM point

estimates, which further increases the uncertainty in volatility estimates. Shephard (1996,

section 1.3.2) further discusses the weaknesses of GMM when applied to SV models.

Quasi maximum likelihood estimation (QMLE) Harvey et al. (1994) suggest a

quasi-maximum-likelihood estimator which treats log ε2t in (2.5) as normal by ignoring the

nonnormality. This is convenient in the sense that the system then fits nicely into a linear

Gaussian state-space form, with the first equation being the measurement (observation)

equation and the second being the state equation. It is a routine exercise to filter, smooth

and evaluate the likelihood within a linear Gaussian state-space form. The Kalman filter

delivers an approximation to the likelihood function f(YT; θ), parameter estimates are

obtained by optimizing the approximated likelihood function, and volatility estimates are

readily available as the byproduct of likelihood evaluation. QMLE is easy to conduct,

and provides a consistent and asymptotically normal parameter estimator, although log ε2t

is far from being normally distributed with a long left tail. One way to alleviate this

24In the case of continuous-time SV model, even f(yt|ht; θ) is not of closed form.
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nonnormality is suggested by Breidt and Carriquiry (1996). They use the transformation

of Fuller (1996, example 9.3.2) to reduce the kurtosis in the transformed observations by

trimming the long tail. Their simulation study indicates the transformation works well

especially in small samples.

Bayesian method: Markov chain Monte Carlo (MCMC) The first Bayesian treat-

ment of the SV model is due to Jacquier et al. (1994), who together with the work of Kim

et al. (1998) popularizes Bayesian estimation on SV models. When a Bayesian view is

taken, the quantity of interest is f(ht|YT) or f(θ|YT), which is called the posterior den-

sity. Unfortunately, the posterior density is of high dimension and analytically intractable.

The response is to simulate from the target density, then treat the simulated sample as

a realization of the posterior density, based on which statistical inference is made. There

are many simulation methods available in the literature, and MCMC is a popular choice

for the SV model. (Section 3.2.1 in Chapter 3 and Section 4.3 in Chapter 4 further dis-

cuss the Bayesian methodology and MCMC implementation.) One benefit of the MCMC

method is that it facilitates data augmentation (Tanner and Wong (1987)), by treating

ht as an additional variable. According to the Clifford-Hammersley theorem, the distri-

bution of f(ht, θ|YT) is fully determined by the conditional distributions of f(ht|θ, YT)
and f(θ|ht, YT). Thus the full posterior density can be obtained by working with the two

conditionals which might have closed form. The advantage is that the posterior density of

latent volatility is obtained as an inherent part of estimation. Importantly, this distribu-

tion or other densities of interest such as the prediction density, is the quantity obtained

after the uncertainty in parameter estimation being integrating out. It is always necessary

to conduct convergence diagnostics on the MCMC chain to ensure the chain converges to

the target density, although there is no universally accepted rule of convergence available

yet. Another advantage of the MCMC method is that it can be generalized to continuous-

time SV models: see Jones (1998), Eraker (2001), Elerian, Chib and Shephard (2001) and

Roberts and Stramer (2001). The MCMC method is straightforward in principle, however

its implementation requires caution. For example, the choice of single-move or block up-

dating ht appears to be a minor issue, but can make large differences to computational
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efficiency. See the discussion in Shephard (1996) and Kim et al. (1998).25

Method of simulated moments This is a simulated maximum likelihood estimation

method, and is also as computationally intensive, like the MCMC method. It is not

Bayesian so there is no need to specify a prior. Danielsson (1994) and Danielsson and

Richard (1993) provide early applications to SV models. An important refinement of this

method, efficient method of moments (EMM) (see Gallant and Tauchen (1996, 1998)),

is promising, as it can in principle be readily generalized to continuous-time SV models.

Andersen et al. (2006, section 4.2) provide a detailed and accessible introduction to the

application of EMM to SV models. The importance sampling method used in Durbin and

Koopman (1997) is also a simulated likelihood method which evaluates the exact likelihood

of the basic SV model in (2.4).

2.5 Realized Volatility

GARCH and SV models offer a convenient and parsimonious frameworks for modeling

key stylized facts of returns. Since tick-by-tick (continuous-time) data became commonly

available,26 one motivation of volatility modeling is to incorporate highly informative intra-

day data. However, neither type of model is capable of dealing with high frequency data.

The specification in (2.4) is too restrictive to capture various pronounced and systematic

intraday patterns, for example, intraday volatility periodicity and longer run persistence,

as examined in Andersen and Bollerslev (1998b) and Dacorogna et al. (2001). As noted

in Shephard (1996, p. 49), direct modeling of the ultra high-frequency volatility process is

complex and cumbersome, because “continuous-time models are grossly untrue over short

periods of time due to institutional factors”. The response in the literature is to seek

25In general, it is believed that block updating is more efficient, as shown in Kim et al. (1998). To
facilitate block updating, Kim et al. (1998) propose to approximate the distribution of log ε2 by a mixture
of normals. The convergence diagnostics conducted in their paper appear promising. While Ghysels et al.
(1996, section 5.6) argue that this is at the cost that the draws navigate in a much higher dimensional
space due to the discretization effected, and the convergence of chains based upon discrete mixtures is
sensitive to the number of components and their weights.

26Many authors, see Andersen et al. (2006), regard the pioneering work by Olsen & Associates on high-
frequency data (summarized in Dacorogna, Gençay, Müller, Olsen and Pictet (2001)), helps to pave the
way for many of the more recent empirical developments in the realized volatility area.
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nonparametric measures of volatility that avoid the otherwise heavy parameterizations.

This section is about one of the most popular non-parametric measures of volatility, realized

volatility (RV).

In general, RV is a sum of squared intraday returns, and provides a consistent nonpara-

metric estimate of price variability that has transpired over a daily interval. It is model-free

because it relies on no explicit specification. It is applicable to any log-price process that

is subject to a no-arbitrage condition and weak auxiliary assumptions, and we will discuss

more on these general assumptions later. There are several motivations for RV modeling.

Firstly, volatility is inherently latent. SV models have to rely on simulation-based methods

such as particle filtering or the reprojection approach of Gallant and Tauchen (1998) to

estimate volatility. The complications are more profound in the continuous-time scenario.

In this regard, it is convenient to treat volatility as observable, and the development in

quadratic variation theory provides such a volatility measure. Also, when evaluating the

volatility forecasting performance of various models, it is desirable to have a model-free

measure to be treated as the “realization of volatility”. Secondly, high kurtosis is a pro-

nounced stylized fact of returns. It is well documented that GARCH and SV models

cannot remove all the nonnormality in unconditional returns, as returns standardized by

conditional volatility estimated from both models still exhibit high kurtosis. As shown in

Andersen et al. (2000a) and Andersen, Bollerslev, Diebold and Ebens (2001), returns stan-

dardized by RV approximate normality much better. This conditional normality combined

with the frequently found lognormality of RV itself are consistent with MDH, and this has

important implications in market risk management where the conditional nonnormality

of returns has been a key stylized fact. Finally, GARCH and SV models are unable to

incorporate intraday information without increased complexity, and hence, the volatility

implied by both models is assumed to be constant over the “day”. This is unrealistic and

can be misleading; see the excellent example in Andersen, Bollerslev, Christoffersen and

Diebold (2007, section 11.4.1). If we are interested in the price variability over a daily

interval, therefore, then it is worthwhile to use sufficiently high-quality intraday price data

to uncover this feature.

Early work on high-frequency data to measure volatility includes Schwert (1990),
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Hsieh (1991) and Zhou (1996); the last of these uses cumulative squared intraday returns

to approximate the underlying return variance but in a highly stylized way.27 The the-

oretical and empirical results in Andersen and Bollerslev (1998a), Comte and Renault

(1998), Andersen, Bollerslev, Diebold and Labys (2001) and Barndorff-Nielsen and Shep-

hard (2002a) have greatly popularized the applications of RV. This is a vast and rapidly

growing area. Recent reviews available include Andersen et al. (2006, p. 838), McAleer and

Medeiros (2008), Andersen and Benzoni (2009) and Andersen et al. (2010). An intuitive

introduction to RV can be found in Taylor (2005, sections 12.8-12.9).

There has been rapid development in both the theoretical and empirical aspects of

RV, and we will review some of the main theoretical results and empirical evidence on the

unconditional characteristics of RV in the remainder of this section.

2.5.1 Theoretical Results on Realized Volatility

The concept of RV is cast in continuous-time. In the following discussion, we first ad-

dress the question “what does realized volatility measure?”, in the setting of a continuous-

time SV model. Then we show an informal but intuitive proof of the consistency of RV as a

volatility estimator, under a general model-free framework. Our notation and derivations

in this section follow Zivot (2005) and Andersen et al. (2006) closely.

2.5.1.1 What Does Realized Volatility Measure?

Suppose the underlying log-price evolves continuously with the form of the following

stochastic differential equation

dp(t) = µ(t)dt+ σ(t)dW (t) (2.6)

where µ(t) denotes the drift, σ(t) refers to the spot volatility, and W (t) is a Wiener

process (standard Brownian motion). Both the drift and spot volatility can be time-

27The precedent of using cumulative daily squared returns as monthly volatility measures can be found
in French, Schwert and Stambaugh (1987) and Schwert (1989).
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varying. Return over an (infinitesimal) small time interval ∆ is approximated as

r(t,∆) ≡ p(t)− p(t−∆) ' µ(t−∆)∆+ σ(t−∆)∆W (t) (2.7)

where ∆W (t) ≡ W (t)−W (t−∆) ∼ N(0,∆). For return over a unit time interval, ∆ = 1

(say daily), and

r(t) ' µ(t− 1) + σ(t− 1)zt, zt ∼ N(0, 1)

where we follow the convention of denoting the daily return r(t) rather than r(t, 1). If the

drift and spot volatility are constant over the interval [t− 1, t], then the daily return can

be written as

r(t) ' µt|t−1 + σt|t−1zt, zt ∼ N(0, 1) (2.8)

This resembles the return decomposition in the discrete-time SV model in (2.3), which is

an approximation to the continuous-time counterpart. If the drift and spot volatility are

allowed to evolve over time, as normally assumed in continuous-time models, the exact

representation of daily returns is

r(t) = p(t)− p(t− 1) =

∫ t

t−1
µ(s)ds+

∫ t

t−1
σ(s)dW (s) (2.9)

We introduce the notion of integrated volatility as

IVt ≡
∫ t

t−1
σ2(s)ds

which is analogous to the notion of conditional volatility σ2
t|t−1 in a discrete-time setting.

The quantity IVt is central to certain models for option pricing as it represents the price

variability transpiring over a given discrete interval; see Hull and White (1987). It is

the dynamics of spot volatility that determines IVt. Direct modeling of spot volatility is

difficult, however, as continuously recorded prices are not available in practice. Even for

extremely liquid markets, microstructure effects, such as discrete price grids and bid-ask

bounce effects, prevent observation of the true continuous price realization. RV avoids
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these difficulties by providing a consistent nonparametric estimator of IVt and simultane-

ously preserving the intraday information.

2.5.1.2 An Informal Proof of the Consistency of Realized Volatility

The concept of RV is developed in a very general framework, and the underlying

model is not necessarily included in the family of SV models. Let p(t) denote a univariate

continuous log-price process,28 and if p(t) is in the class of special semi-martingales then

it has the unique decomposition

p(t) = p(0) +A(t) +M(t)

where A(t) is a predictable drift component of finite variation which allows for stochastic

evolution, and M(t) is a local martingale. The purpose of the semi-martingale requirement

is to rule out arbitrage opportunities. Let the unit interval be daily, and m denote a positive

integer indicating the number of returns obtained by sampling m = 1/∆ times per day.

The continuously compounded return over the period [t−∆, t] is

r(t,∆) = p(t)− p(t−∆)

Formally, realized volatility is defined as

RVt =

1/∆∑

j=1

r2(t− 1 + j ·∆, ∆)

The quadratic variation (QV) of the return process at time t is defined as

QV (t) = p lim
m→∞

m−1∑

j=0

{p(sj+1)− p(sj)}2

with 0 = s0 < s1 < . . . < sm = t. QV measures the realized sample path variation of the

squared return process. It is a unique and model-free ex-post volatility measure. From

28The theoretical results are readily applicable to a multivariate case. The case of extension to a
multivariate framework, realized covariance, is another promising aspect of RV modeling, as standard
multivariate GARCH models are too heavily parameterized to be useful in realistic large-scale problems.
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the theory of quadratic variation for semi-martingales (see e.g., Back (1991) and Protter

(1990)), the following convergence result holds:

RVt → QV (t)−QV (t− 1) ≡ QVt as m → ∞

That is, daily RV converges in probability to the daily increment in quadratic variation.

In the case of pure diffusion in (2.6), QVt = IVt.

Let us show why this convergence holds for (2.6). According to (2.7)

r2(t,∆) ' µ2(t−∆)∆2 + 2∆µ(t−∆)σ(t−∆)∆W (t) + σ2(t−∆)
(
∆W (t)

)2

Over (infinitesimal) small time intervals, ∆, the drift term is negligible. Then

V ar[r(t,∆) | Ft−∆] ' E[r2(t,∆) | Ft−∆] ' σ2(t−∆)∆ (2.10)

where Ft denotes the information available at time t. The result in (2.10) can be general-

ized to the multi-period setting

1/∆∑

j=1

E[r2(t− 1 + j ·∆, ∆) | Ft−1+(j−1)·∆] ' σ2
(
t− 1 + (j − 1) ·∆) ·∆

'
∫ t

t−1
σ2(s)ds.

where the last approximation is due to the sum converging to the corresponding integral

as the size of ∆ shrinks toward zero, i.e. m → ∞. Therefore, RVt → IVt.

It is clear that RV is computed without reference to any specific model, with the

assumption only that the underlying log price is a semi-martingale. The above derivation

only indicates the consistency of RV, without evaluating its accuracy. Barndorff-Nielsen

and Shephard (2002b) provide some distributional results for RV, which show that the

measurement errors of RV are approximately uncorrelated, and this has important im-

plications for time series modeling. More details of asymptotic results and multivariate

generalizations of RV can be found in, e.g., Meddahi (2002), Barndorff-Nielsen and Shep-
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hard (2001, 2002a, 2004a), and Andersen et al. (2003).

2.5.2 Empirical Results and Modeling of Realized Volatility

The statistical characteristics of RV appear to be consistent across a range of assets:

log RV is nearly normal and daily returns standardized by RV are approximately nor-

mal. Andersen et al. (2000a, 2003) show that when RV is used, the distribution of the

standardized exchange rate series is almost Gaussian. Andersen, Bollerslev, Diebold and

Ebens (2001) observe that a similar result holds for stock returns. The log-normality of

RV implies the volatility of volatility is increasing in the level of volatility because log RV

is approximately homoscedastic, which is reminiscent of the popular EGARCH and log

SV models discussed in Section 2.4.1.1.

The consistency of RV as a volatility measure, and its uncorrelated measurement

error, together with the approximate log-normal distribution, suggests a simple alterna-

tive volatility modeling strategy: RV can be treated as an observable time series, which

fits into the fully-developed standard autoregressive moving average (ARMA) modeling

framework. Also, the state-space form of RV in Barndorff-Nielsen and Shephard (2002a)

allows the measurement error to be taken into account. A pronounced feature is the de-

gree of temporal dependence in the autocorrelation structure of RV (or log RV), which

is consistent across different assets, time periods, and countries. Correlogram plots for

log RV show a distinct hyperbolic decay, resembling the stylized fact discussed in Section

2.3.4. The conventional response is to specify a fractionally integrated ARMA (ARFIMA)

process for log RV. In Chapter 5 we seek an alternative specification to capture the long

memory property of log RV. The memory parameter estimated from log RV is usually

around 0.4, indicating a stationary but highly persistent volatility process.

A practical issue in RV modeling is to determine the sampling frequency of returns

used to construct RV. The convergence result of RV requires a frequency as high as possi-

ble, since this is the condition for RV to approximate QV arbitrarily well. However, this

is infeasible in reality. Two factors prevent us from using the highest possible frequency.

First, continuously recorded price does not exist in reality although it is convenient for



2.5. REALIZED VOLATILITY 34

the derivation of theory. Actual prices are discrete due to rounding and ask and bid size.

Barndorff-Nielsen and Shephard (2002a) address the inevitable discretization error of RV

by structurally modeling the measurement errors based on the asymptotic theory derived

in their paper. The other factor is market microstructure noise at the very highest return

frequencies, the effect of which violates the no-arbitrage semi-martingale property. The

list of microstructure effects is not short: at intraday level, markets experience regular and

systematic fluctuations in the quotes and transactions intensity across the trading day; for

markets traded 24-hour worldwide, such as foreign exchange, various opening hours of in-

stitutions due to time zone differences introduce pronounced intra-day “seasonality”; the

release of economic and financial news according to specific timetables tends to cause price

jumps and volatility clustering, see, e.g., Andersen and Bollerslev (1998b). Other effects

include bid-ask bounce, trades taking places on different markets, non-synchronous trad-

ing and data recording mistakes, etc.29 This wide array of noise types induces spurious

autocorrelations in intraday return series, the outcome of which is that RV measures would

be inflated/biased.30 Empirical evidence suggests that for actively traded assets, fixing ∆

between 5 and 15 minutes typically works well, with 5 minutes being the most common

choice and regarded as an optimal trade-off.31 There are other procedures in the literature

for eliminating the systematic bias: applying an ARMA filter to the raw returns to remove

the serial correlation, for example, the exponential moving average filtering used in Corsi,

Zumbach, Müller and Dacorogna (2001); the volatility signature plot proposed by Ander-

sen, Bollerslev, Diebold and Labys (2000b) for diagnostics; an efficient sampling scheme

as in Aı̈t-Sahalia, Mykland and Zhang (2005); alternative estimators that are robust to

microstructure noise, such as the range-based volatility measure discussed in Alizadeh,

Brandt and Diebold (2002) and Brandt and Diebold (2006), or power transformations of

29A good example is provided in Andersen et al. (2006, Figure 7), which demonstrates the dangers of
using too small a value for ∆ in the RV estimation without adjusting for the bid-ask spread effect. As
noted in this paper, we only observe the underlying price plus a random bid-ask spread in practice. The
bid-ask bounces effect introduces artificial volatility in the observed prices. Accordingly, RV based on very
finely sampled high-frequency squared returns produce upward biased volatility measures.

30See Campbell et al. (1997, Ch. 3) for a discussion on market microstructure. Descriptions on the
adverse effect of market microstructure noises on RV accuracy are provided in, e.g. Andersen et al. (2006)
Andersen, Bollerslev, Christoffersen and Diebold (2007, section 11.4.1), Shephard and Andersen (2009,
section 6) and Andersen and Benzoni (2009, section 6).

31Depending on the market, prices sampled at 15 to 30 minute intervals are also used. In markets that
are not 24-hour open, adjustments are required due to the fact that days following weekends and holidays
tend to have higher-than-average volatility, see for example Hansen and Lunde (2005).



2.6. CONCLUSION 35

absolute returns rather than squared returns.

RV has become commonplace in volatility modeling. There are some aspects which

have already generated much interest in the rapidly growing literature. First, attempts

are made to circumvent inherent market microstructure frictions, including Hansen and

Lunde (2006), Bandi and Russell (2008) and Barndorff-Nielsen, Hansen, Lunde and Shep-

hard (2008), among others. Second, an early attempt to estimate the QV of the continuous

component of prices in the presence of jumps using the so-called realized bipower variation

process is Barndorff-Nielsen and Shephard (2004b). The recent work of Andersen, Boller-

slev and Diebold (2007) indicates that diffusive volatility is much more persistent than the

jump component, so it is helpful to separate jumps and diffusive volatility components in

the RV process. Other important issues include multivariate extensions with the use of

realized covariance measures, and how to best accommodate the long memory property

observed in log RV.32

2.6 Conclusion

Volatility modeling is an important topic in financial econometrics, the literature on

which is voluminous and this chapter cannot be exhaustive. Our review starts with the

Mixture-of-Distributions Hypothesis and descriptions of stylized facts of asset returns. It

is a fundamental requirement for successful volatility models to be able to capture the key

stylized facts and also to maintain the underlying economic assumptions. Each generation

of volatility models, including GARCH, SV models and the RV approach, has been trying

to meet these criteria. Of the stylized facts considered, the emphasis here is on the long

memory property in volatility, which is discussed in the next three chapters. This review

concentrates on SV models, because the discrete-time SV model is the building block of

the long memory SV model examined in Chapter 4, and the continuous-time SV model is

closely related to the concept of RV, which is the focus of Chapters 3 and 5.

32The last issue has precedent in the GARCH modeling, for example Engle and Lee (1999) propose to
use different autoregressive volatility components, displaying strong but varying degrees of persistence, to
produce a volatility dependence structure that is indistinguishable from long memory.



Chapter 3
Realized Volatility, Long Memory and

Bayesian Model Averaging

3.1 Introduction

Volatility is a concept used to measure the spread of all possible outcomes of asset

returns. It is well recognized that volatility is time varying, and that volatility exhibits

a degree of predicability despite the fact that returns are unpredictable. The popular

GARCH models assume that the conditional volatility is fully determined by the realiza-

tion of past returns, while SV models assume volatility is genuinely latent. Both GARCH

and SV models are commonly applied to low-frequency data, such as daily, weekly or

monthly data.

In recent years, however, the focus has shifted to the use of high-frequency data,

mainly because intra-day data can provide rich information absent in daily returns. The

direct modeling of returns based on intra-day data poses great challenges in practice.

This is not only because the number of observations might be overwhelming, but also

because intra-day returns are contaminated by various market microstructure effects, such

as bid/ask bounce, nonsynchronous trading, and calendar effects, etc. For example, the

absolute five-minute returns often exhibit significant periodic (intra-day and intra-week)

36



3.1. INTRODUCTION 37

activity patterns, and it is rather difficult to incorporate these stylized facts directly into a

parametric model. One possible way out of this dilemma is by the use of realized volatility.

Realized volatility is constructed from squared returns within the horizon of interest, and

is essentially a model-free measure used to estimate ex post realized volatility over the

horizon. For example, currency markets are 24-hour traded, and if prices are sampled

every five minutes, we have 288 five-minute returns per trading day. The sum of these 288

squared returns is the realized volatility on the corresponding trading day. As shown in a

series of papers by Andersen, Bollerslev, Diebold and Labys (2001); Andersen et al. (2003)

and Barndorff-Nielsen and Shephard (2002a), the ex post value of realized volatility is an

unbiased estimator of conditional variance. One attractive feature of realized volatility is

that one can treat it as observed rather than latent, as a result of which, routine time

series methods are readily applicable.

In this chapter, we conduct an empirical investigation of the long memory property

of realized volatility. Our exercise differs from previous studies in the aspect of model

selection. We choose to deal with an overall averaged model rather than a single model

with predetermined orders of autoregressive and moving average terms. A Bayesian treat-

ment is provided. Posterior model probabilities, i.e. evidence from data, are used to

determine the weight allocated to each model. Statistical inference for the memory pa-

rameter and out-of-sample predictions are the weighted average over the corresponding

quantities from single models considered. Models to be averaged across include both long

memory and short memory specifications, namely, autoregressive fractionally integrated

moving-average ARFIMA(p,d,q) models and ARMA(p,q) models with different orders of

p and q. It is clear that the overall model nests single models, so a more general spec-

ification is dealt with, allowing robust statistical inference as uncertainty introduced by

single model selection is integrated out in a consistent way. Whilst in principle, model

averaging appears promising, a natural question to ask is whether it is worth the extra

effort to deal with a number of models rather than a single model with computational

cost taken into account. The answer to this question is of practical importance given that

this is a typical scenario in time series modeling, and in applications with a number of

explanatory variables to be considered. This is a question to be addressed in this chapter.
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We try to address this question with an empirical exercise conducted on daily Yen/USD

realized volatility, where we focus on posterior inference on the memory parameter and

forecasting performance evaluated at different horizons. We also seek evidence from a

simulation study, where a few data generating processes are considered and comparisons

of forecasting performance are made between Bayesian model averaging and single models.

Both aspects support the usefulness of Bayesian model averaging.

We focus on model averaging for the following reasons. It is well documented in the

literature that volatility possesses strong persistence in returns constructed from both low-

frequency and high-frequency data, see for example, Ding et al. (1993), Breidt et al. (1998),

Andersen and Bollerslev (1997a), and Bollerslev and Wright (2000). Using measures of

volatility such as powers or logarithms of squared returns or realized volatility, these

authors have found that the sample autocorrelation function of volatility decays slowly to

zero at high lags. In the case of realized volatility modeling, the common practice used to

capture this stylized fact is to select a single model from the ARFIMA family. However,

as argued in Beran (1994), to find a suitable parametric model that is not too complicated

is not always an easy task. A poor choice of p and q can lead to biased estimates of

the long memory parameter. As a result, it is risky to select only one model and ignore

uncertainty in model choice. Bayesian model averaging (BMA) offers the potential benefit

of overcoming this difficulty. Our choice of the Bayesian approach is due to the formality

and coherency incorporated in BMA. The implementation of BMA is straightforward once

one obtains Bayesian estimates of each model. This is because the marginal likelihood,

the critical tool for Bayesian model choice, is a byproduct of posterior density simulation,

computed, for example, by Markov chain Monte Carlo (MCMC) simulation. An accessible

introduction to BMA can be found in Hoeting, Madigan, Raftery and Volinsky (1999).

The rest of this chapter is organized as follows. In Section 3.2, we discuss the BMA

methodology, while in Section 3.3, we focus on Bayesian estimation of ARFIMA models. In

Section 3.4, we present an example based on the realized volatility of the Yen/USD market,

and document in detail the comparisons between single models and the weighted average.

This is done in terms of the posterior inferences on the memory parameter from the full

sample, and forecasting performances at different horizons based on recursive estimation.
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A Monte Carlo experiment is conducted in Section 3.5. Conclusions are summarized in

Section 3.6.

3.2 Methodology

Let us denote yt as realized volatility observed on day t with t = 1, . . . , T . A time

series generated by ARFIMA(p,d,q) process can be represented as

φ(B)(1−B)d(yt − µ) = θ(B)ηt (3.1)

where µ is the process mean, Bi is lag operator defined as Biyt = yt−i, p and q are orders

of polynomial in B with φ(B) = 1− φ1B − . . .− φpB
p and θ(B) = 1− θ1B − . . .− θqB

q.

The innovation ηt is assumed to be Gaussian white noise with mean zero and variance σ2
η.

To ensure stationarity and identifiability, d is assumed to be in the range of (0, 0.5), the

roots of φ(z) = 0 and θ(z) = 0 lie outside the unit circle and θ(z) has no roots in common

with φ(z). The positivity of d is to ensure positive autocorrelations of realized volatility

as positive autocorrelations are a stylized fact of volatility. We also denote Cp and Cq as

the stationary and invertible regions of φ(B) and θ(B), respectively.

