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Abstract

Deep neural networks, despite their profound capabilities, are vulnerable to adversarial

examples, hindering their application in certain fields. Numerous defense methods have

been proposed to mitigate those attacks, with adversarial training emerging as the most

effective across a spectrum of attacks. This research seeks to improve the adversar-

ial training framework from three important strands of deep learning: representation

learning, ensemble learning, and distributional robustness.

Representation learning lies at the heart of deep learning success where features are

automatically learned from data. As such, it has an important role in achieving model

robustness. To this end, we propose a unique adversarial training framework that pos-

sesses local and global compactness in the latent space. Local compactness is achieved

by minimizing divergence between an input’s latent representation and its adversarial

equivalent, while global compactness is achieved by minimizing the divergence between

latent representations of samples within a class and maximizing divergence between those

of different classes. Building upon this, we introduce an advanced framework using the

contrastive learning principle to refine the robust representation. This new method,

employing an enhanced metric for measuring divergence between representations, yields

superior adversarial robustness compared to its predecessor.

Attacks can be diverse, and ensemble learning offers a principled approach to exam-

ine the robustness problem. Here, we introduce a new concept of ”transferring flow,”

designed to mitigate adversarial transferability and encourage model diversity within

the ensemble. This process helps strengthening the ensemble’s robustness to adversarial

examples generated from the ensemble itself, while downplaying the robustness to adver-

sarial examples originating from other models. Further, we introduce a multi-objective

optimization framework capable of generating adversarial examples residing within the

joint adversarial regions of the ensemble. Robustifying the ensemble with these adver-

sarial examples leads to enhanced robustness surpassing the previous method.

Lastly, moving beyond adversarial training using pair of data samples and theirs ad-

versarial counterparts, we examine the distributional robustness and present a unified

framework that encapsulates existing adversarial training methods under our proposed

Wasserstein distributional robustness framework. We introduce a new cost function in-

volving the Wasserstein distance between empirical and worst-case distributions. This

approach generalizes existing adversarial training methods and proposes a novel tech-

nique, outperforming prior methods in terms of robustness.

This thesis offers novel adversarial training frameworks to improve the robustness of

deep neural networks while providing a deeper understanding of adversarial vulnerability
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within the contexts of representation learning, ensemble learning, and distributional

robustness. This enhanced understanding of adversarial vulnerability paves the way for

the development of increasingly robust machine learning models in the future.
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Chapter 1

Introduction

1.1 From Adversarial Examples to Adversarial Training

1.1.1 The Rise of Adversarial Examples

Deep Neural Networks (DNNs) have shown remarkable achievements across a variety

of disciplines (Goodfellow et al., 2016), including computer vision (He et al., 2016,

Zagoruyko and Komodakis, 2016), natural language processing, and speech processing

(Vaswani et al., 2017). The evolution of model architectures, simultaneously with the

rapid growth of computational resources, has enabled DNNs to achieve or even surpass

human-level accuracy in several tasks (Hesamian et al., 2019, Minaee et al., 2020), such

as image classification (He et al., 2016) or natural language processing tasks (Ouyang

et al., 2022).

Due to their superior performance, DNNs have found extensive real-world applications,

from powering language translation in Google Translate and user recommendations on

Amazon to facilitating autonomous driving technology. However, despite their success,

DNNs, including state-of-the-art models, are known to be vulnerable to adversarial

perturbations. These perturbations, while imperceptible to the human eye, can lead to

incorrect or unexpected outcomes (Szegedy et al., 2014, Goodfellow et al., 2015).

Figure 1.1 provides an illustrative example of such adversarial examples, attacking the

pre-trained ResNet50 model (He et al., 2016). The image on the left correctly predicted

as a ”koala” with 49.8% confidence, is compared to the identical-looking adversarial

1
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image on the right. The latter has been subtly manipulated to induce the model to

misclassify it as a ”balloon” with 100% confidence.

Adversarial examples have been demonstrated to exist across a wide range of DNN appli-

cations (Akhtar and Mian, 2018), encompassing image classification (Goodfellow et al.,

2015, Madry et al., 2018), image segmentation (Xie et al., 2017), graph-structured data

(Dai et al., 2018), and speech-to-text systems (Carlini and Wagner, 2018). For example,

Wu et al. (2020a), Song et al. (2018) demonstrated that adversarial perturbations can be

printed on physical objects such as clothes or street signs causing Object Detectors such

as YOLOv2 (Redmon and Farhadi, 2017) to misclassify them. This inherent vulnera-

bility and instability of DNNs could pose serious risks to their real-world applications.

Consequently, there is an urgent need to develop DNN models that are robust against

various types of adversarial examples, thereby enhancing their security and reliability in

real-world deployments.

Figure 1.1: An example of an adversarial perturbation attack. The image on the
left is the original image which was predicted as ”koala” with 49.8% confidence, and
the image on the right is the adversarial image, which has been modified to cause the
model to misclassify it as ”ballon” with 100% confidence. The middle image shows the
perturbation that was added to the original image with 10x magnification. The code
to generate this example is available at https://github.com/tuananhbui89/demo_

attack.

1.1.2 Efforts to Tackle Adversarial Examples

Since proposed in Szegedy et al. (2014), adversarial examples have been the subject of

extensive research in recent years, with the number of papers published on the topic

increasing exponentially, as shown in Figure 1.2. On the one hand, various attack meth-

ods have been proposed to enhance effectiveness (Madry et al., 2018, Kurakin et al.,

2016, Dong et al., 2018, Carlini and Wagner, 2017), computational efficiency (Zhang

https://github.com/tuananhbui89/demo_attack
https://github.com/tuananhbui89/demo_attack
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Figure 1.2: Number of adversarial examples papers published on arXiv from 2014
to May-2023. Data source from: https://nicholas.carlini.com/writing/2019/

all-adversarial-example-papers.html

et al., 2022, Wong et al., 2019a), transferability among inputs (Moosavi-Dezfooli et al.,

2017) or among models (Papernot et al., 2016a). On the other hand, there is also an

extremely large number of defense methods proposed to mitigate adversarial attacks

(Akhtar et al., 2021, Bai et al., 2021), including advances in the architecture perspective

such as ensemble (Tramèr et al., 2018), distillation (Papernot et al., 2016b), quantiza-

tion (Gui et al., 2019), pruning (Dhillon et al., 2018), smooth activation functions (Xie

et al., 2020). Pre-processing and post-processing approaches, such as transformations

(Dziugaite et al., 2016, Guo et al., 2017) and detection methods (Metzen et al., 2017),

have also been explored. Despite numerous defense strategies being proposed to counter

adversarial attacks (Akhtar and Mian, 2018, Akhtar et al., 2021), no method has yet pro-

vided comprehensive protection or completely illuminated the vulnerabilities of DNNs.

For example, many defense methods have been broken with carefully crafted attacks or

with the invention of new attacks (Madry et al., 2018, Croce and Hein, 2019, 2020).

The failure of many defense methods can be attributed to several factors. Firstly, com-

pared to classical machine learning methods such as decision trees or support vector

machines, deep learning methods are more complex and harder to trace the decision-

making process. DNNs, with their multi-layered, interconnected neuron networks, are

not only more complex but also opaque. While these models can achieve high perfor-

mance on a wide range of tasks, they are often difficult to interpret, as the relationships

between the input features and the output predictions are highly nonlinear and not

easily captured by a simple graphical representation.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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Secondly, the difficulty in interpreting the decision-making process also makes it harder

to understand and evaluate the vulnerability of DNNs (Carlini et al., 2019). For example,

many defense methods have been proven of giving a false sense of security because of the

obfuscated gradient (Athalye et al., 2018) in which the gradient of these models is hardly

computed correctly. This phenomenon can be implanted by using non-differentiable

operations such as rounding/quantization or stochastic operations or by using specific

operations which cause vanishing or exploding gradients. These defenses first seem to

be robust against gradient-based attacks but later be shown to be failed against black-

box/transferred attacks or carefully fine-tune white-box attacks (Athalye et al., 2018).

Therefore, careful evaluation and systematic vetting of defense methodologies are critical

in ensuring robustness against adversarial examples.

1.1.3 Adversarial Training: Importance and Challenges

In light of the aforementioned issues, Adversarial Training (AT) stands out as the most

resilient defense method against adversarial examples (Szegedy et al., 2014, Madry et al.,

2018, Athalye et al., 2018). The premise of AT is straightforward: it involves the gener-

ation of adversarial examples, which are then integrated into the training set (Szegedy

et al., 2014). The adversarial examples are typically generated using gradient-based

attacks such as the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) or

Projected Gradient Descent (PGD) (Madry et al., 2018). Despite its simplicity, AT has

been demonstrated to be robust against a multitude of attacks and remains one of the

most reliable defense methods (Madry et al., 2018, Athalye et al., 2018).

However, the practical deployment of AT comes with several challenges that limit its

feasibility in real-world applications. Firstly, AT is computationally intensive, given

that it necessitates the generation of adversarial examples for each training sample,

repeatedly over multiple epochs, each of which requires multiple forward and backward

processes (Madry et al., 2018). Moreover, AT’s susceptibility to multi-step attacks when

employed with a single-step attack has been documented (Tramèr et al., 2018). This

susceptibility was later attributed to a phenomenon known as catastrophic overfitting

(Rice et al., 2020). Another significant drawback of AT is the tradeoff between the

robustness and accuracy of a model. Models that demonstrate high robustness following
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AT often suffer reduced accuracy (Zhang et al., 2019). Consequently, efforts to refine

and optimize AT for real-world applications are necessary to mitigate these challenges.

To this end, recent research has explored various avenues to enhance AT. One direction

involves the integration of AT with techniques like sharpness-aware minimization (Foret

et al., 2021), which promotes smoother behavior in both the input and model spaces.

This integration has shown promise in striking a better balance between model robust-

ness and accuracy (Wu et al., 2020b, Nguyen et al., 2023). Another active direction

involves augmenting AT with data augmentation methods, such as diffusion models (Ho

et al., 2020, Song et al., 2020), which increase the diversity of the training data. This aug-

mentation has demonstrated significant improvements in both robustness and accuracy

(Gowal et al., 2021, Rebuffi et al., 2021, Wang et al., 2023). Moreover, there are ongoing

efforts to improve the efficiency of AT, including approximating multi-step attacks with

single-step counterparts (Zhang et al., 2022, Wong et al., 2019a, Andriushchenko and

Flammarion, 2020). These evolving approaches aim to advance AT’s capabilities and

address its practical limitations for real-world deployment.

1.2 Aims and Contributions

In this section, we delve into the contributions made in this thesis concerning the en-

hancement of adversarial robustness. Our focus lies on three distinct perspectives: rep-

resentation learning, ensemble learning, and distributional robustness.

1.2.1 Representation Learning Approaches

Why Representation Learning? Representation learning constitutes a fundamental

pillar of machine learning and deep learning (Bengio et al., 2013). It primarily concerns

the extraction of efficient and meaningful representations of data, with these learned

representations deployed for various downstream tasks, such as classification, regression,

or clustering.

As discussed in Bengio et al. (2013), successful representation learning can reveal gen-

eral priors about the observed data, crucial for the development of effective AI models.
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These priors, while not task-specific, include characteristics such as smoothness, local-

ity, and abstraction, which are typically beneficial for learning AI models. Numerous

approaches have attempted to integrate these priors into the representation learning pro-

cess, including methods like autoencoders (Kramer, 1991, Kingma and Welling, 2013)

and self-supervised learning (Yarowsky, 1995, Balestriero et al., 2023).

However, in the context of adversarial machine learning, these representation learning

methods are not sufficient to achieve the robustness property. That leads to the first cen-

tral question that this thesis tries to answer: what are characteristics of a representation

that benefit robustness?

Several early works attempt to improve adversarial robustness through the lend of rep-

resentation learning, however, they are either limited intuition or not effective. The

work Ilyas et al. (2019) made a hypothesis that adversarial vulnerability is the result of

the sensitivity of deep learning models to well-generalizable but imperceptible-to-human

features. This phenomenon was later analyzed as the phenomenon of learning a shortcut

in deep models (Geirhos et al., 2020). Based on this hypothesis, the authors proposed

an ideal framework that learns from useful and robust features only that can achieve

both robustness and generalization. However, to achieve this goal, the authors proposed

a method to disentangle the robust/non-robust features relying on a pre-trained robust

model which is limited by the robustness of the pre-trained model.

Samangouei et al. (2018) proposed a GAN-based method to model the data manifold

and then used the learned generator to approximate the input sample. In this way,

the gradient-based attacks could not find the adversarial examples because of the non-

differentiability of the generator. However, later Jalal et al. (2017) proposed an overpow-

ered attack method to efficiently attack these kinds of non-differentiable-based defenses.

Stutz et al. (2019) found that the regular adversarial examples leave the manifold of

benign data, which explains the drop of generalization when using these adversarial

examples in adversarial training. The authors proposed a VAE-GAN architecture to

approximate the data manifold and based on that, they proposed an on-manifold ad-

versarial generation by using a pre-trained encoder-decoder. More specifically, they

perturbed the latent representation of the benign input getting by the encoder and then
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used the decoder to generate the adversarial example. However, this method solely re-

lies on the assumption that the data manifold is well approximated by a VAE-GAN

architecture which is not feasible in real-world applications.

These above lines of work can be classified into a category of direct robust representa-

tion learning methods where they tried to directly model the robust representation of

the data. On the other hand, there are also other works that indirectly learn robust

representations through additional regularizations that introduce inductive bias prop-

erties in the latent space. These kinds of methods are empirically proven to be more

effective. For example, the work (Mao et al., 2019) was the pioneer that found the shift

of representations of adversarial examples to a cluster of a false class. To mitigate this

issue, they proposed to minimize the distance between the representations of adversarial

examples and the representations of benign examples formulated by a triplet loss.

Contributions. In Chapter 3, we delve into our contributions, as outlined in two pa-

pers: Bui et al. (2020) and Bui et al. (2021a), which aim to address the aforementioned

research question. These works revolve around harnessing both local information, such

as adversarial/benign identification, and global information, such as class identity, to

acquire a robust representation. Our ultimate goal is to develop an ideal feature ex-

tractor capable of exhibiting invariance to adversarial perturbations, leading to similar

representations for both adversarial and benign examples. At the same time, this feature

extractor aims to maintain discriminative power for class identity, resulting in distinct

representations for different classes. By achieving such a robust feature extractor, we

can establish a solid foundation for constructing a robust classifier, even with the use of

a simple linear classifier on top of it.

The work (Bui et al., 2020) marks the initial stage in this series, where we introduce

a regularization method that imposes local and global compactness properties on the

latent space. In particular, we enforce the local compactness property by minimizing

the divergence between the representations of adversarial and benign examples. Addi-

tionally, we propose minimizing the divergence between representations of samples from

the same class while maximizing the divergence between representations from different

classes to enforce the global compactness property. Through comprehensive experi-

ments, we showcase that our proposed method enhances the model’s robustness while

preserving its generalization ability.
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The work (Bui et al., 2021a) is a follow-up to the previous work, where we further

investigate the impact of the distance metric used to measure the divergence between

representations. While the previous work was the pioner work that proposed to leverage

both local and global information to learn robust representations, the distance metric

used to measure the divergence between representations is the Euclidean distance, which

is not suitable for high-dimensional data. At the same time, contrastive learning (Chen

et al., 2020a) gained popularity in the computer vision community as an effective self-

supervised representation learning method. At its core, contrastive learning employs

a contrastive loss that encourages the proximity of representations between an anchor

example and its positive examples, while promoting distance between the anchor example

and its negative examples. Although the principle aligns with our previous work, the

contrastive loss considers the relative distance between representations in the latent

space, providing a better interpretation of global information compared to the absolute

distance in our earlier approach.

In our work (Bui et al., 2021a), we introduce a novel regularization method that utilizes

the contrastive loss to enforce local and global compactness properties in the latent space.

However, it is not a straightforward application of the contrastive loss, as we demonstrate

that applying it directly yielded ineffective results. To gain a deeper understanding, we

address three research questions in Bui et al. (2021a): why contrastive learning (CL)

can improve adversarial robustness, how to integrate CL with adversarial training in the

context of AML, and the key factors influencing CL’s performance in AML.

To tackle these questions, we propose the Adversarial Supervised Contrastive Learn-

ing (ASCL) framework, which combines adversarial training and contrastive learning

to learn robust representations. Furthermore, we develop a novel set of strategies for

selecting positive and negative samples, carefully choosing the most relevant samples for

the anchor to enhance adversarial robustness. Through empirical evaluation, we demon-

strate that our ASCL framework significantly outperforms several adversarial training

methods, including our previous work (Bui et al., 2020), and achieves comparable per-

formance to state-of-the-art robust defenses in the literature.
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1.2.2 Ensemble Learning Approaches

Why Ensemble Learning? While there are many adversarial training variants have

been developed, however, most methods typically address the robustness within a single

model (e.g., Madry et al. (2018), Papernot et al. (2016c), Moosavi-Dezfooli et al. (2016),

Qin et al. (2019), Shafahi et al. (2019)). To cater for more diverse types of attacks,

recent work, notably Tramèr et al. (2018), He et al. (2017), Strauss et al. (2017), Liu

et al. (2018a), Pang et al. (2019), have shown that ensemble learning is a promising and

potential direction to strengthen adversarial robustness of single models for obtaining

stronger models.

In essence, an ensemble model’s decision is an amalgamation of predictions made by its

members. As a result, an attacker would need to deceive the majority, if not all, of the

ensemble members to successfully fool the entire model. This poses a greater challenge

for attackers. Moreover, the greater the diversity among ensemble members, the more

difficult it becomes for attackers to launch successful attacks.

Conventional ensemble learning methods such as bagging (Breiman, 1996), boosting

(Freund and Schapire, 1997), Bayesian averaging (Hoeting et al., 1999) have been proven

that can significantly increase the diversity among ensemble members, subsequently,

improve natural accuracy. Therefore, naturally, these conventional ensemble methods

are expected to improve adversarial robustness.

However, recent work showed that a naive ensemble of weaker defenses is not a stronger

classifier as expected (He et al., 2017). An adaptive attack which has full access to

the ensemble model and adapts its attack strategy accordingly can still easily find the

adversarial examples that can fool the ensemble model. It is also observed that adversar-

ial examples crafted from one model can be transferred to fool other models (Papernot

et al., 2016a,b). Therefore, key principles for ensemble-based adversarial training largely

remain open. In particular, there are two research questions that we aim to answer in

this thesis: ”What are factors affecting the ensemble robustness?” and ”What principles

can be used to collaborate single models to a more robust ensemble model?”.

Several ensemble-based adversarial training methods have been proposed in the litera-

ture, including notable contributions from Tramèr et al. (2018), Strauss et al. (2017), Liu
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et al. (2018a), and Pang et al. (2019). Although these methods have shown initial suc-

cess, the key principles to achieve ensemble robustness have yet to be fully understood.

One critical challenge is to minimize the ”transferability” among ensemble members in

order to enhance the overall robustness of the ensemble model (Papernot et al., 2016a,

Tramèr et al., 2018, Pang et al., 2019, Liu et al., 2016, Kariyappa and Qureshi, 2019).

In Kariyappa and Qureshi (2019), robustness was achieved by aligning the gradients

of the ensemble members to be diametrically opposed, thereby reducing the shared ad-

versarial spaces or transferability. However, this method was specifically designed for

black-box attacks and remained vulnerable to white-box attacks. Moreover, attempting

to achieve gradient alignment becomes unreliable when dealing with high-dimensional

datasets and poses challenges when extending it to ensembles with more than two mem-

bers.

More recently, Pang et al. (2019) proposed a method to promote the diversity of non-

maximal predictions among ensemble members (i.e., the diversity among softmax prob-

abilities excluding the highest ones) to mitigate adversarial transferability. However, the

central concept of transferability has yet to be systematically addressed in a compre-

hensive manner.

Contributions. In Chapter 4, we present our contributions on improving adversarial

robustness through ensemble learning perspective as outlined in two papers: Bui et al.

(2021b) and Bui et al. (2023).

In the work Bui et al. (2021b), we first make the concept of adversarial transferability

concrete via the definitions of secure and insecure sets. Our goal is to reduce adversar-

ial transferability and increase model diversity by minimizing the overlap between the

insecure sets of committee models, thus reducing the similarity of their regions affected

by adversarial examples.

However, we observe that solely reducing adversarial transferability is not enough to

guarantee accurate predictions from the ensemble model. This is because a committee

member that consistently made incorrect predictions could dominate the final decisions.

To address this issue, we introduce a concept called ”transferring flow” by combining

robustness-promoting and demoting operations.



11

The key principle behind coordinating these operations is to promote the predictions

of one model on a given adversarial example while demoting the predictions of another

model on the same example. This approach aims to minimize the negative impact of

incorrect predictions and ensure the correct predictions of the ensemble model.

Unlike previous works (Strauss et al., 2017, Pang et al., 2019, Kariyappa and Qureshi,

2019) that only focused on adversarial examples specifically crafted for the ensemble

model, we expose the committee members in our ensemble to various divergent sets

of adversarial examples. This exposure motivates the committee members to become

increasingly diverse over time.

Through extensive experiments, we demonstrate that our proposed method significantly

outperforms previous ensemble-based adversarial training methods. Interestingly, by

strengthening the demoting operations, our method also facilitates better detection of

adversarial examples. This capability to identify adversarial examples further enhances

the overall robustness of the ensemble model.

In previous studies, generating adversarial examples that deceive all ensemble members

has proven crucial for enhancing ensemble model robustness. Expanding on this, our

work (Bui et al., 2023) introduces a novel method for generating transferable adver-

sarial examples within the joint insecure region shared by all ensemble members. We

formulate the adversarial generation task as a multi-objective optimization problem,

aiming for Pareto optimality by maximizing multiple objectives simultaneously. How-

ever, directly applying multi-objective optimization proved unsatisfactory due to task

dominance.

To address this, we propose the Task Oriented Multi-Objective Optimization (TA-MOO)

framework, which prioritizes unsuccessful tasks while maintaining success using a novel

geometry-based regularization term. Extensive experiments across three adversarial

generation tasks and one adversarial training task showcase the effectiveness of our

approach in generating stronger and more resilient adversarial examples. Combining

our method with adversarial training further strengthens model security.
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1.2.3 Distributional Robustness Approaches

Why Distributional Robustness? In the previous two perspectives, we have dis-

cussed about the importance of representation learning and ensemble learning on im-

proving adversarial robustness. However, these methods, along with other AT-based

methods, seek a pointwise adversary by independently perturbing each data sample.

Considering adversarial effects at a distributional level, on the other hand, may offer

unexplored benefits. Unlike AT, distributional robustness seeks a worst-case distribution

that generates adversarial examples from a known uncertainty set of distributions located

in the ball centered around the data distribution. This approach is expected to have

better generalization performance on unseen data.

Conceptually and theoretically, distributional robustness can be viewed as a generaliza-

tion and better alternative to AT. Several attempts (Staib and Jegelka, 2017, Sinha et al.,

2017) have shed light on connecting AT with DR. However, to the best of our knowledge,

practical DR approaches that achieve comparable performance with state-of-the-art AT

methods have yet to be developed.

Contributions. In Chapter 5, we present our contributions towards improving ad-

versarial robustness through the lens of distributional robustness, as introduced in Bui

et al. (2022).

In particular, we propose a unified framework that connects Wasserstein distributional

robustness with current state-of-the-art AT methods. We introduce a new cost function

of the Wasserstein distance and propose a unified formulation of the risk function in

WDR, with which, we can generalize and encompass the existing AT methods including

SOTA ones in the distribution robustness setting.

Through extensive experiments, we demonstrate that with better generalization capacity

of distributional robustness, the resulted AT methods in our framework can achieve

better adversarial robustness than their standard AT counterparts.
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1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we provide the necessary

background information for this study. We offer an overview of adversarial machine

learning (AML), covering four main research directions: adversarial attacks, adversarial

defenses, certified robustness, and real-world applications of AML. Additionally, we delve

into the details of adversarial examples and adversarial training, which are the primary

focuses of this thesis. Moreover, we discuss the background of representation learning,

multi-objective optimization, and distributional robustness, as these techniques play a

crucial role in our efforts to enhance adversarial robustness.

Chapter 3 presents our contributions to improving adversarial robustness from a rep-

resentation learning perspective. Specifically, we introduce the Adversarial Divergence

Reduction (ADR) method (Bui et al., 2020), a novel regularization approach for learning

robust representations. Furthermore, we present the Adversarial Supervised Contrastive

Learning (ASCL) framework (Bui et al., 2021a), an advanced version of ADR that ex-

hibits improvements in methodology, performance, and understanding.

While the previous chapter focuses on enhancing adversarial robustness within a single

model, Chapter 4 shifts the perspective to ensemble learning. We discuss our con-

tributions in this area, beginning with the introduction of the Crossing Collaborative

Ensemble method (Bui et al., 2021b), a novel collaboration strategy that enhances the

ensemble model’s adversarial robustness. Additionally, we present the Task-Oriented

Multi-Objective Optimization (TA-MOO) framework (Bui et al., 2023), which employs

a multi-task optimization approach to generate transferable adversarial examples. This

work demonstrates that the generated adversarial examples can improve the ensemble

model’s adversarial robustness.

Chapter 5 focuses on improving adversarial robustness through the lens of distributional

robustness. We introduce the Unified Distributional Robustness (UDR) framework (Bui

et al., 2022), which establishes a connection between Wasserstein distributional robust-

ness and current state-of-the-art adversarial training methods. While the previous two

perspectives focus on improving adversarial robustness at a pointwise level, this frame-

work considers adversarial effects at a distributional level, enhancing generalization per-

formance on unseen data.
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Finally, in Chapter 6, we conclude our thesis by summarizing the major findings and

discussing the limitations of our work, as well as outlining potential future directions.



Chapter 2

Background

In this chapter, we delve into the background of adversarial machine learning, provid-

ing a detailed definition of adversarial attacks and defenses, as well as an overview of

some of the most popular methods in each category. We then provide a background

of representation learning, multi-objective optimization, and distributional robustness,

which are the tool sets that we will use to develop our defense strategies in the following

chapters.

2.1 Notions and Terminologies

We first establish the machine learning setting and terminologies throughout the thesis.

We begin by introducing the base target model, also known as the victim model, which

represents the model under attack. Subsequently, we introduce the ensemble model,

consisting of a collection of models employed to defend against adversarial attacks.

Lastly, we present the distance metric, a function that measures the distance between

two samples, which has been used frequently in this thesis.

The Target Model. We consider a supervised learning problem, where we are given

a training dataset D = {(xi, yi)}ni=1 consisting of n samples, where xi ∈ X is the input

and yi ∈ Y is the corresponding label. The goal is to learn a function f : X → Y that

maps an input x ∈ X to a label y ∈ Y. The function f is modeled by a neural network

with parameters θ, which is trained by minimizing the empirical risk on the training

15
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dataset D:

L(θ) =
1

n

n∑

i=1

ℓ(f(xi; θ), yi), (2.1)

where ℓ is the loss function that measures the discrepancy between the prediction f(xi; θ)

and the ground-truth label yi for the i-th sample.

The Loss Function. For classification problems, the most common loss function is

the cross-entropy loss which is defined as follows:

ℓ(f(xi; θ), yi) = −
k∑

j=1

yij log
exp(fj(xi; θ))

∑k
l=1 exp(fl(xi; θ))

, (2.2)

where yij is the j-th element of the one-hot encoded label yi and k is the number of

classes. In this definition, the output of the model f(xi; θ) is interpreted as a logit vector.

The softmax function σ is commonly used to convert the logit vector to a probability

vector, which is defined as follows:

σ(z)j =
exp(zj)∑k
l=1 exp(zl)

. (2.3)

The label-smoothing cross entropy loss (Szegedy et al., 2016) is also commonly used in

the literature, where the soft labels are used instead of the one-hot encoded labels. The

soft labels are defined as follows:

ỹi = (1− α)yi +
α

k
, (2.4)

where α is a hyperparameter that controls the smoothness of the soft labels. If α = 0,

the soft labels are the same as the one-hot encoded labels, while α = 1, the soft labels

are uniform distribution over the classes.

It is worth noting that the loss function ℓ for training the target model is not necessarily

the same as the loss function used for generating adversarial examples. For example,

the Kullback-Leibler (KL) divergence loss is not used as the loss function for training

the target model, but commonly used for generating adversarial examples (Zhang et al.,
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2019). The KL divergence loss of two probability vectors p and q is defined as follows:

ℓKL(p, q) =
k∑

j=1

pj log
pj
qj
. (2.5)

Decomposed Model. The model fθ can be decomposed into two parts: the feature

extractor or the encoder gθ : X → Z and the classifier hθ : Z → Y, where Z is the

feature space. The decompositon is defined as follows:

fθ(x) = hθ(gθ(x)). (2.6)

Evaluating the Model. The quality of the model fθ is measured by its performance

on the test dataset Dtest = {(xi, yi)}mi=1, where m is the number of samples in the test

dataset. The performance is measured by the test accuracy, which is defined as the

proportion of correctly classified samples in the test dataset:

1

m

m∑

i=1

1{hθ(gθ(xi))=yi}. (2.7)

The performance of the model also can be measured by the test loss, which is defined

as the average loss on the test dataset:

1

m

m∑

i=1

ℓ(fθ(xi), yi). (2.8)

When evaluating robustness of the model, the test robust accuracy and the test ro-

bust loss are measured on the adversarial test dataset Dadv = {(xa
i , yi)}mi=1, where the

adversarial examples are generated using the adversarial attack algorithm A.

Ensemble Model. An ensemble model is a collection of K models fθ1 , . . . , fθK , where

each model is parameterized by θk and has the same goal as the target model. The model

θk can be called as a base model/classifier or an ensemble member, depending on the

context.

Ensemble mechanism is the process of combining the predictions of the ensemble mem-

bers to make the final prediction. The ensemble mechanism can be as simple as taking
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Figure 2.1: Illustration of the unit Lp norms in 2D. Image source: https://en.

wikipedia.org/wiki/Norm_(mathematics)

the majority vote of the predictions of the ensemble members or averaging the predic-

tions of the ensemble members. Averaging predictions can be done in the logit space or

the probability space, depending on the context.

Distance Metric. Distance metric is a function that measures the distance between

two samples which has been used frequently in this thesis, i.e., measuring the perceptu-

ally similarity between an input image and its adversarial counterpart. Generally, the

Lp distance between two samples x and x′ is defined as follows:

dp(x,x
′) =

(
d∑

i=1

|xi − x′i|p
)1/p

, (2.9)

where d is the dimension of the input space.

Figure 2.1 illustrates the unit Lp norms in 2D of the three most common values of p:

p = 1, p = 2, and p =∞.

The L1 distance is defined as the sum of absolute differences between two samples, which

is also called the Manhattan distance. It is defined as follows:

d1(x,x
′) =

d∑

i=1

|xi − x′i|. (2.10)

Geometrically, it is the distance between two points in a city if a person can only travel

along a city block grid.

https://en.wikipedia.org/wiki/Norm_(mathematics)
https://en.wikipedia.org/wiki/Norm_(mathematics)
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The L2 distance is also called the Euclidean distance which measures the magnitude or

length of the vector between two samples. It is defined as follows:

d2(x,x
′) =

√√√√
d∑

i=1

(xi − x′i)
2. (2.11)

Geometrically, it is the shortest distance between two points in a plane.

The L∞ distance is defined as the maximum absolute difference between two samples,

which is also called the Chebyshev distance.

d∞(x,x′) =
d

max
i=1
|xi − x′i|. (2.12)

In other words, it represents the maximum distance between two points along any co-

ordinate dimension. In optimization problems, the L∞ is used for robust optimization

or worst-case analysis, where the objective is to minimize the maximum deviation from

a target value. In adversarial machine learning literature, the L∞ distance is the most

commonly used distance metric to measure the perceptual similarity between the input

image and the adversarial example. For example, Goodfellow et al. (2015) argue that

the L∞ distance is the most appropriate distance metric given a maximum budget on

the perturbation (Carlini and Wagner, 2017).

In Chapter 5 we use the Wasserstein distance to measure the distance between two

distributions which will be discussed in Section 2.7.1.

2.2 An Overview of Adversarial Machine Learning

Adversarial machine learning (AML) is a subset of the broader field known as trust-

worthy machine learning (TML). TML research aims to develop and deploy machine

learning systems that possess qualities of reliability, transparency, fairness, and security.

The primary objective is to establish confidence in the ability of machine learning models

and algorithms to make precise predictions and informed decisions, while also addressing

potential risks and biases. The significance of trustworthiness becomes paramount as

machine learning models find increasingly critical applications in sectors such as health-

care, finance, autonomous vehicles, and cybersecurity.
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AML plays a crucial role in enhancing the security and trustworthiness of machine

learning systems. It focuses on understanding and defending against adversarial at-

tacks, where malicious actors intentionally manipulate input data to deceive or exploit

vulnerabilities in machine learning models. The importance of AML lies in its ability to

identify and address weaknesses in models, ensuring their reliability and trustworthiness.

By studying adversarial attacks, researchers and practitioners can develop defense mech-

anisms and techniques that enhance the resilience of machine learning systems. AML

helps protect critical applications such as autonomous vehicles, cybersecurity systems,

and fraud detection, where the consequences of a successful attack can be severe. By

actively considering and mitigating adversarial risks, AML contributes to building more

secure and trustworthy machine learning models, ultimately fostering the adoption of

these technologies in sensitive domains.

There are four main research directions in the field of AML including adversarial attacks,

adversarial defenses, certified robustness, and applications of AML in real-world systems.

Adversarial Attacks. Briefly, adversarial attacks are techniques that can be used to

manipulate input data to cause a machine learning model to make incorrect predictions

or decisions. One of the most common types of adversarial attacks is the adversarial

examples, where a small amount of noise is added to the input data to cause the model

to misclassify it.

Adversarial Defenses. refers to a set of techniques and strategies employed to pro-

tect machine learning models from adversarial attacks. The goal of adversarial defenses

is to improve the robustness of machine learning models, making them more resilient

to adversarial attacks. There are various approaches to adversarial defenses, includ-

ing robustifying the training process, preprocessing the input data, detecting specious

input/output, and many more.

Certified robustness. refers to the idea of proving that a machine learning model is

truly robust to adversarial attacks, by providing a formal guarantee that the model will

not be affected by any adversarial attacks within a certain range. Notable examples of

certified robustness include the work of Wong et al. (2019a), Wong and Kolter (2018),

Raghunathan et al. (2018) which provide formal guarantees of robustness for neural

networks.
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AML for Good. Last but not least, one of the most practical and impactful research

directions in AML is studying the applications of AML in real-world systems. Research

in this direction explores the behavior and limitations of machine learning models, re-

vealing biases and preferences. For example, Geirhos et al. (2018) demonstrated that

machine learning models are biased toward texture rather than shape when classifying

images, while Brendel and Bethge (2019) showed that these models rely on bag-of-local

features when making predictions. Geirhos et al. (2020) hypothesized that machine

learning models prefer learning shortcuts rather than the actual underlying concepts

from the data

On the other hand, adversarial examples have served as a useful tool to improve the

generalization of models. Techniques like VAT (Virtual Adversarial Training) proposed

by Miyato et al. (2018) and SAM (Sharpness-Aware Minimization) developed by (Foret

et al., 2021) leverage adversarial learning principle to improve the overall performance

of the model.

Moreover, AML research explores practical applications that have positive benefits. For

instance, poisoning data can be strategically employed to immunize public photos against

harmful manipulation, as demonstrated by Salman et al. (2023). Similarly, Sablayrolles

et al. (2020) illustrated how poisoning data can be utilized to track whether a model has

been trained on a specific ”marked” dataset, aiding in identifying potential data leaks.

Cloaking techniques, as proposed by Wu et al. (2020a), are developed to protect the

privacy of users’ data, ensuring that sensitive information remains secure. Adversarial

perturbations also contribute to the resilience of model predictions against environmental

changes, as shown by Salman et al. (2021). Additionally, backdoor attacks serve as an

effective means of watermarking models to safeguard against intellectual property theft,

as exemplified by Adi et al. (2018), Zhang et al. (2018), Uchida et al. (2017).

By exploring these real-world applications, AML research not only addresses critical

challenges but also paves the way for tangible solutions that enhance security, privacy,

and robustness in machine learning systems.

In this thesis, we focus on the first two research directions, adversarial attacks, and

adversarial defenses which are the main topics of the next two sections.
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Figure 2.2: White-box and black-box settings.

2.3 Adversarial Attacks

Adversarial attacks are a class of attacks that exploit vulnerabilities in a target model to

manipulate its behavior. This line of research in machine learning has a rich history, with

foundational contributions by Dalvi et al. (2004), Lowd and Meek (2005), Barreno et al.

(2006, 2010), Biggio et al. (2010, 2013). However, the field gained significant attention

following the seminal work of Szegedy et al. (2014), which revealed the vulnerability of

deep neural networks to adversarial examples. This vulnerability poses a substantial

threat to the security and reliability of machine learning models, given their growing

use in critical applications like autonomous vehicles, cybersecurity systems, and fraud

detection. Since then, extensive research has been conducted on adversarial attacks,

encompassing various attack types, settings, and goals. In the following, we provide a

brief overview of the main types of adversarial attacks, beginning with the definition of

white-box and black-box settings.

2.3.1 Category of Adversarial Attacks

White-box and Black-box Settings. Figure 2.2 provides a visual illustration of

the white-box and black-box settings in the context of machine learning. The white-box

attack refers to when the attacker has full knowledge of the target model, including its



23

Figure 2.3: Category of Adversarial attacks based on their access to the data, training
or inference process of the target model. Adapted from Chen (2022).

architecture, parameters, and training data. This type of attack is commonly associ-

ated with the adaptive setting, as the attacker can access the defense mechanism and

dynamically adjust the attack strategy based on feedback.

Conversely, in the black-box setting, the attacker has no access to the target model’s

internal information, and can only query the model and observe the output, which can

be the prediction or confidence score. However, the number of queries is an important

consideration, as excessive queries may trigger the target model’s anomaly detection

system. There is also a restricted black-box setting, where the attacker has no access

to the target model at all. Under this setting, the attacker can only use transferred

adversarial examples from other models to attack the target model.

Given the two fundamental settings, Figure 2.3 categorizes adversarial attacks based on

their access to the data, training, or inference process of the target model when making

the attack.

Poisoning Attacks. A poisoning attack is a specific type of adversarial attack that

aims to corrupt a target model during its training process, affecting its behavior when

deployed in real-world scenarios (Biggio et al., 2012, Shafahi et al., 2018, Steinhardt

et al., 2017, Tolpegin et al., 2020). To achieve this goal, an attacker requires to access
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to both the training data and the training process of the target model. By strategically

manipulating the training data, the attacker introduces malicious data points to deceive

the model’s learning process.

The success of a poisoning attack depends on various factors, including the quantity

and placement of the malicious data points, the specific machine learning algorithm

employed, and the inherent characteristics of the data itself. Poisoning attacks can be

particularly potent when targeting machine learning models trained on small datasets

or those heavily influenced by a few pivotal data points. These attacks exploit vulner-

abilities in the training process, potentially leading to incorrect or biased predictions

when the model is utilized in real-world applications.

Backdoor Attacks or Trojan Attacks. While poisoning attacks seek to corrupt a

target model in order to introduce biases or inaccuracies in its predictions, backdoor

attacks have a different objective: to implant a concealed backdoor within the model

that can be activated by a specific input pattern (Gu et al., 2017, Liu et al., 2018b, Chen

et al., 2017). In the absence of the trigger, the model operates normally; however, when

the trigger is present, the model’s behavior is manipulated in a manner advantageous to

the attacker.

Recent advancements in backdoor attacks have focused on the development of more intri-

cate triggers that are challenging to detect (Nguyen and Tran, 2021, Doan et al., 2021).

Additionally, researchers have explored methods that directly modify model weights or

the model structure without relying on the traditional training process (Dumford and

Scheirer, 2020, Rakin et al., 2020, Li et al., 2022). These advancements allow attackers

to subtly alter the model’s functionality, making it more difficult for security measures

to identify and mitigate the presence of the backdoor.

Model Extraction. Model extraction attacks, also known as model stealing, pose a

security threat where an attacker aims to extract or replicate a target model without

direct access to the model itself (Truong et al., 2021, Jia et al., 2021). These attacks

are carried out by analyzing the inputs and outputs of the model. The motivation

behind model extraction attacks can range from intellectual property theft to generating
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adversarial examples or reverse engineering the decision-making process of the model for

malicious purposes.

While model extraction shares similarities with model distillation, it differs in that the

attacker lacks access to the model’s parameters or training data (Truong et al., 2021).

In order to execute a model extraction attack, the attacker typically queries the target

model using samples from a surrogate dataset that is assumed to be similar to the

original training set. However, it is crucial for the attacker to carefully consider the

number of queries, as excessive queries might trigger the anomaly detection system of

the target model, potentially exposing the attack.

On a positive note, model extraction attacks can also serve the purpose of interpreting

the decision-making process of a black-box model (Bastani et al., 2017a,b). In such

cases, model extraction can provide valuable insights into understanding how the model

arrives at its predictions, even when the inner workings of the model are not directly

accessible.

Privacy Attack. A privacy attack refers to an attempt to extract sensitive informa-

tion from a target model, posing a significant threat to privacy, especially in sensitive

domains like healthcare, finance, and law enforcement, where the confidentiality of data

is critical.

These attacks can manifest in various forms, one of which is membership inference

attacks (Choquette-Choo et al., 2021, Carlini et al., 2022, Dwork et al., 2017), aiming

to determine if an individual’s data was part of the training dataset By analyzing the

model’s responses to different inputs, an attacker can infer the presence or absence of

certain data points, potentially revealing sensitive information about individuals (Rigaki

and Garcia, 2020).

Evasion Attacks. Last but the most important type of adversarial attacks is evasion

attacks or adversarial examples (Szegedy et al., 2014, Goodfellow et al., 2015, Madry

et al., 2018), which is the main adversarial attack that we will focus on in this thesis.

Evasion attacks in machine learning involve modifying the input data in a way that is

imperceptible to human observers but can cause the model to make incorrect predictions

or classifications. The existence of adversarial examples is a significant threat to the
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security and reliability of machine learning models, particularly in applications such as

image recognition, speech recognition, and natural language processing. In the next

section, we will provide a detailed definition of adversarial examples, as well as an

overview of some of the most popular methods for generating adversarial examples.

2.3.2 Adversarial Examples

Definition. Given a machine learning model f and an input x with corresponding

label y, an adversarial example xa is a perturbed version of x that causes f to make

an incorrect prediction, i.e., f(xa) ̸= y. To make the adversarial examples to be a real

threat, there is a condition on the perturbation δ = d(xa, x) that it should be small

enough to be imperceptible to human observers, measured by some distance metric d.

Formally, the adversarial examples are firstly defined in (Szegedy et al., 2014) as follows:

minimize
xa

d(xa, x)

subject to f(xa) ̸= y

(2.13)

Perceptual Similarity Measure. In computer vision, the most common metric to

measure the difference between two images is the Lp norm, which is defined as follows:

d(xa, x) =

(
n∑

i=1

|xai − xi|p
) 1

p

(2.14)

where n is the number of pixels in the image, and xi and xai are the i-th pixel of the

original image x and the adversarial image xa, respectively. Further discussion about

distance metrics can be found in Section 2.1. While the Lp norm is the most commonly

used distance metric, it cannot capture well the perceptual similarity between images in

some cases. For example, two images that are shifted by a few pixels may have a large

Lp distance but be perceptually similar. Wasserstein distance is recently proposed to

address this issue (Wong et al., 2019b, Wu et al., 2020c).

It is worth noting that, in discrete domains, such as natural language processing, the

perceptual similarity between two inputs is often measured by the edit distance, which

is the minimum number of edits required to transform one input into another. However,
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unlike in computer vision, the perturbation in discrete domains is easier to detect, as it

often changes the meaning of the input.

Our thesis focus on the classification problems in the image domain, thus we utilized

the L∞ norm which is also the most commonly used distance metric in the literature.

The Optimization Problem of Generating Adversarial Examples. The prob-

lem of finding adversarial examples is often formulated as an optimization problem

introduced in Szegedy et al. (2014), as shown in Equation 2.13. However, solving this

optimization problem is often computationally expensive, as it requires evaluating the

model f multiple times. Moreover, the main optimization problem is in the distance

metric d, which is not easy to interpret. For example, it is nontrivial to change the per-

turbation δ in order to keep adversarial example xa imperceptible to human observers

while remaining being predicted incorrectly.

To address these issues, Szegedy et al. (2014) consider the following optimization problem

using box-constrained Limited-memory BFGS (Liu and Nocedal, 1989):

maximize
xa

L(f(xa), y)− λd(xa, x) (2.15)

where L is the loss function of the model f which commonly is cross-entropy loss, and λ

is a hyperparameter that controls the trade-off between the loss and the distance metric.

This formulation allows us to solve the optimization problem in a more interpretable

way, as we can directly control the loss and the distance metric. The optimal λ can be

found by using line search or binary search. However, the optimal solution of Equation

2.15 is not necessarily the optimal adversarial examples that maximize the prediction

loss L(f(xa), y). To guaranteely find the success adversarial examples, Goodfellow et al.

(2015) proposed to solve the following optimization problem:

maximize
xa

L(f(xa), y)

subject to d(xa, x) ≤ ϵ

(2.16)

where ϵ is a hyperparameter that controls the maximum perturbation allowed. This

formulation aims to priotize to maximize the prediction loss L(f(xa), y) over the per-

turbation to guarantee to find the successful adversarial examples.
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Targeted attacks. The above optimization problems are the untargeted attacks, which

aim to cause the model to make an incorrect prediction to any class. In some cases, we

may want to cause the model to make an incorrect prediction to a specific class, which

is called targeted attacks. The targeted attacks can be formulated as follows:

minimize
xa

L(f(xa), yt)

subject to d(xa, x) ≤ ϵ

(2.17)

where yt is the target class.

2.3.3 Notable Adversaries

While considering the same optimization problem as in Equation 2.16 (untargeted at-

tack) or Equation 2.17 (targeted attack), many different adversaries have been proposed

which can be classified into two main categories: gradient-based methods and gradient-

free methods.

Gradient-based Attacks

FGSM. While adversarial examples can be easily defined and generated (Szegedy

et al., 2014, Goodfellow et al., 2015), the underlying reasons behind their existence

in deep neural networks (DNNs) are still not fully understood. One of the earliest

attempts to explain this phenomenon was made by Goodfellow et al. (2015). They

hypothesized that the designs of modern DNNs, which prioritize linear behavior for

computational efficiency, also make them vulnerable to inexpensive analytical attacks.

Building upon this hypothesis, Goodfellow et al. (2015) proposed the Fast Gradient Sign

Method (FGSM), a one-step gradient-based technique, as follows:

xa = x + ϵ · sign(∇xL(f(x), y)) (2.18)

where ϵ is the maximum perturbation allowed, and sign is the sign function. Because of

using the sign function, it is optimized for the L∞ norm.
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The subsequent work by Tramèr et al. (2018) introduced R+FGSM, which incorporates

a small random initialization step prior to linearizing the loss function. This initializa-

tion helps the method escape the non-smooth neighborhood of the input data x. The

procedure for R+FGSM is as follows:

xa = x′ + (ϵ− α) · sign(∇x′L(f(x′), y)) (2.19)

where x′ = x + α · sign(N (0, 1)) is the input after one small random step. In their

study, Tramèr et al. (2018) demonstrated that the inclusion of random initialization

significantly enhances the effectiveness of R+FGSM compared to FGSM, regardless of

whether the models are robust or non-robust. This approach has subsequently been

adopted in various other attack methods, including MIM (Momentum Iterative Method)

(Dong et al., 2018) and PGD (Projected Gradient Descent) (Madry et al., 2018).

Basic Iterative Method (BIM) and Momentum Iterative Method (MIM).

The FGSM method perturbs images by taking a single large step in the direction that

maximizes the loss function. However, this approach may not be sufficient, particularly

when dealing with highly complex loss surfaces. To address this limitation, a straight-

forward extension involves iteratively taking multiple small steps while adjusting the

direction after each step.

One of the pioneering works that followed this strategy is the Basic Iterative Method

(BIM) introduced by Kurakin et al. (2016). BIM is defined as follows:

xa0 = x, xat+1 = ΠB(x,ϵ)

(
xat + α · sign(∇xa

t
L(f(xat ), y))

)
(2.20)

where α is the step size, and ΠB(x,ϵ) is the projection operator that projects the adver-

sarial examples back to the ϵ-ball around the original image x. The BIM method starts

with the original image x and then iteratively takes multiple small steps with step size

α to find the adversarial examples.

The projection operator ΠB(x,ϵ) for L∞ norm is defined as follows:

ΠB(x,ϵ)(x
a) = clipx,ϵ(x

a) = clip(xa, x− ϵ, x + ϵ) (2.21)
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where clip is the element-wise clipping function.

The Momentum Iterative Method (MIM) (Dong et al., 2018) is an extension of BIM

that incorporates momentum into the iterative process to stabilize the update directions

and accelerate convergence.

The MIM method is defined as follows:

xa0 = x, xat+1 = ΠB(x,ϵ) (xat + α · sign(gt+1)) (2.22)

where µ is the momentum parameter and gt+1 is the accumulated gradient at step t+ 1

defined as follows:

gt+1 = µ · gt +
∇xa

t
L(f(xat ), y)

∥∇xa
t
L(f(xat ), y)∥1

(2.23)

where ∥ · ∥1 is the L1 norm.

PGD. While iterative methods like BIM and MIM are more effective than FGSM, they

are still vulnerable to the non-smooth neighborhood of the input data x. To address

this issue, Madry et al. (2018) proposed the projected gradient descent (PGD) method,

which is a variant of BIM with uniform random initialization. The PGD procedure is

defined as follows:

xa0 = x + n, xat+1 = ΠB(x,ϵ)

(
xat + α · sign(∇xa

t
L(f(xat ), y))

)
(2.24)

where α is the step size, and ΠB(x,ϵ) is the projection operator that projects the adver-

sarial examples back to the ϵ-ball around the original image x. The PGD method starts

with the original image x with a small random initialization n and then iteratively takes

multiple small steps with step size α in order to search for the adversarial examples.

Since its introduction, the PGD attack has emerged as one of the most widely used

attacks in the literature, as it is easy to implement and recognised as one of the most

powerful gradient-based attacks (Athalye et al., 2018).

Variants of PGD. While the Projected Gradient Descent (PGD) attack has gained

popularity for its effectiveness, it is not without limitations. One of the main drawbacks

is its computational cost, particularly when dealing with large models and datasets such
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as ImageNet (Deng et al., 2009). To address this issue, several variants of PGD have

been proposed to improve the efficiency of the attack while maintaining its effectiveness.

It is worth noting that, the main motivation for accelerating generation speed is to

benefit the adversarial training process, which will be introduced later. Several methods

have been proposed to accelerate the PGD attack while maintaining its effectiveness

(Wong et al., 2019a, Andriushchenko and Flammarion, 2020, Shafahi et al., 2019).

Another issue of the PGD is that it is sensitive to the step size α. With a large step

size, the PGD may not converge to successful adversarial examples while with a small

step size, the PGD requires more iterations to converge. Adaptive adjusting the step

size during the optimization process is recently proposed in Croce and Hein (2020) to

address this issue. PGD attack also suffers from the sensitivity to the scale of logits in

the standard cross-entropy loss. To address this issue, Croce and Hein (2020) proposed

an alternative logit loss which is both shift and rescaling invariant.

Other Gradient-based Methods. Finally, combining multiple attacks is also a com-

mon practice to improve the robustness of the attacks, where Auto-Attack is one of the

most popular methods. It combines two new versions of PGD with the white-box attack

FAB (Croce and Hein, 2019) and the black-box attack Square Attack (Andriushchenko

et al., 2020) to form a parameter-free, state-of-the-art attack. The authors also pro-

posed a benchmark (Croce et al., 2020) with many defense methods evaluating with

Auto-Attack which is also a useful resource for the community. Therefore, besides PGD,

Auto-Attack is considered the new standard evaluation for adversarial robustness, which

is also used in our experiments.

Gradient-free Attacks

One of the main drawbacks of the gradient-based methods is that they required to

access model’s gradients, which is not always possible in practice. This assumption

is often violated in the black-box setting, where the attacker only has access to the

model’s predictions. Many gradient-free methods have been proposed to address this

issue, specifically in the black-box setting.
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Decision-based attacks is type of gradient-free methods which only requires the

model’s predictions, with boundary attack (Brendel et al., 2017) and HopSkipJumpAt-

tack (Chen et al., 2020b) are two representative methods. These attacks adopt an

iterative approach, commencing from an initial point that is already adversarial, and

then executing a randomized traversal along the boundary between the adversarial and

non-adversarial regions. The movement is guided by two critical constraints: minimiz-

ing the distance to the target image while maintaining adversarial status. These attacks

have been demonstrated its practical capability on real-world black-box systems (Bren-

del et al., 2017), showing a more realistic threat to the security of machine learning

models.

2.4 Adversarial Defenses

2.4.1 Evaluating Robustness

Unlike the standard evaluation of machine learning models, evaluating the robustness of

adversarial examples is extremely challenging. The main reason is that the adversarial

examples are not naturally occurring data, which requires crafting them using adver-

saries. However, generating adversarial examples that truly reflects the threat model

requires a lot of genuine efforts. For example, while gradient-based attacks are con-

sidered as the most powerful attacks, they are not always the most appropriate threat

model. It is because the loss surface of the deep learning model is highly non-convex

and non-smooth, which makes it easy to be trapped in local minima.

Gradient masking is one of the most common techniques used to prevent gradient in-

formation from being used to craft adversarial examples. Gradient-based attacks, such

as PGD rely on computing gradients of the model’s loss function to generate adversar-

ial examples. However, in some cases, the model’s architecture or training process may

unintentionally or deliberately hinder the computation of accurate gradients, thereby im-

peding adversarial attacks. Gradient masking can occur due to various reasons, such as

the use of non-differentiable operations, or defensive mechanisms. For example, Athalye

et al. (2018) showed that 7 over 9 studied defenses rely on this phenomenon to prevent

adversarial attacks, which later can be easily broken by gradient-free attacks such as

transferred attacks or Backward Pass Differentiable Approximation (BPDA) (Athalye
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et al., 2018). Therefore, it is important to recognize the presence of gradient masking

when evaluating adversarial robustness.

Secondly, adversarial attacks are often sensitive to specific hyperparameters, making

them effective only in a specific setting, while underperforming in other settings. For

example, the PGD attack is sensitive to the step size α, the number of iterations T , and

the scale of logits in the standard cross-entropy loss. On the other hand, transferred

attacks are sensitive to the choice of the substitute model. Boundary attack often

requires a large number of iterations to find adversarial examples and is not effective in

real-world systems. Therefore, it is important to evaluate the robustness of adversarial

examples in a wide range of settings. Finally, Carlini et al. (2019) proposed a checklist

outlining common pitfalls in evaluating adversarial robustness and how to avoid them.

2.4.2 Adversarial Training

Procedure of a standard Adversarial Training method. The initial idea of ad-

versarial training is first proposed in (Szegedy et al., 2014), where a deep model is trained

a mixture of benign and adversarial examples. The optimization problem of adversarial

training as follows:

minimize
θ

E(x,y)∼D

[
max
δ∈S
L(fθ(x + δ), y)

]
(2.25)

where D is the training dataset, S is the set of all possible perturbations, and L is the

loss function of the model fθ. The adversarial training is an iterative process, which

means that the model is retrained multiple times.

The pseudo code of the adversarial training is shown in Algorithm 1.

