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Abstract

Deepfake is an advanced synthetic media technology that can generate deceptively au-

thentic yet forged images and videos by modifying a person’s likeliness. The term ”Deep-

fake” is a portmanteau of ”Deep learning” and ”Fake,” which reflects the utilization of

artificial intelligence and deep learning algorithms in creating deepfake. The deepfake

generation involved training to learn the nuances of facial attributes, facial expressions,

motion movement, and speech patterns to produce fabricated media that are indistin-

guishable from the actual footage.

When wielded with malicious intent, deepfakes could cause detrimental impacts on in-

dividuals, organizations, politics, and society. Numerous deepfake detectors have been

introduced to mitigate these challenges, including conventional and deep learning-based

models. While deep learning-based deepfake detection models have shown promising re-

sults, several limitations still require improvement. Most deep learning-based detectors

are computationally intensive and difficult to be replicated. Due to the lack of diversity

in training data, they do not generalize well against unseen data and could easily overfit

to specific deepfake types. Moreover, adversarial attacks could easily fool the neural

network-based detection models.

This thesis attempts to resolve the drawbacks of deep learning-based deepfake detection

models. It draws inspiration from Mesonet, which exploits discriminative features at

the mesoscopic level to ensure a low computational training cost. Still, it focuses more

on local spatial feature learning and global spatial feature preservation. The idea of the

proposed network is based on the nature of deepfake data. Deepfake is often used to ma-

nipulate human content, especially the invariant facial regions. The spatial relationship

between the facial attributes is vital for generating a convincing hyper-realistic deepfake

output. The subtle inconsistency between face features, such as eye spacing, skin color,

and mouth shape, could be used as a telltale sign of deepfake discrimination. Using the

key concept of separable convolution, the reduction block ”bottleneck” structure intro-

duced from the ResNet, and strided-convolution, the first contribution of this thesis is

the development of SparcoNet, a spatial cost-efficient deep neural network for deepfake

detection. Experiments results have shown that the proposed SparcoNet achieves an

average of 0.985 AUC among six state-of-the-art deepfake datasets and obtains a similar

result for intra-datasets evaluation as the complex detection network with less than 1%

differences in the generalization gap index.

The second contribution of the thesis proposed to further improve the network perfor-

mance in inter-datasets evaluation and adversarial attack defense ability by training the

SparcoNet in a Self-Supervised Learning (SSL) manner with different data transforma-

tions. It incorporates a normalized temperature-scaled cross-entropy loss function to
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facilitate the learning of discriminative features in various data augmentations. Exper-

iment results have shown that the SSL-SparcoNet has reduced the success rate of the

Fast Gradient Sign Method (FGSM) adversarial attack by, at most 85% and improved

the inter-cross data evaluation performance by an average of 12%.

The third contribution of the thesis aims to enhance the defense ability of SSL-SparcoNet

against black-box adversarial attacks by introducing Block Switching (BS) as a frame-

work protector. The BS-SSL SparcoNet switches the runtime channel randomly to con-

fuse the attacker in predicting the network information. Compared to other protection

techniques, such as adversarial training, defensive distillation, and ensemble methods,

the proposed BS-SSL SparcoNet obtains higher flexibility in retaining network config-

urations. Experiment results have shown that the proposed model reduced the attack

success rate of black-box adversarial attacks from a surrogate model by more than 90%.



Declaration

This thesis is an original work of my research and contains no material which has been

accepted for the award of any other degree or diploma at any university or equivalent

institution, to the best of my knowledge and belief, this thesis contains no material

previously published or written by another person, except where due reference is made

in the text of the thesis.

Signature:

Print Name: Seow Jia Wen

Date:

iv



Thesis including published works declaration

I hereby declare that this thesis contains no material which has been accepted for the

award of any other degree or diploma at any university or equivalent institution and

that, to the best of my knowledge and belief, this thesis contains no material previously

published or written by another person, except where due reference is made in the text

of the thesis.

This thesis includes 1 original paper published in a journal and 1 submitted conference

publication. The core theme of the thesis is Neural Network-Based Deepfake Detection.

The ideas, development, and writing up of all the papers in the thesis were the principal

responsibility of myself, the student, working within the Faculty of Information Tech-

nology under the supervision of Dr. Lim Mei Kuan, Prof. Raphaël C.-W. Phan, and
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Chapter 1

Introduction

Visual aids are commonly utilized across various industries such as law, medicine, and

entertainment [7, 8]. However, the extensive usage of visual media also presents a risk of

misuse. Media forgery has been prevalent in digital culture for a while, where software

tools like Photoshop are used for manual manipulation of media content. With the re-

cent advancements in Computer Vision (CV) and Machine Learning (ML) technologies,

media forgery has become more accessible and widespread.

In 2012, the field of CV experienced a significant breakthrough when AlexNet, an AI

model developed by Alex et al. [9], outperformed other models in the image recognition

challenge by a large margin. Since then, AlexNet, which is a classic convolutional neural

network architecture, has been instrumental in many CV applications. Another leap

forward in CV research was made in 2014 when Goodfellow et al. [10] introduced the

Generative Adversarial Network (GAN). GAN enables the creation of realistic-looking

images from scratch without human intervention or manual editing.

The rapid evolution of hardware that supports artificial neural network models’ training

has catalyzed the growth of deep learning. In 2017, a novel deep learning-based media

forgery algorithm called ’Deepfake’ emerged and wreaked havoc, threatening society’s

security and privacy. Deepfake is a synthetic technique that replaces the person in an

existing image or video with someone else’s likeness or characteristics. It is a portman-

teau of ’deep learning’ and ’fake’. It originated from an anonymous individual under

the pseudonym ’deepfake’ who uploaded numerous pornographic videos to the Reddit

website. The actresses’ faces in the videos were swapped with those of other celebrities

1
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using deep learning [8]. Figure 1.1 outlines the examples of deepfake based on different

generation methods. Based on the figure, a. Puppet Master refers to the transfer of

motion movement by synthesizing the motion of the source and regenerating onto the

target output [11]; b. Face Swapping involves swapping the facial regions between two

people from one to another [12]; c. and e. involve facial reenactment where Neural Tex-

tures focuses on deferred neural rendering to integrate neural textures in the parametric

vectors for facial synthesis [13] while Face2Face uses GAN, such as CycleGAN and Star-

GAN to achieve the synthesis output [14]; d. and h. present entire face synthesis to

produce non-exist human outputs by the training on the different source data to capture

their significant facial characteristics [15, 16]; f. and g. leverages GAN’s capability to

modify certain facial attributes on target.

Figure 1.1: Examples of Deepfake
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Nonetheless, the alarm about deepfake was raised by Barack Obama in 2018 when

Buzzfeed published a fake video of him talking about his opinion on ’Black Panther’ and

insulting the previous US President, Donald Trump [17, 18]. The creator of this fake

video was Jordan Peele, a renowned US actor or director, who generated the footage

using Adobe After Effects and an AI face-swapping tool called FakeApp to match the

lip movements and facial expressions of two people perfectly. This video has successfully

gained public attention and went viral on social media platforms. Deepfake is more

likely to target well-known people due to the large volume of easily accessible data

available online, which can be used as a dataset for deep neural network training. The

ripe environment of social media platforms promotes the circulation of deepfake as the

deceptive hyper-photorealism falsified information that could easily gain attention and

spread through the internet. Can you imagine the consequences if a deepfake video of a

country leader announcing a war on another country went viral on the internet? Can you

imagine seeing your face in a video talking about something that you have never said,

and no one believes it was not you? The malicious use of deepfake media can exploit,

sabotage, threaten, blackmail, inflict psychological harm, and damage reputations. It is

a powerful technology that could lead to individual loss, social panic, or even place the

world in danger when abused.

On the other hand, the proper use of deepfake can be beneficial to society. Deepfake can

enhance traditional pedagogical methods to increase students’ interest in learning. For

instance, deepfake videos of historical figures narrating their stories directly to students

during lectures can be created [7]. This teaching method is more attractive and can keep

students engaged. It can also be used to resurrect deceased artists for new performances.

For example, the late Peter Cushing portrayed Grand Moff Tarkin in 2016’s Rogue One

[19], and the famous Chinese singer Jay Chou performed with a virtual version of the

long-dead mandopop icon Teresa Teng in his concert using a hologram. These perfor-

mances demonstrate the potential growth of holographic deepfake [20]. Deepfake can

also be utilized to create a memorial for those who have passed away or to comfort

individuals who have lost their beloved ones [21]. From a medical perspective, individ-

uals who suffer from specific forms of paralysis or physical disabilities can use deepfake

technology to create a virtual engagement with others in real life to give them a sense

of participation in activities they cannot take part in [7].

Despite the potential benefits of deepfake technology, the negative impacts of its misuse
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are significant and outweigh the positives. As a result, it is imperative to develop a

reliable deepfake detector capable of distinguishing between real and fake content. In

2019, Facebook partnered with Microsoft and various academic institutions to establish

The Partnership on AI, which launched a competition called the ’Deepfakes Detection

Challenge’ (DFDC). The competition offered a substantial reward of up to $10 million

to encourage research on deepfake detection [22]. This initiative underscores the impor-

tance and urgency of accelerating the development of deepfake detection technology.

1.1 Thesis Motivation & Methodology

The traditional handcrafted methods for deepfake detection are becoming less practical

due to the continuous improvement of deepfake generation approaches. Deepfakes tend

to have fewer intrinsic features and subtle traces that are typically used as hints or

fingerprints for deepfake detection. As a result, the recent trend in deepfake detection

has shifted towards deep learning approaches. However, most current deep learning-

based detection models have several pitfalls: i. expensive computational costs for model

training, ii. model is not generalized enough when dealing with unseen deepfake datasets,

and iii. the models are less robust against adversarial attacks.

Therefore, this thesis proposes a deep learning-based deepfake detection model called

SparcoNet, which is cost-efficient and focuses on local spatial feature learning and global

spatial feature preservation. SparcoNet uses separable convolution, reduction block bot-

tleneck structure, and strided-convolution to design the network feature extractor with

higher receptive fields but at a lower computational cost. To further improve its per-

formance against cross-dataset evaluation and adversarial attacks, the thesis proposes

the SSL-SparcoNet, where the SparcoNet is trained using a Self-Supervised Learning

(SSL) manner with different data transformations and a normalized temperature-scaled

cross-entropy loss function. The idea is to improve the model generalization capability in

dealing with unseen datasets via SSL training with various transformations. Addition-

ally, the thesis implements Block Switching (BS) as a framework protector to enhance

the defense capability of the SSL-SparcoNet against black-box adversarial attacks. Fig-

ure 1.2 outlines the overall architecture of the proposed methodology.
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1.2 Research Question & Research Objectives

The following questions are constructed to address the issues mentioned in the previous

section:

1. How to achieve a deepfake detection model that has a low computational cost?

2. How to ensure the consistency in detection performance of the proposed deepfake

detection model across different datasets?

3. How robust is the deepfake detection model in defending against adversarial net-

work attacks?

Three objectives are formulated based on the research questions:

1. To devise a deepfake detection model with a low computational cost yet capable

to achieve high detection accuracy

2. To embed a tertiary algorithm with the proposed detection model to enhance its

robustness in dealing with unseen datasets

3. To integrate a defense mechanism in the proposed detection model to defend

against adversarial attacks

1.3 Research Scope

This thesis aims to overcome the limitations of conventional deepfake detection ap-

proaches by developing a reliable neural network-based detector model for different types

of deepfake, including entire face synthesis, face attribute manipulation, face reenact-

ment, motion reenactment, and face-swapping. The research covers the entire deepfake

detection pipeline process, including data collection, data preprocessing, model develop-

ment, hyperparameter finetuning, data visualization, analysis of the tertiary framework,

and support defense mechanism. The experiments implemented several datasets with

different resolutions to simulate real-case scenarios of deepfake data, including Face-

Forensics++ [23], Deepfake Detection Dataset [24], Celeb-DF [25], DFDC Dataset [26],

MesoDF Dataset [27], and Deeper-Forensics-1.0 [28]. The thesis focuses on the research
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and development of image and video data. A complete BS-SSL SparcoNet will be pre-

sented at the end of the research.

1.4 Thesis Outline

This thesis comprises seven chapters, with the introduction chapter being the first. The

subsequent chapters are outlined as follows:

Chapter 2 provides a broad overview of the neural network model, introducing its

fundamental theory and architecture structure. This includes the basic machine learn-

ing training concepts of supervised and unsupervised learning, overfitting, underfitting,

network capacity, and evaluation metrics. It also provides insight into hyperparameter

configuration, such as activation functions, loss functions, optimization, regularization,

learning rate, batch size, epoch, backpropagation, and gradient descent. Furthermore,

the chapter briefly explains different network structures and implementation frameworks.

Chapter 3 covers the contents published in the review paper [29]. It presents a compre-

hensive background of deepfake technology, including the introduction of various types of

deepfakes, recent progress in deepfake generation and detection methodologies, as well

as its evolution and development from different perspectives. The chapter also high-

lights publicly available deepfake generation tools and open-source benchmark datasets.

Additionally, it introduces SSL and its application in the deepfake field.

Chapter 4, 5, 6 discusses the development of the proposed BS-SSL SparcoNet deepfake

detection model stage-by-stage. It presents the model concept and network architecture

and investigates the network’s performance under various robustness testing. Further-

more, it examines the limitations and relationship between network complexity and

detection performance. These chapters include the material presented in the paper [30].

Chapter 7 concludes the thesis by summarizing the main findings of this research

project and exploring future directions that can expand on this work.



Chapter 2

Fundamental of Neural Networks

This chapter provides a comprehensive introduction to neural networks, covering both

theoretical concepts and practical implementation. It explains the terminology and con-

straints related to the training process and delves into the intricacies of hyperparameter

configuration.

2.1 Introduction to Artificial Neural Network

Artificial Neural Networks (ANNs) is a machine learning model class that mimics the hu-

man brain’s biological neural networks [31]. They are used to model complex, non-linear

relationships between inputs and outputs, making them suitable for various applications,

including facial and object detection, image and speech recognition, natural language

processing, and predictive modeling.

In the 1940s, Warren McCulloch and Walter Pitts introduced the first model of a simpli-

fied neuron, which brought artificial neural networks into the public eye. In the following

twenty years, the research community started developing more complex neural network

models, including the perceptron for learning simple patterns. The development of this

technique was still restricted during the 1980s due to the limitations in computational

capabilities [32]. However, in the early 1990s, backpropagation sparked renewed interest

8
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in the neural network. The multi-layer perceptron and convolutional neural network

are two significant network architectures created with this technique. The neural net-

works continued to evolve with the introduction of deep learning development involving

multi-layer neural networks with many hidden layers in the 2000s [32]. As computing

power and data availability increase, neural networks have become more powerful and

ubiquitous in solving real-case scenarios.

2.1.1 Terminology Behind Neural Networks

The ANNs are composed of interconnected nodes, called neurons, organized into lay-

ers. Each neuron takes in one or more inputs and produces an output, which is then

passed on to the next layer. The overall picture of a neural network can be assumed as

a weighted graph. The output of the final layer represents the network’s prediction or

classification for a given input. The ANNs will be trained to make accurate predictions

by adjusting their weights and biases through backpropagation for network learning. It

uses a mathematical optimization algorithm to minimize the difference between the pre-

dicted and actual outputs. The number of layers in a neural network can be recognized

as network depth, and the number of nodes it has in each layer will be the network

width [33].

Below outlines the key components of neural networks:

• A neuron is a basic unit in a neural network that receives one or more inputs

and produces an output.

• The input layer of the network is the first layer of neurons that receives the

input data.

• The hidden layers process intermediate representations of the input data and

are not directly connected to the input or output layers.

• The output layer is the final layer of neurons that produces the output of the

network.

• The activation function is a mathematical function that is applied to the output

of a neuron to determine its final output value.
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• The weights in the network represent the strength of the connections between

neurons and are assigned numerical values like a cost.

• Biases are numerical values added to the output of a neuron to allow the network

to learn offset values and biases in the data.

• The backpropagation algorithm is used to adjust the weights and biases of

the network to minimize the difference between the predicted and actual outputs.

• Gradient descent, a mathematical optimization algorithm, is employed in back-

propagation to adjust the weights and biases of the network in the direction of the

steepest descent of the loss function.

The equation 2.1 outlined the formula used to compute the single output of the neural

network. For a multi-layer neural network, the output of one layer will serve as the

input to the subsequent layer, and the whole process is repeated until the final output

is obtained. The formula of the multi-layer network is illustrated in equation 2.2. Let

x be the input, w be the weight matrix, b be the bias, z be the output, and σ be the

activation function applied element-wise to the weighted sum of the input and bias. The

formula can be computed as follow:

z = σ(x · w + b) (2.1)

z = σ(
∑n

i=1
xi · wi + b) (2.2)

Figure 2.1 illustrates a neural network with its corresponding matrix calculation repre-

sentation. By applying equation 2.1, the output of the input layer, which serves as the

input of hidden layer 1, can be obtained. Since the network has multiple layers, it is

necessary to compute equation 2.2 to complete the network calculation and obtain the

final output z. In this example, the network depth will be 3, with a maximum network

width of 4 and minimum network width of 1.
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Figure 2.1: Network illustration and matrix calculation representation of neural net-
works

2.2 Type of Neural Network

There are different types of neural networks, where each designed to solve specific prob-

lems. They can be differentiated by their structure design, network depth, data flow, and

neurons used. The sections below provided a brief introduction to each of the common

types of neural networks.

2.2.1 Percepton

Perceptron, also known as TLU (threshold logic unit) is one of the smallest and oldest

neuron models proposed by Minsky et al. [34]. It is a simple model that receives inputs

with weights assigned to them, applies an activation function, and outputs the result as

the final output. As a binary classifier, the Perceptron is a supervised learning algorithm

that separates data into two categories. Figure 2.2 illustrates the representation of

percepton network.
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Figure 2.2: Percepton network illustration

2.2.2 Feed-Forward Neural Network

A feed-forward neural network processes information in a forward direction only, moving

from input to output without any feedback loops [35]. While optional, the network may

include hidden layers, but it always has input and output layers. The network uses

fixed weights and an activation function that classifies inputs to generate an output.

Neurons activate when their value exceeds the threshold, typically set to 0, and produce

an output of 1. Conversely, neurons do not activate when their value falls below the

threshold, typically 0, which is considered as -1. Feed-forward neural networks are

widely used in various applications, including image and speech recognition, natural

language processing, and predictive modeling. Figure 2.3 presents the representation of

the feed-forward neural network.

Figure 2.3: Feed-Forward neural network illustration
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2.2.3 Multilayer-Percepton (MLP)

Multi-Layer Perceptron (MLP) is a feed-forward neural network with at least a total of

three or more layers [36]. The hidden layers in an MLP comprise neurons that process

information from the preceding layer and transmit it to the next layer until the output

is generated. Each neuron in an MLP is associated with a set of weights and biases

that are adjusted during training using backpropagation. Backpropagation updates the

weights by utilizing the discrepancy between the predicted and actual outputs. MLPs are

helpful for classification or regression tasks that entail intricate, non-linear relationships

between the input and output variables. Figure 2.4 outlines the representation of the

MLP network.

Figure 2.4: MLP network illustration

2.2.4 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a neural network with three dimensions:

width, depth, and channel. It consists of convolutional, pooling, and fully connected

layers [37]. The convolutional layers detect features like edges or shapes by applying

filters to the input. Pooling layers reduce the network parameters and feature map

dimensions, while fully connected layers classify the output based on the features ex-

tracted by previous layers. Due to the fact that each neuron in the convolutional layer

handles information from a small portion of the visual field, the network is required to

perform computations multiple times to process the entire image. CNNs have proven to
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be effective in image recognition, object detection, and autonomous driving applications,

among others. Figure 2.1 illustrates the representation of the CNN network.

Figure 2.5: CNN network illustration

2.2.5 Recurrent Neural Network (RNN) & Long Short-Term Memory

(LSTM)

Recurrent Neural Network (RNN) is a type of neural network that can process sequential

data by retaining information from previous inputs [38]. It has a feedback loop that

allows information to persist over time. This architecture design makes it useful to

capture long-term dependencies in the data, such as tasks in natural language processing,

speech recognition, and time series analysis. However, traditional RNNs suffer from the

vanishing gradient problem, which occurs when the gradients required to update the

parameters of the network become very small, making it difficult to train the network.

Figure 2.6 presents the representation of the RNN network.

Long Short-Term Memory (LSTM) is a type of RNN that addresses this problem by

introducing a gating mechanism that allows the network to forget or remember informa-

tion from the previous time steps selectively [38]. This design enables LSTMs to learn

long-term dependencies more effectively than traditional RNNs. Three gates control

the flow of information in LSTM: the forget gate, input gate, and output gate. The

forget gate determines what information to discard from the previous cell state, while

the input gate decides what new information to add to the cell state. The output gate

controls what information to output from the cell state. By selectively controlling the
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Figure 2.6: RNN network illustration

gates, an LSTM can effectively remember or forget information from previous time steps

as needed. Figure 2.7 shows the representation of the LSTM network.

Figure 2.7: LSTM network illustration [1]
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2.3 Neural Network Training

Unlike other machine learning-based algorithms, a neural network does not require a set

of programming rules for output prediction. However, it involves an iterative training

process to optimize performance by learning the feature patterns and relationships in

the data. There are several types of learning in neural networks, including supervised

learning, unsupervised learning, self-supervised learning, semi-supervised learning, and

transfer learning.

2.3.1 Supervised Learning

Supervised learning involves training a neural network with labeled data, where the

inputs are associated with known output labels. During training, the neural network

learns to map the inputs to the correct output labels. This type of learning is used

in applications such as image classification, speech recognition, and natural language

processing [39]. Classification and regression are two significant types of supervised

learning. For example, a neural network can be trained on a labeled image dataset

for image classification, such as each image being labeled with a corresponding class:

dog, cat, fish, and others. The neural network learns to recognize the related feature

representations of each class and uses them to predict unseen data. However, supervised

learning requires a large amount of labeled data for training, which might not be friendly

for tasks where the required labels are difficult or expensive to obtain. This trade-off

limited its flexibility for adapting the model when dealing with a new task or data

variation. Figure 2.8 shows an example of supervised learning in a shape classification

task.

