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Abstract

Multi-functionality of robots is almost a new objective of interest, both theoreti-
cally and in practice. Recent work has shown the robot is able not only to act as a
material handling device but also to inspect the part in transit between machines.
Such a kind of robot and the cell in which it is applied are called the Multi-Function
Robot (MFR) and the Multi-Function Robotic Cell (MFRC), respectively. Also, 
the inspection scenario under this condition is named in-line inspection scenario.

Considering a MFRC, this thesis contains two main contributions. Firstly,
we limit our study to a MFR which only measures the thickness of the part and
records results in an independent computer. Accordingly, the processing route
of the part is fixed although the MFR performs the inspection process of the
part. Under this condition, we find a deterministic model for minimizing the
cycle time. Secondly, we consider the user interface computer can be used to
modify the processing route of each part based on its inspection result. This
means that the number of processing of the part by the production machine is
a random variable depending on the inspection result. Consequently, we should
develop a stochastic model for minimizing the partial cycle time. For this case,
we also focus on two other inspection scenarios in addition to in-line one: post-
process and in-process. For the first scenario, the inspection process is performed
by an independent inspection machine, while parts are inspected in the production
machine using multiple sensors for the second scenario. Since the inspection can
be performed by a MFR, we extend results for the in-line scenario. Furthermore,
it is shown how a robotic cell with post-process (or in-process) inspection scenario
can be converted into a robotic cell with in-line inspection scenario.

We propose an analytical method for minimizing cycle time (or expected cycle
time) of cells under the aforementioned conditions. Accordingly, the thesis is
organized as follows: Chapters 1 and 2 give a general overview of robotic cells,
and then Chapters 3-6 present four published papers related to the situation in
which the processing route of the part is fixed. The first paper is related to the
origin of MFRCs. Following that, second and third papers are related to small-
and large-scale MFRCs which only record the inspection results. Finally, the forth
paper is related to the operational flexibility in MFRCs. Note that Chapters
3-6 are precedents for Chapters 7-9 where the processing route of each part is
modified based on its inspection results. We present two papers in Chapters 7
and 8 to cover robotic cells with post-process and in-process inspection scenarios.
Then, in Chapter 9, we show how cells with in-process and post-process inspection
scenarios can be converted into a MFRC, which has an in-line inspection scenario.
Finally, Chapter 10 presents concluding remarks and some suggestions for MFRCs
operating in a dynamic environment.
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Chapter 1

Introduction

Industrial technology has recently been followed by a meaningful development in
areas such as computers, sensor technology, and mechatronics. This opens up a
unique opportunity to develop automation solutions adapted to both small- and
large-sized shops. The level of automation is a major decision for manufacturers
since an effective level of automation means a stronger economy. To the best of
our knowledge, robotic cells are directly the outcome of modern manufacturing
industries with a high level of automation. Even though these industries apply
human operators for operations, a significant improvement in productivity is ob-
tained from maximizing levels of automation. This is because robots are safer,
more programmable, less expensive, more flexible and agile, and capable of in-
terfacing with consumers. For example, consider a press line for draw-forming of
automobile body plan or an electroplating line. Obviously, it is much safer to
apply a robot instead for a human operator for both of examples. Consequently,
the productive use of robots in manufacturing cells is of paramount importance
for production engineers due to the fact that they represent a substantial portion
of the factory automation as well as the factory investment.

Among technical issues pertaining to real-life robotic cells, the scheduling of
the robot movement between machines, the sequence of the robot operations and
the part inspection strategy selection are absolutely vital as they have influence on
the performance and the quality of the completed parts. Therefore, this analytical
study is expended on the study of the problem of obtaining optimal sequence of
robot moves for different categories of cell based on the employed industrial robot.

1.1 Cellular Manufacturing Systems

The Cellular Manufacturing System (CMS) is probably the most popular alterna-
tive for a mass production environment. It is a model for factory design which
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is based upon the principles of Group Technology. Actually, it goes in search of
parts with similar processing routes and categorizes them as same part families.
Furthermore, production machines are jointly grouped together based on the fam-
ilies of parts processing in a CMS, and any particular group of these machines is
called a cell. The most important character of a CMS is that it involves process-
ing a collection of similar parts (part families) on a dedicated cluster of machines
or manufacturing processes (cells). Also, the main advantage of using CMSs is
that it considerably makes the material flow better. This clearly reduces the dis-
tance travelled by materials and maximize the production rate in the factory. As
our best knowledge, CMSs result in the ability for manufacturers to produce high
quality products at a low manufacturing cost, without delay, and in a flexible
manner regardless the applied production environment. The concepts of a CMS
can be utilized in such a high variety flow demand environment to derive the eco-
nomic advantages inherent in a low variety/high demand environment (Safaei and
Tavakkoli-Moghaddam, 2009).

The primary purpose of using cellular manufacturing is integrating the effi-
ciency of product layouts into functional layouts. These layouts imply two general
patterns in the production line design: on one side, product layouts help manufac-
turing systems to act service-oriented by employment of available single-function
machines to complete different parts. Considering group technology, machines
are divided into small-scale clusters based on operational resemblances in their
processing activities. As a result of established small-scale clusters, such an ag-
ile and highly reconfigurable system is able to product various parts, and rapidly
respond to a highly competitive market. On the other side, functional layouts op-
erationalize the concept of applying specialized machines like CNC machines for
manufacturing a few standardized products. Contrary to product layouts, these
layouts accomplish operational accuracy through the specialization of machines
(Lim et al., 2006). A CMS achieves the benefits of both layouts.

Figure 1.1 clarifies how CMSs are incorporated into production. The objective
of the cluster analysis used in this production environment is to assign 20 parts and
10 machines to four part families and four cells, respectively. As it is shown in the
right side, it is possible to cluster parts and machines in a right way to have four
independent cells that produce discrete parts. In more detail, machines {A,B,C}
join to form the first cell producing parts {7, 11, 2, 5, 18}, machines {D,E} join
to form the second cell producing parts {14, 3, 10, 20}, machines {F,G,H} join to
form the third cell producing parts {12, 4, 19, 16, 8, 1}, and finally machines {I, J}
join to form the forth cell producing parts {9, 13, 6, 15, 17}. Clearly, controlling four
small cells is much easier than controlling a large manufacturing system consisting
of 20 machines. Likewise, for complex systems, manufacturers prefer to establish
methods which can be used for this purpose.
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Fig. 1.1. The optimal clustering of 20 parts and 10 machines.

Various approaches for scheduling and control of robotic cells have already
been presented by several robot manufacturers, such as robotic cells offered by
ABB Company (Lippiello et al., 2007). All these robot manufacturers incorporated
CMS into the design of robotic cells. Therefore, the emphasis in this thesis is on
providing a comprehensive treatment of various aspects of scheduling of robotic
cells as a subdivision of CMSs.

1.2 Robotic Cells

The idea of applying robots for production in cells is a subdivision of cellular
manufacturing. In fact, it is possible to use different kind of servers for material
handling of a particular CMS. In the absence of any automation, trained manpower
is responsible for transferring parts between machines. This can be a cause of
decreasing the quality level of part and the safety of employees. As a consequence,
it is not recommended for the most of production environments. An alternative
way for increasing the quality level of part and the safety of employees as much as
possible is that increase factory automation. On the subject of factory automation,
it is common in practice to use robots instead of manpower. Generally, a computer-
controlled manufacturing cell which integrates a number of production machines,
a material handling robot, and some storage buffers is called a robotic cell.
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The robot is one of the most popular automation device used in many industries
such as the manufacture of semiconductors, printed circuit boards, pharmaceuti-
cal compounds, magnetic resonance imaging systems, fibre optics, cosmetics and
glass products (Dawande et al., 2005). Financially speaking, a high worldwide
customer demand, which was equal to 1.22 billion dollars, for the robotics indus-
try was during 2005. This demand started falling in 2006 due to an undesirable
economic outcome in the American and European markets, and consequently a
sudden decrease in car sales. However, it was increased 36 percent in the early
2008 again. Although the robotics industry underwent the recent economic crisis,
income in 2008 was 979.4 million dollars. Orders in 2010 raised to 993.2 million
dollars after passing slow period in 2009 (Geismar et al., 2012). Since 2010, the
total orders of robots has accelerated because of the growing trend in automation,
and it ends up with the maximum annual orders ever recorded in 2014. These
industry statistics tell us that companies in different sectors of the economy found
out the advantages of automation so that there is a heavy demand for robots in
the market (IFR International Federation of Robotics 2015).

In most practical applications, a robot is cyclically employed to serve a number
of workstations by acting as a material handling device. The ever-increasing use
of robots as modern material handling devices is a concerted effort to accomplish
the flexibility requirement of serial production systems, which have traditionally
been identified by rigid automation. In fact, there are an input buffer (I), machines
M1,M2, ...,Mm and an output buffer (O), in a robotic cell served by a single central
robot. Initially, the robot picks up each part at I, moves it to the first machine
and loads it on that machine for processing. On the completion of that process,
the robot unloads the part and moves it to the next machine for processing, and
so on. After finishing all of operations, the robot moves the completed part to O
and drops it there. I and O have unlimited storage capacity.

Fig. 1.2. The linearly, circularly and mobile-configured robotic cells.

It should be emphasized that the robot is able to handle only one part at a spe-
cific time. Therefore, the fundamental feasibility of robot movement assumptions
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are as follows: (1) the robot cannot unload an empty production machine; (2) the
robot cannot load a busy production machine (Crama et al., 2000). According
to these feasibility assumptions, three different robotic cell layouts are researched
in the literature: circularly-configured robotic cells where the the stationary base
robot rotates on its axis, linearly-configured robotic cells where a moveable robot
moves in a rail network and finally mobile-configured robotic cells which are com-
bination of circularly- and linearly-configured cells (Akturk et al., 2005).

Figure 1.2 illustrates these cells configurations with three production machines.
On the one side, it reveals a circularly-configured robotic cell is more efficient in
term of travel times between adjacent or non-adjacent machines. The intuition
behind this is that there are two alternatives, clockwise and counter clockwise, in
order to transfer a part between two machines in a circularly-configured robotic
cell, whereas there is one way for that in both linearly-configured and mobile-
configured cells. For instance, the time for counter clockwise travelling between M1

andO under the circular configuration is one third of the time for the corresponding
robot movement under both linear and mobile configurations.

On the other side, the efficiency in travel in a circular configuration is expensive
due to the complexity of the robots hardware as well as its control mechanism.
As a consequence, it is needed to weigh up the costs and benefits of the circular
configuration. The robot namely Cartesian robot follows straight-line motions in
the linear configuration, while a human-like robotic arm is suitable for rotational
motions in the circular configuration. The robotic arm consists of both an elbow
and a shoulder joint along with a wrist to plan a motion with a certain degrees
of freedom. For example, assume that elbow motion takes place as pitch (up and
down), shoulder motion occurs as pitch or yaw (left and right), and finally wrist
motion occurs as pitch or yaw. Rotation motion can be performed by both wrist
and shoulder. This means that the corresponding robotic arm has five to seven
degrees of freedom and need a precise control mechanism to transfer parts between
machines. It should be emphasized that increasing the degrees of freedom even
increases the probability of the robots breakdown, and consequently robotic arms
need more corrective and preventive maintenances (Rajapakshe et al., 2011).

As a direct result of this discussion, it is obvious that all circular, linear and
mobile configurations can be efficiently employed in practice. Accordingly, a bi-
objective trade-off between efficiently of the robot and complexity of the motion
planning is necessary to determine how they are changing as employed robot and
correspondingly the configuration of the cell are changed. In this thesis, we are
interested in a detailed analysis of all configurations of robotic cells.
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1.3 Cyclic Scheduling

A key factor in the competitive world of industry is time. Similarly, the time
schedule plays an active role in improving the performance in robotic cells. It
is, however, recommended that the time schedule be divided into non-cyclic and
cyclic based on the parameter settings and the characteristics of the cell. The
non-cyclic scheduling is preferable when there is a limited demand of parts, and
therefore the robotic cell must operate in intervals between receiving orders to
have high-efficiency. Nonetheless, generating a set of cyclic schedules is much
more appropriate than the other way if the demand is assumed to be unlimited.
More precisely, cyclic scheduling of robot movement occurs if a set of parts is to be
implemented an infinite number of times. Although the robotic scheduling problem
is reduced to finding the optimal strategy for the robot movement to obtain the
maximum throughput (called production rate through this thesis), it is NP-hard,
especially for multiple parts production (Brauner et al., 2003).

Due to cyclic behaviour of robotic cells, the long-run average throughput should
be maximized to have a steady-state system. Whenever a robotic cell runs at
steady state, it means that the recently observed behaviour of it will certainly
continue toward infinity. Even this concept can be extended to stochastic robotic
cells where the probabilities of repeating various states are constant values. Due to
the fact that the steady-state of robotic cells is not reached until a period of time
after the cell is started running, we can also call it the transient state (or start-up
period). Although steady-state analysis is a crucial component of the robotic cell
scheduling process, it is often a short period of time in comparison with the cycle
time and can be ignored. Therefore, for sake of convenience, we limit this thesis to
the robotic cells running at the steady state. Let the function F (em, j) be defined
for a cell being composed of m machines to represent the completion time of the
jth implementation of event m. This even can be the completion time of the part
on the last machine, Mm, and dropping off this completed part at output buffer.
As a result of this notation, the long-run average throughput of the cell namely µ
is (Crama and van de Klundert, 1997):

µ = limj→∞
j

F (em,j)
(1.1)

Minimizing the long-run average unit cycle time results in maximizing the long-
run average throughput, and actually there is a reverse relationship between them.
For sake of simplicity, the long-run average unit cycle time is called cycle time
through this thesis. One of the distinguishing characteristics of cyclic production is
that it has the best performance for mass production. Among different production
planning strategies, the most popular class is cyclic production. Therefore, this
study is motivated by a robotic cell which cyclically produces parts.
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The rest of this chapter provides a detailed classification scheme related to
the recent studies in the field of robotic cell scheduling. This classification tree is
based on the machine environment, processing restrictions, and objective function
in order to cover different configurations of cells and the robot types. Actually,
the classification tree is a modified version of classical classification tree, and the
distinguishing characteristic of it is that it put emphasis on the stochastic cells.

1.4 A Classification Scheme

In this section, we present a classification tree for robotic cell scheduling problems.
As shown in Figure 1.3, this classification tree is based on machine environment
(α), processing restrictions (β), and objective function (γ). Due to huge number
of recent studies in robotic cell scheduling, it is vital to provide a detailed classifi-
cation scheme that covers general configurations of cells and the robot types.

Fig. 1.3. A classification scheme for advanced robotic cells.
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It should be noted that each one of these three characteristics can be bro-
ken into several subsets . Considering Dawande et al. (2005), we describe these
characteristics as a the following form of α|β|γ.

• α = RRF i,j,k
l,m,n(m1, ...,ml) where the first R, the second R and F show the

number of production rows, level of robotics, and the flowshop production
environment, respectively. Superscripts are related to robots , whereas sub-
scripts are related to machines. Accordingly, we list them as follows:

– i: the number of robots

– j: the number of arms for robots

– k: the number of grippers for robots

– l: the number of Workstations

– m: the number of functions in presence of multi-functionality

– n: the number of flexible stages

Note that the vector (m1, ...,ml) shows the number of parallel machines at
each Workstation. We do not mention this vector when all its elements are
1 and the cell has no stage with parallel machines.

• β = (pickup, travel metric, uncertainty, part type, production strategy) where

– pickup can be either free, no− wait, or interval.

– travel metric can be either additive, constant, or Euclidean.

– uncertainly level can be either diterminstic or stochastic.

– part type can be either single or multiple

– production strategy can be either cyclic or noncyclic.

• γ is the objective function that can be single- or multi-objective function.

Let us consider two examples to shed light on application of this form.

Example 1: SRF 1,2,1
3,1,1 |free, additive, deterministic, identical, cyclic|T : α repre-

sents a single-row robotic flowshop (SRF ) with three machines (l=3) and without
multi-functionality (m=1) and flexibility (n=1). One robot (i=1) which is dual-
arm (j=2) and has a single gripper (k=1) is applied here. β shows a free pickup,
additive travel-time, deterministic data, single part production, and cyclic. γ
shows the single-objective function is minimization of the cycle time (T ).
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Example 2: DRF 3,2,4
3,2,2 (2, 3, 1)|interval, constant, stochastic, identical, cyclic|T,C:

This example shows a more complex cell in which α represents a double-row robotic
flowshop (DRF ) with six workstations (l=3), two robotic functions (m=2) and
flexibility (n=2). Three robots (i=3) which are dual-arm (j=2) and each of them
has four grippers (k=4) are employed in here. β shows a interval pickup, constant
travel-time, stochastic data, single part production, and cyclic behaviour. γ shows
the multi-objective function is minimization of the cycle time (T ) and cost (C).

1.4.1 Machine and Robot Environment

There are at least two differences between robots and machines. The first differ-
ence is that robots are able to sense and react to the environment to carry out
complicated tasks autonomously. The second difference is that robots often per-
form tasks that a human might do. However, for the sake of simplicity, we analyse
physical features of robots and machines in this section, simultaneously.

1.4.1.1 Number of Machines in each Workstation

The robotic cell is named a simple robotic cell when any one of workstations
has only one machine. Contrary to this simple case, at least one workstation of
robotic cells with parallel machines is over the size of one machine. Cells with
parallel machines are more applicable because, in practice, they may improve
cycle time by adding an exactly alike machine to a specific workstation which
is bottleneck. Such an added machine and existing machine of the workstation
should be employed in the cell parallelly (Geismar et al., 2008). Since a part is
processed at each workstation according to the predefined processing route, a cell
with parallel machines is comparable with a flexible flowshop where there are m
workstations. The operation of a part can be completed at workstation i by any
one of the mi similar machines at that workstation. Note that mi independent
machines at workstation i are represented by Mij, j ∈ {0, 1, 2, 3, ...,mi}, and have
processing time pi. A cell with M11,M21,M22,M23,M31,M32, is in Figure 1.4.

Fig. 1.4. A robotic cell with one, three, and two machines in station 1, 2, and 3.
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Using parallel machines will considerably reduce a workstation’s effect on the
lower bound of cycle time if this workstation contains a small number of pro-
duction machines whose operation times are meaningfully more than those of the
other production machines. In fact, applying mi parallel machines for these kinds
of workstations is the best solution in order to overcome slow production lines.
As a result, it is vital to find out how much machines should be added to each
workstation in order to have the desired robotic cell.

1.4.1.2 Flexibility of Machines

Inflexible robotic cells are one of the application areas of flowshops where the
number of operations is equal to the number of machines, and hence each machine
can only perform one of these operations. However, on the one side, we can assume
that the robotic cell consists of CNC (or multi-purpose) machines in flexible robotic
cells. A CNC machine can handle a mixture of operations. That is, if the part
requires a variety of operations (e.g. drilling, milling and broaching), the CNC
machine is flexible enough to perform all of them. This ability is obtained from
the tool magazine of the machine that rapidly changes tools. On the other side,
flexible robotic cells may also have operational flexibility. Operational flexibility
means the operations constituting the part can be processed in any arbitrary order.
Therefore, it converts the flexible robotic cell into an openshop.

1.4.1.3 Number of Production Lines

The robotic cell can be either single-row or double-row. In the single-row layout,
all machines are placed on one side of a central corridor, whereas they are placed on
both sides of the central corridor in the double-row layout (please see Figure 1.5).
The double-row robotic cell is common in industry and has many applications for
production and service facilities although it is more complicated.

Fig. 1.5. The independent double-row robotic cell.
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1.4.1.4 Machine Availability

In addition, we can consider that machines in a robotic cell may be unavailable
during some periods which may either be known in advance or not. The known
unavailable period means that the machine needs a constant time to maintain after
completing a fixed number of parts. The preventive maintenance constraints are
applicable for the scheduling problem if unavailable periods are known.

1.4.1.5 Number of Robots in the Cell

Supplemental robots in a cell may significantly improve production rate by in-
creasing the volume which material-handling system can transfer at any given
moment. Regarding the layout of the robotic cell, additional robots provides flex-
ibility, especially for cells with large number of workstations. Generally, robotic
cells with more than one robot are named multiple robot cells. A multiple robot
cell consisting of 16 machines and four robots is shown in Figure 1.6.

Fig. 1.6. A multiple robotic cell with 16 machines and four robots.

Studies related to multiple robotic cells concentrating on cells in which the
robots move to different workstations to perform a variety of assembly tasks by
using different tools (Che et al., 2011a). The main purposes of scheduling these
multiple robotic cells is to find a sequence of robots movements that minimize the
risk of robots colliding with each other when they move parts simultaneously.

1.4.1.6 The Functionality of the Robot

Industrial robots predominantly perform a variety of functions such as welding, as-
sembly, painting, testing and inspection in production environments. For instance,
a spot-welding robot can be used for assembling sheet-metals in automotive in-
dustry. A painting robot can be applied to minimize the thickness variation of
the paint spraying. An inspection robot may reduce testing time and storage re-
quirements, and finally the robots can act as material handling devices. Due to
the importance of the last mentioned function of industrial robot, the main focus
of this thesis is on the material handing robots.
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1.4.1.7 The Robot Capacity for Handling Parts

A robotic arm is classified as single-, dual- or multi-gripper robot which transfer
one, two or multiple parts simultaneously. In cells equipped by single-gripper
robots, none of the robot and machines is able to process more than one part
at any given moment, whereas the robot can handle two parts concurrently in
the cells served by dual-gripper robots (Geismar et al., 2008). The robot is also
called multi-gripper robot if it is furnished by more than two grippers in order to
be capable of handling several parts concurrently. For instance, a three-gripper
robot can be instructed to assemble the bottom caps screwing on the back of a
flashlight so that the cantered gripper handled lamp holders and springs, and two
other grippers handled bails (Quinn et al., 1997). Figure 1.7 shows an example of
multi-gripper robots with four grippers which is used to unload parts from I.

Fig. 1.7. A four-gripper robot which simultaneously handles four parts.

Although multi-gripper end-effectors are more costly to install and complicated
by increasing the number of feasible permutations, they can help to meet a specified
production rate and improve the flexibility of manufacturing cells. This is due to
the fact that the multi-gripper robot can move to an occupied machines in a
workstation, uses grippers that containing no part to unload the completed parts,
and then load parts which are holding in other grippers. This kind closed-loop
activities are rapid enough due to the fact that grippers switching time is negligible
in comparison with the required time for inter-machine movement. Therefore,
multi-gripper robots potentially maximize production rate in robotized shops that
are constrained by the robot’s speed.

1.4.1.8 Number of Robotic Arms

The robot can be a single-arm or dual-arm robot. Single-arm robots improve
manufacturing cost, and make scheduling tasks simple, whereas the throughput

13



rate of dual-armed robots are much higher than single-arm ones. Dual-arm robots
have the ability to load two adjacent machines simultaneously. A simple dual-arm
robot loading and unloading parts on machines is shown in Figure 1.8.

Fig. 1.8. A dual-arm robot using for load and unload operations.

The conclusion from our study in Subsections 1.6.1.1 - 1.6.1.8 supports the
notion of a relationship between production rate and manufacturing cost. These
subsections make it clear that both production rate and manufacturing cost are
strictly increasing function of the complexity of the robot and machine environ-
ment. In other words, an advanced manufacturing cell increases the production
rate, whereas it leads to higher manufacturing cost which is undesirable. As a
consequence, a trade-off between the production rate and manufacturing cost is
necessary to determine how they are change as the robot and machines change.
Simply increasing the production may not always be feasible or desirable, and
therefore we should also make choices regarding the desired level of the produc-
tion rate.

1.4.2 Processing Restrictions

Another important factor in robotic cells classification is related to the way that
parts are processed by machines (or robot). We can structure the processing
restrictions as follows:

1.4.2.1 Pickup Criterion

Three major processing scenarios mentioned in Figure 1.3 are free, no-wait, and in-
terval pickup criteria. It should be emphasized that there is no residency constraint
on the amount of time a part can stay on a machine after finishing corresponding
operation on this machine under the first scenario. The second and third scenar-
ios are the extensions of the free pickup criterion in order to cover all possible
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conditions. In a robotic cell with no-wait pickup criterion, parts are processed
from input buffer to output buffer, with no interruption between machines in the
cell. On a more detailed level, the robot unloads the part from a machine without
delay, and transfers this part to the next machine as soon as the operation of this
part on the machine is finished (Paul et al., 2007). For a robotic cell with inter-
val pickup criterion, each machine has a processing time window for which a part
can be processed. In other words, feasible processing time of each operation i is
partitioned into [ai, bi] for this scenario. There are a huge number of real-world
industrial cases that should be classified as a robotic cell with no-wait or inter-
val pickup criteria. They are especially prevalent among: 1) Steel manufacturing
where semi-completed parts defect if their temperature drops to a certain temper-
ature, 2) chemical processing tank lines in which the printed circuit boards have
to wait on tanks upon finishing of corresponding operation may result in damaged
boards.

1.4.2.2 The Distance between Machines

The robot end-effector generally follows a complicated travel path in three dimen-
sions to travel between two points and minimize the cycle time. In addition to
selecting the shorten path of the robot, its motion is collision-free and visit multiple
task-points considering the inverse kinematics and the obstacle avoidance.

The most addressed travel time metrics are Additive (A), Constant (C), and
Euclidean (E). For the additive distance, the robot has to pass through all inter-
mediate machines with a constant speed to move between two machines. Let us
assume that the required time for the robot to travel from machine i to machine
i + 1 is δ. Hence, the time required to perform a direct move between two non-
adjacent machines i and j is |i− j|δ under additive distance assumption. Additive
is the most prevailing travel time metric because it is appropriate even when the
cell is dense (Brauner, 2008).

If the robot’s acceleration and deceleration vary based on the distance between
departed and destination machines, the robot travel times between adjacent or
non-adjacent machines equals the constant δ. This means that physical distance
between all machines is negligible in compact robotic cells fitted into a small space.
This case is usually named constant distance. It is also possible to represent the
entire robot environment in Euclidean space satisfying the triangle inequalities
(Steiner and Xue, 2005). This inequalities is δij + δjk > δik if δij represents travel
time between machine i and j. In fact, Euclidean travel time means that the robot
have time to speed up between distant machines so that it is faster than additive
one. However, it is not as fast as constant one.
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1.4.2.3 The Distribution of Processing Time

In general, processing time is the estimated or actual duration to complete a task.
Deterministic processing times indicate that the duration is fixed and that it is
known with certainty. In contrast, it is possible that at least one process in a
robotic cell has a stochastic processing time. This is very common in practice.
Giving an example, in the expose process of microlithography, the desired circuit’s
image is projected from the photomask onto the wafer. Since the wafers vary in
their deviations from perfect flatness, the processing time varies from wafer to
wafer (Geismar and Pinedo, 2010). Note that the distribution of the stochastic
processing time is an important characteristic of it. Therefore, we need to find
it before determining the expected cycle time. Although it is more realistic to
analyse a robotic cell with stochastic processing times, it considerably increases
the complexity of the scheduling problem.

1.4.2.4 Part Variety

Contrary to single part-type production environments which produce identical
parts, multiple part-type cells process lots including a variety of products. As a
consequence, anyone of these various parts has its own processing times for a par-
ticular production machine. The single part-type production strategy is popular in
mass production. However, the multiple part-type production strategy due to the
increasing usage of it is small-scale robotized shops (Sriskandarajah et al., 1998b;
Hall et al., 1998; Kamoun et al., 1999; Sriskandarajah et al., 1998a; Abdulkader
et al., 2013).

The complexity of the scheduling problem considerably increases when a mul-
tiple part-type is assumed. The reason behind this complexity is that the robot
scheduling problem and part sequencing problem must be jointly solved under this
condition. To meet Just In Time (JIT) objectives and reduce in-process inventory
and associated carrying costs, the percentage of each part type in batch must have
the similar percentage of it in the total demand. Thus, the total demand can be
broken into a number of the minimal part set (MPS) (Zarandi et al., 2013). Giving
an example of press transfer line equipped by robots, assume the demand of the
related automobile company for four different kinds of vehicle doors A,B,C,D be
65%, 15%, 10%, 10%, and the MPS contains 200 doors. Consequently, the number
of each one of doors A,B,C,D in MPS is 130, 30, 20, and 20, respectively.

1.4.3 Objective Function

The objective of a linear programming problem can be to maximization or min-
imization of some numerical values (e.g. makespan, cycle time, and total manu-

16



facturing cost). Most academic works on robotic cell scheduling consider cyclic
scheduling. Cyclic scheduling has merits such as reduced scheduling complex-
ity, predictable behaviour, improved throughput rate, steady or periodical timing
patterns, regulated or bounded task delays and work-in-progress, and reduced
variation of flow times (Lee et al., 2007; Lee, 2008). Therefore, the objective of
robotic cell scheduling problem is predominantly maximizing the average number
of finished parts produced per unit, which is called throughput rate.

1.4.3.1 Multi-Objective Optimization

Robotic cell scheduling problems may be defined as minimizing or maximizing one
or more objectives. The first alternative results in a single-objective optimization
problem, whereas the second alternative is called multi-objective optimization.
The single-objective optimization methodology cannot provide a set of alternative
solutions that properly trade multiple objectives against each other. Therefore,
there is a basic need to analyse the interaction of multiple objectives if the problem
considered multi-objective.

This long-term strategic perspective can help to achieve competitive standing
in global markets. For instance, the problem of finding an optimal cycle time is
an integral part of production planning, and the problem of finding an optimal
quality cost is more important from the quality control point of view (Kumar
et al., 2014) . Any one of these problems separately results in a single-objective
problem. However, this type of optimization methodology cannot provide a set of
alternative solutions that properly trade two objectives against each other. This
situation arises, for example, in industries where the demand of the customers is
limited and there is no obligation to process parts as fast as possible. Hence, we
can accomplish the maximum benefit by considering the optimization problem as
a multi-objective one to generate a group of alternative solutions.

1.4.3.2 Expected Cycle Time

The stochastic robotic cell scheduling problems assume that the processing time on
Mi is a random variable Xi with the distribution function Fi, i ∈ {1, 2, 3, ...,m}.
Therefore, the objective of the problem is often minimization of expected cycle
time, and the optimal robot move cycle depends on the characteristics of Fi (e.g.
its mean and standard deviation).

1.5 Research Goals

As mentioned in Section 1.2, the field of robotic cell scheduling has grown steadily
over the past decade. As a direct result, a variety of issues in this field was
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given saturation coverage by researchers. They provided a wide perspective on
some issues related to deterministic robotic cell scheduling paradigm, where the
scheduling of the cell is off-line and all data are assumed to be known with certainty
in advance. Some common examples of these issues are cell formation, optimal
sequence of robot moves, and cost analysis of the cell. Additionally, manufacturers
have employed robotic cells in greater numbers and varieties to offer high standard
products. As a consequence, researchers have to develop advanced techniques to
reduce the cycle time and keep manufacturer’s products intensely competitive.
As out best knowledge, some issues related to stochastic robotic cell scheduling
problem continues to attract the attention of more researchers who are interested
in on-line scheduling. Particularly, the problem of a robotic cell with stochastic
processing times as well as stochastic processing route is not enough studied in the
literature. This problem has often been overlooked in research into robotic cells
since it needs more sophisticated studies on stochastic data.

The goal in this thesis is to achieve the minimum cycle time for the scheduling
problem of a robotic cell with a stochastic operation like inspection between any
two consecutive machines. We carry out the corresponding analysis from two main
points of view. The first goal of the study is merely theoretical and aims at re-
laxing the stochastic problem. In more detail, under this condition, the stochastic
data are only recorded by the robot in an independent computer. This means that
the result of inspection of the part has no impact of the processing route, and its
use is only for recording. Although this relaxation can decrease the hardness of
the problem, it is not applicable for many real-life examples where the result of in-
spection has influence on the processing route, and even cycle time. Subsequently,
the second goal of this thesis is to evaluate how the inspection result of a robotic
cell can effect on the performance of the cell. Notice that the size of the cell is also
considered as an important factor in this study. We conclude that the following
problems are extracted from the main goals and resolved in the thesis using some
operation research techniques:

• Small-scale deterministic robotic cells with inspection processes

• Large-scale deterministic robotic cells with inspection processes

• Small-scale stochastic robotic cells with inspection processes

• Large-scale stochastic robotic cells with inspection processes

Under the condition when the processing sequence of non-identical parts must
and the robot move sequence must jointly be determined, the outcome of this
research can still be used after obtaining the optimal parts permutation. Only,
it is needed to develop a search method for arranging parts in an optimal (or
near-optimal) permutation. Nonetheless, this case is ignored here.
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1.6 Thesis Outline

As the final chapter of Part I of this thesis, Chapter 2 briefly reviews the practice-
oriented literature concerning robotic cells. We introduce the major research di-
rections in the area of robotic cell scheduling (e.g. steady-state analysis and sensi-
tivity analysis). Following that, we also discuss the complexity of any one of these
directions as a prerequisite for the motivation behind this study. The outcome of
this chapter is a list of the assumptions made in robotic cell scheduling problems.

Part II includes a description of cells with the inspection processes where the
stochastic data are only recorded by the robot in an independent computer. We
start this part with a discussion on this topic in Chapter 3 and show how a clas-
sical robotic cell can be converted onto a robotic cell with the inspection process.
Afterwards, in Chapters 4 and 5, we take into account the problem for two sub-
cases: small-scale and large-scale. The expressions for cycle times are provided
in a graphical way to find the efficient cycle under any conditions, and also the
conditions in which reduction in cycle time is achieved by the new-developed cell.
Finally, operational flexibility of the robot is taken into consideration in Chapter
6.

Part III is devoted to the stochastic scheduling problem without any sort of
relaxations for both small- and large-scale problems. It will be discussed how an
inspection process should be performed by a real robotic cell, and how much this
increase the hardness of the scheduling problem. We even go further toward three
different inspection scenarios in Chapters 7, 8 and 9 to make the problem closer
to the reality. These inspection scenarios are called post-process, in-process and
in-line inspection scenarios depending on the robotic cell where they are employed.
We develop an algorithm to solve the problem and find the optimal expected cycle
time in this chapter. In order to make the algorithm more effective, we take into
consideration different pickup criteria for any one of inspections. Part IV, which
has a single chapter, concludes the thesis with some recommendation for future
study.
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Chapter 2

Backgrounds
In this chapter, we give a brief summary of key research literature findings, and
then we highlight some critical issues that should be investigated more in order to
develop an approach for increasing the performance of robotic cells. More detailed
literature review of each one of these issues appear in later chapters. Therefore,
we limit the literature review here and refer the reader to the literature review
part of the corresponding published paper given in Chapters 3 to 9.

This chapter places emphasis on the research papers which are relevant to do-
main of this thesis as described in Section 2.1. The literature review of Section 2.2
is enough for the case where the processing route in this case is fixed although the
robot performs the inspection process of the part in the cell. This is due to the fact
that all parameters are deterministic under this condition. However, we need ad-
ditional literature review related to the case in which there is a randomness about
the processing route. Consequently, Section 2.3 is assigned to literature review of
stochastic robotic cells. The section present a comprehensive and rigorous discus-
sion of computational complexity of stochastic robotic cells scheduling problems
which strongly influence on this thesis. Finally, the main motivation behind this
research, the linkage of published papers, the problem under study, and solution
methods are presented in Sections 2.4, 2.5, 2.6 and 2.7, respectively. This manner
of literature review will ensure that the outcome of this chapter can provide a
comprehensive coverage of the subject studying in this thesis.

2.1 Problem Domain

There has been extensive research on different issues concerning robotic cells.
Quite generally, these research point to the conclusion robotic cells benefit by
a careful design, an effective control policy, and a flexible scheduling. Therefore,
the domain of the problem in the literature dealing with the robotic cells is:

• The design stage
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• The control stage

• The scheduling stage

Firstly, an approach used for new-established robotic cell to design the loca-
tion of machines and applied operating system. Following that, secondly, it is
vital to form computerized control logic for coordinating all movements of robots,
machines and parts. This control policy is especially important for the robot
since its control mechanism is complex to program and must predict all forward
and backward movements between machines. Any fails in the policy may cause the
phenomenon of deadlock (or collusion) in the cell. We will specify this phenomenon
later on. However, we should employ appropriate tools to capture the detail of
the complexity of such a robotic cell which makes us able to determine the cell
performance for different configurations and control policies. Note that it is not
also straightforward to transit the operating logic contained within the simulation
to the actual control policy. As a consequence, policies with a more flexible and
easy to use logics are more demanding. Finally, in the last stage, a schedule of the
robot (and also parts) involving timings as well as costs of all policies is needed
from optimization point of view. If the robotic cell be appropriately fitted with
the schedule of the robot movements and parts sequences, we can give a guarantee
that the integrated robotic cell system can meet all needs of the customers.

A simple robotic cell, hereinafter called a Single-Function Robotic Cell (SFRC),
consists I,M1,M2, ...,Mm, O and a Single-Function Robot (SFR) as material han-
dling device. In such a robotic cell, raw materials are fed to M1, get processed
serially through M1,M2, ...,Mm, and finally come out as completed parts from
Mm. Note that SFR operate with a programmable PC-based control platform
which allows manufacturers to profit from all the benefits of PC technology. It is
vital to distinguish between a SFRC and a Multi-Function Robotic Cell (MFRC)
here, and also describe how MFRCs are incorporated into the design of production
environments. We impose an operation-oriented extension of SFRCs to introduce
MFRCs. Let us assume that the cell is equipped with a Multi-Function Robot
(MFR) processing the part in transit between any two consecutive machines. Ac-
cordingly, a group of m + 1 processes is performed by a MFR in addition to m
operations that must be performed by m tandem machines in a MFRC.

From the practical point of view, the use of an advanced robot offers the at-
tractive prospect of an increase in the cell productivity, but there are only a few
papers addressing this topic in MFRCs. The purpose of this study is to extend the
existing conceptual framework to cutting-edge robotic cells, and to provide some
insight and a more efficient use of the scheduling task. Specifically, in this study
we introduce a robot with an advanced gripper, called Grip-Gage-Go. The gripper
integrates measurement systems into parts handling devices, and makes the robot
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capable of measuring parts in transit. Grip-Gage-Go grippers are widely employed
in the inspection of automotive products including crankshaft, gears, engine valves
and lifters in transit. It is the objective of interest to determine the optimal cycle
of the corresponding robot assuming two following cases.

Firstly, we limit our study to a robot which only measures the thickness of the
part and records results in an independent computer. The processing route in this
case is fixed although the robot performs the inspection process of the part in the
cell. In contract, secondly, we consider that the user interface computer can be
used to modify each the processing route of the part based on the inspection result
in order to make this model better represent reality in a stochastic environment.

2.2 Scheduling in Deterministic Robotic Cells

Most researchers in robotic cells have chosen to allocate priority studying deter-
ministic robotic cells so that the analysis of this class of robotic cell forms the main
portion of the literature review. There are some literature reviews of deterministic
robotic cells, Dawande et al. (2005) and Brauner (2008), but the point is that
many new versions of deterministic robotic cells have become apparent recently.
Consequently, it is essential to restructure the corresponding literature review in
this section for readers who want to update their theoretical knowledge.

It is interesting to mention that most studies focused on only one function of
robot, which is material handling. Nonetheless, industrial robots can perform a
variety of functions such as welding, assembly, painting, and testing. Specifically,
inspection in a cell is one of the important issues in the field of robotic cell schedul-
ing which reflects many real-life cases. Since this thesis concentrating on a kind
of robot that can perform inspection and material handling simultaneously, this
section mainly addresses issues that arise when considering inspection, laying some
important analytical foundations for the under-studied problem.

Let us initially give a brief literature review on robots that act as material
handling devices. A few attempts have been made to develop a mathematical
model to increase cell performance although many models have been developed
to schedule the robot movement (Olabi et al., 2010; Xie et al., 2012; Machmudah
et al., 2013). Sethi et al. (1992) developed the theoretical framework for robotic
cell scheduling problems. This framework provided a basis for finding the optimal
cycle for two-machine cells. Similarly, Crama and de Klundert (1999) obtained
a similar result for three-machine cells. However, these results were disproved by
Brauner and Finke (2001) for four-machine cells. Furthermore, they performed an
analysis of three cell configurations: general cells, regular cells and regular balanced
cells. In another work, Levner et al. (1997) extended this structure for the problem
where the number of machines is arbitrary and the part finished processing by a
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machine must be handled to the next machine without delay.
Concerning scheduling of multiple parts production in two-machine dual-gripper

robotic cells, an algorithm with the performance ratio of 3/2 was introduced by
Drobouchevitch et al. (2004). Dawande et al. (2009) also found a pareto-optimal
set for two prevalent robotic cells in practice: a single-gripper cell with a unit-
capacity output buffer at each production machine, and a bufferless dual-gripper
cell. The problem of scheduling operations in interval robotic cells with dual-
gripper robots was studied by Dawande et al. (2010). The robot is called multi-
gripper robot if it is furnished by more than two grippers in order to be capable
of handling several parts concurrently. Quinn et al. (1997) presented an agile de-
sign for a real-life robotic cell with multi-gripper robots. In their study, the whole
assembly process was mounted on a three-gripper robot. Levner et al. (2007)
studied a special case of the cyclic jobshop model with a multi-gripper robot.
Considering a jobshop network, precedence relations between the processing steps
for different part types were classified under the form of PERT graphs. They were
succeeded in minimizing the cycle time subject to the multiple-part production,
the multi-gripper robot traveling time constraint, and time window constraints on
the processing times.

Geismar et al. (2012) described all benefits of equipping cells with a dual-arm
robot. Then, they determined optimal sequence of cells with two, three, and m
production machines. For each one of these cases the productivity of single-arm
and dual-arm cells was also compared. Optimal transient periods of dual-armed
robotic cells with part delay regulation were determined by Kim et al. (2012).
They considered an especial kind of robotic cell namely cluster tool, which is
common in semiconductor manufacturing process where the part delays must not
surpass a particular upper bound. If the robot unloads this part from machine
after the upper bound, the part has poor quality because of residual gases and heat
within the workstation. In contrast with other related studies which only assumed
the steady state situations, they maximized throughput during transient periods.
These periods are time spans in which an unoccupied cell starts to process new
parts or completes all operations and becomes empty. They were generally called
start-up and close-down periods, respectively.

The literature dealing with the machine features can be generally broken into
following different categories: machines with operational flexibility, machines avail-
ability, double-row layout of production machines, and part sequence depending
machines setup times. One of the first analytic studies on scheduling robotic cell
with operational flexibility was performed by Geismar et al. (2005). They re-
stricted themselves to a flexible robotic cell where number of operation was equal
to the number of machines and demonstrated that there are m! feasible processing
orders for the operations of a part. They found that two permutations have same
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throughput rate in the two-machine case. In another study, Gultekin et al. (2009)
evaluated the effect of the pure cycle on the cycle time. They defined this kind
of cycles as modern cycles when operational flexibility is possible. The improved
pure cycles, as superior cycles, were introduced by Foumani and Jenab (2013a).
They followed flexibility concepts to extend the results for an m-machine flexible
robotic cell in a linear and circular configuration. Finally, Jolai et al. (2012) devel-
oped an approach based on a new lower bound and a specific pure cycle in order
to minimize the cycle time in a circularly configured flexible robotic cell with swap
ability. Actually, a robot with swap ability is a robot with a temporary buffer.

The double-row layout robotic cell is common in industry and has many ap-
plications for production and service facilities. As a layout problem, Chung and
Tanchoco (2010) found out how to place machines on both sides of a central cor-
ridor to minimize total material handling cost. They initially developed a mixed
integer linear programming model for the double-row layout problem which is more
complicated than the single-row layout one. Then, this problem was solved by pro-
viding five heuristics, and the performance of these heuristics was compared with
each other. Zhang and Murray (2012) highlighted the errors in the formulation
proposed by Chung and Tanchoco (2010), and consequently established a modified
mixed integer model for the double-row layout problem. They also provided an
analytical validation of the corrections. Afterwards, machine sequence, cell for-
mation, and cell layout were jointly taken into account by Chang et al. (2013).
A two-phase model was established to combine these three assumptions with re-
gard to production volume, operation sequences, and process routes. One of the
direct results of solving this problem was that the double-row layout performance
is better than the single-row one which usually used in manufacturing cells.

The separated maintenance constraint may be applicable for flowshop schedul-
ing problem. This means that the machine may be unavailable during the schedul-
ing period, and need a constant time to maintain after completing a fixed number
of parts. Regardless of material handling robots, a non-cyclic two-machine schedul-
ing problem with an availability constraint on first production machine was studied
by Allaoui et al. (2006) in order to find optimal part sequencing. Also, a similar
problem with an availability constraint on both production machines was studied
by Yang et al. (2008). The concentration was in a workcell where each one of two
machines is unavailable in a predefined interval in order to minimize makespan.

It should be also emphasized that the objective function of scheduling problems
can be separately made up of makespan, cycle time, and total manufacturing cost
(Che and Chu, 2009) . However, multi-objective function consisting the cycle time
and total manufacturing cost is studied in Gultekin et al. (2010); Yildiz et al.
(2011). They determined the non-dominated regions for two particular cycles,
and then they provided the worst case performance of these cycles for the rest
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of regions. Robotic cells may have intermediate buffers between machines where
these buffers can be modelled as additional machines with zero processing times
as show in Drobouchevitch et al. (2010); Geismar et al. (2011). Considering the
cycle time, they proved that there is no benefit from providing both machine input
and output buffers. An additional reason behind this intuition was that the cost
of providing two one-unit buffers at each particular machine is considerably high
in comparison with bufferless robotic cells.

The parts are sometimes required to enter a specific machine several times be-
fore they are completed, which make the scheduling problem more complex. in
a relevant study, Foumani and Jenab (2012) analysed the cycle time of reentrant
robotic cells with two machines. They determine both essential and sufficient opti-
mality conditions of each cycle for two different cases: 1) each part only reentersM1

two times. 2) each part reenters both M1 and M2 two times. They also performed
sensitivity analysis of parameter to show the influence of each one of them in the
regions of optimality for cycles. an interesting result extracted from Foumani and
Jenab (2012) is that the reentrant robotic cell is almost theoretically equivalent to
a robotic cell with the inspection process. More precisely, if we consider that M2

is an inspection machine in the reentrant robotic cells with two machines and it
always fail the part in the first inspection and accept it in the second inspection,
then a few results of the reentrant robotic cells is applicable for robotic cells with
inspection machines. However, in the real-life examples, we need to analyse the
robotic cells with inspection process separately since there is no guarantee that
always the part pass the inspection machine in the second inspection.

As mentioned earlier, robots can perform a variety of functions. There are many
studies considering these robot functions separately. For spot welding applications,
Zacharia and Aspragathos (2005) solved the problem of determining the optimum
route of a spot-welding end-effector visiting a number of task points as a variation
of Traveling Salesman Problem (TSP) using Genetic Algorithm (GA). They have
implemented the inverse kinematics of a robot as the model for calculating the
cycle time. Following this study, Givehchi et al. (2011) applied a new assembly
planning method to the sequence optimization of a real-life robotic spot-welding
problem for a sheet-metal assembly. This case study involved the optimization of
sequences for assembling a partial cabin of a vehicle consisting of 9 sheet-metal
parts connecting by 134 spot-welding points. For painting applications, Potkonjak
et al. (2000) studied dynamic optimization of a painting robot motion. They
focused on the minimization of the manufacturing cost subject to a constraint on
painting quality. In their research, it was assumed that a robotized painting shop
needs: (i) the simulation of the painting operation; (ii) modelling of the quality
level; (iii) definition of cost function; (iv) kinematic and technological parameters
of the painting task. Afterwards, Diao et al. (2009) developed an optimal motion
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planning for a painting robot to optimize the sequences of spray-painting end-
effector on a free surface. In this study, nonlinear programming techniques took
into account position and orientation of the spray-painting device to minimize
cycle time. They also minimized the thickness variation of the paint spraying of
a specified spatial path. For inspection applications, Wang and Cannon (1996)
explored an inspection system interfaced with a robot to reduce testing time and
storage requirements. Also, Edinbarough et al. (2005) presented an on-line robotic
inspection for identifying ICs lead defect on printed circuit boards.

There are several works in the literature dealing with robotic cell scheduling
problems considering two functions. A model for determining the cost of replac-
ing a semi-automated single-function robotic cell with a fully-automated multi-
function robotic cell was developed by Geren and Redford (1999). A robot with
multi-functional capabilities to assemble and inspect printed circuit boards was
used in this fully-automated cell. Bernd et al. (2006) automatized a rework multi-
function robotic cell where a high-glossed fitting was inspected and polished by
a special multi-function robot. A new approach namely Compound Fabrication
was presented by Keating and Oxman (2013) for robotic manufacturing of large
printed foam structures. This approach made real both multi-functional and multi-
material processes by applying a multi-function robot in cell. The multi-function
robot performed both printing and milling, and also was able to shift between
manufacturing ways using various grippers.

2.3 Scheduling in Stochastic Robotic Cells

A narrow number of robotic cell studies focused on stochastic robotic cells although
robotic cells are subject to a wide range of stochastic issues in a practical sense.
Some of these studies are Savsar and Aldaihani (2008); Tysz and Kahraman (2010);
Shafiei-Monfared et al. (2009); Geismar and Pinedo (2010). These studies refer to
the analysis of machine breakdown, and stochastic processing times, respectively.

Machine reliability plays an important role in the performance of robotic cells.
In fact, machine breakdown rate which is a stochastic factor is usually generated
from by Weibull or exponential distributions. In this regard, a Markovian stochas-
tic approach was established by Savsar and Aldaihani (2008) in order to evaluate
utilization and throughput rate of flexible robotic cells with stochastic occurrence
of production machine failures and repairs. In a similar study, sophisticated fuzzy
robotic cells with machine reliability consideration were analysed in two phases by
Tysz and Kahraman (2010). They obtained a Stochastic Petri Net (SPN) for these
cells and then calculated associated fuzzy steady-state probabilities for the reach-
able markings. Note that a SPN which is also called a Stochastic place/transition
net is a mathematical programming language of Stochastic distributed networks.
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It is a collection of directed arcs connecting places and transitions. In a SPN, the
arcs show which places are pre- and/or post-conditions of each transition.

The cycle time in a virtually arranged robotic cell with stochastic processing
time elements was analysed by Shafiei-Monfared et al. (2009). This cell was com-
posed of three machines with increasing (or decreasing) arrangement of stochastic
processing times. They assumed that the robotic cell acts like a closed-loop struc-
ture, and then replaced this closed-loop structure with a dummy transmittance
that links I to O. Finally, they calculated the time of the dummy transmittance
by the moment generating function (MGF) of the normal distribution, and proved
that it equals the expected cycle time. Furthermore, Geismar and Pinedo (2010)
provided an on-line scheduling scheme to determine the expected cycle time of a
cell where only one machine has a stochastic processing time with normal distribu-
tion. They proved the proximity of the stochastic process to the bottleneck process
may have influence on the cycle time, which makes the problem more complicated.

2.4 Motivation

Against the background, the object in this thesis is to not only consider random-
ness of processing times but also consider randomness of the processing route in
MFRCs. Multi-functionality of robots is almost a new objective of interest, both
theoretically and in practice. On the one side, the use of an advanced robot which
performs multiple functions offers the attractive prospect of an increase in the cell
productivity. On the other side, combining multiple functions may decrease man-
ufacturing costs. Accordingly, the purpose of this study is to extend the existing
conceptual framework to cutting-edge robotic cells, and to provide some insight
and a more efficient use of the scheduling task. Specifically, a narrow number of
robotic cell studies focused on both multi-function and stochastic robotic cells,
as evidenced by the literature review in the previous section. Therefore, in this
study, we introduce a notational and modelling framework for cyclic production in
this version of manufacturing cells. Concentrating on the robot cycles, we discuss
the issues of feasibility and explore the combinatorial aspects of the problem. The
main focus of our study is finding optimal robot move cycle.