Algorithm 1 Procedure of a Standard Adversarial Training

Require: Training data D = {(xi, yi)}Ni=1, number of training iterations T , learning
rate η, an adversary A with perturbation budget ϵ, and tradeoff parameter λ

1: Initialize model parameters θ randomly
2: for t = 1, . . . , T do
3: Sample a mini-batch B = {(xi, yi)}Mi=1 from D
4: Generate adversarial examples Ba = {(xai , yi)}Mi=1 by applying A to B
5: Update model parameters θ ← θ−η∇θ

∑M
i=1 [(1− λ)L(fθ(xi), yi) + λL(fθ(x

a
i ), yi)]

6: end for
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During each iteration of adversarial training, a batch of benign samples, denoted as

B, is randomly selected from the training dataset D. Subsequently, an adversary A
is employed to generate adversarial examples Ba from the batch B. The model is then

updated by minimizing the loss function L computed on both the benign and adversarial

examples. A tradeoff parameter λ is introduced to determine the relative importance of

these two terms in the loss function.

When λ = 0, the model is solely trained on benign examples, resulting in a training

process similar to standard training. Conversely, if λ = 1, the model exclusively trains

on adversarial examples. While this setting enhances the model’s robustness against ad-

versarial attacks, it may result in a noticeable decrease in accuracy on benign examples.

In practice, a commonly used value for λ is 0.5, striking a balance between robustness

and accuracy. Finding the optimal tradeoff between robustness and accuracy remains a

challenging problem in adversarial training (Zhang et al., 2019).

Adversarial Training with PGD. Adversarial training with PGD (Projected Gra-

dient Descent) adversarial examples (Madry et al., 2018) stands as the most widely

adopted method in adversarial training, and its pseudo code is presented in Algorithm

2.

Algorithm 2 Adversarial Training with PGD (Madry et al., 2018)

Require: Training data D = {(xi, yi)}Ni=1, number of training iterations T , attack set-
ting including perturbation budget ϵ, step size α, number ofiterations K, projection
operation ΠB(x,ϵ), and tradeoff parameter λ

1: Initialize model parameters θ randomly
2: for t = 1, . . . , T do
3: Sample a mini-batch B = {(xi, yi)}Mi=1 from D
4: Initialize xai = xi + U(−ϵ, ϵ) for i = 1, . . . ,M
5: for k = 1, . . . ,K do
6: xai ← ΠB(xi,ϵ)(x

a
i + αsign(∇xa

i
L(fθ(x

a
i ), yi))) for i = 1, . . . ,M

7: end for
8: Update model parameters θ ← θ−η∇θ

∑M
i=1 [(1− λ)L(fθ(xi), yi) + λL(fθ(x

a
i ), yi)]

9: end for

The PGD attack employs an iterative approach, commencing with a small random ini-

tialization and subsequently taking multiple small steps with a step size of α to search for

adversarial examples. The objective is to find perturbations that maximize the model’s

loss within the vicinity of the original image x, constrained by an ϵ-ball defined by the

projection operator ΠB(x,ϵ). When using the L∞ norm, the projection operator ΠB(x,ϵ)
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is equivalent to applying an element-wise clipping function to ensure the perturbations

remain within the specified range.

2.5 Representation Learning

2.5.1 Overview

The primary objective of representation learning is not only to reduce the dimension-

ality of the input but also to capture the inter-sample correlations that enable effective

downstream task performance (Bengio et al., 2013). It can be conducted through super-

vised or unsupervised methods, with the former requiring labeled data such as images

of various classes for classification models and semantic segmented images for segmen-

tation models. While representation learned from supervised learning is highly effective

for downstream tasks, it requires large labeled data sets, which are expensive and time-

consuming to acquire. Thus, a great amount of effort has been dedicated to unsupervised

representation learning to leverage abundant unlabeled data.

Self-Supervised Learning (SSL) (Chen et al., 2020a, He et al., 2020, Grill et al., 2020) has

emerged as a powerful tool for Deep Learning models to exploit structure from enormous

amounts of unlabeled data, facilitating its transfer to downstream tasks. The key success

factor of SSL is choosing a pretext task that heuristically introduces interaction among

different parts of the data.

One of the earliest SSL frameworks in computer vision was the Auto-Encoder (Kramer,

1991, Kingma and Welling, 2013), which used the pretext task of reconstructing the

input image. Similarly, in natural language processing, word2vec (Mikolov et al., 2013)

is a well-known SSL framework that uses the pretext task of predicting the surrounding

context words from the current word, resulting in the learning of powerful representa-

tions of words that preserve semantic and syntactic relationships without the need for

labeled data. With the exponential growth of data and computation capacity, SSL has

underpinned the recent success of Deep Learning in various fields and applications, such

as Generative AI (Radford et al., 2021), Medical Imaging (Azizi et al., 2021), Protein

Folding (Jumper et al., 2021), and many more.
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More recently, Contrastive Learning (CL) has emerged as the most effective SSL frame-

work, using the pretext task of learning a representation that maximizes the similarity

between augmented variants of the same instance, while minimizing those from different

instances. While recently taken off as the most effective SSL framework, the principle

of Contrastive Learning has a long history in the field of metric learning (Hadsell et al.,

2006, Weinberger and Saul, 2009).

It can be traced back to the early work of Bromley et al. (1993) then later extended by

Hadsell et al. (2006) where the authors proposed to learn a metric space in which the

distance between two embeddings is proportional to the probability that they are in the

same class. Moving to the age of unlabeled data, to obtain similar inputs, we often use

semantic preserving transformations such as random cropping, color jittering, rotation,

etc to get augmented variants of the same instance. There are many variants of CL

have been proposed, however, in the following discussion, we focus on the loss function

derivations from the Triplet loss (Schultz and Joachims, 2003, Hoffer and Ailon, 2015) to

the InfoNCE loss (Chen et al., 2020a, Oord et al., 2018) and Supervised Contrastive loss

(Khosla et al., 2020). We then discuss about the way to construct positive and negative

pairs, and finally, we discuss important practical tricks to improve the performance of

CL.

2.5.2 Contrastive Losses

Triplet Loss. Triplet loss was originally proposed as a method for metric learning, as

described in previous studies (Schultz and Joachims, 2003, Hoffer and Ailon, 2015). This

approach has since gained widespread popularity for its effectiveness in face recognition

tasks (Schroff et al., 2015). The triplet loss is defined as follows:

LTriplet(Z) =
∑

zi∈Z,zj∈Zp
i ,zk∈Zn

i

max (0,m + d(zi, zj)− d(zi, zk)) , (2.26)

where Z is a set of embedded samples, Zp
i and Zn

i are sets of positive and negative

samples of the anchor i-th sample, respectively. d(·, ·) is a distance function, and m is a

margin hyper-parameter.



37

By enforcing the order of distances between the anchor-positive and anchor-negative

pairs, the triplet loss is effective in learning a representation such that those with the

same labels (i.e., anchor and positive) are closer to each other than those with different

labels (i.e., anchor and negative). However, unlike t-SNE (Maaten and Hinton, 2008)

or InfoNCE (Oord et al., 2018) which preserves embedding orders via probability dis-

tributions, the triplet loss works directly on embedded distances, which is sensitive to

the choice of the margin hyper-parameter. Moreover, it is difficult to find informative

triplets in high-dimensional spaces, requiring expensive sampling strategies and practical

tricks (Schroff et al., 2015).

InfoNCE Loss. The InfoNCE loss (Oord et al., 2018) is a contrastive loss that uses

categorical cross-entropy to identify the positive sample among a set of negative samples.

More specifically, given an anchor sample zi ∈ Z, the InfoNCE loss assumes that there

is a positive sample zj among a set of negative samples Zn
i w.r.t. the anchor sample zi.

The InfoNCE loss is defined as follows:

LInfoNCE(Z) = −
∑

zi∈Z
log




exp (sim(zi, zj)/τ)

exp (sim(zi, zj)/τ) +
∑

zk∈Zn
i

exp (sim(zi, zk)/τ)


 (2.27)

where τ is a temperature hyper-parameter and sim is a similarity function, which is

often the cosine similarity, i.e., sim(u, v) = uT v
∥u∥∥v∥ .

Supervised Contrastive Loss. The SCL (Khosla et al., 2020) takes advantages of

the labels to have a better control of the positive and negative pairs.

LSCL(Z) =
∑

zi∈Z

∑

zj∈Zp
i

− log




exp (sim(zi, zj)/τ)∑
zk∈Zp

i ∪Zn
i

exp (sim(zi, zk)/τ)


 / |Zp

i | (2.28)

2.5.3 Contrastive Learning Frameworks

SimCLR. In SSCL, the positives are constructed by applying a set of augmentations

T to the same instance z, while the negatives are constructed by applying the same
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augmentations to different instances z′, as shown in Figure ??. The set of augmentations

T is often a combination of random cropping, color jittering, rotation, etc.

SSL. The SCL framework leverages the idea of contrastive learning with the presence

of label supervision to improve the regular cross-entropy loss. The positive set and the

negative set are Z+
i = {zTj , zAj | j ̸= i,yj = yi} and Z−

i = {zTj , zAj | j ̸= i,yj ̸= yi},
respectively. As mentioned in Khosla et al. (2020), there is a major advantage of SCL

compared with SSCL in the context of regular machine learning. Unlike SSCL in which

each anchor has only single positive sample, SCL takes advantages of the labels to have

many positives in the same batch size N. This strategy helps to reduce the false negative

cases in SSCL when two samples in the same class are pushed apart. As shown in

Khosla et al. (2020), the SCL training is more stable than SSCL and also achieves a

better performance.

2.5.4 Important factors for Contrastive Learning

Data augmentation. Data augmentation is a crucial factor in machine learning in

general, that helps the model to learn invariance to specific transformations of the in-

put. For example, to learn a model that is invariant to color information, we can apply

grayscale or color jittering transformations to the input images. In the context of con-

trastive learning, where positive and negative samples are required to compute the con-

trastive loss, data augmentation plays an even more important role. Chen et al. (2020a)

found that simple transformations such as noise injection are not sufficient to create

two different views of the same instance. Stronger techniques such as a combination of

random cropping, color jittering, rotation, etc are required in order to generate useful

positive and negative samples. The gap between data augmentation can be significant

as shown in Table 1 in Chen et al. (2020a), while supervised methods’ performance is

not affected much by the same set of augmentation.

Batch size. As shown in Figure 9 in Chen et al. (2020a), the batch size is an important

factor that strongly affects the performance of the contrastive learning framework. A

larger batch size comes with larger positive and negative sets, which helps to generalize

the contrastive correlation better and therefore improves the performance. He et al.
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(2020) proposed a memory bank to store the previous batch information which can

lessen the batch size issue.

Projection head. Normally, the representation vector which is the output of the

encoder network has very high dimensionality, e.g., the final pooling layer in ResNet-50

and ResNet-200 has 2048 dimensions. Therefore, applying contrastive learning directly

on this intermediate layer is less effective. Alternatively, CL frameworks usually use a

projection network p() to project the normalized representation vector z into a lower

dimensional vector z̃ = p(z) which is more suitable for computing the contrastive loss.

To avoid over-parameterized, CL frameworks usually choose a small projection head

with only one or two fully-connected layers.

Hard Negative Mining. One of the drawbacks of the InfoNCE loss is that it utilized

all negative samples in the batch, which may include easy negative samples that are not

informative for learning. For example, those samples that are in different classes and

already far away from the anchor sample in the embedding space are not supportive to

increase the contrastiveness. Even worse, as shown in Chuang et al. (2020) using false

negative samples can lead to significant performance degradation. Increasing batch size

or using memory bank (He et al., 2020) implicitly introduces more hard negative samples,

but it leads to a higher computational cost (Weng, 2021). To address this issue, there are

several works (Robinson et al., 2021, Kalantidis et al., 2020) that proposed to up-weight

the samples that are hard to distinguish from the anchor sample.

2.6 Multi-Objective Optimization

2.6.1 Pareto Optimality

Multi-objective optimization (MOO) or Pareto optimization is an area of optimization

that deals with optimization problems that involve multiple objectives. MOO has been

applied to many fields such as engineering design, economics, and machine learning,

where optimal decisions need to be taken in the presence of trade-offs between two or

more objectives that are often in conflict with each other. In the context of adversar-

ial machine learning, the trade-off between the attack performance and the perceptual
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preservation as discussed in Section 2.3.2 is a typical example of a multi-objective opti-

mization problem, where increasing the attack performance often leads to a decrease in

perceptual preservation and vice versa. Another specific example presented in chapter 4

is the trade-off between the attack performance on different base models in the ensemble.

Especially when the base models are diverse and have conflict gradients, it is difficult to

find a single perturbation that can fool all the base models.

Formally, a multi-objective optimization problem can be defined as follows:

min
x∈X

f(x), (2.29)

where x ∈ X is the decision variable, X is the decision space, and f(x) = (f1(x), . . . , fm(x))

is the vector-valued objective function with m objectives.

The goal of the multi-objective optimization problem is to find a solution x∗ ∈ X that

minimizes all the objectives simultaneously. However, in many cases, it is impossible

to find a single solution that minimizes all the objectives simultaneously. Therefore,

attention is paid to find Pareto optimal solutions, which are solutions that cannot be

improved in any of the objectives without degrading at least one of the other objectives.

Formally, a solution x∗ is called a Pareto optimal solution if there is no other solution

x′ such that fi(x
′) ≤ fi(x

∗) for all i ∈ {1, . . . ,m} and fj(x
′) < fj(x

∗) for at least one

j ∈ {1, . . . ,m}.

The set of all Pareto optimal solutions is called the Pareto front or Pareto set.

Formally, the Pareto front is defined as follows:

X ∗ = {x ∈ X | ∄x′ ∈ X such that f(x′) ≺ f(x)}, (2.30)

where f(x) ≺ f(x′) means that f(x) is strictly better than f(x′) in all objectives.

2.6.2 Multi-Gradient Descent Algorithm

While there are many algorithms for solving multi-objective optimization problems,

we focus on the Multi-Gradient Descent Algorithm (MGDA) (D’esid’eri, 2012) which

is the foundation tool for our proposed methods in chapter 4. Specifically, MGDA
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Figure 2.4: Illustration of the optimal norm point in the case of two objectives.

combines the gradients of individual objectives into a single optimal gradient direction

that increases all objectives simultaneously. The optimal gradient direction corresponds

to the minimum-norm point that can be found by solving the quadratic programming

problem:

w∗ = argminw∈∆m
wTQw, (2.31)

where ∆m =
{
π ∈ Rm

+ : ∥π∥1 = 1
}

is the m-simplex and Q ∈ Rm×m is the matrix with

Qij = ∇xfi (x)T ∇xfj (x).

Finally, the solution of the problem 2.31 can be found iteratively with each update step

x = x + ηg∗ where g∗ is the combined gradient g∗ =
∑m

i=1w
∗
i∇xfi (x) and η > 0 is a

sufficiently small learning rate. Furthermore, D’esid’eri (2012) also proved that by using

an appropriate learning rate at each step, we reach the Pareto optimality point x∗ at

which there exist w ∈ ∆m such that
∑m

i=1wi∇xfi (x∗) = 0.

Figure 2.4 illustrates the minimum-norm point in the case of two objectives correspond-

ing to two gradient vectors ∇xf1 (x) and ∇xf2 (x). The left figure illustrates the case

where the two gradient vectors are partly conflicted, which leads to the optimal solution

w∗ = [w∗
1, w

∗
2] where 0 < w∗

1 < 1. In the middle and the right figure, the two gradient

vectors are not conflicted, which leads to the minimum-norm direction being the exact

direction of the smaller gradient vector.

2.7 Wasserstein Distance and Distributional Robustness

2.7.1 Wasserstein Distance

Problem of KL divergence. Measuring the distance between two distributions is

a fundamental problem in statistics and machine learning. In the context of AML,
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it can be used to measure the perceptual similarity between the input image and the

adversarial example, or to measure the distance between the data distribution and the

adversarial distribution. The most well-known distance metric between two distributions

is the Kullback-Leibler (KL) divergence, which is defined as follows:

DKL(µ, ν) =

∫
µ(x) log

µ(x)

ν(x)
dx. (2.32)

where µ(x) and ν(x) are the probability density functions of the two distributions.

However, the KL divergence is not a true distance metric because it is not symmetric

(i.e., DKL(µ, ν) ̸= DKL(ν, µ)) and does not satisfy the triangle inequality. The KL

divergence is also not defined if there exists an x where µ(x) > 0 and ν(x) = 0.

The Wasserstein distance, also known as the Earth Mover’s distance (EMD), which is

motivated by the optimal transport problem, is a metric for measuring the distance

between two probability distributions that satisfies both the symmetry and the triangle

inequality properties. Intuitively, it can be interpreted as the minimum cost of moving

and transforming a pile of dirt into another pile of dirt.

Push-Forward operation. Given two spaces (X ,Y), a set of Radon measuresM(X )

on X , and a continuous map T : X → Y, the corresponding push-forward measure

ν = T#µ ∈M(Y) of some µ ∈M(X ) is defined as follows:

ν(B) = µ(T−1(B)), (2.33)

where B is any measurable set in Y.

Intuitively, the map T can be considered as a function to move a single point from

a measure µ on X to another single point from a measure ν on Y. The push-foward

operator T# is an extension of T that map the entire measure µ to ν.

Monge problem. The Monge problem is the original formulation of the optimal trans-

port problem, which is named after Gaspard Monge, who first introduced the problem in

1781. It involves finding the most efficient way to transport a given amount of resources

from a set of sources to a set of destinations. The optimal solution is called optimal

transport plan or optimal transport map, which assigns each point in the source space
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to a unique point in the destination space, such that the total transportation cost is

minimized.

Given the source space X , the destination space Y, and two probability measures µ and

ν on X and Y respectively, the Monge problem is defined as follows:

inf
T :T#µ=ν

∫

X
d(x, T (x))dµ(x), (2.34)

where d(x, y) is the distance metric between x and y, or the transportation cost function

of moving a unit of mass from single point x to y.

Kantorovich relaxation. The former formulation of the optimal transport problem

as the assignment problem in Equation 2.34 is a discrete problem, where a source point

is assigned to a unique destination point, which makes it difficult to solve. Kantorovich

(1960) proposes instead that the mass at any source point x can be potentially mapped

to several points in the destination space Y. Kantorovic relaxation reformulates the

nature of the former optimal transport problem from a deterministic to a probabilistic

manner. It involves introducing a coupling or a transport plan π whose marginals are µ

and ν. The optimal transport plan π∗ is the optimum of the problem as follows:

π∗ = inf
π∈Π(µ,ν)

∫

X×Y
d(x, y)dπ (2.35)

Wasserstein distance. The Wasserstein distance is a special case of the optimal

transport problem in Equation 2.35 where the distance d(x, y) = [∥x− y∥p]1/p. Com-

pared to KL divergence, Wasserstein distance is the true distance metric for measuring

the distance between two probability distributions that satisfies both the symmetry and

the triangle inequality properties.

W (µ, ν) = inf
γ∈Π(µ,ν)

∫

X×Y
[∥x− y∥p]1/p dπ (2.36)

where Π(µ, ν) is the set of all joint distributions γ(x, y) whose marginals are µ(x) and

ν(y).
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The optimization problem in Equation 2.36 is the primal form of the Wasserstein dis-

tance, which can be computed efficiently using the Sinkhorn algorithm (Cuturi, 2013)

or the entropic regularization of optimal transport (Genevay et al., 2018).

Dual formulation of Wasserstein distance. The Kantorovich-Rubinstein theorem

(Villani et al., 2009) states that the Wasserstein distance can be expressed as the supre-

mum of the set of all 1-Lipschitz functions, which is defined as follows:

W (µ, ν) = sup
∥f∥L≤1

Ex∼µ[f(x)]− Ey∼ν [f(y)], (2.37)

where ∥f∥L ≤ 1 is the set of all 1-Lipschitz functions.

This formulation is called the dual form of the Wasserstein distance, which allows us

to compute the Wasserstein distance efficiently by optimizing over a set of functions

instead of optimizing over the set of all joint distributions.

Applications of Wasserstein distance. The Wasserstein distance has a wide range

of applications. In economics, it has been used to model the allocation of resources and

solve problems related to supply chain management and economic equilibrium (Gali-

chon, 2016, Peyré et al., 2019, Fajgelbaum and Schaal, 2020). In computer vision and

image processing, it has been employed for image registration (Haker et al., 2004), shape

matching (Su et al., 2015), and texture mixing (Rabin et al., 2012). In machine learn-

ing, optimal transport has found applications in domain adaptation (Lee et al., 2019),

generative modeling (Arjovsky et al., 2017, Gulrajani et al., 2017), and data alignment

(Chen et al., 2020c). In the context of AML, the Wasserstein distance has been used

to measure the perceptual similarity between the input image and the adversarial ex-

ample (Wong et al., 2019b, Wu et al., 2020c). It is also used to measure the distance

between the data distribution and the adversarial distribution which is the foundation

of distributional robustness (Staib and Jegelka, 2017, Sinha et al., 2017) as presented in

the next section.
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2.7.2 Distributional Robustness

Distributional robustness (DR) is an emerging framework for learning and decision-

making under uncertainty, which seeks the worst-case expected loss among a ball of

distributions, containing all distributions that are close to the empirical distribution

(Gao et al., 2017). As the Wasserstein distance is a powerful and convenient tool of

measuring closeness between distributions, Wasserstein DR has been one of the most

widely-used variant of DR, which has rich applications in (semi)-supervised learning

(Blanchet and Kang, 2017, Chen and Paschalidis, 2018, Yang, 2020), transfer learning

and domain adaptation (Lee and Raginsky, 2017, Duchi et al., 2019, Zhao et al., 2019),

and reinforcement learning (Abdullah et al., 2019, Smirnova et al., 2019, Derman and

Mannor, 2020). In this section, we introduce the concept of distributional robustness

that lay the foundation for our proposed methods in chapter 5.

Here we consider a generic Polish space S endowed with a distribution Q. Let f : S −→ R

be a real-valued (risk) function and c : S × S −→ R+ be a cost function. Distributional

robustness setting aims to find the distribution Q̃ in the vicinity of Q and maximizes

the risk in the E form (Sinha et al., 2017, Blanchet and Murthy, 2019):

min
Q̃:Wc(Q̃,Q)<ϵ

EQ̃ [f (z)] , (2.38)

where ϵ > 0 and Wc denotes the optimal transport (OT) cost, or a Wasserstein distance

if c is a metric, defined as:

Wc

(
Q̃,Q

)
:= inf

γ∈Γ(Q̃,Q)

∫
cdγ, (2.39)

where Γ
(
Q̃,Q

)
is the set of couplings whose marginals are Q̃ and Q.

With the assumption that f ∈ L1 (Q) is upper semi-continuous and the cost c is a

non-negative lower semi-continuous satisfying c(z, z′) = 0 iff z = z′, (Sinha et al., 2017,

Blanchet and Murthy, 2019) show that the dual form for Eq. (2.38) is:

min
λ≥0

{
λϵ + Ez∼Q[max

z′

{
f
(
z′
)
− λc

(
z′, z

)}
]

}
. (2.40)
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Sinha et al. (2017) further employs a Lagrangian for Wasserstein-based uncertainty sets

to arrive at a relaxed version with λ ≥ 0:

max
Q̃

{
EQ̃ [f (z)]− λWc

(
Q̃,Q

)}
= Ez∼Q[max

z′

{
f
(
z′
)
− λc

(
z′, z

)}
]. (2.41)



Chapter 3

Representation Learning

Approaches to Adversarial

Robustness

3.1 Introduction

In this chapter, we present our novel contributions towards improving adversarial ro-

bustness of models through representation learning in the two papers (Bui et al., 2020)

and Bui et al. (2021a). The central theme of our works was based on the idea that a

robust representation should capture both local and global information of the data man-

ifold, which is critical for enhancing the resilience of models against adversarial attacks.

In particular, the representations of examples within a small, local neighborhood of each

data point should exhibit proximity, a quality that contributes significantly to enhanced

adversarial robustness. However, it’s crucial to strike a balance, as excessive local com-

pactness can inadvertently lead to unfavorable outcomes. For instance, representations

of examples from the same class may be pushed apart, or, more concerning, those from

distinct classes may converge, which runs counter to our goals. Hence, it is imper-

ative to also incorporate the global compactness property to ensure a comprehensive

representation of the data space within the latent space.

In the work Bui et al. (2020), we proposed a regularization method that imposes the lo-

cal and global compactness properties on the intermediate representations. Specifically,

47
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by explicitly strengthening local compactness, we enforce the intermediate representa-

tions of a benign example and its adversarial examples to be as proximal as possible.

However, enforcing the local compactness itself was not be sufficient to guarantee a ro-

bust defense model as the representations might be encouraged to globally spread out in

the intermediate space, significantly hurting accuracies on both benign and adversarial

examples. To address this issue, we further proposed to impose global compactness to

encourage the representations of examples in the same class to be proximal yet those in

different classes to be more distant. We empirically showed that our proposed method

could significantly improve adversarial robustness of the model while maintaining the

generalization ability.

When we first published our work, we were the pioneers in considering both global and

local information in learning robust representations. However, our work was limited by

our lack of understanding of the importance of the distance metric in the latent space.

Contrastive learning (Chen et al., 2020a), on the other hand, has become increasingly

popular as an effective self-supervised representation learning approach. At the center

of contrastive learning is the contrastive loss that encourages the representations of an

anchor example and its positive examples to be proximal while those of the anchor

example and its negative examples to be distant. While having a similar principle

to our previous work, the contrastive loss considers the relative distance between the

representations in the latent space which interpret the global information better than

the absolute distance as in our previous work.

In the work Bui et al. (2021a), we proposed to use the contrastive loss to learn a ro-

bust representation. Intuitively, as the divergence in the latent space is the focus of

both robustness learning and contrastive learning, it is natural to leverage contrastive

learning to improve the robustness. However, we demonstrated that directly adopting

CL into AML can hardly improve adversarial robustness, indicating that a deeper un-

derstanding of the relationships between the CL mechanism, latent space compactness,

and adversarial robustness is required. Pursuing this comprehension, we tried to answer

three research questions: why can CL help to improve adversarial robustness, how to

integrate CL with adversarial training in the context of AML, and what are the im-

portant factors that affect the performance of CL in AML? To this end, we proposed

Adversarial Supervised Contrastive Learning (ASCL) framework that combines adver-

sarial training and contrastive learning to learn robust representations. Moreover, we



49

developed a novel series of strategies for selecting positive and negative samples which

judiciously picks the most relevant samples of the anchor that help to further improve

adversarial robustness. We empirically showed that our ASCL framework could outper-

form several adversarial training methods including our previous work (Bui et al., 2020)

by a large margin and achieve comparable performance with the state-of-the-art robust

defenses in the literature.

Finally, while not included in this thesis, in the work Le et al. (2022), we completed

the understanding of the relationships between the latent divergence and adversarial

robustness by proposing a novel game theory framework of two players attackers and

defenders. More specifically, we developed attack and defense-guaranteed bounds that

can be meaningfully and intuitively interpreted from the perspective of both attacks

and defenses. Technically, the lower bound, which is useful for the attack side, reveals

that to attack more efficiently, adversaries need to globally push the representations of

adversarial examples to be more intermingled. On the other hand, the upper bound,

which is useful for the defense side, shows that to defend more effectively, defenders

need to keep the representations of adversarial examples as close to those of the benign

examples as possible. Our theory aligns with the empirical results of our previous work

(Bui et al., 2021a) and (Bui et al., 2020), providing further insights into the complex

interplay between representation learning, adversarial attacks, and defenses. Although

not included in this thesis, our proposed game theory framework is a promising direction

for future research in developing more robust defenses against adversarial attacks.

The major content of this chapter is in the following attached papers:

• Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier de Vel, Tamas Abraham,

Dinh Phung, “Improving Adversarial Robustness by Enforcing Local and Global

Compactness”. In Proceedings of the European Conference on Computer Vision

(ECCV) 2020.

The code of this paper is released at https://github.com/tuananhbui89/Adversarial-

Divergence-Reduction.

• Anh Bui, Trung Le, He Zhao, Paul Montague, Sayit Camtepe, Dinh Phung,

“Understanding and Achieving Efficient Robustness with Adversarial Supervised

Contrastive Learning”, Submitted to Neurocomputing, 2023.

https://github.com/tuananhbui89/Adversarial-Divergence-Reduction
https://github.com/tuananhbui89/Adversarial-Divergence-Reduction
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The code of this paper is released at https://github.com/tuananhbui89/ASCL.

3.2 Related Work

Unlike an input space X, a latent space Z has a lower dimensionality and a higher

mutual information with the prediction space than the input one I(Z, Y ) ≥ I(X,Y )

(Tishby and Zaslavsky, 2015). Therefore, defense with the latent space has particular

characteristics to deal with adversarial attacks notably (Samangouei et al., 2018, Mao

et al., 2019, Bui et al., 2020, Zhang and Wang, 2019, Xie et al., 2019).

3.2.1 Modeling the data manifold

Ilyas et al. (2019) made a hypothesis that adversarial vulnerability is the result of the

sensitivity of deep learning models to well-generalizable but imperceptible-to-human

features. This phenomenon was later analyzed as the phenomenon of learning a shortcut

in deep models (Geirhos et al., 2020). Based on this hypothesis, the authors proposed

an ideal framework that learns from useful and robust features only that can achieve

both robustness and generalization. However, to achieve this goal, the authors proposed

a method to disentangle the robust/non-robust features relying on a pre-trained robust

model which is limited by the robustness of the pre-trained model.

Samangouei et al. (2018) proposed a GAN-based method to model the data manifold and

then use the learned generator to approximate the input sample. During the training

of the GAN, the generator is encouraged to resemble the training data. It is therefore

expected to eliminate the adversarial effect on input samples. At test time, prior to

feeding an image to the classifier, it was projected to the range of the generator by

finding the latent code that minimizes the distance between the input and the generator

output. The substituted image which was eliminate adversarial perturbation was then

fed to the classifier. In this way, the gradient-based attacks could not find the adversarial

examples because of the non-differentiability of the generator. However, later Jalal et al.

(2017) proposed an overpowered attack method to efficiently attack these kinds of non-

differentiable-based defenses.

https://github.com/tuananhbui89/ASCL
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Stutz et al. (2019) found that the regular adversarial examples leave the manifold of

benign data, which explains the drop of generalization when using these adversarial

examples in adversarial training. The authors proposed a VAE-GAN architecture to

approximate the data manifold and based on that, they proposed an on-manifold adver-

sarial generation by using a pre-trained encoder-decoder. More specifically, they perturb

the latent representation of the benign input getting by the encoder and then use the

decoder to generate the adversarial example. However, this method solely relies on the

assumption that the data manifold is well approximated by a VAE-GAN architecture

which is not feasible in real-world applications.

3.2.2 Regularization on latent space

The aforementioned works can be categorized as direct robust representation learning

methods, as they focus on directly modeling the robust representations of the data.

Conversely, there are other approaches that indirectly learn robust representations by

incorporating additional regularizations that introduce inductive bias properties in the

latent space. Empirical evidence suggests that these indirect methods tend to be more

effective.

Metric learning (Mao et al., 2019), which discovered a shift in the representations of

adversarial examples towards a cluster associated with a false class. To address this

issue, they proposed minimizing the distance between the representations of adversarial

examples and those of benign examples, using a triplet loss formulation.

Incorporating Self-Supervised Contrastive Learning (SSCL) (Chen et al., 2020a), (Jiang

et al., 2020) and Kim et al. (2020) focused on learning unsupervised robust representa-

tions to enhance robustness in unsupervised and semi-supervised settings. Both methods

introduced an adversary that maximizes the InfoNCE loss, instead of relying on stan-

dard cross-entropy loss (Goodfellow et al., 2015) or KL divergence (Zhang et al., 2019).

Through adversarial pre-training with these generated adversarial examples, the encoder

becomes resilient against instance-wise attacks and achieves comparable robustness to

supervised adversarial training, as reported in Kim et al. (2020). In contrast, Jiang

et al. (2020) proposed three pre-training options, with their best method utilizing two

adversarial examples that come with a higher computational cost to generate.
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Abstract. The fact that deep neural networks are susceptible to crafted
perturbations severely impacts the use of deep learning in certain do-
mains of application. Among many developed defense models against
such attacks, adversarial training emerges as the most successful method
that consistently resists a wide range of attacks. In this work, based on an
observation from a previous study that the representations of a clean data
example and its adversarial examples become more divergent in higher
layers of a deep neural net, we propose the Adversary Divergence Reduc-
tion Network which enforces local/global compactness and the clustering
assumption over an intermediate layer of a deep neural network. We con-
duct comprehensive experiments to understand the isolating behavior of
each component (i.e., local/global compactness and the clustering as-
sumption) and compare our proposed model with state-of-the-art adver-
sarial training methods. The experimental results demonstrate that aug-
menting adversarial training with our proposed components can further
improve the robustness of the network, leading to higher unperturbed
and adversarial predictive performances.

Keywords: Adversarial Robustness, Local Compactness, Global Com-
pactness, Clustering assumption

1 Introduction

Despite the great success of deep neural nets, they are reported to be susceptible
to crafted perturbations [25, 6], even state-of-the-art ones. Accordingly, many
defense models have been developed, notably [17, 27, 26, 20]. Recently, the work
of [1] undertakes an in-depth study of neural network defense models and conduct
comprehensive experiments on a complete suite of defense techniques, which has
lead to postulating one common reason why many defenses provide apparent
robustness against gradient-based attacks, namely obfuscated gradients.

According to the above study, adversarial training with Projected Gradi-
ent Descent (PGD) [17] is one of the most successful and widely-used defense
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techniques that remained consistently resilient against attacks, which has in-
spired many recent advances including Adversarial Logit Pairing (ALP) [11],
Feature Denoising [26], Defensive Quantization [15], Jacobian Regularization
[9], Stochastic Activation Pruning [5], and Adversarial Training Free [22].

In this paper, we propose to build robust classifiers against adversarial exam-
ples by learning better representations in the intermediate space. Given an image
classifier based on a multi-layer neural net, conceptually, we divide the network
into two parts with an intermediate layer: the generator network from the input
layer to the intermediate layer and the classifier network from the intermediate
layer to the output prediction layer. The output of the generator network (i.e.,
the intermediate layer) is the intermediate representation of the input image,
which is fed to the classifier network to make prediction. For image classifiers,
an adversarial example is usually generated by adding small perturbations to
a clean image. The adversarial example may look very similar to the original
image but leads to significant changes to the prediction of the classifier. It has
been observed that in deep neural networks, the representations of a clean data
example and its adversarial example might become very diverge in the interme-
diate space, although their representations are proximal in the data space [26].
Due to the above divergence in the intermediate space, a classifier may be hard
to predict the same class of the adversarial and real images. Inspired by this
observation, we propose to learn better representations that reduce the above
divergence in the intermediate space, so as to enhance the classifier robustness
against adversarial examples.

In particular, we propose an enhanced adversarial training framework that
imposes the local and global compactness properties on the intermediate repre-
sentations, to build more robust classifiers against adversarial examples. Specifi-
cally, by explicitly strengthening local compactness, we enforce the intermediate
representations output from the generator of a clean image and its adversarial
examples to be as proximal as possible. In this way, the classifier network is less
easy to be misled by the adversarial examples. However, enforcing the local com-
pactness itself may not be sufficient to guarantee a robust defense model as the
representations might be encouraged to globally spread out in the intermediate
space, significantly hurting accuracies on both clean and adversarial images. To
address this, we further propose to impose global compactness to encourage the
representations of examples in the same class to be proximal yet those in differ-
ent classes to be more distant. Finally, to increase the generalization capacity
of the deep network and reduce the misclassification of adversarial examples,
our framework enjoys the flexibility to incorporate the clustering assumption
[3], which aims to force the decision boundary of a classifier to lie in the gap
between clusters of different classes. By collaboratively incorporating the above
three properties, we are able to learn better intermediate representations, which
help to boost the adversarial robustness of classifiers. Intuitively, we name our
proposed framework to the Adversary Divergence Reduction Network (ADR).

To comprehensively exam the proposed framework, we conduct extensive ex-
periments to investigate the influence of each component (i.e., local/global com-
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pactness and the clustering assumption), visualize the smoothness of the loss
surface of our robust model, and compare our proposed ADR method with sev-
eral state-of-the-art adversarial defenses. The experimental results consistently
show that our proposed method can further improve over others in terms of
better adversarial and clean predictive performances. The contributions of this
work are summarized as follows:

– We propose the local and global compactness properties on the intermedi-
ate space to enforce the better representations, which lead to more robust
classifiers;

– We incorporate our local and global compactness with clustering assumption
to further enhance adversarial robustness;

– We plug the above three components into an adversarial training framework
to introduce our Adversary Divergence Reduction Network;

– We extensively analyze the proposed framework and compare it with state-
of-the-art adversarial training methods to verify its effectiveness.

2 Related works

Adversarial training defense Adversarial training can be traced back to
[6], in which models were challenged by producing adversarial examples and
incorporating them into training data. The adversarial examples could be the
worst-case examples (i.e., xa , argmaxx′∈Bε(x)` (x′, y, θ)) [6] or most divergent

examples (i.e., xa , argmaxx′∈Bε(x)DKL (hθ (x′) || hθ (x))) [27] where DKL is
the Kullback-Leibler divergence and hθ is the current model. The quality of the
adversarial training defense crucially depends on the strength of the injected
adversarial examples – e.g., training on non-iterative adversarial examples ob-
tained from FGSM or Rand FGSM (a variant of FGSM where the initial point is
randomised) are not robust to iterative attacks, for example PGD [17] or BIM
[13].

Although many defense models were broken by [1], the adversarial training
with PGD [17] was among the few that were resilient against attacks. Many
defense models were developed based on adversarial examples from a PGD attack
or attempts made to improve and scale up the PGD adversarial training. Notable
examples include Adversarial Logit Pairing (ALP) [11], Feature Denoising [26],
Defensive Quantization [15], Jacobian Regularization [9], Stochastic Activation
Pruning [5], and Adversarial Training for Free [22].

Defense with a latent space These works utilized a latent space to enable
adversarial defense, notably [10]. DefenseGAN [21] and PixelDefense [24] use
a generator (i.e., a pretrained WS-GAN [7] for DefenseGAN and a PixelCNN
[19] for PixelDefense) together with the latent space to find a denoised version
of an adversarial example on the data manifold. These works were criticized
by [1] as being easy to attack and impossible to work within the case of the
CIFAR-10 dataset. Jalal et al. [10] proposed an overpowered attack method to
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efficiently attack both DefenseGAN and PixelDefense and subsequently injected
those adversarial examples to train the model. Though that work was proven to
work well with simple datasets including MNIST and CelebA, no experiments
were conducted on more complex datasets including, for example, CIFAR-10.

3 Proposed method

In what follows, we present our proposed method, named the Adversary Diver-
gence Reduction Network (ADR). As shown in the previous study [26], although
an adversarial example xa and its corresponding clean example x are in close
proximity in the data space (i.e., differ by a small perturbation), when brought
forward up to the higher layers in a deep neural network, their representations
become markedly more divergent, hence causing different prediction results. In-
spired by this observation, we propose imposing local compactness for those
representations in an intermediate layer of a neural network. The key idea is to
enforce that the representations of an adversarial example and its clean coun-
terpart be as proximal as possible, hence reducing the chance of misclassifying
them. Moreover, we observe that enforcing the local compactness itself is not
sufficient to guarantee a robust defense model as this enforcement might en-
courage representations to globally spread out across the intermediate space
(i.e., the space induced by the intermediate representations), significantly hurt-
ing both adversarial and clean performances. To address this, we propose to
impose global compactness for the intermediate representations such that repre-
sentations of examples that belong in the same class are proximal and those in
different classes are more distant. Finally, to increase the generalization capacity
of the deep network and reduce the misclassification of adversarial examples, we
propose to apply the clustering assumption [3] which aims to force the decision
boundary to lie in the gap between clusters of different classes, hence increasing
the chance for adversarial examples to be correctly classified.

3.1 Local compactness

Local compactness, which aims to reduce the divergence between the represen-
tations of an adversarial example and its clean example in an intermediate layer,
is one of the key aspects of our proposed method. Let us denote our deep neural
network by hθ (·), which decomposes into hθ (·) = gθ (fθ (·)) where the first (gen-
erator) network fθ maps the data examples onto an intermediate layer where we
enforce the compactness constraints. The following (classifier) network gθ maps
the intermediate representations to the prediction output. For local compactness,
given a clean data example x, denote Aε as a stochastic adversary that renders
adversarial examples for x as xa ∼ Aε (x) in a ball Bε (x) = {x′ : ‖x− x′‖ < ε},
our aim is to compress the representations of x and xa in the intermediate layer
by minimizing

Llc
com = Ex∼Dx

[
Exa∼Aε(x)

[
‖fθ(x)− fθ(xa)‖p

]]
(1)
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where we use Dx = {x1, ..., xN} to represent both training examples and the
corresponding empirical distribution and ‖·‖p with p = 1, 2,∞ to specify the
p-norm.

3.2 Global compactness

For global compactness, we want the representations of data examples in the
same class to be closer and data examples in different classes to be more separate.
As demonstrated later, global compactness in conjunction with the clustering
assumption helps increase the margin of a data example (i.e., the distance from
that data example to the decision boundary), hence boosting the generalization
capacity of the classifier network and adversarial robustness.

More specifically, given two examples (xi, yi) and (xj , yj) drawn from the
empirical distribution over Dx,y = {(x1, y1) , ..., (xN , yN )} where the label yk ∈
{1, 2, ...,M}, we compute the weight wij for this pair as follows:

wij =
α− Iyi 6=yj

α
=

{
1 if yi = yj
α−1
α otherwise

(2)

where IS is the indicator function which returns 1 if S holds and 0 otherwise.
We consider α ∈ (0, 1), yielding wij < 0 if yi 6= yj and wij > 0 if otherwise.

We enforce global compactness by minimizing

Lgb
com = E(xi,yi),(xj ,yj)∼Dx,y

[
wij ‖fθ(xi)− fθ(xj)‖p

]
(3)

where we overload the notation Dx,y to represent the empirical distribution over
the training set, which implies that the intermediate representations fθ(xi) and
fθ(xj) are encouraged to be closer if yi = yj and to be separate if yi 6= yj for a
global compact representation.

Note that in our experiment, we set α = 0.99, yielding wij ∈ {1,−0.01}, and
calculate global compactness with each random minibatch.

3.3 Clustering assumption and label supervision

At this stage, we have achieved compact intermediate representations for the
clean data and adversarial examples obtained from a stochastic adversary Aε.
Our next step is to enforce some constraints on the subsequent classifier network
gθ to further exploit this compact representation for improving adversarial ro-
bustness. The first constraint we impose on the classifier network gθ is that this
should classify both clean data and adversarial examples correctly by minimizing

Lc = E(x,y)∼Dx,y

[
Exa∼Aε(x) [` (hθ (xa) , y)] + ` (hθ (x) , y)

]
(4)

where ` is the cross-entropy loss function.
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In addition to this label supervision, the second constraint we impose on the
classifier network gθ is the clustering assumption [3], which states that the de-
cision boundary of gθ in the intermediate space should not break into any high
density region (or cluster) of data representations in the intermediate space,
forcing the boundary to lie in gaps formed by those clusters. The clustering
assumption when combined with the global compact representation property
should increase the data example margin (i.e., the distance from that data ex-
ample to the decision boundary). If this is further combined with the fact that
the representations of adversarial examples are compressed into the representa-
tion of its clean data example (i.e. local compactness) this should also reduce
the chance that adversarial examples are misclassified. To enforce the clustering
assumption, inspired by [23], we encourage the classifier confidence by minimiz-
ing the conditional entropy and maintain classifier smoothness using Virtual
Adversarial Training (VAT) [18], respectively:

Lconf = Ex∼Dx

[
Exa∼Aε(x)

[
−hθ(xa)T log hθ(xa)

]
− hθ(x)T log hθ(x)

]
(5)

Lsmt = Ex∼Dx

[
Exa∼Aε(x) [DKL (hθ(x)‖hθ(xa))]

]
(6)

3.4 Generating adversarial examples

We can use any adversarial attack algorithm to define the adversary Aε. For
example, Madry et al. [17] proposed to find the worst-case examples xa ,
argmaxx′∈Bε(x)` (x′, y, θ) using PGD, while Zhang et al. [27] aimed to find the

most divergent examples xa , argmaxx′∈Bε(x)DKL (hθ (x′) || hθ (x)) . By enforc-
ing local/global compactness over the adversarial examples obtained by Aε, we
make them easier to be trained with the label supervision loss in Eq. (4), hence
eventually improving adversarial robustness. The quality of adversarial exam-
ples obviously affects to the overall performance, however, in the experimental
section, we empirically prove that our proposed components can boost the ro-
bustness of the adversarial training frameworks of interest.

3.5 Putting it all together

We combine the relevant terms regarding local/global compactness, label super-
vision, and the clustering assumption and arrive at the following optimization
problem:

min
θ
L , Lc + λlccomLlc

com + λgbcomLgb
com + λconfLconf + λsmtLsmt (7)

where λlccom, λ
gb
com, λconf, and λsmt are non-negative trade-off parameters.

In Figure 1, we illustrate how the three components, namely local/global
compactness, label supervision, and the clustering assumption can mutually col-
laborate to improve adversarial robustness. The representations of data examples
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Fig. 1. Overview of Adversary Divergence Reduction Network. The local/global com-
pactness and clustering assumption are intended to improve adversarial robustness.

via the network fθ are enforced to be locally/globally compact, whereas the po-
sition of the decision boundary of the classifier network gθ in the intermediate
space is enforced using the clustering assumption. Ideally, with the clustering
assumption, the decision boundary of gθ preserves the cluster structure in the
intermediate space and when combined with label supervision training ensures
clusters in a class remain completely inside the decision region for this class.
Moreover, global compactness encourages clusters of a class to be closer and
those of different classes to be more separate. As a result, the decision boundary
of gθ lies in the gaps among clusters as well as with a sufficiently large margin for
the data examples. Finally, local compactness requires adversarial examples to
stay closer to their corresponding clean data example, hence reducing the chance
of misclassifying them and therefore improving adversarial robustness.

Comparison with the contrastive learning. Interestingly, the contrastive
learning [4, 8] and our proposed method aim to learn better representations by
the principle of enforcing similar elements to be equal and dissimilar elements
to be different. However, the contrastive learning works on an instance level,
which enforces the representation of an image to be proximal with those of
its transformations and to be distant with those of any other images. On the
other hand, our method works on a class level, which enforces the intermediate
representations of each class to be compact and well separated with those in
other classes. Therefore, our method and the contrastive learning complement
each other and intuitively improve both visual representation and adversarial
robustness when combining together.

4 Experiments

In this section, we first introduce the general setting for our experiments re-
garding datasets, model architecture, optimization scheduler, and adversary at-
tackers. Second, we compare our method with adversarial training with PGD,
namely ADV [17] and TRADES [27]. We employ either ADV or TRADES as
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the stochastic adversary A for our ADR and demonstrate that, when enhanced
with local/global compactness and the clustering assumption, we can improve
these state-of-the-art adversarial training methods.

Specifically, we begin this section with an ablation study to investigate the
model behaviors and the influence of each component, namely local compactness,
global compactness, and the clustering assumption, on adversarial performance.
In addition, we visualize the smoothness of the loss surface of our model to under-
stand why it can defend well. Finally, we undertake experiments on the MNIST
and CIFAR-10 datasets to compare our ADR with both ADV and TRADES.

4.1 Experimental setting

General setting We undertook experiments on both the MNIST [14] and
CIFAR-10 [12] datasets. The inputs were normalized to [0, 1]. For the CIFAR-
10 dataset, we apply random crops and random flips as describe in [17] during
training. For the MNIST dataset, we used the standard CNN architecture with
three convolution layers and three fully connected layers described in [2]. For the
CIFAR-10 dataset, we used two architectures in which one is the standard CNN
architecture described in [2] and another is the ResNet architecture used in [17].
We note that there is a serious overfitting problem on the CIFAR-10 dataset as
mentioned in [2]. In our setting, with the standard CNN architecture, we even-
tually obtained a 98% training accuracy, but only a 75% testing accuracy. With
the ResNet architecture, we used the strategy from [17] to adjust the learning
rate when training to reduce the gap between the training and validation accu-
racies. For the MNIST dataset, a drop-rate equal to 0.1 at epochs 55, 75, and 90
without weight decay was employed. For the CIFAR-10 dataset, the drop-rate
was set to 0.1 at epochs 100 and 150 with weight decay equal to 2 × 10−4. We
use a momentum-based SGD optimizer for the training of the standard CNN
for the MNIST dataset and the ResNet for the CIFAR-10 dataset, while using
the Adam optimizer for training the standard CNN on the CIFAR-10 one. The
hyperparameters setting can be found in the supplementary material.

Choosing the intermediate layer. The intermediate layer for enforcing
compactness constraints immediately follows on from the last convolution layer
for the standard CNN architecture and from the penultimate layer for the ResNet
architecture. Moreover, we provide an additional ablation study to investigate
the importance of choosing the intermediate layer which can be found in the
supplementary material.

Attack methods We use PGD to challenge the defense methods in this paper.
Specifically, the setting for the MNIST dataset is PGD-40 (i.e., PGD with 40
steps) with the distortion bound ε increasing from 0.1 to 0.7 and step size η ∈
{0.01, 0.02}, while that for CIFAR-10 is PGD-20 with ε increasing from 0.0039 (≈
1/255) to 0.11 (≈ 28/255) and step size η ∈ {0.0039, 0.007}. The distortion
metric is l∞ for all attacks. For the adversarial training, we use k = 10 for
CIFAR10 and k = 20 for MNIST for all defense methods.
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Non-targeted and multi-targeted attack scenarios We used two types
of attack scenarios, namely non-targeted and multi-targeted attacks. The non-
targeted attack derives adversarial examples by maximizing the loss w.r.t. its
clean data label, whilst the multi-targeted attack is undertaken by performing
simultaneously targeted attack for all possible data labels. The multi-targeted
attack is considered to be successful if any individual targeted attack on each
target label is successful. While the non-targeted attack considers only one direc-
tion of the gradient, the multi-targeted attack takes multi-directions of gradient
into account, which guarantees to get better local optimum.

4.2 Experimental results

In this section, we first conduct an ablation study using the MNIST dataset
in order to investigate how the different components (local compactness, global
compactness, and the clustering assumption) contribute to adversarial robust-
ness. We then conduct experiments on the MNIST and CIFAR-10 datasets to
compare our proposed method with ADV and TRADES. Further evaluation can
be found in the supplementary material.

Ablation study We first study how each proposed component contributes to
adversarial robustness. We use adversarial training with PGD as the baseline
model and experiment on the MNIST dataset. Recall that our method consists
of three components: the local compactness loss Llc

com, the global compactness
loss Lgb

com, and the clustering assumption loss which combines {Lsmt + Lconf} .
In this experiment, we simply set the trade-off parameters λlccom, λ

gb
com, λsmt =

λconf = λca to 0/1 to deactivate/activate the corresponding component. We
consider two metrics: the natural accuracy (i.e., the clean accuracy) and the
robustness accuracy to evaluate a defense method. The natural accuracy is that
evaluated on the clean test images, while the robustness accuracy is that evalu-
ated on adversarial examples generated by attacking the clean test images. It is
noteworthy that for many existing defense methods, improving robustness accu-
racy usually harms natural accuracy. Therefore, our proposed method aims to
reach a better trade-off between the two metrics.

Table 1 shows the results for the PGD attack with k = 40, ε = 0.325, and η =
0.01. We note that ADR-None is our base model without any additional compo-
nents. The base model can be any adversarial training based method, e.g., ADV
or TRADES. Without loss of generality, we use ADV as the base model, i.e.,
ADR-None. By gradually combining the proposed additional components with
ADR-None we produce several variants of ADR (e.g., ADR+LC is ADR-None
together with the local compactness component). Since the standard model was
trained without any defense mechanism, its natural accuracy is high at 99.5%
whereas the robustness accuracy is very poor at 0.88%, indicating its vulner-
ability to adversarial attacks. Regarding the variants of our proposed models,
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those with additional components generally achieve higher robustness accuracies
compared with ADR-None (i.e. ADV), without hurting the natural accuracy. In
addition, the robust accuracy was significantly improved with global compact-
ness and the clustering assumption terms.

Fig. 2. Variation of the robustness accura-
cies under different attack strengths. The
base model is ADV (ADR-None).

Table 1. Results of the PGD-40 at-
tack on the MNIST dataset for the base
ADV model together with its variants
with the different components (LC =
local compactness, GB = global com-
pactness, CA = clustering assumption)
and ε = 0.325.

Nat. acc. Rob. acc.

Standard model 99.5% 0.84%
ADR-None (ADV)a 99.27% 88.1%

ADR+LC 99.41% 91.43%
ADR+LC/GB 99.35% 94.52%

ADR+LC/GB/CA 99.36% 94.96%

a The performance of ADV is lower
than that in [17] because of the dif-
ference of the attack strength and
model architecture

We also evaluate the metrics of interest with different attack strength by
increasing the distortion boundary ε as shown in Figure 2. By just adding a
single local compactness component, our method can improve the base model
(ADV or ADR-None) for attacks with strength ε ≤ 0.35. By adding the global
compactness component, our method can significantly improve over the base
model, especially for stronger attacks. Recall that as we generate adversarial
examples from the PGD attack with k = 20, εd = 0.3, η = 0.01 to train the
defense models, is is unsurprised to see a model defends well with ε ≤ 0.3.
Interestingly, by adding our components, our defense methods can also achieve
reasonably good robustness accuracy of 80%, even when ε varies from 0.34 to
0.37, indicating the better generality of our methods.

To gain a better understanding of the contribution of the local compactness
component, we visualize the loss surface of the base model (ADV as ADR-
None) and the base model with only the local compactness term (ADR+LC).
In Figure 3, the left image is a clean data example x, while the middle image is
the loss surface over the input region around x in which the z-axis indicates the
cross-entropy loss w.r.t. the true label (the higher value means more incorrect
prediction) and the x- and y-axis indicates the variance of the input image along
the gradient direction w.r.t. x and a random orthogonal direction, respectively.
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By varying along the two axes, we create a grid of images which represents
the neighborhood region around x. The right-hand image depicts the predicted
labels corresponding with this input grid.

Fig. 3. Loss surface at local region of a clean data example. Top-left: ADR-None w.r.t
input. Top-right: ADR+LC w.r.t input. Bottom-left: ADR-None w.r.t latent. Bottom-
right: ADR+LC w.r.t latent

From Figure 3, for ADR-None, that its neighborhood region is non-smooth,
resulting in incorrect predictions to the label 1 and 4. Meanwhile, for our ADR+LC
method (adversarial training with local compactness), the loss surface w.r.t. the
input is smoother in its neighborhood region, resulting in correct predictions.
In addition, in our method, the prediction surface w.r.t. the latent feature in
the intermediate representation layer is smoother than that w.r.t. input. This
means that our local compactness makes the local region more compact, hence
improving adversarial robustness. Visualization with an adversarial example as
input can be found in our supplementary material which provides more evidence
of our improvement over the base model.

Furthermore, we use t-SNE [16] to visualize the intermediate space for demon-
strating the effect of our global compactness component. We choose to show a
positive adversarial example defined as an adversarial example which success-
fully fools a defense method. We compare the base model (ADV as ADR-None)
with our method with the compactness terms and use t-SNE to project clean
data and adversarial examples onto 2D space as in Figure 4. For ADR-None, its
adversarial examples seem to distribute more broadly and randomly. With our
global compactness constraint, the adversarial examples look well-clustered in
a low density region, while rarely present in the high density region of natural
clean images. We leverage the entropy of the prediction probability of examples
as the third dimension in Figure 5. A lower entropy mean that the prediction is
more confident (i.e., closer to a one-hot vector) and vice versa. It can be observed
that for the base model, the prediction outputs of adversarial examples seem to
be randomly distributed, while for our ADR+LC/GB method, the prediction
outputs of adversarial examples mainly lie in the high entropy region and are
well-separated from those of the clean data examples. In other words, adversar-
ial examples can be more easily detected from clean examples in our method,
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according to the predication entropy. In addition, the visualization for a negative
adversarial example can be found in our supplementary material.

