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We propose artificial neural networks (ANNSs) as a tool for automatic mapping of daily
observations of environmental data. A feed-forward back-propagation neural network
for estimating daily natural radiation measurements at unsampled locations using
prior information was developed. Feed-forward back-propagation networks were
trained to learn: (a) the relationship between daily measurements and their spatial
coordinates, and (b) the relationship between daily measurements made at one site
and measurements made at the six surrounding closest sites. Results of the study
indicate that ANNs can be used for automatic mapping of environmental (back-
ground) data with moderate success. ANN models for spatial interpolation can
successfully incorporate prior information into the estimation process. However, the
ANN approach to automatic mapping of environmental data presented here was
clearly inappropriate for dealing with outliers. Results obtained suggest that develop-
ing two different models for estimating background values and extreme values,
respectively, might be a potentially more successful approach to automatic mapping
of environmental data.

INTRODUCTION

A wide variety of globally (e.g. splines, trend surfaces) and locally (e.g. inverse distance
weighting, ordinary kriging) computed spatial interpolation techniques are in common
use. Some methods allow to incorporate valuable information both from surrounding
observations and from other covariates into the estimation process (e.g. partial thin plate
splines, universal kriging, cokriging). However, the modelling process may become very
cumbersome to apply when the analyst tries to incorporate more than one independent
variable (i.e. covariate) into a single estimation process when using widely used methods
such as thin plate splines, universal kriging or cokriging. More commonly, the relation-
ship between the variable of interest and covariates (including spatial coordinates) may be
computed using multiple linear regression or neural networks, and then the residuals are
interpolated using a geostatistical method such as ordinary kriging (e.g., residual kriging)
(Holdaway 1996; Demyanov et al. 2001). These processes are combined when using par-
tial thin plate splines (Hutchinson 1995).
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Spatial interpolation using conventional methods is customarily performed adjusting
model parameters using the data at hand. Parameters are re-evaluated when presented
with a new dataset for the same geographical domain. This situation typically takes place
when spatially interpolating daily, monthly, or yearly observations of environmental
data. A spatial model must be developed for each dataset at each time step (e.g. a
variogram for each month). Automatic mapping of environmental variables requires a
method able to make use of prior data to adjust spatial model parameters and to generate
spatial estimations when presented with new (temporally lagged) data from the same
geographical domain. If spatial data follows a temporal sequence time-series forecasting
techniques might ideally be incorporated into the procedure. Unlike other methods, Arti-
ficial Neural Networks (ANNs) are particularly adept at coping with non-normal and
inter-correlated inputs, and managing the incorporation of additional data and expert
knowledge about a particular geographical domain within the estimation process (Rigol
et al. 2001). This suggests the possibility that ANNs might provide benefits over more
traditional interpolation methods (Dubois and Shibli 2003). Artificial Neural Networks
(ANNG) are increasingly used as spatial interpolation tools for environmental data (e.g.,
Pariente and Laurini 1993; Rizzo and Dougherty 1994; Pariente 1994; De Bollivier et al.
1997; Luk et al. 2000; Snell et al. 2000; Rigol et al. 2001; Antonic et al. 2001; Bryan and
Adams 2002).

We propose here ANNSs as a tool for automatic mapping of daily observations of en-
vironmental data. A feed-forward back-propagation neural network for estimating daily
natural radiation measurements at unsampled locations using prior information was de-
veloped. The underlying idea was to extend global neural spatial regression incorporating
local information from neighbour (in space and time) sites. The main objective was to
train a network to learn the functional relationship between daily observations and
neighbourhood observations for the corresponding day (local spatial regression) along
with the potential relationship between spatial location and observed value (global spatial
regression).

METHODOLOGY

ARTIFICIAL NEURAL NETWORK OVERVIEW

In their most general form, ANNs are structures inspired by biological systems, usually
implemented in software (Haykin 1994). Several kinds of ANNs have been devised, being
the multi-layer perceptron trained with the back-propagation algorithm the most widely
used model in environmental applications. The following outline focuses on this kind of
network, the architecture used for this study.