2.3.2 Unsupervised Learning

In contrast to supervised learning, the network is trained with an unlabeled dataset for

unsupervised learning. Unsupervised learning aims to discover the underlying patterns

and feature relationships in the input data without prior knowledge of the desired output

[39]. It is commonly used to perform clustering, dimensionality reduction, and anomaly

detection tasks. For example, in a clustering task, the network model will be trained to

group the input data based on their feature patterns without knowing the output labels.
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Figure 2.8: Example of Supervised Learning

The distance between the feature representation of similar input will be closer than the

input with different classes. The neural network adjusts its weights and biases during

training to minimize the chosen objective function. Unsupervised learning is valuable

for uncovering unforeseen patterns or anomalies in data. Nevertheless, the training time

for this technique may be longer, as it necessitates a larger dataset to learn from the raw

data to enhance the accuracy of output predictions. Figure 2.9 illustrates the example

of unsupervised learning in a shape clustering task.

Figure 2.9: Example of Unsupervised Learning
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2.3.3 Semi-supervised Learning

Semi-supervised learning involves training a network with both labeled and unlabeled

datasets instead of relying on only one of them. This technique is often employed to

address the expensive labeling issue that arises in supervised learning [39]. Initially, the

model undergoes supervised training using the labeled dataset, and subsequently, the

trained model is used to predict the label for the unlabeled dataset. The unlabeled data

that receives high-confidence predictions is then added to the labeled dataset, and the

model is retrained on the expanded dataset. This iterative process is repeated, with the

model becoming more accurate as it incorporates more labeled data [40]. However, if

there is only a limited number of labeled data for initial training, the model has a high

opportunity of encountering overfitting and outputting false pseudo-labels, which might

lead the model to perform in a different direction. Figure 2.10 illustrates the example

of semi-supervised learning in a shape classification task.

Figure 2.10: Example of Semi-supervised Learning
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2.3.4 Self-supervised Learning

Self-supervised learning is a machine learning technique that falls under the umbrella

of unsupervised learning. It begins by performing self-supervised pretext task learning

using an unlabeled augmented dataset. The augmented data from the same images are

considered positive pairs, while different images are negative pairs. During training, the

model is designed to push the learned features of negative pairs away while bringing the

positive features closer together. The aim is to allow the model to learn the intermediate

representation of the data [40]. Through self-supervision of the pretext task, the model

can predict a subset of the input data from the remaining part of the input data, with

examples including inpainting, super-resolution, and classification tasks.

Subsequently, the pre-trained model can be further fine-tuned through supervised train-

ing using labeled data for downstream task classification, thereby enhancing the overall

performance of the model. Figure 2.11 illustrates the example of self-supervised learning

in a shape classification task.

2.3.5 Transfer Learning

Transfer learning can also be referred to as domain adaptation, wherein a model trained

for a task is reused to transfer knowledge to a different yet related task [41]. Instead

of developing from scratch and training a new model for each task, transfer learning

allows us to reuse the pre-trained model, which reduces effort, time, and computational

resources while achieving higher performance on the target task. This approach has

been successfully applied to various domains, including natural language processing,

computer vision, and speech recognition, making it a valuable tool for many real-world

applications. Figure 2.12 shows the example of transfer learning in adapting a 2D shape

classification task to a 3D shape classification task.

2.3.6 Overfitting & Underfitting

Overfitting and underfitting are common issues that often occur during model training.

They reflect how the model deals with the training dataset. Underfitting is often char-

acterized by high bias and low variance, whereas overfitting is characterized by low bias

but high variance [42].
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Figure 2.11: Example of Self-supervised Learning

Overfitting occurs when a model is overly complex and fits the training data too closely,

resulting in poor generalization to unseen data [33]. This situation can arise when a

model is trained for too long or has too many trainable parameters, causing it to become

too specialized to the training data and compromising its ability to generalize to new

data. This issue can be detected by evaluating the model’s performance on a separate

validation set, where it may exhibit high accuracy on the training set but significantly

lower accuracy on the validation set or a low training loss but high validation loss [42].

Conversely, underfitting occurs when a model is too simplistic and fails to capture the

underlying patterns in the data, resulting in poor performance on both the training and

validation sets. This situation is in contrast to overfitting, as it occurs when the model

capacity is too shallow and insufficient to learn the data features. Similar to overfitting,

underfitting can be detected by evaluating the model’s performance on the validation set,

where it may exhibit both low training and validation accuracy or when the training
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Figure 2.12: Example of Transfer Learning

loss is much higher than the validation loss [42]. Figure 2.13 illustrates the trade-off

between bias and variance [2]. Data that underfits the model have less complexity but

show a high error rate and high bias (blue box). Conversely, overfitting data lead to

low bias but high variance (yellow box). The optimal zone lies between overfitting and

underfitting data and may require several testing attempts to achieve the best results

(red line).

Hence, it is crucial to finetune the model to ensure its complexity is suitable and ap-

propriately fits the training dataset. Apart from examining the model architecture, the

finetuning process involves the configuration and optimization of hyperparameters as

well as regularization techniques.
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Figure 2.13: Trade-off between Variance and Bias [2]

2.3.7 Regularization

Regularization is the technique used to prevent model overfitting to the training dataset

for improving the model’s generalization against unseen data [37]. Examples of regular-

ization techniques are:

• L1 (Lasso Regression) and L2 (Ridge Regression) regularization that add

a penalty term to the loss function to ensure smaller weights. L1 regularization

encourages sparse weights, while L2 regularization encourages small but non-zero

weights.

• Dropout is a technique that randomly drops out units from the network during

training. It forces the network to learn with a subset of the units at each training

iteration.

• Batch normalization normalizes the activations of each layer in the network

during training. It reduces the internal covariate shift to stabilize the gradients

during backpropagation and improve the training speed and network performance.

• Data augmentation is a technique that expands the training set’s size by apply-

ing random transformations to the data, such as rotation and splicing.
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• Early stopping stops the training before the model degrades by monitoring the

model performance on the validation set during training.

Since regularization is meant to avoid overfitting, it is worth mentioning that reducing

the regularization strength can help to prevent underfitting as well.

2.4 Parameter Configuration

Parameter configuration refers to presetting the optimal values for the hyperparameters

of a neural network model before training. The hyperparameters are parameters that

cannot be learned from the data but are set before the training begins. The explanation

of the common hyperparameter used in neural network training is explained below [43].

• Learning rate determines the step size at which the optimizer updates the weights

during training. A greater learning rate can result in faster convergence but may

cause the model to overshoot the optimal solution. A lower learning rate may

result in slower convergence but produce a more accurate model.

• An epoch number determines the number of times the model will iterate over

the entire dataset during training. Increasing the number of epochs may result in

better accuracy but can also lead to overfitting.

• Batch size controls the number of training examples used in each update of the

model weights. A larger batch size may result in faster training but may also

lead to poor generalization. In contrast, a smaller batch size may lead to slower

training but can result in a better-performing model.

• Hidden layers mumber specifies the number of hidden layers in the neural

network. Increasing the number of hidden layers allows the model to capture more

complex patterns in the data. However, it can also lead to overfitting and longer

training time.

• The dropout rate controls the probability of dropping out a neuron during train-

ing. It is a regularization technique that can prevent overfitting by randomly

dropping out neurons during training. A higher dropout rate can result in a more

regularized model but can also lead to underfitting.
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• Weight decay specifies the penalty added to the loss function for large weights.

It is a regularization technique that can prevent overfitting by adding a penalty

for large weights. A larger weight decay coefficient can result in a more regularized

model but can also lead to underfitting.

The process of hyperparameters configuration can be time-consuming and computation-

ally expensive, as it involves iterative training and testing processes to evaluate the

model’s performance until an optimal set of configurations is achieved. Since the op-

timal configuration of hyperparameters is specific to the task at hand, it is rare for a

configuration to be shared among different tasks.

2.5 Activation Function

Activation functions are functions that are applied to the output of each neuron in a

neural network. They introduce non-linearity to the output of the neuron, which al-

lows the neural network to capture more sophisticated relationships between inputs and

outputs. Activation functions are used to determine whether a neuron should be acti-

vated during training. Below presents the equation and explains the popular activation

functions used in neural networks [44].

Linear activation is the simple function where the input is directly proportional to

the output and is commonly used in the output layer for regression tasks. The formula

is presented in Equation 2.3 below:

f(x) = x (2.3)

, where x is the input data

Sigmoid activation maps the input to a range between 0 and 1, which can be inter-

preted as a probability of belonging to a particular class. The formula is presented in

Equation 2.4 below:

f(x) =
1

1 + e−x
(2.4)

, where x is the input data
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Softmax activation commonly used in the output layer for multi-class classification

problems. It normalizes the output of the network to a probability distribution over the

classes. The formula is presented in Equation 2.5 below:

f(xi) =
exi∑n
j=1 e

xj
(2.5)

, where x i is the output of the i-th neuron in the output layer, K is the total number of

classes, and f(x i) is the probability of the input belonging to the i-th class.

Rectified linear unit (ReLU) activation sets the output to zero if the input is

negative and passes the input through if it is positive. The formula is presented in

Equation 2.6 below:

f(x) = max(0, x) (2.6)

, where x is the input data

Leaky Rectified linear unit (Leaky ReLU) activation is a variant of the ReLU

activation function that addresses the ”dying ReLU” problem where the ReLU activation

function can lead to dead neurons with a zero output. The Leaky ReLU activation

function introduces a small slope for negative input values to prevent the neuron from

completely dying. The formula is presented in Equation 2.7 below:

f(x) = max(x, x · 0.01) (2.7)

, where x is the input data

Hyperbolic Tangent (tanh) activation function maps the input to a range between

-1 and 1. The formula is presented in Equation 2.8 below:

f(x) =
ex − e−x

ex + e−x
(2.8)

, where x is the input data

As a general guideline, the ReLU activation function is a good starting point and can

be used in the hidden layers. If ReLU does not yield optimal results, other activation

functions can be tried. However, it should only be implemented in the hidden layer.

In contrast to ReLU, the Sigmoid and Tanh functions are not suggested to be used in
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the hidden layers due to their higher likelihood of causing vanishing gradients issues [3].

Figure 2.14 shows the graph presentation of the activation functions.

Figure 2.14: Graph representation of activation functions [3]

2.6 Loss Function

The loss function, also known as a cost function, is designed to measure the training

performance of a neural network model. The objective is to minimize the loss value

between the predicted output and the actual ground truth. The lower the loss value, the

better the model’s performance on the given task. To optimize the loss value, gradient

descent is implemented to adjust the weights and biases of the network during the

training process. This helps the model improve its performance by gradually reducing

the loss value.

Mean Squared Error (MSE) measures the average squared difference between the

predicted and actual output. It is commonly used for Regression tasks. Equation 2.9

presents the formula for computing MSE.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.9)
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, where yi is the actual output for the ith example, ŷi is the predicted output for the ith

example, and n is the number of examples.

Mean Absolute Error (MAE) is similar to the MSE, but it measures the average

absolute difference between the predicted and actual output. It is commonly utilized for

Regression tasks as well. Its formula is presented in Equation 2.10 below.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.10)

, where yi is the actual output for the ith example, ŷi is the predicted output for the ith

example, and n is the number of examples.

Binary Cross-Entropy measures the difference between the predicted and actual out-

put, taking into account the probability of each class. It is normally implemented for

Binary classification. The Equation 2.11 is outlined below.

BCE = − 1

n

n∑
i=1

[yi log ŷi + (1− yi) log (1− ŷi)] (2.11)

, where yi is the actual output for the ith example, ŷi is the predicted output for the ith

example, and n is the number of examples.

Categorical Cross-Entropy measures the difference between the predicted and actual

output, taking into account the probability of each class. It is suitable for Multi-class

classification. The Equation 2.12 is presented below.

CCE = − 1

n

n∑
i=1

m∑
j=1

yij log ŷij (2.12)

, where yij is the actual output for the ith example and jth class, ŷij is the predicted

output for the ith example and jth class, n is the number of examples, and m is the

number of classes.

Kullback-Leibler Divergence (KL divergence) measures the difference between

two probability distributions and is normally used for Generative models. The Equation

2.13 is presented below.

KL =

n∑
i=1

yi log
yi
ŷi

(2.13)
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, where yi is the actual output for the ith example, ŷi is the predicted output for the ith

example, and n is the number of examples.

2.7 Gradient Descent

Backpropagation is an algorithm that computes the gradients of the loss function for the

weights and biases of the neural network. Meanwhile, gradient descent is an optimization

algorithm that uses the gradients computed by backpropagation to minimize the value

of a loss function by iteratively adjusting the model parameters. The idea is to find the

direction of the steepest descent in the loss function and follow that direction to reach

the minimum value of the loss function. At each iteration, the gradient is computed to

update the parameters [45]. The formula to update the parameters in gradient descent

is:

θ = θ − α ∗ ∇L(θ) (2.14)

, where θ is the parameter, α is the learning rate, and ▽L(θ) is the gradient derivative

of the loss function with respect to the parameter.

2.7.1 Batch, Mini-Batch, and Stochastic Gradient Descent

There are different variants of gradient descent, such as batch gradient descent, stochas-

tic gradient descent, and mini-batch gradient descent [46]. Batch gradient descent com-

putes the gradient on the entire training dataset and updates the model parameters once

per epoch. While stochastic gradient descent computes the gradient on a single data

point at a time, it updates the model parameters for every sample. Mini-batch gradient

descent computes the gradient on a small batch of data points.

Batch gradient descent is a more efficient algorithm for small datasets and can ensure

convergence to the global minimum of the loss function. However, it can slow down the

training process since it needs to process the entire dataset in each iteration and is more

likely to get trapped in local minima. On the other hand, SGD is more computationally

efficient than batch gradient descent as it processes one example at a time, making it

capable of escaping from local minima. Nevertheless, it does not converge well as batch

gradient descent. Mini-batch gradient descent strikes a balance between the efficiency
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of SGD and the robustness of batch gradient descent, but its implementation is more

complicated [31].

2.7.2 Optimizers

To overcome the limitations of the common gradient descent algorithm (SGD), such as

slow convergence and the tendency to get stuck in local minima, optimizers modify the

basic algorithm by adding adaptive learning rates, momentum, and other features to

improve convergence and training speed [37]. Below explains the other optimizers that

commonly be implemented in training the neural network:

Momentum optimizer accelerates SGD in the relevant direction and dampens the

oscillations [37]. It adds a fraction of the update vector from the previous step to the

current update vector, which allows it to speed up in directions where the gradient is

consistently pointing. The formula of the Momentum optimizer is:

v = βv + (1− β)∇L(w)w = w − αv (2.15)

, where β is the momentum coefficient, typically set to 0.9.

Adagrad optimizer adapts the learning rate of each parameter based on the historical

gradients for that parameter [37]. It uses a per-parameter learning rate inversely propor-

tional to the square root of the sum of the squares of the gradients for that parameter.

The formula of the Adagrad optimizer is:

gt = ∇L(wt)st = st−1 + g2twt+1 = wt −
αgt√
st + ϵ

(2.16)

, where gt is the gradient at time t, st is a running sum of the squares of the gradients,

and ϵ is a small constant to avoid division by zero.

RMSProp optimizer is an adaptive learning rate optimizer that uses a moving average

of the squared gradients to normalize the learning rate for each parameter [37]. RMSProp

optimizer helps to determine an appropriate learning rate for different parameters. The

formula of the RMSProp optimizer is:

gt = ∇L(wt)st = βst−1 + (1− β)g2twt+1 = wt −
αgt√
st + ϵ

(2.17)
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, where gt is the gradient at time t, st is a running average of the squared gradients, β

is the decay rate, typically set to 0.9, ϵ is a small constant to avoid division by zero.

Adam optimizer combines the benefits of both momentum and adaptive learning rate

methods [37]. It maintains a running average of both the gradients and the second

moments of the gradients and uses these estimates to compute the adaptive learning

rates for each parameter. It also includes a bias correction term to account for the

initialization of the moving averages. The formula of the Adam optimizer is:

mt = β1mt−1+(1−β1)gtvt = β2vt−1+(1−β2)g
2
t m̂t =

mt

1− βt
1

v̂t =
vt

1− βt
2

wt+1 = wt−
αm̂t√
v̂t + ϵ

(2.18)

, where gt is the gradient at time t, mt and vt are the first and second moments of the

gradients, β1 and β2 are the decay rates for the moments, typically set to 0.9 and 0.999,

ϵ is a small constant to avoid division by zero. The terms m̂t and v̂t are bias-corrected

estimates of the moments.

2.7.3 Vanishing Gradient & Exploding Gradient

Vanishing gradients and exploding gradients are two problems commonly occurring dur-

ing deep neural network training [37]. Vanishing gradients occur when the gradients in

the early layers of the network become very small as they propagate backward through

the network during backpropagation. This situation can make it difficult for these lay-

ers to learn useful features, as the small gradients prevent significant updates for the

weight. The issue of vanishing gradients could be problematic in deep neural networks,

as the gradients can become exponentially smaller with each layer. Exploding gradients

occur when the gradients in the early layers of the network become very large during

backpropagation. This can cause the weights to update too much, leading to unstable

and divergent behavior during training.

These problems could lead to poor performance and slow convergence during training.

However, there are several techniques that can be used to mitigate these issues [37].

Batch normalization is a common technique used to address both issues. Additionally,

residual connections and non-saturating activation functions, such as ReLU and Leaky

ReLU, can be used to prevent vanishing gradients. Weight initialization and gradient

clipping are also suggested for implementation to avoid exploding gradients.
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2.8 Development Framework

Developing ANNs from scratch can be challenging, but fortunately, there are two widely

used open-source frameworks available for building deep neural networks: TensorFlow

[47] and PyTorch [48]. Both frameworks offer user-friendly interfaces and rich library

packages that can ease the development process.

TensorFlow is an end-to-end, open-source, dataflow graph-based framework developed

by the Google team. With the comprehensive, flexible ecosystem of tools and libraries,

it provides better visualization and supports users in developing large-scale distributed

models across various devices and platforms.

PyTorch, on the other hand, was released by Facebook. It implemented the popular

computing framework, Torch library, to provide a dynamic computational graph. It

allows for more flexibility and ease of use when building and debugging models.

The selection of the development framework fully depends on the specific use case and

personal preferences, as Tensorflow is supported by a larger developer community which

is more suitable for deployment on a production system; while PyTorch is more flexible

in model development and ideal for research and prototyping.

2.9 Backbone CNN Models

According to study [49], VGG [50], InceptionV3 [51], ResNet-50 [52], XceptionNet [53],

DenseNet [54], MobileNet [55], and Efficient-Net [56] have been widely used as backbone

model when designing or developing a deepfake detector. VGG [50], which stands for

Visual Geometry Group, is one of the most popular image recognition architectures that

propose to replace large kernel filters with uniform 3x3 kernel filters to improve network

decision functions and reduce the issue of network overfitting. The inception network

[51] focuses on reducing computational power for deep networks by leveraging a dimen-

sionality reduction with stacked 1×1 convolutions. ResNet-50 [52] is a residual network

with a 50 convolutional network that exploits 1×1 convolutions as a ’bottleneck’ for

designing building blocks to reduce parameter numbers and matrix multiplication, thus

speeding up the training process. XceptionNet [53] replaces the standard inception mod-

ules in InceptionV3 with depthwise separable convolutions to efficiently use the model
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parameters for improving model performance. DenseNet [54] was developed to improve

the model performance due to the gradient vanishing problem of deep neural networks.

It allows each layer access to the features of all previous layers via the dense connec-

tion. MobileNet [55] is a low-latency CNN based on 3x3 kernel filters that implement

depthwise separable convolutions to reduce computational costs. Similar to MobileNet,

Efficient-Net [56] aims to reduce FLOPS and computational power while maintaining

high performance, but it focuses on the use of the model scaling method. The idea is to

scale the dimensions of the CNN models in a more structured and efficient manner to

achieve a suboptimal performance. Specifically, the analysis [49] showed that Xception-

Net and ResNet both take 17% while VGG takes 12% in the total frequency of model

implementation. Table 2.1 outlines the total parameters of each CNN. The larger the

number of parameters, the higher the computational power required for replicating and

training the model, especially when working with huge image datasets. The develop-

ments of MobileNet and EfficientNet show that the research community has put effort

into exploring lighter-weight yet higher-accuracy networks for future computer vision

tasks.

Model Total Parameter (Millions)

VGG [50] 138

InceptionV3 [51] 25

Resnet-50 [52] 23

Xception [53] 22

DenseNet [54] 20

MobileNet [55] 13

EffifientNet [56] 11

Table 2.1: Total Parameters of each backbone CNN

2.10 Training Constraint

Building a neural network model is an arduous task that may encounter numerous

obstacles. The selection of network capacity, dataset size, and parameter configuration

(such as batch size setting) requires careful consideration in relation to the available

hardware resources, especially the computer Random-Access Memory (RAM). Although

implementing a larger dataset and batch size or designing a complex neural network with

multiple layers and neurons can improve the network performance, it can also increase

computational costs and easily exhaust the computer RAM, leading to training failure.



Chapter 3

Overview of Deepfake

This chapter is mainly based on the following publications:

Jia Wen Seow, Mei Kuan Lim, Raphaël C.W. Phan, & Joseph K. Liu (2022).

A comprehensive overview of Deepfake: Generation, detection, datasets, and

opportunities. Neuro-computing, 513, 351-371.

DOI: 10.1016/j.neucom.2022.09.135

Jia Wen Seow, Mei Kuan Lim, Raphaël C.W. Phan, & Joseph K. Liu

(2023). SparcoNet with Block-Switched Self-Supervised Learning: An Effec-

tive Framework for Deepfake Detection with Improved Adversarial Defense.

Submitted to Information Sciences Journal. [Submitted]

3.1 Deepfake Generation

Deepfake generation refers to a new technique for tampering with media that surpasses

traditional forgery methods by minimizing manipulation traces or fingerprints, which are

often used for forgery detection (such as biometric or compression artifacts inconsistency)

[57, 58]. This technique relies on a deep neural network that learns the segmentation map

or latent representation to extract input characteristics and produce a new, hyperrealistic

fake content based on the input data. Due to the minimal distinction between real and
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fake data, detecting deepfakes is more difficult than detecting traditional manipulated

media.

3.1.1 Deepfake Generation Techniques

There are three primary models for creating deepfakes: i. Autoregressive model [59], ii.

Autoencoder [60], and iii. Generative Adversarial Network (GAN) [10].