Fig. 4. T-SNE visualization of latent space. Black triangles are (positive) adversarial
examples while others are clean images. Left: ADR-None. Right: ADR+LC/GB

Fig. 5. T-SNE visualization of latent space with entropy of the prediction probability.
Black triangles are (positive) adversarial examples while others are clean images. Left:
ADR-None. Right: ADR+LC/GB

To summarize, in this ablation study, we have demonstrated how our pro-
posed components can improve adversarial robustness. In the next section, we
will compare the best variant (with all components) of our method with both
ADV and TRADES on more complex datasets to highlight the capability of our
method.

Experiment on the MNIST dataset We compare our method with ADV and
TRADES on the MNIST dataset. For our method, in addition to using its full
version with all of the proposed terms, we consider two variants ADR-ADV and
ADR-TRADES wherein the adversary A is set to be ADV and TRADES respec-
tively. We use PGD/TRADES generated adversarial examples with k = 20, εd =
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Fig. 6. Robust accuracy against PGD attack on MNIST. Base models include ADV
and TRADES. Left: η = 0.01. Right: η = 0.02

0.3, ηd = 0.01 for adversarial training as proposed in [17] and employ the PGD at-
tack with k = 40, using two iterative size η ∈ {0.01, 0.02} and different distortion
boundaries ε to attack. The results shown in Figure 6 illustrate that our variants
outperform the baselines, especially for {ε = εd = 0.3, η = 0.01}. For example,
our ADR-ADV improves ADV by 2.4% (from 94.15% to 96.55%) while ADR-
TRADES boosts TRADES by 2.07% (from 93.64% to 95.71%). While for attack
setting {ε = εd = 0.3, η = 0.02}, our method improves ADV and TRADES by
4.0% and 3.8% respectively. Moreover, the improvement gap increases when the
attack goes stronger.

Experiment on the CIFAR-10 dataset We conduct experiments on the
CIFAR-10 dataset under two different architectures: standard CNN from [2] and
ResNet from [17]. We set k = 10, εd = 0.031, ηd = 0.007 for ADV and TRADES
and use a PGD attack with k = 20, η ∈ {0.0039, 0.007} and different distortion
boundary ε. The results for standard CNN architecture in figure 7 show that our
methods significantly improve over the baselines. Moreover, the results for stan-
dard CNN architecture at a checking point {ε = εd = 0.031, η = ηd = 0.007}
in Table 2 show that our methods significantly outperform their baselines in
terms of natural and robust accuracies. Moreover, Figure 7 indicates that our
proposed methods can defend better in a wide range of attack strength. Particu-
larly, when with varied distortion boundary ε in [0.02, 0.1], our proposed methods
always produce better robust accuracies than its baselines. Finally, the results
for ResNet architecture in Table 2 show a slight improvement of our methods
comparing with ADV but around 2.5% improvement from TRADES on both
Non-targeted and Multi-targeted attacks.3 The quality of adversarial examples
and the chosen network architecture obviously affects the overall performance,

3 The performance of TRADES is influenced by the model architectures and parameter
tunings. The works [20, 10] also reported that TRADES cannot surpass ADV all the
time which explains the lower performance of TRADES on ResNet architecture in
this paper. More analysis can be found in the supplementary material.
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Fig. 7. Robust accuracy against PGD attack on CIFAR-10, using Standard CNN archi-
tecture. Base models include ADV and TRADES. Left: η = 0.0039. Right: η = 0.007.

however, in this experiment, we empirically prove that our proposed components
can boost the robustness under different combinations of the adversarial training
frameworks and network architectures.

Table 2. Robustness comparison on the CIFAR-10 dataset against PGD attack at
k = 20, ε = 0.031, η = 0.007 using Standard CNN and ResNet architectures

Standard CNN ResNet
Nat. acc. Non-target Mul-target Nat. acc. Non-target Mul-target

Standard model 75.27% 12.26% 0.00% 92.51% 0.00% 0.00%
ADV 67.86% 33.12% 18.73% 78.84% 44.08% 41.20%

TRADES 71.37% 35.84% 18.01% 83.27% 37.52% 35.05%
ADR-ADV 69.09% 37.67% 22.58% 78.43% 44.72% 41.43%

ADR-TRADES 69.0% 39.68% 26.7% 82.02% 40.17% 37.70%

5 Conclusion

Previous studies have shown that adversarial training has been one of the few
defense models resilient to various attack types against deep neural network
models. In this paper, we have shown that by enforcing additional components,
namely local/global compactness constraints together with the clustering as-
sumption, we can further improve the state-of-the-art adversarial training mod-
els. We have undertaken comprehensive experiments to investigate the effect of
each component and have demonstrated the capability of our proposed methods
in enhancing adversarial robustness using real-world datasets.

Acknowledgement: This work was partially supported by the Australian De-
fence Science and Technology (DST) Group under the Next Generation Tech-
nology Fund (NTGF) scheme.
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Supplementary to "Improving Adversarial
Robustness by Enforcing Local and Global

Compactness"

1 Hyperparameters

The hyperparameters for our experiments as Table 1. The hyperparameters of
local compactness, global compactness, and smoothness are set to be either 1 or
0, meaning they are switched ON/OFF. Although finer tuning of these param-
eters can lead to better results, our method outperforms the baselines in these
initial settings, which demonstrates the effectiveness of those components.

Table 1. Hyper-parameter setting for the experiment section

λlc
com λgb

com λsmt λconf

MNIST 1. 1. 1. 0.
CIFAR-10-CNN 1. 1. 1. 1.
CIFAR-10-ResNet 1. 1. 1. 0.

2 Model architectures and experimental setting

We summarize the experimental setting in Table 2.
For the MNIST dataset, we used the standard CNN architecture with three

convolution layers and three fully connected layers described in [2]. For the
CIFAR-10 dataset, we used two architectures in which one is the standard CNN
architecture described in [2] and another is the ResNet architecture used in [6].
The ResNet architecture has 5 residual units with (16, 16, 32, 64) filters each.
We choose the convolution layers as the Generator and the last fully connected
layers as the Classifier for ResNet architecture. The standard CNN architectures
are redescribed as follow:

CNN-4C3F(32) Generator: 2×Conv(32)→Max Pooling→ 2×Conv(32)→
Max Pooling→ Flatten

CNN-4C3F(32) Classifier: FC(200)→ ReLU→Dropout(0.5)→ FC(200)→
ReLU→ FC(10)→ Softmax

CNN-4C3F(64) Generator: 2×Conv(64)→Max Pooling→ 2×Conv(64)→
Max Pooling→ Flatten

CNN-4C3F(64) Classifier: FC(256)→ ReLU→Dropout(0.5)→ FC(256)→
ReLU→ FC(10)→ Softmax
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3 Choosing the intermediate layer

The intermediate layer for enforcing compactness constraints immediately fol-
lows on from the generator. We additionally conduct an ablation study to in-
vestigate the importance of choosing the intermediate layer and report natural
accuracy and robust accuracy against non-targeted/multiple-targeted attacks
respectively. We use the standard CNN architecture (which has 4 Convolu-
tion layers in Generator and 3 FC layers in Classifier), with four additional
variants corresponding to different choices of the intermediate layer (right af-
ter the generator). We use PGD (k = 100, ε = 0.3, η = 0.01 for MNIST,
k = 100, ε = 0.031, η = 0.007 for CIFAR-10) to evaluate these models. It can be
seen from the results as showing in Table 3 that the performance slightly down-
grades if choosing shallower layers. The higher impact is expected on a larger
architecture (i.e., Resnet), which can be investigated in future.

4 The performance of TRADES

TRADES aims to find the most divergent adversarial examples, while ADV
aims to find the worst-case examples to improve a model (see Sec. 2.2 in our
paper for more detail). Hence theoretically, there is no guarantee that TRADES
outperforms ADV. In practice, the performance of TRADES is influenced by
the classifier architectures and parameter tunings. The works [7,4] also reported
that TRADES cannot surpass ADV all the time (Table 1 and footnote 8 in [7],
Table 1 in [4]), which is in line with the findings in our paper.

5 Further experiments

We conduct an additional evaluation with further state-of-the-art attack meth-
ods (e.g., the Basic Iterative Method - BIM [5] and the Momentum Iterative
Method - MIM [3]) to convince that our method indeed boots the robustness
rather than suffers the gradient obfuscation [1]. Three attack methods PGD,
BIM and MIM share the same setting, i.e., {k = 100, ε = 0.3, η = 0.01} for
MNIST and {k = 100, ε = 0.031, η = 0.007} for CIFAR-10. The result as in
Table 4 show that our components can improve the robustness of the baseline
framework against all three kind of attacks which again proves the efficacy of
our method.

5.1 Loss surface of adversarial examples

We separate adversarial examples into two classes: positive adversarial exam-
ple which successfully fools a defense method and negative adversarial example
which is an unsuccessful attack. The loss surface of positive adversarial example
as Figure 1. In particular, both ADV (ADR-None) and our method (ADR+LC)
predicted xa with the label 8, whereas its true label is 3. From Figure 1, it is
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Table 2. Experimental settings for our experiments. The model architectures are from
[2] [6] and redescribed in the supplementary material.

MNIST CIFAR-10 (CNN) CIFAR-10 (Resnet)
Architectures CNN-4C3F(32)[2] CNN-4C3F(64)[2] RN-34-10[6]
Optimizer SGD Adam SGD

Learning rate 0.01 0.001 0.1
Momentum 0.9 N/A 0.9

Training stratery Batch size 128, 100 epochs Batch size 128, 200 epochs Batch size 128, 200 epochs
Perturbation k = 20, εd = 0.3, ηd = 0.01, l∞ k = 10, εd = 0.031, ηd = 0.007, l∞ k = 10, εd = 0.031, ηd = 0.007, l∞

Table 3. Performance comparison on different choices of the intermediate layer.
The results in each setting are natural accuracy and robust accuracy against non-
targeted/multiple-targeted attacks respectively.

MNIST CIFAR10
G=2Conv, C=2Conv+3FC 99.52/93.88/92.78 68.78/36.46/21.99
G=3Conv, C=1Conv+3FC 99.44/94.38/93.59 69.17/37.05/22.44
CNN (G=4Conv, C=3FC) 99.48/95.06/94.26 69.08/37.06/22.44
G=4Conv+1FC, C=2FC 99.51/94.38/93.47 69.39/37.31/22.87
G=4Conv+2FC, C=1FC 99.52/94.26/93.45 69.13/37.31/22.57

Table 4. Robustness comparison on the MNIST and CIFAR-10 datasets using Stan-
dard CNN with higher attack iteration (i.e., k = 100). The results in each setting are
natural accuracy and robust accuracy against non-targeted/multiple-targeted attacks
respectively.

Dataset ADV ADR-ADV
PGD MNIST 99.43/93.13/92.09 99.48/95.06/94.26
BIM MNIST 99.43/93.00/91.70 99.48/94.86/93.99
MIM MNIST 99.43/94.05/92.63 99.48/95.41/94.56
PGD CIFAR-10 67.61/32.87/18.74 69.16/36.85/22.71
BIM CIFAR-10 67.61/32.89/18.71 69.16/36.82/22.69
MIM CIFAR-10 67.61/33.00/18.59 69.16/36.96/22.56



4 A. Bui et al.

evident that for ADV, that most of its neighborhood region is non-smooth, re-
sulting in incorrect predictions in almost all of the grid. By contrast, for our
method (ADR+LC), the loss surface w.r.t. the input is smoother, resulting in
more correct predictions in this neighborhood region. In addition, in our method,
the prediction surface w.r.t. the latent feature in the intermediate representation
layer is smoother than that w.r.t. input. This means that our local compactness
makes the local region more compact, hence improving adversarial robustness.

We provide the loss surface of negative adversarial examples from adversarial
training method and adversarial training with our components as Figure 2. Both
examples show that the loss function smooth in local region of an adversarial
example.

Fig. 1. Loss surface at local region of a positive adversarial example. Top-left: ADR-
None w.r.t input. Top-right: ADV+LC w.r.t input. Bottom-left: ADR-None w.r.t la-
tent. Bottom-right: ADV+LC w.r.t latent

Fig. 2. Loss surface at local region of a negative adversarial example. Top-left: ADR-
None w.r.t input. Top-right: ADV+LC w.r.t input. Bottom-left: ADR-None w.r.t la-
tent. Bottom-right: ADV+LC w.r.t latent
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5.2 T-SNE visualization of adversarial examples

In addition to positive adversarial examples, we provide the t-SNE visualization
of the negative adversarial examples from adversarial training (ADR-None) and
adversarial training with our components (ADR+LC/GB) as Figure 3. In ad-
versarial training method, the unsuccessful attacks have been mixed insight the
natural/clean data. In contrast, in case adversarial training with our components,
the attack representation consistently is separated from those from natural data,
similar to positive adversarial examples. Additionally, the unsuccessful attacks
in adversarial training have the same confidence level with natural data, while
those in our methods are totally different levels. In summary, our method can
produce a better latent representation which is well separated between natural
data and adversarial example (both positive and negative). This feature can be
used for adversarial detection.

Fig. 3. T-SNE visualization of latent space. Black triangles are (negative) adversarial
examples while others are clean images. Left: ADR-None. Right: ADR+LC/GB

Fig. 4. T-SNE visualization with entropy of prediction with entropy of prediction prob-
ability. Black triangles are (negative) adversarial examples while others are clean im-
ages. Left: ADR-None. Right: ADR+LC/GB
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ABSTRACT
Contrastive learning (CL) has recently emerged as an effective approach to learning representation
in a range of downstream tasks. Central to this approach is the selection of positive (similar) and
negative (dissimilar) sets to provide the model the opportunity to ‘contrast’ between data and class
representation in the latent space. In this paper, we investigate CL for improving model robustness
using adversarial samples. We first designed and performed a comprehensive study to understand
how adversarial vulnerability behaves in the latent space. Based on this empirical evidence, we pro-
pose an effective and efficient supervised contrastive learning to achieve model robustness against
adversarial attacks. Moreover, we propose a new sample selection strategy that optimizes the pos-
itive/negative sets by removing redundancy and improving correlation with the anchor. Extensive
experiments show that our Adversarial Supervised Contrastive Learning (ASCL) approach achieves
comparable performance with the state-of-the-art defenses while significantly outperforms other CL-
based defense methods by using only 42.8% positives and 6.3% negatives.

1. Introduction
Recently, there has been a considerable research effort

on adversarial defense methods including Akhtar and Mian
(2018); Lecuyer, Atlidakis, Geambasu, Hsu and Jana (2019);
Carlini, Athalye, Papernot, Brendel, Rauber, Tsipras, Good-
fellow, Madry and Kurakin (2019); Metzen, Genewein, Fis-
cher and Bischoff (2017) which aim to develop a robust Deep
Neural Network against adversarial attacks. Among them,
the adversarial trainingmethods (e.g, FGSM, PGD adversar-
ial training (Goodfellow, Shlens and Szegedy, 2015; Madry,
Makelov, Schmidt, Tsipras and Vladu, 2018) and TRADES
(Zhang, Yu, Jiao, Xing, Ghaoui and Jordan, 2019)) that uti-
lize adversarial examples as training data, have been one of
the most effective series of approaches, which truly boost
the model robustness without the facing the problem of ob-
fuscated gradients (Athalye, Carlini and Wagner, 2018). In
adversarial training, recently Xie, Wu, Maaten, Yuille and
He (2019); Bui, Le, Zhao, Montague, deVel, Abraham and
Phung (2020) show that reducing the divergence of the rep-
resentations of images and their adversarial examples in the
latent space (e.g., the feature space output from an interme-
diate layer of a classifier) can significantly improve the ro-
bustness. For example, in Bui et al. (2020), the latent rep-
resentations of images in the same class are pulled closer
together than those in different classes, which lead to a more
compact latent space and consequently, better robustness.

On the other hand, as proposed recently, contrastive learn-
ing (CL) has been an increasingly popular and effective self-
supervised representation learning approach (Chen, Korn-

∗Corresponding author
tuananh.bui@monash.edu (T. Bui)
tuananhbui89.github.io (T. Bui)

ORCID(s): 0000-0003-4123-2628 (T. Bui)
1The code is available at https://github.com/tuananhbui89/ASCL

blith, Norouzi and Hinton, 2020; He, Fan, Wu, Xie and Gir-
shick, 2020; Khosla, Teterwak, Wang, Sarna, Tian, Isola,
Maschinot, Liu and Krishnan, 2020). Specifically, CL learns
representations of unlabeled data by choosing an anchor xiand pulling the anchor and its positive samples closer in la-
tent space while pushing it away from many negative sam-
ples. Intuitively, as the divergence in latent space is the focus
of both AML and CL, it is natural to leverage CL to improve
model robustness in adversarial training. However, we in
this paper demonstrate that directly adopting CL into AML
can hardly improve adversarial robustness, indicating that a
deeper understanding of the relationships between the CL
mechanism, latent space compactness, and adversarial ro-
bustness is required. Pursuing this comprehension, we give
a detailed study on the above aspects, and subsequently pro-
pose a new framework for enhancing robustness using the
principles of CL. Our paper provides answers for three re-
search questions:

(Q1) Why can CL help to improve the adversarial ro-
bustness? To answer this question, we first introduce two
kinds of divergences in the latent space: the intra-class di-
vergence measured on benign images and their adversarial
examples of the same class and the inter-class divergence
measured on those samples of different classes. By com-
prehensively investigating the behavior of divergence in la-
tent space, our study shows that the robustness of a model
can be interpreted by the ratio between the intra- and inter-
divergences: The lower the ratio is, the more robustness can
be achieved. These observations motivate the idea that a ro-
bust model can be achieved by simultaneously contrasting
the intra-class divergence between images and their adver-
sarial examples with the inter-class divergence. We provide
detailed analysis in Section 2.

(Q2) How to integrate CL with adversarial training in

Bui et al.: Preprint submitted to Elsevier Page 1 of 16
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Figure 1: Illustration of ASCL with Global/Local Selection
strategies in the latent space. While Global Selection consid-
ers all other images in the batch as either positives or nega-
tives, Local Selection nominates the most relevant samples to
the anchor when operating contrastive learning. The decision
is based on the correlation between the true labels and the
predicted labels as in Table 1.

the context of AML?CLoriginally workswith the casewhere
data labels are unavailable, which does not fit the context of
AML for classifiers in the supervised setting. The recent re-
search of Supervised Contrastive Learning (SCL) (Khosla
et al., 2020) extends CL by leveraging label information,
where the latent representations from the same class are pulled
closer together than those from different classes. While it
might seem to be straightforward to apply SCL for AML, we
show in this paper that it is highly nontrivial to do so. To this
end, we propose Adversarial Supervised Contrastive Learn-
ing (ASCL) to tackle this task by developing the following
adaptions. Firstly, for an anchor image, we use its adver-
sarial images as the transformed/augmented samples, which
is different from the standard data augmentation techniques
used in conventional CL methods (Chen et al., 2020; Khosla
et al., 2020). Secondly, we integrate SCL with adversarial
training (Madry et al., 2018) in addition to the clustering as-
sumption (Chapelle and Zien, 2005), to enforce compactness
in latent space and subsequently improve the adversarial ro-
bustness.

(Q3) What are the important factors for the application
of the ASCL framework in the context of AML? One of the
key steps of CL/SCL is the selecting of positive and negative
samples for an anchor image. Although different approaches
have been proposed, most of them focus on natural images
and can usually be ineffective for AML. Specifically, in a
data batch, CL and SCL consider the samples that are not
from the same instance or not in the same class of the anchor
image as its negative samples, which are hard splits between
positive and negative sets, without taking into account the
correlation between a sample and the anchor image. This
can lead to toomany true negative but useless samples which
are highly uncorrelated with the anchor in the latent space
as illustrated in Figure 1. This issue aggravates with more
diverse data and in the AML context, making the original
CL/SCL approaches inapplicable. We therefore develop a
novel series of strategies for selecting positive and negative
samples in our ASCL framework, which judiciously picks
the most relevant samples of the anchor that help to further

improve adversarial robustness.
By providing the answers to the above research ques-

tions, we summarize our contributions in this paper as fol-
lows:

1) We provide a comprehensive and insightful under-
standing of adversarial robustness regarding the divergences
in latent space, which sheds light on adapting the CL princi-
ple to enhance robustness.

2)Wepropose a novel Adversarial SupervisedContrastive
Learning (ASCL) framework, where thewell-established con-
trastive learning mechanism is leveraged to make the latent
space of a classifier more compact, leading to a more robust
model against adversarial attacks.

3) By analyzing the intrinsic characteristics of AML, we
develop effective strategies for selecting positive and neg-
ative samples more judiciously, which are critical to mak-
ing contrastive learning principle effective in AML by using
much less positives and negatives.

4)As shown in extensive experiments, our proposed frame-
work is able to significantly improve a classifier’s robustness,
outperforming several adversarial training defense methods
against strong attacks while achieving comparable perfor-
mance with SOTA defenses in the RobustBench (Croce, An-
driushchenko, Sehwag, Debenedetti, Flammarion, Chiang,
Mittal and Hein, 2020).

2. Analysis of Latent Space Divergence
By examining the question “Why can CL help to improve

the adversarial robustness?”, we design experiments to show
the connection of adversarial robustness to the latent diver-
gence of an anchor and its contrastive samples.

Let  = {xi, yi}Ni=1 be a batch of benign images where
image xi is associated yi. Given an adversarial transforma-
tion  from an adversary (e.g., PGD attack inMadry et al.
(2018)), we consider two kinds of samples w.r.t. an anchor
{xi, yi}: the positive set X+

i = {xj , xj ∣ j ≠ i, yj = yi} in-cluding benign examples and their counterparts in the same
class with the anchor and the negative set X−

i = {xj , xj ∣
j ≠ i, yj ≠ yi} including benign examples and their coun-
terparts in different classes with the anchor. We are inter-
ested in the latent representations of begin and transformed
images at a specific intermediate layer of the neural net clas-
sifier f . Let us further denote those representations by zi forbenign images and zi for adversarially transformed images
according  . We define some types of divergences between
benign images and transformed images via transformation 
at some intermediate layers of f .

(i) Absolute intra-class divergence:
d+a = 1

N
∑N
i=1

1
|||X

+
i
|||
∑

xj∈X+
i
d(zi, zj)

(ii) Absolute inter-class divergence:
d−a = 1

N
∑N
i=1

1
|X−

i |
∑

xj∈X−
i
d(zi, zj)

Here we note that d is cosine distance between two rep-
resentations, and |.| represents the cardinality of a set.
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(a) Pairs of Absolute-DIVs with corre-
sponding R-DIV.

(b) R-DIV over the training progress with stan-
dard CNN model.

(c) R-DIV under different attack strengths.

Figure 2: Correlation between the Relative intra-class divergence (R-DIV) and the robust accuracy on the CIFAR10 dataset. The
variance of Absolute-DIV in Figure 2a is scaled by 0.2 for better visualization. Using PGD attack with � = 8∕255, � = 2∕255 with
k = 10 for training and k = 250 for testing.

(iii) Relative intra-class divergence (R-DIV): d+r = d+a
d−a

;
hence relative divergence generally represents how large the
magnitude of intra-class divergence is relative to the inter-
class divergence.

In Figure 2, we conduct an empirical study on the CIFAR-
10 dataset to figure out the relationship between R-DIV for
adversarial examples and robust accuracy. The findings and
observations are very important for us to devise our frame-
work in the sequel. More specifically, we train a CNN and
a ResNet20 model in two modes: natural mode (NAT and
cannot defend at all) and adversarial training mode (AT and
can defend quite well). We observe how robust accuracy to-
gether with R-DIV vary with training progress to draw con-
clusions. The detailed settings and further demonstrations
can be found in the supplementary material. Some observa-
tions are drawn from our experiment:

(O1) The robustness varies inversely with the relative
intra-class divergence between benign images and their
adversarial examples (the adversarial R-DIV d+,advr ). As
shown in Figure 2b, during the training process, the robust
accuracy of the AT model tends to improve, which corre-
spondswith a decrease of the adversarialR-DIV d+,advr . Sim-
ilarly, when the robust accuracy of the NAT model starts
increasing at the epoch 100, the adversarial R-DIV d+,advrstarts decreasing. In addition, the robust accuracy of the AT
model is significantly higher than that of the NAT model,
whilst its d+,advr is far lower than that of the NAT model.
In Figure 2c, we visualize the correlation between the R-
DIV and the robust accuracy by generating different attack
strengths. It can be seen that there is a common trend such
that the lower robust accuracy the higher R-DIV, regardless
of the model architecture or defense methods. These obser-
vations support our claim of the relation between robust ac-
curacy and R-DIV.

(O2) In Figure 2a, we visualize the absolute intra-class
divergence (d+a ) and the absolute inter-class divergence (d−a )

for the cases of the NAT/AT models with their correspond-
ing robust accuracies. It can be observed that: (i) in the same
architecture, the d+a of the AT model is much smaller than
that of NATmodel. However, the d−a of the ATmodel is also
much smaller than that of NATmodel. It implies that, the AT
method helps to compact the representations of intra-class
samples, but undesirably makes the representations of inter-
class samples closer. (ii) Overall, the relative intra-class di-
vergence of the AT model is smaller than that of the NAT
model – which might explain why the NAT model is easy to
be attacked, and again confirms our O1.
Conclusions from the observations. Mao, Zhong, Yang,
Vondrick and Ray (2019) and Bui et al. (2020) reached a
conclusion that the absolute adversarial intra-class diver-
gence d+a is a key factor for robustness against adversarial
examples. However, as indicated by our O1, it is only one
side of the coin. The reason is that the absolute adversarial
intra-class divergence only cares about how far adversarial
examples of a class are from their counterpart benign im-
ages, and does not pay attention to the inter-divergence to
other classes. As analysed in our observation of O2-i, low
d−a possibly harms the robust accuracy, because in this case,
adversarial examples of other classes are very close to those
of the given class. This further indicates that the absolute
adversarial inter-class divergence d−a needs to be taken into
account and it is necessary to minimize the relative adver-
sarial intra-class divergence d+r = d+a

d−a
better controls both

the absolute adversarial intra-class divergence and absolute
adversarial inter-class divergence for strengthening robust-
ness. The above analytical and empirical study confirms the
feasibility of applying SCL to enhance robustness in AML
but one can also see that it is non-trivial to develop an ap-
propriate strategy to be the combination effective.
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3. Proposed method
In this section, we provide the answer for the question

“How to integrate CL with adversarial training in the con-
text of AML?”. We first propose an adapted version of SCL
which we call Adversarial Supervised Contrastive Learning
(ASCL) for theAMLproblem. We then introduce three sam-
ple selection strategies to nominate the most relevant posi-
tives and negatives to the anchor, which further improve ro-
bustness with much fewer samples.
3.1. Adversarial Supervised Contrastive Learning
Terminologies. We consider a prediction model ℎ(x) =
g(f (x)) where f () is the encoder which outputs the latent
representation z = f (x) and g() is the classifier upon the la-
tent z. Also we have a batch of N pairs {xi, yi}Ni=1 of benignimages and their labels. With an adversarial transformation (e.g., PGD), each pair {xi, yi} has two corresponding sets,a positive set X+

i = {xj , xaj ∣ j ≠ i, yj = yi} and a negative
set X−

i = {xj , xaj ∣ j ≠ i, yj ≠ yi}. We then have the corre-
sponding sets in the latent space Z+

i = {f (xj) ∣ xj ∈ X+
i }and Z−

i = {f (xj) ∣ xj ∈ X−
i }.

Supervised Contrastive Loss. The supervised contrastive
loss for an anchor xi as follow:

scl
i = −1

|||Z
+
i
||| + 1

∑
zj∈Z+

i ∪{z
a
i }
log e

sim(zj ,zi)
�

∑
zk∈Z+

i ∪Z
−
i ∪{z

a
i }
e
sim(zk,zi)

�

(1)

where sim(zj , zi) represents the similaritymetric between
two latent representations and � is a temperature parame-
ter. It is worth noting that there are two changes in our SCL
loss compared with the original one in Khosla et al. (2020).
Firstly, sim(zj , zi) is a general form of similarity, which can
be any similarity metric such as cosine similarity zj ⋅zi

‖zj‖×‖zi‖
or Lp norm − |||zj − zi

|||p. Secondly, in term of terminology,
in Khosla et al. (2020), the positive set was defined including
those samples in the same class with the anchor xi (e.g. X+

i )and the anchor’s transformation xai . However, in our paper,
we want to emphasize the importance of the anchor’s trans-
formation, therefore, we use two separate terminologiesX+

iand {xai }. Similarly, the SCL loss for an anchor xai as follow:

a,scl
i = −1

|||Z
+
i
||| + 1

∑
zj∈Z+

i ∪{zi}
log e

sim(zj ,zi)
�

∑
zk∈Z+

i ∪Z
−
i ∪{zi}

e
sim(zk,zi)

�

(2)

The average SCL loss over a batch is as follows:

SCL = 1
N

N∑
i=1

(scl
i + a,scl

i

)
(3)

Asmentioned in Khosla et al. (2020), there is a major ad-
vantage of SCL compared with Self-Supervised CL (SSCL)

in the context of regular machine learning. Unlike SSCL
in which each anchor has only single positive sample, SCL
takes advantages of the labels to have many positives in the
same batch size N. This strategy helps to reduce the false
negative cases in SSCL when two samples in the same class
are pushed apart. As shown in Khosla et al. (2020), SCL
training is more stable than SSCL and also achieves better
performance.
Adaptations in the context of AML. However, original
SCL is not sufficient to achieve adversarial robustness. In
the context of adversarial machine learning, we need the fol-
lowing adaptations to improve the adversarial robustness:

(i) As shown in Table 1 in Kim, Tack and Hwang (2020),
the original SCL slightly improves the robustness of a stan-
dardmodel but cannot defend strong adversarial attacks. There-
fore, we use an adversary  (e.g., PGD) as the transfor-
mation  instead of the traditional data augmentation (e.g.,
combination of random cropping and random jittering) as
in other contrastive learning frameworks (Chen et al., 2020;
Khosla et al., 2020; He et al., 2020). This helps to reduce
the divergence in latent representations of a benign image
and its adversarial example directly.

(ii) We apply SCL as a regularization on top of the Ad-
versarial Training (AT) method (Madry et al., 2018; Zhang
et al., 2019; Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer,
Davis, Taylor and Goldstein, 2019; Xie, Tan, Gong, Yuille
and Le, 2020). Therefore, instead of pre-training the encoder
f () with contrastive learning loss as in previous work, we
can optimize the AT and the SCL simultaneously. The AT
objective function with the cross-entropy loss () is as fol-
lows:

AT = 1
N

N∑
i=1

 (
ℎ(xi), yi

)
+  (

ℎ(xai ), yi
) (4)

Regularization on the prediction space. The clustering
assumption (Chapelle and Zien, 2005) is a technique that en-
courages the classifier to preserve its predictions for data ex-
amples in a cluster. Theoretically, the clustering assump-
tion enforces the decision boundary of a given classifier to
lie in the gap among the data clusters and never cross over
any clusters. As shown in Chen et al. (2020); Khosla et al.
(2020), with the help of CL, latent representations of those
samples in the same class form into clusters. Therefore, cou-
pling our SCL framework with the clustering assumption
can help to increase the margin from a data sample to the
decision boundary. To enforce the clustering assumption,
we use Virtual Adversarial Training (VAT) (Miyato, Maeda,
Koyama and Ishii, 2019) to maintain the classifier smooth-
ness:

VAT = 1
N

N∑
i=1

DKL
(
ℎ(xi) ∥ ℎ(xai )

) (5)

Putting it all together. We combine the relevant terms to
the final objective function of our frameworkwhich we name
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Table 1
Definitions of positives and negatives with Global Selection and Local Selection strategies
given an anchor {xi, yi} and a predicted label p = argmax ℎ(x), pa = argmax ℎ(xa)

X+
i X−

i
Global {xj , xaj ∣ j ≠ i, yj = yi} {xj , xaj ∣ j ≠ i, yj ≠ yi}
Hard-LS {xj , xaj ∣ j ≠ i, yj = yi} {xj ∣ j ≠ i, yj ≠ yi, pj = yi} ∪ {xaj ∣ j ≠ i, yj ≠ yi, paj = yi}
Soft-LS {xj , xaj ∣ j ≠ i, yj = yi} {xj ∣ j ≠ i, yj ≠ yi, pj = pi} ∪ {xaj ∣ j ≠ i, yj ≠ yi, paj = pi}

Leaked-LS {xj ∣ j ≠ i, yj = yi, pj = pi} ∪ {xaj ∣ j ≠ i, yj = yi, paj = pi} {xj ∣ j ≠ i, yj ≠ yi, pj = pi} ∪ {xaj ∣ j ≠ i, yj ≠ yi, paj = pi}

as Adversarial Supervised Contrastive Learning (ASCL) as
follows:

 = AT + �SCLSCL + �VATVAT (6)
where �SCL and �VAT are hyper-parameters to control

the SCL loss and VAT loss, respectively. As mentioned in
the observation (O2), minimizing the AT loss AT alone
compresses not only the representations of intra-class clus-
ters but also reduces the inter-class distance, which hurts
the natural discrimination. Therefore, coupling with SCL
can compensate the aforementioned weakness by simultane-
ously minimizing the intra-class divergence and maximizing
the inter-class divergence. Finally, by forcing predictions
of intra-class samples to be close, the VAT regularizationV AT help to maintain the classifier smoothness and further
improve the robustness. In addition to the intuitive analy-
sis, we also provide an empirical ablation study to further
understand the contribution of each component in the sup-
plementary material.
3.2. Global and Local Selection Strategies
Global Selection. The SCL as in Equations 1,2 can be un-
derstood as SCL with a Global Selection strategy, where
each anchor xi takes all other samples in the current batch
into account and splits them into a positive setX+

i and a neg-
ative set X−

i . For example, as illustrated in Figure 1, given
an anchor, with the help of SCL, it will push away all nega-
tives and pull all positives regardless of their correlation in
the space. However, there are two issues of this strategy:

(I1) The high inter-class divergence issue of a diverse
dataset. Specifically, there are true negative (but uncorre-
lated) samples which are very different in appearance (e.g.,
an anchor-dog and negative samples-sharks) and latent rep-
resentations. Therefore, pushing them away does not make
any contribution to the learning other than making it more
unstable. The number of uncorrelated negatives is increased
when the dataset is more diverse.

(I2) The high intra-class divergence issuewhen the dataset
is very diverse in some classes. For example, a class “dog” in
the ImageNet dataset may include many sub-classes (breeds)
of dog. Specifically, there are true positive (but uncorre-
lated) samples which are in the same class with the anchor
but different in appearance. In the context of AML, two sam-
ples in the same class (e.g., “dog”) can be attacked to be very
different classes (e.g., one to the class “cat”, one to the class

“shark”), therefore the latent representations of their adver-
sarial examples are even more uncorrelated.
Local Selection. Based on the above analysis, we lever-
age label supervision to propose a series of Local Selection
(LS) strategies for the SCL framework, which consider local
and important samples only and ignore other samples in the
batch as illustrated in Figure 1. They are Hard-LS, Soft-LS
and Leaked-LS as defined in Table 1.

More specifically, in Hard-LS and Soft-LS, we consider
the same set of positives as in Global Selection. However,
we filter out the true negative but uncorrelated samples by
only considering those are predicted as similar to the an-
chor’s true label (Hard-LS) or to the anchor’s predicted la-
bel (Soft-LS). These two strategies are to deal with the issue
(I1) by choosing negative samples that have most correlation
with the current anchor. Because they are very close in pre-
diction space, their representation is likely high correlated
with the anchor’s representation.

In Leaked-LS, we add an additional constraint on the
positive set to deal with the issue (I2). Specifically, we filter
out the true positive but uncorrelated samples by only choos-
ing those are currently predicted as similar to the anchor’s
prediction. It is worth noting that, the additional constraint
is applied on the positive set X+

i only. It means that, each
anchor xi and its adversarial example xai are always pulled
close together. However, instead of pulling all other positive
samples in current batch, we only pull those samples which
are close with the anchor’s representation to further support
and stabilize the contrastive learning.

From a practical perspective, as later shown in the exper-
imental section, ASCLwith Leaked-Local Selection (Leaked
ASCL) improves the robustness over that with Global Selec-
tion most notably, and with much fewer positive and nega-
tive samples. It has been shown that, optimal negative sam-
ples for contrastive learning are task-dependent which guide
representations towards task-relevant features that improve
performance (Tian, Sun, Poole, Krishnan, Schmid and Isola,
2020; Frankle, Schwab,Morcos et al., 2020). However, while
these previous works focused on unsupervised-setting, our
Local-ASCL is the first work to leverage supervision to se-
lect not only optimal negative samples but also optimal pos-
itive samples for robust classification task.
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4. Experiments
In this section, we first introduce the experimental set-

ting for adversarial attacks and defenses. We then provide
an extensive robustness evaluation between our best method
(which is Leaked-ASCL) with other defenses to demonstrate
the significant improvement of ours. Finally, we empiri-
cally answer the question “What are the important factors
for the application of the ASCL framework in the context of
AML?” through our experiments. We provide a comparison
among Global/Local Selection strategies and show that the
Leaked-ASCL not only outperforms the Global ASCL but
also makes use of much fewer positives and negatives. An
ablation study to investigate the importance of each compo-
nent to the performance can be found in the supplementary
material.
4.1. Experimental Setting
General Setting. WeuseCIFAR10 andCIFAR100 datasets
(Krizhevsky et al., 2009) as the benchmark datasets in our
experiment. Both datasets have 50,000 training images and
10,000 test images. However, while the CIFAR10 dataset
has 10 classes, CIFAR100 is more diverse with 100 classes.
The inputs were normalized to [0, 1]. We apply random hor-
izontal flips and random shifts with scale 10% for data aug-
mentation as used in Pang, Xu, Du, Chen and Zhu (2019).
We use four architectures including standardCNN,ResNet18,
ResNet20 (He, Zhang, Ren and Sun, 2016) andWideResNet-
34-10 (Zagoruyko and Komodakis, 2016) in our experiment.
The architecture and training setting for each dataset are pro-
vided in our supplementary material.
Contrastive Learning Setting. Wechoose the penultimate
layer (l−1y ) as the intermediate layer to apply our regulariza-
tion. The analytical study for the effect of choosing projec-
tion head in the context of AML can be found in the supple-
mentary material. In the main paper, we report the experi-
mental results without the projection head. The temperature
� = 0.07 as in Khosla et al. (2020).
Attack Setting. We use different state-of-the-art attacks to
evaluate the defensemethods including: (i)PGD attackwhich
is a gradient based attack. We use k = 250, � = 8∕255, � =
2∕255 for the CIFAR10 dataset and k = 250, � = 0.01, � =
0.001 for the CIFAR100 dataset. We use two versions of
the PGD attack: the non-targeted PGD attack (PGD) and
the multi-targeted PGD attack (mPGD). (ii) Auto-Attack
(Croce and Hein, 2020) which is an ensemble based attack.
We use � = 8∕255 for the CIFAR10 dataset and � = 0.01
for the CIFAR100 dataset, both with the standard version of
Auto-Attack (AA), which is an ensemble of four different at-
tacks. The distortion metric we use in our experiments is l∞for all measures. We use the full test set for the attacks (i)
and 1000 test samples for the attacks (ii).
Generating Adversarial Examples for Defenders. We
employ PGD as the stochastic adversary to generate adver-
sarial examples. These adversarial examples have been used

Table 2
Robustness evaluation on the CIFAR10 and CIFAR100 datasets
with ResNet20 architecture. Ours is Leaked-ASCL variant.
GAP represents the average gap of robust accuracies between
ours and the compared method.

CIFAR10 CIFAR100
Nat. PGD mPGD AA GAP Nat. PGD mPGD AA GAP

ADV 78.8 48.1 36.4 36.1 5.37 60.7 35.7 25.3 25.7 6.27
TRADES 76.1 51.9 38.2 36.3 3.43 59.0 37.2 25.3 25.7 5.77
ADR 76.8 51.5 38.9 38.6 2.57 59.1 40.0 29.1 28.6 2.60
Ours 75.5 53.7 41.0 42.0 0 59.0 42.5 31.1 31.9 0

Table 3
Robustness evaluation against Auto-Attack with ResNet18 and
WideResNet on the full test set of CIFAR10 dataset. ⋆ Results
are copied from Croce et al. (2020). ‡ Results are copied from
original papers, using a larger batch size (bs). ∗ Omit the
cross-entropy loss of natural images and VAT loss. Detail can
be found in the supplementary material.

Model Nat AA PGD
Ours ∗ WideResNet 87.70 52.80 54.05
Zhang et al. (2020) ⋆ WideResNet 84.52 53.51 -
Huang et al. (2020) ⋆ WideResNet 83.48 53.34 -
Zhange et al. (2019) ⋆ WideResNet 84.92 53.08 -
Cui et al. (2021) ⋆ WideResNet 88.22 52.86 -
Ours ∗ ResNet18 85.02 50.31 53.40
ACL-DS (bs=512) ‡ ResNet18 82.19 - 52.82
RoCL-TRADES (bs=256) ‡ ResNet18 84.55 - 43.85

as transformations of benign images in our contrastive frame-
work. Specifically, the configuration for the CIFAR10 dataset
is k = 10, � = 8∕255, � = 2∕255 and that for the CIFAR100
dataset is k = 10, � = 0.01, � = 0.001.
Baseline methods. Most closely related to ourwork is ADR
(Bui et al., 2020) which also aims to realize compactness in
the latent space to improve robustness in the supervised set-
ting. We also compare with RoCL-TRADES (Kim et al.,
2020) and ACL-DS (Jiang, Chen, Chen and Wang, 2020)
which pre-trains with adversarial examples founded by In-
foNCE loss and post-trains with standard supervised adver-
sarial training2.
4.2. Robustness evaluation

We conduct extensive evaluations to demonstrate the ad-
vantages of our method (Leaked-ASCL variant) over other
defenses. Table 2 shows the robustness comparison on the
CIFAR10 and CIFAR100 datasets with ResNet20 architec-
ture. It can be seen that our method achieves much better ro-
bustness than the baseline methods on both datasets. More
specifically, on the CIFAR10 dataset, the average gaps of
robust accuracies against three attacks (PGD, mPGD and
AA) between ours andADR, TRADES, andADV are 2.57%,
3.43% and 5.37%, respectively. The similar gaps for the CI-
FAR100 dataset are 2.60%, 5.77% and 6.27%, respectively.
Figure 3 shows the tradeoff between natural accuracy and ro-

2The best reported version RoCL-AT-SS is a fine-tuned on a self-
supervised ImageNet pretrained model, therefore, might not as a reference
for comparison.
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Figure 3: Tradeoff between natural/robust accuracies when
increasing perturbation magnitude (specified beside markers).
For better visualization, bigger marker indicates smaller per-
turbation. Ours is Leaked-ASCL.

(a) Global/Local (b) Detail of Leaked Local

Figure 4: Number of positives and negatives with differ-
ent Global/Local Selection strategy on CIFAR10 dataset with
batch size 128

bust accuracies when increasing perturbation magnitude. It
can be seen that simply increasing the magnitude of adver-
sarial examples cannot reach our performance even with a
fine-range of perturbation. With the same level of natural ac-
curacy, our method outperforms the baseline by around 5%
which again emphasizes the advantage of our method. Fi-
nally, we compare our method with recently listed methods
on the RobustBench (Croce et al., 2020) which have a simi-
lar setting (e.g., without additional data) as shown in Table 3.
WithWideResNet architecture, our method achieves 52.80%
robust accuracy against Auto-Attack and 87.70% natural ac-
curacy which is comparable with the SOTA method from
Cui, Liu, Wang and Jia (2021). Compare to the best ro-
bust method from Zhang, Xu, Han, Niu, Cui, Sugiyama and
Kankanhalli (2020), our method has 0.7% lower in robust
accuracy but 3.2% higher in natural performance. With a
smaller batch size, our method still achieves much better per-
formance than RoCL and ACL which are two SOTA self-
supervised contrastive learning based defenses.
4.3. Global and Local Selection strategies

We compare the effect of different global or local se-
lection strategies to the final performance. Table 4 shows
that while the Hard-ASCL and Soft-ASCL show a small im-
provement over ASCL, the Leaked-ASCL achieves the best
robustness compared with other strategies. We also mea-

Table 4
Comparison among Global/Local Selection Strategies on the
CIFAR10 dataset with ResNet20

Nat. PGD mPGD AA
(Global) ASCL 76.4 52.7 40.4 40.9
Hard-ASCL 75.5 53.1 41.0 41.3
Soft-ASCL 75.5 53.4 40.6 40.4

Leaked-ASCL 75.5 53.7 41.0 42.0

sure the average number of positive and negatives samples
per batch corresponding with different selection strategies
as shown in Figure 4a. With batch size 128, we have a to-
tal of 256 samples per batch including benign images and
their adversarial examples. It can be seen that, the average
positives and negatives by the Global Selection are stable at
26.4 and 228.6, respectively. In contrast, the number of pos-
itives and negatives by the Leaked-LS vary corresponding
with the current performance of the model. More specifi-
cally, there are four advantages of the Leaked-LS over the
Global Selection:

(i) at the beginning of training, approximately 7.5 posi-
tive samples and 25 negative samples were selected. This is
because of the low classification performance of the model.
Moreover, the strength of the contrastive loss is directly pro-
portional with the size of the positive set. Therefore, with a
small positive set, the contrastive loss is weak in compari-
son with other components of ASCL. This helps the model
focuses more on improving the classification performance
first.

(ii) when the model is improved, the number of positive
samples is increased, while the number of negative samples
is decreased significantly. In addition to the bigger positive
set, the contrastive loss become stronger in comparison with
other components. This helps the model now focus more on
contrastive learning and learning the compact latent repre-
sentation.

(iii) unlike Global Selection, Leaked-LS considers natu-
ral images and adversarial images differently based on their
hardness to the current anchor. As shown in Figure 4b, there
are more adversarial images than natural images in the nega-
tive set, which helps the encoder focus to contrast the anchor
with the adversarial images.

(iv) at the last epoch, Leaked-LS chooses only 11.3 pos-
itives and 14.3 negatives, which equate to 42.8% and 6.3%
of the positive set and negative set with the Global Selection
strategy, respectively.
4.4. Why do ASCL and Local-ASCL improve

adversarial robustness
In this subsection, we connect with the hypothesis in

Section 2 to explainwhy ourASCL and especially our Leaked-
ASCL help to improve adversarial robustness. Figure 5 shows
the Relative intra-class divergence (R-DIV) and robust ac-
curacy under PGD attack {k = 250, � = 2∕255} with dif-
ferent attack strengths �. It can be seen that (i) our ASCL
and Leaked-ASCL have lower R-DIV than baseline meth-
ods, and Leaked-ASCL achieves the lowestmeasure, (ii) con-
sequently, our ASCL and Leaked-ASCL achieves better ro-
bust accuracy than baselinemethods. Leaked-ASCL achieve
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(a) R-DIV (b) Robust accuracy

Figure 5: R-DIV and robust accuracy under different attack
strengths on CIFAR10 with ResNet20.

the best performance regardless of attack scenarios. The ex-
perimental results concur with the proposed correlation be-
tween the Relative intra-class divergence and the adversarial
robustness as pointed out in Section 2. Our methods help the
representations of intra-class samples to be more compact
while increasing the margin between inter-class clusters, and
therefore improve the robustness.

5. Conclusion
In this paper, we have shown the connection between

robust accuracy and the divergence in latent spaces. We
demonstrated that contrastive learning can be applied to im-
prove adversarial robustness by reducing the intra-instance
divergencewhilemaintaining the inter-class divergence. More-
over, we have shown that, instead of using all negatives and
positives as per the regular contrastive learning framework,
by judiciously picking highly correlated samples, we can fur-
ther improve the adversarial robustness.
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Appendix

A. Experimental setting
General Setting. We use CIFAR10 and CIFAR100 dataset
(Krizhevsky et al., 2009) as the benchmark datasets in our
experiment. Both datasets have 50,000 training images and
10,000 test images. However, while the CIFAR10 dataset
has 10 classes, CIFAR100 is more diverse with 100 classes.
The training time is 200 epochs for both CIFAR10 and CI-
FAR100 datasets with batch size 128. The inputs were nor-
malized to [0, 1]. We apply random horizontal flips and ran-
dom shifts with scale 10% for data augmentation as used in
Pang et al. (2019).

We use four architectures including CNN, ResNet18/20
(He et al., 2016) and WideResNet-34-10 (Zagoruyko and
Komodakis, 2016) in our experiment. The standard CNN ar-
chitecture has 4 convolution layers followed by 3 FC layers

as described in Carlini and Wagner (2017). For ResNet20
architectures, we use the same training setting as in Pang
et al. (2019). More specifically, we use Adam optimizer,
with learning rate 10−3, 10−4, 10−5, 10−6 at epoch 0th, 80th,
120th, and 160th, respectively. We use Adam optimization
with learning rate 10−3 for training the standard CNN archi-
tecture.

For ResNet18 andWideResNet architectures, we use the
same training setting as in Pang, Yang, Dong, Su and Zhu
(2020). More specifically, we use SGD optimizer, with mo-
mentum 5×10−4, with learning rate 10−1, 10−2, 10−3 at epoch
0th, 100th and 150th, respectively. It is a worth noting that,
there are some modifications in the experiment in Table 3
to match the performance as in RobustBench: (i) we omit
the cross-entropy loss of natural images in Eq. (4), so that
the model sacrifices natural performance to gain more robust
performance. The AT objective function becomes: AT =
1
N
∑N
i=1  (

ℎ(xai ), yi
)which is similar as in Pang et al. (2020).

(ii) we omit the VAT loss to show that the improvement truly
comes from the contribution of the adversarial contrastive
loss.
Contrastive Learning Setting. We apply the contrastive
learning on the intermediate layer (l−1y ) which is intermedi-
ately followed by the last FC layer of either CNN or ResNet
or WideResNet architectures. The analytical study for the
effect of choosing projection head in the context of AML
can be found in Section C.1. In the main paper, we report
the experimental results without the projection head. The
temperature � = 0.07 as in Khosla et al. (2020).
Attack Setting. We use different state-of-the-art attacks to
evaluate the defensemethods including: (i)PGD attackwhich
is a gradient based attack. We use k = 250, � = 8∕255, � =
2∕255 for the CIFAR10 dataset and k = 250, � = 0.01, � =
0.001 for the CIFAR100 dataset. We use two versions of
the PGD attack: the non-targeted PGD attack (PGD) and
the multi-targeted PGD attack (mPGD). (ii) Auto-Attack
(Croce and Hein, 2020) which is an ensemble based attack.
We use � = 8∕255 for the CIFAR10 dataset and � = 0.01
for the CIFAR100 dataset, both with the standard version of
Auto-Attack (AA), which is an ensemble of four different at-
tacks. The distortion metric we use in our experiments is l∞for all measures. We use the full test set for the attacks (i)
and 1000 test samples for the attacks (ii).
Generating Adversarial Examples for Defenders. We
employ PGD as the stochastic adversary to generate adver-
sarial examples. These adversarial examples have been used
as transformations of benign images in our contrastive frame-
work. Specifically, the configuration for the CIFAR10 dataset
is k = 10, � = 8∕255, � = 2∕255 and that for the CIFAR100
dataset is k = 10, � = 0.01, � = 0.001.
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Figure 6: Pairs of Absolute-DIV with corresponding robust
accuracy and R-DIV (noted in each line).

B. Additional Analysis of Latent Space
Divergence

Experimental setting. The training setting has been de-
scribed in Section A. Because the intra-class/inter-class di-
vergences are averagely calculated on all N2 pairs of latent
representations which is over our computational capacity,
therefore, we alternately calculate these divergences on a
mini-batch (128) and take the average over all mini-batches.
Additional evaluation. In addition to the comparison in
Section 4.2, we provide a further evaluation on R-DIV and
robust accuracy on the CIFAR10 dataset with ResNet20 ar-
chitecture, under PGD attack {� = 8∕255, � = 2∕255, k =
250} as shown in Figure 6. It can be observed that (i) the
value of R-DIV decreases in order from AT (0.64), ADR
(0.63), ASCL (0.49), Leaked-ASCL (0.48), respectively. On
the other hand, the robust accuracy increases in the same or-
der. (ii) ASCL has much higher absolute intra-class diver-
gence and inter-class divergence than ADR andATmethods,
however, ASCL has much lower R-DIV comparing with two
baseline methods, therefore, explaining its higher robust ac-
curacy. This result is similar with the comparison on Figure
2.a and the observation O2-i in the main paper and further
confirm our conclusion such that “the robustness varies in-
versely with the relative intra-class divergence between be-
nign images and their adversarial examples”.
t-SNE visualization. In addition to the quantitative evalu-
ation as provided in Section 4.4 in the main paper, we pro-
vide a qualitative comparison via the t-SNE visualization as
shown in Figure 7. The experiments have been conducted on
the CIFAR10 dataset with ResNet20 architecture under PGD

attack {� = 8∕255, � = 2∕255, k = 250}. We visualize
latent representations of 100 adversarial examples in addi-
tion to 1000 natural samples of the CIFAR10 dataset. It can
be seen that: (i) In the NAT model as Figure 7a, the latent
representations of natural images are well separate, which
explains the high natural accuracy. However, the adversarial
examples also are well separate and lay on the high confident
area of each class (low entropy). It indicates that, adversarial
examples fool the natural model easily with very high confi-
dent. (ii) In the AT model as Figure 7b, the latent represen-
tations of natural images are less detached, which explains
the lower natural accuracy than the NAT model. The ad-
versarial examples distribute randomly inside each cluster.
The predictions of natural images and adversarial examples
have higher entropy which means that the model is less con-
fident. (iii) In our ASCL and Leaked-ASCL as Figure 7c, 7d,
the latent representations of natural images are better distin-
guishable among classes. More specifically, the adversarial
examples’ representations lay in the boundary of each clus-
ter, which has higher entropy than those of natural images.

C. Additional Experimental Results
C.1. Projection Head in the context of AML

In this section we provide an additional ablation study
to further understand the effect of the projection head in the
context of AML. We apply our methods (ASCL and Leaked
ASCL) with three options of the projection head as shown
in Figure 8:

• A projection head with only single linear layer z̃ =
p1(z) = W 1(z) with layer weightW 1 ∈ ℎ×ℎ̃, where
ℎ(ℎ̃) is the dimensionality of latent z(z̃). We choose
ℎ̃ = 128 in our experiments.

• Aprojection headwith two fully connected layers with-
out bias z̃ = p2(z) = W 2 (Relu(W 1(z)

) with layer
weightW 1 ∈ ℎ×200 andW 2 ∈ 200×128 and

• Identity mapping z̃ = z.
Table 5 shows the performances of three options on the

CIFAR10 dataset with ResNet20 architecture. We observe
that the linear projection head p1() is better than the identity
mapping on both natural accuracy (by around 1%) and ro-
bust accuracy (on average 0.7%). In contrast, the non-linear
projection head p2() reduces the robust accuracy on average
0.5%.

The improvement on the natural accuracy concurs with
the finding in Chen et al. (2020) which can be explained by
the fact that the projection head helps to reduce the dimen-
sionality to apply the contrastive loss more efficiently. As
shown in Section B.4 in Chen et al. (2020) that even using
the same output size, the weight of the projection head has
relatively few large eigenvalues, indicating that it is approx-
imately low-rank.

On the other hand, the effect of the projection head to
the robust accuracy is due to its non-linearity. Figure 8a
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(a) NAT

(b) AT

(c) ASCL

(d) Leaked-ASCL

Figure 7: t-SNE visualization of the latent space. Experiment on the CIFAR10 dataset with ResNet20 architecture. In each
subfigure, the black-triangles represents for the adversarial examples. The left-subfigure is 2D t-SNE visualization while the
right-subfigure is 2D t-SNE with entropy of prediction in the z-axis.
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(a) with the projection head

(b) without the projection head

Figure 8: Training/Attack flows with/without the projection
head

Table 5
Performance comparison with/without the projection head p()
on the CIFAR10 dataset with ResNet20 architecture. p1() and
p2() represent for the projection head with one layer and two
layers respectively.