ANNSs are data-processing systems that can be used as flexible regression and classifi-
cation tools. A network consists of a set of basic processing elements, called units or
neurons, interconnected by weighted links (Figure 1). A unit in the network sums the
weighted inputs from the links feeding into it, and performs a linear or, more typically, a
non-linear function on the summed value. The output is then fed to other units linked to
it. During the training of a feed-forward network the weights of the network are adjusted
in a process called back-propagation so as to minimise a measure of the difference be-
tween the actual output of the net and the desired output (Rumelhart et al. 1986). Thus,
training or learning corresponds to the parameter estimation phase in traditional statisti-
cal models. Figure 1 illustrates a single processing unit and the architecture of a simple
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network configuration, termed multi-layer feed-forward. In this network architecture,
units are arranged in layers and connected so that the information flows unidirectionally
from input units, through units in one (or more) hidden layers to units in an output layer.
On the other hand, error signals originate at an output neuron and flow backward
through the network during the training phase. In practice, training of a network by
back-propagation involves three phases (Sarle 1999): (a) the feed-forward pass of the
input pattern or case, (b) the calculation of the corresponding error at the output units
comparing the estimated value and the observed value or target and its back-propagation
to previous layers, and (c) the adjustment of the weights. After training, application of the
net (i.e. estimation, classification) involves only the first step above.

Input Output
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function function

(1)- multiplication
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Figure 1
(a) Processing unit or neuron (input bias xo not shown), and (b) architecture
of a feed-forward multi-layer network with 3 (pseudo)units in the input layer,
4 units in the hidden layer and 2 units in the output layer (3-4-2)

The multi-layer feed-forward network imposes no restrictions on the number of units
in the input, hidden and output layers. This kind of network is closely related to some
types of regression, hence similarities can be investigated examining the functional ex-
pression of a simple network (Haykin 1994; Bishop 1995). For instance, for the 3-4-2
network shown in Figure 1(b), the output, a, of the first hidden unit, 1, is obtained by
first forming a weighted linear combination of the 3 input values, (x,, x,, x,), to give:

3
Sy = Wiy Xy + Wi Xy + WyaXg + Wy = Zwli X;
i=0
where w,, denotes the weight going from input unit 2 to hidden unit 1, and w,, is a re-
quired additional weight called bias. Then this linear sum is transformed using an
activation function g(.) (usually g is a sigmoidal function such as the logistic function
g(s)=1/(1+¢") or the hyperbolic tangent function g(s)=(e*-1)/(e*+1)) to give:

a,=9(s,)
Subsequently, the output of the net is obtained by transforming the output produced

by the hidden units using a second layer of units. Thus, the explicit expression of the
function represented by a 3-4-2 network can be written in the form (Haykin 1994):
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4 4 3
Output, = g(s,) = 9(Q_ wiPa;) = 9O WP g (D wi'x,))
j=0 j=0 i=0

where the superscript of the weights denotes a weight coming from the first or second
layer, and k=1,2 denotes output units 1 and 2. In this simple network an input to the
network will be passed through 20 weights, and modified by 6 non-linear functions. The
function represented by this net could be thought of as a surface so that each peak or
depression is created adding up small ‘bumps’ generated by the non-linear functions of
the units (Bishop 1995). It has been demonstrated by several authors that adding enough
units any continuous function could be represented by this method (i.e. universal
approximation).

Implementing an ANN model usually involves several phases: data pre-processing,
input selection, architecture selection, training, and independent performance assessment
or validation. First, data are customarily filtered (e.g. missing records) and transformed,
for instance, to match the range of the activation function or the Gaussian distribution.
Note that ANNs are data-driven modelling tools, i.e. they learn from example. Conse-
quently, training (sample) data must be representative of the population. Adequate model
inputs are selected using numerical methods or a priori knowledge on the process being
investigated. The appropriate network model and architecture are then selected. This is
normally carried out by training different networks on a subset of the training dataset
and assessing their generalisation performance on the unused training subset (validation
subset) presenting it to the net with no learning taking place. The network having the
lowest error is selected and the training parameters recorded. The selected model is then
trained on the complete training dataset taking into account the recorded training
parameters and its overall generalisation performance is assessed using an independent
and previously withheld data set.