2.5 Linkage of Scientific Papers

Table 2.1 shows a chain of papers that follow a long-term trend toward modelling
complex MFRCs. All these publications are the first accurate analysis of MFRCs
with different categories.
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Table 2.1: List of publications produced during probationary candidature

No. Title Journal/Conference Status Chapter

1∗
Scheduling dual-gripper robotic cells with a
hub machine

22th IEEE International Sympo-
sium on Industrial Electronics published 3

2
Cyclic scheduling in small-scale robotic cells
served by a multi-function robot

39th Annual Conference of IEEE
Industrial Electronics Society published None

3∗
Notes on optimality conditions of small-scale
multi-function robotic cell scheduling prob-
lems with pickup restrictions

IEEE Transactions on Industrial
Informatics

published 4

4
Quantifying the impact of using multi-
function robots on productivity of rotation-
ally arranged robotic cells

IEEE International Conference
on Industrial Engineering and
Engineering Management

published None

5∗
Scheduling rotationally arranged robotic
cells served by a multi-function robot

International Journal of Produc-
tion Research published 5

6
Cyclic production for robotic cells served by
multi-function robots with resumable pro-
cessing regime

IEEE International Conference
on Industrial Engineering and
Engineering Management

published None

7∗
Increasing throughput for a class of two-
machine cell served by a multi-function robot

IEEE Transactions on Automa-
tion Science and Engineering published 6

8
Stochastic Scheduling of a Two-Machine
Robotic Cell with In-Process Inspection

the 45th Conference on Comput-
ers and Industrial Engineering published None

9∗
Resolution of deadlocks in a robotic cell
scheduling problem with post-process inspec-
tion: avoidance and recovery scenarios

IEEE International Conference
on Industrial Engineering and
Engineering Management

published 7

10∗
Stochastic Scheduling of a Two-Machine
Robotic Cell with In-Process Inspection

Journal of Computers and In-
dustrial Engineering Submitted 8

11∗
Two-machine robotic rework cells: in-
process, post-process and in-line inspections

Omega, The International Jour-
nal of Management Science Submitted 9

The table starts from modelling a SFRC with a multi-purpose machine acting
similar to a MFRC, and considering it as origin of MFRCs in the first paper.
Then, a set of four studies on deterministic MFRCs with small and large scales
are presented. The study on deterministic MFRCs ends up taking into account
MFRCs with flexibility in the following two papers. The last four papers are
related to stochastic MFRCs with different inspection scenarios. Also, the linkage
of paper mentioned in Table 2.1 is graphically shown in Figure 2.1.

Fig. 2.1. The linkage of paper mentioned in Table 2.1.

For simplicity, key papers shown by * will detail in the following chapters.
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2.6 The Scheduling Problem under Study

Initial results in previous section are based on deterministic data because it is
always realistic to find a deterministic model for a typical robotic cell. Nonetheless,
modern robotic cells may have technical issues like inspection processes. In other
words, considering inspection stages in a robotic cell is one of the important issues
in the field of scheduling which reflects real-life cases, and therefore the final results
of previous section are related to inspection process in cells. Three classifications
of inspection, according to where and when they are made, are:

• Post-process: placing the part in an independent inspection machine

• In-process: inside the machine during the machining process

• In-line: inspect the part on a MFR as soon as a part comes off the machine

The post-process inspection measures the part outside the production machine.
Normally, it includes inspection on an independent inspection machine. In-process
inspection includes production machines supplied with sensors. These sensors
measure the part while it is being processed. Normally, the inspecting sensor has
no connection to the production mechanism. Finally, in-line inspection measures
the parts immediately after a process is completed. For instance, it is possible to
measure the diameter of a part by a MFR as soon as it comes off a grinder.

Having post-process inspection scenario, a m-machine rework SFRC is com-
monly captured by the succeeding framework: this cell is made up of a sub-
production line of m production machines (M1,M2, ...,Mm), a sub-inspection line
of m + 1 measurement machines (N0, N1, N2, ..., Nm), a gantry robot that serves
the entire production line, an input buffer I and an output buffer O with un-
limited storage capacity. This makes it clear that SFRCs (see Section 2.1) are a
subdivision of these cells where there is no inspection machine in the cell.

Deterministic modelling of a rework SFRC is sometimes unrealistic because it
is possible that some parts unloading from I need to be reprocessed before reaching
O. In fact, there is an inspection machine just after each production machine in
real-production situations. SFR unloads the processed part from the production
machine, and then loads it on the next corresponding inspection machine. The
part on the inspection machine takes a certain amount of time to be tested for
defects. If it has no defect, SFR transfers it to the next production machine.
However, it is possible that the part needs reprocessing and SFR transfers it to
the previous production machine for reprocessing under this condition. Figure 2.2
shows a SFRC with two production machines and three inspection ones. The first
inspection machine N0 is carried out to check the raw material for its acceptance or
error based on acceptance criterion. The second inspection machine N1 guarantees
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that the work in process between two production machines satisfies the certain
acceptance criteria and finally the third inspection machine N2 controls the quality
of finished part to be delivered to the customer.

Fig. 2.2. A SFRC with machines M1,M2 and inspection machines N0, N1, N2.

Having in-process inspection scenario, the cell is made up of a sub-production
line of m production machines (M1,M2, ...,Mm) and have no inspection machine
because any one of machines has a set of independent sensors for inspection during
the process. As a consequence, the part on the particular production machine Mi

takes max{Pi, Ti} to be processed and inspected (Pi is time taken to process part
on Mi, and Ti is time taken by sensors to do inspection in process). At this point
of time, SFR transfers this part to the next production machine if it has no defect.
However, it is possible that the part needs reprocessing which means SFR cannot
transfer the part to the next machine at least for one more period of max{Pi, Ti}.

Fig. 2.3. A MFRC with production machines M1,M2 and in-line inspection system.
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For in-line inspection scenario, there are MFRCs in addition to SFRCs. As
mentioned before, the distinguished feature of a MFRC is a MFR which combines
inspection processes into material handling system. The cell shown in Figure 2.3,
is an example of using this kind robot instead of the SFR in the Figure 2.2. There
is no need for the MFRC to have any inspection machines, and the measuring head
of MFR acts as an inspection device during transition of parts between machines.
Note that no-wait and interval pickup make some MFR move infeasible to execute,
and hence both feasibility and optimality conditions of the cell are studied here.

2.7 Solution Method

The scheduling of robotic systems is complex both computationally and analyti-
cally due to the combinatorial explosion in the number of robot movements. Re-
garding computational methods, branch and bound algorithms are applied for solv-
ing the problem in addition to some evolutionary algorithms such as the genetic
algorithm and the simulated annealing algorithm. The point about evolutionary
algorithms is that they are problem-independent methods. As such, they do not
take advantage of any specificity of the problem and this may be the cause of
weaker results (Zarandi et al., 2013). Also, although they can find a good cycle in
a reasonable amount of time, there is no guarantee that they can find an optimal
cycle. Likewise, there are computationally effective heuristics such as Heuristic
MCell (Dawande et al., 2005) to solve industry-sized problems, but they only have
an approximation guarantee on the obtained solutions. In this thesis, we focus on
analytical methods to find exact algorithms for robotic cell scheduling problems.
The advantage of exact algorithms is that they are designed in a way that will cer-
tainly find the optimal solution in a finite amount of time. However, for difficult
problems (e.g. NP-hard) this finite amount of time may increase exponentially
with respect to the dimensions of the problem. Consequently, we also establish
some heuristics under these conditions to find near-optimal solutions.

Since the part processing routes in large-scale MFRCs is complicated, one of the
most economic strategies in order to deals with this complexity is breaking these
MFRCs into small-scale clusters. Then, a MFR serves within each one of newly
designed clusters which generally consist of one, two or three machines. This gives
us an indirect method to optimize a particular large-scale MFRC. Although this
method predominantly works for large-scale MFRCs, it is better to find a method
to directly analyse them. As a result, we also derived upper and lower bounds
of cycle times, and then developed an exact method that divides all solution into
two groups: feasible and infeasible. These solutions are on top and down of the
constant value of lower bound. If a solution was infeasible, it is ignored. If not,
the nearest one to the lower bound is the optimal cycle, as shown in Figure 2.4.
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Fig. 2.4. A graphical scheme of lower bound and all solutions.

At the end, the large-scale MFRCs are modelled as a TSP. Actually, the mo-
tivation behind modelling MFRC scheduling problem as a TSP is that modelling
MFRC scheduling problems as a TSP gives computational benefits due to the ex-
isting solution methods. Also, as a design problem, a preliminary analysis given
in this thesis identifies the regions where the productivity gain of a regular MFRC
is more than that of the corresponding SFRC for both small- and large-scale cells.
This strong tool helps robotic cell designers to make the final decision as to whether
they should invest money in purchasing a MFRC or not. It should be stressed that
models adopted in this research are predominantly related to linearly-configured
cells. However, the analysis can be easily extended to other cell layouts. The
extension of results to a circularly-configured (or mobile-configured) robotic cell is
as trivial as adding a linear unit of time to the robot travel time.

With regard to stochastic MFRCs, three classifications of inspection scenarios
face stochastic environments and this makes it vital to use stochastic models.
To the best of our knowledge, the set of techniques employed to find a solution
for similar robotics scheduling problems has so far included heuristics, Petri Nets,
critical path method, formulating as a multi-path TSP with stochastic travel costs,
simulation, dynamic programming. The description of them is as follows: 1)
Heuristics applied in robotic cells are methods that do not guaranteed optimality,
but are suitable computationally when determining an optimal cycle is impractical.
2) A Petri Net is a collection of directed arcs connecting places and transitions.
Places (machines or robots) may hold tokens (parts). The state or marking of
a net is its assignment of tokens to places. 3) Critical path method is based
on the length of the robotic networks longest path, named the critical path. 4)
For TSP-based approaches, each part is a city, and the distance between a pair
of cities is the duration of the interval between the corresponding consecutive
occurrences of the robot activities. 5) Simulation is the imitation of the operation
of a real-world robotic cells over time. 6) Dynamic programming in robotic cells
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employ dispatching rules to determine the next action of the robot based on the
current state of the cell. The computation of the partial cycle time via the above
approaches, which can be divided into graphical and algebraic approaches, are
often high as reviewed in Dawande et al. (2005). Thus, there is a need for some
stronger approaches to be developed in this thesis. From our point of view, the
following strategies are essential for tackling the stochastic version of robotic cells:

• The deadlock problem is potentially one of the critical issues in designing
robotic systems. Under this assumption, we discuss the problem of testing
whether a cell can deadlock with the given inspection system. So, under ideal
condition, we find a strategy such as giving constraints to prevent deadlock
for any sequence of robot movements and make it deadlock-free.

• For some cells, it is possible to resolve deadlocks considering a penalty (e.g.
time gap or cost) with associated probability of occurrence. Penalty of dead-
lock may be high or low, and also deadlock can occurs frequently or rarely.
Accordingly, penalty and risk of deadlock are two indexes belong to the level
of deadlock. We assume different level of deadlock based on these indexes.

• Performance measures are essential to be added to analyse of cell before any
quantitative evaluation. A performance measure from robotic cell designer’s
perspective is an expression that can contain fundamental measures such as
E{Ct} which mentions the expected value of cycle time. Accordingly, we
assume a minimization problem of E{Ct}.

• The dynamic behaviour of cell is determined by the activation and execu-
tion of the robot actions, which in turn change the robotic cell state at any
given moment. So, it will be a noteworthy achievement if we establish simple
heuristics for dynamic scheduling, and then determine the worst-case perfor-
mance of heuristics, relative to the optimal solution for inspection scenarios.

The methodology developed in this study is based on defining three kinds
of stochastic order relations, sorting them through strangeness, and then finding
the dominancy regions of feasible cycles by an analytical method. We consider
all issues above in our methodology, and therefore, the conclusions of solution
methods can be helpful for both managers of companies which use modern robots
in automated manufacturing system and international manufacturers of industrial
robots who generally try to design agile robotized shops. To our best knowledge,
none of the literature produced has provided an answer to the question that how
the operations must be allocated to the machines and the corresponding robot
must be instructed to minimize the cycle time under aforementioned assumptions.
Therefore, the novelty of research is that it tries to answer to this question and
enhances performance of MFRCs.
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Part II

Deterministic Modelling



Chapter 3 is based on the published article Foumani, M., Ibrahim,
M.Y., Gunawan, I., 2013. Scheduling dual gripper robotic cells with
a hub machine. 2013 IEEE International Symposium on Industrial
Electronics (ISIE), On pages: 1 - 6.

Abstract This paper introduces a new methodology to optimize the cycle time of
dual-gripper robotic workcells. The workcell under study is composed of a group of
m production machines. In order to produce a completed part, a chain of m − 1
secondary operations are performed by m−1 different machines, and a hub machine
is alternately visited for m primary operations. Indeed, parts must reenter the hub
machine after any one of secondary operations. Those types of robotics workcells
are used for high capacity production such as in photolithography manufacturing,
These cells are cluster tools for semiconductor manufacturing where a wafer visits
a processing stage several times for the atomic layer deposition (ALD) processes.
For electroplating lines, these cells are also common in practice where there is a
multi-function production stage that is visited by parts over once. This optimization
methodology is limited to the dual-gripper robotic cells, where identical parts are
produced and these parts completely follow a similar sequence. The lower bound of
cycle time for such dual-gripper robotic cells is obtained by finding the cycle time of
all related robot move cycles, and subsequently optimal robot task sequence, which
is a two-unit cycle, is determined.

Note to Practitioners Considering real-life applications, this study in this paper
provides a framework for converting a special case of production system in semi-
conductor manufacturing facilities with hub machine into a robotic system with
higher performance. Applications of such cells can be found in several production
environments, particularly in advanced technologies, such as in the Atomic Layer
Deposition (ALD) process where film deposition is manufactured with the accuracy
of mono-atomic layers.

Keywords Reentrant robotic cell, Cyclic production, Dual-gripper robot, Hub ma-
chine, Scheduling

Classification SRF 1,1,2
l,1,1 |free, additive , deterministic , identical, cyclic|T with hub

Note References are considered at the end of the thesis.



Chapter 3

Dual Gripper Robotic Cells with
a Hub Machine

3.1 Introduction

The main attainments in using industrial robots include high-quality products,
lower manufacturing cost, safety of workers, and satisfying flexibility (Gao et al.,
2009). A significant application of robots in industries is typically their use as
material handling devices in robotic work cells. Figure 3.1 depicts the movement
of a part in such a robotic cell, where parts are identical and the input/output
buffer (I/O) holds both raw materials and finished parts. Both artificial machine
M0 and Mm+1 can also denote I/O. Each part being processed passes sequentially
from I/O to production machines M1,M2, ...,Mm and eventually to I/O.

Fig. 3.1. A classical robotic cell with m machines

The hub reentrant robotic cell, which is a practical case of classical robotic
cell, is considered in this paper. Each part enters alternatively a particular hub
machine to be considered as a completed part in this kind of robotic cell, which is
shown in Figure 3.2. The hub reentrant robotic cells are totally different from the
classical robotic cells. The most important difference between these cells is that a
series of sequential operations denoted by O1, O2, O3, , Om must be performed by
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m machines in the classical robotic cells, whereas a set of processes denoted by
G1, O2, G2, O3, G3, O4, , Gm−1, Om, Gm must be performed by the hub machine M1

and m−1 machines M2,M3, ...,Mm in the hub reentrant robotic cells to produce a
completed part. Oi, i = 2, ,m, is the index of the secondary operation on Mi. Also,
Gh, h = 1, ,m, is the index of hth primary operation on M1. Because of entering
alternately the hub machine M1, it plays a more active role in the hub reentrant
robotic cells in comparison with the classical ones, and performs m primary op-
erations instead of only one operation. Consequently, the numbers of necessary
operations for producing one part in the classical and hub reentrant robotic cells
are given by m and 2m− 1, respectively.

Fig. 3.2. A hub reentrant robotic cell with m machines

A great deal of exact methods has been suggested for solving classical robotic 
cell scheduling problem. Some researchers have applied meta-heuristic algorithms 
to solve this problem (e.g. Li et al., 2010; Yan et al., 2012). Although the majority 
of researches on robotic cell focus on determining optimal robot moves for classical 
robotic cells, no study was found where the robot performs material handling of a 
hub reentrant cell. Applications of such cells can be found in several production 
environments, particularly in advanced technologies, such as in the Atomic Layer 
Deposition (ALD) process where film deposition is manufactured with the accuracy 
of mono-atomic layers. This technology improves the quality of wafers by 
controlling their thickness, and consequently redoing ALD processes several times. 
If these ALD processes are performed at a single hub machine, it will certainly 
increase the wafer quality. This is due to the existence of the same processing 
conditions for all repeated processes and the more economical application of a 
single hub machine (Lee and Lee, 2006). These cells are also used in some elec-
troplating processes, as reported by Liu et al. (2002). Due to the inherent nature 
of the printed circuit boards (PCBs) electroplating, there is predominantly a hub 
production stage that is visited by parts several times. Other applications of the 
hub reentrant robotic cells are in painting shops and Very Large Scale Integrated 
(VLSI) circuit wafer manufacturing (Kubiak et al., 1996). Consequently, there is 
a wide gap between theoretical and practical studies on the hub reentrant robotic 
cell, which has been used in different industries.
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Two main types of robots end-effectors, generally seen in manufacturing cells,
are single-gripper and dual-gripper. A single-gripper robot manipulator only has
one gripper, which is able to hold at most one part at any particular time. How-
ever, a dual-gripper robot manipulator has two grippers, either of which is able to
transfer a part at any given moment. As a result, a dual-gripper robot has a capac-
ity for carrying two parts. This difference between these two kinds of robots makes
it clear that the dual-gripper robots, which are the focus of this paper, increase
productivity and decrease the cycle time in comparison with the single-gripper
robots (Drobouchevitch et al., 2006).

The plan of the paper is as follows: A chronological literature review pertain-
ing to different kinds of robotic cells is presented in Section 3.2. The associated
definitions and notation of cyclic production issues are described in Section 3.3.
In Section 3.4, the lower bounds of robot move cycles are determined for a robotic
cell consisting of a dual-gripper robot, m− 1 machines, and a hub machine. Addi-
tionally, optimal robot task sequence is determined in this section. The conclusion
and future research directions are generalized in Section 3.5.

3.2 Related Research

Many researchers concentrated on the dual-gripper robotic cell scheduling problem.
Su and Chen (1996) were the first to consider a simple two-machine robotic cell
with a dual-gripper robot. Later, Sethi et al. (2001) presented a more extended
analysis regarding number of possible robot move cycles for a dual-gripper robotic
cell composed of two machines. The problem of cycle time minimization in a
multi-robot serial system was addressed by Galante and Passannanti (2006).

Recent studies have concentrated on dual-gripper robotic cells with different
characteristics. Dawande et al. (2009) found a group of dominant solutions for
two prevalent robotic cells in practice: a single-gripper cell with a unit-capacity
output hopper at each production machine, and a bufferless dual-gripper cell.
The problem of scheduling operations in interval robotic cells with dual-gripper
robots was studied by Dawande et al. (2010). Productivity improvement from
using machine buffers in dual-gripper robotic cells has recently been an interesting
topic. For instance, in Geismar et al. (2011), the quantity of improvement in
productivity is expressed when unit-capacity input and output buffers at each one
of machines is assumed.

It should be also emphasized that most of the pertaining literature to the
single-gripper robotic cell scheduling problem were based on the assumption that
a busy robot cannot load an occupied machine. However, some researchers re-
cently assumed that both robot and machine can be busy to load or unload a
part onto a production machine, which is called swap ability. As a matter of fact,
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the robot can be used as a temporary stock with one unit capacity in the man-
ufacturing cells. For the first time, a Genetic Algorithm (GA) was presented in 
Soukhal and Martineau (2005) to minimize the makespan of a robotic cell with
swap ability. Jolai et al. (2012) also developed a new approach based on a par-
ticular kind of robot move cycle to obtain minimum cycle time of flexible robotic
cells with swap ability. Eventually, these results were extended in Foumani and
Jenab (2013a). They introduced a better-quality robot move cycle, improved pure
cycle, and proved that it always decrease the cycle time and number of production
machines, simultaneously.

The problem of minimizing mean flow time in a hub reentrant cell was studied
in Kubiak et al. (1996). In contrast with the framework of this study, they assumed
that there is not any material handling devices in a non-cyclic production system.
Furthermore, the objective of their problem was to minimize the total flow time,
not cycle time. The reentrant cell scheduling problem was first studied in Steiner
and Xue (2005) in the context of cyclic production. The optimal schedule of a two-
machine reentrant robotic cell was found in Che and Chu (2009) to minimize the
makespan. Lately, Foumani and Jenab (2012) analyzed a two-machine reentrant
cell under consideration of swap ability.

3.3 Problem Notation and Definitions

In addition to basic definitions and notation for robotic cell scheduling problems,
we describe the related concepts used throughout the paper to give a conventional
description of the reentrant cell under investigation. The following definitions,
which are relevant to this study, are developed:

Definition 1. Considering a reentrant robotic cell made up by a hub machine
and m−1 machines, an n-unit robot task sequence is a steady state cycle where n
parts are completed. For an n-unit cycle, each one of m−1 machines is loaded and
unloaded exactly n times, and the hub machine is loaded and unloaded exactly
n×m times.

The state of the robotic cell is defined by the position of the dual-gripper robot
and whether the machines and this robot are occupied or empty at any given time.
In term of robot motions, it should be emphasized that, after loading a part onto
a machine, the robot can wait at the machine to complete its processing on the
part or move to another machine.

Definition 2. For a reentrant robotic cell with a dual-gripper robot, a hub ma-
chine, M1, and m − 1 machines, the state transition in a cycle is shown with
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E = {e1, e2, e3, , em|e} where ej = {Ωj, φj} and e = {Ai+, Ai−, Bh+, Bh−}. Ωj and
φj indicate that Mj(j = 1, ...,m) is either occupied or empty. Ai+ and Ai− indi-
cate that the robot either unloads or loads Mi(i = 0, 2, 3, ...,m), respectively, and
finally Bh+ and Bh− mean that the robot either unloads or loads M1 for h times
(h = 1, 2, ...,m).

Figure 3.3 shows an example of a three-unit cycles execution. In this example,
there are a hub machine which performs the operations G1, G2 and G3, and M2

and M3 which perform the secondary operations O2 and O3. Hence, the cell follows
the sequence of operations G1, O2, G2, O3, G3. Note that the arcs 1, 2, ..., 18 show
the sequence of the robot movements. It is clear that each one of machines M2

and M3 is loaded and unloaded exactly three times, and the hub machine is loaded
and unloaded exactly nine times. The number of completed parts is equal to three
since the robot drops off three parts at I/O, respectively, after movements 10, 14,
18.

Fig. 3.3. The state transition of a three-unit cycle for a three-machine cell

The corresponding state transition in this cycle is:

φ1, φ2, φ3|A0+ → Ω1, φ2, φ3|B1− → Ω1, φ2, φ3|A0+ → φ1, φ2, φ3|B1+ →
Ω1, φ2, φ3|B1− → Ω1,Ω2, φ3|A2− → Ω1, φ2, φ3|A2+ → φ1, φ2, φ3|B1+ →
Ω1, φ2, φ3|B2− → Ω1,Ω2, φ3|A2− → Ω1, φ2, φ3|A2+ → φ1, φ2, φ3|B2+ →
Ω1, φ2, φ3|B2− → Ω1, φ2,Ω3|A3− → Ω1, φ2, φ3|A3+ → φ1, φ2, φ3|B2+ →
Ω1, φ2, φ3|B3− → Ω1, φ2,Ω3|A3− → φ1, φ2,Ω3|B3+ → φ1, φ2,Ω3|A0− →
φ1, φ2,Ω3|A0+ → Ω1, φ2,Ω3|B1− → φ1, φ2,Ω3|B1+ → φ1,Ω2,Ω3|A2− →
φ1,Ω2, φ3|A3+ → Ω1,Ω2, φ3|B3− → φ1,Ω2, φ3|B3+ → φ1,Ω2, φ3|A0− →
φ1, φ2, φ3|A2+ → Ω1, φ2, φ3|B2− → φ1, φ2, φ3|B2+ → φ1, φ2,Ω3|A3− →
φ1, φ2, φ3|A3+ → Ω1, φ2, φ3|B3− → φ1, φ2, φ3|B3+ → φ1, φ2, φ3|A0−

Due to the fact that potential deadlock exists, the robot is not able to perform
all sequences. Drobouchevitch et al. (2006) provided the following assumptions
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to insure the feasibility of a robot move cycle: 1) an empty machine cannot be
unloaded, 2) a loaded machine cannot be loaded again, 3) the dual-gripper robot
cannot hold more than two parts at any given moment, or equally, the robot must
at least has one empty gripper if unloading a new part is its next motion. To
give an example, φ1,Ω2, φ3, ...,Ωm−1,Ωm|B2+ → φ1,Ω2,Ω3, ...,Ωm−1,Ωm|A3− →
φ1,Ω2,Ω3, ...,Ωm−1,Ωm|B4+ is impracticable since the robot unloads a part from
the hub machine (B2+) and transfers and loads it to M3 (A3−). Thus, it is impos-
sible to unload a part from the empty hub machine (B4+). The following notations
were made for analysis of the reentrant cell:

ε The load (or unload) time of machines or I/O.

δ Time taken by the dual-gripper robot to move between two sequential machines.

dij Time for transferring a part between two non-adjacent machines i and j.

θ The time taken for switching the robot grippers position with each other.

pi The processing time of parts on Mi(i = 2, ,m).

Hh The processing time of parts on the hub for the hth time, (h = 1, ...,m).

Tj The cycle time of robot move cycle j to complete a part.

T d The lower bound for the robot move cycle to complete a part.

In this study, the robotic cell scheduling problem is also solved under the following
assumptions:

• Presuming that the robots travel time is additive, dij is always equal to
|i− j|δ.

• It is assumed that the switching of robots gripper is performed as fast as
possible (θ 6 δ and θ 6 Pi), which is predominantly true in real-life applica-
tion of robotic cells (Drobouchevitch et al., 2006; Sethi et al., 2001; Geismar
et al., 2011; Jenab et al., 2012).

• The analysis is limited to the situation where all m−1 secondary operations
are negligible in comparison with all m primary operations. This assump-
tion, which is occasionally called bottleneck assumption, is common among
the pertaining literature of scheduling for many industrial processes such
as painting and VLSI wafer fabrication (Foumani and Jenab, 2013a). The
bottleneck assumption is shown as below:

max26i6mPi 6 min16h6mHh
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Note that θ 6 Hh since θ 6 Pi and max26i6mPi 6 min16h6mHh.

3.4 Lower Bound and Optimal Cycle for Hub

Reentrant Robotic Cells

The scheduling problem data is composed of the gripper’s rotating time, the load
(or unload) time of machines, the travel time for the dual-gripper robot, the num-
ber of machines and processing times on different machines. Depending on the
data, the lower bound must be estimated in order to find optimal cycle. If a par-
ticular solution attains this lower bound, it is certainly the optimal robot task
sequence. Thus, we limit the problem to finding the optimal robot task sequence
in order to fulfill the lower bound for cycle time. This lower bound is calculated
by the following theorem:

Theorem 1. For a hub reentrant cell consisting of a dual-gripper robot, a chain
of m − 1 machines, and a hub machine which follows the sequence of operations
G1, O2, G2, O3, G3, O4, ..., Gm−1, Om, Gm, the lower bound of the per unit cycle time
is:

T d =
1

2
(max{4ε+ 2δ + θ,H1 + 2ε+ θ}) +max{4ε+ 2δ + θ,H1 + 2ε+ θ}

hi +
∑m−1

h=2 (max{4ε+ 2(h− 1)δ+ 2θ,Hh + 2ε+ θ}+max{4ε+ 2hδ+ 2θ,Hh + 2ε+ θ})
hi +max{4ε+2(m−1)δ+2θ,Hm+2ε+θ}+max{4ε+2δ+θ,Hm+2ε+θ} (3.1)

Proof: The proof of this theorem is given in three sections.

1. The first portion of the equation.

1.1. Loading M1 before starting G1: Considering the first argument, under
best condition, the robot must unload M1 switch grippers, load M1 and
moves to I/O for dropping a completed part (2ε+δ+θ). After dropping
the completed part, the robot unloads a new part from I/O and moves
to M1, (2ε + δ). This closed loop shows the minimum essential time
that robot takes to load M1 for its first operation after unloading it. If
H1 is negligible in comparison with δ, this closed loop takes 4ε+ 2δ+ θ
because the robot unloads the completed part from M1 without any
waiting time and exactly when it finished traveling from I/O to M1.
Otherwise, this closed loop takes H1 + 2ε + θ if H1 is meaningful in
comparison with δ. The reasoning behind this taken time is that the
minimum time taken by the robot from the moment that moves from
M1 to returns to M1 is less than H1 and the robot necessarily waits in
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front of M1 to finish the operation of the part and, after finishing this
operation, the dual-gripper robot unloads finished part from M1 and
loads the new part to it by using a switching operation (H1 + 2ε + θ).
See Figure 3.4a.

1.2. Unloading M1 after finishing G1: This argument results from the suc-
ceeding robot movements: the robot must unload M1, rotate the grip-
pers at the end of its arm, load M1 and move to M2 (2ε+ δ+ θ). After
unloading a part from M2 and switching grippers, the robot loads the
part that finished G1 to M2 and moves to M1 (2ε + δ + θ). If H2 is
insignificant in comparison with δ, this loop takes 4ε + 2δ + 2θ. Oth-
erwise, it takes H1 + 2ε + θ similar to the previous case. See Figure
3.4b.

Fig. 3.4a (left). The first closed loop of performing operation H1. Fig. 3.4b

(right). The second closed loop of performing operation H1

2. The second portion of the equation.

2.1. Loading M1 before starting Gh, h = 2, 3, ...,m−1: In a similar manner,
the robot is instructed to unload M1, switch its grippers, load M1,
transfer the part to Mh (2ε+ (h−1)δ+ θ). In the second robot activity
unloadsMh without waiting, completes its pivot and positions its second
gripper in front of Mh, loads this machine, transfers the part which
completed Oh and is ready to start Gh in M1 (2ε+ (h− 1)δ+ θ). Thus,
the length of time for the resulting closed loop is 4ε+ 2(h− 1)δ+ 2θ or
Hh + 2ε+ θ depending on Hh and δ. See Figure 3.5a.

2.2. Unloading M1 after finishing Gh, h = 2, 3, ...,m − 1: The structure
of this closed loop looks quite similar to previous case. Initially the
robot is placed in front of M1 that finished Gh. Then, it has a forward
movement from M1 to Mh+1 and a backward movement from Mh+1 to
M1 (2hδ). It unloads and loads each one of these machines and switch
grippers (4ε+2θ); hence, the length of time for this closed loop is equal
to 4ε+ 2hδ + 2θ or Hh + 2ε+ θ depending on Hh. See Figure 3.5b.
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3. The third portion of the equation.

3.1. Loading M1 before starting Gm: Clearly, the robot must visit each

machine M1 and Mm(2(m − 1)δ), and change its gripper positions for
unloading and loading of each one of these machines once (4ε+ 2θ). It
seems reasonable to conclude that the robot spends 4ε+ 2(m−1)δ+ 2θ
or Hm + 2ε+ θ time units depending on Hm. See Figure 3.6a.

3.2. Unloading M1 after finishing Gm: Due to the fact that the part is

complete after finishing Gm, it must be dropped at I/O. Therefore, in
order to execute essential activities, the robot has a robot motion from
M1 to I/O, and then it return to M1. Note that the robot loads and
unloads both M1 and I/O, while it only switches to other gripper in
front of M1. Thus, the robot spends 4ε+2δ+θ or Hm+2εθ time units.
See Figure 3.6b.

Fig. 3.6a (left). The first closed loop of performing operation Hm. Fig. 3.6b

(right). The second closed loop of performing operation Hm

The lower bound for the per unit cycle time is simply found by summing up these
values and dividing by 2 in that a dual-gripper robot is applied in this cell �.

The objective is to determine a sequence of robot activities in such a way that
the sum of all loading, unloading, traveling and waiting times is minimized. In
this regard, we propose a robot move cycle namely dominant cycle and examine
the performance of this proposed cycle, which is practical and can be put to use
without difficulty. The dominant cycle is defined to be a robot move cycle in
which, starting with an initial state, all machines are busy and the robot, which
unloaded a part from I/O. Note that M1 is also occupied and a part is loaded on
it for G1. The state transition in this cycle is shown below:

1− Ω1, ...,Ωm|B1+ → Ω1, ...,Ωm|B1−
2.1− Ω1, ...,Ωm|A2+ → Ω1, ...,Ωm|A2− → Ω1, ...,Ωm|B1+ → Ω1, ...,Ωm|B2−
→ Ω1, ...,Ωm|A2+ → Ω1, ...,Ωm|A2− → Ω1, ...,Ωm|B2+ → Ω1, ...,Ωm|B2−
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2.2− Ω1, ...,Ωm|A3+ → Ω1, ...,Ωm|A3− → Ω1, ...,Ωm|B2+ → Ω1, ...,Ωm|B3−
→ Ω1, ...,Ωm|A3+ → Ω1, ...,Ωm|A3− → Ω1, ...,Ωm|B3+ → Ω1, ...,Ωm|B3−

2.3− Ω1, ...,Ωm|A4+ → Ω1, ...,Ωm|A4− → Ω1, ...,Ωm|B3+ → Ω1, ...,Ωm|B4−
→ Ω1, ...,Ωm|A4+ → Ω1, ...,Ωm|A4− → Ω1, ...,Ωm|B4+ → Ω1, ...,Ωm|B4−

...
2.m−1−Ω1, ...,Ωm|Am+ → Ω1, ...,Ωm|Am− → Ω1, ...,Ωm|B(m−1)+ → Ω1, ...,Ωm|Bm−
→ Ω1, ...,Ωm|Am+ → Ω1, ...,Ωm|Am− → Ω1, ...,Ωm|Bm+ → Ω1, ...,Ωm|Bm−

3− Ω1, ...,Ωm|A0− → Ω1, ...,Ωm|A0+ → Ω1, ...,Ωm|Bm+ → Ω1, ...,Ωm|B1−
→ Ω1, ...,Ωm|A0− → Ω1, ...,Ωm|A0+

In Figure 3.7, a simple example consisting of three production machines, a hub
machine and a dual gripper robot is illustrated to help clarify the sequence of the
performed activities for the dominant cycle. In this example, the dominant cycle
can be explained by the following sequences:

1. As the starting point of the dominant cycle, the robot moves from I/O to M1

and, after unloading a part which has completed, rotates grippers and loads
M1 with another part in order to complete G1.

2. Begin phase 2

2.1. The robot travels between two adjacent machines M1 and M2, unloads
M2, switches grippers and finally loads M2. Then, it moves backward
from M2 to M1 and, after unloading the part which finished G1, rotates
grippers and loads M1 with Finished part of M2 to complete G2. Once
again, the robot moves to M2, unloads it, exchanges grippers, loads it,
returns to M1, unloads the part which completed G2, switches grippers,
and loads M1 with another part to complete G2.

2.2. The robot moves from M1 to M3 and, after unloading, rotates grippers
and loads M3. Thus, it returns to M1 and, after unloading the part
which finished G2, changes the grippers position and loads M1 with the
part to complete G3. Once more, the robot travels to M3, unloads it,
switches to the other gripper, loads it, moves to M1, unloads the part
which finished G3, rotates grippers, and loads M1 with another part to
perform G3.

2.3. The robot travels between two nonadjacent machines M1 and M4 and,
after unloading, switches grippers and loads M4. Afterwards, it travels
back to M1 and, unloads the part which finished G3, switches grippers
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and loads M1 with another part to perform G4. Another time, the
robot moves to M4, unloads it, switches grippers, loads it, returns to
M1, unloads the part which completed G4, exchanges grippers, and then
loads M1 with another part to complete G4.
End phase 2

3. The dual-gripper robot travels to I/O, drops off the first finished part at I/O,
and picks up a new part. It returns to M1 and, after unloading the part
which completed the last operation G4, changes the grippers position and
loads M1 with the new part for performing G1. The robot travels to I/O,
drops off the second finished part at I/O, and picks up a new part again.
Therefore, the cell ends up with the same state of the robotic cell as the
initial state.

Fig. 3.7. The state transition of the dominant cycle for a hub reentrant robotic cell

with four machines

Clearly, the phases 2.1, 2.2 and 2.3 are repetitive. Also, the dominant cycle
produces exactly two parts, which shows it is a two-unit cycle. For examining the
performance of the dominant cycle, initially, we present its cycle time. As a result,
the cycle time of this cycle is derived in the following lemma:

Lemma 1. The following is the per unit cycle time of a dominant cycle for a
reentrant cell consisting of a dual-gripper robot, a chain of m− 1 machines, and a
hub machine which follows G1, O2, G2, O3, G3, O4, ..., Gm−1, Om, Gm:

T d = 4mε+ ((m− 1)m+ 2)δ + (2m− 1)θ

hi +
1

2
(
∑m

h=2max{0, Hh−(2ε+2(h−1)δ+θ)}+
∑m−1

h=1 max{0, Hh−(2ε+2hδ+θ)}
hi +max{0, H1−(2ε+2δ)}+max{0, Hm−(2ε+2δ)}) (3.2)
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Proof: Due to the fact that the sequence of 2m − 1 operations for this two-unit
cycle is G1, O2, G2, O3, G3, O4, ..., Gm−1, Om, Gm and each one of these operations
needs a loading and unloading operation before starting and after finishing it, there
are 8m−4 loading/unloading operations on machines. In addition to these 8m−4
loading/unloading operations, the robot has to perform four loading/unloading
operations on I/O; hence, there are totally 8m loading/unloading operations for
producing two parts. In connection with travel time, the robot moves forward
from M1 to each one of m − 1 machines exactly twice, which takes (m − 1)mδ.
Likewise, it moves backwards from each one of m−1 machines to M1 twice, which
takes (m − 1)mδ again. Also, the robot travels between I/O and M1 four times
to produce two parts. It can be deduced that the total travel time for producing
two parts is (2(m− 1)m+4)δ for producing two parts. For this two-unit cycle, we
have 4m − 2 gripper switching because 4m − 2 operations must be performed by
m − 1 machines and the hub machine, and consequently one gripper switching is
necessary for each one of these operations. The robots waiting time at any one
of m − 1 machine, which perform secondary operations, is zero. The reasoning
behind this is that the waiting time is equal to subtracting Pi from taken time
between leaving Mi and returning to Mi, i = 2, ,m, which requires a minimum
time of Hi−1.
In order to estimate the robot waiting time at the hub machine when it performed
Gh (h = 1, 2, ...,m), generally, Hh must be subtracted from the time required for
the robot to leave M1 after starting Gh and return to M1 to unload it after fin-
ishing Gh. The sequence of this cycles activities is in a way that, after loading a
part on M1 to perform Gh, the robot moves to Mh or Mh+1, and then return to
M1 to unload the part that its hth operation is performed. As a result of these
kinds closed loops, max{0, H1 − (2ε + 2δ)} and max{0, H1 − (2ε + 2δ + θ)} are
the robots waiting time performing G1, max{0, Hh − (2ε + 2(h − 1)δ + θ)} and
max{0, Hh− (2ε+2hδ+θ)} are its waiting time for completing Gh, h = 2, ,m−1,
and finally max{0, Hm − (2ε + 2(m − 1)δ + θ)} and max{0, Hm − (2ε + 2δ)} are
also its waiting time for completing Gm. The sum of all aforementioned waiting
time is equal to:∑m

h=2 max{0, Hh − (2ε+ 2(h− 1)δ + θ)}
+
∑m−1

h=1 max{0, Hh − (2ε+ 2hδ + θ)}
+max{0, H1− (2ε+ 2δ)}+max{0, Hm− (2ε+ 2δ)}) (3.3)

We determined the sum of all loading, unloading, traveling, gripper switching
and waiting times for this two-unit cycle, so per unit cycle time is half of Equa-
tion (3.3), which yields the cycle time in Equation (3.2). This completes the proof.
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If we prove the per unit cycle time of the dominant cycle time is always equal
to the lower bound, we can conclude that the dominant cycle is the optimal cycle.
For discussing the performance of this cycle, Theorems 2 is established below:

Theorem 2. For a reentrant cell consisting of a dual-gripper robot, a chain ofm−1
machines, and a hub machine which followsG1, O2, G2, O3, G3, O4, ..., Gm−1, Om, Gm,
the optimal robot cycle is a two-unit cycle namely the dominant cycle.

Proof: Initially, we divide Equation (3.1) into three parts, A,B and C and rewrite
them as follows:

A =
1

2
max{4ε+2δ+θ,H1+2ε+θ} (3.4)

B =
1

2
(
∑m

h=2 max{4ε+ 2(h− 1)δ + 2θ,Hh + 2ε+ θ}
hi +

∑m−1
h=1 max{4ε+2hδ+2θ,Hh+2ε+θ}) (3.5)

C =
1

2
max{4ε+ 2δ+ θ,Hm + 2ε+ θ} (3.6)

Also, Equation (3.2) is divided into three following parts:

A′ = 2ε+δ+
1

2
θ+

1

2
max{0, H1−(2ε+2δ} (3.7)

B′ = 4(m− 1)ε+ ((m− 1)m)δ + 2(m− 1)θ

hi +
1

2
(
∑m

h=2 max{0, Hh − (2ε+ 2(h− 1)δ + θ)}
hi +

∑m−1
h=1 max{0, Hh−(2ε+2hδ+θ)}) (3.8)

C ′ = 2ε+δ+
1

2
θ+

1

2
max{0, Hm−(2ε+2δ} (3.9)

After adding left side to right side, Equation (3.7) and Equation (3.9) are rewritten
as follows:

A′ =
1

2
max{4ε+ 2δ+ θ,H1 + 2ε+ θ} (3.10)

C ′ =
1

2
max{4ε+2δ+θ,Hm+2ε+θ} (3.11)

Regarding Equation (3.8), we have:

B′ =
1

2
(4(m− 1)ε+ ((m− 1)m)δ + 2(m− 1)θ

48



hi +
∑m

h=2max{0, Hh − (2ε+ 2(h− 1)δ + θ)}
hi +4(m− 1)ε+ ((m− 1)m)δ + 2(m− 1)θ
hi +

∑m−1
h=1 max{0, Hh − (2ε+ 2hδ + θ)})

hi =
1

2
(
∑m

h=2 max{4ε+ 2(h− 1)δ + 2θ,Hh + 2ε+ θ}
hi +

∑m−1
h=1 max{4ε+2hδ+2θ,Hh+2ε+θ}) (3.12)

A = A′, B = B′, C = C ′, with the result that T d = Td. This completes the proof.

We have discussed a proposed two-unit cycle and performed a detailed inves-
tigation into its productivity. We conclude that dominant cycle has satisfactory
performance in comparison with other cycles in most applications.

3.5 Concluding Remarks

A new optimization methodology for advanced robotic hub reentrant workcell was
introduced in this paper. We provided not only the lower bound of its cycle time
but also the cycle time of a proposed cycle, namely the dominant cycle. We
demonstrated some outcomes about optimality for this cycle and proved that it
is an appropriate option for the hub reentrant robotic cell. The result of this
paper is advantageous to many industries such as wafer fabrication, painting and
electroplating lines. Hence, this study helps robotic cell manufacturers to be as
competitive as possible. Considering cyclic production, there are some areas for
development on the subject of the hub reentrant cells because the first study
of a hub reentrant robotic cell is presented in this research to the best of our
knowledge. To give an example, scheduling the hub reentrant cells with multiple
robots is an appropriate track for future research. Considering the multiple robots
increase the complexity of problem since the robots must not collide at their shared
stages. The reentrant cells occasionally involve a stochastic process time is also
an interesting topic for research. Finally, computational study of robotic hub
reentrant workcell is also an interesting problem. Some open problems related
to robotic hub reentrant workcell are: 1) What is the complexity of finding an
optimal one-unit cycle in this scheduling problem? 2) What is the productivity
improvements that may be obtained by using optimal one-unit cycle instead of two-
unit cycles in this scheduling problem? 3) What is the productivity improvements
that may be obtained by using dual gripper robot instead of single gripper robot
in this scheduling problem?
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Chapter 4 is based on the published article Foumani, M., Gunawan, I.,
Smith-Miles, K., Ibrahim, M.Y., 2015. Notes on Feasibility and Opti-
mality Conditions of Small-Scale Multi-Function Robotic Cell Schedul-
ing Problems with Pickup Restrictions. IEEE Transactions on Indus-
trial Informatics, 11(3), 821 - 829.

Abstract Optimization of robotic workcells is a growing concern in automated
manufacturing systems. This study develops a methodology to maximize the pro-
duction rate of a multi-function robot (MFR) operating within a rotationally ar-
ranged robotic cell. A MFR is able to perform additional special operations while in
transit between transferring parts from adjacent processing stages. Considering the
free pickup criterion, the cycle time formulas are initially developed for small-scale
cells where a MFR interacts with either two or three machines. A methodology
for finding the optimality regions of all possible permutations is presented. The
results are then extended to the no-wait pickup criterion in which all parts must
be processed from the input hopper to the output hopper, without any interruption
either on or between machines. This analysis enables insightful evaluation of the
productivity improvements of MFRs in real-life robotized workcells.

Note to Practitioners One of the most important traits of a robot is its work
envelope, the space in which the robot can position its end effector. A robotic
manipulator with a smaller work envelope can cover at most three machines, but
still practitioners of robotic cell manufacturing prefer to use kinds of manipulators
due to their speed and precision. KR 16-2, KR 40-PA and KR 60-3 are three
types of robots produced by KUKA Robotics that have such a small work envelope.
In addition, semiconductor cluster tools, which process semiconductor wafers for
the fabrication of microelectronic components, typically consist a small number of
wafer processing stations placed around a central, automated handling unit. There-
fore, the study in this paper offer valuable help to practitioners who are considering
the use of compact robots cells and also cluster tools with multi-functionality.

Keywords Automated manufacturing systems, Cyclic scheduling, Robotic cells,
multi-function, No-wait

Classification SRF 1,1,1
2,2,1 |free, additive , deterministic , identical, cyclic|T

Classificationni SRF 1,1,1
3,2,1 |free, additive , deterministic , identical, cyclic|T

Classificationni SRF 1,1,1
2,2,1 |no-wait, additive , deterministic , identical, cyclic|T

Classificationni SRF 1,1,1
3,2,1 |no-wait, additive , deterministic , identical, cyclic|T

Note References are considered at the end of the thesis.



Chapter 4

Notes on Feasibility and
Optimality Conditions of
Small-scale Multi-function
Robotic Cell Scheduling Problems
with Pickup Restrictions

4.1 Introduction

Today’s automated systems predominantly incorporate material handling robots 
interacting well with other equipment such as Computer Numerical Control 
(CNC) machines, and automated storage and retrieval systems in the 
production line (Ferrolho and Crisostomo, 2007). Any savings in robot 
movement time enhances the competitiveness of world class companies. Two 
classes of problem are Single-Function Robotic Cell (SFRC) and Multi-Function 
Robotic Cell (MFRC) scheduling problems, where determining a cyclic robot 
move sequence which yields the highest throughput gain is critical to success.

The first problem, which addresses a manufacturing cell equipped with a pick-
and-place robot to perform a single task, is common in practice (Ferrolho and 
Crisostomo, 2011). This kind of transporting robot is usually called a Single-
Function Robot (SFR). For the second problem, the cell is served by a Multi-
Function Robot (MFR), which concurrently performs an arbitrary task in addition 
to part transportation tasks. One of the most recent industrial developments is the 
use of these MFRs in manufacturing cells. As an instance of MFRs, the application 
of Grip-Gage-Go (GGG) grippers performing in-process control as its additional 
task has become popular in manufacturing cells recently. The grippers, installed at
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the end of a MFR arm, perform quality control (e.g. accurately measure diameters)
while carrying a part to the next machine. Figure 4.1 shows an example of these
grippers used for measuring the diameter of a crankshaft. The measuring heads are
integrated into the automation by adding gages and crankshaft locating features
to MFRs (Foumani et al., 2013a). Here, we present a detailed study regarding
GGG grippers.

Fig. 4.1. Measurement of crankshaft diameters in transit

Because a gripper is an independent tool at the end of a robot’s mechanical
arm which can adapt to various production environments, the GGG gripper can
be attached to a wide range of robots. A simple example of this is depicted in
Figure 4.2 where a GGG gripper is added to the arm of Fanuc M-710iB/45 Robot.
Hence, the Fanuc M-710iB/45 Robot can measure the thickness of shaft in transit
between machines.
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A SFRC is generally composed of two machines M1 and M2 or three machines
M1, M2, and M3. A stationary base SFR rotating on its axis is used in this robo-
tized shop to transfer parts from each machine to the next, and between machines
and a joint input/output hopper I/O. Any arbitrary machine Mj placed in the
cell performs operation Oj with the corresponding processing time Pj (Foumani
and Jenab, 2013a).

Fig. 4.3a (left). Two-machine SFRCs with rotational layout. Fig. 4.3b (right).

Three-machine SFRCs with rotational layout

Figures 4.3a and 4.3b show real-life applications of two- and three-machine
SFRCs at Haas Automation Incorporation. Physically, one SFR is assigned to
each cell to avoid collisions. In these manufacturing cells, a SFR is in charge
of picking up a part from I/O, loading it on CNC machine M1 to be processed,
transferring it through other machines and eventually dropping off this part at I/O
where both the raw material and completed parts are stored. Two scenarios for
unloading the part can be considered as soon as the parts operation on a machine
is completed. Under the free pickup criterion, which is the predominant type in
real-world cells, the part can stay indefinitely on the machine waiting for the SFR.
However, under the no-wait pickup criterion, which is stricter, the part must be
unloaded from the machine without delay and then carried to the down-stream
machine. Consequently, the SFR must reach the machine on time.
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Three-machine MFRCs with rotational layout



Figures 4.4a and 4.4b show two- and three-machine rotationally-arranged MFRCs
in which Γj represents the robots operation while in transit between transferring
parts from Mj to Mj+1. Also, γj denotes the processing time required by the robot
to perform Γj. In Figures 4.4a and 4.4b, a single MFR is in charge of moving the
parts through Γ0 −→ O1 −→ Γ1 −→ O2 −→ Γ2 and Γ0 −→ O1 −→ Γ1 −→ O2 −→
Γ2 −→ O3 −→ Γ3, respectively. In fact, the MFR is also responsible for performing
processes {Γ0,Γ1,Γ2} and {Γ0,Γ1,Γ2,Γ3} in transit, respectively. The time taken
to perform these operations can be shown as {γ0, γ1, γ2} and {γ0, γ1, γ2, γ3}. The
goal of this paper is to find a periodic MFRs task set that satisfies both the timing
and other constraints (Quan and Chaturvedi, 2010). Thus, the rest of the paper
is organized as follows. After presenting a brief literature review in Section 4.2,
the authors describe the problem definitions and notation in Section 4.3. Section
4.4 is dedicated to find the optimal permutation in MFRCs with the free pickup
criterion. Similar analysis for a MFRC with the no-wait pickup criterion is con-
ducted in Section 4.5 to find an optimal permutation if residency time is restricted.
Section 4.6 is devoted to the conclusions and discussion of future work.