Nat. PGD AA
ASCL without p() 76.4 52.7 40.9
ASCL with p1() 77.3 53.3 41.3
ASCL with p2() 76.6 52.3 39.7
(Leaked)ASCL without p() 75.5 53.7 42.0
(Leaked)ASCL with p1() 76.5 54.1 42.3
(Leaked)ASCL with p2() 75.7 52.9 41.1

demonstrates the training flow and attack flow on our frame-
work with the projection head. The contrastive loss SCL
is applied in the projected layer z̃ which induces the com-
pactness on the projected layer but not the intermediate layer
z. Therefore, when using a non-linear projection head (e.g.,
p2), the compactness in the intermediate layer is weaker than
the projected layer. For example, a relationship ‖‖‖z̃i − z̃j

‖‖‖p ≤‖‖z̃i − z̃k‖‖p in the projected layer can not imply a relation-
ship ‖‖‖zi − zj

‖‖‖p ≤ ‖‖zi − zk‖‖p in the intermediate layer. It
explains why using the non-linear projection head reduces
the effectiveness of the SCL to the adversarial robustness.
C.2. Contribution of each component in ASCL

We provide an ablation study to investigate the contri-
bution of each of ASCL’s components to the performance
and emphasize the importance of our SCL component. We
experiment on the CIFAR10 dataset with two architectures,
i.e., ResNet18 and WideResNet-34-10 (WRN). There are
two remarks that can be observed from Table 6 such that:

(i) Using original SCL slightly improves the adversar-
ial robustness against weak adversarial attacks but cannot
defend strong ones. More specifically, the robust accuracy
against PGD with � = 8∕255, k = 5, � = 2∕255 is 1.2%

Table 6
Ablation study on the CIFAR10 dataset with different archi-
tectures. orgSCL represents the original SCL version with two
standard data-augmentations. Bold numbers indicate there
are improvements over the previous settings (i.e., only using
ADV or using both ADV and VAT) when adding our SCL.

Model Nat. PGD AA
orgSCL ResNet18 93.80 0.0 0.0
ADV ResNet18 82.75 52.95 48.81
ADV+SCL ResNet18 85.02 53.40 50.31
ADV+VAT ResNet18 83.73 53.00 49.39
ADV+VAT+SCL ResNet18 84.54 54.29 49.66
ADV WRN 84.93 55.04 51.12
ADV+SCL WRN 87.70 54.05 52.80
ADV+VAT WRN 85.96 54.76 51.87
ADV+VAT+SCL WRN 87.12 55.93 52.53

while that for non-defence model is 0.0%. However, the ro-
bust accuracy drops to 0.0% against stronger attacks, i.e.,
PGD with � = 8∕255, k = 250, � = 2∕255 or Auto-Attack.
A similar observation was observed in Kim et al. (2020)
when the original SCL only achieves 0.08% robust accuracy.
The result shows that while the original contrastive learning
induces weak robustness in DNN models as our analysis in
Section 2, directly adopting contrastive learning into AML
hardly improves the adversarial robustness against strong at-
tacks which emphasizes the importance of our adaptions.

(ii) Adding SCL significantly improves the natural per-
formance and adversarial robustness of the model. More
specifically, with ResNet18 architecture, adding SCL toADV
can gain improvements of 2.3% of natural accuracy and 1.5%
of robust accuracy against Auto-Attack. With WideResNet
architecture, the improvements of natural/robust accuracies
are 2.7% and 1.7%, respectively. Similar improvements can
be observed when adding SCL to ADV+VAT. More specif-
ically, the gaps of natural accuracy with/without SCL are
0.8% and 1.1% in experiments with ResNet18 andWideRes-
Net, respectively. These gaps of robust accuracy against Auto-
Attack are 0.3% and 0.7%.

We provide an additional experiment to further under-
stand the contribution of each component in our framework.
Table 7 shows the result on the CIFAR10 dataset with ResNet20
architecture. We observe that using SCL alone can helps to
improve the natural accuracy, but enforcing the contrastive
loss too much reduces the effectiveness. On the other hand,
increasing the VAT’s weight increases the robustness but
significantly reduces the natural performance which concurs
with the finding in Zhang et al. (2019). Therefore, to bal-
ance the trade-off between natural accuracy and robustness,
we choose �SCL = 1, �V AT = 2 as the default setting in our
framework.
C.3. Global and Local Selections

We provide an example of selected positive and negative
samples which have been chosen by the Leaked-Local Se-
lection as Figure 9. It can be seen that, with the same query
image, the corresponding negatives and positives have been
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Table 7
Ablation study with different parameter settings on the CI-
FAR10 dataset with ResNet20.

Nat. PGD AA
�SCL = 0, �V AT = 0 78.8 48.1 36.1
�SCL = 1, �V AT = 0 80.1 46.5 34.7
�SCL = 2, �V AT = 0 79.5 46.7 34.7
�SCL = 3, �V AT = 0 79.6 45.8 34.4
�SCL = 4, �V AT = 0 79.2 45.6 34.3
�SCL = 0, �V AT = 1 77.4 50.6 38.2
�SCL = 0, �V AT = 2 75.4 53.0 40.0
�SCL = 0, �V AT = 3 73.3 54.4 42.3
�SCL = 0, �V AT = 4 71.2 55.0 43.1

selected differently overtime. More specifically, at the be-
ginning of training progress (epoch 1, Figure 9a), only few
positive images (2-4 images) were picked, while those of
negatives are larger (around 14-16 images). Correlatingwith
the model performance, the number of positive images in-
creases while the number of negative images decreases. At
the end of training progress (epoch 200, Figure 9c) there are
8 natural images and 3 adversarial images in the positive set,
while those in the negative set are 2 natural images and 3
adversarial images. The changing of positives/negatives in
this example is inline with the statistic as in Figure 3b in the
main paper. In addition, given an anchor image xi , the nat-ural image xj and adversarial image xaj (j ≠ i) have been
treated independently as in Table 1 in the main paper, there-
fore, we get more flexible in the positive and negative set, for
example, only one of xj or xaj has been selected as a negative(or a positive) as in Figure 9.

D. Background and Related works
In this section, we present a fundamental background

and related works to our approach. First, we introduce well-
known contrastive learning frameworks, followed by a brief
introduction of adversarial attack and defense methods. We
then provide a comparison of our approachwith defensemeth-
ods on a latent space, especially, those integrated with con-
trastive learning frameworks.
D.1. Contrastive Learning
D.1.1. General formulation

Self-Supervised Learning (SSL) became an important
tool that helps Deep Neural Networks exploit structure from
gigantic unlabeled data and transfers it to downstream tasks.
The key success factor of SSL is choosing a pretext task that
heuristically introduces interaction among different parts of
the data (e.g., CBOW and Skip-gram Mikolov, Sutskever,
Chen, Corrado and Dean (2013), predicting rotation Gidaris,
Singh and Komodakis (2018)). Recently, Self-Supervised
Contrastive Learning (SSCL) with contrastive learning as
the pretext task surpasses other SSL frameworks and nearly
achieves supervised-learning’s performance. Themain prin-

(a) Epoch 1

(b) Epoch 30

(c) Epoch 200

Figure 9: Positive and negative samples from the Leaked Local
Selection strategy. In each image, the first column represents
the anchor followed by its positive and negative samples. Row
1 and 2 represent the natural and adversarial positive samples
respectively. Row 3 and 4 represent the natural and adversarial
negative samples respectively.

ciple of SSCL is to introduce a contrastive correlation among
visual representations of positives (’similar’) and negatives
(’dissimilar’) with respect to an anchor one. There are sev-
eral SSCL frameworks have been proposed (e.g., MoCo He
et al. (2020), BYOLGrill, Strub, Altché, Tallec, Richemond,
Buchatskaya, Doersch, Avila Pires, Guo, Gheshlaghi Azar
et al. (2020), CURL Srinivas, Laskin and Abbeel (2020)),
however, in this section, we mainly introduce the SSCL in
Chen et al. (2020) which had been integrated with adversar-
ial examples to improve adversarial robustness in Kim et al.
(2020); Jiang et al. (2020) followed by the Supervised Con-
trastive Learning (SCL) Khosla et al. (2020) which has been
used in our approach.

Consider a batch of N pairs {xi, yi}Ni=1 of benign images
and their labels. With two random transformations  , we
have a set of transformed images {xi , xi , yi}Ni=1. The gen-eral formulation of contrastive learning as follow:

CL = 1
N

N∑
i=1

 ,cl
i + ,cl

i (7)
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where  .cl
i is the contrastive loss w.r.t. the anchor xi :

 ,cl
i = −1

|||Z
+
i
||| + 1

∑
zj∈Z+

i ∪{z

i }

log e
sim(zj ,zi )

�

∑
zk∈Z+

i ∪Z
−
i ∪{z


i }
e
sim(zk,zi )

�

(8)
and ,cl

i is the contrastive loss w.r.t. the anchor xi :
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The formulation shows the general principle of contrastive

learning such that: (i)Z+
i ∪Z

−
i ∪{z


i , z


i } = {zj , zj }Nj=1 ∀i ∈

[1, N]whereZ+
i andZ−

i are positive and negative sets whichare defined differently depending on self-supervised/supervised
setting, (ii) without loss of generality, in Equation 8, the
similarity e

sim(zj ,zi )
� between the anchor zi and a positive

sample zj ∈ Z+
i ∪ {zi } has been normalized with sum of

all possible pairs between the anchor and the union set of
Z+
i ∪ Z−

i ∪ {zi } to ensures that the log argument is not
higher than 1, (iii) the contrastive loss in Equation 8 pulls
anchor representation zi and the positives’ representations
Z+
i ∪ {zi } close together while pushes apart those of neg-

atives Z−
i .

Explanation for our Formulation. It is worth noting that,
our derivation shows the general formulation of the contrastive
learning which can be adapted to SSCL Chen et al. (2020),
SCL Khosla et al. (2020) or our Local ASCL by defining
the positive and negative sets differently. Moreover, by us-
ing terminologies positive set Z+

i and those sample from
the same instance {zi , zi } separately, we emphasize the
importance of the anchor’s transformation which stand out
other positives. Last but not least, our derivation normalizes
the contrastive loss in Equation 7 to the same scale with the
cross-entropy loss and the VAT loss as in Section 3, which
helps to put all terms together appropriately.
Self-Supervised Contrastive Learning. In SSCLChen et al.
(2020), the positive set (excluding those samples from the
same instance zi , zi ) Z+

i = ∅ (|||Z
+
i
||| = 0) while the neg-

ative set Z−
i = {zj , zj ∣ j ≠ i} which includes all other

samples except those from the same instance zi , zi . In this

case, the formulation of SSCL as follow:

 ,sscl
i = − log e

sim(zj ,zi )
�

∑
zk∈Z−

i ∪{z

i }
e
sim(zk,zi )

�

(10)

and

,sscl
i = − log e

sim(zj ,zi )
�

∑
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e
sim(zk,z


i )

�

(11)

Supervised Contrastive Learning. The SCL framework
leverages the idea of contrastive learning with the presence
of label supervision to improve the regular cross-entropy loss.
The positive set and the negative set are Z+

i = {zj , zj ∣
j ≠ i, yj = yi} and Z−

i = {zj , zj ∣ j ≠ i, yj ≠ yi}, re-spectively. As mentioned in Khosla et al. (2020), there is a
major advantage of SCL compared with SSCL in the context
of regular machine learning. Unlike SSCL in which each an-
chor has only single positive sample, SCL takes advantages
of the labels to have many positives in the same batch size
N. This strategy helps to reduce the false negative cases in
SSCL when two samples in the same class are pushed apart.
As shown in Khosla et al. (2020), the SCL training is more
stable than SSCL and also achieves a better performance.
D.1.2. Important factors for Contrastive Learning
Data augmentation. Chen et al. Chen et al. (2020) em-
pirically found that SSCL needs stronger data augmentation
than supervised learning. While the SSCL’s performance
experienced a huge gap of 5% with different data augmen-
tation (Table 1 in Chen et al. (2020)), the supervised per-
formance was not changed much with the same set of aug-
mentation. Therefore, in our paper, to reduce the space of
hyper-parameters we use only one adversarial transforma-
tion(e.g., PGDMadry et al. (2018) or TRADESZhang et al.
(2019)) while using the identity transformation  , xi = xi
(zi = zi), and let the investigation of using different data
augmentations for future works.
Batch size. As shown in Figure 9 in Chen et al. (2020),
the batch size is an important factor that strongly affects the
performance of the contrastive learning framework. A larger
batch size comeswith larger positive and negative sets, which
helps to generalize the contrastive correlation better and there-
fore improves the performance. He et al. He et al. (2020)
proposed a memory bank to store the previous batch infor-
mation which can lessen the batch size issue. In our frame-
work, because of the limitation on computational resources,
we only tried with a small batch size (128) which likely lim-
its the contribution of our methods.
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Projection head. Normally, the representation vector which
is the output of the encoder network has very high dimen-
sionality, e.g., the final pooling layer in ResNet-50 andResNet-
200 has 2048 dimensions. Therefore, applying contrastive
learning directly on this intermediate layer is less effective.
Alternatively, CL frameworks usually use a projection net-
work p() to project the normalized representation vector z
into a lower dimensional vector z̃ = p(z) which is more
suitable for computing the contrastive loss. To avoid over-
parameterized, CL frameworks usually choose a small pro-
jection head with only one or two fully-connected layers.
D.2. Adversarial attack
Projected Gradient Decent (PGD). is an iterative ver-
sion of the FGSM attack Goodfellow et al. (2015) with ran-
dom initialization Madry et al. (2018). It first randomly ini-
tializes an adversarial example in a perturbation ball by adding
uniform noise to a clean image, followed by multiple steps
of one-step gradient ascent, at each step projecting onto the
perturbation ball. The formula for the one-step update is as
follows:

xt+1a = ProjB"(x)(xta + � sign (∇l(x, y, �)) (12)
whereB" (x) ≜ {

x′ ∶ ‖‖x′ − x‖‖ < "
} is the perturbation ball

with radius " around xand � is the gradient scale for each step
update.
Auto-Attack. Even the most popular attack, PGD can still
fail in some extreme cases Croce, Rauber and Hein (2019)
because of two issues: (i) fixed step size � which leads to
sub-optimal solutions and (ii) the sensitivity of a gradient to
the scale of logits in the standard cross-entropy loss. Auto-
Attack Croce and Hein (2020) proposed two variants of PGD
to deal with these potential issues by (i) automatically se-
lecting the step size across iterations (ii) an alternative logit
loss which is both shift and rescaling invariant. Moreover, to
increase the diversity among the attacks used, Auto-Attack
combines two new versions of PGD with the white-box at-
tack FAB Croce and Hein (2019)and the blackbox attack
SquareAttackAndriushchenko, Croce, Flammarion andHein
(2020) to form a parameter-free, computationally affordable,
and user-independent ensemble of complementary attacks
to estimate adversarial robustness. Therefore, besides PGD,
Auto-Attack is considered as the new standard evaluation for
adversarial robustness.
D.3. Adversarial defense
D.3.1. Adversarial training

Adversarial training (AT) originate in Goodfellow et al.
(2015), which proposed incorporating a model’s adversar-
ial examples into training data to make the model’s loss sur-
face to be smoother, thus, improve its robustness. Despite its
simplicity, AT Madry et al. (2018) was among the few that
were resilient against attacks other than gave a false sense
of robustness because of the obfuscated gradient Athalye
et al. (2018). To continue its success, many AT’s variants
have been proposed including (1) different types of adver-
sarial examples (e.g., the worst-case examples Goodfellow

et al. (2015) ormost divergent examples Zhang et al. (2019)),
(2) different searching strategies (e.g., non-iterative FGSM,
Rand FGSM with a random initial point or PGD with mul-
tiple iterative gradient descent steps Madry et al. (2018)),
(3) additional regularizations, e.g., adding constraints in the
latent space Zhang and Wang (2019); Bui et al. (2020), (4)
difference inmodel architecture, e.g., activation functionXie
et al. (2020) or ensemble models Pang et al. (2019).
D.3.2. Defense with a latent space

Unlike an input spaceX, a latent spaceZ has a lower di-
mensionality and a higher mutual information with the pre-
diction space than the input one I(Z, Y ) ≥ I(X, Y ) Tishby
and Zaslavsky (2015). Therefore, defense with the latent
space has particular characteristics to deal with adversarial
attacks notably Zhang and Wang (2019); Bui et al. (2020);
Mao et al. (2019); Xie et al. (2019); Samangouei, Kabkab
and Chellappa (2018). For example, DefenseGAN Saman-
gouei et al. (2018) used a pretrained GAN which emulates
the data distribution to generate a denoised version of an
adversarial example. On the other hand, instead of remov-
ing noise in the input image, Xie et al. Xie et al. (2019)
attempted to remove noise in the feature space by using non-
local means as a denoising block. However, these works
were criticized by Athalye et al. (2018) as being easy to at-
tack by approximating the backward gradient signal.
D.3.3. Defense with contrastive learning

The idea of defense with contrastive correlation in the
latent space can be traced back to Mao et al. (2019) which
proposed an additional triplet regularization to adversarial
training. However, the triplet loss can only handle one posi-
tive and negative at a time, moreover, requires computation-
ally expensive hard negative mining Schroff, Kalenichenko
and Philbin (2015). As discussed in Khosla et al. (2020), the
triplet loss is a special case of the contrastive loss when the
number of positives and negatives are each one and has lower
performance in general than the contrastive loss. Recently,
Jiang et al. (2020); Kim et al. (2020) integrated SSCL Chen
et al. (2020) to learn unsupervised robust representations for
improving robustness in unsupervised/semi-supervised set-
ting. Specifically, both methods proposed a new kind of
adversarial examples which is based on the SSCL loss in-
stead of regular cross-entropy loss Goodfellow et al. (2015)
or KL divergence Zhang et al. (2019). By adversarially pre-
training with these adversarial examples, the encoder is ro-
bust against the instance-wise attack and obtains compara-
ble robustness to supervised adversarial training as reported
in Kim et al. (2020). On the other hand, Jiang et al. Jiang
et al. (2020) proposed three options of pre-training. How-
ever, their best method made use of two adversarial exam-
ples that requires a much higher computational cost to gen-
erate. Although these above works have the similar general
idea of using contrastive learning to improve adversarial ro-
bustness with ours, we choose to compare our methods with
RoCL-AT/TRADES in Kim et al. (2020) which is most close
to our problem setting. More specifically, after pre-training
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phase with adversarial examples w.r.t. the contrastive loss,
RoCL-AT/TRADES apply fine-tuning with standard super-
vised adversarial training, which requires full label. We use
the reported result as in Table 1 in Kim et al. (2020) which
used a larger batch size (256). It is a worth noting that the
best reported version RoCL-AT-SS achieves 91.34% natural
accuracy and 49.66% robust accuracy is a fine-tuned on a
ImageNet pretrained model with self-supervised loss (e.g.,
SimCLR Chen et al. (2020)), therefore, is not as a reference
for comparison.

Most closely related to ourwork is Bui et al. (2020)which
also aims to realize the compactness in latent space to im-
prove the robustness in supervised setting. They proposed
a label weighting technique that sets the positive weight to
the divergence of two examples in the same class and nega-
tive weight in any other cases. Therefore, when minimizing
the divergence loss with label weighting, the divergences of
those in the same class (positives) are encouraged to be close
together, while those of different classes (negatives) to be
distant.
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3.5 Concluding Remarks

In this chapter, we have introduced our novel contributions to the field, centered around

enhancing the adversarial robustness of models through representation learning, as out-

lined in the two papers Bui et al. (2020) and Bui et al. (2021a). Our primary objective

has been to address the fundamental question: ”What are the key characteristics of a

representation that bolster robustness?”

Our journey has led us to a crucial insight: a robust representation must encompass

both local and global information within the data manifold. This synthesis is pivotal for

strengthening model resilience against adversarial attacks. More importantly, we have

demonstrated that measuring the divergence in the latent space, particularly through

relative distance metrics like the contrastive loss, surpasses absolute distance metrics

like the triplet loss in terms of effectiveness.

Moreover, it’s worth highlighting that our work, has encouraged the subsequent research

in Le et al. (2022) which further explored the relationships between the latent divergence

and adversarial robustness. Our theory aligns with the empirical results of our previous

work in Bui et al. (2021a) and Bui et al. (2020), providing further insights into the

complex interplay between representation learning, adversarial attacks, and defenses.



Chapter 4

Ensemble Learning Approaches to

Adversarial Robustness

4.1 Introduction

In this chapter, we present our contributions towards improving adversarial robustness

through the lens of ensemble learning, as introduced in Bui et al. (2021b) and Bui et al.

(2023). In the work Bui et al. (2021b), we proposed a novel collaboration strategy

to enhance diversity among ensemble members, thereby reducing the transferability of

adversarial examples between them. Our main principle was to prioritize the correct pre-

dictions of one model on a given adversarial example while discouraging other models

from making unanimous predictions. This collaboration strategy effectively minimized

the negative impact of incorrect predictions and ensured accurate predictions from the

ensemble model. Through extensive experiments, we demonstrated the effectiveness of

our strategy in improving the robustness of ensemble models against adversarial attacks.

Furthermore, we gained a deeper understanding of the relationship between transferabil-

ity and overall robustness in ensemble learning.

Previous work had shown that adversarial examples that fool all ensemble members are

crucial for improving the robustness of ensemble models. Building upon this observa-

tion, we extended our investigations in Bui et al. (2023) by presenting a novel method

for generating transferable adversarial examples that lie in the joint insecure region of

all ensemble members. To achieve this, we considered the adversarial generation task as

93
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a multi-objective optimization problem, aiming to find a Pareto optimality that max-

imizes multiple objectives simultaneously. However, directly applying multi-objective

optimization to generate adversarial examples was not satisfactory due to the dominat-

ing effect of one task over other tasks.

To address this issue, we proposed a novel framework named Task Oriented Multi-

Objective Optimization (TA-MOO) with multi-objective adversarial generations as the

demonstrating applications. Our key principle was to favor the unsuccessful tasks while

maintaining the success of the successful ones using a novel geometry-based regulariza-

tion term. We conducted extensive experiments on three adversarial generation tasks

and one adversarial training task to demonstrate the effectiveness of our method in

generating stronger and more robust adversarial examples. Notably, our method had

been demonstrated to be particularly beneficial when combined with adversarial train-

ing, offering promising avenues for strengthening the security of deep learning models.

The insights provided in this work emphasized the pivotal role of considering multi-

ple objectives in the generation of adversarial examples, ultimately contributing to the

advancement of robustness and security in the realm of deep learning.

The major content of this chapter is in the following attached papers:

• Anh Bui, Trung Le, He Zhao, Paul Montague, Olivier de Vel, Tamas Abraham,

Dinh Phung, “Improving Ensemble Robustness by Collaboratively Promoting and

Demoting Adversarial Robustness”. In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI) 2021.

The code of this paper is released at https://github.com/tuananhbui89/Crossing-

Collaborative-Ensemble.

• Anh Bui, Trung Le, He Zhao, Quan Tran, Paul Montague, Dinh Phung, “Gen-

erating Adversarial Examples with Task Oriented Multi-Objective Optimization”.

Accepted to the Transactions on Machine Learning Research (TMLR), 2023.

The code of this paper is released at https://github.com/tuananhbui89/TAMOO.

https://github.com/tuananhbui89/Crossing-Collaborative-Ensemble
https://github.com/tuananhbui89/Crossing-Collaborative-Ensemble
https://github.com/tuananhbui89/TAMOO
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Figure 4.1: Principle of Ensemble-based Defenses. (a) The secure/insecure region
of each single model. (b,c) The joint secure/insecure region of the ensemble with low

diversity and high diversity, respectively.

4.2 Related Work

Adversarial examples have demonstrated their ability to transfer between different mod-

els (Papernot et al., 2016a,b), allowing successful attacks on models that are not directly

targeted by the adversary. To delve deeper into this phenomenon, Tramèr et al. (2017)

conducted the first investigation of the adversarial subspace. They proposed a method

to estimate the dimensionality of the space containing adversarial examples, discovering

that these examples occupy a contiguous subspace with a large number of dimensions.

Furthermore, they observed the high transferability of adversarial examples across di-

verse models. They found that when two models achieve low error rates on the same test

set but exhibit low robustness against adversarial examples, it suggests that their adver-

sarial subspace is likely shared, and the transferability of adversarial examples between

the two models is highly probable.

Given the transferability of adversarial examples, the primary research focus of ensemble-

based defenses lies in reducing the transferability between ensemble members, aiming to

enhance overall robustness, as illustrated in Figure 4.1.

Tramèr et al. (2018) employed perturbations generated from static pre-trained models as

augmented data to decouple the generation process of adversarial examples for the target

model. The idea behind this approach was that since adversarial examples can transfer

between models, perturbations that challenge other models can be useful approximations

for maximizing the vulnerability of the target model. However, as reported in Tramèr

et al. (2018), this method was primarily designed for black-box attacks and therefore

remains vulnerable to white-box attacks.

In fact, the transfer of adversarial examples from static models can have a negative

impact. While it helps enhance the model’s robustness against black-box attacks, it
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simultaneously makes the model more susceptible to white-box attacks. This occurs

because the model becomes overfitted to a specific type of adversarial examples and fails

to account for adaptive attacks.

On the other hand, Kariyappa and Qureshi (2019) proposed an alignment method to

reduce the shared adversarial subspace by aligning the gradients of ensemble members

to be diametrically opposed. This was achieved by minimizing the cosine similarity

between the gradients of pairs of ensemble members. However, attempting to achieve

gradient alignment proves to be unreliable in high-dimensional input spaces and poses

challenges when extending it to ensembles with more than two members. As shown in

their paper, the method showcased sensitivity to the choice of architecture, particularly

in scenarios with a large number of zero values in the gradient.

Furthermore, the method aimed to enhance the diversity among ensemble members by

encouraging them to be uncorrelated, with each member’s gradient being orthogonal to

the gradients of other members. However, in the ensemble learning literature, greater

diversity is achieved when ensemble members exhibit negative correlation (Liu and Yao,

1999), as emphasized in our work (Bui et al., 2021b).

Pang et al. (2019) proposed to promote the diversity of non-maximal predictions (i.e., the

diversity among softmax probabilities except the highest ones) of the ensemble members

as illustrated in Figure 4.2. It was done by maximizing the squared volume spanned

by the non-maximal predictions of the ensemble members. Because the non-maximal

predictions exclude the highest ones, this method allowed the maximal prediction of

each member to be consistent with the true label, and thus will not affect ensemble

accuracy. Besides, since the non-maximal predictions correspond to all potential wrong

labels, a high diversity of non-maximal predictions indicates that the ensemble members

are likely to have different adversarial subspaces. However, later in Tramer et al. (2020)

showed that the method was vulnerable to carefully crafted adaptive attacks such as

B&B attack (Brendel et al., 2019).

Figure 4.2: Illustration of promoting non-maximal diversity among ensemble mem-
bers. Image source: Pang et al. (2019).
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Yang et al. (2020) proposed to distill the features learned by each member corresponding

to its vulnerability to adversarial examples. It was done by first learning an adversarial

example that is close to a source sample but has a feature close to the input sample’s

feature. The adversarial example of each member was then used to train other models,

hence making the adversarial subspace of each member more non-overlap.

It is worth noting that, our method (Bui et al., 2021b) shared the same motivation with

Yang et al. (2020) in the use of adversarial examples to train other models. However, our

work was more general that can be applied to any ensemble with untargeted/targeted

attacks, while Yang et al. (2020) was only applied to an ensemble of models with the

same architecture and with targeted attack only. With a specific setting, our method

also could have detection capability that can be used to detect adversarial examples.

Two works were developed independently and were submitted to the NeurIPS 2020

conference at the same time but ours got rejected.

Yang et al. (2021) dug further and provided a theoretical analysis of the transferability of

adversarial examples between models. They showed that only promoting the orthogonal-

ity between gradients of ensemble members is not enough to ensure low transferability.

This finding was consistent with our empirical results in Bui et al. (2021b).

4.3 Collaborative Ensemble for Improving Robustness
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Abstract

Ensemble-based adversarial training is a principled approach
to achieve robustness against adversarial attacks. An impor-
tant technique of this approach is to control the transferabil-
ity of adversarial examples among ensemble members. We
propose in this work a simple yet effective strategy to collab-
orate among committee models of an ensemble model. This
is achieved via the secure and insecure sets defined for each
model member on a given sample, hence help us to quantify
and regularize the transferability. Consequently, our proposed
framework provides the flexibility to reduce the adversarial
transferability as well as to promote the diversity of ensem-
ble members, which are two crucial factors for better robust-
ness in our ensemble approach. We conduct extensive and
comprehensive experiments to demonstrate that our proposed
method outperforms the state-of-the-art ensemble baselines,
at the same time can detect a wide range of adversarial exam-
ples with a nearly perfect accuracy.

Introduction
Deep neural networks have experienced great success in
many disciplines (I. Goodfellow, Y. Bengio, and Courville,
2016), such as computer vision (K. He et al., 2016), natu-
ral language processing and speech processing (Vaswani et
al., 2017). However, even the state-of-the-art models are re-
ported to be vulnerable to adversarial attacks (Biggio et al.,
2013; I. J. Goodfellow, Shlens, and Szegedy, 2015; Szegedy
et al., 2014; N. Carlini and D. Wagner, 2017; Madry et al.,
2018; Athalye, Nicholas Carlini, and David Wagner, 2018),
which is of significant concern given the large number of
applications of deep learning in real-world scenarios. It is
thus urgent to develop deep learning models that are ro-
bust against different types of adversarial attacks. To this
end, several adversarial defense methods have been devel-
oped but typically addressing the robustness within a sin-
gle model (e.g., Papernot, P. D. McDaniel, et al., 2016;
Moosavi-Dezfooli, Fawzi, and Frossard, 2016; Madry et al.,
2018; Qin et al., 2019; Shafahi et al., 2019). To cater for
more diverse types of attacks, recent work, notably (W. He et
al., 2017; Tramèr, Kurakin, et al., 2018; Strauss et al., 2017;
X. Liu et al., 2018; Pang, Xu, et al., 2019), has shown that
ensemble learning can strengthen robustness significantly.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite initial success, key principles for ensemble-based
adversarial training (EAT) largely remain open. One crucial
challenge is to achieve minimum ‘transferability’ between
committee members to increase robustness for the overall
ensemble model (Papernot, P. McDaniel, and I. Goodfel-
low, 2016; Yanpei Liu et al., 2016; Tramèr, Kurakin, et al.,
2018; Pang, Xu, et al., 2019; Kariyappa and Qureshi, 2019).
In (Kariyappa and Qureshi, 2019), robustness was achieved
by aligning the gradient of committee members to be dia-
metrically opposed, hence reducing the shared adversarial
spaces (Tramèr, Papernot, et al., 2017), or the transferabil-
ity. However, the method in (Kariyappa and Qureshi, 2019)
was designed for black-box attacks, thus still vulnerable to
white-box attacks. Furthermore, attempting to achieve gra-
dient alignment is unreliable for high-dimensional datasets
and it is difficult to extend for ensemble with more than
two committee members. More recently (Pang, Xu, et al.,
2019) proposed to promote the diversity of non-maximal
predictions of the committee members (i.e., the diversity
among softmax probabilities except the highest ones) to re-
duce the adversarial transferability among them. Nonethe-
less, the central concept of transferability has not been sys-
tematically addressed.

Our proposed work here will first make the concept of
adversarial transferability concrete via the definitions of se-
cure and insecure sets. To reduce the adversarial transfer-
ability and increase the model diversity, we aim to make the
insecure sets of the committee models as disjoint as pos-
sible (i.e., lessening the overlapping of those regions) and
challenge those committee members with divergent sets of
adversarial examples. In addition, we observe that lessening
the adversarial transferability alone is not sufficient to en-
sure accurate predictions of the ensemble model because the
committee member that offers inaccurate predictions might
dominate the final decisions. With this in mind, we propose
to realize what we call a “transferring flow” by collaborat-
ing robustness promoting and demoting operations. Our key
principle to coordinate the promoting and demoting opera-
tions is to promote the prediction of one model on a given
adversarial example and to demote the prediction of another
model on this example so as to maximally lessen the neg-
ative impact of the wrong predictions and ensure the cor-
rect predictions of the ensemble model. Moreover, differ-
ent from other works (Strauss et al., 2017; Pang, Xu, et al.,



2019; Kariyappa and Qureshi, 2019) which only consider
adversarial examples of the ensemble model, the committee
members in our ensemble model are exposed to various di-
vergent adversarial example sets, which inspire them to be-
come gradually more divergent. Interestingly, by strength-
ening demoting operations, our method is capable to assist
better detection of adversarial examples. In brief, our contri-
butions in this work include:

• We propose a simple but efficient collaboration strategy
to reduce the transferability among ensemble members.

• We propose two variants of our method: the robust ori-
ented variant, which helps to improve the adversarial ro-
bustness and the detection oriented variant, which can
detect adversarial examples with high predictive perfor-
mance.

• We conduct extensive and comprehensive experiments to
demonstrate the improvement of our proposed method
over the state-of-the-art defense methods.

• We provide a further understanding of the relationship be-
tween the transferability and the overall robustness in en-
semble learning context.

Our Proposed Method
In this section, we present our ensemble collaboration strat-
egy, which allows us to collaborate many committee models
for improving the ensemble robustness. We start with the
definitions and some key properties of secure and insecure
sets which later support us in devising promoting and de-
moting operations for collaborating the committee models to
achieve the ensemble robustness. It is worth noting that our
ensemble strategy is applicable for ensembling an arbitrary
number of committee models; here we focus on presenting
the key theories, principles, and operations for the canonical
case of ensembling two models for better readability.

Secure and Insecure Sets
Consider a classification problem on a dataset D with M
classes and a pair (x,y) that represents a data example x
and its true label y which is sampled from the dataset D.
Given a model f , the crucial aim of defense is to make f ro-
bust by giving consistently accurate predictions over a ball,
B (x, ε) := {x′ : ‖x′ − x‖ ≤ ε} around a benign data exam-
ple x, for every possible x in the datasetD and the distortion
boundary ε. To further clarify and motivate our theory, we
define

Bsecure (x,y, f, ε) := {x′ ∈ B (x, ε) : argmaxifi (x′) = y} ,
Binsecure (x,y, f, ε) := {x′ ∈ B (x, ε) : argmaxifi (x′) 6= y} .

Intuitively, we define a secure set Bsecure (x,y, f, ε) as
the set of elements in the ball B (x, ε) for which the clas-
sifier f makes the correct prediction. In addition, we de-
fine the insecure set Binsecure (x,y, f, ε) as the set of el-
ements in the ball B (x, ε) for which f predicts differ-
ently from the true label y. By definition, the secure set
is the complement of the insecure set, and B (x, ε) =
Bsecure (x,y, f, ε)

⋃Binsecure (x,y, f, ε). It is clear that the

aim of improving adversarial robustness is to train the clas-
sifier f in such the way that Binsecure (x,y, f, ε) is either as
small as possible (ideally, Binsecure (x,y, f, ε) = ∅, ∀x ∈ D)
or makes an adversary hard to generate adversarial examples
in it. The following simple lemma (see the proof in the sup-
plementary material) shows the connection between those
two kinds of sets and the robustness of the ensemble model
and facilitates the development of our proposed method.

Lemma 1. Let us define fen (·) = 1
2f

1 (·)+ 1
2f

2 (·) for two
given models f1 and f2. If f1 and f2 predict an example x
accurately, we have the following:

i) Binsecure (x,y, fen, ε) ⊂ Binsecure
(
x,y, f1, ε

)
∪

Binsecure
(
x,y, f2, ε

)
.

ii) Bsecure
(
x,y, f1, ε

)
∩ Bsecure

(
x,y, f2, ε

)
⊂

Bsecure (x,y, fen, ε) .

Dual Collaborative Ensemble
Transferring Flow. Consider the canonical case of an
ensemble consisting of two models: fen (·) = 1

2f
1 (·) +

1
2f

2 (·), where fen is the ensemble model and {f1, f2} is
the set of ensemble committee (or the committee). Based
on the definitions of secure and insecure sets, an arbitrary
adversarial example xa must lie in one of four subsets as
shown in Table 1. Let us further clarify these subsets. In the
first subset S11 = Bsecure(x,y, f

1, ε)
⋂Bsecure(x,y, f

2, ε),
the example xa is predicted correctly by both models, hence
also by the ensemble model fen (Lemma 1 (ii)). The sub-
sets S10, S01 are the intersection of a secure set of one
model and an insecure set of another model, hence an
example of two sets is predicted correctly by one model
and incorrectly by the other. Lastly, in the subset S00 =
Binsecure(x,y, f

1, ε)
⋂Binsecure(x,y, f

2, ε), both models of-
fer predictions other than the true label, but there is also
no guarantee that their incorrect predictions are in the same
class. There is still a chance that the incorrect prediction in
subset S10, S01 dominates the correct ones, which leads to
the incorrect prediction on average. Therefore, the insecure
region of the overall ensemble should be related to the union
S10∪S01∪S00 or the total volume (i.e., |S10|+|S01|+|S00|)
of the subsets S10, S01, S00.

As the result, to obtain a robust ensemble model, we need
to maintain the subset S00 as small as possible, which is in
turn equivalent to making the insecure regions of the two
models as disjoint as much as possible (i.e., concurred with
Lemma 1 (i)). For the data points in either S10 or S01, we
need to increase the chance that the correct predictions dom-
inate the incorrect ones. Our approach is to encourage adver-
sarial examples inside S00 to move to the subsets S10, S01

during the course of training, and those of S10, S01 to move
to the subset S11. We term this movement as the transfer-
ring flow, which is described in Table 1. In what follows,
we present how to implement the transferring flow for our
ensemble model.

Promoting Adversarial Robustness (PO). We refer to
promoting adversarial robustness as an operation to lever-
age the information of an example xia (adversarial example
of model f i) for improving the robustness of a model f j



Table 1: Four subsets of the ensemble model and the trans-
ferring flow (arrows)

xa ∈ Bsecure(x,y, f
1, ε) xa ∈ Binsecure(x,y, f

1, ε)
xa ∈ Bsecure(x,y, f

2, ε) S11 ⇐ S01

⇑ ⇑
xa ∈ Binsecure(x,y, f

2, ε) S10 ⇐ S00

(i, j can be different). There are several adversarial defense
methods that can be applied to promote adversarial robust-
ness, notably (Madry et al., 2018; Hongyang Zhang et al.,
2019; Qin et al., 2019). In this work, to promote the adver-
sarial robustness of a given adversarial example xia w.r.t the
model f j , we use adversarial training (Madry et al., 2018)
by minimizing the cross-entropy loss w.r.t the true label as
min C

(
f j(xia),y

)
. After undertaking this PO, xia is ex-

pected to move to the secure set Bsecure
(
x,y, f j , ε

)
. We in-

troduce two types of PO: direct PO (dPO) when i = j and
crossing PO (cPO) when i 6= j.

Demoting Adversarial Robustness (DO). In contrast to
promoting adversarial robustness, we refer to demoting ad-
versarial robustness as an operation to sacrifice the robust-
ness of a model for an example xia (adversarial example
of model f i). Here, we demote the adversarial robustness
of a given adversarial example xia w.r.t the model f j by
max H

(
f j(xia)

)
where H is the entropy. Without any

further knowledge, the prediction is likely uniformly dis-
tributed, hence the example xia likely falls into the in-
secure set Binsecure

(
x,y, f j , ε

)
instead of the secure set

Bsecure
(
x,y, f j , ε

)
.

Collaboration of the Promoting and Demoting Opera-
tions. We now present how to coordinate PO/DO to en-
force the transferring flow for enhancing the adversarial ro-
bustness of the ensemble model in the canonical case of a
committee of two members {f1, f2}, parameterized by θ1
and θ2. Let x1

a and x2
a be white-box adversarial examples

of f1 and f2 respectively. With a strong adversary, we can
assume that x1

a ∈ Binsecure(x,y, f
1, ε) (i.e., x1

a ∈ S01 ∪S00)
and x2

a ∈ Binsecure(x,y, f
2, ε) (i.e., x2

a ∈ S10 ∪ S00). For
ease of comprehensibility, we present the treatment for x1

a
and the same treatment is applied to x2

a. To strengthen model
f1, we always use x1

a to promote the robustness of model
f1 by minimizing the cross-entropy loss C

(
f1(x1

a),y
)

(i.e.,
flow S01 ⇒ S11 or S00 ⇒ S10). Meanwhile, we consider
two cases of x1

a w.r.t model f2: i) being correctly predicted
by f2 (i.e., x1

a ∈ S01) and ii) being incorrectly predicted by
f2 (i.e., x1

a ∈ S00). For the first case, we use x1
a to promote

model f2 to make sure x1
a stays in the secure set of model

f2 (i.e., S11 ∪S01). For the second case, we demote x1
a w.r.t

f2 by maximizing the entropy H
(
f2(x1

a)
)

in order to keep
x1
a in the insecure set of model f2 (i.e., S10 ∪ S00).
Therefore, with the collaboration of two models f1 and f2

on the same example x1
a, we deploy either flow S01 ⇒ S11

or S00 ⇒ S10 depending on the scenario of x1
a. It is worth

noting that DO encourages f2(x1
a) to be close to the uni-

form prediction, hence causing a minimal effect on the en-
semble prediction fen

(
x1
a

)
. As a consequence, fen

(
x1
a

)
=

Table 2: Promoting and demoting operations for the trans-
ferring flow

Scenario f1 f2

x1
a ∈ S01 min C

(
f1(x1

a),y
)

min C
(
f2(x1

a),y
)

x1
a ∈ S00 min C

(
f1(x1

a),y
)

max H
(
f2(x1

a)
)

x2
a ∈ S10 min C

(
f1(x2

a),y
)

min C
(
f2(x2

a),y
)

x2
a ∈ S00 max H

(
f1(x2

a)
)

min C
(
f2(x2

a),y
)

1
2

(
f1
(
x1
a

)
+ f2

(
x1
a

))
is dominated by f1

(
x1
a

)
, which

likely offers a correct prediction via the corresponding PO:
min C

(
f1(x1

a),y
)
. We summarize the PO/DO to deploy the

transferring flow in Table 2.
The objective functions for model f1 and f2 to deploy the

transferring flow are:

L(x,y, θ1) = C
(
f1(x),y

)
+ C

(
f1(x1

a),y
)

+ λpmI
(
f1(x2

a),y
)
C(f1(x2

a),y)

− λdm

(
1− I

(
f1(x2

a),y
))
H
(
f1(x2

a)
)
, (1)

L(x,y, θ2) = C
(
f2(x),y

)
+ C

(
f2(x2

a),y
)

+ λpmI
(
f2(x1

a),y
)
C(f2(x1

a),y)

− λdm

(
1− I

(
f2(x1

a),y
))
H
(
f2(x1

a)
)
. (2)

where λpm and λdm are the hyper-parameters for promot-
ing and demoting effects, respectively, and I

(
f1(x2

a),y
)

is
the indicator to indicate whether x2

a is predicted correctly
(i.e., I = 1, hence x2

a ∈ S10) or incorrectly (i.e., I = 0,
hence x2

a ∈ S00) by f1, which helps to switch on/off the
cPO/DO for model f1.

For the final objective function, we approximate the
hard indicator I

(
f1(x2

a),y
)

by the soft version f1y(x2
a) =

p
(
y | x2

a, f
1
)
, which represents the probability the model

f1 assigning x2
a to the label y. We hence arrive at the fol-

lowing objective functions for both f1 and f2, respectively.

L(x,y, θ1) = C
(
f1(x),y

)
+ C

(
f1(x1

a),y
)

+ λpmf
1
y (x

2
a)C(f1(x2

a),y)

− λdm

(
1− f1

y (x
2
a)
)
H
(
f1(x2

a)
)
, (3)

L(x,y, θ2) = C
(
f2(x),y

)
+ C

(
f2(x2

a),y
)

+ λpmf
2
y (x

1
a)C(f2(x1

a),y)

− λdm

(
1− f2

y (x
1
a)
)
H
(
f2(x1

a)
)
. (4)

We note that in our implementation, the soft indicators
f1y (x2

a) and f2y (x1
a) are used as values by performing a stop-

ping gradient to prevent the back-propagation process to go
inside them for further updating f1 and f2.

Crossing Collaborative Ensemble
We now extend our collaboration strategy to enable us to
ensemble many individual members, which we term as a
Crossing Collaborative Ensemble (CCE). Specifically, given
an ensemble of N members fen (·) = 1

N

∑N
n=1 f

n (·) pa-
rameterized by θn, the loss function for a model fn, n ∈
[1, N ] as follow:



Ln(x,y, θn) = C (fn(x),y) + C (fn(xn
a),y)

+
1

N − 1

∑

i 6=n

(
λpmf

n
y (x

i
a)C(fn(xi

a),y)

− λdm

(
1− fn

y (x
i
a)
)
H
(
fn(xi

a)
))

. (5)

It appears from the above loss that we encourage each
individual model to (i) minimize the loss of the adversarial
example itself for improving its robustness (dPO) and (ii)
promoting or demoting its robustness (cPO/DO) with other
adversarial examples depending on the soft indicator.

Connections to Traditional Ensemble Learning. Firstly,
in our method, N members {fn} are reinforced with the
joint of N + 1 data sources: clean data {x} and N adver-
sarial examples {xna}Nn=1. However, depending on differ-
ent scenarios, they have the same task (PO-PO) or oppo-
site tasks (PO-DO) on the same adversarial set {xna}. Our
approach can be linked to the bagging technique in the liter-
ature, in which each classifier was trained on different sets
of data. Secondly, by assigning opposite tasks for ensemble
members, our method produces a negative correlation which
was described in (Yong Liu and Yao, 1999; Kuncheva and
Whitaker, 2003; Bagnall, Bunescu, and Stewart, 2017). It
has been claimed that negative relationship among ensemble
members can further improve the ensemble accuracy better
than the independent correlation.

Experiments
In this section, we first introduce the experimental setting for
adversarial defenses and attackers followed by an extensive
evaluation to compare our method with state-of-the-art ad-
versarial defenses. We show that our method surpasses these
methods for common benchmark datasets. Next, we provide
an ablation study to understand the transferability among en-
semble members of adversarial examples. Finally, we show
that our method not only detects adversarial examples ac-
curately and consistently but also predicts benign examples
with a significant improvement.

Experimental Setting
General Setting. We use CIFAR10 and CIFAR100 as the
benchmark datasets in our experiment.1 Both datasets have
50,000 training images and 10,000 test images. The inputs
were normalized to [0, 1]. We apply random horizontal flips
and random shifts with scale 10% for data augmentation as
used in (Pang, Xu, et al., 2019). We use both standard CNN
architecture and ResNet architecture (K. He et al., 2016)
in our experiment. The architecture and training setting for
each dataset are provided in our supplementary material.

1Recently, (Tsipras et al., 2020) found the labeling issue in the
ImageNet dataset, which highly affects the fairness of robustness
evaluation on this dataset.

Crafting Adversarial Examples for Defenders. In our
experiments, we use PGD {k, ε, η, l∞} as the common ad-
versary to generate adversarial examples for the adversar-
ial training of all defenders where k is the iteration steps, ε
is the distortion bound and η is the step size. Specifically,
the configuration for the CIFAR10 dataset is k = 10, ε =
8/255, η = 2/255 and that for the CIFAR100 dataset is
k = 10, ε = 0.01, η = 0.001. For the CIFAR10 dataset with
ResNet architecture, we use the same setting in (Pang, Xu,
et al., 2019) which is k = 10, ε ∼ U(0.01, 0.05), η = ε/10.

Baseline Methods. Because the model capacity has sig-
nificant impact on the inference performance, therefore, for
a fair comparison, we compare our method with the start-
of-the-art ensemble-based method, i.e., ADV-EN (Madry et
al., 2018) and ADP (Pang, Xu, et al., 2019), which have the
same number of committee members and also the member’s
architecture. More specifically, ADV-EN is the variant of
PGD adversarial training method (ADV) in the context of
ensemble learning, in which the entire ensemble model is
treated as one unified model applied with adversarial train-
ing. We also compare with the ADV method which is adver-
sarial training on a single model. For ADP, we choose the
best setting ADP2,0.5 with adversarial version, which was
reported in the paper (Pang, Xu, et al., 2019), and use the
official code.2

Throughout our experiments, we use two variants of our
method: (i) Robustness Mode (i.e., CCE-RM) for which we
set λpm = λdm = 1 and (ii) Detection Mode (i.e., CCE-
DM) for which we disable cPO (λpm = 0) and strengthen
DO (i.e., λdm = 5).

Attack Setting. We use different state-of-the-art attacks to
evaluate the defense methods including:

(i) Gradient based attacks (with cleverhans3 lib). We
use PGD (Madry et al., 2018), the Basic Iterative Method
(BIM) (Kurakin, I. J. Goodfellow, and S. Bengio, 2017) and
the Momentum Iterative Method (MIM) (Dong et al., 2018).
They share the same hyper-parameters configuration, i.e.,
{k, ε, η}, which is described in each individual experiment.

(ii) B&B attack (Brendel et al., 2019) (with foolbox4 lib)
which is a decision based attack. We argue that the B&B at-
tack setting in the paper of (Tramèr and Boneh, 2019) may
not be appropriate to evaluate the ADP method. It is because
the ADP method used PGD (ε ∼ U(0.01, 0.05), k = 10)
for its adversarial training, while B&B attack used PGD
(ε = 0.15, k = 20) as an initialized attack which is much
stronger than the defense capacity. More specifically, the ini-
tialized PGD attack alone can reduce the accuracy to 0.1%.
Therefore, B&B attack contributes very little to the final at-
tack performance. To have a fair evaluation, we use two ini-
tialized attacks with lower strength: PGD1 (ε = 8/255, η =
2/255, k = 20) and PGD2 (ε = 16/255, η = 2/255, k =
20) then apply B&B attack with 100 steps and repeat for
three times. It is worth noting that, PGD2 is still much
stronger than the defense capacity, however, we use this set-

2https://github.com/P2333/Adaptive-Diversity-Promoting
3https://github.com/tensorflow/cleverhans
4https://foolbox.readthedocs.io/en/stable/



Table 3: Robustness evaluation on the CIFAR10 dataset
with ResNet architecture. For the PGD attack, we use ε =
8/255, η = 2/255. (*) The low robust accuracies (even with
standard method ADV) because the attack strength of PGD2
is double of the defense capacity, which makes the adversar-
ial examples to be recognizable.

Attack ADV1 ADV-EN2 ADP2 CCE-RM2 ADV-EN3 ADP3 CCE-RM3

Non-att (Nat. acc.) 83.9 85.3 85.3 84.5 86.1 86.2 84.9
PGD k = 250 41.4 42.8 44.2 45.8 43.8 45.1 48.6
BIM k = 250 41.5 42.9 44.1 45.8 44.0 45.2 48.8
MIM k = 250 41.9 43.3 44.8 46.3 44.5 45.7 49.1

B&B (wPGD1) 37.0 38.3 37.3 42.2 39.3 38.3 44.2
B&B (wPGD2)* 4.9 2.9 3.9 6.0 4.2 4.3 7.1

SPSA 50.0 53.5 52.8 56.2 53.8 53.9 56.6
Auto-Attack 16.1 18.5 17.3 18.8 18.4 17.6 20.8

ting to mimic the evaluation in the paper of (Tramèr and
Boneh, 2019).

(iii) Auto-Attack (Croce and Hein, 2020) (with the of-
ficial implementation5) which is an ensemble based attack.
We use ε = 8/255 for the CIFAR10 dataset and ε = 0.01
for the CIFAR100 dataset, both with standard version which
is an ensemble of four different attacks.

(iv) SPSA attack (Uesato et al., 2018) (with cleverhans
lib) which is a gradient-free optimization method. We use
ε = 8/255 for the CIFAR10 dataset and ε = 0.01 for the
CIFAR100 dataset, both with 50 steps.

The distortion metric we use in our experiments is l∞ for
all measures. We use the full test set for the attacks (i) and
1000 test samples for the attacks (ii-iv).

Robustness Evaluation
We conduct extensive experiments on the CIFAR10 and CI-
FAR100 datasets to compare our method with the other
methods. We consider the ensemble of both two and three
committee members (denoted by a subscript number in each
method). It can be observed from the experimental results in
Table [3, 4, 5] that:

(i) There is a gap of 2%∼3% when comparing ADV-EN3

with ADV1 showing that increasing model capacity (by in-
creasing number of ensemble member) can improve the ro-
bustness of the model.

(ii) There is a gap of 3%∼4% between ADP3 and ADV1,
and especially, a gap of 7%∼8% when comparing our
CCE-RM3 with ADV1, which shows the potential of the en-
semble learning to tackle with the adversarial attacks.

(iii) With the same model capacity, our CCE-RM is con-
sistently the best with all attacks and in some attacks, ours
surpasses other baselines in a large margin (4%∼5%).

(iv) There is a gap of 3% between CCE-RM3 and
CCE-RM2, which is larger than the gap of 1% between
ADP3 and ADP2 or that of ADV-EN3 and ADV-EN2, show-
ing that our method collaborates members better and gets
more benefit from ensembling more committee members.

The effectiveness of adversarial training method depends
on the diversity (or the hardness) of the adversarial examples
(Madry et al., 2018). Fort et al. (2019) found that differently
initializing members’ parameters, even with the same train-

5https://github.com/fra31/auto-attack

Table 4: Robustness evaluation on the CIFAR10 dataset with
standard CNN architecture. We use ε = 8/255, η = 2/255.
Note that mulA represents for multiple-targeted attack by
adversary A.

Attack ADV1 ADV-EN2 ADP2 CCE-RM2 ADV-EN3 ADP3 CCE-RM3

Non-att (Nat. acc.) 75.7 76.0 75.9 76.0 76.7 76.6 75.7
PGD k = 100 38.0 39.7 42.2 44.7 40.8 43.9 46.8
BIM k = 100 38.2 39.7 42.2 44.9 40.8 43.8 46.8
MIM k = 100 38.5 40.5 42.4 45.4 41.3 44.2 47.2

mul-PGD k = 20 26.0 27.7 27.8 31.9 28.3 32.4 36.9
mul-BIM k = 20 25.9 27.2 27.2 31.6 27.7 29.8 34.1
mul-MIM k = 20 26.2 28.1 28.3 32.3 29.0 30.7 34.6

SPSA 40.6 44.3 41.5 45.2 45.1 46.1 47.5
Auto-Attack 25.1 25.0 24.4 29.9 25.5 28.1 31.9

Table 5: Robustness evaluation on the CIFAR100 dataset
with standard CNN architecture. We use ε = 0.01, η =
0.001. Note that mulA represents for multiple-targeted at-
tack by adversary A.

Attack ADV1 ADV-EN2 ADP2 CCE-RM2 ADV-EN3 ADP3 CCE-RM3

Non-att (Nat. acc.) 40.8 41.4 48.0 53.4 40.8 52.6 54.4
PGD k = 100 26.8 29.7 30.9 35.3 32.8 36.2 39.5
BIM k = 100 26.9 29.1 31.0 35.2 32.8 36.2 39.4
MIM k = 100 27.0 29.0 30.8 35.3 32.9 36.1 39.6

mul-PGD k = 20 16.4 15.8 20.1 24.2 16.6 24.8 28.4
mul-BIM k = 20 15.9 15.5 19.4 23.7 16.3 24.5 28.1
mul-MIM k = 20 16.7 16.1 20.3 24.1 16.8 25.1 28.6

SPSA 25.6 25.5 24.1 31.8 26.0 32.5 35.0
Auto-Attack 15.3 15.1 14.8 21.9 15.8 23.0 25.9

ing data, can end up with different local optimal in the so-
lution space. Therefore, the potential of ensemble learning
(in the remark ii) can be explained by the fact that the adver-
sarial space of an ensemble model Binsecure (x,y, fen, ε) is
more diverse than that of a single model Binsecure (x,y, f, ε).

