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Abstract

The central focus of this thesis is to obtain the asymptotics of the probability of non-existence of
small substructures in random objects. It contains several parts that all fit into one bigger picture of
using clusters and cumulants to characterise dependencies in probabilistic combinatorics.

In Chapter 2, we express the probability that a binomial random hypergraph contains no copy of some
given small hypergraphs in terms of clusters, by showing a cumulant series obtained by Mousset, Noever,
Panagiotou and Samotij in 2020, approximating the same probability, is equivalent to a truncated
cluster expansion series. In addition, we use the tree-graph approach to bound the cumulants of graph-
dependent variables, rederiving a bound by Féray, Méliot and Nikeghbali in 2016, and give an asymptotic
normality criterion that generalizes the one by Janson in 1988. Moreover, we also obtain the asymptotic
distribution of maxima of graph-dependent sequences by using convergent cluster expansions.

In Chapter 3, we obtain the limiting distribution of maxima of various extension counts (codegrees,
clique-extensions, common neighbours) in random hypergraphs by studying the probability of the non-
occurrence of exceedances, that is, variables whose values are greater than certain specified threshold.
Under certain weakly dependent conditions, we show that the distribution of the maximum entry of
a random vector and the distribution of the maximum of their independent entries are asymptotically
equivalent.

In Chapter 4, our focus is the Eulerian orientations, which are orientations of all edges of a graph
such that every vertex is balanced (that is, its in-degree being equal to its out-degree). Studying the
probability of non-existence of unbalanced vertices for random orientations is essentially equivalent
to the enumeration of Eulerian orientations. We give accurate asymptotic enumerations of Eulerian
orientations of graphs, regular tournaments, Eulerian digraphs, and Eulerian oriented graphs extending
McKay’s results in 1990. This is by using the saddle point method applied to a certain high dimensional
integral, and truncated cumulant series. We derive accurate approximations of moment-generating
function of higher-order Lipschitz functions, which can be of independent interest. Our formula yields
estimates of the Eulerian orientations of square lattices, triangular lattices, cubic lattices, and hypercube,
etc. Our values turn out to be close to the ‘naive’ estimates by Pauling in 1935, and the only two known
exact values for ice-type models by Lieb in 1967, and by Baxter in 1969, respectively.

In Chapter 5, we use the perturbation method to study the probability of the non-existence of
small subhypergraphs in random hypergraphs Hr(n, p), which is also obtained by Mousset, Noever,
Panagiotou and Samotij using an alternative method, as describe in Chapter 2. Our results have an
advantage of extending easily to the case of Hr(n,m) that is more complicated and not well studied
before. As a special case, we give the asymptotic probability of a random hypergraph being linear. This
extends results by McKay and Tian in 2021. Additionally, by keeping track of the numbers of clusters,
we obtain approximations of the conditional probabilities of avoiding certain sets of clusters given the
counts for smaller ones and the non-existence of even larger ones for Hr(n, p) and Hr(n,m), which can
be of independent interest.

In all the above studies, we utilize clusters of combinatorial structures and cumulants of certain
suitably defined dependent variables to capture the high-order terms in random combinatorial problems.
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Any fool can know. The point is to understand.
—Albert Einstein

What I cannot create, I do not understand.
—Richard Feynman
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Chapter 1

Introduction and preliminaries

This chapter is to give an overview of the content of this thesis, and to set the context for the remainder
of this thesis. Section 1.2 contains basic definitions and notations.

1.1 Overview of chapters

Here we describe the contents of each chapter, starting with a illustration by Figure 1.1.

P (X = 0)

Chapter 5: Small subhypergraphs

X counts subhypergraphs

Chapter 3: Maxima of extension counts

X counts ‘exceedances’

Chapter 4: Eulerian orientations

X counts ‘unbalanced’ vertices

Chaprt 2: Cluster expansion

Cumulants

X as a partition function

Small subhypergraphs

Tree-graph bounds and normality

Graph-dependent maxima

Figure 1.1: A mixed graph illustrating relations among chapters, where the mixed graph is
a graph with edges and arcs, and random variable X counts small substructures in random
objects.

• Chapter 2 contains three applications of cluster expansion.

Cluster expansion is a powerful tool in the rigorous study of statistical mechanics. It was pioneered
by Mayer in the 1930s and remains widely used nowadays, see, for example, [30, Chapter 5]. The
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cluster expansion expresses the logarithm of a certain partition function as an infinite summation
over clusters.

– We express the probability that a binomial random hypergraph contains no copy of some given
small hypergraphs in terms of clusters, by showing a cumulant series obtained by Mousset, Noever,
Panagiotou and Samotij [77] approximating the same probability is equivalent to a truncated
cluster expansion series. We use the formal cluster expansion after writing the probability of
interest as a partition function. As a special case, we extend the result on the asymptotic
probability of a random binomial hypergraph Hr(n, p) being linear obtained by McKay and Tian
in [74], with explicit computation for r = 3 and p = o(n−7/5).

– We use the tree-graph approach for the cluster expansion to bound cumulant of graph-dependent
variables. This provides an alternative proof of the bound on cumulant by Féray, Méliot and
Nikeghbali in [26], and further leads to an asymptotic normality criterion that generalises Janson’s
[54].

– We obtain the asymptotic distribution of maxima under graph-dependence via cluster expansion,
which gives accurate asymptotic distribution of the maxima of m-dependent random variables.
This extends the seminal work of Newell’s [79] that originates the study of clustering of ex-
ceedances in extreme value theory. Our method is by using Koteckỳ-Preiss criterion [61] to
obtain the absolute convergence of the cluster expansion. The new asymptotic formula also
provides new insights into the extremal index.

• Chapter 3 studies the limiting distribution of the maximum of weakly dependent variables.

Under certain weakly dependent conditions that is a special notion of φ-mixing, we show that the
distribution of the maximum entry of a random vector and the distribution of the maximum of their
independent entries are asymptotically equivalent.

Our result on extremal independence relies on new lower and upper bounds for the probability of
the non-existence, that were inspired by Lovász local lemma [21] and Dubickas’ bound [20].

As applications, we obtain the distribution of various extremal characteristics of random discrete
structures such as the maximum codegree in binomial random hypergraphs, and the maximum
number of cliques sharing a given vertex in binomial random graphs, etc. We show that their
limiting distributions are all standard Gumbel, extending the results for the maximum degree of
binomial random graphs by Bollobás [10].

• Chapter 4 uses cumulants to give accurate asymptotic enumeration results.

We study Eulerian orientations, which are orientations of all edges of a graph such that every vertex is
balanced with its in-degree being equal to the out-degree. Studying the probability of non-existence
of unbalanced vertices for random orientations is essentially equivalent to the enumeration of Eulerian
orientations. We give accurate asymptotic enumerations of Eulerian orientations of graphs, regular
tournaments, Eulerian digraphs, and Eulerian oriented graphs extending the results by McKay [73].
This is by using the saddle point method applied to a certain high dimensional integral, and trun-
cated cumulant series. We use the saddle point method applied to some high-dimensional integrals
and truncated cumulant series. In particular, we derive accurate approximations of the moment-
generating function of higher-order Lipschitz functions, which can be of independent interest.

2



We also use our series to estimate the Eulerian orientations of square lattices, triangular lattices,
cubic lattices, hypercubes, etc. Our values turn out to be close to the estimates by Pauling [81] that
is simply ignoring the dependence among vertices, and the only known exact values by Lieb [66] and
Baxter [7] for ice-type models.

• Chapter 5 studies the non-existence of small subhypergraphs in random hypergraphs via the per-
turbation method.

We extend the perturbation method introduced by Nick Wormald [103], and its generalization with
Stark [98], to obtain the asymptotics of the probability of the non-existence of small subhypergraphs
in random hypergraphs Hr(n, p) and Hr(n,m) for moderately large p and m. The case of Hr(n, p)

is also obtained by Mousset, Noever, Panagiotou and Samotij using an alternative method. Our
results have a advantage of extending easily to the case of Hr(n,m) that is more complicated and
not well-studied before besides [103, 98].

As a direct corollary, we derive the asymptotic probability of a random hypergraph being linear.
In the case of fixed r, this relaxes the restriction on p for the asymptotic probability obtained by
McKay and Tian [74]. For Hr(n, p), when r = 3 and p = o(n−7/5), the asymptotic probability
matches the one obtained in Chapter 2.

Similar to the graph case in [98], by keeping track of the numbers of clusters, we obtain stronger
results, giving an approximation of the conditional probabilities of avoiding certain sets of clusters
of hypergraphs given the counts for smaller ones and the non-existence of even larger ones, which is
of independent interest.

• Finally, we conclude with a discussion of a plan for future work in the last chapter.

1.2 Basic definitions and notations

To make the descriptions and concepts clear and specific, we give basic definitions and the framework.
First, we introduce the basic definitions and notations that will be used in this thesis.

For all positive integer n ⩾ 1, let [n] denote the integer set {1, 2, . . . , n}. Let [n]t := n(n−1) · · · (n−
t+ 1) denote the t-th falling factorial for every non-negative integer t. For any set V and 1 ⩽ r ⩽ |V |,
let
(
V
r

)
denote the set containing all r-elements subset of V .

1.2.1 Graph-theoretical notation

A graph is a pair G = (V (G), E(G)), where V (G) is a set whose elements are called vertices, and
E(G) ⊆

(
V (G)
2

)
is a set of paired vertices, whose elements are called edges.

Definition 1.1. Given an undirected graph G = (V (G), E(G)).

(d1) A connected component of G is a maximal set of vertices such that every pair of vertices is
connected by a path. The number of connected components of G is denoted by c(G).

(d2) The set of polymers C(G) of G is the family of vertex sets of all connected induced subgraphs of
G, namely,

C(G) = {C ⊆ V (G) : c(G[C]) = 1},
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where G[C] denotes the subgraph of G induced by the vertex set C.

For any two distinct polymers Ci, Cj ∈ C(G), we write Ci ∼ Cj if Ci ∪ Cj ∈ C(G); otherwise,
Ci ̸∼ Cj . Equivalently, Ci ̸∼ Cj if dG(Ci, Cj) > 1 and otherwise, Ci ∼ Cj . Note that if we have
that Ci ∼ Cj and Ci ∩ Cj = ∅, then Ci and Cj are adjacent in G, that is, there exists an edge in
E(G), with one endpoint in Ci and the other in Cj .

(d3) The size of a polymer, denoted by |C|, is the number of vertices in it. We will use

Ck(G) := {C ∈ C(G) : |C| = k}, and C⩽k(G) :=
⋃
i∈[k]

Ci(G),

to denote the set of all polymers of size k, and at most k respectively.

(d4) For every non-empty ordered multiset of polymers (C1, . . . , Cn) ∈ C(G)n, let G(C1, . . . , Cn) =

GG(C1, . . . , Cn) be the graph on [n] with {i, j} ∈ E(G) if Ci ∼ Cj in G.

For instance, fix a polymer C ∈ C(G). For a multiset of n copies of C, we have G(C, . . . , C) = Kn,
where Kn denotes the complete graph on [n].

If we have that {C1, . . . , Cn} is a partition of the vertex set of graph G, then graph G(C1, . . . , Cn)

corresponds to the so-called quotient graph of G with respect to {C1, . . . , Cn}.

In graph theory, a vertex identification (also called vertex contraction) is to contract a pair of
vertices u and v of a graph and produces a graph in which the two vertices u and v are replaced
with a single vertex t such that t is adjacent to the union of the vertices to which u and v were
originally adjacent. In other words, it is by identifying the vertices in each part, deleting loops,
and replacing parallel edges with a single edge. Note that in vertex contraction, it does not matter
if u and v are connected by an edge; if they are, the edge is simply removed upon contraction,
this special case of vertex identification is also called edge contraction.

(d5) A cluster γ is a non-empty ordered multiset of polymers (C1, . . . , C|γ|) such that G(γ) = G(C1, . . . , C|γ|)

is connected. The size of a cluster γ, denoted by |γ|, is the number of polymers in it, and the
number of vertices of a cluster γ, denoted by ∥γ∥, is the sum of sizes of polymers it contains, that
is, ∥γ∥ =

∑
C∈γ |C|. The set of all clusters of G is denoted by Γ(G).

Note that the cluster is redefined and used in Chapter 5, to mean some connected structure that
is similar to the polymers defined here, but not exactly.

1.2.2 Asymptotic notation

All asymptotics in this thesis are with respect to n → ∞. We use the following asymptotic notations.
Let g(n) > 0 for all large enough integer n.

• f(n) = o(g(n)) if for every ε > 0 there exists Nε such that

|f(n)| ⩽ εg(n)

for n ⩾ Nε; in other words, f(n)/g(n) → 0.
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• f(n) = O (g(n)) if there exist constants C and N such that

|f(n)| ⩽ Cg(n)

for n ⩾ N ; in other words, f(n)/g(n) is bounded.

• f(n) = Ω(g(n)) if there exist constants C > 0 and N such that

f(n) ⩾ Cg(n)

for n ⩾ N .

• f(n) = ω(g(n)) if for all C > 0 there exists a constant NC such that

f(n) > Cg(n)

for n ⩾ N .

• f(n) = Θ(g(n)) if there exist constants C1, C2 > 0 and N such that

C1g(n) ⩽ f(n) ⩽ C2g(n)

for n ⩾ N ; in other words, f(n) = O (g(n)) and f(n) = Ω(g(n)).

• f(n) ≪ g(n) if f(n) ⩾ 0 and f(n) = o(g(n)).

• f(n) ∼ g(n) if f(n) = (1 + o(1))g(n); in other words, f(n)/g(n) → 1.

1.2.3 Random (hyper)graphs

Here we introduce the random hypergraph models that we study. Define the binomial random r-uniform
hypergraph Hr(n, p) to be the r-uniform hypergraph (r-graph for short) on the vertex set [n] such that
each r-element subset (r-set for short) is an edge independently with probability p. We use Hr(n,m)

to denote the random r-graphs on n vertices obtained by choosing uniformly at random from the
((nr)
m

)
r-graphs having m hyperedges. When r = 2, we have Hr(n, p) and Hr(n,m) become the Erdős-Rényi
random graphs G(n, p) and G(n,m) respectively.

1.2.4 Dependency graphs

Dependency graphs can be used to characterize the dependencies among variables. They have been
widely used in probability and statistics to establish normal or Poisson approximation via Stein’s
method, cumulants, etc. (see, for example, [54, 55]). They are also heavily used in probabilistic com-
binatorics, such as Lovász local lemma [21], Janson’s inequality [57], concentration inequalities [105],
etc.

Given a graph G = (V,E), we say that random variables {Xi}i∈V are G-dependent if for any
disjoint S, T ⊂ V such that dG(S, T ) > 1, random variables {Xi}i∈S and {Xj}j∈T are independent. In
particular, random variables {Xi}i∈C1 and {Xj}j∈C2 are independent for any two distinct polymers C1

and C2 of the graph G such that C1 ̸∼ C2.
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Definition 1.2 (Dependency graphs). An undirected graph G is called a dependency graph of random
variables X = {X1, . . . , Xn} if

(b1) V (G) = [n].

(b2) For all disjoint I, J ⊂ [n], if I, J are not adjacent in G, then {Xi}i∈I and {Xj}j∈J are independent.

1

2
4

6

5

3

Figure 1.2: A dependency graph G for random variables {Xi}i∈[6]. Random variables
{X1, X2} and {X5, X6} are independent, since disjoint vertex sets {1, 2} and {5, 6} are
not adjacent in G.

The above definition of dependency graphs is a strong version; there are ones with weaker assump-
tions, such as the one used in Lovász local lemma. Note that the dependency graph for a set of random
variables may not be necessarily unique and the sparser ones are the more interesting ones. Let Kn

denote the complete graph on n vertices, that is, all pairs of vertices are connected by an edge. Since
no two disjoint S, T ⊂ [n] are non-adjacent in Kn, then the trivial dependency graph Kn is a valid
dependency graph for any set of variables {Xi}i∈[n].

Given G-dependent random variables {Xi}i∈V (G), for every set of vertices S ⊆ V (G), the joint
moment of random variables {Xi}i∈S is defined by

µ (S) = E

[∏
i∈S

Xi

]
, (1.2.1)

with µ(∅) := 1. We will sometimes simplify the notation and use the µ (i) to denote µ ({i}), and
similarly, µ (i, j) to denote µ ({i, j}).

Let {Ci}i∈[n] be a set of pairwise non-adjacent disjoint polymers of G, in other words, for all distinct
i, j ∈ [n], we have Ci ̸∼ Cj , or equivalently, dG(Ci, Cj) > 1. Then one important factorisation property
for G-dependent variables, following from the definition of dependency graph, is that

µ

⋃
i∈[n]

Ci

 =
∏
i∈[n]

µ (Ci) . (1.2.2)

1.2.5 Cumulants

Then joint cumulant (or mixed cumulant) is a fundamental tool in probability theory. Let X1, . . . , Xr

be random variables with finite moments. The joint cumulant is defined by

κ(X1, . . . , Xr) = [t1 . . . tr] log

(
E

[
exp

(
r∑

i=1

tiXi

)])
, (1.2.3)

where [t1 . . . tr] stands for the coefficient of t1 . . . tr in the series expansion.
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Given G-dependent random variables {Xv}v∈V (G), for every set of vertices S ⊆ V (G), we have an
equivalent combinatorial definition of the joint cumulant of random variables {Xi}i∈S by

κ(S) =
∑

π∈Π(S)

(−1)|π|−1(|π| − 1)!
∏
P∈π

µ (P ) , (1.2.4)

where Π(S) denotes the set of all partitions of S.
The joint cumulant κ(S) can be regarded as a measure of the mutual dependencies of the variables

in S. An important property of the joint cumulant κ(S) is that if S can be partitioned into two subsets
S1 and S2 such that the variables in S1 are independent of the variables in S2, then κ(S) = 0. In other
words, if S ̸∈ C(G), then κ(S) = 0 (see, for example, [93]). This reveals the natural connections between
cumulants and clusters. More details will be discussed in Section 2.4 using spanning trees.

1.3 Classical results through the lens of clusters illustrated with tri-

angles in G(n, p)

Here we present some classical probabilistic results with a unified formulation in terms of clusters.
We illustrate and compare the classical results by giving the distribution of the triangles in random
binomial graphs G(n, p). To determine the probability that G(n, p) does not contain a copy of some
given ‘forbidden’ graph is a fundamental question in the random graph theory since the seminal paper
of Erdős and Rényi [23]. To avoid triviality, we assume that 0 < p < 1.

For each {i, j, k} ∈
(
[n]
3

)
, let Xijk be the indicator for the occurrence of triangle with vertex set

{i, j, k} in G(n, p). Then a dependency graph for random indicators {Xijk}{i,j,k}∈([n]
3 )

can be defined by

G :=

((
[n]

3

)
,

{
{v1,v2} ∈

(([n]
3

)
2

)
: |v1 ∩ v2| = 2

})
.

Let X :=
∑

{i,j,k}∈([n]
3 )
Xijk. Then X counts the copies of triangles in G(n, p).

A simple lower bound on the probability of non-existence of the triangles in G(n, p) is by the prob-
ability of getting an empty graph, that is,

P (X = 0) ⩾ P (E(G(n, p)) = ∅) = (1− p)(
n
2) = exp

(
−1
2 [n]2p+O

(
n2p2

))
= e−Θ(n2p). (1.3.1)

1.3.1 Non-existence probability: Suen’s inequality

Suen [99] obtained upper and lower bounds on P (X = 0), where X is a sum of G-dependent random
indicators. Later, Janson [56] improved Suen’s inequality and obtained strengthened inequalities that
become the most commonly used and cited version.

Theorem 1.3 (Suen’s inequality). Let {Xv}v∈V (G) be G-dependent random indicators and X =
∑

v∈V (G)Xv.
Let

∆⋆ :=
∑

{i,j}∈C2(G)

µ(i,j)
µ̃(i,j) and ∆⋆

0 :=
∑

{i,j}∈C2(G)

µ(i)µ(j)
µ̃(i,j) (1.3.2)
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where Ck(G) denotes the set of all polymers of size k, and

µ̃(i, j) := (1− µ (i))(1− µ (j))
∏

k:{i,j,k}∈C3(G)

(1− µ (k)).

Then we have

1−∆⋆
0 exp (∆

⋆) ⩽
P(X=0)∏

i∈V (G)(1−µ(i))
⩽ exp (∆⋆) .

For triangles in G(n, p), we have, from (1.3.2), that

∆⋆ =
[n]4p

5

4(1−p3)5n−18 and ∆⋆
0 =

[n]4p
6

4(1−p3)5n−18 .

Therefore, we have

P (X = 0) ⩽ (1− p3)(
n
3) exp

(
[n]4p

5

4(1−p3)5n−18

)
= exp

(
−1
6 [n]3p

3 +
1
4 [n]4p

5 +O
(
n3p6 + n4p8

))
.

The lower bound is useful only when ∆⋆
0 ⩽ 1 and ∆⋆ = o(1), by noting that ∆⋆ > 0. If we have

n4p5 = o(1), then

P (X = 0) ⩾ (1− p3)(
n
3)
(
1− [n]4p

6

4(1−p3)5n−18 exp

(
[n]4p

5

4(1−p3)5n−18

))
= exp

(
−1
6 [n]3p

3 +O
(
n3p6 + n4p6

))
.

1.3.2 Non-existence probability under correlation: Harris-FKG, Janson’s inequal-
ities

Let Ω = {0, 1}n and define a partial ordering of the elements in Ω by

(x1, . . . , xn) ⪯ (y1, . . . , yn)

if and only if xi ⩽ yi for all i ∈ [n]. We say that an event A ⊆ Ω is increasing if x ∈ A and x ⪯ y implies
that y ∈ A. We say that an event A ⊆ Ω is decreasing if x ∈ A and y ⪯ x implies that y ∈ A. Harris
[39] obtained that events are positively correlated if they are both increasing or both decreasing.

Theorem 1.4 (Harris’ inequality). Let Ω be a finite set and let X and Y be random variables defined
on a product probability space over {0, 1}Ω. If X and Y are both non-decreasing (or non-increasing),
then

E [XY ] ⩾ E [X]E [Y ] .

If X is non-decreasing and Y is non-increasing, then

E [XY ] ⩽ E [X]E [Y ] .

A more generalized version is the FKG inequality, attributed to Fortuin, Kasteleyn and Ginibre [29],
which will be discussed in the next subsection.

Let R be a random subset of Ω by independently choosing each r ∈ Ω with certain probability. Let
{Ai}i∈I be some subsets of Ω, where I is a finite index set. Let Xi be the indicator of event Ai ⊆ R and
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X =
∑

i∈I Xi. Then X counts the number of Ai ⊆ R. The upper bound on P (X = 0) in this binomial
random subset is obtained by Janson, Łuczak and Ruciński [57] under the name of Janson’s inequality.

Theorem 1.5 (Janson’s inequality). Let {Xv}v∈V (G) be G-dependent random indicators for the occur-
rences of sets and X =

∑
v∈V (G)Xv. Then we have

P (X = 0) ⩽ min

(
exp (−E [X] + ∆) , exp

(
− E[X]

2

E[X]+2∆

))
, (1.3.3)

where

∆ :=
∑

{i,j}∈C2(G)

µ (i, j)

is a summation over unordered dependent pairs (polymers of size 2).

Now we can use FKG inequality and Janson’s inequality to obtain asymptotics. For x ∈ [0, 1 − ε],
we have log (1− x) ⩾ −x− x2/ε, and therefore if E [Xi] ⩽ 1− ε for some constant ε > 0, then

P (X = 0) ⩾
∏

i∈V (G)

(1−E [Xi]) ⩾ exp

−E [X]− 1
ε

∑
i∈V (G)

E [Xi]
2

 . (1.3.4)

Combining this lower bound with the upper bound given by Janson’s inequality, we have

logP (X = 0) = −E [X] +O

 ∑
i∈V (G)

E [Xi]
2 +

∑
{i,j}∈C2(G)

µ (i, j)

 . (1.3.5)

For triangles in G(n, p), if p ⩽ 1− ε for some ε > 0, then we have that

logP (X = 0) = −1
6 [n]3p

3 +O
(
n3p6 + n4p5

)
. (1.3.6)

Moreover, using Janson’s inequality, we get

P (X = 0) =

e
−Θ(n2p) if p = ω(n−1/2),

e−Θ(n3p3) if p = O(n−1/2).

This is by noting that if p = ω(n−1/2), we have from (1.3.3), that

P (X = 0) ⩽ exp

−

(
1
6 [n]3p

3
)2

1
6 [n]3p

3+
1
2[n]4p

5

 = e−Θ(n2p),

which matches the empty graph lower bound (1.3.1) asymptotically.

1.3.3 Mousset-Noever-Panagiotou-Samotij cumulant series for binomial subsets

The FKG lattice condition [29, Eq. (2.1)] is also called the log-supermodularity condition. It is the
condition under which the Fortuin–Kasteleyn–Ginibre (FKG) correlation inequality holds, that is, for
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all U, V ⊆ V (G),

µ(U)µ(V ) ⩽ µ (U ∪ V )µ (U ∩ V ) , (1.3.7)

where µ(·) was defined by (1.2.1).
Given a graph G, let N+

G (v) denote the inclusive neighbours of vertex v in graph G, that is,

N+
G (v) := {u ∈ V (G) : {v, u} ∈ E(G)} ∪ {v}.

For any set U ⊆ V (G), let

N+
G (U) :=

⋃
u∈U

N+
G (u).

Let i > 0 be an integer, and define κi(D) to be the sum of joint cumulants over polymers of size i
in the dependency graph D, that is,

κi(D) =
∑

C∈Ci(D)

κ(C).

Exploiting the property that the indicators of the appearance of subsets in a binomial random set
satisfy the the FKG lattice condition, Mousset, Noever, Panagiotou and Samotij [77, Theorem 11] obtain
an approximation of logP (X = 0) using a truncated series with terms up to a constant order.

Theorem 1.6. Let ε > 0 and k be a positive integer. Let {Xv}v∈V (G) be indicators of the appearance
of subsets in a binomial random set. If

min
U⊆V (G):|U |∈[k+1]

P

 ∑
i∈N+(U)

Xi = 0

 ⩾ ε, (1.3.8)

then there exists a constant K = K(ε, k) such that

∣∣∣∣∣ logP (X = 0)−
∑
i∈[k]

(−1)iκi(D)

∣∣∣∣∣ ⩽ K

 ∑
C∈C⩽K(G)

µ(C)max
v∈C

µ (v) +
∑

C∈(CK(G)\Ck(G))

µ(C)

 . (1.3.9)

For triangles in G(n, p), the following result is first obtained by Stark and Wormald [98, Theorem
1.2] and also by Mousset, Noever, Panagiotou and Samotij [77, Corollary 15] as a more or less direct
consequence of Theorem 1.6.

Theorem 1.7. Let X count the number of triangles in G(n, p). If p = o
(
n−7/11

)
, then

P (X = 0) = exp
(
−1
6n

3p3 +
1
4n

4p5 − 7
12n

5p7 +
1
2n

2p3 − 3
8n

4p6 +
27
16n

6p9 + o (1)
)
. (1.3.10)
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1.3.4 Lovász local lemma and Shearer’s lemma

Rederiving the results by Dobrushin [17] and Shearer [89], Scott and Sokal [88] point out the connections
between the repulsive hard-core gas in statistical mechanics and the Lovász local lemma, and discov-
ered that the assumption in the Lovász local lemma provides a sufficient condition for the absolute
convergence of the cluster expansion of the partition function of hard-core models.

Specifically, given a graph G and a vector x = (xv)v∈V (G), the partition function of the hard-core
model (also the independence polynomial) on G is defined by

IG(x) :=
∑

U∈I(G)

∏
i∈U

xi, (1.3.11)

where I(G) denotes the set of all independent sets for every graph G.
Let R(G) be the convergence region of the cluster expansion of the hard-core model on graph G,

that is,

R(G) :=
{
p ∈ (0, 1)V (G) : IG(−p1S) ⩾ 0 for all S ⊆ V (G)

}
.

The following is Shearer’s lemma [89, Theorem 1] formulated in [88, Theorem 4.1].

Theorem 1.8 (Shearer’s lemma). Let G be a graph and {Xv}v∈V (G) be random indicators. Suppose
that (pi)i∈V (G) are real numbers in [0, 1] such that, for each v and each U ⊆ V (G) \N+

G (v), we have

P

(
Xv = 1

∣∣∣∣∣ ∑
u∈U

Xu = 0

)
⩽ pv . (1.3.12)

If p ∈ R(G), then

P

 ∑
v∈V (G)

Xv = 0

 ⩾ IG(−p) > 0 (1.3.13)

and more generally

P

(∑
v∈V

Xv = 0

∣∣∣∣∣ ∑
u∈U

Xu = 0

)
⩾

IG(−p1V ∪U )

IG(−p1U )
> 0 (1.3.14)

for any subsets V,U ⊆ V (G).
Moreover, this lower bound is best possible in the sense that there exists a probability space on which

there can be constructed a family of G-dependent events (Bi)i∈V (G) with probabilities P (Bi) = pi, such
that

P

 ∑
v∈V (G)

Xv = 0

 = IG(−p).

A commonly used corollary of Shearer’s Lemma is for the symmetric case, in which all events are
given the same probability bound.

Corollary 1.9 ([89, 88]). Let {Xv}v∈V (G) be random indicators such that for each v ∈ V (G), variable
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Xv is independent of all but ∆ other variables (∆ ⩾ 2), and

P (Xv = 1) ⩽
(∆−1)∆−1

∆∆ := pShearer(∆). (1.3.15)

Then

P

 ∑
v∈V (G)

Xv = 0

 > 0.

Another easily testable sufficient condition for P (X = 0) > 0 appears in the Lovász local lemma.

Theorem 1.10 (Lopsided Lovász local lemma [21, 22]). Let G be a graph and {Xv}v∈V (G) be random
indicators. Suppose that (pi)i∈V (G) are real numbers in [0, 1] such that, for each v and each U ⊆
V (G) \N+

G (v), we have

P

(
Xv = 1

∣∣∣∣∣ ∑
u∈U

Xu = 0

)
⩽ xv

∏
u:{v,u}∈C2(G)

(1− xu) . (1.3.16)

Then

P (X = 0) ⩾
∏

v∈V (G)

(1− xv) > 0.

Moreover, let ∆ be the maximum degree of G, and pm := maxi∈V (G) pi. If

e(∆ + 1)pm ⩽ 1, (1.3.17)

then P (X = 0) > 0.

The graph in the Lopsided Lovász local lemma is called a negative dependency graph. We will
introduce a similar but more general dependency graph using the notion of φ-mixing coefficient, and
discuss this in Chapter 3.

Scott and Sokal [88] discovered that the assumption (1.3.16) in the Lovász local lemma is a sufficient
condition for the convergence of the cluster expansion, combining Shearer’s lemma (1.3.13), simply
implies that P (X = 0) > 0.

For triangles in G(n, p), by noting that ∆ = 3(n− 3), the Lovász local lemma gives that if

p ⩽
(

1
e(∆+1)

)1/3
⩽
(

1
e(3n−8)

)1/3
,

then

P (X = 0) ⩾
(
1− 1

∆+1

)(n3)
= exp

(
− [n]3
6(3n−8) −

[n]3
12(3n−8)2 − [n]3

18(3n−8)3 +O
(
n−1

))
= e−Θ(n2).

However, this is not very useful as the empty graph lower bound (1.3.1) is better.
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1.3.5 Chen-Stein method under local dependence

Poisson approximation via Chen-Stein method is for sums of “locally” dependent variables [4, 5], which
are essentially the graph-dependent variables. Let dtv(·, ·) denote the total variation distance between
two probability measures.

Theorem 1.11 ([4, 5]). Let {Xv}v∈V (G) be G-dependent random indicators and X =
∑

v∈V (G)Xv. Let
Z ∼ Poi (E [X]). Then

dtv(X,Z) ⩽ min(1,E [X]−1)

 ∑
i∈V (G)

E [Xi]
2 + 2

∑
{i,j}∈C2(G)

(µ (i)µ (j) + µ (ij))


= min

(
L̃−1
G,1L̃G,2, L̃G,2

)
,

where

L̃G,k :=
∑

γ∈Γ(G):∥γ∥=k

∏
C∈γ

µ (C) .

It turns out that the dependency graph can be defined with greater flexibility. The G-dependence as-
sumption can be relaxed, and this will give rise to an additional error term that measures the dependence
(see [4, 5]). We will discuss this in detail in Chapter 3.

For triangles in G(n, p), we have

dtv

(
X,Poi

(
1
6 [n]3p

3
))

⩽ min

1
6 [n]3p

6 +
1
2 [n]4p

5 +
1
2 [n]4p

6,

1
6 [n]3p

6+
1
2[n]4p

5+
1
2[n]4p

6

1
6 [n]3p

3


⩽ min

(
1
6 [n]3p

6 +
1
2 [n]4p

5, p3 + 6np2
)
. (1.3.18)

This bound is useful only when np2 is small. If np2 = o(1), then we have, from (1.3.18), that
dtv

(
X,Poi

(
1
6 [n]3p

3
))

= o(1), as the upper bound is by taking the minimum, and therefore,

∣∣∣P (X = 0)− exp
(
−1
6 [n]3p

3
)∣∣∣ = o(1).

Note that Chen-Stein method is not strong enough to give accurate asymptotics unless np = O (1),
under which we have

P (X = 0) = exp
(
−1
6 [n]3p

3 + o(1)
)
,

which is implied by Harris-Janson bound (1.3.6). For the case that p satisfies p = o(n−1/2) and p =

ω(n−1), Theorem 1.6 gives more accurate asymptotics.
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Chapter 2

Cluster expansion, cumulants,
non-existence probability, and asymptotic
normality

2.1 Introduction

In this chapter, we consider the following three applications of cluster expansion.

• To obtain the probability of the non-existence of small hypergraphs in random hypergraphs.

We express the probability that a binomial random hypergraph contains no copy of some given
small hypergraphs in terms of clusters, by showing a cumulant series obtained by Mousset, Noever,
Panagiotou and Samotij [77] approximating the same probability is equivalent to a truncated
cluster expansion series. We use the formal cluster expansion after writing the probability of
interest as a partition function. To illustrate the formula, we extend the result of the asymptotic
probability that a random binomial hypergraph Hr(n, p) is linear obtained by McKay and Tian
in [74], for fixed r to the wider range of p, by a computation for r = 3 and p = o(n−7/5).

• To use tree-graph bounds to estimate the cumulant, and using it to give asymptotic normality
criteria.

To establish the absolute convergence of the cluster expansion series, one difficulty is to estimate
a summation over connected graphs of arbitrary sizes in the Ursell function (2.2.2). It turns out
that the summation over connected graphs can be reduced to a summation over spanning trees,
which can be easier to deal with. This leads to the approach using tree-graph bounds, which is
utilized to bound the cumulants of graph-dependent variables, giving the Féray-Méliot-Nikeghbali
bound in [26]. This further yields an asymptotic normality criterion that generalizes Janson’s [54].

• To obtain the limiting distribution of the maximum of graph-dependent sequences.

We use the Koteckỳ-Preiss criterion [61] to establish the absolute convergence of the cluster ex-
pansion under a locally dependent assumption. This gives the asymptotic distribution of maxima
for m-dependent random variables. This extends the seminal work of Newell’s [79] that originates
the study of clustering of exceedances in extreme value theory. The new asymptotic formula also
provides new insights into the extremal index.
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2.2 Cluster expansion and the probability of non-existence

Here we introduce the standard cluster expansion setting, which is formulated in a way that is convenient
for our applications. Recall the dependency graph defined in Definition 1.2, the cluster expansion method
can be naturally combined with dependency graphs. Let {Xv}v∈V (G) be G-dependent random indicators
and

X =
∑

v∈V (G)

Xv.

In our application, each indicator indicates the occurrence of some combinatorial structure, and depen-
dencies among indicators is characterized by a dependency graph.

By writing the probability of the non-existence of some combinatorial structure P (X = 0) as a par-
tition function, the cluster expansion then gives the formal expansion formula as a sum over clusters.
The asymptotic value of P (X = 0) can be estimated by truncating this infinite cluster expansion series.
This method is inspired by [88], in which they also treat P (X = 0) as a partition function and investi-
gate the connections between cluster expansion and the Lovász local lemma, giving a lower bound for
P (X = 0).

Let the set of all connected spanning subgraphs of G be

CSpan(G) := {(V (G), E) : E ⊆ E(G), c((V (G), E)) = 1},

where c denotes the number of connected components. Then for every graph H ∈ CSpan(G), we have
V (H) = V (G), E(H) ⊆ E(G), and c(H) = 1. The standard cluster expansion gives the formal cluster
expansion

logP (X = 0) =
∑

γ∈Γ(G)

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) , (2.2.1)

with Ursell function ϕ : Γ(G) → R defined by

ϕ(γ) =
∑

H∈CSpan(G(γ))

(−1)eH , (2.2.2)

where eH denotes the number of edges of the graph H, and G is defined in Section 1.2.1. Note that if
the cluster γ contains one single polymer C ∈ C(G), then ϕ(γ) = 1, since G(C) = K1.

For completeness, we include a simple derivation of (2.2.1), following the routine cluster expansion
derivation procedure (see, for example, [88, Section 2.2] or [30, Proposition 5.3.]). First, the inclusion-
exclusion formula gives

P (X = 0) =
∑

S⊆V (G)

(−1)|S|µ (S) . (2.2.3)

Let Gc be a graph on vertex set C(G) such that for all distinct Ci, Cj ∈ C(G), if Ci ∼ Cj , then
{Ci, Cj} ∈ E(Gc). Next, we utilize the factorisation property as shown in (1.2.2) to prove that the right-
hand side of (2.2.3) can be written as some partition function of the hard-core model, more specifically,

15



as a summation over independent sets of graph Gc,

P (X = 0) =
∑

U∈I(Gc)

∏
C∈U

(−1)|C|µ (C) . (2.2.4)

Recall that I(G) denotes the set of all independent sets for every graph G.
For every S ⊆ V (G) such that S ∈ C(G), we have {S} ∈ I(Gc). For every S ⊆ V (G) such that

S /∈ C(G), we have that S induces a union of pairwise non-adjacent maximal connected subgraphs, that
is, there exists a unique set of polymers U ∈ I(Gc) such that S = ∪C∈UC, and Ci ̸∼ Cj for all pairs of
distinct Ci, Cj ∈ U . The factorisation property (1.2.2) then gives

(−1)|S|µ (S) =
∏
C∈S

(−1)|C|µ(C). (2.2.5)

Conversely, for every U ∈ I(Gc), we have ∪C∈UC ⊆ V (G), thus U determines S uniquely; combining
with (2.2.5), it follows that (2.2.3) and (2.2.4) are equivalent.

Now we derive the formal cluster expansion. Recall that
(
S
i

)
denotes the family of i-sets of S. From

(2.2.4), we have

P (X = 0) =
∑

U⊆C(G)

∏
C∈U

(−1)|C|µ(C)
∏

{Ci,Cj}∈(U2)

1{Ci ̸∼Cj}

= 1 +
∑
n⩾1

1
n!

∑
(C1,...,Cn)∈C(G)n

∏
i∈[n]

(−1)|Ci|µ (Ci)
∏

1⩽i<j⩽n

1{Ci ̸∼Cj}.

Note that a simple expansion yields∏
1⩽i<j⩽n

1{Ci ̸∼Cj} =
∏

1⩽i<j⩽n

(
1− 1{Ci∼Cj}

)
=
∑

H∈Gn

(−1)eH
∏

{i,j}∈E(H)

1{Ci∼Cj},

where Gn denotes the set of all graphs on n vertices. Then formally, we obtain

P (X = 0) = 1 +
∑
n⩾1

1
n!

∑
H∈Gn

W (H),

where

W (H) =
∑

(C1,...,CvH
)∈C(G)vH

(−1)eH
∏

{i,j}∈E(H)

1{Ci∼Cj}
∏

k∈[vH ]

(−1)|Ck|µ (Ck) ,

and W (H) satisfies

(a1) W (H) = W (H ′) whenever H and H ′ are isomorphic H ∼= H ′, that is, differ only by vertices
relabelling;

(a2) W (H) =W (H1)W (H2) whenever H is isomorphic to the disjoint union of H1 and H2.

Let Cn be the set of all connected graphs on n vertices. Via the exponential formula [96, Corollary
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5.1.6], we reduce the sum over the set of all graphs to the set of all connected graphs

logP (X = 0) =
∑
n⩾1

1
n!

∑
H∈Cn

W (H) =
∑

γ∈Γ(G)

1
|γ|!

∑
H∈CSpan(G(γ))

(−1)eH+∥γ∥
∏
C∈γ

µ (C) ,

where Γ(G) denotes the set of all clusters of G. A similar derivation of the cluster expansion utilizing
the exponential formula also appears in [30, Proposition 5.3]. Then (2.2.1) follows.

Remark 2.1. (r1) The cluster expansion is essentially the multivariate Taylor series for log IH(p) in
variables {pv}v∈V (H) around 0. Let µ = ((−1)|C|µ(C))C∈C(G). Then (2.2.4) can be regarded as
the partition function IGc(µ) of the hard-core model on Gc.

(r2) For independent indicators {Xi}i∈[n], if 0 ⩽ E [Xi] < 1 for all i ∈ [n], then we have the Taylor
series of logarithmic function

logP (X = 0) =
∑
i∈[n]

log (1−E [Xi]) = −
∑
i∈[n]

∑
j⩾1

1
jE [Xi]

j . (2.2.6)

The empty graph Kn := ([n], ∅) is a valid dependency graph for this independent case. Since
the polymers of Kn are all of size one containing a single vertex, and the clusters of Kn are all
multisets containing multiple copies of the same vertex, then for independent indicators {Xv}v∈[n],
expansion in (2.2.1) becomes

logP (X = 0) =
∑

γ∈Γ[Kn]

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) =
∑
i∈[n]

∑
j⩾1

1
j!

∑
H∈CSpan(Kj)

(−1)eH (−1)jE [Xi]
j .

(2.2.7)

Comparing (2.2.6) and (2.2.7), it follows that∑
H∈CSpan(Kn)

(−1)eH = (−1)n−1(n− 1)!, (2.2.8)

which is well-known, see, for example, [88, Eq. (2.13)] or [97, Eq. (3.37)].

Remark 2.2. The Mousset-Noever-Panagiotou-Samotij series (1.3.9) in Theorem 1.6 utilizes only clus-
ters of disjoint polymers in the summation on the left, with clusters of overlapping polymers all absorbed
in the error term on the right-hand side of (1.3.9), as the cumulants involve partitions that contain
pairwise disjoint elements. It is worth mentioning that, by a careful inspection of its proof, the first
error term comes from the contribution of clusters with intersecting polymers, and it is upper bounded
by applying the lattice condition (1.3.7).

2.3 Non-existence of small subhypergraphs

Given a family F of r-graphs, we study the probability that the binomial random hypergraph Hr(n, p)

is F-free, that is, it simultaneously avoids all copies of all r-graphs in F . Note that removing isomorphic
duplicates from F does not affect the probability that we are interested in, we assume that the r-graphs
in F are pairwise non-isomorphic. We also assume that no hypergraphs in F have isolated vertices.
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2.3.1 The Mousset-Noever-Panagiotou-Samotij series and cluster expansion

Here we formulate the Mousset-Noever-Panagiotou-Samotij series in terms of a cluster expansion series.
The complete r-graph on n vertices, denoted by Kn,r, is the hypergraph consisting of n vertices and all
possible edges of size r, that is,

Kn,r = ([n], {S ⊆ [n] : |S| = r}). (2.3.1)

For every F ∈ F , let AF be the set of all subgraphs of Kn,r that are isomorphic to F . There are
[n]vF /|aut(F )| such subgraphs, where |aut(F )| denotes the number of automorphisms of the hypergraph
F . Let AF = ∪F∈FA

F . Then random variable

XF :=
∑

F∈AF

1{F⊂Hr(n,p)}

counts all copies of all forbidden r-graphs of F occurring in Hr(n, p).
Next we define a dependency graph D with vertex set AF such that for two distinct subgraphs

F1, F2 ∈ AF , we have edge (F1, F2) ∈ E(D) if and only if two subgraphs share edges, specifically,

D =

(
AF ,

{
{F1, F2} ∈

(
AF

2

)
: E(F1) ∩ E(F2) ̸= ∅

})
. (2.3.2)

It is obvious that graph D is a dependency graph for random indicators {1{F⊂Hr(n,p)}}F∈AF .
Using the above dependency graph for random indicators of the forbidden structures, we obtain the

the probability that a binomial random r-uniform hypergraph is F-free. In this setting, a polymer is a
set of forbidden subgraphs whose induced subgraph in D is connected.

The set of all clusters of G with pairwise disjoint polymers is denoted by

Γ∅(G) = {γ ∈ Γ(G) : Ci ∩ Cj = ∅ for any distinct Ci, Cj ∈ γ} .

Note that each element in Γ∅(G) is a cluster whose elements form a partition of a polymer, since for
every γ ∈ Γ∅(G), polymers {C : C ∈ γ} are disjoint and their union ∪C∈γC ∈ C(G). For every integer
k > 0, denote the k-th term of the cluster expansion and the k-th truncated expansion with disjoint
polymers as

L∅
G,k :=

∑
γ∈Γ∅(G):∥γ∥=k

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ(C) and T ∅
G,k :=

∑
i∈[k]

L∅
G,i. (2.3.3)

The density of a graph G is defined by d(G) = eG/vG, where vG and eG are the numbers of vertices
and edges of G respectively. Another commonly used (see, for example, [86, 77]) density measure m⋆(G)

is defined by

m⋆(G) = min
H⊆G,eH⩾1

eG−eH
vG−vH . (2.3.4)

Now we are ready to approximate P (XF = 0) using a truncated cluster expansion by reformulating
the Mousset-Noever-Panagiotou-Samotij series in [77, Corollary 12].
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Theorem 2.3. Let F be a finite family of r-graphs and p = p(n) ∈ (0, 1) satisfy

npm⋆(F) = o (1) and np2d(F) = o (1) , (2.3.5)

where

m⋆(F) = min
G∈F

m⋆(G) and d(F) = min
G∈F

d(G).

Then, for every integer k > 0, we have

P (XF = 0) = exp
(
T ∅
D,k +O (∆k+1(D)) + o (1)

)
. (2.3.6)

Moreover, if npm⋆(F) = n−ε for some ε > 0, then there exists an integer k = k(ε,F) > 0 such that
∆k+1(D) = o (1).

The above theorem is a reformulation of [77, Corollary 12] in view of the following lemma.

Lemma 2.4. Let {Xv}v∈V (G) be G-dependent random indicators and k > 0 be an integer. Then

T ∅
G,k =

∑
C∈C⩽k(G)

(−1)|C|κ(C). (2.3.7)

We introduce an auxiliary lemma for its proof.

Lemma 2.5. For any connected graph H, we have∑
π∈Π(V (H))

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

1{P∈I(H)} =
∑

G∈CSpan(H)

(−1)eG . (2.3.8)

To prove Lemma 2.5, we first introduce the chromatic polynomial. Given a graph H and a positive
integer λ, a (proper) λ-colouring of H is a map Φ : V (H) → [λ] such that Φ(u) ̸= Φ(v) for all
{u, v} ∈ E(H). The chromatic polynomial PH(λ) of H is the number of λ-colourings of H.

Given a graph H and a positive integer k, a partition containing k subsets {V1, . . . , Vk} of V (H) is
called a k-independent partition of H if for every i ∈ [k], we have Vi ̸= ∅ and Vi ∈ I(H). Let α(H, k)
count the k-independent partition of H. Then we have the chromatic polynomial in factorial form

PH(λ) =

vH∑
k=1

α(H, k)[λ]k, (2.3.9)

(see, for example, [18, Theorem 1.4.1]). An equivalent formula for PH(λ) written as a polynomial in
λ, known as the Whitney-Tutte-Fortuin-Kasteleyn representation (see, for example, [69, Eq. (A.11)] or
[92, Eq. (1.2)]) is

PH(λ) =
∑

E⊆E(H)

(−1)|E|λc(E), (2.3.10)

where c(E) = c(V (H), E) counts the number of the connected components of subgraph (V (H), E) for
every edge set E ⊆ E(H).
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Proof of Lemma 2.5. By inspecting (2.3.10) and (2.2.2), one observes that the Ursell function is the
linear term of the chromatic polynomial (this is also a well-known fact, see, for example, [1]). Then we
have the right-hand side of (2.3.8)

∑
G∈CSpan(H)

(−1)eG =
dPH(λ)

dλ

∣∣∣
λ=0

=
d
dλ

(
vH∑
k=1

α(H, k)[λ]k

)∣∣∣
λ=0

=

vH∑
k=1

α(H, k)(−1)k−1(k − 1)!. (2.3.11)

Using the combinatorial identity obtained before in (2.2.8), the left hand side of (2.3.8) can be rewritten
as ∑

π∈Π(V (H))

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

1{P∈I(H)} =
∑

π∈Π(V (H))

(−1)|π|−1(|π| − 1)!
∏
P∈π

1{P∈I(H)}. (2.3.12)

Notice that the right-hand side of (2.3.12) is a sum of |π|-independent partition for any π ∈ Π(V (H)).
Thus we have

∑
π∈Π(V (H))

(−1)|π|−1(|π| − 1)!
∏
P∈π

1{P∈I(H)} =

vH∑
k=1

∑
π∈Π(V (H)):|π|=k

(−1)k−1(k − 1)!
∏
P∈π

1{P∈I(H)}

=

vH∑
k=1

α(H, k)(−1)k−1(k − 1)!. (2.3.13)

Then combining (2.3.11) and (2.3.13), we complete the proof.

Proof of Lemma 2.4. From the cluster expansion, we have

T ∅
G,k =

∑
i∈[k]

L∅
G,i =

∑
γ∈Γ∅(G):∥γ∥∈[k]

ϕ(γ)
|γ|!

∏
C∈γ

(−1)|C|µ (C)

=
∑

(C1,...,Cn)∈Γ∅(G)∑
i∈[n] |Ci|∈[k]

1
n!

∑
H∈CSpan(G(C1,...,Cn))

(−1)eH
∏
i∈[n]

(−1)|Ci|µ (Ci)

=
∑

{C1,...,Cn}∈Γ∅(G)∑
i∈[n] |Ci|∈[k]

∑
H∈CSpan(G(C1,...,Cn))

(−1)eH
∏
i∈[n]

(−1)|Ci|µ (Ci) , (2.3.14)

where the first summation in the last line is an abuse of notation, and denotes the summation over
(unordered) sets of polymers. From the definition of joint cumulants, we get∑

C∈C⩽k(G)

(−1)|C|κ(C) =
∑

C∈C⩽k(G)

(−1)|C|
∑

π∈Π(C)

(−1)|π|−1(|π| − 1)!
∏
P∈π

µ (P )

=
∑

C∈C⩽k(G)

∑
π∈Π(C)

(−1)|π|−1(|π| − 1)!
∏
P∈π

(−1)|P |µ (P ) .

Combining with identity in (2.2.8), it follows that∑
C∈C⩽k(G)

(−1)|C|κ(C) =
∑

C∈C⩽k(G)

∑
π∈Π(C)

∑
H∈CSpan(K|π|)

(−1)eH
∏
P∈π

(−1)|P |µ (P ) .

Fix an arbitrary polymer C ∈ C⩽k(G), for every partition π = {P1, . . . , Pm} ∈ Π(C), by factorizing
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into pairwise non-adjacent maximal connected subgraphs with vertex sets C1, . . . , Cn respectively, there
exists a unique finest partition consisting of only polymers π′ = π′(π) = {C1, . . . , Cn} ∈ Π(C) such that

(p1) n ⩾ m,

(p2) for all i ∈ [n], we have Ci ∈ C(G),

(p3) (C1, . . . , Cn) ∈ Γ∅(G), and

(p4)
∏

P∈π µ (P ) =
∏

C∈π′ µ(C).

1

2

3

5

4

6

7

Figure 2.1: A polymer of size seven with a partition {{1, 3}, {2}, {4, 7}, {5, 6}}
and the corresponding polymer partition {{1}, {3}, {2}, {4}, {7}, {5, 6}} such that
µ (1, 3)µ (2)µ (4, 7)µ (5, 6) = µ (1)µ (2)µ (3)µ (4)µ (5, 6)µ (7).

Then, we have

(−1)|C|κ(C) =
∑

π∈Π(C)

∑
H∈CSpan(K|π|)

(−1)eH
∏

C∈π′(π)

(−1)|C|µ(C)

=
∑

π∈Π(C)
π′(π)={C1,...,Cn}

∑
H∈CSpan(K|π|)

(−1)eH
∏
i∈[n]

(−1)|Ci|µ (Ci) .

Since Γ∅(G) is the set of all clusters ofG with pairwise disjoint polymers, we then rearrange the partitions
according to their corresponding polymer partitions and have that

{π ∈ Π(C) : C ∈ C⩽k(G)} =

π ∈ Π′ : {C1, . . . , Cn} ∈ Γ∅(G) :
∑
i∈[n]

|Ci| ∈ [k]

 ,

where

Π′ :=
{
π ∈ Π

(
∪i∈[n]Ci

)
: π′(π) = (C1, . . . , Cn)

}
(2.3.15)

denotes the set of partitions of ∪i∈[n]Ci for a given set of polymers {C1, . . . , Cn} ∈ Γ∅(G). Hence∑
C∈C⩽k(G)

(−1)|C|κ(C) =
∑

{C1,...,Cn}∈Γ∅(G)∑
i∈[n] |Ci|∈[k]

∑
π∈Π′

∑
H∈CSpan(K|π|)

(−1)eH
∏
i∈[n]

(−1)|Ci|µ (Ci) . (2.3.16)

Note that we have ∏
P∈π

(−1)|P |µ (P ) =
∏
i∈[n]

(−1)|Ci|µ (Ci)
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if and only if every element of the partition π ∈ Π′ is an independent set of G(C1, . . . , Cn). Then by
comparing (2.3.14) and (2.3.16), it suffices to show that for all (C1, . . . , Cn) ∈ Γ∅(G),∑

π∈Π′

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

1{P∈I(G(C1,...,Cn))} =
∑

H∈CSpan(G(C1,...,Cn))

(−1)eH ,

which follows from Lemma 2.5.

2.3.2 Computation of the asymptotic probability that G(n, p) is triangle-free

The goal of this section is to compute the terms in Theorem 1.7 explicitly using the series in Theorem
2.3 in terms of clusters.

(c1) Clusters γ such that |γ| = 1.
In this case, we have a single polymer in the cluster, and the contributing polymers are listed as
follows.

1

2

3

{123}

1

2

3

4

{123, 234}

1

2

3

4

5

{123, 234, 345}

1

2

3

4

5

{123, 234, 235}
1

2

3

4

{123, 234, 124}

1

2

3

4

5

6

{123, 234, 345, 456}

1

2

3

4

5

6

{123, 234, 345, 356}

1

2

3

4

5

6

{123, 234, 345, 246}

1

2

3

4

5

6

{123, 234, 345, 236}

1

2

3

4

5

6

{123, 234, 245, 236}

1

2

3

4

{123, 234, 124, 134}
1

2

3

4

5

{123, 234, 124, 235}
1

2

3

4

5

{123, 234, 124, 345}

1

2

3

4

5

{123, 234, 125, 345}

1

2

3

4

5

{123, 234, 135, 345}

Figure 2.2: The set below each diagram indicates the triangles that correspond to dependent
indicators.

Therefore we have∑
C∈C1(G)

(−1)|C|µ (C) = − [n]3p
3

6 +
[n]4p

5

4 −
(
[n]5p

7

2 +
[n]5p

7

12 +
[n]4p

6

6

)

+
[n]6p

9

2 +
[n]6p

9

2 +
[n]6p

9

6 +
[n]6p

9

2 +
[n]6p

9

48 +
[n]4p

6

24 +O
(
n5p8

)
.

(c2) Clusters γ such that |γ| = 2.
In this case, we have two polymers. In order to form clusters, two polymers share at least one
edge, and we have the following contributing clusters for p = o

(
n−7/5

)
.

For any two edge-sharing polymers (Ci, Cj) ∈ C(G)2, we have G(Ci, Cj) = K2, thus ϕ(Ci, Cj) =
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1

2

3

{{123}, {123}}

1

2

3

4

{{123}, {234}}

1

2

3

4

5

{{123,234}, {345}}

Figure 2.3: The set below each diagram indicates a cluster containing two polymers. Note
that the first type corresponds to a multiset, which is not included in (2.3.3), and its
contribution is absorbed in the first error term on the right-hand side of (1.3.9).

