
Layer-2 Solutions for Bitcoin Scalability

by

Arash Mirzaei,

Thesis

Submitted by Arash Mirzaei

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Amin Sakzad

Associate Supervisor: A/Prof. Ron Steinfeld, Dr. Jiangshan Yu

Faculty of Information Technology
Monash University

July, 2023

© Copyright

by

Arash Mirzaei

2023

Layer-2 Solutions for Bitcoin Scalability

Arash Mirzaei,

Monash University, 2023

Supervisor: Dr. Amin Sakzad
Associate Supervisor: A/Prof. Ron Steinfeld, Dr. Jiangshan Yu

Abstract

Payment channels are an effective layer-2 approach to improve the scalability of

blockchain-based cryptocurrencies. A payment channel allows two parties to execute

transactions off-chain. But since each party’s share of coins in a channel changes over

time, one party might attempt to close the channel with an old state to maximise her

profit. In practice, when a channel party publishes a channel state on the blockchain,

a period called dispute period starts, in which their counter-party can provide some

evidence that proves the invalidity of the published state and hence prevents the

channel from getting finalised with an old state. Several payment channels have been

proposed for Bitcoin, each with its own limitations. Some issues with existing payment

channels include: (1) state duplication meaning each party has its own version of

transactions leading to complex transaction flows, (2) lack of a penalisation mechanism

against dishonest parties and hence incentive incompatibility, (3) incompatibility of the

payment channel with some important digital signature algorithms such as BLS which

limits the payment channel usage in blockchains with such underlying digital signature

algorithms, and (4) increase in the storage requirements of the channel parties over

time.

Since the dispute period length is limited, channel parties must be always online and

synced with the blockchain. Otherwise, they might fail to react to their counter-parties’

misbehaviour in time. However, it is impossible for ordinary users to stay always online.

Thus, parties might delegate this task to a third party, called the watchtower. Multiple

watchtower schemes have been proposed in the literature, each with its own limitations;

Some are unfair against channel parties or the watchtower (i.e. an honest channel party

or a responsive watchtower might lose some funds in the channel); Some do not provide

privacy preserving properties and some cannot be deployed on Bitcoin.

iii

Therefore, there are some limitations in existing payment channels and their watch-

tower schemes, particularly in those that have been designed for blockchains with lim-

ited scripting languages. Thus, we focus on analysing the mentioned limitations and de-

signing payment channels and watchtower schemes that outperform the existing ones.

Hence, our contributions are as follows:

• We formalise watchtowers and their properties including agility, privacy, fair-
ness and coverage. Furthermore, we prove some trade-offs between the above-

mentioned properties. We also focus on different properties of a payment chan-

nel and examine the limitations of existing payment channels in achieving the

required properties.

• We design a new watchtower scheme for Bitcoin, called FPPW, which is fair with

respect to both channel parties and the watchtower. Therefore, the honest party’s

funds in the channel are safe and the honest watchtower’s rewards are also guaran-

teed. Furthermore, FPPW provides privacy against the watchtower as the watch-

tower obtains no data on the way channel funds are redistributed among channel

parties. Focusing on storage costs, we also design a second watchtower scheme

for Bitcoin, called Garrison, where the storage costs of channel parties and their

watchtower increase logarithmically with the number of channel updates. Ad-

ditionally, Garrison avoids state duplication. Both FPPW and Garrison can be

implemented without any update in Bitcoin blockchain.

• Relying on the deployment of the ANYPREVOUT signature type in Bitcoin, we also

present a payment channel with an unlimited lifetime for Bitcoin, called Daric,

that achieves optimal storage. Daric is the first payment channel that provides

penalisation against the dishonest channel party and simultaneously avoids state

duplication without relying on any particular property for the underlying digital

signature. We also prove the security of Daric in the Universal Composability

model.

iv

Layer-2 Solutions for Bitcoin Scalability

Declaration

This thesis is an original work of my research and contains no material which has been
accepted for the award of any other degree or diploma at any university or equivalent
institution and that, to the best of my knowledge and belief, this thesis contains no
material previously published or written by another person, except where due reference
is made in the text of the thesis.

Arash Mirzaei
July 9, 2023

v

Publications
Published works (included in the thesis):

• Arash Mirzaei, Amin Sakzad, Jiangshan Yu, Ron Steinfeld. FPPW: A Fair and Pri-

vacy Preserving Watchtower For Bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 151-169. Springer, 2021.

• Arash Mirzaei, Amin Sakzad, Jiangshan Yu, Ron Steinfeld. Garrison: A Novel

Watchtower Scheme for Bitcoin. In Australasian Conference on Information Secu-
rity and Privacy, pages 489-508. Springer, 2022.

• Arash Mirzaei, Amin Sakzad, Jiangshan Yu, Ron Steinfeld. Daric: A Storage Effi-

cient Payment ChannelWith PenalizationMechanism. In International Conference
on Information Security, pages 229-249. Springer, 2022.

Other works during my PhD (not included in the thesis):

• Arash Mirzaei, Amin Sakzad, Ron Steinfeld, Jiangshan Yu. Algorand blockchain,

in Blockchains - A Handbook on Fundamentals, Platforms and Applications, Lecture
Notes in Computer Science (LNCS).

• Xianrui Qin, Shimin Pan, Arash Mirzaei, Oguzhan Ersoy, Amin Sakzad,

Muhammed Esgin, Joseph K. Liu, Jiangshan Yu, Tsz Hon Yuen. BlindHub:

Bitcoin-Compatible Privacy-Preserving Payment Channel Hubs Supporting

Variable Amounts, In IEEE Symposium on Security and Privacy, 2023.

vi

Acknowledgments

I would like to express my heartfelt gratitude to my main supervisor Amin Sakzad for
all his endless support, guidance and encouragement in various aspects both on a pro-
fessional and personal level. His support started even before the commencement of my
PhD and went beyond my expectations throughout my research. I also thank my co-
supervisors Ron Steinfeld and Jiangshan Yu for their help and support. Their expertise,
insights, and valuable feedback helped me to achieve my academic goals. I am also grate-
ful to my wife Lili for her unwavering support, patience, and love throughout this jour-
ney. Her understanding, encouragement, and sacrifice have been invaluable in enabling
me to balance my academic pursuits with my personal life. I could not have achieved
this without her support and I am forever thankful.

Moreover, I am thankful to my panel committee members Carsten Rudolph, Joseph Liu,
Rafael Baiao Dowsley and Shifeng Sun for their constructive feedback. I thank the Fac-
ulty of Information Technology and the Graduate Research Office at Monash University
for providing me the scholarship to cover the tuition fee and my cost of living during my
PhD study. I also owe great thanks to my fellow PhD students Ahmad, Sara and Rumpa
for their moral support.

Finally, I would like to take this opportunity to acknowledge the bravery and resilience
of Iranian men and women who have fought for their rights and freedom. During my
PhD study, I was moved by the story of Mahsa Amini, a young Iranian woman who was
killed while in police custody. Her tragic death, alongwith the deaths of others including
kids who were killed during the “Women Life Freedom” protests, the blinding of many
individuals, and the imprisonment of countless others, is a stark reminder of the courage
and determination of their unwavering commitment to the principles of human rights,
democracy, and gender equality. May their sacrifice and courage never be forgotten, and
may their struggle continue to inspire and guide us in the fight for justice, freedom, and
equality.

Arash Mirzaei

Monash University
July 2023

vii

Contents

Abstract . iii

Acknowledgments . vii

List of Figures . xii

List of Tables . xiii

1 Introduction . 1

1.1 Contributions . 4

1.2 Thesis Structure . 5

2 Background and Literature Review . 7

2.1 Background . 7

2.2 Payment Channel . 9

2.3 Watchtower . 11

2.4 Channel Synchronisation . 13

3 Preliminaries and Notations . 17

3.1 Preliminaries . 17

3.1.1 Digital Signature . 17

3.1.2 Hard relation . 18

3.1.3 Adaptor Signature . 18

3.2 Notations . 19

viii

4 Formal Treatment of Watchtower . 23

4.1 Introduction . 23

4.2 Formalisation of Payment Channel and Watchtower 23

4.3 Watchtower Service Properties . 27

4.3.1 Agility . 27

4.3.2 Privacy . 28

4.3.3 Fairness and Coverage . 31

4.4 Conclusion . 33

5 FPPW: a fair and privacy preserving Bitcoin watchtower 35

5.1 Introduction . 35

5.3 FPPW Overview . 37

5.3.1 System Model . 37

5.3.2 Overview . 37

5.3.2.1 NVG: A New Variant of the Generalized Channel 38

5.3.2.2 Adding aWatchtower Service with Fairness w.r.t. the Hir-

ing Party to NVG . 39

5.3.2.3 Allowing Watchtower to Terminate its Service 40

5.4 FPPW Protocol Description . 41

5.4.1 Create . 42

5.4.2 Update . 45

5.4.3 Close . 48

5.4.4 React . 49

5.4.5 Watchtower Terminate . 50

5.5 Security Analysis . 50

5.6 Fee Handling . 57

5.7 FPPW Protocol . 59

5.8 Temporarily unavailable watchtower . 65

5.9 FPPW Transactions Scripts . 70

5.10 FPPW with One Hiring Party . 73

5.11 Conclusion . 73

ix

6 Garrison: a storage efficient Bitcoin watchtower 75

6.1 Introduction . 75

6.2 Notations . 76

6.3 Garrison Overview . 77

6.3.1 System Model . 77

6.3.2 Garrison Overview . 77

6.3.2.1 Reducing the Storage Requirements of the Watchtower . . 77

6.3.2.2 Reducing the Storage Requirements of channel parties . . 80

6.4 Garrison Protocol Description . 81

6.4.1 Create . 81

6.4.2 Update . 84

6.4.3 Close . 84

6.4.4 Punish . 85

6.5 Security Analysis . 86

6.6 Garrison Transactions Scripts . 89

6.7 Garrison Protocol . 91

6.8 Conclusion . 95

7 Daric: a storage efficient channel with penalisation 97

7.1 Introduction . 97

7.2 Notations and Background . 99

7.2.1 Notations . 99

7.2.2 Background . 100

7.2.2.1 Floating Transactions . 100

7.2.2.2 eltoo [1] . 100

7.3 Daric Overview . 100

7.3.1 Revocation Per State . 101

7.3.2 Revocation Per Channel . 101

7.3.3 Avoiding State Duplication . 102

7.3.4 State Ordering . 102

x

7.3.5 Putting Pieces Together . 103

7.4 Daric Protocol Description . 103

7.4.1 Create . 103

7.4.2 Update . 106

7.4.3 Close . 108

7.4.4 Punish . 109

7.5 Security Analysis Overview . 109

7.5.1 Notation and Security Model . 109

7.5.2 Ideal Functionality Properties . 110

7.6 Daric Versus Eltoo . 111

7.6.1 HTLC Security . 111

7.6.2 Punishment Mechanism . 112

7.7 Performance Analysis . 114

7.8 Daric Transactions Scripts . 115

7.9 UC Framework . 117

7.10 Ideal Functionality . 119

7.10.1 Functionality Wrapper . 123

7.11 Daric Protocol . 124

7.11.1 Protocol Wrapper . 130

7.12 Security Analysis . 132

7.13 Discussions . 146

7.14 Conclusion and Future Work . 147

8 Conclusion and future work . 149
Conclusion . 149

Future Work . 150

References . 153

xi

List of Figures

2.1 Lifetime of a payment channel. 9

3.1 A sample transaction flow. 20

5.1 NVG Channel Transactions Flow . 39

5.2 Adding a Fair Watchtower to NVG . 40

5.3 FPPW Channel Transaction flow . 41

5.4 A summary of FPPW Channel Create. 46

5.5 FPPW Channel Update. 49

5.6 An FPPW Bitcoin Channel with only 𝐴 Being the Hiring Party. 74

6.1 A sample transaction flow. 77

6.2 Reducing the Storage Requirements of the Watchtower 78

6.3 Adding 𝑌 and 𝑅 Values to Commit Transactions 79

6.4 Reducing Storage Requirements of Channel Parties 81

6.5 Summary of Garrison channel creation phase. 82

6.6 Summary of Garrison channel update phase from state 𝑖 to 𝑖 + 1. 85

7.1 A sample transaction flow. 101

7.2 Transaction flows for a Lightning channel with punish-then-split mech-

anism. 102

7.3 Transaction flows for state 𝑖 of a Daric channel. 103

xii

List of Tables

3.1 Summary of notations . 21

4.1 Summary of the Condition 𝒞𝑆 for Different Watchtower Schemes. 26

4.2 Summary of the Condition 𝒞𝑈 for Different Watchtower Schemes. 26

4.3 Summary of the Condition 𝒞𝑇 for Different Watchtower Schemes. 27

4.4 Comparison of Different Watchtower Schemes. 34

5.1 Different Properties of the FPPW Scheme. 36

5.2 Different Phases of an FPPW Channel 42

6.1 Comparison of different dispute period-based payment channels with 𝑛
channel updates, 𝑚 HTLC outputs on average per state and 𝑘 channel

splits on top of each other. 76

6.2 Different Properties of the Garrison Scheme. 96

7.1 Comparison of different payment channels with 𝑛 channel updates and

𝑘 recursive channel splitting. 99

7.2 On-chain cost of different closure scenarios and the number of opera-

tions performed by each party for a channel update for different payment

channels with 𝑚 HTLC outputs (0 ≤ 𝑚 ≤ 966). 116

xiii

xiv

Chapter 1

Introduction

Payment Channel: Bitcoin [2], the pioneering cryptocurrency, has emerged as a signif-

icant innovation with far-reaching implications. Its decentralized nature, secure trans-

actions, and potential to reshape the financial landscape highlight its importance as a

transformative force in the digital era. Scalability is of paramount importance in the

context of Bitcoin as it directly affects its ability to function as a global, mainstream

currency. With the growing adoption and transactional demands, ensuring a scalable in-

frastructure becomes crucial for Bitcoin to maintain efficiency, low fees, and widespread

usability, ultimately shaping its potential for broader acceptance and impact.

However, Bitcoin scalibility is still a grand open challenge limiting the adoption of

blockchain technologies [3, 4, 5]. For instance, Bitcoin can only process about 10

transactions per second on average [6, 7], which is much lower than the figures for

centralised payment systems such as Visa [8]. This issue has led to several solutions:

(1) modifications in consensus protocols [9, 10], (2) sharding [11, 12], (3) side-chains

[13], and (4) layer-2 or off-chain protocols [14, 4, 15], where this thesis targets the last

solution.

Layer-2 protocols are so named because they operate on top of the base layer of the

Bitcoin blockchain. These solutions aim to alleviate scalability issues by conducting off-

chain transactions, reducing the burden on the main blockchain. By implementing layer-

2 solutions, Bitcoin can achieve faster and more cost-effective transactions, increased

capacity, and improved scalability while maintaining the security and decentralization

features of the underlying blockchain. Notably, layer-2 protocols do not require any

modifications in the blockchain and its consensus mechanism. Layer-2 protocols are

deployed using the scripting language of the underlying blockchain and rely on twomain

properties of the first layer blockchain [16]: integrity and eventual synchronicity with an
upper time-bound, where the former means only valid transactions can be published on

1

2 CHAPTER 1. INTRODUCTION

the blockchain and the latter implies every submitted valid transaction is finally added

to the blockchain before a limited timeout.

There are various types of off-chain solutions: (1) Payment channel [15, 4, 14] allow

participants to create a secure off-chain channel for conducting multiple transactions

without each transaction being recorded on the main blockchain (2) State channels [17]

expand upon the idea of payment channels to encompass the execution of arbitrary ap-

plications, extending their functionality beyond simple payment transactions, and (3)

Commit-chains [18, 19] allow transactions to be facilitated through the involvement of

a centralized yet untrusted intermediary, enabling communication between participat-

ing parties. Given their simplicity, widespread adoption and significance in addressing

scalability challenges, payment channels take center stage in this thesis.

A payment channel between two parties Alice (or 𝐴) and Bob (or 𝐵) allows them to

perform a number of transactions without publishing every single transaction on the

blockchain. To create a channel, 𝐴 and 𝐵 respectively deposit 𝑎 and 𝑏 coins into a joint

address that is controlled by both parties. Parties can privately update their balance in

the channel by exchanging off-chain transactions and agreeing on a new distribution

of channel funds. Each party can close the channel at any time by enforcing the latest

channel state on the blockchain. Payment channels can also be linked to form a Pay-

ment Channel Network (PCN), where payments between users with no direct payment

channel can be routed via intermediaries.

Since the channel parties are generally untrustworthy and blockchain miners are un-

aware of the off-chain transactions, a mechanismmust be adopted to prevent potentially

cheating parties from publishing an old state. To achieve that, Lightning Network [15],

as the most popular payment channel network, adopts a punishment mechanism to pre-

vent parties from acting dishonestly. So upon authorising a new state, channel parties

exchange some revocation secrets to revoke the previous state. Then, if a party pub-

lishes a revoked state, her counterparty who is supposed to be always online uses the

corresponding revocation secrets and reacts within a limited time period, called dispute
period, to take all the channel funds.

Although elegantly designed, the Lightning Network has some shortcomings. Firstly,

since channel parties must store all the revocation secrets, received from their counter-

parties, their storage amount increases with the number of channel updates. Moreover,

to detect and punish the misbehaving party, the channel state is duplicated meaning

each party has its own copy of the state. To solve the former issue, eltoo [1] removes

the punishment mechanism causing incentive incompatibility. To solve the second issue,

Generalized channel [14] uses a dedicated design of adaptor signatures which introduces

compatibility issues with BLS [20] or most post-quantum digital signatures.

3

Watchtower The dispute process works based on the assumption that the parties are

always online and synced with the blockchain to detect malicious behaviour. This re-

quirement has always been a drawback for payment channels because it can be prac-

tically violated due to crash failures or by performing DoS attacks on channel parties.

Watchtower was introduced to relax this strong assumption by allowing users to dele-

gate the watching tasks to watchtower services [15]. Watchtowers are always-online

services that monitor the blockchain and act on behalf of their clients to secure their

funds.

Monitor [21] is the first watchtower scheme for the Lightning Network which mainly

focuses on channel privacy against watchtower. However, Monitor has two main issues,

both of which are related to fairness. Firstly, honest watchtowers might be rewarded

for fraud (i.e. broadcast of an old state on-chain), which is unfair with respect to (w.r.t.)

the watchtower. Secondly, honest parties cannot penalise the unresponsive watchtower,

which is unfair towards an honest hiring party. Moreover, the storage costs of the watch-

tower in Monitor increase linearly with each channel update. Outpost [22] solves the

issue of fairness towards the watchtower by paying her per channel update. It also im-

proves the storage requirements of the watchtower.

Cerberus [23] and PISA [24] elegantly provide fairness w.r.t. the hiring party by en-

forcing the watchtower to lock some collateral that is given to their clients given that

the watchtower is unresponsive upon dispute. However, PISA fails to be deployed on

Bitcoin and Cerberus sacrifices privacy. In particular, the Cerberus watchtower learns

the distribution of funds in the channel. Moreover, since watchtowers in PISA and Cer-

berus have to lock some collateral per channel, their coverage or equivalently their ca-

pability in watching all the existing payment channels on a fixed Blockchain is limited.

Therefore, each watchtower scheme focuses on some particular properties among pri-

vacy, storage requirements of the watchtower or fairness. However, none of the existing

Bitcoin-compatible watchtower schemes can achieve all the desired features.

Therefore, the main objective of this thesis is the analysis of different limitations of

existing payment channels and their watchtowers and then moving towards improving

different aspects of the existing schemes. Accordingly, this thesis answers the following

research questions (RQ):

RQ 1 How to formally define different properties of a watchtower scheme? Why do

existing watchtower schemes fail to meet all the required properties?

RQ 2 How to design a watchtower scheme for existing payment channels that mitigates

the limitations of existing schemes?

4 CHAPTER 1. INTRODUCTION

RQ 3 What are other limitations of the existing payment channels? How to design a

payment channel solution that mitigates the limitations of existing payment chan-

nel proposals? How to analyse the security of the proposed payment channel?

1.1 Contributions

In this thesis, we analyse the existing payment channel and watchtower schemes. Then,

focusing on the shortcomings of the current schemes, we move towards design of new

payment channel and watchtower schemes with better properties. In more detail, the

contributions of this thesis are as follows:

• Formal Definition of a Watchtower and its Required Properties: For RQ

1, we formalise the definition of a watchtower and its different properties (See

Chapter 4). Those properties are as follows:

– Agility: flexibility of a watchtower to start and terminate its service,

– Privacy: the amount of knowledge the watchtower (or respectively any third

party) obtains about the payment channel (or respectively about the hiring

status of the watchtower).

– Fairness: the level of guarantee that the watchtower (or respectively the hir-

ing party) provides to the hiring party (or respectively to the watchtower)

on its service (or respectively on its payment), and

– Coverage: the capability of a watchtower (on a scale between 0 to 1) in watch-

ing all the existing payment channels on a fixed Blockchain.

We also evaluate the existing schemes regarding these properties and show that

existing proposals fail to provide acceptable results in all aspects. Furthermore,

we prove that there is a trade-off between the level of fairness that a watchtower

provides to its clients and the coverage it can achieve.

• Design and Analysis of Two NewWatchtower Schemes: For RQ 2, we design

two watchtower schemes: FPPW (See Chapter 5) and Garrison (See Chapter 6).

FPPW focuses on the properties we introduced earlier and provides fairness w.r.t.

all channel participants including both channel parties and the watchtower. It

means that the funds of any honest channel participant are safe even assuming

that the other two channel participants are corrupted and/or collude with each

other. Furthermore, the watchtower in FPPW learns no information about the off-

chain transactions and hence the channel privacy is preserved. Furthermore, we

1.2 THESIS STRUCTURE 5

show that FPPW’s coverage is higher than other existing schemes. FPPW can be

implemented without any update in the Bitcoin script.

While FPPW offers desirable properties, it is essential to consider that the storage

costs for channel parties and watchtowers increase linearly with each channel

update. Thus, we design Garrison to achieve lower storage costs. Notably, the

storage cost for both channel parties and their watchtower in Garrison would be

𝒪(log𝑁) with 𝑁 being the number of channel updates. Furthermore, using prop-

erties of the adaptor signature, Garrison avoids state duplication. It means both

parties store the same version of transactions for each state and hence the number

of off-chain transactions does not exponentially increase with the number of ap-

plications built on top of each other in the channel. Moreover, independent of the

complexity of the published revoked state, the honest party or his watchtower in

a Garrison channel publishes a single transaction to react upon dispute. Garrison

can also be implemented without any update in the Bitcoin script.

• Deisgn and Analysis of a New Payment Channel Scheme: For RQ 3, we dis-

cuss the required properties of a payment channel and analyse the limitations of

existing payment channels in achieving the required properties, i.e. unlimited life-

time, fixed storage costs, punishment mechanism, compatibility with any digital

signature algorithms, state duplication avoidance and bounded closure where the

latter enables channel parties to close the channel within a bounded time. Then,

we introduce Daric (See Chapter 7), a payment channel with an unlimited lifetime

for Bitcoin that achieves optimal storage (constant storage for both channel par-

ties and their watchtower) and bounded closure. Moreover, Daric implements a

punishment mechanism and simultaneously avoids the methods other schemes

commonly used to enable punishment: (1) state duplication which leads to an ex-

ponential increase in the number of transactions with the number of applications

on top of each other or (2) dedicated design of adaptor signatures which introduces

compatibility issues with BLS or most post-quantum digital signatures. We also

formalise Daric and prove its security in the Universal Composability model.

1.2 Thesis Structure

In Chapter 2, we review the existing payment channel and watchtower schemes. Chap-

ter 3 presents the background, preliminaries and notations. Chapter 4 formalises the

watchtower and its different properties. Two proposed watchtower schemes, i.e. FPPW

and Garrison, will be presented in Chapter 5 and Chapter 6, respectively. Chapter 7

presents our proposed payment channel scheme, i.e. Daric. We conclude this thesis and

discuss the potential future works in Chapter 8.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Literature Review

2.1 Background

Bitcoin [2], as the first cryptocurrency, is a collection of concepts and technologies that

can be used to make payments without relying on any central authorities like banks or

financial institutes. Bitcoin users who are connected over the Internet can transfer units

of currency, called bitcoin, in exchange for some goods or services. However, unlike

traditional payment systems, bitcoins are fully virtual. It means that there are not any

physical coins to be transferred between the sender and the recipient. So units of value in

the Bitcoin system are transferred among users by exchanging some digital transactions

that transfer bitcoin values from the sender to the recipient. To prevent users from

spending each other’s coins, each coin in this system corresponds with a key pair of

a public key cryptosystem whose private key is only possessed by the coin owner. So,

to create a transaction and send some coins to a new owner, the current owner needs

to prove the ownership of his coins by signing the transaction using his corresponding

private key. This transaction transfers the coins to a new owner with his own key pair

whose public key is recorded in the transaction.

Bitcoin is a fully distributed, peer-to-peer system. Thus, there is not any central author-

ity to validate and store the users’ transactions. Therefore, the important question is

what can prevent a user from double spending, i.e. sending the same coins more than

once. For fiat currencies, notes or coins carry some special features that can only be

made by a central authority. So counterfeited money would be detectable. Also, when

we use our mobile banking app to transfer money over a digital medium, one or multiple

central authorities like banks record the corresponding transactions. So they prevent

double spending. However, due to its decentralised nature, Bitcoin cannot use these

mechanisms to avert double spending. As will be explained in the following, blockchain

technology is the solution to this issue [2].

7

8 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The Bitcoin blockchain [2] is an immutable public distributed ledger that records Bitcoin

transactions. Let’s explain these terms further. Each block is a limited-size list of Bitcoin

transactions that are added to the blockchain data structure one at a time. The term

public distributed ledger refers to the fact that rather than storing in a central database,

blockchain data is distributed to a large number of independent nodes (also known as

miners) and everyone is also capable to join the node community. Transactions in the

blockchain are immutable meaning that once a transaction is added to the blockchain, it

is computationally impossible to change its value or remove it from the ledger unless the

block containing the transaction and all subsequent blocks are altered. This property is

achieved as each block, along with its list of transactions, contains a cryptographic hash

of the previous block. In this way, each block in the blockchain is chained to all previous

blocks up to the first block in the blockchain.