SPATIAL INTERPOLATION USING ANN

ANNSs have been successfully used both for classification and regression in environmental
applications. Time series forecasting has particularly benefited from the use of ANN
models. Spatial interpolation of environmental data is related to forecasting in the sense
that close observations (in this case in space) are correlated. Thus, as in forecasting, (spa-
tially) lagged observations can be used as inputs to the model. Field variables such as
natural radiation usually show a spatial correlation. Hence incorporating neighbour ob-
servations to spatial regression models based on spatial coordinates may improve
estimation performance. In contrast to other techniques, ANN models can use geographi-
cal covariates, surrounding observations (local) in space or/and time, and available
qualitative information about the process as inputs in order to estimate the output vari-
able (e.g. natural radiation) (Figure 2). We apply here this technique to estimate daily
natural radiation level and distribution for one day using prior information.

~
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Schematic of ANN model for spatial estimation of environmental data

In this study, we use feed-forward back-propagation networks trained with the Resil-
ient propagation algorithm for automatic mapping of daily measurements of natural
radiation. Networks were trained to learn: (a) the relationship between daily measure-
ments and their spatial coordinates, and (b) the relationship between daily measurements
made at one site and information from a number of surrounding sites (measurement and
distance). Network development was performed using the Stuttgart Neural Network
Simulator, SNNS, software (Zell et al. 1998). Here, both model architecture selection and
training were performed in a single step using a genetic algorithm provided with SNNS.
In the estimation stage, the trained model was presented with output patterns with no
learning taking place to generate estimations of radiation level for a particular location
and date.

Uncertainty associated with the estimations was calculated repeating the training pro-
cedure 6 times starting from different random seeds. Estimation variance associated to
each site was assimilated to uncertainty level for the site.

USE OF PRIOR INFORMATION

Network model development was carried out using available prior information corre-
sponding to the 10-day series of natural background radiation measurements. Inputs to
the model included spatial coordinates (eating and northing) of the reference site, and
information corresponding to the six closest neighbour observations surrounding each
reference site. Geostatistical variographic analysis of prior data indicated that trend sur-
face residuals of mean radiation level for the ten-day series at a site was on average
spatially correlated with up to the 16th surrounding closest sites. However, in order to
simplify model development and model complexity only the six closest sites to each refer-
ence point were selected for the analysis. It was assumed that including spatial
coordinates as inputs might account for a potential trend, while including neighbour ob-
servations might account for local spatial autocorrelation. Neighbour site data included
radiation level for the corresponding day and distance vector. Distance vector (distance
modulus and polar angle) was decomposed into two orthogonal components correspond-
ing to easting and northing. Apart from radiation measurement, three distance
parameters were eventually used as inputs for each neighbour: inverse of distance
modulus, and inverse of easting-distance and northing-distance. This made a total of 26
input units (Figure 3). Network output consisted of the natural radiation observation for
the reference site for the corresponding day. This made a single output unit. Hence, target
values consisted of observations made at a site for a particular day of the prior 10-day
series.
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Inputs (26=2+6x4) and output (1) of ANN model for spatial estimation of
natural radiation levels

The procedure above resulted in 2,000 training patterns or cases (200 sites by 10-day
series of measurements). Available patterns were randomly divided into a training subset
(95%) and a validation subset (5%). This corresponded to 1905 and 95 patterns, respec-
tively. The validation subset was used for generalization assessment. A small validation
set was generated to use as many available patterns as possible for network training.

Patterns for the estimation stage were constructed following the same process but us-
ing measurements at the 200 prior sites for the 11th day of the series, i.e. the day for
which estimations had to be generated, as neighbour sites, and the 808 additional test
sites as the reference sites. The model trained on the first 10 days was used to estimate the
808 values of the 11th day, using the 200 radiation values of the 11th day only for
neighbourhood calculations. Thus, patterns for the estimation stage were presented to the
trained network with no learning taking place to produce estimations at the 808
unsampled locations for day 11th. The procedure was repeated for the joker dataset.

TUNING THE ALGORITHMS

Several techniques have been devised for ANN model selection and tuning. A widely used
approach for model selection involves training all possible network architectures using
cross-validation (e.g. leave-on-out, k-fold) and early stopping. Other approaches use
search heuristics based on evolutionary or genetic algorithms. An evolutionary approach
was chosen for this study.