The Autoregressive model is designed to model the conditional distribution of each

pixel based on its previous pixels rather than relying on latent representation. While it

can generate high-quality images, the evaluation process can be time-consuming due to

its pixel-by-pixel predictions and sequential evaluation. Examples of this model include

Pixel-RNN [61] and Pixel-CNN [62].

The Autoencoder is a type of artificial neural network used for unsupervised data

representation learning. It consists of a coupled network formed by an encoder and

decoder. The encoder converts the input into a hidden latent representation, which the

decoder then uses to regenerate the data back to its original form. The goal is to produce

output that is as close as possible to the input. Variational Autoencoder (VAE) plays

a vital role in the generation of deepfakes. Figure 3.1 illustrates the basic workflow of

an autoencoder. The purpose of an autoencoder is to train the network to recognize

the essential features of the input while ignoring irrelevant noise. VAE differs from

conventional autoencoders in that it assumes a particular probability distribution of

latent variables, which enables it to better restore complex input information. However,

VAE is more prone to generating blurry outputs, although it can easily produce new

output after training by sampling the distribution.

The GAN is comprised of a pair of neural networks: a generator and a discriminator

network. The generator network’s objective is to produce a synthetic output that mimics

the input’s data distribution to deceive the discriminator. Conversely, the discrimina-

tor network’s aim is to distinguish whether the output sample is real or fake. Both

networks continually optimize through backpropagation until they reach an equilibrium

state where fake data is indistinguishable from real data. GANs enable manipulation

such as style transfer and image restoration that are challenging to achieve with tradi-

tional forgery generation methods [63].
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Figure 3.1: The encoder, pθ converts the input data, x into a latent representation,
y, and the decoder pφ reconstruct the data back as output, x’.

Over the years, various GANs [12, 14, 15, 64–68] have been published to enhance soft-

ware application performance. For example, ZAO [69] and FaceApp [70] demonstrate

excellent performance in producing entertainment deepfake videos. The RCNN network

[71] was developed for mobile cameras to improve camera resolution. Stacked-GAN

[72] was used to address the common low-quality deepfake synthesis issue using super-

resolution to preserve more facial details in image synthesis. However, GANs require

high computational power and a vast dataset for training [15].

3.1.2 Deepfake Types

The deepfake type can be categorized into four major groups: entire face synthesis,

reenactment (facial expression, body motion), facial attribute manipulation, and face-

swapping. Figure 3.2 illustrates the different types of deepfakes.

3.1.2.1 Face Systhesis

Face synthesis is a technique that involves learning the latent representation of face data

to generate a hyper-realistic synthetic persona. The synthetic persona does not exist in

the real world as it is created without a target subject. While this technique benefits

the gaming and modeling industries, it can also be used by attackers to fake someone’s

identity for illegal activities.
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Figure 3.2: The four main types of deepfake.

In 2017, Radford et al. [73] proposed a more stable generative model architecture called

DCGAN, which enhances the overall training stability. They implemented a deep con-

volutional concept without pooling and batch normalization to improve image synthesis

performance based on an arithmetic vector. A year later, NVIDIA researchers [74] intro-

duced another network architecture called ProGAN to further improve output quality

and stability during network training. They progressively trained the input from low

resolution and gradually improved fine details throughout the training process.

StyleGAN [16] inherits from ProGAN and introduces an adaptive instance normalization

(AdaIN) to control the generator learning at each convolutional layer. The generator

tends to synthesize a consistent style or pose based on the provided vector. The authors

also introduced stochastic variation in controlling the placement of synthesized features

such as hairs, stubble, freckles, or skin pores. However, they found that the instance

normalization of StyleGAN produced significant water droplet-like artifacts in the syn-

thetic image, making it easily exposed to detection. Therefore, the same research team

redesigned a new normalization approach and published it as StyleGAN version 2 [75]

in the same year. They successfully improved image quality and eliminated the artifacts

seamlessly. ProGAN and StyleGAN are widely used to produce synthetic face databases

[76, 77].
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3.1.2.2 Reenactment

Unlike face synthesis, reenactment involves transferring facial expressions or body mo-

tions between people. This technique was popular even before the appearance of deep-

fake, and traditional approaches utilized computer graphics to achieve reenactment re-

sults. For example, Blanz et al. reenacted the input image with a 3D morphable model

extracted from a database of 3D scans [78]. Thies et al. promoted real-time facial ex-

pression transfer using a commodity RGB-D sensor to capture facial performance. They

altered the parameters of the target to fit the source expression with a parametric model

and employed a mouth retrieval synthesis to produce a high-quality outcome [79, 80].

In this section, we will outline several reenactment techniques, such as facial expression

transfer with neural textures, typical facial expression reenactment (Face2Face), and

body motion reenactment (Puppet Master).

Neural Textures utilizes feature maps, texture maps, or neural textures within the

parametric vectors to generate photorealistic reenactment results. This technique was

first proposed in [13], where the authors developed an end-to-end deferred neural ren-

dering network using a convolutional encoder-decoder that blends traditional computer

graphics knowledge with adaptable neural textures. The authors created a UV map by

sampling the target’s neural textures and aligning them with the source’s expression.

The UV map was then inputted into the neural renderer, along with the background

image, to synthesize the reenactment result. However, the output quality can be influ-

enced by the geometry proxy. To achieve a similar concept, Fried et al. [81] focused on

lip reenactment. They produced an altered output by modifying, eliminating, or adding

dialogue to a talking-head video. The authors used a parametric face model to control

the expression and pose variations across different frames based on the transcript and

video sequence.

Face2Face is a widely used method for reenacting facial expressions from a source to

a target, which attackers can exploit to manipulate the target’s appearance and ex-

pressions. One notable instance of this technique was the creation of a deepfake video

featuring former President Obama [17, 18]. Some studies have used Barack Obama’s

dataset for training their models. For example, in [82], the authors generated new

videos based on Obama’s voice and video stocks. They extracted audio features using
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Mel-frequency Cepstral Coefficients (MFCC) from the source video, converted the tar-

get’s mouth shape into vectors, and applied Principal Component Analysis (PCA) to

represent the mouth shape over frames. They then used an LSTM network to map the

MFCC audio coefficients to PCA mouth shape coefficients. Kumar et al. [83] intro-

duced a fully trainable reenactment network for lip synthesis based on text input using

a similar dataset. Their network consisted of three modules: i. A text-to-speech net-

work, CharWav, ii. An LSTM network for converting audio to mouth keypoints, and iii.

A UNet-based Pix2Pix network to synthesize the target video based on the mask and

mouth keypoints. In another work, Song et al. [84] also used MFCC to extract audio

features but proposed a conditional recurrent network to ensure temporal coherence and

improved lip movement in an adversarial manner during training.

CycleGAN has been widely used in numerous reenactment studies. Originally intro-

duced in [66], CycleGAN enables the translation of image content from source domain

A to target domain B without requiring paired data. The method involves training two

GANs with cycle-consistency loss to learn the domain conversion between source and

target in a return way, thus ensuring that the synthetic output obtains the characteris-

tics of the target domain while retaining its original content. However, this method may

have poor performance when data have significant geometric or distribution differences.

StarGAN [14], another CycleGAN-based translation network, focuses on multi-domain

translation tasks with a single model, thereby simplifying the effort required to train the

transfer of multiple expressions with support for mask vectors for different facial expres-

sion labels. RecycleGAN [85], introduced in 2018 in cooperation with Facebook Reality

Lab, is a data-driven translation network designed for video retargeting. The model im-

plements CycleGAN with a recycle formulation, utilizing loss functions such as recurrent

loss, cycle consistency loss, recycle loss, and adversarial loss to optimize spatio-temporal

constraints and obtain better local minima during style transformation. RecycleGAN

successfully addresses the mode collapse issue of conditional-GAN and produces hyper-

realistic output in facial reenactment tasks. To improve the mapping boundary latent

space from source to target in facial reenactment, Wu et al. [86] leveraged CycleGAN for

boundary transformation and implemented Pix2Pix encoder-decoder for reconstructing

synthetic output.

In 2020, a generic face animator called Interpretable and Controllable face reenactment

network (ICface) was published by [87]. The network comprises two major stages: i.
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extracting facial attributes from the driving image, such as interpretable head pose an-

gles and Action Unit (AU) values, and ii. integrating the extracted attributes with the

source image using conditional-GAN. Before training, the source image is first converted

into a neutral image using a neutralized generator. The results show a notable perfor-

mance in pose transformation and face reenactment, with less semantic distortion than

the baselines. However, there is still room for improvement in mitigating noticeable ar-

tifacts. In the same year, [88] proposed an Ordinal Ranking Adversarial Networks based

on the concepts of CycleGAN and StarGAN. The generator works with a multi-scale

discriminator and a one-hot label to denote the ranking of the input’s age and expres-

sion intensity, ensuring that the synthesis is correctly conducted according to specific

age groups or expression intensity. They have improved the precision and performance

of condition-based synthesis.

Several studies have focused on identity-invariant pose and expression reenactment. One

example is FaceID-GAN [89], which used a GAN with an identity classifier to preserve

identity features during adversarial training. They used 3DMM to convert input images

into shape, pose, and expression parameters for synthesizing the reenacted face. An-

other approach is DR-GAN [90], which employed an encoder-decoder structure to learn

disentangled representations for face translation and transformation.

However, most synthesis neural networks require large datasets to learn the latent rep-

resentation from different perspectives. To address this, Zakharov et al. [91] proposed

a few-shot learning model using meta-learning to map face landmarks to embedding

vectors. The embedder, generator, and discriminator were trained in a K-shot learn-

ing manner, and the output was fed into a Pix2Pix generator with landmarks from a

different frame to produce the synthetic target output. FaceSwapNet [92] is another

well-known network that addresses scalability limitations and supports many-to-many

face reenactment. It uses a landmark swapper module and a landmark-guided generator

to compute swapped landmarks vectors and synthesize the reenacted face, respectively.

Motion reenactment, also known as Puppet Master, is capable of achieving a high

level of photorealistic motion transfer, where the body motion or position is transferred

from the source to the target without altering the original appearance. However, a com-

mon issue with this technique is pixel-to-pixel misalignment due to the differences in

sources and targets. To address this challenge, the authors of [93] proposed a method
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that utilizes deformable skip-connections with the nearest neighbor loss. The approach

involves decomposing the source’s global information into a local affine transformation

set based on the target pose, deforming the source’s feature map, and applying a com-

mon skip-connection to transfer the transformed tensor, which is then fused with other

corresponding tensors in the decoder to produce the synthetic output.

Unlike the feature mapping-based image reconstruction in [93], Neverova et al. [94]

proposed a warping module that performs texture mapping from a source to a target,

resulting in high-quality texture restoration for various viewpoints and body movements.

They used a conditional generative model for target pose prediction and employed tex-

ture wrapping with a Spatial Transformer Network (STN) based on the UV coordinates

of each surface area. In their work [95], the authors proposed a modular neural net-

work that translates changes in pose into image space using four major modules. These

modules include segmentation of the source image to separate the background and fore-

ground, spatial transformation of segmented body parts, foreground synthesis to produce

a hyperrealistic target appearance, and background synthesis using the foreground mask

from the previous module to complete the body movement reenactment. The goal of this

approach is to generate a new video by using a generative neural network to depict un-

seen poses. To further improve synthesization, Tulyakov et al. [96] decomposed the video

into content and motion subspaces. They utilized a Gaussian distribution to sample the

content subspace and produce motion embedding, then mapped the source content with

the target motion vector to synthesize a new video. Their approach, named MoCoGAN

(Motion and Content Decomposed GAN), employed a GRU network to create a vector

set that formed the motion representation and an image generator to generate videos.

Two discriminators were used to ensure the output quality, where the image discrimi-

nator ensured the photorealism of each frame, and the video discriminator guaranteed

the temporal coherence between the frames. Aberman et al. [97] proposed a two-branch

network to also deal with unseen poses. The first branch focused on learning pose-to-

frame mapping, while the second branch aimed to achieve temporal coherence to convert

the unseen poses into sequences that match the source video.

In their work [98], Kim et al. focused on reenacting head pose, eye gaze, and facial

expression using a novel monocular face reconstruction technique that obtains a low-

dimensional parametric representation of the source and target. They modified the

posture, eyes, and expression parameters from source to target while preserving the
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source’s identity and background illumination, and then rendered the conditioning input

images based on the modified parameters. The rendering-to-translation network used

a space-time encoder and an image decoder to convert the conditioning input images

into a synthetic video portrait. A similar model for character-to-image translation was

presented in [99], where the authors reconstructed the target from a static image to a

3D character model and trained it with motion data to produce video-realistic output.

However, they identified several limitations that significantly degraded the network’s

performance, such as non-linearity of articulated motions, performance discontinuities

due to self-occlusion, quality degradation due to imperfect monocular tracking, and an

inability to capture challenging poses.

NVIDIA introduced a widely used video-to-video translation network called Vid2Vid-

GAN [100], which begins the video translation process by matching the source’s condi-

tional distribution to the target and synthesizing the target background and foreground

using the source’s segmentation mask. However, the model’s performance can be unre-

liable and inconsistent due to insufficient semantic labels in training. To address this

issue, the authors proposed the few-shot Vid2Vid framework [101], which uses a network

weight generation module with an attention mechanism. The proposed network requires

only several target images for the synthesis of unseen data, but its training heavily relies

on the semantic estimation input, which limits its performance.

The paper [11, 102, 103] utilized a Pix2Pix network for movement transfer, which in-

volved similar preprocessing tasks such as extracting the source’s pose or motion into

keypoints, landmarks, or segmentation masks, and then mapping it with the source

foreground before feeding into Pix2Pix-GAN for synthesis. However, the authors imple-

mented different enhancement approaches to support their solutions. In [11], FaceGAN

was proposed to improve the realism of the face region, while Liu et al. [102] combined

upper body keypoints (UBKP), facial action units, and pose (FAUP) to increase facial

detail during training. Zhou et al. [103] encoded position, orientation, and body parts

as a Gaussian smoothed heat map to refine foreground synthesis and alleviate incoherent

body artifacts.

In [104], the authors introduced an identity invariant siamese generative adversarial net-

work (PS-GAN) to resynthesize the input based on a pose-guided image. The network
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consisted of two identical branches: a generative network with pose-attentional trans-

fer blocks (PATBs) that encoded the input and target pose-guided image into feature

representation and a pair-conditional discriminator that differentiated the generated

image from the real one. This study made a significant contribution to the Person

Re-Identification (ReID) task by enabling the identification of the generated image’s

identity.

3.1.2.3 Facial Attributes Manipulation

Facial attribute manipulation involves modifying specific facial characteristics such as

eye color, hairstyles, wrinkles, skin color, gender, and age, which can alter a person’s

appearance based on preset conditions. One of the most popular domain-to-domain

translation networks for this technique is StarGAN [14]. Unlike other networks such

as [66, 105–108], which focus on style translation between two domains, StarGAN em-

ploys a mask vector methodology to facilitate multi-domain training. Another network

proposed by Xiao et al. [109], called ELEGANT, also uses a multi-attribute CycleGAN-

based translation network and emphasizes model training with adversarial loss, domain

classification loss, and reconstruction loss. However, the tampered outputs from ELE-

GANT often contain unwanted artifacts, making it less desirable than StarGAN, despite

its notable style transfer results.

AttGAN [110] differs from [14, 109] as it focuses on producing high-quality facial at-

tribute outputs by employing attribute classification constraints instead of attribute-

independent constraints in latent representation to ensure the preservation of attribute-

excluding details during modification. Although the authors achieved favorable results,

it is still not feasible for large area appearance modification. In contrast, Liu et al. intro-

duced STGAN [111], which overcomes the blurry output issue by embedding a selective

transfer unit with an encoder-decoder network. The selective transfer unit algorithm

is constructed based on the Gated Recurrent Units (GRU) mathematical model, and

the result shows that the synthetic image quality of STGAN is better than StarGAN

and AttGAN. In [112], the authors propose a URCA-GAN network based on Upsample

Residual Channel-wise Attention Module (URCAM) and StarGAN to manipulate the

specific content of the input’s foreground that is different from the target image. The
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URCAM determines the attention map and regulates the most distinctive features with-

out affecting the spatial dimension of the transformation. Their approach results in a

higher-quality yet lesser-artifact output compared to [14, 66].

Li et al. presented BeautyGAN [68] to transfer makeup styles from one instance to

another while preserving the face identity. They improved the translation consistency

of makeup styles on different faces by translating the makeup style of a reference input

to the target output in intra- and inter-domain perspectives. The authors utilized dif-

ferent loss functions such as makeup loss, perceptual loss, and cycle consistency loss to

improve output realism and maintain face identity. Similarly, [113–115] used different

loss functions to control attribute manipulation from various perspectives, including age,

identity, expression, and facial attributes. Despite the various approaches, BeautyGAN

achieved the highest voting rate of 61.84

In [67], Jo et al. proposed SC-FEGAN, a GAN-based image editing system that can edit

images based on free-form masks, sketches, or colors. The algorithm can translate sketch

input into a hyperrealistic texture form and fuse it with the original image to produce

a high-quality, artifact-free synthetic image. The SC-FEGAN algorithm relies heavily

on input processing, such as face segmentation and free-form input feature extraction.

The authors utilized histogram equalization [116] and holistically-nested edge detection

[117] to process sketch data and feed the output for synthesis training with the input

image. This study provides insight into future opportunities to use simple drawing skills

to achieve a sophisticated image editing or restoration process. Afifi et al. proposed

HistoGAN [118], a color histogram-based generative model to naturally alter skin tone.

They used StyleGAN as their backbone model and applied a color histogram instead

of a fine-style vector for the last two blocks of StyleGAN to control the color of the

generated image.

3.1.2.4 Face Swapping

Face-swapping is a technique that involves swapping faces from one image to another

while maintaining the original facial expression. In 2017, Korshunova et al. introduced

a rapid face-swapping methodology [119] that transforms person A’s identity to person

B while keeping the head position, facial expression, and lighting conditions unchanged.

In contrast to common style transfer, the style in this case refers to the person’s identity,
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while the rest is considered the content. The authors employed a modified multiscale

convolutional neural network (CNN) with content loss, style loss, and light loss functions

to transform A’s content into B. Using an affine transformation with 68 facial keypoints,

they aligned the output face and stitched the background with a segmentation mask. As

the neural network is trained to learn A’s content, it can swap with multiple target Bs,

resulting in a one-to-many face swap algorithm. However, training the network requires

a large dataset of single-person images for fine-tuning, which may not be practical in

common applications.

The authors in [120] proposed a face replacement method to obfuscate identity by utiliz-

ing a parametric Model-based Face Autoencoder (MoFA) and a GAN for synthesis and

blending with the background. In contrast, Nirkin et al. [12] derived a recurrent neural

network (RNN) approach consisting of three components to support face-swapping and

facial reenactment. The Gr component obtained pose and expression from the target’s

facial landmarks and generated the source reenacted face to form a segmentation mask,

while Gs and Gc were used for segmentation and inpainting, respectively. The hair and

face segmentation mask of the target image were computed by Gs, while the missing

areas or occluded parts on the output of Gs were inpainted by Gc to obtain a de-

tailed, completed face-swapped result. To ensure facial temporal coherence and support

face view interpolation, Delaunay Triangulation and barycentric coordinates were im-

plemented. However, the output resolution tended to degrade for content with different

angles.

Microsoft collaborated with researchers from Peking University to publish a two-stage

framework named FaceShifter[121] that can handle occlusion during face-swapping for

high-fidelity output production. They performed face shifting using an Adaptive Em-

bedding Integration Network (AEINet) and a Heuristic Error Acknowledging Network

(HEARNet). AEINet is an adaptive attentional denormalization generator that denor-

malizes local feature integration at different levels. Meanwhile, HEARNet leveraged

the heuristic error between the input and reconstructed image to identify the occlu-

sion position and further refined it in a self-supervised manner. This framework shows

superior performance in preserving the identity and occlusive face accessories during

face-swapping.
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3.1.3 Available Deepfake Generation Tool

Many developers and researchers are keen to share their studies as open-source tools

or applications that are user-friendly, which contributes to the proliferation of deepfake

content on social media platforms. Table 3.1 presents a list of publicly available deepfake

generation tools and applications, along with their features. These include Face App

[70] for manipulating facial attributes, and DFaker, ZAO, Deep Face Lab, Face Swap,

Deepfakes web β, Machine Tube, and Reface apps [69, 122–127] for swapping faces. The

Avatarify tool [128] can transfer facial expressions, while Impersonator++ and Jiggy

tools [129, 130] can transfer movement.

3.1.4 Disscusion

In the literature, face reenactment is considered the pioneer type of deepfake. However,

with the exponential growth of deep learning, deepfake technology has expanded be-

yond just face reenactment to include body reenactment. When producing high-quality

deepfakes, most researchers prefer to use a stable GAN structure network, despite its

longer training time. This is because GAN can generate sharper outputs compared to

Autoencoder and Autoregressive models.