Now that the ledger in the Bitcoin blockchain is distributed to many nodes, these nodes

need a way to reach an agreement on the data that is going to be added to the ledger.

In more detail, Bitcoin users constantly send their transactions to a publicly available

peer-to-peer network. Then, miners validate these transactions and list them to form a

block. However, due to the fact that these nodes are geographically distributed, they re-

ceive these transactions with different orders. Sometimes, due to network issues, some

transactions might not be received by some blockchain nodes. Thus, their view of the

submitted transactions and the latest created block would be different from each other.

Therefore, another important building block in blockchain technology is how blockchain

nodes reach a consensus. The consensus mechanism that is used in Bitcoin is called

Proof-of-Work (PoW) [2, 25]. In this method, after creating the block, each node solves

a computation-heavy cryptographic puzzle. The first node that succeeds in solving this

puzzle would win and add the corresponding block to the blockchain. In order to incen-

tivise the nodes to perform such heavy computations, the winner is also rewarded with

some newly generated Bitcoins as well as some transaction fees.

The Bitcoin blockchain cryptographic puzzle is set such that each block is added to the

blockchain every 10 minutes. Due to the fact that the size of each block is also limited to

1 MB, Bitcoin is significantly slower than centralised payment systems such as Visa [15].

A payment channel [15, 26, 4] is a promising solution to this issue where two channel

parties open a channel on the blockchain by publishing a transaction on the blockchain

through which they send their coins to a joint account that needs signatures by both

parties to be spent. Then, they exchange off-chain transactions outside of the Bitcoin

blockchain where those transactions send the coins in the joint account to each party.

Each party can submit the latest channel transaction to the Bitcoin network to close

the channel. Channel parties can also use their channels to create a network of pay-

ment channels, called Payment Channel Network (PCN), to perform indirect payments

2.2 PAYMENT CHANNEL 9

through intermediaries [15, 14]. In practice, some routing algorithms are required to find

the appropriate intermediaries for this purpose. In more detail, the indirect payment

would be feasible if all channels along the route have enough balances in the desired

direction. Otherwise, the payment fails. Thus, the routing algorithms intend to find the

best existing paths from the payer to the payee for a given payment.

2.2 Payment Channel

A payment channel is a state machine run by two participants and its lifetime consists of

three main phases including create, update and close (See Fig. 2.1). In the channel create

phase, parties lock their funds in a joint account whose value can only be spent upon

both parties’ agreement. In the channel update phase, parties agree on a new channel

state. Finally, in the channel close phase, parties close the channel by recording the latest

channel state on-chain. Different payment channel proposals use different techniques

to replace the channel state. In the following, we will explain these techniques [16].

Figure 2.1: Lifetime of a payment channel.

• Replace by Incentive (RbI). This mechanism was proposed by Hearn and Spilman

[26] and led to the first payment channel. This channel is funded by one of the

channel parties who is the payer in the channel. Then, for each channel update, a

partially signed transaction is given from the payer to the payee. The channel can

be closed before a predetermined deadline by the payee who is incentivised to do

that using the latest channel state because it gives the payee the highest deserved

value. This type of channel has two limitations: (1) The lifetime of the channel

must be determined at the time the channel is created and cannot be extended,

and (2) The channel is unidirectional meaning that payment can only be done in

one direction.

10 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• Replace by Time-Lock (RbT). This mechanism allows both channel parties to pay

each other [4]. Each agreed-on state in such a channel has an absolute time-lock

whose value decreases with each channel update. Thus, the latest state can be pub-

lished on the blockchain earlier than all other states. But due to its decrementing

time-lock, the number of channel updates is limited.

• Replace by Revocation (RbR). If upon authorising a new state, the previous state is

revoked, the payment channel is categorised as an RbR type. To revoke the previ-

ous state, parties exchange some revocation secrets that can be used for fraud. In

other words, if a party tries to close the channel with a revoked state, her counter-

party uses the corresponding revocation secret and publishes a transaction, called

revocation transaction and penalises the dishonest party by taking all her funds in

the channel. This idea was first proposed by Poon and Dryja in [15] for Bitcoin

and has been actively used in Lightning Network with a current network capacity

of around 5,000 BTC (as of November 2022).
Although elegantly designed, the Lightning channel has some shortcomings.

Firstly, since all the revocation secrets must be stored by channel parties, their

storage requirements increase with each channel update. Secondly, each party

has its own version of the channel state. This state duplication is required to

distinguish a dishonest party from her counterparty. To add an application (e.g.

Virtual channel [27]) on top of the channel, parties have to split their channel into

sub-channels. The state of each sub-channel is duplicated and it must propagate

on both duplicates of the parent channel. This causes the number of transactions

to exponentially rise with the number of applications built on top of each other

[14].

Recently, Aumayr et al. [14] proposed a new design called Generalized channel
which uses adaptor signatures to distinguish the publisher of a revoked state from

her counterparty, i.e. once the revoked state is published, a publishing secret is

revealed that can be used to penalise the dishonest party. In this way, state du-

plication is avoided. Towards a different direction, Aumayr et al. [28] proposed

a channel, called “sleepy channel”, that allows channel parties to go offline for

prolonged periods.

• Replace by Version (RbV). Another method for replacing an old state is the usage

of a monotonic counter that represents the version of each state. Channel parties

store the channel state with the highest version and use it upon fraud. This idea

has been used in several proposals on Turing complete blockchains (e.g. Ethereum)

[29, 30, 17]. To extend this idea to Bitcoin, Decker et al. [1] introduced ANYPREVOUT

as a new signature type for Bitcoin whose deployment requires a soft fork in the

Bitcoin protocol [31]. This new signature type allows Bitcoin to support floating

2.3 WATCHTOWER 11

transactions, i.e. transactions that can spend any Unspent Transaction Output

(UTXO) with matching scripts. The proposal eltoo [1] uses this idea to deploy

the concept of version.

Channels of type RbI and RbT are closed once the latest state is broadcast on-chain. How-

ever, for RbR and RbV channels, once a channel state is published by a channel party,

a period, called the dispute period, starts. If the published state is invalid, the honest

party proves its invalidity within the dispute period. For RbR channels, the invalidity

of the published state is proved by publishing another transaction called the revocation
transaction which can only be done by the honest party who knows the value of the cor-

responding revocation secret. For RbV channels, invalidity proof is done by broadcasting

a state with a higher version.

Since the length of the dispute period is limited, RbR and RbV channels are based on

the assumption that channel parties are always online. However, since this strong re-

quirement cannot be met by most ordinary users, this task is delegated to a third-party

service provider called the watchtower.

2.3 Watchtower

Monitor [21] is a watchtower scheme for Lightning Network. In this scheme, the hiring

party provides the watchtower with IDs of revoked transactions as well as their corre-

sponding revocation transactions. Then, the watchtower is supposed to look for a trans-

action with the matching ID on the blockchain. When a match is found, the watchtower

can immediately publish its corresponding revocation transaction. To improve the effi-

ciency, just some parameters such as addresses, signatures, and other metadata which

are required for constructing the revocation transaction can be given to the watchtower

[21]. Then, a full revocation transaction can be built by the watchtower if it is necessary.

To improve privacy, the hiring channel party encrypts the revocation transaction (or

its corresponding parameters) using the second half of the revoked transaction ID and

provides the watchtower with the first half of the ID along with the encrypted version

of the revocation transaction. Then, the watchtower monitors the blockchain looking

for every transaction whose ID matches the IDs received from the hiring party. If the

watchtower finds a match, it decrypts its corresponding encrypted transaction using the

second half of the found transaction ID and if the result is a valid transaction, transmits

it on the blockchain. To reward the watchtower, the hiring party pays the watchtower

through the revocation transactions, meaning that the watchtower is paid given that a

revoked transaction is broadcast and its corresponding revocation transaction is pub-

lished by the watchtower. To reduce the storage costs and hence operational costs of

12 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

the watchtower, Khabbazian et al. [22] proposed Outpost which proposes storing each

revocation transaction as part of its corresponding channel state. Therefore, the watch-

tower just needs to watch for specific revoked transaction IDs on the blockchain. Then,

the watchtower extracts the signed revocation transaction directly from the published

revoked channel state that has appeared on the blockchain.

One issue with Monitor and Outpost is that the watchtower’s client cannot completely

trust that the watchtower remains online or does not collude with their counterparties.

To address this concern specifically for Turing complete blockchains, DCWC and for Bit-

coins, DCWC* [32] propose the implementation of a network of watchtowers that are

financially motivated to faithfully cooperate with each other. This incentivised coopera-

tion increases the probability that at least one honest watchtower prevents the channel

from getting finalised with an old state. However, even for these schemes, channel par-

ties cannot still be completely certain that they do not lose any money in their channels.

The reason is that watchtowers are unaccountable or unfair to their clients. In other

words, watchtowers are not penalised if they crash or deliberately do not act upon mali-

cious behaviour. To encourage watchtowers to well-behave, [33] proposes a reputation

system that works based on a cryptographic hash-based proof-of-work algorithm [34],

called hashcash. This algorithmwas originally designed to mitigate the email spamming

issue.

Fail-safe [35] is a watchtower scheme for Turing complete blockchains and tries to re-

solve the issue of watchtower failure. A Fail-safe watchtower verifies all the off-chain

channel updates and stores the latest state. Whenever a channel party, let’s say 𝐴, at-

tempts to close the channel, the watchtower can immediately reject or validate the com-

mitted state and receives its reward. However, if for any reason the watchtower is offline,

a long timeout is triggered. Party 𝐵 is supposed to get online before this long timeout is

expired. Then, if the published state is an old one, 𝐵 has this opportunity to prove the

invalidity of the published state.

Another issue with Monitor, DCWC and DCWC* is that the watchtower is paid only if

it observes a revoked channel state on the blockchain and broadcasts its corresponding

revocation transaction. However, given that both parties of a given channel act honestly,

the honest watchtower does not receive any reward although it has consumed some

resources to remain online andmonitor that channel. Such a rewardmechanism is unfair

to the watchtower and might disincentivise entities to run such services.

One simple solution to this issue (lack of fairness with respect to the watchtower), pro-

posed by Outpost [22], is unconditional payment to the watchtower upon each channel

update. However, this reward mechanism somehow exacerbates the consequences of

the first mentioned problem (lack of fairness with respect to the hiring party) as it is

probable for a channel party not only to lose some funds in the channel but also to pay

2.4 CHANNEL SYNCHRONISATION 13

an unconditional reward to one or more watchtowers which actually did not prevent

from fraudulent channel closure.

Therefore, having a watchtower scheme with a fair reward mechanism that also guaran-

tees the safety of its channel parties’ funds in the channel is desired. This is the main

motivation behind the design of PISA which is a watchtower scheme proposed by Mc-

corry et al. [24]. The watchtower’s client in PISA receives a signed receipt from the

watchtower using which they can prove the watchtower’s wrongdoing. In such situa-

tions, the large security deposit of the watchtower is forfeited. The watchtower is also

paid per channel update.

However, PISA cannot be used for more limited scripting languages, and hence cannot

be utilised for Bitcoin payment channels. Avarikioti et al. [23] proposed Cerberus which

is a fair watchtower scheme for Bitcoin. In particular, the watchtower in Cerberus locks

some collateral per channel that is taken by the channel party given that the watchtower

is unresponsive upon fraud. However, it is not privacy-preserving as the watchtower

learns how channel funds are redistributed amongst channel parties at each channel

update.

Furthermore, there are two other schemeswhose security assumptions are different from

the ones mentioned earlier. Unlike other watchtower schemes, TEE Guard [36] relies on

features of Trusted Execution Environments to build watchtowers. TEE Guard can be

deployed for Lightning Network and its storage costs are constant per channel. Towards

a different direction, Brick [37] is actually a state channel construction in which the dis-

pute period is replaced with a committee of 𝑛 = 3𝑓 + 1 members with at most 𝑓 byzan-

tine members where signatures of 𝑡 = 2𝑓 +1members of the committee are required for

each channel update. Each committee member in Brick locks some funds as collateral

and cheating committee members are penalised by losing their collateral. Also, unlike

other watchtower schemes, if one of the channel parties wants to unilaterally close the

channel, the involvement of 𝑡 = 2𝑓 + 1 committee members is required. This mitigates

the synchrony requirement of other schemes which work based on a dispute period. In

other words, watchtowers are no longer necessary in Brick.

2.4 Channel Synchronisation

To establish a payment channel, parties must lock some funds in the channel. If a user

wants to perform transactions with many other users, a naive idea would be to establish

payment channels with all of them. This idea clearly does not scale well. Thus, in

practice payment channels are linked to form a Payment Channel Network (PCN) where

each payment can be routed via multiple intermediaries [15]. Thus, if Alice wants to

14 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

send some funds to David whom does not share any channels, Alice finds a path to

David where intermediate nodes (Bob and then Charlie) relay the payment from Alice

to David. As an alternative, a Payment Channel Hub (PCH) [38, 39, 29, 30, 40] deploys

a star topology where users can pay each other via a single intermediary (called the

tumbler).

Hashed Time-Lock Contracts (HTLC) [41], is the main method to synchronise payments

in different channels in PCN or PCH deployments. Now the most prominent PCNs, i.e.

Lightning Network [15] on Bitcoin [2] and Raiden network [42] on Ethereum [43] are

working based on HTLC. HTLC in a transaction output locks 𝑥 coins in a contract with

two parameters: a timeout 𝑡 and a hash value 𝑦 ∶= ℋ(𝑅)whereℋ is a collision-resistant

hash function and 𝑅 is a randomly selected value. The HTLC contract’s condition can be

fulfilled as follows: (1) If Bob provides a pre-image 𝑅∗ with 𝑦 = ℋ(𝑅∗) before time 𝑡 , then
Alice pays Bob 𝑥 coins, (2) Otherwise, Alice is refunded with 𝑥 coins after time 𝑡 . Now

assume that Alice wants to pay David via Bob and Charlie who agree to forward this

payment in exchange for 𝑓 coins as the fee. Then, Alice conditionally pays Bob 𝑥 + 2𝑓
coins with 3𝑡 and 𝑦 as HTLC parameters. Similarly, Bob conditionally pays Charlie 𝑥 +𝑓
coins with 2𝑡 and 𝑦 as HTLC parameters. Finally, Charlie conditionally pays David 𝑥
coins with 𝑡 and 𝑦 as HTLC parameters. Now if David provides 𝑅 before time 𝑡 , he is

paid 𝑥 coins by Charlie. Having the value of 𝑅, Charlie and then Bob are also paid 𝑥 + 𝑓
and 𝑥 + 2𝑓 coins by Bob and Alice, respectively. If 𝑅 is not provided by David, then

Charlie, Bob and finally Alice get back their coins after time 𝑡 , 2𝑡 and 3𝑡 , respectively.
The timeout value in HTLC mechanism is linear to the length of the path. Sprites [17]

focuses on making the timeout value independent of the path length. However, it can

only be deployed in Turing complete blockchains such as Ethereum. AMCU [44] resolves

the same issue but in a way that is deployable on Bitcoin. Additionally, it extends the

functionality by enabling concurrent payments in channels that are not necessarily along

a path from the sender to the receiver. This could be useful for some applications such as

crowdfunding. Payment Trees [45] presents an attack against AMCU and also provides

a secure solution similar to Sprites but compatible to Bitcoin.

HTLC mechanism also suffers from two other problems: (1) The hash value 𝑦 can be

used by an adversary to compromise privacy by finding out who is paying to whom

and (2) Malicious intermediaries might steal the fees from honest intermediaries in the

same payment path [46]. [47] proposes a Multi-hop Hash Time-Lock Contract (MHTLC)

protocol to improve HTLC privacy. However, its proposed protocol is quite expensive

in terms of computation and communication. [48] proposes a less complex solution,

called ChameleonHash Time-LockContract (CHTLC) to solve the same privacy problem.

However, it is incompatible with Bitcoin. AMHL [46] resolves both issues by replacing

the HTLC contract with a novel cryptographic lock. However, since this novel idea is

2.4 CHANNEL SYNCHRONISATION 15

incompatible with some important digital signatures such as BLS [20], [49] presents a

new primitive called lockable signature which is compatible with any digital signature

algorithm.

HTLC, MHTLC, CHTLC, AMHL and lockable signature follow a 2-phase-commit

paradigm where in the first phase, HTLC contracts are set up one by one from the payer

to the payee (i.e. from Alice to David in the previously mentioned scenario). Then in

the second scenario, locks are released by passing the pre-image value (i.e. 𝑅) from the

payee to the payer via intermediates before HTLC time-locks are expired. Blitz [50]

provides a 1-phase protocol with provable security for multi-hub payments.

In all previously introduced solutions, all intermediate nodes along the path between

the payer and the payee should be actively involved in each and every single payment.

This makes the whole PCN network less reliable as offline users cannot contribute to

payments. Also, this active involvement adds to each intermediary’s service fee. To

mitigate this issue, [29] provides a novel solution for Ethereum called virtual channels.

A virtual channel is like a bridge between two users who do not share a direct payment

channel. Intermediaries become involved in the process of virtual channel creation but

once the virtual channel is created, end users can perform arbitrarily many off-chain

transactions without requiring any involvement by intermediaries. Aumayr et al. [51]

also extended this idea to a Bitcoin-compatible virtual channel.

16 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Chapter 3

Preliminaries and Notations

3.1 Preliminaries

This section introduces the different cryptographic primitives used in this thesis. For all

the cryptographic primitives defined in this section, 𝜅 is the security parameter. Also, a

negligible function is defined as below.

Definition 3.1. A function 𝑣 ∶ ℕ → ℝ is negligible in 𝜅 if for every 𝑛 ∈ ℕ, there exists
𝑛0 ∈ ℕ such that for every 𝜅 ≥ 𝑛0, |𝑣(𝜅)| ≤ 1/𝜅𝑛 holds.

3.1.1 Digital Signature

A digital signature scheme Π includes three algorithms as following:

• Key Generation. (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜅) on input 1𝜅 , outputs the public/private key

pair (𝑝𝑘, 𝑠𝑘).

• Signing. 𝜎 ← Sign𝑠𝑘(𝑚) on inputs the private key 𝑠𝑘 and a message 𝑚 ∈ {0, 1}∗
outputs the signature 𝜎 .

• Verification. 𝑏 ← Vrfy𝑝𝑘(𝑚; 𝜎) takes the public key 𝑝𝑘, a message 𝑚 and a signa-

ture 𝜎 as input and outputs 1 if 𝜎 is a valid signature on message 𝑚 created with

the private key corresponding to 𝑝𝑘. Otherwise, it outputs 0.

Correctness of a digital signature guarantees that for any honestly generated signature

𝜎 on the message 𝑚 w.r.t. a public key 𝑝𝑘, Vrfy𝑝𝑘(𝑚; 𝜎) outputs 1. In this work, we

assume that the utilised signature schemes are existentially unforgeable under an adap-

tive chosen-message attack. It guarantees that the probability that an adversary who

has access to a signing oracle outputs a valid signature on any newmessage is negligible

17

18 CHAPTER 3. PRELIMINARIES AND NOTATIONS

in 𝜅. We call such signature schemes secure. ECDSA [52] is a secure signature scheme

that is currently being used in Bitcoin. Schnorr signature [53] is another important se-

cure signature scheme that has been proposed to be introduced in Bitcoin due to its key

aggregation and signature aggregation properties.

3.1.2 Hard relation

A relation ℛ with statement/witness pairs (𝑌 , 𝑦) is called a hard relation if (1) There ex-

ists a polynomial time generating algorithm (𝑌 , 𝑦) ← GenR(1𝜅) that on input 1𝜅 outputs

a statement/witness pair (𝑌 , 𝑦) ∈ ℛ; (2) The relation between 𝑌 and 𝑦 can be verified in

polynomial time, and (3) For any polynomial-time adversary 𝒜 , the probability that 𝒜
on input 𝑌 outputs 𝑦 is negligible. We also let 𝐿ℛ ∶= {𝑌 ∣ ∃𝑌 𝑠.𝑡 . (𝑌 , 𝑦) ∈ ℛ}. Statemen-

t/witness pairs of ℛ can be public/private key of a signature scheme generated by Gen

algorithm.

3.1.3 Adaptor Signature

Adaptor signatures appeared first in [14]. Adaptor signature is used in the Generalized

channel to tie together the authorisation of a commit transaction and the leakage of a

secret value. In what follows, we recall how an adaptor signature works. Given a hard

relation ℛ and a signature scheme Π, an adaptor signature protocol Ξ includes four

algorithms as follows:

• Pre-Signing. 𝜎̃ ← pSign𝑠𝑘(𝑚, 𝑌) is a probabilistic polynomial time (PPT) algo-

rithm that on input a private key 𝑠𝑘, message 𝑚 ∈ {0, 1}∗ and statement 𝑌 ∈ 𝐿ℛ ,

outputs a pre-signature 𝜎̃ .

• Pre-Verification. 𝑏 ← pVrfy𝑝𝑘(𝑚, 𝑌 ; 𝜎̃) is a deterministic polynomial time (DPT)

algorithm that on input a public key 𝑝𝑘, message 𝑚 ∈ {0, 1}∗, statement 𝑌 ∈ 𝐿ℛ
and pre-signature 𝜎̃ , outputs a bit 𝑏.

• Adaptation. 𝜎 ← Adapt(𝜎̃ , 𝑦) is a DPT algorithm that on input a pre-signature 𝜎̃
and witness 𝑦 , outputs a signature 𝜎 .

• Extraction, Ext(𝜎 , 𝜎̃ , 𝑌) is a DPT algorithm that on input a signature 𝜎 ,
pre-signature 𝜎̃ , and statement 𝑌 ∈ 𝐿ℛ , outputs ⟂ or a witness 𝑦 such that

(𝑌 , 𝑦) ∈ ℛ.

Correctness of an adaptor signature guarantees that for an honestly generated pre-

signature 𝜎̃ on the message 𝑚 w.r.t. a statement 𝑌 ∈ 𝐿ℛ , we have pVrfy𝑝𝑘(𝑚, 𝑌 ; 𝜎̃) = 1.

3.2 NOTATIONS 19

Furthermore, when 𝜎̃ is adapted to the signature 𝜎 , we have Vrfy𝑝𝑘(𝑚; 𝜎) = 1 and

Ext(𝜎 , 𝜎̃ , 𝑌) outputs 𝑦 such that (𝑌 , 𝑦) ∈ ℛ.

An adaptor signature scheme is secure if it is existentially unforgeable under chosen

message attack (aEUF–CMA security), pre-signature adaptable and witness extractable.

The aEUF–CMA security guarantees that it is of negligible probability that any PPT

adversary who has access to signing and pre-signing oracles outputs a valid signature for

any arbitrary newmessage𝑚 even given a valid pre-signature and its corresponding 𝑌 on

𝑚. Pre-signature adaptability guarantees that every pre-signature (possibly generated

maliciously) w.r.t. 𝑌 can adapt to a valid signature using the witness 𝑦 with (𝑌 , 𝑦) ∈
ℛ. Witness extractability guarantees that it is of negligible probability that any PPT

adversary who has access to signing and pre-signing oracles outputs a valid signature

and a statement 𝑌 for any new message 𝑚 such that the valid signature does not reveal

a witness for 𝑌 even given a valid pre-signature on 𝑚 w.r.t. 𝑌 . The ECDSA-based and

Schnorr-based adaptor signature schemes were constructed and analysed in [14].

3.2 Notations

Throughout this work, we define different attribute tuples. Let 𝑈 be a tuple of multiple

attributes including the attribute attr. To refer to this attribute, we use 𝑈 .attr. Our fo-

cus in this work is on Bitcoin or any other blockchains with Unspent Transaction Output
(UTXO) model. In this model, units of value–which we call coins–are held in outputs.
An output 𝜃 is a tuple of two attributes, 𝜃 = (cash, 𝜑), where 𝜃.cash denotes the num-

ber of coins held in this output and 𝜃.𝜑 denotes the condition that needs to be fulfilled

to spend the output 𝜃 . The condition 𝜃.𝜑 is encoded using any script supported by the

underlying blockchain. If the condition 𝜃.𝜑 contains a user 𝑃 ’s public key, we say that 𝑃
controls or owns the output 𝜃 . If satisfying a condition requires authorisations by multi-

ple parties, such a condition contains public keys of all the involved parties separated by

∧ operation(s). Relative time-lock of 𝑇 rounds in an output condition is denoted by 𝑇+
and means the output cannot be spent unless at least 𝑇 rounds passed since the output

was recorded on the blockchain. A condition might also have several sub-conditions,

one of which must be satisfied to spend the output. Different sub-conditions of output

are separated by ∨ operation(s).