Network architecture and parameters were selected using the ENZO genetic algo-
rithm (Braun and Ragg 1995). ENZO uses the paradigm of evolution for optimizing the
topology (number of units, connectivity of units) and the paradigm of learning for
optimizing the coefficients (weights and thresholds). It evolves a population of networks
by generating offsprings through mutating the topology of the parent network and by
optimizing the coefficients with a gradient descent algorithm. A three-layer parent net-
work with 26 input units, 50 hidden units, and 1 output unit was used. The Resilient
propagation with adaptive weight-decay (RpropMAP) training algorithm was selected
(Bishop 1995; Zell et al. 1998). Training algorithm parameters were set to small initial
values. These parameters were updated every 200 training epochs. The activation func-
tion was taken to be the logistic function for all units. Available data were linearly
rescaled to the range (0,1), to match the range of the activation function and to prevent
from slow network convergence during the training phase due to disparate variable
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ranges. Minimum and maximum values used for rescaling radiation levels were set to
values slightly smaller than the minimum value (54.4 nSv/h) and slightly larger than the
maximum value (157.0 nSv/h), respectively, of the prior 10-day series data. Thus maxi-
mum and minimum values were set to 50.0 and 160.0 nSv/h, respectively. The error
function being minimised was least squares. Training was stopped if the mean training
error was smaller than a threshold value (0.0005) or the number of training epochs
reached a maximum value of 6,000. Criteria used for measuring the performance (i.e.
fitness) included error on training set, generalisation capability error on the validation set,
number of units, and number of weights. Thus, networks with small training and valida-
tion errors along with small numbers of units and weights were preferred to the rest of
networks of the population being evolved. Scheme used to weight relative importance of
each performance criterion gave the larger weight to the generalisation error (one order
of magnitude larger than the rest).

RESULTS

Model development procedure generated a partially connected trained network with a
single hidden layer with 13 units (26-13-1), and with 293 links. Estimations for the first
and second datasets are presented below.

OVERALL RESULTS

Table 1 shows the minimum, maximum, mean, median and standard deviation of the 808
estimated values and observed values for the two datasets. Results for the first dataset
suggest that the model underestimated observed values. In contrast, standard deviation of
estimations was larger than standard deviation of true values. For the second dataset,
results suggest that the model clearly failed to estimate extreme values. Maximum esti-
mated value was one order of magnitude smaller than the true observed maximum value.
Mean, median and standard deviation were also underestimated.

N =808 Min. Max. Mean Median | Std. Dev.

Observed (first data set) 57.0 180.0 98.0 98.8 20.0

Estimates (first data set) 50.3 154.0 96.4 96.8 23.3

Observed (second data set) 57.0 1528.2 105.4 99.0 83.7

Estimates (second data set) 50.0 154.3 94.4 95.4 24.8
Table 1

Comparison of the estimated and measured values (nSv/h)

Table 2 shows the mean absolute error (MAE), the bias (or mean error ME), and the
root mean squared error (RMSE) of the predictions at the n = 808 locations for the two
datasets. These are defined as:
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where a*, is the estimated value at location i and where g, is the true value. Pearson’s r
coefficient of correlation between the estimated and true values is also given.

MAE, ME and RMSE for the first dataset indicated that despite error values were
moderate, the model was not able to accurately estimate true values. Error statistics also
show that the network model underestimated observed values. Pearson’s 7 indicated that
correlation was also moderate. In contrast, MAE, ME and RMSE for the second dataset
presented very large values, indicating that the model completely failed to estimate true
values, especially outliers. In this case, Pearson’s 7 was almost 0 indicating that there was
no correlation.

Data sets MAE ME Pearson’s r RMSE

First data set 16.0 -1.7 0.55 20.8

Second data set 25.3 -11.1 0.02 87.5
Table 2

Comparison of the errors
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Figure 4
Isoline levels (nSv/h) for the 1st set (let) and the 2nd set (right). Crosses
indicate locations of the estimated values. Empty squares indicate locations
of the input values.

Maps with isolines showing the estimated values are presented in Figure 4. Spatial
distribution of estimated values for the first dataset indicates that large natural back-
ground radiation levels concentrate in the central and South-Western sectors of the study
area. Excluding the South-Western corner of the monitored area, the map showing the
estimated values for the second dataset presents the same spatial distribution as the one
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for the first dataset. This map shows however that the network wrongly produced the
smallest estimations for the expected large extreme values located in the area where acci-
dental release of radioactivity in the environment was simulated.