Our advantages over others (in the remark iii, iv) can be
explained by the fact that our proposed method encourages
the diversity of its committee members. Specifically it can
be elaborated on with the following three key points. Firstly,
while other ensemble-based defenses use the adversarial ex-
amples of the entire ensemble xena ∼ Binsecure (x,y, fen, ε),
our method makes use of the broader joint adversarial space
xia ∼ Binsecure

(
x,y, f i, ε

)
(Lemma 1 (i)). Secondly, each

member has different loss landscape (Fort, Hu, and Lak-
shminarayanan, 2019), in addition with the randomness of
an adversary (e.g., random starting points in PGD), each
member has its individual adversarial set (partly collapsed
as shown in the next experiment). Therefore, similar with
the bagging technique, by promoting each member with its
adversarial examples independently, we can increase the di-
versity of the joint adversarial space. Last but not least, in-
spired from traditional ensemble learning (Yong Liu and
Yao, 1999), by elegantly collaborating PO and DO, we en-
courage the negative correlation among ensemble members,
therefore, further improve the diversity of the joint adversar-
ial space.

Transferability among Ensemble Members
The transferability is a phenomenon when adversarial exam-
ples generated to attack a specific model also mislead other
models trained for the same task. In the ensemble learn-
ing context, adversarial examples which are transferred well
among members will likely fool the entire ensemble. There-



fore, reducing the transferability among members is a prin-
cipled approach to achieve better robustness as claimed in
the previous works (Pang, Xu, et al., 2019; Kariyappa and
Qureshi, 2019). In this sub-section, we provide a further un-
derstanding of the transferability to the overall robustness
and show the impact of the transferring flow.

We first summarize the experiments setting. The experi-
ments are conducted on the CIFAR10 dataset with an en-
semble of two members under PGD attack with k = 20, ε =
8/255, η = 2/255. The results are reported in Table 6. CCE-
Base is our model which disables the crossing PO and DO
by setting λpm = λdm = 0. a(i,j) represents for the ro-
bust accuracy when adversarial examples {xia} attack model
f j . |S| shows the cardinality of a subset S, i.e., the per-
centage of the images that go into the subset S, which can
be one of {S11, S01, S10, S00}. From the definition of the
transferability as mentioned above, to measure the trans-
ferability of adversarial examples {xia}, we can compute
the accuracy difference of model f i and f j , j 6= i against
the same attack {xia}. The smaller gap implies that ad-
versarial examples {xia} are more transferable. The overall
transferability of an ensemble method can be evaluated by
the sum the accuracy differences over all its members, i.e.,
T = a(1,2) − a(1,1) + a(2,1) − a(2,2).

We would like to emphasize some following important
empirical observations (Table 6):

1) The impact of the transferring flow. It can be ob-
served that the cardinality |S11| in CCE-RM (39.9%) is
larger than that in CCE-Base (36.1%), while the cardinality
|S01| , |S10| , |S00| is smaller than those in CCE-Base which
serves as evidence that the adversarial examples are success-
fully transferred from subsets S10, S01, S00 to subset S11 as
we expect. This helps improve the overall robustness of the
ensemble model from 43.3% for CCE-Base to 45.5% for
CCE-RM.

2) The transferable space is just a subset of the ad-
versarial space. By definition, the subset S00 consists of
adversarial examples which fools both models f1, f2, there-
fore, S00 represents for the transferable space of the ensem-
ble model fen. In fact, the cardinality of |S00| is smaller than
the insecure region of the ensemble model fen (i.e., the total
classification error 100%−a(en,en)) in all methods showing
that the transferable space cannot represent for the insecure
region of the ensemble model fen, and the former is just the
subset of the latter.

3) Reducing transferability among ensemble members
is not enough to improve adversarial robustness. In fact,
the transferability metric T for CCE-RM is 33.7% which is
much smaller than those for ADP and ADV-EN (59.3% and
65.5%, respectively). The smaller value of T shows that the
adversarial examples {x1

a}, {x2
a} in our method are more

transferable than those in ADV-EN and ADP. However, the
fact that the overall robustness of our method is significantly
better evidently shows that transferability is not the only fac-
tor for improving the robustness. This is because the robust-
ness of each individual member under a direct attack (i.e.,
a(1,1) or a(2,2)) is much lower than our method. In addition,
the cardinality |S11| in our method is 39.9% which is much

Table 6: Evaluation on the transferability among ensemble
members on the CIFAR10 dataset. {T, nT, asingle} are the
metrics of interest.

Model a(en,en) a(1,1) a(2,2) |S11| |S01| |S10| |S00| T nT asingle
ADV-EN 40.7 31.1 33.2 24.0 17.0 13.0 46.0 65.5 13.3 16.7

ADP 42.9 31.0 33.1 25.7 13.1 11.7 49.5 59.3 7.6 17.2
CCE-RM 45.5 41.7 41.4 39.9 5.2 5.5 49.5 33.7 5.0 5.6
CCE-Base 43.3 40.3 40.5 36.1 6.5 7.2 50.3 36.1 6.4 7.2

bigger than those in ADV-EN (24.0%) and ADP (25.7%).
We provide two additional metrics which are (i) nT =

100%−a(en,en)−|S00| to measure the cardinality of adver-
sarial examples set which successful attack model fen but
non transferable among f1, f2 and (ii) asingle = a(en,en)−
|S11| to measure the cardinality of adversarial examples set
which are correctly predicted by only one model either f1
or f2 but still being correctly predicted by model fen. The
comparison on the metric nT in Table 6 shows that most
of successful adversarial examples in our method are pre-
dicted incorrectly by both members. While the comparison
on the metric asingle shows that most of unsuccessful ad-
versarial examples in our method are predicted correctly
by both members. The two comparisons demonstrate that
our method have better robustness than other methods be-
cause (i) the adversarial examples have to fool both ensem-
ble members for a successful attack and (ii) our ensemble
model can predict correctly by both members which ex-
plains the higher performance.

The remarks (2, 3) further imply that:
An ensemble model cannot be secure against white-box

attacks unless its members are robust against direct attacks
(even they are secure against transferred attacks).

This hypothesis provides more understanding of the cor-
relation between the transferability and the overall robust-
ness of an ensemble model.

Improving Natural Accuracy and Adversarial
Detectability
The parameter λpm(λdm) controls the level of the agree-
ment (disagreement) of models {f i}, i ∈ [1, N ] and model
f j , j 6= i on the same adversarial example xja. By dis-
abling the crossing PO (λpm = 0) and strengthening DO
(i.e., λdm = 5), our method encourages the disagreement
among members on the same data example, therefore, in-
creases the negative correlation among them. This setting of
CCE-DM leads to two important properties, which are em-
pirically proved by the experiments below.

Improving Natural Accuracy. We compare natural accu-
racies of two variants: CCE-RM and CCE-DM against the
baselines. Table 7 shows that CCE-DM significantly im-
proves natural accuracy of the ensemble model by a large
margin. In traditional ensemble learning, the key ingredient
to improve natural performance is making ensemble mem-
bers more diverse (Kuncheva and Whitaker, 2003). By dis-
abling the crossing PO and strengthening DO, CCE-DM
variant enforces the diversity more strictly, which explains



Figure 1: Prediction example in the detection mode.
Top/bottom images are benign/adversarial images. Next
columns are outputs from f1, f2, fen

Figure 2: Histogram of prediction entropy in the detection
mode

the improvement of the natural performance. This result
demonstrates the promising usage of adversarial examples
to improve the traditional ensemble learning.

Table 7: Comparison of the natural performance on the CI-
FAR10 dataset (the subscript number denotes the number
members).

Model ADV-EN ADP CCE-RM CCE-DM
CNN2 76.0 75.9 76.0 86.0
CNN3 76.7 76.6 75.7 87.2

ResNet2 85.3 85.3 84.5 91.0
ResNet3 86.1 86.2 84.9 91.6

Adversarial Detectability. CCE-DM can distinguish be-
tween benign and adversarial examples more easily. It is be-
cause the committee members produce a uniform prediction
for adversarial examples, while yielding a very high confi-
dent prediction for benign examples. For example, as shown
in Figure 1, the committee members are highly certain when
predicting benign examples, while they provide highly un-
certain predictions with high entropy for adversarial exam-
ples. The histogram for all images in the test set and their ad-
versarial examples in Figure 2 demonstrate the consistency
of this observation over the data distribution.

These results further inspire us to develop a simple yet ef-
fective method to detect adversarial examples based on the
entropy of the model prediction. Following the evaluation in
(Pang, Du, et al., 2018; Pang, Xu, et al., 2019), we try with
different thresholds to distinguish the benign and adversar-
ial examples and report the AUC score of each adversarial
attack. It is worth noting that, we do not intend to compete

Figure 3: ROC of CCE-RM under multiple types of attack

Figure 4: ROC of CCE-RM under multiple attack strengths

with other adversarial detectors but just to show the advan-
tage and flexibility of our CCE. The experiment is on the CI-
FAR10 dataset with an ensemble of two members. We con-
duct two evaluations to justify our understanding. First, we
study our detection method against three different attacks:
PGD, BIM and MIM with the same hyper-parameter setting
k = 20, ε = 8/255, η = 1/255. The result in Figure 3
shows that our method can accurately and consistently de-
tect all three kind of attacks. Secondly, we study our detec-
tion method on different attack strengths. We use the PGD
attack k = 20, η = 1/255 and vary the distortion bound ε
from 1/255 to 24/255. The result in Figure 4 shows that our
method can perform well on a wide range of attack strengths.
The adversary is obviously less distinguishable when de-
creasing its strength. However, our method still obtains a
very high AUC score (93.4/100) even under a very weak
attack (ε = 1/255), in which adversarial images look nearly
identical to the original ones.

Conclusion
In this paper, we explore the use of ensemble-based learning
to improve adversarial robustness. In particular, we propose
a cross-collaborative strategy by means of enforcing the
transferring flow of adversarial examples, thereby implic-
itly increasing the diversity of adversarial space and improv-
ing the robustness of the ensemble. Moreover, our proposed
method can be performed in both detection and robustness
modes. We conduct extensive and comprehensive experi-
ments to show the improvement of our proposed method on
state-of-the-art baselines. We also provide the detailed un-
derstanding of the relationship between the transferability
and the overall robustness in the ensemble learning context.
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Proof
Lemma 2. Let us define fens (·) = 1

2f
1 (·)+ 1

2f
2 (·) for two

given models f1 and f2. If f1 and f2 predict an example x
accurately, we have the following:

i) Binsecure (x,y, fens, ε) ⊂ Binsecure
(
x,y, f1, ε

)
∪

Binsecure
(
x,y, f2, ε

)
.

ii) Bsecure
(
x,y, f1, ε

)
∩ Bsecure

(
x,y, f2, ε

)
⊂

Bsecure (x,y, fens, ε) .

Proof. It is obvious that Lemma 2 (i) and (ii) are equiva-
lent. We hence need to prove only Lemma 2 (ii). Consider
a classification problem on a dataset D with M classes,
the true label of x is y ∈ {1, 2, ...,M} and let x′ ∈
Bsecure

(
x,y, f1, ε

)
∩ Bsecure

(
x,y, f2, ε

)
. Since f1 and f2

predict x′ correctly with the label y, we then have:

f1y (x′) ≥ f1j (x′) ,∀j ∈ {1, 2, ...,M},
f2y (x′) ≥ f2j (x′) ,∀j ∈ {1, 2, ...,M}.

This follows that

fensy (x′) ≥ fensj (x′) ,∀j ∈ {1, 2, ...,M},
which means

x′ ∈ Bsecure (x,y, fens, ε) .

Related works
In this section we introduce the most related works to our
approach including adversarial training and ensemble-based
methods.

Adversarial Training.
Adversarial training (ADV) can be traced back to (I. J.
Goodfellow, Shlens, and Szegedy, 2015), in which a model
becomes more robust by incorporating its adversarial exam-
ples into training data. Given a model f , a benign exam-
ple pair (x,y) and an adversarial example xa, the objective
function of ADV as:

LAT (x,xa,y) = L(f(x),y) + L(f(xa), y)

Although many defense models were broken by (Atha-
lye, Nicholas Carlini, and David Wagner, 2018) or gave a
false sense of robustness because of the obfuscated gradient,
the adversarial training (Madry et al., 2018) was among the
few that were resilient against attacks. Many ADV’s vari-
ants have been developed including but not limited to: (1)
difference in the choice of adversarial examples, e.g., the
worst-case examples (I. J. Goodfellow, Shlens, and Szegedy,
2015) or most divergent examples (Hongyang Zhang et al.,
2019), (2) difference in the searching of adversarial exam-
ples, e.g., non-iterative FGSM, Rand FGSM with random
initial point or PGD with multiple iterative gradient descent



steps (Madry et al., 2018; Shafahi et al., 2019), (3) differ-
ence in additional regularizations, e.g., adding constraints in
the latent space (Haichao Zhang and Wang, 2019; Bui et al.,
2020), (4) difference in model architecture, e.g., activation
function (Xie et al., 2020) or ensemble models (Pang, Xu,
et al., 2019).

Ensemble-based Defenses.
Recent works (Tramèr, Kurakin, et al., 2018; Kariyappa
and Qureshi, 2019) shows that ensemble adversarial trained
models can reduce the dimensionality of adversarial sub-
space (Tramèr, Papernot, et al., 2017). There are differ-
ent approaches, however, the key ingredient of their stories
is reducing the transferability of adversarial examples be-
tween members. In (Tramèr, Kurakin, et al., 2018), the au-
thors used the crafted perturbations from static pretrained
models as augmented data to decouple the generation pro-
cess of adversarial examples of target model. However, as
reported in (Tramèr, Kurakin, et al., 2018), this method
was designed for black-box attacks, thus still vulnerable to
white-box attacks. In (Kariyappa and Qureshi, 2019), ro-
bustness was achieved by aligning the gradient of commit-
tee members to be diametrically opposed, hence reducing
the shared adversarial spaces, or the transferability. How-
ever, attempting to achieve gradient alignment is unreliable
for high-dimensional datasets and it is difficult to extend for
ensemble with more than two committee members. More re-
cently, (Pang, Xu, et al., 2019) proposed to promote the di-
versity of non-maximal predictions of the committee mem-
bers (i.e., the diversity among softmax probabilities except
the highest ones) to reduce the adversarial transferability
among them. The adaptive diversity promoting (ADP) regu-
larizer as: ADPα,β(x,y) = α H(F) + β log(ED), where
H(F) is the Shannon entropy of the ensemble prediction
and log(ED) is the logarithm of the ensemble diversity. As
reported in their paper, ADP can cooperate with adversarial
training to increase the robustness. In this case, the objective
function of ADV as:

LADP (x,xa,y) = LAT (x,xa,y)

−ADPα,β(x,y)−ADPα,β(xa,y)

Model architecture and training setting
We use both standard CNN architecture and ResNet ar-
chitecture in our experiment. For ResNet architecture, we
use the same architecture and training setting as in (Pang,
Xu, et al., 2019). More specifically, we use ResNet-20 and
Adam optimizer, with initialized learning rate 0.001 and re-
duce it by a factor 0.1 at epoch 80, 120, and 160. Table 8
summarizes the standard CNN architecture for each ensem-
ble member in our experiments. The architectures for the
MNIST and CIFAR10 datasets are identical with those in
(N. Carlini and D. Wagner, 2017). We use Adam optimiza-
tion with learning rate 0.001 for all datasets. Conv(k) rep-
resents for the Convolutional layer with k output filters and
ReLU activation. Kernel size 3 and stride 1 for every convo-
lution layer. FC(k) represents for the Fully Connected layers
with k output filters without ReLU activation. Dropout rate

Table 8: Model architectures for experimental section

MNIST CIFAR10 CIFAR100
2 x Conv(32) 2 x Conv(64) 3 x Conv(64)

MaxPool MaxPool MaxPool
2 x Conv(64) 2 x Conv(128) 3 x Conv(128)

MaxPool MaxPool MaxPool
FC(200), ReLU FC(256), ReLU FC(256), ReLU

Dropout(0.5) Dropout(0.5) Dropout(0.5)
FC(200), ReLU FC(256), ReLU 2 x (FC(256), ReLU)

FC(10) FC(10) FC(100)
Softmax Softmax Softmax

Table 9: Comparison on the training time on the CIFAR10
dataset using ResNet architecture

Model N=2 N=3
ADV (N=1) 109s 109s

ADV-EN 205s 319s
ADP 210s 328s
Ours 356s 546s

is 0.5. We train models in 180 epochs for both CIFAR10
and CIFAR100 datasets and in 100 epochs for the MNIST
dataset.

Comparison on the training time. Our method requires
to find the adversarial examples of each member and do
cross inference, therefore, it takes a longer training pro-
cess. We measured the training time (per epoch) on our ma-
chine with Nvidia RTX Titan GPU, using ResNet architec-
ture (N=2,3) with batch size 64 on the CIFAR10 dataset and
summarize as in Table 9.

White-box attacks evaluation
In addition to the result in the experimental section, we pro-
vide further results on the evaluation of adversarial robust-
ness under white-box attacks. Firstly, we explain in detail
the metrics of interest in our experiments. Secondly, we pro-
vide an ablation study to show the impact of the transferring
flow to the improvement.

Robustness evaluation metrics
Static attack and Adaptive attack. There are two sce-
narios of attacks on an ensemble model (W. He et al., 2017).
The first scenario is static attack, in which the attacker is not
aware of the ensemble method (i.e., how to do the ensemble
for making the final prediction). The other scenario is adap-
tive attack, where the attacker has full access to the ensemble
method and adapts attacks accordingly. In our experiments,
we make use of the adaptive attack, which is a considerably
stronger attack.

Non-targeted attack and Multiple-targeted attack. We
use both non-targeted attack (A) and multiple-targeted at-
tack (mulA) in our evaluation. The non-targeted attack ob-
tains adversarial examples by maximizing the loss w.r.t its
true label, resulting in any non-true label prediction. The



Table 10: Ablation study on the impact of the transferring
flow. Note that mulA represents for the multiple-targeted
attack by adversary A.

(a) Evaluation on CIFAR10 dataset. We commonly use ε =
8/255, η = 2/255

ADP2 CCE-Base2 CCE-RM2 ADP3 CCE-Base3 CCE-RM3

Non-att (Nat. acc.) 75.9 75.8 76.0 76.6 76.4 75.7
PGD k = 100 42.2 43.4 44.7 43.9 44.5 46.8
BIM k = 100 42.2 43.4 44.9 43.8 44.5 46.8
MIM k = 100 42.4 44.1 45.4 44.2 45.0 47.2

mul-PGD k = 20 27.8 31.1 31.9 32.4 32.4 36.9
mul-BIM k = 20 27.2 30.8 31.6 29.8 32.2 34.1
mul-MIM k = 20 28.3 31.5 32.3 30.7 32.9 34.6

SPSA 41.5 44.3 45.2 46.1 47.2 47.5
Auto-Attack 24.4 29.2 29.9 28.1 31.5 31.9

(b) Evaluation on CIFAR100 dataset. We commonly use
ε = 0.01, η = 0.001

ADP2 CCE-Base2 CCE-RM2 ADP3 CCE-Base3 CCE-RM3

Non-att (Nat. acc.) 48.0 51.1 53.4 52.6 54.2 54.4
PGD k = 100 30.9 33.6 35.3 36.2 37.0 39.5
BIM k = 100 31.0 33.7 35.2 36.2 37.1 39.4
MIM k = 100 30.8 33.5 35.3 36.1 37.2 39.6

mul-PGD k = 20 20.1 23.0 24.2 24.8 26.2 28.4
mul-BIM k = 20 19.4 22.6 23.7 24.5 25.9 28.1
mul-MIM k = 20 20.3 23.1 24.1 25.1 26.4 28.6

SPSA 24.1 32.1 31.8 32.5 35.1 35.0
Auto-Attack 14.8 22.0 21.9 23.0 26.1 25.9

multiple-targeted attack is undertaken by performing simul-
taneously targeted attacks for all possible data labels (10
for CIFAR10 and 100 for CIFAR100) and being counted if
any individual targeted-attack is successful. While the non-
targeted attack considers only one direction of the gradient,
the multiple-targeted attack takes many directions into ac-
count, therefore, being considered as a much stronger attack.

Ablation study
We provide an ablation study to compare CCE-RM with
CCE-Base (which disables promoting and demoting oper-
ations by setting λpm = λdm = 0). Firstly, the compari-
son in Table 10 shows that even CCE-Base variant can beat
ADP method on both CIFAR10 and CIFAR100 datasets.
This surpassness can be explained from the fact our pro-
posed method encourages the diversity of its committee
members. More specifically, each member is reinforced with
two data sources: clean data {x} and adversarial examples
{xna}, which becomes more diverge due to the gradually
more divergence of the committee models and the random
initialization of PGD at the step 0. From this point of view,
our method can be linked to the bagging technique in tra-
ditional ensemble learning, which is a well-known method
to produce the diversity in the ensemble. Secondly, CCE-
RM shows a huge improvement over CCE-Base in both CI-
FAR10 and CIFAR100 datasets. This result demonstrates the
impact of the transferring flow, which offers better collabo-
ration among members.

In addition, we study the impact of each PO and DO to
the final performance by evaluating them separately. Table
11 shows the comparison when disabling one of these oper-
ations while varying the other. It can be observed that: (i) the
ensemble tends to be detection mode (i.e., increasing natural
performance and adversarial detectability while sacrificing
its robustness) when increasing DO’s strength (λdm ≥ 2),

Table 11: Ablation study on the impact of each operation
PO/DO. We commonly use ε = 8/255, η = 2/255. Note
that mulA represents for the multiple-targeted attack by ad-
versary A.

(a) Using DO only by disabling cPO (λpm = 0)

λdm = 0 λdm = 1 λdm = 2 λdm = 5
Non-att (Nat. acc.) 75.8 76.6 83.2 86.0

PGD k = 100 43.4 43.3 23.9 26.1
BIM k = 100 43.4 43.2 24.0 26.2
MIM k = 100 44.1 43.6 31.1 21.7

mul-PGD k = 20 31.1 29.9 14.9 20.1
mul-BIM k = 20 30.8 29.8 13.1 19.8
mul-MIM k = 20 31.5 30.3 28.6 21.7

SPSA 44.3 44.4 30.4 5.3
Auto-Attack 29.2 29.8 1.6 0.2

(b) Using PO only by disabling DO (λdm = 0)

λpm = 0 λpm = 1 λpm = 2 λpm = 5
Non-att (Nat. acc.) 75.8 76.4 76.2 77.1

PGD k = 100 43.4 42.7 42.7 41.3
BIM k = 100 43.4 42.8 42.7 41.5
MIM k = 100 44.1 43.0 43.2 41.9

mul-PGD k = 20 31.1 30.4 30.0 29.7
mul-BIM k = 20 30.8 30.3 29.9 29.6
mul-MIM k = 20 31.5 30.8 30.4 30.1

SPSA 44.3 44.3 45.5 46.2
Auto-Attack 29.2 29.7 28.8 30.0

(ii) the ensemble tends to reduce its robustness slightly when
increasing PO’s strength, (iii) neither PO nor DO can im-
prove the robustness alone, which shows the important of
the transferring flow. These observations are inline with the
properties of PO and DO which have been mentioned in the
main paper. The parameter λpm(λdm) controls the level of
the agreement (disagreement) of models {f i}, i ∈ [1, N ]
and model f j , j 6= i on the same adversarial example xja.
Therefore the observation (i) can be explained by the fact
that by disabling cPO (λpm = 0) and strengthening DO,
our method encourages the disagreement among members
on the same data example, therefore, increases the negative
correlation among them. In contrast, by disabling DO and
increasing cPO’s strength, our method increases the agree-
ment among members, therefore, increases the positive cor-
relation. The increasing of the positive correlation among
members reduces the diversity of adversarial space, there-
fore, explains the observation (ii).

Black-box attacks evaluation
We investigate the transferability of adversarial examples
among models and evaluate the robustness under black-box
attacks. The experiment is conducted on the CIFAR10 and
CIFAR100 datasets, with ensemble of two members. We
use PGD to challenge each ensemble model to generate ad-
versarial examples then transfer these adversarial examples
to attack other models. The PGD configuration for the CI-
FAR10 dataset is k = 20, η = 2/255, ε ∈ {8/255, 12/255},
while that for the CIFAR100 dataset is k = 20, η =
0.001, ε ∈ {0.01, 0.02}. The result is shown in Figure ??.



Table 12: Blackbox attack evaluation on CIFAR10 dataset

(a) PGD attack with k = 20, ε = 8/255, η = 2/255

NAT ADV-EN ADP CCE-RM
NAT 9.2 76.2 75.6 74.5

ADV-EN 59.5 40.7 58.5 58.4
ADP 58.4 61.8 42.9 59.9

CCE-RM 57.3 58.9 57.4 45.5

(b) PGD attack with k = 20, ε = 12/255, η = 2/255

NAT ADV-EN ADP CCE-RM
NAT 8.0 75.5 75.1 74.0

ADV-EN 40.1 23.6 44.5 45.2
ADP 38.4 48.5 24.9 47.1

CCE-RM 35.9 42.9 41.3 27.8

Table 13: Blackbox attack evaluation on CIFAR100 dataset

(a) PGD attack with k = 20, ε = 0.01, η = 0.001

NAT ADV-EN ADP CCE-RM
NAT 14.7 43.6 49.3 52.9

ADV-EN 42.9 31.1 48.1 51.6
ADP 41.8 41.6 32.8 50.9

CCE-RM 39.4 40.2 45.8 36.1

(b) PGD attack with k = 20, ε = 0.02, η = 0.001

NAT ADV-EN ADP CCE-RM
NAT 13.0 43.6 49.2 52.9

ADV-EN 39.9 24.3 46.9 50.4
ADP 38.3 40.6 25.2 49.4

CCE-RM 34.5 38.2 43.0 27.5

The element a(i,j) in each sub-table represents the robust
accuracy when adversarial examples from model i attack
model j. NAT represents for the natural model which does
not engage with any defense method. It is worth noting that,
the diagonal in each sub-table represents robust accuracies
against the white-box attacks, which has been discussed in
the section above.

Firstly, the first row in each sub-table shows the robust
accuracy against adversarial examples which are transferred
from the natural model (NAT). This result shows that our
method outperforms baseline methods on the CIFAR100
dataset, but to be weaker than other on the CIFAR10 dataset.
Secondly, each column in each sub-table compares the at-
tack strength of different models on the same defense model.
The comparison on these columns shows that adversarial ex-
amples which are crafted from our CCE-RM attack better
than those crafted from other methods (i.e., by giving lower
robust accuracy). This result indicates that our method gen-
erates stronger adversarial examples than other methods.

Loss surface visualization
In addition to the quantitative evaluation on the adversarial
robustness, we would like to provide two additional visu-
alizations which further demonstrate our improvement. The
visualizations are conducted on the same image from CI-

FAR10 dataset with the ensemble of two models. First, we
visualize the prediction probability of each ensemble mem-
ber and the entire ensemble with the same two types of in-
put which are a benign example and adversarial example of
the benign one. The visualization as Figure 5 shows that our
method can produce a high confident prediction unlike ADP
which has a less confident prediction because of its diversity
promoting method. Secondly, we visualize the loss surface
around the adversarial example xa w.r.t three different of
model:f1, f2 and fen. We generate a grid of neighborhood
images {xa + i ∗ u + j ∗ v} where u = ∇xC (f(xa),y) is
the gradient of the prediction loss w.r.t the input and v is the
random perpendicular vector to u. In each sub-figure, the
left image is the adversarial example of interest while the
middle and the right image depict the loss surface and the
predicted labels corresponding with the neighbor grid. Our
method can produce correct labels in entire the neighbor-
hood region, unlike other methods that still have an incor-
rect prediction region. Therefore, our method can produce a
smoother surface around the adversarial example which fur-
ther explains the better robustness in our method.



(a) ADV-EN.

(b) ADP.

(c) CCE-RM.

Figure 5: Prediction example. Top/bottom images are be-
nign/adversarial images. Next columns are outputs from
f1, f2, fen.

(a) Prediction surface of model f1.

(b) Prediction surface of model f2.

(c) Prediction surface of model fen.

Figure 6: Loss surface around adversarial example of ADV-
EN method. Left: Adversarial input. Middle: Loss surface.
Right: Predicted labels.



(a) Prediction surface of model f1.

(b) Prediction surface of model f2.

(c) Prediction surface of model fen.

Figure 7: Loss surface around adversarial example of ADP
method. Left: Adversarial input. Middle: Loss surface.
Right: Predicted labels.

(a) Prediction surface of model f1.

(b) Prediction surface of model f2.

(c) Prediction surface of model fen.

Figure 8: Loss surface around adversarial example of CCE-
RM method. Left: Adversarial input. Middle: Loss surface.
Right: Predicted labels.
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Abstract

Deep learning models, even the-state-of-the-art ones, are highly vulnerable to adversarial
examples. Adversarial training is one of the most efficient methods to improve the model’s
robustness. The key factor for the success of adversarial training is the capability to generate
qualified and divergent adversarial examples which satisfy some objectives/goals (e.g., finding
adversarial examples that maximize the model losses for simultaneously attacking multiple
models). Therefore, multi-objective optimization (MOO) is a natural tool for adversarial
example generation to achieve multiple objectives/goals simultaneously. However, we observe
that a naive application of MOO tends to maximize all objectives/goals equally, without caring
if an objective/goal has been achieved yet. This leads to useless effort to further improve the
goal-achieved tasks, while putting less focus on the goal-unachieved tasks. In this paper, we
propose Task Oriented MOO to address this issue, in the context where we can explicitly
define the goal achievement for a task. Our principle is to only maintain the goal-achieved
tasks, while letting the optimizer spend more effort on improving the goal-unachieved tasks.
We conduct comprehensive experiments for our Task Oriented MOO on various adversarial
example generation schemes. The experimental results firmly demonstrate the merit of our
proposed approach. Our code is available at https://github.com/tuananhbui89/TAMOO.

1 Introduction

Deep neural networks are powerful models that achieve impressive performance across various domains such
as bioinformatics (Spencer et al., 2015), speech recognition (Hinton et al., 2012), computer vision (He et al.,
2016), and natural language processing (Vaswani et al., 2017). Despite achieving state-of-the-art performance,
these models are extremely fragile, as one can easily craft small and imperceptible adversarial perturbations
of input data to fool them, hence resulting in high misclassifications (Szegedy et al., 2014; Goodfellow et al.,
2015). Accordingly, adversarial training (AT) (Madry et al., 2018; Zhang et al., 2019) has been proven to
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be one of the most efficient approaches to strengthen model robustness (Athalye et al., 2018). AT requires
challenging models with divergent and qualified adversarial examples (Madry et al., 2018; Zhang et al.,
2019; Bui et al., 2021b) so that the robustified models can defend against adversarial examples. Therefore,
generating adversarial examples is an important research topic in Adversarial Machine Learning (AML).
Several perturbation based attacks have been proposed, notably PGD (Madry et al., 2018), CW (Carlini &
Wagner, 2017), and AutoAttack (Croce & Hein, 2020). Most of them aim to optimize a single objective/goal,
e.g., maximizing the cross-entropy (CE) loss w.r.t. the ground-truth label (Goodfellow et al., 2015; Madry
et al., 2018), maximizing the Kullback-Leibler (KL) divergence w.r.t. the predicted probabilities of a benign
example (Zhang et al., 2019), or minimizing a combination of perturbation size and predicted loss to a
targeted class as in Carlini & Wagner (2017).

However, in many contexts, we need to find qualified adversarial examples satisfying multiple objectives/goals,
e.g., finding an adversarial example that can attack simultaneously multiple models in an ensemble model
(Pang et al., 2019; Bui et al., 2021b), finding an universal perturbation that can attack simultaneously multiple
benign examples (Moosavi-Dezfooli et al., 2017). Obviously, these adversarial generations have a nature of
multi-objective problem rather than a single-objective one. Consequently, using single-objective adversarial
examples leads to a much less adversarial robustness in ensemble learning as discussed in Section 4.2 and
Appendix D.2.

Multi-Objective Optimization (MOO) (Désidéri, 2012) is an optimization problem to find a Pareto optimality
that aims to optimize multiple objective functions. In a nutshell, MOO is a natural tool for the aforementioned
multi-objective adversarial generations. However, a direct and naive application of MOO to generating robust
adversarial examples for multiple models or ensemble of transformations does not work satisfactorily (cf.
Appendix E). Concretely, it can be observed that the tasks are not optimized equally. The optimizing process
focuses too much on one dominating task and can be trapped easily by it, hence leading to downgraded
attack performances.

Intuitively, for multi-objective adversarial generations, we can explicitly investigate if an objective or a task
achieves or fails to achieve its goal (e.g., the current adversarial example can fool a model successfully or
unsuccessfully in multiple models). To avoid some tasks dominating others during the optimization process,
we can favour more the tasks that are failing and pay less attention to the tasks that are performing well.
For example, in the context of attacking multiple models, we update an adversarial example xa to favor the
models that xa has not attacked successfully yet, while trying to maintain the attack capability of xa on the
already successful models. In this way, we expect that no task really dominates others and all tasks can be
updated equally to fulfill their goals.

Bearing this in mind, we propose a new framework named TAsk Oriented Multi-Objective Optimization
(TA-MOO) with multi-objective adversarial generations as the demonstrating applications. Specifically, we
learn a weight vector (i.e., each dimension is the weight for a task) lying on a simplex corresponding to all
tasks. To favor the unsuccessful tasks while maintaining the success of the successful ones, we propose a
geometry-based regularization term that represents the distance between the original simplex and a reduced
simplex which involves the weight vectors for the currently unsuccessful tasks only. Furthermore, along with
the original quadratic term of the standard MOO helping to improve all tasks, minimizing our geometry-based
regularization term encourages the weights of the goal-achieved tasks to be as small as possible, while inspiring
those for the goal-unachieved ones to have a sum close to 1. By doing so, we aim to focus more on improving
the goal-unachieved tasks, while still maintain the performance of goal-achieved tasks.

Most related work to ours is Wang et al. (2021), which considers the worst-case performance across all tasks.
However, this original principle reduces the generalizability to other tasks. To mitigate this issue, a specific
regularization was proposed to balance all tasks’ weights. Our work, which casts an adversarial generation
task as a multi-objective optimization problem, is conceptually different from that work, although both
methods can be applied to similar tasks. Further discussion about relate work can be found in Appendix A.

To summarize, our contributions in this work include:

(C1) We propose a novel framework called TA-MOO, which addresses the shortcomings of the original MOO
when applied to multi-objective adversarial generation. Specifically, the TA-MOO framework incorporates
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a geometry-based regularization term that favors unsuccessful tasks, while simultaneously maintaining the
performance of successful tasks. This innovative approach improves the efficiency and efficacy of adversarial
generation by promoting a more balanced exploration of the solution space.

(C2) We conduct comprehensive experiments for three adversarial generation tasks and one adversarial
training task including attacking multiple models, learning universal perturbation, attacking over many
data transformations, and adversarial training on ensemble learning setting. The experimental results show
that our TA-MOO outperforms the baselines by a wide margin on the three aforementioned adversarial
generation tasks. More importantly, our adversary brings a great benefit on improving adversarial robustness,
highlighting the potential of our TA-MOO framework in adversarial machine learning.

(C3) Additionally, we provide a comprehensive analysis on different aspects of applying MOO and TA-MOO
to adversarial generation tasks, such as the impact of the dominating issue in Appendix E.1, the importance
of the Task-Oriented regularization in Appendix E.2, the impact of initialization of MOO in Appendix
subsec:optimal-init-moo, and the limitations of MOO solver in Appendix sec:sup-gradient-des-discuss. We
believe that our analysis would be beneficial for future research in this area.

2 Background

We revisit the background of multi-objective optimization (MOO), which lays the foundation for our task-
oriented MOO in the sequel. Given multiple objective functions f (δ) := [f1 (δ) , ..., fm (δ)] where each
fi : Rd → R, we aim to find the Pareto optimal solution that simultaneously maximizes all objective functions:

max
δ
f(δ) := [f1 (δ) , ..., fm (δ)] . (1)

While there are a variety of MOO solvers (Miettinen, 2012; Ehrgott, 2005), in this paper, we adapt from the
multi-gradient descent algorithm (MGDA) that was proposed suitably for end-to-end learning by Désidéri
(2012). Specifically, MGDA combines the gradients of individual objectives to a single optimal direction that
increases all objectives simultaneously. The optimal direction corresponds to the minimum-norm point that
can be found by solving the quadratic programming problem:

w∗ = argminw∈∆m
wTQw, (2)

where ∆m =
{
π ∈ Rm+ : ‖π‖1 = 1

}
is the m-simplex and Q ∈ Rm×m is the matrix with Qij =

∇δfi (δ)T ∇δfj (δ). Finally, the solution of the problem 1 can be found iteratively with each update step
δ = δ + ηg where g is the combined gradient g =

∑m
i=1 w

∗
i∇δfi (δ) and η > 0 is a sufficiently small learning

rate. Furthermore, Désidéri (2012) also proved that by using an appropriate learning rate at each step, we
reach the Pareto optimality point δ∗ at which there exist w ∈ ∆m such that

∑m
i=1 wi∇δfi (δ∗) = 0.

3 Our Proposed Method

3.1 Task Oriented Multi-Objective Optimization

We now present our TAsk Oriented Multi-Objective Optimization (TA-MOO). We consider the MOO
problem in (1) where each task Ti (i = 1, ...,m) corresponds to the objective function fi (δ) (i = 1, ...,m).
Additionally, assume that given a task Ti, we can explicitly observe if this task has currently achieved its goal
(e.g., the current adversarial example x can fool successfully the model fi), which is named a goal-achieved
task. We also name a task that has not achieved its goal a goal-unachieved task. Different from the standard
MOO, which equally pays equal attention to all tasks, our TA-MOO focuses on improving the currently
goal-unachieved tasks, while trying to maintain the performance of the goal-achieved tasks. By this principle,
we expect all tasks would be equally improved to simultaneously achieve their goals.

To be more precise, we depart from δ0 and consecutively update in L steps to obtain the sequence δ1, δ2, ..., δL
that approaches the optimal solution. Considering the t-th step (i.e., 1 ≤ t ≤ L), we currently have δt and
need to update it to obtain δt+1. We examine the tasks that have achieved their goals already and denote
them as T1, T2, ..., Ts without the loss of generalization. Here we note that the list of goal-achieved tasks is
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empty if s = 0 and the list of goal-unachieved tasks is empty if s = m. Specifically, to find δt+1, we first solve
the following optimization problem (OP):

w∗ = argminw∈∆m

{
wTQw + λΩ (w)

}
, (3)

where Q ∈ Rm×m with Qij = ∇δfi (δt)T ∇δfj (δt), λ > 0 is a trade-off parameter, and Ω (w) is a regularization
term to let the weights focus more on the goal-unachieved tasks. We next compute the combined gradient gt
and update δt as:

gt =
m∑

i=1
w∗i∇δfi (δt) and δt+1 = δt + ηgt.

The OP in (3) consists of two terms. The first term wTQw ensures that all tasks are improving, while the
second term Ω (w) serves as the regularization to restrict the goal-achieved tasks T1, ..., Ts by setting the
corresponding weights w1, ..., ws as small as possible.

Before getting into the details of the regularization, we emphasize that to impose the constraint w ∈ ∆m, we
parameterize w = softmax (α) with α ∈ Rm and solve the OP in (3) using gradient descent. In what follows,
we discuss our proposed geometry-based regularization term Ω (w).

Simplex-based regularization. Let Su =
{
β = [βi]mi=s+1 ∈ Rm−s+ :

∑m
i=s+1 βi = 1

}
be a simplex w.r.t.

the goal-unachieved tasks and S = {0s} × Su be the extended simplex, where 0s is the s-dimensional vector
of all zeros. We define the regularization term Ω (w) as the distance from w to the extended simplex S:

Ω (w) = d (w,S) = minπ∈S ‖w − π‖22 . (4)

Because S is a compact and convex set and ‖w − π‖22 is a differentiable and convex function, the optimization
problem in (4) has a unique global minimizer Ω (w) = ‖w − projS (w)‖22, where the projection projS (w) is
defined as

projS (w) = argminπ∈S ‖w − π‖22 .
The following lemma shows us how to find the projection projS (w) and evaluate Ω (w).
Lemma 1. Sorting ws+1:m into us+1:m such that us+1 ≥ us+2 ≥ ... ≥ um. Defining ρ =
max

{
s+ 1 ≤ i ≤ m : ui + 1

i−s

(
1−∑i

j=s+1 uj

)
> 0
}
. Denoting γ = 1

ρ

(
1−∑ρ

i=s+1 ui
)
, the projection

projS (w) can be computed as

projS (w)i =
{

0 1 ≤ i ≤ s
max {wi + γ, 0} otherwise

Furthermore, the regularization Ω (w) has the form:

Ω (w) =
s∑

i=1
w2
i +

m∑

i=s+1
(wi −max {wi + γ, 0})2

. (5)

With further algebraic manipulations, Ω (w) can be significantly simplified as shown in Theorem 1.
Theorem 1. The regularization Ω (w) has the following closed-form:

Ω (w) =
s∑

i=1
w2
i + 1

m− s

(
1−

m∑

i=s+1
wi

)2

. (6)

The proof of Lemma 1 and Theorem 1 can be found in Appendix B.1. Evidently, the regularization term in
Eq. (6) in Theorem 1 encourages the weights w1:s associated with the goal-achieved tasks to be as small as
possible and the weights ws+1:massociated with the goal-unachieved tasks to move closer to the simplex Su
(i.e.,

∑m
i=s+1 wi is closer to 1).
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Parameterized TA-MOO. Algorithm 1 summarizes the key steps of our TA-MOO. We use gradient
descent to find solution δ for the OP 1 in L steps and at each iteration we solve the OP in 3 in K steps using
gradient descent solver with the parameterization w = softmax (α). To reduce computational cost, at each
iteration we reuse the previous solution α and use a few steps K (i.e., K ≤ 10) to get new solution. We then
compute the combined gradient gt and finally update δt to δt+1 using the combined gradient gt (or sign(gt)
in the case of L∞ norm). The projecting operation in step 13 is to project δ to a valid space specifying to
applications that we introduce hereon.

Algorithm 1 Pseudocode for Parameterized TA-MOO.
Input: Multi-objective functions f1:m (δ). δ’s solver with L update steps and learning rate ηδ. w’s Gradient

Descent Solver (GD) with K update steps and learning rate ηw and variable α. The softmax function
denotes by σ. Tradeoff parameter λ.

Output: The optimal solution δ∗.
1: Initialize δ0 (e.g., δ0 ∼ U(−ε, ε)).
2: Initialize α0 = [αi0]mi=1 with αi0 = 1/m.
3: for t = 0 to L− 1 do
4: Collect list of tasks’ gradients {∇δfi(δt)}mi=1.
5: Compute Q with Qij = ∇δfi (δt)T ∇δfj (δt).
6: Initialize αt+1 = αt
7: for k = 0 to K − 1 do
8: Compute L(αt+1) = σ(αt+1)TQσ(αt+1) + λΩ(σ(αt+1)).
9: Update αt+1 = αt+1 − ηw∇αL(αt+1).

10: end for
11: Compute the combined gradient gt =

∑m
i=1 σ(αt+1,i)∇δfi (δt).

12: Update δt+1 = δt + ηδgt.
13: Project δt+1 to a valid space (specific to domain, e.g., ‖δ‖ ≤ ε).
14: end for
15: Output δ∗ = δL.

3.2 Applications in Adversarial Generation

Although TA-MOO is a general framework, we in this paper focus on its applications in adversarial generation.
Following Wang et al. (2021), we consider three tasks of generating adversarial examples.

Generating adversarial examples for an ensemble model. Considering an ensemble classifier with
multiple classification models h1, h2, ..., hm, where hi (x) ∈ ∆M =

{
π ∈ RM+ : ‖π‖1 = 1

}
with the number of

classes M . Given a data sample x, our aim is to find an adversarial example xa = x+ δ that can successfully
attack all the models. Specifically, we consider a set of tasks each of which, Ti, is about whether x+ δ can
successfully attack model hi, defined as:

I
{
argmax1≤k≤Mhi (x+ δ, k) 6= y

}
,

where y is the ground truth label of x, I is the indicator function and hi (x, k) returns the probability to
predict x to the class k. To find a perturbation δ that can attack successfully all models, we solve the
following multi-objective optimization problem:

max
δ:‖δ‖≤ε

[f1 (δ) , ..., fm (δ)] ,

where fi (δ) = ` (hi (x+ δ) , y) with the loss function ` which could be the cross-entropy (CE) loss (Madry
et al., 2018), the Kullback-Leibler (KL) loss (Zhang et al., 2019), or the Carlini-Wagner (CW) loss (Carlini &
Wagner, 2017).

Generating universal perturbations. Considering a single classification model h with h (x) ∈ ∆M

and a batch of data samples x1, x2, ..., xB, we would like to find a perturbation δ with ‖δ‖ ≤ ε such that
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xai = xi + δ, i = 1, ..., B, are adversarial examples. We define the task Ti as finding the adversarial example
xai = xi + δ for data sample xi. For each task Ti, we can define its goal as finding successfully the adversarial
example xai :

I
{
argmax1≤k≤Mh (xai , k) 6= argmax1≤k≤Mh (xi, k)

}
.

To find the perturbation δ, we solve the following multi-objective optimization problem:

max
δ:‖δ‖≤ε

[f1 (δ) , ..., fm (δ)] ,

where fi (δ) = ` (h (xai ) , yi) = ` (h (xi + δ) , yi) with yi the ground-truth label of xi.

Generating adversarial examples against transformations. Considering a single classification model
h and m categories of data transformation P1:m (e.g., rotation, lighting, and translation). Our goal is to
find an adversarial attack that is robust to these data transformations. Specifically, given a benign example
x, we would like to learn a perturbation δ with ‖δ‖ ≤ ε that can successfully attack the model after any
transformation ti ∼ Pi is applied. To formulate as an MOO problem, we consider the task Ti as finding
the adversarial example xai = ti (x+ δ) with ti ∼ Pi. For each task Ti, we can define the goal as finding
successfully the adversarial example xai :

I
{
argmax1≤k≤Mh (xai , k) 6= argmax1≤k≤Mh (x, k)

}
.

To find the perturbation δ, we solve the following multi-objective optimization problem:

max
δ:‖δ‖≤ε

[f1 (δ) , ..., fm (δ)] ,

where fi (δ) = Eti∼Pi [` (h (ti (x+ δ)) , y)] with y the ground-truth label of x.

4 Experiments

In this section, we provide extensive experiments across four settings: (i) generating adversarial examples for
ensemble of models (ENS, Sec 4.1), (ii) generating universal perturbation (UNI, Sec 4.3) , (iii) generating
robust adversarial examples against Ensemble of Transformations (EoT, Sec 4.4), and (iv) adversarial training
for ensemble of models (AT, Sec 4.2). The details of each setting can be found in Appendix C.

General settings. Through our experiments, we use six common architectures for the classifier including
ResNet18 (He et al., 2016), VGG16 (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),
EfficientNet (Tan & Le, 2019), MobileNet Howard et al. (2017), and WideResNet Zagoruyko & Komodakis
(2016) with the implementation 1. We evaluate on the full testing set of two benchmark datasets which are
CIFAR10 and CIFAR100 (Krizhevsky et al., 2009). We observed that the attack performance is saturated
with standard training models. Therefore, to make the job of adversaries more challenging, we use Adversarial
Training with PGD-AT (Madry et al., 2018) to robustify the models and use these robust models as the
victim models in our experiments.

Evaluation metrics. We use three metrics to evaluate the attack performance including (i) A-All: the
Attack Success Rate (ASR) when an adversarial example can achieve goals in all tasks. This is considered as
the most important metric to indicate how well one method can achieve in all tasks; (ii)A-Avg: the average
Attack Success Rate over all tasks which indicate the average attacking performance; (iii){A-i}Ki=1: Attack
Success Rate in each individual task. For reading comprehension purposes, if necessary the highest/second
highest performance in each experimental setting is highlighted in Bold/Underline and the most important
metric(s) is emphasized in blue color.

Baseline methods. We compare our method with the Uniform strategy which assigns the same weight
for all tasks and the MinMax method (Wang et al., 2021) which examines only the worst-case performance
across all tasks. To increase the generality to other tasks, MinMax requires a regularization to balance

1https://github.com/kuangliu/pytorch-cifar
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Table 1: Evaluation of Attacking Ensemble model on the CIFAR10 and CIFAR100 datasets.

CW CE KL
A-All A-Avg A-All A-Avg A-All A-Avg

CIFAR10

Uniform 26.37 41.13 28.21 48.34 17.44 32.85
MinMax 27.53 41.20 35.75 51.56 19.97 33.13
MOO 18.87 34.24 25.16 44.76 15.69 29.54
TA-MOO 30.65 40.41 38.01 51.10 20.56 31.42

CIFAR100

Uniform 52.82 67.39 55.86 72.62 38.57 54.88
MinMax 54.96 66.92 63.70 75.44 40.67 53.83
MOO 51.16 65.87 58.17 73.19 39.18 53.44
TA-MOO 55.73 67.02 64.89 75.85 41.97 53.76

between the average and the worst-case performance. We use the same attack setting for all methods: the
attack is the L∞ untargeted attack with 100 steps, step size ηδ = 2/255 and perturbation limitation ε = 8/255.
The GD solver in TA-MOO uses 10 steps with learning rate ηw = 0.005. Further detail can be found in
Appendix C.

4.1 Adversarial Examples for Ensemble of Models (ENS)

Experimental setting. In our experiment, we use an ensemble of four adversarially trained models:
ResNet18, VGG16, GoogLeNet, and EfficientNet. The architecture is the same for both the CIFAR10 and
CIFAR100 datasets except for the last layer which corresponds with the number of classes in each dataset.
The final output of the ensemble is an average of the probability outputs (i.e., output of the softmax layer).
We use three different losses as an object for generating adversarial examples including CE (Madry et al.,
2018), KL (Zhang et al., 2019), and CW (Carlini & Wagner, 2017).

Results 1: TA-MOO achieves the best performance. Table 1 shows the results of attacking the
ensemble model on the CIFAR10 and CIFAR100 datasets. It can be seen that TA-MOO significantly
outperforms the baselines and achieves the best performance in all the settings. For example, the improvement
over the Uniform strategy is around 10% on both datasets with the CE loss. Comparing to the MinMax
method, the biggest improvement is around 3% for CIFAR10 with CW loss and the lowest one is around
0.6% with the KL loss. The improvement can be observed in all the settings, showing the generality of the
proposed method.

Results 2: When does not MOO work? It can be observed that MOO falls behind all other methods,
even compared with the Uniform strategy. Our hypothesis for the failure of MOO is that in the original
setting with an ensemble of 4 diverse architectures (i.e., ResNet18, VGG16, GoogLeNet, and EfficientNet)
there is one task that dominates the others and makes MOO become trapped (i.e., focusing on improving
the dominant task). To verify our hypothesis, we measure the gradient norm ‖∇δfi(δ)‖ corresponding to
each model and the final weight w of 1000 samples and report the results in Table 2. It can be seen that
the EfficientNet has a much lower gradient strength, therefore, it has a much higher weight. This explains
the highest ASR observed in EfficientNet and the large gap of 19% (56.11% in EfficientNet and 37.05%
in GoogLeNet). To further confirm our hypothesis, we provide an additional experiment on a non-diverse
ensemble model which consists of 4 individual ResNet18 models. It can be observed that in the non-diverse
setting, the gradient strengths are more balanced across models, indicating that no task dominates others.
As a result, MOO shows its effectiveness by outperforming the Uniform strategy by 4.3% in A-All.

Results 3: The importance of the Task-Oriented regularization. It can be observed from Table
2 that in the diverse setting, TA-MOO has a much lower gap (4%) between the highest ASR (53.4% at
EfficientNet) and the lowest one (49.29% at GoogLeNet) compared to MOO ( 19%). Moreover, while the
ASR of EfficientNet is lower by 2.7%, the ASRs of all other architectures have been improved considerably
(i.e., 12% in GoogLeNet). This improvement shows the importance of the Task-Oriented regularization,
which helps to avoid being trapped by one dominating task, as happened in MOO. For the non-diverse
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Table 2: Attacking Ensemble model with a diverse set D={R-ResNet18, V-VGG16, G-GoogLeNet, E-
EfficientNet} and non-diverse set ND={4 ResNets}. w represents the final w of MOO (mean ± std).
‖∇δfi(δ)‖ represents the gradient norm of each model (mean ± std).

A-All A-Avg R/R1 V/R2 G/R3 E/R4

D
‖∇δfi(δ)‖ - - 7.15 ± 6.87 4.29 ± 4.64 7.35 ± 7.21 0.98 ± 0.72
w - - 0.15 ± 0.14 0.17 ±0.13 0.15 ± 0.14 0.53 ± 0.29
Uniform 28.21 48.34 48.89 49.08 48.38 47.03
MOO 25.16 44.76 39.06 46.83 37.05 56.11
TA-MOO 38.01 51.10 49.55 52.15 49.29 53.40

ND
‖∇δfi(δ)‖ - - 8.41 ± 8.22 6.68± 6.95 7.36 ± 6.03 5.67 ± 6.09
w - - 0.23 ± 0.21 0.24±0.17 0.23 ± 0.19 0.30 ± 0.21
Uniform 28.17 48.75 51.94 45.55 54.15 43.34
MOO 32.50 52.21 53.25 49.05 56.80 49.76
TA-MOO 41.01 57.33 58.88 55.32 60.81 54.29

Table 3: Evaluation on the Transferability of adversarial examples. Each cell (row-ith, column-jth) reports
SAR (higher is better) of adversarial examples from the same source architecture (RME) with an adversary
at row-ith to attack an ensemble at column-jth. Each architecture has been denoted by symbols such as R:
ResNet18, M: MobileNet, E: EfficientNet, V: VGG16, W: WideResNet. For examples, RME represents for an
ensemble of ResNet18, MobileNet and EfficientNet.

RME RVW EVW MVW REV MEV RMEV RMEVW
Uniform 31.73 25.03 22.13 22.73 29.50 28.44 26.95 20.50
MinMax 40.01 23.75 22.39 23.34 32.57 32.75 31.85 21.99
MOO 35.20 24.25 22.94 23.76 30.65 32.28 29.49 21.77
TA-MOO 40.97 25.13 23.59 24.38 33.00 33.05 32.14 23.04

setting, when no task dominates others, TA-MOO still shows its effectiveness when improving the ASR in
all tasks by around 5%. The significant improvement can be observed in all settings (except the setting
on EfficientNet with the CIFAR10 dataset) as shown in Table 1, and demonstrates the generality of the
Task-Oriented regularization.

Results 4: TA-MOO achieves the best transferability on a diverse set of ensembles.
Table 3 reports the SAR-All metric of transferred adversarial examples crafted from a source ensemble (RME)
on attacking target ensembles (e.g., RMEVW is an ensemble of 5 models). A higher number indicates a higher
success rate of attacking a target model, therefore, also implies a higher transferability of adversarial examples.
It can be seen that our TA-MOO adversary achieves the highest attacking performance on the whitebox
attack setting, with a huge gap of 9.24% success rate over the Uniform strategy. Our method also achieves the
highest transferability regardless diversity of a target ensemble. More specifically, on target models such as
REV, MEV, and RMEV, where members in the source ensemble (RME) are also in the target ensemble, our
TA-MOO significantly outperforms the Uniform strategy, with the highest improvement is 5.19% observed
on target model RMEV. On the target models EVW and MVW which are less similar to the source model,
our method still outperforms the Uniform strategy by 1.46% and 1.65%. The superior performance of our
adversary on the transferability shows another benefit of using multi-objective optimization in generating
adversarial examples. By reaching the intersection of all members’ adversarial regions, our adversary is
capable to generate a common vulnerable pattern on an input image shared across architectures, therefore,
increasing the transferability of adversarial examples. More discussion can be found in Appendix D.1.
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Table 4: Robustness evaluation of Adversarial Training methods on the CIFAR10 dataset. RME represents
an ensemble of ResNet18 (R), MobileNet (M) and EfficientNet E), while MobiX3 represents an ensemble of
three MobileNets. NAT and ADV measure the natural accuracy and the robust accuracy against PGD-Linf
attack (↑the higher the better). Other metrics measure the success attack rate (SAR) of adversarial examples
generated by the same PGD-Linf attack on fooling each single member and all members of the ensemble
(↓the lower the better).