A transaction changes ownership of coins, meaning it takes a list of existing outputs and

transfers their coins to a list of new outputs. To distinguish between these two lists, we

refer to the list of existing outputs as 𝑖𝑛𝑝𝑢𝑡𝑠. A transaction TX is formally defined as the

tuple (txid, Input, nLT,Output,Witness). The identifier TX.txid ∈ {0, 1}∗ is computed as

TX.txid ∶= ℋ([TX]), where [TX] is called the 𝑏𝑜𝑑𝑦 of the transaction defined as [TX] ∶=
(TX.Input, TX.nLT, TX.Output) and ℋ is a hash function, which is modelled as a random

20 CHAPTER 3. PRELIMINARIES AND NOTATIONS

oracle. The attribute TX.nLT denotes the value of the parameter 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒, where TX is

invalid unless its 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 is in the past. The attribute TX.Input is a list of identifiers

for all inputs of TX. The attribute TX.Output is a list of new outputs. The attribute

TX.Witness = (W1, … ,W𝑚) is a list of tuples where its 𝑖th tuple authorises spending the

output that is taken as the 𝑖th input of TX. The tupleW𝑖 = (𝜂, 𝜁) of the witness 𝑇𝑥.Witness

contains two attributes where W𝑖.𝜁 denotes the data, e.g. the signature(s), that is (are)

required to meet the W𝑖.𝜂th sub-condition of the output that is taken as the 𝑖th input of

TX. The signature and pre-signature of party 𝑃 on TX for TX.Witness.W𝑗 .𝜁 is denoted by

𝜎𝑃,𝑗TX and 𝜎̃𝑃,𝑗TX , respectively, where 𝑗 can be removed if TX has one input. The 𝑖th entry of

a list 𝐿 is denoted by 𝐿[𝑖] with 𝑖 > 0.
We use charts to illustrate transaction flows. As Fig. 3.1 shows, double-edge and single-

edge rectangles represent published and unpublished transactions, respectively. Also,

dotted rectangles represent transactions that are still unprepared to be propagated in

the blockchain network. In other words, dotted rectangles denote transactions that lack

some required elements (e.g. some signatures in the witness). Considering that TX con-

tains two inputs, each with a value of 𝑎 and 𝑏 respectively, then since the output of TX

with the value of 𝑎 + 𝑏 has two sub-conditions, it is denoted by a diamond shape with

two arrows. One of the sub-conditions can be fulfilled by both 𝐴 and 𝐵 and is relatively

time-locked by 𝑇 rounds. Another sub-condition can be fulfilled by 𝐶 where rather than

the public key 𝑝𝑘𝐶 , the user identity, i.e. 𝐶 , has been used in the chart. The 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒
parameter for TX and TX′ is 0, so it is not shown inside these transactions.

Figure 3.1: A sample transaction flow.

Table 3.1 summarises the mentioned notations.

3.2 NOTATIONS 21

Table 3.1: Summary of notations

Notation Description
TX Transaction TX = (txid, Input, nLT,Output,Witness)
[TX] Tuple (TX.Input, TX.nLT, TX.Output)
TX.txid Identifier of the transaction TX
TX.nLT Parameter 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 of the transaction TX
TX.Input List of identifiers for all inputs of TX
TX.Output List of new outputs for TX
TX.Witness List of witnesses for TX
𝜃 = (cash, 𝜑) Output with monetary value cash and condition 𝜑
𝑊 = (𝜂, 𝜁) Witness that meets 𝜂th sub-condition of an output using data 𝜁
𝜎𝑃,𝑗TX (or 𝜎̃𝑃,𝑗TX) Signature (or pre-signature) of 𝑃 for 𝑗th input of TX
𝑇+ The relative time-lock of 𝑇 rounds
𝐿[𝑖] 𝑖th entry of a list 𝐿 with 𝑖 ≥ 1

22 CHAPTER 3. PRELIMINARIES AND NOTATIONS

Chapter 4

Formal Treatment of Watchtower

4.1 Introduction

In this chapter, we formally define a payment channel and a watchtower and then work

on our first research question, RQ1, which aims to formally define different properties of

a watchtower scheme and analyse why existing watchtower schemes that fail to meet all

the required properties. Monitor [15], DCWC1 and DCWC* [32], Outpost [22] , Cerberus

[23], PISA [24] and Fail-safe [35] are the watchtower schemes we will analyse in this

chapter.

We construct some parts of this chapter based on our published paper, “FPPW: A Fair

and Privacy Preserving Watchtower For Bitcoin” [54].

4.2 Formalisation of PaymentChannel andWatchtower

A payment channel is defined as follows:

Definition 4.1 (Payment Channel). A payment channel 𝛾 of blockchain 𝔹 is a state ma-
chine run by two participants. Let 𝑆𝑖 with 𝑖 ≥ 0 be the 𝑖th channel state. 𝛾 consists of three
phases, namely create, update and close, as follows:

• Channel create (state 𝑆0): Channel participants commit to the initial state 𝑆0 and
record it on 𝔹.

• Channel update (from 𝑆𝑖 to 𝑆𝑖+1 for 𝑖 ∈ [0, 𝑛)): Channel participants update the
channel state from 𝑆𝑖 to 𝑆𝑖+1 and commit to 𝑆𝑖+1.

1Disclose Cascade Watch Commit

23

24 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

• Channel close (state 𝑆𝑛): Any channel participants can close the channel by recording
the latest state 𝑆𝑛 on 𝔹.

Remark 4.1. Definition 4.1 is a generic one for a bi-directional payment channel. Moreover,
to analyse the payment channel security in the universal composability framework [55],
some ideal functionalities of payment channels can also be found in the literature [14, 28].
We will also present an ideal functionality for our designed payment channel, Daric, in
Chapter 7.

The capacity of a payment channel 𝛾 is defined below.

Definition 4.2 (Channel Capacity). For a payment channel 𝛾 with two participants𝐴 and
𝐵, let 𝑥𝑃,𝑖 with 𝑃 ∈ {𝐴, 𝐵} denote the balance of 𝑃 at the channel state 𝑆𝑖. Then, the channel
capacity is denoted by 𝑋𝐴,𝐵 and equals 𝑥𝐴,0 + 𝑥𝐵,0.

Definition 4.3 (Payment Channel Security). A payment channel 𝛾 of blockchain 𝔹 with
two channel participants 𝐴 and 𝐵 is 𝜇-secure if and only if given that 𝛾 with latest state of
𝑆𝑛 is closed by recording the state 𝑆𝑖 with 𝑖 < 𝑛 on 𝔹, an honest party 𝑃 ∈ {𝐴, 𝐵} can claim
at least 𝑥𝑃,𝑛 by recording some evidence proving invalidity of 𝑆𝑖 on 𝔹 within 𝜇 blocks.

The above definition states that when a 𝜇-secure payment channel is closed using a

transaction that corresponds with an old state, the honest party has still 𝜇 blocks time to

get refunded or equivalently to invalidate the published channel state. After 𝜇 blocks, the

honest party’s funds are not guaranteed anymore. To invalidate the published channel

state, the honest party must record some evidence on𝔹which proves the published state

is not the latest channel state that parties have committed to. For Replace by Revocation

or RbR payment channels (e.g. [14, 15]), the evidence is knowledge of the revocation

secret corresponding with the published channel state. This knowledge is practically

proved by publishing a revocation transaction that gives all the funds in the channel to

the honest party. For Replace by Version or RbV type channels, the evidence is a state

with higher version [1, 17].

One or both parties of a payment channel can outsource the task of publishing the evi-

dence to a third-party called watchtower defined as follows.

Definition 4.4 (Watchtower). For a 𝜇-secure payment channel 𝛾 of 𝔹 with two partic-
ipants 𝐴 and 𝐵, a watching contract 𝐶 = (𝑊 , 𝛾 , 𝑃 , 𝑆𝑠 , 𝒞) with 𝒞 = {𝒞𝑆 , 𝒞𝑈 , 𝒞𝑇 } is a
contract between a watchtower 𝑊 and a party 𝑃 ∈ {𝐴, 𝐵} in which 𝑊 commits to follow
start, update, termination and alarm, as follows:

• Watchtower start (state 𝑆𝑠 , condition 𝒞𝑆): Watchtower starts when the condition 𝒞𝑆
is met and 𝑃 provides the evidence 𝑒 to 𝑊 . Let 𝑒 invalidate a set of channel states 𝒮 .

4.2 FORMALISATION OF PAYMENT CHANNEL AND WATCHTOWER 25

The start state 𝑆𝑠 is defined by

𝑆𝑠 ∶= { 𝑆max{𝑖∶𝑆𝑖∈𝒮 }+1 𝒮 ≠ ∅,
𝑆0 𝒮 = ∅.

• Watchtower update (from 𝑆𝑘 to 𝑆𝑘+1, condition 𝒞𝑈): With each channel update
from 𝑆𝑘 to 𝑆𝑘+1, watchtower updates if the condition 𝒞𝑈 is met and party 𝑃 provides
𝑊 with some evidence proving the invalidity of 𝑆𝑘 .

• Watchtower terminate (condition 𝒞𝑇): Watchtower terminates once the latest state
𝑆𝑛 is recorded on 𝔹 or once the condition 𝒞𝑇 is met.

• Watchtower react: Let 𝛾 with latest state of 𝑆𝑛 be closed by recording the state 𝑆𝑖 with
𝑖 ≠ 𝑛 on 𝔹. If this event occurs before the condition 𝒞𝑇 is met, then watchtower 𝑊
records some evidence proving the invalidity of 𝑆𝑖 on 𝔹 within 𝜇 blocks.

The condition set 𝒞 could be a watchtower scheme specific condition, possibly relying

on different parameters. In the following, we will discuss the condition set for the exist-

ing watchtower schemes.

For DCWC, DCWC* [32] and monitor [15], 𝒞𝑆 and 𝒞𝑈 are ∅. However, these schemes

have not discussed their watchtower termination conditions although channel closure

by the hiring party 𝑃 is definitely included in 𝒞𝑇 .

The conditions 𝒞𝑆 and 𝒞𝑈 for Outpost are payments to the watchtower. However, con-

dition𝒞𝑇 is somehow complicated. An outpost watchtower stores a pre-defined number

of evidence per user and deletes older items based on a FIFO order. Thus, when a user

has several channels, it is possible that while a channel is still open, its older states are

not monitored by the watchtower anymore. Thus, 𝒞𝑇 for Outpost is met once the chan-

nel is closed by the hiring party 𝑃 or with an old state whose corresponding evidence

has been removed from the watchtower’s evidence list.

The watchtower in Cerberus [23] locks some collateral at the watchtower start phase.

This collateral is taken by the hiring party given that the watchtower does not follow

the watchtower reaction rules. So, 𝒞𝑆 is locking some collateral by the watchtower. The

watchtower is rewarded upon each watchtower update. Also, as part of each watch-

tower update, the watchtower must provide the channel parties with signatures on two

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 transactions that are used by the cheated hiring party to penalise the unrespon-

sive watchtower for not following the watchtower react rules. So, 𝒞𝑈 is payment to

the watchtower and signing the corresponding penalty transactions by the watchtower.

𝒞𝑇 is met when the watchtower’s collateral is redeemed or the channel is closed by the

hiring party 𝑃 .

26 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

Table 4.1: Summary of the Condition 𝒞𝑆 for Different Watchtower Schemes.

𝒞𝑆
Monitor [21] ∅
DCWC [32] ∅
Outpost [22] ∅
Cerberus [23] collateral
PISA [24] custodian contract with security deposit, payment, signed receipt
Fail-safe [35] tower contract, payment, signed receipt

Table 4.2: Summary of the Condition 𝒞𝑈 for Different Watchtower Schemes.

𝒞𝑈
Monitor [21] ∅
DCWC [32] ∅
Outpost [22] payment
Cerberus [23] payment, signatures of penalty transactions
PISA [24] payment, signed receipt
Fail-safe [35] payment, signed receipt

The watchtower in PISA first locks a large deposit in a smart contract2 called custodian
contract. This large deposit is forfeited if the watchtower does not follow the watchtower

reaction rules. To hire the watchtower, the watchtower is paid by the hiring party in

exchange for a signed receipt that can be used to prove the watchtower’s wrongdoing

before an agreed expiry time. So, 𝒞𝑆 is setting up the custodian contract and locking a

large security deposit in this contract by thewatchtower, payment to thewatchtower and

providing the corresponding signed receipt to the hiring party. 𝒞𝑈 is a new payment to

the watchtower and providing the corresponding new signed receipt to the hiring party.

𝒞𝑇 is met at an agreed expiry time.

For Fail-safe, 𝒞𝑆 is having a smart contract called the tower contract set up by the watch-

tower on the blockchain, payment to the watchtower, and providing the corresponding

signed receipt to the hiring party. 𝒞𝑈 is a new payment to the watchtower and provid-

ing the corresponding new signed receipt to the hiring party. The condition 𝒞𝑇 is ∅,
meaning that the watchtower has to monitor the channel and be responsive as long as

the channel is open. Otherwise, the watchtower might lose its reward.

Tables 4.1, 4.2 and 4.3 respectively summarise the conditions𝒞𝑆 , 𝒞𝑈 and𝒞𝑇 for different

watchtower schemes.

2A self-executing, programmable code that runs on a blockchain network, enabling automated and
trustless execution of predefined actions and agreements between parties.

4.3 WATCHTOWER SERVICE PROPERTIES 27

Table 4.3: Summary of the Condition 𝒞𝑇 for Different Watchtower Schemes.

𝒞𝑇
Monitor [21] at least channel closure by the hiring party 𝑃
DCWC [32] at least channel closure by the hiring party 𝑃
Outpost [22] (1) channel closure by the hiring party 𝑃 or

(2) channel closure using a transaction with removed evidence
Cerberus [23] (1) redeemed collateral or

(2) channel closure by the hiring party 𝑃
PISA [24] expiry time
Fail-safe [35] ∅

4.3 Watchtower Service Properties

In this section, we formally define different new properties of a watchtower service.

4.3.1 Agility

This section defines agility for a watchtower. The agility of a watchtower shows how

flexibly a watching process starts and terminates.

Definition 4.5 (Agility). A payment channel 𝛾 between two parties 𝐴 and 𝐵 with watch-
tower provides agility iff

• two distinct contracts 𝐶1 = (𝑊1, 𝛾 , 𝑃 , 𝑆𝑠 , 𝒞) and 𝐶2 = (𝑊2, 𝛾 , 𝑃 , 𝑆𝑠 , 𝒞)may be formed,
where 𝑃 ∈ {𝐴, 𝐵} and 𝑊1 ≠ 𝑊2, and

• Any watching contract can start and terminate at any arbitrary state of the channel
𝛾 .

According to the above definition, Cerberus and Fail-safe do not achieve agility as the

watchtower in both schemes should be specified in the channel create phase. Moreover,

watching for both schemes must start and terminate when the channel is created and

closed, respectively. [23] discusses that if the watching contract for Cerberus termi-

nates before channel closure, the hiring party, e.g. 𝐵, might continue using the channel

given that he is always online. However, this statement is correct with this assumption

that after the watchtower termination phase, the watchtower will not be involved in

this channel any more. Since this assumption might be violated in the real world, 𝐵
would be at risk of losing some funds in the channel. In more detail, once 𝐴 publishes

an old channel state on the blockchain, the dispute period starts and 𝐵 must publish

a revocation transaction within this period to take all the channel funds. However, if

28 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

the dishonest party 𝐴 has colluded with the watchtower (whose collateral has already

been redeemed), they can cooperatively claim the channel funds before the revocation

transaction is published by 𝐵. So, even staying always online would not guarantee the

safety of the honest party’s funds in the channel. In other words, once the watchtower

redeems its collateral, the channel for the hiring party transforms to a 𝜇-Secure chan-

nel with 𝜇 = 0. So, the hiring party must close the channel before the watchtower’s

collateral redemption (or equivalently before the time when the watchtower contract

terminates). The watching contract for other schemes can start and terminate at any

time with any arbitrary watchtower. So, Monitor, DCWC, DCWC*, Outpost and PISA

achieve agility.

4.3.2 Privacy

One of the properties of payment channels is that off-chain transactions are not broad-

cast on the blockchain and hence only the channel parties know how the channel funds

are redistributed between them. Thus, in the following, to evaluate how the usage of

watchtowers can affect this benefit, we define a privacy game and then based on this

privacy game we define Weak Privacy Against Watchtower.

Challenge. Let there exist two payment channels where the first one is between honest

channel parties 𝐴 and 𝐵 and the second one is between honest channel parties 𝐴′ and
𝐵′ and both channels have the same number of channel updates 𝑛 and the same channel

setup, i.e. 𝑥𝐴,0 = 𝑥𝐴′,0, 𝑥𝐵,0 = 𝑥𝐵′,0, 𝑥𝐴,𝑛 = 𝑥𝐴′,𝑛 and 𝑥𝐵,𝑛 = 𝑥𝐵′,𝑛. Let x𝑃,[𝑖,𝑗] show the

sequence of balance values of party 𝑃 between 𝑖th to 𝑗th states of the payment channel

that 𝑃 is involved in. Assume that 𝒜 is any passive PPT adversarial watchtower exclud-

ing 𝐴, 𝐵, 𝐴′ and 𝐵′ which watches these two channels. To challenge 𝒜 , the challenger

selects a random bit 𝑏 and gives the sequence (x𝑃,[1,𝑛−1],x ̄𝑃 ,[1,𝑛−1]) to 𝒜 where 𝑃 = 𝐴
and ̄𝑃 = 𝐵 if 𝑏 = 0 and 𝑃 = 𝐴′ and ̄𝑃 = 𝐵′ otherwise.

Output. The adversary𝒜 outputs a bit 𝑏′ to guess that the received sequence belongs to

the first or the second channel. The adversary wins the game if and only if 𝑏 = 𝑏′.

Definition 4.6 (Weak Privacy Against Watchtower). A payment channel with a watch-
tower provides weak privacy against the watchtower if according to the privacy game
∣ Pr[𝑏 = 𝑏′] − 1/2 ∣ is negligible in 𝜅.

Remark 4.2. For any multihop payment routed via the channel between 𝐴 and 𝐵 or the
channel between 𝐴′ and 𝐵′, we assume that the passive adversary is not involved as a
channel party in routing such payments.

4.3 WATCHTOWER SERVICE PROPERTIES 29

The privacy guarantee would be stronger, if in the defined privacy game, (1) the sequence

(x𝑃,[0,𝑛],x ̄𝑃 ,[0,𝑛]) is given to the passive PPT adversarial watchtower and (2) the watch-

tower determines if the channel setup for two channels are the same or not. This strong

privacy implies weak privacy because the channel setup in the weak privacy game is a

special case of that in the strong privacy game. Moreover, the watchtower in the strong

privacy game receives more input data in the challenge phase than the watchtower in

the weak privacy game. Thus, the probability of her winning the strong privacy game

would be at least equal to the corresponding probability in the weak privacy game.

Monitor, DCWC,DCWC* andOutpost achieve strong privacy against thewatchtower be-

cause thewatchtower receives at most the encrypted version of channel transactions and

if the channel parties behave honestly, these encrypted transactions are not decrypted

at all. PISA and Fail-safe achieve weak privacy against the watchtower because for these

schemes, states are invisible to the watchtower and only state hash values are given to

the watchtower and since a large random value is also used in the computation of the

hash value, finding the pre-image by exhaustive search is also infeasible. However, The

first and the last states of the channel are revealed. Cerberus does not achieve privacy

against the watchtower as the watchtower learns the balances of both channel parties

in the channel.

Another important privacy-related subject regarding a payment channel and its corre-

sponding watchtower is the knowledge of a third party (i.e. any party other than the

hiring party and the watchtower) regarding the hiring status of the watchtower for a

given channel. For example in the channel 𝛾 with two parties 𝐴 and 𝐵, such knowledge

can be of importance to a channel party, let’s say party 𝐴, given that he is malicious and

is looking for an appropriate time (i.e. when party 𝐵 is not using the watchtower with a

significant probability) to broadcast an old state or to a third party (other than party 𝐴)

who has some other channels with party 𝐵. Such information can help him to conduct a

behavioural analysis on party 𝐵 to find the best time to attack him on his other channels.

This type of privacy is also defined below.

Definition 4.7 (Weak Watchtower Privacy against Third-Party). Let𝑊 be a watchtower.
A challenger 𝐴 establishes a payment channel 𝛾 with 𝐵, samples 𝑏 ∈ {0, 1} randomly and
hires (does not hire) 𝑊 if 𝑏 = 1 (𝑏 = 0, respectively). The watchtower 𝑊 achieves weak
privacy against third-party if for all PPT adversaries 𝐵, we have that

|Pr[1 ← 𝐵(⋅)|𝑏 = 1] − 1
2|

is negligible in 𝜅.

Definition 4.8 (StrongWatchtower Privacy against Third-Party). Let𝑊 be a watchtower.
A challenger 𝐴 establishes a payment channel 𝛾 with 𝐵, samples 𝑏 ∈ {0, 1} randomly and

30 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

hires (does not hire) 𝑊 if 𝑏 = 1 (𝑏 = 0, respectively). The watchtower 𝑊 achieves strong
privacy against third-party if for all PPT adversaries 𝒜 including 𝐵, we have that

|Pr[1 ← 𝒜BAW-view(⋅)|𝑏 = 1] − 1
2|

is negligible in 𝜅, where BAW-view is an oracle in which 𝒜 has access to what 𝐵 sees on 𝛾
and sees all public keys of 𝐴 and 𝑊 and all transactions related to them on 𝔹.

The strongwatchtower privacy against third-party implies theweakwatchtower privacy

against third-party. The reason is that the PPT adversary in the former also includes

𝐵. Moreover, she accesses more information than the adversary in the weak privacy

definition.

According to Definition 4.8, Monitor, DCWC and DCWC* provide strong privacy against

third-party because there is not any transaction between the hiring party and the watch-

tower. Thus, even knowledge of all the public keys and transactions of the hiring party

and the watchtower cannot help the third party to guess whether there is a watchtower

contract between the hiring party and the watchtower.

However, PISA, Outpost and Cerberus do not provide strong privacy against third-party

as for all these schemes payment to the watchtower is done through a one-way payment

channel per update and hence𝒜BAW-view(⋅) for thesewatchtowers can output the correct

result with non-negligible probability. For instance, no transaction including public keys

of 𝐴 and 𝑊 implies no one-way channel between 𝐴 and 𝑊 and hence no watching

contract between them.

PISA, Outpost and Cerberus potentially achieve weak privacy against third-party given

that any relationship between transactions in 𝛾 and watchtower-related transactions

are invisible to 𝐵 (as defined in Definition 4.7). To achieve that, public keys used in

watchtower-related transactions must be independent of the ones used in 𝛾 . This con-

dition can be simply met. Moreover, watchtower-related transactions must not change

the distribution of different transaction types on the underlying blockchain. For exam-

ple, if transactions with multi-signature outputs (and in particular 2-of-2 multi-signature

class) are rarely exchanged between the users, usage of such transactions for watchtower

purposes might be distinguishable from other transactions. In such a case, a straight-

forward option is aggregating public keys of the watchtower and the hiring party in

watchtower-related transactions. Also, there must be some random differences between

the time when the channel is created and when the watchtower-related transactions are

published on the blockchain.

Fail-safe does not provide weak privacy against third-party as 𝐵 knows the hiring status

of 𝑊 upon establishment of the channel 𝛾 .

4.3 WATCHTOWER SERVICE PROPERTIES 31

4.3.3 Fairness and Coverage

In this section, we formalise the concepts of fairness and coverage in a watchtower

scheme. Fairness with respect to the hiring party (watchtower) is actually a factor to

evaluate the level of guarantee that the watchtower (hiring party) provides to the hiring

party (watchtower) on its service (payment).

Definition 4.9 (Channel party 𝛼-Fairness). A payment channel with watchtower is 𝛼-
party-fair, if the following holds for an honest channel party 𝑃 :

• 𝑃 can close the channel at any time and

• 𝛼 is the largest real number such that regardless of the reward that 𝑃 pays to the
watchtower, 𝑃 loses at most (1−𝛼) ⋅ 𝑥𝑃 coins in the channel where 𝑥𝑃 denotes balance
of 𝑃 in the latest channel state.

Note that 0 ≤ 𝛼 ≤ 1, where 𝛼 = 1 implies that the honest party 𝑃 will not lose any funds

in the channel and 𝛼 = 0 means that 𝑃 might lose all of his funds. Since for Monitor,

DCWC, Outpost and Fail-safe, the hiring party 𝑃 might lose all his funds in the channel,

these schemes are unfair w.r.t. the channel party (i.e. they are 𝛼-party-fair with 𝛼 = 0).
The value of the watchtower’s collateral for Cerberus is around the channel capacity. So

the hiring party would not lose any funds in the channel. In other words, 𝛼 = 1 for

Cerberus. Although for PISA 𝛼 is adjustable, the hiring party must not logically accept a

PISAwatchtower with 𝛼 < 1. Otherwise, he might lose some funds in the channel. Thus,

the value of 𝛼 for PISA must be 1 in practice or equivalently the watchtower must lock

some collateral per channel where the value of the collateral must be equal to the channel

capacity. This collateral will be taken by the hiring party given that the watchtower is

unresponsive upon fraud.

Definition 4.10 (Watchtower Fairness). A payment channel with a watchtower is
watchtower-fair if the following holds for an honest watchtower 𝒲 :

• 𝒲 is rewarded with some non-zero amounts of coins and

• given that 𝒲 has locked some collateral as part of the watching service, it is of neg-
ligible probability that the honest watchtower cannot redeem all the collateral once
watching terminates according to the watching agreement.

Monitor [21] and DCWC [32] are called unfair w.r.t. the watchtower because, for these

schemes, it is possible that the watchtower is not rewarded. In more detail, the watch-

tower in these schemes is rewarded if and only if (1) the counterparty of the hiring party

𝑃 publishes an old channel state on the blockchain and (2) the watchtower succeeds in

32 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

broadcasting the corresponding evidence and wins the race against other watchtowers,

which are simultaneously monitoring the same channel for 𝑃 . On the other hand, due to

the punishment mechanism of the Lightning Network, fraudulent channel closures and

hence payments to the watchtower would be rare and this can dis-incentivise entities

to run such services. PISA, outpost, Cerberus and Fail-safe are watchtower-fair as the

watchtower in these schemes is rewarded upon each channel update and the watchtower

in Cerberus can redeem its collateral at any time.

Next, we define 𝛽-coverage, which basically measures the capability of a watchtower

(on a scale between 0 to 1) in watching all the existing payment channels on a fixed

Blockchain.

Definition 4.11 (Coverage). For a blockchain 𝔹 with 𝑁 payment channels, a watchtower
𝒲 provides 𝛽-coverage with 𝛽 ∶= 𝒳

𝒞+𝒳 , where 𝒞 is the total collateral required by 𝒲
to watch all payment channels for both channel parties and 𝒳 is the total capacity of all
channels.

The parameter 𝛽 can take any value in the interval [0, 1]. For Cerberus and PISA (with

𝛼 = 1), 𝛽 equals 1
3 because, for these schemes, collateral of the watchtower must be twice

the channel capacity if the watchtower is going to be hired by both channel parties.