4.2 Related Research

Considering the free pickup criterion, Sethi et al. (1992) presented a case study of
two- and three SFRCs which performed drilling and boring operations on twenty
pound castings to be used in truck differential assemblies. They succeeded in
optimizing the production lines adapted from PRAB Robotic Company. Shortly
afterwards, Sethi et al. (2001) focused on analyzing a class of two- and three-
machine SFRCs served by two-unit SFRs. Other studies have also addressed multi-
ple part-types, for example, scheduling multiple part-types in a dual-gripper robot
cell was addressed in Drobouchevitch et al. (2004). The developed algorithm in
Drobouchevitch et al. (2004) was only able to achieve a near optimal permutation
with the worst-case performance ratio of 3/2. Note that a linear programming ap-
proach was employed in their research to compute the performance ratio without
finding a lower bound.

Considering a case study in metal cutting industries, Geismar et al. (2005)
established a unified notational and modelling structure to optimize two- and
three-machine flexible SFRCs. They defined a flexible SFRC as the combination of
a Flexible Manufacturing System (FMS) with a flow shop. Then, they derived the 
highest performance which could be obtained by changing the assignment of
operations to production machines. Furthermore, an enumerative technique was
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applied for finding the worst-case performance ratio similar to Drobouchevitch
et al. (2004). This worst case performance was 14 2/7% for the three-machine
case, which means the maximum productivity increase of using a flexible SFRC
instead of inflexible was 14 2/7%.

Also, Nambiar and Judd (2011) used max-plus algebra as a tool to develop
a mathematical model for cyclic production lines. The newly-modeled max-plus
formulation was able to facilitate the calculation of cycle time. In fact, it was used
as the underlying mechanism to calculate cycle time precisely when an improve-
ment heuristic algorithm such as Tabu Search (TS) or Genetic Algorithm (GA)
was used to search for the optimal (or near-optimal) permutation. Subsequently, a
reentrant SFRC that combined two machines with a SFR in a closed environment
was optimized in Foumani and Jenab (2012). The employed SFR with temporary
buffer had the ability to swap a part on a busy machine with a part on a busy
SFR. The regions of optimality of all permutations were presented in Foumani and
Jenab (2012) after performing a comparative analysis.

The no-wait pickup criterion is more suitable for real-life scheduling problems
than other simplified scenarios. In this regard, Agnetis (2000) established polyno-
mial algorithms for scheduling of two- and three-machine SFRCs. Also, Paul et al.
(2007) developed a heuristic for a scheduling problem of a SFR used by an aircraft
manufacturer with the surface treatment of component parts attached to both
wings of transport aircrafts. Afterwards, Alcaide et al. (2007) took into account a
scheduling problem appearing in the electroplating line, and established a graph
model of operations for this small-scale SFRC with no-wait scenario. The SFR
used in this automated cell was a part of the computer-integrated manufacturing
system CIM-2000 Mechatronics manufactured by DEGEM Systems Company. A
real-life radar scheduling problem, which is equivalent to single machine SFRC
with no-wait pickup criterion, was studied in Brauner et al. (2009). She proved a
radar system can be simulated by a no-wait SFRC due to the fact that the first
task is a wave transmission and the second task is reflected wave receiving without
delay.

Fig. 4.5. A clustering system for connection between five small-scale MFRCs

A few recent papers are closely related to MFRCs with the free pickup criterion.
For MFRCs where the MFR performs both printing and milling operations to

55



supply large printed foam structures, an optimal schedule is generated in Keating
and Oxman (2013). A MFR transferring the part between two adjacent processing
stages and simultaneously performing an inspection operation in this transit was
introduced for the first time in Foumani and Jenab (2013b). They considered
the restricted model of the linearly-configured MFRCs producing identical parts,
and only compared the performance of these MFRCs with SFRCs. The proposed
approach for this MFRC involved deriving the lower bound of cycle time, and then
finding some permutations with the cycle time as close as possible to this lower
bound.

It is known that the number of feasible permutations for a MFRC with k
machines is k!, whereas the research by Foumani and Jenab (2013b) was only re-
stricted to studying two permutations. As a consequence, the results from Foumani
and Jenab (2013b) could not be fully beneficial to MFRCs throughput analysis.
Following that, Foumani et al. (2014) considered rotational MFRCs instead of in-
line ones and discussed some results for replacing related MFRCs with SFRCs.
Similar to Foumani and Jenab (2013b), the parameter values for which only two
special permutations are optimal were determined. As a consequence, once again,
the analysis was not complete and the impact for the remaining feasible region
was not analyzed. Therefore, it is vital to develop a detailed analysis that fully
covers all feasible regions, especially for two- and three-machine MFRCs.

The approach proposed in this paper determines the regions of optimality of
all permutations and performs a comparative analysis after computing their cycle
time. When the part processing routes in MFRCs are complicated, one of the
most economic strategies is breaking these MFRCs into small-scale clusters. A
MFR serves within one cluster consisting of two or three machines (Chan et al.,
2008). Fig. 4.5 provides an example of converting a 15-machine semiconductor
production line into five MFRCs. From the left side to the right side, we have
four, three, three, two, and three-machine MFRCs. At first, parts must enter to
the system from left-side I/O and then pass through cells C1, C2, C3, C4, and C5.
Finally, the part is stored at the right-side I/O. This paper also extends the results
to the no-wait pickup criterion to consider more realistic conditions.

The most important contribution of this paper is to provide managerial insights
into the advantages that can be achieved by applying MFRs for small-scale cells.
In more detail, the novelty of this study is developing a methodology to maximize
the production rate of MFRCs under both the free and no-wait pickup criteria.
For all possible combinations of parameters, the feasibility and optimality regions
of all permutations are presented. This research will provide a bridge between
academic research on MFRCs and relevant real-world problems.
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4.3 Problem Notation and Definitions

Compact SFRCs generally restrict intermediate hoppers, and consequently block-
ing or delay may happen. Scheduling MFR movement is also not deadlock-free and
this results in the following operational restrictions: The receiving device (MFR
or anyone of the machines) and sending device (MFR or anyone of the machines)
must be empty and loaded before the load/unload process, respectively (Foumani
and Jenab, 2013b). When the pickup criterion is no-wait, there is also an addi-
tional feasibility constraint: unloading the machine by the MFR with delay is not
permitted. MFR is subjected to two types of waits, namely full and partial waits,
in keeping with these constraints. In fact, after loading a part on a machine, MFR
either stays on this machine until the end of the operation or moves to the next
production machine to remove a part (Yan et al., 2008). The MFRC scheduling
is expressed extending the notations and definitions below from (Foumani et al.,
2013a):

ε The load (or unload) time of machines by MFR

δ The time taken by empty MFR to travel from Mi to Mi+1

Sijmf The jth permutation of a MFRCs in which i,m and f denote the number of
machines, multi-functionality and free pickup scenario, respectively

TSijmf The cycle time of Sijmf

Sijmw The jth permutation in which i,m and w denote the number of machines,
multi-functionality and no-wait pickup

TSijmw The cycle time of Sijmw

Pl The processing time of Ml dominating all machines as βl−1 + Pl + βl > βi−1 +
Pi + βi

wi MFRs waiting time at Mi for free- and no-wait scenarios.

Definition 1. Having a MFR, 2ε + max{γi, δ} is the time elapsed of an activity
Ai,∀i ∈ {0, 1, 2, 3}, with sequence: 1) Empty MFR unloads a part from busy Mi.
2) MFR carries this part to Mi+1. 3) Finally, the busy MFR loads this part onto
empty Mi+1.
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We know two cases may occur when MFR performs activity Ai: 1) γi ≤ δ: this
means MFR finishes the operation before arriving at Mi+1. Therefore, it loads the
part to Mi+1 as soon as the transfer of the part is finished, which totally takes δ. 2)
γi > δ: in contrast to previous case, MFR finishes the operation after arriving at
Mi+1: thus, MFR stops in front of Mi+1 to finish the operation and then loads the
part to the machine. This takes γi time unit. Hence, as mentioned in Definition
1, the time taken by busy MFR to perform activity Ai is a couple of load/unload
operations plus the max term of these two values: 2ε + max{γi, δ}. Note SFRC
is a simplified subdivision of MFRC if γi = 0, ∀i ∈ {0, 1, 2, 3}. For simplicity,
hereinafter βi is used instead of max{γi, δ}. The definition below deriving from
Sethi et al. (1992) is applicable to MFRCs as well.

Definition 2. Having a MFR in the cell, a permutation of all activities in which
one finished parts are dropped at I/O in each implementation is called a one-unit
permutation.

These permutations are referred to as one-unit since each Ai occurs once. Note
one-unit permutations are actually the easiest to understand, implement and also
control in comparison to other permutations (Sethi et al., 2001). Also, focusing
on one-unit permutations gives us insight into the behavior of complex permuta-
tions (Drobouchevitch et al., 2004). Hence, this study is restricted to one-unit
permutations. It is also assumed that the empty and occupied machines of each
permutation are specified in advance since this permutation must meet the steady
state cyclic requirement following from Geismar et al. (2005).

Definition 3. Having a one-unit permutation starting with A0, activity Ai is a
pushed (pulled) activity if Ai−1 is completed before (after) it. The pushed (pulled)
activity Ai implies that Mi is empty (occupied) at the starting stage of the one-
unit permutation.

It should be noted Ai−1 is A2 and A3 when i=0 for two- and three-machine
MFRCs. For example, A1, A2 are pushed activities and A3 is pulled activity for
permutation A0, A3, A1, A2 of three-machine case. This means M1,M2 are empty
and M3 is busy before starting it.

4.4 Free pickup Criterion

In essence, the robot with multi-functionality never results in increasing the num-
ber of permutations. Actually, S2

1mf = A0, A1, A2 and S2
2mf = A0, A2, A1 represent

permutations which can be occur for MFRCs with two production machines. Note
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the regions of optimality for both S2
1mf and S2

2mf should be obtained later than
reformulating the cycle time of these permutations. S2

1mf only has pushed ac-
tivities resulting in full stop on M1 and M2. This means that TS2

1mf
is made up

the following independent portions: six load/unload operations, three dextroro-
tary and occupied MFR rotations, and two full waiting. Subsequently, we have
TS2

1mf
= 6ε+

∑2
i=0 βi + P1 + P2.

Regarding S2
2mf , MFR picks up an unprocessed part from I/O and loads it to

M1(2ε+β0). Then, based on the activitys route described above, MFR removes the
previous part from M2 and drops it at I/O after an empty rotation from M1 to M2

and a partial stop on M2(δ+w2 + 2ε+β2). Likewise, the empty MFR comes back
M1, waits on M1, unloads the part, and loads it on M2(δ+w1+2ε+β1), and returns
to I/O(δ). So, TS2

2mf
consists of six load/unload, three empty MFR rotations, three

busy MFR rotations, and two partial stops: w1 = max{0, P1− (2ε+2δ+β2 +w2)}
and w2 = max{0, P2 − (2ε + 2δ + β0)}. Because the summation of stops is equal
to max{0, P1− (2ε+ 2δ+ β2), P2− (2ε+ 2δ+ β0)}, we can conclude that TS2

2mf
=

6ε+ 3δ +
∑2

i=0 βi +max{0, P1 − (2ε+ 2δ + β2), P2 − (2ε+ 2δ + β0)}.

Fig. 4.6. The lower and upper bound of TS2
1mf
≤ TS2

2mf

Figure 4.6 above illustrates the optimality regions of S2
1mf and S2

2mf by apply-
ing their cycle times. Obviously, S2

1mf is optimal when P1 + P2 ≤ 3δ, and S2
2mf is
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optimal in the rest of feasible area. Optimizing three-machine MFRCs are compli-
cated in comparison with two-machine ones because the number of permutations
grows from two to six permutations below:

S3
1mf = A0, A1, A2, A3

S3
2mf = A0, A2, A1, A3

S3
3mf = A0, A1, A3, A2

S3
4mf = A0, A3, A1, A2

S3
5mf = A0, A2, A3, A1

S3
6mf = A0, A3, A2, A1

We name S3
1mf and S3

6mf uphill and downhill permutations, and the rest of per-
mutations rolling hill permutations. For the sake of simplicity, the cycle time of
two the most complex ones, S3

2mf and S3
6mf , are calculated, and then the rest of cy-

cle times are shown in this section. Since S3
2mf = A0, A2, A1, A3, total load/unload

time, empty MFR rotation, busy MFR rotation, and partial waiting times is
8ε+4δ+

∑3
i=0 βi+

∑3
i=0 wi. Clearly, 8ε+4δ+

∑3
i=0 βi is a constant value, whereas

w1, w2, w3 are variable values below: w1 = max{0, P1− (2ε+ 3δ+ β2 +w2)}, w2 =
max{0, P2 − (4ε + 2δ + β0 + β3 + w3)}, w3 = max{0, P3 − (2ε + 3δ + β1 + w1)}.
Each one of waiting times w1, w2, w3 can be zero or nonzero meaning there are
eight subdivisions as follows:

• w1 = 0, w2 = 0, w3 = 0 −→
∑3

i=0 wi = 0

• w1 = 0 −→ w3 = max{0, P3 − (2ε+ 3δ + β1)}
harciiiiiii

∑3
i=0wi = max{0, P2 − (4ε+ 2δ + β0 + β3), P3 − (2ε+ 3δ + β1)}

• w2 = 0 −→ w1 = max{0, P1 − (2ε+ 3δ + β2)}
harciiiiiii

∑3
i=0wi = max{0, P1 − (2ε+ 3δ + β2), P3 − (2ε+ 3δ + β1)}

• w3 = 0 −→ w2 = max{0, P2 − (4ε+ 2δ + β0 + β3)}
harciiiiiii

∑3
i=0wi = max{0, P1 − (2ε+ 3δ + β2), P2 − (4ε+ 2δ + β0 + β3)}

• w1 = 0, w2 = 0 −→
∑3

i=0wi = w3 = max{0, P3 − (2ε+ 3δ + β1)}

• w1 = 0, w3 = 0 −→
∑3

i=0wi = w2 = max{0, P2 − (4ε+ 2δ + β0 + β3)}

• w2 = 0, w3 = 0 −→
∑3

i=0wi = w1 = max{0, P1 − (2ε+ 3δ + β2)}

• w2 6= 0, w3 6= 0, w1 6= 0

It is easy to calculate all combinations, excluding the last one. The sim-
plex method is applied for computation of the last

∑3
i=0 wi. Assuming A =
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P1 − (2ε + 3δ + β2), B = P2 − (4ε + 2δ + β0 + β3), and C = P3 − (2ε + 3δ + β1),
we rewrite w1, w2, and w3 as:

w1 ≥ 0, w1 ≥ P1 − (2ε+ 3δ + β2 + w2) −→ w1 + w2 ≥ A
w2 ≥ 0, w2 ≥ P2 − (4ε+ 2δ + β0 + β3 + w3) −→ w2 + w3 ≥ B
w3 ≥ 0, w3 ≥ P3 − (2ε+ 3δ + β1 + w1) −→ w1 + w3 ≥ C

If s1, s2, s3 were slack variables of these three inequalities, the execution of this
algorithm is as Table 4.1. The algorithm deals with the maximization problem,

whereas our goal is minimizing
∑3

i=0wi. Thus,
∑3

i=0wi = A +
C − A+B

2
=

P1 + P2 + P3

2
− (4ε+ 4δ+

1

2

∑3
i=0 βi) = max{0, P1− (2ε+ 3δ+β2), P2− (4ε+ 2δ+

β0 + β3), P3 − (2ε+ 3δ + β1),
P1 + P2 + P3

2
− (4ε+ 4δ +

1

2

∑3
i=0 βi)}.

Table 4.1: Implementation of the Simplex Algorithm for S3
2mf

w1 w2 w3 s1 s2 s3 Z
1 1 1 0 0 0 0

s1 1 1 0 -1 0 0 A
s2 0 1 1 0 -1 0 B
s3 1 0 1 0 0 -1 C

0 0 1 1 0 0 −A
w1 1 1 0 -1 0 0 A
s2 0 1 1 0 -1 0 B
s3 0 -1 1 1 0 -1 C − A

0 0 1 1 0 0 −A
w1 1 0 -1 -1 1 0 A−B
w2 0 1 1 0 -1 0 B
s3 0 0 2 1 -1 -1 C − A+B

0 0 0 1/2 1/2 1/2 −A− (C − A+B)/2
w1 1 0 0 -1/2 1/2 -1/2 A−B + C − A+B)/2
w2 0 1 0 -1/2 -1/2 1/2 B − C − A+B)/2
w3 0 0 1 1/2 -1/2 -1/2 (C − A+B)/2

Also, S3
6mf is made up four closed loops. Note the corresponding machine is

located in the center of each one of them (See Figure 4.7), and the required time is
4ε+2δ+βi−1+βi+wi−1+wi. Due to overlap between closed-loops, TS3

6mf
= 8ε+8δ+∑3

i=0 βi+w1 +w2 +w3 where w1 = max{0, P1−(4ε+6δ+β2 +β3 +w2 +w3)}, w2 =
max{0, P2− (4ε+ 6δ+β0 +β3 +w3)}, w3 = max{0, P3− (4ε+ 6δ+β0 +β1 +w1)}.
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This means that w1 +w2 +w3 = max{0, P1 − (4ε+ 6δ + β2 + β3), P2 − (4ε+ 6δ +
β0 + β3), P3 − (4ε+ 6δ + β0 + β1)}.

Fig. 4.7. The closed-loop i of three-machine MFRCs

We can conclude that the cycle times of six permutations are:

TS3
1mf

= 8ε+
∑3

i=0 βi+P1+P2+P3 (4.1)

TS3
2mf

= 8ε+4δ+
∑3

i=0 βi+max{0, P1−(2ε+3δ+β2), P2−(4ε+2δ+β0+β3), P3−(2ε+

3δ+β1),
P1 + P2 + P3

2
−(4ε+4δ+

1

2

∑3
i=0 βi)} (4.2)

TS3
3mf

= 8ε+4δ+
∑3

i=0 βi+P1+max{0, P2−(2ε+3δ+β3), P3−(4ε+2δ+β0+β1+P1)}

(4.3)

TS3
4mf

= 8ε+ 4δ +
∑3

i=0 βi + P2 +max{0, P1− (2ε+ 3δ + β3), P3− (2ε+ 3δ + β0)}

(4.4)

TS3
5mf

= 8ε+4δ+
∑3

i=0 βi+P3+max{0, P1−(4ε+2δ+β2+β3+P3, P2−(2ε+3δ+β0)}

(4.5)

TS3
6mf

= 8ε+8δ+
∑3

i=0 βi+max{0, P1−(4ε+6δ+β2+β3), P2−(4ε+6δ+β0+β3), P3−
(4ε+6δ+β0+β1)} (4.6)
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The results about the regions of optimality for six possible permutations are
depicted in Table 4.2. For example, the common region where S3

1mf dominates
all permutations must be obtained to introduce S3

1mf as the optimal permuta-
tion. This common region is the intersection of all possible dominant conditions.
Therefore, S3

6mf is optimal if P1 + P2 + P3 ≤ 4δ as can be seen from Table 4.2.

Giving other example, S3
6mf is optimal if βl−1 + Pl + βl ≥ 4ε + 6δ +

∑3
i=0 βi or

P1 + P2 + P3 ≥ 8ε + 16δ +
∑3

i=0 βi. The reason behind this is that the last part
of Table 4.2 lists the conditions in which S3

6mf dominates any one of another per-

mutations, and the intersection of them equals βl−1 + Pl + βl ≥ 4ε+ 6δ +
∑3

i=0 βi
or P1 + P2 + P3 ≥ 8ε + 16δ +

∑3
i=0 βi. This table gives a practical framework

to use the robots permutation with maximum production rate for two- and three
machine MFRCs with free pickup criterion. This framework makes a meaning-
ful contribution to industrial automation, and assists industry in designing and
developing appropriate MFRCs.
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4.5 No-Wait Pickup Criterion

There is no study which concentrated on MFRCs with no-wait pick up scenario
arising when the part must be immediately unload from the machine when its
process is finished by the machine. This kind MFRC where machines cannot act
as intermediate hoppers is generally called the no-wait MFRC. Since MFR also
does operation on the part in transit, the no-wait restriction is not applicable about
MFRs operation. The reason behind this is that MFR does secondary operations
such as inspection, not primary operations. All secondary operations have same
nature and do not respect to no-wait restriction (Foumani et al., 2014). Finding
an optimal permutation for a MFRC with no-wait pickup criterion is a two-phase
problem where all feasible permutations are determined in the first phase, and
then optimal one is found in the second phase. To make the feasibility condition
more clearly, let us present the following counterexample: For ε = 0.5, δ = 1, P1 =
5, P2 = 3, β0 = 2, β1 = 1, β2 = 2, the cycle S2

2mw is infeasible because MFR cannot
unload a part from M2 as soon as it is processed by M2. In fact, the time taken
for MFR returns to M2 is 5, whereas P2=3.

S2
1mw has no partial waiting; thus, it is always feasible and its cycle time is

TS2
1mw

= 6ε +
∑2

i=0 βi + P1 + P2 regardless of the values of different parameters.
However, S2 has two partial stops on M1 and M2 which maybe cause of infeasibility.
So, S2

2mw is called feasible when both these partial stops satisfy. In fact, MFR must
arrive at M1 and M2 not later than finishing the part processing. This means
P1 ≥ 2ε+ 2δ + β2 and P2 ≥ 2ε+ 2δ + β0 are feasibility conditions of S2

2mw.
As mentioned before, I/O is similar to auxiliary machine which should not

meet the no-wait restriction. So, a strategy for making S2
2mw feasible is that the

part enters the MFRC with a time delay. This release time is indicated by R to
calculate TS2

2mw
. Clearly, the cycle time is TS2

2mw
= R+ 6ε+ 3δ+

∑2
i=0 βi+w1 +w2

where R and w1 + w2 are not constant parts. We have:

w1 = P1−(2ε+2δ+β2+w2) and w2 = P2−(2ε+2δ+β0+R) (4.7)
⇔ w1 +w2 = P1− (2ε+2δ+β2) (4.8)
⇔ R = max{0, P2+β2−(P1+β0)} (4.9)

So, TS2
2mw

is shown by the double-sided function max{4ε + δ + β0 + P1 +
β1, 4ε + δ + β1 + P2 + β2}. After derivation of TS2

1mw
and TS2

2mw
, the performance

of S2
1mw and S2

2mw should be compared to optimize two-machine MFRCs with no-
wait scenario. Since TS2

1mw
> TS2

2mw
, we can conclude that S2

2mw is certainly optimal

if it be feasible. It is only enough to check S2
2mw meets the feasibility conditions

(P12ε+ 2δ + β2 and P22ε+ 2δ + β0).
Optimizing three-machine MFRCs are complicated in comparison with two-

machine ones. This is even more difficult when pickup criterion is no-wait. In
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Table 4.3: Cycle time and feasibility region of cycles with no-wait pickup scenario

Cycle Feasibility conditions Release time (RT) and cycle time (CT)

S3
1mw Always

RT=0

CT=8ε +
∑3

i=0 βi + P1 + P2 + P3

S3
2mw

P1 ≥ 2ε + 3δ + β2 RT=max{0, P2 + 4δ + β1 + β2 − (P1 + P3 + β0 + β3)}
P2 ≥ 4ε + 2δ + β0 + β3

CT=max{4ε +

∑3
i=0 βi + P1 + P2 + P3

2
, 4ε + 2δ + β1 + β2 + P2}P3 ≥ 2ε + 3δ + β1

B + C ≥ A,A + B ≥ C

S3
3mw

P2 ≥ 2ε + 3δ + β3 RT=max{0, P3 + delta + β3 − (P1 + P2 + 2ε + β0 + β1)}
P3 ≥ 4ε+2δ+P1 +β0 +
β1

CT=max{6ε + δ + β0 + β1 + β2 + P1 + P2, 4ε + 2δ + β2 + β3 + P3}

S3
4mw

P1 ≥ 2ε + 3δ + β3 RT=max{0, P3 + β3 − (P1 + β0)}
P3 ≥ 2ε + 3δ + β0 CT=max{6ε + δ + β0 + β1 + β2 + P1 + P2, 6ε + δ + β1 + β2 + β3 + P2 + P3}

S3
5mw

P1−P3 ≥ 4ε+2δ+β2+
β3

RT=max{0, P2 + P3 + 2ε + β2 + β3 − (P1 + P2 + δ + β0)}

P2 ≥ 2ε + 3δ + β0 CT=max{4ε + 2δ + β0 + β1 + P1, 6ε + δ + β1 + β2 + β3 + P2}

S3
6mw

P1 ≥ 4ε + 6δ + β2 + β3 RT=max{0, P2 + β2 − (P1 + β0), P3 + β2 + B3 − (P1 + β0 + β1)}
P2 ≥ 4ε + 6δ + β0 + β3 CT=max{4ε + 2δ + β0 + β1 + P1, 4ε + 2δ + β1 + β2 + P2, 4ε + 2δ + β2 + β3 + P3}P3 ≥ 4ε + 6δ + β0 + β1

fact, it is possible that no overlap exist between three machine operations and four
MFR operations. In other words, every one of machines and MFR is potentially
critical equipment if it shortly processes the part. Initially, we should take problem
feasibility into consideration to better formulate no-wait restriction and estimate
the gain of productivity. The cycle time and feasibility region of six permutations
are listed in Table 4.3. This table indicates that the scheduling problem is never
infeasible because S3

1mw always gives a guarantee of feasibility. For the sake of sim-
plicity, we present the process of cycle time calculation for S3

3mw and S3
4mw here,

to show how we obtained the rest of cycle times and feasibility conditions except
for S3

2mw in Table 4.3. At first glance in S3
3mw, there are two partial waits on M2

and M3. Only these two critical points may make S3
3mw infeasible. Indeed, P2 and

P3 must not be smaller than the time elapses between when the corresponding
machine was loaded and when MFR come back to remove it. Two inequalities
P2 ≥ 2ε + 3δ + β3 and P34ε + 2δ + P1 + β0 + β1 cover the state space of S3

3mw in
keep with A0, A1, A3, A2. Also, TS3

3mw
= R+ 8ε+ 4δ+

∑3
i=0MRPi +P1 +w2 +w3

where w1 and w2 are:

w2 = P2 − (2ε+ 3δ + β3 + w3) and w3 = P3 − (4ε+ 2δ + β0 + β1 + P1 +R)

(4.10)

⇔ w2+w3 = P2−(2ε+3δ+β3) (4.11)

Therefore, R = max{0, P3 + δ + β3 − (P1 + P2 + 2ε + β0 + β1)} and TS3
3mw

=

max{6ε+δ+β0+β1+β2+P1+P2, 4ε+2δ+β2+β3+P3}. Also, S3
4mw = A0, A1, A3, A2

has two partial waits P1 − 2ε+ 3δ + β3 and P3 − 2ε+ 3δ + β0 +R on M1 and M3,
respectively. Since both of these partial waiting must be positive; the intersection
of P1 ≥ 2ε+ 3δ + β3 and P32ε+ 3δ + β0 shows feasible state space of S3

4mw. Also,
the cycle time of S3

4mw is TS3
4mw

= R + 8ε + 4δ +
∑3

i=0 βi + P1 + w1 + w3 where
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w1 + w3 = P1 − (2ε+ 3δ + β3). This result:

R = max{0, P3+β3−(P1+β0)} (4.12)

TS3
4mw

= max{6ε+ δ + β0 + β1 + β2 + P1 + P2, 6ε+ δ + β1 + β2 + β3 + P2 + P3}

(4.13)

S3
2mw is a tough permutation to deal with. Indeed, MFR has three partial stops

in addition to artificial stop R at I/O during execution of this permutation. Note
R can be called w0 or w4. The constant portion of S3

2mw is 8ε + 4δ +
∑3

i=0 βi,
whereas w1 + w2 + w3 + R is the variable portion of it that should be minimized.
w1 + w2 + w3 + R is built up four sub portions w1 = P1 − (2ε + 3δ + β2 + w2) ≥
0, w2 = P2 − (4ε+ 2δ + β0 + β3 +w3 +R) ≥ 0, w3 = P3 − (2ε+ 3δ + β1 +w1) ≥ 0,
and w4 = R ≥ 0. We rewrite this minimization problem as the following formu-
lation reassuming A = P1 − (2ε + 3δ + β2), B = P2 − (4ε + 2δ + β0 + β3), and
C = P3 − (2ε+ 3δ + β1):

Minimize x1+x2+x3 (4.14)
Subject to

x1+x2 ≤ 10 (4.15)
x2+x3 ≤ 8 (4.16)
x1+x3 ≤ 5 (4.17)

Z = w1 + B is an indirect result from (4.16). Thus, it is enough to find min-
imum amount of w1 which is presented in four sub-cases representing the corner
points the feasibility region:

1. w1 = 0
w2 = A ≥ 0
w3 = C ≥ 0
w4 = B − (A+ C) ≥ 0 −→ B ≥ A+ C

2. w1 = A ≥ 0
w2 = 0
w3 = C − A ≥ 0 −→ C ≥ A
w4 = B − (C − A) ≥ 0 −→ A+B ≥ C

3. w1 = C ≥ 0
w2 = A− C ≥ 0 −→ A ≥ C
w3 = 0
w4 = B − (A− C) ≥ 0 −→ B + C ≥ A
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4. w1 = (A+ C −B)/2 −→ A+ C ≥ B
w2 = (B + A− C)/2 −→ A+B ≥ C
w3 = (B + C − A)/2B + C ≥ A
w4 = 0

Let us assume B = A+C is the breakpoint dividing the feasible regions of cor-
ner points 1 and 4. The corner points 1 is feasible for the left side of this breakpoint
(B ≥ A + C), and the amount of w1 = 0 for this corner point is smaller than the
amount for second and third corner points (w1 = A ≥ 0 and w1 = C ≥ 0). On the
other hand, the corner points 4 is feasible for the right side of (B < A+C). Then,
the amount of w1 of the corner point 4 is 0 ≤ w1 ≤ A and 0 ≤ w1 ≤ C if A ≤ C and
C ≤ A. This prove that the amount w1 of the corner point 4 is smaller than both
2 and 3 which are w1 = A and w1 = C. So, the corner points 2 and 3 should be
omitted from the formulation of TS3

2mw
in that one of the corner points 1 or 4 always

dominates both of them and has smaller w1. Note it is impossible to execute S3
2mw

if B +C < A or A+B < C. In fact, B +C = w1 +w2 + 2w3 +w4 ≥ A = w1 +w2

and A+B = w1 + 2w2 +w3 +w4 ≥ C = w1 +w3 with respect to (4.15)-(4.17). We
calculate two possible subcases of R using the original value of A,B, and C. Then,
TS3

2mw
is obtained from the summation of the constant potion 8ε + 4δ +

∑3
i=0 βi

and the variable portion Z = w1 + w2 + w3 + w4 = w1 +B. This result:

R =

{
P2 + 4δ + β1 + β2 − (P1 + P3 + β0 + β3) if B ≥ A+ C=0

0 if B < A+ C=0

TS3
2mw

=

4ε+ 2δ + β1 + β2 + P2 if B ≥ A+ C=0

4ε+

∑3
i=0 βi + P1 + P2 + P3

2
if B < A+ C=0

Considering feasibility condition of S3
2mw, (4.18) and (4.19) are rewritten by

two max terms in the second row of Table 4.3. Now, we need an algorithm to
reach the optimal permutation using the outcome of the Table 4.3. This algorithm
is:
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Search Algorithm: Finding the feasible and optimal permutation.
Input: State information (Machines and MFRs process times, empty
MFR travel time, load/unload time).
for j=1 to 6

if S3
jmw is feasible according to conditions in Table 4.3

then
S ←− S + S3

jmw

end
Initialization of T ∗ =∞
for x=1 to s

if TS3
xmw
≤ T ∗ then

S∗ ←− S3
xmw

T ∗ ←− TS3
xmw

else
S∗ ←− S∗

T ∗ ←− T ∗

end
Output: The optimal permutation S∗ and its cycle time T ∗

As shown above, Search Algorithm is constructed from Table 4.3. The mecha-
nism to reach the optimal permutation in trivial time is defining the set of feasible
permutation s ∈ S, and then finding the optimal permutation S∗ and its cycle time
T ∗ using two For Loops. Anyone of permutations is stopped when an infeasible
activity occurs in its activity route. In brief, it is expected the outcome of this
algorithm be a practical help for robotic cell manufacturers who face difficult task
of forming and scheduling a no-wait MFRC.

4.6 Concluding Remarks

An effective methodology was developed in this study for addressing the issue of
industrial robots’ functionality within a cellular production system. Two and six
feasible permutations are developed for two- and three-machine MFRCs with the
free pickup criterion, and the optimality regions of these permutations and their
formulas are determined. Then, the results are extended to the no-wait pickup
criterion. Through this research it was found there is no unique optimal per-
mutation for MFR movement between different stations with different parameter
inputs. To state the matter differently, it should be noted any one of the per-
mutations has the chance of obtaining optimality considering different values of
ε, δ, P1, P2, P3, γ0, γ1, γ2, γ3. It is enough to check whether it meets the optimal-
ity conditions or not. The scheduling method developed in this research can be
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broadened for multi-unit permutations in future research directions. In addition,
some mathematical formalism such as max-plus algebra can be an important tool
for research in this area to simplify the procedure for determination of cycle times.
In fact, the analysis of all partial waits can be eliminated using max-plus algebra
since synchronization is an inherent property of max-plus algebra systems. Lastly,
reentrant MFRCs where a part visits a machine more than once in its processing
route can be taken into account in future work. In this regard, considering the
feasibility study in addition to the optimality study, we even can consider interval
pickup scenario.
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Chapter 5 is based on the published article Foumani, M., Gunawan,
I., Ibrahim, M.Y., 2014. Scheduling Rotationally Arranged Robotic
Cells Served by a Multi-Function Robot. International Journal of
Production Research, 52(13), 4037 - 4058.

Abstract Automated material handling systems are usually characterized by robotic
cells that result in improvement of the production rate. The main purpose of this
research is to study the scheduling of a rotationally arranged robotic cell with the
multi-function robot (MFR). This special class of industrial robot is able not only
to transfer the part between two adjacent processing stages but also to perform a
special operation in transit. Considering MFR for material handling and opera-
tion, the objective function of the research here is the maximization of production
rate, or equivalently the minimization of the steady-state cycle time for identical
part production. This problem is modeled as a Travelling Salesman Problem (TSP)
to give computational benefits with respect to the existing solution methods. Then,
the lower bound for the cycle time is deduced in order to measure the productivity
gain of two practical production permutations namely uphill and downhill permu-
tations. As a design problem, a preliminary analysis initially identifies the regions
where the productivity gain of a regular Multi-Function Robotic Cell (MFRC) is
more than that of the corresponding Single-Function Robotic Cell (SFRC) for both
small- and large-scale cells. The conclusion shows the suggested topics for future
research.

Note to Practitioners This work targeted the design of a robot cell in terms
of two parameters: the degree of multi-functionality and the size of the system.
This study only consider that the stochastic data are only recorded by the robot in
an independent computer which simplifies that problem. However, it extend the
existing conceptual framework to real-life robotic cells. The framework can cover a
range of real-world applications, such as complex automobile assembly lines.

Keywords Cyclic scheduling, Robotic cell, Multi-function, Rotational arrange-
ment

Classification SRF 1,1,1
l,2,1 |free, additive , deterministic , identical, cyclic|T

Note References are considered at the end of the thesis.



Chapter 5

Scheduling Rotationally Arranged
Robotic Cells Served by a
Multi-Function Robot

5.1 Introduction

Cellular Manufacturing Systems (CMSs) are probably the most popular alternative
for mass production environments. Actually, CMSs are applied with the purpose
of maximizing the production rate in the factory. As a powerful tool for material
handling, industrial robots are being progressively employed in CMSs. A conse-
quential problem is to find a cyclic robot move which increases the production
rate as much as possible and gives the maximum cell output. This problem is
predominantly named Robotic Cell Scheduling Problem (RCSP). Also, it should
be emphasized that one of the most important features of an industrial robot is its
gripper. In addition to material handling, it makes the industrial robot appropri-
ate for a set of tasks such as spot welding, spray painting and inspection. Based
on these operational orientations, RCSP is divided into Single-Function Robotic
Cell (SFRC) and Multi-Function Robotic Cell (MFRC) problems.

Literature concerning with former case assumed that the industrial robot is only
able to perform one of above tasks. More precisely, these studies take into account
the robot has the ability to act as a spot welding-gun, spray painting-gun, gaging
device, and material handling device (MHD) separately. This kind of robot is usu-
ally named Single-Function Robot (SFR). There are a number of studies considering 
SFR tasks separately. For spot welding applications, Zacharia and Aspragathos
(2005) solved the problem of determining the optimum route of a spot-welding
end-effector visiting a number of task points as a variation of Traveling Salesman
Problem (TSP) using Genetic Algorithm (GA). They have implemented the in-
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verse kinematics of a SFR as the model for calculating the cycle time. Following
this study, Givehchi et al. (2011) applied a new assembly planning method to
the sequence optimization in minimizing the cycle time of a real-life robotic spot-
welding problem for a sheet-metal assembly found in automotive industry. This
case study involved the optimization of sequences for assembling a partial cabin of
a vehicle consisting of 9 sheet-metal parts connecting by 134 spot-welding points.
For painting applications, Potkonjak et al. (2000) studied dynamic optimization of
a painting SFR motion. They focused on the minimization of the manufacturing
cost subject to a constraint on painting quality. In their research, it was assumed
that a robotized painting shop needs: (i) the simulation of the painting operation;
(ii) modeling of the quality level; (iii) definition of cost function; (iv) kinematic and
technological parameters of the painting task. Afterwards, Diao et al. (2009) de-
veloped an optimal motion planning for a painting SFR to optimize the sequences
of spray-painting end-effector on a free surface. In this study, nonlinear program-
ming techniques took into account position and orientation of the spray-painting
device to minimize cycle time. They also minimized the thickness variation of the
paint spraying of a specified spatial path. For inspection applications, Wang and
Cannon (1996) explored an automated inspection system interfaced with a SFR
to reduce testing time and storage requirements. Also, Edinbarough et al. (2005)
presented an on-line robotic inspection and monitoring system for identifying ICs
lead defect on PCBs.

There are several works in the literature dealing with MFRC scheduling prob-
lems. A model for determining the cost of replacing a semi-automated SFRC with
a fully-automated MFRC was developed by Geren and Redford (1999). A MFR
with multi-functional capabilities to assemble and inspect PCBs was used in this
fully-automated cell. Bernd et al. (2006) automatized a rework MFRC where a
high-glossed fitting was inspected and polished by a special MFR. A new approach
namely Compound Fabrication was presented by Keating and Oxman (2013) for
robotic manufacturing of large printed foam structures. This approach made real
both multi-functional and multi-material processes by applying a MFR in cell.
MFR performed both printing and milling, and also was able to shift between
manufacturing ways using various grippers. To our best knowledge, it is vital to
develop an effective method to schedule the sequence of a Multi-Function Robot 
(MFR) performing both material handling and an arbitrary operation concurrently
in a rotationally-arranged MFRC. It is obvious that the industrial robot with this
modern ability, which is used in the latter case, may dramatically raise production
rate. Here, the material handling is considered as a fixed duty of MFR due to the
fact that the common application of the industrial robots, which more than other
application investigated extensively in the literature, includes only transferring
of uncompleted parts in CMSs. Actually, this assumption helps the scheduling
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problem to represent realistic conditions.
It is vital to describe how MFRs are incorporated into the design of the real

production environments. First of all, a special kind of gripper namely Grip-
Gage-Go is introduced. Due to the fact that the robot arm with this gripper
accurately measures diameters while part is carried to next machine. It supports
the purpose of reducing floor space requirements, waiting time at a particular
machine, loading/unloading time and finally robot motions in the manufacturing
cell. Actually, this modern gripper integrates measurement systems into parts
handling device, and makes MFR competent to measure the diameter of the part
in transit between any two consecutive machines. More precisely, MFRs are widely
employed in the inspection of automotive products including crankshaft, gears,
engine valves and lifters in transit. Giving an example of the crankshaft production
lines, the measuring heads are integrated into the automation by adding gages
and crankshaft locating features to MFR using in these lines. Figure 5.1 shows an
example of this kind of robot gripper used for measuring the diameter of crankshaft.
Obviously, measuring the diameter of crankshaft is a difficult task on account of
crankshaft’s peculiar geometry and orientation.

Fig. 5.1. The measurement of crankshaft diameters in transit

Secondly, there is a special kind of robot, namely SDA10, which is suitable for
assembly and part transfer in production lines, simultaneously. When fixturing
is costly, this MFR is an economical robotic solution since it can performs an
operation while the part is carried to the next production machine. The above
real-life evidences show the increasing use of MFRCs in the market, particularly for
assembly lines. Subsequently, it is crucial to undertake a comprehensive research
onto effect of this kind cell on production rate.
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A SFRC is normally described by the subsequent framework: this cell consists
a SFR and a group of k machines, namely M1,M2, ...,Mk. A group of k cor-
responding operations, namely O1, O2, ..., Ok, is performed by these k machines.
The processing time of Oi, i = 1, ..., k, equals Pi, i = 1, ..., k, and Mi, i = 1, ..., k,
processes at most one part at any given moment. Since all parts are processed in
the same non-decreasing order of operations, SFRC has the form of a flowshop.
SFR operate with a programmable PC-based control platform which allows manu-
facturers to profit from all the benefits of PC technology. The unlimited space for
the raw material and completed parts are separately available at input hopper (I)
and output hopper (O), which are also named auxiliary machines M0 and Mk+1,
respectively. These two hoppers can be also combined into a joint input/output
hopper (I/O) where both the raw material and completed parts are stored. From
technical point of view, once again, I/O can be called both auxiliary machines
M0 and Mk+1 with the processing time equal to zero. I/O acts like the auxiliary
machine M0 when SFR unloads the part from this hopper, and it acts like Mk+1

when SFR loads the part to this hopper.
There is a significant interaction between cell layout and optimum robot move

sequences (Gultekin et al., 2008). Based on hoppers layout, the in-line and ro-
tational arrangements are two prevailing robotic cell types which are applied in
industry. These two arrangements offer more travel economy for the robot and are
easy to be under control. It should be emphasized that a moveable robot mov-
ing on a rail network is employed for the in-line arrangement, while a stationary
base robot rotating on its axis is used in the rotational arrangement (Foumani and
Jenab, 2013a). To examine these layouts in detail, let us consider that I and O can
be separated or jointed, respectively. For the former, the in-line case, SFR picks
up the raw materials from I, loads them on M1 to be processed, transfers them
through k machines in a similar way and finally drop off the completed parts at O.
However, for the later which is the rotational case, SFR picks up the raw materials
from I/O and again drop off the completed parts at I/O after transferring them
through all k machines. Let us assume that the required time for SFR to travel
from Mi to Mi+1 is δ. Hence, the time required to perform a direct move from
Mi to Mj is |i − j|δ and min{|i − j|, k + 1 − |i − j|}δ for in-line and rotational
arrangements, respectively. Since always |i− j|δ ≥ min{|i− j|, k + 1− |i− j|}δ,
the travel time between any arbitrary machines in the in-line arrangement never
is less than this travel time in the rotational arrangement. As a matter of fact,
the moveable robot has only one option to transfer the part from Mi to Mj in an
in-line arrangement, whilst there are two options available for the stationary base
robot to travel between these two machines in a rotational arrangement and these
two options can potentially reduce the average travel-time.
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Fig. 5.2. SFRCs with in-line and rotational arrangements

In addition to saving a considerable amount of travel-time, increasing the pro-
ductivity and space efciency of the cell, reducing the installation cost of the robot,
increasing the robot programmability are the main reason that manufacturers pre-
fer to use rotationally arranged robotic cells instead of linearly arranged robotic
cells (Yildiz et al., 2012). In this paper particular emphasis is placed on the rota-
tional arrangement because of the remarkable advantages in terms of technology
and its common application in many high-tech industries like semiconductor man-
ufacturing. Figure 5.2 shows SFRCs with in-line and rotational arrangements.

Since the rotational arrangement as layout and MFR as operating device are
considered in this study, the manufacturing cell is both layout- and operation-
oriented. As already mentioned above, only performing operations on machines is
considered in the context of scheduling, whereas we impose an operation-oriented
extension, and consider MFR processes the part in transit between two consecutive
machines. A group of k+ 1 processes, namely RO0, RO1, RO2, , ROk, is performed
by MFR. The processing time of ROi, i = 1, ..., k, equals RPi, i = 0, 1, ..., k. As
a result, a series of 2k+ 1 operations, namely RO0, O1, RO1, O2, RO2, O3, ..., ROk,
indicates the order of 2k + 1 necessary operations that are generally configured
to be performed by MFR and k machines. Figure 5.3 shows such a rotationally-
arranged MFRC.
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Fig. 5.3. The order of operations for a rotationally-arranged MFRC

It is clear that, similar to SFRC, MFRC operates as a flow shop manufacturing
system in that all parts are processed on operating devices, MFR and machines,
in the same order.

5.2 Related Research

Literature witnesses valuable results related to SFRC problems in a cyclic sense.
The first purely analytic research on SFRC scheduling problem were properly
performed by Sethi et al. (1992). The novelty of this study was the introduction of
the optimal one-unit permutation as the overall optimal permutation in the two-
machine SFRCs. For three-machine SFRCs, similar results were also proved by
Crama and de Klundert (1999). However, these results were disproved by Brauner
and Finke (2001) for the four-machine SFRCs. In another work, Levner et al.
(1997) extended this structure for the problem where the number of machines
is arbitrary and the part finished processing by a machine must be handled to
the next machine without delay. Classical SFRC scheduling problems are widely
addressed in Dawande et al. (2005); Brauner (2008).
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Recently, a great deal of attention has been paid to SFRC scheduling problem.
They have predominantly concentrated on the feasibility of following assumptions:
SFRC with CNC machines (Gultekin et al., 2009), SFR with two grippers (Geismar
et al., 2008; Dawande et al., 2010), the stochastic objective function (Shafiei-
Monfared et al., 2009), the bicriteria objective function (Gultekin et al., 2010), the
machine with one-unit input and output hoppers (Drobouchevitch et al., 2010),
multiple SFRs in the manufacturing cell (Che and Chu, 2009; Che et al., 2011a),
SFRC with bounded work-in-process (WIP) level (Che et al., 2011b), SFRC with
time window constrains (Che et al., 2011c), and SFR with temporary buffer (Jolai
et al., 2012; Foumani and Jenab, 2012). Although many exact methods has been
suggested for solving SFRC scheduling problem, the pertaining researches witness
an acute shortage of attention focused on the effects of MFRs on the production
rate. Therefore, it is crucial to understand how MFRs with the capabilities of
performing both material handling and an arbitrary operation can improve the
throughput rate in the context of cyclic production.

The remainder of this research is organized as follows: after giving a general
overview of the robotic cell, the notation and definitions of a cyclic production
are described in Section 5.3. Then, a TSP based structure for MFRC scheduling
problem is developed in Section 5.4. The motivation behind modeling MFRC
scheduling problem as a TSP is that modeling MFRC scheduling problems as a
TSP gives computational benefits due to the existing solution methods (Bagchi
et al., 2006). The lower bound of MFRC and the associated optimal one-unit
permutations are determined in Section 5.5. For the sake of completeness, Section
5.6 is devoted to a comparison between the performance of MFRCs and SFRCs
when the constraint that MFR performs odd-numbered operations is taken into
account. It is necessary to mention that Sections 5.3 and 5.5 are precedent for
section 5.6. In fact, the motivation behind these sections is that the optimal one-
unit permutation, which equals lower bound, must be initially determined based
on predefined notation and definitions, and then obtained results are used for a
comparison between the performance of MFRCs and SFRCs. Eventually, Section
5.7 is dedicated to conclusion and future research direction.

5.3 Problem Notation and Definitions

In MFRC scheduling problem, the major problem is how to determine the sequence
of MFR moves to maximize the production rate. The reason behind this statement
is that MFRC scheduling problem is part of RCSP where determining optimal
sequence of robot movements is the focus of the majority of research (Dawande
et al., 2005). In order to tackle this problem, some important definitions are given.
These definitions assist us in describing MFRCs as much detail as possible and
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establishing the solving approach.
For getting the maximum benefit from MFR under consideration, the general

definitions such as the full waiting and partial waiting are implied. If MFR wholly
waits at Mi, ∀i ∈ {1, 2, ..., k}, to finish the processing after loading a part onto
this machine, Mi is said to have full waiting equals Pi. An alternative way is that,
without stopping at Mi, the empty MFR immediately moves to another occupied
machine after loading a part onto Mi. This kind of waiting is topically known as
partial waiting. In contrary to full waiting, the calculation of partial waiting is
complex. It at most equals Pi minus the time that elapses between the point when
the robot has completed loading Mi and is about to start unloading Mi (Dawande
et al., 2002).

Owing to significant difference between SFRCs and MFRCs, updating the def-
initions belong to pertaining literature is essential. Notice that scheduling the
sequence of MFR movement is not trivial in that potential deadlock exists. Ac-
cordingly, there are many impossible sequences due to the deadlock-related con-
straints. The feasibility constraints of MFR movement are as follow: 1- loading
busy machine by MFR is impossible, 2- loading the machine by empty MFR is
impossible 3- unloading empty machine by MFR is wrong 4- unloading the ma-
chine by busy MFR is wrong. In a nutshell, these four constraints mean that
receiving device (MFR or anyone of machines) and sending device (MFR or any-
one of machines) must be empty and loaded before loading/unloading process,
respectively, in order to prevent potential deadlocks existence. In keeping with
these constrains, a repeatable sequence of robot movement, namely Activity, is
established here. Actually, each permutation is a different combination of MFR
activities which repeats infinitely. Considering ε as the load (or unload) time of
machines by MFR, the definition of a particular MFR activity is presented as fol-
lows:

Definition 1. Under a MFRC being composed of k machines and a MFR per-
forming both material handling and operation in transit, an activity Ai,∀i ∈
{0, 1, 2, ..., k}, is:

1. Empty MFR unloads a part from busy Mi, taking ε.

2. MFR carries this part to Mi+1, taking max{RPi, δ}.

3. Busy MFR loads this part onto empty Mi+1, taking ε.

Obviously, Definition 1 implies that the time elapsed during the execution
of activity Ai is the constant value 2ε + max{RPi, δ}. It should be empha-
sized that SFRC is a subdivision of MFRC when RPi = 0,∀i ∈ {0, 1, 2, ..., k}.
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Accordingly, it looks fair to say that the total time taken by MFRC to pro-
duce a finished part is certainly more than that of SFRC in that the overall
elapsed time of Ai, ,∀i ∈ {0, 1, 2, ..., k}, into MFRC is bigger than it for SFRC,
2ε+max{RPi, δ} ≥ 2ε+ δ. However, MFRC has a great opportunity to improve
the cycle time in comparison with SFRC due to the fact that the number of op-
erational machines is declined if SFRC is swapped with MFRC. For simplicity, we
use MRPi instead of max{RPi, δ} here. A detailed analysis of this challenging
replacement will be done in Section 5.6 for both small- and large-scale cells. The
following definition which is derived from Crama and de Klundert (1999) is appli-
cable to MFRC as well.

Definition 2. Having a MFRC being composed of a MFR and k production ma-
chines, a permutation of n(k + 1) activities in which n finished parts are dropped
at I/O is called an n-unit MFR permutations.