MobiX3 RME
NAT↑ ADV↑ A-All↓ A-Avg↓ NAT↑ ADV↑ A-All↓ A-Avg↓

PGD-AT 80.43 32.78 54.34 73.89 86.52 37.36 49.01 69.75
MinMax-AT 79.01 37.28 50.28 66.77 83.16 40.40 46.91 65.73
MOO-AT 79.38 33.04 46.28 74.36 82.04 37.48 45.24 70.11
TA-MOO-AT 79.22 38.22 48.21 67.83 82.59 41.32 43.68 65.09

4.2 Adversarial Training with TA-MOO for Ensemble of Models (ENS)

We conduct adversarial training with adversarial examples generated by MOO and TA-MOO attacks to
verify the quality of these adversarial examples and report results on Table 4. The detailed setting and more
experimental results can be found in Appendix D.2. Result 1: Reducing transferability. It can be
seen that the SAR-All of MOO-AT and TA-MOO-AT are much lower than that on other methods. More
specifically, the gap of SAR-All between PGD-AT and TA-MOO-AT is (5.33%) 6.13% on the (non) diverse
setting. The lower SAR-All indicating that adversarial examples are harder to transfer among ensemble
members on the TA-MOO-AT model than on the PGD-AT model. Result 2: Producing more robust
single members. The comparison of average SAR shows that adversarial training with TA-MOO produces
more robust single models than PGD-AT does. More specifically, the average robust accuracy (measured by
100% - A-Avg) of TA-MOO-AT is 32.17%, an improvement of 6.06% over PGD-AT in the non-diverse setting,
while there is an improvement of 4.66% in the diverse setting. Result 3: Adversarial training with
TA-MOO achieves the best robustness. More specifically, on the non-divese setting, TA-MOO-AT
achives 38.22% robust accuracy, an improvement of 1% over MinMax-AT and 5.44% over standard PGD-AT.
On the diverse setting, the improvement over MinMax-AT and PGD-AT are 0.9% and 4%, respectively. The
root of the improvement is the ability to generate stronger adversarial examples in the the sense that they
can challenge not only the entire ensemble model but also all single members. These adversarial examples
lie in the joint insecure region of members (i.e., the low confidence region of multiple classes), therefore,
making the decision boundaries more separate. As a result, adversarial training with TA-MOO produces
more robust single models (i.e., lower SAR-Avg) and significantly reduces the transferability of adversarial
examples among members (i.e., lower SAR-All). These two conditions explain the best ensemble adversarial
robustness achieved by TA-MOO.

4.3 Universal Perturbation (UNI)

Experimental setting. We follow the experimental setup in Wang et al. (2021), where the full test set
(10k images) is randomly divided into equal-size groups (K images per group). The comparison has been
conducted on the CIFAR10 and CIFAR100 datasets, with an adversarially trained ResNet18 model and CW
loss. We observed that the ASR-All was mostly zero, indicating that it is difficult to generate a general
perturbation for all data points. Therefore, in Table 5 we use ASR-Avg to compare the performances of the
methods. More experiments on VGG16 and EfficientNet models can be found in Appendix D.3.

Results. Table 5 shows the evaluation of generating universal perturbations on the CIFAR10 and CIFAR100
datasets, respectively. K represents the number of images that are using the same perturbation. The larger
the value of K, the harder it is to generate a universal perturbation that can be applied successfully to all
images. It can be seen that with a small number of tasks (i.e., K=4), MOO and TA-MOO achieve lower
performance than the MinMax method. However, with a large number of tasks (i.e, K ≥ 8), MOO and
TA-MOO show their effectiveness and achieve the best performance. More specifically, on the CIFAR10
dataset, the improvements of MOO over the Uniform strategy are 5.6%, 4%, 3.2%, and 2.5% with K = 8,
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Table 5: Evaluation of generating Universal Perturbation on the CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100
K=4 K=8 K=12 K=16 K=20 K=4 K=8 K=12 K=16 K=20

Uniform 37.52 30.34 27.41 25.52 24.31 65.40 58.99 55.33 53.02 51.49
MinMax 50.13 33.68 20.46 15.74 14.73 74.73 62.29 52.05 45.26 42.33
MOO 43.80 35.92 31.41 28.75 26.83 69.35 62.72 57.72 54.12 52.25
TA-MOO 48.00 39.31 34.96 31.84 30.12 72.74 68.06 62.33 57.48 54.12

Table 6: Robust adversarial examples against transformations evaluation. I: Identity, H: Horizontal flip, V:
Vertical flip, C: Center crop, G: Adjust gamma, B: Adjust brightness, R: Rotation.

A-All A-Avg I H V C G B R

C10

Uniform 25.98 55.33 44.85 41.58 82.90 72.56 45.92 49.59 49.93
MinMax 30.54 52.20 43.31 41.59 78.80 64.83 44.38 46.53 45.97
MOO 21.25 49.81 36.23 33.93 87.47 71.05 37.68 40.21 42.12
TA-MOO 31.10 55.26 44.15 41.86 85.19 71.86 45.53 48.70 49.54

C100

Uniform 56.19 76.23 70.43 69.01 87.66 87.36 71.40 74.25 73.47
MinMax 59.75 75.72 70.13 69.26 87.45 86.03 71.54 73.30 72.32
MOO 53.17 74.21 66.96 65.68 89.16 87.03 68.49 71.11 71.06
TA-MOO 60.88 76.71 70.43 69.37 89.11 87.95 71.70 74.73 73.69

K = 12, K = 16, and K = 20, respectively. On the same setting, TA-MOO significantly improves MOO by
around 4% in all the K settings and consistently achieves the best performance. Unlike the ENS setting, in the
UNI setting, MOO consistently achieves better performance than the Uniform strategy . This improvement
can be explained by the fact that in the UNI setting with the same architecture and data transformation, no
task dominates the others. There will be a case (a group) when one sample is extremely close to/far from the
decision boundary, and hence easier/harder to fool. However, in the entire test set with a large number of
groups, the issue of dominating tasks is lessened.

4.4 Robust Adversarial Examples against Transformations (EoT)

Results. Table 6 shows the evaluation on the CIFAR10 and CIFAR100 datasets with 7 common data
transformations. It can be observed that (i) MOO has a lower performance than the baselines, (ii) the Task
Oriented regularization significantly boosts the performance, and (iii) our TA-MOO method achieves the
best performance on both settings and outperforms the MinMax method 0.6% and 1.1% in the CIFAR10 and
the CIFAR100 experiments, respectively. The low performance of MOO in observation (i) is again caused by
the issue of one task dominating others. In the EoT setting, it is because of the V-vertical flip transformation
as shown in Table 6. Observation (ii) provides another piece of evidence to support the effectiveness of the
Task-Oriented regularization for MOO. This regularization boosts the ASRs in all the tasks (except V - the
dominant one), increases the average ASR by 5.45% and 2.5% in the CIFAR10 and CIFAR100 experiments,
respectively.

4.5 Additional Experiments with Multi-Task Learning Methods

In this section we would like to provide additional experiments with recent multi-task learning methods
to explore how better constrained approaches can improve over the naive MOO. We applied three recent
multi-task learning methods including PCGrad Yu et al. (2020), CAGrad Liu et al. (2021a), and HVM
Albuquerque et al. (2019) with implementation from their official repositories into our adversarial generation
task. We apply the best practice in Albuquerque et al. (2019) which is adaptively updated the Nadir point
based on the current tasks’ losses. For PCGrad we use the mean as the reduction mode. For CAGrad we
use parameter α = 0.5 and rescale = 1 as in their default setting. We experiment on attacking ensemble
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Table 7: Attacking Ensemble model with a diverse set D={R-ResNet18, V-VGG16, G-GoogLeNet, E-
EfficientNet} and non-diverse set ND={4 ResNets}.

A-All A-Avg R/R1 V/R2 G/R3 E/R4

D

Uniform 28.21 48.34 48.89 49.08 48.38 47.03
HVM 29.88 46.98 48.97 48.10 46.88 43.96
PCGrad 28.25 48.28 48.81 49.03 48.13 47.14
CAGrad 30.23 48.34 47.03 48.22 45.92 52.20
MOO 25.16 44.76 39.06 46.83 37.05 56.11
TA-MOO 38.01 51.10 49.55 52.15 49.29 53.40

ND

Uniform 28.17 48.75 51.94 45.55 54.15 43.34
HVM 28.46 49.87 51.64 50.03 50.72 47.10
PCGrad 28.30 48.75 52.02 45.42 54.35 43.21
CAGrad 35.22 51.07 54.22 47.84 55.24 46.97
MOO 32.50 52.21 53.25 49.05 56.80 49.76
TA-MOO 41.01 57.33 58.88 55.32 60.81 54.29

of models setting with two settings, a diverse set D with 4 different architectures including R-ResNet18,
V-VGG16, G-GoogLeNet, E-EfficientNet and a non-diverse set ND with 4 ResNet18 models.

It can be seen from the Table 7 that in the diverse ensemble setting, the three additional methods HVM,
PCGrad and CAGrad significantly outperform the standard MOO method with the improvement gaps of
SAR-All around 4.7%, 3% and 5%, respectively. In the non-diverse ensemble setting, while HVM and PCGrad
achieve lower performances than the standard MOO method, CAGrad can outperform the MOO method
with a 2.7% improvement. On comparison to the naive uniform method, the three methods also achieve
better performance in both settings.

The improvement on the diverse set of HVM, PCGrad and CAGrad over the standard MOO method is
more noticeable than on the non-diverse set. It can be explained by the fact that on the diverse set of
model architectures, there is a huge difference in gradients among architectures, therefore, requires a better
multi-task learning method to handle the constraint between tasks.

On the other hand, on both ensemble settings, our TA-MOO still achieves the best performance, with a
huge gap of (5.8%) 7.8% compared to the second best method on the (non) diverse setting. It is because
our method can leverage a supervised signal from knowing whether a task is achieved or not to focus on
improving unsuccessful tasks. It is a huge advantage compared to unsupervised multi-task learning methods
as MOO, HVM, PCGrad, and CAGrad.

5 Additional Discussion

In this section, we would like to summarize some important observations through all experiments while the
complete discussion with detail can be found in Appendix E.

Correlation between the objective loss and attack performance. It is broadly accepted that to fool
a model, a feasible approach is maximizing the objective loss (i.e., CE, KL, or CW loss), and the higher the
loss, the higher the attack success rate. While it is true when observing the same architecture, we found
that it is not necessarily true when comparing different architectures. As shown in Figure 1, with CW loss
as the adversarial objective, it can be observed that there is a positive correlation between the loss value
and the ASR, i.e., the higher the loss, the higher the ASR. However, there is no clear correlation observed
when using CE and KL loss. Therefore, the higher weighted loss does not directly imply a higher success rate
for attacking an ensemble of different architectures. The MinMax method (Wang et al., 2021) which solely
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(a) CW (b) CE

Figure 1: Loss (left fig) and ASR (right fig) of each task over all attack iterations with the MinMax method.
model0/1/2/3 represents R/V/G/E architecture, respectively.

weighs tasks’ losses, therefore, is not always appropriate to achieve a good performance in all tasks. More
discussion can be found in Appendix E.4.

When does MOO work? On the one hand, the dominating issue is observed in all three settings (ENS,
UNI, EoT). The issue can be recognized by the gap of attack performance among tasks or by observing the
dominating of one task’s weight over others which is caused by a significant small gradient strength of one
task on comparison with other tasks’ strength as discussed in Section 4.1. The root of the dominating issue
can be the natural of the setting (i.e., as in EoT setting, when the large gap can be observed in all methods)
or the MOO solver.

On the other hand, if overcoming this issue, MOO can outperform the Uniform strategy as shown in Section
4.1. As discussed in Appendix 4.4, a simple memory can helps to overcome the infinite gradient issue and
significantly boosts the performance of MOO or TA-MOO. Therefore, we believe that developing a technique
to lessen the dominating issue might be a potential extension.

More efficient MOO solvers. Inspired by Sener & Koltun (2018), in this paper we use multi-gradient
descent algorithm (Deb, 2011) as a MOO solver which casts the multi-objective problem to a single-objective
problem. However, while Sener & Koltun (2018) used Frank-Wolfe algorithm to project the weight into the
desired simplex, we use parameterization with softmax to do the job. While this technique is much faster
than Frank-Wolfe algorithm, it has some weaknesses that might be target for future works. First, it cannot
handle well the edge case which is the root of the dominating issue. Second, it does not work well in the case
of a non-convex objective space as similar as other MOO scalarizing methods (Deb, 2011).

6 Conclusion

In this paper, we propose Task Oriented Multi-Objective Optimization (TA-MOO), with specific applications
to adversarial generation tasks. We develop a geometry-based regularization term to favor the goal-unachieved
tasks, while trying to maintain the the goal-achieved tasks. We conduct comprehensive experiments to
showcase the merit of our proposed approach on generating adversarial examples and adversarial training. On
the other hand, there are acknowledged limitations of our method such as weaknesses of the gradient-based
solver and lacking theory on algorithm’s convergence which might be target for future works.
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APPENDIX

The Appendix provides technical and experimental details as well as auxiliary aspects to complement the
main paper. Briefly, it contains the following:

• Appendix A: Discussion on related work.

• Appendix B: Detailed proof and an illustration of our methods.

• Appendix C: Detailed description of experimental settings.

• Appendix D.1: Additional experiments on transferability of adversarial examples in the ENS setting.

• Appendix D.2: Additional experiments on adversarial training with our methods.

• Appendix D.3: Additional experiments on the UNI setting.

• Appendix D.4: Additional experiments on the EoT setting.

• Appendix D.5: Additional comparison on speed of generating adversarial examples.

• Appendix D.6: Additional experiments on sensitivity to hyper-parameters.

• Appendix D.7: Additional comparison with standard attacks on attacking performance.

• Appendix D.8: Additional experiments on attacking the ImageNet dataset.

• Appendix E.1: Additional discussions on the dominating issue and when MOO can work.

• Appendix E.2: A summary on the importance of Task-Oriented regularization.

• Appendix E.3: Discussion on the limitation of MOO solver.

• Appendix E.4: Discussion on correlation between the objective loss and attack performance.

• Appendix E.5: Discussion on the conflicting between gradients in the adversarial generation task.

• Appendix E.6: Discussion on the convergence of our methods.

• Appendix E.7: Additional experiments with MOO with different initializations.

A Related Work

Multi-Objective Optimization for multi-task learning. (Désidéri, 2012) proposed a multi-gradient
descent algorithm for multi-objective optimization (MOO) which opens the door for the applications of MOO in
machine learning and deep learning. Inspired by Désidéri (2012), MOO has been applied in multi-task learning
(MTL) (Sener & Koltun, 2018; Mahapatra & Rajan, 2020), few-shot learning (Ye et al., 2021), and knowledge
distillation (Du et al., 2020). Specifically, the work of Sener & Koltun (2018) viewed multi-task learning as
a multi-objective optimization problem, where a task network consists of a shared feature extractor and a
task-specific predictor. The work of Mahapatra & Rajan (2020) developed a gradient-based multi-objective
MTL algorithm to find a solution that satisfies the user preferences. The work of Lin et al. (2019) proposed a
Pareto MTL to find a set of well-distributed Pareto solutions which can represent different trade-offs among
different tasks. Recently, the work of Liu et al. (2021b) leveraged MOO with Stein Variational Gradient
Descent (Liu & Wang, 2016) to diversify the solutions of MOO. Additionally, the work of Ye et al. (2021)
proposed a bi-level MOO which can be applied to few-shot learning. Finally, the work of Du et al. (2020)
applied MOO to enable knowledge distillation from multiple teachers.
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Generating adversarial examples with single-objective and multi-objective optimizations. Gen-
erating qualified adversarial examples is crucial for adversarial training (Madry et al., 2018; Zhang et al., 2019;
Bui et al., 2021a; 2022). Many perturbation based attacks have been proposed, notably FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2018), TRADES (Zhang et al., 2019), CW (Carlini & Wagner, 2017), BIM
(Kurakin et al., 2018), and AutoAttack (Croce & Hein, 2020). Most adversarial attacks aim to maximize a
single objective, e.g., maximizing the cross-entropy (CE) loss w.r.t. the ground-truth label (Madry et al.,
2018), maximizing the Kullback-Leibler (KL) divergence w.r.t. the predicted probabilities of a benign example
(Zhang et al., 2019), or maximizing the CW loss (Carlini & Wagner, 2017). However, in some contexts, we
need to generate adversarial examples maximizing multiple objectives or goals, e.g., attacking multiple models
(Pang et al., 2019; Bui et al., 2020) or finding universal perturbations (Moosavi-Dezfooli et al., 2017).

The work of Suzuki et al. (2019) was a pioneering attempt to consider the generation of adversarial examples as
a multi-objective optimization problem. The authors proposed a non-adaptive method based on Evolutionary
Multi-Objective Optimization (EMOO) Deb (2011) to generate sets of adversarial examples. However, the
EMOO method is computationally expensive and requires a large number of evaluations, which limits its
practicality. Additionally, the authors applied MOO without conducting an extensive study on the behavior
of the algorithm, which could limit the effectiveness of the proposed method. Furthermore, the experimental
results presented in the work are limited, which could weaken the evidence for the effectiveness of the proposed
method.

To this end, the work of Wang et al. (2021) examined the worst-case scenario by casting the problem of
interest as a min-max problem for finding the weight of each task. However, this principle leads to a problem
of lacking generality in other tasks. To mitigate the issue, Wang et al. (2021) proposed a regularization to
strike a balance between the average and the worst-case performance. The final optimization was formulated
as follow:

max
δ:‖δ‖≤ε

min
w∈∆m

K∑

i=1
wifi(δ) + γ

2 ‖w − 1/K‖22,

Where fi(v) is the victim model’s loss (i.e., cross entropy loss or KL divergence) and γ > 0 is the regularization
parameter. The authors used the bisection method (Boyd et al., 2004) with project gradient descent for
the inner minimization and project gradient ascent for the outer maximization. There are several major
differences in comparison to MOO and TA-MOO methods: (i) In principle, MinMax considers the worst-case
performance only while our methods improve performance of all tasks simultaneously. (ii) MinMax weighs
the tasks’ losses to find the minimal weighted sum loss in its inner minimization, however, as discussed in
Section E.4 the higher weighted loss does not directly imply the higher success rate in attacking multi-tasks
simultaneously. In contrast, our methods use multi-gradient descent algorithm (Deb, 2011) in order to
increase losses of all tasks simultaneously. (iii) The original principle of MinMax leads to the biasing problem
to the worst-case task. The above regularization has been used to mitigate the issue, however, it considers all
tasks equally. In contrast, our TA-MOO takes goal-achievement status of each task into account and focuses
more on the goal-unachieved tasks.

Recently, Guo et al. (2020) proposed a multi-task adversarial attack and demonstrated on the universal
perturbation problem. However, while Wang et al. (2021) and ours can be classified as an iterative optimization-
based attack, Guo et al. (2020) requires a generative model in order to generate adversarial examples. While
this line of attack is faster than optimization-based attacks at the inference phase, it requires to train a
generator on several tasks beforehand. Due to the difference in setting, we do not compare with that work in
this paper.

More recently, Qiu et al. (2022) proposed a framework to attack a generative Deepfake model using the
multi-gradient descent algorithm in their backpropagation step. While their method also use the multi-
objective optimization for generating adversarial examples, there are several major differences to ours. Firstly,
their method aims for a generative Deepfake model while our method aims for the standard classification
problem which is the most common and important setting in AML. Secondly, we conduct comprehensive
experiments to show that a direct and naive application of MOO to adversarial generation tasks does not
work satisfactorily because of the gradient dominating problem. Most importantly, we propose the TA-MOO
method which employs a geometry-based regularization term to favor the unsuccessful tasks, while trying to
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maintain the performance of the already successful tasks. We have conducted extensive experiments to show
that our TA-MOO consistently achieves the best attacking performance across different settings. We also
conducted additional experiments with SOTA multi-task learning methods which are PCGrad (Yu et al.,
2020) and CAGrad (Liu et al., 2021a) in Section 4.5. Compared to these methods, our TA-MOO still achieves
the best attack performance thanks to the Task Oriented regularization.

B Further Details of the Proposed Method

B.1 Proofs

Lemma 1. Sorting ws+1:m into us+1:m such that us+1 ≥ us+2 ≥ ... ≥ um. Defining ρ =
max

{
s+ 1 ≤ i ≤ m : ui + 1

i−s

(
1−∑i

j=s+1 uj

)
> 0
}
. Denoting γ = 1

ρ

(
1−∑ρ

i=s+1 ui
)
, the projection

projS (w) can be computed as

projS (w)i =
{

0 1 ≤ i ≤ s
max {wi + γ, 0} otherwise

Furthermore, the regularization Ω (w) has the form:

Ω (w) =
s∑

i=1
w2
i +

m∑

i=s+1
(wi −max {wi + γ, 0})2

. (5)

Proof. The proof is based on Wang & Carreira-Perpinán (2013) with modifications. We need to solve the
following OP:

min
π

1
2 ‖w − π‖

2
2

s.t. :π ≥ 0
‖π‖1 = 1.

We note that π1 = ... = πs = 0. The OP of interest reduces to

min
πs+1:m

1
2

m∑

i=s+1
(πi − wi)2

s.t. :πs+1:m ≥ 0
m∑

i=s+1
πi = 1.

Using the Karush-Kuhn-Tucker (KKT) theorem, we construct the following Lagrange function:

L (π, γ, β) = 1
2

m∑

i=s+1
(πi − wi)2 − γ

(
m∑

i=s+1
πi − 1

)
−

m∑

i=s+1
βiπi.

Setting the derivative w.r.t. πi to zeros and using the KKT conditions, we obtain:

πi − wi − γ − βi = 0,∀i = s+ 1, ...,m
m∑

i=s+1
πi =1

βi ≥ 0, πi ≥ 0,βiπi = 0,∀i = s+ 1, ...,m.
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If πi > 0, βi = 0, hence πi = wi + γ > 0. Otherwise, if πi = 0, wi + γ = −βi ≤ 0. Therefore, ws+1:m has the
same order as πs+1:m and we can arrange them as:

πs+1 ≥ πs+2 ≥ ... ≥ πρ > πρ−1 = ... = πm = 0.

us+1 = ws+1 ≥ us+2 = ws+2 ≥ .... ≥ up = wp ≥ uρ−1 = wρ−1 ≥ ... ≥ um = wm ≥ 0.

It appears that 1 =
∑m
i=s+1 πi =

∑ρ
i=s+1 πi =

∑ρ
i=s+1 (wi + γ) =

∑ρ
i=s+1 wi + (ρ− s) γ.

Hence, we gain γ = 1
ρ−s

[
1−∑ρ

i=s+1 wi
]

= 1
ρ−s

[
1−∑ρ

i=s+1 ui
]
. We now prove that ρ =

max
{
s+ 1 ≤ i ≤ m : ui + 1

i−s

(
1−∑i

j=s+1 uj

)
> 0
}
.

• For i = ρ, we have

uρ + 1
ρ− s


1−

ρ∑

j=s+1
uj


 = uρ + γ = wρ + γ > 0.

• For i < ρ, we have

ui + 1
i− s


1−

i∑

j=s+1
uj


 = 1

i− s


(i− s)ui + 1−

i∑

j=s+1
uj




= 1
i− s


(i− s)wi +

ρ−1∑

j=s+1
πj −

i∑

j=s+1
wj




= 1
i− s


(i− s)wi +

ρ−1∑

j=i+1
πj +

i∑

j=s+1
(πj − wj)




= 1
i− s


(i− s) (wi + γ) +

ρ−1∑

j=i+1
πj




= 1
i− s


(i− s)πi +

ρ−1∑

j=i+1
πj


 > 0.

• For i > ρ, we have

ui + 1
i− s


1−

i∑

j=s+1
uj


 = 1

i− s


(i− s)ui + 1−

i∑

j=s+1
uj




= 1
i− s


(i− s)wi +

ρ−1∑

j=s+1
πj −

i∑

j=s+1
wj




= 1
i− s


(i− s)wi +

ρ−1∑

j=s+1
(πj − wj)−

i∑

j=ρ
wj




= 1
i− s


(i− s)wi + (ρ− s− 1)γ −

i∑

j=ρ
wj




= 1
i− s


(ρ− s− 1)(wi + γ) +

i∑

j=ρ
(wi − wj)


 ≤ 0.
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Figure 2: Visualization of standard MOO and TA-MOO solutions in a scenario of 2 goal-achieved tasks
(∇fs1,2) and 2 goal-unachieved tasks (∇fu1,2). (left) MOO; (middle) MOO on the set of goal-unachieved tasks
only; (right) TA-MOO with a solution focuses more on the goal-unachieved tasks.

Therefore, ρ = max
{
s+ 1 ≤ i ≤ m : ui + 1

i−s

(
1−∑i

j=s+1 uj

)
> 0
}
. Finally, we also have πi = max{wi +

γ, 0}, i = s+ 1, ...,m and πi = 0, i = 1, ..., s.
Theorem 1. The regularization Ω (w) has the following closed-form:

Ω (w) =
s∑

i=1
w2
i + 1

m− s

(
1−

m∑

i=s+1
wi

)2

. (6)

Proof. Recall ρ = max
{
s+ 1 ≤ i ≤ m : ui + 1

i−s

(
1−∑i

j=s+1 uj

)
> 0
}
. Therefore, ρ = m because we have

um + 1
m− s


1−

m∑

j=s+1
uj


 = wm + 1

m− s


1−

m∑

j=s+1
wj


 = wm +

∑s
j=1 wj

m− s > 0.

It follows that

γ = 1
m− s

(
1−

m∑

i=s+1
ui

)
= 1
m− s

(
1−

m∑

i=s+1
wi

)
≥ 0.

projS (w)i =
{

0 1 ≤ i ≤ s
max {wi + γ, 0} = wi + γ otherwise

Ω (w) =
s∑

i=1
w2
i +

m∑

i=s+1
(wi −max {wi + γ, 0})2

=
s∑

i=1
w2
i +

m∑

i=s+1
γ2 =

s∑

i=1
w2
i + (m− s)γ2

=
s∑

i=1
w2
i + 1

m− s

(
1−

m∑

i=s+1
wi

)2

.

B.2 Illustrations of How MOO and TA-MOO Work

Figure 2 illustrates solutions of MOO and TA-MOO in a scenario of 2 goal-achieved tasks (with corresponding
gradients ∇fs1,2) and 2 goal-unachieved tasks (with corresponding gradients ∇fu1,2). As illustrated in the left
figure, with standard MOO method, where all the tasks’ gradients have been considered regardless their status
and the solution associated with the minimal norm is the perpendicular vector as suggested by geometry
(Sener & Koltun, 2018). If considering the goal-unachieved tasks only as in the middle case, the MOO solution
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Table 8: Robustness performance of models in the experiments

CIFAR10 CIFAR100
Nat-Acc Adv-Acc Nat-Acc Adv-Acc

ResNet18 86.47 42.14 59.64 18.62
VGG16 84.24 40.88 55.27 16.41
GoogLeNet 88.26 41.26 63.10 19.16
EfficientNet 74.52 41.36 57.67 19.90
MobileNet 76.52 31.12 - -
WideResNet 88.13 48.62 - -

is the edge case. However, this extreme strategy ignores all the goal-achieved tasks which might lead to the
instability. The Task Oriented regularization strikes a balance between the two aforementioned strategies as
illustrated in the right figure. The method focuses more on improving the goal-unachieved tasks while spend
less effort to maintain the goal-achieved tasks. With λ = 0 the TA-MOO optimal solution is equivalent to the
standard MOO optimal solution while it becomes the MOO solution in the case of the goal-unachieved tasks
only when λ→∞.

C Experimental settings

General settings. Through our experiments, we use six common architectures including ResNet18 (He
et al., 2016), VGG16 (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), EfficientNet (B0)
(Tan & Le, 2019), MobileNet Howard et al. (2017), and WideResNet (with depth 34 and widen factor 10)
Zagoruyko & Komodakis (2016) with the implementation of https://github.com/kuangliu/pytorch-cifar.
We evaluate on the full testing set (10k) of two benchmark datasets which are CIFAR10 and CIFAR100
(Krizhevsky et al., 2009). More specifically, the two datasets have 50k training images and 10k testing images,
respectively, with the same image resolution of 32 × 32 × 3. However, while the CIFAR10 dataset has 10
classes, the CIFAR100 dataset has 100 classes and fewer images per class. Therefore, in general, an adversary
is easier to attack a CIFAR100 model than a CIFAR10 one as shown in Table 8. We observed that the attack
performance is saturated with standard training models. Therefore, to make the job of adversaries more
challenging, we use Adversarial Training with PGD-AT (Madry et al., 2018) to robustify the models and use
these robust models as victim models in our experiments. Specifically, we use the SGD optimizer (momentum
0.9 and weight decay 5× 10−4) and Cosine Annealing Scheduler to adjust the learning rate with an initial
value of 0.1 and train a model in 200 epochs as suggested in the implementation above. We use PGD-AT
L∞ (Madry et al., 2018) with the same setting for both CIFAR10 and CIFAR100 datasets, i.e., perturbation
limitation ε = 8/255, k = 20 steps, and step size η = 2/255.

Method settings. In this work, we evaluate all the methods in the untargeted attack setting with L∞
norm. The attack parameters are the same among methods, i.e., number of attack steps 100, attack budget
ε = 8/255 and step size ηδ = 2/255. In our method, we use K=10 to update the weight in each step with
learning rate ηw = 0.005. Tradeoff parameter λ = 100 in all experiments. In MinMax (Wang et al., 2021), we
use the same γ = 3 for all settings and use the authors’ implementation 2.

Attacking ensemble model settings. In our experiment, we use an ensemble of four adversarially
trained models: ResNet18, VGG16, GoogLeNet, and EfficientNet. The architecture is the same for both the
CIFAR10 and CIFAR100 datasets except for the last layer which corresponds with the number of classes
in each dataset. The final output of the ensemble is an average of the probability outputs (i.e., output of
the softmax layer). We use three different losses as an object for generating adversarial examples including
Cross Entropy (CE) (Madry et al., 2018), Kullback-Leibler divergence (KL) (Zhang et al., 2019), and CW
loss (Carlini & Wagner, 2017).

2https://github.com/wangjksjtu/minmax-adv
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Table 9: Data transformation setting. U represents uniform sampling function and p represents probability
to excuse a transformation (e.g., flipping).

Deterministic Stochastic
Identity Identity Identity
Horizontal flip p = 1 p = 0.5
Vertical flip p = 1 p = 0.5
Center crop scale = 0.6 scale = U(0.6, 1.0)
Adjust brightness factor = 1.3 factor = U(1.0, 1.3)
Rotation angle = 10 angle = U(−10 , 10 )
Adjust gamma gamma = 1.3 gamma = U(0.7, 1.3)

Universal perturbation settings. We follow the experimental setup in Wang et al. (2021), such that the
full test set (10k images) is randomly divided into equal-size groups (K images per group). The comparison has
been conducted on the CIFAR10 and CIFAR100 datasets, and CW loss. We use adversarial trained ResNet18,
VGG16 and EfficientNet as base models. We observed that the ASR-All was mostly zero, indicating that it
is difficult to generate a general perturbation for all data points. Therefore, we use ASR-Avg to compare the
performances of the methods.

Robust adversarial examples against transformations settings. In our experiment, we use 7
common data transformations including I-Identity, H-Horizontal flip, V-Vertical flip, C-Center crop, B-Adjust
brightness, R-Rotation, and G-Adjust gamma. The parameter setting for each transformation has been
shown in Table 9. In the deterministic setting, a transformation has been fixed with one specific parameter,
e.g., center cropping with a scale of 0.6 or adjusting brightness with a factor of 1.3. While in the stochastic
setting, a transformation has been uniformly sampled from its family, e.g., center cropping with a random
scale in range (0.6, 1.0) or adjusting brightness with a random factor in range (1.0, 1.3). The experiment has
been conducted on adversarially trained ResNet18 model with the CW loss.

D Additional Experiments

D.1 Transferability of adversarial examples in the ENS setting

We conduct an additional experiment to evaluate the transferability of our adversarial examples. We use
an ensemble (RME) of three models: ResNet18, MobileNet, and EfficientNet as a source model and apply
different adversaries to generate adversarial examples to this ensemble. We then use these adversarial
examples to attack other ensemble architectures (target models), for example, RMEVW is an ensemble of 5
models including ResNet18, MobileNet, EfficientNet, VGG16 and WideResNet. Table 10 reports the SAR-All
metric of transferred adversarial examples, where a higher number indicates a higher success rate of attacking
a target model, therefore, also implies a higher transferability of adversarial examples. The first column
(heading RME) shows SAR-All when adversarial examples attack the source model (i.e., the whitebox attack
setting).

The Uniform strategy achieves the lowest transferability. It can be observed from Table 10 that
the Uniform strategy achieves the lowest SAR in the whitebox attack setting. This strategy also has the
lowest transferability in attacking other ensembles (except an ensemble RVW).

MinMax’s transferability drops on dissimilar target models. While MinMax achieves the second-
best performance in the whitebox attack setting, its adversarial examples have a low transferability when
target models are different from the source model. For example, in the target model RVW where there is only
one member of the target model from the source model (RME) (i.e., R or ResNet18), MinMax achieves a
23.75% success rate which is lower than the Uniform strategy by 1.28%. Similar observation can be observed
on target models EVW and MVW, where MinMax outperforms the Uniform strategy by just 0.2% and 0.6%,
respectively.
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Table 10: Evaluation on the Transferability of adversarial examples. Each cell (row-ith, column-jth) reports
SAR (higher is better) of adversarial examples from the same source architecture (RME) with an adversary
at row-ith to attack an ensemble at column-jth. Each architecture has been denoted by symbols such as R:
ResNet18, M: MobileNet, E: EfficientNet, V: VGG16, W: WideResNet. For examples, RME represents for an
ensemble of ResNet18, MobileNet and EfficientNet. The highest/second highest performance is highlighted in
Bold/Underline. The table is copied from Table 3 in the main paper for reading comprehension purpose.

RME RVW EVW MVW REV MEV RMEV RMEVW
Uniform 31.73 25.03 22.13 22.73 29.50 28.44 26.95 20.50
MinMax 40.01 23.75 22.39 23.34 32.57 32.75 31.85 21.99
MOO 35.20 24.25 22.94 23.76 30.65 32.28 29.49 21.77
TA-MOO 40.97 25.13 23.59 24.38 33.00 33.05 32.14 23.04

TA-MOO achieves the highest transferability on a diverse set of ensembles . Our TA-MOO
adversary achieves the highest attacking performance on the whitebox attack setting, with a huge gap of
9.24% success rate over the Uniform strategy. Our method also achieves the highest transferability regardless
diversity of a target ensemble. More specifically, on target models such as REV, MEV, and RMEV, where
members in the source ensemble (RME) are also in the target ensemble, our TA-MOO significantly outperforms
the Uniform strategy, with the highest improvement is 5.19% observed on target model RMEV. On the target
models EVW and MVW which are less similar to the source model, our method still outperforms the Uniform
strategy by 1.46% and 1.65%. The superior performance of our adversary on the transferability shows another
benefit of using multi-objective optimization in generating adversarial examples. By reaching the intersection
of all members’ adversarial regions, our adversary is capable to generate a common vulnerable pattern on an
input image shared across architectures, therefore, increasing the transferability of adversarial examples.

D.2 Adversarial Training with TA-MOO

Setting. We conduct adversarial training with adversarial examples generated by MOO and TA-MOO
attacks to verify the quality of these adversarial examples. We choose an ensemble of 3 MobileNet architectures
(non-diverse set) and ensemble of 3 different architectures including ResNet18, MobileNet and EfficientNet
(diverse set). To evaluate the adversarial robustness, we compare natural accuracy (NAT) and robust accuracy
(ADV) against PGD-Linf attack of these adversarial training methods (the higher the better). We also measure
the success attack rate (SAR) of adversarial examples generated by the same PGD-Linf attack on fooling each
single member and all members of the ensemble (the lower the better). We use k = 10, ε = 8/255, η = 2/255
for adversarial training and PGD-Linf with k = 20, ε = 8/255, η = 2/255 for robustness evaluation. We use
SGD optimizer with momentum 0.9 and weight decay 5e-4. Initial learning rate is 0.1 with Cosine Annealing
scheduler and train on 100 epochs.

Result 1. Reducing transferability. It can be seen that the SAR-All of MOO-AT and TA-MOO-AT
are much lower than that on other methods. More specifically, the gap of SAR-All between PGD-AT and
TA-MOO-AT is (5.33%) 6.13% on the (non) diverse setting. The lower SAR-All indicating that adversarial
examples are harder to transfer among ensemble members on the TA-MOO-AT model than on the PGD-AT
model.

Result 2. Producing more robust single members. The comparison of average SAR shows that
adversarial training with TA-MOO produces more robust single models than PGD-AT does. More specifically,
the average robust accuracy (measured by 100% - A-Avg) of TA-MOO-AT is 32.17%, an improvement of
6.06% over PGD-AT in the non-diverse setting, while there is an improvement of 4.66% in the diverse setting.

Result 3. Adversarial training with TA-MOO achieves the best robustness. More specifically,
on the non-divese setting, TA-MOO-AT achives 38.22% robust accuracy, an improvement of 1% over MinMax-
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Table 11: Robustness evaluation of Adversarial Training methods on the CIFAR10 dataset. RME represents
an ensemble of ResNet18 (R), MobileNet (M) and EfficientNet E), while MobiX3 represents an ensemble of
three MobileNets. NAT and ADV measure the natural accuracy and the robust accuracy against PGD-Linf
attack (↑the higher the better). Other metrics measure the success attack rate (SAR) of adversarial examples
generated by the same PGD-Linf attack on fooling each single member and all members of the ensemble
(↓the lower the better). The highest/second highest robustness is highlighted in Bold/Underline. The most
important metric is emphasized in blue.

Arch NAT↑ ADV↑ A-All↓ A-Avg↓ R/M1↓ M/M2↓ E/M3↓
PGD-AT MobiX3 80.43 32.78 54.34 73.89 76.17 74.35 71.14
MinMax-AT MobiX3 79.01 37.28 50.28 66.77 65.27 70.27 64.78
MOO-AT MobiX3 79.38 33.04 46.28 74.36 71.25 74.53 77.29
TA-MOO-AT MobiX3 79.22 38.22 48.21 67.83 68.04 67.37 68.07
PGD-AT RME 86.52 37.36 49.01 69.75 65.81 75.24 68.21
MinMax-AT RME 83.16 40.40 46.91 65.73 65.22 68.28 63.70
MOO -AT RME 82.04 37.48 45.24 70.11 69.00 75.43 65.90
TA-MOO-AT RME 82.59 41.32 43.68 65.09 63.77 68.98 62.51

AT and 5.44% over standard PGD-AT. On the diverse setting, the improvement over MinMax-AT and
PGD-AT are 0.9% and 4%, respectively. The root of the improvement is the ability to generate stronger
adversarial examples in the the sense that they can challenge not only the entire ensemble model but also all
single members. These adversarial examples lie in the joint insecure region of members (i.e., the low confidence
region of multiple classes), therefore, making the decision boundaries more separate. As a result, adversarial
training with TA-MOO produces more robust single models (i.e., lower SAR-Avg) and significantly reduces
the transferability of adversarial examples among members (i.e., lower SAR-All). These two conditions
explain the best ensemble adversarial robustness achieved by TA-MOO.

D.3 Universal Perturbation (UNI)

Additional experimental results. In addition to the experiments on ResNet18 as reported in Table 5,
we would like to provide additional experimental results on two other adversarial trained models VGG16 and
EfficientNet as shown in Table 12. It can be seen that, TA-MOO consistently achieves the best attacking
performance on ResNet18 and VGG16, on both CIFAR10 and CIFAR100 datasets, with K ≥ 8.

Why does MOO work? As shown in Table 12, MOO consistently achieves better performance than the
Uniform strategy (except for the setting with EfficientNet on the CIFAR100 dataset). To find out the reason
for the improvement, we investigate the gradient norm ‖∇δf(δ)‖ and weight w for the first, and second
groups (as an example) and the average over 100 groups of the testset as shown in Table 13. It can be seen
that in the first and second groups, there are some tasks that have significantly low gradient strengths than
other tasks. The gap of the strongest/weakest gradient strength can be a magnitude of 106 indicating the
domination of one task over others. While this issue can cause the failure as in the ENS setting, however, in
the UNI setting, the lowest gradient strengths in each group correspond to unsuccessful tasks (unsuccessful
adversarial examples) and vice versa. Recall that we use the multi-gradient descent algorithm to solve MOO,
which in principle assigns a higher weight for a weaker gradient vector. Therefore, in the UNI setting, while
the dominating issue still exists, fortunately, the result still fits our desired weighting strategy (i.e., higher
weight for an unsuccessful task and vice versa). Moreover, when there are a large number of groups (i.e., 100
groups), the issue of dominating tasks is alleviated. The average gradient strength is more balanced as shown
in Table 13. This explains the improvement of MOO over the Uniform strategy in the UNI setting.
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(a) MobiX3 (b) RME

Figure 3: Comparison progress of three adversarial training methods. The bigger marker size represents the
later epoch. Each point represents the natural accuracy and robust accuracy against PGD-Linf attack on the
testing set.

Table 12: Evaluation of generating Universal Perturbation on the CIFAR10 and CIFAR100 datasets. R:
ResNet18, V: VGG16, E: EfficientNet.

CIFAR10 CIFAR100
K=4 K=8 K=12 K=16 K=20 K=4 K=8 K=12 K=16 K=20

R

Uniform 37.52 30.34 27.41 25.52 24.31 65.40 58.99 55.33 53.02 51.49
MinMax 50.13 33.68 20.46 15.74 14.73 74.73 62.29 52.05 45.26 42.33
MOO 43.80 35.92 31.41 28.75 26.83 69.35 62.72 57.72 54.12 52.25
TA-MOO 48.00 39.31 34.96 31.84 30.12 72.74 68.06 62.33 57.48 54.12

V

Uniform 37.76 30.81 27.49 25.94 24.46 66.87 61.49 58.53 56.29 54.98
MinMax 47.96 30.88 20.20 16.93 16.25 78.58 69.14 58.85 51.81 48.09
MOO 43.04 34.56 30.07 27.43 25.42 73.46 66.51 61.28 57.88 56.09
TA-MOO 46.58 38.33 32.32 29.16 26.56 75.57 71.86 67.22 62.99 59.19

E

Uniform 44.86 39.03 36.37 34.65 33.49 67.55 60.99 57.35 54.84 53.57
MinMax 44.47 32.96 28.86 27.01 26.47 69.69 57.99 50.93 45.59 43.87
MOO 45.31 39.28 36.44 34.72 33.51 66.68 59.69 54.95 53.20 51.43
TA-MOO 46.74 37.95 33.95 31.71 30.41 70.40 63.78 58.17 53.26 50.66

26



Published in Transactions on Machine Learning Research (05/2023)

Table 13: Evaluation of generating Universal Perturbation (K=8) on the CIFAR10 dataset with ResNet18
architecture and MOO method. {Ti}Ki=1 represents value for each task (i.e., a sample in a group). w1/w2
represents the weight of the first/second group of K samples, while w represents the the statistic of weight
over all groups (mean±std). ‖∇δ1fi(δ1)‖ / ‖∇δ2fi(δ2)‖ represents the gradient norm of the first/second
group of K samples, while ‖∇δfi(δ)‖ represents the statistic of gradient norm over all groups (mean±std).
I0/I1 represents the indicator function for a successful (1) or unsuccessful (0) task, while I represents the the
statistic of successful rate over all groups.

T1 T2 T3 T4 T5 T6 T7 T8

‖∇δ1fi(δ1)‖ 1.15e1 3.45e-5 1.97e-2 1.26e-4 1.27e0 1.04e-1 1.04e1 9.91e0
w0 0.0238 0.1861 0.1859 0.1861 0.1763 0.1862 0.0257 0.0299
I0 1 0 0 0 0 0 1 1
‖∇δ2fi(δ2)‖ 9.70e0 1.59e1 4.32e-4 4.27e-4 1.25e1 6.23e-5 2.91e-5 6.17e-6
w1 0.0341 0.0167 0.1854 0.1854 0.0222 0.1854 0.1854 0.1854
I1 1 1 0 0 1 0 0 0
‖∇δfi(δ)‖ 4.93±6.63 4.23±6.97 5.18±7.42 3.84±5.83 4.39±6.04 6.66±7.64 4.82±7.48 5.25±7.17
w 0.12±0.08 0.14±0.09 0.12±0.08 0.13±0.08 0.12±0.09 0.10±0.08 0.14±0.10 0.11±0.08
I 0.38±0.49 0.28±0.46 0.36±0.48 0.32±0.48 0.38±0.48 0.48±0.50 0.32±0.47 0.40±0.49

D.4 Robust Adversarial Examples against Transformations (EoT)

We observed that in EoT with the stochastic setting, adjusting gamma sometimes has the overflow issue
resulting in an infinite gradient. Recall that our method using MGDA to solve MOO which relies on the
stability of gradient strengths. Therefore, in the case of having infinite gradients, learning weight w is unstable,
resulting to lower performance in both MOO and TA-MOO.

To overcome the overflow issue, we allocate memory to cache the valid gradient of each task in the previous
iteration and replace the infinite value in the current iteration with the valid one in the memory. The storage
only requires a tensor with the same shape as the gradient (i.e., as the exact size of the input), therefore, it
does not increase the computation resource significantly. As shown in Table 14, this simple technique helps
to improve performance of TA-MOO by 5.3% on both the CIFAR10 and CIFAR100 datasets. It also helps to
improve performance of MOO by 0.8% and 4.8%, respectively. Finally, after overcoming the gradient issue,
the TA-MOO achieves the best performance on the CIFAR100 dataset and the second best performance on
the CIFAR10 dataset (0.4% lower in ASR-All but 0.8% higher in ASR-Avg when comparing to MinMax).
This result provides additional evidence of the advantage of our method.

D.5 Generating Speed Comparison and Experiments’ Stability

Generating Speed Comparison. Table 16 shows the average time to generate one adversarial example
in each setting. The results are measured on the CIFAR10 dataset with ResNet18 architecture in the Ensemble
of Transformations (EoT) and Universal Perturbation (Uni) settings. We use 1 Titan RTX 24GB for the EoT
experiment and 4 Tesla V100 16GB each for the other experiments. It is worth mentioning that our primary
focus in this paper is showing the advantage of MOO and the Task-Oriented regularization in generating
adversarial examples. Therefore, we did not try to optimize our implementation in terms of generating time.

Experiments’ Stability. We conduct an experiment with 5 different random seeds to generate adversarial
examples for the ENS setting to evaluate the stability of experimental results on choosing of random seed.
The experiment is on the CIFAR10 dataset, with an ensemble of 4 architectures including ResNet18, VGG16,
GoogLeNet, and EfficientNet. We report mean and variation values in Table 17. It can be observed that
there is a slight variation in attack performances across methods. The variation is small enough compared to
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Table 14: Robust adversarial examples against transformations evaluation. The highest/second highest
performance is highlighted in Bold/Underline. MOO? and TA-MOO? represent version with memory to
overcome the infinite gradient issue in the stochastic setting.

Deterministic Stochastic
A-All A-Avg A-All A-Avg

C10

Uniform 25.98 55.33 31.47 50.55
MinMax 30.54 52.20 33.35 49.44
MOO 21.25 49.81 26.97 43.84
TA-MOO 31.10 55.26 28.26 45.67
MOO? - - 27.79 45.91
TA-MOO? - - 32.96 50.27

C100

Uniform 56.19 76.23 59.89 73.73
MinMax 59.75 75.72 61.30 73.59
MOO 53.17 74.21 54.96 69.26
TA-MOO 60.88 76.71 56.23 69.91
MOO? - - 58.79 72.81
TA-MOO? - - 61.54 74.07

Table 15: Robust adversarial examples against transformations evaluation. The highest/second highest
performance is highlighted in Bold/Underline. The most important metric is emphasized in blue color.
MOO? and TA-MOO? represent version with memory to overcome the infinite gradient issue in the stochastic
setting. I: Identity, H: Horizontal flip, V: Vertical flip, C: Center crop, G: Adjust gamma, B: Adjust brightness,
R: Rotation.

A-All A-Avg I H V C G B R

D-C10

Uniform 25.98 55.33 44.85 41.58 82.90 72.56 45.92 49.59 49.93
MinMax 30.54 52.20 43.31 41.59 78.80 64.83 44.38 46.53 45.97
MOO 21.25 49.81 36.23 33.93 87.47 71.05 37.68 40.21 42.12
TA-MOO 31.10 55.26 44.15 41.86 85.19 71.86 45.53 48.70 49.54

D-C100

Uniform 56.19 76.23 70.43 69.01 87.66 87.36 71.40 74.25 73.47
MinMax 59.75 75.72 70.13 69.26 87.45 86.03 71.54 73.30 72.32
MOO 53.17 74.21 66.96 65.68 89.16 87.03 68.49 71.11 71.06
TA-MOO 60.88 76.71 70.43 69.37 89.11 87.95 71.70 74.73 73.69

S-C10

Uniform 31.47 50.55 48.58 44.70 65.52 51.14 47.43 48.76 47.70
MinMax 33.35 49.44 47.35 44.45 62.78 51.75 46.32 47.13 46.34
MOO 26.97 43.84 40.62 38.45 57.65 48.55 40.41 40.71 40.47
TA-MOO 28.26 45.67 42.80 39.66 61.98 47.92 41.80 43.01 42.54
MOO? 27.79 45.91 42.43 39.65 62.11 51.44 41.62 42.21 41.92
TA-MOO? 32.96 50.27 48.18 45.26 62.97 52.49 47.03 48.22 47.76

S-C100

Uniform 59.89 73.73 73.19 71.15 79.73 74.81 72.05 73.10 72.10
MinMax 61.30 73.59 72.44 70.55 80.04 75.55 71.99 72.49 72.10
MOO 54.96 69.26 67.62 66.11 75.88 72.72 66.87 68.11 67.49
TA-MOO 56.23 69.91 68.52 66.92 76.70 72.71 67.57 68.97 67.97
MOO? 58.79 72.81 71.58 69.08 80.17 75.01 70.78 71.71 71.33
TA-MOO? 61.54 74.07 72.95 70.95 80.94 76.22 72.22 73.21 72.00
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Table 16: Average time per sample for generating adversarial example. All experiments are measured on the
CIFAR10 dataset, EoT and Uni are with ResNet18 architecture.

Ensemble (K=4) EoT (K=7) Uni@K=12 Uni@K=20
Uniform 640ms 350ms 1850ms 3030ms
MinMax 1540ms 610ms 1210ms 2080ms
MOO 1770ms 1130ms 5600ms 9280ms

TA-MOO 1960ms 1200ms 5870ms 9500ms

Table 17: Stability of experiments’ evaluation on different random seeds. Experiment on the ENS setting,
with an ensemble of 4 models: Resnet18, VGG16, GoogleNet and EfficientNet.

A-All A-Avg R V G E
Uniform 28.12 ± 0.09 48.29 ± 0.05 48.81 ± 0.08 49.06 ± 0.08 48.27 ± 0.10 47.06 ± 0.03
MOO 25.61 ± 0.36 45.13 ± 0.30 39.84 ± 0.62 47.29 ± 0.36 37.51 ± 0.36 55.90 ± 0.17
TA-MOO 37.56 ± 0.32 51.15 ± 0.21 49.37 ± 0.15 52.80 ± 0.45 48.98 ± 0.25 53.24 ± 0.13

the gap between methods (i.e., the biggest variation is 0.32% in SAR-All while the smallest gap is 2.51%
between MOO and the Uniform approach), therefore, making the comparison still reliable.

D.6 Sensitivity to Hyper-parameters

In this section we provide an analytical experiment on the sensitivity of our TA-MOO method to the tradeoff
λ. The study has been conducted with the ENS setting with CE loss and the EoT setting with deterministic
transformations using ResNet18 architecture. All experiments are on the CIFAR10 dataset. The value of λ is
changed from 1 to 1000. It can be observed from Figure 4a (the ENS setting) that (i) increasing λ reduces
the performance of dominated task (i.e., ASR on the EfficientNet decreases from 54.49% at λ = 1 to 53.40%
at λ = 100) while increases performances of other tasks. In overall, it significantly increases the ASR-All
performance of the entire ensemble from 29.14% at λ = 1 to 38.01% at λ = 100. (ii) However, over-high λ
(i.e., λ > 200) leads to the drop of performance in all tasks, resulting in a lower overall performance.

A similar observation can be seen in the EoT setting in Figure 4b. The attack performance on the dominated
task (V-Vertical flipping) decreases from 86.11% at λ = 50 to 83.67% at λ = 200. In contract, in the same
range of λ the overall performance increases from 32.85% to 34.36%. The performances of all tasks decrease
when using too large λ (i.e., λ > 200). Based on the result of this study, we choose λ = 100 in all the other
experiments.

D.7 Comparison with Standard Attacks

We conducted an additional comparison on the ENS setting to further confirm the effectiveness of our
method over standard adversarial attacks (which consider an entire ensemble as a single model). More
specifically, we compare with AutoAttack (Croce & Hein, 2020), Brendel-Bethge attack (BB) (Brendel et al.,
2019), Carlini-Wagner attack (CW) (Carlini & Wagner, 2017), and PGD attack (Madry et al., 2018). For
AutoAttack, we use the standard version which includes 4 different attacks. For BB attack, we initialized
with the PGD attack with 20 steps. For CW attack, we set the confidence factor to 1.0. We evaluate these
attacks on 2 ensemble settings, a diverse (D) ensemble set with 4 different architectures (ResNet18, VGG16,
GoogLeNet, and EfficientNet) and a non-diverse (ND) ensemble set with 4 ResNet18 architectures.

It can be seen from the Table 18 that our TA-MOO attack consistently achieves the best attack performance,
with a significant gap compared to the best standard attack. More specifically, our TA-MOO method achieves
38.01% (SAR-All metric) on the diverse ensemble set, while the second best attack is AutoAttack with 30.71%
(a gap of 7.3%). On the non-diverse set, the gap between our TA-MOO and AutoAttack is still notably
large at 4%. These standard attacks consider an entire ensemble as a single model, i.e., aim to optimize a
single objective given a single ensemble output. Therefore, they cannot guarantee a successful attack on each
member.
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(a) ENS setting (b) EoT setting

Figure 4: Sensitivity to the parameter λ.

Table 18: Attacking Ensemble model with a diverse set D={R-ResNet18, V-VGG16, G-GoogLeNet, E-
EfficientNet} and non-diverse set ND={4 ResNets}. Experiment on the CIFAR10 dataset with cross-entropy
objective loss. The most important metric is emphasized in blue.

A-All A-Avg R/R1 V/R2 G/R3 E/R4

D

PGD 28.21 48.34 48.89 49.08 48.38 47.03
CW 6.10 16.63 13.53 15.76 11.74 25.47
B&B 6.67 38.03 37.95 38.92 35.58 39.68
AutoAttack 30.71 45.49 48.32 45.83 47.25 40.56
MOO 25.16 44.76 39.06 46.83 37.05 56.11
TA-MOO 38.01 51.10 49.55 52.15 49.29 53.40

ND

PGD 28.17 48.75 51.94 45.55 54.15 43.34
CW 4.71 13.86 14.92 12.71 17.51 10.31
B&B 5.29 40.51 49.06 35.19 48.63 29.16
AutoAttack 37.00 49.32 51.07 48.58 51.08 46.55
MOO 32.50 52.21 53.25 49.05 56.80 49.76
TA-MOO 41.01 57.33 58.88 55.32 60.81 54.29

D.8 Attacking the ImageNet dataset

Experimental Setting. We conduct experiments on the ENS setting using the adversarial pre-trained
models on the RobustBench (Croce et al., 2021). We use two sets of an ensemble to verify the importance of
our task-oriented strategy. The first set is the robust ensemble (RE) set including 3 robust models: ResNet18
(model ID: Salman2020Do_R18 (Salman et al., 2020), robust accuracy 25.32%), ResNet50 (model ID:
Salman2020Do_R50 (Salman et al., 2020), robust accuracy 34.96%) and ResNet50 (model ID: Wong2020Fast
(Wong et al., 2019), robust accuracy 26.24%). The second set is the less-robust ensemble (LE) which includes
3 models: ResNet18 (model ID: Salman2020Do_R18), ResNet50 (model ID: Salman2020Do_R50) and the
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Table 19: Evaluation attacking performance on the ImageNet dataset. RE/LE/TAR/UNTAR represents
Robust Ensemble/Less-Robust Ensemble/Targeted Attack/Untargeted Attack, respectively. R18/R50/STD
represents robust ResNet18, robust ResNet50 and standard ResNet50 pre-trained model, respectively. The
most important metric is emphasized in blue.