Although PISA allows lower values of collateral, such values cannot provide channel

party 𝛼-fairness with 𝛼 = 1 and hence cannot guarantee that the honest party does not

lose any funds. The watchtower in other schemes does not need to lock any collateral

per channel. So they provide 𝛽-coverage with 𝛽 ∶= 1.
The following Lemma shows a trade-off between watchtower fairness and coverage.

Lemma 4.1. For an (𝛼, 𝑅)-fair watchtower 𝑊 with 𝛽-coverage, we have:

1. 𝒳 ≤ 𝛽 ⋅ 𝑀𝐶 , where 𝑀𝐶 denotes the market cap of the used cryptocurrency and 𝒳 is
defined in Definition 4.11,

2. 𝒞 ≥ 𝛼 ⋅ 𝒳 , where 𝒞 is defined in Definition 4.11 and

3. 𝛽 ≤ 1
1+𝛼 .

Proof. We prove each item in the following:

1. Since 𝒳 + 𝒞 ≤ 𝑀𝐶 and 𝑊 has 𝛽-coverage we have:

𝒳 = 𝛽 ⋅ (𝒞 + 𝒳) ≤ 𝛽 ⋅ 𝑀𝐶.

4.4 CONCLUSION 33

2. For the channel 𝛾𝑖 with channel parties 𝐴𝑖 and 𝐵𝑖, as defined in Definition 4.11,

we have two watching contracts 𝐶𝑖 = (𝑊 , 𝛾𝑖, 𝐴𝑖, 𝑆𝑖, 𝒞𝑖) and 𝐶′𝑖 = (𝑊 , 𝛾𝑖, 𝐵𝑖, 𝑆𝑖′ , 𝒞 ′𝑖).
Assume that 𝛾𝑖 is closed by a party, let’s say party 𝐵, at state 𝑆𝑛 by committing to

state 𝑆𝑗 with 𝑗 < 𝑛 before the condition 𝒞𝑖 being met. For the case 𝑥𝐴𝑖,𝑛 = 𝑋𝐴𝑖,𝐵𝑖
and 𝑥𝐴𝑖,𝑗 = 0, honest party 𝐴 is cheated out of its total funds which equals 𝑋𝐴𝑖,𝐵𝑖 .
However, since 𝑊 is (𝛼, 𝑅)-fair, party 𝐴 does not lose more than (1 − 𝛼) ⋅ 𝑥𝐴𝑖,𝑛 =
(1 − 𝛼) ⋅ 𝑋𝐴𝑖,𝐵𝑖 if he is honest. Thus, capital of 𝑊 for this channel cannot be less

than

𝑋𝐴𝑖,𝐵𝑖 − (1 − 𝛼) ⋅ 𝑋𝐴𝑖,𝐵𝑖 = 𝛼 ⋅ 𝑋𝐴𝑖,𝐵𝑖

Otherwise, party𝐴 loses more than (1−𝛼)⋅𝑥𝐴𝑖,𝑛, which contradicts with definition

of fairness. Therefore, the total capital of 𝑊 must satisfy

𝒞 ≥
𝑁
∑
𝑖=1

𝛼 ⋅ 𝑋𝐴𝑖,𝐵𝑖 = 𝛼 ⋅ 𝒳 . (4.1)

3. Based on the definition of coverage and (4.1), we have:

𝒳 = 𝛽 ⋅ (𝒞 + 𝒳) ≥ 𝛽 ⋅ (𝛼 ⋅ 𝒳 + 𝒳)

Since 𝒳 ≠ 0 and 𝛼 ≠ −1, we have:

𝛽 ≤ 1
1 + 𝛼 .

The above Lemma shows that although an increase in 𝛼 for a watchtower promotes its

fairness with regard to the hiring party, it raises the required capital of the watchtower

and negatively affects its coverage. In other words, if all payment channel parties seek to

achieve full guarantee by their watchtowers, in the best case at most half of the market

cap of a given cryptocurrency can be used for transactions between channel parties and

another half must be locked as collateral by their watchtowers.

The Table 4.4 summarises the comparison results for the existing watchtower schemes.

The table illustrates that the current watchtower schemes face challenges in being de-

ployed on Bitcoin, ensuring privacy, or providing channel-party 1-fairness.

4.4 Conclusion

In this chapter, we formalised payment channels and watchtowers. We also formally

defined different properties of a watchtower scheme including agility, privacy, fairness

34 CHAPTER 4. FORMAL TREATMENT OF WATCHTOWER

Table 4.4: Comparison of Different Watchtower Schemes.

Bitcoin Agility Priv. ag. Priv. ag. Watch. 𝛼 𝛽
Support Watch. 3rd Party Fairness

Monitor [21] Yes Yes Strong Strong No 0 1
Outpost [22] Yes Yes Strong Weak No 0 1
DCWC [32] No Yes Strong Strong No 0 1
DCWC* [32] Yes Yes Strong Strong No 0 1
Cerberus [23] Yes No - Weak Yes ≈ 1 ≈ 1

3
PISA [24] No Yes Weak Weak Yes Adj. 1

1+2𝛼
Fail-safe [35] No No Weak - Yes 0 1

and coverage and compared the existing watchtower schemes against these properties.

Furthermore, we proved a trade-off between fairness and coverage of a watchtower. This

trade-off shows although an offline channel party with a watchtower satisfying 𝛼 < 1
would be at the risk of losing some funds, the fully fair schemes (Cerberus and PISA

with 𝛼 = 1) cannot achieve acceptable coverage. Moreover, upon examining existing

watchtower schemes on Bitcoin, we observed that none of them can simultaneously

achieve channel party 1-fairness and privacy against watchtowers.

Chapter 5

FPPW: a fair and privacy preserving
Bitcoin watchtower

In this chapter, our focus is on addressing our second research question, RQ2. Our

objective is to develop a watchtower scheme specifically tailored for Bitcoin, aiming

to overcome the limitations of existing schemes. We concentrate on enhancing the

fairness and privacy properties of the watchtower in this investigation. We construct

this chapter based on the full version of our published paper, “FPPW: A Fair and Pri-

vacy Preserving Watchtower For Bitcoin” [54] (The full version paper is available at

https://eprint.iacr.org/2021/117.pdf).

5.1 Introduction

Monitor [21] is the first watchtower scheme for Lightning Network, which mainly fo-

cuses on channel privacy against watchtower. However, Monitor has two main issues,

both of which are related to fairness. Firstly, honest watchtowers might be rewarded

for fraud (i.e. broadcast of an old state on the blockchain), which is unfair with respect

to (w.r.t.) the watchtower. Secondly, honest parties cannot penalise the unresponsive

watchtower, which is unfair towards an honest hiring party.

DCWC* [32] proposes the usage of a network of watchtowers that must cooperate to

maximise their interest. This reduces the probability that the channel gets finalised with

an old state. However, watchtowers might still crash or get unresponsive without be-

ing penalised by the hiring party. Also, the reward mechanism is still unfair w.r.t. the

watchtower. Outpost [22] solves the issue of fairness towards the watchtower by paying

her per channel update.

35

36CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Table 5.1: Different Properties of the FPPW Scheme.

Bitcoin Agility Priv. ag. Priv. ag. Watch. 𝛼 𝛽
Support Watch. 3rd Party Fairness

Cerberus [23] Yes No - Weak Yes ≈ 1 ≈ 1
3

PISA [24] No Yes Weak Weak Yes Adj. 1
1+2𝛼

FPPW Yes No Weak Weak Yes ≈ 1 ≈ 1
2

Cerberus [23] and PISA [24] elegantly provide fairness w.r.t. the hiring party. However,

PISA fails to be deployed in cryptocurrencies with limited script languages such as Bit-

coin and Cerberus sacrificing the channel privacy against watchtower. In particular, the

Cerberus watchtower learns the distribution of funds in the channel. Thus, the main

motivation of this chapter is designing a watchtower scheme for Bitcoin that achieves

both: (1) fairness w.r.t. both the hired watchtower and her hiring party and (2) channel

privacy against the watchtower.

The contributions of this chapter are as follows:

• In Section 5.3, we present a new privacy-preserving payment channel with a

watchtower scheme for Bitcoin called FPPW, which is fair w.r.t. all channel

participants and allows the channel parties to go offline for a long period of time.

To be more precise, FPPW is an extension of a new variant of the Generalized

channel, called NVG, which is introduced in Section 5.3.2.1. Furthermore, in Sec-

tion 5.5, we prove that our design achieves fairness w.r.t. all channel participants

and unlike Cerberus, it provides weak privacy against the watchtower. We also

show that the coverage of FPPW is 1
2 which is better than that of Cerberus and

PISA. Table 5.1 summarises the mentioned properties for FPPW and compares it

with PISA and Cerberus.

• In Section 5.6, we propose a fee handling mechanism that allows the channel par-

ticipants to determine the fee for different transactions at the time when fraud

occurs. Furthermore, a proof-of-concept implementation of FPPW channels on

Bitcoin is provided in Section 5.9.

5.3 FPPW OVERVIEW 37

5.3 FPPW Overview

5.3.1 System Model

Cryptographic primitives that have been used in FPPW (i.e. digital signature, hard rela-

tion and adaptor signature as defined in Section 3.2) are cryptographically secure. There

is an authenticated and secure end-to-end communication channel between channel par-

ties. The watchtower and channel parties are rational and might deviate from the pro-

tocol if it increases their profit. Also, each pair of participants might collude with each

other if it raises the total profit of colluding participants. The watchtower is an always

online service provider, but channel parties can go offline for a long period (approxi-

mately 𝑇 rounds). Furthermore, the underlying blockchain contains a distributed ledger

that achieves security [56]. When a valid transaction is propagated in the blockchain net-

work, it is definitely included in the blockchain ledger immediately (i.e. the confirmation

delay Δ is 1).

Remark 5.1. FPPW channels can work with any confirmation delay. However, we assume
that the confirmation delay is 1 to simplify the protocol and its analysis.

5.3.2 Overview

A payment channel (as defined in Definition 4.1) contains a sequence of state updates

between two parties where only its first and last states are recorded on the blockchain.

The two channel parties process all the intermediate state updates off-chain. This elim-

inates the need to confirm every state update, i.e. every transaction, on the blockchain.

However, as one may submit an intermediate state (which is already revoked by a later

state) to the blockchain, the channel parties will need to get online frequently to mon-

itor and punish such misbehaviours. Such a requirement may be impractical for some

users. Thus, the watchtower is introduced as a third party to act on behalf of the channel

parties.

FPPW is a fair and privacy-preserving watchtower service for generalised channels [14].

The watchtower in an FPPW channel obtains no data on intermediate state updates. To

provide fairness towards the watchtower, the FPPW service rewards the watchtower for

channel creation and per channel update. Furthermore, to achieve fairness w.r.t. chan-

nel parties, the watchtower must lock some collateral, which can be redeemed by the

watchtower if the watchtower is responsive upon fraudulent channel closures. If the

watchtower is dishonest and the channel is closed at an old state, protocol guarantees

that the cheated party can penalise the watchtower by taking its collateral. Watchtower

can terminate its employment at any time. Then, the channel parties can update the

38CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

channel on-chain and hire a new watchtower or continue using the channel. In the

latter case, channel parties must get online frequently.

In the rest of this section, we will provide an overview of FPPW. To do that, we will

present a simple payment channel called NVG and then, we add a watchtower service

to NVG which is fair with respect to the hiring party. Finally, we make our solution fair

to the watchtower by allowing the watchtower to terminate its service.

5.3.2.1 NVG: A New Variant of the Generalized Channel

Fig. 5.1 depicts a New Variant of the Generalized channel [14], called NVG channel.

An NVG channel is created once channel parties publish a funding transaction on the

blockchain and hence fund a 2-of-2 multi-signature output1 on the ledger. The 𝑖th chan-

nel state includes a commit transaction TXCM,𝑖 as well as a split transaction TXSP,𝑖. The

commit transaction sends the channel funds to a new joint account which is shared be-

tween the channel parties. The output of the commit transaction has two sub-conditions.

The first sub-condition which is not time-locked, as we will explain later, is used for re-

vocation purposes. The second sub-condition is relatively time-locked by 𝑡 rounds with

𝑡 > Δ and is met by the corresponding split transaction. Split transaction distributes the

channel funds between the channel parties and hence represents the channel state.

The transaction TXCM,𝑖 requires signatures of both parties 𝐴 and 𝐵 to be published. To

generate 𝜎𝐵TXCM,𝑖 , party𝐴 generates a statement/witness pair (𝑌𝐴,𝑖, 𝑦𝐴,𝑖) and sends the state-

ment 𝑌𝐴,𝑖 to 𝐵. Then, party 𝐵 uses the pre-signing algorithm pSign of the adaptor sig-

nature and 𝐴’s statement 𝑌𝐴,𝑖 to generate a pre-signature 𝜎̃𝐵TXCM,𝑖 on [TXCM,𝑖] and sends

the pre-signature to 𝐴. Thus, whenever it is necessary, 𝐴 is able to use the adaptation

algorithm adapt of the adaptor signature to transform the pre-signature to the signature

𝜎𝐵TXCM,𝑖 and publish TXCM,𝑖 on-chain. This also enables 𝐵 to apply the extraction algorithm

Ext on the published signature and its corresponding pre-signature to extract the wit-

ness value 𝑦𝐴,𝑖. The witness value, as will be seen, allows the honest party to punish

the dishonest channel party by claiming all the channel funds, given that the published

commit transaction is already revoked.

As one may submit an intermediate state (which is already replaced by a later state) to

the blockchain, the channel parties will need to punish such misbehaviours. Thus, upon

channel update from state 𝑖 to 𝑖 + 1, a revocation transaction TXRV,𝑖 is created by parties.

Unlike the split transaction, the revocation transaction can immediately spend the out-

put of the corresponding commit transaction TXCM,𝑖 using its first sub-condition which

1An output that utilizes a script containing two public keys, requiring their corresponding signatures
for spending the output.

5.3 FPPW OVERVIEW 39

does not contain any time-lock. Thus, if the revoked commit transaction TXCM,𝑖 is pub-

lished by a channel party, let’s say 𝐴, party 𝐵 can immediately publish the revocation

transaction TXRV,𝑖. Moreover, since commit transactions are signed using the adaptor sig-

nature, once TXCM,𝑖 is published by 𝐴, the witness 𝑦𝐴,𝑖 is revealed to 𝐵. Thus, only 𝐵 who

knows both 𝑦𝐴,𝑖 and 𝑦𝐵,𝑖 can meet the condition 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 in the output of the revocation

transaction and hence 𝐵 will actually be the owner of all the channel funds. Broadcast

of the latest commit transaction does not pose any risk to its broadcaster because the

parties have not signed its corresponding revocation transaction yet.

Figure 5.1: NVG Channel Transactions Flow

5.3.2.2 Adding a Watchtower Service with Fairness w.r.t. the Hiring Party to
NVG

The watchtower in the introduced scheme is given the revocation transactions for the

revoked states and is supposed to publish the one whose corresponding commit trans-

action is published on the blockchain. However, such a watchtower service would be

unfair with respect to the hiring party as the watchtower might become unresponsive

upon fraud. To resolve this issue, the watchtower publishes a transaction called collat-
eral transaction TXCL and locks its collateral in a 3-of-3 multi-signature output shared

between channel parties and the watchtower. The value of the collateral 𝑐 equals the

channel capacity 𝑎 + 𝑏. If the watchtower does not appropriately act upon fraud, the

cheated party has this chance to publish a transaction called penalty transaction 1 TXPN1,𝑖
and take the watchtower’s collateral. In other words, if the revoked commit transaction

TXCM,𝑖 is published on the blockchain, either its corresponding revocation transaction

TXRV,𝑖 is published by the watchtower or split transaction TXSP,𝑖 and then penalty trans-

action 1 TXPN1,𝑖 are published by the cheating party and honest party, respectively.

As Fig. 5.2 shows, to deploy this, we add an auxiliary output with the least value sup-

ported by Bitcoin (denoted by 𝜖) to the commit transaction. If the watchtower is re-

sponsive, once the revoked commit transaction TXCM,𝑖 is published, the watchtower in-

stantly publishes the revocation transaction TXRV,𝑖 and invalidates both the split TXSP,𝑖
and penalty transaction 1 TXPN1,𝑖. Otherwise, the dishonest party, let’s say 𝐴, also pub-

lishes the split transaction and invalidates the revocation transaction. But 𝐵, who is

40CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

capable to extract 𝐴’s witness (i.e. 𝑦𝐴,𝑖), adds the required signatures to the penalty

transaction 1 TXPN1,𝑖 and publishes it on the blockchain. Penalty transaction 1 also spends

the collateral transaction’s output. The only output of the penalty transaction 1 TXPN1,𝑖
can be claimed by 𝐵 who knows both 𝑦𝐴,𝑖 and 𝑦𝐵,𝑖. Therefore, since the watchtower’s

collateral equals the channel capacity, 𝐵 will not lose any funds in the channel.

Figure 5.2: Adding a Fair Watchtower to NVG

5.3.2.3 Allowing Watchtower to Terminate its Service

Channel parties in the introduced scheme can go offline for any arbitrary period as the

watchtower cannot redeem its collateral without authorisation from both channel par-

ties. However, this would be unfair with respect to the watchtower because the watch-

tower’s collateral might be locked forever. Therefore, there must be a way for the watch-

tower to terminate its service. So, we add a transaction called reclaim transaction TXRC,𝑖
to our solution. Once the watchtower decides to terminate its service, it publishes the

reclaim transaction on-chain. Then, the watchtower can claim the reclaim transaction’s

output after 𝑇 rounds which is significantly larger than 𝑡 . We also add a penalty trans-

action 2 TXPN2,𝑖 to each revoked state. The only difference between this transaction and

penalty transaction 1 is that penalty transaction 2 spends the output of the reclaim trans-

action (rather than the collateral transaction’s output) as well as the auxiliary output of

the commit transaction. It means that while the output of the reclaim transaction is

unspent, the watchtower might be penalised by channel parties. So channel parties can

practically go offline for a long period (approximately 𝑇 rounds). Fig. 5.3 depicts the

transaction flows for the FPPW channel.

5.4 FPPW PROTOCOL DESCRIPTION 41

Figure 5.3: FPPW Channel Transaction flow

5.4 FPPW Protocol Description

The lifetime of an FPPW channel can be divided into 5 phases including create, update,
close, react and terminate. We explain these phases in the following sections. The first

three phases (create, update and close) correspond to different phases of a payment chan-

nel as defined in Definition 4.1. A watchtower scheme is also integrated into the FPPW

design. The phases create, update and react in an FPPW channel respectively correspond

to the phases start, update and react of a watchtower as defined in Definition 4.4. Also,

both phases close and terminate in an FPPW channel lead to the watchtower termination

as defined in Definition 4.4. Table 5.2 summarises the mentioned correspondences.

The cryptographic primitives, used in these phases, are as follows: A digital signature

scheme Π = (Gen, Sign,Vrfy); a hard relation ℛ with generating algorithm GenR =
Gen; an adaptor signature scheme ΞΠ,ℛ = (pSign, pVrfy,Adapt, Ext). The more de-

tailed definitions of these cryptographic primitives can be found in Section 3.2. We

assume that the watchtower is hired by both channel parties. However, FPPW can be

simply extended to situations where only one party hires the watchtower. FPPW for

such scenarios will be presented in Section 5.10.

42CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Table 5.2: Different Phases of an FPPW Channel

FPPW Phases Payment Channel Phases Watchtower Phases
Create Create Start
Update Update Update
Close Close Terminate
React - React

Terminate - Terminate

5.4.1 Create

FPPW channel creation phase includes a funding transaction, a commit transaction and

a split transaction. The funding transaction locks funds of the channel parties in a 2-

of-2 multi-signature output and can be claimed only if both parties agree and cooperate

with each other. The commit transaction is held by both channel parties and sends all the

channel funds to a joint account that can be spent by the corresponding split transaction

after 𝑡 rounds. The split transaction actually represents the channel state and distributes

the channel funds between the channel parties. The quantity 𝑡 , which represents the

dispute period, exists to ensure that there is enough time for punishing the dishonest

channel party in the case of fraud (i.e. if the published commit transaction corresponds

with a revoked state). Parties finally publish the funding transaction on the blockchain

to create the channel. However, since its output can be spent if both parties cooperate,

one party might lock the funds by being unresponsive. To avoid such situations, before

signing and publishing the funding transaction, both channel parties must sign commit

and split transactions.

Additionally, two other transactions are created in this phase: (1) the collateral transac-

tion and (2) the reclaim transaction. These two are used for watchtower services. Using

the collateral transaction, the watchtower locks its collateral in a 3-of-3 multi-signature

output shared between channel parties and the watchtower. Collateral is awarded to

the cheated channel party if the watchtower does not appropriately act upon fraud. The

value of the collateral equals the channel capacity. Using the reclaim transaction, the

watchtower can start the process of reclaiming its collateral. The watchtower can finally

redeem its collateral by claiming the output of the reclaim transaction after a large rel-

ative time-lock of 𝑇 rounds with 𝑇 ≫ 𝑡 which is called the penalty period. If channel

parties get online at least once every 𝑇 − 1 rounds, they will always have enough time

to take the dishonest watchtower’s collateral as compensation and prevent an unrespon-

sive watchtower from redeeming its collateral. However, if the honest watchtower has

published the reclaim transaction to withdraw its service, channel parties will have two

options. They can either update the channel on-chain with a new watchtower or remain

5.4 FPPW PROTOCOL DESCRIPTION 43

almost always online to prevent fraudulent channel closures. The collateral transaction

is finally recorded on-chain. However, to avoid any hostage situation, before publishing

the collateral transaction, the watchtower must receive the channel parties’ signatures

on the reclaim transaction.

All the above-mentioned transactions are further explained hereinafter.

• Funding transaction: Using this transaction, channel parties 𝐴 and 𝐵 open an

FPPW channel. If 𝐴 (𝐵, respectively) uses the 𝑥 th (𝑦 th, respectively) output of

a transaction with transaction identifier of 𝑡𝑥𝑖𝑑𝐴 (𝑡𝑥𝑖𝑑𝐵, respectively) to fund the

channel with 𝑎 (𝑏, respectively) coins, the funding transaction is as follows2:

TXFU.Input ∶= (𝑡𝑥𝑖𝑑𝐴‖𝑥, 𝑡𝑥𝑖𝑑𝐵‖𝑦),
TXFU.Output ∶= {(𝑎 + 𝑏 + 𝜖, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵)},
TXFU.Witness ∶= ((1, 𝜎𝐴,1TXFU

), (1, 𝜎𝐵,2TXFU
)). (5.1)

where 𝜖 is the minimum value supported by the Bitcoin blockchain and 𝑎 and

𝑏 are the initial balance of 𝐴 and 𝐵 in the channel (regardless of the negligible

value 𝜖/2). In other words, 𝐴 and 𝐵 fund the channel with 𝑎 + 𝜖/2 and 𝑏 + 𝜖/2,
respectively. Output of TXFU is a 2-of-2 multi-signature output shared between

𝐴 and 𝐵. The public keys 𝑝𝑘𝐴 and 𝑝𝑘𝐵 of 𝐴 and 𝐵 are generated using the key

generation algorithm of the underlying digital signature Gen.

• Commit transaction: There exists one commit transaction per state but only

the first one (TXCM,𝑖 with 𝑖 = 0) is created at the channel create phase. TXCM,𝑖 is as

follows:

TXCM,𝑖.Input ∶= TXFU.txid‖1,
TXCM,𝑖.Output ∶= ((𝑎 + 𝑏, 𝜑1 ∨ 𝜑2),

(𝜖, 𝜑′1 ∨ 𝜑′2 ∨ 𝜑′3))
TXCM,𝑖.Witness ∶= {(1, {𝜎𝐴TXCM,𝑖 , 𝜎𝐵TXCM,𝑖})} (5.2)

with 𝜑1 ∶= 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑡+, 𝜑2 ∶= 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑝𝑘𝑊 , 𝜑′1 ∶= 𝑝𝑘𝐵 ∧ 𝑌𝐴,𝑖 ∧ 𝑡+, 𝜑′2 ∶=
𝑝𝑘𝐴∧𝑝𝑘𝐵∧𝑝𝑘𝑊 and 𝜑′3 ∶= 𝑝𝑘𝐴∧𝑌𝐵,𝑖∧𝑡+ where 𝑌𝐴,𝑖 and 𝑌𝐵,𝑖 are statements of a hard

relation ℛ generated by 𝐴 and 𝐵 for the 𝑖th state using the generating algorithm

GenR and 𝑡+ shows relative time-lock of 𝑡 rounds. The first output with a value of

𝑎 + 𝑏 is the main output. Normally, if parties act honestly and TXCM,𝑖 is published

2We assume that funding sources of TXFU are two typical UTXOs owned by 𝐴 and 𝐵.

44CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

on-chain, the first sub-condition of its main output (𝑝𝑘𝐴 ∧𝑝𝑘𝐵 ∧ 𝑡+) is met by TXSP,𝑖
after 𝑡 rounds. The second output of TXCM,𝑖 with a value of 𝜖 is the auxiliary output,

which as will be explained in Section 5.4.2, is only used for watchtower purposes.

The transaction TXCM,𝑖 requires signatures of both parties 𝐴 and 𝐵 to be published.

To sign the commit transaction TXCM,𝑖, each party uses their counterparty’s state-

ment to generate a pre-signature on the commit transaction for their counterparty.

Then, each party can use the corresponding witness to adapt the pre-signature,

received from their counterparty to a valid digital signature on the commit trans-

action. So, if the commit transaction TXCM,𝑖 is published by 𝐴, the witness 𝑦𝐴,𝑖 is
revealed to 𝐵 and vice versa. The witness value, as will be seen in Section 5.4.2,

might be used to penalise the dishonest channel party or the unresponsive watch-

tower.

Remark 5.2. 𝐴 has two public keys in the first output of TXCM,𝑖, which for simplicity,
we denote them both by 𝑝𝑘𝐴. However, in practice, such public keys are selected
dis-jointly. This is also extended to other participants and other outputs.