Given that deepfake technology has the potential to cause psychological and physical

harm to individuals and organizations, it is essential to be aware of the various types of

deepfake to distinguish between truth and fake media. A comprehensive understanding

of different deepfake behaviors is also necessary to create a reliable deepfake detection

model. Tables 3.2 and 3.3 provide a summary of key information from the discussed

studies, which can aid in better understanding deepfake types. The tables use abbrevi-

ations such as DF (Deepfake), F2F (Face2Face), FS (Face Swapping), EFS (Entire Face

Synthesis), FA (Facial Attribute Manipulation), MR (Motion Reenactment), NT (Neu-

ral Texture), Au/ED (Autoencoder/Encoder-Decoder), ArM (Autoregressive Model), L

(Loss Functions), SC/Att (Statistical Characteristic/Attention Mechanism), and TPF

(Tertiary Preprocessing Framework) to label and distinguish between the various deep-

fake types.
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Ref Deepfake Type Tools Feature

[70] Facial Attributes Manipu-
lation / Face2Face

FaceApp Support modification of fa-
cial expression and face at-
tributes

[122] Face Swap DFaker Support training of face
swap model

[69] ZAO Allows face swap with
celebrities from movie or
TV show

[123] DeepFaceLab Allows face swap in videos

[124] FaceSwap Support face swap between
peoples

[125] Deepfakes web β Support training of face
swap model

[126] MachineTube Support face swap in image
or video

[127] Reface Allows face swap with
celebrities or movie charac-
ter

[128] Face2Face Avatarify Allows to transfer facial ex-
pression from one to the
target avatar

[129] Puppet Master Impersonator++ Support motion transfer
using image synthesis

[130] Jiggy Allows to animate the per-
son in the static image to
dance motion

Table 3.1: Available deepfake generation tools or applications

3.2 Deepfake Detection

There are two approaches to detect deepfakes: (i) Conventional Methods that rely on

handcrafted features, and (ii) Deep Learning Approaches that emphasize learned fea-

tures. Figure 3.3 provides an overview of these approaches and their sub-groups. Like

detecting traditional forgeries such as copy-move, splicing, and inpainting, the deep-

fake detection pipeline also involves input preprocessing, feature extraction, and classi-

fication. However, the deep learning approaches perform feature learning between the

feature extraction and classification stages.
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No. Ref. Year Pub. DF Type Technique Output

GAN Au/ED ArM CNN RNN L SC/ Att TPF

1 [73] 2015 ICLR F2F ✓ Image

2 [82] 2017 ACM
Trans.
Graph

F2F ✓ ✓ ✓ Video

3 [83] 2017 NeurIPS F2F ✓ ✓ ✓ Video

4 [66] 2017 ICCV F2F ✓ ✓ Image

5 [119] 2017 ICCV FS ✓ ✓ Image

6 [131] 2018 ACM
SIG-
GRAPH

FS ✓ ✓ Image

7 [132] 2018 ACCV FS ✓ Image

8 [120] 2018 ECCV FS ✓ ✓ Image

9 [85] 2018 ECCV F2F ✓ ✓ ✓ Image / Video

10 [109] 2018 ECCV FAM ✓ Image

11 [14] 2018 CVPR F2F/ FAM ✓ ✓ Image

12 [68] 2018 ACM-
MM

FAM ✓ ✓ Image

13 [15] 2018 ICLR EFS ✓ ✓ Image

14 [89] 2018 CVPR F2F ✓ ✓ ✓ Image

15 [90] 2018 TPAMI F2F ✓ ✓ Image

16 [93] 2018 CVPR MR ✓ ✓ Image

17 [95] 2018 CVPR MR ✓ ✓ ✓ Image

18 [94] 2018 ECCV MR ✓ ✓ Image

19 [84] 2018 IJCAI F2F ✓ ✓ ✓ Video

20 [86] 2018 ECCV F2F ✓ ✓ ✓ Video

21 [96] 2018 CVPR MR ✓ ✓ ✓ Video

22 [98] 2018 ACM
Trans.
Graph

MR ✓ ✓ Video

23 [100] 2018 NeurIPS MR/ EFS ✓ ✓ Video

24 [111] 2019 CVPR FAM ✓ ✓ ✓ Image / Video

25 [110] 2019 IEEE
TIP

FAM ✓ ✓ Image / Video

Table 3.2: Summary of deepfake generation part 1
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No. Ref. Year Pub. DF Type Technique Output

GAN Au/ED ArM CNN RNN L SC/ Att TPF

26 [11] 2019 ICCV MR ✓ ✓ ✓ Video

27 [67] 2019 ICCV FAM ✓ ✓ Image

28 [12] 2019 ICCV FS/ F2F ✓ ✓ ✓ Image / Video

29 [16] 2019 CVPR EFS ✓ ✓ Image

30 [75] 2019 CVPR EFS ✓ Image

31 [13] 2019 ACM
Trans.
Graph

NT ✓ ✓ ✓ Image / Video

32 [102] 2019 ISMAR-
Adjunct

MR/ F2F ✓ ✓ Video

33 [81] 2019 ACM
Trans.
Graph

NT ✓ ✓ ✓ Video

34 [99] 2019 ACM
Trans.
Graph

MR ✓ ✓ Video

35 [97] 2019 Comput
Graph

MR ✓ ✓ Video

36 [103] 2019 ICCV MR ✓ ✓ ✓ Video

37 [91] 2019 ICCV F2F ✓ ✓ Video

38 [101] 2019 NeurIPS MR/ F2F ✓ ✓ Video

39 [92] 2019 CVPR F2F ✓ ✓ ✓ Image / Video

40 [121] 2019 CVPR FS ✓ ✓ ✓ Image / Video

41 [115] 2019 Neuro-
computing

FAM ✓ ✓ Image

42 [87] 2020 WACV F2F ✓ ✓ Image

43 [133] 2020 WACV F2F ✓ Image / Video

44 [88] 2020 IEEE TIFS F2F ✓ Image

45 [104] 2020 Neuro-
computing

MR ✓ ✓ Image

46 [113] 2020 Neuro-
computing

MR ✓ ✓ Image

47 [114] 2020 Neuro-
computing

MR ✓ ✓ Image

48 [112] 2021 Neuro-
computing

FAM ✓ ✓ Image

49 [134] 2021 IEEE TIFS F2F ✓ ✓ ✓ Image

50 [118] 2021 CVPR FAM ✓ ✓ Image

Table 3.3: Summary of deepfake generation part 2
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Figure 3.3: Deepfake detection

To illustrate the differences between the conventional and deep learning approaches

in the detection process, Figure 3.4 presents the standard deepfake detection pipeline.

This section reviews the studies on both conventional and deep learning-based detection

methodologies.

Figure 3.4: Common detection pipeline

3.2.1 Traditional Deepfake Detection Methods

The traditional deepfake detection methods require a series of sophisticated algorithms

to extract meaningful information or features from the raw data before entering the

classification stage. This is because the raw data cannot be directly input into the
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machine learning algorithms for classification. The extracted features are known as

handcrafted features, which could be subtle traces, pixel anomalies, edge boundary

discrepancies, or abnormal artifacts presented in the counterfeit input data. Figure 3.5

shows the types of handcrafted features. These processes for feature extraction can be

tedious and time-consuming.

Figure 3.5: Example of handcrafted features

In Zhang et al. [135], the authors utilized a Speeded Up Robust Features (SURF)

algorithm along with the Bag of Words model (BoW) for detecting face swaps. The

SURF algorithm is a faster version of the Scale Invariant Feature Transform (SIFT)

algorithm, which was used for localizing and detecting features. The authors employed

two methods to select SURF keypoints: Grid division and Interest point detection. The

selected keypoints’ descriptors were then extracted, passed through a clustering system

to generate features using the BoW model, and classified using Support Vector Machine

(SVM). In contrast, Agarwal et al. [136] proposed feature extraction based on pixel

anomalies. They applied weighted local magnitude patterns by assigning weight inversely
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proportional to the absolute differences between the center and neighboring pixels. A

histogram feature vector was constructed based on the output values and classified

using SVM. Based on the extracted features, the authors discovered that tampered

images retained high-frequency information but lost low-frequency details, making them

susceptible to detection. For instance, although the central face appears well-blended,

facial keypoints such as the eyes, nose, and mouth are ambiguous.

The Photo Response Non-Uniformity (PRNU) technique utilizes non-uniform noise pat-

terns for forgery detection. In a study by Koopman et al. [137], they presented a

purely handcrafted PRNU-based deepfake detection approach by comparing the final

Welch’s t-test evaluation scores for both original and deepfake videos. To do this, they

preprocessed the face region-related video frames, evenly split them over eight groups,

and computed the normalized correlation scores based on each group’s noise patterns.

However, this method is not entirely reliable as most deepfakes in real-life scenarios do

not have a comparison source. In [138], the authors proposed an unsupervised detec-

tion methodology based on classical frequency domain analysis that addresses this issue.

This approach requires no training sample amount and uses a Discrete Fourier Trans-

form (DFT) algorithm to capture the deepfake image frequency by decomposing the

discrete signals. They then convert the frequency data into a 1D-representation feature

vector using an Azimuthal average for classification.

Meanwhile, Marra et al. [139] analyzed the possibility of identifying different GAN

sources based on the fingerprints left in their deepfake output. This study suggests

that GAN anomalies provide clues for deepfake detection. In this direction, papers

[140, 141] introduced several methods to exploit the non-uniform distribution drawback

of GANs during deepfake generation for deepfake detection. Both studies extracted color

components from the deepfake image using different extraction approaches and converted

them into feature vectors for classification using SVM. However, their performance could

be significantly degraded with the improvement of GANs in data distribution.

Biometric artifact is another rising trend for deepfake detection. Yang et al. [142]

proposed exploiting the mismatched facial landmarks of deepfake images as a clue for

detection. They used the head orientation vector with a face detector using DLIB [143]

and OpenFace2 [144]. In [145], the authors captured unusual artifacts, such as anomalies

in the reflections, eyes, or teeth details, for detection. They used facial geometry to train
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the SVM classifier with four feature vector sets: Eye, Teeth, 16-dimensional eye, teeth,

and Full face crop feature vectors. These approaches exploit the drawback of deepfakes

in output realism.

With the advancement of deepfake generation technologies, handcrafted feature extrac-

tion has become increasingly difficult [146]. As a consequence, the focus of deepfake

detection research has shifted towards deep learning methods, which aim to provide

more flexible and dependable detection through dynamic feature learning.

3.2.2 Deep learning-based Deepfake Detection Methods

Learned features have demonstrated their success in solving complex issues in various do-

mains, including advanced computer vision tasks, machine translation, face recognition,

object detection, and localization [147]. Deep learning approaches utilize a black box

CNN feature extraction process that automatically learns and derives features from the

training data using a deep neural network [57, 148]. The deep learning-based method-

ology comprises four main processes: a. Data Preprocessing, b. Feature Extraction,

c. Feature Learning, and d. Classification. It can be divided into two primary groups:

Handcrafted feature-based feature extraction and Generic NN.

i. Handcrafted feature-based feature extraction

In this approach, the authors utilized specific handcrafted features or post-processing of

the feature extracted from NN as the input for further model training.

Biometric artifact In [149], the authors used a long recurrent convolutional network

(LRCN) with eye sequences to detect deepfakes. Their model, based on VGG and

LSTM architecture, leveraged the time-series nature of eye-blinking activity to capture

the temporal features required for deepfake discrimination. However, this methodology

might not be effective in people with mental illness or nerve conduction issues as these

conditions can easily influence the eye blinking frequency.

Another study [150] focused on evaluating the similarities between source and target

eyebrows with a cosine distance metric, assuming that high-resolution deepfakes are

easier to detect through biometric comparison pipeline such as eyebrow alterations.

However, this approach is limited to well-known subjects like politicians and celebrities
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because it heavily relies on identity matching between the source and target, which

requires a large number of training samples.

Ciftci et al. [151] proposed FaceCatcher, a method that emphasizes the detection of

biological signals or Photoplethysmography (PPG). The authors used PPG to detect

subtle changes resulting from skin color due to blood pumping or peripheral circulation

through the face. The variation in the PPG signal provided valuable information for

deepfake detection. The authors first preprocessed the PPG signals into a feature set

using conventional signal processing methods, such as log scale, Butterworth filter, and

power spectral density. Then, they applied a CNN classifier to handle the classification

of the complicated feature space. By encoding the PPG feature maps with binned power

spectral densities, the authors achieved an outstanding detection accuracy of 96%, but

its performance might be compromised if the data is biased.

Yang et al. [152] proposed using lip sequence to support deepfake discrimination based

on the client’s talking habit. They preprocessed the raw input data by implementing

a random password strategy and Dlib detector to extract the lip region, then further

converted them into a lip sequence using Connectionist Temporal Classification (CTC).

Next, they utilized a Dynamic Talking Habit-based Speaker Authentication network

(SA-DTH-Net) to evaluate whether the extracted lip sequence conforms to the client’s

talking style. However, this method is not effective for broad deepfake detection as

most deepfake videos do not obtain the original actor’s lip sequence for talking habit

evaluation.

In [153], Agarwal et al. hypothesized that the deepfake subject’s mouth shape (Visemes)

dynamics are sometimes inconsistent with the related spoken phoneme. They extracted

the phoneme with Google’s Speech-to-Text API, then manually aligned and synchro-

nized the transcripts to the audio using P2FA [154]. They conducted experiments with

different methods for visemes (classify if the mouth is open or closed) measurement and

realized that the CNN-based approach achieved higher accuracy than the handcrafted-

based algorithms. However, this approach might be time-consuming as it requires many

manual operations in handling phonemes and visemes alignment.

Haliassos et al. [155] proposed another mouth feature-based approach. They trained the

preprocessed grayscale lip-cropped frames with two pre-trained lipreading networks: a

Resnet-18 model and a multi-scale temporal convolutional network (MS-TCN). The idea
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was to finetune the detection model with the high-level irregularities in mouth movement.

They achieved a good performance in cross-dataset evaluation with an average of 87.7%

accuracy across five datasets. However, their model is susceptible to mouth features and

failed to detect fake videos with mouth occlusion.

Spatio-Temporal Feature In [156], the authors proposed using optical flow, a vector

field formulated on two consecutive frames f(t) and f(t + 1), to detect unusual motion

artifacts in deepfake videos. They extracted optical flow using PWC-Net and fed it into

a semi-trainable network with VGG-16 and ResNet-50 as the network backbone.

On the other hand, [157] developed a motion-magnified spatial-temporal representation

(MMSTR) with a dual-spatial-temporal attentional network (Dual-ST AttenNet) to

capture PPG variations in both spatial and temporal aspects. They preprocessed the

faces to form the MMSTR maps and followed three steps to gather the required features:

i. Produce an adaptive spatial attention output using the MMSTR map and a spatial

attention network, ii. Generate block-level temporal attention using LSTM, and iii.

Feed the motion-magnified face video to the pre-trained Meso-4 network to output the

frame-level temporal attention. Finally, they employed a ResNet-18 for classification

by taking the features and MMSTR map as the classifier input. However, similar to

[151], PPG signals could easily be affected by other texture factors, such as skin color,

sunburn, or sensitive skin.

In order to capture temporal inconsistencies, such as sudden changes of brightness and

facial artifacts in deepfake video, Tariq et al. [158] applied a simple CLRNet (Convolu-

tional LSTM Residual Network). They used few-shot transfer learning to generalize the

network by training it with several scenarios, including i. Single-source to Single-target,

ii. Multi-source to Single-target, and iii. Single-source to Multi-target.

Pixel & Statistical Feature In [159], the authors used chrominance components for

detection. They transformed the image from RGB space to a YCrCb space, extracted

its edge information using a Scharr operator, and converted it into a gray level co-

occurrence matrix (GLCM) for scaling. They utilized a depthwise separable convolution

deep neural network for feature extraction and classification, achieving a higher average

F1 score of 0.9865 compared to other methods.
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Khodabakhsh et al. [160] proposed using a ResNet-based PixelCNN++ with a universal

background model (UBM). The concept was to apply a conditional probability matrix

on the log-likelihood of each pixel intensity to enhance feature extraction.

In [161], the authors introduced a self-supervised decoupling network (SDNN) for au-

thenticity and compression feature learning. It exploited the compression ratio of given

inputs as the self-supervised signals. The idea was to normalize the model with different

compression rates so that the authenticity classifier could achieve better classification

results without being affected by input compression. However, as the range of compres-

sion rates can be adjusted, the model’s performance with an unseen compression rate

might still be an issue.

Chen et al. [162] proposed a light-weight principal component analysis (PCA) based

detection method, DefakeHop. They extracted features from different face regions using

PixelHop++ and applied subspace approximation with adjusted bias (Saab) to reduce

the spatial dimension of each patch. The output was then fed to an extreme gradient

boosting (XGBoost) classifier for further classification.

In [163], the authors introduced a frequency-aware discriminative feature learning frame-

work (FDFL) to solve the ambiguous feature discrimination of softmax loss and the low

efficiency of handcrafted features for forgery detection. They presented a single-center

loss (SCL) to bring the neutral face features to the center and push away the manip-

ulated features. The authors found that a combined loss of SCL with softmax loss

provided better results when working with the FDFL framework. However, the model

has poor generalization with unseen datasets.

Luo et al. [164] noted that most CNN-detectors fail to generalize across different datasets

due to overfitting in method-specific color texture. They found that image noise could

efficiently remove color texture and expose forgery traces. Hence, they introduced a

method using an Xception-based detector with SRM [165] high-frequency noise features.

The entire model consists of three functional modules: i. A multi-scale high-frequency

feature extraction module, ii. A residual guided spatial attention module, and iii. A dual

cross-modality attention module. They adopted the suggested modules to extract more

meaningful features and capture the correlation and interaction between the complemen-

tary modalities. The result shows that the model outperforms competing approaches by

more than 15
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In [166], Liu et al. used the Discrete Fourier Transform (DCT) to capture the phase

spectrum for deepfake detection. They hypothesized that the phase spectrum is sensitive

to up-sampling, which is an operation that is normally applied in deepfake generation,

and assumed that the local textual information has more impact than high-level seman-

tic information for forgery detection. However, it might be vulnerable to generation

methods that do not use up-sampling.

ii. Generic NN

Generic NN is a detection methodology that comprises one or multiple neural networks

conducting feature extraction and classification tasks. In contrast to other deep learning-

based approaches that are integrated with handcrafted-feature, Generic NN only relies

on learned-feature.

Face Recognition & Artifacts Discrepancies In their study on deepfake detec-

tion, Wang et al. [167] proposed a deep face recognition system called FakeSpotter,

which employed a shallow layer-wise neural network architecture and introduced a new

neuron coverage criterion called mean neuron coverage (MNC) to monitor the neuron

behavior for synthetic face detection. By using MNC to specify the neuron activation,

FakeSpotter achieved over 80% accuracy in comparison to other detectors. Yuezun et

al. [168] focused on face artifacts discrepancies, training several neural networks such

as VGG16, ResNet50, ResNet101, and ResNet152 to learn the discriminative features

between deepfake face areas and their neighboring regions, exploiting the artifacts in-

troduced by affine face warping during deepfake generation. Similarly, Nirkin et al. [12]

presented FSGAN to improve deepfake classifier performance by utilizing multiple face

identification networks to capture artifact defect between deepfake segmented faces and

their neighboring contexts. They trained two XceptionNet-based recognition systems

to extract differences between foreground and background, then further trained them

with the source embedding for deepfake classification. In their research, Zhu et al. [66]

broke down face textures into several physical decomposition groups to identify the best

combination for forgery detection, grouping ”direct light and identity texture” as face

detail and ”3-dimensional shape, ambient light, and common texture” as facial trend.

They developed an Xception-based Forgery-Detection-with-Facial-Detail Net, which is

a two-stream network that combines feature clues from both original images and facial

detail. The output was fused with three approaches: score fusion (SF), feature fusion
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(FF), and halfway fusion (HF), with HF providing the best performance. They also

integrated a supervised-detail guided attention module to enhance forgery detection by

exploring more plausible manipulated attributes.

Multi-Stream & Multi-Stack Neural Network In [169], it was suggested to inte-

grate an InceptionNet-based face classification stream with a triplet stream network for

steganalysis feature extraction. This approach exploited the low-level noise residual fea-

tures with high-level tampering artifacts to enhance detection. The final detection score

was computed from the output scores of both streams. Similarly, in [170], a multi-stream

network was proposed, consisting of five dedicated parallel ResNet-18s that learned the

respective face regions and captured local facial artifacts. The combined learning of re-

gional face areas with full-face artifacts improved detection performance, especially with

compressed input. Li et al. [171] used ResNet-18 to implement face regional learning

as well. They employed a Patch&Pair Convolutional Neural Networks(PPCNN) that

separated images or frames into face and non-face region patches to capture inconsis-

tencies between the foreground and background. The embeddings of patch pairs from

both branches were concatenated and passed to a classifier to compute a global decision

for fake or real input. This approach improved neural network generalization against

cross-origin deepfakes.

In [172], a multi-stack neural network called DeepfakeStack was introduced. It consisted

of two major sections: i. Base-Learners Creation, and ii. Stack Generalization. Base-

Learners Creation began with initializing seven deep learning models (XceptionNet,

MobileNet, ResNet101, InceptionV3, DensNet121, InceptionReseNetV2, DenseNet169)

that applied ImageNet weights for transfer learning. They were then connected by

replacing the topmost layer with two output layers and the softmax activation function.

The authors also employed the Greedy Layer-wise Pretraining (GLP) algorithms for

model training. The Stack Generalization was a meta-learner formed by a CNN classifier

named DeepfakeStackClassifier(DFC). It was integrated with a larger multi-head neural

network to evaluate the best detection outcome according to the predictions from each

base-learner.

Shallow-CNN In [27], Afchar et al. proposed two shallow network architectures

to capture simpler and localized patterns for discriminating mesoscopic features. The
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first network, Meso-4, consists of four convolution layers, followed by a pooling layer

and a fully-connected layer with a hidden layer. The second network, MesoInception-4,

is an improved version of Meso-4 with the integration of inception modules. Notably,

MesoInception-4 outperforms Meso-4 by a significant margin. This study achieved a

detection accuracy of 95% on the FaceForensic++ dataset and serves as a benchmark

for other deepfake detection tasks [170, 173–175]. In [176], the authors proposed a

shallow convolutional network (ShallowNet) that effectively detects subtle differences

between deepfake and authentic images. They observed that a shallower network with

a max-pooling layer could perform better on low-resolution images. However, while it

significantly reduces the training time, it cannot maintain high detection performance

when dealing with highly compressed input [23, 170].

Attention Mechanism In [177], Fernando et al. introduced the hierarchical at-

tention memory network (HAMC), which incorporates an attention mechanism and a

bidirectional GRU to extract facial attribute features for deepfake future semantic an-

ticipation. The idea is to evaluate an unseen deepfake based on previously seen deepfake

samples. To achieve this, they extracted local patches of feature embeddings using a

pre-trained ResNet, passed them to the bidirectional GRU, and applied different weights

and biases to foster learning of patch features at different attention levels. They used

an adversarial training approach to train the output encodings and ground truth with

a discriminator for final deepfake classification. Similarly, in [77], Dang et al. proposed

inserting an attention map to the backbone network to enhance the feature map for

deepfake classification. Their approach involved using the idea of camera model identi-

fication and using the ’fingerprint’ in the source image to discriminate between deepfake

and source data. The attention map contained various receptive fields and encoded

the high-frequency fingerprint for classification. In contrast to [77, 177], Zhao et al. in

[178] introduced a multiple-attentional framework that employs EfficientNet-b4 as the

network backbone to extract and aggregate low-level texture and high-level semantic fea-

tures of multiple attention maps for forgery detection. They applied a regional indepen-

dence loss function, the bilinear attention pooling loss (BAP), and an attention-guided

data augmentation mechanism to regularize each attention map in learning different se-

mantic regions and non-overlap discriminative feature information. They hypothesized

that the subtle differences of low-level texture mostly disappear in the deeper layer and
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demonstrated that enhancing the textural feature from shallow layers helps stimulate

the learning of discriminative features in the forged region.