−1. Then the contribution of pairs of clusters is

1
2

∑
(Ci,Cj)∈C(G)2

(−1)1+|Ci|+|Cj |µ (Ci)µ (Cj) = − [n]3p
6

6 − [n]4p
6

4 +O
(
n5p8

)
= − [n]4p

6

4 + o (1) .

It can be shown that all other configurations contribute negligibly as in [77, Corollary 15]. Adding
up all the above contributions gives the final asymptotic formula (1.3.10) for p = o

(
n−7/11

)
.

2.3.3 Linearity of binomial random hypergraphs

In this section, we obtain the asymptotic probability of a random hypergraph being linear. Linear
hypergraphs have been well studied in many contexts (sometimes under the name ‘simple hypergraphs’).
A hypergraph is linear if every pair of hyperedges intersects in at most one vertex. We accordingly define
a set F of ‘forbidden’ hypergraphs containing all r-graphs having two distinct hyperedges e1 and e2 and
vertex set e1 ∪ e2, such that 2 ⩽ |e1 ∩ e2| < r. Then the probability that a random hypergraph is linear
equals the probability of avoiding all copies of all ‘forbidden’ hypergraphs in F .

Here we study the probability of a random hypergraphs Hr(n, p) being linear, and improve the
following result by McKay and Tian [74] by giving more accurate asymptotics of the probability. Let
Lr(n) be the set of all linear r-uniform hypergraphs with n vertices.

Theorem 2.6 ([74, Theorem 1.2]). Let r = r(n) ⩾ 3. If p
(
n
r

)
= O

(
r−2n

)
, then

P (Hr(n, p) ∈ Lr(n)) = exp

(
− [r]22
4n2

(
n

r

)2

p2 +O

(
r6

n3

(
n

r

)2

p2

))
.

If r−2n ⩽ p
(
n
r

)
= o

(
r−3n3/2

)
, then

P (Hr(n, p) ∈ Lr(n)) = exp

− [r]22
4n2

(
n

r

)2

p2 +
(3r−5)[r]32

6n4

(
n

r

)3

p3 +O

 log3(r−2n)√
(nr)p

+
r6

n3

(
n

r

)2

p2

 .

For random 3-uniform hypergraphs, the above theorem gives that if p = o
(
n−3/2

)
, then

P (H3(n, p) ∈ L3(n)) = exp
(
−1
4n

4p2 +
2
3n

5p3 + o (1)
)
. (2.3.17)

The probability of a random hypergraph being linear is equal to the probability of the non-existence
of hyperedge pairs intersecting in more than one vertex. Recall from above that the set of ‘forbidden’
hypergraphs F contains all r-graphs (e1 ∪ e2, {e1, e2}) on vertex set e1 ∪ e2 such that 2 ⩽ |e1 ∩ e2| < r,
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that is,

F :=
⋃

2⩽t⩽r−1

{
(e1 ∪ e2, {e1, e2}) : |e1| = |e2| = r, |e1 ∩ e2| = t

}
. (2.3.18)

First, recall the definitions of L∅
G,k and T ∅

G,k in (2.3.3).

Theorem 2.7. Let r = r(n) ⩾ 3. If p = o
(
n2−r

)
, then for every integer k > 0,

P (Hr(n, p) ∈ Lr(n)) = exp
(
T ∅
D,k +O (∆k+1(D)) + o (1)

)
, (2.3.19)

where D is the dependency graph for the indicators of forbidden r-graphs defined by (2.3.2), and ∆i(D)

denotes the sum of joint moments over polymers of size i in graph D, that is,

∆i(D) =
∑

C∈Ci(D)

µ(C).

Moreover, for any ε > 0, if p = o
(
n2−r−ε

)
, then there exists an integer k = k(ε) > 0 such that

P (Hr(n, p) ∈ Lr(n)) = exp
(
T ∅
D,k + o (1)

)
. (2.3.20)

Theorem 2.7 gives the asymptotics of the probability of a random hypergraph being linear. We
next consider a specific example, by restricting to the 3-uniform hypergraphs case, and computing only
the first few terms of the series explicitly for illustration purposes. This extends the formula for the
asymptotic probability of linearity for H3(n, p) given by McKay and Tian (2.3.17).

Corollary 2.8. If p = o
(
n−7/5

)
, then

P (H3(n, p) ∈ L3(n)) = exp
(
−1
4n

4p2 +
2
3n

5p3 − 55
24n

6p4 +
3
2n

3p2 + o (1)
)
. (2.3.21)

Proof of Theorem 2.7. Recall that the set of forbidden r-graphs is defined by F in (2.3.18). Since each r-
set of [n] is an edge independently with probability p in Hr(n, p), we have for distinct subgraphs F1, F2 ∈
AF , indicators 1{F1⊂Hr(n,p)} and 1{F2⊂Hr(n,p)} are dependent if E(F1) ∩ E(F2) ̸= ∅. Additionally, the
graph D defined by (2.3.2) is a dependency graph for random indicators 1{F⊂Hr(n,p)} for F ∈ AF .

Next, we verify the assumptions in (2.3.5). Since

m⋆(F) = min
G∈F

min
H⊆G,eH⩾1

eG−eH
vG−vH =

1
maxG∈F maxH⊆G,eH⩾1(vG−vH) =

1
r−2

and

d(F) = min
G∈F

d(G) = min
G∈F

eG
vG

=
2

maxG∈F vG
=

1
r−1 ,

then 2d(F) ⩾ m⋆(F) for all r ⩾ 3. Therefore, we have that Theorem 2.7 follows from Theorem 2.3.

24



2.3.4 Computation of the asymptotic probability that H3(n, p) is linear

The goal of this section is to compute the terms in Theorem 2.7 explicitly to prove Corollary 2.8.

Proof of Corollary 2.8. For 3-uniform hypergraphs, the forbidden hypergraph is on four vertices with a
pair of 3-sets sharing two vertices, we call it a link. Then for random indicators of links, we construct
the dependency graph D following (2.3.2), such that two links are adjacent if and only if they share one
hyperedge. A polymer C ∈ C(D) of size k is a set of links {F1, . . . , Fk} whose induced subgraph in D
is connected.

We first enumerate all contributing non-isomorphic types of clusters, and compute value ϕ(γ)(−1)∥γ∥∏
C∈γ µ (C) /|γ|! for each cluster type γ. Then we multiply each value with the size of the respective

isomorphism class. More precisely, noting a cluster is a set of link sets, an isomorphism between two
clusters γ1, γ2 is a bijection between their vertices (the union of vertices in all links): ∪C∈γ1∪F∈CV (F ) →
∪C∈γ2 ∪F∈C V (F ), which induces a bijection from the hyperedges of γ1 to the hyperedges of γ2, and a
bijection from the polymers of γ1 to the polymers of γ2. An automorphism of a cluster is an isomorphism
to itself. For each cluster γ ∈ Γ(D), we consider the distinct copies of γ in the complete r-graph on n

vertices by choosing all the vertices in ∪C∈γ1∪F∈CV (F ) from [n] (ordered selections without repetition),
and every element of Γ(D) isomorphic to γ is counted once for every automorphism of γ.

Now, we compute the terms in (2.3.20) for p = o
(
n−7/5

)
explicitly.

(c1) Clusters γ such that ∥γ∥ = 1.

There is only one cluster type, a single forbidden link, namely, a hypergraph with two hyperedges
intersecting in two vertices.

1

2

3

4

({123+234})

Thus, we have that

L∅
D,1 = −

∑
C∈C(D):|C|=1

µ (C) = − [n]4p
2

4 = −1
4n

4p2 +
3
2n

3p2 + o(1).

(c2) Clusters γ such that ∥γ∥ = 2.

There are two cluster types: one polymer of size two, and two polymers of size one, namely,
one polymer consisting of two edge-sharing forbidden links, or two edge-sharing polymers with
each being a single forbidden link. Also note that for any two (not necessarily distinct) polymers
(Ci, Cj) ∈ C(D)2 such that Ci ∼ Cj , we have that G(Ci, Cj) = K2, thus ϕ(Ci, Cj) = −1.

1

2

3

4

5

({123+234, 234+345})

1

2

3

4

5

({123+234, 123+235})
1

2

3

4

({123+234, 123+124})

1

2

3

4

5

({123 + 234},
{234 + 345})
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Therefore, we get

L∅
D,2 =

∑
γ∈Γ∅(D):∥γ∥=2

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C)

=
∑

C∈C2(D)

(−1)|C|µ (C) +
∑

(C1,C2)∈Γ∅(D)
|C1|=|C2|=1

−1
2(−1)2µ (C1)µ (C2)

=
[n]5p

3

2 +
[n]5p

3

4 +
[n]4p

3

2 − [n]5p
4

4 =
3
4n

5p3 + o (1).

(c3) Clusters γ such that ∥γ∥ = 3.

We only focus on one cluster type: one polymer of size three, namely, one polymer consisting of
three edge-sharing forbidden links, since if the cluster is formed by more then one polymer, then
it must be extended from clusters γ such that ∥γ∥ = 2 and more than one polymer, which are
already asymptotically negligible.

1

2

3

4

5

({123 + 234,

123 + 235,

234 + 235})

1

2

3

4

5

6

({123 + 234,

234 + 345,

345 + 456})

1

2

3

4

5

6

({123 + 234,

234 + 345,

345 + 356})

1

2

3

4

5

6

({123 + 234,

234 + 345,

234 + 246})

1

2

3

4

5

6

({123 + 234,

234 + 345,

234 + 236}),
({123 + 234,

234 + 345,

123 + 236})

1

2

3

4

5

6

({123 + 234,

123 + 235,

123 + 236}),
({123 + 234,

234 + 235,

235 + 236})

1

2

3

4

({123 + 234,

123 + 124,

234 + 124})

1

2

3

4

5

({123 + 234,

123 + 124,

123 + 235}),
({123 + 234,

123 + 124,

234 + 235})

1

2

3

4

5

({123 + 234,

123 + 124,

234 + 345})

1

2

3

4

5

({123 + 234,

123 + 125,

234 + 345})

1

2

3

4

5

({123 + 234,

123 + 135,

234 + 345})
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Hence, we have that

L∅
D,3 =

∑
γ∈Γ∅(D):∥γ∥=3

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C)

=
∑

C∈C3(D)

(−1)|C|µ (C) +O
(
n4p3

)
+O

(
n5p4

)
= − [n]5p

3

2×3! − [n]6p
4

2 − [n]6p
4

2 − [n]6p
4

3! − [n]6p
4

2 − [n]6p
4 − [n]6p

4

2×3! − [n]6p
4

2×2 + o(1),

where the last row of the types of polymers are of contribution O
(
n4p3

)
= o(1).

(c4) Clusters γ such that ∥γ∥ = 4.
As before, we only focus on one cluster type: one polymer of size four, since clusters with more
than one polymer contribute negligibly.

6

1

2

3

4

5

({123 + 234, 123 + 235,

234 + 235, 123 + 136})

1

2

3

4

5

6

({123 + 234, 123 + 235, 123 + 236, 234 + 235}),
({123 + 234, 234 + 235, 235 + 236, 123 + 236})

We then have

L∅
D,4 =

∑
γ∈Γ∅(D):∥γ∥=4

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) =
[n]6p

4

2×2 +
[n]6p

4

2×8 +
[n]6p

4

2 + o(1).

(c5) Clusters γ such that ∥γ∥ ∈ {5, 6}.

1

2

3

4

5

6

({123 + 234, 123 + 235,

123 + 236, 234 + 235, 234 + 236})

1

2

3

4

5

6

({123 + 234, 123 + 235, 123 + 236,

234 + 235, 234 + 236, 235 + 236})

Then we have

L∅
D,5 + L∅

D,6 =
∑

γ∈Γ∅(D):∥γ∥∈{5,6}

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) = − [n]6p
4

2×2×2 +
[n]6p

4

2×4! + o(1).

Since there is a finite number of types of polymers with size seven, we thus have ∆7(D) = o (1).
Hence, we ignore the remaining terms by (2.3.19). Adding up the contributing terms for p = o

(
n−7/5

)
gives the asymptotic probability of H3(n, p) being linear in Corollary 5.3.
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2.4 Tree-graph bounds on cumulants and asymptotic normality

In this section, we use the tree-graph approach to bound the cumulants, and to obtain an asymptotic
normality criterion.

2.4.1 Asymptotic normality via cumulants

Cumulants can be utilized the obtain the asymptotic normality. It suffices to simply show that there
are only two cumulant terms that do not vanish asymptotically using the following result by Janson
[54].

Theorem 2.9 ([54]). Let X1, X2, . . . be a sequence of random variables such that, as n→ ∞,

κ1(Xn) = E [Xn] → µ,

κ2(Xn) = var(Xn) → σ2,

κj(Xn) → 0

for every j ⩾ 3, where −∞ < µ <∞ and σ2 ⩾ 0. Then as n→ ∞, we have

Xn → N (µ, σ2).

Moreover, all moments of Xn converge to the corresponding moments of N (µ, σ2).

Note that there is no probability distribution that has only non-zero low-order cumulants (orders
3 to m − 1 for m > 3), that is, no probability distribution satisfies κ1 ̸= 0, . . . , κm−1 ̸= 0 and κj = 0

for j ⩾ m. In other words, the cumulant generating function cannot be a finite polynomial of degree
greater than 2.

2.4.2 Tree-graph bounds and Penrose identity

The difficulty with the convergence of cluster expansions is to estimate a summation over connected
graphs of arbitrary sizes. It turns out that the sum over connected graphs can be reduced to a sum over
spanning trees that can be smaller. This approach has been introduced by Penrose [82] and are widely
used.

Various partition schemes are often used to obtain estimates of the summation of connected graphs
in terms of the summation of trees. While his original argument involved a particular partition scheme,
it works equally well for any other choice, as emphasized by Scott and Sokal [88]. Next, we give a brief
description of the approach based on [88, Section 2.2].

Fix a graph G, and recall that CSpan(G) denotes the set of all connected spanning subgraphs of
G. Let ST (G) denote the family of spanning trees of G. Note that ST (G) ⊆ CSpan(G). The set
CSpan(G) admits a partial ordering by edge inclusion, specifically,

G ≺ G̃ ⇐⇒ E(G) ⊂ E(G̃) .

If G ≺ G̃, we define a set of connected spanning subgraphs of G by

[G, G̃] :=
{
Ĝ ∈ CSpan(G) : G ≺ Ĝ ≺ G̃

}
.
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We call a partition scheme for the family CSpan(G) to any map R : ST (G) → CSpan(G) such that

(i) E
(
R(T )

)
⊃ E(T ), and

(ii) CSpan(G) is a disjoint union of the sets [T,R(T )] for T ∈ ST (G), that is,

CSpan(G) =
⋃

T∈ST (G)

[T,R(T )].

A number of such partition schemes are now available (see references in [88, Section 2.2]). The one
proposed by Penrose is constructed in the following way: we fix an ordering v0, v1, . . . , vn of the vertices
of G, and for each spanning tree T ∈ ST (G), choose v0 as its root, let d(i) be the tree distance of the
vertex vi to v0 in tree T .

Penrose scheme associates to T the graph RPen(T ) formed by adding to T all edges {vi, vj} ∈
E(G) \ E(T ) such that either:

(p1) between vertices of the same generation: d(i) = d(j), or

(p2) connecting to predecessors with smaller index: d(i) = d(j)− 1 and i < j.

For a partition scheme R, we denote the set of trees by

TR(G) :=
{
T ∈ ST (G) : R(T ) = T

}
.

The following is a generalized Penrose identity that is well-known, see, for example, [88, Proposition
2.3] or [27, Proposition 5].

Lemma 2.10. For any partition scheme R, we have∑
H∈CSpan(G)

(−1)|E(H)| = (−1)|V (G)|−1
∣∣TR(G)∣∣ .

Proof. For any numbers xe for e ∈ E(G), we have∑
G∈CSpan(G)

∏
e∈E(G)

xe =
∑

T∈ST (G)

∏
e∈E(T )

xe
∑

F⊂E(R(T ))\E(T )

∏
e∈F

xe

=
∑

T∈ST (G)

∏
e∈E(T )

xe
∏

e∈E(R(T ))\E(T )

(1 + xe) ,

where the first equality is due to property (ii) of partition schemes. If xe = −1, the last factor kills the
contributions of all trees with E(R(T ))\E(T ) ̸= ∅. Furthermore, for any tree T , we have eT = vT−1.

Recall the Ursell function ϕ : Γ(G) → R is defined by

ϕ(γ) =
∑

H∈CSpan(G(γ))

(−1)eH .

Then the above Penrose identity gives a simple upper bound on the Ursell function using the number
of spanning trees. This is the well-known “tree-graph bound” in the statistical physics community.
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Corollary 2.11.

ϕ(γ) = (−1)|vG(γ)|−1
∣∣TR(G(γ))

∣∣ ⩽ ∣∣ST (G(γ))
∣∣.

2.4.3 Féray-Méliot-Nikeghbali bound on cumulants and asymptotic normality

To derive asymptotic normality, we need to bound cumulants. The following bound on cumulants of a
summation of random variables is by Janson [54, Lemma 4].

Theorem 2.12. Let {Xi}i∈[n] be G-dependent random variables that are uniformly bounded by M . Then
for any integer r ⩾ 1, there exists some constant Cr such that∣∣∣∣∣∣κr

 ∑
v∈V (G)

Xv

∣∣∣∣∣∣ ⩽ Crn(∆ + 1)r−1M r.

In most applications for counting substructures in random objects, each variable Xv is an indicator
variable, so that the bounded assumption is not too restrictive. This theorem is often used to prove
some central limit theorem. Döring and Eichelsbacher [19] have analyzed Janson’s original proof and
claim that the above theorem holds with

Cr = (2e)r(r!)3.

Then they use this new bound to obtain moderate deviation results.
Later these bounds on cumulants are improved by Féray, Méliot and Nikeghbali in [26]. Using

the new bounds they obtained, they prove precise large or moderate deviations for sequences of real-
valued random variables (Xn)n∈N and obtain the so-called “mod-Gaussian convergence” under certain
assumptions on cumulants.

We will first describe and then provide a simple proof of their bound by a different approach using
the tree-graph bound. Let ST(H) denote the number of spanning trees of a graph G. Consider now a
graph H with vertex set [r] and a set partition π of [r]. For each P ∈ π, we use ST(H[P ]) to denote
the number of spanning trees of the subgraph of H induced by the vertex set P . We will also consider
the contraction H/π of H with respect to π. It is a multigraph defined as follows. The vertex set of
H/π is the index set [|π|] of the elements P ∈ π, and for distinct Pi, Pj ∈ π, there are as many edges
between i and j as edges between a vertex of Pi and a vertex of Pj in H. Denote ST(H/π) the number
of spanning trees of this contracted graph with the consideration of multiple edges.

The cumulant bound by Féray, Méliot and Nikeghbali is the following.

Theorem 2.13 ([26, Eq. (47)]). Let {Xi}i∈[n] be G-dependent variables that are uniformly bounded by
M . Then

|κ(V (G))| ⩽ (2M)r−1E [|X1|] ST(G) ⩽ n2r−1M rST(G). (2.4.1)

To give an alternative proof of this, we need a simple combinatorial lemma.
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Lemma 2.14 ([26, Eq. (43)]). For any graph H, we have

2vH−1ST(H) =
∑

π∈Π(V (H))

ST(H/π)
∏
P∈π

ST(H[P ]). (2.4.2)

This is by noting that the union of a spanning tree T of H/π and of spanning trees Ti of H[P ] for
all P ∈ π gives a spanning tree T of H. Conversely, take a spanning tree T on H and a bicoloration of
its edges. Edges of color 1 can be seen as a subgraph of H with the same vertex set [r]. This graph is
of course acyclic. Its connected components define a partition π of [r] and edges of color 1 correspond
to a collection of spanning trees Ti of H[P ] for P ∈ π. Besides, edges of color 2 define a spanning tree
T on H/π.

Proof of Theorem 2.13. To avoid triviality, we assume that G has a single connected component, oth-
erwise, the cumulant is simply zero. By the definition of the cumulant, we have that

κ(V (G)) =
∑

π∈Π(V (G))

(−1)|π|−1(|π| − 1)!
∏
P∈π

µ (P ) =
∑

π∈Π(V (G))

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

µ (P ) ,

where the last equality is by using the identity (2.2.8).
By considering the polymer partition Πc(·) introduced in the proof of Lemma 2.4, we represent the

partition π as a set of pairwise non-adjacent polymers in G. Then we have that

κ(V (G)) =
∑

{C1,...,Cn}∈Πc(V )

∑
π∈Π′

∑
G∈CSpan(K|π|)

(−1)eG
∏
i∈[n]

µ (Ci)

=
∑

{C1,...,Cn}∈Πc(V )

∑
π∈Π′

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

µ (P )1{P∈I(G(C1,...,Cn))}, (2.4.3)

where we note that ∏
P∈π

(−1)|P |µ (P ) =
∏
i∈[n]

(−1)|Ci|µ (Ci)

if and only if every element of the partition π ∈ Π′ is an independent set of G(C1, . . . , Cn), recalling Π′

is defined by (2.3.15). By Lemma 2.5, we have∑
π∈Π′

∑
G∈CSpan(K|π|)

(−1)eG
∏
P∈π

1{P∈I(G(C1,...,Cn))} =
∑

H∈CSpan(G(C1,...,Cn))

(−1)eH .

Combining above and the tree-graph bound in Corollary 2.11, we obtain, from (2.4.3), that

κ(V (G)) =
∑

{C1,...,Cn}∈Πc(V )

∑
H∈CSpan(G(C1,...,Cn))

(−1)eH
∏
i∈[n]

µ (Ci)

⩽
∑

{C1,...,Cn}∈Π(V )

|ST (G(C1, . . . , Cn))
∣∣ ∏
i∈[n]

µ (Ci)1{Ci∈C(G)}.
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Note that for all π = {C1, . . . , Cn} ∈ Π(V ), we have that

|ST (G(C1, . . . , Cn))
∣∣ ⩽ ST(G/π),

1{Ci∈C(G)} ⩽ ST(G[Ci]).

The reason is that ST(H/π) is the number of spanning trees of the contracted graph where multiple
edges are considered, and G(C1, . . . , Cn) is simply a quotient graph, that can be obtained from ST(H/π)

by replacing parallel edges with a single edge.
Since variables are assumed to be all bounded by M , we also have∏

i∈[n]

µ (Ci) ⩽Mn−1E [|X1|] ,

Therefore we conclude

κ(V (G)) ⩽Mn−1E [|X1|]
∑

{C1,...,Cn}∈Π(C)

|ST (G(C1, . . . , Cn))
∣∣ ∏
i∈[n]

1{Ci∈C(G)}

=Mn−1E [|X1|]
∑

π∈Π(V )

ST(G/π)
∏
P∈π

ST(G[P ]) =Mn−1E [|X1|] 2n−1ST(G).

This completes the proof.

Next we bound the cumulants of the summation of graph-dependent variables, which leads to a
normality criterion.

Theorem 2.15. Let {Xv}v∈V (G) be G-dependent random variables that are uniformly bounded by M .
Then ∣∣∣∣∣∣κr

 ∑
v∈V (G)

Xv

∣∣∣∣∣∣ ⩽ (2M)r−1
∑

v∈V (G)

E [|Xv|]
∑

(v1,...,vr−1)∈V (G)r−1

ST(G(v, v1, . . . , vr−1)).

Moreover, let X =
∑

v∈V (G)Xv and σ2 = var(X) ̸= 0. If for r ⩾ 3,

1
M

(
M
σ

)r ∑
v∈V (G)

E [|Xv|]
∑

(v1,...,vr−1)∈V (G)r−1

ST(G(v, v1, . . . , vr−1)) → 0, (2.4.4)

then

X−E[X]
σ → N (0, 1).

The proof is by directly applying Theorem 2.9 by verifying its assumption using (2.4.4). To obtain
a more explicit criterion, we introduce the following lemma that bounds the number of spanning trees
using the maximum degree and Cayley’s formula.

Lemma 2.16. [26, Corollary 9.17] Let G be a graph on n vertices and maximal degree ∆ and r ⩾ 1.
Fix a vertex v1 of G. The number of pairs

(
(v1, . . . , vr), T

)
where each vi is a vertex of V and T a
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spanning tree of the induced subgraph G[{v1, . . . , vr}] is bounded above by

rr−2 (∆ + 1)r−1.

Using above lemma to simplify (2.4.4) yields a more explicit criterion,

1
M

(
M
σ

)r
rr−2 (∆ + 1)r−1

∑
v∈V (G)

E [|Xv|] → 0.

By noting that rr−2 = O (1) for r = Θ(1), and
∑

v∈V (G)E [|Xv|] ⩽ nM , our criterion implies the
following criterion by Janson.

Theorem 2.17 ([54, Theorem 2]). Let {Xi}i∈[n] be G-dependent variables that are uniformly bounded
by M . Let X =

∑
v∈V (G)Xv and σ2 = var(X) ̸= 0. If for r ⩾ 3,

(
(∆+1)M

σ

)r
n

∆+1 → 0,

then

X−E[X]
σ → N (0, 1).

2.5 A convergent cluster expansion series via Koteckỳ-Preiss criterion

By showing the absolute convergence of the cluster expansion under certain conditions, we use the trun-
cated series to approximate the logarithm of the asymptotic probability of non-occurrences P (X = 0).
For convenience, given G-dependent random indicators {Xv}v∈V (G), for every positive integer k, we
define

LG,k :=
∑

γ∈Γ(G):∥γ∥=k

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) and TG,k :=
∑

i∈[k−1]

LG,i. (2.5.1)

The truncated series gives the approximation of logP (X = 0) up to arbitrary accuracy.

Theorem 2.18. Let {Xv}v∈V (G) be G-dependent random indicators, ∆ be the maximum degree of G,
and pmax := maxi∈V (G)E [Xi]. Let θ ⩾ 0 be an integer. If there exists β = β(θ) > 0 such that

(1) e3∆β < 1, and

(2) for all C ∈ C(G) with |C| ⩾ θ + 1, we have

µ (C) ⩽ pmaxβ
|C|−1 and (e3∆)θ+1(∆ + 1)pmax

(
1

e3∆−1 +
βθ

1−e3∆β

)
⩽ 1. (2.5.2)

Then given any δ > 0, for all k ⩾ log (vG/δ), we have

|logP (X = 0)− TG,k| ⩽ δ. (2.5.3)
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Note that the number of terms in the expansion may not be a constant. The absolute convergence
of the cluster expansion is by using the Koteckỳ-Preiss criterion.

Lemma 2.19 (Koteckỳ-Preiss criterion [61]). Let functions f, g : C(G) → [0,∞) be such that∑
C∈C(G):C∼C0

ef(C)+g(C)µ(C) ⩽ f(C0) (2.5.4)

for all C0 ∈ C(G). Then the cluster expansion (2.2.1) converges absolutely. Moreover, let g(γ) :=∑
C∈γ g(C). Then for all C0 ∈ C(G),

∑
γ∈Γ(G):γ∼C0

∣∣∣∣∣∣ϕ(γ)|γ|!
∏
C∈γ

µ (C)

∣∣∣∣∣∣ eg(γ) ⩽ f(C0), (2.5.5)

where we write γ ∼ C0 if there exists C ∈ γ such that C ∼ C0.

To bound the number of polymers, we introduce a simple combinatorial lemma that is well-known.

Lemma 2.20 ([34, Lemma 2.1]). In a graph with maximum degree ∆, the number of connected induced
subgraphs of order t containing a fixed vertex v is at most (e∆)t.

Proof of Theorem 2.18. We first verify the Koteckỳ-Preiss criterion by choosing f(C) = g(C) = |C| for
all C ∈ C(G). Then for every v ∈ V (G),

∑
C∈C(G):C∼v

e2|C|µ(C) ⩽
∞∑
t=1

∑
C∈Ct(G):C∼v

e2|C|µ(C)

⩽
θ∑

t=1

∑
C∈Ct(G):C∼v

e2|C|µ(C) +
∞∑

t=θ+1

∑
C∈Ct(G):C∼v

e2|C|µ(C)

⩽
θ∑

t=1

e2t(e∆)tpmax +
∞∑

t=θ+1

e2t(e∆)tpmaxβ
t−1,

where we bound the number of polymers using Lemma 2.20 and the bound on the joint moment µ(C)
with |C| ⩾ θ + 1 is by the first assumption in (2.5.2).

Therefore we have

∑
C∈C(G):C∼v

e2|C|µ(C) ⩽ pmax

θ∑
t=1

(e3∆)t +
pmax

β

∞∑
t=θ+1

(e3∆β)t

⩽ pmax
(e3∆)θ+1

e3∆−1 +
pmax

β
(e3∆β)θ+1

1−e3∆β

= pmax(e
3∆)θ+1

(
1

e3∆−1 +
βθ

1−e3∆β

)
⩽ 1

∆+1 ,

where the last inequality is due to the second assumption in (2.5.2). Hence for every C0 ∈ C(G),

∑
C∈C(G):C∼C0

e2|C|µ(C) ⩽
∑

v∈N+(C0)

∑
C∈C(G):C∼v

e2|C|µ(C) ⩽
∑

v∈N+(C0)

1
∆+1 ⩽ |C0|,
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by noting that |N+(C0)| ⩽ (∆ + 1)|C0|. This verifies the Koteckỳ-Preiss criterion (2.5.4), thus the
expansion convergences absolutely.

Next, we bound the truncation error. Summing (2.5.5) over C0 = {v} for all v ∈ V (G) gives

∑
γ∈Γ(G)

∣∣∣∣∣∣ϕ(γ)|γ|!
∏
C∈γ

µ (C)

∣∣∣∣∣∣ e∥γ∥ ⩽ vG.

Therefore we have

ek
∑

γ∈Γ(G):∥γ∥⩾k

ϕ(γ)
|γ|!

∏
C∈γ

(−1)|C|µ (C) ⩽
∑

γ∈Γ(G):∥γ∥⩾k

∣∣∣∣∣∣ϕ(γ)|γ|!
∏
C∈γ

µ (C)

∣∣∣∣∣∣ e∥γ∥ ⩽ vG.

Hence if we have ek ⩾ vG/δ, then∣∣∣∣∣∣logP (X = 0)−
∑

γ∈Γ(G):∥γ∥∈[k−1]

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C)

∣∣∣∣∣∣ ⩽ δ.

This completes the proof.

Assumptions in (2.5.2) get simplified under various conditions.

(A1) Truncation under negative association
Suppose the G-dependent random indicators are negatively associated [60], in particular, for all
disjoint U, V ⊆ V (G) and all non-decreasing functions f, g, we have

E [f(Xi, i ∈ U)g(Xi, i ∈ V )] ⩽ E [f(Xi, i ∈ U)]E [g(Xi, i ∈ V )] . (2.5.6)

Since negative association implies a negative correlation, we have µ (C) ⩽ p
|C|
max for all C ∈ C(G).

Hence we can choose β = pmax and Theorem 2.18 implies the following.

Corollary 2.21. Let {Xv}v∈V (G) be negatively associated G-dependent random indicators. If we
have

pmax ⩽ 1
4e3∆(∆+1) , (2.5.7)

then given any δ > 0, for all m ⩾ log (vG/δ), the bound (2.5.3) holds.

It is straightforward to check that choosing θ = 0 and β = pmax, we have

(e3∆)θ+1(∆ + 1)pmax
1

e3∆−1 ⩽ 1
4(e3∆−1) ⩽ 1

2e3∆ ,

and

(e3∆)θ+1(∆ + 1)pmax
βθ

1−e3∆β ⩽ 1
4(1−e3∆β) ⩽ 1

4−(∆+1)−1 .

This suffices to verify bounds in (2.5.2).

(A2) Bounding joint moments via independence
A simple combinatorial upper bound on the joint moment is via the maximal independent set of
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the induced subgraph G[C] by the definition of dependency graph, specifically, for all C ∈ C(G),

µ(C) ⩽ min
U∈I(G[C])

p|U |
max.

This provides a feasible choice of β in (2.5.2) for a given θ:

β(θ) = pξmax with ξ = inf
C∈C(G):|C|⩾θ+1

maxU∈I(G[C]) |U |−1

|C|−1 . (2.5.8)

2.6 Limiting distribution of extremes under m-dependence

In this section, we consider the distribution of extremes under m-dependence, by using cluster expansion
series. A sequence of random variables {Xi}i∈[n] is said to be f(n)-dependent if all sets of variables
separated by at least the distance f(n) are independent. This notion was introduced by Hoeffding and
Robbins [41], and has been studied extensively. Let integer m ⩾ 0. A special case of f(n)-dependence
when f(n) = m is the following m-dependent model.

Definition 2.22 (m-dependence [41]). A sequence of random variables {Xi}i∈[n] is m-dependent for
some integer m ⩾ 0 if (Xj)

i
j=1 are independent of (Xj)

n
j=i+m+1 for all i > 0.

The m-dependent sequences usually appear as block factors. Let k > 0 be an integer. The sequence
(Xi)i is an k-block factor if there is an independent identically distributed sequence (Yj)

∞
−∞ and a

function g : Rk → R such that Xi = g(Yi, . . . , Yi+k−1). Note that every such sequence (Xi)i is (k − 1)-
dependent, and there are m-dependent sequences that are not block factors, see, for example, [14].

The following limiting distribution of maxima of under m-dependence is by Newell [79].

Lemma 2.23 ([79]). Let (Zi) be a stationary sequence of m-dependent random variables and (yn) be a
sequence. If P (Zi > yn) = O (1/n), then∣∣∣∣P(max

i∈[n]
Zi ⩽ yn

)
− exp (−nP (B1(yn)))

∣∣∣∣ = O
(
1
n

)
, (2.6.1)

where

B1(y) := {Z1 > y} ∩
m⋂
k=1

{Z1+k ⩽ y}. (2.6.2)

Newell’s result extends a result by Watson [101], whose yn is chosen such that nP (Zi > yn) has a
finite limit as n → ∞. Newell mentioned he did not specify that nP (Bi(yn)) must have a finite limit,
nevertheless, we have

nP (Bi(yn)) ⩽ nP (Zi > yn) = O (1) .

We generalize Newell’s result and consider a combinatorial dependent setting via dependency graphs.
The following graph Dn,m is a dependency graph for m-dependent random variables {Xi}i∈[n],

Dn,m :=

(
[n],

{
{i, j} ∈

(
[n]

2

)
: |i− j| ∈ [m]

})
. (2.6.3)
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Given a sequence of random variables (Zi)i, we have

P

(
max
i∈[n]

Zi ⩽ y

)
= P

∑
i∈[n]

Xi = 0

 ,

where Xi := 1{Zi>y} denotes the random indicator of exceedance for all i ∈ [n]. Let X :=
∑

i∈[n]Xi

count the exceedances.
From (2.6.2), we have

P (Bi(y)) = E

[
Xi

m∏
k=1

(1−Xi+k)

]
=

∑
S⊆[i+1,i+m]

(−1)|S|µ (S ∪ {i}) ,

where [i+ 1, i+m] denotes the integer set {i+ 1, i+ 2, . . . , i+m}. Then Newell’s limiting distribution
of maxima under m-dependence (2.6.1) can be reformulated as an approximation of P (X = 0) for
Dn,m-dependent indicators using cliques of Dn,m with size at most m+ 1, specifically,

P (X = 0) = exp

 ∑
C∈

⋃
t∈[m+1] Kt(Dn,m)

(−1)|C|µ(C) +O
(
n−1

) , (2.6.4)

where the set of cliques on t vertices in graph G is denoted by

Kt(G) :=

{
C ∈

(
V (G)

t

)
: G[C] = K|C|

}
. (2.6.5)

The extremal index is the most popular approach to study the clustering of extremes in random
processes. This notion, originated by Newell [79], Loynes [70] and O’Brien [80], was given a firm
definition by Leadbetter [64]. Formally, a stationary sequence (Xi)i has extremal index θ ∈ [0, 1] if for
every τ > 0,

(EI1) there exists yn(τ) such that limn→∞ nP (Xi > yn(τ)) = τ ,

(EI2) limn→∞P
(
maxi∈[n]Xi ⩽ yn(τ)

)
= e−θτ .

Moreover, if a mixing stationary sequence (Xi)i satisfies (EI1) and limn→∞P
(
maxi∈[n]Xi ⩽ yn(τ)

)
exists, then (EI2) holds with some θ ∈ [0, 1]. For more details, see [62, subsection 3.7]. Newell’s result
in Lemma 2.23 also gives the extremal index for stationary m-dependent sequences

θ = lim
n→∞

P

(
m⋂
k=1

{Xi+k ⩽ yn} | Xi > yn

)
,

see also [91, Eq. (1.2)].
The discussion of extremal index is usually restricted to stationary sequences. Although non-

stationary sequences are of practical interest, an exact analog of the extremal index may not exist
in this case, see, for example, [43].

The extremal index is essentially some constant adjustment factor of the first order term. Our general
framework handles the clustering via taking into account the explicit large clusters, and our formula
gives the asymptotic probability up to arbitrary accuracy. Moreover, stationarity is not necessary for
our method.
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2.6.1 Probability of non-occurrences under m-dependence

The cluster expansion gives an asymptotic expansion of the probability of non-occurrences under m-
dependence with high accuracy. Note that for m-dependent random variables, recalling the correspond-
ing dependency graph (2.6.3), the maximum degree is ∆ = 2m. By setting θ = m + 1, Theorem 2.18
gives the following.

Theorem 2.24. Let {Xi}i∈[n] be m-dependent random indicators and pmax := maxi∈[n]E [Xi]. If there
exists β > 0 such that

(1) 2e3mβ < 1, and

(2) for all C ∈ C(Dn,m) with |C| ⩾ m+ 2, we have

µ (C) ⩽ pmaxβ
|C|−1 and pmax

2me3−1 +
βm+1pmax

1−2me3β ⩽ 1
(2m+1)(2me3)m+2 , (2.6.6)

then given any δ > 0, for all k ⩾ log (n/δ), we have

∣∣logP (X = 0)− TDn,m,k

∣∣ ⩽ δ. (2.6.7)

Moreover, by Corollary 2.21, if {Xi}i∈[n] are negatively associated, then (1) and (2) can simply be
replaced by

pmax ⩽ 1
24e3m2 . (2.6.8)

Remark 2.25. If we set

β := p1/(m+1)(m+2)
max

as in (2.5.8), and assume that

pmax

2me3−1 +
p
1/(m+2)+1
max

1−2me3p
1/(m+1)(m+2)
max

⩽ 1
(2m+1)(2me3)m+2 , (2.6.9)

then both assumptions in (2.6.6) hold since for all C with |C| ⩾ m+ 2, we have⌈
|C|
m+1

⌉
− 1 ⩾

|C|−m−1
m+1 =

|C|−1
m+1

(
1− m

|C|−1

)
⩾

|C|−1
(m+1)(m+2) ,

and therefore,

µ (C) ⩽ p⌈|C|/(m+1)⌉
max ⩽ p(|C|−1)/(m+1)(m+2)+1

max = pmaxβ
|C|−1.

An even more explicit sufficient condition is

pmax ⩽
(

1
me4

)(m+2)3

. (2.6.10)
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This condition implies (2.6.6) by noting

(2m+ 1)(2me3)m+2 pmax

2me3−1 ⩽
3m(2me3)m+2

me3

(
1
me4

)(m+2)3

⩽
(me4)m+2

e(me4)(m+2)3
⩽ 1
e ,

and

(2m+ 1)(2me3)m+2 p
1/(m+2)+1
max

1−2me3p
1/(m+1)(m+2)
max

⩽ 3m(me4)m+2

(
1
me4

)(m+2)2

1−me4
(

1
me4

)(m+2)2/(m+1)

⩽
(

1
me4

)(m+2)(m+1) 3m

1−
(

1
me4

)(m+2)2/(m+1)−1
⩽ 6m

(me4)(m+2)(m+1) ⩽ 6
e4 .

2.6.2 The asymptotic distribution of maxima under m-dependence

Here we use the cluster expansion to give the asymptotic distribution of maxima. Theorem 2.24 and
Remark 2.25 give the following.

Theorem 2.26. Let {Xi}i∈[n] be m-dependent random variables such that

max
i∈[n]

P (Xi > y) ⩽
(

1
me4

)(m+2)3

. (2.6.11)

Then given any k > 0, there exists K = K(k) such that for all M ⩾ K log n, we have

P

(
max
i∈[n]

Xi ⩽ y

)
= exp

(
TDn,m,M +O

(
n−k

))
, (2.6.12)

where the series is for the random indicators {1{Xi>y}}i∈[n]. Moreover, if {1{Xi>y}}i∈[n] are negatively
associated, then by (2.6.8), we can replace (2.6.11) by

max
i∈[n]

P (Xi > y) ⩽ 1
24e3m2 .

Remark 2.27. Note that the assumption (2.6.11) permits pmax to be a fixed constant that does not
depend on n, whereas Newell [79] requires pmax = O (1/n) = o(1) in Lemma 2.23, thus we significantly
relax the restriction on the probability. The terms in Newell’s series (2.6.4) involves some polymers
C ∈

⋃
t∈[m+1]Kt(Dn,m), by noting Kt(Dn,m) ⊆ C(Dn,m) in view of its definition (2.6.5), and our series

considers more clusters.
Notice that the clusters in (2.6.12) are for indicator variables {1{Xi>y}}i∈[n], rather than {Xi}i∈[n].

Also, note that stationarity is not assumed in Corollary 2.26, moreover, if the sequence is stationary,
then we have the extremal index

θ = − lim
n→∞

TDn,m,M

nP(Xi>y)
. (2.6.13)

One common negative association is the Negative Orthant Dependence (NOD) by Joag-Dev and
Proschan [60], which is a weaker notion. Random variables {Xi}i∈[n] are negative orthant dependent if
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for all real (xi)i∈[n], we have

P

⋂
i∈[n]

{Xi > xi}

 ⩽
∏
i∈[n]

P (Xi > xi) . (2.6.14)

A similar dependent setting appears in [16, Example 2.2], where they obtain a compound Poisson approx-
imation via Stein’s method. Let {Xi}i∈[n] be m-dependent and negative orthant dependent random vari-
ables. Then the indicators of exceedance {1{Xi>y}}i∈[n] are negative associated, this is due to (2.6.14),
the negative orthant dependence of {Xi}i∈[n].

Recently, Newell’s results are extended to stationary random fields on Zd in [53, 91]. Formally,
a d-dimensional stationary random field (Xi : i ∈ Zd) is m-dependent if (Xi)i∈A and (Xj)j∈B are
independent for every pair of finite sets A,B ⊂ Zd such that

min
i∈A,j∈B

∥i− j∥ > m,

where ∥i− j∥ := maxk∈[d] |ik − jk|.
Let N(n) := (N(n) : n ∈ N) ⊂ Nd be such that

∏
i∈[d]Ni(n) = O

(
nd
)
. Jakubowski and Soja-

Kukieła [53], Soja-Kukieła [91] extend Lemma 2.23 and obtain the asymptotic distribution of maxima
of d-dimensional m-dependent stationary random field,∣∣∣P (MN(n) ⩽ yn

)
− exp

(
−ndP

(
X0 ⩾ yn,MA(m) ⩽ yn

))∣∣∣ = o(1),

where MA := sup{Xi : i ∈ A} for all finite A ⊂ Zd, and

A(m) := {(i1, . . . , id) ∈ Zd : ∀j ∈ [d] : −m ⩽ ij ⩽ m}.

All our results are valid for the maxima of random fields with the substitution of Dn,m with the
following graph Dn,m for d-dimensional vectors

Dn,m :=

(
N(n),

{
{i, j} ∈

(
N(n)

2

)
: ∥i− j∥ ∈ [m]

})
.

2.6.3 Example: maxima of moving minima

We consider the limiting distribution of the maxima of moving minima process as an application of
Theorem 2.26.

Corollary 2.28. Let {Zi}i be i.i.d. with P (Zi > y) = p. Let Xi = min(Zi, . . . , Zi+m). If

nP (Xi > y)2 = np2(m+1) = o(1),

then given any k > 0, there exists K depending on k such that for all M ⩾ K log n, we have

P

(
max
i∈[n]

Xi ⩽ y

)
= exp

(
TDn,m,M +O

(
n−k

))
, (2.6.15)

where the terms in the exponent of (2.6.15) are for indicator variables {1{Xi>y}}i.
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For illustration, we compute explicitly the terms in (2.6.15) of Corollary 2.28 with m = 1. We denote
p := P (Zi > y) and assume that np4 = o(1). Then we have the joint moment for every C ∈ C(Pn),

µ (C) = P

(⋂
i∈C

{min(Zi, Zi+1) > y}

)
= p|C|+1.

First, we list contributing clusters up to size 4 in Pn in Table 2.1.

Cluster types Count (ordered) ϕ(γ)/|γ|! · (−1)∥γ∥

{{i}} n 1 · (−1)

{{i, i+ 1}} n 1 · (−1)2

{{i}, {i+ 1}} 2n −1/2 · (−1)2

{{i}, {i}} n −1/2 · (−1)2

{{i, i+ 1, i+ 2}} n 1 · (−1)3

{{i}, {i+ 1, i+ 2}} 2n −1/2 · (−1)3

{{i+ 1}, {i+ 1, i+ 2}} 2n −1/2 · (−1)3

{{i+ 2}, {i+ 1, i+ 2}} 2n −1/2 · (−1)3

{{i+ 3}, {i+ 1, i+ 2}} 2n −1/2 · (−1)3

{{i}, {i+ 1}, {i+ 2}} 6n 2/3! · (−1)3

{{i+ 1}, {i+ 1}, {i+ 2}} 3n 2/3! · (−1)3

{{i+ 1}, {i+ 2}, {i+ 2}} 3n 2/3! · (−1)3

{{i}, {i}, {i}} n 2/3! · (−1)3

{{i, i+ 1, i+ 2, i+ 3}} n 1 · (−1)4

{{i, i+ 1}, {i, i+ 1}} n −1/2 · (−1)4

{{i, i+ 1}, {i+ 1, i+ 2}} 2n −1/2 · (−1)4

{{i, i+ 1}, {i+ 2, i+ 3}} 2n −1/2 · (−1)4

Table 2.1: A list of small clusters of Pn

Then we compute the terms in the cluster expansion up to the error o(1) as follows:

L∅
Pn,1

= −nµ ({i}) = −np2,

L∅
Pn,2

= nµ ({i, i+ 1})− nµ ({i})µ ({i+ 1}) = np3 − np4,

L∅
Pn,3

= −nµ ({i, i+ 1, i+ 2}) + nµ ({i})µ ({i+ 1, i+ 2}) + nµ ({i+ 3})µ ({i+ 1, i+ 2})

− 2nµ ({i})µ ({i+ 1})µ ({i+ 2}) + o(1) = −np4 + o(1).

The Koteckỳ-Preiss criterion can also be used to show that the remaining terms in the expansion
(2.6.12) are negligible if np4 = o(1), more precisely, we will show that

∑
i⩾4

LPn,i =
∑

γ∈Γ(Pn):∥γ∥⩾4

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) = o(1). (2.6.16)

This is by choosing f(C) = 1 and g(C) = −|C| log p/k for all C ∈ C(Pn) in Lemma 2.19, where k > 2

is some fixed constant. Then for every v ∈ [n],

∑
C∈C(Pn):C∼v

e1−|C| log p/kµ(C) ⩽ e

∞∑
t=1

∑
C∈Ct(Pn):C∼v

p−t/kµ(C)

⩽ e

∞∑
t=1

p−t/k(2e)tpt+1 ⩽ ep

∞∑
t=1

(2ep1−1/k)t =
2e2p2−1/k

1−2ep1−1/k = o(1).

41



This verifies the Koteckỳ-Preiss criterion since Pn has the maximum degree 2. Similar to the proof of
Theorem 2.18, summing (2.5.5) over v ∈ [n] gives

∑
γ∈Γ(Pn)

∣∣∣∣∣∣ϕ(γ)|γ|!
∏
C∈γ

µ (C)

∣∣∣∣∣∣ e−
∑

C∈γ |C| log p/k =
∑

γ∈Γ(Pn)

∣∣∣∣∣∣ϕ(γ)|γ|!
∏
C∈γ

µ (C)

∣∣∣∣∣∣ p−∥γ∥/k ⩽ n.

Therefore we have ∑
γ∈Γ(Pn):∥γ∥⩾4k

ϕ(γ)
|γ|! (−1)∥γ∥

∏
C∈γ

µ (C) ⩽ np4 = o(1). (2.6.17)

It is not hard to show that the differences of the sum in (2.6.16) and (2.6.17) is o(1), since k > 2 is some
fixed constant.

Now we have the asymptotic cumulative distribution function

P

(
max
i∈[n]

Xi ⩽ y

)
= exp

∑
i∈[3]

L∅
Pn,i

+ o(1)

 = exp
(
−np2 + np3 + o(1)

)
. (2.6.18)

Formula (2.6.13) gives the extremal index

− lim
n→∞

−np2+np3+o(1)
np2 = 1.

Our expansion is valid for np4 = o(1), in which case the coefficient of the term np3 cannot be
determined by the extremal index approach or Newell’s expansion (2.6.4). Furthermore, stationarity is
not necessary and is used just for simplification of the calculation of joint moments; variables (Zi)i can
be not independent or not identically distributed or neither.

42



Chapter 3

Extremal independence under graphical
mixing

3.1 Introduction

Fisher–Tippett–Gnedenko theorem is central in the extreme value theory; it was discovered first by
Fisher and Tippett [28] and later proved in full generality by Gnedenko [37]. This theorem states that
if the maximum of the first n terms of a sequence of independent and identically distributed (i.i.d.)
random variables has a non-degenerate limit distribution after a proper normalisation, then it belongs
to either the Gumbel, the Fréchet, or the Weibull families of distributions.

The FTG theorem generalises to stationary random sequences of dependent random variables under
the additional assumptions that its distant terms are independent [101] or weakly dependent [70].
Leadbetter in [63] significantly relaxed the assumptions of [101, 70]. The analogues of Leadbetter’s
conditions were also found for non-stationary sequences [42, 43] and for random fields [65, 83]. In fact, the
behaviour of maxima for non-stationary sequences is more complicated than that for the stationary case.
Even in the simplest case when the variables are independent, the limit distribution might not belong
to any of the Gumbel, the Frechet or the Weibull families, see [24, Section 8.3]. That is, it is impossible
to classify all possible limit distributions for general random systems with dependencies. Nevertheless,
extremal characteristics of such systems always attracted significant attention of researchers in computer
science, statistical physics, financial mathematics and network studies.

In this chapter, we focus on the following extremal independence property that helps to reduce
general random systems to the independent case, where standard statistical techniques apply. Let
X(n) = (X1(n), . . . , Xd(n))

T ∈ Rd be a sequence of random vectors, where d = d(n) be a sequence of
positive integers. We give sufficient conditions for the property that∣∣∣∣∣∣P

(
max
i∈[d]

Xi ⩽ x

)
−
∏
i∈[d]

P (Xi ⩽ x)

∣∣∣∣∣∣→ 0 for any fixed x ∈ R. (3.1.1)

Allowing arbitrary sequences of vectors X(n) in (3.1.1) encapsulates several similar questions arising
in the studies of sequences of random variables, triangular arrays, random fields, and so on. For example,
for a sequence ξ1, ξ2, . . . of identically distributed (i.d.) random variables, one can set

Xi(n) :=
ξi−an
bn

,
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where an and bn are the normalising constants from the FTG theorem. This immediately extends the
FTG theorem to the sequences of dependent i.d. random variables that satisfy our sufficient conditions.

Clearly, the extremal independence property (3.1.1) is equivalent to∣∣∣∣∣∣P
⋂

i∈[d]

Ai

−
∏
i∈[d]

P
(
Ai

)∣∣∣∣∣∣→ 0, (3.1.2)

where the system of events A is defined by

A = A(n, x) := (Ai)i∈[d], Ai := {Xi > x}, (3.1.3)

and Ai is the complement event of Ai. Estimates for the probability of non-occurrence of events appear
in many applications in probabilistic combinatorics and number theory. In particular, to justify the
existence of a certain object, it is sufficient to show that the related probability (over all places where
this object might appear) is positive; see, for example, [3, Section 5].

In this chapter, we establish new bounds for (3.1.2) by developing the idea proposed by Galam-
bos [32, 31] and Arratia, Goldstein, Gordon [4, 5]: the weak and strong dependencies between events
(Ai)i∈[d] are considered separately, and the bounds do not incorporate the computation of moments
of the number of occurrences Z =

∑
i∈[d] 1{Ai} higher than the second one. This allows to overcome

the disadvantages of classical bounds. In particular, bounds based on dependency graphs (Lovász local
lemma [21], Janson’s inequality [57], Suen’s inequality [99, 56]) allow complicated dependence struc-
tures, but often fail to characterise the relations quantitatively. Applying the method of moments
gets complicated when high factorial moments diverge or are hard to compute. Both the Chen-Stein
method [4, 5, 6] and the method of moments often give suboptimal bounds in (3.1.2) as they deal with
the whole distribution of Z instead of focusing on the probability at 0. Our bounds for (3.1.2) do not
require computation of high moments and the proofs are based on elementary techniques inspired by
local lemma. To demonstrate the simplicity in application and effectiveness of our bounds, we derive
new results on distributions of extremal characteristics of Gaussian systems and of maximal pattern
extensions counts in random network models.

The chapter is organised as follows. Our new bounds for the extremal independence property (3.1.1)
are stated in Section 3.2 as Theorem 3.1. In Section 3.2.1, we give a detailed comparison of Theorem 3.1
to the related results including aforementioned papers [4, 5, 32, 31]. In Section 3.2.2, we give two useful
lemmas that facilitate verifying the assumptions. We prove Theorem 3.1 in Section 3.3: the upper and
lower bounds are treated separately in Section 3.3.1 and Section 3.3.3, respectively. In Section 3.4, we
apply Theorem 3.1 for finding the asymptotic distribution of maximum number of pattern extensions
in binomial random graphs.

3.2 Sufficient conditions for extremal independence

Let A := (Ai)i∈[d] be a system of events. Everywhere below we assume that P (Ai) ̸= 0. Clearly, this
assumption does not lead the loss of the generality since the events of zero probability can be excluded
from A without affecting the expression in (3.1.2). We represent the dependencies among the events of
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A by a graph D on the vertex set [d] with edges indicating the pairs of ‘strongly dependent’ events, while
non-adjacent vertices correspond to ‘weakly dependent’ events. One can think of D as a set system
(Di)i∈[d], where Di ⊆ [d] is the closed neighbourhood of vertex i in graph D. Moreover, we allow D to
be a directed graph, that is, there might exist i, j ∈ [d], such that i ∈ Dj and j ̸∈ Di.

To measure the quality of the representation of the dependencies for A by a graph D, we introduce
the following mixing coefficient:

φ(A,D) := max
i∈[d]

∣∣∣∣∣∣P
 ⋃

j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ . (3.2.1)

This is a special case of ϕ-mixing coefficient widely used in the probability theory; see, for example,
survey [13].

The influence of ‘strongly dependent’ events is measured by declustering coefficients ∆1 and ∆2

defined by

∆1(A,D) :=
∑
i∈[d]

P

Ai ∩
⋃

j∈[i−1]∩Di

Aj

 ∏
k∈[d]\[i]

P
(
Ak

)
, (3.2.2)

∆2(A,D) :=
∑
i∈[d]

P (Ai)P

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[d]\[i]

P
(
Ak

)
. (3.2.3)

In our model, the choice of graph D is arbitrary, and therefore the flexibility may leads to the trade-
off between the mixing coefficient φ(A,D) and declustering coefficients ∆1(A,D) and ∆2(A,D) for
different applications, since ∆1(A,D) and ∆2(A,D) increase as D gets denser, and φ(A,D) may
decreases.

By the inclusion-exclusion principle, we write ∆1 and ∆2 via clusters as

∆1(A,D) =
∑
i∈[d]

∑
∅≠S⊆[i−1]∩Di

(−1)|S|−1P

Ai ∩
⋂
j∈S

Aj

 ∏
k∈[d]\[i]

P
(
Ak

)
,

∆2(A,D) =
∑
i∈[d]

∑
∅≠S⊆[i−1]∩Di

(−1)|S|−1P (Ai)P

⋂
j∈S

Aj

 ∏
k∈[d]\[i]

P
(
Ak

)
.