A-All A-Avg R18/R18 R50/R50 R50/STD
RE-TAR Uniform 29.58 39.38 42.50 32.22 43.42

MOO 29.66 39.73 42.86 32.32 44.00
TA-MOO 29.68 39.73 42.90 32.26 44.02

LE-TAR Uniform 30.30 58.14 42.36 32.06 100.0
MOO 30.66 58.37 42.70 32.48 99.94
TA-MOO 30.68 58.25 42.54 32.36 99.86

RE-UNTAR Uniform 48.58 60.11 64.22 51.72 64.38
MOO 48.68 60.20 64.30 51.82 64.48
TA-MOO 49.80 59.71 63.80 52.38 62.94

LE-UNTAR Uniform 34.24 61.01 46.98 36.28 99.78
MOO 44.76 68.29 58.42 46.64 99.80
TA-MOO 49.46 70.74 61.26 51.14 99.82

standard training ResNet50 (model ID: Standard_R50, robust accuracy 0%). We use both targeted attack
and untargeted attack settings, with ε = 4/255 , and η = 1/255 with 20 steps. We use 5000 images of the
validation set to evaluate.

Experimental Results. We report experimental results with different settings in Table 19, where RE/LE/-
TAR/UNTAR represents Robust Ensemble/Less-Robust Ensemble/Targeted Attack/Untargeted Attack,
respectively. It can be seen that, in the robust ensemble setting (RE-TAR and RE-UNTAR), our MOO
achieves a similar performance compared to the baseline, while TA-MOO has a further improvement over
MOO. The gap of SAR-All between TA-MOO and the uniform weighting strategy is 0.1% in the targeted
attack setting (RE-TAR), while that in the untargeted attack setting is 1.2%. In the less-robust ensemble
setting (LE-TAR and LE-UNTAR), the improvement of our methods over the baseline is higher than in the
robust ensemble setting. With the gap of SAR-All between TA-MOO and the uniform strategy is 0.38%
with the targeted attack setting (LE-TAR), while the gap in the untargeted setting (LE-UNTAR) is 15.22%
a significantly higher. While it is acknowledged that the targeted attack is a more common protocol in
attacking the ImageNet dataset (Athalye et al., 2018), however, we believe that our significant improvement
on the untargeted attack is still worth noting.

We conduct an additional experiment on the EoT setting with the ImageNet dataset and report result in
Table 20. In this experiment, we use the robust pretrained ResNet18 model (model ID: Salman2020Do_R18)
as the victim model. We use the standard attack setting, i.e., targeted attack with ε = 4/255, η = 1/255 with
20 steps. It can be seen that both MOO and TA-MOO could obtain a better attack performance than the
uniform strategy. It is a worth noting that, in the experiment on the CIFAR10/CIFAR100 datasets (i.e.,
Table 6 in the main paper) the dominating issue of the vertical filliping exists and prevents MOO to obtain a
better performance. In the ImageNet dataset, the dominating issue is less serious, therefore, explains the
improvement of MOO and corroborates our hypothesis on the issue of dominating task.
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Table 20: Evaluation on the EoT setting with the ImageNet dataset. The most important metric is emphasized
in blue.

A-All A-Avg I H V C G B R
Uniform 31.52 46.59 41.12 40.98 67.42 41.60 43.26 41.82 49.96
MOO 31.92 47.19 41.92 41.78 67.64 42.10 43.66 42.74 50.48
TA-MOO 32.00 47.21 41.94 41.80 67.66 42.06 43.70 42.80 50.52

Table 21: Evaluation of Attacking Ensemble model on the CIFAR10 (C10) and CIFAR100 (C100) datasets.
The highest/second highest performance is highlighted in Bold/Underline. The table is copied from Table 1
in the main paper for reading comprehension purpose.

CW CE KL
A-All A-Avg A-All A-Avg A-All A-Avg

C10

Uniform 26.37 41.13 28.21 48.34 17.44 32.85
MinMax 27.53 41.20 35.75 51.56 19.97 33.13
MOO 18.87 34.24 25.16 44.76 15.69 29.54
TA-MOO 30.65 40.41 38.01 51.10 20.56 31.42

C100

Uniform 52.82 67.39 55.86 72.62 38.57 54.88
MinMax 54.96 66.92 63.70 75.44 40.67 53.83
MOO 51.16 65.87 58.17 73.19 39.18 53.44
TA-MOO 55.73 67.02 64.89 75.85 41.97 53.76

Table 22: Attacking Ensemble model with a diverse set D={R-ResNet18, V-VGG16, G-GoogLeNet, E-
EfficientNet} and non-diverse set ND={4 ResNets}. w represents the final w of MOO (mean ± std).
‖∇δfi(δ)‖ represents the gradient norm of each model (mean ± std). The table is copied from Table 2 in the
main paper for reading comprehension purpose.

A-All A-Avg R/R1 V/R2 G/R3 E/R4

D
‖∇δfi(δ)‖ - - 7.15 ± 6.87 4.29 ± 4.64 7.35 ± 7.21 0.98 ± 0.72
w - - 0.15 ± 0.14 0.17 ±0.13 0.15 ± 0.14 0.53 ± 0.29
Uniform 28.21 48.34 48.89 49.08 48.38 47.03
MOO 25.16 44.76 39.06 46.83 37.05 56.11
TA-MOO 38.01 51.10 49.55 52.15 49.29 53.40

ND
‖∇δfi(δ)‖ - - 8.41 ± 8.22 6.68± 6.95 7.36 ± 6.03 5.67 ± 6.09
w - - 0.23 ± 0.21 0.24±0.17 0.23 ± 0.19 0.30 ± 0.21
Uniform 28.17 48.75 51.94 45.55 54.15 43.34
MOO 32.50 52.21 53.25 49.05 56.80 49.76
TA-MOO 41.01 57.33 58.88 55.32 60.81 54.29
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E Additional Discussions

E.1 When does MOO Work?

The dominating issue. On one hand, there is the dominating issue that happens in all the three settings.
The issue can be recognized by the gap of attack performance among tasks. For example, in Table 22 (i.e.,
the ENS setting with the diverse ensemble and MOO method), the gap between highest ASR (at EfficientNet)
and lowest ASR (at GoogLeNet) is 19%. In the EoT setting, the problem is even worse: The largest gap
observed is 53.6% as shown in Table 15 (the highest ASR is 88.19% with Vertical flipping and the lowest
ASR is 34.54% with Horizontal flipping in with MOO - D-C10 setting). The dominating issue is also be
recognized by the observation that a significant small gradient strength of one task on comparison with other
tasks’ strength. For example, in Table 22 it can be seen that the gradient strength corresponding to the
EfficientNet architecture (mean value is 0.98) is much lower than those of other architectures (mean values
are at least 4.29). As the result, the weight corresponding to the EfficientNet architecture is much higher
than those of others.

The root of the dominating issue can be the natural of the setting (i.e., as shown in Table 15 with the EoT
setting, when the domination of the Vertical flipping task can be observed in all methods) or because of the
MOO solver which is discussed in Section E.3

Overcoming the dominating issue. On the other hand, if overcoming this issue, MOO can outperform
the Uniform strategy. For example, on attacking the non-diverse ensemble model (i.e., 4 ResNets) MOO
surpasses the Uniform strategy by 4.3% and 3.5% in the ASR-All and ASR-Avg metrics, respectively. On
generating universal perturbations, MOO outperforms the Uniform strategy in most of the settings. As
discussed in Section D.4, a simple memory caching trick can helps to overcome the infinite gradient issue and
significantly boosts the performance of MOO or TA-MOO. Therefore, we believe that developing a technique
to lessen the dominating issue might be a potential extension to further improve the performance.

Balancing among goal-unachived tasks. We observed in the EoT setting, the dominating issue is
strictly serious when gradients of some tasks are much weaker/stronger than others. It is because of the
natural of the transformation operations, therefore, this issue happens regardless status of the tasks. In the
set of goal-unachieved tasks’ gradients can exist a dominated one, resulting to a much higher weight of the
dominated task. Therefore, in order to strike a more balance among goal-unachieved tasks, we apply an
additional regularization which minimizes the entropy of goal-unachieved weights H(w) =

∑m
i=s+1−wi logwi.

If all tasks have been achieved (i.e., s = m) then the additional regularization will be ignored. This additional
regularization helps to improve further 2% in the EoT setting.

E.2 Importance of the Task-Oriented Regularization.

In this discussion, we would like to provide more experimental results in the ENS and EoT settings to further
emphasize the contribution of the Task-Oriented regularization. Figure 5 shows the ASR of each individual
task in the ENS setting with three losses and the EoT setting with ResNet18 architecture and deterministic
transformations. As shown in Figure 5a, in the ENS setting, the MOO adversary produces a much higher
ASR on the EfficientNet architecture than other architectures with any losses. In contrast, the TA-MOO
adversary has a lower ASR on the EfficientNet architecture but a much higher ASR on other architectures.
Similar observation can be seen in Figure 5b such that the ASR corresponding to the V-flipping of MOO is
slightly higher than that of TA-MOO, however, the ASR on other transformations of MOO is much lower
than those of TA-MOO.

E.3 More Efficient MOO Solvers

Discussions on the weighted-sum method. One of the most common approaches to solve the MOO
problem is the scalarizing method, which formulates a single-objective optimization (SOO) such that the
optimal solutions to the SOO problem are Pareto optimal solutions to the MOO problem. While this line of
approach (e.g., weighted-sum method) is suitable for end-to-end learning such as deep learning, there are
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Figure 5: Comparison on the ASR of each individual task. R: ResNet18, V: VGG16, G: GoogLeNet, E:
EfficientNet. CE: Cross-entropy loss, KL: Kullback-Leibler divergence, CW: Carnili-Wagner loss

several acknowledged weaknesses: (i) the choice of utility function has a large impact on the computational
complexity of the resulted SOO problem (Bjornson et al., 2014; Björnson & Jorswieck, 2013); (ii) a small
change in weights may results in big changes in the combined objective (Caballero et al., 1997), and vice
versa, a huge different weights may produce nearly similar result (Coello Coello, 1999); (iii) it does not work
well in the case of a non-convex objective space (Deb, 2011).

One of the most common replacement for the weighted-sum method is the ε constraint method which is
applicable to either convex or non-convex problem. Applying a more efficient MOO solver might be one of
the potential extensions of this work.

Discussions on the gradient descent solver. Inspired by Sener & Koltun (2018), in this paper we use
multi-gradient descent algorithm (Deb, 2011) as an MOO solver which casts the multi-objective problem to a
single-objective problem. While Sener & Koltun (2018) used Frank-Wolfe algorithm to project the weight
into the desired simplex, we use parameterization with softmax instead. Although this technique is much
faster than Frank-Wolfe algorithm, it has some weaknesses that will be addressed in our future work. More
specifically, the GD solver with softmax parameterization cannot handle well the edge case which is the
root of the dominating issue. The snippet code E.3 provides a minimal example of quadratic optimization
problem as similar in MGDA, where the goal is to find w∗ = argmin

w∈∆w

∑5
i=1 ‖wigi‖22. The solver is the Gradient

Solver with softmax parameterization. With input1 where none of elements dominates others, the solver
works quite reasonable with the weights corresponding to 4 first elements are equal and less than the last
one (corresponding to bigger strength). With input2 where g5 � g1, the solver still works well where w1 = 1
corresponding to the minimal strength g1 = 0.1. However, with input3, the solver fails to find a good solution
(which should be w = [1, 0, 0, 0] given that input). It is a worth noting that the main goal of this paper is to
show the application of Multi-objective Optimization for generating adversarial examples and the impact of
the Task-Oriented regularization. Therefore, while the issue of the gradient descent solver is well recognized,
we did not take effort to try with a better solver.

1 import torch
2 import torch .nn. functional as F
3 import torch . optim as optim
4

5 input_1 = [0.1 , 0.1 , 0.1 , 0.1 , 0.2] # normal case
6 input_2 = [0.01 , 0.1 , 0.1 , 0.1 , 2e3] # normal case
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7 input_3 = [0.001 , 0.002 , 0.002 , 0.002 , 2e3] # dominating issue
8

9 init_alpha = [0.2 , 0.2 , 0.2 , 0.2 , 0.2]
10 g = torch . tensor ( input_3 )
11 alpha = torch . tensor ( init_alpha , requires_grad =True)
12 opt = optim .SGD ([ alpha ], lr =1.0)
13

14 for step in range (20):
15 w = F. softmax (alpha , dim =0)
16 loss = torch . square ( torch .sum(w * g))
17 opt. zero_grad ()
18 loss. backward ()
19 opt.step ()
20 print (’step ={} , w={} ’. format (step , w. detach (). numpy ()))
21

22 # Result with input_1
23 # step =19 , w =[0.20344244 0.20344244 0.20344244 0.20344244 0.18623024]
24 # Result with input_2
25 # step =19 , w =[9.999982e -01 5.582609e -07 5.582609e -07 5.582609e -07 0.]
26 # Result with input_3
27 # step =19 , w =[0.28042343 0.23985887 0.23985887 0.23985887 0.]

Listing 1: Python example of the Gradient Solver with softmax parameterization

E.4 Correlation between the Objective Loss and Attack Performance.

It is broadly accepted that to fool a model, a feasible approach is maximizing the objective loss (i.e., CE,
KL, or CW loss), and the higher the loss, the higher the attack success rate. While it is true with the same
architecture, we found that it does not hold when comparing different architectures. Figure 6 shows the
adversarial loss and the attack success rate for each model in the ENS setting. With the CW loss as the
adversarial objective, it can be observed that there is a positive correlation between the loss value and the
ASR, i.e., the higher the loss, the higher the ASR. For example, with the same adversarial examples, the
adversarial loss on EfficientNet is the highest and so is ASR. However, there is no clear correlation observed
when using CE and KL losses. Therefore, the higher weighted loss does not directly imply a higher success
rate for attacking an ensemble of different architectures. The MinMax method (Wang et al., 2021) which
solely weighs the tasks’ losses, therefore, does not always achieve a good performance in all the tasks.

E.5 Conflicting between gradients in the adversarial generation task

In multi-task learning setting, conflicting between gradient is the common issue to tackle with. More
specifically, the gradients with respect to the (shared) model parameter of task fi and task fj can have a
negative correlation (i.e., cosine similarity between ∇θfi(θ, δ) and ∇θfj(θ, δ) is negative). However, in the
adversarial generation task, we consider the gradient with respect to the input (e.g., ∇δf(θ, δ)) to update the
adversarial examples. As we explore through empirical experiments, the issue that we to deal with is not the
gradient confliction problem but the gradient domination problem. These gradients with respect to the inputs
can have a positive correlation but also have a huge difference in their strengths. In this specific challenge,
the standard MOO which solely relies on the gradient strengths to calculated the weight for each task is
strongly sensitive to the gradient domination problem and in some cases cannot lead to a good solution as
discussed in Appendix E.1

To further support our hypothesis, we would like to provide a measurement on the cosine similarity between
gradients on different ensemble members on the ENS setting in Table 23. Each cell (row-ith, column-jth)
of the Table reports the cosine similarity between gradient ∇δfi(δ) of model ith and gradient ∇δfj(δ) of
model jth (w.r.t. the same input δ). It can be seen that the gradients between different architectures has the
positive correlation instead of negative correlation. On the other hand, as shown in the last row, the gradient
norm ‖∇δfi(δ)‖ varies widely among architectures. While this observation is in line with the widely accepted
phenomenon about the transferability of adversarial examples, it also does support our motivation to derive
the TA-MOO method to improve the standard MOO.

35



Published in Transactions on Machine Learning Research (05/2023)

(a) CW

(b) CE

(c) KL

Figure 6: Loss (left fig) and ASR (right fig) of each task over all attack iterations with the MinMax method.
model0/1/2/3 represents R/V/G/E architecture, respectively.
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Table 23: Correlation between gradients of ensemble members on ENS setting. Each cell (row-ith, column-jth)
reports the cosine similarity (mean ± std) between gradient ∇δfi(δ) of model ith and gradient ∇δfj(δ) of
model jth (w.r.t. the same input δ). The last row ‖∇δfi(δ)‖ reports the gradient norm of each model. R:
ResNet18, V: VGG16, E: EfficientNet, G: G-GoogLeNet.

R V G E
R 1.00±0.00 0.34±0.15 0.44±0.17 0.35±0.19
V 0.34±0.15 1.00±0.00 0.36±0.19 0.41±0.22
G 0.44±0.17 0.36±0.19 1.00±0.00 0.41±0.18
E 0.35±0.19 0.41±0.22 0.41±0.18 1.00±0.00

‖∇δfi(δ)‖ 7.15 ± 6.87 4.29 ± 4.64 7.35 ± 7.21 0.98 ± 0.72

Figure 7: Norm of the gradient ∇δf(δ) over all attack iterations. Measure on the diverse set of the ENS
setting, with CE loss.

E.6 Discussion on the Convergence of our methods

In multi-task learning, the gradient of each task is calculated with respect to the (shared) model parameter
(e.g., ∇θf(θ, δ)). Therefore, to quantify the convergence of a multi-task learning method, we can measure the
gradient norm of the comment gradient direction to quantify the convergence of the model. The gradient
norm is expected to be a very small value when the model reaches to the Pareto optimality points. However,
in adversarial generation problem, the gradient of each task is calculated with respect to the input (e.g.,
∇δf(θ, δ)). Therefore, unlike in the multi-task learning, there is a different behavior of gradient in the
adversarial generation task. To verify our hypothesis, we measure the gradient norm of the gradient over
all attack iterations and visualize in Figure 7. It can be seen that the gradient norm of all attacks tends to
converge to a large value. It is a worth noting that we use projected gradient descent with l∞ in all attacks.
Therefore, in each attack iteration, the amount to update is not the gradient ∇δf(θ, δ) but the sign of it
scaling with a step size ηδ. However, there is still an interesting observation such that MOO and TA-MOO
attack have a much lower gradient norm than other attacks.

We would like to propose a simple alternative approach to quantify the convergence of our method in the
adversarial generation setting. More specifically, we leverage the advantage of the adversarial generation task
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(a) MOO (b) TA-MOO

Figure 8: Loss (left fig) and SAR (right fig) of each task over all attack iterations. model0/1/2/3 represents
R/V/G/E architecture, respectively. The CW loss is used as the adversaries’s objective function.

such that we can access to the label to audit whether the task is successful or not. Therefore, we simply
measure the loss and the success attack rate over all attack iterations as shown in Figure 8.

First, we would like to recall the definition of the Pareto optimality. Given m objective function f(δ) ,
[f1(δ), ..., fm(δ)], the Pareto optimality δ∗ of the multi-objective optimization δ∗ = argmax

δ
f(δ) if there is no

feasible solution δ′ such that is strictly better than δ∗ in some tasks (i.e., fi(δ′) > fi(δ∗) for some i) while
equally good as δ∗ in all other tasks (i.e., fj(δ′) = fj(δ∗), j 6= i). Bear this definition in mind, it can be seen
from the loss progress of MOO attack in Figure 8a that (i) from iteration 1st to around iteration 10th all the
losses are increased quickly showing that the method optimize efficiently; (ii) after iteration 10th, the loss
w.r.t. the EfficientNet model (i.e., model3 in the legend) continually increases while other losses continually
decrease. Therefore, any solution after iteration 10th do not dominate each other indicating that the method
reaches the Pareto front.

On the other hand, it can be seen from Figure 8b that the loss progress of our TA-MOO is more stable.
TA-MOO also can optimize to the optimal point efficiently as MOO does, however, after reaching the peak,
the losses in all tasks are more stable than those in MOO. This observation indicates that the solutions after
the peak point are also in the Pareto front but are more concentrated than those in MOO. It can explain the
stability of the success attack rate in TA-MOO in Figure 8b. Comparing across both MOO and TA-MOO at
their last iteration shows that while the loss w.r.t. the EfficientNet model (model3) in MOO is a bit higher
than that in TA-MOO, these other losses w.r.t. V/G/E models in MOO is lower than those in TA-MOO.
This observation indicates that in term of losses, the solutions of MOO and TA-MOO do not dominate each
other. However, the solution of TA-MOO is more stable and leads better final attacking performance.

E.7 Additional Experiments with Different initializations for MOO

In our method, the default initialization for the weight w is 1/m equally for all tasks. Therefore, one raising
valid concern is that Might better initialization can help to boost the performance?. To answer this question, we
first find the optimal initital weight by using the weight at the last iteration when running MOO and TA-MOO
attacks with the default initialization. For example, as shown in Figure 9a for the ENS setting with diverse
architectures, the average weight that MOO assigns for model R/V/G/E converging to 0.15/0.17/0.15/0.53
(set A), respectively. The average weights’ distribution learned by TA-MOO is 0.19/0.25/0.19/0.37 (set B),
respectively. It is a worth noting that, we consider each set of weights for each data sample separately, and
the above weights are just the average over entire testing set (e.g., 10K sample), while the full statistic (mean
± std) of weights can be seen in Table 2. In order to make the experiment to be more comprehensive with
diverse initializations, we use two additional sets including set C=[0.22, 0.23, 0.22, 0.33] and set D=[0.24,
0.25, 0.24, 0.27].

Given these above four weights sets A/B/C/D, we then init the standard MOO with one of these above
sets and adjust the learning rate ηw with three options 5e-3, 5e-5, 1e-8 and report results in Table 24. The
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(a) MOO (b) TA-MOO

(c) MOOA with ηw = 5e-3 (d) MOOB with ηw = 5e-3

(e) MOOC with ηw = 5e-3 (f) MOOD with ηw = 5e-3

Figure 9: Weight (left fig) and SAR (right fig) of each task over all attack iterations. model0/1/2/3 represents
R/V/G/E architecture, respectively.

complete attacking progress can be seen in Figure 9. It can be seen from Table 24 that better initialization
does help to improve the performance of the standard MOO. The best setting is the initialization with set D
and ηw = 5e-3 achieves 29.53% in A-All metric, a 4.37% improvement over the default MOO initialization. It
can be seen from the evolution of the weights in Figure 9c that even initializing with the converged weights
(i.e., set A) from the pre-running attack, the weight of each task does not stand still but converges to a
different value. It is another different behavior in adversarial generation task compared to the multi-task
learning problem. On the other hand, despite of the extensive tuning, the performance of MOO is still far
below the TA-MOO approach, with the gap of 8.48% in A-All metric.
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Table 24: Attacking Ensemble model with a diverse set D={R-ResNet18, V-VGG16, G-GoogLeNet, E-
EfficientNet}. MOOA/B/C/D is MOO with initial weights from set A/B/C/D, respectively. ηw denotes the
learning rate to update for the weight w.

ηw = 5e-3 ηw = 5e-5 ηw = 1e-8

MOOA 28.64 29.18 29.12
MOOB 29.13 28.75 28.65
MOOC 29.38 28.46 28.33
MOOD 29.53 28.37 28.18
MOO 25.16 - -
TA-MOO 38.01 - -
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4.5 Concluding Remarks

In this chapter, we have presented our contributions towards improving adversarial ro-

bustness through the lens of ensemble learning, as outlined in Bui et al. (2021b) and Bui

et al. (2023). To this end, we’ve uncovered two key principles that play pivotal roles in

fortifying the robustness of ensemble models.

Firstly, we have emphasized the critical significance of transferability among adversarial

examples across ensemble members. By increasing the diversity among ensemble mem-

bers, we can reduce the transferability of adversarial examples between them, thereby

improving the overall robustness of the ensemble model. The main idea behind our

approach was to prioritize the correct predictions of one model on a given adversarial

example while discouraging other models from making unanimous predictions.

Secondly, we observed that adversarial examples that fool all ensemble members are

crucial for improving the robustness of ensemble models. Building upon this observation,

we extended our investigations in Bui et al. (2023) by presenting a novel method for

generating transferable adversarial examples that lie in the joint insecure region of all

ensemble members. These adversarial examples are particularly beneficial for improving

the robustness of ensemble models, as they are capable of fooling all ensemble members

simultaneously.

In summary, our chapter has not only elucidated fundamental principles for strength-

ening ensemble model robustness but has also contributed to the field by introducing a

novel approach for generating transferable adversarial examples. These findings collec-

tively advance our understanding of the intricate dynamics of ensemble learning in the

context of adversarial challenges.



Chapter 5

Distributional Approaches to

Adversarial Robustness

5.1 Introduction

In the previous chapter, we demonstrated that incorporating the global and local in-

formation of the data manifold in learning robust representations can greatly enhance

a model’s adversarial robustness. However, these methods, along with other AT-based

methods, often seek a pointwise adversary by independently perturbing each data sam-

ple.

Considering adversarial effects at a distributional level, on the other hand, may offer

unexplored benefits. Unlike AT, distributional robustness seeks a worst-case distribution

that generates adversarial examples from a known uncertainty set of distributions located

in the ball centered around the data distribution. This approach is expected to have

better generalization performance on unseen data.

In this chapter, we present our contributions towards improving adversarial robustness

through the lens of distributional robustness, as introduced in Bui et al. (2022). In

particular, we proposed a unified framework that connects Wasserstein distributional

robustness with current state-of-the-art AT methods. We introduced a new cost function

of the Wasserstein distance and propose a unified formulation of the risk function in

WDR, with which, we could generalize and encompass the existing AT methods including
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SOTA ones in the distribution robustness setting. Through extensive experiments, we

demonstrated that with a better generalization capacity of distributional robustness,

the resulting AT methods in our framework could achieve better adversarial robustness

than their standard AT counterparts.

The major content of this chapter is in the following attached paper:

• Anh Bui, Trung Le, Quan Tran, He Zhao, Dinh Phung, “A Unified Wasserstein

Distributional Robustness Framework for Adversarial Training”. In Proceedings

of the International Conference on Learning Representation (ICLR) 2022.

The code of this paper is released at https://github.com/tuananhbui89/Unified-

Distributional-Robustness.

5.2 Related Work

Beyond Point-wise Adversarial Training. Since its proposal in Szegedy et al.

(2014), adversarial training has undergone extensive study and achieved remarkable

success in enhancing adversarial robustness. However, most existing adversarial train-

ing methods employ a point-wise adversary, independently perturbing each data sample.

This approach disregards the global structure of the data manifold and the classifier’s

decision boundary concerning other data samples. Consequently, it may result in over-

fitting issues, where a model becomes robust against one specific adversary but remains

vulnerable to others (Rice et al., 2020, Yu et al., 2022).

Several recent works have aimed to go beyond point-wise AT and can be categorized into

two primary directions: (1) modeling the global/local structure of the data manifold as a

distribution and (2) heuristically incorporating the global/local information of the data

manifold into the AT process. It is worth noting that the former direction closely relates

to distributional robustness, while the latter is more closely associated with manifold

regularization (Mao et al., 2019, Bui et al., 2020, Jin and Rinard, 2020) or geometry-

aware regularization (Zhang et al., 2021, Zhu et al., 2022).

Moreover, local information of the data manifold refers to the information concerning

the data samples in the vicinity of the current sample, which can be represented as

the local distribution of the data manifold. On the other hand, global information of

https://github.com/tuananhbui89/Unified-Distributional-Robustness
https://github.com/tuananhbui89/Unified-Distributional-Robustness
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the data manifold refers to information beyond the local neighborhood of the current

sample, such as the distribution of the entire data manifold or the classifier’s decision

boundary.

Modeling the Local Distribution. Dong et al. (2020) proposed to construct a dis-

tribution over each data sample to model the adversarial examples around it. The

optimization problem is formulated as a min-max problem over the distribution of the

adversarial examples.

min
θ

E(x,y)∼D

[
max

p(δ)∈A(x)
Eδ∼p(δ) [ℓ(θ, x + δ, y)]

]

Here, A(x) represents a set of distributions over the perturbation δ applied to the data

sample x. The objective of the inner maximization is to learn an adversarial distribution

that enables a point-wise adversary to generate effective adversarial examples. On the

other hand, the goal of the outer minimization is to learn a model that remains robust

against the adversarial distribution, even in the presence of the worst-case point-wise ad-

versary. However, it is worth noting that the optimal solution of the inner maximization

tends to degenerate into the point-wise adversary, which is not the desired solution.

max
p(δ)∈A(x)

Eδ∼p(δ) [ℓ(θ, x + δ, y)] ≤ max
δ∈S

ℓ(θ, x + δ, y)

To mitigate this problem, the authors proposed an additional entropic regularization

term to increase the support of the adversarial distribution.

Thanh et al. (2022) on the other hand, proposed a particle-based AT algorithm, which

models the local distribution of each data sample as a set of particles. To diversify the

particle set, the authors utilized the Stein Variational Gradient Descent (SVGD) (Liu

and Wang, 2016) to update the particles which encourages the particles move away from

each other.

Modeling the Global Distribution. Early works such as Sinha et al. (2017) and

Staib and Jegelka (2017) were pioneers in establishing a connection between distribution
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robustness and adversarial training. They utilized the dual form of Wasserstein distribu-

tional robustness (Blanchet and Murthy, 2019) to identify the worst-case perturbations

for adversarial training. Unlike previous approaches, Sinha et al. (2017) aimed to find

the worst adversarial distribution over the entire data distribution. They formulated the

optimization problem as a min-max problem over the distribution of the data samples,

which can be expressed as follows:

min
Q̃:Wc(Q̃,Q)<ϵ

EQ̃ [f (z)] ,

where ϵ > 0 and Wc denotes the optimal transport (OT) cost, or a Wasserstein distance

if c is a metric, defined as:

Wc

(
Q̃,Q

)
:= inf

γ∈Γ(Q̃,Q)

∫
cdγ,

where Γ
(
Q̃,Q

)
is the set of couplings whose marginals are Q̃ and Q.

To solve the above problem, Sinha et al. (2017) proposed a dual form of Wasserstein DR

(Blanchet and Murthy, 2019), which has been discussed in Section 2.7.

In contrast, Phan et al. (2023) proposed an alternative approach that utilizes a specific

Wasserstein (WS) distance, allowing for a closed-form solution to the primal problem

without relying on the dual form used in Sinha et al. (2017). The proposed WS distance

takes into account the transportation cost between a batch of data samples and their

corresponding adversaries. However, it should be noted that their method operates at

the batch level and does not fully capture the global distribution of the data manifold.

Another noteworthy contribution is the approach presented by Le et al. (2022), which

employs a Generative Adversarial Network (GAN) framework. In this approach, the

feature extractor serves as the generator, and an additional discriminator is introduced

to differentiate between the real feature distribution and the adversarial feature distri-

bution. By leveraging the discriminator’s knowledge, stronger adversaries are generated

that not only deceive the classifier but also outwit the discriminator. Due to the fact

that the discriminator is trained on the entire distribution of the data manifold, this

method can be considered a global distributional robustness technique.
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5.3 Unified Wasserstein Distributional Robustness
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ABSTRACT

It is well-known that deep neural networks (DNNs) are susceptible to adversar-
ial attacks, exposing a severe fragility of deep learning systems. As the result,
adversarial training (AT) method, by incorporating adversarial examples during
training, represents a natural and effective approach to strengthen the robustness
of a DNN-based classifier. However, most AT-based methods, notably PGD-AT
and TRADES, typically seek a pointwise adversary that generates the worst-case
adversarial example by independently perturbing each data sample, as a way to
“probe” the vulnerability of the classifier. Arguably, there are unexplored benefits
in considering such adversarial effects from an entire distribution. To this end, this
paper presents a unified framework that connects Wasserstein distributional robust-
ness with current state-of-the-art AT methods. We introduce a new Wasserstein cost
function and a new series of risk functions, with which we show that standard AT
methods are special cases of their counterparts in our framework. This connection
leads to an intuitive relaxation and generalization of existing AT methods and
facilitates the development of a new family of distributional robustness AT-based
algorithms. Extensive experiments show that our distributional robustness AT
algorithms robustify further their standard AT counterparts in various settings.1

1 INTRODUCTION

Despite remarkable performances of DNN-based deep learning methods, even the state-of-the-art
(SOTA) models are reported to be vulnerable to adversarial attacks (Biggio et al., 2013; Szegedy
et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Athalye et al., 2018; Zhao et al., 2019b;
2021a), which is of significant concern given the large number of applications of deep learning in
real-world scenarios. Usually, adversarial attacks are generated by adding small perturbations to
benign data but to change the predictions of the target model. To enhance the robustness of DNNs,
various adversarial defense methods have been developed, recently Pang et al. (2019); Dong et al.
(2020); Zhang et al. (2020b); Bai et al. (2020). Among a number of adversarial defenses, Adversarial
Training (AT) is one of the most effective and widely-used approaches (Goodfellow et al., 2015;
Madry et al., 2018; Shafahi et al., 2019; Tramèr & Boneh, 2019; Zhang & Wang, 2019; Xie et al.,
2020). In general, given a classifier, AT can be viewed as a robust optimization process (Ben-Tal
et al., 2009) of seeking a pointwise adversary (Staib & Jegelka, 2017) that generates the worst-case
adversarial example by independently perturbing each data sample.

Different from AT, Distributional Robustness (DR) (Delage & Ye, 2010; Duchi et al., 2021; Gao
et al., 2017; Gao & Kleywegt, 2016; Rahimian & Mehrotra, 2019) looks for a worst-case distribution
that generates adversarial examples from a known uncertainty set of distributions located in the
ball centered around the data distribution. To measure the distance between distributions, different
kinds of metrics have been considered in DR, such as f -divergence (Ben-Tal et al., 2013; Miyato
et al., 2015; Namkoong & Duchi, 2016) and Wasserstein distance (Shafieezadeh-Abadeh et al., 2015;
Blanchet et al., 2019; Kuhn et al., 2019), where the latter has shown advantages over others on
efficiency and simplicity (Staib & Jegelka, 2017; Sinha et al., 2018). Therefore, adversary in DR
does not look for the perturbation of a specific data sample, but moves the entire distribution around
the data distribution, thus, is expected to have better generalization than AT on unseen data samples

1Our code is available at https://github.com/tuananhbui89/Unified-Distributional-Robustness
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(Staib & Jegelka, 2017; Sinha et al., 2018). Conceptually and theoretically, DR can be viewed as
a generalization and better alternative to AT and several attempts (Staib & Jegelka, 2017; Sinha
et al., 2018) have shed light on connecting AT with DR. However, to the best of our knowledge,
practical DR approaches that achieve comparable peformance with SOTA AT methods on adversarial
robustness have not been developed yet.

To bridge this gap, we propose a unified framework that connects distributional robustness with
various SOTA AT methods. Built on top of Wasserstein Distributional Robustness (WDR), we
introduce a new cost function of the Wasserstein distances and propose a unified formulation of the
risk function in WDR, with which, we can generalize and encompass SOTA AT methods in the DR
setting, including PGD-AT (Madry et al., 2018), TRADES (Zhang et al., 2019), MART (Wang et al.,
2019) and AWP (Wu et al., 2020). With better generalization capacity of distributional robustness,
the resulted AT methods in our DR framework are shown to be able to achieve better adversarial
robustness than their standard AT counterparts.

The contributions of this paper are in both theoretical and practical aspects, summarized as follows:
1) Theoretically, we propose a general framework that bridges distributional robustness and standard
robustness achieved by AT. The proposed framework encompasses the DR versions of the SOTA AT
methods and we prove that these AT methods are special cases of their DR counterparts. 2) Practically,
motivated by our theoretical study, we develop a novel family of algorithms that generalize the AT
methods in the standard robustness setting, which have better generalization capacity. 3) Empirically,
we conduct extensive experiments on benchmark datasets, which show that the proposed AT methods
in the distributional robustness setting achieve better performance than standard AT methods.

2 PRELIMINARIES

2.1 DISTRIBUTIONAL ROBUSTNESS

Distributional Robustness (DR) is an emerging framework for learning and decision-making under
uncertainty, which seeks the worst-case expected loss among a ball of distributions, containing all
distributions that are close to the empirical distribution (Gao et al., 2017). As the Wasserstein distance
is a powerful and convenient tool of measuring closeness between distributions, Wasserstein DR has
been one of the most widely-used variant of DR, which has rich applications in (semi)-supervised
learning (Blanchet & Kang, 2020; Chen & Paschalidis, 2018; Yang, 2020), generative modeling
(Huynh et al., 2021; Dam et al., 2019), transfer learning and domain adaptation (Lee & Raginsky,
2018; Duchi et al., 2019; Zhao et al., 2019a; Nguyen et al., 2021a;b; Le et al., 2021b;a), topic
modeling (Zhao et al., 2021b), and reinforcement learning (Abdullah et al., 2019; Smirnova et al.,
2019; Derman & Mannor, 2020). For more comprehensive review, please refer to the surveys of Kuhn
et al. (2019); Rahimian & Mehrotra (2019). Here we consider a generic Polish space S endowed
with a distribution P. Let f : S → R be a real-valued (risk) function and c : S × S → R+ be a cost
function. Distributional robustness setting aims to find the distribution Q in the vicinity of P and
maximizes the risk in the E form (Sinha et al., 2018; Blanchet & Murthy, 2019):

sup
Q:Wc(P,Q)<ε

EQ [f (z)] , (1)

where ε > 0 and Wc denotes the optimal transport (OT) cost, or a Wasserstein distance if c is a
metric, defined as:

Wc (P,Q) := inf
γ∈Γ(P,Q)

∫
cdγ, (2)

where Γ (P,Q) is the set of couplings whose marginals are P and Q. With the assumption that
f ∈ L1 (P) is upper semi-continuous and the cost c is a non-negative lower semi-continuous
satisfying c(z, z′) = 0 iff z = z′, Sinha et al. (2018); Blanchet & Murthy (2019) show that the dual
form for Eq. (1) is:

inf
λ≥0

{
λε+ E

z∼P

[
sup
z′
{f (z′)− λc (z′, z)}

]}
. (3)

Sinha et al. (2018) further employs a Lagrangian for Wasserstein-based uncertainty sets to arrive at a
relaxed version with λ ≥ 0:

sup
Q
{EQ [f (z)]− λWc (P,Q)} = E

z∼P

[
sup
z′
{f (z′)− λc (z′, z)}

]
. (4)
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2.2 ADVERSARIAL ROBUSTNESS WITH ADVERSARIAL TRAINING

In this paper, we are interested in image classification tasks and focus on the adversaries that add
small perturbations to the pixels of an image to generate attacks based on gradients, which are the
most popular and effective. FGSM (Goodfellow et al., 2015) and PGD (Madry et al., 2018) are
the most representative gradient-based attacks and PGD is the most widely-used one, due to its
effectiveness and simplicity. Now we consider a classification problem on the space S = X × Y
where X is the data space, Y is the label space. We would like to learn a classifier that predicts the
label of a datum well hθ : X → Y . Learning of the classifier can be done by minimising its loss:
` (hθ (x) , y), which can typically be the the cross-entropy loss. In addition to predicting well on
benign data, an adversarial defense aims to make the classifier robust against adversarial examples.
As the most successful approach, adversarial training is a straightforward method that creates and
then incorporates adversarial examples into the training process. With this general idea, different AT
methods vary in the way of picking which adversarial examples one should train on. Here we list
three widely-used AT methods.

PGD-AT (Madry et al., 2018) seeks the most violating examples to improve model robustness:

inf
θ

EP

[
β sup
x′∈Bε(x)

CE
(
hθ
(
x′
)
, y
)
+ CE (hθ (x) , y)

]
, (5)

where Bε (x) = {x′ : cX (x, x′) ≤ ε}, β > 0 is the trade-off parameter and cross-entropy loss CE.

TRADES (Zhang et al., 2019) seeks the most divergent examples to improve model robustness:

inf
θ

EP

[
β sup

x′
DKL

(
hθ
(
x′
)
, hθ (x)

)
+ CE (hθ (x) , y)

]
, (6)

where x′ ∈ Bε (x) and DKL is the usual Kullback-Leibler (KL) divergence.

MART (Wang et al., 2019) takes into account prediction confidence:

inf
θ

EP

[
β
(
1− [hθ (x)]y

)
sup

x′∈Bε(x)
DKL

(
hθ
(
x′
)
, hθ (x)

)
+BCE (hθ (x) , y)

]
, (7)

where BCE (hθ (x) , y) is defined as: − log
(

[hθ (x)]y

)
− log (1−maxk 6=y [hθ (x)]k).

2.3 CONNECTING DISTRIBUTIONAL ROBUSTNESS TO ADVERSARIAL TRAINING

To bridge distributional and adversarial robustness, Sinha et al. (2018) proposes an AT method,
named Wasserstein Risk Minimization (WRM), which generalizes PGD-AT through the principled
lens of distributionally robust optimization. For smooth loss functions, WRM enjoys convergence
guarantees similar to non-robust approaches while certifying performance even for the worst-case
population loss. Specifically, assume that P is a joint distribution that generates a pair z = (x, y)
where x ∈ X and y ∈ Y . The cost function is defined as: c (z, z′) = cX (x, x′) +∞× 1 {y 6= y′}
where z′ = (x′, y′), cX : X × X → R+ is a cost function on X , and 1 {·} is the indicator function.
One can define the risk function f as the loss of the classifier, i.e., f (z) := ` (hθ (x) , y). Together
with Eq. (1), attaining a robust classifier is to solve the following min-max problem:

inf
θ

sup
Q:Wc(P,Q)<ε

EQ [` (hθ (x) , y)] . (8)

The above equation shows the generalisation of WRM to PGD-AT. With Eq. (3) and Eq. (4), one can
arrive at Eq. (9) as below where λ ≥ 0 is a trade-off parameter:

inf
θ
EP

[
sup
x′
{` (hθ (x′) , y)− λcX (x′, x)}

]
. (9)

3 PROPOSED UNIFIED DISTRIBUTION ROBUSTNESS FRAMEWORK

Although WRM (Sinha et al., 2018) sheds light on connecting distributional robustness with adver-
sarial training, its framework and formulation is limited to PGD-AT, which cannot encompass more
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advanced AT methods including TRADES and MART. In this paper, we propose a unified formulation
for distributional robustness, which is a more general framework connecting state-of-the-art AT and
existing distributional robustness approaches where they become special cases.

Let Pd be the data distribution that generates instance x ∼ Pd and Pl.|x the conditional to generate
label y ∼ Pl.|x given x where x ∈ X , y ∈ Y . For our purpose, we consider the space S = X ×X ×Y
and a joint distribution P4 on S consisting of samples (x, x, y) where x ∼ Pd and y ∼ Pl.|x. Now
consider a distribution Q on S such that Wc (Q,P4) < ε. A draw z ∼ P4 will take the form
z = (x, x, y) whereas z′ ∼ Q will be z′ = (x′, x′′, y′). We propose cost function c(z, z′) defined as:

c(z, z′) = cX (x, x′) +∞× cX (x, x′′) +∞× 1 {y 6= y′} , (10)
where we note that this cost function is non negative, satisfies c(z, z) = 0 and lower semi-continuous,
i.e., lim

z′→z0
inf c(z, z′) ≥ c(z, z0).

With our new setting, it is useful to understand the “vicinity”of P∆ via the distribution OT-ball
conditionWc (Q,P4) < ε. Since there exists a transport plan γ ∈ Γ (P4,Q) s.t.

∫
cdγ < ε and

c(z, z′) is finite a.s. γ, this implies that if (z, z′) ∼ γ, then first, it is easy to see that x′′ = x
and y′ = y, and second, x′ tends to be close to x. To see why the later is the case, since Pd is a
marginal of P4 on the first x in (x, x, y), therefore if Qd is the marginal of Q on x′ in (x′, x′′, y′)
thenWd

(
Qd,Pd

)
≤ Wd (Q,P4) < ε, which explains the closeness between of x and x′.

Given z′ = (x′, x′′, y′) ∼ Q whereWc (Q,P4) < ε, we define a unified risk function gθ (z′) w.r.t
a classifier hθ that encompasses the unified distributional robustness (UDR) version for PGD-AT,
TRADES, and MART (cf Section 2.2):

• UDR-PGD: gθ (z′) := CE (hθ (x′′) , y′) + βCE (hθ (x′) , y′).
• UDR-TRADES: gθ (z′) := CE (hθ (x′′) , y′) + βDKL (hθ (x′) , hθ (x′′)).
• UDR-MART: gθ (z′) := BCE (hθ (x′′) , y′) +β(1− [hθ (x′′)]y)DKL (hθ (x′) , hθ (x′′)) .2

Now we derive the primal and dual objectives for the proposed UDR framework. With the UDR risk
function gθ(z′) defined previously, following Eq. (1) and Eq. (3), the primal (left) and dual (right)
forms of our UDR objective are:

inf
θ

sup
Q:Wc(Q,P4)<ε

EQ [gθ (z′)] = inf
θ

inf
λ≥0

(
λε+ EP4

[
sup
z′
{gθ (z′)− λc (z′, z)}

])
. (11)

With the cost function c defined in Eq. (10), the dual form in (11) can be rewritten as:

inf
θ,λ≥0

(
λε+ EP∆

[
sup

x′,x′′=x,y′=y
{gθ (z′)− λcX (x′, x)}

])
=

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λcX (x′, x)}

])
(12)

where we note that P is a distribution over pairs (x, y) for which x ∼ Pd and y ∼ Pl.|x. The min-max
problem in Eq. (12) encompasses the PGD-AT, TRADES, and MART distributional robustness
counterparts on the choice of the function gθ (x′, x, y) by simply choosing an appropriate gθ (x′, x, y)
as shown in Section 2.3.

In what follows, we prove that standard PGD-AT, TRADES, and MART presented in Section 2 are
specific cases of their UDR counterparts by specifying corresponding cost functions. Given a cost
function cX (e.g., L1, L2, and L∞), we define a new cost function c̃X as:

c̃X (x, x′) =

{
cX (x, x′) if cX (x, x′) ≤ ε
∞ otherwise.

(13)

The cost function c̃X is lower semi-continuous. By defining the ball Bε (x) :=
{x′ : cX (x, x′) ≤ ε} = {x′ : c̃X (x, x′) ≤ ε} , we achieve the following theorem on the relation
between distributional and standard robustness.

2To encompass MART with our framework, we assume a classifier is adversarially trained by Eq. (7) with
adversarial examples generated by supx′∈Bε(x)DKL (hθ (x

′) , hθ (x))+BCE (hθ (x) , y). This is slightly dif-
ferent from the original MART, where the adversarial examples are generated by supx′∈Bε(x) CE (hθ (x

′) , y).
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Theorem 1. With the cost function c̃x defined as above, the optimization problem:

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

])
(14)

is equivalent to the optimization problem:

inf
θ
EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (15)

Proof. See Appendix A for the proof.

Theoretical contribution and comparison to previous work. Theorem 1 says that the standard
PGD-AT, TRADES, and MART are special cases of their UDR counterparts, which indicates that our
UDR versions of AT have a richer expressiveness capacity than the standard ones. Different from
WRM (Sinha et al., 2018) , our proposed framework is developed based on theoretical foundation of
(Blanchet & Murthy, 2019). It is worth noting that the theoretical development is not trivial because
theory developed in Blanchet & Murthy (2019) is only valid for a bounded cost function, while the
cost function c̃ is unbounded. More specifically, the transformation from primal to dual forms in
Eq. (11) requires the cost function c to be bounded. In Theorem 2 in Appendix A, we prove this
primal-dual form transformation for the unbounded cost function c̃X , which is certainly not trivial.

Moreover, our UDR is fundamentally distinctive from WRM in its ability to adapt and learn λ, while
this is a hyper-parameter in WRM. As a result of a fixed λ, WRM is fundamentally same as PGD in
the sense that these methods can only utilize local information of relevant benign examples when
crafting adversarial examples. In contrast, our UDR can leverage both local and global information
of multiple benign examples when crafting adversarial examples due to the fact that λ is adaptable
and captures the global information when solving the outer minimization in (14). Further explanation
can be found in Appendix B.

4 LEARNING ROBUST MODELS WITH UDR

In this section we introduce the details of how to learn robust models with UDR. To do this, we
first discuss the induced cost function c̃X defined as in Eq (13), which assists us in understanding
the connection between distributional and standard robustness approaches. We note that c̃X is non-
differential outside the perturbation ball (i.e., cX (x′, x) ≥ ε). To circumvent this, we introduce a
smoothed version ĉX to approximate c̃X as follows:

ĉX (x, x′) := 1 {cX (x, x′) < ε} cX (x, x′) + 1 {cX (x, x′) ≥ ε}
(
ε+

cX (x, x′)− ε
τ

)
, (16)

where τ > 0 is the temperature to control the growing rate of the cost function when x′ goes out
of the perturbation ball. It is obvious that ĉX (x, x′) is continuous and approaches c̃X (x, x′) when
τ → 0. Using the smoothed function ĉX (x, x′) from Eq. (16), the final object of our UDR becomes:

inf
θ,λ≥0

(
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λĉX (x′, x)}

])
. (17)

With this final objective, our training strategy involves three iterative steps at each iteration w.r.t. a
batch of data examples, which are shown in Algorithm 1.

1. Craft adversarial examples w.r.t. the current model and the parameter λ. Given the current
model θ and the parameter λ, we find the adversarial examples by solving:

xa = argmaxx′ {gθ(x′, x, y)− λĉX (x′, x)} , (18)

where different methods (i.e., UDR-PGD, UDR-TRADES, etc.) specifies gθ(x′, x, y) differently.

Similar to other AT methods like PGD-AT, we employ iterative gradient ascent update steps to
optimise to find xa. Specifically, we start from a random example inside the ball Bε and update in k
steps with the step size η > 0. Since the magnitude of the gradient ∇x′gθ(x′, x, y) is significantly
smaller than that of ∇x′ ĉ X (x′, x), we use sign (∇x′ ĉX (x′, x)) in the update formula rather than
∇x′ ĉX (x′, x). These steps are shown in 2(a) to 2(c) of Algorithm 1.
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Algorithm 1 The pseudocode of our proposed method.
Input: training set D, number of iterations T , batch size N ,
adversary parameters {k, ε, η}
for t = 1 to T do

1. Sample mini-batch {xi, yi}Ni=1 ∼ D
2. Find adversarial examples {xai }Ni=1 using Eq. (18)

(a) Initialize randomly: x0
i = xi + noise where

noise ∼ U(−ε, ε)
(b) for n = 1 to k do

i. xinteri = xni + ηsign (∇xgθ(xni , xi, yi))
ii. xn+1

i = xinteri − ηλ∇xĉ(xinteri , xi)

(c) Clip to valid range: xai = clip(xki , 0, 1)

3. Update parameter λ using Eq. (19)
4. Update model parameter θ using Eq. (20)

Output: model parameter θ

An important difference from ours to
other AT methods is that at each up-
date step, we do not apply any explicit
projecting operations onto the ball Bε.
Indeed, the parameter λ controls how
distant xa to its benign counterpart
x. Thus, this can be viewed as im-
plicitly projecting onto a soft ball gov-
erned by the magnitude of the param-
eter λ and the temperature τ . Specif-
ically, when λ becomes higher, the
crafted adversarial examples xa stay
closer to their benign counterparts x
and vice versa. When τ is set closer to
0, the smoothed cost function ĉX ap-
proximates the cost function c̃X more
tightly. Thus, our soft-ball projection
is more identical to the hard ball pro-
jection as in projected gradient ascent.

2. Update the parameter λ. Given
current model θ, we craft a batch of adversarial examples {xai }Ni=1 corresponding to the benign
examples {xi}Ni=1 crafted as above. Inspired by the Danskin’s theorem , we update λ as follows:

λn = λ− ηλ
(
ε− 1

N

N∑

i=1

ĉX (xai , xi)

)
, (19)

where ηλ > 0 is a learning rate and λn represents the new value of λ.

The proposed update of λ is intuitive: if the adversarial examples stay close to their benign examples,
i.e.,

∑N
i=1 ĉX (xai , xi) < ε, λ decreases to make them more distant to the benign examples and vice

versa. Therefore the adversarial examples are crafted more diversely, which can further strengthen
the robustness of the model.

3. Update the model parameter θ. Given the set of adversarial examples {xai }Ni=1 crafted as above
and their benign examples {xi}Ni=1 with the labels {yi}Ni=1, we update the model parameter θ to
minimize EP [∇gθ(xa, x, y)] using the current batches of adversarial and benign examples:

θn = θ − ηθ
N

N∑

i=1

∇θgθ(xai , xi, yi), (20)

where ηθ > 0 is a learning rate and θn specifies the new model parameter.

5 EXPERIMENTS

We use MNIST (LeCun et al., 1998), CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) as the
benchmark datasets in our experiment. The inputs were normalized to [0, 1]. We apply padding 4
pixels at all borders before random cropping and random horizontal flips as used in Zhang et al.
(2019). We use both standard CNN architecture (Carlini & Wagner, 2017) and ResNet architecture
(He et al., 2016) in our experiment. The architecture and training setting are provided in Appendix D.

We compare our UDR with the SOTA AT methods, i.e., PGD-AT (Madry et al., 2018), TRADES
(Zhang et al., 2019) and MART (Wang et al., 2019). Because TRADES and MART performances
are strongly dependent on the trade-off ratio (i.e., β in Eq. (6) and (7)) between natural loss
and robust loss, we use the original setting in their papers (CIFAR10/CIFAR100: β = 6 for
TRADES/UDR-TRADES, β = 5 for MART/UDR-MART; MNIST: β = 1 for all the methods). We
also tried with the distributional robustness method WRM (Sinha et al., 2018). However, WRM
did not seem to obtain reasonable performance in our experiments. Its results can be found in
Appendix F. For all the AT methods, we use {k = 40, ε = 0.3, η = 0.01} for the MNIST dataset,
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Table 1: Comparisons of natural classification accuracy (Nat) and adversarial accuracies against
different attacks. Best scores are highlighted in boldface.

MNIST CIFAR10 CIFAR100

Nat PGD AA B&B Nat PGD AA B&B Nat PGD AA B&B
PGD-AT 99.4 94.0 88.9 91.3 86.4 46.0 42.5 44.2 72.4 41.7 39.3 39.6

UDR-PGD 99.5 94.3 90.0 91.4 86.4 48.9 44.8 46.0 73.5 45.1 41.9 42.3
TRADES 99.4 95.1 90.9 92.2 80.8 51.9 49.1 50.2 68.1 49.7 46.7 47.2

UDR-TRADES 99.4 96.9 92.2 95.2 84.4 53.6 49.9 51.0 69.6 49.9 47.8 48.7
MART 99.3 94.7 90.6 92.9 81.9 53.3 48.2 49.3 68.1 49.8 44.8 45.4

UDR-MART 99.3 96.0 92.3 94.4 80.1 54.1 49.1 50.4 67.5 52.0 48.5 48.6

Table 2: Robustness evaluation under different PGD attack
strengths ε. Avg represents for the average improvement of our
DR methods over their counterparts.