Contrastive Loss & Triplet Loss To improve the generalization of the detector,

Hsu et al. [146] proposed the use of contrastive loss in their deep forgery discriminator

(DeepFD) to learn discriminative features across different GANs. The network archi-

tecture was similar to a siamese network, and the contrastive loss was computed based

on pairwise learning. This study was further enhanced with improved algorithms in

[179, 180]. In [179], the authors introduced a Common Fake Feature Network (CFFN)

that implemented DenseNet with cross-layer features, significantly improving perfor-

mance in both feature extraction and fake image recognition. They applied and trained

the contrastive loss with the CFFN in a novel two-step learning policy. Similarly, Zhuang

et al. [180] also adopted a two-step learning policy for model training, but they utilized

a triplet loss for optimization instead of a contrastive loss. This alteration was due to

the poor performance of contrastive loss when dealing with data in the same category,

such as Fake-Fake or Real-Real. The model can prominently differentiate the positive

and negative samples with triplet loss. They presented a new siamese network structure

called Coupled Deep Neural Network (CDNN) to capture local and global features and

achieved high precision of 98.6% in detection. However, the result of [146, 179, 180] might

drop if handling test data with distorted spatial information or different resolutions.

Mittal et al. [181] applied facial and speech embedding vectors with a triplet loss func-

tion, aiming to maximize the similarity between modalities and source video and mini-

mize the similarity between modalities and deepfake video. They integrated the memory

fusion network (MSN) with CNN for deepfake prediction.

CNN Rearchitecture Reconstructing CNN architecture is a common technique to

improve deep learning classification efficiency, involving the alteration and enhancement

of designing the kernel, filter, convolutional layer, and hyper-parameters. In [182], the

authors hypothesized that the residual domain could reflect the discriminative feature.

They restructured the CNN by integrating a high pass filter, transforming the input

image into residuals, and fed them to a three-layer convolutional network for training.

They experimented with three sets of high pass filters, starting from the low to high filter

dimensions. The result showed that the highest dimension high pass filter obtained the
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lowest detection accuracy, while the rest attained similar results. Adequate pairing of

a high pass filter is required to enhance the performance of the CNN in achieving high

detection accuracy.

Guo et al. [183] suggested using the adaptive convolutional layer to improve the detection

accuracy. They proposed an adaptive manipulation traces extraction network (AMTEN)

that extracted the feature map from the input image and used it to subtract the source

image to obtain low-level manipulation traces. The hierarchical feature extraction is

formed by repeating the procedure to acquire higher-level discriminative features with

the subsequent convolutional layers.

In contrast to papers [182, 183], Do et al. in [184] devised a VGGNet-based face detection

network (VGGFace), emphasizing feature extraction and hyper-parameter fine-tuning

based on face recognition.

Capsule Network The major limitation of CNN, according to Hinton et al. in 2017,

was the lack of consideration for relative spatial and orientation relationships during

network training. To address this, they proposed a more robust network architecture

based on the capsule concept. In [174], the authors developed a capsule-forensic network

for deepfake detection, utilizing VGG-19 for latent feature extraction and comprising

three primary and two output capsules. They improved upon the algorithm from [185]

by introducing Gaussian random noise to the 3D weight tensor and implementing an

extra squash function before routing by iterating. The agreement between the low-level

and high-level capsules will predict the probability of the input being fake or real. They

subsequently published a more detailed capsule architecture in Nguyen19, which yielded

better performance.

Recurrent Neural Network (RNN) The Recurrent Neural Network (RNN) is

widely utilized to explore temporal features. In [186], the authors identified that DenseNet

outperformed ResNet in feature extraction and face alignment in preprocessing can en-

hance the training performance. They also discovered that evaluation on a sequence of

images provided better results than a single frame input, and the bidirectional recurrent

network outperformed the uni-directional recurrent network. They concluded that the

best approach is to preprocess face alignment using the facial landmark method. The
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authors of [187] proposed leveraging temporal inconsistencies across frames by using the

capsule network as a feature extractor and feeding the output sequence to the LSTM to

capture the temporal features. They found that equal interval frame selection provides

better performance. However, the performance can be degraded if there are consistent

discrepancies across frames. Amerini et al. [188] preprocessed and transformed the input

to compute a set of correlated inter-frame prediction errors, which they utilized to cap-

ture the temporal correlation among the consecutive frames via sequence learning with

the CNN and LSTM. Masi et al. [189] implemented a two-branch structure to encode

the color domain and frequency with the Laplacian of Gaussian layers (LoG) to amplify

the deepfake artifacts. They fed the combined feature maps to the bi-directional LSTM

for further time-series training and classification. Similarly, Sun et al. [190] adopted

a two-stream network to mine geometric features from the extracted facial landmarks.

They preprocessed the video into frames and extracted the facial landmarks using Dlib.

Two different feature vectors were generated from the facial landmarks and input sepa-

rately to each branch of the two-stream RNN. However, their performance dropped when

tested with the CelebDF dataset, showing their incapability in assuring model gener-

alization. Moreover, the complicated calibration process in mining geometric features

might make it difficult for duplication.

Autoencoder In Locality-aware AutoEncoder (LAE), introduced by Du et al. [175],

they proposed a solution to prevent overfitting in the detection model. They achieved

this by utilizing the latent space loss and reconstruction loss to enforce the semi-

supervised learning of the data’s intrinsic representation. In a similar vein, Khalid

et al. [191] developed a one-class variational autoencoder named OC-FakeDect to detect

deepfakes based on image reconstruction. They utilized an anomaly score computed

by Root Mean Squared Error (RMSE) between the source and reconstructed images of

VAE to formulate a threshold to distinguish deepfake data.

Multi-Person Forgery In 2021, Zhou et al. [192] published a novel wild dataset

consisting of an average of three people per scene to simulate real-case scenarios. They

addressed multi-person forgery with a multi-temporal instance learning methodology,

which consists of three significant modules: i. A multi-temporal scale instance feature

aggregation module, ii. An attention-based bag feature aggregation module, and iii.
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A sparse attention regulation loss. As most approaches focus on single-face forgery

detection, this study provides important insight into effectively detecting deepfakes with

multiple persons per scene using lesser label cost.

Self-supervised learning Self-supervised learning has become a popular method for

improving the ability of image classification and object detection models to generalize

to unseen datasets [193–195]. In the field of deepfake detection, this approach has also

been adopted in recent studies [161, 178, 196]. For example, Zhao et al. [178] pro-

posed pairwise self-consistency learning, which uses source features to detect deepfakes

based on data inconsistency. Zhang et al. [161] introduced a self-supervised decoupling

network to enhance feature representations under varying compression factors. They

enforced similarity feature learning between authentic and compression features during

the similarity decoupling stage and performed adversarial decoupling to train the model

to learn more robust and sophisticated facial features. Meanwhile, Chen et al. [196] used

adversarial data augmentations to improve the generalizability of the detector. Similar

to [161], training was conducted in an adversarial manner.

Table 3.6, Table 3.7, Table 3.8, and Table 3.9 provide a comprehensive overview of

various deepfake detection approaches. The performance of each approach is evalu-

ated using four different metrics, namely Accuracy (ACC), Area under the ROC Curve

(AUC), Equal Error Rate (EER), and False Rejection Rate (FRR). In each table, the

detection results presented for each paper are prioritized based on the most commonly

used evaluation metric. These tables provide valuable insights into the performance

of various deepfake detection methods and can help researchers and practitioners in

selecting an appropriate approach for their specific application.

3.2.3 Deepfake Datasets

In the past two years, diverse datasets have been released to facilitate research and

experimentation related to deepfakes. Understanding the characteristics of the datasets,

such as quality, quantity, and manipulation techniques, is crucial to avoid overfitting or

underfitting during practical training. Therefore, this section will discuss the popular

deepfake datasets that are publicly available. Table 3.10 summarizes the discussed

deepfake datasets.
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The UADFV dataset, which was created by Yang et al. [142, 149] for their deepfake

detection experiments, comprises 49 real videos collected from YouTube and 49 fake

videos generated using the FakeApp application. In the real videos, the faces of the

original individuals were replaced with those of an American actor named Nicolas Cage,

resulting in him being the sole identity depicted in all of the fake videos. The dataset

includes an equal number of authentic and synthetic videos, with each video having a

resolution of 294 x 500 pixels.

DeepfakeTIMIT is a video dataset [197] that has been modified from the VidTIMIT

dataset [198]. To create this dataset, the authors used an open-source FaceSwap-GAN

approach for face-swapping. They manually selected 16 pairs of individuals to create

620 face-swapped deepfake videos from 32 subjects. The original audio channel of the

videos was not manipulated. The fake videos have two different quality standards: i.

low quality (LQ) images of 64×64 pixels, and ii. high-quality (HQ) images of 128×128

pixels.

The Fake Faces in the Wild (FFW) dataset was proposed by Khodabakhsh et al.

[199] to serve as a benchmark for evaluating the generalizability of fake face detection.

The dataset consists of 150 source videos collected from YouTube, which were manip-

ulated using various techniques such as deepfake, computer graphics image (CGI), and

splicing.

FaceForensics++ (FF++) [23] is a well-known deepfake dataset that includes vari-

ous types of deepfakes. The authors manipulated 1,000 YouTube source videos with four

advanced face manipulation algorithms, such as Deepfakes, Neural Texture, Face2Face,

and FaceSwap, resulting in 4,000 fake video sequences. To ensure a more comprehen-

sive evaluation, the authors compressed the H.264 format videos using compression rate

factors of 0, 23, and 40. Later, Google and Jigsaw upgraded the dataset as the Deep-

fakeDetection dataset (DDD/DFD) by adding another 363 original videos. Additionally,

28 actors were hired to create 3,086 high-quality deepfake videos in 16 different scenarios.

Liu et al. [25] presented a large-scale dataset called Celeb-DF, which includes 590 real

and 5,693 high-quality fake videos. The authors collected source videos from YouTube

featuring subjects of diverse ages, ethnic groups, and genders to create this dataset that

aims to simulate real-life scenarios with various video qualities.
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In late 2019, Facebook collaborated with numerous technology giants and industry and

academic experts to organize the Deepfake Detection Challenge (DFDC) and

launched a dataset collection campaign. The organizers hired several actors to record

videos for the dataset, and the challenge released the dataset in two phases: i. The

preview dataset [22], and ii. The final version [26]. The preview dataset includes 1,131

real videos and 4,113 fake videos, while the final version comprises 19,154 real videos

and 100,000 deepfake videos produced by 3,426 paid actors. Both versions contain a rich

variety of gender, skin tones, lighting conditions, head poses, ages, and backgrounds.

Jiang et al. published DeeperForensices-1.0 [28], which comprises 50,000 real and

10,000 high-quality fake videos originating from 100 paid actors. To simulate real-world

scenarios, they employed various perturbations, including compression, blurriness, and

transmission errors, ensuring dataset diversity.

He et al. [200] introduced the ForgeryNet Dataset, which includes over 36 mix-

perturbations using 15 manipulation techniques on more than 54k subjects. The authors

used CREMA-D [201], RAVDESS [202], VoxCeleb2 [203], and AVSpeech [204] as source

data to increase diversity from different aspects, such as facial expression, face identity,

subject angle, and case scenarios. They used face swapping, face reenactment, deep-

fake, and identity transfer as the primary manipulation techniques. The entire dataset

comprises two main groups: i. Image-forgery subset with 2.9M still images, and ii.

Video-forgery subset with over 220k video clips. It defines four significant tasks (image

and video classification, spatial and temporal localization) with 9.4M annotations.

Zhou et al. introduced Face Forensics in the Wild to address multi-person face

forgery detection [192]. The authors gathered 4k raw source videos from YouTube,

with a minimum resolution of 480p, and divided each video into four equal clips. From

each clip, they randomly selected a 12s sequence for generating forgeries. They used

DeepFaceLab, FS-GAN, and a FaceSwap graphic method to perform face-swapping by

selecting two videos randomly from a filtered sequence collection of 12k videos. The

dataset comprises an average of three human faces in each frame and underwent an

automated manipulation process using a domain-adversarial quality assessment network

to reduce costs.
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3.2.4 Evaluation Metrics

There are four possible classification scenarios for deepfake classification, i. True Pos-

itives (TP), where the data (deepfake) is correctly classified as positive (deepfake); ii.

True Negatives (TN), where the data (real) is correctly classified as negative (real); iii.

False Positive (FP), where the data (real) is incorrectly classified as positive (deepfake);

and iv. False Positive (FN), where the data (deepfake) is incorrectly classified as negative

(real). Figure 3.4 shows the example of a deepfake detection confusion matrix.

Actual Positive Actual Negative

Predicted Positive TP FP

Predicted Negative FN TN

Table 3.4: Confusion matrix

The evaluation metrics applied these four scenarios for performance measurement and

the common evaluation metrics used for deepfake detection experiments are Accuracy

(Acc.), Area Under the Curve (AUC), Receiver Operating Characteristic (ROC), Recall,

Precision, F1 Score, Equal Error Rate (ERR), False Acceptance Rate (FAR), and False

Rejection Rate (FRR). Table 3.5 outlines the formula for each evaluation metric.

3.2.5 Discussion

Figure 3.6 illustrates the frequency of deep learning and non-deep learning-based deep-

fake detection models used in the studies mentioned earlier. The analysis reveals that

more researchers are opting for deep learning-based approaches than traditional hand-

crafted feature-based techniques. This trend is mainly due to the high quality of deep-

fakes, which leaves minimal traces and anomalies in the intrinsic features of deepfake

images or videos, making it challenging to extract handcrafted features. Moreover, with

the introduction of more efficient CNN architectures in recent years, many researchers

have shifted their focus to learned feature extraction. Figure 3.7 shows the frequency of

popular CNNs used for the deepfake detector in the discussed studies.

Recent research has shifted the focus from a model-centric approach to a data-centric

methodology. In [205], the authors introduced a representative forgery mining (RFM)
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Evaluation Metric Formula Explanation

Accuracy

TP + TN

TP + TN + FP + FN
(3.1)

The proportion of correct predictions among
the total number of predictions made by the
model.

True Positive Rate (TPR)

TP

TP + FN
(3.2)

The rate of positive samples classified as neg-
ative.

False Positive Rate (FPR)

TN

TP + FN
(3.3)

The rate of positive samples classified as neg-
ative.

Recall

TP

TP + FN
(3.4)

The proportion of true positives among the
total number of actual positive samples in the
dataset.

Precision

TP

TP + FP
(3.5)

The proportion of true positives among the
total number of positive predictions made by
the model.

F1-Score

2 · Precision ·Recall

Precision+Recall
(3.6)

The harmonic mean of precision and recall,
which provides a balance between the two
metrics. A model with high precision and
high recall will have a higher F1-Score than
a model with either high precision or high re-
call alone.

False Positive Rate/ FRR

FN

FN + TP
(3.7)

The proportion of actual positives that are in-
correctly predicted as negatives by the model.

False Negative Rate/ FAR

FP

FP + TN
(3.8)

The proportion of actual negatives that are in-
correctly predicted as positives by the model.

ERR

FP + FN

TP + TN + FP + FN
(3.9)

The point at which the False Acceptance Rate
(FAR) and the FRR are equal, which indicates
the point of the optimal trade-off between the
two.

Table 3.5: Formula and explanation for each evaluation metric
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Figure 3.6: The implementation frequency of deep learning & non-deep learning-
based deepfake detection model structure based on discussed studies

Figure 3.7: The implementation frequency of the popular CNN architecture for deep-
fake detection model based on discussed studies

framework that refines the training data to enhance the performance of the vanilla CNN-

detector. The proposed RFM framework is applicable to any CNN-based detector and

provides a significant visualization result for exploring the forgery region of different

manipulation techniques.

3.3 Challenges

The deepfake generation and detection can be compared to a cat-and-mouse game where

improving the generator leads to the advancement of the detector. Conventional methods

show that designing a detector based on a particular generator’s weaknesses, such as

traces or anomalies, is not a sustainable, reliable, and flexible solution. As deepfake

generators aim to produce artifact-less results, the trend in detector research has shifted

towards discrimination based on learned features instead of handcrafted ones. However,
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No. Ref. Pub. Year Handcrafted Features Classifer Dataset Performances

Color Texture Spatial

1 [135] ICSIP 2017 ✓ SVM LFW Face
Database

0.929 (ACC)

2 [136] IJCB 2017 ✓ ✓ SVM SWAPPED
digital
attack
video face
database

24.50 (EER)

3 [137] IMVIP 2018 ✓ - Self-
Created
Videos

-

4 [140] Signal Process. 2018 ✓ Binary, SVM CelebA,
CelebA-
HQ, La-
beled Faces
in the Wild

1.0 (ACC)

5 [141] ArXiv 2018 ✓ ✓ SVM LSUN 0.700 (AUC)

6 [138] ArXiv 2019 ✓ SVM Faces-HQ
, CelebA ,
FF++

1.0 (ACC)

7 [142] ICASSP 2019 ✓ SVM UADFV
, DARPA
MediFor
GAN Im-
age,Video
Challenge

0.890 (AUC)

8 [145] WACVW 2019 ✓ Logistic Regression CelebA ,
ProGAN,
Glow, Face-
Forensics

0.866 (AUC)

9 [162] ICME 2021 ✓ XGBoost UADFV,
Celeb-
DF V1,
Celeb-DF
V2, Face
Forensics
++

0.959 (AUC)

Table 3.6: Summary of pure handcrafted feature & handcrafted-feature with machine
learning based deepfake detection approaches
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No. Ref. Pub. Year Techniques Model Dataset Performances

Color Texture Spatial Att. Loss NN
Rearchi-
tecture

Multi
Stream/
Net-
work

1 [168] CVPR 2018 ✓ ResNet,
VGG

UADFV ,
Deepfake-
TIMIT

0.990 (AUC)

2 [149] WIFS 2018 ✓ CNN,
LSTM

CEW,
Eye Blink-
ing Video
(EBV)

0.990 (AUC)

3 [169] CVPRW 2018 ✓ Inception SwapMe
and
FaceSwap
dataset

0.928 (AUC)

4 [27] WIFS 2018 ✓ Inception FF++ 0.984 (ACC)

5 [146] IS3C 2018 ✓ ✓ CNN GAN-
Generated
Images
Based On
CelebA

0.947 (ACC)

6 [182] IH and
MMSec

2018 ✓ CNN CelebA-HQ 0.980 (ACC)

7 [184] ISITC 2018 ✓ CNN, VGG CelebA
, DC-
GAN and
PG-GAN
generated
images

0.800 (ACC)

8 [177] IEEE
TIFS

2019 ✓ ResNet,
GRU

FaceForensics,
FF++,
FakeFace in
the Wild

0.999 (ACC)

9 [176] MPS 2019 ✓ CNN CelebA ,
PG-GAN
generated
images

0.999 (ACC)

10 [156] ICCVW 2019 ✓ ✓ ResNet,
VGG

FF++ 0.816 (ACC)

11 [174] ICASSP 2019 ✓ Capsule FF++ 0.994 (ACC)

12 [173] Voice-
Personae
Project

2019 ✓ Capsule FF++ 0.931 (ACC)

13 [186] CVPR 2019 ✓ DenseNet,
GRU

FF++ 0.969 (ACC)

14 [159] IEEE
Access

2019 ✓ CNN CASIA,
GPIR,
COV-
ERAGE,
BigGANs,
LSUN
Bedroom,
PGGAN,
SNGAN,
StyleGAN

0.975 (ACC)

15 [180] ICIP 2019 ✓ ✓ DenseNet GAN-
Generated
Images
Based On
CelebA

0.986 (ACC)

Table 3.7: Summary of deep Learning-based deepfake detection part 1
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No. Ref. Pub. Year Techniques Model Dataset Performances

Color Texture Spatial Att. Loss NN
Rearchi-
tecture

Multi
Stream/
Net-
work

16 [179] Applied
Sci-
ences

2020 ✓ ✓ DenseNet CelebA ,
ILSVRC12

0.988 (ACC)

17 [170] WACV 2020 ✓ ResNet FF++ 0.999 (ACC)

18 [158] ArXiv 2020 ✓ RNN FF++,
DDD

0.990 (ACC)

19 [157] ACM-
MM

2020 ✓ ResNet,
LSTM

FF++,
DFDC
Preview

0.997 (ACC)

20 [150] BIOSIG 2020 ✓ LightCNN,
ResNet,
DenseNet,
SquezeNet

Celeb-DF 0.879 (AUC)

21 [187] Master
Thesis

2020 ✓ Capsule,
VGG,
LSTM

DFDC 0.834 (ACC)

22 [160] BIOSIG 2020 ✓ ✓ ResNet FF++ 0.993 (ACC)

23 [175] CIKM 2020 ✓ Autoencode,
UNet

FF++ 0.968 (ACC)

24 [183] ArXiv 2020 ✓ ✓ CNN CelebA ,
CelebA-
HQ, GANs-
generated
dataset

0.985 (ACC)

25 [77] CVPR 2020 ✓ ✓ CNN CelebA,
Flicker-
Faces-HQ
(FFHQ),
Face Foren-
sics++,
GANs-
generated
dataset

0.997 (ACC)

26 [167] IJCAI 2020 ✓ ✓ CNN CelebA
, FFHQ,
Face Foren-
sics++,
GANs-
generated
dataset,
DFDC,
CelebDF

0.986 (ACC)

27 [171] TheWeb-
Conf

2020 ✓ ResNet Face Foren-
sics++,
Deepfake-
TIMIT,
Mesonet
data

0.994 (ACC)

28 [206] ArXiv 2020 ✓ ✓ Inception FF++,
Celeb-DF-
v2, DFDC

0.997 (AUC)

29 [189] ECCV 2020 ✓ CNN,
LSTM

FF++,
Celeb-DF,
DFDC

0.943 (ACC)

Table 3.8: Summary of deep Learning-based deepfake detection part 2
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No. Ref. Pub. Year Techniques Model Dataset Performances

Color Texture Spatial Att. Loss NN
Rearchi-
tecture

Multi
Stream/
Net-
work

31 [153] CVPR 2020 ✓ CNN A2V, T2V-
S, T2V-L,
FakeFace
in-the-wild

0.997 (ACC)