The parameter d controls the way ρ(k) converges to zero with increasing lag k. The

process reduces to the standard ARMA(p,q) model when d=0, with autocorrelations de-

caying to zero at exponential rate, so ARMA(p,q) is often referred as a short memory

process. When d > 0, ρ decays more slowly so that the autocorrelations are not geomet-

rically bounded, and the process displays a long memory property. The parameters from

the AR and MA parts capture short memory dynamics of a process. By introducing the

memory parameter, the fractional ARMA model can allow a broad class of autocorrela-

tion functions. However, this complicates the estimation since the fractional difference

operator (1−B)d is a binomial expansion of the form as,

(1−B)d =
∞∑

j=0

πjB
j , (3.2)



3.2. METHODOLOGY 40

with

πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
= Π0<k≤j

k − 1− d

k
, j = 0, 1, 2, . . . , (3.3)

and Γ(·) being the gamma function. The right side of (3.2) is a polynomial of infinite orders.

In this regard, the fractional integrated process can be treated as an autoregressive (AR)

or a moving-average (MA) process with infinite orders. Intuitively, this complicates the

likelihood evaluation. More details on long memory time series can be found in Brockwell

and Davis (1991, Ch. 13), Beran (1994) and Palma (2007).

3.2.1 Bayesian Inference

Under Bayesian methodology, the unknown quantity of interest ω, such as the pa-

rameter vector in our case ω = (φ1, . . . , φp, θ1, . . . , θq, d, µ, σ
2
η), is assumed to be a random

variable. The ultimate objective in Bayesian inference is to obtain the conditional distri-

bution of ω given observations y = (y1, . . . , yT ), namely, the posterior distribution p(ω|y).
According to Bayes’ probability law,

p(ω|y) =
p(ω)p(y|ω)

p(y)

∝ p(ω)p(y|ω) (3.4)

where p(ω) is the prior distribution of the parameters, which incorporates information

about parameters before seeing the data, p(y|ω) is the likelihood function defined by the

model. A posterior distribution is fully determined by the data given the prior. The

marginal likelihood p(y) is calculated as

p(y) =

∫
p(y|ω)p(ω)dω (3.5)

which is a normalizing constant for an individual model, since it is a quantity with param-

eter uncertainty being integrated out. The marginal likelihood depends only on the prior

and the likelihood, and is the key component in Bayesian model comparison and model

averaging.
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Bayesian prediction proceeds via the predictive density,

p(yT+1|y) =
∫

p(yT+1, ω|y)dω =

∫
p(yT |ω)p(ω|y)dω (3.6)

from which random samples can be drawn to make out-of-sample predictions.

Textbook treatment of Bayesian inference can be found in Gelman, Carlin, Stern and

Rubin (2004), while those particularly focusing on Bayesian econometrics can be found in

Koop (2003) and Geweke (2005).

3.2.2 Bayesian Model Averaging

Section 3.2.1 deals with the case when only one model is involved. In practice, the

data generating process might be more complicated so that each model could be treated as

an approximation to certain aspects of the latent data generating process (DGP). Under

this assumption, one might want to make inferences based on a “weighted average model”

if it is available, or equivalently, integrate out the model choice uncertainty introduced by

selecting only one model. The extension to BMA is straightforward under the setting in

Section 3.2.1.

Suppose we have a set of models under consideration, M = {M1, . . . ,MJ}, then the

posterior distribution of ω averaged across J models is

p(ω|y) =
J∑

j=1

p(ω|y,Mj)p(Mj |y) (3.7)

where p(ω|y,Mj) is obtained through (3.4), and p(Mj |y) is the posterior probability of

model Mj given the data. If we treat Mj as nothing more than a set of parameters,

according to the same logic as in (3.4),

p(Mj |y) =
p(y|Mj)p(Mj)

p(y)
(3.8)

∝ p(y|Mj)p(Mj) (3.9)

where the division of p(y) is to ensure probabilities in (3.8) sum to one. The prior proba-
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bility of model Mj is p(Mj), indicating one’s prior knowledge of the model before seeing

the data, and p(y|Mj) is the marginal likelihood of model Mj , obtained through (3.5) as

p(y|Mj) =

∫

ΘωMj

p(y|ωMj ,Mj)p(ωMj |Mj)dωMj (3.10)

If one chooses a non-informative prior for p(Mj), in particular, p(Mj) = 1/J for

j = 1, . . . J , i.e. no prior preference for any single model under consideration, then the

marginal likelihood of each model is sufficient to evaluate (3.9).

In terms of forecasting, the posterior mean and variance of yT+1 are

E(yT+1|y) =
J∑

j=1

E(yT+1|y,Mj)p(Mj |y)

V ar(yT+1|y) =

J∑

j=1

[V ar(yT+1|y,Mj) + E2(yT+1|y,Mj)]p(Mj |y)−E2(yT+1|y)

which are derived according to probability laws (see, for example Hoeting et al. (1999)).

These generic derivations indicate the versatility of BMA, since there is no require-

ment for models to be nested, and parameters from each model might be of different forms,

such as state variables, or parameters with constraints. The remaining issue is computa-

tional, i.e. posterior simulation in (3.4) and integration in (3.10), which mainly relies on

numerical methods, such as Markov Chain Monte Carlo (MCMC) simulation. This is the

approach taken in this chapter.

3.3 Bayesian Estimation of ARFIMA Models

The literature on long memory time series estimation is extensive. The classical ap-

proach to estimating ARFIMA models can be classified as either semi-parametric methods,

such as the GPH estimator proposed in Geweke and Porter-Hudak (1983), or parametric

methods, for example, approximate maximum likelihood estimation, such as Whittle’s ap-

proximate MLE, or approximate MLE based on the AR representation, and exactly MLE
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proposed in Sowell (1992). The GPH estimator is easy to implement, and does not require

one to specify the orders of AR and MA terms, however, it does require one to determine

the number of frequencies involved in estimation, which might be critical in some cases.

As shown in (3.4), the likelihood function evaluation given a set of parameters is

an essential part of Bayesian inference. The likelihood evaluation for a long memory

process is more involved compared with its short memory counterpart. In this chapter,

we take the exact likelihood evaluation in Sowell (1992) despite the fact that it might

be computationally costly. The Bayesian treatment of ARFIMA models can be found in

Koop, Ley, Osiewalski and Steel (1997), Pai and Ravishanker (1998) and Palma (2007),

some details of which will be described in the rest of this section.

3.3.1 Likelihood Evaluation

Let us partition the parameter vector ω of a ARFIMA(p,d,q) process into σ2
η, and

β = (φ1, . . . , φp, θ1, . . . , θq, d). Throughout this chapter, we will use sample mean as an

estimator of µ, which is justified by the argument in Yajima (1988) that for a long memory

model there is only a small loss in efficiency if the mean is used. So we are working on the

demeaned time series.

The exact Gaussian likelihood of ARFIMA(p,d,q) with µ = 0 is

L(β, σ2
η) = (2π)−T/2|Σ|−1/2 exp{−1

2
y′Σ−1y} (3.11)

where Σ is the covariance matrix of y, with each element being expressed as σ2
ηγ(i− j) for

i, j = 1, . . . , T and γ(·) is a function of β.

The evaluation of γ(·), which is necessary for both likelihood evaluation and out-of

sample forecasts, is not an easy task when d 6= 0. One common approach to estimating

ARMA(p, q) models is via state-space representation, the likelihood function of which

can be easily delivered by Kalman filter. If the orders of p and q are reasonable, the

dimension of state variables will be feasible as well. However, given the binomial expansion

in (3.2), a long memory process is essentially equivalent to a MA process with the order
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of q being infinity, which makes the state-space representation cumbersome and being an

approximation at its best.

In this chapter, we use the Ox package Arfima to directly evaluate (3.11) given a

set of (β, σ2
η), where the evaluation of autocovariance function is based on the algorithm

proposed in Sowell (1992), see Doornik and Ooms (2004, 2006a) for more details. For a

long time series, the storing and inversion of Σ might be costly and numerically unstable

since it is a T × T matrix. Given the stationarity condition, Σ is a Toeplitz matrix, so

the number of calculations required to invert Σ can be reduced by choosing a suitable

algorithm. The Arfima package allows one to store the whole covariance matrix efficiently

rather than in its raw form, and uses Durbin’s algorithm to invert Toeplitz matrix. This

gain in computation efficiency is critical especially when we conduct MCMC to simulate

from the posterior distribution.

3.3.2 Prior

Throughout this chapter, we use the prior following the arguments in Koop et al.

(1997). More specifically, assuming independent prior structure,

p(β, σ2
η) = p(β)p(σ2

η)

∝ p(β)σ−2
η (3.12)

where we choose a uniform prior for β by constraining (φ1, . . . , φp) ∈ Cp, (θ1, . . . , θp) ∈ Cq,

and d ∈ (0, 0.5), and improper prior on σ2
η. The problem that might be caused by using

an improper prior of σ2
η when conducting Bayesian model comparison is overcome by the

use of a proper non-informative prior on β.

In terms of model prior, we allocate equal prior model probability to each model

by setting p(Mj) = 1/J . The posterior model probability then simplifies to p(Mj |y) =

p(y|Mj)∑J
j=1 p(y|Mj)

, so as a result, the marginal likelihood is sufficient to determine the weight

attached to each model for model averaging.



3.3. BAYESIAN ESTIMATION OF ARFIMA MODELS 45

3.3.3 Posterior Simulation

Since the analytical form of the posterior distribution is not available, we have to rely

on numerical methods to evaluate p(β, σ2
η|y) and p(y|Mj), i.e. to simulate from the pos-

terior distribution, then make inference based on the draws from simulation rather than

providing a full analytical treatment. In this chapter we apply a hybrid MCMC method,

Metropolis-Hastings within Gibbs, the details of which we now turn to. The discussions

are from the perspectives of posterior parameter simulation and posterior prediction sim-

ulation, respectively.

The basic tool in the Gibbs sampler is blocking. Instead of direct sampling from

p(β, σ2
η|y), we sample from the conditional posterior density p(β|σ2

η, y) and p(σ2
η|β, y) sep-

arately. More specifically, given an initial value of σ2
η
0
, we sample β1 from p(β|σ2

η
0
, y),

Given β1, sample σ2
η
1
from p(σ2

η|β1, y). Iterating the exercise M times after a burn-in pe-

riod to remove the effect of initialization, we obtain a Markov chain {β1,...,M , σ2
η
1,...,M}, the

distribution of which approximates that of the posterior density p(β, σ2
η|y) under general

conditions. See Geweke (2005) for more details.

In our case, drawing samples from p(σ2
η|β, y) is a standard Bayesian exercise, the

conditional posterior of σ2
η is inverted gamma distribution IG(a,b), where the values of a

and b are chosen following the argument in Palma (2007, Ch. 8) as

a =
T − r + 4

2
, b =

σ̂2
η(T − r + 2)

2
, (3.13)

with r being the number of model parameters, and σ̂2
η being the MLE of σ2

η.

The conditional posterior of β is not of known form, so the Metropolis-Hastings

algorithm is used to update β. The conditional posterior of β is proportional to the

following equation up to a normalizing constant

p(β|σ2
η, y) ∝ |Σ|−1/2 exp{−1

2
y′Σ−1y}p(β)σ−2

η . (3.14)

When conducting the Metropolis-Hastings algorithm, the proposal density of β is the
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multivariate normal density β ∼ N(β̂, cΩ), where β̂ = (d̂, φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) is the

MLE estimates, Ω is the inverse of the Hessian at β̂ and c is a scaling constant. Given

β(m) in the Gibbs sampler, we draw a candidate ξ from N(β̂, cΩ), which is accepted with

probability min{p(ξ|σ2
η, y)/p(β

(m)|σ2
η, y), 1}, with p(·) evaluated by (3.14).

When we sample β from the proposal density N(β̂, cΩ), we discard those samples out

of the stationarity region of Cp × Cq × Cd, and initialize the Gibbs sampler with MLE

estimates. The scaling parameter c is tuned to obtain an acceptance rate in the range of

30-60% for each model.

Posterior prediction simulation follows the same logic as posterior parameter simula-

tion, if we treat out-of-sample prediction as an unknown parameter in the model. Given

(β(m), σ2
η
(m)

) in the Gibbs sampler, one can draw a sample from the predictive density,

which is a normal density as

p(yT+1|y, β(m), σ2
η
(m)

) ∼ N(0,Σ11 − Σ1TΣ
−1Σ′

1T ) (3.15)

where Σ11 = σ2
ηγ(0), and Σ1T is a row vector with each element being σ2

ηγ(T + 1− j) for

j = 1, . . . , T . The extension to multi-step ahead prediction is straightforward.

The moments of posterior prediction from each individual model can be weighted by

(3.8), to obtain estimates of moments averaged across all the models under consideration.

3.3.4 Marginal Likelihood Approximation

The marginal likelihood of each model is approximated by the method of density

ratio marginal likelihood approximation. Geweke (2005, Ch. 8) discusses the method

in detail. There are also other approximation methods available, such as approximation

using importance sampling, for example, Koop et al. (1997). However, as argued in Geweke

and Whiteman (2006), one problem with the importance sampling approximation is that

the more the dimensions of integration involved, the greater the loss in approximation

efficiency, which is a weakness inherent in any numerical approximation method.
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In particular, in order to approximate (3.10), we save the output from MCMC simu-

lation (β(m), σ2
η
(m)

) and evaluate the corresponding value of

k(β(m), σ2
η
(m)|Mj) = p(y|β(m), σ2

η
(m)

,Mj)× p(β(m), σ2
η
(m)|Mj) (3.16)

given the model j. According to Geweke (1999),

M−1
M∑

m=1

f(β(m), σ2
η
(m)

)/k(β(m), σ2
η
(m)

) −→a.s. [p(y|Mj)]
−1 (3.17)

where f(·) can be constructed from posterior simulation to ensure the support of which is

the same as that of posterior distribution of (β, σ2
η). In this chapter, we choose f to follow

a multivariate normal distribution with mean ω̂ and variance Ĥ, truncated to its highest

density region of size 100(1− α)%,1 where ω̂ is the MCMC approximation of E[ω|y,Mj ],

Ĥ is the MCMC approximation of V ar[ω|y,Mj ], and ω denotes the parameter vector of

a given model.

3.4 Empirical Analysis

We begin this section with some notation to show the construction of realized volatility.

Let Pi denote the logarithm asset price at time i, where i is a regularly spaced time interval:

for example, we take five-minute intervals in this chapter.2 However, prices are actually

observed irregularly, so we need an algorithm to construct regularly-spaced prices, details

of which are given below. Let ∆ denote the fraction of a trading day corresponding to the

implied sampling frequency, i.e. five minutes, andm = 1/∆ denotes the number of sampled

prices per trading day. The currency markets are 24-hour traded so that ∆ = 5/(24× 60),

and m = 288 indicating 288 five-minute intervals per trading day.

Let T denote the number of days in the sample, which gives m× T five-minute asset

1The value of α is chosen as 0.05 in this chapter, the results of which are almost identical to that when
α = 0.1.

2To construct realized volatility from five-minute returns is a common choice for currency markets.
When we tried to construct realized volatility from thirty-minute returns, the time series obtained does
not differ much.
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prices in total. Five-minute returns are defined as

ri+∆ = Pi+∆ − Pi

Realized volatility constructed from five-minute returns on day t is defined as

yt =
288∑

j=1

r2t−1+j∆, for t = 1, . . . , T.

3.4.1 Raw Data

The raw data used in this chapter are the over-the-counter (OTC) quotes of the

Yen/USD rate which appeared on Reuter’s FXFX page during the sample period January

2003 through August 2008. Each quote consists of a bid and ask price and the times at

which they are recorded to the nearest millisecond. Raw data are often contaminated by

recording errors. So we first filter the data based on the algorithms proposed by Dacorogna

et al. (1993). We also follow the argument in Müller et al. (1990) to define log price Pi as

Pi =
logPbid,i + logPask,i

2
(3.18)

where Pbid,i and Pask,i are the bid and ask prices.

To construct the price for each five-minute interval, we follow the convention to use

the last price from the interval, although this might make returns not exactly evenly

spaced. We ignore this minor irregularity given that the data used in this chapter are

of high liquidity with average time between available prices being much less than one

minute.3 Alternatively, the price for each five-minute interval can be obtained by linearly

interpolating from the last price from this interval and the first price from next interval.

We did not follow this method because this can cause spurious predictability. See Taylor

(2005, Ch. 12) for more details.

The days on which trading is extremely thin have been removed. For example, the

3The number of quotes of one trading day can be overwhelming; for example, the average daily number
of quotes in 2007 exceeds 20,000.
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weekend period between Friday 21:05 GMT and Sunday 21:00 GMT,4 fixed holidays such

as Christmas (24-26 December) and New Year (31 December -2 January). We ignore these

thin trading days following Andersen, Bollerslev, Diebold and Labys (2001); Andersen

et al. (2003) and Barndorff-Nielsen and Shephard (2002a). We also remove those days

contaminated by data holes in the Reuter’s data feed, which are indicated by long sequences

of zero five-minute returns, where the quotes are missing. Whenever we remove a trading

day, we always cut from 21:05 GMT on one night to 21:00 GMT the next evening.

In total, we obtain 1436 complete days, with 288×1436 = 413 568 five-minute returns.

Based on these 413 568 observations, daily returns and realized volatility are constructed.

3.4.2 Preliminary Data Analysis

The time series and ACF plots of daily realized volatility and its logarithm are pre-

sented in Figures 3.1 and 3.2, respectively. The pattern in the ACF plots indicates substan-

tial positive autocorrelations for both series, with slowly-decaying autocorrelation, even at

lags of 100, which is a typical characteristic of a long memory process. The autocorrela-

tions of logarithm realized volatility appear to be smoother and more persistent compared

with that of realized volatility. This is as expected given quite a few spikes observed in

the time series plot of realized volatility, and that the effect of additive noise is to reduce

the autocorrelations of the volatility process. A close examination of the ACF plot also

indicates minor seasonality at weekly frequency.

We conduct the modified rescaled range tests proposed in Lo (1991) and Giraitis,

Kokoszka, Leipus and Teyssière (2003); the results of both tests reject the null hypothesis

of short memory at 5% significance level. The GPH estimator gives a memory parameter

of 0.4129 with standard deviation being 0.0259 when the number of periodogram values

is chosen at 700.

In terms of the models fitted, we vary the order of p and q from 0 to 3 for both

ARFIMA(p,d,q) and ARMA(p,q) models. Since the data are observed on daily frequency,

we also extend the AR order to p = 4, 5 with q = 0 to capture possible weekly season-

4Less than 0.1% of the quotes are made between 21:05 GMT on Friday and 21:00 GMT on Sunday.
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Figure 3.1: Daily realized volatility for the Yen/USD (07/01/2003 - 23/08/2008)
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aThe sample period is from 07/01/2003 to 23/08/2008, with 1436 daily observations in total.

Figure 3.2: ACF of the daily Yen/USD realized volatility (07/01/2003 - 23/08/2008)
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aThe sample period is from 07/01/2003 to 23/08/2008, with 1436 daily observations in total.
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ality. The logarithmic transformation is used throughout the estimation to ensure the

positiveness of predicted volatility. When conducting MCMC simulation for each model,

we always make inferences based on 5000 iterations after discarding the first 5000 runs.

The convergence rate of most models is rapid, except for the case of ARFIMA(3,d,2)

and ARFIMA(3,d,3); we therefore exclude these two cases from the BMA exercise, which

leaves 33 models in total. The MLE estimates also have convergence problems for these

two models, with the MA roots of MLE estimates for ARFIMA(3,d,2) model being outside

the invertibility region. The MCMC iterations for some parameters are provided in Fig-

ures 3.3, 3.4 and 3.5, where the convergence of most parameters appears to be reasonably

rapid. The estimates of innovation variance σ2
η from different specifications of the long

memory process are similar to each other, with the posterior mean being around 0.17.

Figure 3.3: MCMC iterations of parameters of ARFIMA(0,d,0), ARFIMA(1,d,0) and
ARFIMA(2,d,3) models of full sample
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aThe plotted 5000 MCMC iterations are obtained after discarding the first 5000 runs.

In the following sections, we first discuss the estimation results from the full sample,
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Figure 3.4: MCMC iterations of parameters of ARFIMA(5,d,0) model of full sample
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Figure 3.5: MCMC iterations of parameters of ARFIMA(2,d,3) model of full sample

d

0.
35

0.
40

0.
45

0.
50

φ1

−
1.

60
−

1.
55

−
1.

50
−

1.
45

φ2

−
1.

00
−

0.
95

−
0.

90
−

0.
85

θ1

1.
35

1.
45

1.
55

1.
65

θ2

1 1000 2000 3000 4000 5000

0.
7

0.
8

0.
9

1.
0

1.
1

θ3

1 1000 2000 3000 4000 5000

−
0.

1
0.

0
0.

1
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with 1436 daily observations. In order to compare the empirical results of a single model

and those of a weighted average model, we focus on the aspects of posterior inference

on the long memory parameter d and out-of-sample predictive density, in Sections 3.4.3

and 3.4.4 respectively. A recursive estimation is also conducted to compare the selective

forecasting performance of the single model and weighed average model; this is the topic

of Section 3.4.5.

3.4.3 Memory Parameter Estimates and Posterior Model Probability

The posterior model probabilities and AIC are given in Table 3.1, and posterior

means and standard deviations of the memory parameter are given in Table 3.2. In

terms of posterior model probability, the evidence supporting long memory specifications

is overwhelming, with 96% model probability for ARFIMA(p,d,q) models compared with

4% for ARMA(p,q) models, which is consistent with the ACF plots and the modified

rescaled range statistics. Among the long-memory models, ARFIMA(2,d,3) receives the

largest posterior model probability with 58%, which is also the best fitted model as indi-

cated by AIC. The remaining posterior model probability is shared fairly evenly among

ARFIMA(1,d,0), ARFIMA(0,d,1), ARFIMA(1,d,1), and ARFIMA(2,d,1) models, indicat-

ing comparable fits for these models. As to seasonality, the posterior mean of the AR

coefficient at lag 5 is positive, but of fairly small magnitude as shown in Figure 3.4, which

is also confirmed by the corresponding zero posterior model probability.

Table 3.1 highlights the usefulness of BMA in model choice. According to the clas-

sical approach, one might choose a model according to an information criterion, such as

AIC. In this example, AIC does pick up the model with highest posterior model proba-

bility, however, it is not as informative as the posterior model probability in describing

the relative merits of alternative models. For example, we found significant evidence sup-

porting long memory specification according to posterior model probability, and yet the

AIC of short memory models, with higher values of p and q, tend to give comparable

and even smaller AIC values than those of their long memory counterparts. Besides this,

while ARFIMA(2,d,3) appears to be the best fit under consideration, one still can not
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completely rule out the other models given that the other long memory models account

for 38% posterior model probability, and 4% posterior model probability is allocated to

short memory specifications.

Table 3.1: Posterior model probabilities and AIC of full sample

ARFIMA(p,d,q) ARMA(p,q)

p,q Posterior
Model Probability

AIC
Posterior

Model Probability
AIC

0,0 0.0328 1.0965
1,0 0.0585 1.0939 0.0000 1.2263
2,0 0.0050 1.0952 0.0000 1.1490
3,0 0.0012 1.0948 0.0000 1.1346
4,0 0.0001 1.0961 0.0000 1.1176
5,0 0.0000 1.0961 0.0000 1.1067
0,1 0.0597 1.0940 0.0000 1.4046
1,1 0.0748 1.0950 0.0001 1.1025
2,1 0.0822 1.0963 0.0040 1.0935
3,1 0.0021 1.0962 0.0035 1.0910
0,2 0.0049 1.0953 0.0000 1.2820
1,2 0.0175 1.0963 0.0007 1.0960
2,2 0.0396 1.0971 0.0043 1.0920
3,2 0.0068 1.0919
0,3 0.0012 1.0948 0.0000 1.2457
1,3 0.0029 1.0960 0.0058 1.0903
2,3 0.5764 1.0757 0.0060 1.0917
3,3 0.0099 1.0931

Total 0.9590 0.0410

aMCMC convergence of ARFIMA(3,d,2) and ARFIMA(3,d,3) is poor, so we exclude both models from
our weighted average model.

The posterior means and standard deviations of the memory parameter d in Table

3.2 do not differ greatly across long memory models with different short-term dynamics,

except for the case with no AR and MA terms, where the memory parameter is smaller,

which might occur because the memory parameter is forced to capture the short term

dynamics missing in the model specification. As to posterior inference on the parameters

of interest, we believe that BMA provides a sensible way to find model weights. In terms of

the burden of computing, the weight of each individual model determined by the marginal

likelihood is simply the byproduct from MCMC output, so does not impose any additional

computational burden.
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Table 3.2: Posterior mean and standard deviation of the memory parameter d for log
realized volatility with full sample

p,q Mean Standard deviation

0,0 0.3873 0.0186
1,0 0.4349 0.0253
2,0 0.4278 0.0332
3,0 0.4441 0.0311
4,0 0.4412 0.0362
5,0 0.4169 0.0454
0,1 0.4382 0.0270
1,1 0.4316 0.0294
2,1 0.4196 0.0426
3,1 0.4445 0.0307
0,2 0.4294 0.0325
1,2 0.4355 0.0311
2,2 0.4212 0.0368
0,3 0.4491 0.0300
1,3 0.4447 0.0323
2,3 0.4223 0.0309

Weighted average 0.4064 0.0899

aMCMC convergence of ARFIMA(3,d,2) and ARFIMA(3,d,3) is poor, so we exclude both models from
our weighted average model.

The posterior standard deviation of d weighted across 33 models is 0.0899, which is

roughly 3 times that of each individual model. This is as expected, since a single model

does not take account of model uncertainty and the precision of parameter estimates tends

to be overstated. Figure 3.6 plots the posterior density of d from the weighted average and

a selection of single models, thus highlighting the difference. It is clear from the density

plots that the posterior inference of the memory parameter d differs substantially across

models. The posterior mean of the weighted average model is 0.4064, shrinking towards

zero relative to the dominant long memory specification, ARFIMA(2,d,3), due to the 4%

posterior model probability of d = 0. As we know, to specify both short term and long

term dynamics accurately is not always an easy task, so it might be risky to make an

inference about d based on a single model, thereby ruling out the possibility of other short

term dynamics.
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Figure 3.6: Posterior density of memory parameter d for log realized volatility with full
sample
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3.4.4 Predictive Density

When evaluating forecasting performance, we follow the common approach of treating

daily realized volatility as observed/actual of volatility despite the fact that volatility is

essentially unobserved. The log volatility forecast from each MCMC iteration is back

transformed into the original units, demonstrating the flexibility of MCMC in dealing

with bias caused by transformation. In a classical setting, the back-transformed statistics,

such as forecasting interval, might not provide unbiased estimates. Besides this, prediction

intervals are readily available since the predictive density can be constructed from MCMC

outputs.

Different forecasting horizons are examined. The one, five, ten and twenty-step ahead

predictions of single and averaged models are generated, roughly representing short-term,

medium-term and long-term forecasting. Since the data frequency is daily, five and twenty-

step correspond to weekly and monthly horizons respectively. The predictive densities of

different horizons constructed at the end of the sample are plotted in Figure 3.7, with the
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posterior model probabilities taken from Table 3.1. For the ease of notation, let WAM,

WAMARFIMA and WAMARMA denote models averaged across overall 33 models, long

memory models and short memory models respectively.