We are ready to state our sufficient condition for satisfying (3.1.2).

Theorem 3.1. For any system of events A = (Ai)i∈[d] and graph D with vertex set [d], the following
bound holds ∣∣∣∣∣∣P

⋂
i∈[d]

Ai

−
∏
i∈[d]

P
(
Ai

)∣∣∣∣∣∣ ⩽
1−

∏
i∈[d]

P
(
Ai

)φ+max{∆1,∆2}, (3.2.4)

where φ = φ(A,D), ∆1 = ∆1(A,D), and ∆2 = ∆2(A,D).

Although the proof of Theorem 3.1 is elementary (see Section 3.3), it gives a very useful and conve-
nient tool to prove extremal independence property (3.1.1) stated below.

Corollary 3.2.1. Let d = d(n) ∈ N, X(n) = (X1, . . . , Xd)
T ∈ Rd, and A is defined in (3.1.3). If for
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every fixed x ∈ R, there is a graph D = D(n, x) such that

φ(A,D) = o(1), ∆1(A,D) = o(1), ∆2(A,D) = o(1), (3.2.5)

then, (3.1.1) holds.

Corollary 3.2.1 can be applied to extremal problems. We extend Bollobás result [10] on the limit
distribution of the maximum degree of binomial random graph G(n, p) to the hypergraph setting; see
Section 3.4.1. Our result on the distribution of maximum extension counts implies the law of large
numbers by Spencer [95] and optimizes the denominator for clique extensions; see Sections 3.4.2–3.4.4.
Corollary 3.2.1 simplifies the arguments of [84] for the maximum number of h-neighbours and extends
it to unbounded h; see Section 3.4.3.

Recent results [98, 77, 104] derive more accurate estimates for P
(⋂

i∈[d]Ai

)
using truncated cu-

mulant series and investigating clusters of dependent random variables. It will be interesting to obtain
similar extensions of Theorem 3.1 relying on bounds for clusters of strongly dependent random variables.

3.2.1 Related results

By the union bound, it is easy to see that

∆1(A,D) ⩽ ∆′
1(A,D) :=

∑
i∈[d]

∑
j∈[i−1]∩Di

P (Ai ∩Aj) ,

∆2(A,D) ⩽ ∆′
2(A,D) :=

∑
i∈[d]

∑
j∈[i−1]∩Di

P (Ai)P (Aj) .

The declustering assumption ∆′
1(A,D) = o(1) is typical in the study of extremal characteristics of

random systems. It guarantees that the clusters of exceedances Ai are negligible. The assumption
∆′

2(A,D) = o(1) is easy to verify. For example, if all probabilities P (Ai) are of the same order n−1,
then this assumption is equivalent to the graph D to be sparse, which usually happens in applications.
In addition, ∆′

2(A,D) can be bounded above by ∆′
1(A,D) = o(1) if the events are monotone. The

most innovative part of Corollary 3.2.1 is the remaining assumption φ(A,D) = o(1), which is often
easier to check and less restrictive than other mixing assumptions known in the literature. The detailed
comparisons are given below.

First, we consider a stationary sequence of random variables. If its distant terms are ‘weakly depen-
dent’, then we can construct the graph D by connecting vertices that are close to each other. Then,
omitting some details, the following corresponds to Leadbetter’s mixing condition D:∣∣∣∣∣P

( ⋂
i∈I∪J

Ai

)
−P

(⋂
i∈I

Ai

)
P

(⋂
i∈J

Ai

)∣∣∣∣∣ = o(1) (3.2.6)

for all disjoint I, J ⊂ [d] with no edges from D between them, see [63, Eq. (1.2)]. Although, (4.3.5)
looks similar to our assumption φ(A,D) = o(1), none of them implies the other. One advantage of
our assumption in comparison with (4.3.5) is that one only needs to check the mixing condition for
considerably fewer pairs of sets I and J , namely for I = [i − 1] \ Di and J = {i} for all i ∈ [d]. The
same conclusion remains valid for the extensions of Leadbetter’s mixing condition D for non-stationary
sequences and random fields on Z2

+, see, Hüsler [43, Theorem 1.1] and Pereira, Ferreira [83, Proposition
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3.2], respectively. In fact, our framework is much more flexible since one can arbitrarily choose the
graph D, without relying on the distances between indices.

Second, we consider the case when φ(A,D) = 0. For this case, under some additional requirement,
Dubickas [20, Theorem 1] proved the following bound:

P

⋂
i∈[d]

Ai

 ⩾
∏
i∈[d]

P
(
Ai

)
−∆2(A,D). (3.2.7)

Thus, in this case, (3.2.7) gives the lower bound for P
(⋂

i∈[d]Ai

)
similar to Theorem 3.1. In the binomial

subset setting and under condition ∆′
1(A,D) = o(1), the matching upper bound for P

(
∩i∈[d]Ai

)
can

be derived from Janson’s inequality [57]. Our graph-dependent model is also related to the notions of
lopsided (negative) dependency graph [22] and ϵ-near-positive dependency graph [71]. Those are models
with one-sided mixing conditions sufficient for the lower and upper bounds respectively.

Next, we compare Corollary 3.2.1 with the results by Galambos [32, 31]. To our knowledge, he
was the first to represent the weak and strong dependencies among (Ai)i∈[d] by a graph. Galambos
established the extremal independence property (3.1.1) using the so-called graph-sieve method; see, for
example, [33] for detailed overview. In particular, Galambos’ mixing assumptions require that, for a
fixed graph D,

∑
S

∣∣∣∣∣P
(⋂

i∈S
Ai

)
−
∏
i∈S

P (Ai)

∣∣∣∣∣ = o(1), (3.2.8)

where the sum in (3.2.8) is over all S ⊆ [d] with no edges of D. Assumption (3.2.8) is very restrictive
for many applications since such set S can be large. For example, in some of the applications that we
consider in Section 3.4, the graph D is empty so the results in [32, 31] is of little use, since assumption
(3.2.8) is equivalent to the extremal independence property (3.1.1) that we wish to establish.

To illustrate the advantage of our approach with respect to the methods of moments, we briefly
consider the following example. Let Ai, where i ∈ [d] and d =

(
n
h

)
, to be the event that the number of

common neighbors of one of the corresponding h-subsets of vertices in G(n, p) is greater than an + bnx

(for some appropriately chosen an, bn). In Section 3.4.3, we show that this system of events obey the
asymptotic independence property (3.1.2) despite the fact that the second moment of Z =

∑
i∈[d] 1{Ai}

approaches infinity when p is a sufficiently large constant (depending on h). In fact, one can get around
this difficulty and modify the random variables so the second moment converges to the desired limit by
conditioning on a certain event En that holds with probability 1− o(1). However, it does not help a lot
even for the third moment, and it is not evident that the convergence of the higher moments can be
established directly by a careful choice of random variables.

The aforementioned difficulty in applying the method of moments was also pointed out by Arratia,
Goldstein and Gordon in [4, 5]. Based on the Chen-Stein method they discovered that the computation
of two moments is sufficient for Poisson approximation under a certain mixing condition for weakly de-
pendent random variables. For the rest of this section, we compare [5, Theorem 3] with our Theorem 3.1
as these results have very similar setups.
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Arratia et al. [4, 5] introduced another mixing coefficient different from our φ:

φ̃ :=
∑
i∈[d]

P (Ai)

d∑
k=0

∣∣P (Zi = k
∣∣ Ai

)
−P

(
Zi = k

)∣∣ ,
where Zi =

∑
j /∈Di

1{Ai}. Their result [5, Theorem 3] states that∣∣∣∣∣∣P
⋂

i∈[d]

Ai

−
∏
i∈[d]

P
(
Ai

)∣∣∣∣∣∣ ⩽ 2φ̃+ 4∆′′
1 + 4∆′′

2 + 4
∑
i∈[d]

P (Ai)
2 , (3.2.9)

where
∆′′

1 =
∑
i∈[d]

∑
j∈Di

P (Ai ∩Aj) ⩾ ∆′
1, ∆′′

2 =
∑
i∈[d]

∑
j∈Di

P (Ai)P (Aj) ⩾ ∆′
2.

To compare φ̃ with our mixing coefficient φ, we observe that

φ̃ ⩾
∑
i∈[d]

P (Ai)

∣∣∣∣∣∣P
 ⋃

j /∈Di

Aj

∣∣∣∣∣∣ Ai

−P

 ⋃
j /∈Di

Aj

∣∣∣∣∣∣ , (3.2.10)

In the typical case when
∑

i∈[d]P (Ai) = Θ(1),
∑

i∈[d](P (Ai))
2 = o(1) (and up to ordering of vertices

in D) the RHS of (3.2.10) has the same order of magnitude (or even bigger) as
(
1−

∏
i∈[d]P

(
Ai

))
φ.

Thus, our bound is at least as efficient as (3.2.9) for such applications. Moreover, the lower bound
(3.2.10) on φ̃ could be far from being sharp, that is, the actual value of the mixing coefficient φ̃ could be
much bigger. Furthermore, Theorem 3.1 surpasses [5, Theorem 3] in several important instances listed
below.

(1) Slowly decreasing
∑

i∈[n]
(
P (Ai)

)2. Clearly, Theorem 3.1 does not have this error term. Thus,
our results partially answer the question formulated by Arratia et al. [4, 5] about the extremal
independence property (3.1.1) in case when Poisson approximation is not good enough.

(2) Slowly growing
∑

i∈[n]P (Ai). The term
(
1−

∏
i∈[d]P

(
Ai

))
φ has additional advantage for

upper tail estimates where
∏

i∈[d]P
(
Ai

)
→ 1.

(3) Inhomogenous random graphs. For example, consider the random graph model with vertex
set [n] and independent adjacencies, where all adjacencies happen with probability p excluding
adjacencies incident to one special vertex. The edges incident to this vertex appear with a slightly

higher probability p′ = an+bnx
n = p + (1 − o(1))

√
2p(1−p) lnn

n , where an, bn and constant x ∈ R
are appropriately chosen. Defining Ai as the event that vertex i in the considered random graph
has degree more than an+ bnx, our inequality gives the upper bound O(n−1/2) in (3.2.4) while [5,
Theorem 3] gives a useless bound O(1).

3.2.2 Bridging sequences

Here, we state two helpful lemmas in applying Theorem 3.1 to study the extremal characteristics of
random combinatorial structures. It will be convenient to work with non-scaled random variables {Xi}.
Everywhere in this section, we assume the following:

• X(n) = (X1, . . . , Xd)
T ∈ Rd is a sequence of random vectors, where d = d(n) ∈ N;
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• F is a continuous cdf on R and X is the set of all x ∈ R such that 0 < F (x) < 1;

• there exist an and bn such that
∏d

i=1P (Xi ⩽ an + bnx) → F (x) for any x ∈ X ;

• for all i ∈ [d], denote Ai := Ai(x) = {Xi > an + bnx}.

The first lemma shows that φ(A,D) → 0 as n→ ∞ provided that, for all i ∈ [d] and j ∈ [i−1]\Di,
the random variables Xj are approximated by some random variables X(i)

j , which are independent of Xi.
We will use this lemma to derive the distribution of the maximum codegrees in random hypergraphs.

Lemma 3.2.2. Let x ∈ X . Let sets Di ⊆ [d] \ {i} and random variables X(i)
j be such that, for all

j ∈ [i− 1] \Di, X
(i)
j is independent of Xi and, for any fixed ε > 0,

P

(
max

j∈[i−1]\Di

∣∣∣Xj −X
(i)
j

∣∣∣ > εbn

)
= o(1)P

(
Ai

)
, (3.2.11)

uniformly over i ∈ [d]. Then φ(A,D) → 0.

Proof of Lemma 3.2.2. Find δ > 0 such that 0 < F (x − δ) ⩽ F (x + δ) < 1. Let ε ∈ (0, δ/2). We may
assume that n is so large that P (Ai) ⩽ P(Ai(x−2ε)) < 1 for all i ∈ [d] (otherwise,

∏d
i=1P(Ai(x− 2ε))

can not approach F (x− 2ε)). For i ∈ [d] and j ∈ [i− 1] \Di, consider the events Aε
i := Ai(x+ 2ε) and

U ε
ji := {X(i)

j > an + (x+ ε)bn}. Then, from (3.2.11), we get that uniformly over all i ∈ [d]

P

 ⋃
j∈[i−1]\Di

(
U ε
ji \Aj

) = o(1)P (Ai) and P

 ⋃
j∈[i−1]\Di

(
Aε

j \ U ε
ji

) = o(1)P (Ai) .

The events U ε
ji and Ai are independent since X(i)

j is independent of Xi. Therefore,

P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 ⩾ P

 ⋃
j∈[i−1]\Di

U ε
ji

∣∣∣∣∣∣ Ai

− o(1)

= P

 ⋃
j∈[i−1]\Di

U ε
ji

− o(1) ⩾ P

 ⋃
j∈[i−1]\Di

Aε
j

− o(1).

By the union bound, we get that

P

 ⋃
j∈[i−1]\Di

Aj

−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai


⩽ P

 ⋃
j∈[i−1]\Di

Aj

−P

 ⋃
j∈[i−1]\Di

Aε
j

+ o(1)

⩽
∑

j∈[i−1]\Di

P

Aj \
⋃

s∈[i−1]\Di

Aε
s

+ o(1) ⩽
∑

j∈[i−1]\Di

P(Aj \Aε
j) + o(1).

Using the inequality
∑

i∈[d] ti ⩽ −1 +
∏

i∈[d](1 + ti), where ti :=
P(Ai)−P(Aε

i )
1−P(Ai)

⩾ 0, and recalling that
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F (x) > 0, we estimate

∑
i∈[d]

P(Ai \Aε
i ) ⩽

∑
i∈[d]

P(Ai)−P(Aε
i )

1−P(Ai)
⩽ −1 +

∏
i∈[d]

1−P(Aε
i )

1−P(Ai)
→ F (x+2ε)

F (x) − 1.

Recalling that F is continuous at x and that the above holds for any ε ∈ (0, δ/2), we conclude that

P

 ⋃
j∈[i−1]\Di

Aj

−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 ⩽ o(1).

The lower bound

P

 ⋃
j∈[i−1]\Di

Aj

−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 ⩾ o(1)

is obtained similarly by using the events A−ε
j := Ai(x − 2ε), U−ε

ji := {X(i)
j > an + (x − ε)bn} and the

relations

P

 ⋃
j∈[i−1]\Di

(
Aj \ U−ε

ji

) = o(1)P (Ai) , P

 ⋃
j∈[i−1]\Di

(
U−ε
ji \A−ε

j

) = o(1)P (Ai) ,

that hold uniformly over all i ∈ [d]. This completes the proof of Lemma 3.2.2.

The second lemma allows us to transfer the asymptotic distribution of the maximum component of
X(n) to any random vector Y(n) ∈ Rd that ‘approximates’ X(n). Using this lemma, we will derive the
distribution of the maximum clique-extension count in random graphs from the results on the maximum
degree.

Lemma 3.2.3. Let Y(n) ∈ Rd be a sequence of random vectors. Assume that, for any x ∈ X ,

(i) P
(
maxi∈[d]Xi ⩽ an + bnx

)
→ F (x);

(ii) for any fixed ε > 0,
P(|Xi − Yi| > εbn) = o(1)P(Xi > an + bnx),

uniformly over all i ∈ [d].

Then P
(
maxi∈[d] Yi ⩽ an + bnx

)
→ F (x) for all x ∈ X .

Proof of Lemma 3.2.3. Find δ > 0 such that 0 < F (x − δ) ⩽ F (x + δ) < 1. Let ε ∈ (0, δ). Let
Aε

i := Ai(x+ ε), Bi := {Yi > an + bnx}. From assumption (i), we get

1−P

⋃
i∈[d]

Aε
i

→ F (x+ ε).

Also by the third assumption from the list of preliminary assumptions at the beginning of Subsection
3.2.2, we obtain ∏

i∈[d]

(1−P(Aε
i )) → F (x+ ε).
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Therefore, we conclude

1−P

⋃
i∈[d]

Aε
i

 ∼
∏
i∈[d]

(1−P(Aε
i )) → F (x+ ε). (3.2.12)

Since F (x+ ε) ⩾ F (x− ε) > 0, we get∑
i∈[d]

P(Aε
i ) ⩽ −

∑
i∈[d]

log (1−P(Aε
i )) = O(1). (3.2.13)

From (ii), we find that P(Aε
i \Bi) = o(1)P(Aε

i ). Then the relations

P

⋃
i∈[d]

Aε
i

−P

⋃
i∈[d]

Bi

 ⩽ P

⋃
i∈[d]

Aε
i \

⋃
i∈[d]

Bi


⩽

∑
i∈[d]

P

Aε
i \

⋃
j∈[d]

Bj

 ⩽
∑
i∈[d]

P (Aε
i \Bi)

imply

P

⋃
i∈[d]

Bi

 ⩾ P

⋃
i∈[d]

Aε
i

− o(1)
∑
i∈[d]

P(Aε
i ) = 1− F (x+ ε)− o(1).

The last equality follows from (3.2.12) and (3.2.13). Recalling that F is continuous and that the
above holds for any ε ∈ (0, δ), we conclude that 1 − P

(⋃
i∈[d]Bi

)
⩽ F (x) + o(1). The lower bound

1−P
(⋃

i∈[d]Bi

)
⩾ F (x)−o(1) is obtained similarly, using the events A−ε

i = Ai(x−ε) and the relations
P(Bi \A−ε

i ) = o(1)P(A−ε
i ) that follow directly from (ii).

3.3 The probability of non-occurrence under graphical φ-mixing

In this section, we give new lower and upper bounds that allow to make a classification of dependencies
between events flexible and that do not require the implication from pairwise to mutual independence.
Our bounds are follow-up to the inequalities of Arratia, Goldstein, Gordon [4, 5] and give a certain
improvement for applications in various settings (see Section 3.2.1). However, the proofs are elementary
and inspired by the proof of the Lovász Local Lemma. Note that our lower bound given in Section 3.3.2
is a strict generalisation of Dubickas’ inequality [20].

3.3.1 Upper bound

Here and in the next section, we use the notations ∆1(A,D) and ∆2(A,D) that are defined in (3.2.2)
and (3.2.3) respectively.

Lemma 3.3.1. Let φ ⩾ 0. If events (Ai)i∈[d] with non-zero probabilities and sets (Di ⊂ [d] \ {i})i∈[d]
satisfy

P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

−P

 ⋃
j∈[i−1]\Di

Aj

 ⩽ φ, (3.3.1)
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for all i ∈ [d], then

P

⋂
i∈[d]

Ai

 ⩽
∏
i∈[d]

P
(
Ai

)
+ φ

1−
∏
i∈[d]

P
(
Ai

)+∆1(A,D). (3.3.2)

Proof. Let us prove that, for every s ∈ [d],

P

⋂
i∈[s]

Ai

 ⩽ (1− φ)
∏
i∈[s]

P
(
Ai

)
+ φ+

∑
i∈[s]

P

Ai ∩
⋃

j∈[i−1]∩Di

Aj

 ∏
k∈[s]\[i]

P
(
Ak

)
(3.3.3)

by induction on s. The required bound (3.3.2) is exactly (3.3.3) when s = d.

For s = 1, (3.3.3) follows from φ ⩾ 0. Assume that (3.3.3) holds for some s ∈ [d− 1]. Let

B :=
⋃

j∈[s]\Ds+1

Aj , C :=
⋃

j∈[s]∩Ds+1

Aj . (3.3.4)

Note that

1−P

As+1 |
⋂
i∈[s]

Ai

 = P
(
As+1 | B ∩ C

)
⩾ P

(
As+1

∣∣ B) (1−P
(
C
∣∣ As+1 ∩B

)
). (3.3.5)

By (3.3.1), we have P
(
B | As+1

)
⩾ P

(
B
)
− φ. Therefore,

P
(
As+1 | B

)
=

P(B|As+1)
P(B)

P (As+1) ⩾

(
1− φ

P(B)

)
P (As+1) .

We also find that

P
(
C | As+1 ∩B

)
=

P(C∩B | As+1)
P(B | As+1)

⩽
P(C|As+1)

P(B)−φ
.

Using the above two bounds in (3.3.5), we derive that

P

As+1 |
⋂
i∈[s]

Ai

 ⩽ 1−
(
1− φ

P(B)

)
P (As+1) +

P(As+1∩C)
P(B)

.

Then, since P
(
B
)
⩾ P

(⋂
i∈[s]Ai

)
, we get

P

 ⋂
i∈[s+1]

Ai

 ⩽ P

⋂
i∈[s]

Ai

P
(
As+1

)
+ φP (As+1) +P(As+1 ∩ C).
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By (3.3.3), we have

P

 ⋂
i∈[s+1]

Ai

 ⩽ (1− φ)
∏

i∈[s+1]

P
(
Ai

)
+ φ

+
∑

i∈[s+1]

P

Ai ∩
⋃

j∈[i−1]∩Di

Aj

 ∏
k∈[s+1]\[i]

P
(
Ak

)
.

This completes the proof.

Remark 3.3.2. Lu and Székely introduce the notion of ϵ-near-positive dependency graphs in [71]. Their
assumptions are

∆′
1(A,D) :=

∑
i∈[d]

∑
j∈[i−1]∩Di

P (Ai ∩Aj) = 0,

and the following mixing condition to hold for all i ∈ [d] for some epsilon 0 < ϵ < 1:

P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

−P

 ⋃
j∈[i−1]\Di

Aj

 ⩽ ϵP

 ⋂
j∈[i−1]\Di

Aj

 .

Under these assumptions, they obtained

P

⋂
i∈[d]

Ai

 ⩽
∏
i∈[d]

P
(
Ai

)(
1 + ϵ

P(Ai)

P(Ai)

)
.

3.3.2 Lower bound

Lemma 3.3.3 (Generalised Dubickas’ inequality). Let φ ⩾ 0. If events (Ai)i∈[d] with non-zero proba-
bilities and sets Di ⊂ [d] \ {i} satisfy

P

 ⋃
j∈[i−1]\Di

Aj

−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 ⩽ φ, (3.3.6)

for all i ∈ [d], then

P

⋂
i∈[d]

Ai

 ⩾
∏
i∈[d]

P
(
Ai

)
− φ

1−
∏
i∈[d]

P
(
Ai

)−∆2(A,D). (3.3.7)

Proof. Let us prove that, for every s ∈ [d],

P

⋂
i∈[s]

Ai

 ⩾ (1 + φ)
∏
i∈[s]

P
(
Ai

)
− φ−

∑
i∈[s]

P (Ai)P

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s]\[i]

P
(
Ak

)
(3.3.8)

by induction on s. The required bound (3.3.7) is exactly (3.3.8) when s = d.
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For s = 1, (3.3.8) is straightforward since φ ⩾ 0. Assume that (3.3.8) holds for s ∈ [d− 1]. Consider
the events B and C defined in (3.3.4). Then

P

As+1 |
⋂
i∈[s]

Ai

 = 1−
P(As+1∩B∩C)

P(B∩C)
⩾ 1−

P(B|As+1)
P(B∩C)

P (As+1) .

From (3.3.6), we have P(B|As+1) ⩽ P(B) + φ. Therefore,

P

As+1 |
⋂
i∈[s]

Ai

 ⩾ 1−
P(B)+φ
P(B∩C)

P (As+1) . (3.3.9)

Moreover,

P
(
B
)
= P

(
B ∩ C

)
+P

(
B ∩ C

)
⩽ P

⋂
i∈[s]

Ai

+P (C) . (3.3.10)

Combining (3.3.8), (3.3.9) and (3.3.10), we get

P

 ⋂
i∈[s+1]

Ai

 ⩾ P

⋂
i∈[s]

Ai

P
(
As+1

)
− φP (As+1)−P

 ⋃
j∈[s]∩Ds+1

Aj

P (As+1)

⩾ (1 + φ)
∏

i∈[s+1]

P
(
Ai

)
− φ−

∑
i∈[s+1]

P (Ai)P

 ⋃
j∈[i−1]∩Di

Aj

 ∏
k∈[s+1]\[i]

P
(
Ak

)
.

This completes the proof.

Remark 3.3.4. As mentioned in Section 3.2.1, the special case of (3.3.7) with φ = 0 proves Dubickas’
inequality (3.2.7). Note also that our condition

P

 ⋃
j∈[i−1]\Di

Aj

 ⩽ P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 ,

is weaker than the Dubickas’ requirement on the connection between pairwise and mutual independen-
cies.

3.4 Applications in binomial random graphs

Let us recall that G(n, p) is a random graph on the vertex set [n] = {1, . . . , n} distributed as

P(G(n, p) = G) = pe(G)(1− p)(
n
2)−e(G),

where e(G) is the number of edges of a graph G with the vertex set [n] (that is, every pair of distinct
vertices of [n] is adjacent with probability p independently of all the others).

In [10], Bollobás proved that, for p = Θ(1), the maximum degree ∆ of G(n, p) after appropriate
rescaling converges to Gumbel distribution. More formally, there exist sequences an and bn (the exact
values are known) such that ∆−an

bn
converges in distribution to a standard Gumbel random variable.
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Ivchenko proved [51] that the same holds for p such that p(1 − p) ≫ log n
n . In other words, for the

rescaled degree sequence of G(n, p), the extremal independence property (3.1.1) holds. This is not
unexpected since the dependence of degrees of two vertices of the random graph is ‘focused’ in the only
edge between these vertices. In Section 3.4.1, we show that Theorem 3.1 implies the same result for the
maximum degree of binomial random hypergraph that can not be obtained by the approach of Bollobás
and Ivchenko directly.

The results of Bollobás and Ivchenko can be viewed as a particular case of the following problem
suggested by Spencer in [95]. Let G be a graph, and H be its subgraph on h vertices. Define

d(H,G) =
|E(G)|−|E(H)|
|V (G)|−|V (H)|

(here, as usual, V (G) and E(G) are the set of vertices and the set of edges of G respectively). Let the
pair (H,G) be strictly balanced and grounded, that is,

• for every S such that H ⊊ S ⊊ G, we have d(H,S) < d(H,G), and

• there is an edge between V (H) and V (G) \ V (H) in G.

For brevity, we denote by [n]h and
([n]
h

)
the set of all h-tuples of distinct vertices from [n] and the set

of all h-subsets of [n], respectively. For an h-tuple x = (x1, . . . , xh) ∈ [n]h, denote by Xx, the number
of (H,G)-extensions of x in G(n, p) (that is, the number of copies of (V (G), E(G) \ E(H)) in G(n, p)
in which each vertex vj , j ∈ [h], of H maps onto xj). For example, the degree of a vertex u equals
Xu when h = 1 and G = K2 (as usual, we denote by Kr a complete graph on r vertices and call it an
r-clique). Spencer raised the question about the deviation of Xx from its expectation and proved that

maxx∈[n]h
|Xx−µ|

µ
P→ 0 (3.4.1)

whenever µ := E
[
X(1,...,h)

]
= Θ

(
n|V (G)|−|V (H)|p|E(G)|−|E(H)|) ≫ log n. In Section 3.4.2, we show that

Theorem 3.1 results in a tight lower bound of a possible denominator in the law of large numbers (3.4.1)
for a slightly more narrow range of p and some specific strictly balanced and grounded (H,G). More
precisely, for h = 1 and G being a clique (its size may depend on n), we prove that maxu∈[n]Xu after ap-
propriate rescaling converges to Gumbel distribution. Moreover, as we discuss in Sections 3.4.3 and 3.4.4,
these techniques can be applied for h > 1 as well.

3.4.1 Maximum degree and codegree

Let Hk(n, p) be the k-uniform binomial random hypergraph with the vertex set [n]. Recall that every
k-set from

([n]
k

)
appears as an edge in Hk(n, p) with probability p independently. For a set S ⊆ [n] with

|S| < k let XS be the codegree of S in Hk(n, p) (that is, the number of edges of Hk(n, p) containing S).
In particular, Xi is the degree of a vertex i. Note that

XS ∼ Bin

((
n− |S|
k − |S|

)
, p

)
. (3.4.2)

In this section, using Theorem 3.1, we show that, under some assumptions on the parameters k and p (in
terms of n), the asymptotic distribution of maxS XS is the same as if the variables XS were independent.
For independent random variables, the asymptotic distribution is given by the following lemma.
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Lemma 3.4.1. Let d = d(n) ∈ N, N = N(n) ∈ N, and p = p(n) ∈ (0, 1) satisfy

Np(1− p) ≫ log3 d≫ 1.

If ξ1, . . . , ξd are Bin(N, p) independent random variables, then
[
maxi∈[d] ξi − an

]
/bn converges in distri-

bution to a standard Gumbel random variable with an and bn defined by

an = an(d,N, p) := pN +
√
2Np(1− p) log d

(
1− log log d

4 log d − log(2
√
π)

2 log d

)
,

bn = bn(d,N, p) :=

√
Np(1−p)
2 log d .

(3.4.3)

Proof. For p bounded away from 0 and 1 we refer to [78, Theorem 3]. For p → 0, p ≫ log3 d
N , we find

by [51, Lemmas 4 and 5] that
dP(ξ1 > an + bnx) → e−x. (3.4.4)

Since d→ ∞,

P

(
max
i∈[d]

ξi ⩽ an + bnx

)
=
(
P(ξ1 ⩽ an + bnx)

)d
=

(
1− e−x+o(1)

d

)d

→ e−e−x
.

Finally, if log3 d
N ≪ 1− p = o(1), then (3.4.4) can be obtained similarly by applying de Moivre–Laplace

theorem (see, e.g., [12, Theorem 1.6]).

Remark 3.4.2. In fact, Lemma 3.4.1 can be extended to the range Np(1 − p) ≫ log d. This would
involve a more complicated expression for an, while bn remains the same, see [51, Lemma 5]. However,
such a generalisation is not needed for the applications we consider.

In the next theorem, we show that, under certain assumptions, the maximum degree in the random
hypergraph Hk(n, p) converges to the Gumbel distribution.

Theorem 3.2. Assume p = p(n) ∈ (0, 1) and k = k(n) ∈ {2, . . . , n} are such that(
n− 1

k − 1

)
p(1− p) ≫ log3 n, k ≪ n/ log2 n. (3.4.5)

Then
[
maxi∈[n]Xi − an

]
/bn converges in distribution to a standard Gumbel random variable, where

an = an

(
n,
(
n−1
k−1

)
, p
)

and bn = bn

(
n,
(
n−1
k−1

)
, p
)

are defined in (3.4.3).

Proof. Take any x ∈ R. For all i ∈ [n], let Ai := {Xi > an + xbn}. Let d := n and N :=
(
n−1
k−1

)
. By

Lemma 3.4.1, we find that ∏
i∈[n]

P(Ai) → e−e−x
. (3.4.6)

For i ∈ [d], let Di = ∅. Then ∆1(A,D) = ∆2(A,D) = 0. By Corollary 3.2.1, we only need to show
that φ(A,D) = o(1). We employ Lemma 3.2.2 to verify it. Note that F (x) := e−e−x is the cdf of the
standard Gumbel distribution. In particular, F is continuous and 0 < F (x) < 1 for all x ∈ R. To apply
Lemma 3.2.2, it remains to construct random variables X(i)

j . For j ∈ [d] \ i, define X(i)
j := E [Xj | Hi],

where Hi is the set of edges of Hk(n, p) that does not contain the vertex i. Clearly, X(i)
j is independent
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of Xi because the random set Hi is independent of Xi. Recalling that Xi,j := X{i,j} ∼ Bin
((

n−2
k−2

)
, p
)

is the number of edges of Hk(n, p) containing both i and j, we get

Xj −X
(i)
j = Xi,j −E [Xi,j | Hi] = Xi,j −E [Xi,j ] . (3.4.7)

Next, we estimate the probability that |Xi,j − E [Xi,j ] | > εbn. Here, without loss of the gener-
ality, we may assume that p ⩽ 1

2 . Otherwise, we can consider the random variable
(
n−2
k−2

)
− Xi,j ∼

Bin
((

n−2
k−2

)
, 1− p

)
and repeat the arguments. By the assumptions, we get that bn =

√
(n−1
k−1)p(1−p)
2 log n

satisfies

bn ≫ log n and
b2n

E[Xi,j ]
=
(n−1
k−1)(1−p)

2(n−2
k−2) log n

≫ log n.

Applying the Chernoff bound (see, for example, [58, Theorem 2.1]), we find that, for any fixed ε > 0,

P (|Xi,j −E [Xi,j ] | > εbn) ⩽ 2 exp

(
− (εbn)

2

2E[Xi,j ]+εbn

)
= e−ω(logn). (3.4.8)

Combining (3.4.7), (3.4.8) and applying the union bound for all j ∈ [i− 1], we get that

P

(
max
j∈[i−1]

∣∣∣Xj −X
(i)
j

∣∣∣ > εbn

)
⩽ ne−ω(logn) = e−ω(logn).

From (3.4.6), we find that P(Xi > an + bnx) = Ω(n−1) ≫ e−ω(logn) uniformly over all i ∈ [n]. Thus,
we get the desired X(i)

j satisfying all conditions of Lemma 3.2.2. This completes the proof.

Remark 3.4.3. The binomial random graph G(n, p) is a special case of Hk(n, p) for k = 2. In the
particular case, Theorem 3.3 gives the asymptotic distribution of the maximum degree of G(n, p). This
result was obtained for the first time by Bollobás [10] and Ivchenko [51] using the method of moments.
For every i ∈ [n], they consider the Bernoulli random variable ηi that equals 1 if and only if its degree is
bigger than an + bnx. Letting η = η1 + . . .+ ηn, they easily get that E [η] → e−x as n→ ∞. Thus, it is
sufficient to prove that η converges in distribution to a Poisson random variable as n→ ∞. For k = 2,
one can derive that E

[(
η
r

)]
→ e−xr/r! for any fixed r ∈ N. However, when k > 2 the dependencies are

stronger so the computation of factorial moments becomes much more technically involved. In contrast,
our method does not require any computations aside from the single application of the Chernoff bound
in (3.4.8) for all k.

Remark 3.4.4. Another advantage of our approach is that it gives an estimate of the rate of convergence
to the Gumbel distribution. A careful investigation of the proofs of Theorem 3.1, Lemma 3.2.2, and
Theorem 3.2 shows that∣∣∣∣P(max

i∈[n]
Xi ⩽ an + xbn

)
−
∏
i∈[n]

P (Xi ⩽ an + xbn)

∣∣∣∣ = O

(√
log3 n

(n−1
k−1)p(1−p)

+

√
k log2 n

n

)
.

That is, the rate of convergence is governed by the rate of decrease of ε, for which
P
(
maxj∈[i−1]

∣∣∣Xj −X
(i)
j

∣∣∣ > εbn

)
remains very small. In addition, for an and bn defined by (3.4.3), the

convergence rate of
∏

i∈[n]P (Xi ⩽ an + xbn) to the Gumbel distribution is O
(
log log n
log n

)
. However, this
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convergence rate can be improved by using a more precise expression for the scaling parameter an.

Our approach applied to codegrees XS in the random hypergraph Hk(n, p) leads to the following
result.

Theorem 3.3. Assume p = p(n) ∈ (0, 1), s = s(n) ∈ [n− 1], and k = k(n) ∈ [n] \ [s] are such that(
n− s

k − s

)
p(1− p) ≫ s3 log3 n, (k − s)s2 ≪ (n− s)/ log2 n.

Then
[
max

S∈([n]
s )
XS − an

]
/bn converges in distribution to a standard Gumbel random variable, where

an = an

((
n
s

)
,
(
n−s
k−s

)
, p
)

and bn = bn

((
n
s

)
,
(
n−s
k−s

)
, p
)

are defined in (3.4.3).

Proof. Theorem 3.3 is proved in exactly the same way as Theorem 3.2. Take any x ∈ R. For all
S ∈

(
[n]
s

)
, let AS := {XS > an + xbn}. Let d :=

(
n
s

)
and N :=

(
n−s
k−s

)
. Since

(
n
s

)
⩽ ns, the assumptions

imply Np(1− p) ≫ log3 d. Recalling that XS ∼ Bin (N, p) and using Lemma 3.4.1, we find that∏
S∈([n]

s )

P(AS) → e−e−x
.

Again, we can take DS = ∅ for all S ∈
(
[n]
s

)
. Thus, we only need to show that φ(A,D) = o(1). The key

fact needed to apply Lemma 3.2.2 is that, for any fixed ε > 0,

P

(∣∣XU∪S −E [XU∪S ]
∣∣ ⩽ εbn for all distinct U, S ∈

(
[n]

s

))
⩾ 1− e−ω(log d).

Similarly to (3.4.8), this is a straightforward application of the Chernoff bound.

3.4.2 Maximum clique-extension counts

Let k ⩾ 3 be an integer. In this section, we find the asymptotic distribution of the maximum number of
k-clique extensions in the random graph G(n, p). For i ∈ [n], letXi be the number of k-cliques containing
vertex i. Below, we show that Theorem 3.1 implies the asymptotic distribution of the maximum value
of Xi over i ∈ [n].

Let

ak,n :=
(pn)k−2p(

k−1
2 )

(k−1)!

[
pn+ (k − 1)

√
2np(1− p) log n

(
1− log log n

4 log n − log(2
√
π)

2 log n

)]
,

bk,n :=
1

(k−2)!(pn)
k−2p(

k−1
2 )
√
np(1−p)
2 log n .

Theorem 3.4. Let p = p(n) ∈ (0, 1), k = k(n) ∈ {3, . . . , n} be such that

log3 n = o(np(1− p)), log2 n = o

(
np(

k−1
2 )+1(1−p)
k3

)
. (3.4.9)

Then
[
maxi∈[n]Xi − akn

]
/bkn converges in distribution to a standard Gumbel random variable.
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Proof. Let di be the degree of the vertex i, and Yi = E [Xi | di] =
(

di
k−1

)
p(

k−1
2 ). Note that

max
i∈[n]

Yi =

(
maxi∈[n] di
k − 1

)
p(

k−1
2 ).

Let x ∈ R. By Theorem 3.2, we have

P

(
max
i∈[n]

Yi ⩽

(
an + bnx

k − 1

)
p(

k−1
2 )
)

= P

(
max
i∈[n]

di ⩽ an + bnx

)
→ e−e−x

,

where an = an(n, n− 1, p) and bn = bn(n, n− 1, p) are defined in (3.4.3) by

an = (n− 1)p+
√
2(n− 1)p(1− p) log n

(
1− log log n

4 log n − log(2
√
π)

2 log n

)
, bn =

√
(n−1)p(1−p)

2 log n .

Computing directly, we get(
an + bnx

k − 1

)
p(

k−1
2 ) = (1 + o(1))

(an+bnx)
k−1

(k−1)! p(
k−1
2 )

= (1 + o(1))
ak−1
n

(k−1)!p
(k−1

2 ) + (1 + o(1))
ak−2
n

(k−2)!p
(k−1

2 )bnx = ak,n + bk,nx(1 + o(1)).

Therefore we have
P

(
max
i∈[n]

Yi ⩽ ak,n + bk,nx

)
→ e−e−x

. (3.4.10)

Set X̃i =
Xi−ak,n
bk,n

, Ỹi =
Yi−ak,n
bk,n

. It remains to show that

P
(∣∣∣X̃i − Ỹi

∣∣∣ > ε
)
= o

(
P
(
Yi > akn + xbkn

))
= o

(
1
n

)
, (3.4.11)

and apply Lemma 3.2.3.
The de Moivre–Laplace theorem and the relation

∫∞
x e−t2/2dt =

1
xe

−x2/2(1 + o(1)) (see, e.g., [11,
Relation (1’)]) imply

P
(
|di − np| >

√
2np(1− p) log n

)
=

1+o(1)

n
√
π log n

.

Therefore,

P
(∣∣∣X̃i − Ỹi

∣∣∣ > ε
)
= P

(
|Xi − Yi| > εbkn

)
=

∑
|j−np|⩽

√
2np(1−p) logn

P

(∣∣∣∣Xi −
(

j

k − 1

)
p(

k−1
2 )
∣∣∣∣ > εbkn, di = j

)
+ o

(
1
n

)
.

It remains to bound from above P
(
Xi −

(
j

k−1

)
p(

k−1
2 ) > εbkn

∣∣∣ di = j
)

and

P
(
Xi −

(
j

k−1

)
p(

k−1
2 ) < −εbkn

∣∣∣ di = j
)
. For the lower tail, we apply Janson’s inequality [58, Theorem

2.14] that does not work, in general, for upper tails. However, a weaker bound [58, Proposition 2.44]
can be applied for that. To apply the bounds, we need to compute the number of (k − 1)-cliques that
are not edge-disjoint with a given (k− 1)-clique in Kj (which is denoted by ∆ below) and the expected
number of pairs of non-edge-disjoint (k − 1)-cliques in Gj,p (which is denoted by ∆ below).
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For j ∈ N such that |j−np| ⩽
√

2np(1− p) log n, denote the number of (k−1)-subsets of [j] having
at least 2 common element with [k − 1] by ∆. Clearly,

∆ =

(
j

k − 1

)
−
(
j − k + 1

k − 1

)
− (k − 1)

(
j − k + 1

k − 2

)
=

(
k − 1

2

)
jk−3

(k−3)!(1 + o(1)).

Moreover, let ∆ be the expected number of pairs of (not necessarily distinct) k-cliques with non-empty
edge intersections:

∆ =

(
j

k − 1

) k−1∑
ℓ=2

(
k − 1

ℓ

)(
j − k + 1

k − 1− ℓ

)
p(k−1)(k−2)−(ℓ2)

=
j2k−4

(k−1)!(k−3)!

(
k − 1

2

)
p(k−1)(k−2)−1(1 + o(1)).

By (3.4.9) and [58, Proposition 2.44], uniformly over all j ∈ N such that |j − np| ⩽
√
2np(1− p) log n,

we have

P

(
Xi −

(
j

k − 1

)
p(

k−1
2 ) > εbkn

∣∣∣∣ di = j

)
⩽ (∆ + 1) exp

(
−

ε2[bkn]
2

4(∆+1)(E[Xi|di=j]+εbkn/3)

)

= exp

(
−ε2p(

k−1
2 )np(1−p)

4(k−2)2 log n (1 + o(1))

)
= o

(
1
n

)
. (3.4.12)

Moreover, by (3.4.9) and Janson’s inequality [58, Theorem 2.14], uniformly over all j ∈ N such that
|j − np| ⩽

√
2np(1− p) log n,

P

(
Xi −

(
j

k − 1

)
p(

k−1
2 ) < −εbkn

∣∣∣∣ di = j

)
⩽ exp

(
−
ε2[bkn]

2

2∆

)

= exp

(
− ε2np2(1−p)
2(k−2)2 log n(1−o(1))

)
= o

(
1
n

)
.

(3.4.13)

Finally, combining (3.4.12) and (3.4.13), we get

∑
|j−np|⩽

√
2np(1−p) logn

P

(∣∣∣∣Xi −
(

j

k − 1

)
p(

k−1
2 )
∣∣∣∣ > εbkn, di = j

)
= o

(
1
n

)
.

3.4.3 Maximum number of h-neighbours

The particular case of the following result for constant h was proved in [84]. Let us show that it is a
more or less direct corollary of Theorem 3.1.

For h ∈ N and x ∈
([n]
h

)
, denote the number of common neighbours of vertices in x in G(n, p) by

Xx. Set ah,n := an(
(
n
h

)
, n, ph), bh,n := bn(

(
n
h

)
, n, ph), where an and bn are defined in (3.4.3).

Theorem 3.5. Let h = h(n) = o(log n/ log logn) and p = p(n) ∈ (0, 1) be such that

ph

h3 ≫ log3 n
n , 1− p≫

√
log log n
log n . (3.4.14)
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Then
[
max

x∈([n]
h )
Xx − ah,n

]
/bh,n converges in distribution to a standard Gumbel random variable.

Proof. For any x ∈
([n]
h

)
, Xx follows Bin

(
n− h, ph

)
. Then, by Lemma 3.4.1,∏

x∈([n]
h )

P (Xx ⩽ ah,n + bh,nx) → e−e−x
. (3.4.15)

Let us label the h-subsets of [n] by positive integers 1, 2, . . . ,
(
n
h

)
, that is {x : x ∈

([n]
h

)
} = {xi :

i ∈ [
(
n
h

)
]}. For simplicity, we use Xi to denote Xxi . Set d =

(
n
h

)
and fix x ∈ R. For i ∈ [d], set

Ai = {Xi > ah,n + bh,nx} and Di = [d] \D∗
i , where D∗

i is the set of labels of h-subsets
([n]\xi

h

)
.

Let us first verify that φ(A,D) = o(1). Let i ∈ [d]. We denote by Hi the set of edges of G(n, p)
that do not contain any vertices of xi. For any j ∈ [i− 1] \Di, let Xj,i be the number of vertices in xi

adjacent to all vertices in xj in G(n, p) (notice that xi and xj are disjoint). Since Xj,i is independent

of Hi, we get Xj − E [Xj | Hi] = Xj,i − E [Xj,i] . Set X̃i =
Xi−ah,n
bh,n

and X̃
(i)
j = E

[
X̃j

∣∣∣ Hi

]
. Since

Xj,i ∼ Bin
(
h, ph

)
, we get by (3.4.14) and the Chernoff bound (see, e.g., [58, Theorem 2.1]) that, for

every ε > 0,

P
(∣∣∣X̃j − X̃

(i)
j

∣∣∣ > ε
)
= P

(∣∣∣Xj,i − hph
∣∣∣ > εbh,n

)
⩽ 2 exp

(
− (εbh,n)

2

2(hph+εbh,n/3)

)
= exp

(
−3εbh,n

2 (1 + o(1))

)
⩽ exp

(
−3ε

2

√
nph(1−p)
2h log n (1 + o(1))

)
= o

(
1
n2h

)
.

(3.4.16)
By (3.4.15), we get P

(
X̃i > x

)
=
(
n
h

)−1
e−x(1 + o(1)). Therefore, by the union bound,

P

(
max

j∈[i−1]\Di

∣∣∣X̃j − X̃
(i)
j

∣∣∣ > ε

)
⩽

(
n

h

)
P
(∣∣∣X̃j − X̃

(i)
j

∣∣∣ > ε
)

= o

(
1

(nh)

)
= o(1)P

(
X̃i > x

)
.

Lemma 3.2.2 implies φ(A,D) = o(1).

By Corollary 3.2.1, it remains to verify the conditions ∆1(A,D) = o(1) and ∆2(A,D) = o(1).
Unfortunately, these conditions do not hold. Nevertheless, the events (Ai)i∈[d] can be modified slightly
to make the desired relations hold. Define

E =

h−1⋂
ℓ=1

⋂
u∈([n]

ℓ )

{
Xu ⩽ npℓ +

√
2ℓnpℓ(1− pℓ) log n

}
.

For i ∈ [d], let Ãi = Ai ∩ E and Ã = (Ãi)i∈[d].

The following lemma is proven in [84] for constant h; for h = o(log n/ log logn), the same proof
works.

Lemma 3.4.5 ([84]). The following relations hold

1. P (E) = 1− o(1),

2. for every x ∈ R, P
(
Ãi

)
= (1− o(1))P (Ai) uniformly over all i ∈ [d],
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3.
∑

i∈[d]
∑

j∈[i−1]∩Di
P
(
Ãi ∩ Ãj

)
= o (1).

We have shown that φ(A,D) = o(1) uniformly over all i ∈ [d], now we consider φ(Ã,D). For any
i ∈ [d], we have that

P

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ãi

 = P

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ai

 P(Ai)

P(Ãi)
−P

 ⋃
j∈[i−1]\Di

Ãj

 ∩Ai ∩ E

 1

P(Ãi)
,

and therefore, ∣∣∣∣∣∣P
 ⋃

j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ãi

−P

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣P
 ⋃

j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ai

 P(Ai)

P(Ãi)
−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣+ P(Ai∩E)

P(Ãi)
.

Note that

P

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ai

 = P

E ∩

 ⋃
j∈[i−1]\Di

Aj

 ∣∣∣∣∣∣ Ai


= P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

−P

E ∩

 ⋃
j∈[i−1]\Di

Aj

 ∣∣∣∣∣∣ Ai

 .

By Lemma 3.4.5, we obtain∣∣∣∣∣∣P
 ⋃

j∈[i−1]\Di

Ãj

∣∣∣∣∣∣ Ãi

−P

 ⋃
j∈[i−1]\Di

Ãj

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣P
 ⋃

j∈[i−1]\Di

Aj

∣∣∣∣∣∣ Ai

 (1 + o(1))−P

 ⋃
j∈[i−1]\Di

Aj

∣∣∣∣∣∣+ 2P(Ai∩E)

P(Ãi)
,

and φ(Ã,D) = o(1) follows from

2P(Ai∩E)

P(Ãi)
=

2P(Ai)

P(Ãi)
− 2 = o(1).

Notice that the third statement of Lemma 3.4.5 is exactly ∆′
1(Ã,D) = o(1) (see the definitions of

∆′
1 and ∆′

2 in Section 3.2.1). It remains to prove that ∆′
2(Ã,D) = o(1). But this is straightforward:

∆′
2(Ã,D) =

∑
i∈[d]

∑
j∈[i−1]∩Di

P(Ãi)P(Ãj) ⩽
∑
i∈[d]

∑
j∈[i−1]∩Di

P (Ai)P(Aj)

⩽

(
n

h

)−1

e−2x(1 + o(1))max
i∈[d]

|Di| =
(nh)−(

n−h
h )

(nh)
e−2x(1 + o(1)) = o(1).

By Theorem 3.1, we get that (3.1.2) holds for Ã. The first two statements of Lemma 3.4.5 imply that
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(3.1.2) also holds for A. Indeed, P(E) = 1− o(1) implies that

P
(
∩i∈[d]Ai

)
= P

(
∩i∈[d]Ãi

)
−P

(
E \

(
∩i∈[d]Ai

))
= P

(
∩i∈[d]Ãi

)
+ o(1);

and P(Ãi) = (1− o(1))P (Ai) implies

∏
i∈[d]

P
(
Ãi

)
=
∏
i∈[d]

[1−P (Ai) (1 + o(1))] =

(
1− e−x+o(1)

d

)d

→ e−e−x
.

This completes the proof.

3.4.4 Further results in maximum extensions counts

As we discussed in the beginning of Section 3.4, the above results are in the framework of exten-
sions counting. Given a strictly balanced grounded pair (H,G) with |V (H)| = h, we are interested in
the asymptotic behaviour of maxx∈[n]h Xx. Recall that, in [95], Spencer proved the law of large num-
bers (3.4.1). In recent paper [90], Šileikis and Warnke studied the validity of this law when µ = Θ(log n).

In Section 3.4.2, we found an optimal denominator in the law of large numbers for h = 1, G = Kk

and p satisfying (3.4.9) (that is, far from the threshold value):

maxi∈[n]Xi−µ
µ(k−1)

√
2(1−p) log n/(pn)

P→ 1.

Notice that the result holds for the numerator maxi∈[n] |Xi−µ| = max{maxi∈[n]Xi−µ, µ−mini∈[n]Xi}
as well. Indeed, let di be the degree of the vertex i. Theorem 3.2 implies the asymptotic distribution of
the minimum degree of G(n, p) since it equals in distribution to n−maxi∈[n] di[Gn,1−p]. Thus,

P

(
min
i∈[n]

E [Xi|di] ⩾ ãkn − bknx

)
→ e−e−x

where ãkn =
1

(k−1)!(pn)
k−2p(

k−1
2 )n − akn. To get the distribution of the minimum degree, it remains to

reformulate Lemma 3.2.3 for the events Ai := {Xi < ãkn− bknx} and probabilities P(minXi ⩾ ãkn− bknx),
P(minYi ⩾ ãkn − bknx) (clearly, the same proof works) and follow absolutely the same steps as in the
proof of Theorem 3.4.

Our method works not only in the case h = 1. In Section 3.4.3, we have found the asymptotic
distribution of Xx when h ⩾ 2 and G contains a unique vertex outside H which is adjacent to all
vertices in H. Our arguments should work even in the case when H,G are both cliques of arbitrary
size. Indeed, the result for cliques G such that |V (G)| − |V (H)| ⩾ 2 can be obtained from Theorem 3.5
using Lemma 3.2.3 in the same way as we obtain Theorem 3.4 from Theorem 3.2 in Section 3.4.2.
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Chapter 4

Cumulant expansion for Eulerian
orientation count

4.1 Introduction

An Eulerian orientation of an undirected graph is an assignment of directions to all the edges such
that, for any vertex, the number of edges directed towards equals the number of edges directed out. Let
EO(G) denote the number of Eulerian orientations of graph G. It is well known that EO(G) > 0 if and
only if all degrees of G are even. Computing EO(G) corresponds to evaluating the Tutte polynomial at
point (0,−2), see [52].

Schrijver [87] pointed out that the computation of EO(G) can be reduced to the evaluation of the
permanent of a certain matrix M associated with graph G, that is,

EO(G) =
perm(M)∏
i∈V (G)(di/2)!

, (4.1.1)

where di denotes the degree of vertex i in G. As Bethe permanent can be used both for a lower and an
upper bound of permanent, it further gives bounds on EO(G).

Unfortunately, there is no efficient algorithm known to find EO(G) exactly. Mihail and Winkler
[75] noticed that the Markov Chain Monte Carlo method approximating permanent, combining with
(4.1.1), gives an approximation algorithm of computing the number of Eulerian orientations, and it is
#P-complete in general.

Wide interest in counting Eulerian orientations is due to the equivalence to the partition function
of so-called ice-type models in statistical physics; see, for example, [102] and references therein. Lieb
[66] and Baxter [7] have derived asymptotic expressions for the number of Eulerian orientations of the
square and triangular lattice by the transfer matrix method [66, 7] using eigenvalues of matrices. No
extension of this to higher dimensions is known, to the best of our knowledge.

A regular tournament on n vertices is an Eulerian orientation of the complete graph Kn. Clearly, n
must be odd for the existence of a regular tournament. McKay [73] established that, for odd n→ ∞,

EO(Kn) ∼
(
n
e

)1/2(2n+1

πn

)(n−1)/2

. (4.1.2)

Adopting McKay’s approach to dense graphs with strong mixing properties, Isaev and Isaeva [44] ob-
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tained

EO(G) ∼ ÊO(G) :=
2|E(G)|√
ST(G)

(
2
π

)(n−1)/2
exp

−1
4

∑
jk∈G

(
1
dj

+
1
dk

)2
 , (4.1.3)

where ST(G) denotes the number of spanning trees of G. More precisely, graphs considered in [44]
satisfy h(G) ⩾ γn for some fixed γ, where h(G) is the Cheeger constant (also known as isoperimetric
number) of a graph G. Recall that

h(G) := min

{
|∂G U |
|U | : U ⊂ V (G), 1 ⩽ |U | ⩽ 1

2 |V (G)|
}
, (4.1.4)

where ∂G U is the set of edges of G with one end in U and the other end in V (G) \ U . The asymptotic
result (4.1.3) was further extended in [45, Corollary 3]: if h(G) ⩾ γd and d ⩾ n1/3+ε, then

EO(G) = ÊO(G) exp
(
O
(
n
d2 log

2n
d

))
, (4.1.5)

where d is the maximum degree of G.
Note that the error term n

d2 log
2n
d in (4.1.5) grows as n → ∞ if d < n1/2. In this chapter, we give

an asymptotic expansion series that gives the value of EO(G) up to precision O(n−c) for any arbitrary
constant c > 0 under the assumptions that h(G) ⩾ γd and d ≫ log8 n. As a corollary, we prove that
the asymptotic bound of (4.1.5) holds for such graphs.

4.1.1 Main results

Our estimates for EO(G) rely on cumulant expansion with respect to a certain Gaussian random vector
associated with graph G. First, we recall the definition of cumulants. Let X1, . . . , Xr be random
variables with finite moments, the joint cumulant (or mixed cumulant) is defined by

κ(X1, . . . , Xr) := [t1 . . . tr] log

(
E

[
exp

(
r∑

i=1

tiXi

)])
, (4.1.6)

where [t1 . . . tr] stands for the coefficient of t1 . . . tr in the series expansion. If all random variables
X1, . . . , Xr are the same variable X, then we write

κr(X) := κ(X, . . . ,X),

which becomes the cumulant of order r for random variable X.
Given a graph G, the Laplacian Matrix L = L(G) is defined by

xTLx =
∑
jk∈G

(xj − xk)
2, (4.1.7)

for x = (x1, . . . , xn)
T ∈ Rn and the summation is over all (unordered) edges jk ∈ G. Clearly, L is

symmetric positive-semidefinite. The vector 1 = (1, . . . , 1)T is an eigenvector of L with eigenvalue 0. If
G is connected then all other eigenvalues of L are positive. In this case, let XG denote n-dimensional
singular Gaussian random vector on the subspace

V := {x ∈ Rn : x1 + · · ·+ xn = 0}
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with density proportional to exp
(
−1
2x

TLx
)
.