As a matter of fact, n-unit permutations are so named since each activity Ai
occurs n times, and consequently MFR loads and unloads each one of k machines n
times in each implementation. It should be noted that one-unit permutations are
the most important subdivision of n-unit permutations. Therefore, the necessary
framework for RCSP is developed here based on one-unit permutation considera-
tion. For this permutation, each production machine is loaded and unloaded by
MFR once, and one part is completed after each implementation.

It is known that the number of possible one-unit permutation in a simple SFRC
equals k! if all one-unit permutations start with A0 (Sethi et al., 1992). However,
Akturk et al. (2005) showed that this result may no longer be valid when there is
an operational flexibility and new robot move sequences should be developed to
capture the operational flexibility. Therefore, it is needed to find out whether the
number of one-unit permutation in a MFRC also equals k! or whether we need
to find new sequences for a MFRC, as shown in Akturk et al. (2005). Clearly,
similar to Sethi et al. (1992), there are totally k! possible one-unit permutations
in a MFRC since no machine or robot is added to this cell. In fact, the possible
one-unit permutations of SFRCs and SFRCs have one-to-one correspondence re-
lationship with each other. The question naturally arises from this result is that:
Is it possible to use the earlier result on SFRCs to determine the optimal one-unit
permutation of MFRCs? Although both of these cells have same number of possi-
ble one-unit permutations, we cannot apply the obtained result of SFRCs analysis
for MFRCs. The reason behind it is that SFRCs are an especial subcase of MFRCs
where RPi = 0,∀i ∈ {0, 1, 2, ..., k}: therefore, MFRC scheduling problem is much
more complex than SFRC scheduling problem. As a matter of fact, potentially,
the cycle time of every one of k! permutations of a MFRC may change by adding
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at least one arbitrary RPi bigger than δ. To make it more clear, the following
counterexample is illustrated:

Example 1. Considering a ten-machine SFRC with in-line arrangement and fol-
lowing data: ε = 0.5, δ = 1, Pi = 0.5(∀i ∈ {1, 2, ..., 9}) and finally P10 = 50. For
k-machine SFRC with in-line arrangement, Crama and van de Klundert (1997) ad-
dressed the lower bound as max{2(k+1)(ε+δ)+

∑k
i=1min{Pi, δ}, 4(ε+δ)+Pl(s)}.

In this lower bound Pl(s) represents the processing time of Ml which is biggest
processing time in a SFRC. Thus, lower bound of cycle time of aforementioned
ten-machine SFRC, which is balanced for identical products, is 56 time units.
On the other hand, the cycle time of A0, A10, A9, A8, A7, A6, A5, A4, A3, A2, A1

equals max{2(k + 1)ε + 4kδ, 4(ε + δ) + Pl(s)} time units meaning this permu-
tation is optimal for this SFRC. Now, assume the scenario when the raw mate-
rials require an arbitrary operation RO0 before loading them on first machine,
and the robot is able to do this operation during handling materials between I
and M1. The processing time of this operation, which equals RP0 = 40 time
units, is larger than δ and results in converting SFRC into MFRC. Surprisingly,
the cycle time of aforementioned permutation for this new developed MFRC is
max{2(k + 1)ε + (4k − 1)δ + RP0, 4(ε + δ) + Pl(s)} = 90, whereas there is the
cycle A0, A1, A2, A3, A4, A5, A6, A7, A8, A10, A9 with smaller cycle time, max{2(k+
1)ε + 2(k + 3)δ + RP0 +

∑k−2
i=1 Pi, 4(ε + δ) + Pl(s)} = 78. This means the optimal

permutation of the first scenario (SFRC) and the second scenario (MFRC) are
different, and consequently the result of SFRC scheduling problems is not appli-
cable for MFRC scheduling problems. This can be easily extended for rotational
arrangement.

Example 1 clarifies the statement that the result of SFRC problems is not
applicable to MFRC ones, and need more analysis. Also, as mentioned before,
four feasibility constraints must be satisfied to prevent occurrence of impossible
permutations. This means the empty and occupied machines relating to each per-
mutation should be specified in advance. Thus, in keeping with Definition 1 and
2, the definition below is stated to assign the parts to the machines:

Definition 3. Having a MFRC being composed of a MFR and k production ma-
chines, a permutation of n(k + 1) activities in which n finished parts are dropped
at I/O is called an n-unit MFR permutations.

Having a one-unit permutation consisting k+1 activities, Ai,∀i ∈ {0, 1, 2, ..., k},
is called a pushed activity (pulled activity) if Ai−1 is completed before (after) this
activity. The pushed activity (pulled activity) Ai implies Mi is empty (occupied)
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at the starting stage of the one-unit permutation.
It should be emphasized that Ai−1 = Am when i=0. Giving an example, the

type of activities for the one-unit permutation A0, A3, A2, A6, A7, A9, A8, A1, A5, A4

is presented as follows: the activity sets A1, A4, A7, A8 and A2, A3, A5, A6, A9 in-
dicate pushed and pulled activities, respectively. This means that machine sets
M1,M4,M7,M8 and M2,M3,M5,M6,M9 are empty and busy before starting this
cycle. Figure 5.4 shows pushed and pulled activities, and consequently empty and
loaded machines.

Fig. 5.4. The empty and busy machines in the beginning stage of permutation

A0, A3, A2, A6, A7, A9, A8, A1, A5, A4

In Figure 5.4, the sequences orders of pulled activities are underlined, but the
rest of activates, pushed activities, have no underline. Note that white-colored ma-
chines are empty, and gray-colored machines are loaded at the beginning phase.
Now, Let us use the following notation throughout the text:

sj(s) The jth SFR’s permutation after reaching steady state from an empty cell.

sj(m) The jth MFR’s permutation after reaching steady state from an empty cell.

Tsj(s) The per unit cycle time of sj(s).

Tsj(m)
The per unit cycle time of sj(m).

Pl(s) The processing time of Ml which is biggest processing time in a SFRC, Pl(s) ≥
Pi,∀l, i ∈ {1, 2, ..., k}.

Pl(m) The processing time of Ml which dominates the processing times of all the
rest machines in a MFRC as MRPl(m)−1 + Pl(m) + MRPl(m) ≥ MRPi−1 +
Pi +MRPi.
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T s The lower bound of per unit cycle time for k-machine SFRCs.

Tm The lower bound of per unit cycle time for k-machine MFRCs.

Ts→m The lower bound of per unit cycle time for swapping k-machine SFRCs with
dk−1

2
e-machine MFRCs.

POk The operating efficiency of using dk−1
2
e-machine MFRCs in place of k-machine

SFRCs.

wi MFR’s waiting time at Mi (I/O performs the dummy operations with w0 = 0
and wk+1 = 0)

The explanation of why a k-machine SFRC can be only replaced with dk−1
2
e-

machine MFRC is given in more detail in Section 5.6. In a nutshell, the reason
behind this replacement is that the odd-numbered operations performing by MFR
have same nature, whereas the even-numbered operations performing by dk−1

2
e

machines are completely different in nature.
A classification scheme based on the standard scheme of Hall et al. (1997) is

also extended here. The standard scheme is generally divided into three descriptors
E1|E2|E3, where E1 represents the robot and production machines environment, E2

explains processing characteristics, and E3 implies the objective function. Hence,
the extended scheme is employed to specify the MFRC scheduling problem under
discussion as RmfC

O
k |δi = max{RPi, δ}, εi = ε, cyclic − 1|Ct. In the first descrip-

tor, the robotic cell with multi-function robot (Rmf ) and k rotationally arranged
machine (CO

k ) are characterized as RmfC
O
k . The second descriptor implies that

the travel time between any two consecutive machines Mi and Mi+1 is indepen-
dent of their physical positions meaning that the distance between any successive
machines is equal to the constant value δ. However, it is dependent on the type
of operation which is performed by machine Mi since MFR performs a related
operation ROi on part after this operation and during transferring the part from
Mi to Mi+1(δi = max{RPi, δ}). In addition, the loading/unloading time is not
machine dependent (εi = ε), and the permutation only produces a single identical
part (cyclic− 1). The last descriptor also describes that the objective function is
minimization of cycle time.

Before proposing a lower bound for a MFRC’s cycle time, the complexity of the
problem is discussed in the following section when the objective is maximization
of production rate.
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5.4 A Modified TSP-Based Problem Formula-

tion

Since MFRC under consideration in this study produces the identical parts. There-
fore, the study of multiple part-types is outside the scope of this research. First
of all, a brief description of the currently established approaches of analyzing the
complexity of SFRC scheduling problems is presented. Then, a mixed integer
linear programing (MILP) model is developed for MFRC scheduling problems.

An O(m3) dynamic programming model was developed by Crama and van de
Klundert (1997) in order to minimize the one-unit cycle time of a SFRC produc-
ing single part-type. Following interval SFRC structure, Levner and Kats (1998)
found the optimal permutation in O(m3) time. Similarly, Ioachim et al. (2001)
suggest a polynomial-time algorithm with a time complexity of O(qm3) to find the
optimal q-unit permutations. Afterwards, Brauner et al. (2003) demonstrated that
SFRC scheduling problem will be strongly NP-hard if it has symmetrical travel-
times and also the triangle inequality holds. Rajapakshe et al. (2011) proved that
finding an optimal one-unit cycle in a SFRC with a circular layout and an addi-
tive travel-time metric is NP-hard. They develop a polynomial algorithm with a
5/3-approximation to an optimal one-unit cycle. Using a mixed integer linear pro-
gramming model, Gultekin et al. (2009) formulate the flexible SFRC scheduling
problem as a modified TSP which was much more complicated than that classical
TSP.

Topically, G(V,D) is a graph where a TSP of size k cities is presented. V =
{0, 1, 2, ..., k} and D = [dij]V×V indicate the group of nodes and edges of this graph,
respectively. Also, the travel cost of each edge (i, j) is denoted by dij in this V ×V
travel cost matrix. The main aim of this journey is to obtain a Hamiltonian tour
of this graph with the lowest cost. The constraints are that travelling salesman
must pass all nodes and finally returns to the starting city. It is not also allowed
to have any unvisited cities.

It is known that modeling MFRC scheduling problems as a TSP gives com-
putational benefits due to the existing solution methods. Accordingly, a TSP
based structure for MFRC scheduling problem is developed here. Each of the
MFR activities A0, A1, A2, ..., Ak is symbolized by a node V = {0, 1, 2, ..., k} to
be passed. Generally, a sequence of two consecutive activities ..., Ai, Aj, ..., where
∀i, j ∈ {0, 1, 2, ..., k}, has one-to-one correspondence relationship with dij. The
time elapsed between these two activities, namely eij, equals the overall loading,
unloading and travel time which is elapsed after finishing Ai and before finishing
Aj. Accordingly, there are only two cases of permutation of any two activities Ai
and Aj:

1. j = i+1: This means that MFR has a full waiting equal to Pj on Mj. Under
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this condition, MFR wholly waits at Mi+1 to finish the processing, unloads
the part, performs ROi+1 on the part and carries out it to Mi+2 concurrently,
and finally loads the part on Mi+2(Pi+1 + ε+MRPi + 1 + ε). Therefore, we
have:

eij = 2ε+MRPj (5.1)
dij = eij+Pj (5.2)

2. j 6= i + 1: This means that MFR has a partial waiting equal to wj on Mj;
therefore, the empty MFR immediately moves from Mi+1 to Mj, unloads the
part from Mj after a partial waiting, performs ROj on the part and carries
out it to Mj+1, and then loads the part on Mj+1. The elapsed time is:
eij = 2ε+min{|i+1−j|, k+1−|i+1−j|}δ+MRPj (5.3)
dij = eij+wj (5.4)

Based on these two feasible cases, a simplified example of dij for four-machine
MFRC is as follows:

dij =

[
∞ 2ε +MRP1 + P1 2ε + δ +MRP2 + w2 2ε + 2δ +MRP3 + w3 2ε + δ +MRP4 + w4

2ε + 2δ +MRP0 ∞ 2ε +MRP2 + P2 2ε + δ +MRP3 + w3 2ε + 2δ +MRP4 + w4
2ε + 2δ +MRP0 2ε + 2δ +MRP1 + w1 ∞ 2ε +MRP3 + P3 2ε + δ +MRP4 + w4
2ε + δ +MRP0 2ε + 2δ +MRP1 + w1 2ε + 2δ +MRP2 + w2 ∞ 2ε +MRP4 + P4

2ε +MRP0 2ε + δ +MRP1 + w1 2ε + 2δ +MRP2 + w2 2ε + 2δ +MRP3 + w3 ∞

]

The travel cost matrix dij is made up fixed parameters ε, δ, Pi, RPi and variable
parameter wi which make the model more complex than classical TSP. Assuming
ci and cj as the completion times of Ai and Aj, MFRC can be modeled as the
following TSP based formulation:

T ∗ = MinT (5.5)
S.t.
cj ≥ ci + (eij +Pj)xij − (1−xij)M ∀i ∈ {0, 1, 2, ..., k}, j = i+ 1 (5.6)

cj ≥ ci + eijxij + yij − (1− xij)M ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j, j = i+ 1 (5.7)

T ≥ ci+zixi0− (1−xi0)M ∀i ∈ {1, 2, ..., k} (5.8)

yij ≥ wj− (1−xij)M ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j, j = i+1 (5.9)

yij ≤ wj+(1−xij)M ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j, j = i+1 (5.10)
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zi ≤ (i+1)δ ∀i ∈ {1, 2, ..., k} (5.11)

zi ≤ (k−i)δ ∀i ∈ {1, 2, ..., k} (5.12)

wj ≥ Pj−(2(k−1)ε+2kδ+
∑k

f=0,f 6=j−1,f 6=jMRPf ) ∀i ∈ {0, 1, 2, ..., k} (5.13)

yij ≤Mxij ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j, j = i+1 (5.14)∑k
i=1 xij = 1 ∀j ∈ {0, 1, 2, ..., k} (5.15)∑k
i=1 xij = 1 ∀i ∈ {0, 1, 2, ..., k} (5.16)

yij ≥ 0 ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j, j = i + 1
(5.17)

wj ≥ 0 ∀j ∈ {0, 1, 2, ..., k} (5.18)

xij = {0, 1} ∀i, j ∈ {0, 1, 2, ..., k}, i 6= j (5.19)

This MILP model concentrates on minimizing the cycle time (T) so that it
meets Constraints (5.6) to (5.19). The state space in Inequality (5.6) is the same
as described in case a, and consequently results in the full waiting. In fact, this
inequality assure us that the completion time of Aj, j = i + 1, is never less than
the summation of the completion time of Ai(ci), the processing time of Mj(Pj),
the unloading time of Mj, the busy MFR travel time between two consecutive
machines Mj and Mj+1, and loading time of Mj+1(2ε + MRPj). Note that M
is an infinitive number making this inequality redundant if j 6= i + 1. Like-
wise, Inequality (5.7) covers the state space of case b, and gives a guarantee
that the completion time of Aj, j 6= i + 1, is certainly bigger than the summa-
tion of the completion time of Ai(ci), the empty MFR movement from Mi+1 to
Mj(min{|i+1−j|, k+1−|i+1−j|}δ), the partial waiting on Mj(yij), the unloading
time of Mj, the busy MFR travel time between two consecutive machines Mj and
Mj+1, and loading time of Mj+1(2ε+MRPj). yij is specified by Inequalities (5.9),
(5.10), (5.14), and (5.17). This variable is defined in order to show that there is a
waiting time before starting Aj with respect to the previous activity Ai. The first
couple of inequalities are applicable and imply that yij = wj if xij=1. This means
that there is a waiting time equals yij = wj before starting Aj when Ai is the
preceding activity. On the other hand, the last couple are applicable and states
that yij=0 if xij=0. In fact, when Ai does not immediately precede Aj, yij = 0
indicates that the waiting time before starting Aj is not dependent on Ai. On
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the contrary to yij which is activity-dependent, the waiting time of Mj which is

wj = max{0, Pj − (2(k − 1)ε + 2kδ +
∑k

f=0,f 6=j−1,f 6=jMRPf )} is indicated by In-
equalities (5.13) and (5.18). Note that wj only represents the waiting time of Mj

regardless previous activity. This means that wj is independent of the preceding
activity. Due to the fact that the first activity of each one of feasible permutations
is A0, Inequality (5.8) implies that each obtained cycle time cannot be less than
the starting time of the next implementation of this permutation. This time is
totally the summation of the completion time of the final activity (ci), the elapsed
time of the empty MFR movement from Mi+1 to I/O(zi). According to Inequality
(5.11) and (5.12), zi = min{|i+ 1− 0|, k + 1− |i+ 1− 0|}δ = min{i+ 1, k − i}δ.
Equation (5.15) ensures that each activity j must succeed one activity i. Likewise,
Equation (5.16) implies that each activity i must precede one activity j. Equation
(5.19) characterizes xij as the binary variable meaning whether Aj succeeds Ai
without delay or not. This can be described as follows:

xij =

{
1 if Aj immediately succeeds Ai

0 otherwise

The above model is much more complex than the classical TSP. As a result, the
concentration in this paper is on the analysis of two very productive permutations
namely uphill and downhill.

5.5 Lower Bound and Optimal MFR’s Permuta-

tion for MFRCs

In mathematical literature, a lower bound of a set is the element which is less than
or equal to every element of this set. In other words, a set with a lower bound is
occasionally said to be bounded from bellow by a bound if have the lower bound.
Because of the fact that MFRC scheduling problem arises in mass production en-
vironments, this problem is exploit MFR permutations in an optimal way. If the
lower bound of MFR cycle time can be obtained in the first step, it is considerably
easier than to find the optimal permutation in the next step. Consequently, the
theorem below initially represents the lower bounding procedure for MFRC:

Theorem 1. The lower bound of cycle time for RmfC
O
k |δi = δ, εi = ε, cyclic−1|Ct

with the part processing route RO0, O1, RO1, O2, RO2, O3, ..., ROk is:

Tm = max{2(k + 1)ε+
∑k

i=0MRPi
hi +

∑k
i=1 min{Pi, δ}, 4ε+2δ+MRPl(m)−1+Pl(m)+MRPl(m)} (5.20)
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Proof: A one-unit permutation completes one part with the processing route
RO0, O1, RO1, O2, RO2, O3, ..., ROk. Hence, MFR unloads the part from I/O and
k machines once ((k+ 1)ε), and loads it onto k machines and I/O once ((k+ 1)ε),
meaning that overall loading/unloading time of the one-unit permutation is at least
(2(k + 1)ε). The busy MFR has at least a series of k + 1 clockwise transposition.
Since travel time between adjacent location pairs (Mi,Mi+1) is MRPi, elapsed time
by occupied MFR to perform these k + 1 clockwise transposition is

∑m
i=0 MRPi

. Recall that MFR must start unloading a part of either Mi or another machine
after it finished loading a part on Mi. For the first and second cases, full waiting
time at Mi and partial waiting time at another machine are at least Pi and δ,
respectively. The minimum value of these waiting times is the overall waiting time
of Mi, which for all k machines this sum up

∑k
i=1min{Pi, δ}.

The last part of Equation (5.20) implies that the cycle time of any permutations
is at least as big as the time between two successive unloading of each one of
machines. As shown in Figure 5.5, the activities between two successive unloading
of Mi and its time are at least: unloading a part from Mi(ε), carrying the part
to Mi+1(MRPi), loading this part at Mi+1(ε), transferring the empty MFR to
Mi−1(2δ), unloading another part from Mi−1(ε), carrying the part to Mi(MRPi−1),
loading this part at Mi(ε), and finally full waiting at Mi(Pi).

Fig. 5.5. The graph of two successive unloading of Mi

It should be noted that the time elapsed during two successive unloading pro-
cess of the machine with dominant processing time must be considered. Subse-
quently, the last part of Equation (5.20) is 4ε+2δ+MRPl(m)−1 +Pl(m) +MRPl(m).
This completes the proof.

The performance improvement of two MFR permutations, namely uphill and
downhill permutations, is determined here. These two permutations, which jointly
include a remarkable number of feasible solutions, employed in SFRC-related re-
searches due to programmability and practicality. For a MFRC, the sequences of
activities for uphill and downhill permutations are V (m) = (A0, A1, A2, ..., Ak−1, Ak)
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and D(m) = (A0, Ak, Ak−1, ..., A2, A1), respectively. For analyzing the performance
of V (m) and D(m), initially, their cycle time are given:

Lemma 1. The cycle time of the uphill permutation V (m) for a rotationally ar-
ranged MFRC is represented as below:

TΠv(m)
= 2(k+1)ε+

∑k
i=0 MRPi+

∑k
i=1 Pi (5.21)

Proof: The activity’s route of this permutation only consist uphill activities.
Thus, the cycle time is composed of three components: 2(k+1) loading/unloading
operations (2(k + 1)ε), k+1 clockwise busy MFR transpositions (

∑k
i=0 MRPi),

and eventually k full waiting on k corresponding machines (
∑k

i=1 Pi). It should be
emphasized that the empty MFR movement is zero in that there is not any partial
waiting. This completes the proof.

Lemma 2. For a rotationally arranged MFRC, the cycle time of the downhill per-
mutation D(m) where MRPl(m)−1+Pl(m)+MRPl(m) ≥MRPi−1+Pi+MRPi,∀l, i ∈
{1, 2, ..., k} is expressed by

TΠD(m)
= 2(k + 1)(ε+ δ) +

∑k
i=0MRPi

haai +max{0, Pl(m)−2(k−1)ε−2kδ−
∑k

i=0,i 6=l−1,i 6=lMRPi} (5.22)

Proof: On the contrary with the uphill permutation, the activity’s route of
this permutation only consist downhill activities. The cycle time of downhill
permutation is composed of four components. The first component is 2(k + 1)
loading/unloading operations in a similar manner taking 2(k + 1)ε. The sec-
ond component is 2(k + 1) empty movement in that MFR performs 2k empty
movement from Mi+1 to Mi−1, ∀l, i ∈ {1, 2, ..., k} under activity route Ai, Ai−1,
and two empty movement from M1 to Mk under activity route A0, Ak. The
third component is

∑k
i=0MRPi since downhill permutation is a one-unit permu-

tation with k + 1 busy MFR movement. Until this stage, it is apparent that
TΠD(m)

≥ 2(k+ 1)(ε+ δ) +
∑k

i=0 MRPi . The last component is the overall partial
waiting time. It is enough to subtract Pj,∀j ∈ {1, 2, ..., k}, from entire time except
time Mj is unoccupied to calculate partial waiting time on this arbitrary machine.
Mj is empty for 4ε+ 2δ +MRPj−1 +MRPj + wj−1 + wj, which means:

wj = max{0, Pj−2(k−1)ε−2kδ−
∑k

i=0,i 6=j−1,i 6=jMRPi−
∑k

i=1,i 6=j−1,i 6=j wi} (5.23)

It is known that Ml is machine with dominant processing time. Therefore,
wl ≥ wi,∀i ∈ {1, 2, ..., k}, which means that it is enough to only consider the
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waiting time of Ml.

wl = max{0, Pl(m) − 2(k − 1)ε− 2kδ −
∑k

i=0,i 6=l−1,i 6=lMRPi −
∑k

i=1,i 6=l−1,i 6=l wi}

(5.24)

→
∑k

i=1wi = max{0, Pl(m)−2(k−1)ε−2kδ−
∑k

i=0,i 6=l−1,i 6=lMRPi} (5.25)

This completes the proof.

Now, it is possible to show when uphill and downhill permutations can be sep-
arately optimal permutation:

Theorem 2. If Pi ≤ δ, ∀i ∈ {1, 2, ..., k} in a rotationally arranged MFRC, the
optimal permutation is v(m) with uphill activity route.

Proof: If Pi ≤ δ,∀i ∈ {1, 2, ..., k} in Equation (5.20), then 4ε+ 2δ+MRPl(m)−1 +
Pl(m) + MRPl(m) ≤ 4ε + 3δ + MRPl(m)−1 + MRPl(m). Also, it is known that

4ε+3δ+MRPl(m)−1 +MRPl(m) ≤ 2(k+1)ε+
∑k

i=0MRPi+
∑k

i=1min{Pi, δ}, and∑k
i=1min{Pi, δ} =

∑k
i=1 Pi . As a result, Tm = 2(k+1)ε+

∑k
i=0MRPi+

∑k
i=1 Pi =

TΠV (m)
, meaning TΠV (m)

is the optimal permutation when Pi ≤ δ, ∀i ∈ {1, 2, ..., k}
in MFRC. This completes the proof.

Theorem 3. If Pl(m) ≥ 2(k−1)ε+ 2kδ+
∑k

i=0,i 6=l−1,i 6=lMRPi in a rotationally ar-
ranged MFRC, then the optimal permutation is ΠD(m) with downhill activity route.

Proof: For simplicity, considering 2(k− 1)ε+ 2kδ +
∑k

i=0,i 6=l−1,i 6=lMRPi = ζ and

2(k−1)ε+2kδ+
∑k

i=0,i 6=l−1,i 6=lMRPi = η Equation (5.22) is rewritten as Equation
(5.26).

TΠD(m)
=

{
2(k + 1)(ε+ δ) +

∑m
i=0MRPi if Pl(m) ≤ ζ

4ε+ 2δ +MRPl(m)−1 + Pl(m) +MRPl(m) if Pl(m) ≥ η
(5.26)

If Pl(m) ≥ 2(k−1)ε+2kδ+
∑k

i=0,i 6=l−1,i 6=lMRPi in Equation (5.20), one then easily

obtains 2(k+1)ε+
∑k

i=0MRPi+
∑k

i=1min{Pi, δ} ≤ 4ε+2δ+MRPl(m)−1 +Pl(m) +
MRPl(m). As a consequence, Tm = 4ε + 2δ + MRPl(m)−1 + Pl(m) + MRPl(m) =
TΠD(m)

, meaning TΠD(m)
is the optimal permutation under this condition. This

completes the proof.
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5.6 The Comparison of SFRCs and MFRCs

In this section, the performance gaps between different cases of rotationally ar-
ranged SFRCs and MFRCs are generally determined, and consequently a prelimi-
nary analysis identifies the regions where the productivity gain of a regular MFRC
is more than that of the corresponding SFRC. In a general manner, a regular
MFRC originates from a SFRC with the processing route O1, O2, O3, O4, ..., Ok.
More precisely, The odd-numbered operations, O1, O3, ..., Ok, and even-numbered
operations are performed by MFR and d(k−1)/2emachines in the regular MFRCs,
respectively. In the first glance at regular MFRCs, the following questions arise:
Why only the odd-numbered operations must be assigned to MFR? Is not it pos-
sible to assign any operations to MFR? In answer to these questions, it must
be mentioned that the odd-numbered operations have same nature, whereas the
even-numbered operations are completely different in nature. For instance, all
odd-numbered operations can be quality control operation, but even-numbered
operations can be marking, cutting, welding and grinding operations. Therefore,
there is an inspection machine just before and after a processing on one of the
marking, cutting, welding and grinding machines. There are two options to per-
form quality control operations and complete a part under this condition: either
by MFR or by original inspection machines. First case leads to a regular MFRC
where there are fewer machines in manufacturing cell, while the latter one leads
to a SFRC. The number of machine in a regular MFRC is d(k− 1)/2e in that one
inspection machine is removed from between any two machines with different na-
ture which existed in the original manufacturing cell, SFRC. Using a combination
of these two alternatives is not economical. That is, either all of odd-numbered
operations having same nature are performed by MFR or by machines. It is not
possible to have a system where some of odd-numbered operations are performed
by MFR while some others are performed by machines. A regular MFRC given
in Figure 5.6 originating from SFRC presented in Figure 5.2. Despite the fact
that these figures completely look similar, Figure 5.6 represents a MFR perform-
ing processes of M1,M3,M5, ...,M2d(k−1)/2e−1,M2d(k+1)/2e−1. More precisely, same
again, it is vital to complete k operations to finish a part in that these two kinds
manufacturing cells are designed to produce identical parts. The only difference
is that M2,M4,M6, ...,M2d(k−3)/2e,M2d(k−1)/2e are designed to perform d(k − 1)/2e
even-numbered operations and MFR is designed to perform d(k+ 1)/2e remaining
odd-numbered operations in MFRCs. It is apparent that P2d(k+1)/2e−1=0 if Ok is
an even-numbered operation. The reason is that the processing route is in a man-
ner which M2d(k−1)/2e performs the last operation and MFR only transfers finished
part from M2d(k−1)/2e to I/O.

The focus lies here mainly on improvement of real-life manufacturing systems;
thus, the developed framework is based on the problem of scheduling a common
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SFRC, namely the hub SFRC. Similarly, Kubiak et al. (1996); Foumani et al.
(2013c) considered the processing route of each part is a chain of k operations. The
industrial limitations require that the part visit alternate machines with same na-
ture between M2,M4,M6, ...,M2d(k−3)/2e,M2d(k−1)/2e. Accordingly, machines with
same nature are substituted with a MFR here. Also, the applications of the regular
MFRCs exist in many high-tech industries.

Fig. 5.6. MFRC with d(k − 1)2e machines

If ideal conditions hold, a simple three-machine SFRC can be swapped with a
single-machine MFRC. Two following examples distinguish between two different
styles of replacements.

Example 2. A small scale example, a three-machine SFRC, is given here. In this
manufacturing cell, it is possible to replace M1 and M3 with a MFR. Assume, for
example, that three operations O1, O2 and O3 with processing times P1=5, P2=3
and P3=4 are performed to produce a single outgoing part. Also, Assume that
ε=1 and δ=2. Since this rotationally arranged SFRC contains three machines,
there are 3! possible permutations below:

S1(s) = A0, A1, A2, A3

S2(s) = A0, A2, A1, A3

S3(s) = A0, A1, A3, A2

S4(s) = A0, A3, A1, A2

S5(s) = A0, A2, A3, A1

S6(s) = A0, A3, A2, A1

The cycle time of these one-unit permutations are (Sethi et al., 2001).
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TS1s = 8ε+4δ+P1 +P2 +P3 (5.27)

TS2s = max{8ε+8δ, 6ε+4δ+P1, 4ε+4δ+P2, 6ε+4δ+P3, 4ε+2δ+
P1 + P2 + P3

2
} =

24 (5.28)
TS3s = max{8ε+ 8δ+P1, 4ε+ 4δ+P3, 6ε+ 4δ+P1 +P2} = 29 (5.29)
TS4s = max{8ε+ 8δ+P2, 6ε+ 4δ+P2 +P3, 6ε+ 4δ+P1 +P2} = 27 (5.30)
TS5s = max{4ε+ 4δ+P1, 8ε+ 8δ+P3, 6ε+ 4δ+P2 +P3} = 28 (5.31)
TS6s = max{8ε+ 8δ, 8ε+ 12δ, 4ε+ 4δ + P1, 4ε+ 4δ + P2, 4ε+ 4δ + P3} = 32

(5.32)

Employing a MFR instead of M1 and M3, the three-machine SFRC is con-
verted into a single-machine MFRC with the part processing route RO0, O1, RO1.
Notice that processing times of operations RO0, O1, RO1 are RP0 = 5, P1 = 3
and RP1=4, respectively. Clearly, the single-machine MFRC has a permuta-
tion S1(m) = (A0, A1). Hence, this unique permutation consists the sequence be-
low: unloading a part from I/O and loading it to the single machine in MFRC
(ε + MRP0 + ε), waiting for competition of the operation (P1), and eventually
unloading the part from machine and carrying it to I/O(ε + MRP1 + ε). The
cycle time of this permutation is TS1(m)

=16. By decreasing cycle time about eight
units in rotationally arranged MFRC, the productivity gain of MFRC shows 33.3%
improvement, which means using a MFRC instead of a SFRC is economical in this
example.

Example 3. Similar to Example 2, a three-machine SFRC is given. Likewise, the
processing time of O1 and O3 are P1=5 and P3=4. However, the processing time
of O2 is P2=23. Due to 20 unit increase in P2, the cycle time of six possible one-
unit permutations are: TS1(s)

=48, TS2(s)
=35, TS3(s)

=42, TS4(s)
=47, TS5(s)

=41 and
TS6(s)

=35. For replaced MFRC, the cycle time of the unique permutation increases
to TS1(m)

=36. As a result of Example 3, the three-machine SFRC is 0.3% more pro-
ductivity than the single-machine MFRC since TS2(s)

= TS6(s)
= 35 < TS1(m)

= 36,
meaning that applying MFRC for this example is not economical.

The numerical examples 2 and 3 jointly clarify the statement that replacing a
rotationally arranged SFRC with a rotationally arranged MFRC is not always an
attractive production strategy, even for a three-machine SFRC. Consequently, the
productivity gain of using a rotationally arranged MFRC instead of a rotationally
arranged SFRC must be precisely measured. Initially, this analysis is carried out
for small-scale MFRCs due to their efficaciously and extendibility, and then it is
finalized for large-scale ones.
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5.6.1 The Comparison of Small-Scale SFRCs with MFRCs

Many studies concentrated on small-scale SFRCs, especially SFRCs with one, two
and three machines. Even recently, small-scale cases have drawn much more con-
sideration because they are efficacious, easy to control, and extendable to compli-
cated cells (Geismar et al., 2012; Jolai et al., 2012; Zarandi et al., 2013). Further-
more, when the part processing routes in large-scale SFRCs is complicated, one
of the most economic strategies in order to deals with this complexity is breaking
these SFRCs into small-scale clusters. A SFR serves within each one of newly de-
signed clusters which generally consist of one, two or three machines (Chan et al.,
2008).

Table 5.1: SFRCs with one, two, three machines and extracted MFRCs from them

SFRCs with one, two, three machines and extracted MFRCs from anyone of
them are shown in Table 5.1. For a single machine SFRC which is the simplest
possible SFRC, S1(s) = (A0, A1) is the unique permutation. Also, the extracted
MFRC does not have any machines and only consists of a MFR that performs O1

in front of I/O and without any travel. Therefore, we have:
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TS1s = 4ε+2δ+P1 (5.33)
TS1m = 2ε+P1 (5.34)

This means that the use of MFRCs instead of single-machine SFRCs always
reduce cycle time, especially for single-machine SFRCs that have big SFR travel-
times. There are two permutations S1(s) = (A0, A1, A2) and S2(s) = (A0, A2, A1) for
a two-machine rotationally arranged SFRC, and the unique permutation S1(m) =
(A0, A1) for the extracted MFRC. As a result, the cycle time of these permutations
are:

TS1s = 6ε+3δ+P1 +P2 (5.35)
TS2s = 6ε+6δ+max{0, P1−(2ε+3δ), P2−(2ε+3δ)} (5.36)
TS1m = 4ε+δ+max{δ, P1}+P2 (5.37)

Equations (5.35) and (5.37) implies that TS1(m)
< TS1(s)

. However, TS1(m)
>

TS2(s)
if P1 > 2δ, P2 > 2δ and P1 + P2 > 2ε + 5δ. Therefore, the result of

this comparison shows the assumption that the use of MFRCs instead of two-
machine SFRCs improves cycle time is only wrong when P1 > 2δ, P2 > 2δ and
P1 + P2 > 2ε + 5δ. A SFRC with three machines has six possible permutations
as mentioned earlier. The cycle time of them are also shown in Equations (5.27)
to (5.32). It is essential to determine the regions of optimality for anyone of them
in Theorem 4 before comparing these permutations with the permutation of ex-
tracted MFRC.

Theorem 4. For a three-machine rotationally arranged SFRC, the regions of op-
timality of permutations are as follows:

S∗ = S1(s) ↔ P1+P2+P3 ≤ 4δ (5.38)
S∗ = S2(s) ↔ P1 ≤ 2ε + 8δ, P3 ≤ 2ε + 8δ, |P1 − P3| ≤ max{2ε + 4δ, P2}, 4δ <
P1 +P2 +P3 ≤ 8ε+20δ (5.39)
S∗ = S3(s) ↔ P1 ≤ 4δ ≤ P2 + P3, P1 − P3 < −max{2ε+ 4δ, P2}, P1 + P2 ≤ 2ε+ 8δ

(5.40)

S∗ = S5(s) ↔ P3 ≤ 4δ ≤ P1 + P2, P1 − P3 > max{2ε+ 4δ, P2}, P2 + P3 ≤ 2ε+ 8δ

(5.41)

S∗ = S6(s) ↔ P1 > 4δ, P3 > 4δ (5.42)

Proof: Due to the fact that the method of determining the regions of optimality
is similar in each of six permutations, this method is only presented for S1(s) here.
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For simplicity, let maxij be the jthmax term in the ith permutation where the
max terms are arranged as in the formulas given by Equations (5.27) to (5.32).
Giving two simple examples, max11 and max53 are 8ε + 4δ + P1 + P2 + P3 and
6ε+ 4δ + P2 + P3, respectively. Therefore,

max11 ≤ max21 ↔ P1 + P2 + P3 ≤ 4δ possible
max11 ≤ max22 ↔ P2 + P3 ≤ −2ε impossible
max11 ≤ max23 ↔ P1 + P3 ≤ −4ε impossible
max11 ≤ max24 ↔ P1 + P2 ≤ −2ε impossible
max11 ≤ max25 ↔ P1 + P2 + P3 ≤ −(8ε+ 4δ)︸ ︷︷ ︸ impossible

S1(s) ≤ S2s) ↔ P1+P2+P3 ≤ 4δ (5.43)

max11 ≤ max31 ↔ P2 + P3 ≤ 4δ possible
max11 ≤ max32 ↔ P1 + P2 ≤ −4ε impossible
max11 ≤ max33 ↔ P3 ≤ −2ε︸ ︷︷ ︸ impossible

S1(s) ≤ S3(s) ↔ P2+P3 ≤ 4δ (5.44)

max11 ≤ max41 ↔ P1 + P3 ≤ 4δ possible
max11 ≤ max42 ↔ P1 ≤ −2ε impossible
max11 ≤ max43 ↔ P3 ≤ −2ε︸ ︷︷ ︸ impossible

S1(s) ≤ S4(s) ↔ P1+P3 ≤ 4δ (5.45)

max11 ≤ max51 ↔ P2 + P3 ≤ −4ε possible
max11 ≤ max52 ↔ P1 + P2 ≤ 4δ impossible
max11 ≤ max53 ↔ P1 ≤ −2ε︸ ︷︷ ︸ impossible

S1(s) ≤ S5(s) ↔ P1+P2 ≤ 4δ (5.46)

max11 ≤ max61 ↔ P1 + P2 + P3 ≤ 8δ possible
max11 ≤ max62 ↔ P2 + P3 ≤ −4ε impossible
max11 ≤ max63 ↔ P1 + P3 ≤ −4ε impossible
max11 ≤ max64 ↔ P1 + P2 ≤ −4ε︸ ︷︷ ︸ impossible

S1(s) ≤ S6s) ↔ P1+P2+P3 ≤ 8δ (5.47)

The common region where S1(s) dominates all permutations should be obtained in
order to present S1(s) as the optimal permutation. This region is the intersection
of Inequalities (5.43)-(5.47), which is P1 +P2 +P3 ≤ 4δ. This completes the proof.

The above theorem implies hereinafter that S4(s) should be eliminated from
analysis since it has no chance of optimality. Also, it is only possible that S2(s)
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and S6(s) be optimal at the same time. The intuition for the optimality of S1(m in
comparison with the rest of SFRCs permutations which have the chance of opti-
mality is given in Theorem 5.

Theorem 5. The use of MFRCs is better than three-machine SFRCs if one of
conditions below hold:

1. P1 + P2 + P3 ≤ 4δ

2. P1 ≤ 2ε+ 8δ
P3 ≤ 2ε+ 8δ
|P1 − P3| ≤ max{2ε+ 4δ, P2}
4δ < P1 + P2 + P3 ≤ 8ε+ 20δ
max{δ, P1} + P2 + max{δ, P3} ≤ max{4ε + 8δ, 2ε + 4δ + P1, 4δ + P2, 2ε +

4δ + P3,
P1 + P2 + P3 + δ

2
}

3. P1 ≤ 4δ ≤ P2 + P3

P1 − P3 < −max{2ε+ 4δ, P2}
P1 + P2 ≤ 2ε+ 8δ
max{δ, P1}+ P2 + P3 ≤ max{4ε+ 8δ + P1, 2ε+ 4δ + P1 + P2, 4δ + P3}

4. P3 ≤ 4δ ≤ P1 + P2

P1 − P3 > max{2ε+ 4δ, P2}
P2 + P3 ≤ 2ε+ 8δ
P1 + P2 +max{δ, P3} ≤ max{4ε+ 8δ + P3, 2ε+ 4δ + P2 + P3, 4δ + P1}

Proof: With Theorem 4, it is proved that only five permutations S1(s), S2(s), S3(s),
S5(s), and S6(s) can be optimal. Hence, for anyone of these permutations, it is only
necessary to find the intersection of the regions of optimality and the region where
it is dominated by S1(m) (See the following table):

Table 5.2: Intersection of optimality regions of cycles & domination region of S1(m)

Cycle Optimality Dominance Relation of S1(m) resulting from pairwise comparisons Intersect

S1(s) Eq.(5.38) Always Cond.1

S2(s) Eq.(5.39) max{δ, P1}+P2+max{δ, P3} ≤ max{4ε+8δ, 2ε+4δ+P1, 4δ+P2, 2ε+4δ+P3,
P1 + P2 + P3 + δ

2
} Cond.2

S3(s) Eq.(5.40) max{δ, P1} + P2 + P3 ≤ max{4ε + 8δ + P1, 2ε + 4δ + P1 + P2, 4δ + P3} Cond.3

S5(s) Eq.(5.41) P1 + P2 +max{δ, P3} ≤ max{4ε + 8δ + P3, 2ε + 4δ + P2 + P3, 4δ + P1} Cond.4

S6(s) Eq.(5.42) Never No

This completes the proof.
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Our task now is to show that when complicated MFRCs can have better per-
formance in comparison to SFRCs. In the following, we present our intuition for
the optimality of the large-scale MFRCs.

5.6.2 The Comparison of Large-Scale SFRCs with MFRCs

The analysis is carried out in Theorems 7 and 8 where dominant permutations
are considered to be v(m) and D(m), respectively. Prior to that, Theorems 6 which
shows the lower bound of a cycle time when the rotationally arranged SFRC is
substituted with the rotationally arranged MFRC is presented.

Theorem 6. If a rotationally arranged MFRC with d(k− 1)/2e machines is used
instead of a rotationally arranged SFRC with k machines, the lower bound of the
cycle time for the problem RmfC

O
d(k−1)/2e|δi = max{RPi, δ}, εi = ε, cyclic−1|Ct is:

Ts→m = max{2dk + 1

2
eε +

∑d
k + 1

2
e

i=1 max{P2i−1, δ} +
∑d

k − 1

2
e

i=1 min{P2i, δ}, 4ε +

2δ+max
1≤i≤d

k − 1

2
e
{max{P2i−1, δ}+P2i+max{P2i+1, δ}}} (5.48)

Proof: MFR unloads a part from I/O,M2,M4,M6, ...,M2d(k−3)/2e and M2d(k−1)/2e
and loads this part on M2,M4,M6, ...,M2d(k−3)/2e,M2d(k−1)/2e and I/O once, tak-
ing time d(k + 1)/2eε and d(k + 1)/2eε, respectively. This means that the overall
loading/unloading execution time is 2d(k+ 1)/2eε. The number of occupied MFR
transpositions between adjacent even-numbered machines in original system, de-
noting by adjacent location pairs (M2i,M2(i+1)), i=1, d(k − 3)/2e, is equal to
d(k − 3)/2e by decreasing the number of machines to d(k − 1)/2e in MFRC.
In fact, d(k − 3)/2e indicates the number of intermediate odd-numbered pro-
cesses O3, O5, ..., O2d(k−3)/2e−1, O2d(k−1)/2e−1 between these machines in the orig-
inal system. Furthermore, there are two additional occupied MFR transposi-
tions denoting by adjacent location pairs (I/O,M2) and (M2d(k−1)/2e, I/O) for
operations O1 and O2d(k+1)/2e−1. Apparently, the overall occupied MFR travel

time is
∑d(k+1)/2e

i=1 max{P2i−1, δ}. For the first portion of Equation (48), finally,∑d(k−1)/2e
i=1 min{P2i, δ} implies the least full/partial waiting time of all d(k− 1)/2e

even-numbered production machines. For the last portion, the idea of the proof
of the last portion of Equation (5.20) is generalized to d(k− 1)/2e even-numbered
machines in MFRC. Subsequently, the last portion of Equation (5.48) is 4ε+ 2δ+
max1≤i≤d(k−1)/2e{max{P2i−1, δ} + P2i + max{P2i+1, δ}} by decreasing the feasible
area to these d(k − 1))/2e even-numbered machines. This completes the proof.

Theorem 7. A decrease in cycle time results from using a rotationally arranged
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MFRC with d(k − 1)/2e machines instead of a rotationally arranged SFRC with
k machines if Pi ≤ δ,∀i ∈ {1, 2, ..., k}.

Proof: For a rotational arranged SFRC with k machines, it should be recalled that
the uphill permutation v(s) is the combination of k + 1 activity with the following
route: A0, A1, A2, ..., Ak−1, Ak. For a particular Ai,∀i ∈ {0, 1, 2, ..., k}, the time
elapsed during the execution of this activity is the constant value 2ε + δ, which
resulted in the overall execution time 2(k+1)ε+(k+1)δ for k+1 activities. In addi-
tion, the route of activities is composed of k+1 pairs (Ai, Ai+1),∀i ∈ {0, 1, 2, ..., k},
which means k + 1 full waiting on k machines and I/O. The overall waiting time
is
∑k

i=1 Pi since the processing time of I/O is zero. SFR is at the starting position
when it finishes Ak, resulting in no empty SFR movement. Therefore,

TΠV (s)
= 2(k+ 1)ε+ (k+ 1)δ+

∑k
i=1 Pi (5.49)

If all processing times are considerably shorter than for the cell under consid-
eration, Pi ≤ δ,∀i ∈ {1, 2, ..., k}, then ΠV (s) has the least cycle time between
all one-unit permutations of the rotational arranged SFRC with k machines in
that SFRC is a subdivision of MFRC when RPi = 0,∀i ∈ {0, 1, 2, ..., k}. Also,
it is known that the optimal permutation of the rotational arranged MFRC with
d(k − 1)/2e machines is uphill permutation (See Theorem 2). It is enough to
compare the cycle time of ΠV (s) and ΠV (m) for determining productivity gain of
replacement d(k − 1)/2e-machine MFRCs for k-machine SFRCs. Under Equation
(5.21), when there are d(k−1)/2e machines in the rotational arranged MFRC, the
cycle time of the uphill permutation is:

TΠV (m)
= 2dk + 1

2
eε+

∑d
k + 1

2
e

i=1 max{P2i−1, δ}+
∑d

k − 1

2
e

i=1 P2i (5.50)

Recall that the processing time of all odd-numbered operations are considerably
shorter than δ in the original cell, Pi ≤ δ, ∀i ∈ {1, 3, ..., 2d(k + 1)/2e − 1}, and

consequently
∑d(k+1)/2e

i=1 max{P2i−1, δ} = d(k + 1)/2eδ. This means that an alter-
native equation for Equation (5.50) is:

TΠV (m)
= 2dk + 1

2
eε+dk + 1

2
eδ+

∑d
k − 1

2
e

i=1 P2i (5.51)

Similar to Equation (5.49), Equation (5.51) is composed of three components:
loading/unloading times, travel times and full waiting times. It is easy to prove
that each one of these three components in Equation (5.49) are larger in contrast
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with them in Equation (5.51), which means Equation (5.49) is bigger than Equa-
tion (5.51). As a direct result of this proof, when Pi ≤ δ, ∀i ∈ {1, 2, ..., k}, the
productivity benefits of the rotational arranged MFRC with d(k− 1)/2e machines
is substantial in comparison with the rotational arranged SFRC with k machines.
This completes the proof.

Theorem 7 leads to the following question: How much would this swap increase
productivity? A straight answer to this question raises the possibility of reaching
full utilization and maximum ratio of production output from replaced manufac-
turing cell. This analysis is suitable especially when the goal is to determine an
optimal permutation so that other management objectives such as the total man-
ufacturing cost and the number of Work In Process (WIP), etc. are jointly 
taken into account.

Lemma 3. Assume that Pi ≤ δ, ∀i ∈ {1, 2, ..., k}. Then, the lower and up-
per bounds of productivity of employing a rotationally arranged MFRC with
d(k − 1)/2e machines in place of a rotationally arranged SFRC with k machines
can be written as:

1+
2dk

2
eε+ dk

2
eδ

2dk + 1

2
eε+ (dk + 1

2
e+ dk − 1

2
e)δ
≤ POk ≤ 1+

2dk
2
eε+ dk

2
eδ

2dk + 1

2
eε+ dk + 1

2
eδ

(5.52)

Proof: As a direct outcome of Theorem 7, POk is TΠV (s)
/TΠV (m)

when Pi ≤ δ. Con-
sidering Equations (5.49) and (5.50), the operating efficiency of the replacement is:

TΠV (s)

TΠV (m)

=
2(k + 1)ε+ (k + 1)δ +

∑k
i=1 Pi

2dk + 1

2
eε+

∑d
k + 1

2
e

i=1 max{P2i−1, δ}+
∑d

k − 1

2
e

i=1 P2i

harci =
2(k + 1)ε+ (k + 1)δ +

∑k
i=1 Pi

2dk + 1

2
eε+ dk + 1

2
eδ +

∑d
k − 1

2
e

i=1 P2i

(5.53)

For simplicity, Equation (5.53) is revised as:

TΠV (s)

TΠV (m)

=
2(dk

2
e+ dk + 1

2
e)ε+ (dk

2
e+ dk + 1

2
e)δ + (

∑d
k + 1

2
e

i=1 P2i−1 +
∑d

k − 1

2
e

i=1 P2i)

2dk + 1

2
eε+ dk + 1

2
eδ +

∑d
k − 1

2
e

i=1 P2i

99



harci = 1+
2dk

2
eε+ dk

2
eδ +

∑d
k + 1

2
e

i=1 P2i−1

2dk + 1

2
eε+ dk + 1

2
eδ +

∑d
k − 1

2
e

i=1 P2i

(5.54)

Based on Equation (5.54), the least value of productivity, min(TΠV (s)
/TΠV (m)

), and
the most value of productivity, max(TΠV (s)

/TΠV (m)
), are obtained to extract bounds

on the amount of performance improvement of employing a regular MFRC in place
of a SFRC when rotational arrangement is taken into consideration. Apparently,
Equation (5.54) takes its least value if P2i−1 = 0,∀i ∈ {1, 2, ..., d(k + 1)/2e} and
P2i = δ, ∀i ∈ {1, 2, ..., d(k − 1)/2e}:

min(
TΠV (s)

TΠV (m)

) = 1+
2dk

2
eε+ dk

2
eδ

2dk + 1

2
eε+ (dk + 1

2
e+ dk − 1

2
e)δ

(5.55)

Once again, considering Equation (5.54), max(TΠV (s)
/TΠV (m)

) is obtained by P2i−1 =
δ, ∀i ∈ {1, 2, ..., dk/2e} and P2i = 0,∀i ∈ {1, 2, ..., d(k − 1)/2e}:

max(
TΠV (s)

TΠV (m)

) = 1+
2dk

2
eε+ dk

2
eδ

2dk + 1

2
eε+ dk + 1

2
eδ

(5.56)

This completes the proof.

Theorem 8. An increase in cycle time directly results from applying a rotation-
ally arranged MFRC with d(k− 1)/2e machines instead of a rotationally arranged
SFRC with k machines if Pl(s) ≥ 2(k − 1)ε+ (3k − 1)δ.