The main pattern in Figure 3.7 can be summarized as follows: as forecasting horizon

increases, predictions from WAM, WAMARFIMA and ARFIMA(2,d,3) become very sim-

ilar, but disparity between long memory and short memory models increases. Similarity

exists between WAMARFIMA and ARFIMA(2,d,3) on all horizons examined. The predic-

tive density plots of WAMARMA and ARMA(1,1) are also similar. For daily prediction,

the WAM provides the largest standard deviation, indicating a wider prediction interval

than a single model. At other horizons, the standard deviation of predictive density of

WAM is also the largest, but it is not as obvious as in the case of daily horizon. To

examine prediction accuracy, we also mark the observed realized volatility on the day be-

ing predicted in the plot. It is clear that volatility prediction becomes more difficult as

horizon increases. If the mean of the predictive density is used as a point forecast, the dis-

tance between the predicted and the observed generally increases as the forecast horizon

increases. For the four observed volatilities examined, ARFIMA(2,d,3) provides the most

accurate one-step prediction, WAM is the best at ten and twenty-step horizons, and per-

formance of each model at five-step is close. Short memory specifications of ARMA(1,1)

and WAMARMA are always out-performed by others.

The comparisons in this section are based on estimation with the full sample, which

might be risky for reliable statistical inference since the magnitude of prediction error

is also determined by the actual realization, not just model specification. So it would

be desirable to evaluate the average forecasting performance using recursive estimation,

which is the focus of next section.

3.4.5 Recursive Estimation Results

To evaluate forecasting performances of averaged and single models, we split the whole

data set into estimation and validation sets. Rolling sample estimation and prediction are

conducted from the 1336th to the 1436th observations, corresponding to the period from
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Figure 3.7: Predictive densities of realized volatility of full sample size
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aThe estimates obtained here are based on the posterior model probabilities in Table 3.1, with sample
size being 1436.
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10/04/2008 to 27/08/2008. For each rolling sample, the sample size is updated with one

more observation, the 33 models are estimated, and the corresponding posterior model

probabilities and multiple-step predictions are generated. The convergence of some models

is not always good, especially the specifications of ARFIMA(2,d,1) and ARFIMA(2,d,2).

As a result, both models are excluded from this exercise.

Figure 3.8: Mean squared forecast error of log realized volatility of recursive estimations
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Table 3.3: Mean squared forecast error of log realized volatility of recursive estimations

One-step Five-step Ten-step Twenty-step

ARMA(1, 1) 0.1558 0.2852 0.3940 0.5198
ARFIMA(0, d, 0) 0.1556 0.2663 0.3644 0.5080
ARFIMA(1, d, 0) 0.1553 0.2786 0.3756 0.5147
ARFIMA(1, d, 1) 0.1558 0.2752 0.3777 0.5149
ARFIMA(2, d, 3) 0.1435 0.2661 0.3681 0.5116
Average of models 0.1474 0.2707 0.3567 0.5032

aThe MSFE is averaged over the recursive estimation period from 10/04/2008 to 27/08/2008.

The posterior model probabilities of each model are averaged over the recursive esti-

mation period, and the average weights for some models are as follows. The specifications
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of ARFIMA(0,d,0), ARFIMA(1,d,0), ARFIMA(1,1), ARFIMA(2,d,3) and WAMARMA

are allocated 4%, 10%, 15%, 37% and 13% model weights respectively. The ranking is

largely in line with that in Table 3.1, although more weight is allocated to ARFIMA(1,d,1)

and the weighted average of short memory processes. The combination of ARFIMA(2,d,3)

and ARFIMA(1,d,1) accounts for more than half the model probabilities.

Mean squared forecast errors (MSFE) of some models are provided in Figure 3.8,

with the mean of the predictive density used as the point forecast. The plot is the vi-

sual representation of the tabulation in Table 3.3 with MSFE on the vertical axis. In

terms of magnitude, MSFE does not differ significantly across the single ARFIMA mod-

els and the weighted average model, indicating a relatively large proportion of variation

caused by noise in realized volatility. The performance of ARMA(1,1) is clearly always

the worst. In terms of ranking, the weighted average is the best at ten and twenty-step

horizons, and the second best at one-step horizon. At five-step horizon, ARFIMA(2,d,3)

and ARFIMA(0,d,0) perform almost the same, followed by the weighted average. The

ranking is largely consistent with the case when predictions are made from the full sample

as discussed in the previous section. There is no single model always performing the best,

with ARFIMA(2,d,3) being the best at short horizons, and the performance of the parsi-

monious model ARFIMA(0,d,0) improves as the horizon increases. Overall, the weighted

average appears to do a better job than single models. Since the ranking of a single model

changes when forecasting horizon varies, inference relying on one particular model appears

to be risky.

According to the empirical exercise conducted in this section, weighted average fore-

casting shows potential to improve accuracy at a long-term horizon, and is outperformed

only by the ARFIMA model with the largest posterior model probability at daily (short-

term) horizon. Also, the magnitude of MSFE does not appear to differ considerably across

a single ARFIMA model and the weighted average of models. It would be useful to de-

termine whether this observation is robust to different data sets, hence some simulation

results are to be discussed in the following section.
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3.5 A Simulation Study

The purpose of the simulations conducted in this section is to gauge the forecasting

performance of a weighted average model compared to a single ARFIMA model. The sim-

ulation is designed as follows: the single ARFIMA model with relatively large model prob-

ability according to the recursive estimations reported in Section 3.4 is chosen as the data

generating process. This includes ARFIMA(2,d,3), ARFIMA(1,d,1) and ARFIMA(1,d,0).

Besides these, ARFIMA(0,d,0) is also considered for its property of parsimony. For each

sample simulated, these four single models and the weighted average model are estimated,

with corresponding single and multi-step forecasts generated. The mean of the prediction

density is used as the point forecast, as described in the last section.

To be comparable with the empirical exercise in the previous section, recursive esti-

mation is conducted in a similar fashion. In particular, given a data generation process, a

sample of 1500 observations is simulated. Then recursive estimations from the 1336th to

the 1436th observations are conducted for each model fitted, including the true model, the

mis-specified models and the weight average model. The mean squared forecast error is

recorded for each model fitted, meaning five measures of MSFE are obtained for one set of

simulated data. Of each data generation process, 50 replications are carried, which results

in 50× 4 = 200 replications in total. The choice of number of replications is largely based

on computational cost: about 22 000 hours computation is involved with 200 replications.5

The parameters used to generate the ARFIMA models are taken from the average of the

posterior mean over the recursive estimations in the previous section as6

ARFIMA(0, d, 0) : d = 0.39

ARFIMA(1, d, 0) : d = 0.44, φ1 = −0.09

ARFIMA(2, d, 3) : d = 0.43, φ1 = −1.05, φ2 = −0.72, θ1 = 0.97, θ2 = 0.68, θ3 = −0.06.

5All the simulations and computations in this section are run on the Monash Sun Grid (MSG), which
facilitates parallel computing. It takes about 360 hours to obtain the results discussed in this section.

6We also experiment with the DGP of ARFIMA(1,d,1), with d=0.40, φ1= 0.07, θ1=-0.12. For the
corresponding samples generated by this process, the convergence of MCMC is poor when the specifications
of ARFIMA(2,d,3) is fitted into the data. Accordingly, this case is excluded from our discussion. The
specification of ARFIMA(2,d,3) is (1+1.05B−1+0.72B−2)(1−B)0.43(yt−µ) = (1+0.97B−1+0.68B−2−
0.06B−3)ηt. This is a (covariance) stationary process because the inverted AR roots are −0.52+0.67i and
−0.52− 0.67i, which lie inside the unit circle.
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The unconditional mean of each simulated process is assumed to be zero, and the stan-

dard deviation of the innovation is the same for each process, with ση = 0.42. Short

memory processes are not considered here, largely due to the computational cost. Also,

the relatively small posterior model probabilities of ARMA specifications in Table 3.1 and

obvious poorer forecasting performance as shown in Figure 3.8 indicate that it could suffice

to focus on long memory specifications in this section.

Table 3.4: Average of MSFE using simulated data

One-step Five-step Ten-step Twenty-step

DGP: ARFIMA(0,d,0)

Fitted model: ARFIMA(0,d,0) 0.1760 0.2361 0.2530 0.2670
ARFIMA(1,d,0) 0.1762 0.2369 0.2536 0.2678
ARFIMA(1,d,1) 0.1761 0.2375 0.2547 0.2681
ARFIMA(2,d,3) 0.1767 0.2384 0.2562 0.2703
Average of models 0.1761 0.2364 0.2522 0.2656

DGP: ARFIMA(1,d,0)

Fitted model: ARFIMA(0,d,0) 0.1829 0.2424 0.2649 0.2869
ARFIMA(1,d,0) 0.1826 0.2414 0.2639 0.2849
ARFIMA(1,d,1) 0.1832 0.2426 0.2665 0.2885
ARFIMA(2,d,3) 0.1836 0.2435 0.2675 0.2911
Average of models 0.1829 0.2417 0.2644 0.2857

DGP: ARFIMA(2,d,3)

Fitted model: ARFIMA(0,d,0) 0.8950 1.1172 1.0962 1.0785
ARFIMA(1,d,0) 0.7089 1.1121 1.0921 1.0754
ARFIMA(1,d,1) 0.5328 1.0908 1.0854 1.0707
ARFIMA(2,d,3) 0.3360 0.8910 1.0270 1.0671
Average of models 0.3360 0.8910 1.0270 1.0671

aThe parameters used to generate the ARFIMA(0,d,0) process is d = 0.39.
bThe parameters used to generate the ARFIMA(1,d,0) process is d = 0.44 and φ1 = −0.09.
cThe parameters used to generate the ARFIMA(2,d,3) process is d = 0.43, φ1 = −1.05, φ2 = −0.72,

θ1 = 0.97, θ2 = 0.68 and θ3 = −0.06.
dThe unconditional mean of each process is zero, and the standard deviation of the innovation ση is

equal to 0.42.
eEach entry in the table is the average of MSFE over 50 replications.

The main results are summarized in Table 3.4, where each entry is the average of

MSFE over 50 replications for one particular data generating process. The corresponding

graphical representations are in Figures 3.9, 3.10 and 3.11. Some observations from the

table can be summarized as follows.

The true model is usually the best of the candidate models. However, the weighted
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Figure 3.9: Average of MSFE with ARFIMA(0,d,0) being the data generation process
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Figure 3.10: Average of MSFE with ARFIMA(1,d,0) being the data generation process
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Figure 3.11: Average of MSFE with ARFIMA(2,d,3) being the data generation process
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average model has the ability to pick up the best model, by attaching most weight to the

true model in the weighting process. As a result, the MSFE of weighted average is always

close to that of the true model. For example, in the case when ARFIMA(2,d,3) is the

true model, the posterior model probability allocated to ARFIMA(2,d,3) is so close to

one that the weighted average forecast coincides with that of the ARFIMA(2,d,3) model.

The weighted average forecasting even slightly out-performs the true model at the hori-

zons of ten and twenty-step when ARFIMA(0,d,0) is the underlying true process. The

performance of an over-simplified model in dealing with the data generated by a more

complicated model is rather poor for short-term forecasts, as indicated by the fairly large

gap in MSFE between them. The largest gap is observed when ARFIMA(0,d,0) model is

fitted to the data generated by ARFIMA(2,d,3) model for one-step ahead forecast.

The simulation conducted in this section assumes the DGP is one single model. For

the parameters considered, the weighted average model does a reasonably good job in

forecasting at different horizons when mean squared forecasting error is treated as the

loss function. To sum up, both our empirical example and simulation study indicate
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the usefulness of Bayesian model averaging in improving forecasting accuracy at different

horizons.

3.6 Conclusions and Extensions

In this chapter, we conduct a Bayesian model averaging exercise on daily realized

volatility of the Yen/USD exchange rate in the period from January 2003 to August 2008.

We found significant evidence of long memory in volatility when an overall model averaged

across a number of ARFIMA(p,d,q) and ARMA(p,q) specifications are considered. The

increased uncertainty of the posterior density for the averaged memory parameter, accord-

ing to the weights determined by posterior model probabilities, indicates the robustness to

model mis-specification of the averaged model compared with a single model. Statistical

inference obtained from competitive single models tends to provide different pictures of

the posterior density, indicating it is risky to rely on a single model specification. In terms

of forecasting, the average of models provides the most accurate forecasting at long-term

horizons, and it is out-performed only by the single best long memory model at the daily

horizon. No single model remains the best across different horizons considered. A sim-

ulation study is conducted and the results also indicate the risk reductions that can be

achieved by Bayesian model averaging. These observations imply that it is worth the extra

effort to deal with an average of models than a single model.

The models considered in this chapter only deal with ARMA and ARFIMA time series

specifications; an extension of this approach could involve incorporating the feature of

jumps commonly observed in high frequency data (see for example, Barndorff-Nielsen and

Shephard (2004b, 2006)). With this different set of models to be averaged, the performance

of model averaging may be quite different; this is one direction for future study.



Chapter 4
Bayesian Estimation of a Long Memory

Stochastic Volatility Model

4.1 Introduction

A large contribution to the topic of volatility modeling has been produced by stochas-

tic volatility models, where volatility is treated as a latent (state variable), and evolves

according to an assumed data generating process. Under this approach, volatility is un-

observable, but can be extracted from a model of asset returns. The basic stochastic

volatility (SV) model of Taylor (1986) assumes volatility follows an autoregressive (AR)

process of order one, and the autoregressive coefficient is often constrained to be less than

one, to ensure stationarity of volatility. If the coefficient is on the unit boundary, the

model is a random walk SV process. Extensive reviews of SV models can be found in

Taylor (1994), Ghysels et al. (1996) and Shephard (1996). Two extreme values of the

autoregressive coefficient are zero and one, with the former suggesting a volatility process

with no memory and the latter implies that a shock exerts its effect permanently and

volatility is not mean-reverting. Except for these two cases, the strength of persistence in

volatility is determined by the magnitude of the AR coefficient. Most empirical work on

stock and exchange rate returns has found the coefficient to be close to one. In such cases

the SV model appears to resemble a GARCH(1,1) process with the sum of coefficients

66
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close to one. According to the auto-covariance function of a stationary AR process, the

effect of shocks or innovations will die out at an exponential rate, although much empirical

evidence indicates that volatility might possess a longer memory than that described by

an exponentially decaying auto-covariance function. For example, see Ding et al. (1993),

Breidt et al. (1998), Bollerslev and Wright (2000) and Andersen, Bollerslev, Diebold and

Labys (2001); Andersen et al. (2003). Some of these papers use volatility approximations,

such as squared, log squared or absolute daily returns, and others use realized volatility

constructed from intra-day returns. Regardless of the way volatility is measured, results in

these papers suggest that volatility is mean-reverting and highly persistent with autocor-

relations decaying to zero slowly. In other words, volatility appears to have long memory

rather than the short memory characteristic suggested by an autoregressive SV model.

In time series modeling, fractional integration processes have long been employed to

represent long memory, beginning with Hurst (1951) and Granger (1966), with the latter

focusing on economic variables. The extension of short memory SV to long memory SV

models is first proposed by Harvey (1998) and Breidt et al. (1998). Despite the differ-

ent rates of decay of autocorrelations captured by short and long memory specifications,

transitions from stationarity to non-stationarity described by the two processes proceed

in different ways (see Harvey (1998)). Alternative specifications of long memory include

the fractionally integrated GARCH model in Baillie et al. (1996) and the long memory

moving average model in Robinson (2001).

In this chapter, we focus on the models proposed in Harvey (1998) and Breidt et al.

(1998) for their natural conjunction to SV models. Our aim is to provide a Bayesian

treatment and compare the performance of the Bayesian estimators with that of their

classical counterparts. The classical treatment of long memory SV models is extensive,

and includes Bollerslev and Wright (2000), Sun and Phillips (2004), Arteche (2004) and

Andrews and Sun (2004) for semiparametric approaches. For parametric estimation, the

frequency domain method is employed by Harvey (1998) and Breidt et al. (1998), and the

time domain method by Ferraz and Hotta (2007). Semi-parametric methods are robust

to mis-specifications in short-term dynamics of volatility, although they rely heavily on

volatility approximations, such as log squared returns or power transformations of absolute
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returns (see Ding et al. (1993)), which are a noisy approximation in some cases. Less work

has been done on Bayesian inference for long memory SV models: to our knowledge,

the only references are Jensen (2000) and Xu, Liu and Nie (2006) which are based on the

frequency domain methods, and Chan and Giovanni (2000) which is based on time domain

approximation, take a Bayesian approach.

Our decision to take a Bayesian approach is determined by the objectives of SV model-

ing, particularly where latent volatility is of primary interest. The Bayesian methodology

facilities data augmentation by treating volatility as a parameter to be estimated, and

posterior simulation methods, such as Markov chain Monte Carlo (MCMC) simulation,

provide the potential to obtain posterior estimates of volatility by integrating out other

parameters. For classical inference, volatility estimation is usually obtained conditional on

parameter point estimates. To integrate out the inherent uncertainty in point estimates

is not an easy task for the classical method. Our Bayesian estimation is based on a state

space representation of the SV model, with fractional Gaussian noise being approximated

by a moving average process of high order. This treatment is close to that of Chan and Gio-

vanni (2000) but differs in the choice of prior and implementation of simulation algorithms.

We propose to update the parameters of interest in one block, rather than individually, to

improve efficiency in estimation, as it is well recognized that a block updating scheme is

helpful in variance reduction. In particular, a hessian matrix, obtained with quasi maxi-

mum likelihood estimation, is used to construct the proposal density for the random walk

Metropolis-Hastings algorithm, to facilitate MCMC simulation. A Monte Carlo simula-

tion study indicates the performance of the proposed estimator is comparable to that of

classical methods. With small to medium sample sizes, our estimator outperforms the

classical estimates in terms of root mean square error for most of the parameter settings

considered.

In SV models, part of the difficulty in estimation arises because volatility is latent (see

the review in Section 2.4.2). For the long memory SV model considered in this chapter,

log squared returns are treated as a long memory process with additive noise.1 There are

1Hsu and Breidt (2003) conducts Bayesian estimation of fractionally integrated autoregressive and
moving average models with additive noise. Their Bayesian estimation is based on importance sampling.
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two series of random noise to be dealt with under this setup, one is the innovation to latent

volatility and the other is the noise in volatility measurement. The ratio of the variances

of the two random terms, signal-to-noise ratio, is expected to have an effect on estimation

accuracy. So it is desirable to address this question in a Monte Carlo study. As part of our

Monte Carlo exercise, a sensitivity analysis is conducted to examine the impact of varying

parameter values on estimation, the result of which is useful for empirical applications of

the long memory SV model. We argue that the parameter settings in our Monte Carlo

study are of more practical relevance than previous research. For example, the magnitude

of the innovation to volatility is chosen as 1.0 in Breidt et al. (1998), which is much higher

than in most empirical findings. A magnitude of less than 0.5 is not uncommon in practice,

and it is important to select realistic values for parameters when a Monte Carlo study is

conduced.

An important issue in volatility modeling is the choice of sampling frequency, since

prices of financial assets are available at different frequencies, say from tick-by-tick to

yearly. This chapter only considers daily frequency. Most discrete-time SV models are

not closed in the sense that given the same asset, the model estimates of say daily returns

are different from those of the corresponding weekly returns.2 We follow the discussion in

Meddahi and Renault (2004): the long memory SV model is specified for daily frequency by

implicitly assuming that it is the appropriate model for this frequency. This assumption is

consistent with stylized facts of returns observed at daily frequency, and also is the common

approach in practice. Also, to examine a series spanning over almost three decades, as in

our empirical exercise in this chapter, would be infeasible for intra-day returns.

The plan for the remainder of this chapter is as follows. In Sections 4.2 and 4.3 we

discuss the estimation of long memory SV model, from the perspectives of both classical

and Bayesian methods. In Section 4.4, a Monte Carlo simulation experiment is conducted

2As discussed by Bollerslev and Wright (2000), Meddahi and Renault (2004) and references therein, SV
model is not closed under temporal aggregation in the sense that volatility observed at different frequencies
might not be characterized by the same parametric class. According to the definition given in Bollerslev
and Wright (2000), a parametric class of time series model is said to be closed under temporal aggregation
if a parametric model from the same class, but with different parameter values, characterizes the data
generating process across all observation frequencies. The ARMA class of model processes this property,
while common GARCH and SV models are not closed under temporal aggregation. In general, we say
that a model is closed under temporal aggregation if the model keeps the same structure, with possibly
different parameter values for any data frequency (Meddahi and Renault (2004)).
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to examine the performance of different estimators. Section 4.5 presents an example based

on the daily Yen/USD exchange rate series. Our conclusions are found in Section 4.6.

4.2 Long Memory Stochastic Volatility Model

Section 4.2.1 discusses the specification of the long memory SV model. Sections 4.2.2

and 4.2.3 focus on the estimation of long memory SV models, from the perspectives of

time domain and frequency domain respectively.

4.2.1 Specification of the Long Memory Stochastic Volatility Model

Let log(p) denote the log-price of asset, and the continuously compounded return at

time t for t = 1, . . . , T is defined as,

yt = 100× [log(pt)− log(pt−1)] (4.1)

where t is assumed to be of daily frequency. Volatility of asset returns is the concept used

to measure the spread of all possible return outcomes. Both daily return and conditional

volatility change over time. It is well recognized in the literature that volatility is pre-

dictable though daily return is unpredictable. Section 2.4.1.1 in Chapter 2 has discussed

the basic SV model of Taylor (1982, 1986), reproduced here for convenience,

yt = σ exp(ht/2)εt εt ∼ NID(0, 1) (4.2)

ht = δ + φht−1 + ηt, ηt ∼ NID(0, σ2
η) (4.3)

The log volatility ht = log(σt) is assumed to follow a first order autoregressive process.

The log transformation is to ensure positivity of the conditional variance σ2
t . Positive

autocorrelation is one of the stylized facts of volatility, so the sample estimate of φ is

usually found to be positive. Also, it is convenient to assume volatility is stationary by

constraining φ < 1 (see the discussion in Shephard (1996)). One might assume εt and ηt

to be correlated in order to capture the so-call “leverage effect”; in this paper we assume
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Cov(εt, ηt) = 0. This is consistent with the observation that leverage effect in exchange

rate markets is not as pronounced as that in the stock market. The quantity of σ2
η is

termed volatility of volatility. The literature on SV models is extensive; see the review in

Section 2.4.2 in Chapter 2.

In order to incorporate the slowly-decaying autocorrelation in various volatility ap-

proximations, a natural extension to (4.3) is to assume log volatility follows a long memory

process rather than a short memory process, which is found to be consistent with the em-

pirical findings of slow-decaying autocorrelation of various volatility approximations. The

basic long memory SV model proposed by Harvey (1998) assumes log volatility to be

generated by fractional ARFIMA(0,d,0) process3

(1−B)dht = ηt (4.4)

where B is lag operator, and d is the memory parameter. The condition for a fractional

process to be stationary is |d| < 0.5. It is reasonable to further assume autocorrelations of

volatility to be positive by the condition 0 < d < 0.5, which is analogous to the stationarity

assumption usually made in (4.3) where φ is restricted to be positive and smaller than one.

When d is equal to zero, ht is a white noise, representing a process with no memory. The

degree of volatility persistence is suggested by the magnitude of the memory parameter

d. Throughout, we impose the stationarity assumption on volatility by following Harvey

(1998). Accordingly, the evolution of volatility is mean-reverting, which is consistent with

the observations in empirical applications.

One of the appealing features of the long memory process in (4.4) is its parsimony.

The autocorrelation function ρ(k) indicated by the process decays slowly at a hyperbolic

rate, asymptotically proportional to k2d−1 with k being the index of lags. The autocorrela-

tion function decays so slowly that the autocorrelations are not summable in the sense that

Σ∞
k=−∞ρ(k) = ∞. To describe such a slowly decaying autocorrelation is a difficult task for

ARMA(p,q) models because the process needs to be approximated by an ARMA(p,q) pro-

3Long memory has been observed on many economic time series, early evidence can be found in Granger
(1966) who observed that for economic time series, the typical shape of the spectral density is (at least
in good approximation) a function with a pole at the origin, which is a stylized feature of long memory
process.
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cess with high orders of autoregressive and moving-average terms, while the specification

in (4.4) allows the slowly decaying autocorrelations to be fully determined by the memory

parameter. See Beran (1994) for a text-book treatment of long memory processes.

Despite all these desirable properties, exact maximum likelihood estimation of the

long memory SV model is not easy. The reasons are twofold. One is due to the nonlinearity

of (4.2): this is a problem common to the short memory SV model as well. The other is

due to the computational cost in evaluating the exact likelihood function of a long memory

process.4 The natural solution is via approximation.

Let us address the two difficulties in order. The nonlinearity in (4.2) can be dealt

with by linearization as

log(y2t ) = µ+ ht + ξt (4.5)

where µ = log(σ2) + E[log(ε2t )] with E[log(ε2t )] = −1.27. The term of ξt is the square of

Gaussian noise, which is non-Gaussian with zero mean and variance equal to V ar[log(ε2t )] =

π2/2.5 To reduce the number of parameters involved in the numerical optimization, µ can

be estimated from the sample mean of log(y2t ). As argued by Yajima (1988), the loss in

efficiency is small if the sample mean is used to estimate the unconditional mean.6 In

particular, let ωt denote the demeaned series of log(y2t ). The long memory SV model is

then transformed into

ωt = ht + ξt (4.6)

ht = (1−B)−dηt (4.7)

The expected value of the noise term ξt is zero and the variance is π2/2. However, the

distribution of ξt is not normal. In the literature on SV model estimation, the ways to

4Long memory is a process with infinite memory, as a result of which the corresponding covariance
matrix used to evaluate likelihood function is of order T × T , with large sample size typically used in
financial econometric applications, the burden on estimation is not trivial.

5Given normality assumption of εt, log(ε
2
t ) follows log chi-square log(χ2

1) distribution, which is nega-
tively skewed, with E[log(χ2

1)] = −1.27 and var[log(χ2
1)] = π2/2.

6According to the simulation results of short memory SV model in Breidt and Carriquiry (1996), the
reduction in number of parameters to be estimated also helps to improve the performance of numerical
optimization.
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handle this non-normality can be summarized as:

1. Approximate the distribution of ξt by a normal distribution with the same mean and

variance. This is the method proposed in Harvey et al. (1994).

2. Use a mixture of normal distributions to approximate the distribution of ξt as in

Kim et al. (1998).

3. Evaluate the exact likelihood of (4.2) via Monte Carlo simulation as in Durbin and

Koopman (1997) and Jungbacker and Koopman (2007).

We take the first approach for two reasons: compared with the other two methods, which

are relatively more complicated and computationally intensive, especially the method of

likelihood simulation, the normal approximation can be easily implemented. Also, the

normal approximation provides estimators which are consistent as shown by Harvey et al.

(1994). We leave the relaxation of this normality assumption as the subject of future

research.7

If the volatility is observable, or can be treated as observed as in the methodology

taken by realized volatility, the method of Sowell (1992) can be applied to evaluate the

exact likelihood function of the long memory process. However, this method is infeasible

in the case of SV estimation since the long memory process of ht is unobservable and

it is only observed through the time series of ωt. The solution to this problem is to

approximate the likelihood function. The likelihood function of the long memory SV

model can be approximated according to its frequency domain representation or its time

domain representation. The estimation method proposed in Harvey (1998) and Breidt

et al. (1998) are based on the frequency domain approximation, which is to be discussed

in Section 4.2.2. Our Bayesian method is based on the time domain approximation with

relevant details documented in Section 4.2.3.