32 [188] IH and
MMSec

2020 ✓ LSTM FF++ 0.943 (ACC)

33 [172] Edge-
Com

2020 ✓ XceptionNet,
Incep-
tionV3,
Inception-
ResNetV2,
MobileNet,
ResNet,
Densenet

Self-
generated
dataset

0.997 (ACC)

34 [191] CVPR 2020 ✓ Autoencoder FF++ 0.982 (ACC)

35 [152] IEEE
TIFS

2021 ✓ CNN MOBIO,
GRID

2.80 (FRR)

36 [161] ICME 2021 ✓ MTCNN,
EfficientNet-
B2

FF++ 0.918 (ACC)

37 [207] CVPR 2021 ✓ ✓ ✓ Xception Face Foren-
sics ++,
DFD,
DFDC

0.995 (AUC)

38 [163] CVPR 2021 ✓ ✓ Xception FF++ 0.967 (ACC)

39 [164] CVPR 2021 ✓ Xception FF++,
Deep-
fakeDetec-
tion(DFD),
CelebDF,
DeeperForensics-
1.0

0.994 (AUC)

40 [190] CVPR 2021 ✓ ✓ RNN Face Foren-
sics++,
UADFV,
CelebDF

0.999 (AUC)

41 [155] CVPR 2021 ✓ ResNet,
MS-TCN

Face Foren-
sics++,
DFDC,
CelebDF,
DF1.0,
FaceShifter

0.988 (ACC)

42 [178] CVPR 2021 ✓ ✓ ✓ EfficientNet-
B4

Face Foren-
sics++,
DFDC,
CelebDF,
DF1.0

0.976 (ACC)

43 [166] CVPR 2021 ✓ Xception Face Foren-
sics++,
DFDC,
CelebDF

0.816 (ACC)

44 [192] CVPR 2021 ✓ ✓ ResNet Face Foren-
sics++,
DFDC
Preview,
CelebDF,
FFW

0.993 (AUC)

45 [196] CVPR 2022 ✓ ✓ Xception FF++,
DFDC,
CelebDF,
DF1.0

0.984 (ACC)

Table 3.9: Summary of deep Learning-based deepfake detection part 3
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Dataset Ref. Year Mani-
pulation

Ratio
(Real:
Fake)

Total
Videos

Re-
solution

Format Source Partici-
pant Con-
sent

UADFV [142] 2018 FakeApp 1.0: 1.0 49 real
videos, 49
fake videos

294p x 500p YouTube YouTube N

Deepfake-
TIMIT

[197] 2018 FaceSwap-
GAN

Only Fake 0 real
videos, 620
fake videos

64p x 64p -
128p x 128p

JPG Actor Y

FFW [199] 2018 Splicing,
CGI, Deep-
fake

Only Fake 0 real
videos, 150
fake videos

480p, 720p,
1080p

H.264,
YouTube

YouTube N

FF++ [23] 2019 FaceSwap,
Deepfake

1.0: 4.0 1,000 real
videos,
4,000 fake
videos

480p, 720p,
1080p

H.264,
CRF=0, 23,
40

YouTube N

DFD/DDD [24] 2019 Deepfake 1.0: 8.5 363 real
videos,
3,086 fake
videos

1080p H.264,
CRF=0, 23,
40

Actor Y

Celeb-DF [25] 2019 Deepfake 1.0: 11.3 590 real
videos,
5,639 fake
videos

Various MPEG4 YouTube N

DFDC-
preview

[22] 2019 Deepfake 1.0: 3.6 1,131 real
videos,
4,113 fake
videos

180p -
2160p

H.264 Actor Y

DFDC [26] 2019 Deepfake 1.0: 5.2 19,154 real
videos,
100,000
fake videos

240p -
2160p

H.264 Actor Y

Deeper-
Forensics-
1.0

[28] 2020 Deepfake 5.0: 1.0 50,000 real
videos,
10,000 fake
videos

1080p MP4 Actor Y

ForgeryNet
Dataset

[200] 2021 FaceSwap 1.0: 1.2 99630 real
and 121617
fake videos,
1,438,201
real and
1,457,861
fake images

240p -
1080p

YouTube Actor/
YouTube

Y/N

Face Foren-
sics in the
Wild

[192] 2021 FaceSwap 1.0: 1.0 10,000 real
videos,
100,000
fake videos

¿480p YouTube YouTube N

Table 3.10: List of deepfake dataset



73

pre-trained CNN models may not perform well with different deepfake scenarios and can

be vulnerable to malicious attacks. Addressing these drawbacks may bring the deepfake

detector’s performance to a higher level.

The creation of state-of-the-art deepfakes heavily relies on GAN technology. Researchers

have improved deepfake network training by integrating tertiary concepts such as style

transfer, motion transfer, biometric artifacts, and semantic segmentation to achieve

more hyperrealistic and natural results with high confidence [208–210]. However, cur-

rent deepfakes are still imperfect and leave room for improvement. GAN training is

time-consuming, resource-intensive, and susceptible to overfitting, and the output is not

flawless enough to evade detection.

3.3.1 Opportunities in Deepfake Generation

Few-shot Learning The availability of a large training dataset has been a significant

challenge in the deepfake area because most deepfake generation techniques require a

vast amount of genuine data to support the training in creating more convincing fake

content, resulting in increased computational resources. To address this issue, the re-

search community has focused on training with as little dataset as possible, specifically

training on few-shot learning. Few-shot learning is a domain field of meta-learning that

requires only a relatively small dataset and low data labeling costs for training, unlike

previous deepfake generation methods. One of the popular few-shot learning methods

is N-way K-shot classification, which utilizes transfer learning and knowledge sharing to

match the training likelihood distribution to the few-shot support set, showing the po-

tential of creating deepfakes. In [91, 211], the authors successfully implemented few-shot

learning to reduce the required computational training resources. The research trend

of reducing computational power and training datasets for deepfakes has consistently

driven the development of deepfake research.

Deepfake Quality Due to the instability of GAN training, most deepfake outputs

contain subtle traces or fingerprints, such as unusual texture artifacts or pixel incon-

sistencies, making them vulnerable to detection. Additionally, the current research has

mostly focused on non-occlusive frontal face training data for deepfake generation, which

may not maintain output quality when occlusions occur in the input data. To address
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this issue, Li et al. [121, 212] proposed a mask-guided detection approach. Future

studies could aim to ensure deepfake quality through artifact elimination, high output

resolution, and the ability to generate deepfakes that defend against attacks.

Real-time Deepfake The use of deepfakes to achieve real-time face transforma-

tion effects online has presented a new opportunity for the technology. One team of

researchers published open-source software [128] based on [213] to promote real-time

deepfake usage in video conferencing. This software utilizes image animation techniques

based on keypoint learning and affine transformation, then applies the training results

directly to the desired input image to achieve real-time reenactment. However, since it

is an image animation technique, the results may contain biometric artifacts and low fi-

delity for specific facial expressions and head movements. Despite its imperfections, this

technology offers insight into the development of future real-time deepfake applications,

which could have both positive and negative impacts on industries such as medicine,

education, and entertainment.

3.3.2 Opportunities in Deepfake Detection

Adversarial Attack The current focus on deepfake detection performance has re-

sulted in a neglect of the importance of robustness. A small perturbation to the input

can significantly impact the performance of a trained neural network detection model,

causing it to deviate from the expected results. This is where adversarial samples come

into play, as they can be used to help deepfake data evade detection. Two standard

threat models for adversarial attack are black-box and white-box models, which are

classified based on their knowledge and access to the target detector [214]. Wang et

al. [215] have proposed a stochastic-based defense mechanism that involves switching a

model’s block layers to parallel channels and randomly allocating active channels during

runtime. As deepfake detection has shifted towards neural network training, studying

adversarial attack defense mechanisms in this field could provide new opportunities for

exploration and development.

Model Generalization Despite extensive efforts devoted to distinguishing deepfakes,

detecting different types of deepfakes, data diversity, and data resolution remains a
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significant issue for detector generalization. While achieving outstanding results on

planned cases, detector performance drastically drops when facing these scenarios. For

instance, a detector designed to detect Face2Face might not perform well when detecting

entire face synthesis, a detector trained on a particular dataset might not handle other

unseen datasets, or a detector trained with specific data resolution becomes vulnerable

when tested with different input compression. Although few studies [160, 175] have

examined generalizable detectors, none of them have achieved a consistent detection

accuracy with an acceptable 5% deviation when considering all three factors in their

works. Detector generalization is undoubtedly an important and rising trend in deepfake

detection research.

Application & Platform-friendly To ensure protection against deception from

deepfake data, it is essential to convert the deepfake detector into a dependable feature

or API. Additionally, there is an opportunity to develop a user-friendly tool that can be

integrated with social media platforms or applications, enabling people to make accurate

judgments and protect themselves from false information.

3.3.3 Summary

The training of a deepfake detector model incurs a potentially high computational cost,

thereby presenting a challenging hurdle for replication [49]. Simultaneously, the research

community remains deeply concerned about the reliability and generalizability of deep-

fake detection models. The production of deepfakes employs diverse methods, resulting

in distinct intrinsic data representations that could potentially affect the generalization

capabilities of the detector. Additionally, the detector might excessively specialize in

specific feature representations, leading to diminished reliability when applied to previ-

ously unseen datasets lacking diversity [160, 175]. Adversarial attacks pose a significant

threat to neural network-based approaches, where even minor perturbations can mislead

the classifier, causing unforeseen behaviors [216]. Numerous studies [217–220] have ex-

plored various strategies, such as manipulating victim and threat models and employing

adversarial learning for detecting cues, in order to exploit adversarial attacks and evade

deepfake detection. These studies reveal that the performance of most neural network-

based deepfake detectors can be substantially influenced by incorporating a minimal
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number of adversarial samples. However, this particular aspect has scarcely been taken

into account during the design of neural network-based deepfake detectors. By delving

into these existing research gaps, this thesis aims to address the aforementioned issues

comprehensively.



Chapter 4

A shallower and spatially

cost-efficient network structure

(SparcoNet)

This chapter consists of part of the following publication:

Jia Wen Seow, Mei Kuan Lim, Raphaël C.W. Phan, & Joseph K. Liu (2023). SparcoNet

with Block-Switched Self-Supervised Learning: An Effective Framework for Deepfake

Detection with Improved Adversarial Defense. Submitted to Information Sciences Jour-

nal. [Submitted]

4.1 Motivation

The trend in designing deepfake detectors has shifted from traditional handcrafted

methodologies to deep learning approaches. This concern is due to the vulnerability

of traditional detectors against advanced deepfake data. Most current deep learning-

based deepfake detection models use deeper network structures to emphasize local fea-

ture learning. However, these deeper network models are often more complex, require

77
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greater computational power for training, and are harder to reproduce or implement

with limited computing resources [221].

In 2018, Mesonet [27] demonstrated the potential of an intermediate network struc-

ture by achieving a promising and competitive result at a lower computational cost.

This inspired us to develop SparcoNet, a shallower and spatially cost-efficient network

structure. We monitored the behavior and limitations of Mesonet during training and

utilized this information to design a more effective network architecture through fine-

tuning. Therefore, our proposed model can be considered a monitoring-based enhanced

model [222].

4.2 SparcoNet Development

The development of SparcoNet involves two primary network structures: the Inception

module and the Residual Connection.

The convolutional neural network (CNN) architecture proposed by Simonyan et al. [50]

demonstrated that using a small 3x3 filter size improves classification accuracy when

the network depth is around 16-19 weight layers. Camg”ozl”u et al. [223] suggested

that a smaller filter size could reduce data loss during dimension reduction and provide

better performance in accuracy and processing time. However, the basic idea behind

inception modules is that different convolution filter sizes can capture different features

at different scales. For instance, small filters are good at capturing local, fine-grained

details, while larger filters are better at capturing coarse, global features. The network

can capture a wider range of features across different scales by using filters of various

sizes in parallel, forming several parallel convolutional paths. The outputs of these paths

are then concatenated and passed on to the next layer. The model can achieve high

accuracy across various tasks by increasing the network width. This network structure

was proposed in the Inception network [4]. Figure 4.1 shows the structure of an inception

module.

On the other hand, the Residual Connection, implemented in ResNet, helps prevent

overfitting and improve performance on deeper networks [5]. In a typical neural net-

work, the output of one layer is passed as input to the next layer, and as the network

gets deeper, the gradients can become very small. This makes it difficult to update
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the weights of the earlier layers during backpropagation, resulting in a degradation of

performance compared to shallower networks.

Residual connections address this issue by allowing the network to learn residual map-

pings, which are the differences between the input and output of a given layer. These

mappings are added to the original input, creating a ”shortcut” connection that by-

passes subsequent layers. This shortcut enables the gradients to flow directly from the

output of a layer to the input of an earlier layer during backpropagation, reducing the

vanishing gradient problem and enabling the network to learn deeper and more complex

representations. In essence, the residual connection provides a way for the network to

learn the underlying structure of the input data more efficiently and effectively. Fig-

ure 4.2 shows the structure of the residual connection network. The Inception-ResNet

[6] implemented both structures; however, it is computationally expensive and requires

more training times as the network structure is more complex. Figure 4.3 shows the

structure of an inception module with the residual connection.

Inspired by Mesonet [27], which proposed an intermediate network structure, we created

SparcoNet, which enhanced a shallower deep neural network by exploiting the structure

advantages from both the inception module and residual connection.

In our network, we embraced the foundational concept of inception modules and took

a unique approach. Rather than integrating various filter sizes that could potentially

deepen the network size, we opted for a consistent filter size of 3 in each separable

convolutional layer within the inception modules. This strategic choice serves to not

only enhanced the consistency of spatial relationships but also significantly reduce the

computational burden. Moreover, we harnessed the power of dilated convolution within

the inception block, resulting in a parallel increase in the scale of feature learning. The

dilated convolution within the inception block helps to expand receptive field exponen-

tially without increasing the complexity of the network, and at the same time helps

overcome the issue of overfitting. As a result, we achieved outcomes comparable to

those attainable with a deeper network layer while maintaining a more budget-friendly

computational overhead.
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Figure 4.1: The structure of an Inception module [4]

Figure 4.2: The structure of a residual connection [5]

4.2.1 Model Architecture

Figure 4.4 shows the workflow architecture of SparcoNet. The entire pipeline begins by

taking a dataset of videos or images as input. The dataset undergoes data preprocessing,

which includes slicing the data into image frames if it is a video dataset. Next, the

MTCNN detector extracts the facial region of each data. Subsequently, all image data

are resized to 256 x 256 x 3 pixels before being fed into the feature extractor module.

After feature extraction, the resulting embeddings are passed to a sigmoid classifier for

the final deepfake classification.

The convolutional neural network (CNN) architecture proposed by Simonyan et al. [50]

demonstrated that using a small 3x3 filter size improves classification accuracy when

the network depth is around 16-19 weight layers. Camg”ozl”u et al. [223] suggested

that a smaller filter size could reduce data loss during dimension reduction and provide
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Figure 4.3: The structure of an Inception module with residual connection [6]

Figure 4.4: The architecture of the proposed SparcoNet.

better performance in accuracy and processing time. In this work, we aimed to improve

the stability of spatial resolution throughout the network by implementing a consistent

filter size of 3 for each convolutional layer in our proposed network.

SparcoNet consists of an initial stem, two middle blocks, a reduction block, and a projec-

tion head. We built the feature extractor using a combination of spatial separable con-

volution, dilated convolution, and pointwise convolution layers to capture fine-grained

spatial features while reducing the computational cost. The initial stem extracts and

prepares features from the input data before passing them to the middle blocks. The

middle inception blocks consist of a pair of separable convolution layers, dilated convo-

lution layer, and a pointwise convolution layer. Although we maintain the filter size as
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3, the two dilated convolutions in the inception-res middle blocks helps capture the long-

range spatial relationships in multiscale and avoid sub-optimal results. Instead of using

a pooling layer for downsampling in the middle blocks, we implemented a consistent

two-strided convolution layer-based reduction block, incorporated with the bottleneck

structure, to optimize the computational cost.

We empirically increased the number of neurons in both the middle and reduction blocks

to 16, 32, and 64 to increase the receptive field of our model. The selection of the number

of neurons was carefully considered based on the results of our ablation study, where

the model did not encounter issues of overfitting and was able to operate within our

hardware’s capacity. We used the inception modules structure for both blocks and

added residual connections to address potential vanishing gradient issues due to the

implementation of a larger number of neurons. We used the 1x1 pointwise convolution

as a conjunction block for concatenation in the residual-inception modules. Details of

the inner block structure are listed in Table 4.1.

Part Structure

Stem 1x3 Conv2D (64), 3x1 Conv2D (64)

Inception-Res Middle Block A
1x3 Conv2D (16), 3x1 Conv2D (16)
3x3 Conv2D 2 Dilation Rate (16)
1x1 Conv2D (32)

Reduction Block
1x3 Conv2D (32), 3x1 Conv2D S2(32)
1x3 Conv2D (32), 3x1 Conv2D S2(32)
1x1 Conv2D S2 (64)

Inception-Res Middle Block B
1x3 Conv2D (32), 3x1 Conv2D (32)
3x3 Conv2D 2 Dilation Rate (32)
1x1 Conv2D (64)

Projection Head

1x1 Conv2D S2(64)
Max-Pooling (2,2) V
Flatten, Dropout(0.5)
Dense(4) L2(0.01)
Batch Normalization, Dropout(0.5)
Dense(1), Sigmoid

Table 4.1: The Inner block details of the proposed SparcoNet, the (16,32,64) indicated
the neuron numbers.
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4.2.2 Network parameters

Floating point per second (FLOPS) is a metric used to measure the computational

performance and processing speed when the model computes arithmetic operations in-

volving floating points. This metric is often used for measuring model complexity or

computational performance. We compared the network parameters, depth, and FLOPS

of SparcoNet with Mesonet [27], Inception-Resnet-V2 [6], and Xception [23] in Table 4.2.

Our proposed model has only 0.7% and 1.7% of the parameters of Inception-Resnet-V2

and Xception, respectively, which are often used as the backbone for deeper detection

networks. Moreover, SparcoNet’s depth is only six layers weight deeper than Mesonet.

Our model performs better regarding accuracy and computational cost, where the ac-

curacy is stated between [0,1].

Model Parameters Depth FLOPS

MesoInception [27] 28,615 10 1.17e8

Inception-Resnet-V2 [6] 54,339,810 36 2.63e10

Xception [23] 22,855,952 71 1.67e10

SparcoNet 383,297 16 7.68e8

Table 4.2: Comparison of model parameters, network depth, and model complex-
ity(FLOPS) between Mesonet, Inception-Resnet-V2, Xception network, and the pro-

posed SparcoNet

4.2.3 Ablation study

We have conducted ablation studies to examine the effect of various structural imple-

mentation factors on a spatial-emphasized network’s performance. The factors under

consideration include the number of neurons, kernel size, multiscale 1x1 filter, batch

normalization (BN), and middle block number. Table 4.3 presents the results of several

key experiments in the ablation study, demonstrating that BN plays a crucial role in

enhancing the performance of a shallower network. In fact, its inclusion resulted in an

approximately 14% improvement in network performance. Of all the tested variants,

the full model without multiscale 1x1 filter, using consistent 3-only kernel size with BN,

and 128 neurons exhibited the best performance.
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Variant Accuracy AUC

Full model 0.986 0.998

Without 1x1 filter, 3 only kernel size,
128 neurons, Additional BN,
1 middle block

0.941 0.990

Without 1x1 filter, 3-7 kernel size,
128 neurons, Additional BN

0.933 0.980

Multiscale 1x1 filter, 3-7 kernel size,
128 neurons, Additional BN

0.912 0.976

Multiscale 1x1 filter, 3-7 kernel size, 128
neurons

0.778 0.872

Multiscale 1x1 filter, 3-7 kernel size, 32
neurons

0.721 0.780

Table 4.3: Performances comparison of ablated SparcoNet structure on FF+ dataset

4.2.4 Data Preprocessing

Most deepfake techniques target the human face region, but this area can be influenced

by physical and environmental factors, such as head angle and distance between the

target and the camera. To improve the model’s detection performance, the input data

undergoes pre-processing for normalization. In our case, face detection and extraction

are vital operations in pre-processing, as the detection model mainly focuses on learning

features between the deepfake and real face region. Therefore, we evaluated the three

popular facial detectors: i. Dlib frontal face detector [224], ii. Cascade classifier [225],

and iii. MTCNN[226]. We used these detectors to detect and extract the face region of

the input data and resize it to a standard 256x256x3 before passing it to the detection

model.

During our study, we observed a minor finding that the bias of different face detectors

has a significant impact on the detection model’s performance. Table 4.4 shows that

the validation loss of MTCNN is 40 times lower, and its validation accuracy is 1.0%

higher than the other two detectors. Although the accuracy difference is only 1.0%, the

40 times lower loss could have a more substantial impact on larger datasets, resulting

in a higher error rate and making the detection model more vulnerable. Additionally,

we discovered that using different face detectors for pre-processing training and testing

datasets leads to a drop in detection accuracy of up to 10%. The biases of the different

detectors are evident in Figure 4.5. The Dlib frontal face detector captures certain areas,

such as the mouth or hair, the Cascade classifier occasionally returns a skin-like portion,
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and the MTCNN detector can fail to extract the face and retain the original image. It is

noteworthy that we selected MTCNN as the primary face detector for our experiment.

Face Detector AUC Val. Accuracy Val. Loss

Dlib 0.996 0.986 0.0418
Cascade Classifier 0.999 0.988 0.0475

MTCNN 1.0 1.0 0.0059

Table 4.4: Detection performances of each face detector for Face2Face dataset

(a) (b) (c)

Figure 4.5: Sample inaccurate detection (where real images are detected as deepfake)
for the different face detectors to demonstrate bias caused by incorrect face region, (a)

Dlib (b) Cascade Classifier (c) MTCNN.

4.3 Experimental Setup

We trained SparcoNet using the TensorFlow framework and Python version 3.8 with

a GeForce RTX 2080 GPU. To maximize computer utilization, we implemented 100

epochs with a batch size of 128. The configuration of the hyperparameters is as follows:

Adam optimizer, a learning rate of 1e-03 with a decay rate of 0.5, and patience of 10

epochs, 1e-01 L2 kernel regularization, ReLU activation, and a Sigmoid classifier. We

performed early stopping with patience of 12 epochs to prevent overfitting.