Let (c2ℓ)ℓ⩾1 denote the coefficients of the Taylor expansion of log cosx at x = 0,

log cosx =
∑
ℓ⩾1

c2ℓx
2ℓ = −1

2x
2 − 1

12x
4 − 1

45x
6 − 17

2520x
8 − · · · ,

where
c2ℓ = −4ℓ(4ℓ−1)|B2ℓ|

2ℓ(2ℓ)! , (4.1.8)

with B2ℓ denoting the Bernoulli number, see, for example, [38, 1.518]. Note that |B2ℓ| < 4(2ℓ)!/(2π)2ℓ,
and therefore,

|c2ℓ| <
22ℓ+1(4ℓ−1)
ℓ(2π)2ℓ

<
2
ℓ

(
2
π

)2ℓ
. (4.1.9)

For an integer K ⩾ 2, define multivariate polynomial fK by

fK(x) =

K∑
ℓ=2

c2ℓ
∑
jk∈G

(xj − xk)
2ℓ. (4.1.10)

Our main result is the following theorem.

Theorem 4.1.1. Let G = G(n) be a graph with even degrees. Assume that

(A1) d≫ log8 n, where d is the maximum degree of G;

(A2) the Cheeger constant h(G) ⩾ γd for some constant γ > 0.

Let c > 0 be a constant and M =M(c) and K = K(c) be defined by

K :=
⌈ (c+1) log n
log d−4 log log n

⌉
, M :=

⌈ 2(c+1) log n
log d−8 log log n

⌉
.

Then as n→ ∞,

EO(G) =
2|E(G)|√
ST(G)

(
2
π

)(n−1)/2
exp

(
M∑
s=1

1
s! κs (fK(XG)) +O

(
n−c

))
, (4.1.11)

where ST(G) denotes the number of spanning trees of graph G.

As a corollary of Theorem 4.1.1, we get the following result.

Corollary 4.1.2. The asymptotic bound of (4.1.5) holds under the assumptions of Theorem 4.1.1.

For G = Kn with odd n, computing a few cumulant terms in (4.1.11) establishes the following
extension of McKay’s formula (4.1.2) for the number of regular tournaments.

Corollary 4.1.3. For odd n→ ∞,

EO(Kn) = n1/2
(
2n+1

πn

)(n−1)/2

exp
(
−1
2 +

1
4n +

1
4n2 +

7
24n3 +

37
120n4 +

31
60n5 +

81
28n6

+
5981
336n7 +

22937
240n8 +

90031
180n9 +

1825009
660n10 +

4344847
264n11 +O

(
n−12

))
. (4.1.12)
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4.1.2 Chapter structure

The chapter is structured as follows. First, in Section 4.2, we include some interesting observations
that formula (4.1.3) works reasonably well even in the range of graphs far beyond that considered in
Theorem 4.1.1.

In Section 4.3, we review basic facts about cumulants in general and cumulants of Gaussian random
variables in particular. Most notably, we give a new asymptotic estimate on the tail of the cumulant
series of a function of a growing number of independent random variables; see Theorem 4.3.2. This
estimate can be applied to functions of Gaussian vectors after a proper rotation; see Theorem 4.3.6.

The proof of Theorem 4.1.1 is given in Section 4.4. We represent EO(G) in terms of a high-
dimensional integral, which we estimate using a variation of the Laplace method and then applying
Theorem 4.3.6.

In Section 4.5, we give the details of cumulant computation for the number of regular tournaments,
that is, the case of the complete graph G = Kn. We provide comparisons with exact values. Also,
we include two more asymptotic formulas for the number of Eulerian digraphs, and Eulerian oriented
graphs, whose proofs are very similar.

Section 4.6 contains the proof of Theorem 4.3.2. The proof is based on the estimates for the variation
of conditional cumulants with respect to revealing one variable at a time.

4.2 Pauling’s estimate, and ice-entropy comparisons for regular graphs

The study of “ice models” motivates the following definition. For a graph G on n vertices, let

eo(G) :=
1
n log EO(G). (4.2.1)

We call eo(G) the ice-entropy of G. Determining the asymptotics of eo(G) is a key question in the area,
see for example [7, Chapter 8] and [67]. In particular, it is known for the square lattice Ln and the
triangular lattice Tn; see [66, 7]. However, the question remains largely open for other graphs. Even
for the cubic lattice Cn, there are only the upper and lower bounds by estimating permanent in (4.1.1)
and a heuristic estimate by Pauling around 90 years ago in his seminal paper [81].

4.2.1 Pauling’s estimate

Pauling’s idea is to orient the edges of graph, and to ignore the dependencies among the events that
vertices are unbalanced (this is obviously not right, except for the trivial case that G is an empty graph).
Formally, if every edge of a graph G is oriented independently with probability 1/2, then

P

 ∑
v∈V (G)

Xv = 0

 = 2−|E(G)| EO(G),

whereXj is the indicator of the event that vertex j is unbalanced: the numbers of incoming and outgoing
arcs are different.
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This leads to the following estimate,

ÊOPauling(G) := 2|E(G)|
∏

v∈V (G)

2−dv

(
dv
dv/2

)
= 2−|E(G)|

∏
v∈V (G)

(
dv
dv/2

)
.

For a d-regular graph G on n vertices, we have

ÊOPauling(G) = 2−nd/2

(
d

d/2

)n

=
(

d!
(d/2)!22d/2

)n
.

For large d, in view of (4.2.1), using Stirling’s formula gives

êoPauling(G) = log
(

d!
(d/2)!22d/2

)
=

log 2
2 d− 1

2 log d+
1
2 log

(
2
π

)
.

Let
Pauling(G) := log

(
d

d/2

)
− d

2 log 2. (4.2.2)

Schrijver [87] showed that

Pauling(G) ⩽ eo(G) ⩽ 1
2 log

(
d

d/2

)
. (4.2.3)

In this section, we compare the ice entropy of a d-regular graph G and Pauling’s estimate (4.2.2)
with

êo(G) :=
1
n log ÊO(G) =

d
2 log 2− 1

2n log ST(G)− n−1
2n log

π
2 − 1

2d . (4.2.4)

The quantity 1
n log ST(G) is called the spanning tree entropy in the literature. Even though the graphs

with constant degrees are beyond the reach of our results, this simple formula gives a surprisingly good
estimate of the ice-entropy, slightly above the exact value (where it is known). Furthermore, we believe
that computing more cumulants as in Theorem 4.1.1 can improve the precision even further.

4.2.2 Square lattice Ln and Lieb’s constant

For a square lattice Ln on n vertices, Lieb’s square ice constant [66] is

lim
n→∞

EO(Ln)
1/n =

8
√
3

9 ≈ 1.540.

Therefore, eo(Ln) = log

(
8
√
3

9

)
≈ 0.431. Pauling’s estimate gives

Pauling(Ln) = log 1.5 ≈ 0.405.

From [36], we know that
1
n log ST(Ln) =

4
π

∑
i⩾1

sin(iπ/2)
i2 ≈ 1.166.

Then, our estimate (4.2.4) gives

êo(G) = 2 log 2− 2
π

∑
i⩾1

sin(iπ/2)
i2 − 1

2 log
π
2 − 1

8 ≈ 0.453.
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4.2.3 Triangular lattice Tn and Baxter’s constant

For a triangular lattice Tn on n vertices, Baxter’s constant [7] is

lim
n→∞

EO(Tn)
1/n =

3
√
3

2 ≈ 2.598.

Therefore, eo(Tn) = log

(
3
√
3

2

)
≈ 0.955. Pauling’s estimate gives

Pauling(Tn) = log 2.5 ≈ 0.916.

For triangular lattice, from [36], we know that

1
n log ST(Tn) =

4
π

∑
i⩾1

sin(iπ/3)
i2 ≈ 1.615.

Then, our estimate (4.2.4) gives

êo(Tn) = 3 log 2− 2
π

∑
i⩾1

sin(iπ/3)
i2 − 1

2 log
π
2 − 1

12 ≈ 0.963.

4.2.4 Cubic lattice Cn

The asymptotic value of eo(Cn) is unknown. The upper and lower bounds by (4.2.3) are

0.916 ≈ Pauling(Cn) ⩽ eo(Cn) ⩽
1
2 log 20 ≈ 1.498.

For cubic lattice Cn, from [85] we know that

1
n log ST(Cn) ≈ 1.673.

Therefore, we get by our estimate (4.2.4),

êo(Cn) ≈ 3 log 2− 1
21.673−

1
2 log

π
2 − 1

12 ≈ 0.934.

4.2.5 Hypercube Qd

For a d-dimensional hypercube Qd on n = 2d vertices, the asymptotics value of eo(Qd) is also unknown.
The exact values for d up to 6 are given in OEIS (the On-Line Encyclopedia of Integer Sequences) as
the sequence A358177. Using formula (4.1.1), we also estimated EO(Q8). Taking the logarithm and
dividing it by the number of vertices gives

eo(Q4) ≈ 0.500, eo(Q6) ≈ 0.955, eo(Q8) ≈ 1.489.

69



The upper and lower bounds by (4.2.3) are

0.405 ≈ Pauling(Q4) ⩽eo(Q4) ⩽
1
2 log 6 ≈ 0.896.

0.916 ≈ Pauling(Q6) ⩽eo(Q6) ⩽
1
2 log 20 ≈ 1.498.

1.476 ≈ Pauling(Q8) ⩽eo(Q8) ⩽
1
2 log 70 ≈ 2.124.

For hypercube Qd, from [9], we know that

ST(Qd) =
1
n

d∏
i=1

(2i)(
d
i).

Then, our estimate (4.2.4) gives

êo(Q4) ≈ 0.501, êo(Q6) ≈ 0.960, êo(Q8) ≈ 1.495.

Such precision is very surprising given that both degree and the number of vertices are relatively small.

4.2.6 Large degrees

Alon [2] proved that the number of spanning trees in any connected d-regular graph with n vertices lies
in [((1− ε(d))d)n, dn] for some function ε(d) that goes to 0 as d→ ∞. Then, using Stirling’s formula, it
is straightforward to check that our estimate êo(G) is asymptotically equivalent to Pauling’s estimate.
We believe that it actually gives the correct asymptotics of eo(G).

Conjecture 4.2.1. If {Gi} is a sequence of connected regular graphs with degree going to infinity, then

eo(Gi) ∼ Pauling(Gi).

as i→ ∞.

As a consequence of Theorem 4.1.1, Corollary 4.1.2, and [2, Theorem 1.1], we get the following
result.

Corollary 4.2.2. Conjecture 4.2.1 is true if d≫ log8 n and h(G) ⩾ γd for some fixed γ > 0.

This is by using Theorem 4.1.1 and Corollary 4.1.2 to obtain, from (4.1.3), that

eo(Gi) =
1
n log

(
2nd/2√
ST(G)

(
2
π

)(n−1)/2
)

− 1
2d +O

(
1
d2 log

2n
d

)
∼ d

2 log 2 +
1
2 log

(
2
π

)
− 1

2 log d−
1
2d +O

(
1
d2 log

2n
d

)
,

and noting that

Pauling(Gi) = log

(
d

d/2

)
− d

2 log 2 ∼ log


√
2πd

(
d
e

)d

πd

(
d
2e

)d

− d
2 log 2 =

d
2 log 2 +

1
2 log

(
2
π

)
− 1

2 log d.
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Our Theorem 4.1.1 also gives that

logP (X = 0) = −1
2ST(G) +

n−1
2 log

(
2
π

)
+

K∑
r=1

1
r! κr (fM (X)) +O

(
n−c

)
. (4.2.5)

Its connection to the cluster expansion series (2.2.1) is unclear. Recall that the dependency graph for
the indicators {Xv}v∈V (G) of unbalanced vertices can be chosen to be G itself. Therefore, our asymptotic
expansion (4.2.5) is for moderately dense dependency graph with some expansion properties. This result
is quite rare as the common applications of dependency graphs is usually for sparse graphs!

4.3 Cumulants and expansion of Laplace-type integrals

In this section, we develop tools for estimating integrals that typically appear in applications of the
Laplace method. Isaev and McKay [46] proved that, for random vector X with the normal density
π−n/2|A|1/2e−xTAx, ∫

Ω
e−xTAx+f(x)dx ≈ πn/2|A|−1/2 exp

(
E [f(X)] +

1
2 Var f(X)

)
,

under some smoothness conditions on f that limits variations with respect to changing one or two
coordinates, and the existence of a proper rotation diagonalising matrix A with bounded infinity norm.
To achieve better accuracy, we extend this result to allow more terms using a cumulant expansion; see
Theorem 4.3.6.

4.3.1 Cumulants and cumulant series

Let [n] denote the integer set {1, 2, . . . , n} for every integer n ⩾ 1. The combinatorial definition of joint
cumulant of random variables {Xi}i∈[n], equivalent to (4.1.6), is

κ (X1, . . . , Xn) =
∑
τ∈Pn

(−1)|τ |−1(|τ | − 1)!
∏
B∈τ

E

[∏
i∈B

Xi

]
, (4.3.1)

where Ps denotes the set of unordered partitions τ of [s] (with non-empty blocks) and |τ | denotes the
number of blocks in the partition τ . Recall the useful multi-linearity property of cumulants, that is, for
r ⩾ 1,

κ

 ∑
i1∈[n1]

Xi1 ,
∑

i2∈[n2]

Yi2 , . . . ,
∑

ir∈[nr]

Zir

 =
∑

i1∈[n1]

∑
i2∈[n2]

· · ·
∑

ir∈[nr]

κ (Xi1 , Yi2 , . . . , Zir) ,

and in particular,

κr

∑
i∈[n]

Xi

 =
∑

(i1,...ir)∈[n]r
κ(Xi1 , . . . , Xir).

The joint cumulant can be regarded as a measure of the mutual dependences of the variables.
An important property of the joint cumulant κ(X1, . . . , Xn) is that if [n] can be partitioned into two
subsets S1 and S2 such that the variables {Xi}i∈S1 are independent of the variables {Xj}j∈S2 , then
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κ(X1, . . . , Xn) = 0 (see, for example, [93]).
Next, we introduce a lemma that is useful to bound cumulants.

Lemma 4.3.1. ∑
τ∈Ps

(|τ | − 1)! ⩽
(3
2

)s
(s−1)!. (4.3.2)

Proof. Recall that Ps is the set of unordered partitions of [s], therefore,

∑
τ∈Ps

(|τ | − 1)! =
∑
τ∈Ps

|τ |!
|τ | =

∑
τ ′

|τ ′|−1,

where the last sum is over ordered partitions of [s]. We can bound the sum over τ ′ as follows. Take any
permutation of [s] and cut it at some number of distinct places (e.g. 3|2, 4|1, 5 for s = 5). The number
of ways to place k cuts is

(
s−1
k

)
and each ordered partition with k + 1 parts is made in

b1! · · · bk+1! ⩾ 2b1−1 · · · 2bk+1−1 = 2s−k−1

ways by this procedure. Allowing 1
k+1 for the weight |τ ′|−1, we get

∑
τ∈Ps

(|τ | − 1)! ⩽ s!

s−1∑
k=0

2k−s+1

k+1

(
s− 1

k

)
= s!

3s−1
s 2s ⩽

(3
2

)s
(s−1)!.

This completes the proof.

4.3.2 Cumulant expansion for Laplace transform

Let X = (X1, . . . , Xn) be a random vector with independent components taking values in S := S1 ×
· · · × Sn. For y ∈ S, let Rj

y denote the operator that replaces the j-th coordinate with yj ∈ Sj :

Rj
y[f ](x) = f(x1, . . . , xj−1, yj , xj+1, . . . xn).

For V = {v1, . . . , vk} ⊂ [n], define

RV
y = Rv1

y · · ·Rvk
y and ∂Vy := ∂v1y · · · ∂vky , (4.3.3)

where ∂jy := I −Rj
y and I is the identity operator. Let

∆V (f) = ∆V (f,S) := sup
x,y∈S

∣∣∂Vy [f ](x)
∣∣ . (4.3.4)

We also set ∆∅(f) := supx∈S |f(x)| .

Theorem 4.3.2. Let m > 0 be an integer and α ⩾ 0. Let X = (X1, . . . , Xn) be a random vector with
independent components taking values in S. Suppose f is a bounded function on S such that

max
v∈[m]
j∈[n]

∑
V ∈([n]

v ):j∈V

∆V (f) ⩽ α. (4.3.5)
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Then, we have

E
[
ef(X)

]
= (1 + δ)n exp

(
m∑
s=1

κs(f(X))
s!

)
,

where δ > −1 satisfies |δ| ⩽ e(200α)
m+1 − 1. Furthermore, for any s ∈ [m],

|κs(f(X))| ⩽ 0.011n
(s−1)!
s (100α)s.

We will prove Theorem 4.3.2 in Section 4.6. The case m = 2 is similar to the second-order approxi-
mation of the Laplace transform considered by Catoni in [15]. A significant improvement in comparison
with [15, Theorem 1.1.] (apart from having more cumulants) is that we only require averages of ∆V (f)

to be small while some of them can be quite big.

4.3.3 Cumulants of truncated Gaussians

We introduce a lemma giving errors in approximating cumulants of truncated Gaussian by their values
for the unrestricted Gaussian.

Lemma 4.3.3. Let A be an n × n symmetric positive-definite real matrix. Let f : Rn → R be a
measurable function satisfying

|f(x)| ⩽ exp
(
b
nx

TAx
)

(4.3.6)

for all x ∈ Rn and some b ⩾ 0. Let X : R → R be a random vector with density

π−n/2 |A|1/2 e−xTAx.

Suppose Ω is a measurable subset of Rn and define p = P(X /∈ Ω). Then, if p ⩽ 3
4 and for fixed s, we

have n ⩾ sb+ s2b2, then

∣∣κs(f(X) | X ∈ Ω
)
− κsf(X)

∣∣ ⩽ 4s!6ses
2b/2+s/4p1−sb/n.

The following simple estimate will be useful in the proof of Lemma 4.3.3.

Lemma 4.3.4. If we have that a1, a2, . . . , an, b1, b2, . . . , bn ∈ [−1, 1], then∣∣∣∣∣∣
∏
i∈[n]

ai −
∏
i∈[n]

bi

∣∣∣∣∣∣ ⩽
∑
i∈[n]

∣∣ai − bi
∣∣. (4.3.7)

Proof. We prove it by induction on n. The base case when n = 1 holds trivially. Suppose (4.3.7) holds
for some n ⩾ 2. Let An and Bn denote

∏
i∈[n] ai and

∏
i∈[n] bi respectively. Then

|An+1 −Bn+1| = |an+1An − bn+1Bn| = |(an+1 − bn+1)An − bn+1(An −Bn)|

⩽ |an+1 − bn+1|+ |An −Bn| ⩽
∑

i∈[n+1]

∣∣ai − bi
∣∣.

This completes the proof.
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Proof of Lemma 4.3.3. We use the following estimate from [46, Lemma 4.1].

∣∣E [f(X) : X ∈ Ω]−E [f(X)]
∣∣ ⩽ 15eb/2p1−b/n, (4.3.8)

which implies our estimate for the case s = 1. Using (4.3.1), we find that

κs(f(X) : X ∈ Ω)− κsf(X)

=
∑
τ∈Ps

(−1)|τ |−1(|π| − 1)!

(∏
B∈τ

E
[
f(X)|B|

]
−
∏
B∈τ

E
[
f(X)|B| : X ∈ Ω

])
. (4.3.9)

For any s, we can bound the terms in (4.3.9) as follows:

|f(x)|B|| ⩽ |f(x)|s ⩽ e
sb
n xTx

.

Therefore, using (4.3.8) (with f(x) replaced by f(X)|B|),∣∣∣E [f(x)|B|
]
−E

[
f(x)|B| | X ∈ Ω

]∣∣∣ ⩽ 15 esb/2p1−sb/n.

Furthermore, we can bound

∣∣∣E [f(X)|B|
]∣∣∣ ⩽ E

[∣∣f(X)|B|∣∣] ⩽ ∫
Rn e

−(1− sb
n )xTAxdx∫

Rn e
−xTAxdx

= (1− sb/n)−n/2

and, similarly,

∣∣E [f(X)|B| : X ∈ Ω
]∣∣ ⩽ (1− p)−1(1− sb/n)−n/2 ⩽ 4(1− sb/n)−n/2.

For n ⩾ sb+ s2b2, the function (1− sb/n)−n/2e−sb/2 < e1/4 is increasing in b and nonincreasing in n, so

(1− sb/n)−n/2 < esb/2+1/4. (4.3.10)

Then, since |τ | ⩽ s for any τ ∈ Ps, dividing by 4|τ |(1− sb/n)−|τ |n/2 and applying Lemma 4.3.4, we get
that ∣∣∣∣∣∏

B∈τ
E
[
f(X)|B|

]
−
∏
B∈τ

E
[
f(X)|B| : X ∈ Ω

]∣∣∣∣∣ ⩽ 4|τ |(1− sb/n)−|τ |n/2
∑
B∈τ

15 esb/2p1−sb/n

4(1−sb/n)−n/2

⩽ 15 · 4s−1(1− sb/n)−(s−1)n/2esb/2sp1−sb/n

⩽ 4s+1es
2b/2+s/4sp1−sb/n.

Substituting the above bound into (4.3.9) and using Lemma 4.3.1, we derive that

|κs(f(X) : X ∈ Ω)− κsf(X)| ⩽ 4s+1es
2b/2+s/4sp1−sb/n

∑
τ∈Ps

(|π| − 1)!

⩽
(3
2

)s
(s−1)!4s+1es

2b/2+s/4sp1−sb/n

⩽ 4 s!6ses
2b/2+s/4p1−sb/n,

74



as required.

4.3.4 Cumulant expansion for Laplace-type integrals

Recall that our aim is to estimate integrals of the type∫
Ω
e−xTAx+f(x) dx,

which appear in applications of Laplace’s method. To apply Theorem 4.3.2, we consider g(y) :=

f(T−1x), where T is a linear transformation such that the components of Y = T−1X are independent.
We bound the quantities ∆V (g) required in Theorem 4.3.2 in terms of the mixed derivatives of f using
the following lemma.

For Ω ⊆ Rn and some continuous f : Ω → R, for ℓ ∈ [n], define

∆ℓ(f,Ω) := max
u1∈[n]

∑
u2,...,uℓ∈[n]

sup
x∈Ω

∣∣∣∣ ∂ℓf(x)∏
r∈[ℓ] ∂xur

∣∣∣∣. (4.3.11)

For ρ ⩾ 0, let
Un(ρ) := {x ∈ Rn : ∥x∥∞ ⩽ ρ}.

Lemma 4.3.5. Suppose g : Un(ρ) → R is an infinitely smooth function. Let f : Ω → R be defined by
f(x) := g(T−1x), where Ω = T (Un(ρ)) and T is a real n× n invertible matrix. Then, for all ℓ ∈ [n],

max
j∈[n]

∑
V ∈([n]

ℓ ):j∈V

∆V (g) ⩽
∥T∥ℓ−1

∞ ∥T∥1
(ℓ− 1)!

ρℓ∆ℓ(f,Ω),

where ∆V (g) = ∆V (g, Un(ρ)) is defined according to (4.3.4).

Proof. Applying the mean value theorem, we get that

∆V (g) ⩽ sup
y∈Un(ρ)

∣∣∣∣ ∂ℓg(y)∏
r∈V ∂yr

∣∣∣∣ ρℓ.
Therefore, it suffices to show that

∆̂ℓ(g) ⩽
∥T∥ℓ−1

∞ ∥T∥1
(ℓ− 1)!

∆ℓ(f,Ω),

where

∆̂ℓ(g) := max
j∈[n]

∑
V ∈([n]

ℓ ):j∈V

sup
y∈Un(ρ)

∣∣∣∣ ∂ℓg(y)∏
r∈V ∂yr

∣∣∣∣.
Let T = (tjk). Since x = Ty, by the Chain rule, for any distinct j1, . . . , jℓ ∈ [n], we have that

∂ℓg(y)
∂yj1 ···∂yjℓ

=
∂ℓf(Ty)
∂yj1 ···∂yjℓ

=
∑

u1,...,uℓ∈[n]

tu1j1
· · · tuℓjℓ

∂ℓf(x)
∂xu1···∂xuℓ

. (4.3.12)
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Consequently,

∆̂ℓ(g) ⩽ max
j∈[n]

∑
{j2,...,jℓ}⊆[n]
j /∈{j2,...,jℓ}

∑
u1,...,uℓ∈[n]

|tu1j
tu2j2

· · · tuℓjℓ
| sup
x∈Ω

∣∣∣∣ ∂ℓf(x)
∂xu1···∂xuℓ

∣∣∣∣.
Summing over {j2, . . . , jℓ} yields

∆̂ℓ(g) ⩽
∥T∥ℓ−1

∞
(ℓ− 1)!

max
j∈[n]

∑
u1,...,uℓ∈[n]

|tu1j
| sup
x∈Ω

∣∣∣∣ ∂ℓf(x)
∂xu1···∂xuℓ

∣∣∣∣
⩽

∥T∥ℓ−1
∞

(ℓ−1)! ∆ℓ(f,Ω) max
j∈[n]

∑
u1∈[n]

|tu1j
| ⩽ ∥T∥ℓ−1

∞ ∥T∥1
(ℓ−1)! ∆ℓ(f,Ω).

This completes the proof.

Finally, we are ready to prove the main result of this section.

Theorem 4.3.6. Let c1, c2, c3, ε be non-negative real constants with c1, ε > 0. Let A be an n × n

positive-definite symmetric real matrix and let T be a real matrix such that TTAT = I. Suppose the
following assumptions hold for some m ∈ [n], measurable set Ω ⊆ Rn, measurable function f : Rn → R,
and numbers ρ1, ρ2, α ∈ R.

(i) Un(ρ1) ⊆ T−1(Ω) ⊆ Un(ρ2), where ρ2 ⩾ ρ1 ⩾ 2mc
1/2
2 + c1(log n)

1/2+ε.

(ii) For any ℓ ∈ [m], we have ρℓ2
∥T∥ℓ−1

∞ ∥T∥1
(ℓ−1)! ∆ℓ(f, T (Un(ρ2))) ⩽ α <

1
400 , where ∆ℓ(·) is defined by

(4.3.11).

(iii) n ⩾ m2c22 +mc2 and, for any x ∈ Rn, we have |f(x)| ⩽ nc3ec2
xTAx

n .

Then there is n0 = n0(c1, c2, c3, ε) such that, for any n ⩾ n0, we have

∫
Ω
e−xTAx+f(x) dx = πn/2|A|−1/2 exp

(
m∑
s=1

κs[f(X)]
s! + δ

)
,

where X is a random vector with the normal density π−n/2|A|1/2e−xTAx, and

δ = δ(Ω,A, f) ⩽ 2n(200α)m+1 + e−ρ21/2.

Proof of Theorem 4.3.6. Let y = T−1x. Since T TAT = I, we have |T | = |A|−1/2 and∫
Ω
e−xTAx+f(x) dx = |A|−1/2

∫
T−1(Ω)

e−yTy+f(Ty) dy. (4.3.13)

Let ρ ∈ {ρ1, ρ2}. Let Y have the normal density π−n/2e−yTy and define p := P(Y /∈ Un(ρ)). In view of
the assumption (ii), combining Lemma 4.3.5 and Theorem 4.3.2, we get

log

(
1

(1−p)πn/2

∫
Un(ρ)

e−yTy+f(Ty) dy

)
=

m∑
s=1

1
s!κs

[
f(TY) | Y ∈ Un(ρ)

]
+ δ′,
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where, since α < 1
400 ,

|δ′| = n| log(1 +K)| ⩽ 2n log(1 + |δ|) ⩽ 2n(200α)m+1.

By standard bounds on the tail of the normal distribution, we have p ⩽ ne−ρ2/(1 + ρ). Under our
assumptions, there is n0 = n0(c1, c2, c3, ε) such that for n ⩾ n0, we have

p ⩽ 3
4 , mc2/n ⩽ n−1/2, 1− p ⩾ 1

2e
−ρ2/2,

and

m∑
s=1

1
s!

∣∣∣κs[f(TY) | Y ∈ Un(ρ)
]
− κs[F (Y)]

∣∣∣ ⩽ 4

m∑
s=1

6ses
2c2/2+s/4p1−sc2/n

⩽ 4m 6mem
2c2/2+m/4

(
ne−ρ2

1+ρ

)1−mc2/n

⩽ e−ρ2/2.

Then, applying Lemma 4.3.3 to the function n−c3f(Ty), we obtain that

∫
Un(ρ)

e−yTy+f(Ty) dy = πn/2 exp

(
m∑
s=1

κs(F (Y))
s! + δρ

)
, (4.3.14)

where |δρ| ⩽ 2n(200α)m+1 + e−ρ2/2. By assumption (i), we get that∫
Un(ρ1)

ef(Ty)−yTy dy ⩽
∫
T−1(Ω)

ef(Ty)−yTy dy ⩽
∫
Un(ρ2)

ef(Ty)−yTy dy.

Using (4.3.13) and applying (4.3.14) twice with ρ = ρ1 and ρ = ρ2, we complete the proof.

4.3.5 Cumulants of Gaussian random variables

If S is a set of even size, a pairing of S is a partition of S into |S|/2 disjoint pairs. We will write the
pairs as (i1, i2), here each pair is unordered. Recall the following result of Isserlis [50].

Lemma 4.3.7. Let A be a positive-definite real symmetric matrix of order n and let X = (X1, . . . , Xn)

be a random variable with the Gaussian density π−n/2|A|1/2e−xTAx. Let Σ = (σjk) = (2A)−1 be the
corresponding covariance matrix. Consider a product Z = Xj1Xj2 · · ·Xjk , where the subscripts do not
need to be distinct. If k is odd, then E [Z] = 0. If k is even, then

E [Z] =
∑

{(i1,i2),(i3,i4),...,(ik−1,ik)}

σji1ji2 · · ·σjik−1
jik
,

where the sum is over all pairings of {1, . . . , k}. The number of terms in the sum is (k − 1)!! =

(k − 1)(k − 3) · · · 3 · 1.

In particular, we have

E
[
X2

1

]
= σ11, E

[
X4

1

]
= 3σ211, E

[
X2

1X
2
2

]
= σ11σ22 + 2σ212, E

[
X6

1

]
= 15σ311, E

[
X8

1

]
= 105σ411.

In quantum field theory, pairings are known as Feynman graphs, and Lemma 4.3.7 is known as
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Wick’s formula after a later discoverer.

Theorem 4.3.8. Assume the conditions of Lemma 4.3.7 for an even k and let {P1, . . . , Pr} be a partition
of set [k]. If π is a pairing of [k], define the graph Hπ as follows: V (Hπ) = [r], and for ℓ ̸= m,
ℓm ∈ E(Hπ) iff π has a pair ij such that i ∈ Pℓ and j ∈ Pm. Let Π = Π(P1, . . . , Pm) be the set of all
pairings π of [k] such that Hπ is connected. Then

κ

 ∏
i∈P1

Zvi , . . . ,
∏
i∈Pr

Zvi

 =
∑
π∈Π

∏
ij∈π

σvivj ,

where v1, . . . , vk ∈ [N ] may not necessarily be distinct.

Proof. For B ⊆ {1, . . . , r}, define P (B) =
⋃

j∈B Pj . So from the definition of joint cumulant (4.3.1), we
have that

κ

 ∏
i∈P1

Zvi , . . . ,
∏
i∈Pr

Zvi

 =
∑

B1∪···∪Bt={1,...,r}

(−1)t−1(t− 1)!

t∏
u=1

E

 ∏
i∈P (Bu)

Zvi

 , (4.3.15)

where the sum is over all partitions of {1, . . . , r}. By Theorem 4.3.7, we have

t∏
u=1

E

 ∏
i∈P (Bu)

Zvi

 =
∑

π∈ΠB

∏
ij∈π

σvi,vj ,

where ΠB is the set of pairings such that no pair spans two of the sets P (Bu).
Now consider any particular product

∏
ij∈π σvivj , corresponding to pairing π. The total weight with

which this occurs in (4.3.15) is
n∑

k=1

(−1)k−1(k − 1)!

{
m

k

}
, (4.3.16)

where m is the number of components of Hπ and
{
m
k

}
denotes the Stirling number of the second

kind (number of partitions of an m-set into k parts). A standard identity for the Stirling numbers is
that (4.3.16) equals 1 for m = 1 and 0 for m ⩾ 2, which completes the proof.

Corollary 4.3.9. Assume the conditions of Lemma 4.3.7 and that the covariance matrix Σ = (σuv)u,v∈[N ]

satisfies |σu,v| ⩽ 1 for all u, v ∈ [N ]. Then, for any k1, . . . , kr ∈ N with even sum,∑
v1,...,vr∈[N ]

|κ(Zk1
v1 , . . . , Z

kr
vr )| ⩽ |Π| · ∥Σ∥r−1

∞ N,

where Π = Π(P1, . . . , Pr) is defined as in Theorem 4.3.8 for some fixed partition of [k] with |Pi| = ki

for all i ∈ [r] and k = k1 + · · ·+ kr. In particular, |Π| ⩽ (k − 1)!! = (k − 1)(k − 3) · · · 3 · 1.

Proof. Define τ : [k] → [r] as follows: for any i ∈ [k] if i ∈ Pj then τ(i) := j. Applying Theorem 4.3.8,
we find that ∑

v1,...,vr∈[N ]

|κ(Zk1
v1 , . . . , Z

kr
vr )| ⩽

∑
π∈Π

∑
v1,...,vr∈[N ]

∏
ij∈π

|σvτ(i),vτ(j) |.
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It is sufficient to show that, for any π ∈ Π,∑
v1,...,vr∈[N ]

∏
ij∈π

|σvτ(i),vτ(j) | ⩽ ∥Σ∥r−1
∞ N,

We prove it by induction on r. If r = 1 then, by assumptions,∑
v1∈[N ]

∏
ij∈π

σv1,v1 ⩽ N.

For the induction step, assume r ⩾ 2 and observe that since Hπ is connected there is a vertex in V (Hπ)

such that the graph remains connected if we remove it from Hπ. Without loss of generality, we can
assume that this vertex is r adjacent to vertex x. Let π′ be the pairing obtained from π by removing all
pairs containing a point from the part Pr corresponding to vertex r of Hπ. Estimating other covariances
by 1, we find that ∑

vr∈[N ]

∏
ij∈π\π′

|σvτ(i),vτ(j) | ⩽
∑

vr∈[N ]

|σvx,vr | ⩽ ∥Σ∥∞.

Using the induction hypothesis, we get that∑
v1,...,vr∈[N ]

∏
ij∈π

|σvτ(i),vτ(j) | ⩽
∑

v1,...,vr−1∈[N ]

∥Σ∥∞
∏
ij∈π′

|σvτ(i),vτ(j) | ⩽ ∥Σ∥r−1
∞ N,

This proves the induction step and completes the proof the the corollary.

4.3.6 Bounds on cumulants in Theorem 4.1.1

In the next theorem, we prove bounds on the cumulants of fK(XG) in terms of the infinity norm of a
non-singular Gaussian random variable X that projects into XG. Let Jn denote the matrix with every
entry one.

Lemma 4.3.10. Let L = L(G) be the Laplacian matrix of a connected graph G. Let Σw be defined by
Σ−1

w = L+ wJn for some w > 0. If X is a Gaussian random vector with density
(2π)−n/2|Σw|−1/2 exp

(
−1
2x

TΣ−1
w x

)
, then g(XG)

d
= g(X) for any function g such that g(x+θ1) = g(x)

for all x ∈ R.

Proof. Since G is connected, we get that L + wJn is positive definite matrix for all w > 0. Note that
I − Jn/n is the projector operator to the space

V = {x ∈ Rn : x1 + · · ·+ xn = 0}.

Applying this linear transformation to the Gaussian vector X, we find that (I − Jn/n)X has the same
distribution as XG. Therefore, g(XG)

d
= g((I − Jn/n)X) = g(X) as claimed.

Theorem 4.3.11. Let G be a connected graph with maximal degree d, minimal degree δ. Assume that,
for some w ∈ (0, 1],

Σ−1
w = L+ wJn, ∥Σw∥∞ ⩽ 1/2,

where L = L(G) is the Laplacian matrix of G. Then the following bounds hold.
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(a) For K ⩽ δ/2, we have

E [fK(XG)] = −
(
1
4 +O(δ−1)

) ∑
jk∈G

(
1
dj

+
1
dj

)2
+O

(
n
δ ∥Σw∥∞ +

nd
δ2 ∥Σw∥2∞

)
.

where d1, . . . , dn are the degrees of G.

(b) For r,K such that r(K + 2) ⩽ δ/4, we have

|κr(fK(XG))| ⩽
n
2δ

(
5d
δ

)r
∥Σw∥r−1

∞ (4r − 1)!! .

(c) For r,K,K ′ such that K ′ > K and (r + 1)(K ′ + 2) ⩽ δ/4, we have

|κr(fK(XG))− κr(fK′(XG))| ⩽
rn
2δ

(
5d
δ

)r (2
δ

)K−1
∥Σw∥r−1

∞ (2K + 4r − 3)!! .

Proof. Recalling the definition of fK and applying Lemma 4.3.10, we get that

fK(XG) ≡ fk(X),

where X is a Gaussian random vector with density (2π)−n/2|Σ|−1/2 exp
(
−1

2x
TΣ−1

w x
)
. Thus, it is

sufficient to prove the bounds for E [fK(X)] and κr[fk(X)].
First, we estimate the entries of the matrix Σw = (σjk). Define the diagonal matrix D by Djj = dj ,

where dj is the degree of vertex j in G. Observing also that all entries of Σ−1
w −D = L+ wJ −D are

in [−1, 1], we get that

∥Σw −D−1∥max = ∥Σw(D −Σ−1
w )D−1∥max

⩽ ∥Σw∥∞∥(D −Σ−1
w )D−1∥max ⩽ ∥Σw∥∞max

j∈[n]

1
dj

⩽ 1
δ ∥Σw∥∞,

where ∥ · ∥max denotes the maximum absolute value of entries. This gives∣∣∣σjj − 1
dj

∣∣∣ ⩽ 1
δ ∥Σw∥∞, |σjk| ⩽

1
δ ∥Σw∥∞, (4.3.17)

Let Xjk := Xj −Xk for distinct j, k ∈ [n]. Let

σjk,st = Cov(Xjk, Xst) = σjs − σjt − σks + σkt. (4.3.18)

Using 4.3.17, for all distinct j, k ∈ [n],

σjk,jk =
1
dj

+
1
dk

± 4
δ ∥Σw∥∞.

Then, by the assumption that ∥Σw∥∞ ⩽ 1/2, we get

|σjk,st| ⩽


4
δ , if |{j, k} ∩ {s, t}| ⩾ 1,

4
δ ∥Σw∥∞, if |{j, k} ∩ {s, t}| = 0.

(4.3.19)
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From Lemma 4.3.7, we know that
E
[
X2ℓ

jk

]
= (2ℓ− 1)!!σℓjk.

Recalling the definition of fK(x) from (4.1.10) and using (4.1.9), we obtain that

E [fK(X)] =
K∑
ℓ=2

c2ℓ
∑
jk∈G

E
[
X2ℓ

jk

]
= − 1

12

∑
jk∈G

E
[
X4

jk

]
+

K∑
ℓ=3

c2ℓ
∑
jk∈G

E
[
X2ℓ

jk

]

= −1
4

∑
jk∈G

(
1
dj

+
1
dj

± 4
δ ∥Σw∥∞

)2(
1 +O(1)

K∑
l=3

(
2
π

)2ℓ
(2ℓ− 1)!!

(
4
δ

)ℓ−2
)
.

Since x(2ℓ−x) ⩽ ℓ2, we can bound (2ℓ−1)!! ⩽ ℓℓ. Recalling the assumption that K ⩽ δ/2, we estimate

K∑
ℓ=3

(
2
π

)2ℓ
(2ℓ− 1)!!

(
4
δ

)ℓ−2
= O(δ−1).

We also have∑
jk∈G

(
1
dj

+
1
dj

± 4
δ ∥Σw∥∞

)2
=
∑
jk∈G

(
1
dj

+
1
dj

)2
± 16n

δ ∥Σw∥∞ ± 16nd
δ2 ∥Σw∥2∞.

This proves (a).
We proceed to part (b). Using (4.3.18), for any distinct j, k ∈ [n], we have that∑

st∈G

∣∣σjk,st∣∣ ⩽ 2
∑
st∈G

∣∣σjs∣∣+ 2
∑
st∈G

∣∣σks∣∣ ⩽ 4d∥Σw∥∞. (4.3.20)

By linearity,

κr (fK(X)) = κr

(
K∑
ℓ=2

c2ℓ
∑
jk∈G

(Xj −Xk)
2ℓ

)

=
K∑

ℓ1=2

· · ·
K∑

ℓr=2

∑
e1,...,er∈G

( ∏
s∈[r]

c2ℓs

)
κ
(
X2ℓ1

e1 , . . . , X
2ℓr
er

)
.

(4.3.21)

Applying Corollary 4.3.9 for (Zv)v∈[N ] :=
δ1/2

2 (Xjk)jk∈G and N = nd/2. From (4.3.19), we get that the
covariances of (Zv)v∈[N ] are bounded by 1 as required. Using (4.3.20) to bound the infinity norm of the
covariance matrix, we get that

∑
e1,...,er∈G

|κ
(
X2ℓ1

e1 , . . . , X
2ℓr
er

)
| ⩽ nd

2

(
4
δ

)ℓ
(δd∥Σw∥∞)r−1(2ℓ− 1)!!, (4.3.22)

where ℓ = ℓ1 + · · ·+ ℓr. Since ℓi ∈ {2, . . . ,K}, we can bound

(2ℓ− 1)!! ⩽ (2r + ℓ)ℓ−2r(4r − 1)!! ⩽ ((K + 2)r)ℓ−2r(4r − 1)!!
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Substituting the above bounds and also (4.1.9) into (4.3.21) and recalling that r(K + 2) ⩽ δ/4, we get

|κr(fK(X))| ⩽ nd
2 (δd∥Σw∥∞)r−1(4r − 1)!!

K∑
ℓ1=2

· · ·
K∑

ℓr=2

(
2
π

)2ℓ (4
δ

)ℓ
((K + 2)r)ℓ−2r

⩽ nd
2 (δd∥Σw∥∞)r−1

(
16
π2δ

)2r
(4r − 1)!!

(
K−2∑
i=0

(
16r(K+2)

π2δ

)i
)r

⩽ n
2δ

(
d
δ

)r
∥Σw∥r−1

∞ (4r − 1)!!

(
256
π4

∞∑
i=0

(
4
π2

)i)r

.

Computing 256
π4

∑∞
i=0

(
4
π2

)i
≈ 4.42 < 5, part (b) follows.

For part (c), using (4.1.9), (4.3.21) and (4.3.22), we estimate∣∣∣κr (fK(X))− κr (fK′(X))
∣∣∣

⩽ r
K′∑

ℓ1=K+1

K′∑
ℓ2=2

· · ·
K′∑

ℓr=2

∑
e1,...,er∈G

( ∏
s∈[r]

c2ℓs

)∣∣∣κ(X2ℓ1
e1 , . . . , X

2ℓr
er

) ∣∣∣
⩽ r

K′∑
ℓ1=K+1

K′∑
ℓ2=2

· · ·
K′∑

ℓr=2

nd
2

(
16
δπ2

)ℓ
(δd∥Σw∥∞)r−1(2ℓ− 1)!!,

(4.3.23)

where ℓ = ℓ1 + · · ·+ ℓr as before. Similarly, we get

(2ℓ− 1)!! ⩽ (ℓ+K + 2r − 1)ℓ−K−2r+1(2K + 4r − 3)!! ⩽ ((r + 1)(K ′ + 2))ℓ−K−2r+1(2K + 4r − 3)!!.

Then, using (r + 1)(K ′ + 2) ⩽ δ/4, we can bound

K′∑
ℓ1=K+1

K′∑
ℓ2=2

· · ·
K′∑

ℓr=2

(
16
δπ2

)ℓ
(2ℓ− 1)!!

⩽
(

16
δπ2

)K+2r−1
(2K + 4r − 3)!!

(
K′∑
i=0

(
16(r+1)(K ′+2)

δπ2

)i
)r

⩽ 5r
(

16
π2δ

)K−1
δ−2r(2K + 4r − 3)!!

Substituting this bound into (4.3.23) completes the proof.

4.4 Estimating the integral for Eulerian orientations

Throughout this section, we work under the assumptions of Theorem 4.1.1. For θ ∈ Rn, define

F (θ) :=
∏
jk∈G

cos(θj − θk). (4.4.1)

Using generating functions, see, for example, [45, Section 3], one can show that

EO(G) = 2|E(G)|π−n J ′, where J ′ :=

∫
(R/π)n

F (θ) dθ. (4.4.2)
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The integral J ′ in (4.4.2) is dominated by the region Ω0 defined below, where all θj are approximately
the same, which makes it possible to estimate the integral asymptotically.

Given x ∈ R, an interval of R/π of length ρ ⩾ 0 is a set of the form

I(x, ρ) := {θ ∈ R/π : |x− θ|π ⩽ 1
2ρ}, where |x|π := min{|x− kπ| : k ∈ Z}.

By the assumption d≫ log8 n, we choose some ζ > 0 such that

(
log n
d1/8

+
1

log log n

)1/2
≪ 1/ζ ≪ 1, (4.4.3)

and choose
ρ0 := ζ2d−1/2 log3/2 n (4.4.4)

to satisfy a finite number of inequalities in the proof.
Define

J0 :=

∫
Ω0

F (θ) dθ, (4.4.5)

where Ω0 is the region consists of those θ ∈ (R/π)n such that all components θj can be covered by an
interval of R/π of length at most ρ0:

Ω0 :=
{
θ ∈ (R/π)n : there exists x ∈ R/π such that θ ∈ I(x, ρ0)

n
}
. (4.4.6)

The proof of Theorem 4.1.1 consists of two parts. First, we estimate J0 using Theorem 4.3.6 and
some preliminary lemmas given in Section 4.4.1. Then, we show that the integral over the region
(R/π)n \Ω0 is negligible in comparison with J0.

4.4.1 Preliminaries

Here we state two lemmas from [46, 45] that will be useful in the proof of Theorem 4.3.6. If T : Rn → Rn

is a linear operator, let kerT = {x ∈ Rn : Tx = 0}.
The first lemma helps to deal with integrals over a subspace of Rn.

Lemma 4.4.1 ([46, Lemma 4.6]). Let Q,W : Rn → Rn be linear operators such that kerQ ∩ kerW =

{0} and span(kerQ, kerW ) = Rn. Let n⊥ denote the dimension of kerQ. Suppose Ω ⊆ Rn and
F : Ω ∩Q(Rn) → C. For any η > 0, define

Ωη =
{
x ∈ Rn : Qx ∈ Ω and Wx ∈ Un(η)

}
.

Then, if the integrals exist,∫
Ω∩Q(Rn)

F (y) dy = (1− δ)−1 π−n⊥/2
∣∣QTQ+WTW

∣∣1/2 ∫
Ωη

F (Qx) e−xTWTWx dx, (4.4.7)

where
0 ⩽ δ < min(1, ne−η2/κ2

), κ = sup
Wx ̸=0

∥Wx∥∞
∥Wx∥2 ⩽ 1.
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Moreover, if Un(η1) ⊆ Ω ⊆ Un(η2) for some η2 ⩾ η1 > 0 then

Un

(
min

(
η1

∥Q∥∞ ,
η

∥W∥∞

))
⊆ Ωη ⊆ Un

(
∥P∥∞ η2 + ∥R∥∞ η

)
for any linear operators P,R : Rn → Rn such that PQ+RW is equal to the identity operator on Rn.

Let

A :=
d
nJn +

1
2L, (4.4.8)

where L = L(G) is the Laplacian matrix of G defined by (4.1.7), and recall that Jn denotes the matrix
with every entry one. The next lemma will be useful for the norm bounds required in the application
of Theorem 4.3.6.

Lemma 4.4.2 ([45, Lemma 12]). Under the assumptions of Theorem 4.1.1, the following estimates
hold.

(a) ∥A−1∥∞ = O
(
d−1 log 2n

∆

)
.

(b) If A−1 = (ajk), then ajj = O(d−1) and ajk = O
(
d−2 log 2n

∆

)
uniformly for 1 ⩽ j ̸= k ⩽ n.

(c) There exists a symmetric positive-definite matrix T = A−1/2 such that TTAT = I. Moreover,
∥T∥∞ = O(d−1/2 log1/2n) and ∥T−1∥∞ = O(d1/2).

The above lemma is derived under the assumption in [45], its proof works under our slightly stronger
assumption in Theorem 4.1.1.

4.4.2 The integral inside Ω0

In this section, we obtain the estimates of J0 in Lemma 4.4.3 and Lemma 4.4.7. By the definition of Ω0

in (4.4.6), we have that

{θ ∈ (R/π)n : max
j∈[n]

|θj − θn|π ⩽ ρ0} ⊆ Ω0 ⊆ {θ ∈ (R/π)n : max
j∈[n]

|θj − θn|π ⩽ 2ρ0}.

Observe from the definition of F (θ) (4.4.1) that, for any θ ∈ Rn,

F (θ) = F (θ − θn1), (4.4.9)

where 1 := (1, . . . , 1)T ∈ Rn. Therefore,

J0 = π

∫
Ω0∩L

F (θ′) dθ′, (4.4.10)

where L := {θ′ ∈ Rn : θ′n = 0} and

Un−1(ρ0) ⊆ (Ω0 ∩ L) ⊆ Un−1(2ρ0).

Next, we lift the integral back to the full dimension using Lemma 4.4.1. Let M be the matrix with
one in the last column and zero elsewhere. Define

P = I − 1
nJ, Q = I −M, R = d−1/2I, and W = d1/2n−1J,
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where J denotes the matrix with every entry one. One can easily check that PQ+ RW = I, and also
that kerQ ∩ kerW = {0}, kerQ has dimension 1 and ( kerQ, kerW ) = Rn. From [45, Section 3.1], we
know that

|QTQ+WTW | = nd, ∥P∥∞ ⩽ 2 ∥Q∥∞ = 2, ∥R∥∞ = d−1/2, ∥W∥∞ = d1/2.

Then applying Lemma 4.4.1 with κ = 1, η1 = ρ0, η2 = 2ρ0, we get, from (4.4.7), that

J0 =
(
1 + e−ω(logn)

)
π1/2(dn)1/2

∫
Ω
F̂ (θ) dθ, (4.4.11)

where Ω is some region such that

Un (ρ0/2) ⊆ Ω ⊆ Un(5ρ0) (4.4.12)

and

F̂ (θ) := exp

− d
n

(∑
i∈[n]

θi

)2
+
∑
jk∈G

log cos(θj − θk)

 .

Recall from the assumptions in Theorem 4.1.1 that

K =
⌈

(c+1) log n
log d−4 log log n

⌉
, M =

⌈
2(c+1) log n

log d−8 log log n

⌉
.

In view of the definition of fK in (4.1.10), and the definition of matrix A in (4.4.8), using Taylor’s series,
we get that

log F̂ (θ) = − d
n

(∑
i∈[n]

θi

)2
− 1

2

∑
jk∈G

(θj − θk)
2 +

∑
ℓ⩾2

c2ℓ
∑
jk∈G

(θj − θk)
2ℓ

= −θTAθ + fK(θ) +O(n−c).

(4.4.13)

where for all θ ∈ Ω, noting the bound on c2ℓ in (4.1.9), the choice of K, and the condition on ϵ in
(4.4.3), we have

∑
ℓ>K

c2ℓ
∑
jk∈G

(θj − θk)
2ℓ =

∑
jk∈G

O
(
ρ
2(K+1)
0

)
= O

(
nd
(
ζ2d−1/2 log3/2 n

)2K+2
)

= O(n−c).

Now we are ready to derive the main estimate of this section.

Lemma 4.4.3. Under the assumptions of Theorem 4.1.1, we have

J0 = π(n+1)/2d1/2n1/2|A|−1/2 exp

(
M∑
s=1

1
s! κs (fK(X)) +O

(
n−c

))
, (4.4.14)

where X is a random vector with the normal density π−n/2|A|1/2e−xTAx.

Proof. The proof is by combining (4.4.13) and Theorem 4.3.6. First, we verify its assumptions (i)–(iii).
By Lemma 4.4.2(c), there is a symmetric positive definite matrix T such that T TAT = I and

∥T∥∞ = O(d−1/2 log1/2 n), ∥T−1∥∞ = O(d1/2). (4.4.15)
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Recall from (4.4.4) that ρ0 = Θ(ζ2d−1/2 log3/2 n). Then, combining (4.4.12) and (4.4.15), we get

Un(ρ̂1) ⊆ T−1(Ω) ⊆ Un(ρ̂2),

where
ρ̂1 = Θ(ζ2 log n) and ρ̂2 = Θ(ζ2 log3/2 n).

This is because for θ ∈ Un(O (ρ0)), we have that

∥T−1θ∥∞ ⩽ ∥T−1∥∞∥θ∥∞ = O
(
ζ2 log3/2 n

)
,

and

∥T∥−1
∞ ∥θ∥∞ = O

(
ζ2d−1/2 log3/2 n

d−1/2 log1/2n

)
= O

(
ζ2 log n

)
.

Since M = o(log n), assumption (i) of Theorem 4.3.6 holds.
For assumption (ii), we need to estimate ∆ℓ(fM , T (Un(ρ̂2))) for ℓ ∈ [M ]. Using (4.4.15), we get

that, for any θ ∈ T (Un(ρ̂2)),

∥θ∥∞ = O
(
ρ̂2d

−1/2 log1/2 n
)
= O

(
ζ2d−1/2 log2 n

)
.

Then, for any integer i ∈ [M ],

∂ifK(θ)
∂iθj

=

K∑
ℓ=2

(2ℓ)ic2ℓ
∑

k:jk∈G
(θj − θk)

(2ℓ−i)+ = O
(
d∥θ∥(4−i)+

∞

)
,

where (·)i denotes the falling factorial and (x)+ denotes max{x, 0}. Similarly, for jk ∈ G and p, q ∈ [K],

∂p+qfK(θ)
∂pθj∂qθk

=

K∑
ℓ=2

(2ℓ)p+qc2ℓ(θj − θk)
(2ℓ−p−q)+ = O

(
∥θ∥(4−p−q)+

∞

)
.

All higher-order mixed derivatives with three or more distinct indices are zeros. Since T is symmetric,
we have ∥T∥1 = ∥T∥∞. Then, using (4.4.15), we obtain

ρ̂ℓ2
∥T∥ℓ−1

∞ ∥T∥1
(ℓ−1)! max

u1∈[n]

∑
u2,...,uℓ∈[n]

sup
θ∈T (Un(ρ̂2))

∣∣∣∣ ∂ℓfK(θ)∏
r∈[ℓ] ∂θur

∣∣∣∣
= O

(
(ρ̂2∥T∥∞)ℓ d∥θ∥(4−ℓ)+

∞

)
= O

(
d
(
ζ2d−1/2 log2 n

)ℓ+(4−ℓ)+
)

= O(d−1ζ8 log8 n).

Thus, assumption (ii) of Theorem 4.3.6 holds with some α = O(d−1ζ8 log8 n).

Finally, using Lemma 4.4.2(a), we find that

θTAθ ⩾
∥θ∥22

∥A−1∥2 ⩾
∥θ∥22

∥A−1∥∞ = Ω

(
d∥θ∥22 log

2n

∆

)
.

Then, assumption (iii) trivially holds with c3 = K + 1 and c2 = 1.
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Combining (4.4.11), (4.4.13) and applying Theorem 4.3.6, we find that

J0 = π(n+1)/2d1/2n1/2|A|−1/2 exp

(
M∑
r=1

1
r! κr (fK(X)) + δ

)
,

where

|δ| ⩽ exp
(
e−ρ̂21/2 + n(200α)M+1

)
− 1 = exp

(
n−ω(logn) +O

(
n−c

))
− 1 = O

(
n−c

)
.