7There is a large literature in the semi-parametric estimation of long memory SV models. One of the
common approaches taken by semi-parametric estimation is to estimate the memory parameter of ωt or
log(y2

t ) by the method proposed by Geweke and Porter-Hudak (1983). One of the appealing features of the
semi-parametric method is that it is robust to the deviation from the normality assumption of ξt. However,
this method suffers from a drawback of underestimating the memory parameter as is well documented in
the literature. We conduct a Monte Carlo exercise to gauge the performance of the GPH estimator when it
is used to estimate the memory parameter of long memory SV model, the downward bias is obvious even
when the sample size is reasonably large. The simulation results are available upon request.
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In the following sections, the parameters of the long memory SV model to be estimated

are denoted as β = [d, σ2
η]

′.

4.2.2 Frequency Domain QML Estimation of Long Memory SV Model

Spectral estimation is based on frequency domain quasi-maximum likelihood (QML)

estimation proposed by Whittle (1953) and introduced in a long memory context by Fox

and Taqqu (1986). The implementation of this method is computationally simple.

Given the stationarity assumption of the process, its autocorrelation function carries

the same information as its spectral density. Accordingly, the likelihood function to be

optimized can be constructed in the form of a spectral likelihood function in the frequency

domain. As argued in Harvey (1998), the simplicity of this approach is a great advantage,

in that QML estimation in the frequency domain is no more difficult than it is in the short

memory SV case.

Based on discrete Whittle approximation, the frequency domain (quasi) log-likelihood

function of ωt is,

logLW (β) = −2πT−1
T ?∑

j=1

{log f(λj,T ;β)− I(λj,T )

f(λj,T ;β)
} (4.8)

where T ? denotes the integer part of (T −1)/2, and I(λj,T ) is the normalized periodogram

ordinate which can be calculated by the fast Fourier transformation. The term of λj,T

denotes the jth Fourier frequency as

λj,T = 2πT−1, j = 1, . . . , T ? (4.9)

and f(λj,T ;β) denotes the spectral generating function for ωt with the form of

f(λj,T ;β) = σ2
η[2(1− cosλj,T )]

−d + σ2
ξ (4.10)

where σ2
ξ = π2/2. See Beran (1994, Ch. 6) for general justification of the discrete Whittle

approximation.
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The frequency domain QML estimators of β are given by the values maximizing

(4.8) and numerical optimization is required. Breidt et al. (1998, Appendix A) provides

the proof of strong consistency for spectral likelihood estimators, though the asymptotic

distribution of the estimator is unknown.

4.2.3 Time Domain QML Estimation of the Long Memory SV Model

QML estimation in the time domain relies on the representation of (4.6) and (4.7)

in the state space form (SSF). Under the setting of state space modeling, the series of ht

are treated as latent variables. Equation (4.6) is termed as the observation equation, or

measurement equation, indicating the fact the latent variables cannot be observed directly,

but need to be extracted from the measurable ωt. A large body of the SV modeling

literature is under the setting of the state space form. See, for example, the early work of

Harvey et al. (1994) on QML estimation of the short memory SV model, and more recent

work on Bayesian inference presented in Kim et al. (1998) with the applications of MCMC

simulation.

For a long memory SV model, QML estimation in the time domain becomes relatively

more complicated compared with that discussed in Section 4.2.2. This is because the SSF

can only be used by expressing ht as a moving average or autoregressive process truncated

at a suitably high lag. As addressed by Harvey (1998), the computational cost of the

time domain QML is increased, though the initial state covariance matrix can be easily

constructed, and the truncation does not affect the asymptotic properties of the estimators.

Given the rapid improvements in modern computing facilities, the increased computational

burden introduced by the truncations at high lag can be easily dealt with. Therefore

we discuss in details the estimation of QML in the time domain in this section. Our

simulation results to be presented in Section 4.4 indicate that the time domain estimator’s

performance is comparable to that of the frequency method. In terms of computing time

on numerical optimizations, no great differences are observed between the two methods.

Another reason we discuss the time domain method is that it is the basis on which we

evaluate the likelihood function in our Bayesian method.



4.2. LONG MEMORY STOCHASTIC VOLATILITY MODEL 76

4.2.3.1 The State Space Representation of Long Memory SV Model

The basic idea for the time domain method is to approximate the fractional Gaussian

process in (4.7) by an ARMA representation. In particular, ht can be represented as

an infinite moving average process with coefficients explicitly determined by its memory

parameter8

ht = (1−B)−dηt =
∞∑

i=0

ϕiB
iηt (4.11)

where the fractional differencing operator is defined through the formal binomial series

expansion

(1−B)−d =
∞∑

i=0

Γ(i+ d)

Γ(i+ 1)Γ(d)
Bi

Accordingly,

ϕi =
Γ(i+ d)

Γ(i+ 1)Γ(d)
=

∏

0<l≤i

l − 1 + d

l
, i = 1, 2, . . . , (4.12)

with ϕ0 = 1. If the value of d is fractional, the summation in (4.11) is genuinely over an

infinite number of indices. It is infeasible to useMA(∞), so a natural solution is truncation

at a suitably high lag. For a fractional process, according to the asymptotic properties

proved by Chan and Palma (1998), the truncated lag does not have to be very high. Their

simulation results indicate even an order less than 10 can achieve a reasonably accurate

estimate for a long memory process. Hence it appears realistic to assume their theoretical

results are applicable to the case when the long memory process is latent. Suppose (4.11)

is truncated at lag m as

ht = ηt + ϕ1ηt−1 + ϕ2ηt−2 + . . .+ ϕmηt−m (4.13)

8Fractional Gaussian noise can be equivalently expressed as an infinite autoregressive (AR) process.
We conducted a small-scale Monte Carlo experiment and the results indicate that the moving average rep-
resentation provides better estimates than the autoregressive case. This is consistent with the observations
in Brockwell and Davis (1991, Ch. 12).
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In this way, ht is treated as a linear combination of past innovations. The difference

between an ordinary moving average time series and ht is that the latter is not observed

directly, but observed with additive noise ξt. This provides a standard application of

state space modeling framework. Join the measurement equation (4.6) with the MA

approximation of ht,

ωt = ht + ξt

ht = ηt + ϕ1ηt−1 + ϕ2ηt−2 + . . .+ ϕmηt−m

and the second equation is called the state equation as it specifies the evolution of the

latent variable (or state variable) ht. The two equations can be rewritten as9

ωt =

[
ϕm . . . ϕ2 ϕ1 1

]
xt + ξt

xt =




0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

0 0 . . . 0



xt−1 +




0

0

...

1



ηt

(4.14)

for t = 1, 2, . . . , T . The state vector

xt =

[
νt−m . . . νt−2 νt−1 νt

]′

has m+1 dimensions. The state is initialized with x0 following a normal distribution with

zero mean and variance matrix of σ2
ηIm+1, with Im+1 denoting (m+1)× (m+1) identity

matrix.10

Under the normality assumption of the error terms ξt and ηt, the state space model in

(4.14) is linear and Gaussian, the likelihood evaluation of which is readily available by the

9The state space representation for a moving average process is not unique, see, for example, Brockwell
and Davis (1991, Ch. 12) and Hamilton (1994, Ch. 13).

10Alternatively, one may truncate the differenced process (1 − B)ht rather than ht as discussed in
Chan and Palma (1998), since the moving average coefficients of which converges to zero faster than the
coefficients of ϕi. We did not take this approach for the easy of interpreting parameters.
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celebrated Kalman filter. The Kalman filter algorithms are provided in the next section

for convenience.

4.2.3.2 Kalman Recursions

For most applications of state space modeling, the main focus is on statistical infer-

ence for the latent state. For example, the ultimate goal of most volatility modeling might

be the volatility extraction and forecasting, because volatility is such an important input

to financial applications. This provides an attraction of the time domain method over the

frequency domain method. Volatility extraction and prediction can be conducted by rou-

tine exercises in state space models, which are the by-products of likelihood evaluation.11

To discuss the Kalman filter in a generic form, the state space form of the long

memory SV model in (4.14) can be expressed as

ωt = Φxt + ξt, ξt ∼ NID(0, σ2
ξ ) observation equation

xt = Ωxt−1 +Ψηt, ηt ∼ NID(0, σ2
η) state equation

(4.15)

where Φ is a row vector which is conformable to the state vector, and ξt is serially un-

correlated with E(ξt) = 0 and V ar(ξt) = σ2
ξ . The state variable xt is unobservable, the

evolution of which is characterized by the state equation where Ω is a square matrix con-

formable to the state vector, and Ψ is row vector with the same dimension as xt. The state

disturbance is serially uncorrelated with E(ηt) = 0, V ar(ηt) = σ2
η and E(ξtηt) = 0. To

complete state space specification, one need to assume the initial state x0 with E(x0) = m0

and V ar(x0) = P0.

Suppose the aim of the analysis is to infer the properties of ht from the data ω1,...,T =

{ω1, ω2, . . . , ωT } and the model. Let ω1,...,t = {ω1, ω2, . . . , ωt} be the set of observations

available at time t with t < T . Three types of state inferences are considered in state

11Several statistics and econometric software have add-in packages to conduct the state filtering and
smoothing algorithms for linear and Gaussian state space models. For example, EViews, Ox and the free
GNU project R.
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space modeling:

• State filtering

To filter means to uncover xt conditional on ω1,...,t. It is concerned with updating the

knowledge of the state each time a new observation ωt is brought in. The conditional

distribution of the state vector is normal given linear and Gaussian assumptions.

Thus it is fully characterized by its first two moments. At time t− 1, the mean and

covariance of the one-step ahead prediction for the state vector are

E(xt|ω1,...,t−1) = xt|t−1 = Ωxt−1,

V ar(xt|ω1,...,t−1) = Pt|t−1 = ΩPt−1Ω
′ +Ψσ2

ηΨ
′

assuming that the model is known, including all parameters. As a new observation

ωt becomes available, the mean and covariance matrix are updated as

E(xt|ω1,...,t) = xt = xt|t−1 + Pt|t−1Φ
′F−1

t (ωt − Φxt|t−1)

V ar(xt|ω1,...,t) = Pt = Pt|t−1 − Pt|t−1Φ
′F−1

t ΦPt|t−1, with Ft = ΦPt|t−1Φ
′ + σ2

ξ .

Derivations of the above equations follow directly from standard results on the mul-

tivariate normal distribution. Kalman filtering is recursive in the sense that it runs

for all observations through t = 1, . . . , T . See Harvey (1989, pp. 105-106).

• State prediction

Prediction is concerned with forecasting ωt+h conditional on ω1,...,t, for h > 0. At

time t − 1, the one-step ahead predictive distribution of ωt is normal with mean

ω̂t|t−1 = Φxt|t−1 and covariance matrix Ft. The corresponding prediction error is

υt = ωt − ω̂t|t−1, which is serially independent distributed as υt ∼ NID(0, Ft).

The likelihood function for the state space model is constructed based on the one-step

ahead prediction errors as

logL(β) = −T

2
log 2π − 1

2

T∑

t=1

logFt − 1

2

T∑

t=1

υ2t /Ft (4.16)
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and this is the objective function to be optimized for the QML estimates of β.

• State smoothing

Smoothing means to estimate xt given ω1,...,T . A smoothing algorithm is a backward

recursion. Given the filtered state vector, the smoothed state vector is obtained via

a recursion run for t = T, . . . , 1. See Harvey (1989, p. 154).

The algorithms discussed here appear cumbersome. However, the implementation

of them is straightforward with add-on packages, such as the free Ox package SsfPack

developed by Koopman, Shephard and Doornik (1998). In this paper, the likelihood

evaluation is obtained via SsfPack.12 Durbin and Koopman (2001a) provide a text book

treatment of time series analysis by state space methods.

The limitation of Kalman filter is that it is only applicable to linear and Gaussian state

space model. There is no easy generalization when the linearity and normality assumptions

do not hold. A growing body of literature in state space modeling has been addressing

non-linear and/or non-Gaussian applications, for example, the sequential Monte Carlo

method of particle filtering. See the recent book-length treatment in Doucet, de Freitas

and Gordon (2001). In our example, a possible extension can be made by dealing with

yt = σ exp(ht/2)εt

ht = ηt + ϕ1ηt−1 + ϕ2ηt−2 + . . .+ ϕmηt−m

where the state equation is linear while the observation equation is non-linear. In principle,

the likelihood of this state space form can be exactly evaluated by a simulation method,

such as the importance sampling method proposed by Sandmann and Koopman (1998) in

the context of the short memory SV model.13 However, the results we have obtained so

far are not encouraging; this we leave for future research.

12The SsfPack package applies the smoothing algorithms proposed by de Jong and Shephard (1995) to
obtain smoothed estimates of the state vector.

13Thanks to Koopman for providing us with the Ox code for their paper.
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4.3 Bayesian Estimation

Bayesian inference is concerned with the posterior distributions of the parameters

given the observed data. The analytical forms of posterior distributions are rarely avail-

able in most applications. Our Bayesian method is based on the state-space form of

(4.15). In this case, the state space form appears linear and Gaussian, while the memory

parameter enters the state equation in a non-linear fashion. Each of the moving average

coefficients is a non-linear transformation of the memory parameter. These preclude the

possibility of obtaining analytic forms of the joint posterior distribution. The solution is to

draw a sample from the posterior distribution with a reasonably large sample size, rather

than derive the closed distribution. Statistical inference is then made upon these large

number of draws. For example, the sample mean can be treated as the posterior mean

of the parameter of interest. The density estimates for the sample can be treated as an

approximation to the posterior density of interest. One popular device for obtaining such

large numbers of draws which can be treated as the sample from the posterior distribution

is MCMC simulation.14

The basic strategy to conduct Bayesian state space modeling is through data augmen-

tation (Tanner and Wong (1987)) by treating state variables as unknown parameters. Let

x = {x1, x2, . . . , xT } denote the matrix of state variables, each element of which denotes

the state vector at time t for t = 1, 2, . . . , T . Then the parameters to be estimated are

augmented to x and β. The reason for the argumentation is that it facilitates the im-

plementation of MCMC simulation, in particular, the Gibbs sampler (Gelfand and Smith

(1990)).

According to Bayes’ rule, the joint posterior distribution of x and β conditional on

ω1,...,T = {ω1, . . . , ωT } is

p(x, β|ω1,...,T ) ∝ p(ω1,...,T |x, β)p(x|β)p(β)

where p(β) is the prior, defining the prior belief on the parameters before ω1,...,T are

14Gamerman and Lopes (2006) provides an excellent introductory to MCMC simulation.
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available. The posterior simulation can be achieved by applying a Gibbs-based algorithm,

sampling iteratively from the two conditionals, p(x|β, ω1,...,T ) and p(β|x, ω1,...,T ).
15 In

particular, suppose the MCMC chain is initialized with (β(0), x(0)). Given the MCMC

output obtained at the mth iteration (β(m), x(m)), we repeatedly cycle through the two

simulation steps:

Step 1. generate x(m+1) from p(x|β(m), ω1,...,T )

Step 2. generate β(m+1) from p(β|x(m+1), ω1,...,T )

for m = 1, 2, . . .. After discarding a large number of burn-in iterations the samples of

x and β can be treated as being generated from the marginal posteriors of p(x|ω1,...,T )

and p(β|ω1,...,T ). The Gibbs sampler helps to reduce the parameter dimensions of the

distributions to be dealt with by iterating between the two full conditionals. This also

indicates the advantage of MCMC method: volatility estimates are the by-product of

parameter estimation. The focus of some applications might be volatility rather than

the parameters. For the classical method, however, the smoothed estimates of volatility

are conditional on the QML point estimates. Inference based on p(ht|ω1,...,T ) is less risky

compared with the classical counterpart because the latter does not integrate out the

uncertainty of parameter estimates.

4.3.1 Simulations from Conditionals

We now discuss how to simulate from the two conditionals. To simulate from the

conditional p(x|β, ω1,...,T ) is a routine exercise in Bayesian state space modeling, because

the state space form in (4.15) is linear and Gaussian conditional on the value of β. This can

be done via the efficient forward filtering, backward sampling algorithm proposed by Carter

and Kohn (1994) and Frühwirth-Schnatter (1994). The advantage of this algorithm is that

the latent variables (x1, x2, . . . , xT ) can be updated in one block rather than a single-state

updating scheme. For SV models, volatility is typically highly persistent. Thus the single-

move sampler is of low efficiency given the highly correlated state variables as discussed

15The distributions of p(x|β, ω1,...,T ) and p(β|x, ω1,...,T ) are full conditional distributions, i.e., condi-
tional distributions given the data and the other parameters.
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in Carter and Kohn (1994) and Kim et al. (1998).16

The parameters d and σ2
η can be drawn from their full conditionals separately. By

choosing the prior of σ2
η properly, say, inverse Gamma distribution, the full conditional

distribution of ση is of closed form, the simulation from which can be easily implemented.

The full conditional of d is not closed since the the moving average coefficients are non-

linear transformations of d. Metropolis Hastings algorithm (Hastings (1970)) is useful for

dealing with this difficulty. However, the two parameter estimates appear to be correlated

based on our simulation results. Therefore, we propose updating the two parameters in

one block with Random Walk Chain Metropolis-Hastings algorithm, in an attempt to

improve convergence of the MCMC chain.

We choose a noninformative prior as

p(d, σ2
η) ∝

1

σ2
η

× Cd

with Cd denoting the stationary region of d ∈ (0, 0.5). To ensure positivity and stationarity,

parameters d and σ2
η are transformed into unconstrained parameters β̃ = [d̃, σ̃2

η]
′ with

d̃ = log
2d

1− 2d
σ̃2
η = log(σ2

η)

Since simulation from the density p(β̃|x, ω1,...,T ) is impractical, we simulate from a

proposal density q(·) which permits simulation while at the same time being as close

as possible to p(β̃|x, ω1,...,T ). This proposal density is generally referred to as candidate

generating density. We correct for the fact that the candidate density is different from the

posterior by not accepting all the candidate’s draws. To illustrate, suppose, at the mth

iteration, to move the chain to a new value of β̃,

a. Generate β̃? from the candidate density q(β̃(m−1), ·).

b. Accept β̃? with the probability α = min
{

p(β̃?|x, ω1,...,T )

p(β̃(m−1)|x, ω1,...,T )
, 1
}
.

16Kim et al. (1998) applies this algorithm conditional on additional latent indicator variables. Jacquier
et al. (1994), one of the earliest papers on Bayesian estimation of SV models, is based on a single-state
updating schemed.
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The second step is performed after independently generating u from Uniform(0, 1). If

u ≤ α, β̃? is accepted and the MCMC chain is updated as β̃(m) = β̃?. If u > α, β̃? is

rejected and β̃(m) = β̃(m−1). Neglecting constant terms, the logarithm of p(β̃|x, ω1,...,T ) is

log p(β̃|x, ω1,...,T ) = logL
(
d, σ2

η

)
+ d̃− 2 log[1 + exp(d̃)]

where logL(·) is evaluated via (4.16).

Under mild regularity conditions, the MCMC chain constructed this way will converge

to the equilibrium distribution of p(β̃|x, ω1,...,T ). (See Gamerman and Lopes (2006, Ch. 6)

for detailed discussions on Metropolis-Hastings and Random Walk Chain Metropolis-

Hastings algorithms.) A good choice of the candidate density is helpful in speeding up

MCMC convergence. We choose the following candidate density for its simplicity

β̃? = β̃(m−1) + cτ, τ ∼ N(0, V )

where c is a scale constant and the random increment τ follows a bivariate normal distri-

bution. This option is implemented in many practical applications of Metropolis Hastings

algorithms, see, for example, Müller (1991). We choose V as the negative inverse Hessian

matrix obtained from maximizing the likelihood function of (4.16). In terms of initializa-

tions, the MCMC chain is initialized by the values at which V is obtained, and the initial

state x0 is drawn from the unconditional distribution of the state variable.

The value of c is fine-tuned so that a reasonable acceptance rate can be achieved.

There are no universal rules to determine the optimal acceptance rate for the random

walk chain. Roberts, Gelman and Gilks (1997) suggest that if the target and candidate

densities are normal, the optimal acceptance rate be around 45% for one-dimension prob-

lems, around 25% in as many as 6 dimensions and approximately 23% as the number

of dimensions approaches infinity. The optimal rate recommended by Müller (1991) is

around 50%.17 These figures serve as rough guides in our analysis.

This completes the details of the implementation of the Metropolis-within-Gibbs al-

17See the discussion in Chib and Greenberg (1995).
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gorithm for our Bayesian estimation of the long memory SV model.

4.3.2 Diagnostics in MCMC Convergence

Convergence is an important aspect of MCMC estimation. According to the theory

of Markov chains, our MCMC chain is expected to eventually converge to the equilibrium

whose stationary distribution is our target distribution, say, the posterior distribution. A

natural question to ask is: at what point do we know that the chain has converged to

the stationary distribution? In other words, how do we choose the length of the burn-in

period. The objective of MCMC convergence diagnostics is to see whether the estimated

results are reliable. Cowles and Carlin (1996) provides a detailed review and comparisons

of different diagnostics. Gilks, Richardson and Spiegelhalter (1996, Ch. 8) and Zellner

and Min (1995) are also important references, with the latter focusing on convergence

criteria for the Gibbs sampler. Koop (2003, section 4.2.4) also provides an accessible

introduction.18 We discuss some commonly used diagnostics below.

Visual inspection We can see how well the chain behaves through visual inspection of

the trace plot for every parameter. A trace plot is the time series plot of the draw of the

parameters at each iteration. We can see whether our chain gets stuck in certain areas of

the parameter space because the MCMC chain is expected to explore the parameter space

thoroughly so that a good picture of the posterior density is obtained.

Autocorrelation We can examine the autocorrelations between the draws of a MCMC

chain. This is similar to examine the ACF plot of a time series to see whether the series

appears to be stationary or non-stationary. The draws between consecutive iterations

of the chains may be highly correlated; for example in the case of Metropolis-Hastings

sampler, whether to accept a candidate draw is largely dependent on the draw obtained

from the previous iteration. However, if autocorrelations are high even at large lags, this

indicates a high degree of correlation between draws. With slow mixing of the chain, a

18Most MCMC diagnostics are helpful in detecting obvious nonstationarity but non-obvious nonstation-
arity. See the intuitive discussion on http://www.stat.umn.edu/∼charlie/mcmc/diag.html.
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greater number of iterations are required to obtain reliable result on the posterior density.

Tests There are some formal tests we can perform to evaluate whether the chain appears

to have converged. Popular tests include the Gelman and Rubin diagnostic (Gelman and

Rubin (1992)) and the Geweke diagnostic (Geweke (1992)). The Gelman and Rubin diag-

nostic requires one to run more than two MCMC chains parallel, and then compare the

within-chain and between-chain variation. The basic logic underlying the Geweke diagnos-

tic test is that if the chain converges to the stationary distribution (the null hypothesis),

the means of two non-overlapping parts taken from the chain should be equal. A signifi-

cant difference between means indicates the two parts of the chain are not from the same

distribution, accordingly, the equilibrium of the Markov chain has not been reached. The

test is similar to the test of difference in means of two populations. However, the test

has to take into account sample autocorrelation since the draws of the MCMC chains are

not iid. The Geweke test estimates the standard error from the spectral density at zero

frequency to adjust for any autocorrelation. Geweke’s statistic has an asymptotically stan-

dard normal distribution, and the test statistic is a standard Z-score. We use this test in

the Monte Carlo exercise and empirical application in this chapter due to its simplicity.19

4.4 Monte Carlo Experiment

This section reports on a Monte Carlo study to evaluate the performances of the

estimators discussed so far: frequency domain QML, time domain QML and Bayesian

method. Frequency QML serves as the benchmark when comparisons are made since it is

one of the most commonly used parametric methods in the estimation of the long memory

SV model. The posterior mean calculated via the Bayesian method is compared with

QMLs.

Besides these three methods, we also consider the Geweke-Porter-Hudak (GPH) es-

19Some MCMC diagnostics, for example, the test proposed in Kim et al. (1998), lack asymptotic critical
values of the test statistics. They are useful but less feasible to be implemented when a large number of
Monte Carlo replications are conducted and the convergence of each replication needs to be checked. The
Geweke test is implemented by the add-in package coda in R in this chapter.
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timator (Geweke and Porter-Hudak (1983)), since this is one of leading semiparametric

estimators of long memory in volatility and has been studied in detail for linear long-

memory time series. The GPH estimator is robust to model misspecification of short-term

dynamics, and also invariant to the mean of the time series to be estimated since it is

based on the log periodogram regression at nonzero Fourier frequencies. But it cannot

provide an estimator of ση. As discussed by a number of papers, see for example, An-

dersen and Bollerslev (1997a) and Deo and Hurvich (2001, 2003), for the long memory

SV model specified in (4.4), the correlations of the absolute returns raised to any power

r have hyperbolic decay and always decay at the same rate which is governed by d. In

other words, any positive power of |yt| possesses long memory with the same value of d in

(4.4). In this regard, the memory parameter estimated from these power transformations

can provide a consistent estimator of d. According to the linearization in (4.5), log(y2t )

has the same memory parameter as ht. Therefore, some studies also use log(y2t ) as the

volatility approximation to obtain the GPH estimator of d.

One practical issue with the GPH estimator is the choice of bandwidth m and there

is no universally accepted rule for determining the optimal value of m in the literature.

In our simulation studies, we try the values of (0.3, 0.4, . . ., 0.8). The choice of m = 0.5

appears to provide a reasonable tradeoff between bias and variance. In terms of the choice

of volatility approximation, we experiment with log(y2t ) and |yt|r with a range of the

values of r as (0.5, 0.75, 1, 1.25, 2). Our simulation results indicate the performances of

the various transformations are largely similar, although the case with r = 1 appears to

be better in general. In some cases, for a given value of m, the squared returns show the

least persistence. This is consistent with other observations in the literature (see Deo and

Hurvich (2003)). Further discussion around the use of the GPH estimator in a volatility

context can be found in Bollerslev and Wright (2000) and Taylor (2005, Ch. 12). In the

following discussions of the simulation results, we focus on the GPH estimator on |yt| with
m = 0.3 and 0.5. The results for other scenarios are available on request.
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4.4.1 Simulation Design

The assumptions about parameters that underly classical and Bayesian methods differ

greatly: classical methods treat a parameter, say, β as a fixed but unknown quantity, while

Bayesians assume β is a random quantity. In this regard, posterior means are not expected

to have identical repeated frequency behavior to those of QML estimators.20 As noted in

Shephard (1996), the comparison of estimators based on simulations implicitly treats the

Bayesian method as an empirical Bayes procedure by treating the mean of the posterior

distribution as an estimator of β. The intention of our simulation study is to compare the

performance of the proposed Bayesian point estimator to that of the classical counterparts.