Proof: This theorem is proved in two phases. In the first phase the optimal per-
mutation for a SFRC with k machines is obtained when Pl(s) ≥ 2(k−1)ε+(3k−1)δ.
Recall that, for a rotational arranged SFRC with k machines, the downhill permu-
tation ΠD(s) is the combination of k + 1 pairs (Ai, Ai−1),∀i ∈ {0, 1, 2, ..., k} which
result in the following route: A0, Ak, Ak−1, ..., A2, A1. Note that i − 1 = k when
i=0. Because all of these k + 1 pairs are similar, it is enough to analyze one of
them and extend the result to all of them. Before performing an arbitrary activity
Ai−1, ∀i ∈ {0, 1, 2, ..., k}, the empty SFR, which already finished Ai returns from
Mi+1 to Mi−1(2δ). Then, SFR performs Ai−1(2ε + δ) after a partial waiting on
Mi−1(wi−1). Therefore,
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TΠD(s)
=

{
2(k + 1)ε+ 3(k + 1)δ if Pl(s) ≤ 2(k − 1)ε+ (3k − 1)δ

Pl(s) + 4ε+ 4δ if Pl(s) ≥ 2(k − 1)ε+ (3k − 1)δ (5.57)

This means that the cycle time is 2(k + 1)ε + 3(k + 1)δ when
∑k

i=1 wi = 0 .

Nevertheless, when
∑k

i=1wi 6= 0, it equals Pl(s) + 4ε + 4δ in that the partial
waiting certainly happens on Ml and covers all other component of cycle time.
Also if Pl(s) ≥ 2(k − 1)ε + (3k − 1)δ, then ΠD(s) has the least cycle time between
all one-unit permutations, Pl(s) + 4ε+ 4δ, since SFRC is generally a subdivision of
MFRC when RPi = 0,∀i ∈ {0, 1, ..., k}.
After finding optimal permutation for SFRC, in the second phase, it is proved
that applying a rotationally arranged MFRC with d(k − 1)/2e machines instead
of aforementioned SFRC with k machines is not a good idea when Pl(s) ≥ 2(k −
1)ε + (3k − 1)δ. Obviously, for this SFRC, the downhill permutation ΠD(s) dom-
inates all possible permutations of MFRC if TΠD(s)

≤ Ts→m. For making it easier
to prove this inequality, it should be emphasized that an arbitrary value c is less
than double-sided function f(x) = max(A,B), if and only if C ≤ A or C ≤ B.
In other words, it is not necessary to prove C is smaller than both arbitrary val-
ues A and B in order to show C ≤ max(A,B). Following this mathematical
concept and considering any given ε, δ, P1, P2, , and Pk, it can be conclude that
TΠD(s)

≤ Ts→m when TΠD(s)
is less than the left or right side of Ts→m. On the other

hand, the cycle time of the optimal permutation ΠD(s) is smaller than Ts→m when

Pl(s) + 4ε+ 4δ ≤ 2d(k+ 1)/2eε+
∑d(k+1)/2e

i=1 max{P2i−1, δ}+
∑d(k−1)/2e

i=1 min{P2i, δ}
or Pl(s)+4ε+4δ ≤ 4ε+2δ+max1≤i≤d(k−1)/2e{max{P2i−1, δ}+P2i+max{P2i+1, δ}}.
For simplicity, the left and right sides of Ts→m and TΠD(s)

are represented as below:

A = 2dk + 1

2
eε+

∑d
k + 1

2
e

i=1 max{P2i−1, δ}+
∑d

k − 1

2
e

i=1 min{P2i, δ}
B = 4ε+ 2δ +max

1≤i≤d
k − 1

2
e
{max{P2i−1, δ}+ P2i +max{P2i+1, δ}}

C = Pl(s) + 4ε+ 4δ

Notice that Pl(s) can be the processing time of odd-numbered or even-numbered
machine in SFRC. This difference is especially important become important when
SFRC is converted to MFRC. For the former case, MFR performs this operation
instead of this machine, whereas this machine remains in MFRC for the latter
case. Therefore, this phase of proof is divided into two sub-cases below:

1. Ml is odd-numbered machine in SFRC: Under this condition, 4ε ≤ 2d(k +

1)/2eε and Pl(s) + 4δ ≤
∑d(k+1)/2e

i=1 max{P2i−1, δ} in that k is not a small
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number. In fact,
∑d(k+1)/2e

i=1 max{P2i−1, δ} is composed of d(k + 1)/2emax
terms. We know that Ml is odd-numbered machine; hence, one of these max
terms is max{Pl(s), δ} = Pl(s), meaning that Pl(s)+4δ ≤ Pl(s)+d(k−1)/2eδ ≤∑d(k+1)/2e

i=1 max{P2i−1, δ}. Therefore, C ≤ A.

2. Ml is even-numbered machine in SFRC: Under this condition, Pl(s) + 2δ ≤
max1≤i≤d(k−1)/2e{max{P2i−1, δ}+ P2i +max{P2i+1, δ}} in that one of d(k −
1)/2e right-sided component of this inequality is max{Pl(s)−1, δ} + Pl(s) +
max{Pl(s)+1, δ}. Subsequently, we have Pl(s) + 2δ ≤ max{Pl(s)−1, δ}+Pl(s) +
max{Pl(s)+1, δ} ≤ max1≤i≤d(k−1)/2e{max{P2i−1, δ} + P2i + max{P2i+1, δ}}.
This means that C ≤ B. Due to the fact that always C ≤ A or C ≤ B,
using a MFRC with d(k−1)/2e machines instead of a SFRC with k machines
is not good idea when Pl(s)2(k − 1)ε+ (3k − 1)δ.

This completes the proof.

Lemma 4. Considering Pl(s) ≥ 2(k− 1)ε+ (3k− 1)δ, the lower and upper bounds
of productivity of employing a rotationally arranged MFRC with d(k− 1)/2e ma-
chines in place of a classical one with k machines is:

Pl(s) + 4ε+ 4δ

2dk + 1

2
eε+ dk + 1

2
ePl(s) + dk − 1

2
eδ
≤ POk ≤ 1 (5.58)

Proof: It is known that ΠD(s) is optimal permutation if Pl(s) ≥ 2(k−1)ε+(3k−1)δ
in SFRC. Also, the optimal cycle time for MFRC can be equal to Equation (5.48)
under the best condition. Therefore, considering Equations (5.48) and (5.57), the
operating efficiency of the replacement (TΠD(s)

/T s→m) is:

Pl(s) + 4ε + 4δ

max{2d
k + 1

2
eε +

∑d k + 1

2
e

i=1 max{P2i−1, δ} +
∑d k − 1

2
e

i=1 min{P2i, δ}, 4ε + 2δ +max{P2i−1, δ} + P2i +max{P2i+1, δ}}

(5.59)

Based on Equation (5.59), the least value of productivity and the most value of pro-
ductivity can be obtained. Equation (5.59) takes its least value if Pi = Pl(s),∀i ∈
{1, 2, ..., k}:

min(
TΠD(s)

T s→m
) =

Pl(s) + 4ε+ 4δ

max{2dk + 1

2
eε+

∑d
k + 1

2
e

i=1 Pl(s) +
∑d

k − 1

2
e

i=1 δ, 4ε+ 2δ + 3Pl(s)}

harci =
Pl(s) + 4ε+ 4δ

2dk + 1

2
eε+ dk + 1

2
ePl(s) + dk − 1

2
eδ

(5.60)
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Also, considering Equation (5.59), max(TΠD(s)
/T s→m) is obtained by 0 ≤ P2i−1 ≤ δ

and P2i = 0, ∀i ∈ {1, 2, ..., k}, excluding Pl(s). Note that T s→m is Pl(s) dependent
under this condition. In other words, T s→m is different for odd-numbered Pl(s) and
even-numbered Pl(s) as follows:

TΠD(s)
=

2dk + 1

2
eε+ dk − 1

2
eδ + Pl(s) if l(s) is odd

Pl(s) + 4ε+ 4δ if l(s) is even (5.61)

Therefore, under the best condition, the denominator of max(TΠD(s)
/T s→m) is

min{2d(k + 1)/2eε+ d(k − 1)/2eδ + Pl(s), Pl(s) + 4ε+ 4δ} = Pl(s) + 4ε+ 4δ which
means that max(TΠD(s)

/T s→m)=1. This completes the proof.

Now, there is an appropriate framework for replacing the different kinds of
SFRCs, small-scale and large-scale, with MFRCs. This framework helps the com-
panies which are enthusiastic about using MFRs in fully automated manufacturing
systems. In other words, using this framework before employing MFRs in the pro-
duction line, they can find out whether this option can increase the productivity
or not? This would assist manufacturers deciding on which type of robotic cell is
better for any one of the part processing routes.

5.7 Concluding Remarks

In this paper, a framework for scheduling an advanced robotic cell namely rotation-
ally arranged MFRC has been developed for the first time. Initially, a TSP-based
model of this problem has been formulated to give computational benefits due
to the existing solution methods of TSP. Then, the lower bound of cycle time
and the cycle time of two practical permutations ΠV (m) and ΠD(m) have been es-
tablished, and some results about optimality for these permutations for a MFRC
have been presented. Due to the fact that small-scale SFRCs play an important
role in productivity improvement and it is possible to break a complicated SFRC
into small-scale SFRCs, a proper evaluation with respect to cycle time between
small-scale SFRCs and MFRCs has been performed. This evaluation has made it
clear how to effectively change one- two- or three-machine SFRCs into a MFRC.
In addition to small-scale SFRCs, the evaluation of large-scale SFRCs have been
performed and resulted that a MFRC improves production rate when permuta-
tion ΠV (s) is optimal. However, the use of MFRCs instead of SFRCs is a wasted
expense when permutation ΠD(m) is optimal. Furthermore, the productivity of us-
ing MFRC against that of SFRC expressed by POk for permutations ΠV and ΠD

in order to establish a practical framework for solving multi-objective scheduling
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problems where other objectives such as cost and idle time are also considered.
The expected future research in this topic is research about scheduling in MFRCs
with features like double-arm MFRs. Also, in place of identical parts, one can
take into account the multiple parts. Finally, computational study of the problem
understudy is also interesting. Some open problems related to the complexity of it
are: 1) What is the complexity of the problem of finding an optimal one-unit cycle
under linear layout with additive travel-times in MFRCs? 2) What is the com-
plexity of the problem of finding an optimal one-unit cycle under circular layout
with additive travel-times in MFRCs? 3) What is the complexity of the problem
of finding an optimal one-unit cycle with constant travel-times in MFRCs?
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Chapter 6 is based on the published article Foumani, M., Gunawan,
I., Smith-Miles, K., 2015. Increasing Throughput for a Class of
Two-Machine Robotic Cells Served by a Multi-Function Robot. IEEE
Transactions on Automation Science and Engineering, PP(99), 1 -
10. DOI: 10.1109/TASE.2015.2504478

Abstract The multi-function robotic cell scheduling problem has been recently
studied in the literature. The main assumption in the pertaining literature is that
a multi-function robot performs an operation on the part during any loaded move
between two adjacent processing stages. For a two-machine cell, these stages are
the input hopper, the first machine, the second machine and the output hopper.
Consequently, the multi-function robot performs three operations with fixed pro-
cessing times. In contrast, we assume a class of two-machine cells where none of
the processing times of three operations are fixed. However, their summation is
fixed and equivalent to the processing time of the unique operation. The processing
mode of the unique operation performed by the multi-function robot is stop resume.
Thus, regardless of the gap interrupts during operations by two machines, the robot
continues performing the unique operation of the part when it is reloaded to the
robot without any loss of time. The focus lies on n-unit cycles due to their popu-
larity. It is proven one-unit cycles have better performance for the problem under
study. The cycle time of one-unit cycles are obtained and optimality conditions
are determined for different pickup criteria: free, interval, and no-wait.

Note to Practitioners Multifunction robotic cells are extensively used in the
inspection of many automotive products including crankshaft, gears and lifters in
transit. Here, some practice scheduling problems addressing multifunction robots
with stop resume processing modes are identified, and then the optimality condi-
tions are determined for these problems. Using the results in this paper, production
managers are able to develop a methodology for scheduling of multifunction robotic
cells bought by their companies.

Classification SRF 1,1,1
2,2,2 |free, additive , deterministic , identical, cyclic|T

Classificationni SRF 1,1,1
2,2,2 |interval, additive , deterministic , identical, cyclic|T

Classificationni SRF 1,1,1
2,2,2 |no-wait, additive , deterministic , identical, cyclic|T

Note References are considered at the end of the thesis.



Chapter 6

Increasing Throughput for a
Class of Two-machine Robotic
Cells Served by a Multi-Function
Robot

6.1 Introduction

High volume production environments are always controlled by cyclic production.
Due to an urgent need for increasing automation in such production environments,
the manufacturer’s preferred option is applying material handling robots of dif-
ferent sizes for almost every industrial process, like semiconductor manufacturing,
automotive production and the aircraft industry (Sun and Wu, 2011; Basile et al.,
2014). Some issues should be taken into account for this option (e.g., part pro-
cessing route, production line design, and robot movement schedule) to increase
efficiency of the production environment. Most commonly, there is no more than
one robot in a production line in the standard setting to avoid collisions. However,
this often causes the robot to be the bottleneck of the production line, especially
if its operations are not scheduled efficiently. As a consequence, the main focus of
this study is on optimizing the sequence of robot activities to increase efficiency
of the automated production line.

A Single-Function Robotic Cell (referred to as SFRC in short) with two tandem
production machines is composed of an input hopper I, a production machineM1, a
production machine M2, an output hopper O, and a Single-Function Robot (SFR).
The robot is called SFR since it only acts as a material handling device in charge of
transferring parts between machines. In such a robotic cell, raw materials are fed to
M1, are processed serially from M1 to M2, and finally come out as completed parts
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from M2. Thus, a SFRC is, in essence, a flow shop with a fixed number of servers
(Geismar et al., 2008). SFRCs are also referred to as cluster tools and extensively
used in semiconductor wafer fabrication (Geismar et al., 2011). Two dedicated
machines which are defined as unit-capacity machines perform operations O1 and
O2 with the associated processing time P1 and P2. Normally, I and O are called
auxiliary machines (M0 and M3) and have zero processing times. Note that two-
machine SFRCs are very flexible and practical due to the fact that they are easily
able to divide a complex multi-process robotic cell into a number of two-machine
robotic cells (Foumani and Jenab, 2013a).

Most studies in the literature analyzed SFRCs based on three types of pickup
criteria: free pickup (the completed part can remain on the machine indefinitely),
interval pickup (the maximum wait that the part can have on the machine is
bounded within an interval), and no-wait pickup (the part waiting on the machine
is not allowed) (Che et al., 2002). The comprehensive reviews of the literature
related to the scheduling of SFRCs under different pickup criteria can be found in
Dawande et al. (2005); Brauner (2008). Also, the extension of studies under these
pickup criteria covers other problems (e.g., radar scheduling (Brauner et al., 2009),
crane scheduling (Zhou and Li, 2012), task allocation of straddle carriers at con-
tainer terminals (Cai et al., 2014) and nozzle selection and component allocation
in surface mounting devices (Torabi et al., 2013)).

For any type of aforementioned pickup criterion, we briefly refer to some in-
teresting SFRC scheduling problems addressed in the recent literature. Regarding
the free pickup criterion, the method in Geismar et al. (2012) considered both
design and scheduling problems for cells with dual-arm SFRs. A comprehensive
approach for two-machine reentrant SFRCs consisting of a SFR with one-unit tem-
porary hopper on the end-effector was presented in Foumani and Jenab (2012).
Zarandi et al. (2013) studied the problem where part processing sequence and
SFR movement schedule depend on setup times. For the interval pickup criterion,
a mixed integer programming model of the SFRC scheduling problem based on
n-unit cycles was presented by Zhou et al. (2012). Then, a branch and bound al-
gorithm in Chui (2014) was proposed for scheduling of SFRCs with multiple part
types in which the processing times of parts vary within their given time windows.
Finally, for the no-wait pickup criterion, a SFRC scheduling problem with multiple
robots was studied in Shabtay et al. (2014) to minimize the makespan and SFR
selection cost.

Recently, specific robot grippers have been developed to improve the perfor-
mance of SFRs. These grippers can perform an additional operation needed before
loading a part to a production machine. An example of these robotic grippers is
a material handling gripper which is equipped with a spot-welding gun. Such a
gripper is added to the end-effector of the robot to perform this activity during
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transferring the part between two machines, avoiding the time wastage if performed
at a particular machine. Also, the robotic gripper is able to inspect the part while
carrying a part to the downstream machine. The robot with this state-of-the-
art gripper integrates the inspection function into the parts transferring function.
Thus, it is known as a Multi-Function Robot (MFR) which can be modelled as
a portable tester machine with unit capacity. We represent the robotic arm of
a MFR inspecting a crankshaft as in Figure 6.1. In this figure, the measuring
heads are integrated into the automation by adding gages and crankshaft locating
features to the robotic arm. This can decrease the extra loading/unloading mo-
tions and wait time required by an independent post-process measuring machine
(in other words, this eliminates the free-standing measuring machine and the floor
space which it occupies).

Fig. 6.1. Measurement of crankshaft diameters in transit

A substantial amount of research into the SFRC scheduling problem has been
directed towards scheduling of the two-machine cells fitted with SFRs. To our
best knowledge, the majority of research in SFRC scheduling is devoted to the two-
machine cases because they are easy to control, and can be extended to complicated
cells as identified by (Lim et al., 2006; Yi et al., 2008). Thus, we focus on the
scheduling of Multi-Function Robotic Cells (referred to as MFRCs in short) with
two machines due to their controllability and effectiveness. The formation of a
MFRC with two tandem machines is quite similar to a SFRC. The only clear
distinction is that MFRCs are always furnished with a MFR, rather than a SFR.
The operational flexibility of a MFR means that it must be in charge of an exclusive
and breakable operation Γ with the associated processing time γ during all inter-
machine transfers of work in-process from I to O as shown in Figure 6.2. In more
detail about any part j, MFR performs the first portion of Γ during the loaded
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move between I and M1. Then, it performs the second portion of during the
loaded move between M1 and M2, and finally it completes the rest of Γ during the
loaded move from M2 to O.

Fig. 6.2. A two-machine multi-function robotic cell

The processing mode of Γ is stop resume, which is especially prevalent among
high-tech industries. This processing mode means that two gaps interrupt the
processing Γ because it is obligatory for any particular part j to be processed
on both M1 and M2. The MFR continues processing Γ on part j as soon as it
is reloaded to MFR without any penalty for resumption or loss in time. Ideally,
this resumable process can be divided into three subsets Γ0j,Γ1j,Γ2j with the
associated processing times γ0j, γ1j, γ2j for any part j (j is an element of the set
of natural numbers, ∀j ∈ N , because of a cyclic behavior). Operation Γij, ∀i ∈
{0, 1, 2}, is processed during traverse of part j between Mi and Mi+1. Also, a
constant value δ shows time taken by MFR to travel between these consecutive
machines, which can be axillary or production machines. This means the time
elapsed during transportation of part j between machines Mi and Mi+1 is the
varying value max{γij, δ}. We refer reader to Xie and Wang (2005); Allaoui et al.
(2006) for a more detail description of the stop resume, or equivalently resumable
processing.

Owing to each one of γij may vary from zero to γ, it can be demonstrated
that MFR considered here has process flexibility as the ability to handle a mixture
of continuous operations. In fact, the related scheduling problem is composed of
determining the best proportions of Γ to be allocated between I,M1,M2 and O as
well as corresponding MFR movement sequence which gives us the optimal cycle
time. In contrast, earlier studies of the MFRC scheduling problem neglected this
assumption and considered Γ as an inflexible operation which was divided into
three fixed subsets (or secondary operations). Let us consider an example to shed
light on the process flexibility of the resumable process Γ.

Example. Similar to the current literature related to MFRCs, as the first alterna-
tive, assume that we have two inflexible operations to be completed by M1 and M2,
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and three inflexible operations to be completed by the MFR. For all parts j, the
associated processing times of these operations are predefined as P1=10, P2=12,
γ0j=7, γ1j=6, γ2j=1 and therefore γ=7+6+1=14. Also, assume loading/unloading
time of the MFR and its empty travel time between two consecutive machines are
ε=1 and δ=5, respectively. As a result, the time taken to complete a part under
the closed loop I −→M1 −→M2 −→ O −→ I is:
6ε+ 3δ + P1 + P2 +max{γ0j, δ}+max{γ1j, δ}+max{γ2j, δ} = 61
where max{γ0j, δ} = max{7, 5},max{γ1j, δ} = max{6, 5} and max{γ2j, δ} =
max{1, 5}. For instance, max{7, 5} is the time taken for the loaded move of MFR
between I and M1. Although MFR takes 5 time unit to move from I to M1,
it must wait for 2 time units in front of M1 to finish Γ0j. Now, as the second
alternative, let us consider that Γ is a resumable process which can be broken
into three flexible subsets with the associated processing times γ0j, γ1j, γ2j where
γ0j + γ1j + γ2j = 14. Subsequently, the allocation of γ0j, γ1j, and γ0j should not
necessarily be predefined. Obviously, in comparison with the inflexible case, the
optimal allocation of γ0j, γ1j, and γ2j is obtained if γ0j and γ1j are decreased by
2 and 1 time units, respectively, and also γ2j is increased by 3 time units. So,
considering the new allocation of γ0j, γ1j, and γ0j, the time taken to complete a
part under the closed loop for this case is:
6ε+ 3δ + P1 + P2 +max{γ0j, δ}+max{γ1j, δ}+max{γ2j, δ} = 58
where max{γ0j, δ} = max{5, 5},max{γ1j, δ} = max{5, 5} and max{γ2j, δ} =
max{4, 5}.This means the time taken to complete the closed loop is decreased by
3 time units, or equivalently the throughput is increased by (3/61)×100 = 4.92%.
This shows that fixing the processing times on the MFR is a considerable hin-
drance restricting the better of the alternatives.

As mentioned before, all studies related to the MFRC scheduling problem follow
the first alternative of the aforementioned example. Therefore, the first (and also
the main) contribution of this study is that it assumes that the resumable process Γ
can be broken into three varying proportions in order to increase the throughput of
the MFRC. Regardless this assumption on the flexibility of the resumable process,
there are some studies associated with the literature on MFRC scheduling problems
under the first alternative. Foumani et al. (2013a) studied the problem for small-
scale MFRCs under the free pickup criterion where there were no need to consider
varying proportions of Γ. Also, Foumani et al. (2015a) provided a set of guideline
notes on feasibility and optimality conditions of the problem with the no-wait
criterion in which proportions of Γ were not varying. Subsequently, the scheduling
problems studied by Foumani et al. (2013a, 2015a) were only simplified to find
the optimal MFR movement sequence, not the best proportions of Γ. Foumani
and Jenab (2013b) extended the results to m-machine MFRCs. They considered
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scheduling of the linearly configured MFRCs with m machines. The suggested
method for the MFRC involved deriving the lower bound of cycle times, and listing
the optimality condition of two specific cycles based on this lower bound. In an
analogous work, Foumani et al. (2014) focused on the scheduling of rotationally
configured MFRCs with m machines, and determined the parameter values for
which two specific cycles are optimal. It should be noted that the number of feasible
cycles for a MFRC with m machines is m!, while researches by Foumani and Jenab
(2013b); Foumani et al. (2014) are not only limited to the resumable process with
fixed subsets but also are restricted to two cycles. In other words, the impact
for the remaining m-2 cycles is analyzed in none of Foumani and Jenab (2013b);
Foumani et al. (2014), and these studies only give some notes regarding large-
scale MFRCs. Thus, it is essential to provide a comprehensive analysis covering
all cycles, especially for MFRCs with two tandem machines. This results in the
second contribution of this study which is to provide a detail analysis of all feasible
cycles.

MFRC with varying proportions of Γ was only presented by Foumani et al.
(2013b). The study was limited to finding the optimal one-unit cycle of MFRC
under the free pickup criterion. In other words, it does not enable full evaluation
of the performance for other categories of MFRs with varying proportions of Γ.
Hence, as the third contribution of this paper, it is necessary to not only give a
framework that analyzes n-unit cycle’s performance for the free pickup criterion,
but also extend the results to two other main pickup criteria; interval and no-wait.

The bulk of this work deals with developing a stepwise procedure to calculate
the cycle time, analyze it, and schedule MFR movements. The essential definitions
are briefly provided in Section 6.2 of this article. In Section 6.3, the cycle time
of two attained one-unit cycles are calculated precisely for cells in which a MFR
interacts with two machines. As a byproduct, it is proved the optimal cycle is one-
unit, and the optimality region of two one-unit cycles is determined in conformity
with the free pickup criterion. Section 6.4 is devoted to interval and no-wait pickup
criteria. The paper is concluded and implications provided in Section 6.5.

6.2 Cyclic Production

For complex systems executing in a cyclic behaviour, the balanced sequence of
MFR movements is referred to as a cyclic schedule and its length of time is typ-
ically known as the cycle time. In each cycle namely n-unit cycle, n parts enter
the two-machine MFRC and n parts leave from MFRC after following a series of
five configured operations Γ0j, O1,Γ1j, O2,Γ2j for the part j,∀j ∈ {0, 1, 2, ..., n}.
The simplest case of n-unit cycles is one-unit cycle where exactly one part such as
j + 1th part enters MFRC and jth part leaves from MFRC after the execution of
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the cycle (Yan et al., 2012). The Πth MFRs one-unit cycle and its cycle time are
characterized by SΠ and TSΠ

, respectively. Note that the throughput rate of the
cell is also the multiplicative inverse of the cycle time. It equals 1/TSΠ

, and shows
the long-term average number of parts dropped at O per unit time. However, the
use of cycle time is more common in practice since it is easier to analyze. In this
stage, it is essential to modify the definitions described in Crama and de Klun-
dert (1999) to gain the full benefit from cyclic solutions. Recalling δ and ε from
the example illustrated in the previous section, the smallest subdivision of MFR
movement, Activity, is defined as follows:

Definition 1. Having a cell in which a MFR interacts with two production
machines, an activity Aij,∀i ∈ {0, 1, 2} and ∀j ∈ N , is:

1. Empty MFR is instructed to unload part j from busy Mi.

2. MFR carries part j to Mi+1.

3. Busy MFR is finally instructed to load part j onto empty Mi+1.

This definition indirectly tells us the total length of time elapsed during the
execution of Aij is 2ε + max{δ, γij}. For the sake of simplicity, max{δ, γij} is la-
belled by βij throughout the remainder of the paper. Also, as stated by Che et al.
(2014), the following constraints are necessary in order to avoid the collision.

Definition 2. A permutation of MFR activities is named a deadlock-free n-unit
cycle if and only if:

1. It is not needed to unload a part from an idle M1 or M2 (between occurrence
of Ai(j−1) and Aij must exactly have one occurrence of A(i−1)j,∀i ∈ {1, 2}
and ∀j ∈ {0, 1, 2, ..., n}).

2. It is not needed to load a part into a busy M1 or M2 (between occurrence of
A(i−1)(j−1) and A(i−1)j must exactly have one occurrence of Ai(j−1),∀i ∈ {1, 2}
and ∀j ∈ {0, 1, 2, ..., n}).

In order to implement this definition in an n-unit cycle, the number of activ-
ities related to unloading each particular machine is exactly n (in other words,∑n

j=1 numAij = n,∀i ∈ {0, 1, 2} when numAij dictates the number of Aij occur-
rences).

Regarding the one-unit cycle, it is supposed that the empty and busy machines
associated with any particular cycle be clarified at the starting point of the cycle.
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It therefore suffices to set activities into two different groups. When A(i−1)j is
implemented before (after) Aij, it tells us that Mi is empty (busy) at the initial
point of the one-unit cycle (only, it should be noticed that A(i−1)j = A2j if i = 0).
We activate all cycles with the activity A0j to achieve a homogeneous procedure.
The definition below is extracted from Yan et al. (2010).

Definition 3. It is supposed that a MFR has full waiting in front of Mi for an
arbitrary part j if MFR entirely waits at Mi to complete the processing after load-
ing the part j onto it. Also if the empty MFR without delay moves to another
occupied machine after loading part j onto Mi, the type of its waiting is referred
to as partial waiting.

Without consideration the type of the waiting at Mi, we show its length of
time by wij for jth part fed to the manufacturing cell.

6.3 Optimal Cycle of Two-Machine MFRCs with

Free Pickup Criterion

We initially study one-unit cycles in this section, and then end up with similar
results for n-unit cases. It is apparent that two one-unit sequences of robot moves
S1 = A0j, A1j, A2j and S2 = A0j, A2(j−1), A1j can be executed for SFRC because of
the fact that i ∈ {0, 1, 2} and it has (3− 1)! permutations of three activities which
start with A0j (Foumani and Jenab, 2013a). Note this number is equal to the
number of ways to arrange three distinct objects around a circle by fixing one of
the objects. Therefore, these two cycles can be rewritten as S1 = A1j, A2j, A0(j+1)

and S2 = A1j, A0(j+1), A2j when their permutations start with A1j.
Similarly, S1 and S2 are extracted from running a cell in which a MFR interacts

with two tandem machines. The intuition behind it is that we can distinguish two
cases SFRC and MFRC base on their characteristics. A SFRC has a strong orienta-
tion toward layout, whereas operational orientation of MFRC’s is more remarkable.
For this obvious reason, swapping a SFR with a MFR is only operation-directed,
and has no influence on given part processing route priority and the cell layout.
So, considering a two-machine MFRC, the number of cycles and MFR’s path for
them are completely similar to them for a SFRC. Nevertheless, the cycle time of
both cyclic solutions S1 and S2 are potentially possible to be changed since MFR
is operation-directed and it must perform a breakable process Γ (with not restart
processing mode) when passes through I, intervening machines, and O.

This segment determines each of the cycle times in conformity with a stepwise
procedure for MFRCs. obviously, it is known δ ≤ βij ≤ γ despite the fact that
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0 ≤ γij ≤ γ. Let us assume that β is the sum of β0j, β1j and β2j. The clear meaning
behind this statement is that β is the total length of time elapsed for performing
operation Γ in transit of part j from I to O. Thus, β is never less than γ which is
the time of performing operation Γ (excluding travel times). Furthermore, γ and
β are data fed into the computer and information sent out from the computer for
the determination of the cycle time. At the beginning, we graphically clarify how
β is affected by γ. The details based on two breakpoints δ and 3δ in Figure 6.3
are given below:

1. γ ≤ 3δ: The output of this case is one of the following two subdivisions:

1.1. γ ≤ δ: It follows immediately from γ0j ≤ δ, γ1j ≤ δ and γ2j ≤ δ that
the best of the consuming time by MFR is β0j ≤ δ, β1j ≤ δ and β2j ≤ δ.
Accordingly, β = 3δ under both best and worst conditions named the
lower bound of β(β) and the upper bound of β(β), respectively.

1.2. δ ≤ γ ≤ 3δ: The best of sub processes of part j are γ0j ≤ δ, γ1j ≤ δ
and γ1j ≤ δ which mean β = 3δ. Moreover, β = γ + 2δ is the worst of
β when an arbitrary γij equals γ and both other γij equal zero.

2. 3δ ≤ γ: β cannot be better than β = γ that occurs if everyone of γij is bigger

than δ. Once again, β = γ + 2δ is the worst of β if an arbitrary γij equals γ
and both other γij equal zero.

Fig. 6.3. Lower and upper bounds for β

The following questions arise in this stage of the work: why δand 3δ are two
breakpoints of β? In answer to this question, it should be noted that β is a con-
stant value when γ ≤ δ, whereas it is an increasing function with respect to γ
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when γ > δ. In an analogous manner, β is a constant value when γ ≤ 3δ, while it
is an increasing function when γ > 3δ. In other words, the gap between the lower
and upper bounds of β only increases when δ < γ ≤ 3δ. Recalling Figure 6.3, we
should proceed to determine the cycle time of cyclic solutions S1 and S2 in lemmas
below.

Lemma 1. Having the free pickup criterion, the time required by MFR, which is
also responsible for a unique operation Γ, to ready itself to perform exactly once
S1 is:

6ε+3δ+max{3δ, γ}+P1+P2 (6.1)

Proof: A0j, A1j, A2j tells us that MFR consumes times 2ε + β0j, 2ε + β1j, and
2ε + β2j in the execution of A0j, A1j, and A2j. β0j + β1j + β2j depend directly on
γ. It follows from the best condition in Figure 6.3 that β0j + β1j + β2j = β = 3δ if
γ ≤ 3δ. Making an additional point to that, β0j + β1j + β2j = β = γ when γ ≥ 3δ.
We also know that MFR returns to I for starting the next repetition of S1 imme-
diately after completing A2j, and MFR consumes 3δ for this action. Finally, the
increasing nature of the activities’ permutation results in two full waits w1l = P1

and w2l = P2 at M1 and M2, respectively, and at most one part is processing in the
cell from star to end state (S1 is independent of part allocation type). Accordingly,
Equation(6.1) is proved.

Lemma 2. TS2 for a two-machine MFRC dealing with a unique operation Γ on
MFR is expressed as below:

TS2 = 4ε+4δ+max{2ε+4δ, 2ε+δ+γ, P1, P2,
P1 + P2 + γ − 3δ

2
} (6.2)

Proof: The following are steps of calculating TS2 : The cycle is initialized with
a state in which M2 is loaded, M1 is empty, and the clock is set to zero. Note
that TS2 depends solely on part allocation type. The intuition behind it is that a
part is loaded on M2 when MFR picks up a part from I. Following that, the cycle
time for an arbitrary part l is determined, and then this structure is extended for
achieving TS2 . For part l, the starting state of A0l, A2(l−1), A1l tells us MFR is
removing the part l from I, machine M1 is empty, and M2 is processing the part
l − 1.
MFR consumes times 2ε+ β0l, 2ε+ β2(l−1), and 2ε+ β1l in the implementation of
A0l, A2(l−1), and A1l, respectively. Also, we add empty MFR movements and wait-
ing times to them to calculate TS2 . It is known that MFR moves with holding no
part only before executing A0l (from M2 to I with elapsed time of 2δ), A2(l−1) (from
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M1 to M2 with elapsed time of δ), and A1l (from O to M1 with elapsed time of 2δ).
Till now, the sum of elapsed times is 6ε+5δ+β0l+β2(l−1) +β1l. Assuming N as an
unlimited number of finished parts, the long-run value of this sum equals 6Nε +
5Nδ+

∑N
j=1(β0j+β2(j−1) +β1j). The sum is for cyclic behavior of N finished parts;

Thus, the per-unit time is limN→∞
6Nε+ 5Nδ +

∑N
j=1(β0j + β2(j−1) + β1j)

N
= 6ε+

5δ + β. We know that MFR is instructed to have two partial waiting depending
exclusively on the assigned part. The first one is MFR waiting time at the top of
M2 for the part l − 1, and the second one is MFR waiting time at M1 for part l.
So, w1l, w2(l−1) are:

w1l = max{0, P1 − (2ε+ 3δ + β2(l−1) + w2(l−1))}
w2(l−1) = max{0, P2 − (2ε+ 3δ + β0l)}
w1l + w2(l−1) = max{0, P1 − (2ε+ 3δ + β2(l−1)), P2 − (2ε+ 3δ + β0l)}

It follows from the sum of waits that
∑N

j=1

∑2
i=1wij =

∑N
j=1max{0, P1 − (2ε +

3δ + β2(j−1)), P2 − (2ε + 3δ + β0j)} for N iteration of S2. This value is the wait-
ing time required for processing N parts; therefore, the per-unit waiting time is∑N

j=1

∑2
i=1wij

N
. Apparently, adding 6ε+ 5δ + β to this value leads to:

TS2 = 6ε+5δ+β+
1

N

∑N
j=1

∑2
i=1 wij (6.3)

Equation (6.3) is broken onto the following stepwise analysis:

1. P1 ≤ 2ε+4δ, P2 ≤ 2ε+4δ: The output of this subcase is
1

N

∑N
j=1

∑2
i=1wij = 0

and consequently TS2 = 6ε+5δ+max{3δ, γ} by adapting the proof of Lemma
1 and Figure 6.3.

2. P1 > 2ε + 4δ, P2 ≤ 2ε + 4δ: It is supposed that the impact of γ on TS2 be
taken into account; thus, the analysis for this subcase brunched into three
sub-cases below:

2.1. γ ≤ 3δ: the best proportions of secondary MFR processes are γ0j ≤
δ, γ1j ≤ δ, γ2j ≤ δ. So, β = β = 3δ, and we can conclude TS2 =

6ε+ 8δ +
1

N

∑N
j=1max{0, P1 − (2ε+ 4δ)} = 4ε+ 4δ + P1.

2.2. 3δ ≤ γ ≤ P1−2ε−δ: It can be stated that the best shares of secondary
MFR processes are γ0j = δ, γ1j = δ, γ2j = γ − 2δ to meet β. Thus,
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β = β = γ and TS2 = 6ε+ 5δ+ γ+
1

N

∑N
j=1max{0, P1− (2ε+ 3δ+ γ−

2δ)} = 4ε+ 4δ + P1.

2.3. P1 − 2ε − δ ≤ γ: the best of β is accomplished by γ0j = δ, γ1j =
δ, γ2j = γ − 2δ. Furthermore, it is evident TS2 = 6ε + 5δ + γ +
1

N

∑N
j=1max{0, P1 − (2ε + 3δ + γ − 2δ)} = 6ε + 5δ + γ because P1 ≤

2ε+ δ + γ.

3. P1 ≤ 2ε+4δ, P2 ≥ 2ε+4δ: the result of case 2 and 3 are similar if we interchange
P1 and P2.

4. P1 > 2ε+ 4δ, P2 > 2ε+ 4δ: This is the most complex step of the analysis where
P1 and P2 are both bigger than 2ε+ 4δ.

4.1. γ ≤ 3δ: apparently, TS2 = 6ε+8δ+
1

N

∑N
j=1max{0, P1−(2ε+4δ), P2−

(2ε+ 4δ)} = 4ε+ 4δ +max{P1, P2} for this subcase.

4.2. γ > 3δ and P1 − P2 > γ − 3δ: A new technique is devised to carry
out this sub case. In this technique, the analysis is based on P1 − P2

instead of P1 and P2 separately in order to overcome limitations. γ0j =
δ, γ1j = δ, γ2j = γ − 2δ are extracted for secondary operations to meet

β = β = γ and then TS2 = 6ε + 5δ + γ +
1

N

∑N
j=1 max{0, P1 − (2ε +

3δ + γ − 2δ), P2 − (2ε+ 4δ)} = 4ε+ 4δ + P1.

4.3. γ > 3δ and P1 − P2 < −(γ − 3δ): the solution of this situation is
same as 4.2. Actually, it suffices to interchange P1 and P2 to have
TS2 = 4ε+ 4δ + P2.

4.4. γ > 3δ and −(γ−3δ) ≤ P1−P2 ≤ γ−3δ: First of all, we must mention
that γ1j at most equals δ. The reason behind it is that γ1j does not
include in neither P1 − (2ε + 3δ + β2(j−1)) nor P2 − (2ε + 3δ + β0j).
Notice these values show both sides of waiting time of part j in Equa-
tion (6.3). Nevertheless, γ0j and γ2j are bigger than δ. It is essen-
tial to keep a balance between γ0j and γ2j based on P1 − P2. Thus,
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(6.4) where 2ε+ 4δ = ω for simplicity:

TS2 =



6ε+ 5δ +max{3δ, γ} if P1 ≤ ω, P2 ≤ ω

4ε+ δ +max{ω + γ, P1} if P1 > ω,P2 ≤ ω

4ε+ δ +max{ω + γ, P2} if P1 ≤ ω, P2 > ω (6.4)

4ε+ 4δ +max{P1, P2} if P1, P2 > ω, |P1 − P2| > γ − 3δ

4ε+
5δ + γ + P1 + P2

2
if P1, P2 > ω, |P1 − P2| ≤ γ − 3δ

The united formulation of Equation (6.4) represents Equation (6.2).

Let us now deviate from the cycle time calculations towards the impact of 
input data on the regions of optimality. It also follows that the region of opti-
mality for S1 and S2 should be determined independently because either one of 
them have a chance to dominate the other one according to the input data. To 
explain this more apparently, let us give an example of a MFRC with input data: P1 
= 5, P2 = 10, ε = 1, δ = 4, and γ = 15. The Gantt chart in Figure 6.4a shows the 
sequence of activities when γ is equally shared between γ0j , γ1j and γ2j (thus, TS1 > 
TS2 ). 

Further, the Gantt chart in Figure 6.4b conveniently characterizes the 
sequence of activities when P1 and P2 change into 2 and 4 (thus, TS1 < TS2 ). 
This example yields the following question: which one of S1 and S2 has better 
performance for any given parameters? A correct answer to this question raises 
the possibility of gaining full productivity.
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It follows immediately that this stepwise analysis can be summed up in Equation

γ0j = δ +
γ − 3δ

2
− P1 − P2

2
, γ2j = δ +

2
+

γ − 3δ P1 − P2

2
, and also

TS2 = 6ε+5δ+γ+
1

N

∑N
j=1max{0, P1−(2ε+4δ+

γ − 3δ + P1 − P2

2
), P2−

(2ε+ 4δ +
γ − 3δ − P1 + P2

2
)} = 4ε+

5δ + γ + P1 + P2

2
.



Fig. 6.4a (Top). Gantt chart of TS1 and TS2 when ε = 1, δ = 4, P1 = 5, P2 = 10, γ = 15.

Figure 6.4b (Down). Gantt chart of TS1 and TS2 when

ε = 1, δ = 4, P1 = 2, P2 = 4, γ = 15

Theorem 1. A MFRC with two dedicated machines as well as free pickup criterion
reaches full utilization by implementation of S1 only if P1 +P2 ≤ 2δ. Further, S2 is
the best between all one-unit cycles of MFRC under the assumption P1 +P2 > 2δ.
Proof: We can rewrite Equation (6.1) as:

TS1 = 4ε+4δ+max{2ε+2δ+P1+P2, 2ε−δ+γ+P1+P2} (6.5)

It is supposed that maxΠ,j characterizes the jth max term in the Πth cycle where
the max terms are arranged as in the formulae for TSΠ

given by Equations (6.2)
and (6.5). As instance of this kind formulating, max2,5 is (P1 + P2 + γ − 3δ)/2.
Furthermore, the maximum max term between all max terms of the cyclic solution
SΠ is characterized by max∗Π. The cycle S1 have no chance of being optimal
when max∗2 equals any one of max2,3,max2,4, or max2,5 by reason of max1,1 >
max2,3,max1,1 > max2,4 and max1,2 > max2,5. Nevertheless, S1 may be optimal
when max∗2 equals any one of max2,1 or max2,2.
When max2,1 is the maximum max term of S2, it essentially guarantees the correct-
ness of max∗2 = max2,1. This condition is γ ≤ 3δ, P1 ≤ 2ε+ 4δ, and P2 ≤ 2ε+ 4δ.
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It is also known max∗1 = max1,1 under this condition, and max∗1 ≤ max∗2 if
and only if P1 + P2 ≤ 2δ. It is supposed that max∗2 = max2,2 occurs only if
3δ < γ, P1 < 2ε+ δ+ γ, P2 < 2ε+ δ+ γ, as well as P1 +P2 < 4ε+ 5δ+ γ. Finally,
it is apparent that max∗1 = max1,2 under this condition, and max∗1 ≤ max∗2 when
P1 +P2 ≤ 2δ. Accordingly, the common region is the intersection of all conditions
(P1 + P2 ≤ 2δ).

Corollary 1. It is instructive to mention that M1 and M2 act exactly like two
intermediate hoppers if there is not any operations for both machines (P1 = 0 and
P2 = 0). In other words, a MFRC with two tandem production machines is con-
verted into a MFRC with two intervening hoppers and no production machines.
The optimality of the cycle S1 in all regions results from Theorem 1 for this case.
It therefore follows that MFR must perform Γ without interruption during transit
of the part from I to O.

Corollary 2. When the layout of the cell is in a way that the distance between
dedicated machines and hoppers is negligible (δ ≈ 0), MFR acts exactly like a
single setup server which setups at most one machine at a given moment. These
setup operations are performed exactly before starting an operation on the pro-
duction machine and without delay. Furthermore, all of them are separable from
the operation of machines, and are processed by a MFR. The optimality of S2 in
all regions results from Theorem 1 for this case. Note these kind robotized shops
are common in industries such as CD production lines (Lim et al., 2006).

Theorem 1 tells us that it suffices to take into consideration the sum of process-
ing time on machines to optimize the productivity of a MFRC with two tandem
machines. The intuitive description behind this is also remarkable: MFR must
fully wait in front of both machines and do not leave them before completing their
processes when both processing times can be disregarded in comparison with δ
(this is correct for S1). Nevertheless, MFR is kept in standby in front of every one
of machines if their processes take a long time and S1 is selected for production
planning. This means it is better to shift from S1 to S2 to have a better perfor-
mance. Another secondary result of this theorem is that MFR’s operation has no
influence on the optimal cycle selection. Actually, Theorem 1 indirectly states the
optimal one-unit cyclic solution of a MFRC scheduling problem depends solely
on P1, P2, δ, and proves the outcomes of SFRCs are valid for MFRCs. Now, we
analyze n-unit MFR move cycles for a cell with resumable processing regime and
free pickup criterion.

Theorem 2. The cycle time of no n-unit MFR move cycle is less than the cycle
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time of both S1 and S2.

Proof: We initially show that any n-unit cycle is a convex combination of S1 and
S2 in order to be deadlock-free. It is known that an n-unit MFR move cycle is
the steady state cycle in which exactly n parts are completed and each activity
exactly n times is implemented. Giving an example, M2 should be loaded n times
considering activities A1j, ∀j ∈ {1, 2, ..., n}. Considering feasibility constraints,
Definition 2, A1j, ∀j ∈ {1, 2, ..., n} are only activities that a choice between having
a full waiting on M2 or moving to I for a partial waiting exists after their im-
plementations. The former case is followed by the activities A2j and A0(j+1) and
results in S1, whereas the latter one is followed by A0(j+1) and A2j and results in
S2 as shown in Figure 6.5.
Let us assume TSn is the total cycle time of an arbitrary n-unit MFR cycle to com-
plete n parts. As seen in Figure 6.5, this cycle is a combination of k repetitions of
S1 and n− k repetitions of S2, and its cycle time is TSn = k(TS1) + (n− k)(TS2).
As the average (per unit) cycle time to complete one part with this MFR cycle is
TSn/n, the per-unit cycle time of Sn cannot be less than min{TS1 , TS2}.

Fig. 6.5. Transition graph of 2n possible cases to construct an n-unit cycle.

One of the pioneering studies initiating the two-machine SFRC in scheduling
is by Sethi et al. (1992). Theorem 2 actually proves that the conjecture of Sethi
et al. (1992), the optimal cycle of a SFRC is certainly one-unit, holds even if the
cell is equipped with a MFR. In other words, an n-unit MFR move cycle must be
decomposed into n sequences of S1 and S2 and its cycle time is the sum of the cycle
times of the sub-cycles composing it. As a result of this theorem, the problem of
finding the optimal n-unit MFR move cycle is simply reducible to the problem of
finding the optimal one-unit MFR move cycle when the pickup criterion is free.
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6.4 Analysis of the Interval and No-Wait Pickup

Criteria

We start this section with reducing our MFRC scheduling problem to a problem
where pickup criterion is interval and then propose a theorem for demonstrating
the optimality region of all cycles. Before proceeding with this theorem, let us
present a comprehensive definition of the interval pickup criterion. Due to the
nature of production lines in some industries like steel, chemical and plastic man-
ufacturing where the part should keep a constant temperature after finishing its
operation on a particular machine Mi, the processing time at Mi is predominantly
bounded within a pre-defined time interval (Paul et al., 2007). In other words, the
maximum wait that any part j can have on Mi is P i, and the part will be scrapped
if its waiting time on Mi, which is wij, be bigger than P i. Due to the fact that
parts are usually expensive, it is more economical to find a cycle that imposes all
limitations rather than scrap them.

Theorem 3. Whenever P1 + P2 > 2δ, P1 + P 1 ≥ 2ε + 3δ + β2j and P2 + P 2 ≥
2ε+3δ+β0(j+1), the two-machine MFRC under the interval pickup criterion reaches
full utilization by execution of S2. Otherwise, S1 is optimal among all cyclic so-
lutions of MFRC assuming anyone of P1 + P2 ≤ 2δ, P1 + P 1 < 2ε + 3δ + β2j or
P2 + P 2 < 2ε+ 3δ + β0(j+1).

Proof: we should emphasize that the free pickup criterion is actually a more gen-
eral case of the interval one where P 1 = P 1 =∞ is permited. Therefore, MFRCs
under the interval pickup criterion also follow the optimality rule presented in
Theorem 1 (TS1 < TS2 if P1 + P2 ≤ 2δ, and also TS1 ≥ TS2 if P1 + P2 > 2δ).
However, implementation of cycles may be infeasible depending to the parameters
P 1 and P 2. We know that a cycle which only has full waiting is certainly feasi-
ble, and only cycles with partial waiting may be infeasible. Thus, S1 is always
feasible and we only should find feasibility constraints for S2. In fact, cycle S1

guarantees that this scheduling problem always has a feasible solution. Regarding
cycle S2, considering the proof of Lemma 2, max{0, (2ε + 3δ + β2j) − P1} and
max{0, (2ε+3δ+β0(j+1))−P2} are the time that MFR take to come back M1 and
M2 after loading parts j + 1 and j and leaving them, respectively. Therefore:

P 1 ≥ max{0, (2ε+3δ+β2j)−P1} −→ P1+P 1 ≥ 2ε+3δ+β2j (6.6)
P 2 ≥ max{0, (2ε+3δ+β0(j+1))−P2} −→ P2+P 2 ≥ 2ε+3δ+β0(j+1) (6.7)

where both constraints must be satisfied to prevent the occurrence of infeasible
S2. Even if one of them was not satisfied, S2 is infeasible and consequently S1 is
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optimal.

The MFRC scheduling problems under the interval pickup criterion can be
divided into more applicable sub problems for scheduling based on pickup criterion.
One of these sub problems that originates from the interval pickup criterion is
MFRC scheduling problem under the no-wait pickup criterion. The no-wait here
means the part waiting on none of machines is allowed, and the part must be
unloaded as soon as its operation on any one of machines is finished(Shabtay
et al., 2014; Che and Chu, 2005). Obviously, it is a subcase of the interval pickup
criterion when P 1 = 0 and P 1 = 0.

Before proceeding with the next theorem, It should be noted that the result of
Theorem 2 hold for interval and no-wait pickup criteria due to the fact that any
one of them is a special case of the free pickup criterion where P 1 6=∞ or P 2 6=∞.
In more detail, there are two possible cases for MFRCs with any one of interval
and no-wait pickup criteria: 1) S2 is a feasible cycle: Then, the n-unit cycle is a
combination of k repetitions of S1 and n− k repetitions of S2, and its per unit cy-

cle time is
TSn
n

=
k(TS1) + (n− k)(TS2)

n
which cannot be less than min{TS1 , TS2}.

2) S2 is an infeasible cycle: Then, there is only one feasible one unit cycle under
this condition, and this means that any n-unit cycle is actually n repetitions of S1.

Subsequently,
TSn
n

= TS1 and there is no need to take into consideration any n > 1.

Theorem 4. S2 with the cycle time TS2 = 4ε+4δ+max{P1, P2,
P1 + P2 + γ + 3δ

2
}

is the optimal move cycle if:

1.


P1 ≥ 2ε+ 4δ

P2 ≥ 2ε+ 4δ

γ ≤ 3δ or

2.

{
P1 − P2 > γ − 3δ

γ > 3δ or

3.