Uncertainty associated to the estimations for the two datasets described above are
shown as maps in Figure 5. For the first dataset, maximum uncertainty values tend to be

located near the Eastern and Southern edges of the study area. Large uncertainties are
also associated to estimations located at the central part of the Western edge of the study
area. For the second dataset, massive uncertainties are associated to locations around the
point where the accidental release of radioactivity in the environment was simulated.
Networks generated in the six runs performed for uncertainty evaluation presented 13,
14 or 15 hidden layer units, with a comparable number of links.

700
650
600
550
500
450
400
350
300
—250
200
150
100
50

0 100000 200000 0 100000 200000

Figure 5
Isoline levels showing the uncertainty (estimation variance, (nSv/h)?)
associated to the estimations obtained for the 1st set (let) and the 2nd set
(right). Crosses indicate locations of the estimated values. Empty squares
indicate locations of the input values.

A test using averaged results from the 6 training runs performed for uncertainty
evaluation was carried out. As expected, using averaged estimations created by the 6
training experiments using different random seeds produced slightly better results for the
first dataset than the results from a single network model presented above. Results for the
second dataset were again clearly unacceptable. Tables 3 and 4 show statistics for the
averaged estimations. Estimation and error statistics show that the model was also under-
estimating observed values. Maps of estimations with isolines are presented in Figure 6.
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N = 808 Min. Max. Mean Median | Std. Dev.

Observed (first data set) 57.0 180.0 98.0 98.8 20.0

Estimates (first data set) 56.5 1394 96.9 98.6 18.7

Observed (second data set) 57.0 1528.2 105.4 99.0 83.7

Estimates (second data set) 56.3 139.4 96.0 97.5 19.2
Table 3

Comparison of the averaged estimated values from 6 runs and measured
values (nSv/h)

Data sets MAE ME Pearson’s r RMSE

First data set 121 -1.2 0.67 15.8

Second data set 20.3 -9.4 0.12 84.1
Table 4

Comparison of the errors. Averaged results from 6 runs
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Figure 6
Averaged results from 6 training runs. Isoline levels (nSv/h) for the 1st set
(let) and the 2nd set (right). Crosses indicate locations of the estimated
values. Empty squares indicate locations of the input values.

DETECTING ANOMALIES AND OUTLIERS

As commented above, estimations for the second dataset including extreme values (joker
dataset) were clearly unsatisfactory. The approach presented here proved to be useless for
estimation of outliers. The trained network failed to estimate extreme values produced by
the simulated accidental release of radioactivity in the South-Western corner of the moni-
tored area. Figure 7 shows the estimates obtained for the 2nd set in 3 D. It can be better
seen that the trained network wrongly produced the lowest estimations for the extreme
values.
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Figure 7
3D map showing extreme values found in the 2nd set (vertical scale in
nSv/h).

An additional experiment was performed (after true values were released) to test the
ability of a network trained using a new dataset including outliers to estimate the second
dataset. An accidental release of radioactivity to the environment was simulated using the
expression used to create the second dataset (Dubois and Galmarini 2005). In this case
the accidental release was simulated to take place at the North-Eastern corner (point 91,
with spatial coordinates 16184, 468883) in the 10th day of the prior data series. Parame-
ters used for the expression were:

e Q=1.510e+07 [undefined units]
e u=7[m/s]

e s=6000[m]

e T =20000]s]

New input simulated radiation levels for the 10th day included now outliers (maxi-
mum value was 1862.6 nSv/h). Radiation levels were transformed using the natural
logarithm function. The same procedure described above was used for model develop-
ment and training using this new training dataset. Results indicated that outliers were
better detected. However, some false outliers were generated by the model. In addition,
results for the first dataset were now unsatisfactory. Estimations for the first dataset also
produced false outliers. Tables 5 and 6 show the comparison of basic statistics and errors.
In this case, MAE, ME, and RMSE for the first dataset presented larger values than in
previous experiments. ME presented now positive values indicating that the model over-
estimated observed values. Pearson’s r for the first dataset decreased to half of its value
obtained in previous experiments. In contrast, Pearson’s r for the second dataset
increased from 0.02 to 0.2 MAE and RMSE for the second dataset were comparable to
those obtained in previous experiments. Figure 8 shows the spatial distribution of
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estimations for the first and second datasets. It can be seen that extreme values are better
detected, but now false potential outliers are introduced (Figure 9).