The following parameter values are considered:

d = 0.3 : ση = 0.2, ση = 0.5, ση = 1

d = 0.4 : ση = 0.2, ση = 0.5, ση = 1

with the scale parameter σ = 1 in all cases. The values of the parameters are chosen

primarily based on empirical evidence, where typical estimates of d for volatility are around

0.4. It is desirable to choose the values of ση so they are empirically realistic, as our

simulation study indicates that its magnitude has an effect on the performance of each

estimator. The three values considered are according to the following reasoning: in the

simulation study of Breidt et al. (1998), only the case of ση = 1 is considered, while this

value is somewhat larger than the commonly observed values in practice, as noted in Pérez

and Ruiz (2001). The value of ση = 0.5 is chosen because this is the benchmark value used

in Bollerslev and Wright (2000) when the long memory SV model is considered. Finally, it

is not uncommon for estimates of ση to be around 0.2 when the short memory SV model

is estimated in practice.

Sample sizes of 2000, 4000 and 8000 are considered. The simulation of the fractional

Gaussian process and the GPH estimates are obtained via the fracdiff package in R. For

each estimation method, a total of 1000 replications is conducted given a set of parameter

values and sample size. The order of moving average approximation to fractional noise is

20Posterior means with proper diffuse priors tend to behave similar to MLEs when sample size is large.
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chosen as 20 for the state-space representation of long memory SV model.21 The burn-in

period and iterations for MCMC chains are 1000 and 4000 respectively.22

4.4.2 Simulation Results

Simulation results are summarized in Tables 4.1 and 4.2, where the bias and root

mean squared error (RMSE) of each method are reported, with Bias(β̂) = β − E[β̂] and

MSE(β̂) = E[(β − β̂)
2
]. The estimated densities of the point estimators and posterior

means are plotted in Figures 4.1-4.6. Note that the estimates of ση are not available for

the GPH method.

Let us first look at the convergence in estimation before we discuss the tables and

figures. MCMC convergence is considered by the Geweke test and visual inspection on a

Markov chain. Whenever a Geweke diagnostic test is conducted, we follow the convention

of testing for equality of the means of the first 10% and the last 50% of a Markov chain.

We conduct diagnostics for d and ση for all 1000 replications. The results from visual

inspection and the Geweke test are largely consistent. The magnitudes of d and ση play

a role in convergence for the parameters considered. With ση = 0.5 and 1, there is

little difficulty in achieving convergence regardless of the value of d and sample size. The

corresponding results of MCMC and other methods, which are tabulated in the middle

and bottom panels in Tables 4.1 and 4.2, are based on 1000 replications.

21We also try the value of 30 with a small scale simulation study, there is no great improvement observed.
However, the choice of 30 significantly increases computing time.

22The lengths of burn-in period and MCMC iterations are largely based on computation cost. With
total replications of 1000×3×6 for each method, the computing time, especially for MCMC method, is not
a trivial factor. For most replications, the MCMC chain appears well-behaved after the chosen burn-in
period, indicating the choice is reasonable. Time domain QML and Bayesian estimations are conducted
with Ox and make use of the state space modeling package SsfPack. The Ox maximization package is
used for time domain QML. Frequency domain QML is conducted in R. The BFGS algorithm is chosen for
numerical optimization. A summary of computing time (in hour) for each method with 1000 replications
is provided here for referencee:

T=2000 T=4000 T=8000

QML (frequency domain) 0.18hr 0.37 1.75
QML (time domain) 8 10 13.5
Bayesian (MCMC) 500 667 1050

These numbers are provided as rough guides, and there is certainly room for improvement especially for
Bayesian methods, for example, choosing software more computationally efficient such as C++, or using
dynamic link library, which we will not pursue here. All the simulations and computations are run on the
Monash Sun Grid (MSG), which facilitates parallel computing.
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Poor convergence is observed when ση = 0.2 regardless of the magnitude of d, although

the convergence is better with higher value of d. To illustrate, in the scenario of ση = 0.2

and d = 0.3, the number of converged MCMC chains of 1000 replications are 95, 123 and

157 when T = 2000, 4000, 8000 respectively; when ση = 0.2 and d = 0.4, the number of

converged MCMC chains of 1000 replications are 153, 232 and 362 when T = 2000, 4000,

8000 respectively. The results reported for MCMC method (the top panels in Tables 4.1

and 4.2) are based on these converged replications, and the results of other methods are

based on 1000 replications.23 For both the frequency and time domain QMLEs, numerical

optimizations can be obtained for each of the 1000 replications. However, difficulty in

estimation is implied by the observation that numerical optimizations frequently converge

to the parameter boundaries, as shown in the density plots in Figures 4.1 and 4.4. For

example, the estimated density of d for each sample size with ση = 0.2 has a global mode

which is on the lower or upper boundary, i.e. 0 or 0.5.

The difficulty in estimation when ση = 0.2 is also seen in the QMLEs being sensitive

to the initial values of optimization. The results reported in Tables 4.1 and 4.2 are obtained

with initial values of d0 = 0.3 when the true value of d is 0.4, and d0 = 0.4 with the true

value being 0.3, and ση = 0.6 in all the cases. A Monte Carlo exercise is also conducted

in exactly the same way but with the true parameters used as initial values.24 No obvious

difference is observed when ση = 0.5 and 1. For ση = 0.2, both bias and RMSE for QMLEs

decrease when optimizations are initialized with the true values, while the magnitude of the

decrease becomes negligible as sample size increases. Compared with QMLEs, Bayesian

methods are not sensitive to initial values in terms of bias and RMSE of posterior means,

although the proportions of converged chains increases with good initial values.

In general, the performance of each method improves as the magnitude of ση increases

given the same memory parameter. Both the bias and RMSE decrease as ση increases in

Tables 4.1 and 4.2. Given the same value of ση except when ση = 0.2, all the estimators

except the GPH estimator improve as the value of d increases. These observations are

23The results of all the methods based on the replications when MCMC chain converges are tabulated
in Table 4.3. We will discuss these results later.

24The tables and figures obtained when true parameter values are used for initializations are not reported
here in order to save space, and they are available on request.
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Table 4.1: Bias and RMSE for d and ση with true value of d = 0.3

Parameters d ση

d=0.3 Bias RMSE Bias RMSE

ση = 0.2 a T=2000 QML (frequency domain) 0.1966 0.2454 -0.0579 0.2636

QML (time domain) 0.0523 0.1711 -0.0455 0.2563

Bayesian (MCMC) 0.0900 0.1113 -0.2933 0.3559

GPH (m=0.5) 0.2292 0.2412 — —

T=4000 QML (frequency domain) 0.1915 0.2415 -0.0278 0.2189

QML (time domain) 0.0351 0.1728 -0.0208 0.2117

Bayesian (MCMC) 0.0781 0.1075 -0.2016 0.2491

GPH (m=0.5) 0.2298 0.2383 — —

T=8000 QML (frequency domain) 0.1675 0.2259 -0.0119 0.1838

QML (time domain) 0.0195 0.1699 -0.0158 0.1756

Bayesian (MCMC) 0.0752 0.1109 -0.1591 0.1961

GPH (m=0.5) 0.2273 0.2343 — —

ση = 0.5 T=2000 QML (frequency domain) 0.0224 0.1438 0.0058 0.2271

QML (time domain) -0.0048 0.1568 0.0028 0.2180

Bayesian (MCMC) 0.0290 0.0817 -0.0554 0.1700

GPH (m=0.5) 0.1501 0.1798 — —

T=4000 QML (frequency domain) 0.0014 0.1000 0.0020 0.1688

QML (time domain) -0.0272 0.1272 0.0061 0.1696

Bayesian (MCMC) 0.0010 0.0831 -0.0075 0.1377

GPH (m=0.5) 0.1410 0.1646 — —

T=8000 QML(frequency domain) -0.0028 0.0689 0.0039 0.1266

QML(time domain) -0.0398 0.0991 0.0119 0.1342

Bayesian (MCMC) -0.0266 0.0770 0.0160 0.1152

GPH (m=0.5) 0.1271 0.1460 — —

ση = 1.0 T=2000 QML (frequency domain) -0.0015 0.0578 0.0084 0.1495

QML (time domain) -0.0121 0.0681 0.0131 0.1565

Bayesian (MCMC) -0.0155 0.0647 0.0302 0.1530

GPH (m=0.5) 0.0861 0.1394 — —

T=4000 QML (frequency domain) -0.0012 0.0400 0.0066 0.1066

QML (time domain) -0.0185 0.0490 0.0116 0.1126

Bayesian (MCMC) -0.0221 0.0492 0.0224 0.1133

GPH (m=0.5) 0.0761 0.1181 — —

T=8000 QML (frequency domain) -0.0026 0.0269 0.0087 0.0737

QML (time domain) -0.0248 0.0343 0.0135 0.0790

Bayesian (MCMC) -0.0268 0.0350 0.0192 0.0801

GPH (m=0.5) 0.0635 0.0996 — —

aWhen ση = 0.2, the number of converged MCMC chains of 1000 replications are 95, 123 and 157 when
T=2000, 4000, 8000 respectively. The results reported for MCMC method are based on these converged
replications. The results of other methods are based on 1000 replications.

bThe initial values for optimizations are d0=0.4 and ση0=0.6 for frequency and time domain methods.
Bayesian posterior mean is used as a point estimator. The order of moving average approximation to
fractional noise is chosen as 20.
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Table 4.2: Bias and RMSE for d and ση with true value of d = 0.4

Parameters d ση

d=0.4 Bias RMSE Bias RMSE

ση = 0.2 a T=2000 QML (frequency domain) 0.2305 0.2932 -0.0806 0.2659

QML (time domain) 0.1741 0.2454 -0.0916 0.2667

Bayesian (MCMC) 0.1695 0.1849 -0.2857 0.3456

GPH (m=0.5) 0.2830 0.2976 — —

T=4000 QML (frequency domain) 0.1832 0.2596 -0.0543 0.2142

QML (time domain) 0.1227 0.2156 -0.0713 0.2124

Bayesian (MCMC) 0.1462 0.1659 -0.1970 0.2499

GPH (m=0.5) 0.2650 0.2780 — —

T=8000 QML (frequency domain) 0.1164 0.2085 -0.0225 0.1649

QML (time domain) 0.0599 0.1712 -0.0538 0.1620

Bayesian (MCMC) 0.1104 0.1383 -0.1303 0.1759

GPH (m=0.5) 0.2481 0.2584 — —

ση = 0.5 T=2000 QML (frequency domain) 0.0082 0.0927 -0.0104 0.1781

QML (time domain) -0.0101 0.1017 -0.0234 0.1725

Bayesian (MCMC) 0.0338 0.0672 -0.0522 0.1433

GPH (m=0.5) 0.1541 0.1909 — —

T=4000 QML (frequency domain) -0.0014 0.0719 0.0002 0.1363

QML (time domain) -0.0329 0.0775 -0.0133 0.1252

Bayesian (MCMC) -0.0041 0.0548 -0.0334 0.1027

GPH (m=0.5) 0.1280 0.1573 — —

T=8000 QML (frequency domain) -0.0030 0.0531 0.0010 0.1023

QML (time domain) -0.0509 0.0589 -0.0055 0.0933

Bayesian (MCMC) -0.0308 0.0423 -0.0246 0.0758

GPH (m=0.5) 0.1053 0.1297 — —

ση = 1.0 T=2000 QML (frequency domain) -0.0024 0.0515 0.0001 0.1383

QML (time domain) -0.0205 0.0594 -0.0001 0.1387

Bayesian (MCMC) -0.0136 0.0455 -0.0077 0.1216

GPH (m=0.5) 0.0879 0.1436 — —

T=4000 QML (frequency domain) -0.0028 0.0352 0.0021 0.0979

QML (time domain) -0.0341 0.0540 0.0074 0.1018

Bayesian (MCMC) -0.0305 0.0459 0.0029 0.0913

GPH (m=0.5) 0.0730 0.1213 — —

T=8000 QML (frequency domain) -0.0020 0.0255 -0.0011 0.0732

QML (time domain) -0.0438 0.0547 0.0074 0.0773

Bayesian (MCMC) -0.0399 0.0488 0.0050 0.0707

GPH (m=0.5) 0.0560 0.0967 — —

aWhen ση = 0.2, the number of converged MCMC chains of 1000 replications are 153, 232 and 362 when
T=2000, 4000, 8000 respectively. The results reported for MCMC method are based on these converged
replications. The results of other methods are based on 1000 replications.

bThe initial values for optimizations are d0=0.3 and ση0=0.6 for both frequency and time domain
methods. Bayesian posterior mean is used as a point estimator. The order of moving average approximation
to fractional noise is chosen as 20.
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Figure 4.1: Estimated densities of d and ση with true values of d=0.3, ση=0.2
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The density of posterior mean of MCMC method is based only on the replications where convergence

was achieved: this occurred for 95, 123 and 157 samples when T = 2000, 4000, 8000 respectively. The

results of other methods are based on 1000 replications. Vertical line drawn on each plot indicates the true

parameter value. Bayesian posterior mean is used as parameter point estimator.
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Figure 4.2: Estimated densities of d and ση with true values of d=0.3, ση=0.5
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The results are based on 1000 Monte Carlo replications. Vertical line drawn on each graph indicates the

true parameter value. Posterior mean is used as point parameter estimator for Bayesian method.
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Figure 4.3: Estimated densities of d and ση with true values of d=0.3, ση=1
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The results are based on 1000 Monte Carlo replications. Vertical line drawn on each graph indicates the

true parameter value. Posterior mean is used as point parameter estimator for Bayesian method.
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Figure 4.4: Estimated densities of d and ση with true values of d=0.4, ση=0.2
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The density of posterior mean of MCMC method is based only on the replications where convergence was

achieved: this occurred for 153, 232 and 362 samples when T = 2000, 4000, 8000 respectively. The results

for other methods are based on 1000 replications. Vertical line drawn on each plot indicates the true

parameter value. Bayesian posterior mean is used as parameter point estimator.
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Figure 4.5: Estimated densities of d and ση with true values of d=0.4, ση=0.5
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Figure 4.6: Estimated densities of d and ση with true values of d=0.4, ση=1
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largely consistent with Pérez and Ruiz (2001) and Hsu and Breidt (2003). The GPH es-

timator is the worst in most of the scenarios, implied by relatively large bias and RMSE.

The memory parameter of GPH is always underestimated, and this phenomenon is con-

sistent with the previous studies; see for example, the simulation results in Breidt et al.

(1998) and the asymptotic results predicted by the theorem in Deo and Hurvich (2003).

We provide an informal explanation of the effect of the magnitude of ση, volatility of

volatility, on estimator performance. The parameterization of the long memory SV model

in (4.5) indicates the assumption that volatility cannot be observed directly but through

returns. The observed series log(y2t ) is treated as a fractionally integrated process (i.e. the

log volatility) with additive noise. The variance of the additive noise σ2
ξ is equal to π2/2

according to (4.2). In the terminology of state-space models, the ratio of σ2
η/σ

2
ξ is called the

signal-to-noise ratio. It increases as the value of ση increases as σ2
ξ is fixed. The extreme

scenario of signal-to-noise ratio approaching infinity can be conceptually interpreted as

a fractional integrated process with no additive noise. In such a case, the dynamics of

the latent process are expected to estimated with more accuracy. On the other hand, a

small signal-to-noise ratio indicates a relatively large magnitude for the additive noise. As

such, it could be difficult to uncover the dynamics of the latent process with relatively

large additive noise as they could mask the strength of autocorrelations. It is clear in the

tables that all the estimators of d are downward biased when ση = 0.2. The simulation

result in Hsu and Breidt (2003, pp. 503-4) indicates that the performance of the posterior

mean of d improves as the signal-to-noise ratio increases when dealing with a fractionally

integrated ARMA process with additive noise. Their result is consistent with the pattern

observed here.

Comparisons between the classical and Bayesian methods are discussed here.

• With small ση, no method performs consistently well. In terms of the memory

parameter, the posterior means of the Bayesian method appear to provide smaller

RMSE, while the QMLE estimators often reach the lower and upper boundaries of

0 and 0.5 with non-negligible proportions even with the large sample size of 8000,

as indicated in the density plots. For example, a global mode around 0 is observed
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on the estimated density plots of d for the frequency method when d = 0.3 (Figure

4.1), and the corresponding density plots of d appear to be fairly flat between the

two boundaries when d = 0.4 (Figure 4.4).

For the replications when MCMC chain converges, Table 4.3 is reported in order

to compare between the classical and Bayesian methods. The Bayesian method

outperforms other methods in terms of bias and RMSE. For both parameters, the

RMSE of the Bayesian method is always the smallest, with the bias being the smallest

in most of the cases. This tells a similar story in the previous Tables 4.1 and 4.2.

Table 4.3: Bias and RMSE for d and ση with true value of ση = 0.2

Parameters d ση

Bias RMSE Bias RMSE

d = 0.3 a T=2000 QML (frequency domain) 0.1211 0.1676 -0.4055 0.4454

QML (time domain) 0.1073 0.1819 -0.4024 0.4430

Bayesian (MCMC) 0.0900 0.1113 -0.2933 0.3559

GPH (m=0.5) 0.2197 0.2361 — —

T=4000 QML (frequency domain) 0.1215 0.1712 -0.3038 0.3326

QML (time domain) 0.0914 0.1774 -0.2956 0.3269

Bayesian (MCMC) 0.0781 0.1075 -0.2016 0.2491

GPH (m=0.5) 0.2389 0.2470 — —

T=8000 QML (frequency domain) 0.1140 0.1583 -0.2325 0.2567

QML (time domain) 0.0836 0.1712 -0.2249 0.2521

Bayesian (MCMC) 0.0752 0.1109 -0.1591 0.1961

GPH (m=0.5) 0.2255 0.2328 — —

d = 0.4 b T=2000 QML (frequency domain) 0.1758 0.2213 -0.3730 0.4219

QML (time domain) 0.1646 0.2248 -0.3802 0.4245

Bayesian (MCMC) 0.1695 0.1849 -0.2857 0.3456

GPH (m=0.5) 0.2688 0.2865 — —

T=4000 QML (frequency domain) 0.1345 0.1796 -0.2535 0.3012

QML (time domain) 0.1187 0.1934 -0.2614 0.3063

Bayesian (MCMC) 0.1462 0.1659 -0.1970 0.2499

GPH (m=0.5) 0.2530 0.2671 — —

T=8000 QML (frequency domain) 0.0818 0.1403 -0.1441 0.1982

QML (time domain) 0.0731 0.1645 -0.1660 0.2102

Bayesian (MCMC) 0.1104 0.1383 -0.1303 0.1759

GPH (m=0.5) 0.2380 0.2491 — —

aWhen ση = 0.2 and d = 0.3, the number of converged MCMC chains of 1000 replications are 95, 123
and 157 when T=2000, 4000, 8000 respectively. The results reported for MCMC and other methods are
based on these converged replications.

bWhen ση = 0.2 and d = 0.4, the number of converged MCMC chains of 1000 replications are 153, 232
and 362 when T=2000, 4000, 8000 respectively. The results reported for MCMC and other methods are
based on these converged replications.
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• With ση = 0.5, the Bayesian method outperforms QMLEs with smaller RMSE with

sample sizes of 2000 and 4000. In the top and middle panels for the d parameter

in Figures 4.2 and 4.5, local or global modes are evident around the parameter

boundaries for both QMLEs. In other words, the numerical optimizations of both

methods still have a good chance of converging to the boundaries. As sample size

increases to 8000, the performance of the frequency QMLE improves, providing

the smallest bias and comparable RMSE to that of the Bayesian method. This is

as expected, as the simulation studies in Cheung and Diebold (1993) suggest that

estimation based on the time domain likelihood approximation is more efficient in

small samples compared to that of the frequency counterpart.

• With ση = 1, in terms of the estimators of d, the frequency QMLE provides the

smallest bias and RMSE of all the sample sizes considered when d = 0.3. When

d = 0.4, the RMSE of the Bayesian method is the smallest when sample size is 2000.

In terms of the estimators of ση, the estimated densities of the QMLEs and Bayesian

methods appear fairly similar regardless of sample size (Figures 4.3 and 4.6).

To sum up, for the values of d considered, when the magnitude of volatility of volatility

is small, all the estimators examined perform poorly. In the other scenarios, the Bayesian

method is capable of offering an estimator with smaller RMSE when sample size is 2000

and 4000, indicating a better efficiency over QMLEs. This superior performance decreases

as sample size increases to 8000. The GPH estimator is inferior to the other three methods

in virtually all the cases. The overall performance of frequency method is better when

ση = 1, however this magnitude is larger than the commonly observed volatility of volatility

in practice. Therefore the simulation results when ση is around 0.5 might be of more

practical relevance.

Before closing this section, some comments are in order. The prior used is not very

informative. As argued in Breidt and Carriquiry (1996),25 the prior can influence the

25We also experiment with the robust transformation proposed by Breidt and Carriquiry (1996) to long
memory SV model to alleviate the effect of inliers caused by log transformation of daily returns of small
magnitude. Our Monte Carlo simulation indicates the transformation is helpful in reducing bias when
ση = 0.2 but at the cost of increased RMSE. The results are not reported here and are available upon
request.
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performance of the Bayesian estimator. As such, a more informative prior could be useful.

It is not unrealistic to expect that practitioners have some knowledge of the parameters

to be estimated. A different choice of prior will not complicate the MCMC simulation.

So there is room for the Bayesian method to improve. The form of the proposal density

used in our MCMC simulation is also suitable for another popular posterior simulation

method, importance sampling. If the focus of a Bayesian exercise is a posterior moment

of the parameter, say the posterior mean of d, then importance sampling is suitable. It

is less involved in terms of computational time and the implementation of the algorithm

into computer code is straightforward. A benefit of importance sampling compared with

MCMC simulation is that it does not require convergence checks.26 We suggest when

MCMC simulation has difficulty in converging, one can consider the importance sampling

method. We examine the implementation of importance sampling when ση = 0.2, the

result indicates it provides the smallest RMSE given the three sample sizes considered.

Table 4.4 reports the importance sampling result when ση = 0.2. Compared with the

Table 4.4: Bias and RMSE for d and ση of the importance sampling method

d = 0.3, ση = 0.2 d = 0.4, ση = 0.2

d ση d ση

Sample size Bias RMSE Bias RMSE Bias RMSE Bias RMSE
2000 0.0787 0.1092 -0.0975 0.2296 0.1637 0.1807 -0.1256 0.2300
4000 0.0752 0.1035 -0.0570 0.1782 0.1484 0.1667 -0.0858 0.1808
8000 0.0627 0.0963 -0.0126 0.1434 0.1164 0.1403 -0.0481 0.1401

corresponding figures in Tables 4.1 and 4.2, the RMSE of the importance sampling method

is smaller. Having said that, one weakness of importance sampling is that it cannot provide

a full picture of the parameter posterior density.

4.4.3 Sensitivity Analysis of Monte Carlo Results

As observed in our simulation study, the performance of each method examined varies

with the values of the underlying parameters. The objective of this section is to conduct

a sensitivity analysis to the Monte Carlo results by considering a larger set of values of

26See Ripley (1987) on the algorithm of importance sampling, Geweke (1989) on theoretical justifica-
tions and applications to econometric models, and Durbin and Koopman (2001b, Ch. 8 and 11) for the
implementations of importance sampling for state space models.
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the key parameters. This would be useful for empirical applications of the long memory

SV models. The values of the parameters being examined are as follows,

Grid for d: 0.22 to 0.46 in steps of 0.04 with 7 grids

Grid for ση: 0.25 to 1.15 in steps of 0.10 with 10 grids

Given each pair of d and ση, 500 replications are conducted. The frequency QMLE is

examined mainly because it is infeasible to conduct such an exercise by other methods as

their computing time is overwhelming. Also, the overall pattern observed here is expected

to be representative of all estimators. Bias and RMSE for the parameters of d and ση are

reported in Tables 4.5 to 4.12, for the sample sizes of 2000, 4000, 8000 and 16000.

Let us first focus on the estimation of d. For a given magnitude of ση, the stronger the

persistence in volatility (i.e. a more positive value of the true d), the better the estimation

performance, indicated by smaller RMSE. The evidence becomes clearer as sample size

increases. The exception is when ση = 0.25, where the results are mixed when the true

value of d is smaller than 0.38, especially with sample sizes of 2000 and 4000. One possible

explanation of this exception is that the numerical optimizations frequently converge to

the parameter boundaries when ση = 0.25 and sample size is small, which masks the story

told by RMSE. For a given value of d, the larger the magnitude of ση (i.e. increased

strength of the volatility innovation relative to that of the additive noise), the smaller the

RMSE and bias in estimation of d. The evidence is fairly consistent across different sample

sizes and the true values of d. The only exception is the case of d < −0.3 and ση < 0.35

with sample size of 2000, where the bias decreases while the RMSE increases slightly as ση

increases. In terms of the direction of bias, d tends to be overestimated when ση < 0.55,

in particular when sample size is 2000. This upward bias tends to decrease as sample size

increases, however the upward bias is still clear when d < 0.22 and ση < 0.55, even with

the sample size as large as 16000.
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For the estimation of ση, for a given value of the memory parameter, RMSE of the

estimator of ση decreases as the magnitude of ση increases. This pattern is persistent

across sample sizes and the values of d. For a given value of true ση, a more positive

value of the true memory parameter is useful in reducing the RMSE of the estimated ση.

However, this reduction in RMSE becomes almost negligible when the true value of ση is

larger than 0.85 and sample size increases to 8000 or 16000. In terms of the direction of

bias, ση tends to be overestimated when the true value of d is smaller than 0.34.

Overall, the estimation of both parameters appear to be more accurate as the mag-

nitudes of d and ση increase given the same sample size. In other words, parameter esti-

mation tends to be most difficult when the latent volatility is of low degree of persistence,

and the magnitude of the additive noise in the observation equation (4.5) is relatively

large. In these cases, increased sample size does little to help to reduce bias and RMSE.

The general patterns observed here are largely in line with the simulation results in the

previous section.

4.5 Empirical Application

In this section, we examine the degree of fractional integration in the volatility of the

daily Yen/USD exchange rate spanning 26 years. The full sample spans the period from

December 12, 1983 through April 30, 2009, with 6406 daily observations.27 Daily return

is defined as 100× log(pt/pt−1).

4.5.1 Preliminary Data Analysis

The time series plot of log returns is in Figure 4.7. The ACF plots of returns and

various approximations to volatility, including (log) squared returns and absolute returns,

are given in Figure 4.8. There is no significant autocorrelation in returns, which is con-

sistent with the notion of efficient markets; the returns are approximately mean zero and

serially uncorrelated. Meanwhile the evidence for volatility persistence is overwhelming

27The raw daily prices are obtained from the web site of Reserve Bank of Australian.
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Figure 4.7: Daily returns for the Y en/USD from December 1983 to April 2009
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Figure 4.8: Autocorrelation functions for the daily returns and squared daily returns for
the Yen/USD from December 1983 to April 2009
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The dashed line represents upper or lower 95% confidence interval of autocorrelations for a white
noise process.
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as indicated by the ACF plots of various volatility approximations. The persistence of

absolute returns appear to be the highest.

We also plot the ACF of power transformations of absolute returns following Ding

et al. (1993) in Figure 4.9 to further examine the persistence in volatility. The results

are consistent with their findings. The power transformation of the absolute returns |yt|r

also has quite high positive autocorrelations for long lags, which can be characterized as

a long memory property. This property appears to be the strongest when r is around one.

Autocorrelations appear to decrease fast in the first month or so and then decrease slowly.