4.3.1 Datasets

In this experiment, we will focus on examining the performance of the proposed Spar-

coNet on six primary datasets, including the four major datasets (Face2Face, Deep-

fake, FaceSwap, Neural Textures) of FaceForensics++ [23], Deepfake Detection Dataset

(DDD) [24], Celeb-DF [25], Deeper-Forensics-1.0 [28], the deepfake dataset created by

Mesonet’s authors (MesoDF) [27], and the complicated Deepfake Detection Challenger
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(DFDC) dataset [26]. To be precise, the total number of datasets will be nine datasets

if we assume the four datasets from FaceForensics++ as individual datasets. We im-

plemented the dataset following the ratio mentioned in FaceForensics++ [23], which is

a 7.2:1.4:1.4 split ratio for training, validation, and testing sets. We pre-processed the

datasets using the MTCNN face detector to extract facial region and sliced the video

into frames with a consistent 20 frames per video at a 0.5 frame rate.

4.3.2 Evaluation Metric

We evaluated the overall model classification using the AUC (Area under the ROC

Curve, where ROC stands for Receiver Operating Characteristic curve) and Accuracy

(Acc), both of which were measured at the frame level. We have also applied recall, F1-

score, and precision to support a more thorough analysis. Additionally, we introduced

Gi, a generalization gap index, to measure the deviation of model accuracy across differ-

ent datasets. The idea of this metric is to analyze the model’s generalization capability

across different datasets. Given Tx is the final classification score of training set, and

T′
x is the final classification score of each testing set, T′

x1, T
′
x2, T

′
x3...T

′
xn. Gi presents

the generalization gap between the training and testing datasets. Equation 4.1 and 4.2

show the formula of the computation.

T′
avg =

∑n
i=1T

′
xi

n
(4.1)

Gi = T′
avg − Tx (4.2)

4.3.3 Experiments & Results

Comparison to popular state-of-the-art benchmark datasets. We first examined

the model’s ability using popular state-of-the-art benchmark datasets, including Face-

forensics++ [23], CelebDF [25], MesoDF [27], DF1.0 [28], DDD [24], and DFDC [26].

The results, as shown in Table 4.5, demonstrate that SparcoNet achieves outstanding

performance, with an average accuracy of 98.1% and 0.985 AUC across these datasets.

The F1-Score, Recall, and Precision are all maintained above 90% for all datasets. No-

tably, our experiments reveal that the model’s performance remains quite stable across

various datasets, with less than 4% accuracy deviation, even with the complex DFDC
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dataset. This observation suggests that our model has the capacity to handle datasets

with different configurations and perturbation techniques effectively. Figure 4.6 presents

the AUC graph of Sparconet evaluated with each dataset.

Dataset F1 Recall Precision Acc AUC

FF++ [23] 0.981 0.982 0.982 0.986 0.996
Celebdf [25] 0.978 0.946 0.989 0.980 0.999
DF1.0 [28] 0.997 0.999 0.996 0.999 1.000
DDD [24] 0.962 0.961 0.980 0.965 0.991
DFDC [26] 0.955 0.939 0.974 0.960 0.921
Mesodf [27] 0.994 0.990 0.997 0.998 1.000

Table 4.5: SparcoNet performance evaluation on state-of-the-art datasets

Comparison to state-of-the-art models. We have also compared our performances

with state-of-the-art models [23, 27, 161, 164, 166, 174, 196, 227, 228] on raw, c23,

and c40 compression factor rate of the F2F dataset. As shown in Table 4.6, the best

performance of each compression factor rate is presented in bold. Although there are

models that surpass the accuracy of SparcoNet for certain compression rate, for example,

Zhang et al. [161] works better for raw data and Luo et al. [164] works better for

c23 data, but their performances is not consistent across all the compression factor.

Whereas, SparcoNet performs more consistently on different compression rate data.

Despite utilizing lower computational resources, our model achieved a higher average

accuracy than all stateof-the-art models. This finding is particularly significant, as our

model focuses more on spatial feature learning at a mesoscopic level using the separable

convolution layers with a consistent kernel size and high receptive field. It learns to

capture the general spatial discriminative features regardless of the data compression

rate. This result highlights the potential practical benefits of our model over other

state-of-the-art alternatives, particularly when computational resources are limited or

restricted. Figure 4.7 shows the example of raw, c23, and c40 compression factor rate

data. We can see the image has a greater distortion with the increment of compression

rate.

4.3.3.1 Cross-dataset Evaluation

We computed cross-dataset evaluation to measure model generalizability. The evaluation

can be categorized into two main groups: i. Intra-dataset evaluation, which involves the
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Figure 4.6: The AUC Graph for SparcoNet performance evaluation on state-of-the-
art datasets

Figure 4.7: Example of Raw, C23, and C40 data
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Model Accuracy (Acc) Avg

Raw C23 C40

Cozzolino et al. [227] 0.996 0.798 0.558 0.784

Meso-4 [27] 0.946 0.924 0.832 0.900

MesoInception-4 [27] 0.968 0.934 0.813 0.905

Capsule-Forensics [174] 0.994 0.965 0.810 0.923

Xception [23] 0.993 0.957 0.810 0.920

Luo et al. [164] - 0.992 0.957 0.975

Zhang et al. [161] 0.999 0.980 0.918 0.966

DeepfakeHop [228] - 0.960 0.930 0.945

SPSL [166] - 0.860 - 0.860

Chen et al. [196] - 0.960 - 0.960

Ours 0.992 0.986 0.982 0.987

Table 4.6: Comparison with state-of-the-art models on Raw, C23, and C40 compres-
sion factors of FF++ F2F dataset

training and testing the dataset generated from same source of data, and ii. Inter-

dataset evaluation, , which involves the training and testing the dataset generated from

different sources of data.

Intra-dataset Evaluation. We applied DF and F2F from the FF++ dataset to evalu-

ate intra-datasets evaluation with Luo et al. [164], Xception [23], Face X-ray [171], and

MesoInception-4 [27], where the first three models have been widely applied as baseline

models for cross-dataset evaluation. The DF and F2F are datasets generated using dif-

ferent manipulation techniques from the same source data. Table 4.7 shows that our

intra-datasets generalization performance outperforms that of MesoInception-4 [27] and

Xception [23], and Face X-ray [171] and our Gi is close to Luo et al. [164] although

our model size is only 1.7% of theirs as they implemented Xception network as their

backbone. Upon reviewing the table of results, we can observe that both our model and

Luo’s model demonstrate superior performance on the F2F dataset as compared to the

DF dataset. This observation is attributed to the fact that the discriminative features

from the DF dataset have less general impact than those from the F2F dataset. This is

because the F2F discriminative feature is more likely to detect unusual artifact features

on any facial landmarks, whereas the DF dataset emphasizes facial features thoroughly.

Given that SparcoNet places a greater emphasis on preserving spatial relationships be-

tween features, while Luo et al. focus on exploring residual features with an attention
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mechanism, it is reasonable to conclude that our model performed better in the cross-

evaluation of the F2F dataset, where spatial features play a crucial role in identifying

subtle traces between landmarks. On the other hand, Luo et al. achieved better results

in the cross-evaluation of the DF dataset, where residual features contribute more to

the thorough detection of facial artifact traces.

Model Training Testing (AUC) Gi (%)

DF F2F

Luo et al. [164] DF 0.992 0.764 25.97

MesoIn-4 [27] 0.917 0.657 33.04

Xception [23] 0.963 0.684 28.97

Face X-ray [171] 0.987 0.633 35.87

Ours 0.993 0.729 26.49

Luo et al. [164] F2F 0.837 0.994 17.14

MesoIn-4 [27] 0.640 0.934 37.36

Xception [23] 0.803 0.994 21.25

Face X-ray [171] 0.630 0.984 35.98

Ours 0.847 0.998 15.13

Table 4.7: Intra-datasets Evaluation with state-of-the-art baseline models on C23
compression factor between FF++ F2F & DF datasets

Inter-dataset Evaluation. Evaluating across datasets is significantly more complex

than within a single dataset due to the presence of different perturbations and environ-

mental factors. As shown in Table 4.8, larger models such as Luo et al. [164], Xception

[23], and Face X-ray [171] have achieved superior performance compared to shallower

models such as Mesonet [27] and our proposed model. This difference is particularly sig-

nificant when comparing results on complex datasets such as DDD and DFDC dataset.

This statement is because these datasets employ videos featuring actors who are not nec-

essarily facing the camera and standing at a distance, leading to lower-quality extracted

facial regions. Consequently, a shallower network may not have sufficient capacity to

handle such scenarios. It is important to note that although our overall results are not

as favorable as those of larger models, our results on the CelebDF and DF1.0 datasets

are comparable and even surpass those of the Xception [23] and Face X-ray [171] models.

Furthermore, we have achieved an overall 7.40% lower Gi than the benchmark Mesonet,

which is a noteworthy accomplishment.

Compression rate factors. Additionally, we conducted a cross-dataset evaluation of
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Models Testing Gi (%)

CelebDF DDD DF1.0 DFDC

Luo et al. [164] 0.794 0.919 0.738 0.673 21.10

MesoIn-4 [27] 0.477 0.586 0.553 0.414 40.70

Xception [23] 0.594 0.831 0.698 0.679 26.30

Face X-ray [171] 0.660 0.856 0.723 0.625 27.10

Ours 0.612 0.602 0.728 0.556 33.30

Table 4.8: Inter-dataset evaluation Comparison with state-of-the-art baseline models
trained with FF++ C23 dataset

the model’s performance, specifically investigating its ability to handle different com-

pression rate factors (CRF) using the F2F dataset. The dataset included the dataset

with varying levels of compression rate factor, ranging from raw to C23 and C40. Our

findings, as presented in Table 4.9, indicate that the generalization gap index is inversely

proportional to the degree of compression rate. Additionally, cross-evaluation perfor-

mance proves to be more stable with the C40 CRF. This suggests that the model is

more likely to perform consistently across data with different resolutions when trained

with the hardest compression rate. Interestingly, we observed that the model trained on

highly compressed data demonstrated a greater ability to learn more detailed and mean-

ingful features, ultimately enabling it to cope better with datasets featuring different

levels of compression.

CRF Test (AUC) Gi (%)
Raw C23 C40

Train Raw 0.998 0.920 0.683 13.1
C23 0.997 0.998 0.850 5.27
C40 0.951 0.952 0.956 0.31

Table 4.9: SparcoNet robustness evaluation against Raw, C23, and C40 compression
factor of F2F dataset

4.4 Visualization

Visualization is a powerful technique that enables us to gain insight into how a neural

network model makes its final prediction decisions. In order to better understand the

behavior of our SparcoNet model, we have generated both feature maps and gradient

maps for further analysis.
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4.4.1 Feature Map

Feature maps provide a powerful visualization tool that allows us to examine the ac-

tivation patterns of individual neurons within a neural network in response to specific

input stimuli. By analyzing these activation patterns across different network layers,

we can gain valuable insights into the types of features that the model is learning and

how it processes input data. In the context of deepfake detection, we have observed

that the facial alignment of the subject is typically invariant, while the generation of the

face organ shape in deepfakes is becoming increasingly realistic. As a result, we have

found that focusing on global feature learning is more effective than capturing low-level

features. We aim to train the model to place greater emphasis on global feature learning

so that it can more effectively capture features as a whole rather than relying solely on

certain local features.

Figures 4.8 and 4.9 provide detailed visualizations of the feature maps generated by the

four major blocks of Mesonet and SparcoNet, respectively. However, due to the larger

receptive field of SparcoNet, the feature map representations can sometimes be too small

to observe in detail. To address this issue, we have selected 16 filters from each major

block of SparcoNet and presented them in Figure 4.10. These filters were carefully

chosen to highlight key features and provide a more detailed view of the activation

patterns within the network.

By carefully examining these feature maps and selecting the most relevant filters, we

can gain valuable insights into the types of features that the network is learning at

different layers. Figure 4.8 shows that Mesonet tends to capture more local features at

the earlier layers, such as the face edges shown in Block 1. However, as the network

processes downsampling after each block, the resulting smaller spatial dimensions, higher

activation thresholds, and more complex features in the subsequent blocks can sometimes

make the feature maps too small to be effectively visualized.

On the other hand, Figure 4.10 provides a different picture of the feature maps gener-

ated by SparcoNet. Despite also being a shallower deep neural network like Mesonet,

SparcoNet places a greater emphasis on capturing global features in the first two blocks.

Even after dimension reduction, the feature maps are still able to effectively present a

visualization of some complex global features.
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Figure 4.8: The feature map of the four major blocks of Mesonet

Figure 4.9: The feature map of the four major blocks of SparcoNet

4.4.2 Grad-CAM

Gradient maps allow us to visualize how changes in the input data affect the model’s

output. Specifically, gradient maps show the magnitude and direction of the gradient of

the model’s output concerning the input data. By analyzing these maps, we can identify

which parts of the input data are most important for the model’s decision-making process

and how changes to these input features affect the final prediction. Figure 4.11 depicts

the gradient map for real, FFF2F, and FFDF data. The figure reveals that deepfake

images have a more centralized confidence level in specific regions, such as the eye

and mouth regions for FFF2F and the forehead, chin, and jaw regions for FFDF. By

evaluating the gradient maps, we can see that as SparcoNet leverages both local and

global features with focus on spatial relationship preservation instead of focusing on

specific local facial landmarks, the temperature intensity difference throughout the whole

image is more consistent in real images compared to fake images.
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Figure 4.10: The feature map with 16 filters of the four major blocks of SparcoNet

Figure 4.11: The gradient map comparison between real, FFF2F, and FFDF output
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4.5 Summary

We have developed a shallower and spatially cost-efficient network (SparcoNet) that ex-

ploited the concept of Mesonet’s mesoscopic feature learning and further enhanced its

robustness and feature learning by introducing a new network structure architecture.

Our findings indicate that the model can capture high-level features better while reduc-

ing computational costs by increasing the receptive field, emphasizing spatial feature

preservation, and optimizing the network through residual connections. The experi-

ment results show that our model outperforms most state-of-the-art models and achieves

promising intra-dataset evaluation performance comparable to deeper networks. Specif-

ically, SIRNet achieved an average AUC of 0.985 across six state-of-the-art datasets,

with a similar intra-dataset performance as the deeper deepfake detector model, with

less than a 1% difference in the generalization gap index (Gi) and at a lower computa-

tional cost. However, inter-dataset evaluation results show that SIRNet still has room

for improvement. It is harder to capture global feature learning across different datasets

due to distinctive spatial information resulting from varying perturbations in the testing

datasets compared to the training dataset. Hence, our second and third contributions

aim to improve the model’s reliability against various perturbations and adversarial

attacks.



Chapter 5

SparcoNet with Self-Supervised

Learning (SSL-SparcoNet)

This chapter consists of part of the following publication:

Jia Wen Seow, Mei Kuan Lim, Raphaël C.W. Phan, & Joseph K. Liu (2023). SparcoNet

with Block-Switched Self-Supervised Learning: An Effective Framework for Deepfake

Detection with Improved Adversarial Defense. Submitted to Information Sciences Jour-

nal. [Submitted]

5.1 Motivation

To enhance the reliability and generalization of the proposed model in dealing with un-

seen perturbations and white-box adversarial attacks, we have constructed SparcoNet

using a contrastive approach for self-supervised learning. Neural networks (NNs) have

been prone to issues where even small input perturbations can cause the trained model

to deviate from its expected behavior. Therefore, ensuring that the proposed NN-based

detection model can withstand malicious adversarial attacks is crucial. Two major types

of adversarial attacks are known by their access level to the target model: white-box

attacks and black-box attacks. White-box attacks have access to information about the

96
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target model, including weight, hyperparameter, and model architecture. In contrast,

black-box attacks have limited knowledge about the model and can only produce adver-

sarial samples through query access [214]. This chapter will focus on white-box attacks,

and we will discuss defense against black-box attacks in the following chapter. Figure 5.1

illustrates an example of an adversarial attack where the object detection model classified

a panda as a gibbon by simply adding some Gaussian noise to the source image [216]. To

enhance the generalization and reliability of the SparcoNet model against perturbations

and unseen datasets, we have modified and adapted SimCLR self-supervised learning,

which has shown outstanding performance in helping the object detection model deal

with unseen datasets [193].

Figure 5.1: Example of Adversarial Attack

5.2 SSL SparcoNet Development

SimCLR self-supervised learning is a powerful technique that allows the model to learn

generic feature representations of an unlabeled dataset in an unsupervised manner. This

is done by maximizing the agreement between distinct augmented views of the same

input image while minimizing the agreement between different input images [193].

The main idea behind contrastive learning is to learn a mapping function that maps

similar inputs closer to each other in the feature space, while pushing dissimilar inputs

further apart. In the context of SimCLR, this is achieved by training the model on

pairs of augmented images, where the model must determine whether the two images

are different views of the same image or two separate images.

Specifically, during training, the model takes two randomly augmented views of the

same image and passes them through a shared encoder network. The encoder network
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maps the two images to a high-dimensional feature space. Then, a contrastive loss is

applied to the embeddings of these images, where the goal is to maximize the similarity

between embeddings of similar images and minimize the similarity between embeddings

of dissimilar images.

This approach allows the model to learn generic feature representations of the unla-

beled dataset in a contrastive, unsupervised manner. These representations are then

fine-tuned with a labeled dataset in the downstream classification task. During un-

supervised learning, the model learns generic features by maximizing the agreement

between distinct augmented views of the same input image and minimizing the agree-

ment between different input images. This learning approach enables the features of

related data to ”attract” each other while features of unrelated data ”repel”. Figure 5.2

illustrates the concept of contrastive learning, where the model learns to map similar

inputs closer together in the feature space while pushing dissimilar inputs further apart.

Figure 5.2: The concept of Self-Supervised SparcoNet Model

Drawing inspiration from the success of the SimCLR self-supervised learning framework

in enhancing the generalization capability of object detection models under different

transformations, the present thesis proposes a novel approach, SSL-SparcoNet, which

adapts the training methodology of SimCLR SSL to our specific use case.

Figure 5.3 shows the architecture of the SparcoNet model with SimCLR self-supervised

learning, where the unsupervised pre-training step is followed by supervised downstream

fine-tuning using labeled data. In contrast to the conventional SimCLR SSL approach,

our proposed methodology employs a more balanced data-splitting ratio for unsupervised

and supervised downstream tasks. This is motivated by the distinctive nature of deepfake

data, which consists solely of the human facial region instead of object data that features
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diverse subjects. While the model can effectively learn and differentiate between various

subjects in object detection, the same may not hold true for deepfake subjects. Thus, the

model requires adequate data for downstream task learning. By integrating the features

learned from unsupervised learning on both the original and augmented data, SparcoNet

could enhance its generalization capability against datasets with different perturbations.

The training pipeline is improved by enhancing the preprocessing of the input data,

denoted as Input X in the figure, which generates a pair of data comprising the original

input and its augmented view. Subsequently, this pair of unlabeled data is fed to the

contrastive SparcoNet for unsupervised learning. The embedding Hi and Zi represent

the output representation from the backbone and projection head, respectively, and the

parameters are updated concurrently to acquire generic feature representations between

the pair data. A normalized temperature-scaled contrastive loss will be computed by

passing the embedding Zi from both pair data to the contrastive loss function. The

downstream task is then performed to fine-tune the model with labeled data for the

final deepfake classification.

Figure 5.3: The architecture of Self-Supervised SparcoNet Model.

5.2.1 Model Enhancement

For SSL training, we implemented a projection head formed by three dense layers with

128, 32, and 4 neurons, respectively, where an L2 kernel regularization of 1e-01 was ap-

plied to the last dense layer. A dropout of 0.5, batch normalization, and ReLU activation

were applied after each dense layer. The hyperparameter settings were chosen through
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a combination of empirical experimentation and careful consideration. The network was

then connected to a sigmoid classifier. The equation 5.1 outlines the formula used in

computing the normalized cross entropy loss between X -λ during the SSL training. Dif-

ferent from object detection, the model tends to overfit easier due to data nature. Hence,

the loss function is scaling down by multiplying a 0.5 factor to simplify the computation

of the gradient of the loss function and make the loss scale more consistent with other

metrics or objectives in the model. It also helps to balance the influence with other

regularization terms to reduce overfitting.

exp(sim(zi,1 · zi,2,j)/τ)∑2B
k=1 1(k ̸= j) exp(sim(zi,1 · zi,k)/τ)

· 0.5 + α (5.1)

where 1(k ̸= j) is the indicator function evaluating to 1 if k! = j, and j indexes over the

batch. We reduced the overall loss by half and added an extra margin, α, to improve

feature confidence.

5.2.2 Data Preprocessing

Given the superior cross-dataset evaluation performance of SparcoNet trained with the

Face Forensics++ Face2Face dataset observed in the previous section, we opted to em-

ploy this dataset in our SSL experiments.

Following SimCLR’s theory [193], we transformed the original dataset, which contained

both real and fake data, by applying different augmentations and forming a tuple of data.

In our experiment, one view of the tuple comprised the original data, while the other

view comprised the augmented data. We used several augmentations in the experiments,

including makeup, Gaussian blur, Sobel, color distortion, Gaussian noise, occlusion, and

rotation.

We employed the makeup methodology from [229, 230] by applying the makeup with a

medium intensity that covered eyeliner, eyeshadow, blush, and lipstick areas. For Gaus-

sian blur, Gaussian noise, Sobel, color distortion, occlusion, and rotation, we applied the

filter using the Python library. Gaussian blur is a type of image-blurring technique that

uses a Gaussian function to calculate the intensity values of each pixel in the blurred

image. This technique applies a weighted average of neighboring pixels to the central

pixel, with the weights determined by the Gaussian function. The output result is a
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smoothed image that reduces noise and sharp edges while preserving overall image fea-

tures. Gaussian noise is a random noise that follows a Gaussian distribution and is often

added to digital images to simulate various types of real-world noise, such as electronic

interference fingerprints or film grain. The noise intensity is determined by the mean

and standard deviation of the distribution, with higher standard deviations producing

more intense noise. The Sobel filter is a spatial filter that is used for edge detection in

image processing. It is a discrete differentiation operator that computes an approxima-

tion of the gradient of the image intensity at each pixel. It is typically implemented as

a 3x3 convolution kernel that convolves with the image to compute the horizontal and

vertical derivatives of the image. The resulting gradient magnitude and direction can be

used to detect edges in the image. For color distortion, we implemented the color jitter

technique. We have applied a variety of distortions, including hue, saturation, bright-

ness, and contrast adjustments. Each distortion is applied with a random magnitude

within a specified range to create a new, slightly altered image. Regarding occlusion, a

black square mask was generated to randomly cover a specific image area, such as the

eyes, cheeks, or mouth regions. As for rotation, a 90-degree rotation was applied to the

original image.