• Split transaction: TXSP,𝑖 actually represents the 𝑖th channel state where only the

first one (TXSP,𝑖 with 𝑖 = 0) is created in the channel create phase. This transaction

is as follows:

TXSP,𝑖.Input ∶= (TXCM,𝑖.txid‖1),
TXSP,𝑖.Output ∶= (𝜃1, 𝜃2, ⋯),
TXSP,𝑖.Witness ∶= ((1, {𝜎𝐴TXSP,𝑖 , 𝜎𝐵TXSP,𝑖}) (5.3)

The TXSP,𝑖 spends the main output of TXCM,𝑖 by meeting the sub-condition 𝑝𝑘𝐴 ∧
𝑝𝑘𝐵 ∧ 𝑡+.

• Collateral transaction: TXCL locks the collateral of the watchtower on-chain and

its output can be spent if 𝐴, 𝐵 and𝑊 cooperate. The collateral value 𝑐 equals 𝑎 +𝑏.
If 𝑊 uses the 𝑧th output of a transaction with transaction identifier of 𝑡𝑥𝑖𝑑𝑊 to

lock 𝑐 coins, the collateral transaction TXCL would be defined as follows:

TXCL.Input ∶= (𝑡𝑥𝑖𝑑𝑊 ‖𝑧),
TXCL.Output ∶= {(𝑐, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑝𝑘𝑊)},
TXCL.Witness ∶= {(1, 𝜎𝑊,1

TXCL
)}. (5.4)

5.4 FPPW PROTOCOL DESCRIPTION 45

• Reclaim transaction: This transaction spends the output of TXCL and its output

can be spent by𝐴, 𝐵 and𝑊 if they cooperate or by𝑊 after a long relative time-lock

period. The TXRC is defined as follows:

TXRC.Input ∶= TXCL.txid‖1),
TXRC.Output ∶= {(𝑐, (𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑝𝑘𝑊) ∨ (𝑝𝑘𝑊 ∧ 𝑇+))},
TXRC.Witness ∶= {(1, (𝜎𝐴,1TXRC

, 𝜎𝐵,1TXRC
, 𝜎𝑊,1

TXRC
))}. (5.5)

The second sub-condition in the output is used by the watchtower to redeem its

collateral after 𝑇 rounds and terminate its service. However, as will be mentioned

in the following sections, the first sub-condition is used to penalise the unrespon-

sive watchtower.

Fig. 5.4 summarises the channel create phase. Section 5.7 provides details of the corre-

sponding protocol.

5.4.2 Update

Assume that an FPPW channel is in state 𝑖 with 𝑖 ≥ 0 and channel parties decide to

update it from state 𝑖 to 𝑖+1. This is performed in two sub-phases. In the first sub-phase,

channel parties create a new commit transaction and a new split transaction for the new

state. However, to avoid any hostage situation, they sign the split transaction before

signing the commit transaction. In the second sub-phase, channel parties revoke the

previous state by signing one revocation and two penalty transactions. At most one out

of these three transactions might be published on-chain upon fraud (i.e. upon broadcast

of the revoked commit transaction). While the revocation transaction might be used to

penalise the cheating channel party, penalty transactions might be utilised for punishing

the dishonest watchtower.

The revocation transaction is the only transaction that spends both outputs of the re-

voked commit transaction using their non-time-locked sub-conditions 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑝𝑘𝑊 .

Thus, once a dishonest channel party publishes the revoked commit transaction, the

watchtower or the counterparty can immediately publish the revocation transaction. It

invalidates both penalty transactions because they also spend the auxiliary output of the

revoked commit transaction. The single output of the revocation transaction is spend-

able by someone who knows the witness value 𝑦 of both channel parties (i.e. party 𝐴
can claim it if party 𝐵 has published the revoked commit transaction and vice versa).

Now assume that a dishonest channel party publishes the revoked commit transaction

but the watchtower does not react in time. Then the dishonest channel party might also

46CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Figure 5.4: A summary of FPPW Channel Create.

publish the corresponding split transaction after 𝑡 rounds. This spends the main output

of the revoked commit transaction and invalidates the revocation transaction. However,

since the honest channel party go offline for at most 𝑇 − 1 rounds, it gets online when

the watchtower has not completed reclaiming its collateral yet (i.e. the watchtower has

not broadcast the reclaim transaction or has not spent its output yet). Thus, the honest

party can publish one of two penalty transactions. Both penalty transactions spend the

auxiliary output of the revoked commit transaction as well as the output of collateral

and reclaim transactions, respectively. Similar to the revocation transaction, only the

honest cheated party can claim the output of the published penalty transaction.

The introduced transactions will be explained further below:

5.4 FPPW PROTOCOL DESCRIPTION 47

• Revocation transaction: When parties𝐴 and 𝐵want to revoke TXCM,𝑖, each chan-

nel participant (𝐴, 𝐵 and 𝑊) generates all the required signatures for the revoca-

tion transaction TXRV,𝑖 and sends the signatures to other two participants. TXRV,𝑖 is
as follows:

TXRV,𝑖.Input ∶= (TXCM,𝑖.txid‖1, TXCM,𝑖.txid‖2),
TXRV,𝑖.Output ∶= (𝑎 + 𝑏 + 𝜖, 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖),
TXRV,𝑖.Witness ∶= ((2, (𝜎𝐴,1TXRV,𝑖 , 𝜎

𝐵,1
TXRV,𝑖 , 𝜎

𝑊,1
TXRV,𝑖)), (2, (𝜎

𝐴,2
TXRV,𝑖 , 𝜎

𝐵,2
TXRV,𝑖 , 𝜎

𝑊,2
TXRV,𝑖))) (5.6)

The TXRV,𝑖 spends both outputs of TXCM,𝑖 using the non-time-locked sub-condition

𝑝𝑘𝐴 ∧𝑝𝑘𝐵 ∧𝑝𝑘𝑊 and sends all the channel funds to output with condition 𝑌𝐴,𝑖 ∧𝑌𝐵,𝑖.
When a dishonest party, let’s say 𝐴, publishes the revoked TXCM,𝑖, 𝐴 must wait for

𝑡 rounds before being able to publish TXSP,𝑖. However, 𝑊 or 𝐵 can immediately

publish TXRV,𝑖. Since TXCM,𝑖 has been published by 𝐴, party 𝐵 can obtain 𝑦𝐴,𝑖. Thus,
only party 𝐵 who knows both 𝑦𝐴,𝑖 and 𝑦𝐵,𝑖 will own all the channel funds.

• Penalty transaction 1: The penalty transaction 1 TXPN1,𝑖 is used to penalise 𝑊 ,

given that a dishonest party publishes TXCM,𝑖 and spends its main output using

TXSP,𝑖. The TXPN1,𝑖 is defined as follows:

TXPN1,𝑖.Input ∶= (TXCM.txid, TXCL.txid‖1),
TXPN1,𝑖.Output ∶= (𝑐 + 𝜖, 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖),
TXPN1,𝑖.Witness ∶= (𝑊1, (1, (𝜎𝐴,2TXPN1,𝑖

, 𝜎𝐵,2TXPN1,𝑖
, 𝜎𝑊,2

TXPN1,𝑖
))) (5.7)

where 𝑊1 ∶= (1, (𝜎𝐵,1TXPN1,𝑖
, 𝑦𝐴,𝑖)) given that broadcaster of TXCM,𝑖 is 𝐴 or 𝑊1 ∶=

(3, (𝜎𝐴,1TXPN1,𝑖
, 𝑦𝐵,𝑖)) otherwise. When parties want to revoke TXCM,𝑖, 𝐴 and 𝑊 (𝐵 and

𝑊) compute the required signatures for the second input of TXPN1,𝑖 and send the

signatures to 𝐵 (𝐴). Now assume that one party, let’s say 𝐴, publishes the revoked

TXCM,𝑖 and spends its main output after 𝑡 rounds. Then, 𝐵 obtains 𝑦𝐴,𝑖 and hence

can add the witness 𝑊1 to TXPN1,𝑖 and publish it, given that TXCL.Output is still

unspent. Then, the transaction TXPN1,𝑖 spends the second output of TXCM,𝑖 using
the time-locked sub-condition 𝑝𝑘𝐵 ∧ 𝑌𝐴,𝑖 ∧ 𝑡+ as well as the output of the collateral

transaction. Only 𝐵 can claim output of TXPN1,𝑖. A similar scenario occurs if 𝐵 is

the broadcaster of TXCM,𝑖.

• Penalty transaction 2: There exists one penalty transaction 2 TXPN2,𝑖 per state. It
is exactly the same as TXPN1,𝑖, with the only difference that it spends TXRC.Output

48CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

(rather that TXCL.Output) using the sub-condition 𝑝𝑘𝐴∧𝑝𝑘𝐵∧𝑝𝑘𝑊 . Thus, it is useful

for cases where the watchtower does not react upon fraud but by publishing TXRC

tries to reclaim its collateral. However, since the honest party goes offline for at

most 𝑇 − 1 rounds, it gets online when TXRC.Output is still unspent. Thus, the

honest party can add the required witness to [TXPN2,𝑖] and publish it. The TXPN2,𝑖 is
defined as follows:

TXPN2,𝑖.Input ∶= (TXCM,𝑖.txid, TXRC.txid‖1),
TXPN2,𝑖.Output ∶= (𝑐 + 𝜖, 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖),
TXPN2,𝑖.Witness ∶= (𝑊1, (1, (𝜎𝐴,2TXPN2,𝑖

, 𝜎𝐵,2TXPN2,𝑖
, 𝜎𝑊,2

TXPN2,𝑖
))) (5.8)

where 𝑊1 ∶= (1, (𝜎𝐵,1TXPN2,𝑖
, 𝑦𝐴,𝑖)) given that broadcaster of TXCM,𝑖 is 𝐴 or 𝑊1 ∶=

(3, (𝜎𝐴,1TXPN2,𝑖
, 𝑦𝐵,𝑖)) otherwise..

Fig. 5.5 summarises the channel update phase. Section 5.7 provides details of the corre-

sponding protocol.

Remark 5.3. Watchtower is actively involved in steps 6 and 7 of the channel update phase
(See Fig. 5.5). Therefore, this phase fails to complete if the watchtower is unavailable. Sec-
tion 5.8 introduces an update protocol for such scenarios.

5.4.3 Close

Assume that the channel parties 𝐴 and 𝐵 have updated their channel 𝑛 times and then 𝐴
and/or 𝐵 decide to close it. They can close the channel cooperatively. To do so, 𝐴 and 𝐵
create a new transaction, called modified split transaction TX

SP
, and publish it on-chain.

The TX
SP

is defined as follows:

TX
SP
.Input ∶= (TXFU,𝑖.txid‖1),

TX
SP
.Output ∶= (𝜃1, 𝜃2, ⋯),

TX
SP
.Witness ∶= ((1, (𝜎𝐴TXSP , 𝜎

𝐵
TXSP

)) (5.9)

Outputs of this transaction might be similar to those for TXSP,𝑛. Note that the value of

auxiliary output of TXCM,𝑛 (𝜖) can also be given to 𝐴 and 𝐵 (𝜖/2 each) through outputs of

TX
SP
. If one of the channel parties gets unresponsive, its counterparty can still close the

channel non-collaboratively by publishing TXCM,𝑛 and then TXSP,𝑛 on-chain. The collabo-

rative and non-collaborative channel closure protocols can be found in Section 5.7.

5.4 FPPW PROTOCOL DESCRIPTION 49

Figure 5.5: FPPW Channel Update.

5.4.4 React

It is always possible that a channel party publishes a revoked commit transaction TXCM,𝑖
on-chain. Then, the watchtower or the counterparty publishes the corresponding re-

vocation transaction within 𝑡 − 1 rounds. Only the honest counterparty can claim the

output of the revocation transaction. If the watchtower is unresponsive and the honest

party is offline, a malicious party can publish a revoked commit transaction TXCM,𝑖 with

𝑖 < 𝑛 and its corresponding split transaction TXSP,𝑖 on-chain. Then the honest party,

who gets online once every 𝑇 − 1 rounds, can penalise the unresponsive watchtower by

50CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

publishing either TXPN1,𝑖 or TXPN2,𝑖. Protocols for these scenarios can be found in Section

5.7.

5.4.5 Watchtower Terminate

In this phase, 𝑊 decides to terminate its employment. To do that, 𝑊 publishes TXRC and

spends its output after 𝑇 rounds. Since 𝐴 and 𝐵 do not go offline for more than 𝑇 − 1
rounds, they get online during this 𝑇 -round interval and observe that TXRC is on the

chain. Then parties can close the channel and open a new one with a new watchtower.

Parties can also continue using this channel without any watchtower. To do so, channel

parties must check the blockchain at least once every 𝑡 − 1 rounds to prevent fraudulent

channel closures. New channel updates can be performed according to the Generalized

channels [14] or its new variant introduced in Section 5.3.2.1.

5.5 Security Analysis

In this section, we analyse privacy and coverage of FPPW protocol through Theorems

5.1 and 5.2, respectively. Then, we analyse the fairness of FPPW through Theorem 5.3.

Theorem 5.1. FPPW provides weak privacy against watchtower as defined in Defini-
tion 4.6.

Proof. Assume that the conditions mentioned in the two-stage privacy game (see Section

4.3.2) are satisfied. By observing different steps and transactions of the protocol, one can

see that only split transactions contain information on 𝑥𝐴,𝑖 and 𝑥𝐵,𝑖 with 𝑖 ∈ [1, 𝑛 − 1].
However, these transactions are never published on-chain or sent to the watchtower or

any external entity. Other transactions in the protocol contain no information regard-

ing 𝑥𝐴,𝑖 or 𝑥𝐵,𝑖 with 𝑖 ∈ [1, 𝑛 − 1]. Note that the monetary value of outputs of TXCM,𝑖,
TXRV,𝑖, TXPN1,𝑖, TXPN2,𝑖, TXCL, and TXRC of the first payment channels are the same as those

for the second one. Furthermore, TXFU, TXSP,𝑛 or TX
SP

contain no information regard-

ing the 𝑖th channel state with 𝑖 ∈ [1, 𝑛 − 1]. Thus, the view of any adversary 𝒜 on

(x𝐴,[1,𝑛−1],x𝐵,[1,𝑛−1]) is indistinguishable from its view on (x𝐴′,[1,𝑛−1],x𝐵′,[1,𝑛−1]).

Theorem 5.2. FPPW provides 𝛽-coverage with 𝛽 = 1/2 based on Definition 4.11.

Proof. Assume that we have 𝑁 payment channels, with channel capacities 𝑋𝑖 = 𝑎𝑖 + 𝑏𝑖,
𝑖 ∈ [1, 𝑁]. Thus, the total capacity of the channels is 𝒳 = ∑𝑁

𝑖=1 𝑋𝑖. Since the 𝑖th channel

collateral 𝑐𝑖 equals 𝑎𝑖 + 𝑏𝑖, the total watchtower collateral is 𝒞 = ∑𝑁
𝑖=1 𝑐𝑖 = ∑𝑁

𝑖=1 𝑋𝑖 = 𝒳 .

Thus, we have 𝛽 = 𝒳
𝒳+𝒞 = 1/2.

5.5 SECURITY ANALYSIS 51

As mentioned earlier, Theorem 5.3 analyses the fairness of FPPW. Lemmas 5.1 and 5.2

are utilised to prove this theorem. They show how FPPW guarantees that funds of the

honest channel party and the honest watchtower are safe in the channel. We first prove

Lemmas 5.1 and 5.2 and then, considering these two lemmas, we prove Theorem 5.3.

Lemma 5.1. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. For an FPPW channel, assume that the honest channel
party 𝑃 ∈ {𝐴, 𝐵} checks the blockchain at the end of the channel creation phase and then
gets online periodically with a period of at most 𝑇 − 1 rounds. The probability that 𝑃 loses
any funds in the channel is negligible.

Proof. Without loss of generality let 𝑃 = 𝐴. Based on Lemma 5.4, 𝐴 does not lose any

funds with non-negligible probability unless a revoked commit transaction is published

on-chain. However, at the end of the channel creation phase, no revoked commit transac-

tion TXCM,𝑖 exists to be published on-chain. Furthermore, the channel creation completes

once TXCL is recorded on-chain and since TXRC spends the output of TXCL, right after the

end of the channel create phase, neither a revoked commit transaction nor the reclaim

transaction is on-chain. Now according to assumptions, 𝐴 checks the chain at the end

of the channel create phase and goes offline for at most 𝑇 −1 rounds. The next time that

𝐴 gets online, there will be 4 possibilities regarding the broadcast of a revoked TXCM,𝑖 or
TXRC during the time interval when 𝐴 has been offline:

1. Only TXRC has been published on-chain,

2. Both a revoked TXCM,𝑖 and TXRC have been published,

3. Only a revoked TXCM,𝑖 has been published, or

4. neither a revoked TXCM,𝑖 nor TXRC has been published.

For the first 3 possibilities, based on Lemmas 5.5, 5.6, and 5.7, the probability that𝐴 loses

any funds is negligible. For the 4th possibility, the condition set is the same as the end

of the channel create phase when neither a revoked commit transaction nor the reclaim

transaction was on the blockchain. Therefore, since 𝐴 will again go offline for at most

𝑇 − 1 rounds, the whole process repeats.

Lemma 5.2. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and
Ξ be a secure adaptor digital signature. For an FPPW channel, assume that the honest
watchtower 𝑊 checks the blockchain at the end of the channel creation phase and then
remains online. The probability that 𝑊 loses any funds in the channel is negligible.

52CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Proof. Based on Lemma 5.8, 𝑊 does not lose any funds with non-negligible probability

unless a revoked commit transaction and then at least 𝑡 rounds later its corresponding

TXPN1,𝑖 or TXPN2,𝑖 are published. However, at the end of the channel create phase, no

revoked commit transaction exists to be published yet. Also, following our assumptions,

𝑊 remains online after the channel create phase. Now assume that a revoked TXCM,𝑖 is
published through the block ℬ𝑗 . The time-locked sub-conditions of outputs of TXCM,𝑖
cannot be met within 𝑡 − 1 rounds. Also, meeting the non-time-locked sub-conditions of

the first and second output of TXCM,𝑖 requires 𝑊 ’s signature and 𝑊 does not grant such

authorisations on any transaction other than TXRV,𝑖. Thus, once TXCM,𝑖 is published on the

chain, due to our assumption regarding the security of the underlying digital signature,

it is of negligible probability that any adversary 𝒜 spends the first or second output

of TXCM,𝑖 within 𝑡 − 1 rounds using any transaction other than TXRV,𝑖. Furthermore, 𝑊
has received TXRV,𝑖 (through step 6 of the channel update phase from state 𝑖 to 𝑖 + 1 in

Fig. 5.5), before giving authorisation on the second input of TXPN1,𝑖 or TXPN2,𝑖 (through
step 7 of the channel update phase from state 𝑖 to 𝑖 + 1 in Fig. 5.5). Thus, once TXCM,𝑖
is published, 𝑊 can publish TXRV,𝑖 through one of the blocks ℬ𝑗+1⋯ℬ𝑗+𝑡−1, meaning

that the honest watchtower has at least 𝑡 − 1 rounds time to publish TXRV,𝑖, which is

enough based on our blockchain assumptions regarding the value of the confirmation

delay. Following Lemma 5.9, it is of negligible probability that broadcast of TXRV,𝑖 causes
the honest watchtower 𝑊 to lose any funds in the channel.

Theorem 5.3. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and
Ξ be a secure adaptor digital signature. FPPW provides channel party 𝛼-fairness with 𝛼 = 1
and watchtower fairness as defined in Definition 4.9 and 4.10, respectively.

Proof. The honest channel party always have at least one non-revoked commit trans-

action and its corresponding split transaction by broadcasting which she can close the

channel. This proves that FPPW meets the first requirement of Definition 4.9. Further-

more, we know that based on FPPW protocol, the honest channel party checks the chain

at least once every 𝑇 −1 round and according to Lemma 5.1, the probability that the hon-

est channel party loses any funds in the channel is negligible. This proves that FPPW

provides channel party 𝛼-fairness with 𝛼 = 1.
The watchtower in FPPW is paid for channel creation and each channel update and

hence her reward amount is non-zero. Also, we know that based on FPPW protocol, the

honest watchtower always remains online and according to Lemma 5.2, the probability

that such an honestwatchtower loses any funds in the channel is negligible. Additionally,

the watchtower can publish TXRC at any time and redeem her collateral after 𝑇 rounds.

Thus, FPPW meets both requirements of Definition 4.10.

5.5 SECURITY ANALYSIS 53

Lemma 5.3. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. For an FPPW channel, it is of negligible probability
that broadcast of TXRV,𝑖, TXPN1,𝑖 or TXPN2,𝑖 causes the honest channel party 𝑃 ∈ {𝐴, 𝐵} to lose
any funds in the channel.

Proof. Without loss of generality let 𝑃 = 𝐴. The transaction TXRV,𝑖 spends the main out-

put of the revoked TXCM,𝑖 and hence cannot be published unless TXCM,𝑖 is on-chain. Based
on the protocol, the honest party 𝐴 never broadcasts the revoked TXCM,𝑖 on-chain. The

party𝐴 only creates the pre-signature 𝜎̃CM,𝑖 on the transaction TXCM,𝑖. Thus, if TXCM,𝑖 is pub-
lished, the probability that 𝐴 fails to obtain 𝑦𝐵,𝑖 is negligible. Otherwise, aEUF − CMA

security or witness extractability of the used adaptor signature is violated. Furthermore,

TXRV,𝑖 has only one output with the condition of 𝑌𝐴,𝑖∧𝑌𝐵,𝑖 and the value of 𝑎+𝑏+𝜖. Since𝐴
privately preserves its witness value 𝑦𝐴,𝑖, the probability that any PPT adversary claims

TXRV,𝑖.Output is negligible. Otherwise, the utilised hard relation would break. There-

fore, it is of negligible probability that 𝐴 (who knows both 𝑦𝐴,𝑖 and 𝑦𝐵,𝑖) fails to claim

TXRV,𝑖.Output.
Also transactions TXPN1,𝑖 and TXPN2,𝑖 spend the auxiliary output of TXCM,𝑖 as well as output

of TXCL and TXRC, respectively. These transactions have one output with the condition

of 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 and the value of 𝑐 + 𝜖 = 𝑎 + 𝑏 + 𝜖. Since output condition for TXPN1,𝑖 and
TXPN2,𝑖 is the same as that of TXRV,𝑖, the proof for TXPN1,𝑖 and TXPN2,𝑖 is also similar to that

of TXRV,𝑖.

Remark 5.4. Before stating the next Lemma, it must be noted that while the channel update
phase from state 𝑖 to 𝑖 + 1 is incomplete yet, it is possible that TXCM,𝑖+1 is published on-chain
and 𝑡 rounds later TXSP,𝑖+1 is also broadcast. In such situations, we assume that the channel
party does not lose any funds in the channel even if her counterparty’s balance in state 𝑖 + 1
is larger than that of state 𝑖. In other words, it is assumed that during steps 6 and 7 of the
channel update phase (see Fig. 5.5), there are two valid channel states where channel closure
with each one does not cause the honest party to lose any funds in the channel. A similar
assumption is also made for other payment channels of type replace by revocation [15, 14].

Lemma 5.4. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. For an FPPW channel with 𝑛 channel updates, it is of
negligible probability that the honest party 𝑃 ∈ {𝐴, 𝐵} loses any funds using any scenario
other than the broadcast of TXCM,𝑖 with 𝑖 < 𝑛.

Proof. Without loss of generality let 𝑃 = 𝐴. Funds of 𝐴 are locked in TXFU.Output. It is
of negligible probability that any PPT adversary 𝒜 spends the output of TXFU without

the honest party𝐴’s authorisation. Otherwise, the underlying digital signature would be

forgeable. Furthermore, TX
SP
, TXCM,𝑖 with 𝑖 = [0, 𝑛−1], TXCM,𝑛 and possibly TXCM,𝑛+1 (given

54CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

that channel update phase from state 𝑛 to 𝑛 + 1 has started) are the only transactions in

the protocol that spend the output of TXFU and 𝐴 grants authorisation for. Thus, these

transactions will be discussed further to see how each one of them can cause the honest

party 𝐴 to be cheated out of its funds.

Since TX
SP

represents the final agreed state of the channel, its broadcast cannot cause𝐴 to

lose any funds in the channel. Additionally, since both sub-conditions in themain output

of TXCM,𝑛 include 𝑝𝑘𝐴, due to our assumption regarding the security of the underlying

digital signature, it is of negligible probability that the main output of TXCM,𝑛 is spent

without𝐴’s authorisation. Since TXSP,𝑛 is the only transaction in the protocol that spends

the main output of TXCM,𝑛 and 𝐴 grants authorisation for, the probability of spending the

main output of TXCM,𝑛 using any transaction other than TXSP,𝑛 is negligible. However,

since TXSP,𝑛 also represents the final state of the channel, its broadcast cannot cause 𝐴 to

lose any funds. According to Remark 5.4, similar statements can be stated for TXCM,𝑛+1
and TXSP,𝑛+1. Thus, cheating the honest party𝐴 using any scenario other than broadcast

of TXCM,𝑖 with 𝑖 < 𝑛 is of negligible probability.

Case 1. Let there exist an FPPW channel with 𝑛 channel updates where 𝑛 ≥ 0. Assume

that the honest channel party 𝑃 ∈ {𝐴, 𝐵} gets online when the last published block on

the blockchain is ℬ𝑗 . Party 𝑃 observes that TXCM,𝑖 is unpublished but TXRC has been

published through the block ℬ𝑘 with 𝑘 ≤ 𝑗.

Lemma 5.5. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. If conditions of Case 1 are satisfied, the probability
that 𝑃 loses any funds in the channel is negligible.