The transformation becomes noisier as the power increased further beyond one.

4.5.2 Estimation Results

The long memory SV model is fitted to the daily returns of the JPY/USD. Point

estimates for the three methods are reported in Table 4.13. The posterior parameter

mean is used as point estimator of Bayesian method, of which the MCMC results are

based on 40 000 iterations after discarding the first 10 000 iterations to alleviate the effect

of initialization. The order of moving average approximation to fractional noise is chosen

as 30 for both time domain QML and Bayesian methods. Overall the estimates of time

domain QML and Bayesian methods are close. The frequency estimate of d is slightly

higher than that of the Bayesian method, while the estimate of ση is smaller.

Table 4.13: QMLEs and posterior means of d and ση

QML (frequency domain) QML(time domain) Bayesian

Long memory SV d 0.439 (0.017) 0.391 (0.041) 0.408
ση 0.602 (0.034) 0.763 (0.077) 0.718

Standard errors are provided in brackets, with the corresponding covariance matrix is approximated by
the inverse of the negative of the hessian evaluated at QMLEs. In terms of numerical optimization, different
algorithms are exercised, including the BFGS, Newron-Raphson and BHHH methods, and little difference
is observed. The results reported here are based on the BFGS method. Standard errors are reported
for reference as the estimation is a highly nonstandard exercise with parameters being constrained. The
asymptotic distribution of QML estimators of long memory SV models is still unknown.

The GPH estimator is estimated from volatility approximations, (log) squared and

absolute returns. An appropriate choice of bandwidth of GPH estimation is important
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Figure 4.9: ACF of the power transformation of absolute returns (|yt|P ) for the Yen/USD
from December 1983 to April 2009
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as there is no optimal rule available. Figure 4.10 plots the GPH estimates obtained with

different values of the bandwidth parameter. The persistence of log(y2t ) and |yt| appears
to be closer, and that of yt

2 is the lowest. Commonly chosen values of the power r in |yt|r

are between 0.5 and 0.8, according to this rule, the memory parameter is estimated to

be between 0.3 and 0.35. It is clear that estimates of the memory parameter are smaller

than the other methods, and this downward bias is consistent with the discussions in our

Monte Carlo study (Tables 4.1 and 4.2).

Figure 4.10: GPH estimates of d obtained from transformations of daily returns with
varying bandwidths
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Each point represents a log-periodogram regression (GPH) estimate for memory parameter d for a
given bandwidth. The sample period extends from December 1983 to April 2009, for a total of T = 6406
observations.
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Summary statistics of the posterior density of d and σ2
η are reported in Table 4.14,

with Figure 4.11 providing the trace plots of MCMC iterations and corresponding posterior

density plots. The MCMC chain appears to converge quickly and the acceptance rate is

around 0.6. It is clear that the memory parameter is well above 0.3, clear evidence of long

memory property in volatility, which is consistent with our preliminary analysis.

Table 4.14: Posterior summaries of d and ση of MCMC method

Minimum 1st quartile Median Mean 3rd quartile Maximum

Long memory SV d 0.262 0.380 0.408 0.408 0.435 0.499
ση 0.474 0.665 0.719 0.718 0.771 1.003

Figure 4.11: MCMC iterations and posterior density of parameters d and ση
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Daily returns for the Yen/USD are from December 1983 to April 2009. The MCMC chains are based
on 40 000 iterations after discarding the first 10 000 iterations as burin-in period. The order of moving
average approximation to fractional noise is chosen as 30.
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In Chapter 3, we examine the persistence of realized volatility constructed from in-

traday returns of the YEN/USD from January 2003 to September 2008. The memory

parameter was found to be around 0.4, largely consistent with the results in this chapter.

As argued by Bollerslev and Wright (2000), high-frequency data may be critically impor-

tant for reliable inference concerning long-range dependence in volatility. In other words,

given a fixed time span, say one year, the detection of long-range dependence is difficult

when relying on low-frequency data. So it is expected that an increased time span, say

26 years, is crucial to obtaining reliable inference on the memory parameter, given daily

frequency.

Given the estimated parameters, the state-space form of the long memory SV model is

used to estimate the latent volatility h̃t.
28 An estimate of the value of the scale parameter

σ in (4.2) is required in order to estimate the conditional variance. We follow Harvey

(1998) in constructing

σ̃2 = T−1
T∑

t=1

ỹt
2, ỹt = yt exp(−h̃t/2)

so the estimator of the underlying conditional variance is

σ̃t
2 = σ̃2 exp(h̃t)

We find σ̃=0.55 given the posterior mean of d and ση. Figure 4.12 plots the daily volatility

estimates. The top panel of Figure 4.12 plots the smoothed volatility and absolute returns.

The latter quantity is obviously much noisier than the former, although it provides stronger

evidence of volatility persistence than other transformations |yt|r. The smoothed volatility

shown in the bottom panel suggests a stationary process in daily volatility, with occasion-

ally high volatility episodes. For example, the largest spike occurred around October 1998,

28Volatility estimates can be obtained by particle filtering, a method recently proposed in the literature.
Its advantage is that it can make use of equation (4.2) directly so that the normality assumption on ξt is
avoided, but it is complicated and time-consuming although it promises more accurate volatility estimates.
The implementation of particle filtering on short memory SV models has been examined by Kim et al.
(1998) and Pitt and Shephard (1999); see also Johannes and Polson (2008) and references therein for
econometric applications, and Doucet et al. (2001) for a book length treatment in a general discipline.
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caused by the Russian financial crisis,29 and the recent financial turmoil observed at the

end of our sample.

Figure 4.12: Smoothed estimates of the JPY/USD volatility and absolute returns
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The smoothed volatility is obtained by setting d=0.41, ση=0.72 and σ=0.55 which are the posterior
mean of Bayesian estimates.

4.6 Conclusions and Extensions

In this chapter, we propose a Bayesian estimator of the long memory SV model,

which is based on a state-space representation of the SV model and moving-average ap-

proximation to a fractional Gaussian process. When conducting the MCMC algorithm

on parameter estimation, we update the memory parameter and volatility-of-volatility pa-

rameter in one block by making use of the optimization result from time domain QML

estimation. The simulation results indicate that the proposed estimator outperforms clas-

29See Maekawa and Xinhong (2009) for the analysis of the Russian financial crisis. Hedge funds liquidate
the open positions of Yen on October 1998 resulting in sudden and sharp rises in exchange rate for Yen.
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sical methods in terms of root mean squared error when sample size is 2000 and 4000.

We conduct an empirical estimation on daily JPY/USD spanning almost three decades,

and find clear evidence of long-range dependence in volatility. The degree of persistence

is found to be consistent with that of our estimation results obtained in Chapter 3 when

realized volatility constructed from intra-day returns is used.

We leave two questions for future research. First, only the basic fractionally integrated

process with no short term dynamics is considered for the latent log volatility process in

this chapter, it is desirable to introduce more flexibility by using the specification of

autoregressive and moving-averaging fractional integration. Another interesting question

is to improve the convergence performance of the MCMC method when the persistence

in volatility is of low degree and the magnitude of the additive noise in the observation

equation (4.5) is relatively large.



Chapter 5
Realized Volatility Modeling with Regime

Switching

5.1 Introduction

One of the stylized facts of realized volatility is a high degree of persistence shown

as hyperbolically decaying autocorrelation functions, rather than exponentially as in the

case of short memory models. A natural choice to capture this dynamic is through frac-

tionally integrated processes, as it is well recognized in the literature that an integrated

process I(d), with d being a fraction, can generate autocorrelations with a slowly decaying

pattern (see Andersen et al. (2003) for applications of fractional integration models in the

estimation realized volatility). The long memory GARCH model of Baillie et al. (1996)

and long memory stochastic volatility model of Breidt et al. (1998) are applications of

fractional integration models applied to data with daily frequency.

There is a large literature on applying specifications other than fractional integration

processes to mimic long memory properties, and some of these applications are superior

in intra-sample fit and out-of sample forecasting. Alternative specifications include first,

structural breaks and regime switching models, which are in the realm of non-linear time

series; and second mixtures of two or three short memory processes, for example, using the

117
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sum of two or more autoregressive moving average (ARMA) processes. For applications

of structural breaks and/or regime switching models in this context, see, for example,

Liu (2000), Andreou and Ghysels (2002), Franses, Leij and Paap (2002), Granger and

Hyung (2004) and Calvet and Fisher (2004). These papers are based on daily squared

or absolute returns, and Liu (2000) in particular studies the cause of high persistence in

volatility caused by regime switching. Andreou and Ghysels (2002) argue that persistence

in volatility may be overstated with the presence of structural breaks. The presence of

breaks can also explain long memory in volatility, and Granger and Hyung (2004) argue

that, based on their theory and simulation results, it is not easy to distinguish between

occasional-break and fractional integration (I(d)) models because both can generate slowly-

decaying autocorrelations. Calvet and Fisher (2004) document improved performance of

long-run volatility forecasting when a Markov-switching process is applied, while Banerjee

and Urga (2005) present detailed discussions on the importance of structural breaks and

regime switching as sources of long memory. Applications using mixtures of short mem-

ory factors, can be found in Gallant et al. (1999), who use a sum of two short memory

components to mimic long memory in daily returns in IBM stocks; while Alizadeh et al.

(2002) observe that the sum of two autoregressive AR(1) components is able to capture

long-range persistence in volatility. Barndorff-Nielsen and Shephard (2002a) is based on

high-frequency data, where a multiple-factor stochastic volatility model is proposed to

capture the slowly decaying autocorrelations in exchange rate realized volatility. This

contrasts with the analysis of Alizadeh et al. (2002) where range, i.e. difference between

maximum and minimum intraday returns is used as a volatility proxy.

To our knowledge, there have been few applications of the two alternative methods

to realized volatility. The only exception is Barndorff-Nielsen and Shephard (2002a), who

use a sum of short memory processes to mimic long-range dependence. However, there do

not appear to be any applications of using regime switching to model realized volatility

when interest is in the high degree of persistence in volatility. This motivates our exercise

in this chapter. As shown in a series of papers, including Andersen, Bollerslev, Diebold

and Labys (2001) and Andersen et al. (2003), realized volatility can provide more accurate

estimates of the latent volatility than traditional volatility approximations, such as squared
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or absolute returns. It is reasonable to assume that the promising results obtained with

daily squared or absolute returns in previous papers would carry over to realized volatility.

In addition, it is of practical relevance to compare the three methodologies, especially in

terms of forecasting, when applied to realized volatility. We conduct a comparison of the

three approaches based on a decade of daily realized volatility of the JPY/USD rate, using

criteria of in-sample fit and out-of-sample forecasting. Models examined in this chapter

include Markov-switching and three-factor stochastic volatility models. The motivation for

the first method is due to Diebold and Inoue (2001) who argue that regime-switching can

mimic fractional integration extremely well according to their theoretical and simulation

studies; three-factor stochastic volatility model is considered following Barndorff-Nielsen

and Shephard (2002a).

It is not an easy task to decide which is the best model to use since each of the three

approaches can mimic long-range dependence. For example, a long memory hypothesis test

with the null of short memory and a regime switching hypothesis test with the null of no

regime switching are conducted on the time series examined, and the results clearly reject

the null in both tests. So this chapter conducts a recursive estimation exercise in order to

evaluate the performance of each model. These estimates indicate that regime switching

outperforms fractional integration models, with reference to residual diagnostics and long-

term forecasting. This may be due to the flexibility of regime switching models, which

allows level and innovation variance (volatility of volatility) to switch between regimes.

With a time series spanning a decade, it is likely unduly restrictive to assume volatility is

characterized by constant memory, autoregressive and moving average parameters, as in

fractional integration models.

Maximum likelihood estimation (MLE) is employed in this chapter. This is because

Bayesian estimation is computationally costly as there are several models to be dealt with,

and Bayesian method is much more time consuming than MLE especially when recursive

estimations are conducted.1 The next section discusses the methodology, including model

specification and estimation, while Section 5.3 provides results of the empirical study of

1Filardo and Gordon (1998) discuss Bayesian estimation of regime-switching models. Koop and Potter
(1999) provide a treatment of Bayesian model selection for nonlinear models.
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daily Yen/USD realized volatility. Conclusions are presented in Section 5.4.

5.2 Methodology

This section is concerned with likelihood evaluation and estimation for each of the

models considered. Hypothesis testing of long-memory and identification of regime-switching

models are also discussed.

5.2.1 Fractional Integration Process

Let y denote the time series of interest, and yt be a realization observed on day t with

t = 1, . . . , T . A fractional autoregressive and moving-average process ARFIMA(p,d,q) is

φ(B)(1−B)d(yt − µ) = θ(B)ηt ηt ∼ N(0, σ2η) (5.1)

where µ is the unconditional mean of yt, and ηt is the innovation to the process. The

orders of the autoregressive (AR) and moving-average (MA) polynomials are p and q,

with φ(B) = 1−φ1B− . . .−φpB
p and θ(B) = 1− θ1B− . . .− θqB

q. The stationarity and

identifiability conditions are |d| <0.5, the roots of φ(z)=0 and θ(z)=0 lie outside the unit

circle, and θ(z) has no roots in common with those of φ(z). In this chapter, positivity of d

is further imposed because autocorrelations in volatility are positive according to empirical

evidence. Section 3.2 in Chapter 3 provides further detailes on ARFIMA models.

The key characteristic of a long memory process is about the decaying pattern in

the autocorrelation function rather than the magnitude of autocorrelation at a particular

lag: see the discussion in Beran (1994). So it might be difficult to identify a long memory

property merely based on visual inspection of sample autocorrelations at sufficiently long

lags. A battery of tests is desirable prior to fitting data into the ARFIMA models. Some

popular long memory tests in the literature are the classical rescaled range test due to

Hurst (1951), the modified rescaled range test proposed in Lo (1991) and Giraitis et al.

(2003). All these tests are designed with the null hypothesis of short memory against the
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alternative of long memory. This chapter applies the last two tests in the empirical analysis

largely due to their robustness to the possible mis-specification of short run dynamics. In

addition, long-range dependence can be gauged by the estimated long memory parameter

d under the assumption that ARFIMA(p,d,q) is the genuine data generating process and

the orders of p and q are specified adequately.

5.2.1.1 Estimation and Likelihood Evaluation of ARFIMA Models

The short term dynamics in (5.1), captured by the AR andMA polynomials, combined

with the memory parameter allows for a broad class of autocorrelation functions. This

rich dynamic is desirable but complicates model estimation since the fractional difference

operator (1−B)d is a binomial expansion of infinite order. This chapter uses the algorithms

of Sowell (1992) to evaluate the likelihood function when MLE is conducted. Section 3.3.1

in Chapter 3 discusses some issues related to the exact likelihood evaluation of ARFIMA

models. We reproduce some equations for convenience; see Beran (1994) and Baillie (1996)

for further details on ARFIMA models and their estimations.

The sample mean is used as an estimator of µ, following Yajima (1988) who argues

there is only a small loss in efficiency if a fractionally integrated process is demeaned by its

sample mean. Let ỹ denote the demeaned series, and β = (φ1, . . . , φp, θ1, . . . , θq, d). The

autocovariance function of ỹ is γi = E[ỹtỹt−i], and

Σ =




γ0 γ1 γ2 . . . γT−1

γ1 γ0 γ1
. . .

...

γ2 γ1 γ0
. . . γ2

...
. . .

. . .
. . . γ1

γT−1 . . . γ2 γ1 γ0




defines the covariance matrix of the joint distribution of ỹ = (ỹ1, ỹ2, . . . , ỹT )
′. The quantity

γi is a function of β; see Sowell (1992, equations 8-9) for its calculations. Given the
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normality of ηt, ỹ ∼ NT (0,Σ). The likelihood function of ỹ is

L(β, σ2
η) = (2π)−T/2|Σ|−1/2 exp

{− 1

2
ỹ′Σ−1ỹ

}
(5.2)

where Σ is a T×T Toeplitz matrix. A numerical optimization of L(·) is used for MLE.

The inversion of Σ could be computationally expensive, especially for a large sample size

T.2

Let h denote the forecasting horizon of interest, the best linear prediction of ỹT+h is,3

ˆ̃yT+h = [γ(T−1+h) · · · γh]Σ
−1 ỹ

The free Ox package Arfima of Doornik and Ooms (2006b) is used for all the estimation

and forecasting of ARFIMA models in this chapter.

5.2.2 Regime Switching Models

It is argued that abrupt change is one of the common features of many economic

variables, in particular, financial time series. It is realistic to assume that time series

spanning a fairly long period might undergo episodes defined by different regimes. In

other words, the assumption that the level of the time series, and/or the magnitude of

innovations remain constant over years could be too restrictive. This motivates regime

switching models. In general two types of switching models are commonly used in non-

linear time series modeling.4 One is the threshold autoregressive type model due to Tong

(1978), where the switching is determined by a threshold variable which is observable. The

other type of model treats a regime as unobservable state: the Markov switching model,

2Sowell (1992) derives several tricks for recursively computing γi, which is further refined by Doornik
and Ooms (2003). Doornik and Ooms (2003) and Doornik and Ooms (2006b, pp. 22-27) discuss the
computational aspects of MLE of ARFIMA models in detail. The GPH estimator is semi-parametric, and
the knowledge of p and q are not necessary. Therefore it is more robust to model misspecification than
MLE. However, it could be problematic in terms determining the values of the bandwidth necessary for
estimation. Another drawback of semi-parametric methods is that out-of-sample forecasting is not readily
available, and two-step approach needs to be implemented.

3The corresponding theoretical justification is provided by Beran (1994, Ch. 8).
4Hamilton (2005) provides an accessible introduction; see Kim and Nelson (1999) and Franses and van

Dijk (2000) for text book treatments of regime switching models, with the latter focusing on applications
of financial time series.
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popularized in econometric applications by Hamilton (1989, 1994) is the most common

example. In this chapter, we follow the latter strand mainly due to its popularity and,

important, the ability to mimic long range dependence as shown in Diebold and Inoue

(2001). Estimation and specification testing of Markov switching models will be discussed

in the following sections.

5.2.2.1 Markov Switching Model Specification

Suppose a time series yt follows an ARMA process, but with the unconditional mean

and innovation variance switching between two regimes. Let st denote the index of regime

which yt is in at date t, st can only take the value of 1 or 2 given two regimes,





φ(B)(yt − µ1) = θ(B)ηt, ηt ∼ N(0, σ2
1) when st = 1

φ(B)(yt − µ2) = θ(B)ηt, ηt ∼ N(0, σ2
2) when st = 2

the shorthand of which is

φ(B)(yt − µst) = θ(B)ηt, ηt ∼ N(0, σ2
st) (5.3)

To complete the model specification, the probability law governing transition from one

regime to the other is required. Following Hamilton (1989), the transition probability is

Pr(st = j|st−1 = i, . . . , s1 = k, yt−1, . . . , y1) = Pr(st = j|st−1 = i) = pij (5.4)

with i = 1, 2, j = 1, 2 and k = 1, 2, which is an Markov chain process with fixed transition

probability. In particular,

Pr(st = 1|st−1 = 1) = p11

Pr(st = 2|st−1 = 1) = p12

Pr(st = 1|st−1 = 2) = p21

Pr(st = 2|st−1 = 2) = p22

where p11 + p12 = 1, p22 + p21 = 1 and p11 and p22 are non-negative by definition. The

specification in (5.4) treats st as an unobservable variable, which needs to be inferred from
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the observed time series.5 The probability of changing regime depends on the past only

through the regime state in the most recent time period.6 This setup is analogous to

the state space form discussed in Section 4.2.3 of Chapter 4, therefore state filtering and

smoothing algorithms are readily applicable.

The specification of Markov switching implies the permanent structural change when

p22 = 1, and also allows for more flexible dynamic by letting p22 < 1.7 Of course, there

is no reason to preclude the possibility of multiple regimes. We focus on two regimes

specification in this chapter, mainly due to its simplicity and to easing the burden of

numerical optimization imposed by increased number of parameters as a highly nonlinear

model is dealt with.

5.2.2.2 Estimation of Regime Switching Models

Let ω = (φ1, . . . , φp, θ1, . . . , θq, p11, p22, µ1, µ2, σ
2
1, σ

2
2)

′
denote parameters to be esti-

mated, and Ωt−1 = (yt−1, yt−2, . . . , y1)
′ represent the path of the time series up to date

t− 1.

The conditional probability density when regime j is operating is given by

f(yt|st = j,Ωt−1;ω) (5.5)

which is of the form as that of a normal ARMA(p,q) process. The likelihood function of

an ARMA(p,q) process is widely discussed in time series analysis books, see, for example,

Brockwell and Davis (1991, Ch. 8). To evaluate the likelihood for a single observation yt,

st needs to be integrated out as follows since it is unobservable:

f(yt|Ωt−1;ω) =
2∑

i=1

2∑

j=1

Pr(st−1 = i|Ωt−1;ω) pij f(yt|st = j,Ωt−1;ω) (5.6)

5It could also be desirable for some applications to assume that switching is driven by exogenous
variables, or the lagged variable itself. In the case of volatility modeling, it might be useful to use other
economic variables to explain the switching mechanism, given the fact that volatility essentially represents
the overall level of information available to the market. We will pursue this in future work.

6The assumption of the probability of a regime change depending on the past only through the most re-
cent regime state appears to be restrictive. However, as shown by Hamilton (1989), this is not a particularly
restrictive assumption.

7See Hamilton (2005) for a detailed discussion.
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where Pr(st−1 = i|Ωt−1;ω) for i = 1, 2 is required to complete the above evaluation. This

quantity is the filtered probability, representing the inference about the probability of

being at regime i at date t− 1 for i = 1, 2, based on the information up to date t− 1. The

filtered probability is obtained via the following iteration from date t = 1,

Pr(st = j|Ωt;ω) =

∑2
i=1 Pr(st−1 = i|Ωt−1;ω) pij f(yt|st = j,Ωt−1;ω)

f(yt|Ωt−1;ω)
(5.7)

for t = 1, . . . , T . In order to start the iteration, initialization of Pr(s0 = i) is necessary.

Two types of initial values are commonly used: 0.5, and the unconditional probability of

Pr(s0 = i) =
1− pjj

2− pii − pjj

In the empirical estimation conducted in this chapter, both options are tried and the

results appear to be robust for either choice.

The logarithm likelihood function of the regime switching specification in (5.3) is

log f(y1, y2, . . . , yT |y0;ω) =
T∑

t=1

log f(yt|Ωt−1;ω) (5.8)

with quantities in (5.6) and (5.7) plugged in. The MLE of ω are obtained via numerical

optimization of (5.8). It is common practice in the estimation of regime switching models

to impose local stationarity conditions within each state; we do this in this chapter. It

is worth noting that local stationarity is neither sufficient nor necessary condition for

global stationarity of the model. See Timmermann (2000) and Stelzer (2009) for moments

of Markov switching models. The estimation is a non-standard exercise given that st is

unobservable. Different starting values of the parameters ω are worth trying to ensure a

global maximum is achieved.8 Conditional on the MLE of ω, ω̂MLE , one can infer the

filtered probability Pr(st = j|Ωt;ω) for j = 1, 2 through (5.7).9

Different specifications of autoregressive and moving-average orders, combined with

switched level and variance, allow for the model to generate richer dynamics than linear

8Hansen (1992) argues that the model produces numerous local optima as it is highly nonlinear.
9To obtain the smoothed probability of Pr(st = j|ΩT ;ω) with ΩT = (yT , yT−1, . . . , y1)′ for j = 1, 2,

one can refer to Chapter 22 in Hamilton (1989, Ch. 22).
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models. Once in the realm of nonlinear models, more options are available. Of course,

there is no reason to preclude the specification of a long memory process which allows the

memory parameter to switch between high and low-persistence regimes, although this is

not pursed here.

The following ARFIMA specification with switching mean and variance is also tried

in our empirical exercise.

φ(B)(1−B)dst (yt − µst) = θ(B)ηt, ηt ∼ N(0, σ2
st) or (5.9)





φ(B)(1−B)d1(yt − µ1) = θ(B)ηt, ηt ∼ N(0, σ2
1) when st = 1

φ(B)(1−B)d2(yt − µ2) = θ(B)ηt, ηt ∼ N(0, σ2
2) when st = 2

where the probability law in (5.4) determines the transition from one regime to the other.

5.2.2.3 Forecasting Using Regime Switching Models

Given ML estimates of ω, prediction is obtained in the following fashion. Two quan-

tities might be of interest in terms of forecast: regime forecast, and forecast for observed

time series, say, multi-step realized volatility predictions in our example. Suppose we are

interested in one-step ahead volatility prediction. In this case, the conditional density

f(yT+1|sT+1 = j,ΩT ;ω) can be a starting point. The condition is upon regime at date

T + 1 so its expectation is readily available as it is a normal ARMA specification. How-

ever, the regime is unobservable and it is desirable to have the prediction with uncertainty

about regime integrated out as follows:

E[yT+1|ΩT ;ω] =
2∑

j=1

Pr(sT+1 = j|ΩT ;ω)E[yT+1|sT+1 = j,ΩT ;ω]

A forecast for the probability of regime j operating is necessary in order to obtainE[yT+1|ΩT ;ω].

With specification of two regimes, we have

Pr(sT+1 = 1|ΩT ;ω) = p11Pr(sT = 1|ΩT ;ω) + p21Pr(sT = 2|ΩT ;ω)

Pr(sT+1 = 2|ΩT ;ω) = p12Pr(sT = 1|ΩT ;ω) + p22Pr(sT = 2|ΩT ;ω)
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where the filtered probability Pr(sT = j|ΩT ;ω) is available with (5.7). Generalization to

multiple-step prediction is straightforward, see Hamilton (1994, p. 694) for details.

5.2.2.4 Regime Identification Testing

Before fitting the data to the regime switching model, it is sensible to test the null

hypothesis of one regime against the alternative hypothesis of two regimes. The test result

might justify whether there is any regime switching at all, or whether there are in fact

no differences between models within each regime. Unfortunately, this is a non-standard

testing problem, because the switching probabilities p12 and p21 are unidentified under

the null. Accordingly, regularity conditions for validity of likelihood ratio tests are not

met, and the likelihood ratio test statistic is not χ2 distributed as in the standard case.

Therefore standard tests are not applicable any more.10 We pursue the approach in Hansen

(1992), a generalization of the methodology in Davies (1987), to solve the testing problem

when unidentified nuisance parameters are present only under the alternative hypothesis.

To illustrate, µ2 and σ2
2 are re-parameterized as µ2 = µ1+µd and σ2

2 = σ2
1 +σ2

d, with

τ = (µd, σ
2
d)

′
. The hypothesis takes the form

H0 : τ = 0 H0 : τ 6= 0

with the null being no regime switching, i.e. no difference between regimes. Let γ denote

those fully identified parameters γ = (φ1, . . . , φp, θ1, . . . , θq, µ1, σ
2
1)

′
, and % = (p12, p21)

′.