{
P2 − P1 > γ − 3δ

γ > 3δ or

4.


|P1 − P2| ≤ γ − 3δ

P1 + P2 ≥ 4ε+ 5δ + γ

γ > 3δ

Otherwise, S1 is the optimal cycle of a two-machine MFRC under the no-wait
pickup criterion.
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Proof: In the proof of Lemma 2, we derived a four-phase analysis to calculate
MFR waiting times for the free pickup criterion. Following this analysis and Equa-
tions (6.6) and (6.7), we present the cycle time and feasibility region of S2 for the
no-wait pickup criterion. For sub cases 1-3, at least one of P1 or P2 is less than
2ε+4δ. Thus, implementation of S2 is impossible when the values of input param-
eters are based on these three sub cases. Owing to both P1 and P2 are more than
2ε+4δ having sub cases 4, a link between cases 1, 2, 3, 4 here and 4.1, 4.2, 4.3, 4.4
in Lemma 2 can be demonstrated. This results in the following cycle times for cases

1, 2, 3, 4: 4ε+4δ+max{P1, P2}, 4ε+4δ+P1, 4ε+4δ+P2, 4ε+4δ+
P1 + P2 + γ − 3δ

2
.

There is a Or operator between these cycle times which means the cycle time equals

the maximum of them, TS2 = 4ε+ 4δ +max{P1, P2,
P1 + P2 + γ − 3δ

2
}.

Fig. 6.6. A summary of the results of robotic cell scheduling problems for different

pickup criteria

Figure 6.6 summarizes the feasibility and optimality results concerning free,
interval and no-wait cells established in this paper. Considering this figure, it
can easily be verified that the cycle times obtained in Section 6.3 for the free
pickup criterion will hold for the interval and no-wait pickup criteria. The only
difference is that S2 may sometimes be infeasible based on input data. This issue
makes analyze of the problem a bit more complex because both the feasibility and
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optimality condition should be jointly considered. Theorem 3 shows that there is
no guarantee that S2 (in comparison with S1) will be optimal even if it be feasible
for a MFRC under the interval pickup criterion. As an extreme case of the interval
pickup criterion, the no-wait pickup one studied in Theorem 4, and this resulted
in clarifying the optimality region under this condition.

6.5 Concluding Remarks

We have addressed the result of research aimed at assessing the productivity gain
accomplished by using a robot with a hybrid gripper. The gripper is able to
perform a breakable operation on a part in transit from an input hopper to an
output hopper of a production line dealing with two tandem machines. Assuming
stop resume processing mode for the robot, it continues processing of the part
when it is reloaded to the robot with no loss in time. At the starting point,
the best proportions of the unique operation of the robot to be done between
I,M1,M2 and O is determined graphically. Then, the cycle time of two one-
unit cyclic solution have been obtained using this graphical representation of the
operation on the robot, and following that the optimality region of each one of
them has been determined when dealing with the free pickup criterion . This
line of thought brings us to the result that S1 is more productive for cells with
short processing time on machines, and S2 is more productive for cells with time-
consuming processing time on machines. It is proved that any n-unit MFR cycle
is a combination of k repetitions of S1 and n − k repetitions of S2, and its cycle
time is bigger than min{TS1 , TS2} and also less than max{TS1 , TS2}. Subsequently,
the optimal one-unit is the global optimal cycle for the MFRC. Furthermore, the
analysis showed that there is no guarantee that S2 (in comparison with S1) will
be optimal even if it be feasible for a MFRC under the interval pickup criterion.
However, only if S2 be feasible, we can conclude that it is the optimal cycle for a
MFRC under the no-wait pickup criterion. A key topic of interest for future work
on MFRCs is the extension of multiple-part MFRCs. This subject is challenging
due to the NP-hardness of the problem when different kinds of parts should be
produced. In fact, the problem is composed of determining the proportions of Γ,
appropriate part sequencing, and finally MFR move sequence which jointly give
us the optimal cycle time. In addition, the MFR studied here has a single arm.
So, the future work can extend the results to MFRs with multiple arms.
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Part III

Stochastic Modelling



Chapter 7 is based on the published article Foumani, M., Gunawan,
I., Smith-Miles, K., 2015. Resolution of Deadlocks in a Robotic Cell
Scheduling Problem with Post-process Inspection System: Avoidance
and Recovery Scenarios. IEEE International Conference on Indus-
trial Engineering and Engineering Management (IEEM), Singapore,
on pages: 1107-1111.

Abstract The phenomenon of deadlock in robotic cells has been long ignored by
most scheduling literature. A deadlock situation arises if a part cannot change its
current state indefinitely since the destination machine is occupied by another part.
The probability of the deadlock occurrence is likely to be large when the processing
route cannot be predicted with certainty due to inspection processes. Our focus
here is on a specific robotic cell with a post-process inspection system where the
inspection is performed on an independent inspection machine. Avoidance and
recovery policies are applied to overcome deadlocks originated from this cell. We
develop these policies to prevent deadlock or alternatively resolve it during the
online implementation of cycles. The former policy minimizes the storage cost,
whereas the later policy minimizes the expected cycle time. An analysis of the
scheduling problem that involves timings and costs is also carried out for comparing
policies.

Note to Practitioners It has been long recognized that traditional deterministic
modelling is not suitable for capturing truly dynamic behaviour of most real-world
applications and certainly scheduling is one of them. Since the inspection process
can be cause of uncertainty in the real world applications, the main focus of this
study is on a class of robotic cells that offers inspection of products in a self-loop.
Scheduling of cells with this class of robot is an important issue for practitioners
in the area of robotics who seek techniques to improve the productivity of their
companies. The outcome of this research helps production engineers to develop
a time and cost effective methodology for stochastic scheduling of real-world cells
employed in their own companies.

Keywords Scheduling, Cyclic production, Post-process inspection

Classification SRF 1,1,1
2,2,1 |free, additive , stochastic , identical, cyclic|T with post-

process inspection

Note References are considered at the end of the thesis.



Chapter 7

Resolution of Deadlocks in a
Robotic Cell Scheduling Problem
with Post-process Inspection
System: Avoidance and Recovery
Scenarios

7.1 Introduction

A robotic cell is a flow shop composed of a robotic arm, a number of production
machines with single-unit capability, and a computerized control logic coordinating
all movements of the robot and parts. Robotic cells are basically classified into
robotic cells without inspection process and robotic cells with inspection process.
It is always realistic to find a deterministic model for the robotic cells without
rework assumption. Following that, there are many works in the literature dealing
with the scheduling of the robot activities, as widely addressed in Dawande et al.
(2005) for robotic cells without inspection process.

Basically there are two major methods of inspection called in-process and post-
process inspections. For the in-process inspection, the measurement is performed
by a set of sensors integrated into the production machine. Alternatively, the
measurement is performed by an independent inspection machine located after
the production machine if we follow the post-process inspection method. There
are at least two reasons for the post-process inspection method. The inspection
process predominantly needs a specific condition which cannot be satisfied by the
production machine. This specific condition can be include an exact temperature
or pressure. Thus, it is more demanding to perform the inspection process by an
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extra inspection machine. Additionally, performing both production and inspec-
tion steps by a production machine equipped with sensors may make this machine
the bottleneck of the cell. Following that, it is often impossible or at least time-
consuming to perform both production and inspection steps by the same machine.
Hereinafter, the robotic cell with the inspection process means the robotic cell
with the post-process inspection (RCPI) for the sake of simplicity.

The smallest possible RCPI, two-machine RCPI, is commonly captured by
the succeeding framework: the cell is made up of a production machine M1, an
inspection machine M2, a gantry robot that serves the entire production line, an
input conveyor (I or the axillary machine M0) and an output conveyor (O or
the axillary machine M3) with unlimited storage capacity. This framework makes
it clear that typical robotic cells are a subdivision of RCPIs where all produced
parts are failure-free. It should be emphasized that typical robotic cells can not
give a guarantee that all finished parts have high quality if these robotic cells are
not failure-free. Thus, using an appropriate RCPI is the best strategy to satisfy
the customer’s requirements. An example of two-machine RCPIs is illustrated in
Figure 7.1 for the crankshaft production lines. This figure shows the robots control
mechanism is complex to program in the two-machine RCPI due to the fact that
all failed crankshafts must have backward movement from the machine M2 to M1

and this backward movement certainly causes a stochastic processing route.

Although a survey of different kinds of two-machine cells without an inspection
process was developed by Dawande et al. (2005), there is no thorough study of
robotic cells to determine a guideline for post-process inspections. Only some
similar studies of robotic cells focused on the stochastic processing time due to
machine failures (Savsar and Aldaihani, 2008; Tysz and Kahraman, 2010) and
the speed of machines (Shafiei-Monfared et al., 2009; Geismar and Pinedo, 2010)
to evaluate utilization of cells. In more detail, scheduling problems attempted
in Savsar and Aldaihani (2008); Tysz and Kahraman (2010); Shafiei-Monfared
et al. (2009); Geismar and Pinedo (2010) only concentrated on the case where the
processing time of the part is stochastic, but the processing route of the part is
fixed and not allowed to be changed. In contrast, here, we deal with a stochastic
processing route results from the inspection process which increases the complexity
of the problem.
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Fig. 7.1. A two-machine RCPI for the crankshaft production Ayub et al. (2014)

The outline of this study is as follows: Section 7.2 contains fundamental con-
cepts related to RCPIs. Section 7.3 is devoted to avoidance and recovery policies
for deadlock resolution. We initially show how the deadlock can occur in a two-
machine RCPI, and then present possible control policies to prevent deadlock or
alternatively resolve it. Following that, Section 7.4 is dedicated to the analysis of
the problem involving timings as well as costs of both policies. Finally, Section 7.5
concludes the paper with perspectives.

7.2 Problem Notation and Definitions

Here, we define the problem of maximizing expected throughput and cost for a
RCPI, and then summarize required notations. First, let us explain why an ana-
lytic study of two-machine RCPIs is vital. Actually, an efficient way for scheduling
of a complex RCPI is to consider it as a combination of sub-RCPIs (Chan et al.,
2008). As seen from Figure 7.2, a network of a six-machine printed circuit board
assembly line with multiple robots can be replaced with three integrated two-
machine RCPIs namely C1, C2 and C3. Also, a case study of press machines for
draw-forming of automobile body panels was undertaken by Osakada et al. (2011).
The press line consisted of integrated two-machine cells which can be extended for
two-machine RCPIs.

We elaborate on cycles and define terms that are applied for classifying them.
Much of the researches to date in the field of robotic cell scheduling have concen-
trated on considering a cycle as a permutation of a number of the robot activities.
Subsequently, the Robot activity defined as follows is a basic concept that plays a
key role in this field. Notice that Definition 1 is borrowed from Crama and van de
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Fig. 7.2. A clustering scheme for a set of three integrated two-machine RCPIs

Klundert (1997).

Definition 1. The forward activity namely Fi, ∀i ∈ {0, 1, 2}, is implemented with
respect to a two-phase sequence of the robot actions for a two-machine RCPI:

1. The robot takes a part from Mi if the part is not identified by tester as faulty
(damaged, incorrect and so on).

2. The robot carries the part to Mi+1, and loads it onto this machine.

Definition 2. The backward activity called Bi, ∀i ∈ {1, 2, 3}, is implemented
with respect to an inverse sequence of the robot actions for a two-machine RCPI:

1. The robot takes a part from Mi when it is recognized as a defective part.

2. The robot carries the part back to Mi−1, and finally loads it onto Mi−1 for a
rework process.

Obviously, the starting point of backward activities must be an inspection
machine, and this means there is only one possible backward activity, B2, for a
two-machine RCPI. However, any one of I, M1, or M2 can act as the starting point
of the corresponding forward activity. Therefore, we characterise a particular n-
unit cycle as follows:

Definition 3. An n-unit cycle is a permutation of forward and backward activi-
ties in which any forward activities F0 and F2 is repeated exactly n times.
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It is clear that an n-unit cycle produces n final products. We are also able to
say that the lower bounds of repetitions of B2 and F1 are zero and n, respectively,
due to the fact that failure occurrence for any particular part follows a stochastic
nature. Actually, B2 and F1 together build up the stochastic closed-loop event
(B2, F1). This stochastic closed-loop event is associated with the probabilities of
the rework being needed after inspection of the part on M2. We make the following
assumptions regarding (B2, F1):

1. Elements of (B2, F1) have deterministic occurrence time, and

2. The number of switching into (B2, F1) for the kth part is stochastic.

The most popular case of an n-unit cycle in industry is the one-unit cycle which
produces exactly one part in each iteration of it. Let us assume that the first oc-
currence of F1 is placed in the last position of each cycle, so that the sequence of
other activities is either (B2, F1)k, F2, F0 or F0, (B2, F1)k, F2 where k ∈ N . This
results in two cycles called S1 = (B2, F1)k, F2, F0, F1 and S2 = F0, (B2, F1)k, F2, F1.
Both cycles are finished with the first occurrence of F1 for the next part in the cell
because the only moment when the robot can switch from S1 to S2 (or S2 to S1) is
after performing F1. The reason that one-unit cycles are popular is that the par-
tial cycle time of any n-unit cycle is a convex combination of the expected partial
cycle time of S1 and S2 as two given corner points. Thus, we should only analyse
one-unit cycles (Sethi et al., 1992). We recall a definition related to stochastic
dominancy due to stochastic nature of RCPIs Ross (1996).

Definition 4. For two random variables µ and λ, we say µ is second-order smaller
than λ only if E(µ) ≤ E(λ).

Let us use the following notation predominately derived from Geismar and
Pinedo (2010) throughout the text:

ε The load/unload time of machines by the robot

δ The required time for traveling between adjacent location pairs

a The processing time of M1

b The inspection time of M2

p The probability of identifying no defect in each time that M2 inspects the part
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q The probability of detecting the parts failure in each time that M2 inspects the
part

c1 The capital cost of the internal buffer

c2 The storage cost of the internal buffer

ckSj The overall cost of the kth implementation of Sj,∀j ∈ {1, 2}, under recovery
policy

wkil The robots waiting time at Mi, ∀i ∈ {1, 2} before lth times of unloading the
part k

T kSj The partial cycle time of Sj,∀j ∈ {1, 2}, for the part k fed to the two-machine
RCPI

It is assumed that ε for all machines and buffers is constant, and δ is both
symmetric and additive.

7.3 Avoidance and Recovery Policies

The main aim of this section is to propose two on-line policies for avoiding and
resolving deadlocks in RCPIs. Before proceeding with avoidance and recovery poli-
cies, let us present preventive constraints which are enough to keep typical robotic
cells away from deadlock (Dawande et al., 2005):

1. The robot must not load a part onto a busy machine.

2. The robot must not unload a part from an idle machine.

Aforementioned constraints are only able to avert deadlock in the robotic cells
without inspection process, which follow Off-Line Programing (OLP). However, a
counterexample for these constraints is depicted in Figure 7.3 to show that they
are necessary but not sufficient for deadlock prevention. In this figure, the part
on M1 is instructed to visit M2 for inspection, whereas the part on M2 may be
defective and consequently needs to revisit M1. This closed chain, namely circular
deadlocking (Venkatesh and Smith, 2003), increases the risk of deadlocking even
though both constraints are satisfied. Thus, a set of additional constraints is de-
manded to make RCPIs deadlock-free or resolve the circular deadlock.
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Fig. 7.3. Counterexample of a two-machine RCPIs deadlock

A variety of on-line control policies can be adopted to overcome circular dead-
locks in RCPIs, and each one may cause an increase in manufacturing costs or the
complexity of control (Venkatesh and Smith, 2003). Thus, they are divided into
two main groups for the sake of simplicity and effectiveness:

• Avoidance Policy : As the name of this policy shows, it works by avoiding any
kind of the circular deadlocks. Actually, the avoidance policy allows the robot to
load the part on a machine if the machine is a deadlock-free resource. On the con-
trary, loading the part on a machine is prohibited if the machine is a deadlock-risk
resource, which can lead to a circular deadlock.

• Recovery Policy : This policy allows the occurrence of the circular deadlock in
the first stage, and then recovers it using a correction method in the second stage.
The correction method can be an internal buffer with one-unit storage capacity
(or a local conveyor) attached to the machine where deadlock occurs.

Clearly, anyone of these on-line policies has its own advantages and disadvan-
tages. On the one side, avoidance policy minimizes the cost of reworking per
unit since there is no need for internal buffer installation. On the other side, the
expected throughput of the two-machine RCPI will increase if we accept stor-
age cost per unit and the constant installation costs of the internal buffer. As a
consequence, it is essential to provide a mathematical evaluation of the tradeoffs
between expected throughput and cost. The main aim of the next section is to
make this evaluation in keeping with on-line control policies.

7.4 Solution for the Problem Involving Cycle Time

and Storage Cost

A description of the recently established approaches of analyzing the bicriteria
robotic cell scheduling problem is initially presented here. Research on the bicrite-
ria robotic cells fall into two streams. One stream is dedicated to bicriteria robotic
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cells without an inspection process.Following that, Gultekin et al. (2008) looked
into the throughput rate as well as machine operating costs, and then determined
the set of nondominated solutions for two-machine robotic cells. The novelty of
their study was the introduction of each operation time as a nonlinear function of
the machine specifications. Also, Gultekin et al. (2010) extended this approach for
flexible robotic cells without inspection process. Another stream of research con-
centrates on bicriteria RCPIs. To the best of our knowledge, there is no research
in this area.

As mentioned before, M2 identifies no defect in each time inspection of the part
k with probability p. This means the inspection result of the part is a Bernoulli
variable Yk with parameter p. However, it is essential to estimate the number of
the part failure to pass M2 before the first success. This number is denoted by a
geometric random variable Xk with success parameter p in which the time elapsed
between two successive inspections equals the required time for performing the
closed-loop event (B2, F1)k. The reason for this intuition is that the geometric dis-
tribution is defined as a discrete and memoryless distribution counting the number
of Bernoulli trials until the first success. This leads to following results.

Lemma 1. The partial cycle time for kth implementation of S1 is the random
variable T kS1

given by:

T kS1
= 6ε+ 6δ+ a+ b+ (4ε+ 2δ+ a+ b)Xk (7.1)

Proof: The sequence of activities of S1 is (B2, F1)k, F2, F0, F1. Subsequently, S1

starts with the stochastic closed-loop event and repeat it Xk times. Each iteration
of the loop includes the robot tasks below: unloading the part k from M2, carrying
the part from M2 to M1, loading the part onto M1, a full waiting at M1 to finish
the processing of the part, unloading the part from M1, carrying the part from M1

to M2, loading the part onto M2, and finally a full waiting at M2 (4ε+ 2δ+a+ b).
At this phase, the part k met with the first success. Therefore, the robot drops
off it at O instead of M1, moves to I, picks up the (k+1)th part, carries the part
to M1, loads the part on M1, has a full waiting at M1, unloads the part from M1,
carries the part to M2, loads the part on M2, and finally has a full waiting at M2

before starting the (k+1)th stochastic closed-loop event (6ε + 6δ + a + b). This
completes the proof.

It is noteworthy that S1 is always deadlock-free and has no need for internal
buffer installation on M1. This assumption is not applicable for S2. Therefore,
we have two alternatives: 1. RCPI strictly adopts an avoidance policy and con-
sequently only implements S1. 2. RCPI adopts a more flexible control policy
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(recovery policy) and also implements S2. Note the second alternative increases
the per unit storage cost which will be specified later on. Let us initially proceed
to find T kS2

in Lemma 2, and then prove Theorems 1 and 2 together to find the
optimal partial cycles without cost assumptions.

Lemma 2. The partial cycle time for kth implementation of S2 is the random
variable T kS2

given by:

T kS2
= η+

{
α if Xk=0

(4ε+ 2δ)Xk + β + γ(Xk − 1) + ζ if Xk ≥ 1 (7.2)

Where

6ε+ 8δ = η
max{0, a− (2ε+ 4δ), b− (2ε+ 4δ)} = α
max{0, a− (ε+ 2δ), b− (2ε+ 4δ)} = β
max{a− (3ε+ 2δ), b} = γ, max{a− (2ε+ 4δ), b} = ζ

Proof: If Xk=0, there is no difference between the RCPI and a typical robotic cell.
We refer to Sethi et al. (1992) for this case where the max term equals wk11 + wk21.
We have two cases if Xk ≥ 1:

1) For Xk = 1, the first repetition of (B2, F1)k is generated, and therefore we
consider the following occurrence time of the event instead of the max term gen-
erated for Xk = 0: The robot initially waits at M2 to receive the inspection
result, unloads the failed part k from M2, moves backward to M1, waits at M1

until this machine finishes the processing of the part k + 1, loads the part k
on M1 after transferring the part k + 1 from M1 to its internal buffer, unloads
the part k + 1 from the internal buffer, moves forward to M2, loads the part
k + 1 on M2. The time taken by the robot to perform the closed-loop event is
(4ε+2δ)+wk+1

11 +wk21 = (4ε+2δ)+max{0, a− (ε+ 2δ), b− (2ε+ 4δ)}. Following
this event, for the finally portion of the cycle, the robot transfers the part k+1 from
M2 to O, drops it off at O, returns to M1 to unload the part k after a partial wait-
ing, and loads it on M2. This causes a waiting time wk12 = max{0, a− (2ε+ 4δ), b}
for the part k in comparison with the previous case.

2) For Xk = j, ∀j ∈ {2, 3, ...}, we should only add elapsed time of the current
closed-loop event to this time for the current closed-loop event j − 1. Consider-
ing an approach similar to the Case 1, this cumulative time equals (4ε + 2δ) +
max{0, a− (3ε+ 2δ), b}. This completes the proof.
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Corollary 1. The expected values of two cycle time are:

E(T kS1
) = 6ε+6δ+a+b+(4ε+2δ+a+b) q

p
(7.3)

E(T kS2
) = 6ε+8δ+αp+((4ε+2δ)1

p
+β+γ( q

p
)+ζ)q (7.4)

Corollary 2. On the contrary to all earlier research on the robotic cell, the two-
machine RCPI does not necessarily act like a First In First Out (FIFO) system
since it is possible that any one of parts k+ 1, k+ 2, ... can be picked from I after
the part k, but be dropped into O before the part k.

Theorem 1. No dynamic state transition from S1 to S2 (or from S2 to S1) exists
for a two-machine RCPI.

Proof: The start state of both cycles is the instant of time when the robot loaded
a part on M2 for the first time and stops at M2 for the upcoming order. If M1 was
occupied at this instant of time, the stochastic programming was unavoidable since
the extent to which any particular part was processed on M1 at the initial state of
the corresponding partial cycle does not have steady-state behaviour. Neverthe-
less, M1 is unoccupied at the start and end states of both cycles, and no dynamic
transition from S1 to S2 (or from S2 to S1) exists. This completes the proof.

Theorem 2. Comparing the two-machine RCPI with the same cell without the
post-process inspection, the chance of optimality for S2 increases whereas it de-
creases for S1.

Proof: For any arbitraryXk = j,∀j ∈ {1, 2, 3, ...}, we have T kS1
≤ T kS2

if 6ε+ 6δ +
a+b+(4ε+2δ+a+b)Xk ≤ 6ε+8δ+(4ε+2δ)Xk+β+γ(Xk−1)+ζ =⇒ (a+b)(j+1) ≤
2δ + β + γ(j − 1) + ζ. This inequality is only feasible when β = 0, γ = b, ζ = b,
and finally a(j + 1) + b ≤ 2δ. It is also know that S1 is optimal cycle for a typical
robotic cell when a+ b ≤ 2δ (Sethi et al., 1992). Thus, we conclude that there is a
reverse relationship between j and the chance of optimality for S1. This completes
the proof.

The above theorem shows that execution of S2 for a two-machine RCPI is a
good idea. However, there are two types of costs for the implementation of S2

which make it challenging: capital and storage costs. On the one side, capital cost
is fixed, time-independent and one-time expense incurred on the purchase of the
one-unit internal buffer of M1, whereas storage cost is variable, time-dependent
and imposed by storing the part having finished processing on M1 until M2 be
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available for the inspection process. Here, we consider the storage cost per unit
time for each part. The reason behind this assumption is that it reflects a com-
monly observed situation in the food industry and plastic molding in which parts
are stored at a constant temperature. The overall cost of the kth implementation
of S2 under recovery policy is:

ckS2
= c1u+c2T

k
S2

(7.5)

, where u is the constant internal buffer usage rate. The structure of Equation
(7.5) shows that the first portion of this equation is constant, but the last portion
of it is a stochastic function of the cycle time. Note ckS1

always equals zero. Now,
we come to the objective function of the S2 which should be compared with the
partial cycle time of S1. This function, T kS2

+ ϕckS2
, is chosen as a linear combi-

nation of the partial cycle time of S2 and the overall cost with relative weight ϕ.
when the overall cost is a critical criterion and the company suffers financially, ϕ
should be big enough. Also, ϕ = 0 if there is no financial limitation for adding an
internal buffer to the cell.

Theorem 3. The implementation of avoidance policy has a better performance
if T kS1

is second-order smaller than T kS2
.

Proof: As mentioned before, the avoidance policy has no cost in comparison with
the recovery policy. Also, it has a better performance in term of the cycle time if
E(T kS1

) ≤ E(T kS2
) for a RCPI. Thus, there is no reason for using of the recovery

policy in such a RCPI. This completes the proof.

Theorem 4. The implementation of recovery policy is more effective if E(T kS2
) ≤

a+b
p
−2δ−αp−(β+γ q

p
+ζ)q−ϕc1u

ϕc2
.

Proof: We omit the proof which is very similar to that of Theorem 3. Only, it
should be mentioned that the result directly follows from the fact that the recovery
policy is more effective when E(T kS2

+ ϕckS2
) ≤ E(T kS1

). This completes the proof.

It is worth noting that the results of this section along with the previous section
create a framework for time and cost analyzing of control policies. This helps the
companies which are enthusiastic about using post-process inspections in their
automated systems to satisfy customer needs.
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7.5 Concluding Remarks

An analytical method for minimizing the partial cycle time and cost of cells with
the post-process inspection has been developed in this study. We have shown
that not only it is possible to avoid deadlock, but also resolve it during the online
implementation of the robot move cycles using avoidance and recovery control
policies. The avoidance policy minimizes the cost of reworking per unit while
the recovery policy decreases the expected cycle time. After reaching the the
steady state of the cell, we have evaluated the tradeoffs between these two criteria.
Comparing cells with the post-process inspection with cells without this additional
step has made it clear that the performance of the partial cycle S2 is improved
due to the fact that the average time of producing a part is definitely increased.
Further work must be done to substitute a post-process inspection system with
a robotic inspection system. In this system, the inspection process is performed
on a multi-function robot which is able not only to transfer the part between two
machines but also to inspect it in transit.
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Chapter 8 is based on the published article Foumani, M., Smith-Miles,
K., Gunawan, I., Moeini, A., 2016. Stochastic Scheduling of an Au-
tomated Two-machine Robotic Cell with In-process Inspection System.
Computers and Industrial Engineering, Submitted in March 2016.

Abstract This study is focused on the domain of a two-machine robotic cell
scheduling problem for three various kinds of pickup criteria: free, interval, and
no-wait pickup criteria. We propose an analytical method for minimizing the par-
tial cycle time of such a cell with a PC-based automatic inspection system. It is
assumed parts are inspected in one of the production machines, and this may re-
sult in a rework process. The stochastic nature of the rework process prevents us
from applying deterministic solution methods for the problem. This study aims to
develop an in-line inspection of identical parts using multiple sensors. Initially, we
present a heuristic method that converts a multi-sensor inspection system into a
single-sensor inspection system. Then, the expected sequence times of two differ-
ent cycles are derived based on a geometric distribution, and finally the maximum
expected throughput is pursued for each individual case with free pickup criterion.
Results are also extended for the interval and no-wait pick up scenarios as two
well-solved classes of the scheduling problem. The waiting time of the part at each
machine after finishing its operation is bounded within a fixed time interval in cells
with interval pickup criterion, whereas the part is processed from the input to the
output without any interruption on machines in cells with no-wait pickup criterion.

Note to Practitioners These cells are widely employed in the inspection of au-
tomotive products such as vehicle doors. In detail, optimization of robotic spot-
welding and press for a sheet-metal in automotive industry is common in practice.
An application of a robotic rework cells is given in Osakada et al. (2011). It is
related to press lines for draw-forming of automobile body panels for Honda (with
Aida Engineering), Toyota (with Komatsu) and BMW (with Schuler), where the
space between press machines were compact enough only for accommodating robots.

Keywords Scheduling, Rework, Robotic cell, Performance

Classification
SRF 1,1,1

2,2,1 |free, additive , stochastic , identical, cyclic|T with in-process test

SRF 1,1,1
2,2,1 |interval, additive , stochastic , identical, cyclic|T with in-process test

SRF 1,1,1
2,2,1 |no-wait, additive , stochastic , identical, cyclic|T with in-process test

Note References are considered at the end of the thesis.



Chapter 8

Stochastic Scheduling of an
Automated Two-Machine Robotic
Cell with In-process Inspection
System

8.1 Introduction

Robotic cells are one of the complicated application areas of flow-shops that have
received a considerable amount of attention in robot move sequencing (Brauner,
2008). They are basically classified into two categories: the robotic cells without
rework assumption and robotic rework cells. The term ”rework” here means that
a processed part may need reprocessing. Therefore, it is cycled between test and
processing stations until deemed acceptable. It is straightforward to find a deter-
ministic model for the robotic cells without rework assumption. Following that,
there are many studies in the literature dealing with the scheduling of the robot
activities, as widely addressed in Dawande et al. (2005) for two-machine cells.
Nonetheless, inspection and rework stages in a robotic cell is one of the important
issues in the field of robotic cell scheduling which reflects most real-life cases. This
paper addresses the stochastic issues that arise when considering inspection and
rework stages, laying some important analytical foundations for this under-studied
problem.

A robotic cell with an additional inspection process in one of the rework stages
is called a robotic rework cell. A two-machine robotic rework cell which is the
smallest possible robotic rework cell is commonly captured by the following frame-
work: the cell is made up of two production machines M1 and M2, multiple
contact/non-contact sensors installed into M1 or M2, a gantry robot that serves
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the entire production line, an input conveyor (I or the axillary machine M0) and
an output conveyor (O or the axillary machine M3) with unlimited storage capac-
ity. This framework makes it clear that typical robotic cells are a special case of
robotic rework cells where there is no inspection sensor on production machines,
and all produced parts are failure-free.

Fig. 8.1. A two-machine robotic rework cell with end of line inspection

Two-machine robotic rework cells are classified into two groups: two-machine
robotic rework cells with start of line inspection (RRCSI) and two-machine robotic
rework cells with end of line inspection (RRCEI). They are also called ”Start of
Line” testing and ”End of Line” testing, respectively. An example of two-machine
robotic rework cells with end of line inspection is shown in Figure 8.1 for the
crankshaft production lines (Ayub et al., 2014). A particular crankshaft being
processed goes through I, the lathe machine M1, the lathe machine M2 and O
under this part processing route. After loading the crankshaft to any one of the
lathe machines, the robot either waits for the crankshaft to finish its operation or
immediately moves to another occupied lathe machine or I for unloading a new
crankshaft. The difference between two machines is that the crankshaft is failure-
free when it is processing on M1, whereas the crankshaft may fail and need rework
when it is processing on M2.

Another example of robotic rework cells with inspection is extracted from clus-
ter tools which are employed in processes such as deposition and inspection. The
reason why we give this example is that cluster tools actually act as closed mini-
environment robotic cells (Dawande et al., 2005). For fabrication of wafer in cluster
tools, Atomic Layer Deposition (ALD) is a process that controls the wafer 
thick-ness by repeating the deposition processes with mono-atomic layer
precision as needed. The quality of the wafer is often inspected by Spectroscopic
Ellipsometry (SE) inspection method in order to check whether a conformal layer
is fabricated. Therefore, the thickness of the wafer is inspected by SE method
during madding the depositions of each layer on wafer (Langereis et al., 2009).
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We should mention that a wide variety of real-life studies of production envi-
ronments have been conducted on noncyclic production aiming at minimization of
the maximum completion time (also referred to as makespan) (Chu et al., 2010).
However, this study is limited to cyclic scheduling of the robotic rework cell due to
its popularity in mass production environments in which the robot is applied for
material handling. A cyclic schedule is based on a repeating pattern of part pro-
cessing (Kayaligil and Ozlu, 2002). Robotic cells under consideration in this study
can do rework processes, and consequently the stochastic nature of the rework
process prevents us from applying existing deterministic solution methods for the
cyclic scheduling problem. Therefore, the study of robotic cells without rework as-
sumption, which has a deterministic processing route, will not be reviewed in this
paper. We refer readers to the rigorous analysis of robotic cells with deterministic
data elaborated in the book by (Dawande et al., 2007).

The analysis of stochastic robotized cells has a fragmented history of develop-
ment in the literature. Some studies of stochastic robotic cells concentrated on
two-machine cells which operate under a production system with machine failures
and repairs (Tysz and Kahraman, 2010; Savsar and Aldaihani, 2008), whereas
some others touched on the robotic cells with stochastic processing times (Shafiei-
Monfared et al., 2009; Geismar and Pinedo, 2010). To our best knowledge, there
is a lack of research on the stochastic part processing route although it is applica-
ble to many practice-oriented scenarios. Note that the stochastic part processing
route is actually possible when a set of sensors is integrated into at least one of
the machines. We will provide more details of the concept of robotic rework cells
later. Let us now summarize the main contributions of our study as follows:

• We present a proof of dynamicity of the problem of determining the optimal
one-unit cycle for robotic rework cells with more than two machines. In
contrast, we also prove that the problem is not dynamic for two-machine
robotic rework cells, and the pickup criterion has no impact on the result of
this theorem.

• We define three kinds of stochastic order relations and sort them through
strangeness. Based on these relations, we find the dominancy regions of two
feasible one-unit cycles by an analytical method. Then, we extend the result
to a mass production environment under free pickup criterion.

• We extend results for the interval and no-wait pick up scenarios as two well-
solved classes of this scheduling problem. For the sake of generalization, we
graphically represent the linkage between optimality regions of feasible cycles
of different pickup criteria to provide an integrated framework.
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The overall structure of this paper is as follows. Section 8.2 contains fundamen-
tal concepts related to stochastic robotic cells. Sections 8.3 and 8.4 are dedicated
to RRCSI and RRCEI scheduling problems to cover ”Start of Line” and ”End of
Line” testing approaches for a cell with free pickup criterion, respectively. Follow-
ing that, results are extended for interval and no-wait pickup scenarios in Section
8.5. Finally, Section 8.6 concludes the paper with perspectives.

8.2 Problem Notation and Definitions

We begin this section by first giving a precise definition of each problem class, and
then summarizing the notations used in robotic rework cells to find the expected
partial cycle times. The concept of the robot activity is one of the best tools to
consider a cyclic formulation of the robot movement. In a two-machine robotic
rework cell, the robot activity noted Ai, ∀i ∈ {0, 1, 2}, corresponds to the following
sequence of actions: 1) The robot takes a part from Mi if the inspection process
discovers no error. 2) The robot immediately carries the part to Mi+1. 3) The
robot immediately completes the activity Ai by loading the part onto Mi+1.

Consistent with Brauner (2008), a particular n-unit cycle can be characterised
by a permutation of activities in which any activity is repeated exactly n times.
Since A2 is one of the activities with n repetition, we can conclude that an n-unit
cycle is able to produce n final products. Therefore, the cycle time is per unit
cycle time or the time to complete one part in a cyclic behavior. An important
point about the permutation is that the rework cell must return to the initial state
at the starting of the permutation after completing it. In addition, scheduling
of cells must be constrained to the deadlock-free subregion of permutations. The
deadlock-free schedule can be guaranteed only if the following activities are exe-
cuted:

• The receiving server and sending server must be empty and loaded before
the load/unload process, respectively (Foumani et al., 2014).

• The robot can load a part to Mi only if the last process of the part was
performed by Mi−1,∀i ∈ {1, 2, 3} (Foumani et al., 2014).

• Since the part’s failure occurrence is possible, additionally, it is forbidden to
unload the machine when its current part needs rework.

It should be noted that the number of n-unit cycles of a particular cell depends
on the first two deadlock prevention instructions, whereas the last instruction only
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increases the cycle time. The simplest case of n-unit cycles is one-unit cycles where
exactly one completed part leaves from the cell after the cycle’s execution. Let us
fix A1 in the last position, so the order of other activities can alternatively be A2, A0

or A0, A2. This results in two cycles, namely S1 = A2, A0, A1 and S2 = A0, A2, A1.
It is necessary to mention that we choose A1 as the last activity of both cycles
since it is the only activity that is able to act as switching point from one cycle
to another. In other words, the only common state between S1 and S2 is exactly
the moment when the robot loaded a part on M2 and waits at M2 until it receives
the next order by the robot controller. The key note here is that any n-unit cycle
is actually a combined sequence repeating S1 exactly q times and also S2 exactly
n − q times in each iteration of the cycle. Therefore, it is expected that per unit
partial cycle time is a convex combination of the expected partial cycle time of
S1 and S2 as two given corner points. This means that the expected partial cycle
time of one of cycles S1 or S2 always dominates the expected per unit partial cycle
time of any given n-unit cycle. As a result, it is enough to limit our search to S1

and S2 (Sethi et al., 1992). Now, let us use the following notation derived from
Geismar and Pinedo (2010) throughout the text:

ε The load/unload time of machines (or buffers) by the robot.

δ The required time for traveling between adjacent location pairs (I,M1), (M1,M2),
and (M2, O).

mi The number of sensors installed into Mi,∀i ∈ {1, 2}

a The processing time of the first machine.

b The processing time of the second machine.

T kSj The partial cycle time of Sj for the kth part fed to the rework cell, ∀j ∈ {1, 2}
and ∀k ∈ N

wki The waiting time of the robot at Mi for the kth part fed to the rework cell,
∀i ∈ {1, 2} and ∀k ∈ N

The notation wki is also useful for definition of three different pickup criteria.
This waiting time means that the robot has to wait for machine i to finish process-
ing if it reaches the machine before finishing the operation. However, instead, it is
possible that the robot reaches the machine i after the machine finishes the part
processing. Under this condition, the part has to wait for the robot to reach and
remove it. This waiting time of the part can provide a framework for classification
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of pickup criteria as follows:

• The waiting time of the part on the machine is unbounded : this case is named
free pickup criterion in which the completed part can stay indefinitely on the ma-
chine before removing by the robot. Hence, the waiting time of the part can be
shown by interval [0,+∞),∀i ∈ {1, 2}.

• The waiting time of the part on the machine is bounded : this case is named
interval pickup criterion in which the waiting time of the part at Mi,∀i ∈ {1, 2},
is bounded within a pre-defined time interval. The interval is [0, a) for M1 and
[0, b) for M2. Therefore, the maximum wait times of the part on M1 and M2 are
a and b, respectively.

• The waiting time of the part on the machine is zero: this case is no-wait pickup
criterion in which the part must be removed from Mi, ∀i ∈ {1, 2}, without delay
and carried to the next machine, which is Mi+1.

It is noticeable that different pickup criteria do not affect the number of n-
unit cycles although they may affect the cycle times. More precisely, the waiting
times of cycles change according to the above description of pickup criteria and
this may also change the total cycle times. We can simply extend this result for
one-unit cycles S1 and S2 in robotic rework cells with two machines, and say that
the permutations of S1 and S2 are independent from pickup criteria.

At the end of this section, we should emphasized that we cannot be assured that
the robotic rework cell operates in steady state as a result of its dynamic nature.
In this regard, we define the variable C(A1, k) as the completion time of the kth
implementation of A1 to explain why there is no guarantee of cyclic behaviour of
the cell (Crama and van de Klundert, 1997). Obviously, C(A1, k) − C(A1, k − 1)
does not remain constant for ∀k ∈ N, and it is vital to carry out a separate analysis
for any C(A1, k)−C(A1, k− 1), which is named the partial cycle time T kSj for the
kth implementation of Sj.

8.3 Scheduling of RRCSIs with Free Pickup Cri-

terion

We start this section by reducing the scheduling problem to a problem where
pickup criterion is always free. Under this condition for the RRCSI case, a part
processing on M1 is monitored to detect the presence of different types of defects
using a multi-sensor system. Each sensor i, ∀i ∈ {1, 2, ...,m1}, detects the part’s
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failure with specified probability q1i each time the part is processing on M1, and
therefore this individual sensor identifies no defect in each time inspection with
probability p1i = 1 − q1i. This means that the inspection result of each sensor
i after each time processing of the part k on M1 is a random variable Y k

1i which
follows a Bernoulli probability distribution of parameter p1i. Needless to say that
here we have a sub-inspection set of m1 different sensors, and the sequence of ran-
dom variables [Y k

11, Y
k

12, ..., Y
k

1m1] that represent the inspection results of m1 sensors
is independent and identically distributed (i.i.d) since all of them follow Bernoulli
probability distribution and there is no dependency between them. Therefore, the
part cannot pass the multi-sensor inspection process even if one of the sensors
detects the part’s failure. Following that, the generalized Bernoulli distributed
variable Y k

1 supporting the success of the multi-sensor inspection system of the
part k is:

Y k
1 =

{
1 if

∑m1

i=1 Y1i = m1

0 if
∑m1

i=1 Y1i < m1

P (Y k
1 = 1) =

∏m1

i=1 p1i

P (Y k
1 = 0) = 1−

∏m1

i=1 p1i (8.1)

The analysis of M1 with multiple sensors integrated into it can be converted
to the analysis of M1 with a single sensor using the above equations. The im-
portant random variable for us here to determine is the number of inspections
performed by the newly established single-sensor inspection system before passing
all sub-inspections. Clearly, for the kth parts interred to the cell, this number
can be represented by a random variable Xk

1 which is associated with a geometric
distribution with parameter p1 =

∏m1

i=1 p1i and the time between two inspections
equals a. The reason for this intuition is that the geometric distribution is defined
as a discrete distribution counting the number of Bernoulli trials until the first
success. The memoryless property implies that the current sub-inspection process
is performed independent of the number of completed sub-inspections before.

Lemma 1. Having a RRCSI with free pickup criterion, the partial cycle time T kS1

for kth implementation of S1 is:

T kS1
= 6ε+6δ+aXk

1 +b (8.2)

Proof: The kth implementation of S1 includes the tasks below: the robot unloads
(k− 1)th part from M2 after a full waiting at this machine to finish the processing
of the (k − 1)th part (b+ ε). The robot carries this part from M2 to O, and then
moves backward to I to pick up the kth part and load it on M1(3ε + 5δ). In this
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stage, the robot undergoes a random waiting depending on the number of rework
processes performed by M1, and eventually it picks up the part k and loads it on
M2 (aXk

1 + 2ε+ δ). This completes the proof.

Lemma 2. Having a RRCSI with free pickup criterion, the partial cycle time for
kth implementation of S2 is the random variable T kS2

as:

T kS2
= 6ε+8δ+max{0, aXk

1−(2ε+4δ), b−(2ε+4δ)} (8.3)

Proof: Here, the robot visits I,M2, and M1 in the kth implementation of S2,
respectively. Our goal is to find the time required for all intervening activities
which are implemented between two consecutive loadings of M2. The robot ini-
tially moves backward to I to unload the kth part and load it on M1(2ε + 3δ).
In the second phase, it returns to M2 to unload the (k − 1)th part and transfer
it to O after a partial waiting at M2(2ε + 2δ + wk−1

2 ). Likewise, the empty robot
returns to M1 to unload the kth part and transfer it to M2 after a partial waiting
at M1(2ε+ 3δ + wk1). Thus, T kS2

= 6ε+ 8δ + wk−1
2 + wk1 , and we have:

wk−1
2 = max{0, b− (2ε+ 4δ)}

wk1 = max{0, aXk
1 − (2ε+ 4δ)− wk−1

2 }
wk−1

2 + wk1 = max{0, aXk
1 − (2ε+ 4δ), b− (2ε+ 4δ)}

Recall that wk−1
2 and wk1 are waiting times of the robot, not parts k − 1 and k.

Accordingly, these two variables can be equal to zero since the pickup criterion is
free and the completed part can stay indefinitely on the machine to be removed
by the robot as soon as it reaches the machine. This completes the proof.

Our task now is to find an optimal long-term production strategy considering
Lemmas 1 and 2. Before proceeding with the following theorem, let us notice that
it is pickup criterion-independent, and therefore it is applicable for free, interval,
and no-wait pickup criteria. The reason behind this intuition is that the dynamic
nature of a cell only can change cycle times, not the number of cycles.

Theorem 1. For two-machine robotic rework cells, there is no dynamic state
change from S1 to S2, and vice versa. In contrast, robotic rework cells with over
two machines always have dynamic behaviour.

Proof: In regard with the first segment of this theorem, as mentioned before, the
starting point of each one of S1 and S2 is the moment when the robot loaded a part
on M2 and waits at M2 until it receives the next order by the robot controller.
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If M1 was loaded at this given moment, the stochastic modelling was essential
due to the fact that the extent to which each part has been processed on M1 at
the starting point of each partial cycle is random. Fortunately, M1 which has a
random number of rework on the part is empty at this common state. Therefore,
there is no relationship between the optimal partial cycle in the current state and
the number of rework performed on the part in the previous partial cycle.
Regarding the second segment of this theorem, let us initially consider three-
machine case. For this case, there in an extra machine M3 is comparison with
two-machine case. Therefore, activity A3 should be added to the list of activities
so that the following tree scheme shows all possible cycles.

Fig. 8.2. A tree scheme for cycle generation of three-machine robotic rework cells

In Figure 8.2, it is clear that six possible cycles are originated from S1 and S2.
More specifically cycles S1, S3 and S4 rise from S1 in two-machine case. Also,
cycles S2, S5 and S6 rise from S2 in two-machine case. It should be emphasized
that all S1, S3, S4 and S5 can reach a state where the robot has just completed
loading a part on a machine and the rest of machines are unoccupied. This means
that these cycles get a chance to exhibit non-dynamic behaviour. The machine is
either M1,M2 or M3 for S1; the machine is M3 for S3; the machine is either M2 or
M3 for S4; and finally the machine is M2 for S5. However, S2 and S6 always have
dynamic behaviour since their permutations shows that cell never reach an state
in which there is only one part is processing. Therefore, three-machine robotic
rework cells always have dynamic behaviour.
An indirect result from the aforementioned tree scheme is that possible cycles of an
m-machine robotic rework cell originate from cycles of a rework robotic cell with
m − 1 machines. We only need to take into account activity Am. Therefore, the
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m-machine robotic rework cell will certainly has dynamic behaviour if the robotic
rework cell with m − 1 machines has it. This means that all robotic rework cell
with over three machine also have dynamic behaviour. This completes the proof.

This results in two cycles, namely S1 = A2, A0, A1 and S2 = A0, A2, A1. It is
necessary to mention that we choose A1 as the last activity of both cycles since it
is the only activity that is able to act as switching point from one cycle to another.

This theorem in particular implies that all k, where k → +∞, have a similar
production behaviour. As a direct result of this, it can be concluded that it is
enough to compare a particular implementation of S1 and S2, for example the kth
implementation of both of them, and then extend the result to a mass production
environment with an infinite period of time. To point out this subject more clearly,
let us find the dominancy regions of any one of S1 and S2 for kth implementation.
We must initially recall some concepts related to stochastic dominancy. There are
three kinds of stochastic order relations that are sorted through strangeness (Ross,
1996):

1. Absolute Dominance (AD): we say that T kS1
is absolute dominant over T kS2

,
written T kS1

≥ T kS2
, only if P (T kS1

≥ T kS2
) = 1 and T kS1

> T kS2
be satisfied for

at least one T kS1
.

2. First-order Stochastic Dominance (FSD): we say that T kS1
is first-order dom-

inant over T kS2
, written T kS1

≥st T kS2
, only if P (T kS2

> θ) ≥ P (T kS1
> θ) for all

θ.

3. Second-order Stochastic Dominance (SSD): if T kS1
is second-order dominant

over T kS2
, then E(T kS1

)E(T kS2
).

Since AD has priority over other dominance relations, we determine the regions
of AD of T kS1

and T kS2
in the first stage.

Theorem 2. Under a RRCSI, it is absolutely better to instruct the robot for
implementation of S2 in an infinite period of time if d(2− b)/ae ≤ 1.

Proof: we start with considering P (T kS1
≥ T kS2

) = P (6ε + 6δ + aXk
1 + b ≥

6ε+8δ+max{0, aXk
1 −(2ε+4δ), b−(2ε+4δ)}) = P (aXk

1 +b ≥ 2δ+max{0, aXk
1 −

(2ε+4δ), b−(2ε+4δ)}) = P (aXk
1 +b ≥ 2δ) = P (Xk

1 ≥ d(2−b)/ae). It is necessary
to recall that the discrete variable Xk

1 is associated with a geometric distribution
and at least equals 1. Therefore, we have P (T kS1

≥ T kS2
) = P (Xk

1 ≥ d(2−b)/ae) = 1
when d(2− b)/ae ≤ 1. This completes the proof.
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Due to the fact that FSD and SSD are our second and third priorities, we
determine the regions of the FSD and SSD of T kS1

and T kS2
, respectively, in the

Theorems 3 and 4.

Theorem 3. There is no FSD relationship between T kS1
and T kS2

executed for a
RRCSI.

Proof: It is enough to prove that the inequality P (T kS1
> θ) ≥ P (T kS2

> θ) is not
satisfied for all θ. Obviously, the intersection of T kS1

and T kS2
is 6ε+ 6δ. Therefore,

θ can be replaced with λ = θ−(6ε+6δ), and this yields the following results where
the cumulative distribution function FXk

1
of the geometric variable Xk

1 is equal to

1− (1− p1)x
k
1 and also α = max{0, b− (2ε+ 4δ)} for the sake of simplicity.

P (T kS1
> θ) = P (aXk

1 + b > λ) = P (Xk
1 >

λ−b
a

= 1− F (bλ−b
a
c) = (1− p1)b

λ−b
a
c

P (T kS2
> θ) = P (2δ +max{0, aXk

1 − (2ε+ 4δ), b− (2ε+ 4δ)} > λ)

harci = P (α > λ− 2δ|Xk
1 ≤

α + 2ε+ 4δ

a
)P (Xk

1 ≤
α + 2ε+ 4δ

a
)

harci +P (Xk
1 >

λ+ 2ε+ 2δ

a
|Xk

1 >
α + 2ε+ 4δ

a
)P (Xk

1 >
α + 2ε+ 4δ

a
)

None of α, λ, and δ is a random variable. So, any one of two following cases may
occur for P (T kS2

> θ):

1. α > λ− 2δ

→ P (T kS2
> θ) = P (Xk

1 ≤
α + 2ε+ 4δ

a
) + P (Xk

1 >
α + 2ε+ 4δ

a
) = 1

2. α ≤ λ− 2δ

→ P (T kS2
> θ) = P (Xk

1 >
λ+ 2ε+ 2δ

a
|Xk

1 >
α + 2ε+ 4δ

a
)P (Xk

1 >
α + 2ε+ 4δ

a
)

harci = P (Xk
1 >

λ+ 2ε+ 2δ

a
∩Xk

1 >
α + 2ε+ 4δ

a
)

harci = P (Xk
1 >

λ+ 2ε+ 2δ

a
) = 1− F (bλ+ 2ε+ 2δ

a
c)

harci = (1− p1)b
λ+2ε+2δ

a
c

If the case 1 is taken into consideration, P (T kS1
> θ) ≤ P (T kS2

> θ), whereas
P (T kS1

> θ) ≥ P (T kS2
> θ) for the second case. Thus, it is impossible to satisfy

inequality P (T kS1
> θ) ≥ P (T kS2

> θ) (or inequality P (T kS1
> θ) ≤ P (T kS2

> θ))
for any θ, and this means that there is no FSD relationship between T kS1

and T kS2
.