MNIST
ε 0.3 0.325 0.35 0.375 0.4 0.425 Avg

PGD-AT 94.0 67.8 21.1 6.8 2.3 1.2 -
UDR-PGD 94.3 92.9 90.1 79.2 22.3 3.8 31.57

TRADES 95.5 85.2 34.4 5.8 0.6 0.1 -
UDR-TRADES 96.9 96.9 95.8 95.1 94.5 88.5 57.68

MART 94.7 66.1 9.4 0.9 0.2 0.1 -
UDR-MART 96.0 95.0 94.1 92.8 88.8 37.7 55.5

CIFAR10
ε 8

255
10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT 46.0 33.7 23.7 15.2 9.5 3.6 -
UDR-PGD 48.9 36.4 26.3 18.5 13.0 7.1 3.08

TRADES 51.9 42.5 33.7 25.7 18.9 9.1 -
UDR-TRADES 53.6 43.6 35.2 27.5 20.7 10.9 1.62

MART 53.3 43.2 34.1 25.5 18.4 9.0 -
UDR-MART 54.1 46.0 37.3 29.7 22.9 12.2 3.12

CIFAR100
ε 10

1000
12.5
1000

15
1000

17.5
1000

20
1000

25
1000 Avg

PGD-AT 41.7 34.5 27.8 22.6 18.2 11.7 -
UDR-PGD 45.1 38.3 31.9 26.2 21.4 14.2 3.43

TRADES 49.7 44.3 39.9 35.2 31.2 23.5 -
UDR-TRADES 49.9 44.8 40.3 35.7 31.7 24.2 0.47

MART 49.8 45.3 41.0 36.6 32.4 25.1 -
UDR-MART 52.0 47.8 44.1 40.2 36.2 29.4 3.25

(a) Natural/robust accuracy trade-off

(b) Robustness in correlation with τ

Figure 1: Further analysis on param-
eter sensitivity.

{k = 10, ε = 8/255, η = 2/255} for the CIFAR10 dataset and {k = 10, ε = 0.01, η = 0.001} for
the CIFAR100 dataset, where k is number of iteration, ε is the distortion bound and η is the step size
of the adversaries.

We use different SOTA attacks to evaluate the defense methods including: 1) PGD attack (Madry
et al., 2018) which is one of the most widely-used gradient based attacks. For PGD, we set k = 200
and ε = 0.3, η = 0.01 for MNIST, ε = 8/255, η = 2/255 for CIFAR10, and ε = 0.01, η = 0.001
for CIFAR100, which are the standard settings. 2) B&B attack (Brendel et al., 2019) which is a
decision based attack. Following Tramer et al. (2020), we initialized with the PGD attack with k = 20
and corresponding {ε, η} then apply B&B attack with 200 steps. 3) Auto-Attack (AA) (Croce &
Hein, 2020b) which is an ensemble methods of four different attacks. We use ε = 0.3, 8/255, 0.01,
for MNIST, CIFAR10, and CIFAR100, respectively. The distortion metric we use in our experiments
is l∞ for all measures. We use the full test set for PGD and 1000 test samples for the other attacks.

5.1 MAIN RESULTS

Whitebox Attacks with fixed ε. First, we compare the natural and robust accuracy of the AT
methods and their counterparts under our UDR framework, against several SOTA attacks. Note
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Table 3: Adversarial accuracy in the blackbox settings. Avg represents for the average improvement
of our DR methods over their counterparts.

Target
Source PGD-AT UDR-P TRADES UDR-T MART UDR-M Avg

PGD-AT - - 61.6 61.6 61.7 62.4 -
UDR-PGD - - 63.6 63.4 64.0 64.1 2.0

TRADES 61.2 61.3 - - 58.9 59.8 -
UDR-TRADES 62.7 62.8 - - 61.1 61.6 1.8

MART 61.4 61.4 58.9 59.5 - - -
UDR-MART 62.3 62.1 60.1 60.5 - - 1.0

that in this experiment, the attacks are with their standard settings. The result of this experiment
is shown in Table 1. It can be observed that for all the AT methods, our UDR versions are able to
boost the model robustness significantly against all the strong attack methods in comparison on all
the three datasets. These improvements clearly show that our UDR empowered AT methods achieve
the SOTA adversarial robustness performance. Specifically, our UDR-PGD’s improvement over PGD
on both CIFAR10 and CIFAR100 is over 3% against all the attacks. Similarly, our UDR-MART also
improves over MART with a 3% gap on CIFAR100.

Whitebox Attacks with varied ε. Recall that UDR is designed to have better generalization capacity
than standard adversarial robustness. In this experiment, we exam the generalization capacity by
attacking the AT methods (including our UDR variants) with PGD with varied attack strength ε while
keeping other parameters of PGD attack the same. This is a highly practical scenario where attackers
may use various attack strengths that are different from that the model is trained with. The results
of this experiment are shown in Table 2. We have the following remarks of the results: 1) All AT
methods perform reasonably well (our UDR variants are better than their counterparts) when PGD
attacks with the same ε that these methods are trained on. This is shown in the first column on all the
datasets, whose results are in line with these in Table 1. 2) With increased ε, the performance of all
the AT methods deteriorates, which is natural. However, the advantage of our UDR methods over
their counterparts becomes more and more significant. For example, when ε = 0.375, all of our UDR
methods can achieve at least 80% robust accuracy on MNIST, while others can barely defend. This
clearly demonstrates the benefit of our UDR framework on generalization capacity.

Table 4: Robustness evaluation against Auto-
Attack and PGD (k = 100) with WRN-34-10 on
the full test set of CIFAR10 dataset. (*) Omit the
cross-entropy loss of natural images. Detail can be
found in Appendix D.

Nat PGD AA C&W
PGD-AT* 84.93 55.04 52.12 40.85
UDR-PGD* 84.60 55.71 52.98 47.31
TRADES 85.70 56.97 53.82 47.65
UDR-TRADES 84.93 57.35 54.45 49.14
AWP-AT 85.57 57.78 53.91 49.91
UDR-AWP-AT 85.51 58.65 54.40 54.44
Zhang et al. (2020a) 84.52 - 53.51 -
Huang et al. (2020) 83.48 - 53.34 -
Zhang et al. (2019) 84.92 - 53.08 -
Cui et al. (2021) 88.22 - 52.86 -

Blackbox Attacks. To further exam the gen-
eralization of the UDR framework, we conduct
the experiment with the blackbox setting via
transferred attacks. Specifically, we use PGD
to generate adversarial examples according to
the model trained with a specific AT method,
i.e., the source method. Next, we use the gen-
erated adversarial examples to attack another
AT method, i.e., the target method. This is to
see whether an AT method can defend against
attacks generated from other models. We report
the results in Table 3. It can be seen that with
better generalization capacity, our UDR meth-
ods also outperform their standard counterparts
with a margin of 2% in the blackbox setting.

Results with WideResNet architecture. We
would like to provide further experimental re-
sults on the CIFAR10 dataset with WideResNet (WRN-34-10) as shown in Table 4. It can be seen
that our distributional frameworks consistently outperform their standard AT counterparts in both
metrics. More specifically, our improvement over PGD-AT against Auto-Attack is around 0.8%,
while that for TRADES is 0.5%. To make a more concrete conclusion, we deploy our framework on a
recent SOTA standard AT which is AWP-AT Wu et al. (2020). The result shows that our distributional
robustness version (UDR-AWP-AT) also improves its counterpart by 0.5%. With the same setting
(i.e., same architecture and without additional data), our UDR-TRADES and UDR-AWP-AT achieve
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Table 5: Average norm L1 and L∞ of the perturbation δ = |xa − x|p
L1 L∞ p(δ ≤ 0.9ε) p(δ ≤ ε) p(δ ≤ 1.1ε)

PGD 0.0270 0.031 19.7% 100% 100%
UDR-PGD at epoch 0th 0.0278 0.031 18.9% 100% 100%
UDR-PGD at epoch 200th 0.0301 0.034 19.5% 22.1% 100%

Table 6: Comparison to PGD-AT with different perturbation limitations.

8
255

10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT at ε = 0.031 46.0 33.7 23.7 15.2 9.5 3.6 -
PGD-AT at ε = 0.034 46.7 34.8 24.7 16.2 10.1 3.7 0.75
PGD-AT at ε = 0.037 44.9 33.3 23.7 15.6 10.0 3.8 -0.07
UDR-PGD at ε = 0.031 48.9 36.4 26.3 18.5 13.0 7.1 3.08

better robustness than recently listed methods on RobustBench (Croce et al., 2020).3 Remarkably, the
additional experiment with C&W (L2) attack shows a significant improvement of our distributional
methods over standard AT by around 5%. More discussion can be found in Appendix F.

5.2 ANALYTICAL RESULTS

Benefit of the soft-ball projection. Here we would like to analytically study why our UDR
methods are better than standard AT methods, by taking UDR-PGD and PGD-AT as examples.
The visualization on the synthetic dataset can be found in Appendix E. Recall that one of the key
differences between UDR-PGD and PGD-AT is that the former uses the soft-ball projection and the
later use the hard-ball one, discussed in the second paragraph under Eq. (18). More specifically, Table
5 reports the average norm (L1 andL∞) of the perturbation δ = |xa − x|p in PGD and our UDR-PGD.
It can be seen that: (i) At the beginning of the training process, there is no difference between the
norms of the perturbations generated by PGD and our UDR-PGD. More specifically, most of the pixels
lie on the edge of the hard-ball projection (i.e., p(0.9ε ≤ δ ≤ ε) = p(δ ≤ ε)− p(δ ≤ 0.9ε) > 80%).
(ii) When our model converges, there are 77.9% pixels lying slightly beyond the hard-ball projection
(i.e., p(δ > ε)). It is because our soft-ball projection can be adaptive based on the value of . This
flexibility helps the adversarial examples reach a better local optimum of the prediction loss, therefore,
benefits the adversarial training.

Next, we show that doing PGD adversarial training with larger ε cannot achieve the same defence
performance as our methods with the soft-ball projection. We conduct more experiments with
PGD-AT with ε = 0.034 (the final when our model converages) and ε = 0.037 to show that simply
extending the hard-ball projection doesn’t benefit adversarial training. More specifically, the average
robustness improvement with ε = 0.034 is 0.75%, while there is no improvement with ε = 0.037.

Parameter sensitivity of τ . Figure 1a and 1b show the our framework’s sensitivity to τ on CIFAR10
under the PGD attack. It can be observed that overly small values of τ can hardly improve adversarial
robustness while overly big values of τ may hurt the natural performance (accnat = 68.7% with
τ = 1.0). Empirically, we find that τ = 2η performs well in our experiments.

6 CONCLUSIONS

In this paper, we have presented a new unified distributional robustness framework for adversarial
training, which unifies and generalizes standard AT approaches with improved adversarial robustness.
By defining a new family of risk functions, our framework facilitates the development of the distri-
butional robustness counterparts of the SOTA AT methods including PGD-AT, TRADES, MART
and AWP. Moreover, we introduce a new cost function, which enables us to bridge the connections
between standard AT methods and their distributional robustness counterparts and to show that the
former ones can be viewed as the special cases of the later ones. Extensive experiments on the
benchmark datasets including MNIST, CIFAR10, CIFAR100 show that our proposed algorithms are
able to boost the model robustness against strong attacks with better generalization capacity.

3RobustBench reported a robust accuracy of 56.17% for AWP-TRADES version from Wu et al. (2020) which
is higher than ours but might not be used as a reference.
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A THEORETICAL DEVELOPMENT

Theorem 1. With the cost function c̃X defined as above , the optimization problem:

inf
θ,λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}
(21)

is equivalent to the optimization problem:

inf
θ
EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (22)

Proof. We need to prove that

inf
λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}
= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
. (23)

By the definition of the cost function c̃X , the LHS of (23) can be rewritten as:

min

{
inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{
gθ
(
x′, x, y

)
− λcX

(
x′, x

)}
]}

,EP

[
sup
x′
gθ
(
x′, x, y

)]
}
. (24)

Given any λ > 0 and x′ ∈ Bε (x), we have

λε+ gθ (x′, x, y)− λcX (x′, x) = gθ (x′, x, y) + λ (ε− cX (x′, x)) ≥ EP [gθ (x′, x, y)] .

Hence, we arrive at

λε+ sup
x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)} ≥ sup
x′∈Be(x)

gθ (x′, x, y) .

λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]
≥ EP

[
sup

x′∈Be(x)

gθ (x′, x, y)

]
.

which follows that

inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]}

≥ EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (25)
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We now prove the inequality

lim
λ→0+

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
.

Take a sequence {λn}n≥1 → 0+. Given a feasible pair (x, y), we define

fn (x′;x, y) := gθ (x′, x, y) + λn [ε− cX (x′, x)] ,∀x′ ∈ Bε (x) .

It is evident that fn (x′;x, y) converges pointwise to gθ (x′, x, y) over the compact set Bε (x). There-
fore, fn (x′;x, y) converges uniformly to gθ (x′, x, y) on this set. This follows that

∀α > 0,∃n0 = n (α) : |fn (x′;x, y)− gθ (x′, x, y)| < α,∀x′ ∈ Bε (x) , n ≥ n0.

Hence, we obtain for all x′ ∈ Bε (x) and n ≥ n0:

gθ (x′, x, y)− α < fn (x′;x, y) < gθ (x′, x, y) + α.

This leads to the following for all n ≥ n0:

sup
x′∈Bε(x)

gθ (x′, x, y)− α ≤ sup
x′∈Bε(x)

fn (x′;x, y) ≤ sup
x′∈Bε(x)

gθ (x′, x, y) + α.

Therefore, we obtain:

lim
n→∞

sup
x′∈Bε(x)

fn (x′;x, y) = sup
x′∈Bε(x)

gθ (x′, x, y)

for all feasible pairs (x, y), which further means that

lim
n→∞

EP

[
sup

x′∈Bε(x)

fn (x′;x, y)

]
= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
,

or equivalently

lim
n→∞

EP

[
λnε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λncX (x′, x)}
]]

= EP

[
sup

x′∈Bε(x)

gθ (x′, x, y)

]
.

(26)

Because Eq. (26) holds for every sequence {λn}n≥1 → 0+, we reach

lim
λ→0+

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (27)

By combining (25) and (27), we reach

inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
. (28)
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Finally, we have

inf
λ≥0

{
λε+ EP

[
sup
x′
{gθ (x′, x, y)− λc̃X (x′, x)}

]}

= min

{
inf
λ>0

{
λε+ EP

[
sup

x′∈Bε(x)

{gθ (x′, x, y)− λcX (x′, x)}
]}

,EP

[
sup
x′
gθ (x′, x, y)

]}

= min

{
EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
,EP

[
sup
x′
gθ (x′, x, y)

]}

= EP

[
sup

x′∈Be(x)

EP [gθ (x′, x, y)]

]
.

That concludes our proof.

One of most technical challenge we need to bypass in our work is that in theory developed in Blanchet
& Murthy (2019), to equivalently transform the primal form to the dual form, it requires the cost
function to be finite. In the following theorem, we reprove the equivalence of the primal and dual
forms in our context.
Theorem 2. Assume that the function g is upper-bounded by a number L. We have the following
equality between the primal form and dual form

sup
Q:Wc(Q,P4)<ε

EQ [g (z′)] = inf
λ≥0

{
λε+ EP4

[
sup
z′
{g (z′)− λc (z′, z)}

]}
,

where z = (x, x, y), z′ = (x′, x′′, y′), and we have defined

c (z, z′) = c̃X (x, x′) +∞× c̃X (x, x′′) +∞× 1 {y 6= y′} ,
for which we have defined

c̃X (x, x′) =

{
cX (x, x′) if cX (x, x′) ≤ ε
∞ otherwise.

Proof. Given a positive integer number n > 0, we define the following metrics:

cn (z, z′) = c̃nX (x, x′) +∞× c̃nX (x, x′′) +∞× 1 {y 6= y′} ,

c̃nX (x, x′) =

{
cX (x, x′) if cX (x, x′) < ε.

n otherwise.

We have c̃nX ↗ c̃X and cn ↗ c. We now prove that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] = inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

In fact, for each n, we have cn ≤ c. Therefore, Wcn (Q,P4) ≤ Wc (Q,P4), hence
{Q :Wc (Q,P4) < ε} ⊂ {Q :Wcn (Q,P4) < ε}, implying that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≤ sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≤ inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [g (z′)] .

Let us define

A = ∪(x,y)∈D {(z, z′) : z = (x, x, y) , z′ = (x′, x′′, y′) , cX (x, x′) < ε, x′′ = x, y′ = y} ,

B = ∪(x,y)∈D {(z, z′) : z = (x, x, y) , z′ = (x′, x′′, y′) , cX (x, x′) ≥ ε, x′′ = x, y′ = y} .
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To simplify our proof, without generalization ability, for each n, we denote Qn as the distribution in
{Q :Wcn (Q,P4) < ε} that peaks EQ [gθ (z′)] and γn as the optimal transport plan ofWcn (Qn,P4)
which admits P4 and Qn as its marginals. Note that becauseWcn (Qn,P4) < ε, the support of γn
almost surely determines on A ∪B.We then have

Wcn (Qn,P4) =

∫
cn (z, z′) dγn (z, z′)

=

∫

A

cn (z, z′) dγn (z, z′) +

∫

B

cn (z, z′) dγn (z, z′)

=

∫

A

cX (x, x′) dγn (z, z′) +

∫

B

ndγn (z, z′)

=

∫

A

cX (x, x′) dγn (z, z′) + nγn (B) < ε.

Therefore, we obtain: γn (B) < ε
n . We now define γ̄n as a restricted measure of γn on A, meaning

that γ̄n (C) = γn(A)+γn(B)
γn(A) γn (C) =

(
1 + o

(
n−1

))
γn (C) for any measure set C ⊂ A, where

limn→∞ o
(
n
−1
)

= 0. Let Pn as marginal distribution of Qn corresponding to the dimensions of z′.
It appears that

Wc (Pn,P4) ≤
∫

A

c (z, z′) dγ̄n (z, z′) +

∫

B

c (z, z′) dγ̄n (z, z′)

(1)
=

∫

A

cX (x, x′) dγ̄n (z, z′) <
∫

A

εdγ̄n (z, z′) = ε.

Note that we have
(1)
= because γ̄n (B) = 0.

This implies that Pn ∈ {Q :Wc (Q,P4) < ε}, which follows that

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≥ EPn [gθ (z′)] = Eγ̄n [g (z′)]

=

∫

A

g (z′) dγ̄n (z, z′) +

∫

B

g (z′) dγ̄n (z, z′)

(1)
=

∫

A

g (z′) dγ̄n (z, z′) =
γn (A) + γn (B)

γn (A)

∫

A

g (z′) dγn (z, z′)

=
(

1 + o
(
n
−1
))[∫

A∪B
g (z′) dγn (z, z′)−

∫

B

g (z′) dγn (z, z′)

]

=
(

1 + o
(
n
−1
))[∫

A∪B
g (z′) dQn (z′)−

∫

B

g (z′) dγn (z, z′)

]

≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]−
∫

B

Ldγn (z, z′)

]

sup
Q:W(Q,P4)<ε

EQ [g (z′)] ≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]− Lγn (B)

]

(2)

≥
(

1 + o
(
n
−1
))[

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)]− Lε

n

]
.

Note that we have
(1)
= due to γ̄n (B) = 0 and

(2)

≥ due to γn (B) < ε
n . Therefore, we reach the

conclusion
sup

Q:W(Q,P4)<ε

EQ [gθ (z′)] = inf
n

sup
Q:Wcn (Q,P4)<ε

EQ [gθ (z′)] .
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Next, we apply primal-dual form in Blanchet & Murthy (2019) for the finite metric c̃nX to reach

sup
Wcn (Q,P4)<ε

EQ [gθ (z′)] = inf
λ≥0

{
λε+ EP4

[
sup
z′
{gθ (z′)− λcn (z′, z)}

]}
.

Finally, taking n→∞ and noting that cn ↗ c, we reach the conclusion.

B FURTHER EXPLANATION WHY OUR UDR CAN UTILIZE GLOBAL
INFORMATION AND THE ADVANTAGE OF SOFT-BALL

Algorithm 1 The pseudocode of our proposed method.
Input: training set D, number of iterations T , batch size N , adversary parameters {k, ε, η}
for t = 1 to T do

1. Sample mini-batch {xi, yi}Ni=1 ∼ D
2. Find adversarial examples {xai }Ni=1 using Eq. (18)

(a) Initialize randomly: x0
i = xi + noise where noise ∼ U(−ε, ε)

(b) for n = 1 to k do
i. xinteri = xni + ηsign (∇xgθ(xni , xi, yi))

ii. xn+1
i = xinteri − ηλ∇xĉ(xinteri , xi)

(c) Clip to valid range: xai = clip(xki , 0, 1)

3. Update parameter λ using Eq. (19)
4. Update model parameter θ using Eq. (20)

Output: model parameter θ

The advantage of our soft ball comes from the adaptive capability of λ, which is controlled by a
global effect regarding how far adversarial examples xai from benign examples xi. Let us revisit
Algorithm 1. In the step 2.(b).i, we update

xinteri = xni + ηsign (∇xgθ(xni , xi, yi))

with the aim to find xinteri that can maximize gθ(·, xi, yi) as in the standard versions.

Furthermore, in the step 2.(b).ii, we update

xn+1
i = xinteri − ηλ∇xĉ(xinteri , xi) = xinteri − ηλ

(
xinteri − xi

)

= (1− ηλ)xinteri + ηλxi, (29)

where we assume L2 cost c(x, x′) = 1
2‖x− x′‖2 is used. It is evident that xn+1

i is an interpolation
point of xinteri and xi, hence xn+1

i is drawn back to xi wherein the drawn-back amount is proportional
to ηλ.

We now revisit the formula to update λ as Eq. (19)

λn = λ− ηλ
(
ε− 1

N

N∑

i=1

ĉX (xai , xi)

)
,

which indicates that λ is globally controlled. More specifically, if average distance from xai to xi (i.e.,
1
N

∑N
i=1 ĉX (xai , xi)) is less than ε (i.e., adversarial examples are globally close to benign examples),

λ is adapted decreasingly. Linking with the formula in Eq. (29), in this case, xn+1
i gets back to xi

less aggressively to maintain the distance between xai and xi. Otherwise, adversarial examples are
globally far from benign examples, λ is adapted increasingly. In this case, xn+1

i gets back to xi more
aggressively to reduce more the distance between xai and xi.
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C RELATED WORK

Adversarial Attacks. In this paper, we are interested in image classification tasks and focus on
the adversaries that add small perturbations to the pixels of an image to generate attacks based on
gradients, which are the most popular and effective. FGSM (Goodfellow et al., 2015) and PGD
(Madry et al., 2018) are the most representative gradient-based attacks and PGD is the most widely-
used one, due to its effectiveness and simplicity. Recently, there are several variants of PGD that
achieve improved performance, for example, Auto-Attack by ensembling PGD with other attacks
(Croce & Hein, 2020a) and the B&B method (Brendel et al., 2019) by attacking with decision-based
boundary initialized with PGD. Along with PGD, these attacks have been considered as benchmark
attacks for adversarial robustness.

Adversarial defenses. Among various kinds of defense approaches, Adversarial Training (AT),
originating in Goodfellow et al. (2015), has drawn the most research attention. Given its effectiveness
and efficiency, many variants of AT have been proposed with (1) different types of adversarial
examples (e.g., the worst-case examples as in Goodfellow et al. (2015) or most divergent examples as
in Zhang et al. (2019)), (2) different searching strategies (e.g., non-iterative FGSM and Rand FGSM
(Madry et al., 2018)), (3) additional regularizations (e.g., adding constraints in the latent space (Zhang
& Wang, 2019; Bui et al., 2020; 2021a; Hoang et al., 2020)), and (4) different model architectures
(e.g., activation function (Xie et al., 2020) or ensemble models (Pang et al., 2019; Bui et al., 2021b)).

Distributional robustness. There have been a few works attempting to connect DR with adversarial
machine learning or improve adversarial robustness based on the ideas of DR (Sinha et al., 2018;
Staib & Jegelka, 2017; Miyato et al., 2018; Zhang & Wang, 2019; Najafi et al., 2019; Levine &
Feizi, 2020; Le et al., 2022; Thanh et al., 2022). A recent work of Dong et al. (2020) proposes a
new AT algorithm by constructing a distribution over each data sample to model the adversarial
examples around it, which is still in the category of pointwise adversary (Sinha et al., 2018) and has
no relations to DR. Although its aim of enhancing adversarial robustness is visually related ours, its
mythology is different from ours. Therefore, we consider Sinha et al. (2018); Staib & Jegelka (2017)
as the most relevant ones to ours. Specifically, both works leverage the dual form of Wasserstein
DR (Blanchet & Murthy, 2019) for searching worst-case perturbations for AT, where Sinha et al.
(2018) (WRM) focuses on certified robustness with comprehensive study on the tradeoffs between
complexity, generality, guarantees, and speed, while Staib & Jegelka (2017) (FDRO) points out that
Wasserstein robust optimization can be viewed as the generalization to standard AT.

Although our study is inspired by the two works, there are significant differences and new results of
ours: 1) We introduce a new Wasserstein cost function and a new series of risk functions in WDR,
which facilitate our framework to generalize and encompass many SOTA AT methods. While WRM
can be viewed as the generalization to PGD-AT only. 2) Most importantly, although WDR has been
demonstrated to have superior properties over standard AT in the two papers, unfortunately, WRM
and FDRO have not been observed to outperform standard AT methods. For example, the experiments
of FDRO show that adversarial robustness on MNIST of WRM and FDRO is worse than that of AT
with PGD and iterative-FGSM (Staib & Jegelka, 2017). Moreover, WRM and FDRO’s effectiveness
either on more complex colored images (e.g., CIFAR10) or against more advanced attacks (e.g.,
Auto-Attack) has not been carefully studied yet. On the contrary, we conduct extensive experiments
to show the SOTA performance of our proposed algorithms.

D EXPERIMENTAL SETTINGS

For MNIST dataset. We use a standard CNN architecture for the MNIST dataset which is identical
with that in Carlini & Wagner (2017). We use the SGD optimizer with momentum 0.9, starting
learning rate 1e-2 and reduce the learning rate (×0.1) at epoch {55, 75, 90}. We train with 100
epochs.

For CIFAR10 and CIFAR100 dataset with ResNet18 architecture. We use the ResNet18 for
the CIFAR10 and CIFAR100 dataset. We use the SGD optimizer with momentum 0.9, weight decay
3.5e-3 as in the official implementation from Wang et al. (2019).4 The starting learning rate 1e-2 and
reduce the learning rate (×0.1) at epoch {75, 90, 100}. We train with 200 epochs.

4https://github.com/YisenWang/MART
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For hard/soft-ball projection experiments. For PGD-AT, we use the following three ad-
hoc strategies for ε: 1) Fixing ε = 8/255; 2) Fixing ε = 16/255; 3) Gradually increas-
ing/decreasing εfrom 8/255 to 16/255, from epoch 20 to epoch 70, with the changing rate
δ = 8/255/50 per epoch. For example, the perturbation bound of the increasing strategy at epoch
i is: εi = min( 16

255 ,max( 8
255 ,

8
255 + (i− 20)δ)); the perturbation bound for decreasing strategy is:

εi = max( 8
255 ,min( 16

255 ,
16
255 − (i− 20)δ)).

For CIFAR10 with WideResNet architecture. We follow the setting in Pang et al. (2020) for the
additional experiments on CIFAR10 with WideResNet-34-10 architecture. More specifically, we
train with 200 epochs with SGD optimizer with momentum 0.9, weight decay 5e-4. The learning rate
is 0.1 and reduce at epoch 100th and 150th with rate 0.1 (Rice et al., 2020; Wu et al., 2020). More
importantly, to match the performance as reported in Croce et al. (2020), we omit the cross-entropy
loss of the natural images in PGD-AT and UDR-PGD. More specifically, the objective function
of PGD-AT in Eq. (5) has been replaced by: infθ EP

[
β supx′∈Bε(x) CE (hθ (x′) , y)

]
while the

unified risk function for UDR-PGD to be: gθ (z′) := βCE (hθ (x′) , y′). We also switch Batch
Normalization layer to evaluation stage when crafting adversarial examples as adviced in Pang et al.
(2020).

E VISUALIZING THE BENEFIT OF DISTRIBUTIONAL ROBUSTNESS

Synthetic dataset setting. We conduct an experiment on a synthetic dataset with a simple MLP
model to visualize the benefit of our UDR framework over the standard AT methods, by taking UDR-
PGD and PGD-AT as examples. The synthetic dataset consists of three clusters A, B1, B2 where A,
B are two classes as shown in Figure 2c. The data points are sampled from normal distributions, i.e.,
A ∼ N ((−2, 0),Σ) , B1 ∼ N ((2, 0),Σ) and B2 ∼ N ((6, 0),Σ) where Σ = 0.5 ∗ I with I is the
identity matrix. There are total 10k training samples and 2k testing samples with densities of three
clusters are 10%, 50% and 40%, respectively. We use a simple model of 4 Fully-Connected (FC)
layers as follows: Input –> ReLU(FC(10)) –> ReLU(FC(10)) –> ReLU(FC(10)) –> Softmax(FC(2)),
where FC(k) represents for FC with k hidden units. We use Adam optimizer with learning rate 1e-3
and train with 30 epochs. We use {k = 20, ε = 1.0, η = 0.1} for adversarial training (either PGD-AT
or UDR-PGD) and PGD attack with {k = 200, ε = 2.0, η = 0.1} for evaluation.

It is a worth noting that while the distance between clusters is 2, we limit the perturbation ε = 1 for
the adversarial training to show the advantage on the flexibility of the soft-ball projection on the
same/limited perturbation budget. Intuitively, cluster A has the lowest density (10%), therefore, the
ideal decision boundary should be surrounded cluster A which sacrifices the robustness of the cluster
A but increases the overall robustness eventually.

Comparison between UDR-PGD and PGD-AT. First, we visualize the trajectory of adversarial
example from PGD and our UDR-PGD as in Figures 2b,2a to compare behaviors of two adversaries
on the same pre-trained model. It can be seen that: (i) the PGD’s adversarial examples and ours are
pushed toward the lower confident region to maximize the prediction loss gθ(x′, x, y); (ii) however,
while the adversarial examples of PGD are limited on the hard-projection ball, our adversarial
examples have more flexibility. Specifically, those are close to the decision boundary (cluster A, B1)
can go further, while those are distant to the decision boundary (cluster B2) stay close to the original
input. This flexibility helps the adversarial examples reach better local optimum of the prediction
loss, hence, benefits the adversarial training. Consequently, as shown in Figure 2c the final decision
boundary of our UDR-PGD is closer to the ideal decision boundary than that of PGD-AT, hence,
achieving a better robustness. Quantitative result shows that the robust accuracy of our UDR-PGD is
82.6%, while that of PGD-AT is 74.5% with the same PGD attack {k = 200, ε = 2.0, η = 0.1}.

Comparison among UDR-PGD settings. Here we would like to provide more understanding
about our framework through the experiment with PGD-AT as shown in Figure 3. First, we compare
the trajectories of the adversarial examples of UDR-PGD with different λ as shown in Figures 3a,3b.
It can be seen that the crafted adversarial examples stay closer to their benign counterparts when λ
becomes higher (i.e., λ = 0.1 in Figure 3a). In contrast, the soft-projection ball is extended when λ
becomes smaller (i.e., λ = 0.01 in Figure 3b). On the other hand, with the same λ but smaller τas
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(a) UDR-PGD (b) PGD (c) Decision Boundary

Figure 2: (a)/(b): Trajectory of PGD and UDR-PGD adversarial examples. Each trajectory includes
20 intermediate steps. For better visualization, we do not use random initialization. The model is the
natural training at epoch 1. (c) The final decision boundary comparison.

shown in Figure 3c, the soft-ball projection is more identical to the hard ball projection as shown in
Figure 2b. These behaviors concur with the theoretical expectation as discussed in Section 4.1 in the
main paper.

Figure 3d shows the learning progress of parameter λ. It can be observed that (i) the λ converges to 0
regardless of its initialization value and (ii) the convergence rate of λ depends on the parameter τ (i.e.,
smaller τ slower convergence). We choose τ = 2η for the experiments on real-world image datasets.

(a) λ = 0.1, τ = 1.0 (b) λ = 0.01, τ = 1.0 (c) λ = 0.01, τ = 0.01 (d) Changing of λ

Figure 3: (a)/(b)/(c): Trajectory of UDR-PGD adversarial examples with different settings. Each
trajectory includes 20 intermediate steps. For better visualization, we do not use random initialization.
The model is the natural training at epoch 1. (d) The changing of parameter λ.

Further results of soft-ball projection. In Figure 4, we compare our UDR-PGD with the soft-ball
projection to PGD-AT with the hard-ball projection with different settings against the PGD attack on
CIFAR10. For PGD-AT, we use the following three ad-hoc strategies for ε: 1) Fixing ε = 8/255; 2)
Fixing ε = 16/255; 3) Gradually increasing/decreasing ε from 8/255 to 16/255 (Refer to Appendix
D for details). It can be seen that it is hard to find an effective strategy of the perturbation boundary
of the hard-ball projection for PGD-AT, which can outperform ours. This demonstrates the benefit of
our soft-project operation.

F MORE RESULTS AND ANALYSIS

Further results with C&W (L2) attack. We enrich the comprehensiveness of the experiments by
further evaluating the defense methods with C&W (L2) attack (Carlini & Wagner, 2017) which is a
very strong optimization based attack. The experiment has been conducted on the CIFAR10 dataset
with WideResNet architecture. The hyper-parameters are c ∈ {0.5, 0.7, 1.0}, kappa = 0, steps =
1000, lr = 0.01 where kappa is the confidence coefficient and c is box-constraint coefficient.5 As
shown in Table 7, our distributional robustness version significantly outperform the standard ones
in term of robust accuracy. For example, against C&W (c=0.5) attack, the robust accuracy gap
between UDR-PGD and PGD-AT is 6% while that for UDR-AWP-AT and AWP-AT is around 5%.
The average improvement of robust accuracies against different levels of attack strengths is around

5We use the implementation from https://github.com/Harry24k/adversarial-attacks-pytorch
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Figure 4: Hard/soft-ball projections

Table 7: Robustness evaluation against C&W attack with WRN-34-10 on the full test set of the
CIFAR10 dataset (10K test images). c is box-constraint coefficient. (*) Omit the cross-entropy loss
of natural images.

Nat c = 0.5 c = 0.7 c = 1.0 Avg-Gap
PGD-AT* 84.93 40.85 25.90 12.95 -
UDR-PGD* 84.60 47.31 31.58 16.57 5.25
TRADES 85.70 47.65 34.30 21.03 -
UDR-TRADES 84.93 49.14 36.33 23.28 1.92
AWP-AT 85.57 49.91 34.31 18.97 -
UDR-AWP-AT 85.51 54.44 39.86 23.61 4.91

5%. This result strongly emphasizes the contribution of our distributional robustness and the soft-ball
projection over the standard adversarial training.

Experimental results of WRM (Sinha et al., 2018). The performance of WRM highly depends
on the Lagrange dual parameter γ (or ε = 0.5/γ in their implementation6), which controls the
robustness level. As mentioned in their paper, with large γ, the method is less robust but more
tractable. Generally, decreasing γ will reduce the natural accuracy but increase the robustness of the
model as shown in Table 8. We obtained the best performance on MNIST with γ = 0.05 (CNN),
while on CIFAR10 and CIFAR100 with γ = 0.5 (ResNet18). The best results with three benchmark
datasets have been reported as in Table 9 (recall results from Table 1). It is a worth mentioning that
while we could obtain a similar performance as reported Sinha et al. (2017) on the MNIST dataset
with their architecture (3 Convolution layers + 1 FC layer), however, WRM seems much less effective
with larger architectures.

Table 8: Result of WRM with different ε = 0.5/γ on the CIFAR10 dataset.

Nat PGD AA B&B
ε = 0.1 90.9 15.3 13.7 15.8
ε = 0.5 86.7 33.9 32.6 35.4
ε = 1.0 83.7 40.9 39.8 41.4
ε = 2.0 79.4 45.4 43.6 45.5
ε = 5.0 71.6 47.5 45.2 46.2
ε = 10.0 65.0 46.6 43.4 44.4

6https://github.com/duchi-lab/certifiable-distributional-robustness/blob/master/attacks_tf.py
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Table 9: Comparisons of natural classification accuracy (Nat) and adversarial accuracies against
different attacks. Recall results from Table 1 with additional results of WRM. Best scores are
highlighted in boldface.

MNIST CIFAR10 CIFAR100

Nat PGD AA B&B Nat PGD AA B&B Nat PGD AA B&B
WRM 91.8 27.1 4.5 8.2 83.7 40.9 39.8 41.4 56.6 24.7 21.3 22.9

PGD-AT 99.4 94.0 88.9 91.3 86.4 46.0 42.5 44.2 72.4 41.7 39.3 39.6
UDR-PGD 99.5 94.3 90.0 91.4 86.4 48.9 44.8 46.0 73.5 45.1 41.9 42.3

Further results of whitebox attacks with varied ε. Here we would like to provide more results on
defending against whitebox attacks with a bigger range of ε as shown in Figure 5. It can be seen that
in a wide range of attack strengths our DR methods consistently outperform their AT counterparts.

(a) MNIST (b) CIFAR10 (c) CIFAR100

Figure 5: Robustness evaluation against multiple attack strengths.

The convergence of the algorithm. During the training, we observed that while adversarial exam-
ples distribute inside/outside the hard ball ε differently (i.e., as shown in Figure 2a ), but generally the
average distance to original input is less than ε. Therefore, according to the update formulation in
Eq. (19), λ tends to decrease to 0 and eventually is stable at 0 because of very small learning rate
as shown in Figure 3d. In addition, we visualize the training progress as shown in Figure 6 to show
the convergence of our method. It can be seen that, the error-rate reduces over training progress and
converges at the end of the training progress.

(a) MNIST (b) CIFAR10 (c) CIFAR100

Figure 6: Training progress of our UDR-PGD on different datasets, evaluating on the full training set
(e.g., 50k images) and the full testing set (e.g., 10k images). Robust accuracy is against PGD attack
with k = 20.

Further experiment result on CIFAR100. We would like to provide additional experiment result
on CIFAR100 dataset such that all defenses are adversarially trained with ε = 8

255 . Our UDR-PGD
outperforms PGD 3.7% at ε = 8

255 and 2.3% on average, while our UDR-TRADES and UDR-MART
outperform their counterparts by around 0.5% and 0.7%, respectively. It is worth noting that, in our
experiment, MART is quite sensitive with changes of (MART’s natural accuracy drops to a lower
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Table 10: Robustness evaluation on CIFAR100 dataset. The last column “Avg” represents the average
gap of robust accuracy between our methods and their standard AT counterparts.

Nat 8
255

10
255

12
255

14
255

16
255

20
255 Avg

PGD-AT 63.7 22.8 16.1 11.4 7.8 5.1 2.4 -
UDR-PGD 64.5 26.5 18.9 13.7 9.8 7.0 3.5 2.30
TRADES 60.2 30.3 24.5 18.8 14.8 11.5 6.7 -
UDR-TRADES 60.1 30.8 25.1 19.3 15.5 12.2 7.5 0.52
MART 54.1 32.0 26.8 21.9 17.4 13.8 7.6 -
UDR-MART 54.4 32.3 27.4 22.5 18.4 14.4 8.5 0.67

Table 11: Distance function and its gradient

cX (x, x′) ∇x′c(x, x′)
L1

∑d
i=1

∥∥∥xi − x
′
i

∥∥∥ 1, ∀i ∈ [1, d]

L2
1
2

∑d
i=1 (xi − x′i)2 ∑d

i=1(x′i − xi)

L∞ maxi

∥∥∥xi − x
′
i

∥∥∥
{

1, i = argmaxi
∥∥∥xi − x

′
i

∥∥∥
0, otherwise

performance than that of TRADES); that might explain the lower gap between UDR-MART and
MART with the new ε.

G CHOOSING THE COST FUNCTION

In this section, we provide the technical details of our learning algorithm in Section 4 in the main
paper, especially, the important of choosing cost function ĉ(x, x′). Given the current model θ and the
parameter λ, we find the adversarial examples by solving:

xa = argmaxx′ {gθ(x′, x, y)− λĉX (x′, x)}

We employ multiple gradient ascent update steps without projecting onto the hard ballBε. Specifically,
the updated adversarial at step t+ 1 as follows:

xt+1 = xt + η (∇x′gθ(x′, x, y)− λ∇x′ ĉX (x′, x))

Given the smoothed cost function as in Equation (19), the updating step is as follows:

xt+1 =

{
xt + η (∇x′gθ(x′, x, y)− λ∇x′cX (x′, x)) , if cX (x′, x) < ε

xt + η
(
∇x′gθ(x′, x, y)− λ

τ ∇x′cX (x′, x)
)
, otherwise.

It shows that, the pixels that are out-of-perturbation ball Bε will be traced back with a longer step,
depending on the parameter τ . We consider three popular distance functions of cX (x′, x) with their
gradient as Table 11. It is worth noting that, while the norm L1, L2 have gradient in all pixels, the
L∞ has gradient in only one pixel per image. It means that, when using L∞ norm as the cost function
cX (x, x′), only single pixel has been traced back at each iteration. In contrast, using L2 will project
all pixels toward the original input x with the step size of each. As in the discussion in Section F,
only small part of an MNIST image contributes to the prediction, while in contrast, most of pixels of
a CIFAR10 image affect to the prediction. Based on this observation, we use the L∞ for the MNIST
dataset and L2 for the CIFAR10 dataset in the updating step. However, the perturbation strength ε
has been measured in L∞, therefore, we still use L∞ in the Equation (22) to update λ.

We also visualize the histogram of gradient ∇x′gθ(x′, x, y) and ∇x′ ĉX (x′, x) as shown in Figure
7. It can be seen that the strength of gradient grad1 = ∇x′gθ(x′, x, y) is much smaller than
grad2 = ∇x′ ĉX (x′, x), for example, on the MNIST dataset, grad1 ∈ [−5× 10−4, 5× 10−4] while
grad2 ∈ [−0.3, 0.3] which is 600 times larger. Therefore, if using single update step, the gradient
∇x′ ĉX (x′, x) dominates the other and pulls the adversarial examples close to the natural input.
These adversarial examples are weaker and do not helps to improve the robustness. Alternatively,
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we break single update step for solving Equation (21) to two sub-steps as shown in Algorithm 1 to
balance between push/pull steps. It also can be seen that the grad2 corresponds with the perturbation
boundary ε and the step size η. For example, on the MNIST dataset, grad2 has the range from
[−0.3, 0.3] and has the highest density around [−0.01, 0.01] where {0.3, 0.01} are the perturbation
boundary and step size in the experiment.

(a) CIFAR10, grad1 (b) MNIST, grad2 (c) CIFAR10, grad1 (d) CIFAR10, grad2

Figure 7: Histogram of gradient strength of grad1 = ∇x′gθ(x′, x, y) and grad2 = ∇x′ ĉX (x′, x)
on MNIST and CIFAR10 dataset. We use L2 norm for the cost function cX (x′, x) , τ = η and λ = 1
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5.4 Concluding Remarks

In this chapter, we have presented our contributions towards improving adversarial ro-

bustness through the lens of distributional robustness as introduced in Bui et al. (2022).

In particular, in term of theory, we found that the existing AT methods can be unified

under the framework of Wasserstein distributional robustness. We proposed a unified

formulation of the risk function in WDR, with which, we could generalize and encompass

the existing AT methods including SOTA ones in the distribution robustness setting.

In term of practice, we proposed a soft ball projection method which adaptively adjusts

the radius of the ball to the data distribution. Our method is simple yet effective, and

it can be easily incorporated into existing AT methods to improve their robustness.



Chapter 6

Conclusion

Throughout this thesis, three defense strategies have been presented to enhance ad-

versarial robustness of deep neural networks against adversarial attacks. In this final

chapter, we summarize the key contributions made in this thesis and acknowledge cer-

tain limitations of our work. Additionally, we provide recommendations for exciting

avenues that can be explored in future research.

6.1 Contributions

This thesis has made the following contributions to the field of adversarial machine

learning.

In Chapter 3, we proposed novel adversarial training frameworks from the perspective

of representation learning. We first introduced ADR (Bui et al., 2020) which imposes

local and global compactness in the latent space. By enforcing local compactness, the

representations of benign and adversarial examples are encouraged to be close to each

other. Moreover, when combined with global compactness, the obtained latent space

is more discriminative, where representations from the same class close and those from

different classes distant. We demonstrated that ADR can be used as a general framework

that improves the robustness of existing adversarial training methods.

In the subsequent work, we proposed ASCL (Bui et al., 2021a) which employs the

contrastive learning principle to refine the robust representation. ASCL aims to minimize
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the relative divergence between the latent representations of benign and adversarial

examples instead of the absolute divergence as in ADR. We also developed strategies

for selecting positive and negative samples that further enhance adversarial robustness.

We demonstrated that ASCL outperforms several AT methods, including ADR, and

achieves comparable performance to state-of-the-art methods.

In Chapter 4, we explored ensemble learning as a defense strategy against adversarial

attacks. We first introduced CCE (Bui et al., 2021b) which is a novel collaboration

strategy to enhance ensemble diversity, reducing the transferability of adversarial ex-

amples among the ensemble members. We used adversarial examples generated from

one ensemble member to strengthen the robustness of this member, and simultaneously

weaken the robustness of other members. We demonstrated that CCE effectively re-

duces the joint adversarial region of the ensemble, mitigates adversarial transferability,

and improves the robustness of the ensemble.

Based on the insight that adversarial examples sampled from the joint adversarial re-

gion are crucial for improving the robustness of the ensemble, we proposed TAMOO

(Bui et al., 2023) which is a multi-objective optimization framework for generating ad-

versarial examples. We also introduced novel geometry-based regularization favoring

unsuccessful tasks while maintaining successful ones. We conducted extensive experi-

ments on different tasks to validate the effectiveness of TAMOO in generating stronger

and more robust adversarial examples. More importantly, when combined with adver-

sarial training, TAMOO significantly improves the robustness of the ensemble.

In Chapter 5, we proposed UDR (Bui et al., 2022) which is a powerful unified dis-

tributional robustness framework. We introduced a novel cost function based on the

Wasserstein distance between the data distribution and its worst-case distribution, which

allows us to generalize and encompass the existing AT methods including SOTA ones

in our unified distribution robustness framework. Through extensive experiments, we

demonstrated that with a better generalization capacity of distributional robustness, the

resulting AT methods in our framework can achieve better adversarial robustness than

their standard AT counterparts.
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6.2 Limitations

General limitations. Firstly, we acknowledge that evaluating adversarial robustness

is a challenging task, as discussed in Carlini et al. (2019). While we made efforts to

ensure a fair and rigorous evaluation, there are still limitations that can be addressed.

For instance, our evaluation focused on L∞ adversarial examples, which is the most

commonly studied setting in the literature since proposed in Goodfellow et al. (2015).

However, research has shown that adversarial training with one norm does not generalize

well to other norms, as noted by (Tramèr and Boneh, 2019). Therefore, it would be

interesting to access the robustness of our methods against other Lp norms adversarial

examples (Carlini and Wagner, 2017, Chen et al., 2018), multiple norms (Tran et al.,

2022) or even Wasserstein ones (Wong et al., 2019b, Wu et al., 2020c).

Secondly, because of the limitation of our computational resources, as well as the com-

mon practice in the field, we evaluated our methods on small datasets including MNIST

(LeCun et al., 1998), CIFAR-10/100 (Krizhevsky et al., 2009). While we attempted ex-

periments on large scale datasets such as ImageNet (Deng et al., 2009), it was limited to

adversarial attack experiments only. It would be valuable to investigate the performance

of our methods on large-scale datasets in adversarial training experiments.

Although our methods are not limited to any specific architecture, we only utilized

CNN architectures such as ResNet (He et al., 2016) and WideResNet (Zagoruyko and

Komodakis, 2016) in our experiments. It would be interesting to explore how our meth-

ods perform on more recent architectures, such as Transformers (Vaswani et al., 2017,

Dosovitskiy et al., 2021). Especially, recent studies have shown that adversarial exam-

ples crafted on CNNs and Transformers are less transferable to each other (Mahmood

et al., 2021), which suggests an ensemble of principally different architectures might be

more robust than an ensemble of the similar ones.

Limitations of the proposed methods. In addition to the general limitations men-

tioned above, each of our proposed methods has specific limitations.

ADR (Bui et al., 2020) and ASCL (Bui et al., 2021a) rely on representation learning

and have demonstrated effectiveness in improving adversarial robustness. However, they

are currently limited to the supervised learning setting where labeled training data is
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available. Recent studies have shown that incorporating large amounts of unlabeled

data can significantly enhance adversarial robustness (Rebuffi et al., 2021, Wang et al.,

2023). Additionally, while we trained the feature extractor and classifier jointly as a

regularization term in adversarial training, it has been suggested that training them

separately can yield better results, as indicated in the Supervised Contrastive Learning

framework (Khosla et al., 2020).

Moreover, our methods have been limited to the contrastive learning principle, which

is one of the most popular representation learning approaches. However, recent alter-

native contrastive learning approaches such as DINO (Caron et al., 2021) have shown

promising results in representation learning. Especially, the latent space obtained from

DINO has been demonstrated to be more discriminative than the one obtained from

contrastive learning (Caron et al., 2021), which might be suitable for adversarial robust-

ness. Therefore, it would be interesting to explore the effectiveness of our methods on

the latent space obtained from DINO.

CCE (Bui et al., 2021b) and TAMOO (Bui et al., 2023) are based on the idea of ensemble

learning. However, we only evaluated on one type of ensemble mechanism, which is

averaging the predictions of the ensemble members. It would be interesting to see how

our methods can perform on other types of ensemble mechanisms such as voting (Zhou,

2012) or stacking (Wolpert, 1992). Furthermore, our methods primarily focused on

the transferability of adversarial examples among the ensemble members to improve

the robustness of the ensemble. However, it is important to consider the problem of

non-transferable adversarial examples which can still successfully attack the ensemble.

UDR (Bui et al., 2022) is based on the idea of distributional robustness. While we have

demonstrated its effectiveness in improving empirical adversarial robustness, we have

not yet evaluated its effectiveness in enhancing certified robustness as in Sinha et al.

(2017).

6.3 Future work

In addition to the aforementioned limitations, there are several compelling and promising

directions for future research in adversarial machine learning that we would like to

highlight.



189

Robust Architectures. The Forward-Forward algorithm proposed by Hinton (2022)

presents a revolutionary learning procedure that deviates from the standard backprop-

agation algorithm. Exploring the robustness of the Forward-Forward algorithm from

both attack and defense perspectives could be an intriguing area of research. Most

existing adversarial attacks are designed for neural networks trained with backpropa-

gation, where gradient-based methods are used to generate adversarial examples. If

the Forward-Forward algorithm can successfully replace backpropagation, it could be a

transformative development in the field of adversarial machine learning.

Bayesian neural networks (BNNs) (MacKay, 1992, Neal, 2012) is another promising

direction for achieving robustness. While BNNs have been studied for decades, recent

advances in variational inference (Blundell et al., 2015, Gal and Ghahramani, 2016)

have made BNNs more practical. Recent studies have shown that BNNs can be more

robust to adversarial attacks than standard neural networks (Carbone et al., 2020). In

principle, BNNs can not only provide a prediction but also a measure of uncertainty

for its prediction. While adaptive white-box attackers can adjust their strategy based

on the uncertainty output, existing adversarial attacks have not been yet successfully

adapted to BNNs. We believe that our findings on the effectiveness of ensemble learning

and multi-objective optimization can be applied to BNNs to improve their robustness.

Recently, Ma et al. (2023) introduced a novel architecture, which does not rely on

the traditional convolution or attention layers. This unique approach treats images as

sets of unorganized points and employs a clustering algorithm for feature extraction

and prediction. While the robustness of this architecture to adversarial attacks remains

untested, its unconventional design suggests the potential for increased resilience against

existing attack methods.

More Effective Adversarial Examples. While adversarial examples pose signifi-

cant risks to AI systems, the most effective attacks are still limited to the white-box

setting. The black-box attacks which still require a large number of queries to be effec-

tive, are less concerned with real-world applications. While acknowledging well aware of

adversarial attacks, many AI practitioners have not implemented proper defense mecha-

nisms or regulations to prevent them. Controversially, one approach to raising awareness

and encouraging defense against adversarial attacks is to develop more effective attack

methods.
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Robust Continual Learning. Continual learning (Parisi et al., 2019) is a machine

learning setting where a model learns from a sequence of tasks without forgetting the

previously learned tasks. While continual learning has received extensive attention, its

robustness aspect has not been thoroughly explored. For example, it remains unclear

whether adversarial examples from previous tasks can be transferred to the current task,

or in other words, whether the adversarial vulnerability of the model is accumulated or

changed over time. Preserving model robustness while learning new tasks is an open

question in this area of research.

Leveraging Pretrained Models. Pretrained models such as BERT (Kenton and

Toutanova, 2019) and GPT-3 (Brown et al., 2020) have demonstrated impressive capa-

bilities in natural language processing. It has been shown that incorporating embedding

of label information extracted by pretrained language models can improve the perfor-

mance of semantic semantic segmentation or classification tasks (Ding et al., 2022, Dao

et al., 2023). We believe that these label information with high semantic meaning can

be leveraged as global features to improve the robustness of the model.

Robust Multimodal Models. Multimodal machine learning (Baltrusaitis et al.,

2018) is an emerging field that aims to learn from multiple modalities such as text,

image, video, audio, etc. In recent years, pretrained multimodal models such as CLIP

(Radford et al., 2021) have demonstrated impressive capabilities in understanding mul-

timodal data, benefiting many downstream tasks such as image classification, object

detection but most notably, text-to-image generation such as ImageGen (Saharia et al.,

2022), Stable Diffusion (Rombach et al., 2022), Dall-E (Ramesh et al., 2021). Recently,

Schlarmann and Hein (2023), Dong et al. (2023), Bailey et al. (2023) have demonstrated

that with simple gradient based attacks such as PGD (Madry et al., 2018), these mul-

timodal models can be easily fooled by these adversarial examples, opening up a new

avenue for adversarial machine learning research.



Bibliography

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998–6008, 2017.

Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy. Deep

learning techniques for medical image segmentation: Achievements and challenges.

Journal of digital imaging, 32(4):582–596, 2019.

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and

Demetri Terzopoulos. Image segmentation using deep learning: A survey. arXiv

preprint arXiv:2001.05566, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-

ing language models to follow instructions with human feedback. Advances in Neural

Information Processing Systems, 35:27730–27744, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In

191



Bibliography 192

Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learn-

ing Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference

Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6199.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In Yoshua Bengio and Yann LeCun, editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,

2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in

computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille.

Adversarial examples for semantic segmentation and object detection. In Proceedings

of the IEEE International Conference on Computer Vision, pages 1369–1378, 2017.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adver-

sarial attack on graph structured data. arXiv preprint arXiv:1806.02371, 2018.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on

speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7.

IEEE, 2018.

Zuxuan Wu, Ser-Nam Lim, Larry S Davis, and Tom Goldstein. Making an invisibility

cloak: Real world adversarial attacks on object detectors. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,

Part IV 16, pages 1–17. Springer, 2020a.

Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,

Florian Tramer, Atul Prakash, and Tadayoshi Kohno. Physical adversarial examples

for object detectors. In 12th USENIX workshop on offensive technologies (WOOT

18), 2018.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572


Bibliography 193

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 7263–7271,

2017.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at

scale. arXiv preprint arXiv:1611.01236, 2016.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jian-

guo Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 9185–9193, 2018.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In

2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and

Sijia Liu. Revisiting and advancing fast adversarial training through the lens of bi-level

optimization. In International Conference on Machine Learning, pages 26693–26712.

PMLR, 2022.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial

training. International Conference on Learning Representations, 2019a.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

Universal adversarial perturbations. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 1765–1773, 2017.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples. arXiv

preprint arXiv:1605.07277, 2016a.

Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Advances in adversarial

attacks and defenses in computer vision: A survey. IEEE Access, 9:155161–155196,

2021.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adver-

sarial training for adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications

to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607,

2019.

Pablo D Fajgelbaum and Edouard Schaal. Optimal transport networks in spatial equi-

librium. Econometrica, 88(4):1411–1452, 2020.

Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass trans-

port for registration and warping. International Journal of computer vision, 60:225–

240, 2004.

Zhengyu Su, Yalin Wang, Rui Shi, Wei Zeng, Jian Sun, Feng Luo, and Xianfeng Gu.

Optimal mass transport for shape matching and comparison. IEEE transactions on

pattern analysis and machine intelligence, 37(11):2246–2259, 2015.
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