The test statistic is viewed as a function of the nuisance parameter. According to Hansen

(1992), the test requires computing the maximum likelihood estimates of γ for fixed values

of υ = (τ, %)′. In particular, at each fixed value of υ, the constrained maximum likelihood

estimates of γ, γ̂(υ) = max LT (υ, γ), are obtained. Define the standardized likelihood

ratio function as L̂R
∗
T (υ) = L̂RT (υ)/VT (υ)

1/2, with

L̂RT (υ) = L̂T

(
υ, γ̂(υ)

)− L̂T

(
0, %, γ̂(0, %)

)

10Hansen (1992) and Hamilton (1996, 2005) discuss the testing problem in details. According to Hansen
(1992), this identification problem also partly explains the difficulty in numerical optimization.



5.2. METHODOLOGY 128

VT (υ) =

T∑

1

(
lt
(
υ, γ̂(υ)

)− lt
(
0, %, γ̂(0, %)

)− 1

T
L̂RT (υ)

)2

The maximum of L̂R
∗
T (υ) yields the standardized likelihood ratio test statistic

L̂R
∗
T = sup L̂R

∗
T (υ)

the asymptotic distribution of which is obtained by simulation as suggest by Hansen (1992),

who also provides further details of simulation and theoretical justifications for the test.

5.2.3 Multi-factor Stochastic Volatility Model

As discussed in Section 5.1, long range dependence can be also captured by mixing

two or more short-memory processes. This section describes the methodology we use to

model realized volatility under this framework. Our main reference is Barndorff-Nielsen

and Shephard (2002a), the contributions of which include adjusting for the measurement

error in realized volatility, and capturing the long-range dependence by a sum of stochastic

volatility (SV) processes. Section 5.2.3.1 focuses on the first contribution, with the second

contribution being the topic of Section 5.2.3.2.

5.2.3.1 Single-factor Specification

Barndorff-Nielsen and Shephard (2002a) is set up under continuous-time SV models.

The consistence of realized volatility as a volatility estimator is based on the assumption

that the underlying volatility process evolves continuously over time; see Section 2.5 in

Chapter 2 for a review of realized volatility. Follow the specification in Barndorff-Nielsen

and Shephard (2002a, p. 253), the log-price p∗(t) is the solution to the stochastic differen-

tial equation (SDE)

dp∗(t) = {µ+ βσ2(t)}dt + σ(t)dw(t)

where σ2(t) is the instantaneous or spot volatility, µ is drift term and β is risk premium.

The spot volatility is assumed to be stationary and independent with the standard Brow-
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nian motion w(t). For asset returns over an interval of ∆ > 0, denoted as rt, we have

rt|σ2
t ∼ N(µ∆+ βσ2

t , σ
2
t ).

which is in line with the Mixture-of-Distributions hypothesis reviewed in Section 2.2 of

Chapter 2. The term σ2
t is called actual volatility, which is the discretized integrated

volatility over an interval of interests, say daily. Realized volatility is a consistent estimator

of σ2
t , but not free of measurement error. In other words, as argued by Barndorff-Nielsen

and Shephard (2002a), treating the observed daily realized volatility equivalently as σ2
t

might face the errors-in-variables problem. Accordingly, they propose to decompose the

observed daily realized volatility {y}t into actual volatility and volatility error,

{y}t = σ2
t + ut (5.10)

where t is of daily frequency, and ut is realized volatility error, which is a white noise se-

quence and uncorrelated with σ2
t . The variance of ut, the magnitude of realized volatility

error, is determined by the parameters specifying the underlying continuous SV process;

see Barndorff-Nielsen and Shephard (2002a) for the derivations of the asymptotic distri-

bution of ut.

To illustrate, suppose the underlying SV process is the constant elasticity of variance

(CEV) process which is the solution to the SDE

dσ2(t) = −λ{σ2(t)− ξ}dt + ωσ(t)ζdb(λt), ζ ∈ [1, 2] (5.11)

where b(t) is standard Brownian motion and uncorrelated with w(t). The parameters

specifying the process include (ξ, λ, ω2)
′
. Given this specification, the autocorrelation

function of the volatility process is determined by λ. Therefore, λ captures the persistence

in the volatility process. Barndorff-Nielsen and Shephard (2002a) refer to λ as the memory

parameter (Barndorff-Nielsen and Shephard (2002a, p. 261)). Its magnitude is not directly

comparable to the long memory parameter d discussed in Section 5.2.1. According to

Barndorff-Nielsen and Shephard (2002a, equation 9), the variance of realized volatility
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error is

var(ut) = 2M
[2w2

λ2

(
exp(−λM−1)− 1 + λM−1

)
+

ξ2

M2

]
(5.12)

with M being the number of intra-day returns used to constructed realized volatility. For

example, if daily realized volatility is constructed by five-minute returns, then M = 288.

Under a rather general specification of the continuous-time SV model, the autocovari-

ance function of σ2
t in (5.10) is shown to be of the same form as that of an ARMA(1,1)

process. For the specification in (5.11), based on the characteristics of autocovariance

functions of an ARMA(1,1) process, it can be shown that the autoregressive coefficient Φ

is a function of exp(−λ). The moving average coefficient Θ is the solution to the following

equation and to be determined numerically,

2(Φ− 1 + λ)

(1− Φ)2
− 1− Φ2 + (Θ + Φ)2

(1− Φ2)(Θ + Φ) + Φ(Φ+Θ)2
= 0, with Φ = exp(−λ) (5.13)

Putting all these together, realized volatility {y}t can treated as an ARMA(1,1) pro-

cess with additive noise according to (5.10). This treatment naturally leads to the general

framework of state space form: see Brockwell and Davis (1991) for the state space form

of an ARMA process with additive noise. The variance of the additive noise is given by

(5.12); the autoregressive and moving average roots to the ARMA(1,1) process are given in

(5.13); parameters to be estimated are (ξ, λ, ω2)
′
. The Kalman filter delivers the best lin-

ear unbiased estimator of actual volatility given asymptotic normality of realized volatility

error (Barndorff-Nielsen and Shephard (2002a, section 3)). It is a routine exercise in state

space modeling to conduct state filtering and smoothing in order to estimate the actual

volatility, conditional on the quasi MLE of the parameters. Section 4.2.3 in Chapter 4

discusses the algorithms for state filtering and likelihood evaluation of state space models.

5.2.3.2 Multi-factor Specification

The single-factor specification addresses measurement error in realized volatility. In

order to capture the long-range dependence in actual volatility, the single-factor speci-
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fication can be extended to multi-factor SV models, by assuming σ2(t) is a sum of Z

independent CEV processes. Each CEV process is of the form as in (5.11), and has in-

dividual parameter λz for z = 1, . . . , Z, which controls the autocorrelation function of

each factor. Accordingly, the autocorrelation function of spot volatility can have compo-

nents which are a mix of quickly and slowly decaying components. This is desirable as it

can generate long-range dependence. Barndorff-Nielsen and Shephard (2002a, section 2.3)

explain how the mixing can generate long-range dependence.

To illustrate, suppose Z = 2, the parameters to be estimated are (ξ, λ1, λ2, ω
2, $1, $2)

′
,

where $z is the weight of each component and $1 + $2 = 1 to ensure identification of

parameters. Equations (5.12) and (5.13) are, accordingly, modified as

var(ut) = 2M
[
2w2

Z∑

z=1

$z

λ2
z

(
exp(−λzM

−1)− 1 + λzM
−1

)
+

ξ2

M2

]
(5.14)

and

Φ =

∑Z
z=1$m

[
1− exp(−λz)

]2
exp(−λz)λ

−2
z

∑Z
z=1$z

[
1− exp(−λz)

]2
λ−2
z

(5.15)

∑Z
z=1 2$z

[
exp(−λz)− 1 + λz

]
λ−2
z

∑Z
z=1$z

[
1− exp(−λz)

]2
λ−2
z

− 1− Φ2 + (Θ + Φ)2

(1− Φ2)(Θ + Φ) + Φ(Φ+Θ)2
= 0 (5.16)

with the moving average root Θ, solution to the last equation, determined numerically.

Expressions in (5.14)-(5.16) make use of the result that the autocovariance function of a

sum of independent components is the sum of autocovariances of the terms in the sum.

MLE is used to estimate the parameters (ξ, λ1, λ2, . . . , λZ , ω
2, $1, $2, . . . , $Z−1)

′
.

Volatility forecasts are obtained conditional on the point parameter estimates. Actual

volatility σ2
t is treated as a state variable, and the algorithm for forecasting the state

variable is delivered by Kalman filter.
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5.3 Empirical Analysis

In this section, we conduct an empirical analysis of the Yen/USD daily realized volatil-

ity over a decade. We focus on the long-range dependence property of the observed time

series, and try to address the following question: given that the three methods considered

are all able to mimic slowly decaying autocorrelations theoretically, then which one is able

to provide a better description of the data from a practical point of view. Our main object

is not to determine what the true underlying mechanism (if it exists) is, but to examine

and compare the performances of the three alternatives in terms of in-sample fit and out-of

sample forecast. From a theoretical point of view, it is not easy to answer a question about

whether it is a Markov switching process that approximates fractional integrated process,

or the other way around. The following sections detail how we proceed.

5.3.1 Preliminary Data Analysis

The construction of realized volatility is first described, followed by discussion on

the unconditional distributional characteristics of the series to be analyzed. Hypothesis

testing of short memory against long memory process, and testing about the presence of

multiple regimes, is also conducted.

5.3.1.1 Realized Volatility Construction

The realized volatility used in this chapter is constructed by the raw tick-by-tick

over-the-counter (OTC) quotes of the Yen/USD that appeared on Reuter’s FXFX page.

The sample examined covers the period from January 7, 1996 to August 6, 2009. Each

quote consists of bid and ask prices and the times at which they are recorded to the

nearest millisecond. Raw data is not free of erroneous recordings, or errors due to other

sources, such as technical fault of the electronic recording system. The most reliable

way to remove these errors might be through visual inspection with each dubious quote

to be examined carefully, however, this is almost infeasible as the number of ticks to be

processed is overwhelming once intra-day data is dealt with. Therefore, a formal approach,
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algorithms which can be implemented automatically by software, is desirable. We apply

the filtering algorithm proposed by Dacorogna et al. (1993) to mitigate the effects of errors.

The filtering of raw intra-day financial data is a growing research area; see Dacorogna et al.

(2001) for a book-length treatment.

In this chapter, daily realized volatility is constructed from five-minute returns with

returns defined as differences in logarithm prices. The knowledge of asset prices sampled

at five-minute intervals is required. We follow the convention by defining logarithm price

as the midpoint of the logarithm of ask and bid prices. The regularized price is taken as

the last available price from the interval. One possible limitation here is that prices are

not exactly regularly sampled. However, we argue that the effect of irregularity might be

minor given the high liquidity of the Yen/USD with the average time lapse between two

consecutive quotes being measured in seconds. The alternative approach, constructing

price for each five-minute interval by linearly interpolating from the last price from this

interval and the first price from next interval, could introduce spurious predictability. The

difference between the two approaches is negligible if quotes are available every a few

seconds, which is the case in our example.

Daily realized volatility is the sum of squared intra-day returns. There is no clear

consensus on what is the optimal sampling frequency (see Section 2.5.2 in Chapter 2). The

consistency of realized volatility as an estimate of actual volatility relies on the assumption

that intra-day returns can be sampled at very fine intervals. However, it is more common

to use five-minute intervals for a number of reasons. First, some assets are not liquid

enough to be sampled or observed frequently even if the underlying price might evolve

continuously. Second, market microstructure noise introduces extra source of dynamics

precluding the use of intra-day returns at very fine intervals even if the trading might be

very thick. The market for the Yen/USD is fairly active, for example, there are 82 399

quotes of bid and ask prices available on a single day of October 6, 2008. So a tradeoff

is necessary to determine a sampling frequency, which makes the constructed realized

volatility robust to microstructure noise and, at the same time, returns are sampled as

fine as possible. A variety of frequencies have been tried in the literature, and the most

popular choice is 5 minute. In the work of Andersen, Bollerslev, Diebold and Labys (2001);
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Andersen et al. (2003), a 30 minute frequency is also tried. We tried both options, and do

not observe an obvious disparity between the two resultant times series. The first option

is chosen in this chapter.11

Foreign exchange is traded 24 hours per day world-wide. A common observation in

trading patterns is that trading activity in terms of volume and number of quotes diminish

significantly during weekends and holidays. On these thin trading days, most of the five-

minute returns are close to zero, as a result, their sum of squares is of very small magnitude.

This will cause numerical problem especially when the logarithm of realized volatility is

modeled.12 To eliminate weekend and holiday effects, the period from 21:00 GMT Friday

to 21:00 GMT Sunday, and holidays (including fixed and moving holidays)13 are excluded

from our sample. We also remove those days with data holes manifesting as consecutive

zero five-minute returns.14 These leave us with total 3259 daily realized volatility, with the

first 2900 observations treated as training set and the period from March 4, 2008 to August

6, 2009 as rolling sample for recursive estimations and evaluates forecasting performance.

Sample size is important in examining the long-memory property of time series, since it

is the behavior of autocorrelations at long lags that matters. It is difficult to capture this

slowly-decaying in ACF plot with small samples.

11The filtering method proposed by Corsi et al. (2001) is promising. It might be interesting to see
whether the results obtained here is robust to the way realized volatility being constructed. Another
method available in the literature is to use volatility signature plot to determine the optimal frequency
(Andersen, Bollerslev, Diebold and Labys (2001) and Andersen et al. (2003)).

12This is similar to the inlier problem of discrete-time SV model: see Breidt and Carriquiry (1996)
and Shephard (1996). SV models make use of log squared returns, so an almost zero return will cause
numerical problem in estimation. SV models are commonly used on daily or weekly frequency, and it is
rare for the observed prices to be exactly the same from the beginning to the end of a trading day or a
week.

13These holidays include Christmas (December 21-26), New Year (December 31 - January 2), Good
Friday, Easter Monday, Memorial Day, Independence Day, Labor Day, Thanksgiving and the day after
Thanksgiving. We plot the raw data for each of these days, and make the decision to remove the corre-
sponding day or not based on whether there is long consecutive missing quotes, i.e. whether the trading
is too thin.

14By defining normal trading days as with data holes, we refer them as those normal trading days with
the 10 largest numbers of consecutive missing quotes. The choice of 10 is clearly ad hoc, but there is no
universally acceptable rule in the literature.
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5.3.1.2 The Distributional Characteristics of Realized Volatility

The time sequence plot for realized volatility is given in Figure 5.1. Realized volatility

appears to be particularly volatile during the Asian financial crisis from 1997 to 1998, and

the global financial crisis beginning in 2008. There are two extreme spikes presented in

the plot, the first is caused by the Russian financial crisis15 and the other is due to the

2009 Global Financial Crisis. The spikes appear to be much smaller on the logarithm scale,

where a few large negative values are present due to the logarithmic transformation.

Figure 5.1: Daily realized volatility for the Yen/USD (07/01/1996 -06/08/2009)
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The ACF plot (Figure 5.2) implies substantial positive autocorrelations in realized

volatility. Autocorrelations decay to zero at a slow rate, with the first 100 autocorrelations

all being positive. This is as expected, since realized volatility is considered to be a fairly

accurate estimate of actual volatility, and the literature in both GARCH and stochastic

volatility models has well documented the high persistence in volatility based on daily

returns. The autocorrelation function of logarithm realized volatility shows higher auto-

15See Maekawa and Xinhong (2009) for analysis of the Russian financial crisis. Hedge funds liquidated
their open positions of the Yen on October 1998 resulting in sudden and sharp rises in the exchange rate
for Yen (Dollar and Euro depreciation). The crisis covers three days of October 7-9, 1998 and the months
from September to October being particularly volatile.
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correlation and a smoother pattern compared with that of realized volatility itself. This

might be explained by the presence of positive spikes since outliers will reduce autocorrela-

tions in observed time series. The first autocorrelation of realized volatility is around 0.7,

largely consistent with the values reported in the literature (normally around 0.60-0.65).

Accordingly, autocorrelation between consecutive actual volatilities might be even higher

because noise can mask persistence and realized volatility is still not free of measurement

error. Besides the slowly-decaying pattern, local peaks can be observed at autocorrelations

of seasonal lags, such as 5, 10, 15 and 20, clearly indicating a minor calendar effect and

variation in volatility across the five days of the week.16

Figure 5.2: ACF of daily realized volatility for the Yen/USD (07/01/1996 -06/08/2009)
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The density plot and summary statistics of log realized volatility log(RV ) are provided

in Figure 5.3. Taking the log of RV produces a distribution that is approximately normal.

However, disparity still exists with the values of skewness and kurtosis indicating a slightly

skewed and leptokurtic distribution of log(RV ), which is also indicated by the difference

16This is consistent with the observation in Taylor and Xu (1997), where they show that average
realized volatility increases from Monday to Friday, presumably reflecting the timing of macroeconomic
announcements.
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Figure 5.3: Kernel density and summary statistics of logarithm realized volatility
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Mean Median Max Min Std.Dev Skewness Kurtosis Jarque-Beraa

RV 0.619 0.429 12.023 0.040 0.686 6.150 66.95 575919.5
log(RV ) -0.760 -0.847 2.487 -3.207 0.682 0.717 4.018 420.0

aJarqueBera is a goodness-of-fit measure of departure from normality.

between the estimated kernel density and normal density plots. This casts some doubt on

the log normality assumption of volatility, which might affect the statistical inference on

ARFIMA parameter estimates when MLE is conducted on log(RV ).

Minimum Realized Volatility The minimum daily realized volatility of our sample

is 0.04, which is the estimate of actual volatility over a 24-hour period beginning from

GMT 21:00 on January 7, 2004. This quantity is fairly close to zero, yielding a very large

negative value for log(RV ). So we plot the raw data for a close examination. The plot

in the top panel of Figure 5.4 is the filtered ask and bid prices (in logarithm) observed

over that 24 hour period, made up of 9 907 quotes. The bottom panel plots the prices

observed at five-minute intervals. Overall, the trading activity appears tranquil during

the 24 hours, implying price movements of fairly small magnitudes. A visual inspection

of the tick-by-tick prices indicates little evidence of abnormality, such as holes in data
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feed revealed by constant prices over several hours. As a result, the corresponding daily

realized volatility is not treated as an anomaly and is kept in our sample.

Figure 5.4: Yen/USD log prices over 24-hour period from 21:00 07/01/2004 (GMT)
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The top panel is the tick-by-tick ask and bid prices. The bottom panel is the every five-minute ask
and bid prices. All the prices are in logarithm.

Maximum Realized Volatility At the other extreme, the maximum volatility is ob-

served on a day early in the financial crisis which began in 2008. The corresponding

tick-by-tick prices, including 72 915 ticks, and regularized prices are provided in Figure

5.5. This was an active trading day, with a much larger price than that when the minimum

realized volatility was observed (Figure 5.4). Compared with the magnitude of prices, the

bid-ask spread is very small, as the lines for ask prices and bid prices are fairly close in the

plot. Overall little evidence of abnormality is present, hence the corresponding realized

volatility is kept in our sample.

We discuss these two extreme cases, because it is important to combine the filter

algorithm (Section 5.3.1.1) and visual inspection when realized volatility is constructed.

It is well recognized in the literature that intra-day data might be contaminated by errors.
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Figure 5.5: Yen/USD log prices over 24-hour period from 21:00 23/10/2008 (GMT)
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To design a universally accepted filtering rule (algorithm) so that millions of raw asset

prices can be processed automatically prior to constructing realized volatility is difficult in

practice. The quality of the constructed realized volatility is expected to play a role in the

statistical inference of latent volatility as the former is treated as a consistent estimator

of the latter. When realized volatility is modeled on its original scale, these influential

observations are referred as the spikes in the top panel in Figure 5.1. A large magnitude in

realized volatility indicates a high degree of price movements. If the filter was too strong,

the resultant asset price path might be smoother, which reduces the magnitudes of realized

volatility by washing out part of the dynamics in price movements. On the other hand, a

very weak filter will fail to detect erroneous recordings. To determine a suitable tradeoff

is not easy. When volatility is modeled on logarithmic scale, a volatility fairly close to

zero will transform into extreme negative values. A small observed realized volatility is

an indication of low market activity, but it is also likely to be caused by missing quotes

due to technical faults. Therefore visual inspection is often needed. Nevertheless, visual
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inspection of tick-by-tick prices on a daily basis could be time-consuming if a long period

of time series is examined.

Long Memory Testing As part of the preliminary analysis, modified rescaled range

tests proposed in Lo (1991) and Giraitis et al. (2003) are conducted on RV and log(RV )

respectively. The two tests both have a null hypothesis of a short memory process, with an

alternative hypothesis of a stationary long memory ARFIMA(p,d,q) process. Test results

are tabulated in Table 5.1. The test of Giraitis et al. (2003) is more robust to model mis-

specification such as departure from linearity. Overall, the two tests results are consistent:

the null is clearly rejected especially in the test of Giraitis et al. (2003).

Table 5.1: Modified rescaled range tests of long memory for RV and log(RV )

RV log(RV )

Lo Test Giraitis Test Lo Test Giraitis Test

K1 1.942∗∗ 0.332∗∗ 2.288∗∗ 0.453∗∗

K2 1.571 0.217∗∗ 1.764∗∗ 0.270∗∗

K3 1.398 0.172∗ 1.530 0.203∗∗

a∗∗: significance at 5%. ∗: significance at 10%.
bThe test statistics will differ when different values of number of lags K included for calculation

of covariances are chosen, we follow Lo (1991) and try the following values K1 = 90, K2 = 180 and
K3 = 270. The optimum choice of K is not available, the situation is similar as the choice of bandwidth
when non-parametric estimation of memory parameter d is conducted. So different values of K should be
experimented with.

cThe critical values of Lo (1991) and Giraitis et al. (2003) tests are: 1.747 and 0.187 at 5% significance
level, and 1.620 and 0.152 at 10% significance level, respectively.

Regime Identification Testing We conduct the test to see whether the data suggest

the existence of more than one regime, prior to estimating two regimes, following the

approach discussed in Section 5.2.2.4. The order of autoregressive and moving average

terms in the regime switching model (5.3) are both chosen as 1. The choice of ARMA(1,1)

is mainly for reasons of parsimony; there is no reason to preclude other settings. The

grids for the range of values each parameter takes in computing the test statistic are

Grid for transition probabilities p11 and p11 : 0.1 to 0.8 in steps of 0.1 (eight gridpoints)

Grid for regime mean difference µd : 0.1 to 2.1 in steps of 0.4 (six gridpoints)

Grid for regime variance difference σ2
d : 0.05 to 0.4 in steps of 0.05 (eight gridpoints)
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corresponding to a partition of the space for υ = (p11, p22, µd, σ
2
d)

′
into 3072 grid points.

Monte carlo simulation is used to obtain the critical value of L̂R
∗
T (υ), and the critical

values are 2.777, 3.098 and 3.599 at the significance levels of 10%, 5% and 1% respectively.

The standardized LR test statistics L̂R
∗
T (υ) is 8.598, being significant at 1% level. Hence,

the assumption of one regime is clearly rejected.

According to these test results, there is evidence in favor of both AFIMA and regime

switching models when compared to a stationary null model. Recursive estimations are

conducted in the next section to see which specification is able to provide better fit and

forecasting.

5.3.2 Recursive Estimations

Recursive estimations are conducted in this section in the following fashion: the first

observation, which is on January 7, 1996, is fixed, and the sample is updated with each

new observation becoming available. The rolling period examined has end dates ranging

from March 4, 2008 to August 6, 2009, resulting in 360 recursive estimations for each

method. Summaries of estimation results are discussed first, followed by comparisons of

in-sample fit.

5.3.2.1 Estimation Results for ARFIMA Models

ARFIMA models (5.1) are estimated on log(RV ), where the choice of orders of p and

q is important because memory parameter estimates could be misleading if short-term

dynamics are mis-specified. A range of specifications of p and q are tried, however, the

discussion that follows is restricted to ARFIMA(1,d,1), ARFIMA(5,d,0), ARFIMA(3,d,3)

and ARFIMA(0,d,0). The four specifications are chosen based on the following logic:

ARFIMA(1,d,1) is a parsimonious specification, and the choice of ARFIMA(5,d,0) is

largely due to seasonality with five day periodicity implied in the ACF plot. The other

two specifications represent the cases of possible over-parameterization and a simple as-

sumption of little short-term dynamics in volatility, respectively. In additional models not



5.3. EMPIRICAL ANALYSIS 142

reported here we vary the orders of p and q in the range of (0,1,2,3).17 The general com-

ments on these estimation results are: point estimates of memory parameter are sensitive

to the orders of p and q, but in terms of analysis of residuals and out-of sample forecasting,

no significant differences are observed.

Figure 5.6 plots the GPH estimate of the memory parameter d when modeling log(RV )

for the full sample period when different values of bandwidth are chosen, with point

estimates and corresponding asymptotic standard errors in the top and bottom panels,

respectively. It is clear that GPH estimator is sensitive to the choice of bandwidth. A

common choice of bandwidth is the one which provides a relatively small standard error.

Based on this rule, d is estimated around 0.45, in the range of typical values documented

in the literature.

Figure 5.6: GPH estimates of memory parameter d for log volatility of the full sample
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Point estimates of d are plotted in the top panel with corresponding asymptotic standard errors plotted
in the bottom panel. Horizontal axis represents the values of bandwidth chosen for GPH estimators. The
full sample is from 07/01/1996 to 06/08/2009.

Figure 5.7 shows the recursive estimates of d for the selected ARFIMA models; the

estimates do vary with the specification of short-term dynamics. Point estimates of d for

17The estimation results for this wide range of values of p and q are available on request.
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the ARFIMA(3,d,3) and ARFIMA(1,d,1) models are out of the stationary region (d > 0.5),

especially for samples ending after late 2008, when the financial turmoil began. The degree

of persistence in volatility is pushed up since the crisis, with all the d estimates increasing

ever since. The ARFIMA(5,d,0) and ARFIMA(0,d,0) specifications provide similar d

estimates to that of the GPH estimator when the bandwidth is around 0.8.

Figure 5.7: Recursive estimates of d for selected ARFIMA(p,d,q) models
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5.3.2.2 Estimation Results for Regime Switching Models

Two types of regime switching models are estimated: short memory regime switching

(equation 5.3) and long memory regime switching (equation 5.9) models. We are primarily

concerned with the possibility of using short memory regime switching to mimic the long

memory property of time series. So the discussion in this section is on short memory regime

switching, with long memory regime switching to be discussed later when we evaluate out-

of-sample forecasting.