This completes the proof.

Next, we obtain an explicit bound on J0 starting with a few useful lemmas whose variants appeared
in [45].

Lemma 4.4.4. For jk ∈ G, |cos(x)| is a decreasing function of |x|π with cos(0) = 1 and

|cos(x)|2 = 1− sin2 x ⩽ exp
(
−1
4 |x|

2
π

)
. (4.4.16)

In addition, for any |y|π ⩽ |x|π, we have

|cos(x)| ⩽ |cos(y)| exp
(
− 1
4π (|x|

2
π − |y|2π)(π − |x|π − |y|π))

)
. (4.4.17)

Proof. The first part of (4.4.16) follows from the definition of cos(x) and implies that |cos(x)| = cos(|x|π)
for all x. Therefore we can assume that 0 ⩽ y ⩽ x ⩽ 1

2π, which implies that |x|π = x and |y|π = y.

By the concavity of cosx on [0,
π
2 ], we have cosx ⩾ 1− 2x

π on this range, which in turn implies (by
symmetry about the line x =

π
2 ) that

sinx ⩾ 1
πx(π − x), x ∈ [0, π]. (4.4.18)

Therefore, for 0 ⩽ x ⩽ 1
2π, we have that

|cos(x)|2 = 1− sin2 x ⩽ 1− 1
π2x

2(π − x)2 ⩽ 1− 1
4x

2 ⩽ exp

(
−x2

4

)
.

Inequality (4.4.17) is trivial if x = y, so assume that 0 ⩽ y < x ⩽ 1
2π. In that case, cos(y) ̸= 0 and

cos2(x)
cos2(y) ⩽ 1−sin2 x

1−sin2 y
⩽ exp

(
− sin2 x−sin2 y

1−sin2 y

)
⩽ exp

(
−(sin2 x− sin2 y)

)
.

Finally, by (4.4.18), we have

sin2 x− sin2 y = sin (x+ y) sin (x− y) ⩾ 1
π2 (x

2 − y2)(π − x+ y)(π − x− y) ⩾ 1
2π (x

2 − y2)(π − x− y)

for 0 ⩽ y ⩽ x ⩽ 1
2π, which completes the proof of (4.4.17).

Now, we introduce a generalisation of Lemma 4.4.2 (c) following essentially the same proof in [45].

Lemma 4.4.5. Given some constant c > 0, let B :=
c
nJ+L. Then we have ∥B−1/2∥∞ = O(d−1/2 log1/2n)

and ∥B1/2∥∞ = O(d1/2).
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To prove Lemma 4.4.5, we need the following lemma.

Lemma 4.4.6. [45, Corollary 28] Let L be a symmetric matrix with nonpositive off-diagonal elements
and zero row sums. Suppose the eigenvalues of L are 0 = µ1 < µ2 ⩽ · · · ⩽ µn. Let X := I−(2∥L∥∞)−1L

with eigenvalues 1 = ν1 > ν2 ⩾ · · · ⩾ νn, where νj = 1 − (2∥L∥∞)−1µj for each j. For c > 0, let
B :=

c
nJ + L. Then, for any real α ⩾ −1, the positive-definite power Bα satisfies

∥Bα∥∞ ⩽ cα + (2∥L∥∞)α
(
2
N−1∑
k=0

∣∣∣∣(αk
)∣∣∣∣+ 1

(1−ν2)n1/2

)
,

where N = ⌈|α|+ logν2 n
−1⌉.

Proof of Lemma 4.4.5. We follow the proof of Lemma 12 in [45]. By noting that
∣∣∣(−1/2

k

)∣∣∣ < k−1/2 for
k ⩾ 1, we have, by Lemma 4.4.6, that

∥B−1/2∥∞ = ∥( cnJ + L)−1/2∥∞ ⩽ c−1/2 + (2∥L∥∞)−1/2

(
2

N−1∑
k=0

∣∣∣∣(−1/2

k

)∣∣∣∣+ 1
(1−ν2)n1/2

)

⩽ c−1/2 + (2∥L∥∞)−1/2

(
2 + 2

N−1∑
k=1

k−1/2 +
2∥L∥∞
µ2n1/2

)

⩽ c−1/2 + (2∥L∥∞)−1/2

(
2 + 2

N−1∑
k=1

k−1/2

)
+

(2∥L∥∞)1/2

µ2n1/2

≈ c−1/2 + d−1/2
√
N +

2d1/2

µ2n1/2
= c−1/2 + d−1/2

√
−1
2 +

log n
log(1/ν2)

+
2d1/2

µ2n1/2
= O(d−1/2 log1/2n).

Similarly, we have, by
∣∣∣(1/2k )∣∣∣ < k−3/2 for k ⩾ 1, that

∥B1/2∥∞ = ∥( cnJ + L)1/2∥∞ ⩽ c1/2 + (2∥L∥∞)1/2

(
2
N−1∑
k=0

∣∣∣∣(1/2k
)∣∣∣∣+ 1

(1−ν2)n1/2

)

⩽ c1/2 + (2∥L∥∞)1/2

(
2 + 2

N−1∑
k=1

k−3/2

)
+

(2∥L∥∞)3/2

µ2n1/2

≈ c1/2 + 2d1/2(1− 1
2
√
N
) +

8d3/2

µ2n1/2
= O(d1/2).

This completes the proof in view of the constraint on d.

We are ready to bound J0.

Lemma 4.4.7. We have ∫
Ω0

|F (θ)| dθ = J0 = eO(n logn).

Proof of Lemma 4.4.7. Since θ ∈ I(x, ρ0)
n for θ ∈ Ω0 with some x ∈ R/π, then∫

Ω0

|F (θ)| dθ =

∫
Ω0

F (θ) dθ = J0.
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By the cosine inequality, we have, for all x, that

cos(x) ⩾ 1− 1
2x

2.

Therefore for θ ∈ Ω0, we have, for any jk ∈ G, that θj − θk = o(1), and in view of the definition (4.4.1),
we obtain that

F (θ) =
∏
jk∈G

cos(θj − θk) ⩾
∏
jk∈G

(
1− 1

2(θj − θk)
2
)
⩾ exp

−
∑
jk∈G

(θj − θk)
2

 ,

where we use 1− x/2 ⩾ e−x for x ∈ [0, 1.59]. We also get that

F (θ) ⩽ exp

−1
8

∑
jk∈G

(θj − θk)
2

 ,

since cos(x) ⩽ exp
(
−x2/8

)
by Lemma 4.4.4. Let

F0(θ) := exp

−
∑
jk∈G

(θj − θk)
2

 .

Then for θ ∈ Ω0,

F0(θ) ⩽ F (θ) ⩽ F
1/8
0 (θ).

Now we have, by a similar reducing and lifting dimension argument, that∫
Ω0

F0(θ)dθ =
(
1 + o(1)

)
π1/2(dn)1/2

∫
Ω
F̂ (θ) dθ,

where Ω is a region with some constants c2 > c1 > 0 such that Un (c1ρ0) ⊆ Ω ⊆ Un(c2ρ0), and in view
of (4.1.7) and (4.4.8),

F̂ (θ) = exp

− d
n

∑
i∈[n]

θi

2

−
∑
jk∈G

(θj − θk)
2

 = exp
(
−θT

(
d
nJ + L

)
θ
)
.

Let T =
(
d
nJ + L

)−1/2
and x = Ty. Then

∫
Ω
F̂ (x) dx =

∫
Ω
exp

(
−xT

(
d
nJ + L

)
x
)
dx =

∣∣ d
nJ + L

∣∣−1/2
∫
T−1(Ω)

e−yTy dy.

Suppose ρ ⩾ c(log n)1/2+ε for some constant c > 0. Let Y be a random vector with normal density
π−n/2e−yTy. By standard bounds on the tail of the normal distribution, we have P(Y /∈ Un(ρ)) ⩽

ne−ρ2/(1 + ρ).
Then we have for n sufficiently large, by Lemma 4.4.5, there are constants c′1, c′2 > 0 such that
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Un(ρ̂
′
1) ⊆ T−1Ω ⊆ Un(ρ̂

′
2), where ρ̂′1 := c′1ζ

2 log n and ρ̂′2 := c′2ζ
2 log3/2 n. Then∫

T−1(Ω)
e−yTy dy =

∫
Un(ρ′1)

e−yTy dy +

∫
T−1(Ω)\Un(ρ1)

e−yTy dy

=

∫
Un(ρ′1)

e−yTy dy + C

(∫
Un(ρ′2)

−
∫
Un(ρ′1)

)
e−yTy dy = (1 +K)πn/2,

where we have constants |C| ⩽ 1 and |K| = o(1).
Therefore, we have that∫

Ω0

F0(θ)dθ =
(
1 + o(1)

)
π1/2(dn)1/2πn/2

∣∣∣ dnJ + L
∣∣∣−1/2

, (4.4.19)

and similarly, ∫
Ω0

F
1/8
0 (θ)dθ =

(
1 + o(1)

)
π1/2(dn)1/2πn/2

∣∣∣ dnJ +
1
8L
∣∣∣−1/2

. (4.4.20)

For any constant c, in view of the definition of J , we have

|A+ cL| =
∣∣∣ dnJ + (

1
2 + c)L

∣∣∣ = (c+
1
2)

n
∣∣∣ d
n(c+1/2)J + L

∣∣∣ .
Note that the eigenvalues of d

n(c+1/2)J + L are d
c+1/2 together with the non-zero eigenvalues of L.

Therefore |A + cL| = Θ((c + 1/2)n|A|). Note that all of the eigenvalues of A−1 are bounded below
by ∥A∥−1

∞ and bounded above by ∥A−1∥∞. Therefore we have that | dnJ + L|−1/2 = eO(n logn) and∣∣∣ dnJ +
1
8L
∣∣∣−1/2

= eO(n logn). This completes the proof by sandwiching J0 between (4.4.19) and (4.4.20).

4.4.3 The integral outside Ω0

It remains to show that the integral of F (θ) is negligible outside Ω0 following the approach in [45,
Section 3.3] with slight modifications and improvements. Recall the definition of J ′ and J0 in (4.4.2)
and (4.4.5) respectively. Define

ρsmall :=

√
ρ0d−1/2 log−1/2 n = ζd−1/2 log1/2 n.

Then

ρ0
ρsmall

=

√
ζd−1/2 log3/2 n

d−1/2 log−1/2 n
= ζ log n. (4.4.21)

First, we bound the integral of |F (θ)| in a “scattered” region

Ω1 :=
{
θ ∈ (R/π)n : for every ξ ∈ R/π we have |{j : θj ∈ I(ξ, ρsmall)}| < 4

5n
}
.

Lemma 4.4.8. We have ∫
Ω1

|F (θ)| dθ = e−ω(n logn)J0.

We need the following lemmas to prove Lemma 4.4.8.
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Lemma 4.4.9 ([45]). Suppose 0 < t <
1
3π and q ⩽ 1

5n. Let X = {x1, . . . , xn} be a multisubset of R/π
such that no interval of length 3t contains n − q or more elements of X. Then there is some interval
I(x, ρ), ρ < 1

3π, such that both I(x, ρ) and R/π − I(x, ρ+ t) contain at least q elements of X.

Lemma 4.4.10 ([45]). Let G be a graph of maximum degree d. Assume also that h(G) ⩾ γd for some
γ > 0. Let U1, U2 be two disjoint sets of vertices. Then, there exist at least

γd
min{|U1|,|U2|}

2ℓ(U1,U2)

pairwise edge-disjoint paths in G with one end in U1 and the other end in U2, and of lengths bounded
above by

ℓ(U1, U2) := 2 + 2 log1+γ/2

(
|V (G)|

min{|U1|,|U2|}+γd/2

)
.

Proof of Lemma 4.4.8. If θ ∈ Ω1, the definition of Ω1 implies that every interval of R/π of length ρsmall

has fewer than 4
5n components of θ. Applying Lemma 4.4.9 with t = 1

3ρsmall, q =
1
5n, and X = θ tells

us that there exist p ∈ R/π and s < π
3 such that both I(p, s) and R/π − I(p, s+ t) contain at least 1

5n

components of θ.
For such θ, let U,U ′ denote the indices of the elements of θ belonging to I(p, s) and R/π−I(p, s+ t)

respectively. Then |θj − θk|π ⩾ t whenever j ∈ U, k ∈ U ′. Note that t = o(1).
Consider any of the paths v0, v1, . . . , vℓ provided by Lemma 4.4.10. Note that we have ℓ = ℓ(U1, U2) =

O (1). By assumption, |θv0 − θvℓ |π ⩾ t. Since | · |π is a seminorm, we have

ℓ∑
j=1

|θvj − θvj−1 |2π ⩾ 1
ℓ

( ℓ∑
j=1

|θvj − θvj−1 |π
)2

⩾ t2

ℓ .

Multiplying the bound (4.4.16) over all the edges of all the paths given by Lemma 4.4.10 gives that

|F (θ)| ⩽ exp

(
−Ω

(
γd

min{|U1|,|U2|}
2ℓ

t2

ℓ

))
= exp

(
−Ω

(
t2dn
ℓ2

))
.

Recalling t = 1
3ρsmall and ρsmall = ζd−1/2 log1/2 n, using πn to bound the volume of Ω1 yields∫

Ω1

|F (θ)| dθ ⩽ πn exp
(
−Ω

(
t2dn

))
= πn exp (−Ω (ζn log n)) ⩽ πn exp (−ω (n log n)) = e−ω(n logn).

Then the result follows from Lemma 4.4.7.

Next, we bound the integral of |F (θ)| in a “concentrated” region

Ω2 :=
{
θ ∈ (R/π)n : for some x ∈ R/π we have |{j : θj ∈ I(x, e−ζ logn)}| ⩾ 4

5n
}
.

Lemma 4.4.11. We have ∫
Ω2

|F (θ)| dθ = e−ω(n logn) J0.

Proof. The volume of Ω2 is only e−ω(n logn), so the bound |F (θ)| ⩽ 1 is adequate in conjunction with
Lemma 4.4.7.
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For disjoint U,W ⊆ V (G) define by ΩU,W the set of θ ∈ (R/π)n for which there exists some x ∈ R/π
and ρ with ρsmall ⩽ ρ ⩽ ρ0 such that the following hold:

(i) θj ∈ I(x, ρsmall) for at least 4n/5 components θj .

(ii) θj ∈ I(x, ρ+ ρsmall) if and only if j /∈ U .

(iii) θj ∈ I(x, ρ+ ρsmall)− I(x, ρ) if and only if j ∈W .

Lemma 4.4.12. We have
(R/π)n −Ω0 −Ω1 ⊆

⋃
1⩽|U |⩽n/5
|W |⩽|U |/ζ

ΩU,W .

Proof. Any θ ∈ (R/π)n − Ω1 is such that at least 4n/5 of its components θj lie in some interval
I(x, ρsmall). Suppose it is not covered by any ΩU,W . For 1 ⩽ k ⩽ ρ0/ρsmall = ζ log n, take ρ = kρsmall ⩽

ρ0 and let U correspond to the components not in I(x, ρ+ ρsmall). Since (iii) cannot hold, we get

|{j:θj /∈I(x,kρsmall)}|
|{j:θj /∈I(x,(k+1)ρsmall)}| = 1 +

|{j:θj∈I(x,ρ+ρsmall)−I(x,ρ)}|
|{j:θj /∈I(x,ρ+ρsmall)}| > 1 + ζ−1.

Recalling that |{j : θj /∈ I(x, ρsmall)}| ⩽ n/5, we can apply this ratio repeatedly starting with k = 1 to
find that

|{j : θj /∈ I(x, ρ0)}| ⩽ 1
5n
(
1 + ζ−1

)−ζ logn+1
< 1.

This implies that θ ∈ Ω0, which completes the proof.

Lemma 4.4.13 ([45]). For any disjoint U,W ⊂ V (G) with |U | ⩽ n/5 and |W | ⩽ ϵ1/2|U |, we have∫
ΩU,W−Ω2

|F (θ)| dθ = e−ω(|U | logn)J0.

Proof. Let X := V (G)− (U ∪W ) and define the map ϕ = (ϕ1, . . . , ϕn) : ΩU,W → Ω0 as follows. By the
definition of ΩU,W , for any θ ∈ ΩU,W there is some interval of length at most ρ0 that contains {θj}j∈X .
Let I(z, ξ) be the unique shortest such interval. We can ignore parts of ΩU,W that lie in Ω2, which
means that we can assume ξ ⩾ e−ζ logn.

Identifying R/π with (z − 1
2ξ, z −

1
2ξ + π], define

ϕj = ϕj(θ) :=

z +
1
2ξ −

ξ
π−ξ

(
θj − z − 1

2ξ
)
, if j ∈ U ∪W ;

θj , if j ∈ X.

For j ∈ U ∪W , θj /∈ I(z, ξ) and ϕj maps the complementary interval I(z + 1
2π, π − ξ) linearly onto

I(z, ξ) (reversing and contracting with z ± 1
2ξ fixed). For j ∈ X, θj ∈ I(z, ξ) and ϕj = θj .

Thus |ϕj − ϕk|π ⩽ |θj − θk|π for all j, k. From Lemma 4.4.4, we find that

| cos(θj − θk)| ⩽ | cos(ϕj − ϕk)|.

Moreover, for j ∈ U and k ∈ X, we get that |ϕj − ϕk|π ⩽ |θj − θk|π − 1
2ρsmall. Observing also that

|ϕj − ϕk|π ⩽ ξ = o(1) and using (4.4.17), we find that

| cos(θj−θk)|
| cos(ϕj−ϕk)| ⩽ e−Ω(ρ2small) = e−Ω(ζd−1 logn).
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By assumption (2) of Theorem 4.1.1 and the definition of the Cheeger constant, this bound applies to
at least

h(G)|U | − d|W | ⩾ (γ + o(1))d|U |

pairs jk ∈ ∂GU , thus

|F (θ)| =

∣∣∣∣∣∣
∏
jk∈G

cos(θj − θk)

∣∣∣∣∣∣ = e−Ω(ζ2|U | logn)|F (ϕ(θ))|.

Note that the map ϕ is injective, since I(z, ξ) can be determined from {ϕj}j∈X = {θj}j∈X . Also, ϕ
is analytic except at places where the map from {θj}j∈X to (z, ξ) is non-analytic, which happens only
when two distinct components θj , θj′ for j, j′ ∈ X lie at the same endpoint of I(z, ξ). Thus, the points
of non-analyticity of ϕ lie on a finite number of hyperplanes, which contribute nothing to the integral.
To complete the calculation, we need to bound the Jacobian of the transformation ϕ in the interior of
a domain of analyticity.

We have

∂ϕj
∂θk

=


1, if j = k ∈ X;

± ξ
π−ξ , if j = k /∈ X;

0, if j ̸= k and either j ∈ X or k /∈ X.

Although we have not specified all the entries of the matrix, these entries show that the matrix is
triangular, and hence the determinant has the absolute value

(
ξ

π−ξ

)|U |+|W |
= e−O(ζ|U | logn),

by noting ξ ⩾ e−ζ logn = o(1).

Lemma 4.4.14. J0 = (1 + e−ω(logn))J ′.

Proof of Lemma 4.4.14. The integral in Ω1 ∪Ω2 is by Lemmas 4.4.8 and Lemma 4.4.11.
The remaining parts of J ′ are bounded by the sum of Lemma 4.4.13 over disjoint U,W ⊂ V (G) with

1 ⩽ |U | ⩽ n/5 and |W | ⩽ |U |/ζ. The number of choices of W for given U is less than 2|U |, so the total
contribution here is∑
1⩽|U |⩽n/5
|W |⩽|U |/ζ

∫
ΩU,W−Ω2

|F (θ)| dθ =
∑

1⩽|U |⩽n/5
|W |⩽|U |/ζ

e−ω(|U | logn)J0 = J0
∑

1⩽|U |⩽n/5

2|U |e−ω(|U | logn)

= J0

n/5∑
t=1

(
n

t

)
e−ω(t logn) ⩽

((
1 + e−ω(logn)

)n − 1
)
J0 = O

(
ne−ω(logn)

)
J0.

This completes the proof of Lemma 4.4.14.

4.4.4 Proof of Theorem 4.1.1 and Corollary 4.1.2

Now, we are ready to prove Theorem 4.1.1. Let A be the matrix defined in (4.4.8):

A =
1
2L+

d
nJn.
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The set of eigenvalues of matrix A contains element d (from the term d
nJn), together with all the non-

zero eigenvalues of L/2. Therefore, using the Matrix-Tree Theorem (see, for example, [76, Theorem
5.2]), we get

d1/2n1/2|A|−1/2 = ST(G)−1/2.

Note that A−1 is of the form specified in Theorem 4.3.11. Combining (4.4.2), (4.4.5), Lemma 4.4.3,
Lemma 4.4.14, and Theorem 4.3.11, prove Theorem 4.1.1.

Corollary 4.1.2 follows from Theorem 4.1.1 on applying the cumulant bounds in Theorem 4.3.11
together with Lemma 4.4.2(a).

4.5 Regular tournaments, Eulerian digraphs, and Eulerian oriented

graphs

Let RT(n) be the number of labeled regular tournaments with n vertices. It is easy to see that RT(n) = 0

if n is even since the sum of in-degree and out-degree is odd.
An Eulerian digraph is a directed graph such that the in-degree is equal to the out-degree for each

vertex. Note that an oriented graph is a directed graph having no symmetric pair of directed edges,
that is, at most one of the edges (u, v) and (v, u) is permitted for any distinct vertices u and v. Let
ED(n) be the number of labeled loop-free simple Eulerian digraphs with n vertices. Allowing simple
loops would multiply ED(n) by exactly 2n, since loops do not affect the Eulerian property.

Let EOG(n) be the number of labeled loop-free simple Eulerian oriented graphs, that is, Eulerian
digraphs with no symmetric pair of directed edges.

We are interested in the asymptotic value of RT(n), ED(n), EOG(n), and EO(G).
Spencer [94] evaluates RT(n) to within a factor of (1+o(1))n. Later, McKay [73] obtained asymptotic

values of RT(n), ED(n), and EOG(n).

Theorem 4.5.1 ([73]). For any ε > 0 and n→ ∞,

ED(n) =
(
1 +O

(
n−1/2+ε

))
n1/2

e1/4

(
4n

πn

)(n−1)/2
. (4.5.1)

EOG(n) =
(
1 +O

(
n−1/2+ε

))
n1/2

e3/8

(
3n+1

4πn

)(n−1)/2

, (4.5.2)

and for odd n→ ∞,

RT(n) =
(
1 +O

(
n−1/2+ε

))(
n
e

)1/2(2n+1

πn

)(n−1)/2

. (4.5.3)

The goal of this section is to give more accurate asymptotics of RT(n), ED(n), EOG(n). We first
introduce some definitions that are useful for the statement of results.

Define the constants cED,2ℓ, cEOG,2ℓ by the Taylor series

log
(
1
2 (1 + cosx)

)
=
∑
ℓ⩾1

cED,2ℓx
2ℓ = −x2

4 − x4

96 − x6

1440 − 17x8

322560 − · · · ,

log
(
1
3 (1 + 2 cosx)

)
=
∑
ℓ⩾1

cEOG,2ℓx
2ℓ = −x2

3 − x4

36 − 13x6

3240 − 41x8

60480 − · · · .
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Let XRT = (X1, . . . , Xn) be a random vector with the Gaussian density (2π)−n/2nn/2e−nxTx/2. For
some fixed integer K ⩾ 2, define fRT,K(x) for x ∈ Rn by

fRT,K(x) =
K∑
ℓ=2

c2ℓ
∑

1⩽j<k⩽n

(xj − xk)
2ℓ, (4.5.4)

where c2ℓ is defined by (4.1.8); and similarly, let XED and XEOG be random vectors with the Gaussian
density (2π)−n/2(n/2)n/2e−nxTx/4 and (2π)−n/2(2n/3)n/2e−nxTx/3 respectively, and define fED,M (x) and
fEOG,M (x) for x ∈ Rn by

fED,K(x) =

K∑
ℓ=2

cED,2ℓ

∑
1⩽j<k⩽n

(xj − xk)
2ℓ, (4.5.5)

fEOG,K(x) =
K∑
ℓ=2

cEOG,2ℓ

∑
1⩽j<k⩽n

(xj − xk)
2ℓ. (4.5.6)

Theorem 4.5.2. Let c > 0 be a constant. There exist M =M(c) and K = K(c) such that as n→ ∞,

ED(n) = n1/2
(
4n

πn

)(n−1)/2
exp

(
M∑
r=1

1
r! κr (fED,K(XED)) +O

(
n−c

))
, (4.5.7)

EOG(n) = n1/2
(
3n+1

4πn

)(n−1)/2

exp

(
M∑
r=1

1
r! κr (fEOG,K(XEOG)) +O

(
n−c

))
, (4.5.8)

and as odd n→ ∞,

RT(n) = n1/2
(
2n+1

πn

)(n−1)/2

exp

(
M∑
r=1

1
r! κr (fRT,K(XRT)) +O

(
n−c

))
. (4.5.9)

Moreover, the summation of cumulants for each case is a polynomial in n−1 of degree c− 1.

Theorem 4.5.2 gives the more precise RT(n), ED(n) and EOG(n). Next, we compute the first few
terms of the exponent for each case explicitly for illustration purposes. This extends the asymptotic
formulae (4.5.1), (4.5.2), and (4.5.3).

Corollary 4.5.3. For n→ ∞,

ED(n) = n1/2
(
4n

πn

)(n−1)/2
exp

(
−1
4 +

3
16n +

1
8n2 +

47
384n3 +

371
1920n4 +

1807
3840n5 +

655
448n6

+
435581
86016n7 +

1145941
61440n8 +

13318871
184320n9 +

99074137
337920n10 +

1339710847
1081344n11 +O

(
n−12

))
, (4.5.10)

EOG(n) = n1/2
(
3n+1

4πn

)(n−1)/2

exp

(
− 3

8 +
11
64n +

7
64n2 +

233
2048n3 +

497
2560n4 +

27583
61440n5 +

55463
43008n6

+
33678923
7340032n7 +

101414573
5242880n8 +

1882520759
20971520n9 +

101145677531
230686720n10 +

2469157786549
1107296256n11 +O

(
n−12

))
.

(4.5.11)

Since every regular tournament on n vertices is an Eulerian orientation of the complete graph Kn.
So RT(n) = EO(Kn). The cases for Eulerian digraphs and Eulerian oriented graphs are also essentially
identical, requiring minor changes, and therefore omitted. For completeness, we record an intermediate
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step.

Claim 4.1. We have

RT(n) =
2n(n−1)/2

(2π)n IRT with IRT =

∫
Un(π)

∏
1⩽j<k⩽n

cos(θj − θk) dθ

ED(n) =
2n(n−1)

(2π)n IED with IED =

∫
Un(π)

∏
1⩽j<k⩽n

(
1
2 +

1
2 cos(θj − θk)

)
dθ

EOG(n) =
3n(n−1)/2

(2π)n IEOG with IEOG =

∫
Un(π)

∏
1⩽j<k⩽n

(
1
3 +

2
3 cos(θj − θk)

)
dθ.

Let c > 0 be a constant. There exist M =M(c) and K = K(c) such that as n→ ∞,

IED = n
√
π
(
4π
n

)n/2
exp

(
M∑
r=1

1
r! κr (fED,K(XED)) +O

(
n−c

))
,

IEOG =
2
π

√
1
3n

(
3π
n

)n/2
exp

(
M∑
r=1

1
r! κr (fEOG,K(XEOG)) +O

(
n−c

))
,

and as odd n→ ∞,

IRT = 2nn
√
π
2

(
2π
n

)n/2
exp

(
M∑
r=1

1
r! κr (fRT,K(XRT)) +O

(
n−c

))
.

What remains is to show that the cumulant terms are of the claimed form.

Lemma 4.5.4. For any fixed integer K ⩾ 2 and r ⩾ 1, we have κr (fRT,K(X)) κr (fED,K(X)), and
κr (fEOG,K(X)) are polynomials in n−1 and are of order O

(
n1−r

)
.

Proof. We prove for the regular tournament only, the cases of Eulerian digraphs and Eulerian oriented
graphs are essentially the same, and therefore omitted.

A simple expansion leads to

fRT,K(x) =
K∑
ℓ=2

c2ℓ
∑

1⩽j<k⩽n

(xj − xk)
2ℓ =

K∑
ℓ=2

c2ℓ

2ℓ∑
t=0

(−1)t
(
2ℓ

t

) ∑
1⩽j<k⩽n

x2ℓ−t
j xtk.

The multi-linearity of cumulants gives

κr (fRT,K(X))

= κr

 K∑
ℓ=2

c2ℓ

2ℓ∑
t=0

(−1)t
(
2ℓ

t

) ∑
1⩽j<k⩽n

X2ℓ−t
j Xt

k


=

∑
ℓ∈[2,K]r

∏
s∈[r]

c2ℓs

 ∑
t∈[0,2ℓ]r

(−1)∥t∥1

∏
s∈[r]

(
2ℓs
ts

) ∑
e∈E(G)r

κ
(
X2ℓ1−t1

j1
Xt1

k1
, . . . , X2ℓr−tr

jr
Xtr

kr

)
,

(4.5.12)

where both vectors ℓ = (ℓ1, . . . , ℓr) and t = (t1, . . . , tr) may contain repeated entries, and e =

(j1k1, . . . , jrkr) denotes a vector of edges of G that may repeat.
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Then it suffices to deal with κ
(
X2ℓ1−t1

j1
Xt1

k1
, . . . , X2ℓr−tr

jr
Xtr

kr

)
, and show it admits the claimed prop-

erties. To do this, we apply Theorem 4.3.8 to each cumulant in (4.5.12) by choosing, for each i ∈ [r],
the multiset Pi := {{ji, . . . , ji, ki, . . . , ki}} containing 2ℓi − ti copies of ji and ti copies of ki.

Let π be a pairing of [2∥ℓ∥1], define the graph Gπ as follows: V (Gπ) = [r], and for ℓ ̸= m,
{ℓ,m} ∈ E(Gπ) iff π has a pair (i1, i2) such that i1 ∈ Pℓ and i2 ∈ Pm. Let Π be the set of all pairings
π such that Gπ is connected and jp = jq for every pair (p, q) ∈ Π.

Recall that XRT = (X1, . . . , Xn) is a random vector with the Gaussian density (2π)−n/2nn/2e−nxTx/2,
and therefore the covariance matrix of XRT is (σjk) = (nI)−1 =

1
nI. Then

κ
(
X2ℓ1−t1

j1
Xt1

k1
, . . . , X2ℓr−tr

jr
Xtr

kr

)
=

∑
{(i1,i2),(i3,i4),...,(i2∥ℓ∥1−1,i2∥ℓ∥1 )}∈Π

σji1ji2 · · ·σji2∥ℓ∥1−1
ji2∥ℓ∥1

=
∑

{(i1,i2),(i3,i4),...,(i2∥ℓ∥1−1,i2∥ℓ∥1 )}∈Π

n−∥ℓ∥1 .

Therefore, in view of (4.5.12), we conclude that κr (fRT,K(X)) is a polynomial of n−1.
Since we only consider pairings π such that Gπ is connected, there are at most r + 1 distinct Xi in

(4.5.12), because σij ̸= 0 unlessXi = Xj . Therefore, the total number of pairings is at most (2∥ℓ∥1−1)!!,
and we then have

κr (fRT,K(X))

=
∑

ℓ∈[2,K]r

∏
s∈[r]

c2ℓs

 ∑
t∈[0,2ℓ]r

(−1)∥t∥1

∏
s∈[r]

(
2ℓs
ts

) ∑
e∈E(G)r

∑
{(i1,i2),(i3,i4),...,(i2∥ℓ∥1−1,i2∥ℓ∥1 )}∈Π

n−∥ℓ∥1

=
∑

ℓ∈[2,K]r

∏
s∈[r]

c2ℓs

 ∑
t∈[0,2ℓ]r

(−1)∥t∥1

∏
s∈[r]

(
2ℓs
ts

)O

(
(2∥ℓ∥1 − 1)!!

[n]r+1r!

n∥ℓ∥1

)

⩽
∑

ℓ∈[2,K]r

∑
t∈[0,2ℓ]r

∏
s∈[r]

(
2ℓs
ts

)O

(
(2∥ℓ∥1 − 1)!!

[n]r+1r!
n2r

)
= O

(
n1−r

)
.

This completes the proof.

Proof of Theorem 4.5.2. Theorem 4.5.2 follows from Claim 4.1 and Lemma 4.5.4.

4.5.1 Moments of symmetric functions of i.i.d. Gaussians

Let X = (X1, . . . , Xn) be a Gaussian random vector with independent and identically distributed
components with each having mean 0 and variance n−1. For k ⩾ 0, define the power sum symmetric
functions

µk = µk(X) =

n∑
j=1

Xk
j .

Note that µ0 = n. In this section, we provide some estimates of the expectation of monomials in {µk}.

Lemma 4.5.5. (a) For any integer m ⩾ 0,

E [Xm
1 ] =

0, if m is odd;
(m−1)!!
nm/2 , if m is even,
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where (m− 1)!! denotes the double factorial, that is, (m− 1)!! = (m− 1)(m− 3) · · · 1.
(b) Suppose m = O(1) and ji = O(1) for all i ∈ [m]. Then

E

 ∏
i∈[m]

µji

 = E [µj1 · · ·µjm ] =

0, if j1 + · · ·+ jm is odd;

O
(
nJ
)
, if j1 + · · ·+ jm is even,

where

J = J(j1, . . . , jm) = |{k : jk is even}|+ 1
2 |{k : jk is odd}| − 1

2

∑
i∈[m]

ji.

Proof. Part (a) is the standard property of moments of Gaussian by noting σ2(X1) = 1/n. For (b), first
note that

E [µj1 · · ·µjm ] =
∑

1⩽t1,...,tm⩽n

E
[
Xj1

t1
· · ·Xjm

tm

]
,

in which t1, . . . , tm may not be distinct. Since X1, . . . , Xn are identical and independent, then the
expectation inside the sum depends only on the equalities amongst the values t1, . . . , tm.

Any particular sequence t1, . . . , tm defines a partition of q = q(t1, . . . , tm) non-empty disjoint cells
(sets), whose union is {1, . . . ,m}, that is,

Π(t1, . . . , tm) = {Π1, . . . ,Πq}

such that for any 1 ⩽ a < b ⩽ m, two indices ta and tb are equal if and only if a ∈ Π and b ∈ Π.
Then, by the independence of the {Xj}, we have

E
[
Xj1

t1
· · ·Xjm

tm

]
=

∏
Π∈Π(t1,...,tm)

E
[
X

∑
s∈Π js

1

]
, (4.5.13)

where the expectations on the right are provided by Lemma 4.5.5 (a).
If j1 + · · ·+ jm is odd, then by contradiction, there exists Π ∈ Π(t1, . . . , tm) such that

∑
s∈Π js is

odd. Hence from (a), we have that E [µj1 · · ·µjm ] = 0.
For now, we assume that j1 + · · ·+ jm is even. For any t1, . . . , tm such that

∑
s∈Π js is even for all

Π ∈ Π(t1, . . . , tm), we have that

E
[
Xj1

t1
· · ·Xjm

tm

]
=

∏
Π∈Π(t1,...,tm)

E
[
X

∑
s∈Π js

1

]
=

∏
Π∈Π(t1,...,tm)

(∑
s∈Π

js − 1

)
!!n

−
1
2
∑

s∈Π js

= n
−
1
2
∑

i∈[m] ji
∏

Π∈Π(t1,...,tm)

(∑
s∈Π

js − 1

)
!! = O

(
n
−
1
2
∑

i∈[m] ji

)
. (4.5.14)

It then suffices to count t1, . . . , tm such that
∑

s∈Π js is even for all Π ∈ Π(t1, . . . , tm). Let (Me,Mo)

be a partition of [m] such that ji is even for all i ∈ Me and ji is odd for all i ∈ Mo. For each i ∈ Me,
we have n choices of ti. For each i ∈ Mo, there must exist j ∈ Mo such that i ̸= j and ti = tj , since∑

s∈Π js is even for all Π ∈ Π(t1, . . . , tm). So that we have |Mo|/2 pairs with each having n choices.
Therefore in total, there are |Me|+ |Mo|/2 ways of choosing with each having n options, then combining
with (4.5.14) completes the proof.
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Equation (4.5.13), together with the fact that Π(t′1, . . . , t
′
m) = Π(t1, . . . , tm) for exactly (n)q in-

dex sets t′1, . . . , t′m, allows us to compute E [µj1 · · ·µjm ] by summing over all partitions of {1, . . . ,m}.
However, this is very inefficient since the number of partitions (the Bell numbers) grow very quickly.

Note that many partitions give the same contribution. We define N = {0, 1, . . . } and N+ =

{1, 2, . . . }. We will represent a multiset as a pair (S, ν) = (S, ν(·)), where S is a set that contains
distinct elements and ν = ν(·) : S → N is a function that specifies the number of times an element
of S belongs to the multiset. We will also use the notation {{z1, . . . , zk}} for a multiset by listing all its
elements. For example, {{2, 2, 2, 3, 3, 4}} is the multiset (N+, ν) where ν(2) = 3, ν(3) = 2, ν(4) = 1, and
ν(k) = 0 otherwise.

Now we introduce a definition that is useful for calculation.

Definition 4.2. A cell type is a multiset (N+, ν). A partition type (C, η) is a multiset of cell types,
where C is the set of all cell types.

Then the expansion of µj1 · · ·µjm contains nm terms such that each term Xj1
t1
· · ·Xjm

tm has a unique
partition type where each cell type corresponds to the exponents of a set of equal indices. For example,
in the expansion of µ1µ1µ2µ2µ4, the term X1

5X
1
5X

2
6X

2
5X

4
6 has partition type {{{{1, 1, 2}}, {{2, 4}}}},

since X1
5 , X

1
5 , X

2
5 have the same index and X2

6 , X
4
6 have the same index.

Note that the multiset union of the cell types in the partition type equals the multiset of the indices
of the monomial µ1µ1µ2µ2µ4, namely, {{1, 1, 2, 2, 4}}. Also note that for instance, the different term
X1

3X
1
3X

2
3X

2
2X

4
2 in the expansion of µ1µ1µ2µ2µ4 has the same partition type even though the positions

of the equal indices changed from {1, 2, 4}, {3, 5} to {1, 2, 3}, {4, 5}.
For k ∈ N+, let ν̂(k) be the number of times µk appears in µj1 · · ·µjm . Clearly there is no term in

the expansion of µj1 · · ·µjm with partition type T unless∑
(N+,ν)∈T

ν(k) = ν̂(k), (4.5.15)

for all k ∈ N+.

Lemma 4.5.6. We have that

E [µj1 · · ·µjm ] =
∑
T

ATBT

∏
τ∈T

E
[
X

∑
j∈τ j

1

]
, (4.5.16)

where the sum is over all partition types satisfying (4.5.15),

AT = A(C,η) =

((
n−

∑
τ∈C

η(τ)

)
!
∏
τ∈C

η(τ)!

)−1

n!,

and

BT =
∏

k∈N+

 ∏
(N+,ν)∈T

ν(k)!

−1 ∑
(N+,ν)∈T

ν(k)

!.

Proof. Suppose T = (C, η) is a partition type satisfying (4.5.15). Since some of the cells in T are the
same, then the number of ways to assign distinct indices from {1, . . . , n} is AT . The number of ways to
assign the m positions of µj1 · · ·µjm to the cells of T is BT . This then completes the proof.

99



Here we include an example for illustration. If T = {{{{1, 1, 2}}, {{1, 1, 2}}, {{1, 2, 2}}}}, then η({{1, 1, 2}}) =
2 and η({{1, 2, 2}}) = 1. So

AT =
n!

(n−3)!2!1! =
1
2n(n− 1)(n− 2),

since we need to choose three distinct indices from [n] for each cell type such that two of them are of
the same type. We also have

BT =
5!
2!2!

4!
2! ,

since we need to choose the exponents for each cell type, and that is
(
5
2

)(
3
2

)
for one and

(
4
2

)(
2
1

)
for two.

This is the key to our method because the contribution of a term to E [µ1µ1µ2µ2µ4] only depends
on its partition type T , namely ∏

τ∈T
E
[
X

∑
j∈τ j

1

]
.

Thus, to evaluate E [µj1 · · ·µjm ], we can sum over partition types, rather than over partitions. This
is a very large improvement, since the number of partition types is much smaller. As an example, for
µ102 µ

2
3µ

10
4 the number of partitions is 4,506,715,738,447,323, but the number of partition types is only

360,847.

Proof of Corollary 4.1.3 and Corollary 4.5.3. We will only show the computation of Corollary 4.1.3
here. Similar computations are used in Corollary 4.5.3 and are therefore omitted.

We choose M = 12 and K = 13. From (4.1.6), we know that

M∑
r=1

tr

r! κrfK(X) =
K∑
r=1

[tr] log

( K∑
r=0

tr

r! E [fM (X)r]

)
tr, (4.5.17)

where [tr] signifies extraction of the coefficient of tr in the Taylor expansion of what follows. We applied
this using a C program to find E [µj1 · · ·µjm ] for all required cases (about 268,000 cases with up to 24
factors), then using (4.5.17) in Maple to find cumulants.

For the record, we give the first five cumulants to lesser precision.

κ1 (fRT,K(XRT)) = −1
2 − 5

6n − 13
3n2 − 137

5n3 − 9568
45n4 +O

(
n−5

)
,

κ2 (fRT,K(XRT)) =
13
6n +

35
2n2 +

6871
45n3 +

66428
45n4 +O

(
n−5

)
,

κ3 (fRT,K(XRT)) = −25
n2 − 1261

3n3 − 88042
15n4 +O

(
n−5

)
,

κ4 (fRT,K(XRT)) =
1541
3n3 +

42215
3n4 +O

(
n−5

)
,

κ5 (fRT,K(XRT)) = −15988
n4 +O

(
n−5

)
.

As evidence for the correctness of our calculations, all the coefficients up to the n−9 term were
predicted in advance using the sequence acceleration method of Wynn [100] applied to the exact numbers
in the Appendix. The last two coefficients also match the numerical evidence.
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4.6 Tail bounds for cumulant expansions

We prove Theorem 4.3.2 in this section. Let X = (X1, . . . , Xn) be a random vector with independent
components taking values in S := S1 × · · · × Sn. Let F∞(X) be the space of bounded real functions on
S, measurable with respect to X, equipped with the infinity norm

∥f∥∞ = sup
x∈S

|f(x)|, f ∈ F∞(X).

For a linear operator F on F∞(X), we consider the standard induced operator norm

∥F∥∞ := sup
f∈F∞(X)
∥f∥∞>0

∥F [f ]∥∞
∥f∥∞ .

4.6.1 Expectation and difference operators

For any V ⊆ [n], define the operator EV on F∞(X) by

EV [f ](x) := E [f(X) | Xj = xj for j /∈ V ] ,

Informally, EV corresponds to “averaging” with respect to all Xj with j ∈ V . Since expectation can not
exceed the supremum, we get that ∥EV ∥∞ ⩽ 1. Observe also that the operators EV and EV ′ commute
for any V, V ′ ⊆ [n]:

EV EV ′
= EV ′

EV = EV ∪V ′
.

If V = {j}, we write Ej := E{j}.

Recall from (4.3.3) that

RV
y := Rv1

y · · ·Rvk
y , ∂Vy := ∂v1y · · · ∂vky ,

where ∂jy := I − Rj
y and I is the identity operator. This definition does not depend on the order of

elements in V since the operators Rj
y and Rj′

y commute for any j, j′ ∈ [n]. Clearly ∥RV
y ∥∞ ⩽ 1. We also

have that
∂Vy R

V ′
y = RV ′

y ∂Vy . (4.6.1)

From (4.3.4), we have that
∆V (f) = sup

y∈S
∥∂Vy [f ]∥∞

By definition, ∆V satisfies the triangle inequality

∆V (f + g) ⩽ ∆V (f) + ∆V (g). (4.6.2)

Lemma 4.6.1. For any f ∈ F∞(X), V ⊆ [n], and j ∈ [n], we have

∆V (E
j [f ]) ⩽ ∆V (f), ∆V (f −Ej [f ]) ⩽ ∆V ∪{j}(f).

Furthermore, if j ∈ V then ∆V (E
j [f ]) = 0 and ∆V (f −Ej [f ]) = ∆V (f).

Proof. We start with the second part, which is the case when j ∈ V . For any y ∈ S, we have that
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Rj
yE

j [f ] = Ej [f ] because Ej [f ](x) does not depend on jth component of x. This implies that

∂Vy Ej [f ] = 0 and ∂Vy [f −Ej [f ]] = ∂Vy [f ].

The second part follows.
Now we assume that j /∈ V . Let y ∈ S and Y = (y1, . . . , yj−1, Xj , yj+1, yn). For any W ⊂ [n] \ {j},

we have
RW

y [f ] = E
[
RW

Y [f ]
]

and (RW
y Ej)[f ] = E

[
R

W∪{j}
Y [f ]

]
.

Therefore, we find that

∂Vy [Ej [f ]] =
∑
W⊆V

(−1)|W |(RW
y Ej)[f ] = E

∑
W⊆V

(−1)|W |R
W∪{j}
Y [f ]]

 = E
[
∂WY Rj

Y[f ]
]

and

∂Vy [f −Ej [f ]] =
∑
W⊆V

(−1)|W |RW
y [f −Ej [f ]]

= E

∑
W⊆V

(−1)|W |
(
RW

Y [f ]−R
W∪{j}
Y [f ]]

) = E
[
∂
V ∪{j}
Y [f ]

]
.

Since the expectation can not exceed the supremum, we get

∂Vy [Ej [f ]] ⩽ sup
y∈S

∥∂Vy [f ]∥∞ = ∆V (f),

∥∂Vy [f −Ej [f ]]∥ ⩽ sup
y∈S

∥∂V ∪{j}
y [f ]∥∞ = ∆V ∪{j}(f).

Taking the supremum over y completes the proof.

Let Ds(V ) denote the set of all dissections of V ⊆ [n] into ordered collection of s subsets (V1, . . . , Vs),
that is, the sets Vj are disjoint (possibly empty) and V = V1 ∪ · · · ∪ Vs.

Lemma 4.6.2. Let f1, . . . , fs ∈ F∞(X) and V ⊆ [n]. Then

∆V (f1 · · · fs) ⩽
∑

(V1,...,Vs)∈Ds(V )

s∏
j=1

∆Vj (fj).

Proof. The statement is trivial for s = 1. We proceed to the case when s = 2. For any y ∈ S, j ∈ [n],
and f, g ∈ F∞(X), observe that

∂jy[f1f2] = f1 · ∂jy[f2] + ∂jy[f1] ·Rj
y[f2].

Applying this analog of the product rule of differentiation several times and using (4.6.1), we get that

∂Vy [f1f2] =
∑
W⊂V

∂Wy [f1] ·RW
y [∂

V \W
y f2].
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Recalling that ∥RW
y ∥ ⩽ 1 and using the triangle inequality and definition (4.3.4), we find that

∥∂Vy [f1f2]∥∞ ⩽
∑
W∈V

∥∂Wy [f1]∥∞ · ∥∂V \W
y [f2]∥∞ ⩽

∑
W⊂V

∆W (f1)∆V \W (f2).

Taking supremum over y completes the proof for the case when s = 2.
The statement for s > 2 follows from the bound above for s = 2 by bounding

∆V (f1 · · · fs) ⩽
∑
W∈V

∆W (f1)∆V \W (f2 · · · fs)

and using a simple inductive argument.

4.6.2 Cumulant identities and bounds

For each j ∈ [n] let
E⩾j := E({j,...,n}).

For f1, . . . , fs ∈ F∞(X), define the joint cumulant

κ⩾j [f1, . . . , fs] =
∑
τ∈Ps

(|τ | − 1)! (−1)|τ |−1
∏
B∈τ

E⩾j
[∏
k∈B

fk

]
, (4.6.3)

where Ps denotes the set of unordered partitions τ of [s] (with non-empty blocks) and |τ | denotes the
number of blocks in the partition τ . We also set

E(⩾n+1)[f ] = κ(⩾n+1)[f ] := f and κ(⩾n+1)[f1, . . . , fs] := 0 for s ⩾ 2.

Lemma 4.6.3. Let f1, . . . , fs ∈ F∞(X). The following hold.

(a) κ⩾j is a symmetric function and also a multilinear function, that is,

κ⩾j [c1f1 + c2f
′
1, f2, . . . , fs] = c1κ

⩾j [f1, . . . , fs] + c2κ
⩾j [f ′1, f2, . . . , fs]

for any c1, c2 ∈ R and f ′1 ∈ F∞(X). Furthermore, if s ⩾ 2 and fs = E⩾jg for some g ∈ F∞(X),
then κ⩾j [f1, . . . , fs] ≡ 0.

(b) Let log(1 + t) =
∑∞

k=1

(−1)k

k tk. We have

κ⩾j [f1, . . . , fs] = [t1 · · · ts] log
(
1 +

∞∑
k=1

κ⩾j [t1f1+···+tsfs]k
k!

)
,

where t1, . . . , ts are real indeterminants, and [t1 · · · ts] indicates coefficient extraction in the formal
series expansion.

(c) Let k ∈ {j, . . . , n+ 1}. Then

κ⩾j [f1, . . . , fs] =
s∑

p=1

∑
{B1,...,Bp}∈Ps

κ⩾j
[
κ⩾k[fj : j ∈ B1], . . . , κ

⩾k[fj : j ∈ Bp]
]
,
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where
κ⩾k[fj : j ∈ {i1, . . . , iℓ}] := κ⩾k[fi1 , . . . , fiℓ ].

(d) For any set V ⊆ [j − 1], we have

∆V

(
κ⩾j [f1, . . . , fs]

)
⩽
(3
2

)s
(s−1)!

∑
(V1,...,Vs)∈Ds(V )

s∏
k=1

∆Vk
(fk).

Proof. The fact that KF is symmetric and multilinear follows immediately from the definition. We pro-
ceed to the second part of (a). Consider the terms of the defining summation in (4.6.3) that correspond to
the partition τ ′ of [s−1] that results from disregarding s. For any partition τ ′ = {B1, . . . , Bk}, there are
exactly k+1 corresponding terms. One has s by itself, τ0 = {{s}, B1, . . . , Bk} with coefficient (−1)kk!,
and k have the form τj = {B1, . . . , Bj−1, Bj ∪{s}, Bj+1, . . . , Bk} with coefficient (−1)k−1(k−1)!. More-
over for 0 ⩽ j ⩽ k we have

∏
B∈τj E

⩾j
[∏

k∈B fk

]
= fs

∏k
i=1E

⩾j
[∏

k∈Bi
fk

]
. Since the coefficients have

a zero sum, we get κ⩾j [f1, . . . , fs] ≡ 0.
Parts (b) and (c) are proved by Speed [93] for random variables when F is the expectation operator

and G is a conditional expectation operator. It is easy to check that, in addition to the combinatorial
properties of the partition lattice, only the linearity of expectation and the law of total expectation are
used, so the same proofs work here also.

For (d), combining triangle inequality (4.6.2) and definition (4.6.3), we get

∆V (κ
⩾j [f1, . . . , fs]) ⩽

∑
τ∈Ps

(|τ | − 1)!∆V

(∏
B∈τ

E⩾j
(∏
k∈B

fk

))
.

Applying Lemma 4.6.1 several times, we get that, for any W ⊆ V ,

∆W

E⩾j

∏
j∈B

fj

 ⩽ ∆W (fj).

Then, using Lemma 4.6.2 twice, we get that

∆V

∏
B∈τ

E⩾j

∏
j∈B

fj

 ⩽
∑

(UB)B∈τ∈D|τ |(V )

∏
B∈τ

∆UB

(
E⩾j

[∏
k∈B

fk

])

⩽
∑

(UB)B∈τ∈D|τ |(V )

∏
B∈τ

∆UB

(∏
k∈B

fk

)
⩽

∑
(V1,...,Vs)∈Ds(V )

s∏
k=1

∆Vk
(fk).

Applying Lemma 4.3.1 then completes the proof.

The conditional cumulant of order s is defined by

κ⩾j
s [f ] = κ(⩾j)[f, . . . , f︸ ︷︷ ︸

s times

].

Applying Lemma 4.6.3, we derive the following properties of κ⩾j
s .

Lemma 4.6.4. If f ∈ F∞(X), j ∈ [n], and s ∈ N, then the following hold.
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(a) For any k ∈ [n+ 1], k ⩾ j, we have

κ⩾j
s [f ] =

s∑
p=1

∑
{B1,...,Bp}∈Ps

κ⩾j
[
κ⩾k
|B1|[f ], . . . , κ

⩾k
|Bp|[f ]

]
.

(b) For any V ⊆ [j − 1] and s ⩾ 2, we have

∆V

(
κ⩾j
s [f ]

)
⩽

n∑
k=j

s∑
p=2

∑
{B1,...,Bp}∈Ps

(3
2

)p
(p−1)!

∑
(V1,...,Vp)∈Dp(V )

p∏
r=1

∆Vr∪{k}

(
κ⩾k+1
|Br| [f ]

)
,

Proof. Part (a) is just a special case of Lemma 4.6.3(c). For (b), applying part (a) with k = j + 1 and
using triangle inequality (4.6.2), we get

∆V

(
κ⩾j
s [f ]

)
⩽ ∆V

(
E⩾jκ⩾j+1

s [f ]
)
+

s∑
p=2

∑
{B1,...,Bp}∈Ps

∆V

(
κ⩾j

[
κ⩾j+1
|B1| [f ], . . . , κ⩾j+1

|Bp| [f ]
])
.

From Lemma 4.6.1, we know that

∆V

(
E⩾jκ⩾j+1

s [f ]
)
⩽ ∆V

(
κ⩾j+1
s [f ]

)
.

Using Lemma 4.6.3(a), we find that

κ⩾j
[
κ⩾j+1
|B1| [f ], . . . , κ⩾j+1

|Bp| [f ]
]
= κ⩾j

[
(I −Ej)κ⩾j+1

|B1| [f ], κ⩾j+1
|B2| [f ], . . . , κ⩾j+1

|Bp| [f ]
]

· · · = κ⩾j
[
(I −Ej)κ⩾j+1

|B1| [f ], . . . , (I −Ej)κ⩾j+1
|Bp| [f ]

]
.

(4.6.4)

Then, applying Lemma 4.6.3(d) and using Lemma 4.6.1 to estimate

∆Vr

(
(I −Ej)κ⩾j+1

|Br| [f ]
)
⩽ ∆Vr∪{j}

(
κ⩾j+1
|Br| [f ]

)
,

we obtain that

∆V

(
κ⩾j
s [f ]

)
⩽ ∆V

(
κ⩾j+1
s [f ]

)
+

s∑
p=2

∑
{B1,...,Bp}∈Ps

(3
2

)p
(p−1)!

∑
(V1,...,Vp)∈Dp(V )

p∏
r=1

∆Vr∪{j}

(
κ⩾j+1
|Br| [f ]

)
.

Estimating similarly ∆V

(
κ⩾j
s [f ]

)
for k = j + 1, . . . , n and recalling that κ⩾n+1

s [f ] ≡ 0 for s ⩾ 2, we
prove part (b).

4.6.3 Estimates when the sums of ∆V are bounded

For v ∈ [n], let
Sv(f) := max

j∈[n]

∑
V ∈([n]

v ):j∈V

∆V (f).

Throughout this section, we assume that Sv(f) is not very big. Namely, for α ⩾ 0 and positive
integer m, let

Fα
m(X) := {f ∈ F∞(X) : Sv(f) ⩽ α for all v ∈ [m]} . (4.6.5)
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In particular, for any f ∈ Fα
m(X), we have

max
j∈[n]

∆j(f) = S1(f) ⩽ α.

Lemma 4.6.5. Suppose f ∈ Fα
m(X) for some α ⩾ 0 and positive integer m. Then, for any s ∈ [m] and

j ∈ [n], we have ∥∥κ⩾j+1
s [f ]−Ejκ⩾j+1

s [f ]
∥∥
∞ ⩽ 100s−1 (s−1)!

s αs.