Examples of these augmentations are shown in Figure 5.4, while Figure 5.5 displays ex-

amples of the tuple data for occlusion transformation. We selected these augmentations

because they are often exploited as attacks or perturbations to evade deepfake detectors

by disrupting their intrinsic feature spaces [217, 231, 232]. It is worth mentioning that,

unlike the original implementation of SimCLR SSL for image classification, the object

of deepfake data is more invariant to human facial content. Hence, retaining the original

input of deepfake data for model training is crucial to avoid confusion during feature

learning.

5.3 Experimental Setup

We used the same 8:1:1 data split ratio among the training, validation, and testing

datasets. Still, unlike [193], which used an 8:2 splitting ratio for unsupervised and

supervised data training, we used a 5:5 equal ratio. This application was made because

the deepfake datasets have relatively similar feature spaces between classes compared

to those in the object detection dataset, making the model easier to converge and stop
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Figure 5.4: Examples of self-supervised augmented training data that applied to the
original fake and real data

Figure 5.5: Examples of the tuple data with random occlusion transformation

learning if the dataset is too small in downstream supervised learning. To investigate

the model’s robustness against adversarial attacks, we examine the attack success rate

(ASR) of the white-box adversarial attack for tuple data. The transformations were

applied to emphasize the consistency of generic global feature learning of the data under

different data perturbations or attacks.

There are many types of white-box adversarial attacks [233]. Among them, Fast Gra-

dient Sign Method (FGSM)[234], which is widely adopted as a fundamental baseline

due to its efficiency and practicality in generating adversarial samples [220]. Given the
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consideration of training time and computational constraints in this thesis, we have per-

formed adversarial attacks with the Fast Gradient Sign Method for our experiments.

FSGM is a white-box adversarial attack, which computes the signed gradient to create a

new image by backpropagating the pre-trained model. Using the signed gradient, FGSM

generates an output image that, according to the human eye, looks identical to the orig-

inal but tends to maximize loss and confuse most neural networks into making incorrect

prediction. The epsilon value in Table 5.3 controls the size of adversarial examples; the

higher the number, the stronger the attack on the target data. We also conducted both

intra and inter cross-dataset experiments to examine the SSL-SparcoNet’s reliability on

unseen datasets. The results are presented in Tables 5.1 and 5.2.

5.3.1 Evaluation Metric

We employed similar metrics used in the previous section and included an additional

Attack Success Rate (ASR) metric to evaluate the model behavior against the white box

adversarial attack. The equation used to generate FGSM attack samples is presented

below in Equation 5.2, where X is the original input image, Xadv is the adversarial

output, C is the loss function, and Ytrue is the true label.

Xadv = X + ϵ · sign(∇xC(X,Ytrue)) (5.2)

The Attack Success Rate is computed as shown in Equation 5.3, where ASR is the attack

success rate, Pba is the model’s performance before the attack, and Paa is the model’s

performance after the attack. The model performance metric used to compute ASR was

AUC.

ASR = (
Pba − Paa

Pba
) · 100% (5.3)

5.3.2 Experiment & Results

From Table 5.1, we can see that SSL contrastive learning with one augmentation signifi-

cantly helps to reduce the generalization gap among the other three datasets, especially

the augmentation with rotation. This result shows that the spatial relationship con-

tributes more to global feature learning across datasets. By understanding the data

from the different orientations, the model tends to capture more invariant deepfake
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features regardless of the data source. At the same time, augmentation with color dis-

tortion and makeup presented superior performances in DF1.0 dataset compared to the

original SparcoNet without SSL augmentation. Both augmentations emphasize pixel

color modification which shows that DF1.0 dataset is more sensitive to color texture;

hence the self-supervised learning with color-sensitive augmentations help in lowering

its generalization gap.

Based on the findings reported in the study by Tsipras et al. [235], it was suggested that

there exists a trade-off between the standard accuracy and adversarial robustness of a

model, which arises from the inherent differences in the feature representations learned

by standard and robust models. In light of the results presented in Table 5.2, it can

be observed that the SparcoNet SSL intra-datasets evaluation tends to degrade while

the inter-datasets evaluation improves. This phenomenon can be attributed to learning

feature representations from pair data, which fundamentally differ from those obtained

from a single original image. By evaluating with the best SSL transformation result, SSL

trained with R90, SparcoNet is able to improve the inter-datasets accuracy by 11.2%,

more significantly than its degradation of 5.9% on intra-datasets performance. Thus,

the performance achieved can be considered reasonable, as improving global feature

learning comes at the cost of a lower focus on local feature learning. It is noteworthy that

SparcoNet SSL-Rotation successfully preserves the generalization gaps with a difference

of no more than 6% when compared to the original SparcoNet without SSL. The focus

on spatial relationship learning provided the most promising performance in both intra

and inter datasets evaluation.

Augmentations Test (AUC) Gi (%)
CelebDF DF1.0 DDD DFDC

SparcoNet w/t SSL 0.670 0.477 0.537 0.556 40.90

SSL-SparcoNet GB 0.564 0.597 0.572 0.587 35.70

SSL-SparcoNet GN 0.558 0.591 0.478 0.644 34.50

SSL-SparcoNet R90 0.563 0.602 0.666 0.624 29.70

SSL-SparcoNet Sobel 0.525 0.651 0.477 0.697 36.20

SSL-SparcoNet CD 0.533 0.806 0.544 0.633 33.90

SSL-SparcoNet RO 0.553 0.583 0.568 0.644 35.20

SSL-SparcoNet Makeup 0.518 0.704 0.556 0.566 35.10

Table 5.1: Comparison of inter cross-datasets evaluation (Trained with Face Foren-
sics++ F2F) between the original SparcoNet with SSL-SparcoNet trained with 1 trans-

formation on different augmentaions



105

Augmentations Test (AUC) Gi (%)
Face Forensics ++

F2F DF FS NT

SparcoNet w/t SSL 0.969 0.839 0.670 0.794 20.8

SSL-SparcoNet GB 0.937 0.617 0.589 0.643 32.1

SSL-SparcoNet GN 0.913 0.582 0.626 0.667 31.2

SSL-SparcoNet R90 0.910 0.653 0.620 0.681 25.9

SSL-SparcoNet Sobel 0.950 0.620 0.509 0.672 36.8

SSL-SparcoNet CD 0.968 0.651 0.592 0.721 31.3

SSL-SparcoNet RO 0.939 0.622 0.547 0.616 34.4

SSL-SparcoNet Makeup 0.937 0.564 0.605 0.683 32

Table 5.2: Comparison of intra cross-datasets evaluation (Trained with Face Foren-
sics++ F2F) between the original SparcoNet with SSL-SparcoNet trained with 1 trans-

formation on different augmentaions

The results presented in Table 5.3 demonstrate the effect of increasing epsilon on the

FGSM Attack Success Rate (ASR). A higher epsilon value indicates a greater attack

generated on the target data. However, the table also highlights that not all SSL train-

ing strategies contribute equally to defending against adversarial attacks. Among the

various transformations tested, only those trained using Gaussian Blur (GB) and Gaus-

sian Noise (GN) yielded superior performances compared to SparcoNet without SSL. GB

and GN have perturbation characteristics that are more proximate to those of white-

box adversarial attacks. It is worth noting that the ASR is almost 100% for SparcoNet

without SSL, while only approximately 13% for SparcoNet-GB when epsilon equals 0.10.

Figure 5.6 shows that the ASR of SparcoNet without SSL grew significantly across the

epsilon increment compared to SparcoNet SSL with GB, GN, and R90.

FGSM Attack Success Rate, ASR (%)

Augmentations e=0.10 e=0.15 e=0.20 e=0.25 e=0.30 e=0.35

SparcoNet w/t SSL 98.89 100 100 100 100 100

Gaussian Blur (GB) 13.58 14.90 29.68 36.68 45.78 53.12

Gaussian Noise (GN) 13.00 20.48 27.71 36.47 44.58 51.37

Rotate 90 Degrees (R90) 15.16 26.04 36.48 45.93 54.51 62.09

Sobel 81.16 91.79 95.47 97.16 98.00 93.63

Color Distortion (CD) 83.47 95.66 98.24 99.07 99.59 99.79

Random Occlusion (RO) 62.50 71.57 91.16 94.87 96.70 97.55

Makeup 31.27 47.81 64.24 69.80 79.09 81.11

Table 5.3: Comparison of FGSM Attack Success Rate between the original SparcoNet
with SSL-SparcoNet trained on different augmentaions
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Figure 5.6: Attack Success Rate Against FGSM Epsilon

5.4 Summary

We have significantly improved the cross-dataset and white-box adversarial defense abil-

ity of SparcoNet by restructuring and training it in a self-supervised contrastive manner

with various augmentations. The performances of SparcoNet SSL trained with diverse

transformations demonstrate that the SSL training has effectively reduced the inter-

dataset evaluation gap by up to 10% in Gi, while showing a slight degradation in the

intra-dataset evaluation. The results also showed that SSL-SparcoNet could defend

against adversarial attacks, reducing the attack success rate by up to 62.53% compared

to the original SparcoNet without SSL. The following section will further enhance the

model’s ability to defend against black-box adversarial attacks.



Chapter 6

Block-Switching SSL SparcoNet

(BS-SSL SparcoNet)

This chapter consists of part of the following publication:

Jia Wen Seow, Mei Kuan Lim, Raphaël C.W. Phan, & Joseph K. Liu (2023). SparcoNet

with Block-Switched Self-Supervised Learning: An Effective Framework for Deepfake

Detection with Improved Adversarial Defense. Submitted to Information Sciences Jour-

nal. [Submitted]

6.1 Motivation

While white-box adversarial attacks require knowledge of the model’s architecture and

hyperparameters, black-box adversarial attacks only rely on information about the

model’s input. Attackers can generate adversarial samples by creating a surrogate model

or directly querying the input data. The former method is commonly referred to as at-

tack transferability, which involves training an input dataset until it confuses the model

under a white-box attack and then transferring the attack to the target model using

active learning techniques [214].
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The most crucial criterion in designing the defense mechanism is the model’s flexibil-

ity to acquire the defense ability while simultaneously upholding performance accu-

racy and computational costs. Considering these concerns, we have incorporated the

block-switching mechanism [215] into training the SSL-SparcoNet backbone model. The

stochastic manner of the block-switching mechanism allows the model to maintain its

computational cost. It offers flexibility for training and ease of implementation across

various neural network structures, all without inducing significant performance degra-

dation. Therefore, unlike other defense mechanisms that implement extra distillation

training [236], or modify network structure [237], which will increase the overall com-

putational cost, block-switching emerges as a more fitting approach within our context.

By integrating this mechanism, we reduce the possibility of attackers predicting the

model’s weight and hyperparameters, which enhances the model’s robustness against

black-box attacks. It does not require any additional data or labeling efforts, making it

a cost-effective solution for enhancing model security. The approach provides an effec-

tive defense strategy against adversarial attacks and strengthens the security of machine

learning models.

6.2 BS-SSL SparcoNet Development

Figure 6.1 depicts the workflow of the block-switching mechanism for SSL-SparcoNet.

Following a similar methodology as presented in [215], training a Block Switching model

is a two-stage process. In the initial stage, several backbone SparcoNets are trained

independently with random initialization in an unsupervised manner. While trained on

the same data, these models exhibit similar classification accuracy and robustness, but

their model parameters differ due to stochasticity in the training process and random

initialization. In the subsequent stage, the pre-trained unsupervised models form parallel

channels of block switching. During runtime, a random channel is selected to be active

to process the input while all other channels remain inactive, resulting in a stochastic

model that behaves differently at various times. The selected channel serves as the

backbone model and is linked to the common projection head for further supervised

downstream task learning.
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Figure 6.1: The workflow of Block Switching

6.2.1 Training Algorithm

By utilizing BS [215] for SSL-SparcoNet, we trained a λ channel of the encoder block to

form a parallel encoder block. Each encoder block implements the same training hyper-

parameter configuration but with different weight initialization. During the downstream

task run time, only one encoder block will be randomly activated and connected to the

projection head for further training. Therefore, the model can be less predictable by

the attacker. Algorithm 1 outlines the details of implementation for BsSSL-SparcoNet.

Given both labeled data Y and unlabeled data X , the algorithm initially employs a cho-

sen data transformation technique to produce a transformed version x̃i, 2 of each input
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data x̃i, 1. Subsequently, the SparcoNet encoder block fθ(·) and a learned projection

head hϕ(·) are used to compute the original and transformed data representations zi,1

and zi,2, respectively. The normalized cross-entropy loss is then computed to reduce

the distances between the representations of the original and transformed data. This

training process is repeated λ times to enhance the diversity of learned representations.

The obtained encoder blocks fθ(·) are then utilized to create a parallel encoder block

β, which is employed for supervised fine-tuning on labeled data Y. During this stage,

a randomly chosen encoder block from β is linked to the projection head for further

supervised learning using a binary cross-entropy loss function. This algorithm can learn

meaningful representations from raw data without requiring labels and can be subse-

quently fine-tuned for specific supervised learning tasks.

Algorithm 1 Block-Switched Self-Supervised SparcoNet

Require: Unlabeled data X , Labeled data Y, block channel λ
Ensure: Learned representations zi = hϕ(fθ(xi)), where fθ(·) is SparcoNet encoder

block, normalized cross entropy loss lzi,1,2, parallel encoder blocks β
1: for xi ∈ X do
2: Sample an transformed version as x̃i,2 of input data x̃i,1 using the selected data

transformation technique
3: Compute the original data representations zi,1 = hϕ(fθ(x̃i,1)) and the trans-

formed data representations zi,2 = hϕ(fθ(x̃i,2)) with SparcoNet encoder block fθ(·)
4: Compute the normalized cross entropy loss lzi,1,2 using equation 5.1
5: end for
6: Repeat the training for SparcoNet encoder block fθ(·) for a λ block channel times
7: Discard the classifier for all SparcoNet encoder block fθ(·) and form a parallel en-

coder block β
8: for yi ∈ Y do
9: Randomly activate an encoder fθ(·) from the parallel encoder block β and connect

to the projection head for further supervised learning using a binary cross-entropy
loss function

10: end for

6.2.2 Channel Selection

The plot depicted in Figure 6.3 showcases the attack success rate against FGSM at an

epsilon value of 0.35 across various block-switching channel numbers. The results high-

light a substantial decrease in the attack success rate from 1 to 3 channels, followed by a

deceleration in the dropping rate upon reaching channel 4. Beyond channel 5, the defense

mechanism exhibits a gradual saturation of its effectiveness. These findings suggest that

the model’s defense capability is significantly enhanced with a larger channel number.
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Additionally, the overall accuracy loss demonstrated a 43% decline from channel 1 to

channel 10. Such insights signify the relevance of considering block-switching channel

numbers as a vital factor in bolstering model defenses against adversarial attacks.

Figure 6.2: The attack success rate against number of channel when dealing with
FGSM at 0.35 epsilson

6.3 Experiments & Result

By evaluating the average performance compared to other transformations, as shown in

Table 5.3, GB was selected for BsSSL training. We evaluate the model defense ability

not only over the channel number but also the adversarial epsilon value. The adversarial

epsilon determines the magnitude of perturbation applied to the input image to create

an adversarial example. More specifically, the FGSM algorithm works by taking the

gradient of the loss function with respect to the input image and then perturbing the

image by adding or subtracting epsilon times the sign of the gradient. The resulting

perturbed image is the adversarial example, which is visually similar to the original

image but can cause the model to make incorrect predictions.

Upon analyzing the results in Table 6.1, we observed a steady increase in the attack suc-

cess rate with the increment of FGSM epsilon, which was consistent across all channel
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numbers. However, we also noted that the average deviation of the attack success rate

across different epsilon values was found to be smaller, at below 2%, when the channel

number was increased to 7. This suggests that a larger channel number enhances the

model’s ability to handle distorted data more effectively and stably.

Channels Overall Probability of FGSM ASR (%)

e = 0.1 e = 0.15 e = 0.2 e = 0.25 e = 0.3 e = 0.35

1 13.58 14.90 29.68 36.68 45.78 53.12

2 7.29 10.45 16.16 20.69 27.09 29.51

3 4.88 6.78 11.34 14.61 17.90 21.06

4 3.80 5.83 9.04 11.97 14.77 17.44

5 3.16 4.86 7.86 10.18 12.89 14.94

6 2.76 4.26 6.98 9.07 11.28 13.38

7 2.32 3.85 6.3 8.23 10.27 12.22

8 2.13 3.57 5.84 7.63 9.49 11.4

9 1.89 3.22 5.36 7.01 8.83 10.58

10 1.74 3.07 5.08 6.68 8.49 10.11

Table 6.1: Comparison of FGSM Attack Success Rate at different Block Switching
channels

To further visualize the impact of the channel number on the attack success rate, we

plotted the average ASR deviation over the channel number in Figure 6.3. As shown in

the figure, the ASR deviation gradually decreases as the channel number increases. This

implies that a larger channel number can provide better protection against adversarial

attacks, resulting in a more stable and reliable performance of the model. The equation

below shows the calculation of the average ASR deviation, where e is the epsilon value,

e + 1 is the next increased epsilon value, and n is the number of channels.

ASRdev = mean(

n∑
n=0

ASRe+1 −ASRe) (6.1)

6.4 Summary

Adversarial attacks are carefully crafted to utilize mathematical optimization techniques

to make subtle changes to the original input, aiming to confuse the behavior of the
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Figure 6.3: The average ASR deviation against number of channel

deepfake detection model. As these changes are often imperceptible to the human eye,

the attacked image may still appear identical to the original input.

Despite the significant impact that adversarial attacks can have on the security of deep-

fake detection models, they are often overlooked during the model design process. Our

current experiments, however, demonstrate that integrating the block-switching mecha-

nism into SSL-SparcoNet can effectively mitigate such attacks. Specifically, our results

show that our BS SSL-SparcoNet achieved a maximum 43% reduction in attack success

rate at 0.35 FGSM epsilon when attacked by a surrogate model. Furthermore, we dis-

covered that using a channel number of 7 or more can lead to a more stable and lower

attack success rate, particularly when dealing with greater levels of perturbation.

By demonstrating the effectiveness of our proposed model, we hope to encourage fur-

ther research into the development of more secure deepfake detection models that can

withstand adversarial attacks. As deepfake technology continues to evolve, it is essential

that we prioritize the development of robust and resilient detection models to maintain

the integrity of media content and protect against malicious exploitation.



Chapter 7

Conclusions

This thesis proposes a shallower, spatially cost-efficient network structure (SparcoNet)

for deepfake detection. It attempts to resolve the drawbacks of deep learning-based

deepfake detection models by emphasizing achieving high detection performance at a

lower training and computational cost required. It also enhances the model’s defense

ability against different perturbations and adversarial attacks. This chapter will conclude

this study by summarizing the research objectives, contributions, limitations, and future

directions.

7.1 Contributions

Three primary contributions of this thesis align with the research objectives:

1. To devise a deepfake detection model with a low computational cost yet

capable of achieving high detection accuracy

Inspired by Mesonet, it exploits the mesoscopic discriminative features but fo-

cuses more on local spatial feature learning and global spatial feature preserva-

tion. The thesis leverages the advantages of the network structure architecture by

implementing the separable convolution, the bottleneck structure of the ResNet,

and strided-convolution to create SparcoNet, a cost-efficient deep neural network

for deepfake detection. Experiments results show that the proposed SparcoNet

achieves an average of 0.985 AUC among six state-of-the-art deepfake datasets
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and obtains a similar result for intra-datasets evaluation as the complex detection

network with less than 1% differences in the generalization gap index.

2. To embed a tertiary algorithm with the proposed detection model to

enhance its robustness in dealing with unseen datasets

To further improve the network performance in inter-dataset evaluation and ad-

versarial attack defense ability, the thesis proposes training the SparcoNet in a

Self-Supervised Learning (SSL) manner with different data transformations. The

SSL-SparcoNet incorporates a normalized temperature-scaled cross-entropy loss

function to facilitate the learning of discriminative features in various data aug-

mentations. Experiment results have shown that the SSL-SparcoNet has reduced

the success rate of the Fast Gradient Sign Method (FGSM) adversarial attack by

up to 85% and improved the inter-cross data evaluation performance by an average

of 12%.

3. To integrate a defense mechanism in the proposed detection model to

defend against adversarial attacks

The thesis implements Block Switching (BS) as a framework protector to enhance

the defense ability of SSL-SparcoNet against black-box adversarial attacks. The

BS-SSL SparcoNet switches the runtime channel randomly to confuse the attacker

in predicting the network information. Compared to other protection techniques,

the proposed BS-SSL SparcoNet obtains higher flexibility in retaining network

configurations. Experiment results have shown that the proposed model reduced

the attack success rate of black-box adversarial attacks from a surrogate model by

more than 90%.

7.2 Limitations

Although this study has made significant contributions, there are still limitations to be

addressed. Firstly, the proposed network’s generalization ability needs further improve-

ment in handling diverse deepfake types. Additionally, it should be noted that the SSL

method might slightly decrease the overall performance by 5-10%, requiring more train-

ing to ensure the model’s ability to maintain both detection performance and defense

ability.



116

7.3 Future Directions

In terms of future directions, there is scope for enhancing the proposed SparcoNet to

tackle more complex deepfakes and improving its generalization by exploring other SSL

methods, such as adversarial training. This can aid in better capturing the subtle

differences between fake and real images through the encoding and decoding process.

Moreover, the development of tools for deepfake detxection is of utmost importance to

counteract the rising threats of deepfakes. These tools can serve to verify the authenticity

of media, protect against misinformation, and enhance the trustworthiness of digital

content. It is worth considering converting SparcoNet into a user-friendly tool that can

integrate with media platforms to provide value to the public.

There is also the potential applicability of SparcoNet can be extended beyond deepfake

detection to other computer vision tasks, including but not limited to facial detection

recognition and object detection, which would serve as a testament to its versatility and

effectiveness in real-world scenarios.
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