Proof. Without loss of generality let 𝑃 = 𝐴. If party 𝐴 checks the blockchain and ob-

serves that TXCM,𝑖 is unpublished but TXRC has been published, 𝐴 can get online period-

ically with a period of at most 𝑡 − 1 rounds. Based on Lemma 5.4, if 𝐴 is going to lose

some funds in the channel with non-negligible probability, the PPT adversary 𝒜 must

publish TXCM,𝑖 with 𝑖 < 𝑛 through the block ℬ𝑘 with 𝑘 > 𝑗. It must be noted that since

the next time that 𝐴 gets online again,ℬ𝑗+𝑡−1 is the latest block on the blockchain, if we

have 𝑘 > 𝑗 + 𝑡 − 1, all the conditions mentioned for Case 1 repeat with 𝑗 being replaced

with 𝑗 + 𝑡 − 1. Thus, we assume that we have 𝑗 < 𝑘 ≤ 𝑗 + 𝑡 − 1.
time-locked sub-conditions of outputs of TXCM,𝑖 cannot be met within 𝑡 − 1 rounds. Also,

their non-time-locked sub-conditions include 𝑝𝑘𝐴. Therefore, it is of negligible proba-

bility that any adversary spends the first or the second output of TXCM,𝑖 through one of

the blocksℬ𝑘+1, ⋯ ,ℬ𝑘+𝑡−1 without the honest party 𝐴’s authorisation. Otherwise, the

underlying digital signature would break. However, 𝐴 never grants such authorisations

5.5 SECURITY ANALYSIS 55

on a transaction other than TXRV,𝑖. Furthermore, the honest party 𝐴 has created TXRV,𝑖
through step 6 of the channel update phase from state 𝑖 to 𝑖 + 1 (See Fig. 7). When 𝐴
gets online the last block on the blockchain is ℬ𝑗+𝑡−1. Thus, 𝐴 is able to publish TXRV,𝑖
through one of the blocks ℬ𝑗+𝑡 , ⋯ ,ℬ𝑘+𝑡−1. Since we have 𝑘 − 𝑗 ≥ 1, 𝐴 always have at

least 1 block time to publish TXRV,𝑖, which is enough based on our blockchain assump-

tion regarding the value of the confirmation delay. Also, according to Lemma 5.3, it is

of negligible probability that broadcast of TXRV,𝑖 causes the honest party 𝐴 to lose any

funds in the channel.

Case 2. Let there exist an FPPW channel with 𝑛 channel updates where 𝑛 ≥ 0. Assume

that the honest channel party 𝑃 ∈ {𝐴, 𝐵} gets online when the last published block on the

blockchain is ℬ𝑗 . Party 𝑃 observes that TXCM,𝑖 with 𝑖 < 𝑛 and TXRC have been published

on-chain through the blocks ℬ𝑘 and ℬ𝑙 respectively with 𝑘, 𝑙 ≤ 𝑗 and 𝑗 + 1 < 𝑙 + 𝑇 .

Lemma 5.6. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. If conditions of Case 2 are satisfied, the probability
that 𝑃 loses any funds in the channel is negligible.

Proof. Without loss of generality let 𝑃 = 𝐴. All sub-conditions of auxiliary output of

TXCM,𝑖 include either 𝑝𝑘𝐴 or 𝑌𝐴,𝑖. Thus, it is of negligible probability that any PPT adver-

sary𝒜 spends this output of TXCM,𝑖 without𝐴’s authorisation. Otherwise, the underlying

digital signature or the hard relation would break. The channel party 𝐴 grants such an

authorisation only on TXRV,𝑖. However, based on Lemma 5.3, if TXRV,𝑖 is published, the

probability that𝐴 loses any funds is negligible. Thus, we assume that when𝐴 gets online,

TXRV,𝑖 is unpublished and hence the auxiliary output of TXCM,𝑖 is unspent yet. According

to values of 𝑗 and 𝑘 two categories of cases are possible. We firstly consider cases with

𝑗 + 1 ≥ 𝑘 + 𝑡 and prove that in such cases 𝐴 can publish TXPN2,𝑖. Then, we show that if

𝑗 + 1 < 𝑘 + 𝑡 , 𝐴 can still publish TXRV,𝑖. Thus, according to Lemma 5.3, for all cases, the

probability that 𝐴 loses any funds is negligible.

Consider cases with 𝑗 + 1 ≥ 𝑘 + 𝑡 . The non-time-locked sub-condition of TXRC.Output
includes 𝑝𝑘𝐴 and hence due to our assumption regarding the security of the underlying

digital signature, it is of negligible probability that the output of TXRC is spent without

𝐴’s authorisation through the block ℬ𝑚 with 𝑚 < 𝑙 + 𝑇 . Also 𝐴 grants this authorisa-

tion only on TXPN2,𝑖. Actually, all channel participants grant such authorisation on TXPN2,𝑖.
Additionally, since TXCM,𝑖 is on-chain, the probability that 𝐴 fails to obtain 𝑦𝐵,𝑖 and hence

fails to generate the required signatures for the first input of TXPN2,𝑖 is negligible. Oth-

erwise, aEUF − CMA security or extractability of the used adaptor signature is violated.

Thus, party𝐴might publish TXPN2,𝑖 on-chain through one of the blocksℬ𝑗+1, ⋯ ,ℬ𝑙+𝑇−1
and since based on assumptions of Case 2 we have 𝑗 + 1 ≤ 𝑙 + 𝑇 − 1, the honest party 𝐴

56CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

will have at least 𝑙 + 𝑇 − 1 − 𝑗 ≥ 1 rounds time to publish TXPN2,𝑖 which is enough based

on our assumptions regarding the value of confirmation delay.

Now let 𝑗 + 1 < 𝑘 + 𝑡 . We know that without having the honest party 𝐴’s authorisation,

it is of negligible probability that any PPT adversary is able to spend the first or the

second output of TXCM,𝑖 through one of the blocks ℬ𝑘+1, ⋯ ,ℬ𝑘+𝑡−1. All the channel

participants grant such authorisations only on TXRV,𝑖 and 𝐴 has created this transaction

in step 6 of the channel update phase from state 𝑖 to 𝑖 + 1 (See Fig. 5.5). Thus, 𝐴 can

publish it through one of the blocksℬ𝑗+1, ⋯ ,ℬ𝑘+𝑡−1 and since 𝑗 + 1 < 𝑘 + 𝑡 , 𝐴 will have

at least 𝑘 + 𝑡 − 1 − 𝑗 ≥ 1 rounds time to publish TXRV,𝑖.

Therefore, for all cases, 𝐴 can publish either TXRV,𝑖 or TXPN2,𝑖 and hence according to

Lemma 5.3, the probability that 𝐴 loses any funds is negligible.

Case 3. Let there exist an FPPW channel with 𝑛 channel updates where 𝑛 ≥ 0. Assume

that the honest channel party 𝑃 ∈ {𝐴, 𝐵} gets online when the last published block on

the blockchain is ℬ𝑗 . Party 𝑃 observes that TXCM,𝑖 has been published on-chain through

the block ℬ𝑘 with 𝑘 ≤ 𝑗 but TXRC is unpublished.

Lemma 5.7. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. If conditions of Case 3 are satisfied, the probability
that 𝑃 loses any funds in the channel is negligible.

Proof. Without loss of generality let 𝑃 = 𝐴. Similar to the proof of Lemma 5.6, we

assume that TXRV,𝑖 is unpublished because otherwise, the probability that 𝐴 loses some

funds is negligible. According to proof of Lemma 5.6, if we have 𝑗 + 1 < 𝑘 + 𝑡 , 𝐴 will

have at least 𝑘 + 𝑡 − 1 − 𝑗 ≥ 1 rounds time to publish TXRV,𝑖.

Now let 𝑗+1 ≥ 𝑘+𝑡 . We know that due to the security of the underlying digital signature,

it is of negligible probability that someone spends TXCL.Outputwithout𝐴’s authorisation

and 𝐴 grants this authorisation only on TXRC and TXPN1,𝑖. Also, since TXCM,𝑖 is on-chain,

the probability that 𝐴 fails to obtain 𝑦𝐵,𝑖 is negligible. Thus, it is of negligible probability

that party 𝐴 cannot generate the required signatures for the first input of TXPN1,𝑖. Then,
party 𝐴 can publish TXPN1,𝑖 on-chain through one of the blocksℬ𝑗+1,ℬ𝑗+2, ⋯. Based on

Lemma 5.3, it is of negligible probability that broadcast of TXPN1,𝑖 can cause 𝐴 to lose any

funds.

If before the broadcast of TXPN1,𝑖, TXRC is published by the watchtower, conditions of Case

2 get satisfied and due to Lemma 5.6, we know that it is of negligible probability that 𝐴
loses any funds in the channel.

5.6 FEE HANDLING 57

Lemma 5.8. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and
Ξ be a secure adaptor digital signature. For an FPPW channel with 𝑛 channel updates, an
honest watchtower 𝑊 does not lose any funds with non-negligible probability unless first a
revoked commit transaction TXCM,𝑖 with 𝑖 < 𝑛 is broadcast on the chain and at least 𝑡 rounds
later, either TXPN1,𝑖 or TXPN2,𝑖 is also published on the chain.

Proof. Assume that the channel update phase has completed 𝑛 times with 𝑛 ≥ 0. We

discuss different scenarios using which the honest watchtower can be cheated. Funds of

the watchtower are locked in TXCL.Output and condition of TXCL.Output includes 𝑝𝑘𝑊 .

Thus, due to security of the underlying digital signature, it is of negligible probability

that any PPT adversary 𝒜 spends TXCL.Output without 𝑊 ’s authorisation. TXRC and

TXPN1,𝑖 with 𝑖 = [0, 𝑛−1] are the only transactions in the protocol that spend TXCL.Output
and𝑊 grants authorisation for. Both sub-conditions of TXRC.Output include 𝑝𝑘𝑊 . Thus,

due to the security of the underlying digital signature, it is of negligible probability that

any PPT adversary 𝒜 spends TXRC.Output without 𝑊 ’s authorisation and TXPN2,𝑖 with

𝑖 = [0, 𝑛 − 1] are only transactions in the protocol that spend TXRC.Output and 𝑊 grants

authorisation for. Therefore, all scenarios with non-negligible probability lead to the

broadcast of TXPN1,𝑖 or TXPN2,𝑖. Since both TXPN1,𝑖 and TXPN2,𝑖 take the auxiliary output of

TXCM,𝑖 as their first inputs, those transactions can only be published if TXCM,𝑖 is on-chain.

Meeting the non-time-locked sub-condition of the auxiliary output of TXCM,𝑖 requires𝑊 ’s

authorisation and𝑊 does not grant such an authorisation on TXPN1,𝑖 or TXPN2,𝑖. Therefore,
it is of negligible probability that any PPT adversary publishes TXPN1,𝑖 or TXPN2,𝑖 before 𝑡
rounds being elapsed since the broadcast of TXCM,𝑖.

Lemma 5.9. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and
Ξ be a secure adaptor digital signature. For an FPPW channel with 𝑛 channel updates, if
TXCM,𝑖 with 𝑖 ∈ [0, 𝑛 − 1] is published on-chain, it is of negligible probability that broadcast
of TXRV,𝑖 causes the honest watchtower 𝑊 to lose any funds in the channel.

Proof. Based on Lemma 5.8, the probability of cheating the watchtower without pub-

lishing TXPN1,𝑖 or TXPN2,𝑖 is negligible. However, since TXRV,𝑖, TXPN1,𝑖 and TXPN2,𝑖 spend
auxiliary output of TXCM,𝑖, if TXRV,𝑖 is published on-chain, TXPN1,𝑖 and TXPN2,𝑖 cannot be

recorded on-chain anymore.

5.6 Fee Handling

Once a revoked commit transaction is recorded on the blockchain, the watchtower must

record its corresponding revocation transaction within 𝑡 − 1 rounds. Otherwise, the

watchtower might be penalised. However, the time it takes for a transaction to be

58CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

recorded on the blockchain depends on its fee value and the network congestion. The

body of a revocation transaction is created during the channel update phase but it might

be broadcast in the blockchain network later upon fraud. Thus, the fee amount must be

large enough to ensure the watchtower that the revocation transaction will be accepted

by miners within the dispute period. In other words, when channel participants are cre-

ating a revocation transaction, they must assume that the blockchain network will be

highly congested at the time when fraud will occur.

An alternative approach involves manipulating the SIGHASH type parameter to accom-

modate an increase in the fee amount during congestion periods. SIGHASH is a compo-

nent of a transaction that specifies which parts of the transaction data is signed by the

participants. By specifying a specific SIGHASH type, participants can determine which

parts of the transaction are included in the signature, and which parts can be modified

without invalidating the signature. There are different SIGHASH types, each denoted by

a specific number, and they serve various purposes [57]. For our use case, we propose

the usage of SIGHASH of type 0x81 (SIGHASH_ALL ∣ SIGHASH_ANYONECANPAY)

for channel parties’ signatures for both inputs of revocation transactions. Thus, a signa-

ture for each input applies to that input and the output. Therefore, when due to network

congestion the considered fee for the revocation transaction is low, the watchtower can

add some inputs to the revocation transaction to increase the fee amount, sign all inputs

using SIGHASH of type 0x01 (SIGHASH_ALL) and submit it to the network. If there

exists enough time, the watchtower might even repeat this process several times and

raise this extra fee each time until one of the revocation transactions is accepted by the

miners. This method can be used if revocation transactions are only held by the watch-

tower (i.e. if channel parties do not receive signatures of the watchtower on revocation

transactions during the channel update phase).

A similar approach can also be used for penalty transactions. Channel parties and the

watchtower can use SIGHASH of type 0x02 (SIGHASH_NONE) for the second input of

penalty transactions. Then, signatures apply only to all inputs of penalty transactions.

In this way, the watchtower can be certain that a penalty transaction cannot be published

unless its corresponding commit transaction is on-chain. However, if a revoked TXCM,𝑖 is
published by a channel party, let’s say 𝐴, and its main output is spent by TXSP,𝑖, party 𝐵
has the opportunity to set the output value of the penalty transaction according to the

network congestion and sign the corresponding penalty transaction (to meet the sub-

condition 𝑝𝑘𝐵 ∧ 𝑌𝐴,𝑖 ∧ 𝑡+) using SIGHASH of type 0x01 (SIGHASH_ALL). In this way, 𝐵
can reduce the output value if the current fee is low and this difference value is used as

the extra fee amount. If there exists enough time, 𝐵 can even repeat this process multiple

times, each time with a higher fee until one penalty transaction is recorded on-chain.

5.7 FPPW PROTOCOL 59

5.7 FPPW Protocol

In this section, protocols for different phases of FPPW will be presented. In different

steps of the protocol, channel participants generate (or verify) some signatures or pre-

signatures on protocol transactions. When a signature or pre-signature is going to be

generated (or verified) for 𝑗th input of the transaction TX𝑖, the input message to the sign-

ing (or verification) algorithm is denoted by 𝑓 ([TX𝑖], 𝑗) [58].
Remark 5.5. The FPPW protocol which is presented in this Section is slightly different
from what was explained in Section 5.4. Those differences are as follows. In the channel
create phase, [TXRV,0] is also created and 𝑊 ’s signatures on this transaction are given to
both 𝐴 and 𝐵. This transaction lacks the channel parties’ signatures. Those signatures are
computed in the channel update phase when TXCM,0 is going to be revoked. However, 𝐴 and
𝐵 require𝑊 ’s signature in this phase to be able to continue using the channel given that 𝑊
will be non-cooperative or temporarily unavailable in the channel update phase from state
0 to 1. Otherwise, 𝐴 and 𝐵 will have to update the channel on-chain because TXCM,0 will be
irrevocable. Similarly, in the update channel phase from state 𝑖 to 𝑖 + 1, 𝑊 also generates its
signatures for both inputs of TXRV,𝑖+1 and sends them to𝐴 and 𝐵. This will allow𝐴 and 𝐵 to
update the channel from state 𝑖+1 to 𝑖+2 and revoke TXCM,𝑖+1 even if𝑊 will be temporarily
unavailable or uncooperative. Otherwise, TXCM,𝑖+1 will be irrevocable.

FPPW channel create protocol is as follows:

Preconditions: 𝐴, 𝐵 and𝑊 own 𝑎+𝜖/2, 𝑏+𝜖/2 and 𝑐 = 𝑎+𝑏 coins on-chain in output

of transactions with transaction identifiers 𝑡𝑥𝑖𝑑𝐴, 𝑡𝑥𝑖𝑑𝐵 and 𝑡𝑥𝑖𝑑𝑊 respectively. 𝐴,

𝐵 and 𝑊 know each other’s public keys, 𝑝𝑘𝐴, 𝑝𝑘𝐵 and 𝑝𝑘𝑊 and values of 𝜖, 𝑎, 𝑏
and 𝑐 that will be used in the channel.

1. Create [TXFU]:

(a) 𝑃 ∈ {𝐴, 𝐵} 𝑡𝑥𝑖𝑑𝑃
↪−−−−→ ̄𝑃,𝑊

(b) If 𝑃 receives 𝑡𝑥𝑖𝑑 ̄𝑃 , it creates [TXFU] according to 5.1. Else it stops.

(c) If 𝑊 receives 𝑡𝑥𝑖𝑑𝑃 with 𝑃 = {𝐴, 𝐵}, it creates [TXFU] according to 5.1.

Else it stops.

2. Create [TXCM,0]:

(a) 𝑃 ∈ {𝐴, 𝐵} generates (𝑌𝑃,0, 𝑦𝑃,0) ← GenR.

(b) 𝑃 𝑌𝑃,0
↪−−−→ ̄𝑃,𝑊

(c) If 𝑃 receives 𝑌 ̄𝑃 ,0, it creates [TXCM,0] according to 5.2. Else it stops.

60CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

(d) If 𝑊 receives 𝑌𝑃,0 with 𝑃 = {𝐴, 𝐵}, it creates [TXCM,0] according to 5.2.

Else it stops.

3. Create [TXSP,0]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXSP,0] according to 5.3.

4. Create [TXRV,0]:

(a) 𝑊 creates [TXRV,0] according to 5.6.

(b) 𝑊 computes 𝜎𝑊,𝑗
TXRV,0 = Sign𝑠𝑘𝑊 (𝑓 ([TXRV,0], 𝑗)) with 𝑗 = {1, 2}.

(c) 𝑊
𝜎𝑊,1
TXRV,0 ,𝜎

𝑊,2
TXRV,0

↪−−−−−−−−−−→ 𝐴, 𝐵.
(d) If party 𝑃 ∈ {𝐴, 𝐵} receives 𝜎𝑊,1

TXRV,0 and 𝜎𝑊,2
TXRV,0 from 𝑊 s.t.

Vrfy𝑝𝑘𝑊 (𝑓 ([TXRV,0], 𝑗); 𝜎
𝑊,𝑗
TXRV,0) = 1 with 𝑗 = {1, 2}, it continues. Else

it stops.

5. Create TXSP,0:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXSP,0 = Sign𝑠𝑘𝑃 (𝑓 ([TXSP,0], 1)).

(b) 𝑃
𝜎𝑃TXSP,0
↪−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXSP,0 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP,0], 1); 𝜎

̄𝑃
TXSP,0) = 1, it con-

tinues. Else it stops.

(d) Party 𝑃 creates TXSP,0.

6. Create TXCM,0:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎̃𝑃TXCM,0 = pSign𝑠𝑘𝑃 (𝑓 ([TXCM,0], 1), 𝑌 ̄𝑃 ,0).

(b) 𝑃
𝜎̃𝑃TXCM,0
↪−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎̃ ̄𝑃
TXCM,0 s.t. pVrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXCM,0], 1), 𝑌𝑃,0; 𝜎̃

̄𝑃
TXCM,0) = 1,

it computes 𝜎 ̄𝑃
TXCM,0 = Adapt(𝜎̃ ̄𝑃

TXCM,0 , 𝑦𝑃,0), computes 𝜎𝑃TXCM,0 = Sign𝑠𝑘𝑃
(𝑓 ([TXCM,0], 1)), creates TXCM,0 and continues. Else it stops.

7. Create TXFU:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXFU = Sign𝑠𝑘𝑃 (𝑓 ([TXFU], 𝑗)) where 𝑗 ∶= 1
if 𝑃 = 𝐴 or 𝑗 ∶= 2 otherwise.

(b) 𝑃
𝜎𝑃TXFU
↪−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXFU

s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXFU], 𝑗); 𝜎
̄𝑃

TXFU
) = 1with 𝑗 ∶= 1

if 𝑃 = 𝐵 or 𝑗 ∶= 2 otherwise, it continues. Else it stops.

5.7 FPPW PROTOCOL 61

(d) Party 𝑃 creates TXFU.

8. Publish TXFU: Party 𝑃 publishes TXFU on-chain.

9. Create [TXCL]:

(a) 𝑊 creates [TXCL] according to 5.4.

(b) 𝑊 𝑡𝑥𝑖𝑑𝑊
↪−−−−→ 𝐴, 𝐵.

(c) If party 𝑃 receives 𝑡𝑥𝑖𝑑𝑊 , it creates [TXCL]. Else it stops.

10. Create [TXRC]: 𝐴, 𝐵 and 𝑊 creates [TXRC] according to 5.5.

11. Create TXRC:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXRC = Sign𝑠𝑘𝑃 (𝑓 ([TXRC], 1)).

(b) 𝑃
𝜎𝑃TXRC
↪−−−−→ 𝑊

(c) If 𝑊 receives 𝜎𝑃TXRC with 𝑃 = {𝐴, 𝐵} s.t. Vrfy𝑝𝑘𝑃 (𝑓 ([TXRC], 1); 𝜎𝑃TXRC) = 1,
it continues. Else it stops.

(d) 𝑊 computes 𝜎𝑊TXRC = Sign𝑠𝑘𝑊 (𝑓 ([TXRC], 1)) and creates TXRC.

12. Create TXCL:

(a) 𝑊 computes 𝜎𝑊TXRV = Sign𝑠𝑘𝑊 (𝑓 ([TXCL], 1)).
(b) 𝑊 creates TXCL.

13. Publish TXCL: 𝑊 publishes TXCL on-chain.

FPPW channel update protocol is as following:

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel update phase has completed 𝑖 times and hence the channel is

at state 𝑖.

1. Create [TXCM,𝑖+1]:

(a) Party 𝑃 ∈ {𝐴, 𝐵} generates (𝑌𝑃,𝑖+1, 𝑦𝑃,𝑖+1) ← GenR.

(b) 𝑃 𝑌𝑃,𝑖+1
↪−−−−→ ̄𝑃,𝑊

(c) If Party 𝑃 receives 𝑌 ̄𝑃 ,𝑖+1, it creates [TXCM,𝑖+1] according to 5.2. Else it

stops.

62CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

(d) If 𝑊 receives 𝑌𝑃,𝑖+1 with 𝑃 = {𝐴, 𝐵}, it creates [TXCM,𝑖+1] according to

5.2. Else it stops.

2. Create [TXSP,𝑖+1]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXSP,𝑖+1] according to 5.3.

3. Create [TXRV,𝑖+1]:

(a) 𝑊 creates [TXRV,𝑖+1] according to 5.6.

(b) 𝑊 computes 𝜎𝑊,𝑗
TXRV,𝑖+1 = Sign𝑠𝑘𝑊 ([𝑓 (TXRV,𝑖+1], 𝑗)) with 𝑗 = {1, 2}.

(c) 𝑊
𝜎𝑊,1
TXRV,𝑖+1 ,𝜎

𝑊,2
TXRV,𝑖+1

↪−−−−−−−−−−−−→ 𝐴, 𝐵.
(d) If party 𝑃 ∈ {𝐴, 𝐵} receives 𝜎𝑊,1

TXRV,𝑖+1 and 𝜎𝑊,2
TXRV,𝑖+1 from 𝑊 s.t.

Vrfy𝑝𝑘𝑊 (𝑓 ([TXRV,𝑖+1], 𝑗); 𝜎
𝑊,𝑗
TXRV,𝑖+1) = 1 with 𝑗 = {1, 2}, it continues. Else

it stops.

4. Create TXSP,𝑖+1:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXSP,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXSP,𝑖+1], 1)).

(b) 𝑃
𝜎𝑃TXSP,𝑖+1
↪−−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXSP,𝑖+1 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP,𝑖+1], 1); 𝜎

̄𝑃
TXSP,𝑖+1) = 1, it

continues. Else it stops.

(d) Party 𝑃 creates TXSP,𝑖+1.

5. Create TXCM,𝑖+1:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎̃𝑃TXCM,𝑖+1 = pSign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌 ̄𝑃 ,𝑖+1).

(b) 𝑃
𝜎̃𝑃TXCM,𝑖+1
↪−−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎̃ ̄𝑃
TXCM,𝑖+1 s.t. pVrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌𝑃,𝑖+1; 𝜎̃

̄𝑃
TXCM,𝑖+1) =

1, it computes 𝜎 ̄𝑃
TXCM,𝑖+1 = Adapt(𝜎̃ ̄𝑃

CM,𝑖+1, 𝑦𝑃,𝑖+1), computes

𝜎𝑃TXCM,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1)), creates TXCM,𝑖+1 and contin-

ues. Else it execute the non-collaborative closure phase (from 𝑃 ’s
point of view the channel is still at state 𝑖).

6. Create TXRV,𝑖:

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TXRV,𝑖] according to 5.6.

(b) Party 𝑃 computes 𝜎𝑃,1TXRV,𝑖 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 1)) and 𝜎𝑃,2TXRV,𝑖 =
Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 2)).

5.7 FPPW PROTOCOL 63

(c) 𝑃
𝜎𝑃,1TXRV,𝑖 ,𝜎

𝑃,2
TXRV,𝑖

↪−−−−−−−−−→ ̄𝑃
(d) If party 𝑃 receives 𝜎 ̄𝑃 ,1

TXRV,𝑖 and 𝜎 ̄𝑃 ,2
TXRV,𝑖 from

̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖], 1)
; 𝜎 ̄𝑃 ,1

TXRV,𝑖) = 1 and Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖], 2); 𝜎
̄𝑃 ,2

TXRV,𝑖) = 1, it continues. Else it

executes the non-collaborative closure phase (The channel now is at

state 𝑖 + 1).