This completes the proof.
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As mentioned before, SSD order relations get through the expected values of
T kS1

and T kS2
. As a result of that, before proceeding with the next theorem, we

must calculate E(T kS1
) and E(T kS2

).

Lemma 3. For the case of a RRCSI, the expected values of cycle time of S1 and
S2 are given by:

E(T kS1
) = 6ε+ 6δ+

a

p1

+ b (8.4)

E(T kS2
) = max{6ε+ 8δ, b+ 4ε+ 4δ}

harci +(abmax{2ε+4δ,b}
a

c+ a

p1

−max{2ε+4δ, b})(1−p1)b
max{2ε+4δ,b}

a
c (8.5)

Proof: The fact that Xk
1 is associated with a geometric distribution with param-

eter p1 =
∏m1

i=1 p1i implies that (T kS1
) = E(6ε+ 6δ + aXk

1 + b) = E(6ε+ 6δ + b) +

aE(Xk
1 ) = 6ε + 6δ + b +

a

p1

. Regarding E(T kS2
), it contains a triple-sided max

term where 0 and b − (2ε + 4δ) are fixed and aXk
1 − (2ε + 4δ) is variable. For

simplicity, hereinafter β = 4ε+4δ and γ = max{2ε+4δ, b}, and therefore we have
the calculation of the conditional expected value below:

E(T kS2
) = E(6ε+ 8δ +max{0, aXk

1 − (2ε+ 4δ), b− (2ε+ 4δ)})
harci = β + E(max{γ, aXk

1 })
harci = β + E(max{γ, aXk

1 }|Xk
1 ≤ b

γ

a
c)P (Xk

1 ≤ b
γ

a
c)

harci +E(max{γ, aXk
1 }|Xk

1 > b
γ

a
c)P (Xk

1 > b
γ

a
c)

harci = β + γF (bγ
a
c) + a(bγ

a
c+

1

p1

)(1− F (bγ
a
c))

harci = β + γ(1− (1− p1)b
γ
a
c) + a(bγ

a
c+

1

p1

)(1− p1)b
γ
a
c)

harci = β + γ + (abγ
a
c+

a

p1

− γ)(1− p1)b
γ
a
c

harci ↔ E(T kS2
) = max{6ε+ 8δ, b+ 4ε+ 4δ}+

harci (abmax{2ε+ 4δ, b}
a

c+
a

p1

−max{2ε+ 4δ, b})(1− p1)b
max{2ε+4δ,b}

a
c

This completes the proof.

Theorem 4. If b+
a

p1

(1− (1−p1)bγ/ac) ≤ 2δ in a RRCSI, then T kS2
is second-order

larger than T kS1
; else if b +

a

p1

(1 − (1 − p1)bγ/ac)) > 2δ, then T kS2
is second-order
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smaller than T kS1
.

Proof: The proof will be presented in a structure similar to that of Theorem 3:
we use Equations (8.4) and (8.5) and initially consider the case in which E(T kS2

) ≥
E(T kS1

), and then extend the proof for the case in which E(T kS2
) < E(T kS1

). If we
relax the first bracket in E(T kS2

), then we have:

1. E(T kS1
) ≤ E(T kS2

)

harci → 2ε+ 2δ + b+
a

p1

≤ max{2ε+ 4δ, b}+
a

p1

(1− p1)
b
γ

a
c

harci → b+
a

p1

(1− (1− p1)
b
γ

a
c
) ≤ 2δ

2. E(T kS1
) > E(T kS2

)

harci → 2ε+ 2δ + b+
a

p1

> max{2ε+ 4δ, b}+
a

p1

(1− p1)
b
γ

a
c

harci → b+
a

p1

(1− (1− p1)
b
γ

a
c
) > 2δ

This completes the proof.

At the end of this section, it should be emphasized that Theorems 1 to 4
give an appropriate structure to select the robot’s partial cycle with the maximum
expected throughput of RRCSIs, and Lemma 3 helps us to calculate this maximum
expected throughput. Clearly, this structure assists industry in both designing and
developing basic rework cells.

8.4 Scheduling of RRCEIs with Free Pickup Cri-

terion

For the RRCEI case, the final parts processed on M2 are monitored to detect
the presence of different types of defects before delivering them to the customers.
Similar to RRCSIs, there is no difficulty with converting the multi-sensor system
into a single-sensor system in RRCEIs. Each sensor j,∀j ∈ {1, 2, ...,m2}, iden-
tifies no defect in each time inspection with probability p2j. This builds up a
sub-inspection set of m2 different sensors, and the sequence of random variables
[Y k

21, Y
k

22, , Y
k

2m2
] that represent the inspection results of m2 sensors follow Bernoulli

probability distribution. Following that, the generalized Bernoulli distributed vari-
able Y k

2 supporting the success of the multi-sensor inspection system of the part
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k is expressed as:

Y k
2 =

{
1 if

∑m2

j=1 Y2j = m2

0 if
∑m2

j=1 Y2j < m2

P (Y k
2 = 1) =

∏m2

j=1 p2j

P (Y k
2 = 0) = 1−

∏m2

j=1 p2j (8.6)

According to Equation (8.6), the number of inspection of the kth parts interred
to the rework cell performed by the single-sensor inspection system is the random
variable Xk

2 which is associated with a geometric distribution with success param-
eter p2 =

∏m2

j=1 p2j and the time between two inspections equals b. The reason for
this intuition is that the geometric distribution is defined as a discrete distribution
counting the number of Bernoulli trials until the first success. The partial cycle
times for kth implementation of S1 and S2 are presented in the following lemma,
respectively.

Lemma 4. Having a RRCEI, the partial cycle times for kth implementations of
S1 and S2 are:

T kS1
= 6ε+6δ+a+bXk

2 (8.7)
T kS2

= 6ε+8δ+max{0, a−(2ε+4δ), bXk
2−(2ε+4δ)} (8.8)

Proof: If we follow the order of tasks performed in Lemmas 1 and 2, once again,
we achieve the desired results. The only difference here is that the processing time
of M2 is the random variable, not M1. The rest of this proof is easy and therefore
omitted. This completes the proof.

Our task now is to find an optimal long-term production strategy considering
Lemmas 4.

Corollary 1. Theorem 1 to 4 are also correct for RRCEIs if a and b be swapped
with each other in all associated inequalities.

Proof: Easy and omitted.

Corollary 2. For the case of a RRCEI, the expected values of partial cycle time
of S1 and S2 are given by:

E(T kS1
) = 6ε+ 6δ+a+

b

p2

(8.9)
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E(T kS2
) = max{6ε+ 8δ, a+ 4ε+ 4δ}

harci +(bbmax{2ε+4δ,a}
b

c+ b

p2

−max{2ε+4δ, a})(1−p2)b
max{2ε+4δ,a}

b
c (8.10)

Proof: Easy and omitted.

It is worth noting that the result of this section along with the previous section
create a parallel mechanism for analysing both RRCSIs and RRCEIs with free
pickup criteria. Actually, we must make it clear that the main purpose of inspec-
tion is to control the quality of parts at the early stage of production to decrease
production complexity, or control the quality of parts through a final inspection at
the last stage. According to the first or the second priorities, a RRCSI or RRCEI
with free pickup criteria can be designed, respectively, and the result of Sections
8.3 and 8.4 can be applied for optimizing the performance. However, we still need
to extend results of these sections for cases in which the pickup criterion is either
interval or no-wait.

8.5 Analysis of Interval and No-Wait Pickup cri-

teria

We begin with generalizing results to the case of interval pickup criterion and then
provide a set of guidance notes to determine the optimality region of S1 and S2

for rework cells with no-wait pickup criterion. Let us first provide a more precise
definition of the interval pickup criterion. A wide variety of robotic rework cells, in
particular those used in steel, chemical and plastic industries, work under interval
pickup criterion. For these cells, we keep the temperature of the part within a
fixed range after completing any particular process, and hence, the waiting time
of the part at the machine must be bounded (Paul et al., 2007). Otherwise, the
part will be certainly scrapped because it overwaits for the robot to unload it.
Under this condition, it seems more economical to impose waiting time’s restric-
tions in order to have no scrap in the production line, especially for expensive parts.

Theorem 5. Theorems 2, 3, and 4 (Corollary 1) hold(s) for a RRCSI (a RRCEI)
with interval pickup criterion if and only if a + a ≥ 2ε + 4δ and b + b ≥ 2ε + 4δ.
Otherwise, S1 is the optimal cycle of rework cells under interval pickup criterion.

Proof: The definition of interval pickup criterion makes it clear that it is a spe-
cial case of the free pickup criterion in which neither M1 nor M2 can keep the
part for an infinite time (a 6= ∞ and b 6= ∞). This means that converting the
pickup criterion into interval has no impact on the optimality region of S1 and
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S2. Nonetheless, we should check whether these cycles are always feasible. For
S1, the robot loads the part to the machine (M1 or M2) and waits in front of it
throughout that the part processing. Therefore, this cycle is always feasible (and
also the optimal cycle if S2 be infeasible). In contrast, it is possible that S2 be an
infeasible cycle if a+ a < 2ε+ 4δ or b+ b < 2ε+ 4δ. More particularly, the proof
of Equations (8.3) shows that the total waiting time of the robot in a RRCSI is
max{0, aXk

1 − (2ε+4δ), b− (2ε+4δ)}. In this max term, max{0, (2ε+4δ)−aXk
1 }

and max{0, (2ε+ 4δ)− b} are waiting times of the part on M1 and M2 since they
are the reciprocal of the waiting time of the robot on machines. This yields the
result:

a ≥ max{0, (2ε+ 4δ)− aXk
1 } → aXk

1 + a ≥ 2ε+ 4δ → a+ a ≥ 2ε+ 4δ
b ≥ max{0, (2ε+ 4δ)− b} → b+ b ≥ 2ε+ 4δ

Also, considering the proof of Equations (8.8) gives us same results for a RRCEI.
Accordingly, Theorems 2, 3, 4 and Corollary 1, which are related to the optimality
conditions of S1 and S2 hold. This completes the proof.

The results of analysing the rework cell with interval pickup criterion is even
extendable for more specific pickup criteria. One of these well-solved pickup crite-
ria originating from interval pickup criterion is no-wait pickup criterion. Within a
manufacturing context, the no-wait means that the robot is instructed to unload
the part immediately after completing its operation on the machine (Che and Chu,
2005). Subsequently, we can consider it as a special case of the interval pickup
criterion in which a = 0 and b = 0.

Corollary 3. The cycle times of S2 for RRCSIs and RRCEIs with no-wait pickup
criterion are 4ε+ 4δ +max{aXk

1 , b} and 4ε+ 4δ +max{a, bXk
2 }, respectively.

Proof: Typically, the issues involved in no-wait pick up is that the waiting time
of the robot in front of that machine is not zero, or equivalently the waiting time
of the part at any particular machine is zero. This implies that aXk

1 ≥ (2ε + 4δ)
and b ≥ (2ε + 4δ) for Equations (8.3), and therefore max{0, a− (2ε + 4δ), bXk

2 −
(2ε+4δ)} = max{a− (2ε+4δ), bXk

2 − (2ε+4δ)}. This is enough to prove the first
part of this corollary. The proof of the second part of this corollary is completely
analogous to above derivation and therefore it is omitted. This completes the proof.

Theorem 6. S2 is the optimal cycle for both two-machine RRCSIs and RRCEIs
if it be feasible. Otherwise, S1 is the optimal cycle of rework cells under no-wait
pickup criterion.

156



Proof: It is enough to prove that the inequality T kS1
≥ T kS2

is always satisfied if S2

is feasible. Therefore, considering Corollary 3, we have:

1. For RRCSIs:
6ε+6δ+aXk

1 +b ≥ 4ε+4δ+max{aXk
1 , b} → 2ε+2δ+aXk

1 +b ≥ max{aXk
1 , b}

2. For RRCEIs:
6ε+6δ+a+bXk

2 ≥ 4ε+4δ+max{a, bXk
2 } → 2ε+2δ+a+bXk

2 ≥ max{a, bXk
2 }

, which are always satisfied. This completes the proof.

Fig. 8.3. A summary of the results of robotic rework cell scheduling problems

Figure 8.3 also summarizes the feasibility and optimality results obtained in
this research. This figure shows an integrated framework for both start of line and
end of line inspections in small-scale robotic rework cells with three common pickup
criteria. This framework makes a significant contribution to real-life applications
of industrial automation, and it assists manufacturers in designing automated
inspection cells. In more detail, it helps companies to remain competitive since
suggested cycles in this framework minimize the cycle time for the first time in the
literature related to robotic cells with inspection process.
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8.6 Concluding Remarks

Some of the small-scale robotic cells, especially two-machine ones, are still used
in automated manufacturing systems. The analysis of these cells is not an easy
task if stochastic variables such as inspection processes through a multiple-sensor
inspection system are taken into account. Therefore, an analytical method for
minimizing the partial cycle time of such cells has been developed in this study.
Regardless of the pickup criterion, we have proven that it is possible to reach a
steady state of these cells which have a dynamic behaviour, and then maximize
the expected throughput of associated cells. Comparing the two-machine robotic
rework cell under free pickup criterion with the same robotic cell without a rework
assumption, it has been realized that the performance of the partial cycle S2 is
improved due to the fact that the average time of producing a part is definitely
increased. With regard to the interval pickup criterion, we conclude there is no
guarantee that S2 (in comparison with S1) will be an optimal cycle when it is fea-
sible. Nonetheless, it is enough to check whether S2 satisfies feasibility conditions
for rework cells with interval and no-wait pickup criteria to conclude that it is the
optimal cycle. Further work should be done to consider the limited number of
permitted rework processes for a particular part. If the part could not pass the
inspection process even after this number of rework processes, it must be consid-
ered as scrap, not as a final product. Clearly, this assumption makes the analysis
of the system more complex.
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Chapter 9 is based on the published article Foumani, M., Smith-Miles,
K., Gunawan, I., 2016. Scheduling of Two-machine Robotic Re-
work Cells: In-process, Post-process and In-line Inspection Scenarios.
Omega, Submitted in April 2016.

Abstract This study focuses on the domain of a two-machine robotic cell schedul-
ing problem under three inspection scenarios. We propose a method for minimizing
the partial cycle time of cells with in-process and post-process inspection scenarios,
and then we convert this cell into a multi-function cell with in-line inspection sce-
nario. For the first scenario, parts are inspected in one of the production machines
using multiple sensors, while the inspection process is performed by an independent
inspection machine for the second scenario. Alternatively, the inspection can be
performed by a multi-function robot for the third scenario. A distinguishing char-
acteristic of this robot is that it can perform inspection of the part in transit.
However, the robot cannot complete the part transition and load it on the next
destination machine if it identifies a fault in the part. The stochastic nature of the
process prevents us from applying deterministic methods for corresponding prob-
lems. In the first stage, we present a method that converts a multi-sensor system
into a single-sensor system. The expected cycle times of two different cycles are
derived based on a geometric distribution, and then the maximum expected through-
put is pursued for in-process and post-process inspection sensors, respectively. In
the second stage, we develop the inspection system into an in-line system using a
multi-function robot. Finally, we determine if it is technically profitable to replace
the inspection scenario with the in-line inspection scenario.

Note to Practitioners Stochastic modelling of robotic cells are essential for
robotic manufacturers who seek methods to increase the productivity of robotized
systems with all different types of measuring systems. This study provides support
for the use of every inspection system by robotic cell designers. A real-life exam-
ple of this environment is a robotic arm equipped with a Grip-Gage-Go gripper to
measure the thickness of the shaft in transit. The measuring heads are integrated
into the automation by adding gages and crankshaft locating features to the arm.

Keywords Scheduling, Inspection, Multi-function, Robotic cell

Classification
SRF 1,1,1

2,2,1 |free, additive , stochastic , identical, cyclic|T with post-process test

SRF 1,1,1
2,2,1 |free, additive , stochastic , identical, cyclic|T with in-process test

SRF 1,1,1
2,2,1 |free, additive , stochastic , identical, cyclic|T with in-line test

Note References are considered at the end of the thesis.



Chapter 9

Scheduling of Two-machine
Robotic Rework Cells:
In-process, Post-process and
In-line Inspection Scenarios

9.1 Introduction

The Cellular Manufacturing System (CMS) has been identified as a critical part of 
the manufacturing and service industries. CMS considerably decreases cycle time,
work in process, and manufacturing cost. The manufacturing cell is the smallest
unit of a CMS where the level of automation of the material handling system has a
direct relationship with the level of automation of the cell (Safaei and Tavakkoli-
Moghaddam, 2009). For instance, the material handling system must be robotized
and processing time kept deterministic for the cell to be fully automated. This kind
of cell is generally called a robotic cell because a robot is specifically responsible
for transporting parts. Robotic cells are one of the complicated application areas
of flow-shops that have received a considerable amount of attention in robot move
sequencing (Brauner, 2008). The main reason for this is that the CMS requires a
huge expenditure on material handling devices such as industrial robots (Pinedo,
2009).

Robotic cells are basically classified into two categories: the robotic cells with-
out rework assumption and robotic rework cells. The term ”rework” here means
that a processed part may need reprocessing. Therefore, it is cycled between
test and processing stations until deemed acceptable (Geren and Redford, 1999).
These two cases can also be defined as ”deterministic cells” and ”stochastic cells”
respectively. It is straightforward to find a deterministic model for the robotic
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cells without rework assumption. Following that, there are many studies in the
literature dealing with the scheduling of the robot activities, as widely addressed
in (Agnetis, 2000; Dawande et al., 2005; Batur et al., 2012; Zarandi et al., 2013) for
different small-scale cells. Nonetheless, inspection and rework stages in a robotic
cell is one of the important issues in the field of robotic cell scheduling which
reflects most real-life cases. This paper addresses the stochastic issues that arise
when considering inspection and rework stages, laying some important analytical
foundations for this under-studied problem.

A robotic cell with an additional inspection process in one of the rework stages
is called a robotic rework cell. A two-machine robotic rework cell which is the
smallest possible robotic rework cell is commonly captured by the following frame-
work: the cell is made up of two production machines M1 and M2, a gantry robot
that serves the entire production line, an input conveyor (I or dummy machine
M0) and an output conveyor (O or dummy machine M3) with unlimited storage
capacity. The characteristic of the robotic rework cell which distinguishes it from
other types of robotic cells is the mechanism used to perform the inspection of a
part: either by a group of contact/non-contact sensors installed into a production
machine; an independent inspection machine; or via robot grippers. Considering
these three alternatives, the robotic rework cell can follow any one of the following
inspection scenarios:

• In-process inspection scenario where multiple contact/non-contact sensors
are installed into M1 or M2.

• Post-process inspection scenario where multiple contact/non-contact sensors
are installed into an independent inspection machine located after M1 or M2.

• In-line inspection scenario where a couple of measuring heads are integrated
into the automation by adding gages and part locating features to the robot
end effector.

These scenarios make it clear that typical robotic cells are a special case of
the robotic rework cells in which neither machines nor the robot gripper perform
inspection, and therefore all produced parts must be failure-free. As shown in
Figure 9.1, two-machine robotic rework cells are classified into two groups based
on the part inspection route: two-machine robotic rework cells with start of line
inspection (2RRCSI) and two-machine robotic rework cells with end of line in-
spection (2RRCEI) (Colledani et al., 2014). Following the 2RRCSI, it is possible
that the raw parts have poor quality. As a consequence, the following solutions
give a guarantee that all finished parts have high quality: 1) installing multiple
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contact/non-contact inspection sensors intoM1, 2) installing multiple contact/non-
contact inspection sensors into an independent inspection machine after M1, 3)
installing multiple contact/non-contact inspection sensors into a multi-function
robot performing the inspection of the part during its transition between M1 and
M2. In contrast with this plan of quality control which is the so-called ”Start of
Line” testing, there is a plan namely ”End of Line” testing that only concentrates
on final products and therefore is applicable for 2RRCEIs. This testing plan is
executed when all manufacturing stages have been completed and the part only
needs a final approval by: 1) sensors installed into M2, 2) the inspection machine
after M2, or 3) the multi-function robot during the part transition between M2

and O. Then, it can be packed for the customers.

Fig. 9.1. The classification scheme of robotic rework cells

An example of 2RRCEIs with in-process inspection scenario is shown in Figure
9.2 for the crankshaft production lines (Ayub et al., 2014). A particular crankshaft
being processed goes through I, the lathe machine M1, the lathe machine M2 and
O under this part processing route. After loading the crankshaft to any one of
the lathe machines, the robot either waits for the crankshaft to finish its operation
or immediately moves to another occupied lathe machine or I for unloading a
new crankshaft. The significant difference between two lathe machines is that the
crankshaft is failure-free when it is processing on M1, whereas the crankshaft may
fail and need rework when it is processing on M2. As a consequence, there is an
urgent need for in-process inspection of the part on M2.

Fig. 9.2. A two-machine robotic rework cell with end of line testing plan
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There are a number of issues such as kinematics of the robot, process and sys-
tem design, inspection types, and part processing routes that must be addressed
in order to optimize a two-machine robotic rework cell. Specifically, the stochastic
analysis of cyclic schedules for two-machine robotic rework cells is a key issue con-
sidering in this study. The analysis of stochastic robotized cells has a fragmented
history of development in the literature. Some studies of stochastic robotic cells
concentrated on two-machine cells which operate under a production system with
machine failures and repairs, whereas some others touched on the robotic cells with
stochastic processing times. For the former, a Markovian stochastic approach was
established by Savsar and Aldaihani (2008) in order to evaluate the utilization and
throughput rate of two-machine robotic cells with stochastic occurrence of produc-
tion machine failures and repairs. In a similar study, two-machine robotic cells with
machine failure considerations were analyzed in two phases by Tysz and Kahraman
(2010). They obtained a Stochastic Petri Net for these cells and then calculated 
corresponding steady-state probabilities for the reachable markings. Also, for the
latter, Aldaihani and Savsar (2005) were among the first to assume the machine’s
processing time as a random quantity following an exponential distribution. They
presented exact numerical solutions to minimize total manufacturing cost for a
two-machine robotic cell. Following that, the cycle time in a virtually arranged
two-machine robotic cell with normally distributed processing time elements was
analyzed by Shafiei-Monfared et al. (2009). Finally, Geismar and Pinedo (2010)
provided an on-line scheduling scheme to determine the expected partial cycle time
of a two-machine robotic cell where only one of the machines has a stochastic pro-
cessing time with normal distribution. To our best knowledge, there is a lack of
research on the stochastic part processing route although it is applicable to many
practice-oriented scenarios. Note that the stochastic part processing route is ac-
tually possible when a set of sensors is integrated into at least one of the machines
or the attached to the robot to find defects in the manufactured parts.

The overall structure of this paper is as follows. Section 9.2 contains fun-
damental concepts related to robotic rework cells. Section 9.3 is devoted to the
scheduling problem of two-machine robotic rework cells with in-process inspection
scenario. We initially show how the analysis of a machine with multiple sensors
integrated into it can be converted to the analysis of the machine with a single
sensor. Following that, all expected completion times under ”Start of Line” and
”End of Line” testing plans are developed for various feasible solutions, and then
the expected throughput is maximized for any one of scenarios. Likewise, the
post-process inspection scenario is discussed in Section 9.4. Furthermore, a policy
to prevent deadlock problems originating from the inspection scenario is presented
in this section. Section 9.5 is dedicated to the scheduling problem of two-machine
robotic rework cells with in-line inspection scenario to cover both ”Start of Line”
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and ”End of Line” testing plans. Section 9.6 is the heart of this study in which
the obtained results of Sections 9.3, 9.4 and 9.5 are used for a comparison between
performances of three feasible inspection scenarios. Finally, Section 9.7 concludes
the paper with some perspectives and discussion of further research.

9.2 Related Research

We begin this section by first giving a precise definition of each problem class, and
then summarizing the notations used in robotic rework cells to find the expected
partial cycle times. An effective strategy for scheduling of a robotic cell with a
complex part processing route is to consider it as a collection of smaller clusters
(Chan et al., 2008). It should be emphasized that it is even possible for a complex
robotic rework cell to be converted into a chain of two-machine robotic rework cells.
Figure 9.3 shows an example of converting a 10-machine production line into five
independent two-machine rework cells after increasing the number of intermediate
conveyors and robots.

Another real-world example of converting a complex robotic rework cell into
a group of integrated two-machine robotic rework cells is given in Osakada et al.
(2011). This example is related to press lines for draw-forming of automobile body
panels for Honda (with Aida Engineering), Toyota (with Komatsu) and BMW
(with Schuler), where the space between press machines were compact enough
only for accommodating material handling robots. The lines include a set of
press machines for automobile panels, intermediate buffers, multiple computer-
controlled robots, an input conveyor and an output conveyor.

Fig. 9.3. A clustering scheme for five independent two-machine cells

The concept of the robot activity is one of the most important tools to consider
a cyclic formulation of the robot movement. In a two-machine robotic rework cell
with the inspection scenario i,∀i ∈ {1, 2, 3}, the robot activity denoted as Aij
corresponds to the robot starting this activity from machine j,∀j ∈ {0, 1, 2}, with
the following three-phase sequence of actions:

1. The robot takes a part from the production machine Mj.
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2. The robot immediately carries the part to the production machine Mj+1.

3. The robot immediately completes the activity Aij by loading the part onto
the production machine Mj+1.

Aij is also subject to fluctuation based on the inspection scenarios as follows:

(a) For the in-process inspection scenario, i=1, the first phase contains an ad-
ditional segment: if a group of sensors is installed into Mj, then the robot
takes the part from the production machine Mj after identifying no fault in
the part.

(b) For the post-process inspection scenario, i=2, the additional segment of the
second phase is: if an independent inspection machine is located after Mj,
then the robot initially carries the part to this inspection machine. The part
is cycled between the inspection machine and Mj until deemed acceptable
and finally carried to the production machine Mj+1.

(c) For the in-line inspection scenario, i=3, the second phase contains an addi-
tional segment: Assume a measuring head is integrated with the robot arm
and the part needs inspection after unloading it from Mj. Then, the second
phase is finished not only when the robot carries the part to Mj+1 but also
when the measuring head identifies no fault in the part.

Consistent with Brauner (2008), a particular n-unit cycle can be characterised
by a permutation of activities in which any activity is repeated exactly n times.
Since Ai2 is one of the activities with n repetitions, we can conclude that an n-unit
cycle is able to produce n final products. Therefore, the cycle time is per unit cycle
time or the time to complete one part in a cyclic behavior. An important point
about the permutation is that the rework cell must return to the initial state at the
starting of the permutation after completing it. In addition, the scheduling of two-
machine robotic rework cells must be constrained to the deadlock-free subregion of
permutations. The deadlock-free schedule can be guaranteed only if the following
activities are executed: The receiving server (the robot, M1 or M2) and sending
server (the robot, M1 or M2) must be empty and loaded before the load/unload
process, respectively (Crama et al., 2000). Note that some additional constraints
may be considered for any one of the three inspection scenarios. For example,
it is forbidden to unload the machine when its current part needs rework for an
in-process inspection scenario.
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The simplest case of n-unit cycles is one-unit cycles where exactly one com-
pleted part leaves from the two-machine robotic rework cell after the cycle’s ex-
ecution. The sequence of performing activities has two alternatives. Let us fix
Ai1 in the last position of any particular cycle of inspection scenario i, so the
order of other activities can be either Ai2, Ai0 or Ai0, Ai2. This results in two
cycles, namely the forward cycle Shki1 = Ai2, Ai0, Ai1 and the backward cycle
Shki2 = Ai0, Ai2, Ai1,∀i ∈ {1, 2, 3},∀h ∈ {1, 2} and ∀k ∈ {0, 1, 2}. Note that i
represents three inspection scenarios again, and h represents ”Start of Line” and
”End of Line” testing plans. k is zero for both in-process and post-process in-
spection scenarios. It is only applicable for the in-line inspection scenario and
consequently it will be specified later on. It is also necessary to mention that we
choose Ai1 as the last activity of both cycles since it is the only activity that is
able to act as switching point from one cycle to another. In other words, for any
particular i, h, and k, the only common state between Shki1 and Shki2 is exactly the
moment when the robot has loaded a part on M2 and waits at M2 until it receives
the next order by the robot controller. The key note here is that any n-unit cy-
cle is actually a combined sequence repeating Shki1 exactly q times and also Shki2
exactly n − q times in each iteration of the cycle. Therefore, it is expected that
per unit partial cycle time is a convex combination of the expected partial cycle
time of Shki1 and Shki2 as two given corner points. This means that the expected
partial cycle time of one of cycles Shki1 or Shki2 always dominates the expected per
unit partial cycle time of any given n-unit cycle. As a result of this, it is enough
to limit our search to one-unit cycles, Shki1 and Shki2 for any particular i, h, and k
(Sethi et al., 1992). Now, let us extend the notations from Foumani et al. (2015b)
for the problem in this paper:

γ1 The inspection time of the part on M1, the inspection machine located after
M1, or the robot gripper in transit between M1 and M2, depending on the
inspection scenario used for

γ2 The inspection time of the part on M2, the inspection machine located after
M2, or the robot gripper in transit between M2 and O

ε The load/unload time of machines (or conveyors) by the robot

δ The required time for traveling between adjacent location pairs

m1 The number of sensors needed to inspect the part processed on the first ma-
chine

m2 The number of sensors needed to inspect the part processed on the second
machine
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a The processing time of the first machine

b The processing time of the second machine

T l
Shkij

The partial cycle time of Shkij for the lth identical part fed to the rework cell,

where l ∈ N

T ∗ihk The optimal partial cycle time considering the inspection scenario i, testing
plan h, and inspection strategy k

wl1 The robot’s waiting time at M1 for the lth identical part fed to the rework cell,
where l ∈ N

wl2 The robot’s waiting time at M2 for the lth identical part fed to the rework cell,
where l ∈ N

As a result of the dynamic nature of the robotic rework cell, we cannot be as-
sured that it operates in steady state. The variable C(Ai1, l) is defined as the com-
pletion time of the lth implementation of Ai1 to explain why there is no guarantee
of cyclic behaviour of the robotic rework cell (Crama and van de Klundert, 1997).
Obviously, C(Ai1, l) − C(Ai1, l − 1) does not remain a constant value for ∀l ∈ N.
Therefore, it is vital to carry out a separate analysis for any C(Ai1, l)−C(Ai1, l−1),
which is named the partial cycle time T l

Shkij
for the lth implementation of an arbi-

trary robot move sequence Shkij . The main aim of the following section is to obtain
the most appropriate robot move sequence that gives us the minimum expected
partial cycle time or in other words, the maximum expected partial throughput
for a robotic rework cell subject to aforementioned deadlock-related constraints.

9.3 Sequencing of Activities under In-Process In-

spection Scenario

In-process inspection refers to the various types of inspection scenarios in which a
part processing on the machine is monitored by a multi-sensor system to detect the
presence of different types of defects. Any one of these sensors is typically classified
under either contact or non-contact. A real-life instance of a contact sensor is the
CNC touch probe contacting a workpiece to simplify precision measurement. Also,
non-contact sensors can be video and vision systems that are used to capture an
image of a workpiece by an optical base and then analyze it. Finally, a variety of
laser sensors comprising interferometric, triangulation, and dispersive capabilities
can be applied for detection of defects (Vacharanukul and Mekid, 2005). Hence,
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the use of these multi-sensor systems requires the conversion of them into single-
sensor systems in order to make monitoring of the part’s processing easier.

9.3.1 Scheduling of 2RRCSIs: In-Process Inspection Sce-
nario

We assume that each sensor f , where f ∈ {1, 2, ...,m1}, detects the part’s fail-
ure with specified probability q1f each time the part is processing on M1, and
therefore this individual sensor identifies no defect in each time inspection with
probability p1f = 1 − q1f . This means that the inspection result of each sensor
f after each time processing of the part l on M1 is a random variable Y l

1f which
follows a Bernoulli probability distribution of parameter p1f . Needless to say that
here we have a sub-inspection set of m1 different sensors, and the sequence of ran-
dom variables [Y l

11, Y
l

12, ..., Y
l

1m1
] that represent the inspection results of m1 sensors

is independent and identically distributed (i.i.d) since all of them follow Bernoulli
probability distribution and there is no dependency between them (Sambola et al.,
2011). Therefore, the part cannot pass the multi-sensor inspection process even
if one of the sensors detects the part’s failure. Following that, the generalized
Bernoulli distributed variable Y l

1 supporting the success of the multi-sensor in-
spection system of the part k is expressed as:

Y l
1 =

{
1 if

∑m1

f=1 Y1f = m1

0 if
∑m1

f=1 Y1f < m1

P (Y l
1 = 1) =

∏m1

f=1 p1f

P (Y l
1 = 0) = 1−

∏m1

f=1 p1f (9.1)

The analysis of M1 with multiple sensors integrated into it can be converted
to the analysis of M1 with a single sensor using the above equations. Following
that, the important random variable for us here to determine is the number of
inspections performed by the newly established single-sensor inspection system
before passing all sub-inspections. Clearly, for the lth part interred to the rework
cell, this number can be represented by a random variable X l

1 which is associ-
ated with a geometric distribution with success parameter p1 =

∏m1

f=1 p1f and the
time between two inspections equals (a + γ1). The reason for this intuition is
that the geometric distribution is defined as a discrete distribution counting the
number of Bernoulli trials until the first success. It is then necessary to mention
that all sub-inspections of an iteration of the rework process must be restarted
because of the memoryless property of the geometric distribution. This property
implies that the current sub-inspection process can be performed independent of
the number of completed sub-inspections before. The partial cycle times for lth
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implementation of S10
11 and S10

12 are presented in the following lemmas, respectively.

Lemma 1. Having a 2RRCSI, the partial cycle time for lth implementation of
S10

11 is the random variable T l
S10

11
as:

T l
S10

11
= 6ε+6δ+(a+γ1)X l

1+b (9.2)

Proof: We know that the lth implementation of S10
11 includes the tasks below:

the robot unloads (l − 1)th part from M2 after a full waiting at this machine to
finish the processing of the (l− 1)th part (b+ ε). The robot carries the part from
M2 to O, and then moves backward to I to pick up the lth part and load it on
M1(3ε + 5δ). In this stage, the robot undergoes a random waiting depending on
the number of rework processes performed by M1, and eventually it picks up the
part l and loads it on M2. Note that the time taken for an iteration of the rework
process equals the summation of the processing and inspection times of the first
machine. Therefore, we have ((a+ γ1)X l

1 + 2ε+ δ). This completes the proof.

Lemma 2. Having a 2RRCSI, the partial cycle time for lth implementation of
S10

12 is the random variable T l
S10

12
as:

T l
S10

12
= 6ε+8δ+max{0, (a+γ1)X l

1−(2ε+4δ), b−(2ε+4δ)} (9.3)

Proof: Here, the robot visits I,M2, and M1 in the lth implementation of S10
12 ,

respectively. Our goal is to find the time required for all intervening activities
which are implemented between two consecutive loadings of M2. The robot ini-
tially moves backward to I to unload the lth part and load it on M1(2ε + 3δ).
In the second phase, it returns to M2 to unload the (l − 1)th part and transfer
it to O after a partial waiting at M2(2ε + 2δ + wl−1

2 ). Likewise, the empty robot
returns to M1 to unload the lth part and transfer it to M2 after a partial waiting at
M1(2ε+3δ+wl1). Therefore, the partial cycle time for lth implementation of S10

12 is:

T l
S10

12
= 6ε+ 8δ + wl−1

2 + wl1

Where

wl−1
2 = max{0, b− (2ε+ 4δ)}

wl1 = max{0, (a+ γ1)X l
1 − (2ε+ 4δ)− wl−1

2 }

wl−1
2 + wl1 = max{0, (a+ γ1)X l

1 − (2ε+ 4δ), b− (2ε+ 4δ)}
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This completes the proof.

Our task now is to find an optimal long-term production strategy considering
Lemmas 1 and 2. We present the following theorem which is applicable for all
inspection scenarios.

Theorem 1. For two-machine robotic rework cells, there is no dynamic state
change from Shki1 to Shki2 (and vice versa) for any particular i, h, and k.

Proof: As mentioned before, the starting point of each one of Shki1 and Shki2 is the
moment when the robot loaded a part on M2 and therefore it waits at M2 until
it receives the next order by the robot controller. If M1 was loaded at this given
moment, the stochastic modelling was essential due to the fact that the extent to
which each part has been processed on M1 at the starting point of each partial
cycle is random. Fortunately, M1 which performs a random number of reworks
on the part is empty at this common state. Therefore, there is no relationship
between the optimal partial cycle in the current state and the number of reworks
performed on the part in the previous partial cycle. This completes the proof.

This theorem in particular implies that all l, where l → +∞, have a similar
production behaviour. As a direct result of this, it can be concluded that it is
enough to compare a particular implementation of Shki1 and Shki2 , for example the
lth implementation of both of them, and then extend the result to a mass pro-
duction environment with an infinite period of time. To point out this subject
more clearly, let us find the dominancy regions of any one of Shki1 and Shki1 for lth
implementation of any particular i, h, and k. We must initially recall some con-
cepts related to stochastic dominancy. There are three kinds of stochastic order
relations that are sorted through strangeness (Ross, 1996):

• Absolute Dominance (AD): we say that T
S
l 
hk

i1
is absolutely dominant over T l

Shki2

, written T l
Shki1
≥AD T l

Shki2
, only if P (T l

Shki1
T l
Shki2

) = 1 and T l
Shki1

> T l
Shki2

is satisfied

for at least one T l
Shki1

.

• First-order Stochastic Dominance (FSD): we say that T
S
l 
hk

i1
is first-order dom-

inant over T l
Shki2

, written T l
Shki1
≥FSD T l

Shki2
, only if P (T l

Shki1
> θ) ≥ P (T l

Shki2
> θ)

for all θ.

• Second-order Stochastic Dominance (SSD): if T
S
l 
hk

i1
is second-order dominant
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over T l
Shki1

, written T l
Shki1
≥SSD T l

Shki2
, then E(T l

Shki1
) ≥ E(T l

Shki2
).

Since AD has priority over other dominance relations, we determine the regions of
AD of T l

S10
11

and T l
S10

12
in the first stage.

Theorem 2. Under a 2RRCSI with in-process inspection scenario, it is absolutely
better to instruct the robot for implementation of S10

12 in an infinite period of time
if d 2δ−b

a+γ1
e ≤ 1.

Proof: we start with considering P (T l
S10

11
≥ T l

S10
12

) = P (6ε+ 6δ + (a+ γ1)X l
1 + b ≥

6ε + 8δ + max{0, (a + γ1)X l
1 − (2ε + 4δ), b − (2ε + 4δ)}) = P ((a + γ1)X l

1 + b ≥
2δ + max{0, (a + γ1)X l

1 − (2ε + 4δ), b − (2ε + 4δ)}) = P ((a + γ1)X l
1 + b ≥ 2δ) =

P (X l
1 ≥ d 2δ−b

a+γ1
e). It is necessary to recall that the discrete variable X l

1 is asso-
ciated with a geometric distribution and at least equals 1. Therefore, we have
P (T l

S10
11
≥ T l

S10
12

) = P (X l
1 ≥ d 2δ−b

a+γ1
e) = 1 when d 2δ−b

a+γ1
e ≤ 1. This is enough to say

T ∗110 = T l
S10

11
is absolutely dominant over T l

S10
12

in an infinite period of time. This

completes the proof.

Corollary 1. Comparing the two-machine robotic rework cell with the same
robotic cell without rework assumption, the chance of optimality for S10

12 increases
whereas this chance decreases for S10

11 .

Proof: Theorem 2 makes it clear that robotic cells without a rework assumption
are a special case of robotic rework cells where X l

1=1. Nevertheless, completed
parts by typical robotic rework cells are not failure-free, and consequently X l

1 ≥ 1.
It is known that the probability that S10

12 is the optimal partial cycle of the lth
execution is P (T l

S10
11
≥ T l

S10
12

) = P (X l
1 ≥ d 2δ−b

a+γ1
e). The lower bound of this proba-

bility is obtained when X l
1 = 1. Therefore, as shown in Figure 9.4, an increase in

the optimality chance of S10
12 results from an increase in the feasible domain of X l

1.
Regarding Figure 9.4, it only should be noted that S10

11 and S10
12 are labelled as S1

and S2, respectively, in robotic cells without a rework assumption. This completes
the proof.
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Due to the fact that FSD and SSD are our second and third priorities, we
determine the regions of the FSD and SSD of T l

S10
11

and T l
S10

12
, respectively, in The-

orems 3 and 4.

Theorem 3. There is no FSD relationship between T l
S10

11
and T l

S10
12

executed for a

2RRCSI with an in-process inspection scenario.

Proof: It is enough to prove that the inequality P (T l
S10

11
> θ) ≥ P (T l

S10
12
> θ)

is not satisfied for all θ. Obviously, the intersection of T l
S10

11
and T l

S10
12

is 6ε + 6δ.

Therefore, θ can be replaced with λ = θ−(6ε+6δ), and this yields the following re-
sults where the cumulative distribution function FXl

1
of the geometric variable X l

1

is equal to 1−(1−p1)x
l
1 and also α = max{0, b−(2ε+4δ)} for the sake of simplicity.

P (T l
S10

11
> θ) = P ((a+ γ1)X l

1 + b > λ) = P (X l
1 >

λ− b
a+ γ1

)

harci = 1− F (b λ− b
a+ γ1

c) = (1− p1)
b λ−b
a+γ1

c

P (T l
S10

12
> θ) = P (2δ +max{0, (a+ γ1)X l

1 − (2ε+ 4δ), b− (2ε+ 4δ)} > λ)

harci = P (α > λ− 2δ|X l
1 ≤

α + 2ε+ 4δ

a+ γ1

)P (X l
1 ≤

α + 2ε+ 4δ

a+ γ1

)

harci +P (X l
1 >

λ+ 2ε+ 2δ

a+ γ1

|X l
1 >

α + 2ε+ 4δ

a+ γ1

)P (X l
1 >

α + 2ε+ 4δ

a+ γ1

)

None of α, λ, and δ is a random variable. As a consequence, any one of the two
following cases may occur for P (T l

S10
12
> θ):

1. α > λ− 2δ

harci → P (T l
S10

12
> θ) = P (X l

1 ≤
α + 2ε+ 4δ

a+ γ1

) + P (X l
1 >

α + 2ε+ 4δ

a+ γ1

) = 1

2. α ≤ λ− 2δ

harci → P (T l
S10

12
> θ) = P (X l

1 >
λ+ 2ε+ 2δ

a+ γ1

|X l
1 >

α + 2ε+ 4δ

a+ γ1

)P (X l
1 >

α+2ε+4δ
a+γ1

)

harci = P (X l
1 >

λ+ 2ε+ 2δ

a+ γ1

∩X l
1 >

α + 2ε+ 4δ

a+ γ1

) = P (X l
1 >

λ+ 2ε+ 2δ

a+ γ1

)

harci = 1− F (bλ+ 2ε+ 2δ

a+ γ1

c) = (1− p1)
bλ+2ε+2δ

a+γ1
c

If the case 1 is taken into consideration, P (T l
S10

11
> θ) ≤ P (T l

S10
12
> θ), whereas

P (T l
S10

11
> θ) ≥ P (T l

S10
12
> θ) for the second case. Thus, it is impossible to satisfy
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inequality P (T l
S10

11
> θ) ≥ P (T l

S10
12
> θ) (or inequality P (T l

S10
11
> θ) ≤ P (T l

S10
12
> θ)

for all θ, and this means that there is no FSD relationship between T l
S10

11
and T l

S10
12

.

This completes the proof.

As mentioned before, SSD order relations are obtained through the expected
values of T l

S10
11

and T l
S10

12
. As a result of that, before proceeding with the next theo-

rem, we must calculate E(T l
S10

11
) and E(T l

S10
12

).

Lemma 3. For the case of a 2RRCSI, the expected values of two partial cycle
times T l

S10
11

and T l
S10

12
are given by:

E(T l
S10

11
) = 6ε+6δ+

a+ γ1

p1

+b (9.4)

E(T l
S10

12
) = max{6ε+ 8δ, b+ 4ε+ 4δ}

harci +((a+γ1)bmax{2ε+4δ,b}
a+γ1

c+a+ γ1

p1

−max{2ε+4δ, b})(1−p1)
bmax{2ε+4δ,b}

a+γ1
c

(9.5)

Proof: The fact that X l
1 is associated with a geometric distribution with success

parameter p1 =
∏m1

f=1 p1f implies:

E(T l
S10

11
) = E(6ε+ 6δ + (a+ γ1)X l

1 + b)

harci = E(6ε+ 6δ + b) + (a+ γ1)E(X l
1) = 6ε+ 6δ + b+

a+ γ1

p1

Regarding E(T l
S10

12
), it contains a triple-sided max term where 0 and b−(2ε+4δ) are

fixed and (a+γ1)X l
1− (2ε+ 4δ) is variable. For simplicity, hereinafter β = 4ε+ 4δ

and γ = max{2ε+4δ, b}, and therefore the calculation of the conditional expected
value is as follows:

E(T l
S10

12
) = E(6ε+ 8δ +max{0, (a+ γ1)X l

1 − (2ε+ 4δ), b− (2ε+ 4δ)})
harci = β + E(max{γ, (a+ γ1)X l

1})
harci = β + E(max{γ, (a+ γ1)X l

1}|X l
1 ≤ b

γ

a+ γ1

c)P (X l
1 ≤ b

γ

a+ γ1

c)

harci +E(max{γ, (a+ γ1)X l
1}|X l

1 > b
γ

a+ γ1

c)P (X l
1 > b

γ

a+ γ1

c)

Clearly, the E(max{γ, (a+γ1)X l
1}) equals γ if X l

1 ≤ bγ/(a+γ1)c . Otherwise, this
expected value can be reduced to (a+γ1)bγ/(a+γ1)c+E(max{(a+γ1)X l

1} when
X l

1 > bγ/(a + γ1)c. It is necessary to recall the memoryless property of the geo-
metric distribution for X l

1 > bγ/(a+ γ1)c. This property implies that the current
sub-inspection process can be performed independent of the number of completed

173



sub-inspections before, and therefore E(max{(a+ γ1)X l
1} = (a+ γ1))/p1. We can

conclude that:

E(T l
S10

12
) = β + γF (b γ

a+ γ1

c) + (a+ γ1)(b γ

a+ γ1

c+
1

p1

)(1− F (b γ

a+ γ1

c))

harci = β + γ(1− (1− p1)
b γ
a+γ1

c
) + (a+ γ1)(b γ

a+ γ1

c+
1

p1

)(1− p1)
b γ
a+γ1

c
)

harci = β + γ + ((a+ γ1)b γ

a+ γ1

c+
a+ γ1

p1

− γ)(1− p1)
b γ
a+γ1

c

,where F is the cumulative distribution function (CDF) of X l
1. This equation can

be rewritten as Equations (9.5) considering the real amounts of β and γ. This
completes the proof.

Theorem 4. If b +
a+ γ1

p1

(1 − (1 − p1)
bmax{2ε+4δ,b}

a+γ1
c
) < 2δ in a 2RRCSI with

in-process inspection scenario, then T l
S10

12
is second-order larger than T l

S10
11

; else if

b+
a+ γ1

p1

(1−(1−p1)
bmax{2ε+4δ,b}

a+γ1
c
) > 2δ, then T l

S10
12

is second-order smaller than T l
S10

11
.

Proof: The proof will be presented in a structure similar to that of Theorem 3:
we use Equations (9.4) and (9.5) to consider the case in which E(T l

S10
11

) ≤ E(T l
S10

12
),

and then extend the proof for the case in which E(T l
S10

11
) > E(T l

S10
12

). If we relax

the first bracket in E(T l
S10

12
) and recall γ from Lemma 3, then we have:

1. E(T l
S10

11
) < E(T l

S10
12

)

harci → 2ε+ 2δ + b+
a+ γ1

p1

< max{2ε+ 4δ, b}+
a+ γ1

p1

(1− p1)
b

γ

a+ γ1

c

harci → b+
a+ γ1

p1

(1− (1− p1)
b

γ

a+ γ1

c
) ≤ 2δ

2. E(T l
S10

11
) > E(T l

S10
12

)

harci → 2ε+ 2δ + b+
a+ γ1

p1

> max{2ε+ 4δ, b}+
a+ γ1

p1

(1− p1)
b

γ

a+ γ1

c

harci → b+
a+ γ1

p1

(1− (1− p1)
b

γ

a+ γ1

c
) > 2δ

Note that T l
S10

11
=SSD T l

S10
12

if b +
a+ γ1

p1

(1 − (1 − p1)
bmax{2ε+4δ,b}

a+γ1
c
) = 2δ. This can

be considered as the supplementary part of this theorem. This completes the proof.
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At the end of this section, it should be emphasized that Theorems 1 to 4 give
an appropriate structure to select the robot’s partial cycle with the maximum ex-
pected throughput of 2RRCSIs with an in-process inspection scenario, and Lemma
3 helps us to calculate this maximum expected throughput. Clearly, this structure
assists industry in both designing and developing basic rework cells.

9.3.2 Scheduling of 2RRCEIs: In-Process Inspection Sce-
nario

For the 2RRCEI case with an in-process inspection scenario, the final parts pro-
cessed on M2 are monitored to detect the presence of different types of defects
before delivering them to the customers. Similar to 2RRCSIs, there is no difficulty
with converting the multi-sensor system into a single-sensor system in 2RRCEIs
with an in-process inspection scenario. Each sensor g, where g ∈ {1, 2, ...,m2},
identifies no defect in each time inspection with probability p2g. This builds up
a sub-inspection set of m2 different sensors, and the sequence of random vari-
ables [Y l

21, Y
l

22, ..., Y
l

2m2
] that represent the inspection results of m2 sensors follow

Bernoulli probability distribution. Following that, the generalized Bernoulli dis-
tributed variable Y l

2 supporting the success of the multi-sensor inspection system
of the part l is expressed as:

Y l
2 =

{
1 if

∑m2

g=1 Y2g = m2

0 if
∑m2

g=1 Y2g < m2

P (Y l
2 = 1) =

∏m2

g=1 p2g

P (Y l
2 = 0) = 1−

∏m2

g=1 p2g (9.6)

According to Equation (9.6), the number of inspection of the lth part interred
to the rework cell performed by the single-sensor inspection system is the ran-
dom variable X l

2 which is associated with a geometric distribution with success
parameter p2 =

∏m2

g=1 p2g and the time between two inspections equals (b+γ2). As
mentioned earlier, the reason for this intuition is that the geometric distribution
is defined as a discrete distribution counting the number of Bernoulli trials until
the first success. The partial cycle times for lth implementation of S20

11 and S20
12

are presented in the following lemma, respectively.

Lemma 4. Having a 2RRCEI with an in-process inspection scenario, the partial
cycle times for lth implementations of S20

11 and S20
12 are the random variables T l

S20
11

and T l
S20

12
as:
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T l
S20

11
= 6ε+6δ+a+(b+γ2)X l

2 (9.7)

T l
S20

12
= 6ε+8δ+max{0, a−(2ε+4δ), (b+γ2)X l

2−(2ε+4δ)} (9.8)

Proof: If we follow the order of tasks performed in Lemmas 1 and 2, once again,
we achieve the desired results. The only difference here is that the processing time
of M2 is the random variable due to sensors installed into it, not M1. The rest of
this proof is easy and therefore omitted.

Our task now is to find an optimal long-term production strategy considering
Lemmas 4.