Proof. First, recalling κ⩾j+1
1 = E⩾j+1 and using Lemma 4.6.1, we get for any V ∈ [j]

∆V

(
κ⩾j+1
1 [f ]

)
= ∆V

(
Ej+1 · · ·En[f ]

)
⩽ ∆V (f). (4.6.6)

From Lemma 4.6.1, we also get that if V ∩ {j + 1 . . . n} ≠ ∅ then

∆V

(
κ⩾j+1
s [f ]

)
= ∆V

(
E⩾j+1κ⩾j+1

s [f ]
)
= 0. (4.6.7)

We prove the following statement by induction on s ∈ [m]: for any j ∈ [n] and v ∈ [m− s+ 1], we
have

Sv(κ
⩾j+1
s [f ]) ⩽ ℏ(s, v) := 25s−1 (s−1)!

s

(
v + 2s− 3

s− 1

)
αs. (4.6.8)

If s = 1 then we get from (4.6.6) and (4.6.7) that

Sv(κ
⩾j+1
1 [f ]) ⩽ Sv[f ] ⩽ α = ℏ(1, v).

Thus, we verified the base of induction.
For the induction step, from Lemma 4.6.4(b), for any V ∈

(
[n]
v

)
, we find that

∆V

(
κ⩾j+1
s [f ]

)
⩽

n∑
k=j+1

s∑
p=2

∑
{B1,...,Bp}∈Ps

(3
2

)p
(p−1)!

∑
(V1,...,Vp)∈Dp(V )

p∏
t=1

∆Vp∪{k}

(
κ⩾k+1
|Bt| [f ]

)
.

Applying the induction hypothesis, we find that, for any i ∈ [j],

∑
V ∈([n]

v ):i∈V

∑
(V1,...,Vp)∈Dp(V )

i∈V1

n∑
k=j+1

p∏
t=1

∆Vp∪{k}

(
κ⩾k+1
|Bt| [f ]

)

⩽
∑

v1,...,vp∈N
v1+···+vp=v

n∑
k=j+1

∑
V1∈( [n]

v1+1)
i,k∈V1

∑
V2∈( [n]

v2+1)
k∈V2

· · ·
∑

Vp∈( [n]
vp+1)

k∈Vp

p∏
t=1

∆Vp∪{k}

(
κ⩾k+1
|Bt| [f ]

)

⩽
∑

v1,...,vp∈N
v1+···+vp=v

n∑
k=j+1

∑
V1∈( [n]

v1+1)
i,k∈V1

∆V1∪{k}

(
κ⩾k+1
|B1| [f ]

) p∏
t=2

Svt+1

(
κ⩾k+1
|Bt| [f ]

)

⩽
∑

v1,...,vp∈N
v1+···+vp=v

n∑
k=j+1

∑
V1∈( [n]

v1+1)
i,k∈V1

∆V1∪{k}

(
κ⩾k+1
|B1| [f ]

) p∏
t=2

ℏ(vt + 1, |Bt|) ⩽
∑

v1,...,vp∈N
v1+···+vp=v

p∏
t=1

ℏ(vt + 1, |Bt|).
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Since p ⩾ 2, we have that |Bt| ⩽ s− 1 and

1 ⩽ vt + 1 ⩽ v + 1 + (s− 1− |Bt|) ⩽ m− bt + 1.

Therefore, the application of induction hypothesis above is correct. Estimating similarly the contribution
of the cases when i ∈ V2, . . . , i ∈ Vp, we get

Sv(κ
⩾j+1
s [f ]) ⩽

s∑
p=2

∑
{B1,...,Bp}∈Ps

(3
2

)p
p!

∑
v1,...,vp∈N

v1+···+vp=v

p∏
t=1

ℏ(vt + 1, |Bt|)

=

s∑
p=2

∑
b1,...,bp⩾1

b1+···+bp=s

(3
2

)p( s

b1, . . . , bp

) ∑
v1,...,vp∈N

v1+···+vp=v

p∏
t=1

ℏ(vt + 1, bt)

=

s∑
p=2

∑
b1,...,bp⩾1

b1+···+bp=s

(3
2

)p
s!

∑
v1,...,vp∈N

v1+···+vp=v

p∏
t=1

25bt−1

b2t

(
vt + 2bt − 3

bt − 1

)
αbt

= ℏ(v, s) s2

(v+2s−3
s−1 )

s∑
p=2

(3
2

)p
251−p

∑
b1,...,bp⩾1

b1+···+bp=s

∑
v1,...,vp∈N

v1+···+vp=v

p∏
t=1

1
b2t

(
vt + 2bt − 3

bt − 1

)
.

We observe that ∑
v1,...,vp∈N

v1+···+vp=v

p∏
t=1

(
vt + 2bt − 3

bt − 1

)
=

(
v + 2s− 3

s− 1

)
.

Indeed,
(
v+2s−3
s−1

)
is the number of solutions (x1, . . . , xb) ∈ Nb of the system x1 + · · · + xs = v + s − 2.

The same count is represented by the LHS if we split according to the sums within corresponding blocks
of sizes bt being equal to vt for t ∈ [p].

Next, by induction on p ⩾ 2, we show that

∑
b1,...,bp⩾1

b1+···+bp=s

p∏
t=1

1
b2t

⩽

(
2π2

3

)p−1
1
s2 . (4.6.9)

Both the base of induction and the induction step for (4.6.9) rely on the following bound:

s−1∑
t=1

s2

t2(s−t)2 =
s−1∑
t=1

(
1
t +

1
s−t
)2

⩽ 2

s−1∑
t=1

(
1
t2 +

1
(s−t)2

)
⩽ 2π2

3 .

Combining the above estimates, we conclude the

Sv(κ
⩾j+1
s [f ]) ⩽ ℏ(v, s)

s∑
p=2

(3
2

)p
251−p

(
2π2

3

)p−1

= ℏ(v, s) ·
(
3
2

)2
· 1
25 · 2π

2

3 ·
s−2∑
p′=0

(
π2

25

)p′

⩽ ℏ(v, s) ·
(
3
2

)2
· 1
25 · 2π

2

3

(
1− π2

25

)−1

⩽ ℏ(v, s).
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Thus, we established the induction step and proved (4.6.8).
Finally, using (4.6.8), Lemma 4.6.1, and bounding

(
2s−2
s−1

)
⩽ 22s−2, we get

∥κ⩾j+1
s [f ]−Ejκ⩾j+1

s [f ]∥∞ ⩽ ∆j(κ
⩾j+1
s [f ]) ⩽ ℏ(1, s) ⩽ 100s−1 (s−1)!

s αs

as claimed.

Lemma 4.6.6. Suppose f ∈ Fα
m(X) for some α ⩾ 0 and positive integer m. Then, for any s ∈ [m] and

j ∈ [n], we have ∥∥κ⩾j+1
s [f ]− κ⩾j

s [f ]
∥∥
∞ ⩽ 1.1 · 100s−1 (s−1)!

s αs.

Proof. From Lemma 4.6.4(a), we have that

κ⩾j
s [f ]−Ejκ⩾j+1

s [f ] =

s∑
p=2

∑
(B1,...,Bp)∈Ps

κ⩾j
[
κ⩾j+1
|B1| [f ], . . . , κ⩾j+1

|Bp| [f ]
]
.

Recalling from (4.6.4) that

κ⩾j
[
κ⩾j+1
|B1| [f ], . . . , κ⩾j+1

|Bp| [f ]
]
= κ⩾j

[
κ⩾j+1
|B1| [f ]−Ejκ⩾j+1

|B1| [f ] . . . , κ⩾j+1
|Bp| [f ]−Ejκ⩾j+1

|Bp| [f ]
]
,

applying Lemma 4.6.3(d) with V = ∅, and using (4.6.9) , we get that

∥κ⩾j
s [f ]−Ejκ⩾j+1

s [f ]∥∞ ⩽
s∑

p=2

∑
{B1,...,Bp}∈Ps

(3
2

)p
(p− 1)!

p∏
t=1

∥κ⩾j+1
|Bt| [f ]−Ejκ⩾j+1

|Bt| [f ]∥∞

⩽
s∑

p=2

∑
b1,...,bp⩾1

b1+···+bp=s

(
s

b1, . . . , bp

)(3
2

)p 1
p

p∏
t=1

100bt−1 (bt−1)!
bt

αbt

= 100s−1 (s−1)!
s αs

s∑
p=2

s2
(3
2

)p
1001−p 1

p

∑
b1,...,bp⩾1

b1+···+bp=s

p∏
t=1

1
b2t

⩽ 100s−1 (s−1)!
s αs

s∑
p=2

(3
2

)p
1001−p 1

2

(
2π2

3

)p−1

⩽ 0.1 · 100s−1 (s−1)!
s αs.

Using the bound for ∥κ⩾j+1
s [f ] − Ejκ⩾j+1

s [f ]∥∞ from Lemma 4.6.5 and the triangle inequality, we
complete the proof.

Lemma 4.6.7. Suppose f ∈ Fα
m(X) for some α ⩾ 0 and positive integer m. Then, for any j ∈ [n], we

have ∥∥∥∥∥E⩾j exp

(
m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

)
− 1

∥∥∥∥∥
∞

⩽ e(200α)
m+1 − 1.

Proof. First, if α ⩾ 1/200, then using Lemma 4.6.6, we get that∥∥∥∥∥
m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

∥∥∥∥∥
∞

⩽ 1.1

m∑
s=1

100s−1 1
s2α

s ⩽ 1.1 · (α+ 100m−1αm)
m∑
s=1

1
s2 ⩽ (200α)m+1.
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Therefore, ∥∥∥∥∥E⩾j exp

(
m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

)
− 1

∥∥∥∥∥
∞

⩽

∥∥∥∥∥exp
(

m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

)
− 1

∥∥∥∥∥
∞

⩽
∞∑
j=1

(200α)j(m+1)

j! = e(200α)
m+1 − 1.

Thus, in the following, we can assume that α ⩽ 1/200.
Let

F (z) := E⩾j exp

 m∑
s=1

zs
(
κ⩾j+1
s [f ]−κ⩾j

s [f ]
)

k!

− 1.

and let f1, f2, . . . ∈ F∞(X) denote the coefficients of its Taylor’s expansion:

F (z) =
∞∑
s=1

zsfs. (4.6.10)

Due to Lemma 4.6.3(b,d), the series
∑∞

r=1

zsκ⩾k
s [f ]
r! converges for any k ∈ [n] and z ∈ C with |z| < 2

3∥f∥∞
and

exp

( ∞∑
s=1

zsκ⩾k
s (π)
s!

)
= E⩾kezf .

Taking k = j, j + 1, we obtain that

E⩾j

exp
 ∞∑

s=1

zs
(
κ⩾j+1
s [f ]−κ⩾j

s [f ]
)

s!

 = exp

( ∞∑
s=1

−zsκ⩾j
s [f ]
s!

)
E⩾j

[
E⩾j+1[ezf ]

]
= 1.

It implies that first m terms in series of (4.6.10) are trivial: f1 = · · · = fm ≡ 0. Applying Cauchy’s
integral theorem, we get that

E⩾j exp

 m∑
s=1

(
κ⩾j+1
s [f ]−κ⩾j

s [f ]
)

k!

− 1 = F (1) =

∞∑
s=m+1

fs

=
1
2πi

∮ ∑
k>m+1

1
zk
F (z)dz =

1
2πi

∮
F (z)

(z−1)zm+1dz,

where the integrals are over any contour encircling the origin. We take the circle {z ∈ C : |z| = 2} as
the contour which ensures that |(z − 1)zm+1| ⩾ 1. Using Lemma 4.6.6 and recalling α < 1/200, we
observe that for any z with |z| = 2

|F (z)| ⩽ 1.1
m∑
s=1

100s−1 1
s2α

s2s ⩽ 0.011
m∑
s=1

1
s2 < 0.02.

The required bound follows.
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4.6.4 Proof of Theorem 4.3.2

Recalling that κ⩾n+1
1 [f ] = f and κ⩾n+1

s [f ] = 0 for all s ⩾ 2, we have

f(X)−
m∑
s=1

κs(f(X))
s! =

n∑
j=1

m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s! .

Applying Lemma 4.6.7, we find that

E

exp
 n∑

j=1

m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!


= E

exp
n−1∑

j=1

m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

E⩾n

[
m∑
s=1

κ⩾n+1
s [f ]−κ⩾n

s [f ]
s!

]
= (1 +K1)E

exp
n−1∑

j=1

m∑
s=1

κ⩾j+1
s [f ]−κ⩾j

s [f ]
s!

 = · · · =
n∏

j=1

(1 +Kj),

where |Kj | ⩽ e(200α)
m+1 −1 for all j ∈ [n]. Since f is real-valued, we also have that Kj > −1. Therefore,

E

[
exp

(
f(X)−

m∑
s=1

κs(f(X))
s!

)]
= (1 +K)n,

where K :=
(∏n

j=1(1 +Kj)
)1/n

− 1. Observing that minj∈[n]Kj ⩽ K ⩽ maxj∈[n]Kj , we establish that

|K| ⩽ e(200α)
m+1 − 1 as required.

By Lemma 4.6.6, we have that for any s ∈ [m] and j ∈ [n],

∥∥κ⩾j+1
s [fM (X)]− κ⩾j

s [fM (X)]
∥∥
∞ ⩽ 1.1 · 100s−1 (s−1)!

s αs.

Observing that

|κs (f(X)) | ⩽
n−1∑
j=0

∥∥κ⩾j+1
r [f(x)]− κ⩾j

r [f(x)]
∥∥
∞ ,

which completes the proof.

4.7 Appendix

4.7.1 Exact values of RT(n) for n ⩽ 37

Exact values of RT(n) for n ⩽ 21 were found by McKay [72] using a method of summing over roots of
unity. We have extended this to n ⩽ 37 by using a recurrence for tournaments with given degrees. See
Table 4.1.

4.7.2 Alternative calculations of some terms in RT(n) via Feynman diagrams

In quantum field theory, a Feynman diagram represents a term in the Wick’s expansion, which is
essentially Isserlis’ theorem for the moments of some Gaussian distribution. Here we use Theorem 4.3.8
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n RT(n)
1 1
3 2
5 24
7 2640
9 32 30080

11 4 82515 08480
13 9 30770 06112 92160
15 240 61983 49824 94283 79648
17 85584 72055 41481 49511 79758 79680
19 4271 02683 12628 45202 01657 80015 93666 76480
21 3035 99177 67255 01434 06909 90026 40396 04333 20198 14400
23 31111 25335 58482 03432 16879 55029 99798 94772 74014 27415 01378 56000
25 46 41175 34102 33590 76153 19841 21486 62289 71154 35036 87620 35567 90979 81774 06976
27 1 01613 79494 93595 16286 17799 57707 58654 34480 25582 38882 79881 93794 83077 47797 07683

48315 64800
29 32874 42487 57440 71437 03099 54561 70730 45735 81860 90338 16899 44155 56007 47117 93383

29715 53931 99301 61725 44000
31 1 58080 31329 37879 48113 48365 61225 94846 34453 23284 20116 08717 95271 39910 78379 57102

46216 62189 55225 10623 95890 69751 74000 64000
33 113 55331 66724 13409 50706 27943 25155 74835 60333 94267 70339 22296 31722 43704 16674

54847 32916 31865 21307 04028 02521 10357 42226 17221 58828 67015 68000
35 1 22386 44546 20140 32917 57098 60021 24725 82639 58465 65811 80615 89271 23479 00218 68020

11957 16753 08650 67421 64775 78535 34744 86223 90705 83144 23519 70257 72801 31373 46560
37 19868 18615 30379 61435 68362 02070 63930 19820 07449 69481 15232 49050 85973 12501 88142

39611 14080 38454 82389 53944 91763 75862 81845 56861 43415 69406 38026 42548 47415 17715
34651 86485 95415 04000

Table 4.1: Counts of labelled regular tournaments

as an alternative way of computing some cumulant terms. This method may get complicated for some
cumulants of higher orders, and we only compute up to error O

(
n−3

)
for illustration.

Recall that for x ̸= ±π/2, the Taylor series gives that

log cosx = −x2

2 − x4

12 − x6

45 − 17x8

2520 +O
(
x10
)
.

So

fRT,4(x) = − 1
12

∑
1⩽j<k⩽n

(xj − xk)
4 − 1

45

∑
1⩽j<k⩽n

(xj − xk)
6 − 17

2520

∑
1⩽j<k⩽n

(xj − xk)
8.

Let Y be a Gaussian vector with density

(
n
2π

)n/2
exp

(
−n

2y
′y
)
,

and covariance matrix 1
nI. Define

Xjk := Yj − Yk.
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Then Xjk ∼ N (0, 2/n). Then we have, by the linearity of the expectation, that

κ1(fRT,4(Y)) = E [fRT,4(Y)]

= − 1
12

∑
1⩽j<k⩽n

E
[
X4

jk

]
− 1

45

∑
1⩽j<k⩽n

E
[
X6

jk

]
− 17

2520

∑
1⩽j<k⩽n

E
[
X8

jk

]
= −

(
n

2

)(
1
123!!

(
2
n

)2
+

1
455!!

(
2
n

)3
+

17
25207!!

(
2
n

)4)
= −1

2 − 5
6n − 13

3n2 +O
(

1
n3

)
,

where we use

E
[
X2ℓ

jk

]
= (2ℓ− 1)!!

(
2
n

)ℓ
for integer ℓ ⩾ 1.

For cumulants of higher orders, we use Theorem 4.3.8 to compute by constructing an auxiliary
graph, and considering pairings. Note that in order for the cumulants to be non-zero, variables cannot
be divided into two subsets that are independent. Therefore, in our case, the indices of the variables
need to have some common elements.

Claim 4.3. We have

κ(X4
ij , X

4
jk) =

(
23
(
4

2

)2

+ 4!

)
1
n4 =

312
n4 .

κ(X4
jk, X

4
jk) =

(
24
(
4

2

)2

× 2 + 4!× 24

)
1
n4 =

1536
n4 .

κ(X4
ij , X

6
jk) =

((
6

2

)(
4

2

)2

23 + 2

(
6

2

)
4!

)
1
n5 =

5040
n5 .

Moreover,

κ2(fRT,4(Y)) =
13
6n +

35
2n2 +O

(
1
n3

)
.

Proof. In order to evaluate κ(X4
ij , X

4
jk), we choose P1 as a multisit containing 4 copies of ij, and P2 as

a multisit containing 4 copies of jk.
Recall the definition of Gπ in Theorem 4.3.8, we have its vertex set is {1, 2}, and a pairing is a

matching of elements in P1 ∪ P2 with 4 pairs. There are the following two types.

ij ij

ijij

jk jk

jkjk

ij ij ij ij

jk jk jk jk
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Therefore, we have

κ(X4
ij , X

4
jk) =

∑
{(i1,i2),(i3,i4),...,(ik−1,ik)}∈Π

σji1ji2 · · ·σjik−1
jik

= 2

(
4

2

)2

σij,ijσjk,jkσ
2
ij,jk + 4!σ4ij,ij = 2

(
4

2

)2
1
n2

(
2
n

)2
+ 4!

1
n4 ,

where in the first term: the factor
(
4
2

)
is by choosing pairs within each “blob”; the factor 2 in the front

is the way of pairing two ij’s with two jk’s; and σ2ij,jk = 1/n2; similarly in the second term we have 4!.
Note that κ(X4

ij , X
4
jk) and κ(X4

ij , X
4
kj) are with the isomorphic diagrams, and will not be treated

separately in our computation, as σ2ij,jk = σ2ij,kj . However, for the cumulants of higher orders, we may
not be able to have this simplification, and the computation of κ2(f(X)) needs to take this into account.

For κ(X4
jk, X

4
jk), we have the following pairing types.

jk jk

jkjk

jk jk

jkjk

jk jk jk jk

jk jk jk jk

And similarly for κ(X4
ij , X

6
jk), we have the following types.

ij ij

ijij

jk

jk

jk

jk

jk

jk

ij ij ij ij

jk jk jk jk jk jk

Therefore, we have

κ2(f(X)) = κ2

 1
12

∑
1⩽j<k⩽n

X4
jk +

1
45

∑
1⩽p<q⩽n

X6
pq

+O
(

1
n3

)
=

1
122

∑
1⩽j<k⩽n

κ(X4
jk, X

4
jk) +

2
122

∑
1⩽i<j<k⩽n

κ(X4
ij , X

4
jk) +

2
12×45

∑
1⩽i<j<k⩽n

κ(X4
ij , X

6
jk) +O

(
1
n3

)
=

(
n

2

)
1
122

1536
n4 + 2

[n]3
2

312
122

1
n4 + 2[n]3

1
12×45

5040
n5 +O

(
1
n3

)
=

13
6n − 13

2n2 +
24
n2 +O

(
1
n3

)
.

The reason why we ignore the contribution from X8
ij is that its contribution will be at most with some

X4
jk, that is κ(X4

ij , X
8
jk), which is of order O

(
n−6

)
, and summing over i, j, k gives O

(
n−3

)
. Similarly,

the contribution of κ(X6
ij , X

6
jk), κ(X

6
ij , X

8
jk), and κ(X8

ij , X
8
jk), all get absorbed in the error.
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Claim 4.4. We have

κ
(
X4

ij , X
4
ik, X

4
iℓ

)
=

((
4

2

)3

22 × 2× 2× 3 +

(
4

2

)3

× 23 × 23 + 42 × 3!

(
4

2

)
3× 2× 2 +

(
4

2

)3

23

)
1
n6

κ
(
X4

ij , X
4
jk, X

4
kℓ

)
=

(
4

2

)3

2× 2
1
n4

(
2
n

)2
= 63 × 24

1
n6 .

Moreover,

κ3(f(X)) = −25
n2 +O

(
1
n3

)
.

Proof. For κ
(
X4

ij , X
4
ik, X

4
iℓ

)
, we have the following types.

ij ij

ijij

ik ik

ikik

iℓ iℓ

iℓiℓ

ij ij ijijik

ik ik

ik

iℓiℓ iℓ iℓ

ij

ij

ij

ij

ik ik

ikik

iℓ

iℓ

iℓ

iℓ

ij

ij

ij

ij

ik ikikik

iℓ

iℓiℓ

iℓ

Similarly, for κ
(
X4

ij , X
4
jk, X

4
kℓ

)
, we have the following types.

ij ij

ijij

jk jk

jkjk

kℓ kℓ

kℓkℓ
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Therefore, we have that

−κ3(fRT,4(Y)) = κ3

 1
12

∑
1⩽j<k⩽n

X4
jk +

1
45

∑
1⩽p<q⩽n

X6
pq

+O
(

1
n3

)
=

6
123

∑
1⩽i<j<k<ℓ⩽n

κ
(
X4

ij , X
4
ik, X

4
iℓ

)
+

6
123

∑
1⩽i<j<k<ℓ⩽n

κ
(
X4

ij , X
4
jk, X

4
kℓ

)
+O

(
1
n3

)
=

6
123

(
[n]4
3! κ

(
X4

ij , X
4
ik, X

4
iℓ

)
+

[n]4
2 κ

(
X4

ij , X
4
jk, X

4
kℓ

))
+O

(
1
n3

)
=

25
n2 +O

(
1
n3

)
.

Combining all above, we have

κ1(fRT,4(Y)) +
1
2κ2(fRT,4(Y)) +

1
6κ3(fRT,4(Y))

= −1
2 − 5

6n − 13
3n2 +

1
2

(
13
6n − 13

2n2 +
24
n2

)
− 1

6

(
25
n2

)
+O

(
1
n3

)
= −1

2 +
1
4n +

1
4n2 +O

(
1
n3

)
.

This matches the result in Corollary 4.1.3.
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Chapter 5

The non-existence of small
subhypergraphs via perturbation method

5.1 Introduction

For all integer n ⩾ 1, let [n] denote the integer set {1, 2, . . . , n}. Define the binomial random r-uniform
hypergraph Hr(n, p) to be the r-uniform hypergraph (r-graph for short) on the vertex set [n] such that
each r-element subset (r-set for short) is an edge independently with probability p. We use Hr(n,m)

to denote the random r-graphs on n vertices obtained by choosing uniformly at random from the
((nr)
m

)
r-graphs having m hyperedges.

We use νH and µH to denote the numbers of vertices and hyperedges of a hypergraph H respectively.
A hypergraph H0 is strictly balanced if all its subgraphs are strictly less dense than H0, that is, we have

µH0

νH0
>
µH1

νH1

for every proper non-empty subgraph H1 of H0. Let R be some fixed finite set of strictly balanced
hypergraphs with each having at least two hyperedges. Our focus is the asymptotic probability that a
random hypergraph does not have a subhypergraph that is isomorphic to any hypergraph in R, that
is, the probability of Hr(n, p) is R-free. With certain restrictions on p, we show that for Hr(n, p),
the probability that there are no copies of any hypergraphs in R is the exponential of an approperate
truncation of a power series in n and p, with error factor (1 + o(1)). For Hr(n,m) the non-existence
probability is given in the same way, but by a different power series in n and d, where d = m/

(
n
r

)
, under

corresponding restrictions on d.
We adapt the perturbation method introduced by Wormald [103], and its extension [98], both of

which deal with the graph case. We keep track of the distribution of a set of clusters in a random
hypergraph, where clusters are edge-overlapping groups of copies of hypergraphs in R; and obtain the
ratio of the “adjacent” probabilities of having “perturbed” cluster counts, where the number of a cluster
differs by 1 for one cluster type. By deriving recursions for ratios of occurrence probabilities of different
types of clusters, we investigate the probability of no occurrences of hypergraphs in R. All our basic work
is in Hr(n, p), the hyperedge-independent (binomial) model for random hypergraphs. By considering
recursions involving both R and isolated hyperedges, we obtain results for Hr(n,m).

We follow quite closely the method [103, 98], and extend the framework to the more general hy-
pergraph setting. In particular, the ratios of occurrence probabilities are obtained by a more explicit
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iterative procedure, and simplifications are made to derive the polynomials and asymptotic formula.
Let χ > 0 be defined by

χ = χ(R) = max
H∈R

χ(H) = max
H∈R

max
H′⊆H
µH′⩾1
νH>νH′

νH−νH′
µH−µH′

. (5.1.1)

The extension value of a hypergraph H, denoted by x, is defined by

x(H,n, p) := max
H′⊆H
µH′⩾1
νH>νH′

nνH−νH′pµH−µH′ = max
H′⊆H
µH′⩾1
νH>νH′

(
n

νH−νH′
µH−µH′ p

)µH−µH′

. (5.1.2)

We also define x(R, n, p) = maxH∈R x(H,n, p) for a set of hypergraphs R. We restrict our consideration,
for the rest of this chapter, to p = p(n) such that, for some ε > 0,

p = O
(
n−χ−ε

)
. (5.1.3)

Under this assumption, in view of (5.1.2), we have that

x = x(R, n, p) = O
(
n−ε

)
. (5.1.4)

The reason for this restriction on p is that our analysis relies on a copy of any H ∈ R being unlikely
to overlap edge-wise with any other copies of H ′ ∈ R, and therefore the set of types of clusters likely
to occur and the clusters themselves are of bounded size. For a fixed hypergraph H and any of its
subhypergraphs H ′, let Φ(H ′, H) be the expected extension count of a fixed “rooted” H ′ to a copy of H
in Hr(n, p), that is the expected number of subgraphs of G ∈ Hr(n, p) that are isomorphic to H with
E(H ′) ⊆ E(G), conditional on E(H ′) ⊆ E(G). Then

Φ(H ′, H) = Θ

((
n− νH′

νH − νH′

)
pµH−µH′

)
= Θ

(
nνH−νH′pµH−µH′

)
. (5.1.5)

Therefore, if p is larger than n−χ, there will be subhypergraphs consisting of arbitrarily large numbers
of copies of H “chained” together by shared hyperedges for some H ∈ R.

Theorem 5.1. Let R be some fixed finite set of hypergraphs. For any ε > 0, if p = O(n−χ(R)−ε), then
there exist constants iℓ > 0, jℓ > 0 and cℓ (all depending only on R), such that

P (Hr(n, p) is R-free) = exp

(
Mε∑
ℓ=1

cℓn
iℓpjℓ + o(1)

)
, (5.1.6)

where the bound implicit in o(1) is uniform over all such p (but depends on ε), and Mε is a constant
depending only on ε and R. A similar result holds for Hr(n,m), for which we set p =

(
n
r

)−1
m.

The series in the exponent of (5.1.6) is obtained by considering non-negligible contribution from
clusters as corrections of the Poisson approximation, and the terms in the series up to any point can
be explicitly computed by the description given in the proof. It is shown by Ruciński [86] that the
distribution of subgraph count in random graph is asymptotically Poisson for p up to when x = o(1),
which also reveals partially the necessity of the constraint on p. In fact, by keeping track of the
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numbers of clusters, we obtain stronger results, giving approximation of the conditional probabilities of
avoiding certain sets of clusters given the counts for smaller ones.

It may be possible to modify our approach for hypergraphs that are not strictly balanced. In
some cases, for instance where H0 has a unique densest subgraph, the desired result can be deduced
immediately from our results. However, other cases are more delicate, with different subhypergraphs of
H0 ‘competing’, for which simply considering the extension value (5.1.2) may not be enough, and more
constraints may be needed.

We illustrate our method by obtaining the asymptotic probability of a random hypergraph being
linear. Linear hypergraphs have been well studied in many contexts (sometimes under the name ‘simple
hypergraphs’). A hypergraph is linear if every pair of hyperedges intersects in at most one vertex.
We accordingly define a set H0 of ‘forbidden’ hypergraphs containing all r-graphs having two distinct
hyperedges e1 and e2 and vertex set e1 ∪ e2, such that 2 ⩽ |e1 ∩ e2| < r. Then the probability that a
random hypergraph is linear equals the probability of avoiding all copies of all ‘forbidden’ hypergraphs
in H0.

The asymptotic probability that there are no copies of any hypergraphs in R for Hr(n, p) was also
obtained by Mousset, Noever, Panagiotou, and Samotij [77], which was utilised to give asymptotic
linearity of Hr(n, p) by Zhang [104]. They both need the same restriction (5.1.3) on p. However, their
methods cannot give results for Hr(n,m).

We extend the results by McKay and Tian for fixed r to the wider range of p given by constraint
(5.1.3). In view of (5.1.3), we have the constraint p = O

(
n2−r−ε

)
with some ε > 0 for H0. Then the

probability of a random hypergraph being linearity follows as a direct corollary. Recall that Lr(n)

denotes the set of all linear r-uniform hypergraphs on n vertices.

Corollary 5.2. Let r ⩾ 3 be fixed. For any ε > 0, if p = O(n2−r−ε), then there exist constants iℓ > 0,
jℓ > 0 and cℓ (all depending only on the value of r), such that

P (Hr(n, p) ∈ Lr(n)) = exp

(
Mε∑
ℓ=1

cℓn
iℓpjℓ + o(1)

)
, (5.1.7)

where the bound implicit in o(1) is uniform over all such p (but depends on ε), and Mε is a constant
depending only on ε and r. A similar result holds for Hr(n,m), for which we set p =

(
n
r

)−1
m.

The result by McKay and Tian has thus been extended for all p such that p = O(n2−r−ε). The
explicit formula for a particular p requires computations that are described in the proof. Next we
consider a specific case, by restricting to r = 3, and computing only the first a few terms of the series
explicitly for illustration purposes. This extends the range of p for the asymptotic linearity of H3(n, p)

and H3(n,m) given by McKay and Tian.

Theorem 5.3. If p = o
(
n−7/5

)
, then

P (H3(n, p) ∈ L3(n)) = exp
(
−1
4n

4p2 +
2
3n

5p3 − 55
24n

6p4 +
3
2n

3p2 + o (1)
)
. (5.1.8)

Theorem 5.3 matches the one obtained by Zhang in [104].
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Theorem 5.4. If m = o
(
n8/5

)
, then

P (H3(n,m) ∈ L3(n)) = exp
(
−1
4n

4d2 − 1
12n

5d3 − 1
24n

6d4 +
3
2n

3d2 + o (1)
)
, (5.1.9)

where d =
(
n
3

)−1
m.

For r = r(n) ⩾ 3, McKay and Tian [74] obtained the probabilities of random hypergraphs Hr(n, p)

and Hr(n,m) being linear for p
(
n
r

)
= o

(
r−3n3/2

)
, and m = o(r−3n3/2), respectively using switching

method, whose approach is also to consider ratios of probabilities. For the case when r = 3, they
obtain the first two terms in the exponent in (5.1.8) with error O

(
p−1/2

(
n
3

)−1/2
log3 n+ n3p2

)
for

p = o
(
n−3/2

)
; and similarly, for m = o

(
n3/2

)
, they obtain the first two terms in the exponent in (5.1.9)

with error O
(
m2n−3

)
.

5.2 Clusters and recursions for maximal cluster counts

Our basic setting is an extension of the graph case treated in [98] to hypergraphs. Let Ω be some finite
set. A family K of subsets of Ω is called a clustering if C1 ∈ K, C2 ∈ K and C1 ∩ C2 ̸= ∅ imply that
C1 ∪C2 ∈ K. The elements of K are called clusters. We will consider the case and assume henceforth in
this chapter that Ω = Ω(n) is the set of r-subsets of an n-set, or equivalently, Ω is the set of hyperedges
of the complete r-uniform hypergraph Kn,r on n vertices. Throughout this chapter, we take a fixed
finite set of hypergraphs R with |E(H)| ⩾ 2 for all H ∈ R, and investigate the distribution of the
subhypergraph counts of hypergraphs in R in a random r-uniform hypergraph on n vertices, that is, a
random subset of Ωn.

Every edge set of subhypergraph of Kn,r that is isomorphic to any hypergraph H ∈ R is called an
elementary cluster. We deal with the minimal clustering that contains every elementary cluster and call
this the R-clustering of Ω. Equivalently, a set of hyperedges J ⊆ Ω is in the R-clustering if and only if
there is a sequence J1, . . . , Ji of subsets of Ω such that each Jj is an elementary cluster,

⋃i
j=1 Jj = J ,

and Jk ∩
(⋃k−1

i=1 Jj

)
̸= ∅ for 2 ⩽ k ⩽ i. We also consider R∗-clustering, which consists of the clusters of

the R-clustering, together with all the 1-element subsets of Ω, recall that we assume that |E(H)| ⩾ 2

for all H ∈ R.
For H ⊆ Ω, a cluster of H is any cluster in clustering K that is contained in H. A maximal cluster

Q of H is a cluster of H which is contained in no larger cluster of H. Equivalently, if the maximal
cluster Q ∈ K is a subset of H, then for every J ∈ K with J ⊆ H, we have either J ⊆ Q or J ∩Q = ∅.

Being a subset of Ω, a cluster induces a subhypergraph of Kn,r. The isomorphism class of the
subhypergraph is called the type of the cluster and also of the subhypergraph. The set of types will be
denoted T , and we use τ to denote the function which maps a cluster or the corresponding graph to its
type. Given t ∈ T , we use the notation Ct := {S ⊆ Ω : τ(S) = t}.

We will specify a non-empty finite set S of types of clusters which is closed under taking subsets,
that is, if S, S′ ∈ K, τ(S) ∈ S and S′ ⊆ S then τ(S) ∈ S. Let s = |S| be the number of types in S. We
will use t⋆ to denote the type of the single edge cluster, which appears in the R∗-clustering. The types
in S and clusters of these types are called small, and any type or cluster that is not small is called large.
Let L be the set of large types. An unavoidable cluster is any large cluster which is the union of a small
cluster Q and a set of small clusters all pairwise disjoint with each having non-empty intersection with
Q. The set of types of unavoidable clusters is denoted by U . Note U ⊆ L.
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To record how many subhypergraphs of every small type are present in a given hypergraph, we
consider the set F of cluster counts, by which we mean all non-negative integer functions defined on S.
For any H ⊆ Ω, define sH(t) to be the number of maximal clusters of H of type t for each t ∈ S. Note
that sH ∈ F . The function δt ∈ F has value 1 at type t, and 0 elsewhere.

For each f ∈ F , define the set Cf to consist of every r-graph H on n vertices with no large clusters
for which sH = f , that is, with exactly f(t) maximal clusters of type t for each t ∈ S. We write P (f)

for P (Hr(n, p) ∈ Cf ) for simplicity.
For types u, t ∈ S, a fixed J of type u, and h ∈ F , we define

c(u, t, h) =
∑

Q⊆J, τ(Q)=t
J\Q⊆H⊆J, sH=h

p|Q∩H|(1− p)|Q\H|, (5.2.1)

which simplifies, when u = t, to

c(t, t, h) =
∑

H⊆J, sH=h

p|H|(1− p)|J\H|. (5.2.2)

Note that c(u, t, h) = O (1) always; c(t, t,0) = 1 +O(p); and c(t, t, h) = O(p) for h ̸= 0.
Recall that νG and µG denote the numbers of vertices and hyperedges of a hypergraph G. We extend

the notation to arbitrary subsets H of Ω, such that νH is the number of vertices of the hypergraph
induced by H and µH is the number of edges. For a cluster H of type t, we also use νt and µt for the
numbers of vertices and hyperedges respectively.

For any t ∈ T , let Q be a cluster of type t and |aut(Q)| be the number of automorphisms of the
hypergraph induced by Q. Then the expected number of copies of the subhypergraph induced by Q in
Hr(n, p) is

λt := |Ct|pµQ =
[n]νQ

|aut(Q)|p
µQ = Θ(nνQpµQ), (5.2.3)

for every positive integer i ⩽ n, the i-th falling factorial is denoted by [n]i := n(n− 1) · · · (n− i+ 1).
For all f ∈ F and t ∈ S, we compare the distribution of cluster counts with the corresponding

Poisson distribution to obtain correction factors defined by

γ(f, t) =
f(t)+1
λt

· P(f+δt)
P(f) . (5.2.4)

If the numbers of copies of each small type were independent Poisson variables, then all the γs would be
exactly 1. Showing γs are all close to one indicates that the cluster counts are approximately Poisson.

We first introduce a lemma giving approximate recursions for the correction factors. This is an
extension to the hypergraph case, and slight reformulation of Proposition 2.1 in [98].

Lemma 5.5. For all f ∈ F and t ∈ S,

γ(f, t) =
1

c(t,t,0)

(
1− Σ(f, t)− θ(f,δt)

|Ct|P(f)

)
, (5.2.5)

where
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(a1) Σ(f, t) is defined by

Σ(f, t) =
∑
u∈S

h,f−h∈F
(u,h) ̸=(t,0)

c(u, t, h)
λu
λt
γ(f − h, u)

k∏
i=1

fi(ti)+1
λtiγ(fi,ti)

, (5.2.6)

where ti and fi depend on h, and satisfy (a2) and (a3);

(a2) for each h, we have that t1, . . . , tk is a sequence in S such that h =
∑k

i=1 δti ;

(a3) for each i ∈ [k], fi = f −
∑i

j=1 δtj ;

(a4) we have

0 ⩽ θ(f, δt) ⩽
∑

L:τ(L)∈U

∑
Q⊆L, τ(Q)=t
L\Q⊆H⊆L

P (f − sH)
(

p
1−p

)|H|
. (5.2.7)

Proof. For any f ∈ F and any cluster Q ∈ K of type t, we consider all the possible hypergraphs resulting
from adding Q to hypergraphs in Cf . Given a pair (E,Q), where E = E(G) is the edge set of G ∈ Cf ,
let J be the maximal cluster of E ∪Q containing Q.

Recall that Ct denotes the set of subsets of Ω which can form a cluster of type t. Then classifying
E ∪Q according to the type of J , and also according to h = sE∩J , gives that

|Ct|P (f) =
∑
u∈S
h∈F

(f(u)− h(u) + 1)
∑

Q⊆J :τ(Q)=t

∑
J\Q⊆H⊆J

sH=h

(
1−p
p

)|Q\H|
P (f − h+ δu) + θ(f, δt), (5.2.8)

where the exponent of the factor (1 − p)/p arises because we need to remove |Q \ H| edges in J to
reconstruct the graph G ∈ Cf from graph E∪Q. The θ term and the bound (5.2.7) arise from observing
that if adding Q to the hypergraph G such that J is a large cluster L, then it must be unavoidable since
G ∈ Cf has no large clusters, then the resulting graph will be in f − sH , and therefore |H| edges need
to be added for reconstruction of G.

Multiplying (5.2.8) by pµt gives

λtP (f) =
∑
u∈S
h∈F

(f(u)− h(u) + 1)
∑

Q⊆J :τ(Q)=t
J\Q⊆H⊆J, sH=h

p|Q∩H|(1− p)|Q\H|P (f − h+ δu) + pµtθ(f, δt). (5.2.9)

Isolating the term with (u, h) = (t,0) in the summation and plugging in c(u, t, h) defined by (5.2.1)
yield

c(t, t,0)
(f(t)+1)P(f+δt)

λtP(f) = 1−
∑
u∈S

h,f−h∈F
(u,h) ̸=(t,0)

c(u, t, h)
λu
λt

f(u)−h(u)+1
λu

P(f−h+δu)
P(f−h)

P(f−h)
P(f) − θ(f,δt)

|Ct|P(f) .
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Rewriting using the correction factors defined by (5.2.4) gives

c(t, t,0)γ(f, t) = 1−
∑
u∈S

h,f−h∈F
(u,h) ̸=(t,0)

c(u, t, h)
λu
λt
γ(f − h, u)

P(f−h)
P(f) − θ(f,δt)

|Ct|P(f) . (5.2.10)

Note that for each h, there exists H with sH = h containing pairwise edge-disjoint clusters J1, . . . , Jk
of types t1, . . . , tk, which may not necessarily be distinct, such that h =

∑k
i=1 δti . Here and henceforth,

we choose such a sequence t1, . . . , tk canonically for each h such that c(u, t, h) ̸= 0 for u, t ∈ S. Then
the recursive formula (5.2.5) follows by rewriting the ratio as a telescoping product:

P(f−h)
P(f) =

k∏
i=1

P(f−
∑i

j=1 δtj)
P(f−

∑i−1
j=1 δtj)

=

k∏
i=1

(f−
∑i

j=1 δtj )(ti)+1

λtiγ(f−
∑i

j=1 δtj ,ti)
=

k∏
i=1

fi(ti)+1
λtiγ(fi,ti)

, (5.2.11)

and therefore completes the proof.

The assumption on p = p(n) we will make for now is, for some fixed ε > 0, that

p = n−χ−ε+o(1). (5.2.12)

This assumption will be relaxed to obtain asymptotic results that hold uniformly over more general
p = p(n) = O(n−χ−ε) at the end of Section 5.4.

The set of types admits a partial ordering, and it is by defining t to be strictly less than u in the
poset S, denoted by t ≺ u, if and only if any cluster of type u properly contains a cluster of type t.
Note that if t ≺ u, then a cluster of type u can be obtained from a cluster Q of type t by a sequence of
non-disjoint unions of elementary clusters Q0, . . . , Qk, where Qi is the edge set of a hypergraph that is
isomorphic to some Gi ∈ R, and Qi ̸⊆ Q ∪

(⋃i−1
j=0Qj

)
. Then recalling the definition of Φ and bound

(5.1.5), for G ∈ Hr(n, p) and t ≺ u, by extending from type t, we have the expected number of clusters of
type u in E(G) can be bounded above by a finite sum whose terms are all of the form λt

∏k
i=0Φ(Hi, Gi)

where Hi is a hypergraph with edge set Qi ∩
(
Q ∪

(⋃i−1
j=0Qj

))
. In view of (5.1.2), Φ(Hi, Gi) = O (x)

for all i, since Hi is a non-empty proper subset of the edge set of an elementary cluster and there is
a bounded number of ways to distinguish one of the subgraphs of Gi isomorphic to Hi. Recalling x

satisfies (5.1.4), therefore, we have that

if t ≺ u, then λu
λt

= O(x). (5.2.13)

For a given R and ε > 0 such that p satisfies (5.1.3), we define the set S of small cluster types to be

S = {t : νt/µt ⩾ χ+ ε}. (5.2.14)

Then in view of the assumption on p in (5.2.12), for each t ∈ S, we have

λt = Θ(nνtpµt) = nνt−χµt−εµt+o(1), (5.2.15)

and therefore λt ⩾ no(1) for all t ∈ S. Note that the set S depends on ε and R, and its size is finite by
(5.1.4) and (5.2.13). Moreover, its size is bounded for ε bounded away from 0.
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In view of (5.2.14) and (5.2.15), we have

λL := sup
t̸∈S

λt = O
(
n−εL

)
(5.2.16)

for some constant εL > 0.
We further define two subtypes of clusters:

(t1) S2 := {t ∈ S : νt/µt = χ+ ε},

(t2) S1 := S \ S2.

Then we have for all t ∈ S, that λt = Θ(nc+o(1)) for some c = c(t) ⩾ 0; in particular, c = 0 if t ∈ S2.
For technical reasons, we assume additionally that p satisfies

nrp > nε
′′

(5.2.17)

for some ε′′ > 0. This implies that the expected number of edges in the random hypergraph goes to
infinity at a reasonable rate. Without this assumption, each term in the power series goes to zero, since
the expected number of copies of any connected hypergraph with at least two hyperedges goes to zero,
and therefore the probability is asymptotic to 1. Moreover, this assumption implies that in the case of
the R∗-clustering, the single edge cluster is in S.

It would be sufficient to obtain estimates of correction factors for restricted cluster counts in our
method. Let FS ⊂ F be the set containing all f ∈ F such that for all t ∈ S,

f(t) ⩽ mt, (5.2.18)

where

mt =

3λt if t ∈ S1,

λt log n if t ∈ S2.
(5.2.19)

5.3 Iterative approximations of correction factors

The iterative approximation scheme we use here is essentially the same as that in [98], which is in a
less general context. The similar analysis here is in a viewpoint of contractive mappings that is not
emphasized there. To recursively calculate the correction factor γ(f, t) using its definition, we need
to keep track of γ(f, t) for each f ∈ F and t ∈ S. Instead we consider a simpler approximation in a
compact form, not depending on f explicitly. Let g = (g1, . . . , gs) denote a vector of variables. (Later
gi is substituted by scaled cluster count f(i)/λi.)

Recall that for each h, we have that t1, . . . , tk is a sequence in S such that h =
∑k

i=1 δti . In view
of the definition of γ(f, t) in (5.2.5), we define formal power series Γt (n, p,g) in n, p, g1, . . . , gs, for all
t ∈ S, recursively by

Γt =
1

c(t,t,0)

1−
∑
u∈S
h∈F

(u,h)̸=(t,0)

c(u, t, h)
λu
λt

Γu

k∏
i=1

gti
Γti

 , Γt(0, 0,0) = 1. (5.3.1)
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Here we treat n and p as independent formal indeterminates. To see this properly defines formal power
series, recall from the definition that

(1) c(u, t, h) is a polynomial in p;

(2) for all t ∈ S, λt is a polynomial in n and p;

(3) c(t, t,0) = 1 +O(p);

(4) for h ̸= 0, c(t, t, h) = O(p);

(5) c(u, t, h)λu/λt has no constant term for u ̸= t. (For t ≺ u, λu/λt is a polynomial in n and p with
terms of the form pµu−µtni since µu > µt.)

It follows that there exists a unique formal power series Γt(n, p,g) for all t ∈ S defined by (5.3.1),
and it has constant term 1 for each t ∈ S.

In view of (5.3.1), we accordingly introduce an iterative procedure which is essentially described in
[98]. Successive approximations to {Γt}t∈S, in the form of power series in n, p, g, are defined as follows,
for each t ∈ S:

(r1) Γ
(0)
t = 1;

(r2) for every r ⩾ 0, given series {Γ(r)
u }u∈S,

Γ
(r+1)
t =

1
c(t,t,0)

(
1− Σ

(r+1)
t

)
, (5.3.2)

where

Σ
(r+1)
t =

∑
u∈S
h∈F

(u,h) ̸=(t,0)

c(u, t, h)
λu
λt

Γ(r)
u

k∏
i=1

gti
Γ
(r)
ti

. (5.3.3)

Then the current series on the right side give rise to updated series on the left side.
Given f ∈ F , for each t ∈ S, we approximate γ(f, t) by

γt(f) := Γt (n, p, g̃) , with g̃ = (g̃1, . . . , g̃s) =

(
f(1)
λ1

, . . . ,
f(s)
λs

)
, (5.3.4)

which is in turn approximated, for some suitable r, by

γ
(r)
t (f) := Γ

(r)
t (n, p, g̃) . (5.3.5)

Then, given numerical values of n and p, γt(·) maps f ∈ F to numbers, whereas Γt is a power series in
g̃.

Since f ∈ F and we take p to be a function of n such that x = x(n, p) = O(n−ε) by (5.1.4), we
have that for given n, p and f satisfying these constraints, there is a unique value of γt(f) determined
from the series Γt and (5.3.4), as long as n is large enough. One way to see this is to consider an initial
approximation γ

(0)
t (f) = 1 for each γt(f), and then, iterating the approximations using (5.3.2), with

gt set to f(t)/λt in (5.3.3), the current values of γ(r)t (f) on the right side giving rise to updated values
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on the left side. We will show that this in a sense determines a contractive mapping which has a fixed
point near the initial approximate solution.

In order to do this, we start with some necessary results, following [98] closely. First rewrite (5.3.2)
as

Γt = 1 + w0(t)−
∑
u∈S
h∈F

(u,h)̸=(t,0)

w(u, t, h)Γu

k∏
i=1

1
Γti

, (5.3.6)

with

w0(t) =
1

c(t,t,0) − 1, w(u, t, h) =
λuc(u,t,h)
λtc(t,t,0)

k∏
i=1

gti . (5.3.7)

In view of (5.3.4), here (5.3.6) defines γt as a power series in the ws, which, if substituted appr-
operately as power series in n, p and g using (5.3.7), results in the same series as defined in (5.3.1).
Let w̃(u, t, h) denote the value of w(u, t, h) obtained if we replace gti by g̃ti in (5.3.7), and similarly, set
w̃0(t) = w0(t).

Next is a reformulation of Lemma 2.4 in [98] for the present setting.

Lemma 5.6. Suppose that 0 ⩽ g̃t = g̃t(n) = O
(
no(1)

)
, with g̃t = O(1) for all t ∈ S1. Then w̃0(t) = O(p)

and w̃(u, t, h) = O(x) for each term in (5.3.6) uniformly.

Proof. Since k is bounded in (5.3.7) and c(t, t,0) = 1 +O (p) = 1 + o(1), then w̃0(t) = O(p), and

w̃(u, t, h) = O

(
λuc(u,t,h)

λt

(
max

i
g̃ti

)k
)
. (5.3.8)

• Firstly, if h = 0, then k = 0, and u ≻ t by the condition in the summation. So w̃(u, t, h) = O(x).

• Secondly, suppose that h ̸= 0 and u = t.

– If h = δt∗ (recall that t∗ is the type of the single-edge cluster), then c(u, t, h) = O (p) and
t∗ ∈ S1. So, using the hypothesis of this lemma, the maximum in (5.3.8) is O(1), and thus
w̃(u, t, h) = O(p) = O(x).

– In all other cases, if c(u, t, h) ̸= 0, then c(t, t, h) = O(p2) since sH = h implies |H| ⩾ 2.
By (5.3.8), again w̃(u, t, h) = O(x).

• Lastly, suppose that h ̸= 0 and u ≻ t.

– If ti ∈ S1 for all i ∈ [k], then the maximum in (5.3.8) is O(1), Since λu/λt = O(x), then
w̃(u, t, h) = O(x).

– If there is ti ∈ S2 for some i ∈ [k]. Since J \ Q ⊆ H ⊆ J , so H contains only sub-clusters
of cluster J of type u ∈ S, then we must have ti = u, h = δu, and hence Q ⊆ J and
|Q ∩H| ⩾ 1, and so c(u, t, h) = O(p) = O(x). Since the maximum in (5.3.8) is O(no(1)), the
bound obtained is O(x2no(1)), and the result follows in this case.

This completes the proof.

125



Recall that γt(f) defined by (5.3.4) is a function of n, p and f . We estimate it by a reformulation
of Lemma 2.5 in [98] with the proof essentially the same.

Lemma 5.7. For f ∈ FS and p satisfying (5.1.3), the series definition of γt(f) in (5.3.4) converges
absolutely for n sufficiently large, and

γt(f) = 1 +O(x). (5.3.9)

Proof. For any t ∈ S2, it follows from the definition of g̃t, the upper bounds (5.2.19) and (5.2.18) on
f(t), that g̃t = O(no(1)). On the other hand, if t ∈ S1, then 0 ⩽ g̃t ⩽ 3. Thus the conditions of
Lemma 5.6 are satisfied.

For polynomials or formal power series P and P̂ , denote by P+ the formal power series obtained
by replacing all coefficients of P by their absolute values, and write P ⩽ P̂ if the coefficient of any
monomial in P is no greater than the corresponding coefficient in P̂ . We will use the obvious fact that
if P+ is absolutely convergent (for a particular assignment of the indeterminates) then so is P .

With (5.3.6) in mind, define the power series Γ∗ for each t ∈ S by

Γ∗ = 1 + w+
0 +

∑
u∈S
h∈F

(u,h)̸=(t,0)

w(u, t, h)+Γ∗
u

k∏
i=1

1
2−Γ∗

ti

, (5.3.10)

which by induction has a unique solution in formal power series with constant terms all 1. Then

1
2−Γ∗

ti

=
∑
j⩾0

(Γ∗
ti − 1)j

and so by induction, all coefficients of Γ∗
t are nonnegative for each t ∈ S. Thus

1
2−Γ∗

ti

⩾
∑
j⩾0

(1− Γ∗
ti)

j =
1
Γ∗
ti

and, again by induction, comparing (5.3.6) with (5.3.10) gives

Γ+
t ⩽ Γ∗

t (5.3.11)

for each t ∈ S.
Now consider summing the terms of Γ∗

t (n, p, g̃) for p and f as in the lemma, when n is sufficiently
large. It is immediate from the proof of Lemma 5.6 that w(u, t, h)+ = O(x) and w+

0 = O(p) = O(x).
It is now straightforward to verify from (5.3.10), by a sequence of successive approximations beginning
with Γ∗

t ≈ 1 for all t, that

Γ∗
t (n, p, g̃) = 1 +O(x). (5.3.12)

The lemma now follows since from (5.3.11), and the fact that the constant terms in all Γs and Γ∗s are
all 1, (Γt − 1)+ ⩽ Γ∗

t − 1.

Next is a reformulation of Proposition 2.2 in [98].
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Claim 5.8. Uniformly for all t ∈ S and f ∈ FS, we have

γ(f, t) = 1 +O (ϕtx) (5.3.13)

and

θ(f,δt)
|t|P(f) = O

(
ϕtλL
λt

)
, (5.3.14)

where ϕt = no(1) for t = t∗ and ϕt = 1 otherwise.

Proof. We will prove that for some sufficiently large constants C and C ′ (not depending on f, t, n, or
p), and some function 1 ⩽ ϕ∗ = ϕ∗(n) = no(1) such that, for n large enough and all relevant f and t,

θ(f,δt)
|t|P(f) ⩽ Cϕt

λL
λt
, (5.3.15)

and

|γ(f, t)− 1| ⩽ C ′ϕtx ⩽ 1/2, (5.3.16)

with ϕt = ϕ∗ for t = t∗ and ϕt = 1 otherwise. We use an induction on f ∈ F in the lexicographic
order, that is, g < f if and only if g ̸= f and g has a smaller value than f in the first entry at which
they differ.

(i) The bound (5.3.15) involving θ:
First recall the bound on θ(f, δt) in (5.2.7). Since the number of clusters of the complete r-graph

Kn,r that are isomorphic to a given cluster L is O(nνL), and the number of types of unavoidable clusters
is by definition bounded for p satisfying (5.1.3), we have

θ(f,δt)
|t|P(f) = O (1) max

τ(L)∈U
τ(Q)=t, Q⊆L
L\Q⊆H⊆L

nνL−νQ
(

p
1−p

)|H| P(f−sH)
P(f)

= O (1) max
τ(L)∈U

τ(Q)=t, Q⊆L
L\Q⊆H⊆L

O

(
λτ(L)

λt

)
p|Q∩H|P(f−sH)

P(f) , (5.3.17)

where the second equality is by noting

|H| ⩾ |L| − |Q|, λt = O
(
nνQp|Q|

)
, and λτ(L) = O

(
nνLp|L|

)
.

In the case f = 0, we may assume sH = 0, since otherwise, Cf−sH is empty. Since τ(L) /∈ S, we
have (5.3.15) for sufficiently large C.