(e) 𝑃
𝜎𝑃,1TXRV,𝑖 ,𝜎

𝑃,2
TXRV,𝑖

↪−−−−−−−−−→ 𝑊
(f) If 𝑊 receives 𝜎𝑃,1TXRV,𝑖 and 𝜎𝑃,2TXRV,𝑖 from 𝑃 = {𝐴, 𝐵} s.t. Vrfy𝑝𝑘𝑃 (𝑓 ([TXRV,𝑖]

, 1); 𝜎𝑃,1TXRV,𝑖) = 1 and Vrfy𝑝𝑘𝑃 (𝑓 ([TXRV,𝑖], 2); 𝜎
𝑃,2
TXRV,𝑖) = 1, it continues. Else

it stops.

(g) 𝐴, 𝐵 and 𝑊 create TXRV,𝑖 according to 5.6.

7. Create [TXPN1,𝑖] and [TXPN2,𝑖]

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TXPN1,𝑖] and [TXPN2,𝑖] according to 5.7 and 5.8.

(b) Party 𝑃 computes 𝜎𝑃,2TXPN1,𝑖
= Sign𝑠𝑘𝑃 (𝑓 ([TXPN1,𝑖], 2)) and 𝜎𝑃,2TXPN2,𝑖

=
Sign𝑠𝑘𝑃 (𝑓 ([TXPN2,𝑖], 2)).

(c) 𝑃
𝜎𝑃,2TXPN1,𝑖 ,𝜎

𝑃,2
TXPN2,𝑖

↪−−−−−−−−−−−→ ̄𝑃
(d) If 𝑃 receives signatures 𝜎 ̄𝑃 ,2

TXPN1,𝑖
and 𝜎 ̄𝑃 ,2

TXPN2,𝑖
s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXPN1,𝑖], 2)

; 𝜎 ̄𝑃 ,2
TXPN1,𝑖

) = 1 and Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXPN2,𝑖], 2); 𝜎
̄𝑃 ,2

TXPN2,𝑖
) = 1, it continues. Else

it executes the non-collaborative closure phase (The channel now is at

state 𝑖 + 1) or gets online at least once every 𝑡 − 1 blocks.

(e) 𝑊 creates [TXPN1,𝑖] and [TXPN2,𝑖] according to 5.7 and 5.8

(f) 𝑊 computes 𝜎𝑊,2
TXPN1,𝑖

= Sign𝑠𝑘𝑊 (𝑓 ([TXPN1,𝑖], 2) and 𝜎𝑊,2
TXPN2,𝑖

= Sign𝑠𝑘𝑊 (𝑓 (
[TXPN2,𝑖], 2).

(g) 𝑊
𝜎𝑊,2
TXPN1,𝑖 ,𝜎

𝑊,2
TXPN2,𝑖

↪−−−−−−−−−−−→ 𝑃 with 𝑃 = {𝐴, 𝐵}.
(h) If 𝑃 ∈ {𝐴, 𝐵} receives signatures 𝜎𝑊,2

TXPN1,𝑖
and 𝜎𝑊,2

TXPN2,𝑖
from𝑊 s.t. Vrfy𝑝𝑘𝑊

(𝑓 ([TXPN1,𝑖], 2); 𝜎𝑊,2
TXPN1,𝑖

) = 1 and Vrfy𝑝𝑘𝑊 (𝑓 ([TXPN2,𝑖], 2); 𝜎
𝑊,2
TXPN2,𝑖

) = 1 it

continues. Else it executes the non-collaborative closure phase (The

channel now is at state 𝑖 + 1) or gets online at least once every 𝑡 − 1
blocks.

FPPW channel collaborative closure protocol is as following:

64CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel is at state 𝑛.

1. Create TX
SP
:

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TX
SP
] according to 5.9.

(b) 𝑃 computes 𝜎𝑃TXSP = Sign𝑠𝑘𝑃 (𝑓 ([TXSP], 1)).

(c) 𝑃
𝜎𝑃TX

SP
↪−−−−→ ̄𝑃

(d) If 𝑃 receives 𝜎 ̄𝑃
TXSP

from ̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP], 1); 𝜎
̄𝑃

TXSP
) = 1, it con-

tinues. Else it executes the non-collaborative closure phase (from 𝑃 ’s
point of view the channel is still at state 𝑛).

2. Publish TX
SP
: Party 𝑃 ∈ {𝐴, 𝐵} publishes TX

SP
on-chain.

FPPW channel non-collaborative closure protocol is as following:

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel is at state 𝑛.

1. Party 𝑃 ∈ {𝐴, 𝐵} publishes TXCM,𝑛 on-chain.

2. Once TXCM,𝑛 is recorded on-chain, 𝑃 waits for 𝑡 rounds and then publishes

TXSP,𝑛 on-chain.

The protocol for penalising the cheating party is as follows:

preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel is at state 𝑛. TXCM,𝑖 with 𝑖 < 𝑛 is recorded on-chain by a

channel party. The watchtower is always online.

1. 𝑊 observes that TXCM,𝑖 is on-chain.

2. 𝑊 publishes TXRV,𝑖 on-chain before 𝑡 rounds being elapsed since broadcast

of TXCM,𝑖.

The protocol for penalising the unresponsive watchtower is as follows:

preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel update phase has successfully completed 𝑛 times. TXCM,𝑖 with

5.8 TEMPORARILY UNAVAILABLE WATCHTOWER 65

𝑖 < 𝑛 is recorded on-chain. Parties check the blockchain at least once every 𝑇 − 1
round.

1. Party 𝑃 observes thatℬ𝑗 is the latest block on the blockchain and TXCM,𝑖 has
been published through the block ℬ𝑘 with 𝑘 ≤ 𝑗 but its first output has not
been spent by TXRV,𝑖.

2. if 𝑗 + 1 − 𝑘 < 𝑡 :

(a) 𝑃 publishes TXRV,𝑖 on the blockchain.

Otherwise

(a) 𝑃 extract TXCM,𝑖.Witness[1] as (1, (𝜎𝐴TXCM,𝑖 , 𝜎𝐵TXCM,𝑖)).
(b) 𝑃 computes 𝑦 ̄𝑃 ,𝑖 = Ext(𝜎𝑃TXCM,𝑖 , 𝜎̃𝑃CM,𝑖, 𝑌 ̄𝑃 ,𝑖).
(c) If TXRC is unpublished:

• 𝑃 computes 𝜎𝑃,1TXPN1,𝑖
= Sign𝑠𝑘𝑃 (𝑓 ([TXPN1,𝑖], 1)) and 𝜎 ′ ̄𝑃 ,1

TXPN1,𝑖
= Sign𝑦 ̄𝑃 ,𝑖

(𝑓 ([TXPN1,𝑖], 1)).
• 𝑃 creates TXPN1,𝑖 using [TXPN1,𝑖], TXPN1,𝑖.Witness[1] =
(1, (𝜎𝑃,1TXPN1,𝑖

, 𝜎 ′ ̄𝑃 ,1
TXPN1,𝑖

)) with 𝑗 = 1 if 𝑃 = 𝐵 or 𝑗 = 3 otherwise

and TXPN1,𝑖.Witness[2] = (1, (𝜎𝐴,2TXPN1,𝑖
, 𝜎𝐵,2TXPN1,𝑖

, 𝜎𝑊,2
TXPN1,𝑖

)).
• 𝑃 publishes TXPN1,𝑖 on-chain.

Else:

• 𝑃 computes 𝜎𝑃,1TXPN2,𝑖
= Sign𝑠𝑘𝑃 (𝑓 ([TXPN2,𝑖], 1)) and 𝜎 ′ ̄𝑃 ,1

TXPN2,𝑖
= Sign𝑦 ̄𝑃 ,𝑖

(𝑓 ([TXPN2,𝑖], 1)).
• 𝑃 creates TXPN2,𝑖 using [TXPN2,𝑖], TXPN2,𝑖.Witness[1] =
(𝑗, (𝜎𝑃,1TXPN2,𝑖

, 𝜎 ′ ̄𝑃𝑌 ,1
TXPN2,𝑖

)) with 𝑗 = 1 if 𝑃 = 𝐵 or 𝑗 = 3 otherwise

and TXPN2,𝑖.Witness[2] = (1, (𝜎𝐴,2TXPN2,𝑖
, 𝜎𝐵,2TXPN2,𝑖

, 𝜎𝑊,2
TXPN2,𝑖

)).
• 𝑃 publishes TXPN2,𝑖 on-chain.

5.8 Temporarily unavailable watchtower

FPPW can adapt to situations where channel parties want to update the channel state

but the watchtower is temporarily unavailable. A way to deal with such occasions is

that channel parties wait for the watchtower to get responsive. However, it disturbs the

main functionality of the payment channel. Another solution is updating the channel by

skipping those steps that require the watchtower to sign the new revocation transaction

66CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

(see step 3 of the channel update protocol in Section 5.7) and new penalty transactions

(see step 7 of the channel update protocol in Section 5.7). This solution also has two

problems. Firstly, without the watchtower cooperation, the new commit transaction

gets irrevocable. Thus, channel parties would not be able to update the channel multiple

times. Secondly, if the watchtower gets uncooperative, channel parties will be forced

to update the channel on-chain even if they both agree to remain always online and

continue using the channel.

To resolve this issue, channel parties can take steps in the channel update phase using

the following commit transactions:

TXCM,𝑖+1.Input ∶= TXFU.txid‖1,
TXCM,𝑖+1.Output ∶= ((𝑎 + 𝑏, 𝜑1 ∨ 𝜑2 ∨ 𝜑3), (𝜖, 𝜑′1 ∨ 𝜑′2 ∨ 𝜑′3))
TXCM,𝑖+1.Witness ∶= {(1, {𝜎𝐴TXCM,𝑖 , 𝜎𝐵TXCM,𝑖})} (5.10)

with 𝜑1 ∶= 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 2𝑡+, 𝜑2 ∶= 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑝𝑘𝑊 , 𝜑3 ∶= 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑡+, 𝜑′1 ∶=
𝑝𝑘𝐵 ∧𝑌𝐴,𝑖+1 ∧ 𝑡+, 𝜑′2 ∶= 𝑝𝑘𝐴 ∧𝑝𝑘𝐵 ∧𝑝𝑘𝑊 and 𝜑′3 ∶= 𝑝𝑘𝐴 ∧𝑌𝐵,𝑖+1 ∧ 𝑡+ where 𝑌𝐴,𝑖+1 and 𝑌𝐵,𝑖+1
are statements of a hard relation ℛ generated by 𝐴 and 𝐵 for the 𝑖 + 1th state using the

generating algorithm GenR.

Also, a new type of revocation transaction is introduced as follows:

TXRV′,𝑖+1.Input ∶= (TXCM,𝑖+1.txid‖1),
TXRV′,𝑖+1.Output ∶= (𝑎 + 𝑏, 𝑌𝐴,𝑖+1 ∧ 𝑌𝐵,𝑖+1),
TXRV′,𝑖+1.Witness ∶= {(3, (𝜎𝐴,1TXRV′,𝑖+1 , 𝜎

𝐵,1
TXRV′,𝑖+1))} (5.11)

Then, the update protocol is as follows:

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel update phase has completed 𝑖 times and hence the channel is

at state 𝑖. The watchtower is unavailable.

1. Create [TXCM,𝑖+1]:

(a) Party 𝑃 generates (𝑌𝑃,𝑖+1, 𝑦𝑃,𝑖+1) ← GenR.

(b) 𝑃 𝑌𝑃,𝑖+1
↪−−−−→ ̄𝑃

5.8 TEMPORARILY UNAVAILABLE WATCHTOWER 67

(c) If Party 𝑃 receives 𝑌 ̄𝑃 ,𝑖+1, it creates [TXCM,𝑖+1] according to 5.10. Else it

stops.

2. Create [TXSP,𝑖+1]: Party 𝑃 creates [TXSP,𝑖+1] according to 5.3.

3. Create [TXRV′,𝑖+1]: Party 𝑃 creates [TXRV′,𝑖+1] according to 5.11.

4. Create TXSP,𝑖+1:

(a) Party 𝑃 computes 𝜎𝑃TXSP,𝑖+1 = Sign𝑠𝑘𝑃 ([𝑓 (TXSP,𝑖+1], 1)).

(b) 𝑃
𝜎𝑃TXSP,𝑖+1
↪−−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXSP,𝑖+1 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP,𝑖+1], 1); 𝜎

̄𝑃
TXSP,𝑖+1) = 1, it

continues. Else it stops.

(d) Party 𝑃 creates TXSP,𝑖+1.

5. Create TXCM,𝑖+1:

(a) Party 𝑃 computes 𝜎̃𝑃CM,𝑖+1 = pSign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌 ̄𝑃 ,𝑖+1).

(b) 𝑃 𝜎̃𝑃CM,𝑖+1
↪−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎̃ ̄𝑃
CM,𝑖+1 s.t. pVrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌𝑃,𝑖+1; 𝜎̃

̄𝑃
CM,𝑖+1) =

1, it computes 𝜎 ̄𝑃
TXCM,𝑖+1 = Adapt(𝜎̃ ̄𝑃

CM,𝑖+1, 𝑦𝑃,𝑖+1), computes 𝜎𝑃TXCM,𝑖+1 =
Sign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1)), creates TXCM,𝑖+1 and continues. Else it execute

the non-collaborative closure phase (from 𝑃 ’s point of view the chan-

nel is still at state 𝑖).

6. Create TXRV,𝑖 or TXRV′,𝑖:

(a) If TXCM,𝑖 is according to 5.2,

i. Party 𝑃 computes 𝜎𝑃,1TXRV,𝑖 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 1)) and 𝜎𝑃,2TXRV,𝑖 =
Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 2)).

ii. 𝑃
𝜎𝑃,1TXRV,𝑖 ,𝜎

𝑃,2
TXRV,𝑖

↪−−−−−−−−−→ ̄𝑃
iii. If party 𝑃 receives 𝜎 ̄𝑃 ,1

TXRV,𝑖 and 𝜎 ̄𝑃 ,2
TXRV,𝑖 from

̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖]
, 1); 𝜎 ̄𝑃 ,1

TXRV,𝑖) = 1 and Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖], 2); 𝜎
̄𝑃 ,2

TXRV,𝑖) = 1, it continues.
Else it executes the non-collaborative closure phase (The channel

now is at state 𝑖 + 1).
iv. Party 𝑃 creates TXRV,𝑖.

(b) Otherwise:

68CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

i. Party 𝑃 computes 𝜎𝑃,1TXRV′,𝑖 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV′,𝑖), 1]).

ii. 𝑃
𝜎𝑃,1TXRV′,𝑖
↪−−−−−→ ̄𝑃 .

iii. If party 𝑃 receives 𝜎 ̄𝑃 ,1
TXRV′,𝑖 from ̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV′,𝑖]

, 1); 𝜎 ̄𝑃 ,1
TXRV′,𝑖) = 1, it continues. Else it executes the non-

collaborative closure phase (The channel now is at state 𝑖 + 1).
iv. Party 𝑃 creates TXRV′,𝑖.

Remark 5.6. The first (second) condition in step 6 corresponds with the
case when watchtower was available (unavailable) during the channel
update from state 𝑖 − 1 to 𝑖.

Now assume that one of the revoked TXCM,𝑖, for which TXRV′,𝑖 has been created, is pub-

lished by a channel party. The cheating party must wait 2𝑡 rounds to be able to publish

the split transaction TXSP,𝑖. However, its online counterparty can wait for 𝑡 rounds and

then publish the TXRV′,𝑖 and take all the funds of the channel. The steps of this procedure

are as follows:

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel update phase has successfully completed 𝑛 times. TXCM,𝑖 with

𝑖 < 𝑛 is recorded on-chain. Parties have created TXRV′,𝑖. Channel parties are always

online.

1. 𝑃 observes that TXCM,𝑖 is on-chain. 𝑃 waits for 𝑡 blocks.

2. 𝑃 publishes TXRV′,𝑖 on-chain.

When the watchtower becomes available, TXRV,𝑖, TXPN1,𝑖 and TXPN2,𝑖 (respectively accord-

ing to 5.6, 5.7 and 5.8) for the new agreed states can be created by 𝐴, 𝐵 and𝑊 . The steps

of this procedure are as follows:

Preconditions: The channel create phase is complete and TXFU and TXCL are on-

chain. The channel update phase has successfully completed 𝑚 times with 𝑚 ≥ 1.
The watchtower 𝑊 was unavailable during the latest 𝑘 channel updates with 0 <
𝑘 ≤ 𝑚. The watchtower 𝑊 is now available.

1. 𝐴, 𝐵 and 𝑊 repeats the following steps for 𝑖 = 𝑚 − 𝑘 + 1 to 𝑖 = 𝑚 − 1:

(a) Create [TXRV,𝑖]:
i. 𝑊 creates [TXRV,𝑖] according to 5.6.

5.8 TEMPORARILY UNAVAILABLE WATCHTOWER 69

ii. 𝑊 computes 𝜎𝑊,𝑗
TXRV,𝑖 = Sign𝑠𝑘𝑊 ([𝑓 (TXRV,𝑖], 𝑗)) with 𝑗 = {1, 2}.

iii. 𝑊
𝜎𝑊,1
TXRV,𝑖 ,𝜎

𝑊,2
TXRV,𝑖

↪−−−−−−−−−→ 𝐴, 𝐵.
iv. If party 𝑃 ∈ {𝐴, 𝐵} receives 𝜎𝑊,1

TXRV,𝑖 and 𝜎𝑊,2
TXRV,𝑖 from 𝑊 s.t.

Vrfy𝑝𝑘𝑊 (𝑓 ([TXRV,𝑖], 𝑗); 𝜎
𝑊,𝑗
TXRV,𝑖) = 1with 𝑗 = {1, 2}, it continues. Else

it stops.

(b) Create TXRV,𝑖:

i. Party 𝑃 ∈ {𝐴, 𝐵} creates [TXRV,𝑖] according to 5.6.

ii. Party 𝑃 computes 𝜎𝑃,1TXRV,𝑖 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 1)) and 𝜎𝑃,2TXRV,𝑖 =
Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖], 2)).

iii. 𝑃
𝜎𝑃,1TXRV,𝑖 ,𝜎

𝑃,2
TXRV,𝑖

↪−−−−−−−−−→ ̄𝑃
iv. If party 𝑃 receives 𝜎 ̄𝑃 ,1

TXRV,𝑖 and 𝜎 ̄𝑃 ,2
TXRV,𝑖 from

̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖]
, 1); 𝜎 ̄𝑃 ,1

TXRV,𝑖) = 1 and Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖], 2); 𝜎
̄𝑃 ,2

TXRV,𝑖) = 1, it continues.
Else it executes the non-collaborative closure phase (The channel

now is at state 𝑚).

v. 𝑃
𝜎𝑃,1TXRV,𝑖 ,𝜎

𝑃,2
TXRV,𝑖

↪−−−−−−−−−→ 𝑊 .

vi. If 𝑊 receives 𝜎𝑃,1TXRV,𝑖 and 𝜎𝑃,2TXRV,𝑖 from 𝑃 = {𝐴, 𝐵}
s.t. Vrfy𝑝𝑘𝑃 (𝑓 ([TXRV,𝑖], 1); 𝜎

𝑃,1
TXRV,𝑖) = 1 and

Vrfy𝑝𝑘𝑃 (𝑓 ([TXRV,𝑖], 2); 𝜎
𝑃,2
TXRV,𝑖) = 1, it continues. Else it stops.

vii. 𝐴, 𝐵 and 𝑊 create TXRV,𝑖 using [TXRV,𝑖] and TXRV,𝑖.Witness[𝑗] =
(2, (𝜎𝐴,𝑗TXRV,𝑖 , 𝜎

𝐵,𝑗
TXRV,𝑖 , 𝜎

𝑊,𝑗
TXRV,𝑖)) with 𝑗 = {1, 2}.

(c) Create [TXPN1,𝑖] and [TXPN2,𝑖]
i. Party 𝑃 ∈ {𝐴, 𝐵} creates [TXPN1,𝑖] and [TXPN2,𝑖] according to 5.7 and

5.8.

ii. Party 𝑃 computes 𝜎𝑃,2TXPN1,𝑖
= Sign𝑠𝑘𝑃 (𝑓 ([TXPN1,𝑖], 2)) and 𝜎𝑃,2TXPN2,𝑖

=
Sign𝑠𝑘𝑃 (𝑓 ([TXPN2,𝑖], 2)), respectively.

iii. 𝑃
𝜎𝑃,2TXPN1,𝑖 ,𝜎

𝑃,2
TXPN2,𝑖

↪−−−−−−−−−−−→ ̄𝑃
iv. If 𝑃 receives signatures 𝜎 ̄𝑃 ,2

TXPN1,𝑖
and 𝜎 ̄𝑃 ,2

TXPN2,𝑖
s.t.

Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXPN1,𝑖], 2); 𝜎
̄𝑃 ,2

TXPN1,𝑖
) = 1 and Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXPN2,𝑖], 2)

; 𝜎 ̄𝑃 ,2
TXPN2,𝑖

) = 1, it continues. Else it executes the non-collaborative

closure phase (The channel now is at state 𝑚) or gets online at

least once every 𝑡 − 1 blocks.

v. 𝑊 creates [TXPN1,𝑖] and [TXPN2,𝑖] according to 5.7 and 5.8

70CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

vi. 𝑊 computes 𝜎𝑊,2
TXPN1,𝑖

= Sign𝑠𝑘𝑊 (𝑓 ([TXPN1,𝑖], 2) and 𝜎𝑊,2
TXPN2,𝑖

=
Sign𝑠𝑘𝑊 (𝑓 ([TXPN2,𝑖], 2).

vii. 𝑊
𝜎𝑊,2
TXPN1,𝑖 ,𝜎

𝑊,2
TXPN2,𝑖

↪−−−−−−−−−−−→ 𝑃 with 𝑃 = {𝐴, 𝐵}.
viii. If 𝑃 ∈ {𝐴, 𝐵} receives signatures 𝜎𝑊,2

TXPN1,𝑖
and 𝜎𝑊,2

TXPN2,𝑖
from 𝑊

s.t. Vrfy𝑝𝑘𝑊 (𝑓 ([TXPN1,𝑖], 2); 𝜎
𝑊,2
TXPN1,𝑖

) = 1 and Vrfy𝑝𝑘𝑊 (𝑓 ([TXPN2,𝑖],
2); 𝜎𝑊,2

TXPN2,𝑖
) = 1 it continues. Else it executes the non-collaborative

closure phase (The channel now is at state 𝑚) or gets online at

least once every 𝑡 − 1 blocks.

2. Create [TXRV,𝑚]:

(a) 𝑊 creates [TXRV,𝑚] according to 5.6.

(b) 𝑊 computes 𝜎𝑊,𝑗
TXRV,𝑚 = Sign𝑠𝑘𝑊 ([𝑓 (TXRV,𝑚], 𝑗)) with 𝑗 = {1, 2}.

(c) 𝑊
𝜎𝑊,1
TXRV,𝑚 ,𝜎

𝑊,2
TXRV,𝑚

↪−−−−−−−−−−−→ 𝐴, 𝐵.
(d) If party 𝑃 ∈ {𝐴, 𝐵} receives 𝜎𝑊,1

TXRV,𝑚 and 𝜎𝑊,2
TXRV,𝑚 from 𝑊 s.t.

Vrfy𝑝𝑘𝑊 (𝑓 ([TXRV,𝑚], 𝑗); 𝜎
𝑊,𝑗
TXRV,𝑚) = 1 with 𝑗 = {1, 2}, it continues. Else

it stops.

The commit and revocation transactions introduced in 5.10 and 5.11 have an interesting

property that allows the honest channel party to penalise both the cheating party and

the unresponsive watchtower. Assume that there is a revoked commit transaction TXCM,𝑖
according to 5.10 for which the watchtower has also signed penalty transactions. If this

transaction is published by a cheating party, let’s say𝐴, the watchtower can immediately

publish TXRV,𝑖 to invalidate the penalty transactions. However, if the watchtower is unre-

sponsive, after 𝑡 rounds, 𝐵 can firstly publish TXRV′,𝑖 to penalise the cheating party 𝐵 and

then publish TXPN1,𝑖 or TXPN2,𝑖 to penalise the unresponsive watchtower. Split transaction

TXSP,𝑖 cannot be published within 2𝑡 − 1 rounds since broadcast of TXCM,𝑖.

5.9 FPPW Transactions Scripts

Bitcoin scripting is a fundamental component of the Bitcoin protocol that allows users

to create and enforce conditions for spending bitcoins. It involves using a simple and

stack-based scripting language to define the conditions that must be met to unlock the

funds in a Bitcoin transaction output (UTXO). When bitcoins are sent to an address, the

recipient specifies conditions in the form of a ScriptPubKey or simply the script. This

script defines the spending conditions required to unlock and spend the funds. To spend

5.9 FPPW TRANSACTIONS SCRIPTS 71

the bitcoins locked in a UTXO, the sender must provide a witness in the spending trans-

action. The witness is combined with the ScriptPubKey of the UTXO, and the resulting

script is executed. The script execution is done by pushing data onto a stack and ap-

plying various script operations. If the final result of the script evaluation is true, the

UTXO can be spent. The script operations include basic arithmetic, cryptographic op-

erations, conditional statements (e.g. OP_IF and OP_ELSE), and signature checks (e.g.

OP_CHECKMULTISIG) [59].

Funding transaction has one output with the following script where pubkeyA, pubkeyB

are public keys of 𝐴 and 𝐵, respectively:
2 ⟨pubkeyA⟩ ⟨pubkeyB⟩ 2 OP_CHECKMULTISIG

Commit transaction has one input that takes the output of the funding transaction with

witness script 0 ⟨pubkeyA_sig⟩ ⟨pubkeyB_sig⟩. It also has two outputs where the script

of its first output (main output) is as follows:

OP_IF

Revocation
3 ⟨Rev_pubkeyA⟩ ⟨Rev_pubkeyB⟩ ⟨Rev_pubkeyW⟩ 3 OP_CHECKMULTISIG

OP_ELSE

Split
⟨delay t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

2 ⟨Spl_pubkeyA⟩ ⟨Spl_pubkeyB⟩ 2
OP_ENDIF

where ⟨Rev_pubkeyA⟩ and ⟨Spl_pubkeyA⟩ are public keys of 𝐴, ⟨Rev_pubkeyB⟩ and

⟨Spl_pubkeyB⟩ are public keys of 𝐵 and ⟨Rev_pubkeyW⟩ is public key of 𝑊 .