N =808 Min. Max. Mean Median | Std. Dev.

Observed (first data set) 57.00 180.0 98.0 98.8 20.0

Estimates (first data set) 51.6 729.3 103.3 96.9 45.9

Observed (second data set) 57.0 1528.2 105.4 99.0 83.7

Estimates (second data set) 51.6 1028.4 109.2 97.5 74.6
Table 5

Comparison of the estimated and measured values (nSv/h). Model devel-
oped using simulated extreme values.

Data sets MAE ME Pearson’sr | RMSE

First data set 214 5.3 0.24 45.8

Second data set 30.5 3.8 0.20 96.6
Table 6

Comparison of the errors. Network developed using training data including
simulated extreme values.

0 100000 200000 0 100000 200000

Figure 8
Results for network trained using data including simulated extreme values.
Isoline levels (nSv/h) for the 1st set (let) and the 2nd set (right). Crosses
indicate locations of the estimated values. Empty squares indicate locations
of the input values.
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Figure 9
3D map showing extreme values found in the 2nd set (vertical scale in
nSv/h) generated with model developed using training data including
simulated extreme values.

DISCUSSION

Results obtained in this study indicate that reasonably accurate estimations of natural
background radiation levels could be obtained with a network trained using (back-
ground) prior data. On the other hand, estimation of data including extreme values
proved to be a difficult task. In the automatic mapping exercise the network model was
never presented with outlier values during the training stage. The net was trained using
data in the range 54.4 to 157.0 nSv/h, which were previously rescaled using minimum
and maximum values of 50.0 and 160.0 nSv/h, respectively. Network output values were
thus ‘safely’ bounded to this range because of the activation function selected for the out-
put unit. Trained networks produced wrong results when presented with extreme data
out of the range of the training data. A test performed using an output unit linear activa-
tion function after exercise true values were released indicated that slightly better results
could have been obtained using this model (test results are not presented). Nevertheless,
output values for the second dataset with outliers included large errors. It is important to
mention that using a wider range for data rescaling and an unbounded activation func-
tion would produce output values out of the range of the training data (i.e.
extrapolation). As stressed in previous sections, ANNs are data-driven models which are
good at interpolating but not at extrapolating. This means that, in general, a trained
network will produce reliable estimations only in a data range commensurate to the range
of the (target) data used for training. Consequently, an ANN developed for estimating
natural background radiation levels will generally not be able to correctly estimate
extreme values if outliers were not used for training.
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Results of the experiment performed using a new training dataset including simulated
extreme values indicate that outliers could be better detected if outliers were also consid-
ered in model development. However, extreme values were not accurately estimated in
any case. In addition, this model produced false outliers both for the first (with no
outliers) and the second dataset. These results suggest that a single model for estimation
of both background values and outliers might not be appropriate because performing
well for one task implied performing badly for the other one. Thus, an approach using
two different models for each purpose might be more successful. For instance, a model
might be developed for estimating background values and another one for estimating
extreme values. These two different models could be used in routine and emergency con-
ditions, respectively. However, this approach poses a new problem since to launch the
“emergency mapping algorithm” a signal must be triggered by the routine mapping
system.

Model development (architecture selection and training) required several hours of
computational time (6 to 7 hours). Once models were determined the estimation phase
required an average computational time of 1.5 seconds for each dataset.

CONCLUSIONS

ANNSs can be used for automatic mapping of environmental (background) data with
moderate success. ANN models for spatial interpolation can incorporate prior informa-
tion into the estimation process. However, network models developed using prior
background radiation data presented large errors when estimating extreme values (ex-
trapolation). The ability to interpolate accurately depends ultimately on the availability of
data commensurate with the particular target scale of output. Consequently, network
models trained for estimating background values will usually not produce adequate
results for extreme values. On the other hand, network models trained to estimate both
background and extreme values tend to produce false outliers.

The ANN approach presented here to automatic mapping of environmental data was
clearly inappropriate for dealing with outliers. Results obtained suggest that developing
two different models for estimating background values and extreme values, respectively,
might be a potentially more successful approach. This however introduces new opera-
tional problems. This approach would need further investigation.
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