For the case 0 ̸= f ∈ FS, we may suppose the claim has been shown when f is replaced by any
g < f . Denoting a general term in the maximum in (5.3.17) by M , since τ(L) ∈ U ⊆ L, it suffices to
show that M = O(λτ(L)/λt), or M = O(no(1)λτ(L)/λt) in the case of the R∗

0-clustering, that is, when
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t = t⋆. Applying the same telescoping technique in (5.2.11), we have the ratio of probabilities

P(f−sH)
P(f) =

k∏
i=1

fi(ti)+1
λtiγ(fi,ti)

, (5.3.18)

where sH =
∑k

i=1 δti and fi = f −
∑i

j=1 δtj for all i ∈ [k]. By definition, an unavoidable cluster has size
at most R(R − 1), where R is the size of the largest small cluster. Hence, the number of terms in the
product (5.3.18) is at most R(R− 1).

Note also that each fi occurs before f in lexicographic order, and (5.3.16) inductively implies 1/2 ⩽

γ(fj − δuj , δuj ) ⩽ 3/2 for all j ⩾ 1. Suppose firstly that, in (5.3.18), ti ∈ S1 for all i. Then by (5.2.18),
fj(ti)/λti ⩽ 3 for all i, so we have that the product in (5.3.18) is O(1) and M = O

(
λτ(L)/λt

)
, as

required.
If there is some j′ ∈ [k] in (5.3.18), for which tj′ ∈ S2, then λtj′ = no(1). There are two subcases to

consider.

• Firstly, if H ∩Q ̸= ∅, then p|H∩Q|no(1) ⩽ pno(1) = o(1) and hence M = O(λτ(L)/λt) as required.

• The second subcase is H ∩ Q = ∅. Then H contains a cluster Q′ of type tj′ , disjoint from Q. It
follows that there is a sequence Q1, . . . , Qℓ of elementary clusters, each nontrivially intersecting
the next, with Q1∩Q′ ̸= ∅, Qℓ∩Q ̸= ∅, and Qℓ ̸= Q. Note that here we only claim that Q1, . . . , Qℓ

are elementary clusters in H, and H may not necessarily be the union Q′ ∪
(
∪ℓ
i=1Qi

)
. We will

consider two subsubcases of this second case.

– Suppose firstly that Q ̸⊆ Qℓ, and so Q′′ := Q′∪
(
∪ℓ
i=1Qi

)
is a cluster satisfying Q′ ⊂ Q′′ ⊂ L,

where the inclusions are proper and τ(Q′) = tj′ . It follows that λτ(Q′′) = O(λtj′x) =

O(no(1)x) since tj′ ∈ S2. Thus τ(Q′′) ∈ L, and hence by the definition (5.2.16) of λL, we
have λτ(Q′′) ⩽ λL. Similarly, λτ(L) = O(xλτ(Q′′)) = O(xλL), and M = O

(
xλτ(L)n

o(1)/λt
)
=

O
(
λτ(L)/λt

)
as required.

– For the other subsubcase Q ⊆ Qℓ, recall that Qℓ ̸= Q. As Qℓ is elementary, it follows that this
is for the R∗

0-clustering, and Q must be a single edge of type t∗. Hence M = O
(
λτ(L)n

o(1)/λt
)

in this case, as required. We note that in fact the bound can be strengthened to O
(
λτ(L)/λt

)
unless Qℓ = L, ℓ = 1 and j = 1, and looking back at the above argument, we may use the
maximum of f(t′)/λt′ for t′ ∈ S in place of no(1), which is always at most log n.

(ii) The bound (5.3.16) :
Here we may assume by induction that (5.3.16) holds with f replaced by any g < f , and that

(5.3.15) holds as shown above. Since c(t, t,0) = 1+O(p) = 1+O(x), for the first inequality in (5.3.16),
it suffices to show that Σ in (5.2.6) is of order O(no(1)x). Since S is fixed, there is a bounded number
of terms in the sum, and each may be written as

c(u, t, h)
λu
λt
γ(f − h, u)

P(f−sH)
P(f) , (5.3.19)

as also in (5.2.10). Similar to the argument above, we have P (f − sH) /P (f) = O(no(1)) for all cases.
So we only need to show that the product of the remaining factors in (5.3.19) is O(no(1)x).

Let F1 denote the set of h ∈ FS for which there are t, u ∈ S such that c(u, t, h) ̸= 0. Note that the
cardinality of F1 is bounded.
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Inside the inductive step, we use a second level of induction on t, going from greatest to smallest in
the relation ‘≺’. Assume first that t is maximal. Since u ∈ S, it is necessary that u = t and h ̸= 0 for
such a term to be included in Σ, because (u, h) ̸= (t,0). Then γ(f − h, t) ⩽ 3/2 by (5.3.16) inductively.
Furthermore, since H ̸= ∅ in (5.2.2), we have c(t, t, h) = O(p) = O(x), which gives the first inequality
in (5.3.16).

Suppose next that t is not maximal. A term (5.3.19) with u = t and h ̸= 0 is O(no(1)x) for reasons
as above. For the case u ̸= t and h ∈ F1, clearly c(u, t, h) = O(1). If c(u, t, h) ̸= 0, then t ≺ u,
λu/λt = O(x), and γ(f − h, u) ⩽ 3/2. So (5.3.19) is O(no(1)x) and we conclude that Σ = O(no(1)x) in
(5.2.6), establishing the first inequality.

Moreover, in view of the bound (5.1.4) on x, for n large enough, we have (5.3.16) in full.
This completes the inductive step, and (5.3.15) and (5.3.16) imply the lemma.

Next we bound the approximation error for the successive iterations. The iterative scheme can be
seen as a contraction mapping that updates {Γ(r)

t }t and yeilds more accurate approximation of {Γt}t
that corresponds to the fixed point. We use a similar analysis to that in [68] by Liebenau and Wormald
by combining ingredients from Proposition 2.3 and Proposition 2.6 in [98].

Claim 5.9. If for any integer r ⩾ 0, we have

|γ(r)t (f)− γ(f, t)| = ξ

for some ξ > 0 uniformly for all f ∈ FS and t ∈ S, then we have that Γ(r+1)
t defined by (r1) and (r2)

satisfies

|γ(r+1)
t (f)− γ(f, t)| = O

(
x+ϕtλL
λt

+ xξ
)

(5.3.20)

uniformly for all f ∈ FS and t ∈ S.

Proof. First recall the defining equation of the correction factor

γ(f, t) =
1

c(t,t,0) (1− Σ(f, t))− 1
c(t,t,0) ·

θ(f,δt)
|t|P(f) , (5.3.21)

and its estimate

γ
(r+1)
t (f) =

1
c(t,t,0)

(
1− Σ

(r+1)
t (f)

)
,

where

Σ
(r+1)
t (f) =

∑
u∈S
h∈F

(u,h)̸=(t,0)

c(u, t, h)
λu
λt
γ(r)u (f)

k∏
i=1

g̃ti
γ
(r)
ti

(f)
, (5.3.22)

with h =
∑k

i=1 δti , fi = f −
∑i

j=1 δtj , and g̃ti defined in (5.3.4).
Noting c(t, t,0) = 1+O (p) = 1+ o(1), and in view of the bound (5.3.14) on the θ factor in (5.3.21),
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in order to prove (5.3.20), it suffices to show that for all t ∈ S and f ∈ FS,

∣∣∣Σ(f, t)− Σ
(r+1)
t (f)

∣∣∣ = O
(
x+ϕtλL
λt

+ xξ
)
. (5.3.23)

We will in fact show that the terms with f − h ∈ F appearing in both summations Σ(f, t) and
Σ
(r+1)
t (f) and the extra summands with f − h ̸∈ F in Σ

(r+1)
t (f) are all negligible. This would then

yield (5.3.23). Specifically, we prove that

∑
u∈S

h,f−h∈F
(u,h)̸=(t,0)

c(u, t, h)
λu
λt

∣∣∣∣∣γ(f − h, u)
k∏

i=1

fi(ti)+1
λtiγ(fi,ti)

− γ(r)u (f)
k∏

i=1

g̃ti
γ
(r)
ti

(f)

∣∣∣∣∣ = O
(
x+ϕtλL
λt

+ xξ
)

(5.3.24)

and

∑
u∈S

h∈F ,f−h̸∈F
(u,h)̸=(t,0)

c(u, t, h)
λu
λt
γ(r)u (f)

k∏
i=1

g̃ti
γ
(r)
ti

(f)
= O

(
x+ϕtλL
λt

)
. (5.3.25)

If f = 0, then we have h = 0 in (5.3.24) since f − h ∈ F , and the terms in (5.3.25) with h ̸= 0 are
0, because g̃ti = 0 for all i by (5.3.4). If h = 0, then the value of k in (5.3.24) is 0, and the products in
(5.3.24) is empty, and is equal to 1. Hence we have that

∑
u∈S

h,f−0∈F
(u,h)̸=(t,0)

c(u, t, h)
λu
λt

∣∣∣γ(f − 0, u)− γ(r)u (f)
∣∣∣ = ∑

u∈S,u̸=t
f∈F

c(u, t, h)
λu
λt

∣∣∣γ(f, u)− γ(r)u (f)
∣∣∣ = O (xξ) .

In this case, the summation in (5.3.25) is empty, since f − 0 ∈ FS.
It remains to consider f ̸= 0 and h ̸= 0. First, notice that if some ti = u in (5.3.24), then it must

be that k = 1, h = δt1 = δu, and f1 = f − h = f − δu. Thus by noting gu = f(u)/λu = (f1(u) + 1)/λu,
we have

c(u, t, h)
λu
λt

∣∣∣∣∣γ(f − h, u)
f1(t1)+1
λt1γ(f1,t1)

− γ(r)u (f)
g̃t1

γ
(r)
t1

(f)

∣∣∣∣∣ = 0,

since γ(f − h, u) = γ(f1, t1), and similarly, γ(r)t1
(f) = γ

(r)
u (f). For (5.3.25), if f − h = f − δu ̸∈ F , then

f(u) < 1, thus g̃t1 = g̃u = 0, and (5.3.25) holds.
So henceforth whenever k ⩾ 1, we assume that ti ≺ u for all i. We treat (5.3.25) first. Since f−h ̸∈ F ,

so that we have f(ti′) < h(ti′) for some ti′ in (5.3.25), then f(ti′) = O(1) and so g̃ti′ = O(1/λti′ ). The
contribution of such a term in (5.3.25) is O

(
λu/λtλti′

)
, which in the case ti′ ≺ u is O(x/λt).

Now we consider (5.3.24), and estimate the difference using

(x+∆x)(y +∆y)− xy = O (|y∆x|+ |x∆y|) ,

which holds provided that ∆x = O(x) or ∆y = O(y). Note that λti → ∞ as n → ∞ for all i ∈ [k]

in (5.3.24), because we have ti ≺ u for all i, and if any of these were bounded, then it would imply
λu = O(x) = O (n−ε) and so u /∈ S. The ratios (fi(ti) + 1)/λti in (5.3.24) is therefore O(1) for f ∈ FS.
We have from Claim 5.8 that γ(f, t) = 1 + o(1) uniformly, and from Claim 5.7 that γ(f, t) = 1 + o(1)
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uniformly. This implies in particular that two products in (5.3.24) are in all cases O(1).
Since |γ(r)t (f) − γ(f, t)| = ξ uniformly for all f ∈ FS and t ∈ S, then we have for (u, h) as in the

scope of the summation in (5.3.24),

c(u, t, h)
λu
λt

∣∣∣γ(r)u (f − h)− γ(f − h, u)
∣∣∣ = O (xξ) ,

and, for factors appearing in the product in (5.3.24) with ti ≺ u,

∣∣∣γ(r)ti
(fi)− γ(fi, ti)

∣∣∣ λuλt = O (xξ) .

First note that for the replacement of fi(ti) + 1 by fi(ti) when evaluating g̃ti , we have

c(u, t, h)
λu
λtλti

= O
(
x
λt

)
. (5.3.26)

We next show that for all u in (5.3.24),

c(u, t, h)
λu
λt

∣∣∣γ(r)u (f − h0)− γ(r)u (f)
∣∣∣ = O

(
x
λt

)
for any fixed h0 with bounded entries and f − h0 ∈ FS, similarly we also have

c(u, t, h)
λu
λt

∣∣∣γ(r)ti
(fi)− γ

(r)
ti

(f)
∣∣∣ = O

(
x
λt

)
for all i ∈ [k]. We can assume h0 ̸= 0. By Lemma 5.7, equation (5.3.6) can be expanded in increasing
powers of the ws, which are O(x) under the substitution gv = f(v)/λv by Lemma 5.6. By (5.1.4), we
may ignore terms whose total degree in ws is larger than some fixed value, and substitute f(ti)/λti
and (f(ti) − h(ti))/λti for gti in the definition of w(u, t, h) at (5.3.7), and subtract the two resulting
expressions term by term. Since the entries of h0 are bounded, the dominating terms for the difference
of substitution f(v)/λv and (f(v)− h(v))/λv for gv is bounded by O (x/λt) similar to (5.3.26).

Hence combining above, we have (5.3.24) holds, since the summations in (5.3.24) contain a bounded
number of terms, in particular, the size of S is bounded, h =

∑k
i=1 δti and k is bounded. This completes

the proof.

Now we are ready to bound the approximation error by a reformulation of Corollary 2.7 in [98].

Theorem 5.10. For all t ∈ S, there are power series Γt in n, p, g, such that for all fixed ε > 0,
truncations Γt,ε of the series Γt, to a finite number of terms, such that we have the following.

(b1) For all p = n−χ−ε′+o(1) with ε′ ⩾ ε, we have uniformly for all f ∈ FS,

∣∣γt,ε(f)− γ(f, t)
∣∣ = O

(
x+no(1)λL

λt

)
, (5.3.27)

where γt,ε(f) := Γt,ε (n, p, g̃) with g̃ defined by (5.3.4).

(b2) For i ̸= 0, we have [gi]Γt,ε = O(x), for p satisfying (5.1.3), as n → ∞, where gi denotes
gi11 g

i2
2 · · · giss .

(b3) For each i, the coefficient [gi]Γt,ε is a multiple of
∏

v∈S p
µviv .
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Note that we have for all t ∈ S and all f ∈ FS, combining (5.3.27), and (5.3.13) in Claim 5.8, we
have

|γt,ε(f)− 1| ⩽ |γt,ε(f)− γ(f, t)|+ |γ(f, t)− 1| = O
(
no(1)x

)
. (5.3.28)

Proof of Theorem 5.10. We first fix some ε > 0 and show the existence of series; this gets relaxed later
to show the series Γt are independent of the choice of ε. For (b1), combining Lemma 5.7 and Lemma
5.8, we have the bound on the initial approximation error

|γ(f, t)− 1| = |γ(f, t)− γ
(0)
t (f)| = O

(
no(1)x

)
,

holds uniformly for all t ∈ S and f ∈ FS. Then for any fixed constant r ⩾ 0, by iterating successively r
times using (r1) and (r2) to obtain Γ

(r)
t , we get from Corollary 5.9 that

|γ(r)t (f)− γ(f, t)| = O
(
x+ϕtλL
λt

+ xr+1
)
. (5.3.29)

In view of bound on λL in (5.2.16) and the constraint on x in (5.1.4), there exists an integer constant
rt = rt(ε) ⩾ 0 such that

xrt = O
(
ϕtλL
λt

)
.

Then for all r ⩾ rt, we have

|γ(r)t (f)− γ(f, t)| = O
(
x+ϕtλL
λt

)
. (5.3.30)

Hence we set Γt,ε equal to the truncation of Γ(rt)
t to those terms whose value, with g set equal to be all

1, is not of order o (1/λt) and obtain (5.3.27). Also note that using Γ
(r)
t,ε for any r > rt would define the

same Γt,ε.
We now have shown for the case of some fixed ε > 0. We next claim that (5.3.27) is also valid for

ε′ > ε. Then p is smaller for the case of ε′, and the recursive definition of Γt,ε′ is the same as for ε
except that the definition of S may be different. No new types would be added to S, and any terms
in the summation in (5.3.3) corresponding to types t that are in S for ε, and not in S for ε′, are now
omitted. These terms are of the order c(u, t, h)λu/λt times a finite product of gi, for some u /∈ S. Since
all gi are substituted with values no(1), the claim holds.

If some ε′ < ε is considered, then some new types may enter S in Γt,ε′ and are not included in Γt,ε.
Also, the appropriate value of rt may be larger for ε′ than for ε, but as noted above, truncating with
the larger value of r gives the same function Γt,ε, so the extra terms generated serves as higher-order
corrections and cannot include any of the same monomials as appearing in Γt,ε.

For (b2), the coefficients of any non-constant monomial gi in Γt, as it arises recursively from (5.3.2)
and (5.3.3) are O(x). So we have [gi]Γt = O(x), for i ̸= 0 and p satisfying (5.1.3), as n→ ∞.

For (b3), since Γt,ε is set to be some truncation of Γ
(rt)
t that is obtained recursively, and in each

recursive step, every new product
∏k

i=1 gti that is introduced in (5.3.3) is accompanied by the factor
λuc(u, t, h)/λt. Therefore it suffices to show this factor possess the claimed divisibility, by noting that
the expansions of 1/c(t, t,0) and 1/Γti in (5.3.3) do not affect as their terms have nonnegative exponents.
By its definition (5.2.1), each term of c(u, t, h) is associated with a cluster of J of type u, a cluster Q of
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type t, and pairwise edge-disjoint clusters J1, . . . , Jk of types t1, . . . , tk, where the v-th entry of i satisfies
iv = |{j : tj = v}| for v ∈ S. Hence the term [gi]Γt,ε is a multiple of

p|Q∩(
⋃k

i=1 Ji)|+µu−µt = pµu+|Q∩(
⋃k

i=1 Ji)|−|Q| = pµu−|Q\(
⋃k

i=1 Ji)|,

and therefore is divisible by p
∑k

i=1 |Ji|.

5.4 Non-existence of subhypergraphs in Hr(n, p)

We prove Theorem 5.1.6 in this section, that is to obtain the asymptotic probability that the binomial
random hypergraph Hr(n, p) is R-free (that is having no subhypergraph that is isomorphic to some
hypergraph in R). By partitioning the probability space according to the cluster counts in random
hypergraph Hr(n, p), the reciprocal of R-free probability is approximated by a summation of ratios of
the probability of “typical” cluster counts to the probability of R-free. This further gets reduced to
estimate the ratio of the “adjacent” probabilities of having “perturbed” cluster counts by using

P(f+δt)
P(f) =

λt
f(t)+1γ(f, t), (5.4.1)

where the correction factor γ(f, t) is defined by (5.2.4), and will be approximated by γt,ε(f) using
Theorem 5.10. In this section, we only work with the R-clustering with one exception (Lemma 5.15).

Let XL be the number of all large clusters occurring in Hr(n, p). For t ∈ S, let Xt count clusters of
type t occurring in Hr(n, p), and define X to be the number of subhypergraphs occurring in Hr(n, p)

that are isomorphic to some hypergraph in R. Then we have

P (X = 0) = P (Hr(n, p) is R-free) = P

({
XL = 0

}
∩
⋂
t∈S

{Xt = 0}

)
. (5.4.2)

In view of the bounds on the expected numbers of small clusters (5.2.15), we may fix a linear ordering
on S = [s] = {1, 2, . . . , s} in decreasing order of νt − µt(χ+ ε), and break ties arbitrarily when needed.
Then by (5.2.15), we have for all t < s,

λt+1 < no(1)λt. (5.4.3)

Recall that F is the set of all non-negative integer cluster counts f defined on the set of small clusters
S, and FS contains restricted cluster counts. Also note that Cf contains r-graphs with no large clusters.
The next lemma allows us to restrict our consideration to cluster counts in FS only.

Lemma 5.11. We have

P
({
XL ̸= 0

}
∪
{
∃t ∈ S : Xt > mt

})
= o(1), (5.4.4)

and moreover,

P (X = 0)−1 = (1 + o(1))
∑
f∈FS

P(Cf )
P(X=0) . (5.4.5)

Proof. Since every large cluster contains an unavoidable cluster, and the number of types of unavoidable
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clusters is by its definition bounded. Let XU be the number of all unavoidable clusters occurring in
Hr(n, p). Then by Markov’s inequality, we have

P (XL ̸= 0) ⩽ P (XU ⩾ 1) ⩽ E [XU ] = O (λL) = o(1), (5.4.6)

where we use λL = supt̸∈S λt = O (n−εL) from (5.2.16),
The expected number of sets of j edge-disjoint clusters of type t ∈ S occurring in Hr(n, p) is at most(

|Ct|
j

)
pµtj ⩽

(
e|Ct|pµt

j

)j

=
(
eλt
j

)j
,

where we use the formula for λt in (5.2.3).
Recall that mt = 3λt = Θ(nc+o(1)) for each t ∈ S1 with some c = c(t) ⩾ 0, and mt = λt log n for

each t ∈ S2. Let Yt count the sets of ⌊mt⌋ + 1 disjoint clusters of type t. By taking j = ⌊mt⌋ + 1, we
have for all t ∈ S1,

E [Yt] ⩽
(
e
3

)mt

= O
(
e−Ω(nc)

)
;

similarly, we have for t ∈ S2,

E [Yt] ⩽
(

e
log n

)⌈λt logn⌉
= o(1).

Consequently by Markov’s inequality, we have, for all t ∈ S, that

P (Xt > mt) = P (Yt ⩾ 1) ⩽ E [Yt] = o(1).

Hence the union bound over S yields P
({

∃t ∈ S : Xt > mt

})
= o(1). This, combining with (5.4.6),

gives (5.4.4) by the union bound.
Now we are ready to show (5.4.5) by noting that

P (XL ̸= 0) +
∑

f∈(F\FS)

P (Cf ) +
∑
f∈FS

P (Cf ) = 1. (5.4.7)

Diving P (X = 0) on both sides of (5.4.7) gives

P (X = 0)−1 =
P(XL ̸=0)
P(X=0) +

P
({

∃t ∈ S : Xt > mt

}
∩
{
XL = 0

})
P (X = 0)

+
∑
f∈FS

P(f)
P(X=0) .

Hence, by (5.4.4), we obtain (5.4.5).

For all t ∈ (S∪ {0}), let P(gt) be the ring of multivariate polynomials in gt = (g1, . . . , gt) such that

(1) all coefficients are polynomials in n, p and n−1, and

(2) the coefficient of gi11 · · · gitt is divisible by
∏t

j=1 p
µjij .

Note that P(g0) is a polynomial in n, p and n−1, and does not contain any indeterminate gi.
For all t ∈ [s], we say that the cluster counts (j1, . . . , jt) for types [t] is t-amenable if ji ∈ [0,mi] for
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all i ∈ [t]. It is useful to define the scaled cluster count for each cluster type t ∈ [s] by

ζt(j) = ζt(j1, . . . , jt−1, j) =
(
j1
λ1
, . . . ,

jt−1

λt−1
,
j
λt

)
. (5.4.8)

Note that ζt(j) depends on j1, j2, . . . , jt−1, but these are suppressed from the notation for simplicity.
For a t-amenable cluster count, each entry of ζt(j) is at most log n in view of the constraint on mi in
(5.2.19).

For t ∈ [s], define the event

Jt(j1, . . . , jt) :=
⋂
i∈[t]

{
Xi = ji

}
∩

s⋂
u=t+1

{
Xu ⩽ mu

}
∩
{
XL = 0

}
, (5.4.9)

similarly when t = 0, define

J0 :=
{
XL = 0

}
∩

s⋂
u=1

{
Xu ⩽ mu

}
. (5.4.10)

Then we have

P (Js(j1, . . . , js)) = P (Cj1,...,js)

for all (j1, . . . , js) ∈ F , and in particular,

P (Js(0, . . . , 0)) = P (X = 0) .

We will approximate recursively, for each t ∈ S, the conditional probability of not having any
small cluster of type u for all u > t, given the cluster counts of type v for all v ⩽ t. This recursive
approximation method is similar to [98, Section 3] and includes some simplified intermediate steps.

Theorem 5.12. For t ∈ [s] and all t-amenable (j1, . . . , jt), we have that

P

(
s∑

u=t+1

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt)

)
= exp (−Pt,ε(ζ(jt)) + o (1)) , (5.4.11)

and

P

(
s∑

u=1

Xu = 0

∣∣∣∣∣ J0

)
= exp (−P0,ε + o(1)) , (5.4.12)

for some polynomials {Pt,ε}t∈(S∪{0}) such that the following hold.

(i) Pt,ε ∈ P(gt) for t ∈ (S ∪ {0}); in particular, P0,ε is a polynomial in n, p, n−1.

(ii) The constant coefficient of Pt,ε, that is, Pt,ε(0, . . . , 0), equals (1 + O
(
no(1)x

)
)
∑s

u=t+1 λu, and
the other coefficients are O

(
no(1)xPt,ε(0, . . . , 0)

)
. The implicit constants in these bounds are are

independent of ε.

(iii) The error o (1) is uniform over all t-amenable (j1, . . . , jt).
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The proof of this theorem is in the next subsection. The above theorem gives P (X = 0) as a direct
corollary.

Corollary 5.13. There exists a polynomial P0,ε with the properties claimed in Theorem 5.12 such that

P (X = 0) = exp (−P0,ε + o(1)) . (5.4.13)

Proof. In view of (5.4.2), to prove (5.4.13), it suffices to show that

P

({
s∑

t=1

Xt = 0

}
∩
{
XL = 0

})
= exp (−P0,ε + o(1)) . (5.4.14)

Since {
∑s

t=1Xt = 0} ⊆
⋂s

u=1

{
Xu ⩽ mu

}
, we have

P
({∑s

t=1Xt=0
}
∩
{
XL=0

})
P
(⋂s

u=1

{
Xu⩽mu

}
∩
{
XL=0

}) = P

(
s∑

t=1

Xt = 0

∣∣∣∣∣ {XL = 0
}
∩

s⋂
u=1

{
Xu ⩽ mu

})
. (5.4.15)

Plugging the defining equation (5.4.10) of J0 into (5.4.12) gives that

P

(
s∑

u=1

Xu = 0

∣∣∣∣∣ {XL = 0
}
∩

s⋂
u=1

{
Xu ⩽ mu

})
= exp (−P0,ε + o(1)) . (5.4.16)

By (5.4.4) in Lemma 5.11, we have

P

({
XL = 0

}
∩

s⋂
u=1

{
Xu ⩽ mu

})
= 1−P

({
XL ̸= 0

}
∪
{
∃t ∈ S : Xt > mt

})
= 1− o(1). (5.4.17)

Plugging estimates (5.4.16) and (5.4.17) into (5.4.15) gives (5.4.14), which completes the proof.

The rest of this section is devoted to the proof of Theorem 5.12 and Theorem 5.1.6. We first introduce
some notation. Given an s-amenable (j1, j2, . . . , js), for each t ∈ [s] and j ∈ N, we define the cluster
count ft,j on S by

ft,j(u) =


ju if u < t,

j if u = t,

0 if u > t.

(5.4.18)

Note that ft,j(·) depends on j1, j2, . . . , jt−1, but these parameters are suppressed from the notation for
simplicity.

For all t ∈ S, we derive a recursive formula for the reciprocal of the conditional probability of not
having any small cluster of type u for all u ⩾ t, given ju clusters of type u for all u < t. Specifically, by
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the law of total probability,

P(Jt−1(j1,...,jt−1))
P(Js(j1,...,jt−1,0,...,0))

=

⌊mt⌋∑
jt=0

P(Jt(j1,...,jt−1,jt))
P(Js(j1,...,jt−1,jt,0,...,0))

P(Js(j1,...,jt−1,jt,...,0))
P(Js(j1,...,jt−1,0,...,0))

=

⌊mt⌋∑
jt=0

P(Jt(j1,...,jt−1,jt))
P(Js(j1,...,jt−1,jt,0,...,0))

λ
jt
t

jt!

jt−1∏
j=0

γ(ft,j , t), (5.4.19)

where in the second equality, we use a telescoping product of ratios of adjacent probabilities (5.4.1).
Combining Claim 5.8 and Theorem 5.10 yields that for all t ∈ S and f ∈ FS,

γ(f, t) = γt,ε(f) +O

(
x+no(1)λL

λt

)
= γt,ε(f)

(
1 +O

(
n−ε′

λt

))
,

with ε′ = min(ε, εL). Recalling the definition of Jt in (5.4.9), we have that

P(Jt−1(j1,...,jt−1))
P(Js(j1,...,jt−1,0,...,0))

=
P
(⋂

i∈[t−1]

{
Xi = ji

}
∩
⋂s

u=t

{
Xu ⩽ mu

}
∩
{
XL = 0

})
P
(⋂

i∈[t−1]

{
Xi = ji

}⋂s
i=t

{
Xi = 0

}
∩
{
XL = 0

})
= P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt−1(j1, . . . , jt−1)

)−1

,

and consequently, it follows from (5.4.19) that

P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt−1(j1, . . . , jt−1)

)−1

=

⌊mt⌋∑
jt=0

P

(∑
u>t

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt−1, jt)

)−1
λ
jt
t

jt!

jt−1∏
j=0

γt,ε(ft,j)

(
1 +O

(
n−ε′

λt

))

= (1 + o(1))

⌊mt⌋∑
jt=0

P

(∑
u>t

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt−1, jt)

)−1
λ
jt
t

jt!

jt−1∏
j=0

γt,ε(ft,j), (5.4.20)

where the last equality is by noting that mt ⩽ λt log n for all t ∈ S, and hence,(
1 +O

(
n−ε′

λt

))mt

= 1 + o (1) .

We will use an inductive argument beginning with t = s, and then proceed through decreasing values
of t. It finishes with the case t = 0, that is (5.4.12). The initial step of the induction argument, when
t = s, is trivial, and we set Ps,ε = 0. Now we assume that (5.4.11) holds for some particular value of t
and consider the case of t− 1.

It is useful to define

Tt(j) = exp (Pt,ε (ζt(j)))
λjt
j!

j−1∏
i=0

γt,ε(ft,i). (5.4.21)
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Then by the induction hypothesis (5.4.11), we have

Tt(jt) ∼ P

(∑
u>t

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt−1, jt)

)−1
λ
jt
t

jt!

jt−1∏
j=0

γt,ε(ft,j).

In view of (5.4.20), the summation of Tt(j) approximates the conditional probability:

P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt−1)

)−1

= (1 + o(1))

⌊mt⌋∑
j=0

Tt(j). (5.4.22)

To prove the theorem, it suffices to show that the above summation on the right-hand side of (5.4.22)
admits the desired properties, that is,

⌊mt⌋∑
j=0

Tt(j) = exp (−Pt−1,ε(ζt−1(jt−1)) + o (1)) , (5.4.23)

for some Pt−1,ε with the properties (i), (ii), and (iii) claimed in theorem statement.
We introduce a constant that will be used to determine the truncation point for various expansions.

Specifically, define

ℓ0 = ℓ0(t, ε) = 2
(
νt−χµt−εµt

ε + 2
)
=

2
ε (νt − χµt)− 2µt + 4. (5.4.24)

By noting νt/µt ⩾ χ+ ε for all t ∈ S, by the definition (5.2.14) of S, we have ℓ0 > 0, and

xℓ0/2 = O

(
x2

nνt−χµt−εµt

)
= O

(
no(1)x2

λt

)
.

Recall from Theorem 5.10 that Γt,ε is a polynomial in gt with all coefficients O(x), and for f ∈ FS,
we have γt,ε(f) = Γt,ε (n, p, g̃) = 1 +O (x) with

g̃ = (g̃1, . . . , g̃s) =

(
f(1)
λ1

, . . . ,
f(s)
λs

)
,

Hence, defining

ζ̂t−1 = ζ̂t−1(j1, . . . , jt−1) =
(
j1
λ1
, . . . ,

jt−1

λt−1

)
, (5.4.25)

and expanding the logarithm gives

log γt,ε (ft,i) =

ℓ0∑
k=1

(−1)k−1

k

(
γt,ε (ft,i)− 1

)k
+O

((
γt,ε (ft,i)− 1

)ℓ0+1
)

=

d′max∑
v=0

R(1)
v (ζ̂t−1)

(
i
λt

)v
+O

(
no(1)x
λt

)
, (5.4.26)

where

• {R(1)
v } are polynomials in gt−1, and it is easily checked that R(1)

v ∈ P(gt−1) has all coefficients
O
(
no(1)x

)
for all 0 ⩽ v ⩽ d′max;
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• the bound on truncation error is established by noting that |γt,ε (ft,i)−1| = O
(
no(1)x

)
by (5.3.28),

and in view of the definition of ℓ0 in (5.4.24).

• and d′max = ℓ0 · deggt(Γt,ε) with deggt(Γt,ε) denoting the degree of Γt,ε in gt.

Adapting the derivation of [98, Eq (3.19)], for all j ⩽ mt, we have

j−1∑
i=0

log γt,ε (ft,i) =

d′max∑
v=0

R(1)
v (ζ̂t−1)

j−1∑
i=0

(
i
λt

)v
+O

(
jno(1)x
λt

)

=

d′max∑
v=0

R
(1)
v (ζ̂t−1)
v+1 · j

v+1

λvt
+

d′max∑
v=0

R(1)
v (ζ̂t−1)O

((
j
λt

)v)
+O

(
jno(1)x
λt

)

= O
(
no(1)x

)
+

d′max∑
v=0

R
(1)
v (ζ̂t−1)
v+1

jv+1

λvt
, (5.4.27)

by noting that for all (t − 1)-amenable (j1, . . . , jt−1), all terms in R
(1)
v (ζ̂t−1) are O

(
no(1)x

)
since all

coefficients are O(x).
Let dmax denote the degree, deggt(Pt,ε(gt)), of Pt,ε(gt) in gt. By the properties claimed in induction

hypothesis, it is useful to write

Pt,ε(gt) =

dmax∑
v=0

R(2)
v (ζ̂t−1)

(
j
λt

)v
, (5.4.28)

where R(2)
v = [gvt ]Pt,ε(gt) for 0 ⩽ v ⩽ dmax.

Claim 5.14. Let dt = max(dmax − 1, d′max). For all t ∈ S and t-amenable (j1, . . . , jt−1, j), we have

Tt(j) =
λjt
j! exp

(
R0(ζ̂t−1) +

dt∑
v=0

Rv+1(ζ̂t−1)
jv+1

λvt
+O

(
no(1)x

))
, (5.4.29)

where

(i) For all 1 ⩽ v ⩽ dt, we have Rv ∈ P(gt−1) with all coefficients O
(
no(1)x

)
.

(ii) We have

R0(ζ̂t−1) = Pt,ε(ζ(0)), (5.4.30)

and for 0 ⩽ v ⩽ dt,

Rv+1(ζ̂t−1) =
R

(2)
v (ζ̂t−1)
λt

+
1
v+1R

(1)
v (ζ̂t−1) +O

(
no(1)x
λt

)
. (5.4.31)

Proof. Using (5.4.27) and (5.4.28), we rewrite the defining equation (5.4.21) of Tt(j) as

Tt(j) =
λjt
j! exp

(
Pt,ε (ζt(j)) +

j−1∑
i=0

log γt,ε (ft,i)

)

=
λjt
j! exp

R(2)
0 (ζ̂t−1) +

dmax−1∑
v=0

R
(2)
v+1(ζ̂t−1)

λt

jv+1

λvt
+

d′max∑
v=0

R
(1)
v (ζ̂t−1)
v+1

jv+1

λvt
+O

(
no(1)x

) . (5.4.32)
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Now we set

R0(ζ̂t−1) = R
(2)
0 (ζ̂t−1),

and claim that for 1 ⩽ v ⩽ dmax, there exists R(3)
v ∈ P(gt−1) having all coefficients O(x) such that

R
(2)
v

λt
= R(3)

v +O

(
no(1)x
λt

)
. (5.4.33)

Since R(2)
v = [gvt ]Pt,ε(gt), we have R(2)

v does not contain gt, and R
(2)
v ∈ P(gt−1). In view of λt in

(5.2.3), and noting that Pt,ε ∈ P(gt) by hypothesis (i), we have the exponent of p in any term of R(2)
v /λt

is greater than zero because the coefficient of gi11 · · · git−1

t−1 g
v
t of Pt,ε is divisible by pµtv

∏t−1
j=1 p

µjij , which
follows from the claimed properties of P(gt).

Moreover, by hypothesis (ii), we have that for all (i1, i2, . . . , it−1) ̸= 0 and v ⩾ 1,

[g
i1
1 ···git−1

t−1 ]R
(2)
v

λt
= O

(
no(1)x

s∑
u=t+1

λu
λt

)
= O

(
no(1)x

)
,

where the last step is by inequality (5.4.3). Therefore we conclude (5.4.33) by noting the coefficient of
gi11 · · · git−1

t−1 in R(2)
v is divisible by

∏t−1
j=1 p

µjij .
Therefore, we set

Rv+1 = R
(3)
v+1 +

1
v+1R

(1)
v (5.4.34)

for 0 ⩽ v ⩽ dt. Then in view of (5.4.26) and (5.4.33), we have Rv(ζ̂t−1) ∈ P(gt−1) with all coefficients
O
(
no(1)x

)
. This gives part (i).

We have (5.4.31) in part (ii) by (5.4.33) and (5.4.34). It is easy to see (5.4.30) by (5.4.32) since
R

(2)
0 (ζ̂t−1) = [g0t ]Pt,ε(gt). This completes the proof.

Next, we approximate the maximum term in the summation in (5.4.23) by estimating the point
where the ratio of consecutive terms is close to 1. Note that the following lemma holds for single edge
cluster t⋆ as well, not only for t ∈ S, and this will be utilised later in next section.

Lemma 5.15. For t ∈ S and t-amenable (j1, . . . , jt−1, j), let Tt(j) be defined by (5.4.21); for t = t⋆, let

Tt⋆(j) :=
λjt⋆
j!

j−1∏
i=0

γt⋆,ε(iδt⋆). (5.4.35)

Then for all t ∈ S ∪ {t⋆}, there exists j⋆ = j⋆(t) = (1 + o(1))λt that is defined as the unique solution of
a certain equation, such that the following holds.

(i) For sufficiently large n, the ratio of consecutive terms Tt(j)/Tt(j − 1) increases for j < j⋆, and
decreases for j > j∗.

(ii) For |k − j∗| = O
(√
j∗ log j∗

)
, we have

Tt(k) = exp

(
− (k−j⋆)2

2j⋆ + o(1)

)
Tt(j̃).
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Proof of Lemma 5.15. We have, from the definition of Tt(·) in (5.4.21), that

Tt(j)
Tt(j−1) =

λt
j exp

(
Pt,ε (ζt(j))− Pt,ε (ζt (j − 1)) + log γt,ε(ft,j−1)

)
. (5.4.36)

Recall that our expression Pt,ε(gt) in (5.4.28). Using this, and then the expansion of the logarithm
of the correction factor in (5.4.26), by noting its bound (5.3.27), we have

Tt(j)
Tt(j−1) =

λt
j exp

(
dmax∑
v=1

R
(2)
v (ζ̂t−1)
λt

jv−(j−1)v

λv−1
t

+ log γt,ε(ft,j−1)

)

=
λt
j exp

dmax∑
v=0

(v+1)R
(2)
v (ζ̂t−1)
λt

(
j
λt

)v
+

d′max∑
v=0

R(1)
v (ζ̂t−1)

(
j−1
λt

)v
+O

(
no(1)x
λt

) . (5.4.37)

By the discussion after (5.4.26), we have that for all v ⩾ 1, the coefficients of all terms in R
(1)
v are

O(x). Recall that ζ̂t−1 is defined by (5.4.25), then for t-amenable (j1, . . . , jt−1, j), we have

R(1)
v (ζ̂t−1)

(
j−1
λt

)v
= R(1)

v (ζ̂t−1)
(
j
λt

)v
+O

(
no(1)x
λt

)
. (5.4.38)

In view of (5.4.29), define q as a function in gt = (g1, . . . , gt) by

q(gt) = exp

(
dt∑
v=0

(v + 1)Rv+1(gt−1)g
v
t

)
. (5.4.39)

Combining (5.4.38) with Claim 5.14 (ii), the ratio estimate (5.4.37) becomes

Tt(j)
Tt(j−1) =

(
1 +O

(
no(1)x
λt

))
λt
j q(ζt(j)), (5.4.40)

where the scaled cluster count ζt(j) is defined in (5.4.8), and

q(ζt(j)) = exp

(
dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j
λt

)v)
, (5.4.41)

by noting (5.4.39).
To approximate j that maximize Tt(j), we use an estimate, j⋆, by determining the ratio Tt(j)/Tt(j−

1) is close to 1 asymptotically. There are two steps.

• Step 1: We define j⋆ as the solution of a certain equation.

• Step 2: After expanding the defining equation, we use an iterative scheme to approximate j⋆.

Step 1: In view of the ratio estimate (5.4.40), since the coefficients of all Rv in (5.4.41) are O
(
no(1)x

)
by Claim 5.14 (i), the terms in the summation in exponent of (5.4.41) are all O

(
no(1)x

)
for all t-amenable

(j1, . . . , jt−1, j), recalling ζ̂t−1 is defined in (5.4.25). Therefore we conclude q(ζt(j)) ∼ 1 for all t-amenable
(j1, . . . , jt−1, j).

Note that the partial derivative of q(gt) with respect to gt is

exp

(
dt∑
v=0

(v + 1)Rv+1(gt−1)g
v
t

)
dt∑
v=1

(v + 1)Rv+1(gt−1)g
v−1
t = O

(
no(1)x

)
, (5.4.42)
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when gt−1 = ζ̂t−1 and gt = gt(j) = j/λt for 0 ⩽ j ⩽ 3λt. Hence there exists a unique j⋆ ∈ R such that

q(ζt(j
⋆)) =

j⋆

λt
, (5.4.43)

or equivalently,

j⋆

λt
= exp

(
dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j⋆

λt

)v)
. (5.4.44)

Note that gt(j⋆) = j⋆/λt = 1 + o(1).
Step 2: Recalling its definition in (5.4.39), we expand the multivariate function q(gt) in (5.4.43)

around (0, . . . , 0), and approximate j⋆ by λt with a multiplicative polynomial factor in ζ̂t−1.
Since the terms in the summation on the right-hand side of (5.4.41) are all O

(
no(1)x

)
for j⋆ ∼ λt

and ζ̂t−1 under consideration, expanding the exponential function q(ζt(j)) defined by (5.4.41), and
truncating at ℓ0 defined by (5.4.24), yield

q(ζt(j)) = 1 +

ℓ0∑
k=1

1
k!

(
dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j
λt

)v)k

+O

((
no(1)x

)ℓ0+1
)

= q̃(g1, . . . , gt) +O

(
no(1)x
λt

)
,

where for 0 ⩽ v ⩽ ℓ0dt, there exist R̂v ∈ P(gt−1) with all coefficients O
(
no(1)x

)
such that

q̃(g1, . . . , gt) = 1 +

ℓ0dt∑
v=0

R̂v(ζ̂t−1)g
v
t . (5.4.45)

Recalling that q(ζt(j)) ∼ 1, the ratio (5.4.40) at j⋆ becomes

Tt(j
⋆)

Tt(j⋆−1) =

(
1 +O

(
no(1)x
λt

))
λt
j⋆ q̃ (ζt(j

⋆)) .

Note that the partial derivative of q̃ with respect to gt is also O(no(1)x) when gt−1 = ζ̂t−1 and 0 ⩽ gt ⩽ 3,
as gt = j/λt and 0 ⩽ j ⩽ 3λt.

Therefore for n sufficiently large, beginning with β0 = 1, a fixed-point iteration by repeated substi-
tutions

βℓ = q̃(g1, . . . , gt−1, βℓ−1), (5.4.46)

yields polynomials βℓ = βℓ(ζ̂t−1) ∈ P(gt−1) that approximate its fixed point β = q̃(g1, . . . , gt−1, β) =

1+o(1). In each iteration, the approximation error gets multiplied by O(no(1)x), hence, for ℓ sufficiently
large, setting β⋆ = βℓ(ζ̂t−1) gives

j⋆ = β⋆λt +O
(
no(1)x

)
= (1 + o(1))λt. (5.4.47)

Note that β⋆ ∈ P(gt−1) and has all coefficients O
(
no(1)x

)
.

Now we show the asymptotic monotonicity claimed in (i), that is, the ratio of consecutive terms
Tt(j)/Tt(j − 1) increases for j < j⋆, and decreases for j > j∗ for large n. First, we consider the terms
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Tt(j) with j > j⋆. Let

F (j) = λtq(ζt(j))− j. (5.4.48)

By the defining equation of j⋆ in (5.4.43), and the bound (5.4.42) on the partial derivative of q, we
have, from (5.4.48), that

F (j⋆) = 0, and d
djF (j) = −1 +

∂
∂gt

q(ζ(j)) = −1 +O
(
no(1)x

)
for 0 ⩽ j ⩽ mt. (5.4.49)

In view of the ratios of consecutive terms (5.4.40), also recalling that q(ζt(j)) ∼ 1, if for some large
constant C > 0, we have

λt
j q(ζt(j))− 1 < −C n

o(1)x
λt

,

or equivalently,

F (j) < −Cno(1)x jλt , (5.4.50)

then we have Tt(j) < Tt(j − 1). It then suffices to show (5.4.50) for j > j⋆. For all integers j such that
j⋆ < j < mt, by noting the bound on j⋆ in (5.4.47), we have

j − j⋆ > 2Cno(1)x
j⋆

λt
= o(1).

By the mean value theorem, in view of derivative bound (5.4.49), we have, for j⋆ < j < mt, there exists
ψ ∈ [j∗, j] such that

F (j) = (j − j∗)F ′(ψ) < −(2 + o(1))Cno(1)x
j⋆

λt
,

which satisfies (5.4.50). Therefore we conclude that Tt(j) < Tt(j − 1). The lower side follows a similar
analysis.

What remains is to show (ii), that is to approximate the ratios to the maximum term in (5.4.23) for
terms with indices that are near it, specifically, we estimate

Qt(k) := log

(
Tt(k)

Tt(j̃)

)
(5.4.51)

for |k − j∗| = O
(√
j∗ log j∗

)
.

Taking the logarithm of the ratio estimate in the right-hand side of (5.4.40) yields

log
(
λt
j q(ζt(j))

)
= log

(
λt
j

)
+

dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j
λt

)v
= log

(
λt
j⋆

)
− log

(
1 +

j−j⋆
j⋆

)
+

dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j⋆

λt

)v (
1 +

j−j⋆
j⋆

)v
, (5.4.52)
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where the second equality is by noting j⋆ ̸= 0, and rewriting

j = j⋆
(
1 +

j−j⋆
j⋆

)
.

We also have, from the defining equation of j⋆ in (5.4.44), that

log
(
j⋆

λt

)
=

dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j⋆

λt

)v
.

Plugging this in (5.4.52) gives

log
(
λt
j q(ζt(j))

)
= −j−j⋆

j⋆ +O

((
j−j⋆
j⋆

)2)
+

dt∑
v=1

(v + 1)Rv+1(ζ̂t−1)
(
j⋆

λt

)v
O
(
j−j⋆
j⋆

)
, (5.4.53)

where we expand the logarithm for j such that |j − j⋆| = o (j⋆). Note that the terms in the summation
on the right-hand side of above equation are all O (x(j − j⋆)/j⋆).

Let j̃ := ⌊j∗⌋. Recalling the definition of Qt(k) in (5.4.51), and using the ratio estimate (5.4.40), we
obtain

Qt(k) =

k∑
j=j̃+1

log

(
Tt(j)
Tt(j−1)

)
= O

(
|k − j∗|n

o(1)x
λt

)
+

k∑
j=j̃+1

log
(
λt
j q(ζt(j))

)
.

Since j⋆ = (1 + o(1))λt by (5.4.47), for k = j∗ + O
(√
j∗ log j∗

)
, in view of (5.4.53), we have, from

(5.4.53), that

Qt(k) = − (k−j⋆)2
2j⋆ +O

(
no(1)x log2 j∗ +

log3 j∗√
j
∗

)
= − (k−j⋆)2

2j⋆ + o(1), (5.4.54)

which completes the proof.

5.4.1 Proof of Theorem 5.12

Now we are ready to deal with the summation (5.4.23). First we consider the case that t ∈ S2. The
other case, of t ∈ S1, is much more involved, and will be treated separately.

Case 1: t ∈ S2

First recall from (5.2.15) that λt = Θ(no(1)) and mt = λt log n for t ∈ S2. Let Ps,ε = 0. For all
t ∈ S2 \ {s}, we inductively define Pt−1,ε = Pt−1,ε(ζ̂t−1) by

Pt−1,ε = Pt,ε(ζt(0)) + λt.

Claim 5.16. For all t ∈ S2, we have

P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt−1(j1, . . . , jt−1)

)−1

= exp

(∑
u⩾t

λu + o (1)

)
. (5.4.55)

Proof. For Tt(j) defined by (5.4.21), with Pt,ε defined by (5.4.55), in view of Claim 5.14, for t ∈ S2, we
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have

⌊mt⌋∑
j=0

Tt(j) =

⌊λt logn⌋∑
j=0

λjt
j! exp

(
R0(ζ̂t−1) +

dt∑
v=0

Rv+1(ζ̂t−1)
jv+1

λvt
+O

(
no(1)x

))

=
(
1 +O

(
no(1)x

))
exp

(
R0(ζ̂t−1)

) ⌊λt logn⌋∑
j=0

λjt
j! exp

(
dt∑
v=0

Rv+1(ζ̂t−1)
jv+1

λvt

)
. (5.4.56)

Since ju/λu ⩽ log n for all u ⩽ t, and Rv has all coefficients O
(
no(1)x

)
by Claim 5.14 (i), noting the

constraint on x in (5.1.4), we have

Rv+1(ζ̂t−1)
jv+1

λvt
= O

(
no(1)x

)
= o(1),

for all 0 ⩽ v ⩽ dt.
Let the random variable Y satisfy Y d∼ Poi (λt). Then

∑
j⩾⌊λt logn⌋+1

λjt
j! = eλtP (Y ⩾ ⌊λt log n⌋+ 1) .

If λt log n = ω(1), we have, for some ϕ(n) → 0, that

∑
j⩾⌊λt logn⌋+1

λjt
j! = eλtP (Y − λt ⩾ (1 + ϕ(n))λt log n)

⩽ exp

(
λt −

(1+ϕ(n))λ2t log
2 n

2(λt+λt log n)

)
= exp (−(1 + ϕ(n))λt log n/2) = o(1),

where the inequality is by Poisson concentration (see, for example, combining [58, Remark 2.6] and [58,
Theorem 2.1, Eq. (2.5), (2.6)]). For λt log n = O(1), we have, by Markov’s inequality, that

∑
j⩾⌊λt logn⌋+1

λjt
j! ⩽

E[Y ]
λt log n

eλt =
1+O(λt)
log n = o(1),

since E [Y ] = λt. Hence we conclude

⌊λt logn⌋∑
j=0

λjt
j! = eλt − o(1) = eλt+o(1),

where the last equality is by noting that λt = Θ(no(1)) for t ∈ S2.
From (5.4.56), by noting (5.4.30), we have that

⌊mt⌋∑
j=0

Tt(j) = (1 + o(1)) exp
(
R0(ζ̂t−1)

) ⌊λt logn⌋∑
j=0

λjt
j!

= (1 + o(1)) exp (Pt,ε(ζt(0))) e
λt+o(1) = exp (Pt,ε(ζt(0)) + λt + o(1)) .
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It follows from (5.4.22) and induction hypothesis (5.4.11) that

P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt−1(j1, . . . , jt−1)

)−1

= exp (Pt,ε(ζt(0)) + λt + o (1)) .

Note that λt is a polynomial in n and p. Setting Pt−1,ε = Pt,ε(ζt(0))+λt gives the inductive hypotheses
(i) and (ii); and the uniformity in (iii) implies that (iii) holds with t replaced by t− 1.

Case 2: t ∈ S1

In this case, we have λt → ∞ and mt = 3λt. To handle the summation in the left-hand side of
(5.4.23) for t ∈ S1, it is useful to rewrite the non-error terms in the exponential factor of Tt(j) in (5.4.29)
as follows:

R0(ζ̂t−1) +

dt∑
v=0

Rv+1(ζ̂t−1)
jv+1

λvt
= F̃t

(
j⋆

λt
,
j
j⋆

)
, (5.4.57)

where j⋆ is defined by (5.4.43), and we introduce a bivariate polynomial

F̃t(θ, η) := R0(ζ̂t−1) + j⋆
dt+1∑
k=1

Rk(ζ̂t−1)θ
k−1ηk.

For 0 ⩽ ℓ1 ⩽ dt and 0 ⩽ ℓ2 ⩽ dt + 1 with ℓ1 + ℓ2 ⩾ 1, we have

∂ℓ1+ℓ2

∂θℓ1∂ηℓ2
F̃t(θ, η) = j⋆

dt+1∑
k=max(ℓ1+1,ℓ2)

Rk(ζ̂t−1)[k − 1]ℓ1 [k]ℓ2θ
k−ℓ1−1ηk−ℓ2 . (5.4.58)

We use the Taylor series at (β⋆, 1) to obtain

F̃t(θ, η) = F̃t(β
⋆, 1) +

∑
0⩽ℓ1⩽dt

0⩽ℓ2⩽dt+1
ℓ1+ℓ2⩾1

1
ℓ1!ℓ2!

∂ℓ1+ℓ2 F̃t(β
⋆,1)

∂θℓ1∂ηℓ2
(θ − β⋆)ℓ1(η − 1)ℓ2 . (5.4.59)

In view of (5.4.47), we have j⋆ = O (λt), and therefore,

j⋆
(
j⋆

λt
− β⋆

)
= O

(
no(1)x

)
.

Hence by recalling from Claim 5.14 (i) that all coefficients of each Rv are O
(
no(1)x

)
, and j⋆ = (1 +

o(1))λt, we have, by (5.4.58), that for all ℓ1 ⩾ 1,

∂ℓ1+ℓ2 F̃t(β
⋆,1)

∂θℓ1∂ηℓ2

(
j⋆

λt
− β⋆

)ℓ1
= O

(
no(1)x

)
.

146



Then we have, by (5.4.59) and then (5.4.58), that

F̃t

(
j⋆

λt
,
j
j⋆

)
= F̃t(β

⋆, 1) +

dt+1∑
ℓ2=1

1
ℓ2!

∂ℓ2 F̃t(β
⋆,1)

∂ηℓ2

(
j
j⋆ − 1

)ℓ2
+

∑
ℓ1⩾1

0⩽ℓ2⩽dt+1

1
ℓ1!ℓ2!

∂ℓ1+ℓ2 F̃t(β
⋆,1)

∂θℓ1∂ηℓ2

(
j⋆

λt
− β⋆

)ℓ1 ( j
j⋆ − 1

)ℓ2

= F̃t(β
⋆, 1) +

dt+1∑
ℓ2=1

j⋆
dt+1∑
k=ℓ2

Rk(ζ̂t−1)(β
⋆)k−1 [k]ℓ2

ℓ2!

(
j
j⋆ − 1

)ℓ2
+O

(
no(1)x

(
j
j⋆ − 1

)dt+1
)
,

where

F̃t(β
⋆, 1) = R0(ζ̂t−1) + j⋆

dt+1∑
k=1

Rk(ζ̂t−1)(β
⋆)k−1. (5.4.60)

Combining above expansion and (5.4.57) gives

R0(ζ̂t−1) +

dt∑
v=0

Rv+1(ζ̂t−1)
jv+1

λvt

= F̃t(β
⋆, 1) +

dt+1∑
v=1

(
dt+1∑
k=v

(
k

v

)
Rk(ζ̂t−1)(β

⋆)k−1

)
(j−j⋆)v
(j⋆)v−1 +O

(
no(1)x

)
. (5.4.61)

Using this, we rewrite Tt(j) in (5.4.29) as

Tt(j) =
λjt
j! exp

(
F̃t(β

⋆, 1) +

dt+1∑
v=1

(
dt+1∑
k=v

(
k

v

)
Rk(ζ̂t−1)(β

⋆)k−1

)
(j−j⋆)v
(j⋆)v−1 +O

(
no(1)x

))

= (1 + o(1))
λjt
j! exp

(
R̃0(ζ̂t−1) + R̃1(ζ̂t−1)j +

dt∑
v=1

R̃v+1(ζ̂t−1)
(j−j⋆)v+1

(j⋆)v

)
, (5.4.62)

where we seperate the the constant and linear term in the exponent, and by plugging in F̃t(β
⋆, 1) from

(5.4.60), we have

R̃0(ζ̂t−1) = R0(ζ̂t−1)− j⋆
dt+1∑
k=2

(k − 1)Rk(ζ̂t−1)(β
⋆)k−1 (5.4.63)

R̃1(ζ̂t−1) =

dt+1∑
k=1

kRk(ζ̂t−1)(β
⋆)k−1, (5.4.64)

and for v ∈ [dt],

R̃v+1(ζ̂t−1) =

dt+1∑
k=v+1

(
k

v + 1

)
Rk(ζ̂t−1)(β

⋆)k−1.