Corollary 2. Theorem 1 to 4 are also correct for 2RRCEIs if a and b be swapped
with each other in all associated inequalities.

Proof: Easy and omitted.

Corollary 3. For the case of a 2RRCEI with an in-process inspection scenario,
the expected values of partial cycle time of S20

11 and S20
12 are given by:

E(T l
S20

11
) = 6ε+6δ+a+

b+ γ2

p2

(9.9)

E(T l
S20

12
) = max{6ε+ 8δ, a+ 4ε+ 4δ}

harci +((b+ γ2)bmax{2ε+4δ,a}
b+γ2

c+
b+ γ2

p2

−max{2ε+ 4δ, a})(1− p2)
bmax{2ε+4δ,a}

b+γ2
c

(9.10)

Proof: Easy and omitted.

It is worth noting that the result of this subsection along with the previous
subsection create a parallel mechanism for analysing both 2RRCSIs and 2RRCEIs
with an in-process inspection scenario. Actually, we must make it clear that the
main purpose of inspection is to control the quality of parts at the early stage
of production to decrease production complexity, or control the quality of parts
through a final inspection at the last stage to satisfy the customers’ requirements.
According to either of these priorities, a 2RRCSI or 2RRCEI can be designed for
a robotic rework cell with an in-process inspection scenario, respectively, and then
the result of Section 9.3 can be applied for optimizing the performance. cells.
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9.4 Sequencing of Activities under Post-Process

Inspection Scenario

This section is dedicated to the scheduling problem of two-machine robotic rework
cells to cover both ”Start of Line” and ”End of Line” testing plans for a post-
process inspection scenario. On the contrary to in-process inspection scenario, the
measurement is performed by an independent inspection machine located after the
production machine if we follow the post-process inspection scenario. There are at
least two motivations for a post-process inspection scenario. Firstly, the inspection
process may predominantly need a specific condition which cannot be satisfied by
the production machine. This specific condition can be an exact temperature,
pressure, etc. Thus, it is necessary to perform the inspection process by an extra
inspection machine. Secondly, performing both production and inspection steps
by a production machine equipped by sensors may make this machine a bottleneck
of the rework cell. Following that, it is often impossible or at least time-consuming
to perform both production and inspection steps by the same machine.

9.4.1 Scheduling of 2RRCSIs: Post-Process Inspection Sce-
nario

The performance of post-process inspection must be tested for 2RRCSIs. Con-
sequently, we provide the best design of them at first. Consider a 2RRCSI in
which the inspection process is performed by an independent machine, namely N ,
between M1 and M2. This means that the set of m1 sensors is installed into N
instead of M1. Accordingly, the stochastic part processing route is I → M1 �
N →M2 → O. In this route, the rework machine M1 and the inspection machine
N together build up the stochastic closed-loop event M1 � N . This stochastic
closed-loop event is associated with the probability of the rework being needed
after inspection of the part on N . We make the following assumptions regarding
M1 � N : 1) Elements of M1 � N have deterministic occurrence time. 2) The
number of switching into M1 � N for the lth part is the stochastic variable X l

1.
Due to the fact that the design of the rework cell is changed in comparison with

the rework cell under in-process inspection scenario, it is essential to check whether
the cell is still deadlock-free or not. As mentioned before, the receiving server and
sending server must be empty and loaded before the load and unload processes, re-
spectively, in regard to the in-process inspection scenario. However, considering the
post-process inspection scenario, a counterexample that shows these constraints
are necessary but not sufficient for deadlock prevention is as follows:

Assume that M1 is empty and N is loaded by the part l− 1 in a 2RRCSI. The
robot loads the part l on M1 as receiving server, and then move to N in order to
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unload the part l − 1. The part on N may be defective and consequently needs
to revisit M1. This means that the robot is not able to reload part l − 1 on the
busy machine M1, and also it is not able to load part l on the busy machine N
for inspection. A circular deadlock occurs under this condition even though all
constraints were satisfied for the previous robot’s movements (Wysk et al., 1994;
Venkatesh and Smith, 2003; Odrey and Meja, 2005). Therefore, an additional
constraint is demanded to make 2RRCSI deadlock-free. This constraint works by
avoiding any kinds of circular deadlocks. It does not allow the robot to load the
part on a machine if the machine is a deadlock-risk resource, which potentially
can lead to a circular deadlock. Hence, M1 can be loaded only if N is empty
considering a 2RRCSI. The following lemmas are obtained if we assume that the
required time for traveling between M1 and N equals δ.

Lemma 5. Having a 2RRCSI, the partial cycle time for lth implementation of
S10

21 is the random variable T l
S10

21
as:

T l
S10

21
= 4ε+6δ+(a+γ1+4ε+2δ)X l

1+b (9.11)

Proof: All tasks that the robot must perform are similar to S10
11 . The only differ-

ence here is that M1 � N occurs X l
1 times for any particular part l. The stochastic

time taken for this number of iterations of M1 � N is (a+ γ1 + 4ε+ 2δ)X l
1, whilst

this time is (a+ γ1)X l
1 + 2ε for S10

11 . This completes the proof.

Lemma 6. Having a 2RRCSI, the partial cycle time for lth implementation of
S10

22 is the random variable T l
S10

22
as:

T l
S10

22
= 8ε+12δ+γ1 +(a+γ1 +4ε+2δ)(X l

1−1)+max{0, a−(2ε+6δ), b−(2ε+6δ)}

(9.12)

Proof: Starting from M2, the robot visits I,M2,M1 and N in the lth imple-
mentation of S10

22 , respectively. It is remarkable that the robot does not stop the
implementation of M1 � N until it has the first success at N . Let us now calculate
T l
S10

22
as follows: When the robot does not execute the stochastic closed-loop event

M1 � N , the total time required for loading, unloading, and traveling is constant
and equal to 4ε+10δ. The stochastic time taken for the first iterations of M1 � N
is wl−1

2 + wl1 + γ1 + 4ε+ 2δ where:

wl1 = max{0, a− (2ε+ 6δ)− wl−1
2 }

wl−1
2 = max{0, b− (2ε+ 6δ)}
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wl−1
2 + wl1 = max{0, a− (2ε+ 6δ), b− (2ε+ 6δ)}

And the stochastic time taken for any one of X l−1
1 remaining closed-loop events is

equal to a+ γ1 + 4ε+ 2δ. This completes the proof.

An indirect result from these lemmas is that the expected values of T l
S10

21
and

T l
S10

22
are E(T l

S10
21

) = 4ε + 6δ + a+γ1+4ε+2δ
p1

+ b and E(T(S2210)l) = 8ε + 12δ + γ1 +
(a+γ1+4ε+2δ)(1−p1)

p1
+ max{0, a − (2ε + 6δ), b − (2ε + 6δ)}. Since AD has priority

over other dominance relations, we determine the regions of AD of T l
S10

21
and T l

S10
22

in the following Theorem. Note that there is no need to evaluate FSD and SSD
relationship between these partial cycles if the regions of AD relationship cover
entire state space.

Theorem 5. Under a 2RRCSI with post-process inspection scenario, the robot
movements must be instructed according to Table 9.1:

Table 9.1: The optimality region of post-process inspection scenario for 2RRCSIs

Operational Parameter a+ b < 4δ a+ b = 4δ a+ b > 4δ

Stochastic Order Relations T l
S10

21
≤AD T l

S10
22

T l
S10

21
=AD T l

S10
22

T l
S10

21
≥AD T l

S10
22

Optimality Relationships T ∗210 = T l
S10

21
T ∗210 = T l

S10
21

&T l
S10

22
T ∗210 = T l

S10
22

Proof: The first column of Table 9.1 results from the following observation:

P (T l
S10

11
< T l

S10
12

) = P (4ε + 6δ + (a + γ1 + 4ε + 2δ)X l
1 + b < 8ε + 12δ + γ1 +

(a + γ1 + 4ε + 2δ)(X l
1 − 1) + max{0, a − (2ε + 6δ), b − (2ε + 6δ)}) = P (a + b <

4δ +max{0, a− (2ε+ 6δ), b− (2ε+ 6δ)}) = P (a+ b < 4δ)

Clearly, both T l
S10

11
and T l

S10
12

have stochastic nature due to the input parameter X l
1,

whereas none of a + b and 4δ yields a stochastic value. Accordingly, a + b is less
than 4δ or not, depending on deterministic parameters a, b and δ. We can prove
the second and the third columns in the same way. This completes the proof.

9.4.2 Scheduling of 2RRCEIs: Post-Process Inspection Sce-
nario

Let us represent the stochastic part processing route of 2RRCEI as I → M1 →
M2 � N → O here. Similar to the previous case, there is a stochastic closed-loop
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event M2 � N which occurs X l
2 times for any particular part l. It is also known

that M2 can be loaded only if N be empty because it is a deadlock-risk resource.
The performance of post-process inspection for 2RRCEIs is tested in the forth-
coming lemma and theorem:

Lemma 7. For a 2RRCEI with a post-process inspection scenario, T l
S20

21
and T l

S20
22

are:

T l
S20

21
= 4ε+6δ+a+(b+γ2+4ε+2δ)X l

2 (9.13)

T l
S20

22
= 8ε+ 10δ + γ2 + (b+ γ2 + 4ε+ 2δ)(X l

2 − 1)

harc +max{0, a− (4ε+ 6δ + γ2 + (b+ γ2 + 4ε+ 2δ)(X l
2 − 1)), b− (2ε+ 4δ)}

(9.14)

Proof: Regarding T l
S20

21
, the only difference in comparison with the corresponding

cycle in 2RRCSI is that completed parts on M1 are failure-free, not on M2. Thus,
we must swap a and γ1 with b and γ2, respectively. The proof of T l

S20
22

is a bit more

complex. We not only must swap a and γ1 with b and γ2, but also decrease total
traveling time to 10δ. Therefore, wl1 and wl−1

2 are changed to:

wl1 = max{0, a− (4ε+ 6δ + γ2 + (b+ γ2 + 4ε+ 2δ)(X l
2 − 1) + wl−1

2 )}

wl−1
2 = max{0, b− (2ε+ 4δ)}

wl−1
2 +wl1 = max{0, a− (4ε+ 6δ + γ2 + (b+ γ2 + 4ε+ 2δ)(X l

2− 1)), b− (2ε+ 4δ)}

This completes the proof.

Theorem 6. Under a 2RRCEI with post-process inspection scenario, the robot
movements must be instructed according to Table 9.2:

Table 9.2: The optimality region of post-process inspection scenario for 2RRCEIs

Operational Parameter a+ b < 2δ a+ b = 2δ a+ b > 2δ

Stochastic Order Relations T l
S20

21
≤AD T l

S20
22

T l
S20

21
=AD T l

S20
22

T l
S20

21
≥AD T l

S20
22

Optimality Relationships T ∗220 = T l
S20

21
T ∗220 = T l

S20
21

&T l
S20

22
T ∗220 = T l

S20
22

Proof: Obviously, P (T l
S20

21
< T l

S20
22

) = P (a + b < 2δ + max{0, a − (4ε + 6δ + γ2 +

(b+ γ2 + 4ε+ 2δ)(X l
2 − 1)), b− (2ε+ 4δ)}) in which there is no stochastic param-
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eter and also the max term is nonnegative. Consequently, T l
S20

21
≤AD T l

S20
22

only if

P (a+b < 2δ). The rest of this proof is easy and therefore omitted. This completes
the proof.

It is worth noting that the result of Section 9.4 creates a mechanism for
analysing cells with a post-process inspection scenario. It is assumed that there
is an obligation to apply this scenario due to a need of specific conditions such
as an exact temperature or pressure. Thus, it is more appropriate to perform
the inspection process by an extra inspection machine. Nonetheless, relaxing this
assumption, we describe a newly-developed scenario in the forthcoming section to
improve performance of cells.

9.5 Sequencing of Activities under In-Line In-

spection Scenario

This section is dedicated to the scheduling problem of two-machine robotic rework
cells to cover both ”Start of Line” and ”End of Line” testing plans for an in-line
inspection scenario. For such a scenario, the inspection is performed by a multi-
function robot which is able not only to transfer the part between two adjacent
machines but also to inspect the part in transit.

Although there are a number of studies related to multi-function robots, all of
them assumed that the robot acts as a spot-welding gun, a spray-painting gun,
or an assembly device in addition to the material handling device (Keating and
Oxman, 2013; Foumani et al., 2014). All these types of operations have the same
nature, whilst the result of inspection is not clear in advance. This characteris-
tic of the inspection process distinguishes the analysis of it from other types of
operations.
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Under an in-line inspection scenario, the inspection is predominantly performed
by a Grip-Gage-Go (GGG) gripper attached to the robot arm. Figure 9.5 depicts
an example of this gripper used for measuring the diameter of a crankshaft. In this
figure, the measuring heads are integrated into the automation by adding gages
and also crankshaft locating features to the robotic arm.

9.5.1 Sequencing of Multi-Function Robot in 2RRCSIs

The multi-function robot is responsible for inspection of the part here. However,
this inspection is not necessarily performed in transit, which is named transition
inspection strategy. Alternatively, the robot can unload the part from M1 and
then stop in front of this machine to finish the inspection process. This alternative
strategy is called stop inspection strategy. Clearly, the stop inspection strategy
leads to one of the following cases: 1) it increases the partial cycle time, for at
least γ1, if the inspection process shows that the part must pass M1, 2) it decreases
the partial cycle time, for at least min{δ, γ1}, if the inspection process shows that
the part must reload to M1 for a rework process. It should be emphasized that
γ1 it the time that the robot could save during the forward movement from M1 to
M2 and performing inspection simultaneously, while min{δ, γ1} is the time that
the robot saved due to omitting the backward movement to M1 after identifying
the part failure. In order to determine the partial cycle times, we label them by
T l
S11

31

, T l
S11

32

, T l
S12

31

and T l
S12

32

, respectively. The number of cycles is increased from two

to four since k=1 under the stop inspection strategy and k=2 under the transition
inspection strategy.

Lemma 8. Having a 2RRCSI with in-line inspection scenario, the partial cycle
times of S11

31 , S
11
32 , S

12
31 and S12

32 are:

T l
S11

31
= 4ε+6δ+(a+γ1+2ε)X l

1+b (9.15)

T l
S11

32
= 6ε+ 8δ + γ1 + (a+ γ1 + 2ε)(X l

1 − 1) +max{0, a− (2ε+ 4δ), b− (2ε+ 4δ)}

(9.16)

T l
S12

31
= 6ε+5δ+a+max{δ, γ1}+(a+γ1+min{δ, γ1}+2ε)(X l

1−1)+b (9.17)

T l
S12

32
= 6ε + 7δ + max{δ, γ1} + (a + γ1 + min{δ, γ1} + 2ε)(X l

1 − 1) + max{0, a −
(2ε+4δ), b−(2ε+4δ)} (9.18)
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Proof: The partial cycle time calculations are almost the same in each of four
formulas, and therefore we do not need to prove all of them. Let us only obtain
T l
S11

31
and T l

S12
31

:

• T l
S11

31
is equal to Equation (9.2) plus 2ε(X l

1 − 1). Obviously, this additional

time which follows a geometric distribution is because of the fact that the
robot must unload the part from M1 for an individual inspection and then
reload it at M1 if the outcome of the inspection process does not be satisfying.

• The additional time for T l
S12

31
is −δ−γ1 +max{δ, γ1}+(min{δ, γ1}+2ε)(X l

1−
1). In more detail, this is the elapsed inspection time until the first success.
It contains min{δ, γ1} and 2ε for backward movement and unload/reload
operations of X l

1 − 1 fails, respectively. Also, δ + γ1 in Equation (9.2) is
replaced with max{δ, γ1} which is time taken by robot for movement from
M1 to M2.

Likewise, we can prove T l
S11

32
and T l

S12
32

. This completes the proof.

The following question arises in this stage of the work: which one of stop and
transition inspection strategies should be implemented? In answer to this question,
we summarize briefly the linkages between these strategies regardless of ”Start of
Line” and ”End of Line” testing plans.

Theorem 7. In a rework robotic cell with an in-line inspection scenario, the
stop inspection strategy is more effective if the success probability is less than 1

2
,

whereas the transition inspection strategy is more effective if the success probabil-
ity is greater than 1

2
.

Proof: Taking into account three kinds of stochastic order relationships, the proof
will be presented in a combined structure similar to that of Theorems 2, 3 and 4:

• Absolute dominance: it is enough to prove that both P (T l
S11

31
≥ T l

S12
31

) =

1 and P (T l
S11

31
≤ T l

S12
31

) = 1 are not satisfied to conclude that there is no

AD relationship between T l
S11

31
and T l

S12
31

. We know that P (T l
S11

31
≥ T l

S12
31

) =

P (max{δ, γ1}+min{δ, γ1}(X l
1−1) ≤ δ+γ1) = P (X l

1 ≤ (δ+γ1−max{δ, γ1}+
min{δ, γ1})/(min{δ, γ1})) = P (X l

1 ≤ 2) = 1− (1− p1)2 6= 1. Also, similarly,
P (T l

S11
31
≤ T l

S12
31

) = 1− p1 6= 1.
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• First-order stochastic dominance: For this case, we have P (T l
S11

31
≥ θ) =

P (X l
1 ≥ (θ − (4ε + 6δ + b))/(a + γ1 + 2ε)) and P (T l

S12
31
≥ θ) = P (X l

1 ≥
(θ+γ1 +min{δ, γ1}− (4ε+5δ+max{δ, γ1}+ b))/(a+γ1 +min{δ, γ1}+2ε)).
It is easy to prove that there is no FSD relationship between them.

• Second-order stochastic dominance: we should perform a comparison be-
tween E(T l

S11
31

) = 4ε + 6δ + (a + γ1 + 2ε)/p1 + b and E(T l
S12

31
) = 4ε + 5δ +

max{δ, γ1} − γ1 − min{δ, γ1} + (a + γ1 + min{δ, γ1} + 2ε)/p1 + b. Since
E(T l

S11
31

) − E(T l
S12

31
) = 2min{δ, γ1} − (min{δ, γ1})/p1 , we can conclude that

1
2

is the breakpoint with regards to SSD.

Likewise, we can prove these stochastic order relationships for T l
S11

32
and T l

S12
32

. This

completes the proof.

Theorem 8. As shown in Table 9.3, the optimal partial cycle for a 2RRCSI can
be obtained through a two-phase procedure for the in-line inspection scenario.

Table 9.3: The optimality region under in-line inspection scenario for 2RRCSIs

Proof: Relationships related to p1 follow from Theorem 7. So, we limit this proof
to the columns of Table 9.3. The first column results from the following observa-
tion:

• p1 <
1
2

and a+ b < 2δ: This means that the state of this case is restricted to
T l
S11

31
and T l

S11
32

. Clearly, T l
S11

31
− T l

S11
32

= a+ b− (2δ +max{0, a− (2ε+ 4δ), b−
(2ε+ 4δ)}). Therefore, T l

S11
31
< T l

S11
32

if a+ b < 2δ.
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• p1 = 1
2

and a + b < 2δ: This means that there is no restriction and any
one of T l

S11
31
, T l

S11
32
, T l

S12
31

and T l
S12

32
has a chance of optimality. T l

S11
31
< T l

S11
32

and

T l
S12

31
< T l

S12
32

when a + b < 2δ. Also, following form Theorem 7, T l
S11

31
= T l

S12
31

when p1 = 1
2
. Accordingly, T ∗311 = T ∗312 = T l

S11
31

&T l
S12

31
.

• p1 >
1
2

and a + b < 2δ: This means that the state of this case is restricted
to T l

S12
31

and T l
S12

32
. It is obvious that, T l

S12
31
− T l

S12
32

= a+ b− (2δ +max{0, a−
(2ε+ 4δ), b− (2ε+ 4δ)}). Therefore, T l

S12
31
< T l

S12
32

if a+ b < 2δ.

Similarly, we can prove results in the second and third columns. This completes
the proof.

9.5.2 Sequencing of Multi-Function Robot in 2RRCEIs

Multi-function robots are able to perform different types of inspections. For in-
stance, such flexibility in crankshaft’s inspection can be achieved by considering
alternative types of measuring heads for inspections between M1 and M2 and load-
ing it to the tool magazines of the robot. Therefore, it is an easy task to convert
a multi-function robot used in a 2RRCSI into an appropriate multi-function robot
for the 2RRCEI. Only, the measuring head must be exchanged.

Lemma 9. Having a 2RRCEI with in-line inspection scenario, the partial cycle
times of S21

31 , S
21
32 , S

22
31 and S22

32 are:

T l
S21

31
= 4ε+6δ+a+(b+γ2+2ε)X l

2 (9.19)

T l
S21

32
= 6ε+ 8δ + γ2 + (b+ γ2 + 2ε)(X l

2 − 1) +max{0, a− (2ε+ 4δ + γ2 + (b+ γ2 +

2ε)(X l
2− 1)), b− (2ε+ 4δ)} (9.20)

T l
S22

31
= 6ε+5δ+b+max{δ, γ2}+(b+γ2+min{δ, γ2}+2ε)(X l

2−1)+a (9.21)

T l
S22

32
= 6ε+7δ+max{δ, γ2}+(b+γ2+min{δ, γ2}+2ε)(X l

2−1)+max{0, a−(2ε+3δ+

max{δ, γ2}+(b+γ2+min{δ, γ2}+2ε)(X l
2−1)), b−(2ε+4δ)} (9.22)

Proof: Follows from Lemma 8.

Corollary 4. Even if a 2RRCSI be swapped with a 2RRCEI, Theorems 7 and 8
hold.

185



Proof: Regarding Theorem 7, it should be emphasized that both stop and tran-
sition inspection strategies are operation-oriented, not layout-oriented. Therefore,
it is not a matter where we want execute these strategies, either between M1 and
M2 or between M2 and O. Additionally, regarding Theorem 8, it should be noted
that the breakpoint a+ b = 2δ is not changed for this case although all cycle times
are decreased. Hence, there is no loss of generality by considering results of Table
9.3 for a 2RRCEI with the in-line inspection scenario. Only, for this case, h=2
should be considered instead of h=1. This completes the proof.

9.6 The Comparison of In-Process and Post-Process

Inspection Scenarios with an In-Line Inspec-

tion Scenario

This section is done to evaluate a basic two-machine robotic rework cell and de-
termine if it is technically profitable to replace an in-process (or post-process)
inspection scenario with an in-line inspection scenario. It is assumed that all
inspection scenarios are cost-free. Also, there is no obligation to apply only a pre-
defined inspection scenario, and it is technically feasible to choose any one of three
inspection scenarios which has higher performance. We develop a comparative
analysis for this purpose due to the fact that it is an effective tool for evaluating
the performance of a new production system design before any actual implemen-
tation. The obtained results of Sections 9.3, 9.4 and 9.5 together are used for
the comparison between the performance of in-process, post-process and in-line
inspection scenarios here. Let us initially compare the performance of in-process
and post-process scenarios in Theorem 9.

Theorem 9. Regardless of the applied testing plan, any particular partial cycle
of a rework cell with post-process inspection scenario is dominated by at least one
of the partial cycles of the corresponding rework cell with in-process inspection
scenario.

Proof: let us start the proof with 2RRCEIs case. For a 2RRCEI with post-
process scenario, S10

21 or S10
22 is the optimal cycle. So, regardless of the optimal

cycle of the post-process inspection scenario, it suffices to show that always there
is a partial cycle for in-process inspection scenario which its cycle time is less than
T ∗210. For the first case, we assume that T ∗210 = T l

S10
21

. Clearly, T l
S10

11
≤AD T l

S10
21

since

T l
S10

21
= T l

S10
11

+ (4ε+2δ)X l
1−2ε. Now, let us assume that T ∗210 = T l

S10
22

for the second

case where again T l
S10

11
≤AD T l

S10
21

. Therefore, T ∗110 always dominates T ∗210. A sim-
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ilar argument can be made for 2RRCEIs with the post-process inspection scenario.

Since all partial cycles of the cell with post-process inspection scenario are dis-
qualified, we should only compare two scenarios: in-process and in-line. In this
regard, emphasis is initially put on implementation of stop inspection strategy in
2RRCSIs and 2RRCEIs with in-line inspection scenario. Assume without loss of
generality that p1 ≤ 1

2
and p2 ≤ 1

2
for 2RRCSIs and 2RRCEIs with in-line inspec-

tion scenario, respectively. Then, the robot must be instructed to perform either
of S11

31 or S11
32 depending on a, b, and δ.

Theorem 7. Whenever a stop inspection strategy yields an optimal cycle, the
inspection scenario must not be shifted from in-process to in-line.

Proof: To prove this theorem, it is enough to show that at least one of T l
S10

11

or T l
S10

12
is smaller than both T l

S11
31

and T l
S11

32
. Then, we can conclude that neither

of S11
31 or S11

32 seems to reduce the partial cycle time of a rework cell formed by
a multi-function robot. Observing Equation (9.2) and (9.15), we can state that
T l
S11

31
= T l

S10
11

+ 2ε(X l
1 − 1) for 2RRCSIs. This means that T l

S11
31

is bigger than T l
S10

11
.

Also, recalling γ and β from Lemma 3, we can rewrite Equations (9.3) and (9.16)
as:

T l
S10

12
=

{
β + γ if (a+ γ1)X l

1 ≤ γ

β + (a+ γ1)X l
1 if (a+ γ1)X l

1 > γ (9.23)

T l
S11

32
=

{
β + γ + γ1 + (a+ γ1 + 2ε)(X l

1 − 1) if a ≤ γ

β + a+ γ1 + (a+ γ1 + 2ε)(X l
1 − 1) if a > γ (9.24)

Clearly, Equation (9.23) and (9.24) resulted from the second argument of the max
function of original equations. Since X l

1 ≥ 1 and all other input data are nonneg-
ative, T l

S11
32

is absolutely bigger than T l
S10

12
for 2RRCSIs. Note that the proof for

2RRCEIs is same. This completes the proof.
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Fig. 9.6. Comparison of in-process and in-line inspection scenarios with respect to stop

inspection strategy

The scheme of four feasible partial cycles is shown in Figure 9.6 in order to
demonstrate their relationship in a graphical way. The figure shows that in-process
inspection scenario is even more preferable as the number of rework processes in-
creases towards infinity. Let us now extend the analysis to the case when p1 >

1
2
.

The other case, p2 >
1
2
, can be treated in a similar fashion.

Theorem 8. If a transition inspection strategy leads to the optimal cycle under
any one of the following conditions, it must be permitted to replace a cell with
in-process inspection scenario with a cell with in-line inspection scenario:

1. a+ b < 2δ

(a) p1 >
min{δ, γ1}+ 2ε

2min{δ, γ1}+ 2ε

(b) a + b + max{δ, γ1} + (a + γ1 + min{δ, γ1} + 2ε)(
1− p1

p1

) < 3δ + ((a +

γ1)(
1

p1

+ b2ε+ 4δ

a+ γ1

c)− (2ε+ 4δ))(1− p1)
b 2ε+4δ
a+γ1

c

2. a+ b > 2δ

(a) p1 > (a+ γ1 + b+min{δ, γ1}+ 2ε− 2δ)(min{δ, γ1}+ 2ε)

(b) max{δ, γ1}+(a+γ1+min{δ, γ1}+2ε)(
1− p1

p1

)+max{0, a−(2ε+4δ), b−

(2ε+ 4δ)} < δ +max{0, b− (2ε+ 4δ)}+ ((a+ γ1)bmax{2ε+ 4δ, b}
a+ γ1

c+
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a+ γ1

p1

−max{2ε+ 4δ, b})(1− p1)
b
max{2ε+ 4δ, b}

a+ γ1

c

Proof: We know that two cases may occur. In the first case, T ∗312 = T l
S12

31

since a + b < 2δ. Subcases 1.a and 1.b are also extracted from simplifying
inequities E(T l

S12
31

) < E(T l
S10

11
) and E(T l

S12
31

) < E(T l
S10

12
), respectively. Note that

p1 >
min{δ,γ1}+2ε
2min{δ,γ1}+2ε

> 1
2
, and therefore the optimality of the transition inspection

strategy does not give a guarantee that T ∗312 is certainly less than T ∗310. The proof
of the second case is similar. T ∗312 = T l

S12
32

if a + b < 2δ. Also, E(T l
S12

32
) < E(T l

S10
11

)

and E(T l
S12

32
) < E(T l

S10
12

), result in subcases 2.a and 2.b. This completes the proof.

Now, there is an appropriate framework which helps us to find the best in-
spection scenario for each designed robotic rework cell. As a direct result from
Theorem 7 and 8 together, bottleneck identification is also an important objective
in order to compare different scenarios. This means that we should not apply
a multi-function robot for a rework cell if it acts like a sensor installed into the
machine and never perform inspection in transit. In more detail, the robot has
to repeat inspection several times under this condition which often makes it the
bottleneck of the rework cell.

9.7 Concluding Remarks

An analytical method for minimizing the partial cycle time of such cells has been
developed for three different inspection scenarios: in-process, post-process and
in-line. We have proven that it is possible to reach a steady state of the small-
scale cells, which have a dynamic behaviour, and then maximize the expected
throughput of associated cells. Comparing the two-machine robotic rework cell
with the same robotic cell without a rework assumption, it has been realized that
the performance of the backward cycle Shki2 , i ∈ {1, 2, 3}, h ∈ {1, 2} and k ∈ {0, 1, 2}
is improved due to the fact that the average time of producing a part is definitely
increased. It has been proven that there is second-order stochastic dominancy
relationship between feasible partial cycles of the in-process scenario, whilst it is
possible to find absolute dominancy relationship between all feasible partial cycles
of post-process (and also in-line) scenario. Furthermore, we have considered the
problem of converting rework cells with in-process and post-process inspection
scenarios into the rework cell with the in-line inspection scenario where a multi-
function robot is responsible for inspection of the part in transit. Since the optimal
cycle under in-process scenario always dominates the corresponding optimal cycle
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under post-process scenario, the problem has been reduced to only comparing in-
process and in-line scenarios. The comparison has revealed that the inspection
scenario must not be shifted from in-process to in-line if the multi-function robot
first performs the inspection of the part and then transfers it to the next machine.
The reason for this intuition is that the robot only acts like an inspection sensor
under this condition. Therefore, it is not only the bottleneck of the cell, but
also decreases partial throughput. Finally, we have proven that it is technically
profitable to replace the in-process inspection scenario with the in-line inspection
scenario if the robot performs inspection of the part in transit. Nonetheless, the
performance improvement depends on the probability that the part needs rework
after each time processing on the production machine. There are a couple of
further research topics which will be studied in the future works. Firstly, we can
consider the non-identical parts case in which some of the parts need ”Start of
Line” testing plan, whereas the rest need ”End of Line” testing plan. Also, a
secondary problem for this case is to determine the sequence of non-identical parts
to be completed. Secondly, further work should be done to consider the limited
number of permitted rework processes for a particular part. If the part could not
pass inspection process even after this number of rework processes, it must be
considered as scrap, not as a final product.
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Part IV

Conclusions



Chapter 10

10.1 Conclusions

As mentioned in the Part I of this thesis, robotic cells are one of the sophisti-
cated application areas of flowshops that have gained increasingly importance in
production engineering. They are classified into two categories from a quality con-
trol point of view: (i) robotic cells without an inspection process and (ii) robotic
cells with an inspection process. In regard with the second category, it should
be mentioned that there exist advanced robots that are able not only to act as a
material handling device but also to inspect the part in transit between machines.
Such a kind of robots and cells in which these robots are applied are called Multi-
Function Robots (MFRs) and Multi-Function Robotic Cells(MFRCs), respectively. 
A real-life example of this environment is a robotic arm which is equipped with a
Grip-Gage-Go gripper. The robotic arm, or MFR, can measure the thickness of
the shaft in transit between machines. Part II of the thesis included a description
of cells with the inspection processes where stochastic data are only recorded by
the robot in an independent computer, whereas Part III is devoted to stochastic
scheduling problems without any sort of relaxations.

This thesis is one of the pioneering studies initiating MFRC in in the general
area of scheduling and performance evaluation. Consequently, before proceeding
with different types of MFRCs in Part II, it is needed to determine their robotic
cell in origin. Chapter 3 is related to robotic cells with a hub machine and shows
that these types of robotic cells are one of the origins of MFRCs. This chapter
introduces a hub reentrant robotic cell consisting of a group of m production
machines. In order to produce a completed part in a hub reentrant robotic cell, a
chain of m − 1 secondary operations are performed by m − 1 different machines,
and a hub machine is alternately visited for m primary operation so that parts
must reenter the hub machine after any one of secondary operations. Although
the robot employed in a hub reentrant robotic cell is only a material handling
device, the processing route of the part in the cell is similar to the processing
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route of parts in MFRCs. The reason behind this intuition is that secondary
operations are completely different in nature, whereas primary operations often
have same nature. For example, it can be assumed that all primary operations
in the hub machine are inspection processes. This operational assumption reveals
similarities between a hub reentrant robotic cell and a MFRC. More precisely, if we
remove the hub machine in the hub reentrant robotic cell and instead replace the
robot with a MFR, then the cell will be converted to a MFRC. An optimization
methodology for hub reentrant robotic cells is introduced in Chapter 3. We have
provided not only the lower bound of the cycle time but also the cycle time of a
proposed cycle, namely the dominant cycle. We have demonstrated some outcomes
about optimality for this cycle and proven that it is an appropriate option for the
hub reentrant robotic cell. The result of this chapter is advantageous to many
industries such as wafer fabrication, painting and electroplating lines.

The analysis in Chapter 4 enables insightful evaluation of the productivity
improvements of MFRs in small-scale MFRCs with deterministic data. We limited
our study in this chapter to a MFR which only measures the thickness of the part
and records results in an independent computer. Accordingly, the processing route
is fixed although the MFR performs the inspection process of the part. Under this
condition, we presented a methodology to maximize the production rate of a MFR
operating within a rotationally arranged robotic cell. Considering the free pickup
criterion, the cycle time formulas are initially developed for cells where a MFR
interacts with either two or three machines. Two and six feasible cycles have been
developed for two- and three-machine MFRCs with the free pickup criterion, and
the optimality regions of these cycles and their formulas have been determined. In
brief, through this chapter it has been found there is no unique optimal cycle for
MFR movement when we change given parameters. To state the matter differently,
it should be noted any one of the cycles has the chance of obtaining optimality
considering different values of given data ε, δ, P1, P2, P3, γ0, γ1, γ2, γ3. Hence, it is
enough to check whether the cycle meets the optimality conditions or not. Note
that we also extended results to the no-wait pick up scenario in which all parts must
be processed from the input buffer to the output buffer, without any interruption
either on or between machines. A Search Algorithm is constructed for this type
of pickup criterion. The mechanism of the algorithm to reach the optimal cycle
in trivial time is to define the set of feasible cycles, and then find the optimal
cycle using two For Loops. Anyone of cycles is stopped when an infeasible activity
occurs in its activity route.

Chapter 5 presents a generalization of the results in Chapter 4 so that it is
associated with large-scale MFRCs with deterministic data. Likewise, the pro-
cessing route is fixed although the MFR performs the inspection process of the
part. Only, the size of the problem is increased and this makes it more complex to
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analyse this case. The problem is modelled as a Travelling Salesman Problem to
give computational benefits with respect to the existing solution methods. Then,
the lower bound for the cycle time is deduced in order to measure the produc-
tivity gain of two practical production permutations, namely uphill cycle ΠV(m)

and downhill cycle ΠD(m)
. As a design problem, a preliminary analysis initially

identifies the regions where the productivity gain of a MFRC is more than that
of the corresponding SFRC. The comparison of SFRCs and MFRCs has given the
result that MFRCs improve throughput rate when ΠV(m)

is optimal. However,
the use of MFRCs instead of SFRCs is a wasted expense when ΠD(m)

is optimal.
Furthermore, the productivity of using MFRC against that of SFRC expressed by
POk for cycles ΠV and ΠD in order to establish a practical framework for solving
multi-objective scheduling problems.

Chapter 6, which is the last chapter of Part II, is a supplementary chapter
which discussed about operational flexibility in MFRCs. The main assumption in
Chapter 6 in that the inspection time of MFR is flexible. It should be stressed that
neither the inspection time nor the processing route is a stochastic variable. We
assumed a class of grippers which is able to perform a breakable operation on a part
in transit from I to O of a MFRC dealing with two tandem machines. Assuming
”stop resume” processing mode for the MFR, it continues processing of the part
when it is reloaded to the robot with no loss in time. At the starting point, the
best proportions of the unique operation of the MFR to be done between I,M1,M2

and O is determined graphically. Then, the cycle time of two one-unit cyclic
solution have been obtained using this graphical representation of the operation
on the MFR, and following that the optimality region of each one of them has been
determined when dealing with the free pickup criterion . This line of thought brings
us to the result that the first one-unit cycle is more productive for cells with short
processing time on machines, and the second one-unit cycle is more productive
for cells with time-consuming processing time on machines. It has been proven
that the cycle time of any n-unit cycle is a convex combination of cycle times of
two one-unit cycle, and hence the optimal one-unit is the global optimal cycle for
the MFRC. Finally, Chapter 6 provides a comprehensive discussion of feasibility
regions of two one-unit cycles under interval and no-wait pickup criteria.

Part III of this thesis is deviated from deterministic given parameters towards
the impact of stochastic given parameters on the regions of optimality in MFRCs.
Accordingly, previous three chapters are precedents for this part of the thesis where
the processing route of each part can be modified based on its inspection results.
Part III includes Chapters 7, 8 and 9 that highlight the idea of applying three
different types of inspection in robotic cells: post-process, in-process and in-line.

The probability of the deadlock occurrence is likely to be large, especially for
robotic cells with a post-process inspection scenario. This motivated us to focus
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on resolution of deadlock in Chapter 7. Avoidance and recovery policies have been
developed to overcome deadlocks originated from a robotic cell with a post-process
inspection scenario. Also, an analytical method for minimizing the partial cycle
time and cost of cells with the post-process inspection is developed in this chapter.
The novelty of this study is that we have shown there are two control policies in
term of deadlock: 1) it is possible to avoid the occurrence of deadlock using an
avoidance policy. This policy prevents existence of potential deadlocks. 2) we can
allow a deadlock to occur, and then resolve it during the online implementation
of the robot move cycles using a recovery policy. Considering these two control
policies, we have given a mathematical proof that the avoidance policy minimize
the cost of reworking per-unit while the recovery policy decreases the expected
cycle time. Also, we have compared cells with the post-process inspection with
cells without this additional step. This has made it clear that the performance
of the second partial cycle is improved due to the fact that the average time of
producing a part is definitely increased in this case.

Chapter 8 is related to robotic cells with an in-process inspection. Under
this condition, the inspection of the part processed by a machine is performed
by a multiple-sensor inspection system installed into this machine. The overall
structure of this chapter is as follows: 1) we initially presented a heuristic method
that converts a multiple-sensor inspection system into a single-sensor inspection
system. 2) we presented a proof of dynamicity of the problem of determining the
optimal one-unit cycle for cells with more than two machines. In contrast, we
have proven that the problem is not dynamic for two-machine robotic cells, and
the pickup criterion has no impact on the result of the theorem. 3) Based on three
kinds of stochastic order relations, we developed an analytical method to find the
dominancy regions of two feasible one-unit cycles, and then we extend the result
to interval and no-wait pick up scenarios as two well-solved classes. With regard
to the interval pickup criterion, we concluded that there is no guarantee that the
second cycle (in comparison with the first cycle) will be an optimal cycle when it
is feasible. Nonetheless, it is enough to check whether the second cycle satisfies
feasibility conditions for the cell with no-wait pickup criterion to conclude that it
is the optimal cycle.

Chapter 9 covers a wide range of inspection scenarios. It starts with results
in post-process and in-process inspection scenarios and extend this results to an
in-line inspection scenario. An important point about the in-line inspection sce-
nario is that a MFR is in charge of performing inspection process. Therefore,
similar to Part II, we can assume that cells with either post-process or in-process
inspection scenarios are also the origin of MFRCs. We have considered the prob-
lem of converting cells with in-process and post-process inspection scenarios into a
MFRC in which a MFR is responsible for inspection of the part in transit (in-line
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inspection). Since the optimal cycle under in-process scenario always dominates
the corresponding optimal cycle under post-process scenario, the problem has been
reduced to only comparing a cell with an in-process and a MFRC. The comparison
has revealed that the inspection scenario must not be shifted from in-process to
in-line if the MFR first performs the inspection of the part and then transfers it to
the next machine. The reason for this intuition is that the MFR only acts like an
inspection sensor under this condition. Therefore, it is not only the bottleneck of
the cell, but also decreases partial throughput. Finally, we have proven that it is
technically profitable to replace a cell with an in-process inspection scenario with
a MFRC if the robot performs inspection of the part in transit.

One of the paramount contributions of this dissertation is the establishment
an appropriate framework for different types of MFRCs. This framework can help
companies which are enthusiastic about using MFRs in fully automated manufac-
turing systems. In other words, using this framework before employing MFRs in
the production line, they can find out whether this option can increase the produc-
tivity or not. This would assist manufacturers in deciding which type of robotic
cell is better for any one of the part processing routes.

10.2 Future Work

There is a number of intriguing research points which may be pursued later. Ac-
cordingly, the objective of this section is to mention some of them:

(i) An interesting future research direction is to study the problem of sequencing
non-identical parts in MFRCs. A problem for this case is to schedule the
robot move cycle and sequence the parts processing order concurrently. This
small difference in the problem appears to have major impact on the solution
approach due to the problem complexity. It is easy to prove that associated
problem is NP-hard in the strong sense (Brauner et al., 2003). Therefore, we
recommend developing a mixed-integer linear programming (MILP) model.
This MILP model can be enhanced using a set of dominance constraints.
In addition, a Cross Entropy (CE) algorithm can be developed to find near-
optimal solutions of large- scale scheduling problems in a short running time.

(ii) We have concentrated our attention on simplest cases of post-process, in-
process and in-line inspection scenarios which can be classified as a closed-
loop inspection. Under this condition, parts are cycled between successive
a processing machine and test device (this device can be an independent
machine, a set of sensors or a robot) until deemed acceptable. However, the
inspection pattern may be more complicated since there is a great number
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of inspection patterns when there are more than two machines. Let us give
some examples of complex inspection patterns. Assume that M3 is an solo
inspection machine for a four-machine robotic cell. The inspection result of
M3 follows this distribution: (a) the part is fully-failed and needs reprocess-
ing on both M1 and M2 with the associated probability 0.1, (b) the part is
semi-failed and only needs reprocessing on M2 with the associated probabil-
ity 0.2, (c) the part moves forward to M4 with the associated probability 0.6,
(d) the part does not even need processing on M4 and it should be dropped
off directly at O with the associated probability 0.1.

(iii) With more precise inspection sensors and computers available, further work
can be done to consider a limited number of permitted rework processes for
any particular part. Consequently, the part must be considered as scrap
if it can not pass inspection process after this number of rework processes.
Clearly, this will probably make it more complicated to find the optimal cy-
cle. The reason behind this intuition is that the status of the part under this
condition is increased from 2 into 3: Accepted, needs rework, scrap. It is
necessary to mention that this future research direction has some similarities
with the previous one. In both cases, the inspection results are a variable
with more than two possible outcomes. In other words, the distribution of
this variable is equivalent to the Bernoulli distribution for k > 2 possible dis-
junctive outcomes. This generalization of the Bernoulli distribution is named
Bernoulli Scheme or Bernoulli Shift in mathematics, and it is defined as a
discrete-time stochastic process in which the random variable takes on one of
k distinct possible values, with the outcome i occurring with corresponding
probability pi,∀i ∈ {1, ..., k}.

(iv) Finally, future research direction can extend the work of this thesis by gener-
alizing the results to m-machine MFRCs with post-process, in-process, and
in-line inspection scenarios as a dynamic system. Since the dynamic be-
haviours of such a system is particularly the most important and interesting
future research direction, we give a separate indication of how appropriate
is a dynamic programming for this case. The rest of this section provides
a two-phase dynamic programming model, which needs completion in the
future, to justify the importance of this situation.

Now, our goal is to detail the progress we have made over the last year to build
a stochastic dynamic programming model of large-scale robotic cells. This goal is
due a dynamicity in the scheduling problem for large-scale robotic cells with an
inspection process. More precisely, as mentioned in Theorem 1 of Chapter 8, all
robotic rework cells with over two machines have dynamic behaviour that makes
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it more complex to analyse them. Downhill cycles can be used as an example
that disproves the statements that any large-scale robotic cell with an inspection
process can reach a steady-state from an empty cell. For example, we have provided
this counterexample for an m-machine robotic cell with an inspection process
regardless of the type of its inspection scenario. The downhill cycle for this case
is A0Am, Am−1, ..., A2, A1, and this permutation shows that the cell never reaches
an state in which there is only one part is processing there. Therefore, at least
for this cycle, we cannot claim that there is no relationship between the optimal
partial cycle in the current state and the number of rework performed on the part
in the previous partial cycle. This counterexample is enough to limit our analysis
to solution techniques for problems with dynamic behaviour.

It should be stressed that we need to design a method for sequentially choosing
the next activity of the robot until one robot move cycle be completed. Therefore,
we have two alternatives: 1. A non-adaptive solution method: It specifies an
entire solution in advance so that we cannot make any further changes as the cycle
implementation is started. In more detail, a non-adaptive solution method is only
an unchangeable permutation of activates to be executed. Clearly, such a method
that have an unchangeable structure may have some drawbacks. 2. an adaptive
solution method: It makes decisions in a dynamic fashion in reaction to the state of
machines already occupied by parts. It is more complex to implement an adaptive
solution method, but its final solution is predominantly better performance than
a non-adaptive one (Dean et al., 2008).

Dynamic programming is one of adoptive solution methods often used for solv-
ing complex problems with dynamic behaviour. This stepwise method considers a
related version of the scheduling problem by dividing it into a set of sub-problems,
and then determining the optimal sub-solution of these sub-problems. In each
stage, the optimal sub-solution of the sub-problem is created from the solution of
the previous sub-problem, and finally sub-problems should be nested recursively
inside the original problem as applicable. Dynamic programming algorithm has a
polynomial complexity that guarantees a reasonable running time. More specifi-
cally, the dynamic programming can solve a robotic cell scheduling problem with
an inspection process in O(m3) time.

We need to clearly state the two-phase approach for stochastic dynamic pro-
gramming of robotic cells with an inspection process. In the first phase, we must
use a control policy to guarantee that control rules meet deadlock-related con-
straints. Then, in the second phase, we must add performance rules based on the
dynamic programming algorithm to minimize the partial cycle time. Let us start
with the first phase. We know that control rules are changed if we have robotic
cells with different inspection scenarios. However, regardless of the type of the
inspection, the robot always acts as server and other components of the cell al-
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ways need its service as shown in Figure 10.1. Note that components of the cell
vary based on the applied inspection scenario as follows: components of the cell
with the post-process inspection scenario are buffers, production machines, and
inspection machines, whereas these components of both cells with in-process and
in-line inspection scenarios are buffers, production machines, and sensors.

Fig. 10.1. The overall control policy of a robotic cell with any type of inspection

process scenario

In Figure 10.1, each component is represented by a node. An important char-
acteristic of the node is that it can receive control messages as an input and send
central controller information related to its current state as an output. The cen-
tral controller receive information related to all components and the robot before
each time that it is instructed to send out a new control message to components
and the robot. This makes it easy for the central controller to choose which robot
activity between requested activities are feasible. In other words, based on the
control rules, it provides a list of forbidden activities before determining the next
activity of the robot. This can be considered as the result of the first phase of
our approach, and also as an input for the second phase of the approach in which
the controller should select the optimal activity along all feasible activities to be
implemented.

It is noteworthy that Figure 10.1 only shows the first layer of the control policy
which can be detailed even more. The second layer of the control policy can
show specific control policies for each machine j,∀j ∈ {1, 2, ...,m} considering a
set of inner and outer transitions. We say that the type of transition is inner
if changing current state of the machine (or the robot) is independent from the
central controller. An example of inner transition is the situation in which a
production machine j is finished the part processing so that its state is changed
from Processing (Pj) to Completed (Cj) and this can be shown with Ω. Another
example of inner transition is the final result of the inspection sensor attached to
the production machine in an in-process inspection scenario. If the result shows
that the part does not need reprocessing then the state is changed from P to C.
We graphically show an outer transition with a solid line. In contrast with the
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outer transition, an outer transition is not independent from outer inputs received
from the central controller. Giving an example, the state of a busy machine j is
changed from F to Unoccupied (Uj) if and only if the robot be instructed to remove
the part from it. We can graphically show an inner transition with a dashed line.
We also can define a set A of robot activities as Mj−Mk, ∀j&k ∈ {0, 1, 2, ,m+1}.
For example, M1 −M2 refer to an outer transition in which the robot unload M1

and load the part on M2. Recall that M0 and Mm+1 can be named I and O,
respectively. Deadlock of Mj (referred to Dj) is taken into account here.

Before proceeding with the post-process inspection scenario let us first analyse
simpler cases. Considering aforementioned notations, an examples of the second
layer of state transition for a cell with in-process inspection scenario is depicted
in Figure 10.2. This example is related to machine j,∀j ∈ {1, 2, ...,m} which is
equipped with a set of sensors, and therefore it is able to process and inspect the
part simultaneously. The diamond in this figure indicates a question (or a decision)
which is used when there are two options (Yes/No) for the inspection result. ”No”
is associated with the probability of the rework being needed after inspection of the
part on Mj and this is an inner transition. ”Yes” is associated with the probability
of the transformation of the part to Mj+1 if it is deemed acceptable and this is an
outer transition.

Fig. 10.2. The second layer of state transition for Mj with in-process inspection

It is vital to mention that two following types of error may occur when sensors
perform inspection process. More precisely, the result of no inspection process is
100% certain since the inspection result follows a Bernoulli probability distribution
and therefore there is always a chance of drawing an incorrect result.

1. Type one error : Sensors make a type one error when the part should be
accepted but the result of inspection shows it needs reprocessing on Mj.

2. Type two error : Sensors make this error when the part needs reprocessing on
Mj but sensors fail to reject it and consequently they deems part acceptable.
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Likewise, an example of the second layer of state transition for a cell with in-line
inspection scenario is depicted in Figure 10.3. The main difference between this
figure and the previous one is that the Robot (R) is in charge of inspection process
and therefore it is shown by a two-option diamond. ”No” is associated with the
probability of the rework on Mj being needed after inspection of the part on R.
”Yes” is associated with the probability that R completes the transformation of
the part to Mj+1 if the part is deemed acceptable. Note that, once again, we have
two similar types of error for this case.

Fig. 10.3. The second layer of state transition for Mj with in-line inspection scenario

The state transition is more complex for post-process inspection scenario as
shown in Figure 10.4. The reason behind this intuition is that we should show
this state for a couple of machines: a production machine and the next machine
in the production line which is certainly an inspection machine. In this figure, Cj
connects the network of the first machine with the network of the second machine
and therefore we can remove Uj+1.

Fig. 10.4. The second layer of transition for Mj and Mj+1 with post-process inspection
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The second phase of this algorithm is part of future research work. In this
phase, we are planing to add performance rules, which are based on a dynamic
programming algorithm, to minimize the partial cycle time.

Fig. 10.5. A hierarchy between problems considered in this thesis and open problems

At the end of this section, a hierarchy is presented in Figure 10.5 to help readers
who are interested in extending results of the thesis. Solid lines in this figure recall
outcomes of the thesis, as mentioned earlier in Figure 2.1. However, Figure 10.5
shows that there are many rooms for improvement of results of the thesis. Dashed
line in this figure presents some ideas for extension of the results of this thesis in
the future.
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