In terms of the short memory regime-switching models, two specifications of (5.3) are

tried on log(RV ): ARMA(1,1) and ARMA(5,1), with both allowing the level and variance

of innovations to switch across the 2 regimes. For the specification of regime switching
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ARMA(5,1), autoregressive coefficients at lags 2,3,4 are dropped after they are found to be

insignificant. The inclusion of lag 5 is to capture the mild seasonality observed in Figure

5.2. Of course, there is no reason to preclude a specification which allows for autoregressive

and moving-average coefficients to switch between regimes. We did estimate such models,

but the results were inferior to the specifications reported here. Estimation of regime

switching models can be sensitive to initialization as the model is highly nonlinear, so a

range of initial values are tried and the estimates which provide the maximum likelihood

are chosen.18

Figure 5.8 plots recursive estimates of the regime switching ARMA(1,1) model, where

µi and σi denote mean and standard deviation for each regime with i = 1, 2, and φ1 and

θ1 denote the autoregressive and moving-average coefficients at lag 1. The first regime

is characterized by a negative level and relatively small magnitude of innovation, which

represents the tranquil state. The second regime is characterized by a positive level and

large magnitude of innovation, representing a relatively volatile state. Autoregressive roots

are outside the unit circle, indicating local stationarity of each regime.19 Depending on

the sample, the probability of a tranquil state being followed by another tranquil state

is around p̂11 = 0.92, so the typical persistency of this episode is 1/(1 − p̂11) = 12.5

days. The estimated probability of a volatile state being followed by another volatile state

is around p̂22 = 0.65, indicating average persistency of this episode is 1/(1 − p̂22) = 3

days. According to the equations in Franses and van Dijk (2000, p. 82), the unconditional

probability Pr(st = i) for the process being in each regime is

P̂ r(st = 1) =
1− p̂22

2− p̂11 − p̂22
=

1− 0.65

2− 0.92− 0.65
= 0.81

P̂ r(st = 2) =
1− p̂11

2− p̂11 − p̂22
=

1− 0.92

2− 0.92− 0.65
= 0.19

therefore most of the time the process is in the tranquil state. The mean of the tranquil

state is estimated to be around -1.4, corresponding roughly to 0.25 in RV as the regime

switching models are estimated on log(RV ). The mean of the other state is estimated to

18The time series modeling package Time Series Modeling 4.30 developed by James Davidson is used
in this chapter to conduct the recursive estimation and forecasting of regime switching models.

19Local stationarity of each regime is not necessary condition for global stationarity: see the stationary
conditions of regime switching models discussed by Francq and Zaköıan (2001).
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be around 1.8, corresponding roughly to 6.05 in RV . Compared with 0.62, which is the

unconditional mean of RV reported in Figure 5.3, the latter state is “noisy”.

Figure 5.8: Recursive parameter estimates of regime switching ARMA(1,1) Model
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Overall, the financial turmoil that began at the end of 2008 has impacted the stability

of parameter estimates. A close examination of the magnitude of parameter estimates

suggests instability is not very problematic in this case, since the range of the estimates of
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each parameter is reasonably small except that of µ2, the level of the second regime. The

spikes due to the financial crisis have clearly pushed up the estimates of µ2.

Figure 5.9: Recursive parameter estimates of regime switching ARMA(5,1) Model
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Figure 5.9 plots the recursive estimates for the regime switching ARMA(5,1) model.

The parameter estimates are largely close to those in Figure 5.8. The autoregressive

coefficient at lag 5 is around 0.1.

5.3.2.3 Estimation Results for a Multi-factor Stochastic Volatility Model

The three factor SV model is estimated according to the method discussed in Section

5.2.3.20 Figure 5.10 plots the recursive estimates of all seven parameters, where λ1, λ2, and

λ3 denotes the parameter which determines the autocorrelation function of each volatility

factor, with corresponding weights being $1, $2, and $3 = 1 − $1 − $2, respectively.

Mean and variance of spot volatility are denoted as ξ and ω2. Numerical estimation is

not easy for this exercise, as revealed by the numerical optimizations being sensitive to

initial values, taking a long time to converge and only weak convergence is available for

some rolling samples. A seven-dimensional grid is used for initialization of the first rolling

sample, with 800 sets of initial values being experimented with. The set of parameter

estimates which give the largest value for the likelihood is chosen. The MLE of the first

rolling sample is used to initialize the estimation of the second rolling sample, and so on.

Since the end of 2008, the parameters estimates show a clear pattern of instability. In

general, the instability appears to be of larger degree than that the cases of ARFIMA and

regime switching models (Figures 5.7, 5.8 and 5.9). For example, in Figure 5.8 the recursive

parameter estimates of the regime switching ARMA(1,1) model do vary depending on

samples, but the variation in general appears to be less. On the other hand, it appears

that the estimation of λ3 (Figure 5.10), which determines the autocorrelation function of

the third volatility factor, is difficult, as there is a large variation of the recursive estimates.

This might suggest the three factor SV model is an inferior description of the time series

examined. In particular, it is less capable of incorporating the impact of the financial

crisis than the regime switching and ARFIMA models.

20Alizadeh et al. (2002) documents a successful application of using the sum of short-memory processes
to mimic the long-memory property of volatility. They suggest using two volatility factors, with one
representing the persistence dynamics and the other representing the transient dynamics. They argue that
the highly persistent factor can contribute to autocorrelations in volatility, and the less persistent one can
do a good job in capturing volatility in volatility.
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Figure 5.10: Parameter recursive estimates of a three-factor stochastic volatility model
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The estimated values of ξ and ω2, the mean and variance of the spot volatility are

comparable to those reported in Barndorff-Nielsen and Shephard (2002a, table 3).21 Pa-

21Barndorff-Nielsen and Shephard (2002a) used the US dollar-German Deutschmark series covering the
10-year period from 1 December 1986, until 30 November 1996. Every 5 min this series records the most
recent quote to appear on the Reuters screen. The estimated parameters for a three-factor SV model based
on realized volatility computed using 10-min returns are ξ = 0.508, ω2 = 4.79, λ1 = 0.0331, λ2 = 0.973,
λ3 = 268, $1 = 0.0183 and $2 = 0.0180. See their table 3 for the results with varying frequency used to
construct realized volatility, and varying number of volatility factors.
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rameter λz specifies the autocorrelation function of the zth volatility factor. According

to equation (5.11), which assumes the underlying SV process is a constant elasticity of

variance (CEV) process, the autoregressive coefficient of actual volatility is a function

of exp(−λ). The estimated λ1 implies a highly persistent volatility component with an

autoregressive coefficient close to one. For the other two components, the estimated au-

toregressive coefficients are virtually zero implying two rapidly decaying components. In

particular, exp(λ̂1) = 0.9940, indicating a volatility factor which has quite a large degree

of memory, with exp(λ̂2) = 0.0025 and exp(λ̂3) ≈ 0. The second volatility component is

estimated to have the largest weight, with the third component getting very little weight.

5.3.2.4 Goodness of Fit

We focus on the comparisons between regime switching and ARFIMA models for the

moment. The three factor SV model is of state space form, decomposing realized volatility

into actual volatility and measurement error. Two types of residuals are obtained from

the estimation: one is from the measurement equation, and the other is from the state

equation. The three-factor SV model is estimated on realized volatility rather than the log

transformation. Hence the corresponding residuals are not directly comparable to those

of the regime switching and ARFIMA models. Accordingly, the evaluation of the three

factor SV model is only focused on the forecasting performance.

We choose AIC as a measure a goodness of fit. Figure 5.11 plots the AIC based on our

recursive estimations, where smaller value of AIC indicates better goodness of fit. Over-

all, regime switching models appear to be a better description of log(RV ) than ARFIMA

models. In addition, models of the same type tend to provide comparable in-sample fit,

while the values of AIC distinguish clearly between the two types of model. The finan-

cial crisis adversely impact the in-sample fit of each model considered. However, regime

switching models produce smaller AIC all through our rolling samples. In particular, the

specification of regime switching ARMA(5,1) is consistently the best.

Diagnostic tests are conducted on the residuals from each rolling sample, including
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Figure 5.11: AIC of rolling samples
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We define that the smaller the AIC, the better the goodness of fit.

Figure 5.12: Serial dependence in residuals and squared residuals of rolling samples
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testing for serial correlation on residuals and squared residuals, and a normality test.22

Figure 5.12 examines the serial dependence in residuals and squared residuals, where Box-

Pierce statistics are recorded for each rolling sample of each model examined. The null

hypothesis of Box-Pierce test is serially uncorrelated (white noise) series. The statistics

reported here are obtained at lag 12.23 The test statistic is

Q(l) = T
l∑

g=1

γ2g

where l is the order of lag to use for the test, T is the number of observations, and γg

is the gth autocorrelation. The test statistic is asymptotically distributed as a χ2 with

l− p− q degrees of freedom when applied to the residuals of an ARMA(p,q) model. If the

residuals are not based on the results of ARMA models, then under the null hypothesis,

Q(l) is asymptotically chi-squared with degrees of freedom equal to l. The critical values

of a χ2 distribution with 12 degrees of freedom is 18.55, 21.03 and 26.22 at the significance

levels of 10%, 5% and 1%, respectively.

The larger the statistic is, the higher the degree of serial dependence left over in

residuals or squared residuals. ARFIMA(3,d,3) and ARFIMA(5,d,0) show the lowest de-

gree of serial dependence in the residual levels (Figure 5.12 Panel (a)), while the memory

parameter estimate of ARFIMA(3,d,3) exceeds the stationarity boundary (Figure 5.7).

The performances of ARFIMA(0,d,0) and regime switching ARMA(5,1) are similar, with

regime switching ARMA(1,1) having the highest degree of serial dependence in residuals.

These indicates the relative weakness of the two regime switching models in removing

serial correlation in residuals. In terms of serial dependence in squared residuals (Figure

5.12 Panel (b)), regime switching models are better than ARFIMA models. Examination

of serial dependence in squared residuals helps to detect and measure the degree of non-

linearity unaccounted for by the model used. The inferior performance of the ARFIMA

22Hamilton (1996) discusses specifically diagnostic tests of Markov-switching models. In particular,
tests for residual autocorrelation, heteroscedasticity, regime mis-specification, and omitted explanatory
variables are developed. These tests make heavy use of score vectors, and to conduct them for 360 rolling
samples could be computationally costly. Therefore, they are not pursued here.

23There remains the practical problem of choosing the order of lag to use for the test. With a small
lag chosen, the test may not detect serial correlation at high-order lags. On the other hand, with too
large a lag, the test may have low power because the significant correlation at one lag may be diluted by
insignificant correlations at other lags.
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model indicates its weakness on this aspect compared with regime switching.

Figure 5.13: Skewness and kurtosis of the residuals of rolling samples
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With the normality test, residual Jarque-Bera statistics are calculated for each sam-

ple. Neither the regime switching nor the fractional integration specifications are able to

generate Gaussianity of residuals. The magnitude of Jarque-Bera statistics ranges from

from 35 to 60 of the former and from 650 to 900 of the latter, indicating very clear evi-
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dence against the null hypothesis of normally distributed error terms. The deviation from

normality assumption is much worse of the ARFIMA models compared with that of the

regime switching models. The Jarque-Bera test statistic measures the difference of the

skewness and kurtosis of the series with those from a normal distribution. The expected

values of skewness and kurtosis of a normal distribution are zero and 3. Figure 5.13 plots

the residual skewness and kurtosis recorded for each rolling sample of each model exam-

ined. In general, the statistics from the same type of models are comparable. The residuals

skewness and kurtosis of the regime switching models deviate much less from the expected

values than those of their ARFIMA counterparts. The excessive kurtosis of the ARFIMA

models (Figure 5.13 Panel (d)) suggests that they are less capable in dealing with extreme

volatility values.

Based on these observations, the ARFIMA models in general perform worse than

the regime switching models except when we examine serial correlations in residual levels.

The performance of each model worsens once the sample includes the global financial

crisis, as suggested by the increased magnitudes of all the statistics examined. In the

next section, we will examine whether the superiority of regime switching will generate

improved out-of-sample forecasting.

5.3.3 Forecasting Performance

For each model, twenty-step ahead predictions, given maximum likelihood estimates,

are generated for each rolling sample. With recursive estimations conducted, twenty time

series of volatility forecasts and corresponding forecast errors are obtained.24 An important

choice when comparing forecasts is the selection of forecast horizons and we choose to

examine each of the 20 horizons.

The discussion in this section is focused on forecasting log(RV ) rather than RV for

the following reasons. It is clear from Figure 5.1 that the rolling sample period takes place

24Since volatility is not observable, construction of its forecast error will depend on the measure used to
approximate volatility. We follow the convention by treating realized volatility as volatility approximation
as it provides unbiased estimates of actual volatility. Another commonly used approximation before the
advent of realized volatility is squared daily returns, despite the fact that it is a very noisy approximation.
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in a very volatile period. There are a few spikes in realized volatility, which will gener-

ate influential forecasting errors and mask the forecasting performance significantly, while

evaluation based on the logarithm might be more informative.25 Secondly, both regime

switching and fractional integration models are estimated on log(RV ), and back trans-

formation by simply exponentiating the logarithms will introduce bias.26 Mean squared

forecast error (MSFE) is used as our accuracy measure mainly due to its popularity and

simplicity. Of course, there is no reason to preclude other accuracy measures, or other

loss functions such as symmetric or asymmetric loss functions. This is an interesting topic

since forecasting performance is expected to be associated with the choice of loss functions.

Since volatility is largely treated as an input in financial instruments pricing, for example

options and futures, forecast evaluations under a more practical framework rather than

from a purely statistical point of view could be of more empirical relevance. However,

this is not pursued here. There is a large literature in forecasting evaluation; see Diebold

and Lopez (1996) and Newbold and Harvey (2001), and references therein. For recent

applications in volatility forecasting, see Patton and Sheppard (2009).

Tabulations of MSFE for the rolling sample period for all the models estimated are

reported in Table 5.2, with Figure 5.14 plotting the MSFE of some of the models. Forecast

horizons evaluated range from one to twenty-step ahead. The results show that the ranking

of same type of models are similar across forecast horizons. Regime switching models

provide the smallest MSFE at almost all the horizons evaluated, the relative performance of

which improves as the forecast horizon becomes longer.27 No great difference is observed in

terms of short term forecasts, especially for one-step ahead forecasting. Comparing within

the same types of model, the specifications with more parameters tend to perform better,

however, the improvement is relatively minor. Of the three types of model considered,

regime switching and ARFIMA outperform the single and three-factor SV models.

The ranking of forecasting accuracy is consistent with that of AIC. Better in-sample-

fit provides improved out-of-sample forecasts, especially at long-term horizons such as

25The volatility of volatility appears to increase as the level of volatility increases, therefore forecast
evaluation measured in logarithms is able to gauge the performance in terms of percentage.

26Bias is introduced due to the fact that E
[
f(X)

] 6= f
(
E[X]

)
if f(X) is non-linear.

27The application in Calvet and Fisher (2004) suggests regime-switching model is able to improve long-
run volatility forecasting.
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Table 5.2: Mean squared forecast error of log(RV ) using rolling samples

Forecasting horizons 1 5 10 15 20

Models

Fractional integration ARFIMA(0,d,0) 0.199 0.355 0.393 0.442 0.502
ARFIMA(5,d,0) 0.198 0.345 0.380 0.428 0.491
ARFIMA(3,d,3) 0.198 0.344 0.374 0.419 0.482
ARFIMA(1,d,1) 0.198 0.342 0.368 0.414 0.478

Regime switching RS-ARMA(5,1) 0.196 0.300 0.291 0.313 0.351
RS-ARMA(1,1) 0.199 0.316 0.307 0.326 0.365

RS-ARFIMA(0,d,0)a 0.197 0.324 0.353 0.394 0.440
RS-ARFIMA(5,d,0)b 0.198 0.319 0.354 0.396 0.442

Stochastic volatility One-factor 0.318 0.681 0.679 0.674 0.680
Three-factor 0.364 0.389 0.529 0.572 0.616

aThe specification of RS-ARFIMA(0,d,0) is to assume log(RV ) switching within two regimes, with each
regime controlled by a ARFIMA(0,d,0) process, but the level, innovation variance and memory parameter
of one process are different from those of another.

bThe specification of RS-ARFIMA(5,d,0) is similar to that of RS-ARFIMA(0,d,0), but with autore-
gressive root at lag 5 being estimated for each regime.

cMean squared forecast error (MSFE) is obtained from the rolling sample period of March 4, 2008
to August 6, 2009. Given daily data are examined, the horizons of one-step, five-step and twenty-step
represent daily, weekly and monthly, respectively.

Figure 5.14: Mean squared forecast error of log(RV ) using rolling samples
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aMSFE is plotted on the vertical axis, with forecasting horizons on the horizontal axis.
bCompared with Table 5.2, the MSFE of one-factor SV and regime switching ARFIMA models are not

plotted in the graph, which is mainly to make the graph easy to read.



5.3. EMPIRICAL ANALYSIS 156

monthly. As to fraction integration with different choice of autoregressive and moving

average orders, the MSFE of the parsimonious model, say, ARFIMA(1,d,1) is relatively

close to but worse than that of the more complicated ARFIMA(3,d,3) specification. This

is largely in line with the empirical results shown in Chapter 3, where ARFIMA(p,d,q)

model is used to predict volatility, with Bayesian model averaging applied to integrate

out uncertainty in model specifications. The empirical results indicated that the weighted

average model does not show significant improvement over fractional integration models

with different orders of p and q, and forecasts provided by ARFIMA(p,d,q) with different

orders of p and q are comparable.

The MSFE of the three factor SV model is the second largest at almost all the horizons

examined only one-factor SV is worse. One possible explanation might be the difficulty in

numerical estimation of the SV model. Numerical optimization has problem in converging

as only weak convergence is attained but strong convergence for some rolling samples

even when a range of initial parameters are experimented. The difficulty in parameter

estimation has a negative impact on the out-of-sample forecast. This also casts some

doubt on the asymptotic results obtained in Barndorff-Nielsen and Shephard (2002a). The

performance of the one factor SV model is the worst. This model assumes spot volatility

is controlled by one volatility component. In the case of the three factor SV model, it

is the sum of three volatility components, each with a different autocorrelation function,

by which the long memory property in volatility is captured. The one factor specification

lacks such a mechanism, despite the fact that numerical optimization of the three factor

model is problematic for some rolling samples.

If the better performance of regime switching and fractional integration can be ex-

plained by the finding that log(RV ) is approximately Gaussian, as identified by Andersen,

Bollerslev, Diebold and Labys (2001) and implied in the empirical distribution of our sam-

ple (Figure 5.3), then how do we explain the improved in-sample fit and relatively smaller

MSFE of regime switching over those of ARFIMA models? We follow the argument in

Alizadeh et al. (2002): it is desirable for a volatility model to be able to deal with two

crucial aspects, i.e. autocorrelations in volatility and volatility of volatility. Both spec-

ifications are equally able to describe the slowly-decaying autocorrelations observed in
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volatility, as justified by Diebold and Inoue (2001) and other empirical examples discussed

in our introduction to this chapter. Then the relative performance of either specification

is largely determined by its ability to capture the volatility of volatility. Regime switching

specifications allow the volatility of volatility to switch between two regimes. One regime

is characterized by high innovation variance, and the other has low innovation variance.

As such, more flexibility is allowed in describing volatility dynamics. Given a sample pe-

riod of over a decade, it is a realistic possibility that volatility evolution is controlled by

two (or more) regimes, while the assumption of fractional integration lacks such flexibil-

ity. It is in this sense that regime switching is a better description of log(RV ) and more

accurate forecasts might be expected. Specifications of more than two regimes may even

offer improved AIC and long-run forecasts, however the gain might be limited given the

patterns observed in Figures 5.11 and 5.14, where the performance of parsimonious models

is comparable to those more complicated specifications for the same type of model.

Let us briefly discuss other models considered. Long memory regime switching

models are also estimated.28 Nevertheless, they are not the main focus of our exercise

here as we are concerned with the possibility of using short memory regime switching

to mimic long memory property. The specification of regime switching ARFIMA(p,d,q)

assumes each regime is controlled by an ARFIMA(p,d,q) process, and the level, inno-

vation variance and memory parameter of each regime are different. This specification

nests the single ARFIMA(p,d,q) model. Table 5.2 shows that the MSFE of regime switch-

ing ARFIMA(p,d,q) is smaller than the single ARFIMA(p,d,q), but larger than that of

regime switching ARMA(p,q). The under-performance of long memory regime switching

compared with short memory switching may be due to the increased complexity in likeli-

hood evaluation in the former case. This would likely reduce the accuracy of parameter

estimation, and hence adversely affect out-of-sample forecasts by this class of models. In

other words, adding an ARFIMA specification to regime switching is not necessary, and a

short memory regime switching is sufficient to capture the long memory property observed

in the time series.

28The recursive estimation results for the long memory regime switching models are available upon
request.
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5.4 Conclusions and Extensions

A common observation regarding volatility is the slowly decaying autocorrelations,

especially with high-frequency data. Realized volatility modeling often involves models

of a fractional integration process. However, it is well documented in the literature, with

theoretical and empirical support, that alternative specifications, such as regime switching

or a sum of short-memory processes, are equally able to mimic the long-range dependence.

This chapter conducts a recursive estimation of realized volatility of the JPY/USD rate,

with the aim of assessing the abilities of these alternative specifications in modeling and

forecasting volatility. Daily realized volatility of the JPY/USD rate during the period

1996-2009 is examined.

The main result is that a short memory regime switching model, which allows the level

and innovation variance to switch within regimes, appears to provide a better description of

the series being examined than ARFIMA(p,d,q) models with fixed mean and variance. The

evidence includes improved in-sample fit, better-behaved residuals, and increased accuracy

of long-run volatility forecasting. Short term forecasts of each model are similar, except

for the three-factor stochastic volatility model which performs poorly. This result may

be due to estimation difficulties. The recent financial turmoil adversely affects stability

in estimation of each model, although the superior performance of the regime switching

models is observed well before the global financial crisis.

An important difference between fractional integration and regime switching models

is in the treatment of the mean. Long term predictions of a time series would rely on

the accuracy of the level estimates. With a time series spanning a decade, including

occasional volatile periods, fractional integration models lack the flexibility to incorporate

abrupt changes in the volatility level. The improved forecasting performance of regime

switching models suggests the specifications of model components, such as the mean and

variance, are important in describing the long term characteristics of time series.29

Within each regime, the volatility evolution is specified by a short memory process.

29This is consistent with the comments made by Franses and van Dijk (2000, p. 76) on the important
role of intercepts in nonlinear time series models.
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By allowing the evolution to switch between two short memory processes, not only is

a process with slowly decaying autocorrelations better described, but also better long

term prediction is obtained. This is a helpful finding, because it suggests that the long

memory property, revealed as slowly decaying autocorrelations of time series, could be

effectively modeled by methods which avoid the use of long memory specifications, such

as fractionally integrated processes. Or possibly, that what appears to be long memory is

not: it is actually short memory with regime switching, and it is with the regime switching

mechanism being ignored that gives the appearance of long memory.

Two questions are suggested for future research. First, it is assumed here that switch-

ing of regimes is controlled by a Markov process, a purely statistical mechanism. Hamilton

(1989) argues that this assumption is not unduly restrictive, although as argued by Schwert

(1989), an important question in volatility modeling is why volatility changes over time. In

this regard, a switching mechanism explained by other factors, for example, the variables

of macroeconomic volatility, financial leverage and trading volume, examined by Schwert

(1989), appears to be of greater interest than a purely statistical process. Secondly, there

may be value in combining forecasts from different models to improve prediction accuracy.



Chapter 6
Conclusion

This thesis has been concerned with volatility modeling given the fact that volatility

is an important input to pricing various financial derivatives. Our treatment is exclusively

univariate. Three exercises involving analysis of the JPY/USD exchange rate are con-

ducted, with two of these making use of intra-day data, and the other using daily data.

The exercises are concerned especially with the high degree of persistence in volatility, one

of the important stylized facts of assets returns.

6.1 Main Findings

The main findings of our exercises can be summarized as follows. First, Bayesian

model averaging is helpful in improving forecast accuracy of volatility at long-term hori-

zons, according to the criterion of mean square forecast error. At the daily horizon, the

prediction provided by Bayesian model averaging is out-performed only by the single best

ARFIMA model. A simulation study conducted also indicates the risk reduction expected

from Bayesian model averaging. In terms of the statistical inference of the memory parame-

ter of volatility, the memory parameter estimated from the overall average model indicates

significant evidence of long-range dependence in the daily volatility of the JPY/USD ex-

change rate from January 2003 to August 2008. We argue that the parameter estimate

from the overall average model is robust in the sense that by employing a model derived

160
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as the average across a range of long memory and short memory models, part of the un-

certainty of model selection is avoided. The risk of making inference based on a single

model is addressed in a coherent way. The posterior model probability is used as model

weight, which is the byproduct of Bayesian estimation, and therefore the implementation

of Bayesian averaging is feasible.

Secondly, a Bayesian method is able to estimate a long memory stochastic volatility

model better than the classical method. Our Bayesian estimation is based on the state

space form of stochastic volatility models, and the fractional integration is approximated by

a moving-average process with high orders. This treatment facilitates the implementation

of MCMC simulation. According to a Monte Carlo simulation study conducted with a

range of true parameters, the proposed Bayesian estimator, when the posterior mean is

used as a point estimator, tends to outperform the classical counterpart by producing

smaller root mean square error, with sample sizes from 2000 to 4000. The simulation

study also indicates that the estimation of long memory SV models is in general not an

easy task when the persistence of latent volatility is of low degree and the innovation to

the volatility process is weak. The Bayesian method is used to estimate daily returns

for the JPY/USD rate over almost 30 years. Clear evidence of long-range dependence in

volatility is observed, with the degree of persistence consistent with that when realized

volatility is used.

Finally, short memory regime switching models are shown to be a better description of

daily realized volatility than the long memory ARFIMA models. We consider a stationary

ARMA model which allows the mean and variance of volatility to switch within regimes. A

recursive estimation on the daily JPY/USD from 1996 to 2009 is conducted. The results

show that by allowing a short memory specification switching within two regimes, in-

sample fit and out-of-sample forecast can be both improved. While the short term forecasts

of the models being compared are similar, the long-run volatility forecasts produced by

regime switching models are more accurate. This is a useful finding, because it enhances

the options to capture the slowly decaying autocorrelations of time series, other than

the long memory ARFIMA models. This raises an interesting question. Given the long

memory property observed, i.e. slowly-decaying autocorrelations, what is the underlying
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data generating process? Long memory models, or switched short memory models? Is it

possible that volatility does not really evolve with a long memory data generating process,

but rather short memory properties, but non-constant mean and variance?

6.2 Limitations and Extensions

There are several possible extensions to the research conducted in this thesis. The

Bayesian model averaging exercise in Chapter 3 considers only ARFIMA and ARMA

models, without incorporating the effects of jumps which commonly are observed in high-

frequency data (see for example, Barndorff-Nielsen and Shephard (2004b, 2006)). It would

be useful to deal with this feature in the model averaging exercise, and averaging across

different models may affect the outcome.

The long memory SV model examined in Chapter 4 is of the basic form. A possible

extension is to specify the latent log volatility as an autoregressive moving-averaging frac-

tional integration, thus allowing for more flexibility. Our sensitivity study indicates that

estimation is difficult when both the memory and volatility innovation parameters are of

relatively small magnitudes. This is evident from the low convergence rate of the MCMC

algorithm, and improving the MCMC convergence is of practical relevance. Alternatively,

other Bayesian methods, such as the importance sampling approach, may be employed.

The regime switching specified in Chapter 5 assumes the switching is determined

by a Markov process, which is a purely statistical mechanism. It would be helpful to

experiment with other switching mechanisms (e.g. an economic mechanism), in the quest

to discover the underlying driving force of varying volatility. Also, the empirical results in

Chapter 5 indicate the forecasting behavior of various volatility models could be improved.

In particular, forecasts derived from combinations of alternative models may improve

prediction accuracy, by reducing forecast errors resulting from the use of a single model.

To conclude, this thesis has explored a number of interesting phenomena and possible

models and suggested possible fruitful directions for improved modeling of volatility, but

it is clear that there is still much left to learn.
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