Recalling that β⋆ and all Rv are in P(gt−1) with all coefficients O
(
no(1)x

)
, we also have R̃v ∈ P(gt−1),

and has all coefficients O(no(1)x) for all 1 ⩽ v ⩽ dt.
Taking the derivative with respect to j on both sides of (5.4.57), after expanding F̃t with respect to
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the second variable around 1 only, with the first variable setting to be j⋆/λt, we have

dt∑
v=0

(v + 1)Rv+1(ζ̂t−1)
(
j
λt

)v
=

d
dj

F̃t

(
j⋆

λt
, 1
)
+

dt+1∑
ℓ2=1

1
ℓ2!

∂ℓ2 F̃t(j
⋆/λt,1)

∂ηℓ2

(
j
j⋆ − 1

)ℓ2
=

dt+1∑
k=1

kRk(ζ̂t−1)
(
j⋆

λt

)k−1

+

dt+1∑
ℓ2=2

1
ℓ2!

dt+1∑
k=ℓ2

Rk(ζ̂t−1)[k]ℓ2

(
j⋆

λt

)k−1

ℓ2

(
j
j⋆ − 1

)ℓ2−1
,

where the first summand in the last line is when ℓ2 = 1. In view of q(ζt(j)) defined in (5.4.41), and
q(ζt(j

⋆)) in (5.4.43), evaluating above equation at j = j⋆ yields

q(ζt(j
⋆)) = exp

(
dt+1∑
k=1

kRk(ζ̂t−1)
(
j⋆

λt

)k−1
)

= exp

(
dt+1∑
k=1

kRk(ζ̂t−1)(β
⋆)k−1 +

dt+1∑
k=1

kRk(ζ̂t−1)
(
j⋆

λt
− β⋆

) k−2∑
i=0

(
j⋆

λt

)i
(β⋆)n−1−i

)

= exp

(
R̃1(ζ̂t−1) +O

(
no(1)x
λt

))
,

where the last step is by recalling R̃1 defined in (5.4.64), and by noting β⋆ = 1+o(1), j⋆ = (1+o(1))λt,
and

j⋆

λt
− β⋆ = O

(
no(1)x
λt

)
,

by (5.4.47). Recalling that j⋆ satisfies q(ζt(j⋆)) = j⋆/λt by (5.4.43), it follows that

j⋆ = exp

(
R̃1(ζ̂t−1) +O

(
no(1)x
λt

))
λt. (5.4.65)

Using this, we rewrite (5.4.62) by separating the constant and linear term from the exponent, and
obtain, for 0 ⩽ j ⩽ mt, that

Tt(j) = (1 + o(1)) exp
(
R̃0(ζ̂t−1)

)
(j⋆)

j

j!

(
1 +O

(
no(1)x
λt

))j

exp

(
dt∑
v=1

R̃v+1(ζ̂t−1)
(j−j⋆)v+1

(j⋆)v

)

= exp
(
R̃0(ζ̂t−1) + o(1)

)
(j⋆)

j

j! exp

(
dt∑
v=1

R̃v+1(ζ̂t−1)
(j−j⋆)v+1

(j⋆)v

)
. (5.4.66)

Define the set of integers

Jt =
{
0 ⩽ j ⩽ ⌊3λt⌋ : |j − j⋆| ⩽

√
j⋆ log j⋆

}
.

Recalling that Qt(·) is defined as the logarithm of the ratio in (5.4.51), we may divide the summation
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into two parts

⌊mt⌋∑
j=0

Tt(j) =
∑
j∈Jt

Tt(j) + Tj⋆
∑

0⩽j⩽⌊mt⌋:j ̸∈Jt

exp (Qt(j)) . (5.4.67)

We will show that the first term on the right-hand side is the main contribution.
By the asymptotic monotonicity claimed in Lemma 5.15 (ii), we use Tj at the end points of set Jt

as upper bounds for terms Tj such that j ̸∈ Jt, and obtain

∑
0⩽j⩽⌊mt⌋:j ̸∈Jt

exp (Qt(j)) ⩽ 3λt exp

(
−j⋆ log2 j⋆

2j⋆ (1 + o(1))

)
= O

(
λ− log λt
t

)
,

and therefore, by noting λt = Θ(nc) with some c > 0 for t ∈ S1, we have, for some constant c′ > 0, that

⌊mt⌋∑
j=0

Tt(j) =
∑
j∈Jt

Tt(j) +O
(
n−c′ logn

)
Tj⋆ = (1 + o(1))

∑
j∈Jt

Tt(j). (5.4.68)

Hence we have the summation for j ∈ Jt is the main contribution.
For j ∈ Jt and v ⩾ 1, we have

(j−j⋆)v+1

(j⋆)v = O

(
(j−j⋆)2
j⋆

)
= O

(
log2 j⋆

)
.

For 1 ⩽ v ⩽ dt, we have R̃v+1(ζ̂t−1) = O
(
no(1)x

)
, and therefore

∑
j∈Jt

Tt(j) = exp
(
R̃0(ζ̂t−1) + o(1)

)∑
j∈Jt

(j⋆)
j

j! exp
(
O
(
no(1)x log2 j⋆

))
= exp

(
R̃0(ζ̂t−1) + o(1)

)∑
j∈Jt

(j⋆)
j

j! .

Let random variable Y ′ follow Poisson distribution

Y ′ d∼ Poi (j∗) .

Then

∑
j∈Jt

Tt(j) = exp
(
R̃0(ζ̂t−1) + j⋆ + o(1)

)1−
∑

j⩾0:j /∈Jt

P
(
Y ′ = j

) . (5.4.69)

By Poisson concentration (see, for example, combining [58, Remark 2.6] and [58, Theorem 2.1, Eq.
(2.5), (2.6)]), and noting λt = Θ(nc), we have

P
(
|Y ′ − j∗| ⩾

√
j∗ log j∗

)
⩽ 2 exp

(
− j∗ log2 j∗

2(j∗+
√
j∗ log j∗)

)
⩽ exp

(
−(1 + o(1)) log2 λt/2

)
= o(1).

(5.4.70)
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Combining (5.4.68), (5.4.69) and (5.4.70) yields

⌊mt⌋∑
j=0

Tt(j) = (1 + o(1))
∑
j∈Jt

Tt(j) = exp
(
R̃0(ζ̂t−1) + j⋆ + o(1)

)
. (5.4.71)

Hence by noting the defining equation (5.4.63) of R̃0(ζ̂t−1), we set

Pt−1,ε = R0(ζ̂t−1) + β⋆λt

(
1−

dt+1∑
k=2

(k − 1)Rk(ζ̂t−1)(β
⋆)k−1

)

= Pt,ε(ζ(0)) + λt

(
β⋆ −

dt+1∑
k=2

(k − 1)Rk(ζ̂t−1)(β
⋆)k

)
, (5.4.72)

where we use (5.4.30) in the last step. Then we have, by (5.4.22), that

P

(∑
u⩾t

Xu = 0

∣∣∣∣∣ Jt−1(j1, . . . , jt−1)

)−1

= exp
(
Pt−1,ε(ζ̂t−1) + o (1)

)
.

In view of (5.4.72), we have part (i) by recalling that Pt,ε(ζ(0)), β
⋆ and Rk(ζ̂t−1) are all in P(gt−1).

For part (ii), since the induction hypothesis applies to the first term of (5.4.72), it suffices to focus on
the second term of (5.4.72). Recalling the discussion after (5.4.47), we have that β⋆ ∈ P(gt−1) and
has all coefficients O

(
no(1)x

)
. By Claim 5.14 (i), the coefficients of all Rv are also O

(
no(1)x

)
. So the

constant coefficient of β⋆ −
∑dt+1

k=2 (k − 1)Rk(ζ̂t−1)(β
⋆)k is 1 + O

(
no(1)x

)
, and all other coefficients are

O
(
no(1)x

)
by noting β⋆ ∼ 1.

Since each step is valid for all t-amenable (j1, . . . , jt−1, jt), the expansions and derivations are,
inductively, uniform over all appropriate ζ̂t−1, and o(1) error does not depend on j1, . . . , jt, therefore,
the uniformity in part (iii) holds with t replaced by t − 1. The inductive step is now fully established
and this completes the proof of Theorem 5.12.

5.4.2 Proof of Theorem 5.1

We proceed under the assumption on p in (5.2.12), that is, p = n−χ−ε+o(1), where ε is fixed. This
constraint will be relaxed at the end of this section. By Corollary 5.13, we have

P (X = 0) = exp (−P0,ε + o(1)) , (5.4.73)

where P0,ε possesses the properties claimed in Theorem 5.12, in particular,

P0,ε =

Mε∑
ℓ=1

cε,ℓn
iε,ℓpjε,ℓ , and P0,ε =

(
1 +O

(
no(1)x

))∑
t∈S

λt, (5.4.74)

where cε,ℓ, iε,ℓ and jε,ℓ are constants depending on ε.
We first show the positivity of iℓ, jℓ for all terms niℓpjℓ in P0, and moreover, it does not depend on

ε. We consider the following cases:

• If jℓ < 0, the term niℓpjℓ cannot be included in P0; otherwise, when p gets very small such that it
does not satisfy (5.2.17), including term niℓpjℓ does not give the correct asymptotic probability 1;
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• If jℓ = 0:

– if iℓ ⩾ 0, the term niℓpjℓ = niℓ cannot be included in P0, for the same reason for the case
jℓ < 0;

– if iℓ < 0, the term niℓpjℓ = niℓ = o(1), therefore is dropped from P0, and absorbed in error.

• If jℓ > 0:

– if iℓ ⩽ 0, the term niℓpjℓ = o(1), therefore is dropped from P0, and absorbed in error;

– if iℓ > 0, the term niℓpjℓ is included in P0.

Next we show that different choices of ε for P0,ε simply determine different places to truncate a
series that is independent of ε. Specifically, we follow the derivation of [98, Eq. (3.31)] and prove the
following.

Lemma 5.17. There exists a power series P0 =
∑

ℓ⩾1 cℓn
iℓpjℓ , where P0 is independent of ε, and

satisfies for any ε > 0,

(i) P0,ε is a truncation of P0 to a finite number of terms,

(ii) different orderings of types that are valid all lead to the same terms in P0,ε.

Proof. We first deal with part (ii) and consider different orderings of types for some fixed ε. Note that
the ordering of types in S determines the order of the inductive arguments concerning the conditional
probabilities, and a given linear ordering leads to a unique set of terms in P0,ε. Recall that the set of
small types S admits a unique partial ordering π0 such that (5.4.3) holds, and we first show that various
linear extensions of π0 all result in the same terms in Pt,ε.

For fixed ε and any two linear extensions π, π′ of π0, we have two corresponding polynomials P0,ε

and P ′
0,ε, respectively, and

P

(
s∑

u=1

Xu = 0

∣∣∣∣∣ J0

)
= exp (−P0,ε + o (1)) = exp

(
−P ′

0,ε + o (1)
)
. (5.4.75)

For any valid choice of p = n−χ−ε+o(1), in view of (5.4.74), the terms in Pt,ε and P ′
t,ε are

cε,ℓn
iε,ℓ−(χ+ε)jε,ℓ+o(1) and c′ε,ℓn

i′ε,ℓ−(χ+ε)j′ε,ℓ+o(1),

respectively. Note a term cε,ℓn
iε,ℓ−(χ+ε)jε,ℓ+o(1) is o(1) if iε,ℓ < (χ+ε)jε,ℓ, and therefore, Pt,ε only contain

terms cε,ℓniε,ℓpjε,ℓ with iε,ℓ ⩾ (χ+ ε)jε,ℓ. Similarly for P ′
t,ε.

We have, from (5.4.75), that for all p = n−χ−ε+o(1),

diff(n, p) := P0,ε − P ′
0,ε = o(1), (5.4.76)

which remains true if we choose p0 = C0n
−χ−ε with any C0 > 0, for which

d̃iff(n,C0) := diff(n,C0n
−χ−ε) =

Mε∑
ℓ=1

Cjℓ
0 aℓn

iℓ−(χ+ε)jℓ ,
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for some aℓ, iℓ, jℓ such that iℓ−(χ+ε)jℓ ⩾ 0 for all ℓ. Then by (5.4.76), we conclude that d̃iff(n,C0) = 0

and two polynomials are equal.
Next we consider different choices of ε and prove part (i). To do so, it suffices to show that for all

0 < ε < ε′, the polynomial P0,ε′ is a truncation of P0,ε; specifically, iε,ℓ = iε′,ℓ, jε,ℓ = jε′,ℓ, cε,ℓ = cε′,ℓ for
all ℓ ∈ [M ′

ε].
For any ε, the sets of types will be denoted explicitly by S(ε), S1(ε) and S2(ε). Recall the bound

on λt in (5.2.15) and the definitions of S, S1, and S2 in (5.2.14), (t1), and (t2) respectively, a type can
move from S1(ε) to S2(ε

′), or from S2(ε) to a large type for ε′. Therefore, we have S(ε′) ⊆ S(ε) for all
ε′ > ε.

As ε increases to ε′, in view of the definition of S2 in (t2), and its dependence on ε, there is a finite
number of values of ε such that the corresponding S2 are non-empty and are different. (The types in S1

are also different.) We list these special values in increasing order ε1 < ε2 < · · · . We consider arbitrarily
two consecutive εi < εi+1, and let ε be in open interval (εi, εi+1). We claim that

(c1) Pt,ε is a truncation of Pt,εi for t ∈ S(ε);

(c2) Pt,εi+1 is a truncation of Pt,ε for t ∈ S(εi+1).

Then part (i) follows from these two claims.
For both claims, we need to show that the difference between the corresponding series, lies only in

the terms that are absorbed by the error terms o(1). We will analyse the inductive derivations of P0,ε

for different ε. Since S(ε′) ⊆ S(ε) for all ε′ > ε, and different valid orderings of types all lead to the
same terms in the final formula, we assume, for any case, that the types in S(ε′) have the same ordering
for ε′ as they do for ε for any ε′ > ε.

• Claim (c1):

Recalling that {εi}i is the set of special values that types in S2 get changed. Since εi < ε < εi+1,
we have ε is not a special value, and therefore S2(ε) = ∅. Hence we have S(ε) = S1(ε) = S1(εi). To
show Pt,ε is a truncation of Pt,εi , we consider the recursive derivation of Pt,εi and Pt,ε in Theorem
5.12.

– For type t′ ∈ S(εi) \ S(ε):

We follow the described derivation of Pt′,εi for εi. Note that t′ ̸∈ S(ε), we may simply set Pt′,ε = 0,
and it is easy to verify that Pt′,εi = o(1) when evaluated at the value of p occurring in the argument
for ε. Therefore, we have the difference between Pt′,ε and Pt′,ε′ is o(1).

– For type t ∈ S(ε):

The rest of the derivation involves the same set of types with the same ordering, and they are all
in S1. The argument for ε is the same as the argument for εi except that whenever an expansion
occurs, different terms may be truncated. In particular, in view of the definition of truncation point
ℓ0 in (5.4.24), since ε > εi, we need less terms when expanding log γt,ε (ft,i) in (5.4.26) to achieve
larger error

O

(
no(1)x
λt

)
= O

(
n−νt+µtχ+(µt−1)ε+o(1)

)
,

152



which is sufficient for the derivation for ε. Suppose instead that we retain all terms that are significant
for either εi. The extra retained terms are dominated by the error term, and therefore all fall into
the error terms during all the remaining inductive steps in the argument involving series expansions.

In particular, the ratio estimate (5.4.40) remains true for ε because of the assertion about the
truncations in Theorem 5.10, as Γt,ε and Γt,εi are both obtained by truncating series Γt with Γt,εi

possibly including more terms as εi < ε. Then the series for εi in the exponent of Tt(j) in (5.4.29)
contains extra terms in comparison with that for ε.

Since the ratio estimate (and those following it) holds with extra terms, the iterative scheme described
before (5.4.47) leads to estimates of β⋆ and j⋆ with extra error terms. By noting that the recursive
defining formula (5.4.72) depends on β⋆ and Rk(ζ̂t−1) in (5.4.29), we conclude that Pt′,ε and Pt′,ε′

differ by o(1).

• Claim (c2):

Next, we will show Pt,εi+1 is a truncation of Pt,ε. Since εi+1 > ε, then S(εi+1) ⊆ S(ε). Moreover, if
t ∈ S(ε), we have t ∈ S(εi+1) by noting that εi+1 is one of the special values. The reason is that for
any t ∈ S(ε), it is possible that t ∈ S2(εi+1), but it cannot be large for εi+1, since εi+1 is the next
special value by definition. Therefore we conclude S(ε) = S(εi+1).

It then remains to show that Pt,εi+1 equals Pt,ε except for any terms of Pt,ε that are o(1) for εi+1.
There may be a type t is in S1(ε) but in S2(εi+1), that is t ∈ (S2(εi+1) ∩ S1(ε)). For any such type,
we claim that it is a maximal types in S1(ε); otherwise, they cannot be in S2(εi+1). Therefore, its
contribution to Pt,ε is λt + o(1). When p is taken in the appropriate range for εi+1, as t ∈ S2(εi+1),
then we have its contribution to Pt,εi+1 is λt = no(1). Therefore, the difference between Pt,ε and
Pt,εi+1 is o(1).

The rest of the argument for this case only involves t ∈ S1(εi+1), so is similar to the argument above.

This completes the proof of Lemma 5.17.

By Lemma 5.17, the series P0,ε in (5.4.74) is a truncation of the power series P0 to a finite number
of terms. Since there is a bounded number of terms in (5.1.6) that are o(1) for a given ε, we have now
established (5.1.6) for this power series and for p = n−χ−ε+o(1), or equivalently, we have

g(n, p) := logP (X = 0)−
Mε∑
ℓ=1

cℓn
iℓpjℓ

satisfies g(n, p) → 0 as n→ ∞ for all p of the form p = n−χ−ε+o(1) with some fixed ε > 0.
Next we need to show that this holds uniformly for p = O (n−χ−ε) with any ε > 0. To do so, we

will use the following lemma from [98].

Lemma 5.18. [98, Lemma 1.4] For a closed interval [a, b], suppose that g(n, p) is a function such that
g(n, p) → 0 as n → ∞ for all p of the form p = n−κ+o(1) when κ ∈ [a, b] is fixed. Then g(n, p) → 0

uniformly for all p(n) satisfying p(n) = n−κ(n) with κ(n) ∈ [a, b] for all n.

By setting a = χ+ ε and b = r− ε′′ in above lemma, where ε′′ is in (5.2.17), we have g(n, p) = o(1)

uniformly for all p such that n−r+ε′′ ⩽ p ⩽ n−χ−ε. The remaining case of smaller p, that is p ⩽ n−r+ε′′ ,
is discussed in the justification of assumption (5.2.17). The proof of Theorem 5.1.6 is complete.
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5.5 Non-existence of subhypergraphs in Hr(n,m)

We will show that the Hr(n, p) case can be extended to get a similar result for Hr(n,m). The argument
here is more or less the same as that in Section 4 of [98]. For convenience, the asymptotics are expressed
in terms of n and the parameter d = m/N , where N :=

(
n
r

)
. We employ the Hr(n, p) case inside the

proof, for a value of p that is close to d, with some adjustment that maximises the probability of having
m edges with X = 0.

Let Y denote the number of edges of a hypergraph. The probability that X = 0 in Hr(n,m) is
exactly P (X = 0 | Y = m) in Hr(n, p). For the rest of the section, we estimate this quantity, with all
probabilities referring to Hr(n, p) for some p that will be expressed using d. By Bayes’ theorem, for all
0 < p < 1,

P (X = 0 | Y = m) = P (Y = m | X = 0)
P(X=0)
P(Y=m) . (5.5.1)

The value of p we will use, which is specified below, is asymptotic to d and lies in the range required
for the Hr(n, p) case of Theorem 5.1 with the same restrictions on ε, which determines the set of small
clusters S. Then Theorem 5.1 estimates P (X = 0) in Hr(n, p), and the remaining task is to compute
the other two factors on the right hand side of (5.5.1).

We compute P (Y = m | X = 0) by considering the R∗-clustering in Hr(n, p). Recall that this is
obtained by adding to S the type t∗ (denoted by 0) of maximal cluster corresponding to a single
hyperedge. We will first obtain an estimate of p using the approximation of the correction factor for
the single edge cluster.

Let ĝ(j) = (ĝ0(j), . . . , ĝs(j)) be defined by

ĝ0(j) = j/λ0

and ĝi(j) = 0 for i ⩾ 1. Considering the power series Γ0,ε(n, p,g) evaluated at g = ĝ(j), we have, by
Theorem 5.10 (b1), that for j/λ0 ⩽ 3,

Γ0,ε(n, p, ĝ(j)) = γ(jδ0, 0) +O

(
x+no(1)λL

λ0

)
, (5.5.2)

by recalling that γ0,ε(iδ0) := Γ0,ε(n, p, ĝ(i)). Also define g̃(m) by

g̃0(m) = m/λ0

and g̃i(m) = 0 for i ⩾ 1. Then by Theorem 5.10 (b2), in view of the differences between ĝ0(j) and
g̃0(m), we also have

Γ0,ε

(
n, p, ĝ(j)

)
= Γ0,ε(n, p, g̃(m)) +O

(
x
λ0

(m− j)
)
. (5.5.3)

For brevity, we write

γ = Γ0,ε(n, p, g̃(m)). (5.5.4)
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Combining (5.5.2) and (5.5.3) gives

γ(jδ0, 0) = γ +O

(
no(1)λL
λ0

+
x
λ0

(m− j)

)
. (5.5.5)

We will use γ as an estimate of γ(jδ0, 0) for j in the range under consideration.
The probability that Hr(n, p) has no copies of any hypergraph in R and m′ edges will be maximised,

given p, at m′ ≈ m provided that

P((m+1)δ0)
P(mδ0)

≈ 1.

In view of the definition of correction factor γ(f, t) in (5.2.4), and noting λ0 = pN , this is equivalent to

γ(mδ0, 0) =
m
λ0

· P((m+1)δ0)
P(mδ0)

≈ m
λ0

=
d
p .

Consequently, we define p by
p = d/γ. (5.5.6)

One can interpret d/γ as the “maximum likelihood estimation” of the parameter p given m edges with
no copies of any hypergraph in R.

By Theorem 5.10 (b1), we have

∣∣∣Γ0,ε(n, p, g̃(m))− γ(f̃ , 0)
∣∣∣ = O

(
x+no(1)λL

λ0

)
,

where the cluster count f̃ := (m, 0, . . . , 0). We also have γ(f̃ , 0) = 1 + O
(
no(1)x

)
by Claim 5.8.

Therefore,

γ = Γ0,ε(n, p, g̃(m)) = 1 +O

(
no(1)x+

x+no(1)λL
λ0

)
,

and moreover, by (5.5.6),

p = d

(
1 +O

(
no(1)x+

x+no(1)λL
λ0

))
. (5.5.7)

By (5.5.4), γ is a function of n and p, in the form of some power series. The estimate of p, in view of
(5.5.6) and (5.5.7), and noting the constraint on x in (5.1.4), be can obtained via repeated substitutions
in the form of a power series in n and d as

p = dJ̃1

(
1 + o

(
1
λ0

))
, (5.5.8)

where J̃1 is the truncation of some power series J1 in n and d to significant terms that is of a finite
number, and J1 is independent of ε.

Now we are ready to approximate P (Y = m | X = 0).

Claim 5.19.

P (Y = m | X = 0) ∼ 1√
2πm

. (5.5.9)

Proof. The number Y of edges in Hr(n, p) is distributed as Bin(N, p) where N =
(
n
r

)
, with mean
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λ0 = Np ∼ m. Therefore, by the concentration of binomial variables [58, Theorem 2.1], we have

P (|Y −m| ⩾ 3m) ⩽ exp (−c0m) ,

for some constant c0 > 0. From the Hr(n, p) case of Theorem 5.1, we have P (X = 0) in Hr(n, p) is
e−Θ(λ1) with λ1 = o(λ0). It follows that

P (X = 0) =
∑
j⩾0

P (X = 0, Y = j) =
∑
j⩾0

P (jδ0) = (1 + o(1))
3m∑
j=0

P (jδ0) . (5.5.10)

Also by (5.5.5), we have

P((j+1)δ0)
P(jδ0)

=
λ0
j+1γ(jδ0, 0) =

m
j+1

(
1 +O

(
no(1)x
λ0

)
+O

(
x(m−j)
λ0

))
, (5.5.11)

where the last step is by noting λ0 = pN and γpN = dN = m. Hence (5.5.10) gives

P(X=0)
P(Y=m,X=0) ∼

3m∑
j=0

P(jδ0)
P(mδ0)

=
P(0δ0)
P(mδ0)

3m∑
j=0

P(jδ0)
P(0δ0)

. (5.5.12)

Recall the definition of Tt⋆(·) in (5.4.35), we have

T0(j) =
λj0
j!

j−1∏
i=0

γ0,ε(iδ0) =
mj

j!

j−1∏
i=0

(
1 +O

(
no(1)x
λ0

)
+O

(
x(m−j)
λ0

))
, (5.5.13)

with the second equality is by noting (5.5.5). Therefore, rewriting (5.5.12) using the correction factor
defined by (5.2.4), gives that

P(X=0)
P(Y=m,X=0) ∼ 1

T0(m)

3m∑
j=0

T0(j). (5.5.14)

We now can deduce, from (5.5.13), that

T0(m)
T0(m−1) = 1 +O

(
no(1)x
λ0

)
.

From Lemma 5.15 and its proof, we have that j⋆ = m+ o(1), and

T0(j) = exp

(
− (j−m)2

2m + o(1)

)
T0(m).

for j = m+O (
√
m logm). Thus, in view of (5.5.14),

P(X=0)
P(Y=m,X=0) ∼

∑
|j−m|=O(

√
m logm)

exp

(
− (j−m)2

2m

)
∼

√
2πm.

Taking the reciprocal completes the proof.
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Now we have

P (X = 0 | Y = m) ∼ 1√
2πm

P(X=0)
P(Y=m) , (5.5.15)

and it remains to estimate probabilities P (X = 0) and P (Y = m). We substitute p using (5.5.8) into
the polynomial obtained by truncating the power series for logP (X = 0) from the Hr(n, p) case of
Theorem 5.1, at an appropriate level, to obtain

logP (X = 0) = J̃2 + o(1), (5.5.16)

where J̃2 is a truncation of a power series J2 in n and d, with J2 independent of ε.
The remaining factor P (Y = m) is simply the binomial probability that can be estimated using

Stirling’s formula. Note that m = dN = o (N) since d ∼ p and p = O (n−ε), then by Stirling’s formula,

P (Y = m) = P (Y = dN) =

(
N

dN

)
pdN (1− p)(1−d)N

∼ 1√
2πdN

NN

(dN)
dN

((1−d)N)
(1−d)N p

dN (1− p)(1−d)N (5.5.17)

=
1√
2πm

(
p
d

)dN (1−p
1−d

)(1−d)N

∼ 1√
2πm

exp

(
dN log J̃1 + (1− d)N log

(
1− d(J̃1−1)

1−d

))
, (5.5.18)

with factor 1/
√
2πm cancelling with P (Y = m | X = 0) obtained above in Claim 5.19.

Then plugging (5.5.16) and (5.5.18) in (5.5.15) yeilds

P (X = 0 | Y = m) ∼ exp

(
J̃2 − d

(
n

r

)
log
(
J̃1

)
−
(
n

r

)
(1− d) log

(
1− d(J̃1−1)

1−d

))
. (5.5.19)

Further expanding gives a power series in n and d, by noting J̃1 − 1 = O
(
no(1)x+ λ−1

0

)
from (5.5.7).

The positivity of the exponents iℓ and jℓ follows by arguing as in the proof of the Hr(n, p) case.

5.6 Computation of the asymptotic probability that H3(n, p) is linear

To obtain the probability of a random hyprgraph being linear, recall that the set H0 contains ‘forbidden’
hypergraphs with hyperedge pair intersecting in more than one vertex; therefore, we set R = H0 and
let R∗ be the union of R and the single edge cluster for this and the next section.

The goal of this section is to compute the terms in Theorem 5.1 explicitly to prove Theorem 5.3. To
obtain an explicit formula, we need to first obtain estimates of the correction factors, and these need
to be determined to a required accuracy, along with the quantities c(u, t, h) appearing in the iterative
approximation (5.3.1).

5.6.1 Clusters and correction factors

For 3-graphs, the only forbidden hypergraph is on four vertices with two hyperedges sharing two vertices
and we have χ = 1 according to (5.1.1). For p = O

(
n−7/5−ε

)
, we have, by (5.1.4), that x = np =

O
(
n−2/5−ε

)
.
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When n7p5 → 0 and n6p4 → ∞, simple computations reveal that S = [8] and S consists of the eight
clusters listed in Figure 5.1. Note that for smaller p, we may have less types. All other cluster types
have expected number tending to 0 asymptotically, and are therefore are not in S. Note that the types
{4, 5, 6, 7, 8} are all maximal, and therefore not comparable in the poset ordering ≺ on S. Nevertheless,
we have that λt+1 < no(1)λt for all t < 8.

1

2

3

4

{123, 234}
Type 1

1

2

3

4

5

{123, 234, 345}
Type 2

1

2

3

4

5

{123, 234, 235}
Type 3

1

2

3

4

5

6

{123, 234, 345, 456}
Type 4

1

2

3

4

5

6

{123, 234, 345, 246}
Type 5

1

2

3

4

5

6

{123, 234, 345, 356}
Type 6

1

2

3

4

5

6

{123, 234, 345, 236}
Type 7

1

2

3

4

5

6

{123, 234, 235, 236}
Type 8

Figure 5.1: Types of possible small clusters for H0-clustering inH3(n, p) when p = o
(
n−7/5

)
.

For each type, the hyperedges are listed below each diagram.

We first calculate λt for t ∈ S, as listed in Table 5.1.

λ1 =
[n]4p

2

4 λ2 =
[n]5p

3

2 λ3 =
[n]5p

3

12 λ4 =
[n]6p

4

2

λ5 =
[n]6p

4

6 λ6 =
[n]6p

4

2 λ7 =
[n]6p

4

2 λ8 =
[n]6p

4

48

Table 5.1: Expected numbers of small clusters.

Our next task is to find the polynomial Γt,ε defined in Theorem 5.10, iteratively for all t ∈ S. In
order to do this, we first list all non-negligible terms in summation (5.3.3) for computing Γt in Table
5.2, where the “cofactor” column of Table 5.2 shows the non-negligible part of

λu
λt

Γu

k∏
i=1

gti
Γti

.

The calculations get simplified by omitting terms in (5.3.3) that have coefficients of variables gti being
O(n−ε0/λt) for some ε0 > 0, and therefore, h is quite restricted. This is because in when evaluating
γt,ε(f), each gti is assigned a value that is no(1), and hence the dropped terms are subsumed into the
error term in (5.3.27), recalling that γt(f) = 1 +O(x) by Lemma 5.7. In particular,

• We omit any O(p) term of the expansion of 1/c(t, t,0) in (5.3.2), since for all t ∈ S, we have
pλt = O(pλ1) = O(n4p3). Hence, we can treat c(1, 1,0) as 1; this also applies for c(t, t,0) for all
other t ∈ S.

• We omit terms inside the summation in (5.3.2) with factor c(t, t, h) for any non-zero h ∈ F and
for all t, since c(t, t, h) = O(p).
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u t h c(u, t, h) cofactor
2 1 0 2 2npΓ2

3 1 0 3 1
3npΓ3

4 1 0 1 2n2p2

4 1 δ1 2 2n2p2Γ4 · g1Γ−1
1

5 1 0 3 2
3n

2p2

6 1 0 1 2n2p2

6 1 δ1 2 2n2p2Γ6 · g1Γ−1
1

7 1 0 2 2n2p2

7 1 δ1 2 2n2p2Γ7 · g1Γ−1
1

8 1 δ1 6 1
12n

2p2 · g1Γ−1
1

4 2 0 2 np

5 2 0 3 1
3np

6 2 0 2 np

7 2 0 2 np

7 3 0 1 6np

8 3 0 4 1
4np

Table 5.2: Contribution to the iteration (5.3.3) for the H0-clustering.

• We omit contributions from t ⩾ 4, since all such t are maximal in S, and c(u, t, h) = 0 unless
t ≺ u or u = t.

• Any other factors which appear to be missing have simply been replaced by 1.

Note that the above omissions and simplifications are not necessary, one could include all relevant terms
and factors in iterations and obtain the same series in the end with the required accuracy.

Using the above values, we obtain the iterative formulae

Γ
(r+1)
1,ε = 1− 4npΓ

(r)
2,ε − npΓ

(r)
3,ε − 10n2p2 − 4n2p2

Γ
(r)
4,ε

Γ
(r)
1

g1 − 4n2p2
Γ
(r)
6,ε

Γ
(r)
1

g1 − 4n2p2
Γ
(r)
7,ε

Γ
(r)
1

g1 − 1
2n

2p2
Γ
(r)
8,ε

Γ
(r)
1

g1,

Γ2,ε = 1− 7np, (5.6.1)

Γ3,ε = 1− 7np, (5.6.2)

Γt,ε = 1 (t ⩾ 4). (5.6.3)

Substitution of {Γt,ε}t⩾2 to Γ1,ε gives that

Γ
(1)
1,ε = 1− 5np(1− 7np)− 10n2p2 − 25

2 n
2p2g1 = 1− 5np+ 25n2p2 − 25

2 n
2p2g1.

Further iterations give Γ
(2)
1,ε = Γ

(1)
1,ε, and therefore we have

Γ1,ε = 1− 5np+ 25n2p2 − 25
2 n

2p2g1. (5.6.4)

We will evaluate the expressions given in Section 5.4 for p such that n7p5 → 0 and n6p4 → ∞, so
that S1 = [8] and S2 = ∅. The ultimate result will then be valid for all values of p such that n7p5 → 0

by Lemma 5.17. We also fix ε in the range 0 < ε < 7/5 − 1 = 2/5. With p and ε in these ranges, the
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Γt,ε are given by the expressions (5.6.1)–(5.6.4).

5.6.2 Conditional probabilities

The recursive approximation of conditional probabilities for t ⩽ 8 starts with setting P8,ε = 0 in (5.4.11).
The next step is to determine P7,ε. Now we have j∗ = λ7 and we conclude that
P (X8 = 0 | J7(j1, . . . , j7))

−1 ∼ eλ8 and then P7,ε = λ8. Similarly, one can show that

P

(∑
u>t

Xu = 0

∣∣∣∣∣ Jt(j1, . . . , jt)

)−1

∼ exp

(
8∑

u=t+1

λu

)

for t ∈ {6, 5, 4, 3}. In particular we have P
(∑

u>3Xu = 0
∣∣ J3(j1, j2, j3)

)−1 ∼ exp (P3,ε) with P3,ε =∑8
u=4 λu.

5.6.2.1 Summation for type 3 and 2

For type 3, plugging the (5.6.2) into the summation (5.4.21) gives

⌊m3⌋∑
j=0

λj3
j! exp

(
8∑

i=4

λi

)
(1− 7np)j = exp

(
8∑

i=4

λi

) ⌊mt⌋∑
j=0

λj3
j! exp (j log (1− 7np))

= exp

(
8∑

i=4

λi

) ⌊mt⌋∑
j=0

λj3
j! exp

(
−7npj +O

(
n2p2j

))
,

where the last step is by expanding the logarithm and noting np = o(1). Since 0 ⩽ j ⩽ 3λ3, we have
n2p2j = O

(
n7p5

)
= o (1), and

⌊m3⌋∑
j=0

λj3
j! exp

(
8∑

i=4

λi

)
(1− 7np)j = exp

(
8∑

i=4

λi + o (1)

) ⌊mt⌋∑
j=0

(e−7npλ3)
j

j!

= exp

(
8∑

i=4

λi + e−7npλ3 + o (1)

)
= exp

(
8∑

i=4

λi + (1− 7np)λ3 + o (1)

)
,

by noting n2p2λ3 = o(1). Thus we have P
(∑

u>2Xu = 0
∣∣ J2(j1, j2)

)−1 ∼ exp (P2,ε) with P2,ε =

(1− 7np)λ3 +
∑8

u=4 λu.
Similarly for type 2, we obtain

⌊m2⌋∑
j=0

λj2
j! exp

(
8∑

i=4

λi + (1− 7np)λ3

)
(1− 7np)j = exp

(
8∑

i=4

λi + (1− 7np)(λ3 + λ2) + o (1)

)
,

and P
(∑

u>1Xu = 0
∣∣ J1(j1)

)−1 ∼ exp (P1,ε) with P1,ε = (1− 7np)(λ3 + λ2) +
∑8

u=4 λu.
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5.6.2.2 Summation for type 1

For type 1, note that g1 does not appear in P1,ε, we have

⌊m1⌋∑
j=0

T1(j) =

⌊m1⌋∑
j=0

λj1
j! exp (P1,ε)

j−1∏
i=0

(
1− 5np+ 25n2p2 − 25

2 n
2p2g1

)
(5.6.5)

= exp (P1,ε)

⌊m1⌋∑
j=0

λj1
j! exp

(
j−1∑
i=0

log
(
1− 5np+ 25n2p2 − 25

2 n
2p2

i
λ1

))
. (5.6.6)

For 0 ⩽ i ⩽ 3λ1, expanding logarithm gives that

log
(
1− 5np+ 25n2p2 − 25

2 n
2p2

i
λ1

)
= −5np+

25
2 n

2p2 − 25
2 n

2p2
i
λ1

+O
(
n3p3

)
.

Then we obtain

T1(j) =
λj1
j! exp

(
P1,ε +

(
−5np+

25
2 n

2p2
)
j − 25

4 n
2p2

j2

λ1
+ o (1)

)
. (5.6.7)

We also have the ratio from (5.6.5),

T1(j)
T1(j−1) =

(
1− 5np+ 25n2p2 − 25

2 n
2p2

j
λ1

)
λ1
j .

This leads to the equation for the maximum term

j⋆

λ1
= 1− 5np+ 25n2p2 − 25

2 n
2p2

j⋆

λ1
.

Iterations give that

j⋆ =
(
1− 5np+

25
2 n

2p2
)
λ1 + o (1) . (5.6.8)

In view of (5.6.7), we rewrite

P1,ε +
(
−5np+

25
2 n

2p2
)
j − 25

4 n
2p2

j2

λ1
= R̃0 + R̃1j + R̃2

(j−j⋆)2
j⋆ , (5.6.9)

where expanding (5.6.9) and comparing with (5.6.7) give

R̃0 + R̃2j
⋆ + (R̃1 − 2R̃2)j + R̃2

j2

j⋆ = P1,ε +
(
−5np+

25
2 n

2p2
)
j − 25

4 n
2p2

j2

λ1
.

Recursively solving, in view of (5.6.8), yields

R̃2 = −25
4 n

2p2
(
1− 5np+

25
2 n

2p2
)
,

R̃1 = −5np+
25
2 n

2p2 + 2R̃2 = −5np+
25
2 n

2p2
(
5np− 25

2 n
2p2
)
, (5.6.10)

R̃0 =
25
4 n

2p2
(
1− 5np+

25
2 n

2p2
)2
λ1 + P1,ε. (5.6.11)
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Here we can also verify (5.4.65) by (5.6.8) and (5.6.10), that is,

exp
(
R̃1(ζ̂t−1)

)
λ1 =

(
1− 5np+

25
2 n

2p2
)
λ1 + o (1) .

Then we have the summation for type 1, following (5.4.71),

⌊m1⌋∑
j=0

T1(j) = exp
(
R̃0 + j⋆ + o (1)

)
= exp

(
P1,ε +

25
4 n

2p2
(
1− 5np+

25
2 n

2p2
)2
λ1 +

(
1− 5np+

25
2 n

2p2
)
λ1 + o (1)

)
= exp (P0,ε + o (1)) ,

where

P0,ε = P1,ε +
(
1− 5np+

75
4 n

2p2
)
λ1.

Plugging in the expectations in Table 5.1 yields the final asymptotic formula

P (X = 0) = exp

(
−

8∑
i=4

λi − (1− 7np)λ3 − (1− 7np)λ2 −
(
1− 5np+

75
4 n

2p2
)
λ1

)

= exp

(
−81
48n

6p4 − (1− 7np)
n5p3

12 − (1− 7np)
n5p3

2 −
(
1− 5np+

75
4 n

2p2
)
[n]4p

2

4

)
= exp

(
−1
4n

4p2 +
3
2n

3p2 +
2
3n

5p3 − 55
24n

6p4
)
.

We for now have the case when p = O
(
n−7/11−ε

)
. To relax this to p = o(n−7/11), we only need to

note that, from this conclusion, all other terms in the series in Theorem 5.1.7 must have iℓ/jℓ ⩽ 7/5.
Such terms tend to zero for p = o(n−7/5), and this completes the proof of Theorem 5.3.

5.7 Computation of the asymptotic probability that H3(n,m) is linear

Here we extend the previous case to give the probability that H3(n,m) is linear by finding the asymp-
totics of P(X = 0) and P(Y = m). This requires first obtaining the asymptotic expansion of p = d/γ.
Recall by (5.5.4), we have γ = γ0,ε(n, p, g̃) with g̃0 = m/λ0 and g̃i = 0 for i ⩾ 1.

Recall that we need R∗-clustering with single hyperedge clusters of type 0. To calculate γ0(n, p, g̃),
under the same assumption that p = O(n−7/5−ε), we extend Table 5.2 by considering Table 5.3 for this
new clustering.

We may also ignore and simplify certain terms in the product of c(u, t, h) with its cofactor in (5.3.3).
In particular,

• Note that λ0 = p
(
n
3

)
, and in view of (5.5.5) and (5.5.6),

g̃0 = m/λ0 = d/p = γ = Γ0,ε(n, p, g̃) = γ(jδ0, 0) + o(λ−1
0 ).

The factors g̃0/Γ0 can be replaced by 1 in (5.3.3).

• We omit all terms of the form c(u, 0, δu) for u > 0, since Γu = Γti and get cancelled in (5.3.3) and
the factor gu is 0 during evaluation.
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u t h c(u, t, h) cofactor
0 0 δ0 p Γ0

1 0 δ0 2
3
2npΓ1 · g0Γ−1

0

2 0 2δ0 1 3n2p2Γ2g
2
0Γ

−2
0

5 0 3δ0 1 n3p3g30Γ
−3
0

2 1 δ0 2 2npΓ2 · g0Γ−1
0

3 1 δ0 3
1
3npΓ3 · g0Γ−1

0

4 1 2δ0 1 2n2p2Γ4 · g20Γ
−2
0

5 1 2δ0 3
2
3n

2p2Γ5 · g20Γ
−2
0

6 1 2δ0 1 2n2p2Γ6 · g20Γ
−2
0

7 1 2δ0 2 2n2p2Γ7 · g20Γ
−2
0

4 2 δ0 2 np · g0Γ−1
0

5 2 δ0 3
1
3np · g0Γ

−1
0

6 2 δ0 2 np · g0Γ−1
0

7 2 δ0 2 np · g0Γ−1
0

7 3 δ0 1 6np · g0Γ−1
0

8 3 δ0 4
1
4np · g0Γ

−1
0

Table 5.3: The contribution to the iteration (5.3.3) for the H⋆
0-clustering.

Then, we obtain the iterative formulae, by noting from (5.2.1), that c(0, 0,0) = 1−p and c(1, 1,0) =
(1− p)2,

Γ
(r+1)
0,ε =

1
1−p

(
1− pΓ

(r)
0,ε − 3np

Γ
(r)
1,ε

Γ
(r)
0,ε

g0 − 3n2p2
Γ
(r)
2,ε

(Γ
(r)
0,ε)

2
g20 − n3p3

1

(Γ
(r)
0,ε)

3
g30

)

Γ1,ε =
1

(1−p)2
(
1− 4npΓ2,ε − npΓ3,ε − 10n2p2

)
Γ2,ε = 1− 7np

Γ3,ε = 1− 7np

Γt,ε = 1 (t ⩾ 4).

Substitution of {Γt,ε}t⩾2 to Γ1,ε, and further expansions and simplifications give that

Γ1,ε =
1

(1−p)2 (1− 5np(1− 7np)− 10n2p2) = (1− 5np+ 25n2p2)(1 + p+ p2 + p3 + p4)2,

and similarly we have for type 0,

Γ
(r+1)
0,ε = (1 + p+ p2 + p3)

(
1− pΓ

(r)
0,ε − 3npΓ1,ε − 3n2p2Γ2,ε − n3p3

)
.

Iterations lead to

Γ0,ε = 1− 3np+ 12n2p2 − 55n3p3 + o
(
n3p3

)
.
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Then repeated substituting p = d/γ into itself yields

p =
d
γ = d (1 + 3dn+ o (dn)) .

Define ε0 = p/d− 1 for brevity. Then by substituting p, we have from (5.1.8) that

logP (X = 0) = J̃2 + o(1)

= −1
4n

4d2(1 + ε0)
2 +

3
2n

3d2(1 + ε0)
2 +

2
3n

5d3(1 + ε0)
3 − 55

24n
6d4(1 + ε0)

4 + o(1).

By noting (5.5.8), plugging into (5.5.19) gives P (X = 0) in H3(m,n),

logP (X = 0 | Y = m) = J̃2 − d

(
n

3

)
log (1 + ε0)−

(
n

3

)
(1− d) log

(
1− dε0

1−d

)
+ o (1)

= J̃2 +

(
n

3

)(
dε20
2 (1 + d)− dε30

3

)
+ o (1) .

Calculations and truncations yield

P (H3(n,m) ∈ L3(n)) = exp
(
−1
4n

4d2 − 1
12n

5d3 − 1
24n

6d4 +
3
2n

3d2 + o (1)
)
.

For the same reasons as in the H3(n, p) case, the validity extends to all d = o(n−7/5). This completes
the proof of Theorem 5.4.

5.8 Concluding remarks

In this chapter, we use the perturbation method to give the asymptotic probability of linearity of random
hypergraphs by avoiding certain forbidden hypergraphs. The same method also gives the probability of
non-existence of some other subhypergraphs in random hypergraphs by considering the corresponding
clustering. In this chapter, we focus on the case when r is some fixed integer, it may be possible to
extend our method and to consider the case when r = r(n) by considering the corresponding clusterings
therein.

5.9 Appendix: Computational details for Section 5.7

We include Wolfram Mathematica code used in Section 5.7 here.

ga2 = 1 - 7 (y*z)

ga1 = (1 - 5 y*z +

25 (y*z)^2)*(1 + p*z + (p*z)^2 + (p*z)^3 + (p*z)^4)^2

ga0i0 = (1 + (p*z) + (p*z)^2 + (p*z)^3 + (p*z)^4)*(1 - (p*z) -

3*(y*z)*ga1 - 3 (y*z)^2*ga2 - (y*z)^3)

ga0i1 = (1 + (p*z) + (p*z)^2 + (p*z)^3 + (p*z)^4)*(1 - (p*z)*ga0i0 -

3*(y*z)*ga1 - 3 (y*z)^2*ga2 - (y*z)^3)

ga0i2 = (1 + (p*z) + (p*z)^2 + (p*z)^3 + (p*z)^4)*(1 - (p*z)*ga0i1 -

3*(y*z)*ga1 - 3 (y*z)^2*ga2 - (y*z)^3)
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ga0trun = Expand[ga0i2] /. z^b_ /; b >= 6 -> 0

ga = With[{z = 1, y = n*p*a, p = a*p}, Evaluate[ga0trun]]

p0 = Expand[

d*a*Expand[1 + (1 - ga) + (1 - ga)^2 + (1 - ga)^3] /.

a^b_ /; b >= 6 -> 0]

p1 = Expand[

d*a*Expand[

With[{p = p0/a},

Evaluate[1 + (1 - ga) + (1 - ga)^2 + (1 - ga)^3]]] /.

a^b_ /; b >= 6 -> 0]

p2 = Expand[

d*a*Expand[

With[{p = p1/a},

Evaluate[1 + (1 - ga) + (1 - ga)^2 + (1 - ga)^3]]] /.

a^b_ /; b >= 6 -> 0]

p3 = Expand[

d*a*Expand[

With[{p = p2/a},

Evaluate[1 + (1 - ga) + (1 - ga)^2 + (1 - ga)^3]]] /.

a^b_ /; b >= 6 -> 0]

eps = With[{a = 1}, Evaluate[Expand[p3/d - 1]]]

first = -n^4 p3^2/4 + 3 n^3 p3^2/2 + 2 n^5 p3^3/3 - 55 n^6 p3^4/24

second = n (n - 1) (n - 2)/6*(d*(1 + d)*eps^2/2 - d*eps^3/3)

With[{a = 1}, Evaluate[Expand[first + second]]] /.

d^b_ /; b > 5 -> 0 /. n^b_ /; b > 8 -> 0
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Chapter 6

Concluding remarks and future work

This thesis presents several examples of obtaining accurate asymptotics of the probability of non-
existence of small substructures in random objects via the consideration of clusters and cumulants.
We believe these are some tips of the iceberg. More interesting and fundamental results are to be
investigated.

6.1 Non-existence of subhypergraphs and hypergraph independence

polynomials

Now we point out some connections between the probability of non-existence of small subhypergraphs
and the hypergraph independence polynomials.

An independent set in a hypergraph H is a subset of vertices U ⊆ V (H) that contains no edge in
E(H). Let I(H) denote the set of all independent sets of hypergraphs H, and p ∈ (0, 1). Then the
independence polynomial of the hypergraph H with parameter p is

IH(p) =
∑

U∈I(H)

p|U |.

It is natural to consider the hypergraph cluster expansion following the derivation in Section 2.2 to
obtain an expansion of log IH(p).

Let F be a hypergraph and let n be a positive integer. We define a hypergraph HF such that its
vertex set V (HF ) = E(Kn) =

(
[n]
r

)
is the edge set of the complete r-uniform hypergraph with vertex

set [n] = {1, . . . , n}, and let E(HF ) be the collection of the edge sets of all copies of F in the complete
r-uniform hypergraph Kn,r defined by (2.3.1).

Then the probability of the non-existence of subhypergraphs F in a random binomial hypergraph is

P (Hr(n, p) is F -free) =
∑

U∈I(HF )

p|U |(1− p)(
n
r)−|U | = (1− p)(

n
r)

∑
U∈I(HF )

(
p

1−p

)|U |

= (1− p)(
n
r)IHF

(
p

1−p

)
,

(6.1.1)

and therefore,

logP (Hr(n, p) is F -free) =
(
n

r

)
log(1− p) + log IHF

(
p

1−p

)
. (6.1.2)
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In a hypergraph with maximum degree ∆, each vertex appears in at most ∆ edges. Improving
upon a recent result by Galvin, McKinley, Perkins, Sarantis and Tetali in [35], Bencs and Buys [8] show
that the optimal zero-free disc around 0 for the graph independence polynomials obtained by Shearer
[89], that is pShearer(∆) defined by (1.3.15), is also the zero-free region for the hypergraph independence
polynomials. This essentially characterises the absolute convergence of the hypergraph cluster expansion
for hypergraphs with maximum degree ∆.

For the non-existence of triangle in G(n, p), we have F = K3, and therefore the maximum degree of
hypergraph HF is

∆(HK3) = |{e ∈ E(HK3) : v ∈ e}| = n− 2,

and hence,

pShearer(∆) ≲ 1
e(∆−1) =

1
e(n−3) = Θ

(
n−1

)
.

In comparison, the assumption by Stark and Wormald [98, Theorem 1.1] and also by Mousset, Noever,
Panagiotou and Samotij [77, Corollary 13] is

p = O
(
n−1/2−ε

)
for some ε > 0. It is unclear whether pShearer(∆) is necessary for using cluster expansion in (6.1.2).

6.2 Open problems

We have shown that the truncation of the cluster expansion series gives the asymptotic linearity of
binomial random hypergraphs. The analysis of the truncation utilised the cumulant series by by Mousset,
Noever, Panagiotou and Samotij [77], whose derivation exploits the correlation among random variables
and relies heavily on FKG inequality. It would be interesting to investigate whether this is necessary for
the truncation. Alternative ways of handling truncation that are commonly used include establishing
the absolute convergence of the series via the Koteckỳ-Preiss criterion [61], for example, see Section 2.5
or [40, 59], etc.

Question 1. What is the proper criterion for the absolute convergence of cluster expansion (2.2.1) and
(6.1.2)? In particular, for the probability of the non-existence of subhypergraphs in Hr(n, p), recalling
the definition of extension value x in (5.1.2), is x = o(1) enough?

The local dependence is assumed to use the cluster expansion in this thesis due to the assumption
in the binomial random graph Hr(n, p) setting. It is not clear whether the framework can be adapted
to the settings with weak long-range dependencies, such as the study of Markov chains, etc.

It also would be interesting to investigate whether the cluster expansion series also gives the probabil-
ity of the non-existence of subhypergraphs in random hypergraphs with given number of edges Hr(n,m).
We could also consider random graphs with given degree sequence, or the even simpler random regular
graphs G(n, d). In these cases, all graph-dependent indicators are dependent, and the only valid de-
pendency graph for them is the complete graph. We may need to modify the method by incorporating
the notion of weak dependence, for instance, mixing coefficients, etc, see, for example, [48, 49], or to
consider variants of “weighted dependency graph” introduced in [25].
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Question 2. How to design proper dependency graphs to study the probability of the non-existence of
subhypergraphs in Hr(n,m) or subgraphs in random regular graphs G(n, d)?

6.3 Future work

Here we list some feasible future work.

(fw1) Eulerian orientation count of random regular graphs.

The complex martingale method [46] gives asymptotic enumeration of Eulerian orientations of
random regular graphs for the dense case. Together with Brendan McKay, the preliminary com-
putations give an interesting correction multiplicative factor to a naive formula. This formula is
consistent with simulations for the sparse range, for which the switching method will be used. It
remains to write a rigorous proof. We also conjecture that the formula holds for the middle range.

(fw2) Complex cumulants and asymptotic enumeration.

The complex martingale method [46] can be used to obtain accurate asymptotic enumeration of
orientations of a graph as a function of the out-degree sequence. This would extend results in
[45].

(fw3) More accurate asymptotic probability of non-existence of small subhypergraphs.

We used the perturbation method to study the probability of the non-existence of small sub-
hypergraphs in random hypergraphs, and we can modify our approach to obtain more accurate
asymptotic formulae to any desired power of n−1. This would be analogous to the results in
Theorem 2.18.

(fw4) Maximum likelihood estimation of edge probability using small cluster counts.

By keeping track of the numbers of clusters, we obtain approximations of the conditional proba-
bilities of avoiding certain sets of clusters given the counts for smaller ones and the non-existence
of even larger ones. This can be uilized, from a Bayesian perspective, to obtain the maximum
likelihood estimation of edge probability using cluster counts.

(fw5) Asymptotic linearity of binomial random hypergraphs via cluster expansion, II. Con-
vergent series.

There is another formulation to relate the probability of a random hypergaph Hr(n, p) being
linear and the independence polynomial. We define a graph G such that its vertex set contains all
hyperedges of the complete r-graph, and there are edges between hyperedges with overlap greater
than 1, that is, V (G) =

(
n
r

)
, and

E(G) =

{
{v1, v2} ∈

(
V (G)

2

)
: |v1 ∩ v2| ⩾ 1

}
.

Then the maximum degree of G is

∆ =

r−1∑
i=2

(
r

i

)(
n− r

r − i

)
>

(
r

2

)(
n− r

r − 2

)
,
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and therefore, if r = Θ(1), then

pShearer(∆) =
(∆−1)∆−1

∆∆ <
1

e(∆−1) ≲ 1

e(r2)(
n−r
r−2)

= Θ
(
n2−r

)
.

In comparison, Theorem 2.7 requires p = o
(
n2−r

)
. Hence, this approach gives stronger results

for even less restricted p.
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