The script for the second output (auxiliary output) of the commit transaction is as fol-

lows:

OP_IF

Revocation
3 ⟨Rev_pubkeyA⟩ ⟨Rev_pubkeyB⟩ ⟨Rev_pubkeyW⟩ 3 OP_CHECKMULTISIG

OP_ELSE

⟨delay t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

OP_IF

Penalty1 or Penalty2 by party B

72CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

2 ⟨Pen_pubkeyB⟩ ⟨YA⟩ 2 OP_CHECKMULTISIG

OP_ELSE

Penalty1 or Penalty2 by party A

2 ⟨Pen_pubkeyA⟩ ⟨YB⟩ 2 OP_CHECKMULTISIG

OP_ENDIF

OP_ENDIF

where ⟨Rev_pubkeyA⟩ and ⟨Pen_pubkeyA⟩ are public keys of 𝐴, ⟨Rev_pubkeyB⟩ and

⟨Pen_pubkeyB⟩ are public keys of 𝐵 and ⟨Rev_pubkeyW⟩ is public key of 𝑊 . Also, YA

and YB are statement of 𝐴 and 𝐵, respectively. The witness script for input of split

transaction is 0 ⟨Spl_pubkeyA_Sig⟩ ⟨Spl_pubkeyB_Sig⟩ 0
The revocation transaction has two inputs where its first and second inputs take the first

and second outputs of the corresponding commit transaction, respectively. The witness

script for both inputs is 0 ⟨Rev_pubkeyA_sig⟩ ⟨Rev_pubkeyB_sig⟩ ⟨Rev_pubkeyW_sig⟩
1. It also has one output with the following script:

2 ⟨YA⟩ ⟨YB⟩ 2 OP_CHECKMULTISIG

Collateral transaction has one output with script 3 ⟨pubkeyA⟩ ⟨pubkeyB⟩ ⟨pubkeyW⟩ 3
OP_CHECKMULTISIG, where pubkeyA, pubkeyB and pubkeyW are the public keys of

𝐴, 𝐵 and 𝑊 , respectively.

The reclaim transaction has one input taking the collateral transaction output with wit-

ness script:

0 ⟨pubkeyA_sig⟩ ⟨pubkeyB_sig⟩ ⟨pubkeyW_sig⟩
It also has a single output, with the following script:

OP_IF

Penalty2
3 ⟨Pen_pubkeyA⟩ ⟨Pen_pubkeyB⟩ ⟨Pen_pubkeyW⟩ 3 OP_CHECKMULTISIG

OP_ELSE

normal

⟨delay T⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

⟨pubkeyW⟩ OP_CHECKSIG
OP_ENDIF

where Pen_pubkeyA, Pen_pubkeyB and Pen_pubkeyW are public keys of 𝐴, 𝐵 and 𝑊 ,

respectively. pubkeyW is also the public key of 𝑊 .

5.10 FPPW WITH ONE HIRING PARTY 73

Penalty transaction 1 has two inputs. The first one takes the second output of the corre-

sponding commit transaction with the following witness script if 𝐵 is broadcasting the

penalty transaction:

0 ⟨Pen_pubkeyB_Sig⟩ ⟨YA_Sig⟩ 1 0
or with the following witness script, if 𝐴 is broadcasting it:

0 ⟨Pen_pubkeyA_Sig⟩ ⟨YB_Sig⟩ 0 0
The second input takes the output of the collateral transaction with the witness script 0

⟨pubkeyA_Sig⟩ ⟨pubkeyB_Sig⟩ ⟨pubkeyW_Sig⟩. Also, the script for its output is similar

to that of the revocation transaction.

Penalty transaction 2 is similar to penalty transaction 1. The only difference is that its

second input spends the output of the reclaim transaction. The witness for the second

input is 0 ⟨Pen_pubkeyA_Sig⟩ ⟨Pen_pubkeyB_Sig⟩ ⟨Pen_pubkeyW_Sig⟩

5.10 FPPW with One Hiring Party

If only one of the channel parties is willing to hire the watchtower, some changes must

be applied to FPPW. The transaction flows for FPPW in such scenarios are depicted in Fig.

5.6. In this scenario, without loss of generality, we assume that party𝐴 is the hiring party

and hence only 𝐴 funds the extra 𝜖. Also, the auxiliary output of the commit transaction

has only two sub-conditions where the first one is used by 𝐴 for penalty purposes and

the second one can be used by both parties for revocation purposes. Output condition

for TXCL as well as the first sub-condition for output of TXRC is 𝑝𝑘𝐴 ∧ 𝑝𝑘𝑊 and public key

of party 𝐵 is not involved in these transactions anymore. Furthermore, output of TXPN1,𝑖
and TXPN2,𝑖 can be only claimed by party 𝐴. Therefore, If party 𝐵 publishes a revoked

commit transaction, 𝑊 can publish its corresponding revocation transaction and then

only 𝐴 can claim its output. Otherwise, 𝐴 can penalise the watchtower by publishing

either TXPN1,𝑖 or TXPN2,𝑖. Similarly, if 𝐴 publishes a revoked commit transaction, 𝐵 can

broadcast its corresponding revocation transaction and claim all the channel funds. The

watchtower is only paid by 𝐴.

5.11 Conclusion

In this chapter, we presented a new payment channel with a watchtower for Bitcoin,

called FPPW, which achieves fairness with respect to both the channel party and the

watchtower as well as weak privacy against the watchtower. FPPW is the same as Cer-

berus with respect to the watchtower privacy against third parties meaning that it can

74CHAPTER 5. FPPW:A FAIRANDPRIVACYPRESERVINGBITCOINWATCHTOWER

Figure 5.6: An FPPW Bitcoin Channel with only 𝐴 Being the Hiring Party.

potentially achieve weak privacy against third parties (See Section 4.3.2 for more details).

FPPW provides 𝛽-coverage with 𝛽 = 1
2 , which is higher than Cerberus and PISA with

the same channel party fairness. Although unlike Cerberus, the watchtower contract for

FPPW can start and terminate at any time, the watchtower identity should be specified at

the channel creation phase and hence the channel party cannot change the watchtower

later. So, according to the Definition 4.5, FPPW cannot achieve agility.

Chapter 6

Garrison: a storage efficient Bitcoin
watchtower

We construct this chapter based on our published paper, “Garrison: a novel watchtower

scheme for bitcoin” [60].

6.1 Introduction

In the previous chapter, we mostly focused on the privacy and fairness of a watchtower

scheme and presented a fair and privacy-preserving watchtower scheme, called FPPW.

However, in this chapter, our attention shifts towards evaluating the storage costs in-

curred by both the watchtower and channel parties. These costs play a crucial role in

determining the operational expenses associated with running services such as hubs

in PCHs or watchtower services. The storage size of the watchtower in Monitor [15],

DCWC* [32] as well as Generalized [14], Cerberus [23] and FPPW [54] channels in-

creases linearly with each channel update and hence the watchtower’s storage costs

would be 𝒪(𝑛) with 𝑛 being the number of channel updates.

Outpost [22] is a novel payment channel with a watchtower scheme that reduces

the watchtower’s storage requirements per channel from 𝒪(𝑛) to 𝒪(log 𝑛). This

consequently reduces the operational costs of maintaining watchtowers. Although

elegantly designed, Outpost suffers from the following shortcomings,

• The storage cost of each channel party is still 𝒪(𝑛).

• Each party has his own version of the channel state where this state duplication

causes the number of transactions to exponentially increase with the number of

applications on top of each other [14]. In other words, to add an application (e.g.

75

76 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

Table 6.1: Comparison of different dispute period-based payment channels with 𝑛 chan-
nel updates, 𝑚 HTLC outputs on average per state and 𝑘 channel splits on top of each
other.

Scheme Party’s Watch. on-chain off-chain
St. Cost St. Cost TX.a TX.b

Lightning [21] 𝒪(log 𝑛) 𝒪(𝑁) 𝒪(𝑚) 𝒪(2𝑘)
Generalized [32] 𝒪(log 𝑛) 𝒪(𝑛) 𝒪(1) 𝒪(1)
Outpost [22] 𝒪(𝑛) 𝒪(log 𝑛) 𝒪(𝑚) 𝒪(2𝑘)
FPPW [54] 𝒪(𝑛) 𝒪(𝑛) 𝒪(1) 𝒪(1)
Cerberus [23] 𝒪(𝑛) 𝒪(𝑛) 𝒪(𝑚) 𝒪(2𝑘)
Garrison 𝒪(log 𝑛) 𝒪(log 𝑛) 𝒪(1) 𝒪(1)
aNumber of on-chain transactions upon dispute.
bNumber of off-chain transactions per state.

Virtual channel [27]) on top of the channel, parties must split their channel into

sub-channels. If parties recursively split their channel 𝑘 times, then to update their

last layer sub-channel, they must create 𝒪(2𝑘) different versions of the channel

state.

• Outpost works based on “punish-per-output” pattern, meaning that if there are

𝑚 outputs in the published old state, the cheated party must claim each output

separately [14]. Then, the required on-chain transactions upon dispute would be

𝒪(𝑚) with 𝑚 being the number of outputs in the published old state.

Therefore, the main motivation of this chapter is designing a Bitcoin payment channel

with a watchtower scheme which is storage-efficient for channel parties and the watch-

tower and also avoids state duplication and punish-per-output pattern.

The contribution of this chapter is to present a new payment channel with a watchtower

for Bitcoin, called Garrison, for which the storage cost of channel parties and the watch-

tower would be logarithmic in the maximum number of channel updates. Furthermore,

both channel parties store the same version of transactions. Additionally, regardless of

the number of outputs in each channel state, there exists a single revocation transaction

per state. We also prove the security of the Garrison channel based on the security of its

underlying cryptographic primitives. Table 6.1 presents a comparison between Garrison

and other Bitcoin payment channels that work based on dispute period.

6.2 Notations

In this section, we add a new notation to the existing notations introduced in Section 3.3.

We already know that a Bitcoin output 𝜃 is a tuple of two attributes, 𝜃 = (cash, 𝜑), where

6.3 GARRISON OVERVIEW 77

𝜃.cash denotes the number of coins held in this output. However, the OP_RETURN out-

put is a special output that does not hold any coins and is used to add some arbitrary

data to the blockchain. Such an output is denoted by 𝜃 = (0, 𝑑𝑎𝑡𝑎), where 𝑑𝑎𝑡𝑎 is its arbi-

trary data. OP_RETURN outputs are illustrated by blocked lines (instead of directional

arrows) in charts. As an example, the second output in the transaction TX in Fig. 6.1 is

an OP_RETURN output.

Figure 6.1: A sample transaction flow.

6.3 Garrison Overview

6.3.1 System Model

Channel parties exchange data using an authenticated and secure communication chan-

nel. Channel participants might deviate from the protocol if it increases their profit.

Furthermore, the underlying blockchain contains a distributed ledger that achieves se-

curity [56]. If a valid transaction is propagated in the blockchain network, it is included

in the blockchain ledger within Δ rounds (i.e. the confirmation delay is Δ).

6.3.2 Garrison Overview

This section overviews theGarrison channel between𝐴 (Alice) and 𝐵 (Bob). To introduce

Garrison, we use the payment channel NVG, introduced in Section 5.3.2.1, as the starting

point and modify it step by step to mitigate its limitations.

6.3.2.1 Reducing the Storage Requirements of the Watchtower

One of the limitations of NVG channel is that all revocation transactions must be stored

by channel parties or their watchtowers to be published upon fraud. To reduce the stor-

age requirements of the watchtower, similar to Outpost [22], our main idea is to storing

the revocation transaction TXRV,𝑖 inside the commit transaction TXCM,𝑖. Then, once TXCM,𝑖
is published, the watchtower extracts TXRV,𝑖 and records it on the blockchain. However,

we have TXRV,𝑖.Input = TXCM,𝑖.txid‖1. Thus, if TXRV,𝑖 is created, signed and finally stored

78 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

inside TXCM,𝑖, then [TXCM,𝑖] and hence TXCM,𝑖.txid and TXRV,𝑖 change. Thus, there is a self-

loop situation [22]. To solve this issue, we add an auxiliary output with the value of 𝜖 to
commit transactions where 𝜖 is the minimum value supported by the Bitcoin blockchain.

We also add an auxiliary transaction between each commit transaction and its corre-

sponding split transaction. This new transaction TXAU,𝑖 spends the auxiliary output of

the commit transaction. The signatures of party 𝐴 and party 𝐵 on [TXRV,𝑖] are stored in

an OP_RETURN output of the auxiliary transaction TXAU,𝑖. The split transaction TXSP,𝑖
spends the main output of TXCM,𝑖 as well as the main output of the auxiliary transaction

TXAU,𝑖. Based on this design, parties can be sure that once the revoked commit transaction

TXCM,𝑖 is published on the blockchain, its split transaction TXSP,𝑖 cannot be published un-

less TXAU,𝑖 is also on the blockchain. Furthermore, due to the time-lock in themain output

of TXAU,𝑖, once this transaction is published on-chain, TXSP,𝑖 cannot be published within

𝑡 − 1 rounds. However, the honest party or the watchtower can extract the signatures

on [TXRV,𝑖] from TXAU,𝑖 and publish TXRV,𝑖 immediately. Fig. 6.2 depicts the transaction

flows.

Figure 6.2: Reducing the Storage Requirements of the Watchtower

However, this scheme has the following issues:

• To create and publish the revocation transaction, the watchtower must also know

the value of 𝑌𝐴,𝑖 and 𝑌𝐵,𝑖.

• Typically, revocation transaction of state 𝑖must be created once parties update the

channel state from state 𝑖 to 𝑖 + 1. However, in the proposed scheme signatures

for TXRV,𝑖 is stored in TXAU,𝑖 and hence TXRV,𝑖 must actually be created once parties

update the channel state from state 𝑖 − 1 to 𝑖. It means if an honest party records

the latest commit and auxiliary transactions on the blockchain, the counterparty

might publish the revocation transaction and take all the channel funds.

To solve the first mentioned issue, 𝑌𝐴,𝑖 and 𝑌𝐵,𝑖 are stored in an OP_RETURN output that

is added to the commit transaction TXCM,𝑖. To solve the second mentioned issue, we add

6.3 GARRISON OVERVIEW 79

two statements from the hard relation ℛ, 𝑅𝐴,𝑖 and 𝑅𝐵,𝑖, to the first sub-condition of the

main output of TXCM,𝑖, where 𝑅𝐴,𝑖 (𝑅𝐵,𝑖) is generated by 𝐴 (𝐵) for the state 𝑖. Then, once
the latest commit and auxiliary transactions are published by 𝐴, party 𝐵 cannot record

the revocation transaction as he does not know his counterparty’s witness 𝑟𝐴,𝑖. The

witnesses 𝑟𝐴,𝑖 and 𝑟𝐵,𝑖 are exchanged between the parties and are given to the watchtower

once parties have created TXCM,𝑖+1, TXAU,𝑖+1 and TXSP,𝑖+1. Thus, TXFU.txid, public keys 𝑝𝑘𝐴
and 𝑝𝑘𝐵 as well as 𝑟 values of both parties are all data needed by the watchtower to

watch the channel for both parties. Fig. 6.3 depicts the mentioned modifications.

The security requirement for 𝑟 values is that 𝐵 (or the watchtower) must not be able to

compute 𝑟𝐴,𝑗 given that he knows 𝑟𝐴,𝑖 with 𝑖 < 𝑗. Otherwise, when 𝐴 submits the lat-

est commit transaction TXCM,𝑗 , party 𝐵 uses 𝑟𝐴,𝑖 to compute 𝑟𝐴,𝑗 . Then, 𝐵 publishes the

revocation transaction TXRV,𝑗 and claims its output. If 𝑟 values are randomly generated,

the mentioned security requirement is met but the storage cost of channel parties and

the watchtower would be 𝒪(𝑛). To reduce the storage and meet the stated security re-

quirement, parties generate their 𝑟 values in a binary Merkle tree and use them from

the deepest leaf nodes in the tree to the root [61]. In more detail, in a binary Merkle

tree, each node has two child nodes where having the value of a node, the value of each

of its child nodes can simply be computed using a one-way function. But deriving the

value of a node from its child nodes’ values is computationally infeasible. Thus, since 𝑟
values are used from the deepest leaf nodes in the tree, the stated security requirement

is achieved. Moreover, the storage needed by each channel party (or the watchtower) to

store 𝑟 values, received from her counterparty, will be 𝒪(log 𝑛) because upon receipt of

a node value, its child nodes’ values can be removed from the storage.

Figure 6.3: Adding 𝑌 and 𝑅 Values to Commit Transactions

80 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

6.3.2.2 Reducing the Storage Requirements of channel parties

Although the storage of the watchtower is 𝒪(log 𝑛), channel parties still have to store all

the signatures of their counterparties on the revocation transactions. Otherwise, the dis-

honest channel party publishes a revoked commit transaction TXCM,𝑖 without publishing

its auxiliary transaction TXAU,𝑖. Then, the channel funds could be locked forever. This

raises a hostage situation. The scheme Outpost suffers from this problem which is why

the storage requirement of channel parties is 𝒪(𝑛). To solve this problem, we add one

sub-condition, 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 ∧ 3𝑡+, to the main output of the commit transaction TXCM,𝑖. This
sub-condition allows the honest channel party to claim all the channel funds in such

hostage situations. In other words, if party 𝐴 publishes the revoked commit transaction

TXCM,𝑖, she has 3𝑇 rounds time to publish TXAU,𝑖 and TXSP,𝑖 before 𝐵 can claim the channel

funds by meeting the sub-condition 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 ∧ 3𝑡+. If during this interval, TXAU,𝑖 is pub-
lished, party 𝐵 instantly establishes and publishes TXRV,𝑖 and claims its output. To do so,

each party must have 𝑟 values of both parties stored. Since these keys are generated in

a Merkle tree, the storage requirements of each channel party for storing these values

would be 𝒪(log 𝑛) (See Fig. 6.4).

Once party 𝐴 publishes TXCM,𝑖, party 𝐵 must be able to use Ext algorithm to extract the

value of 𝑦𝐴,𝑖. To do so, he must know the corresponding pre-signature 𝜎̃𝐵TXCM,𝑖 . If parties
store all their own pre-signatures, their storage cost would be 𝒪(𝑛). To acquire lower

storage costs, parties must be able to regenerate the required pre-signature, once a com-

mit transaction is published. To achieve this goal, random values which are required to

generate pre-signatures must be generated in a Merkle tree and be used from the root

to the deepest leaf node in the tree. In this way, once the commit transaction TXCM,𝑖 is
published by 𝐴, party 𝐵 can regenerate the required random value, recompute the cor-

responding pre-signature 𝜎̃𝐵TXCM,𝑖 and finally extract the value of 𝑦𝐴,𝑖. Thus, the storage

requirements would be still 𝒪(log 𝑛).

Additionally, party 𝐵 must know the value of 𝑦𝐵,𝑖 to meet 𝑌𝐴,𝑖 ∧𝑌𝐵,𝑖. The security require-

ment for 𝑦 values is that 𝐴 must not be able to compute 𝑦𝐵,𝑖 given that he knows 𝑦𝐵,𝑗
with 𝑗 > 𝑖. Otherwise, once 𝐵 submits the latest commit transaction TXCM,𝑗 , 𝐴 computes

𝑦𝐵,𝑗 and hence derives 𝑦𝐵,𝑖 with 𝑖 < 𝑗 and then try to publish TXCM,𝑖 before TXCM,𝑗 being
published on the ledger. Then,𝐴might be able to claim all the channel funds by meeting

the third sub-condition of the main output of TXCM,𝑖 or by publishing the revocation trans-

action TXRV,𝑖 and claiming its output. If 𝑦 values are randomly generated, the mentioned

security requirement is met but the parties’ storage cost would be 𝒪(𝑛). To reduce the

storage and simultaneously meet the stated security requirement, parties generate their

𝑦 values in a Merkle tree and give the corresponding 𝑌 values to their counterparties

from the root to the deepest leaf nodes in the tree.

6.4 GARRISON PROTOCOL DESCRIPTION 81

Figure 6.4: Reducing Storage Requirements of Channel Parties

6.4 Garrison Protocol Description

The lifetime of a Garrison channel can be divided into 4 phases including create, update,
close, and punish. These phases will be explained in the following.

6.4.1 Create

The channel creation phase completes once the funding transaction TXFU, the commit

transactions TXCM,0, the split transaction TXSP,0, the auxiliary transaction TXAU,0 and

body of the revocation transaction [TXRV,0] are created, and TXFU is published on

the blockchain. In this phase, parties do not have access to TXRV,0 as they have not

exchanged 𝑟𝐴,0 and 𝑟𝐵,0 yet. At the end of the channel creation phase, the channel

would be at state 0. Since the output of the funding transaction can only be spent if

both parties agree, one party might become unresponsive to raise a hostage situation.

To avoid this, parties must sign the commit, revocation, auxiliary and split transactions

before signing and publishing the funding transaction. Fig. 6.5 summarises the channel

creation phase.

The introduced transactions will be explained further below:

• Funding transaction Given that 𝐴 (𝐵, respectively) uses the 𝑥 th (𝑦 th, respec-
tively) output of a transaction with transaction identifier of 𝑡𝑥𝑖𝑑𝐴 (𝑡𝑥𝑖𝑑𝐵, respec-
tively) to fund the channel with 𝑎 (𝑏, respectively) coins, the funding transaction

82 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

Figure 6.5: Summary of Garrison channel creation phase.

is as follows1:

TXFU.Input ∶= (𝑡𝑥𝑖𝑑𝐴‖𝑥, 𝑡𝑥𝑖𝑑𝐵‖𝑦),
TXFU.Output ∶= {(𝑎 + 𝑏, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵)},
TXFU.Witness ∶= ((1, 𝜎𝐴,1TXFU

), (1, 𝜎𝐵,2TXFU
)). (6.1)

Commit transaction There exists one commit transaction per state but only the

first one (TXCM,𝑖 with 𝑖 = 0) is created at the channel creation phase.

TXCM,𝑖.Input ∶= TXFU.txid‖1,
TXCM,𝑖.Output ∶= ((𝑎 + 𝑏, 𝜑1 ∨ 𝜑2 ∨ 𝜑3),

(𝜖, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵),
(0, (𝑌𝐴,𝑖, 𝑌𝐵,𝑖)))

TXCM,𝑖.Witness ∶= {(1, {𝜎𝐴TXCM,𝑖 , 𝜎𝐵TXCM,𝑖})} (6.2)

with 𝜑1 ∶= (𝑝𝑘𝐴∧𝑝𝑘𝐵∧𝑅𝐴,𝑖∧𝑅𝐵,𝑖), 𝜑2 ∶= (𝑌𝐴,𝑖∧𝑌𝐵,𝑖∧3𝑡+), and 𝜑3 ∶= (𝑝𝑘𝐴∧𝑝𝑘𝐵∧𝑡+)
where 𝑌𝐴,𝑖 and 𝑅𝐴,𝑖 (𝑌𝐵,𝑖 and 𝑅𝐵,𝑖) are statements of a hard relation ℛ generated

by 𝐴 (𝐵) for the 𝑖th state and 𝑡 is any number such that 𝑡 > Δ. The first and second

outputs of the transaction are the main and auxiliary outputs. Normally, if TXCM,𝑖
is the last commit transaction and is published on-chain, first its auxiliary output

1We assume that funding sources of TXFU are two typical UTXOs owned by 𝐴 and 𝐵.

6.4 GARRISON PROTOCOL DESCRIPTION 83

and then its main output is spent by the auxiliary and split transactions, respec-

tively. The third output of TXCM,𝑖 is an OP_RETURN output containing values of

𝑌𝐴,𝑖 and 𝑌𝐵,𝑖. Parties 𝐴 and 𝐵 use their counterparties’ statements 𝑌𝐵,𝑖 and 𝑌𝐴,𝑖 and
the underlying adaptor signature to generate a pre-signature on the commit trans-

action for their counterparties. Thus, once 𝐴 publishes the commit transaction

TXCM,𝑖, she also reveals her witness 𝑦𝐵,𝑖.
Remark 6.1. Each Bitcoin transaction can have at most one OP_RETURN output
with the size constraint of 80 bytes. To store 𝑌𝐴,𝑖 and 𝑌𝐵,𝑖 inside an OP_RETURN
output, their compressed version, each with a 33-byte length, are stored.

• Revocation transactionThe revocation transaction for state 𝑖 is denoted by TXRV,𝑖
and is as follows, where at the channel creation phase only TXRV,𝑖 with 𝑖 = 0 is

created:

TXRV,𝑖.Input ∶= TXCM,𝑖.txid‖1,
TXRV,𝑖.Output ∶= {(𝑎 + 𝑏, 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖)},
TXRV,𝑖.Witness ∶= {(1, {𝜎𝐴TXRV,𝑖 , 𝜎𝐵TXRV,𝑖 , 𝑟𝐴,𝑖, 𝑟𝐵,𝑖})} (6.3)

The TXRV,𝑖 spends the main output of TXCM,𝑖 using its non-time-locked sub-

condition 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑅𝐴,𝑖 ∧ 𝑅𝐵,𝑖 and sends all the channel funds to an output

with the condition 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖. When a dishonest party, let’s say 𝐴, publishes the

revoked TXCM,𝑖, she must publish TXAU,𝑖 and then wait for 𝑡 rounds before being

able to publish TXSP,𝑖. However, given that the state 𝑖 is revoked, 𝐵 knows the

value of 𝑟𝐴,𝑖 and hence creates the revocation transaction TXRV,𝑖 and instantly

publishes it on the blockchain. The output of TXRV,𝑖 can only be claimed by 𝐵
because no one else knows the witness 𝑦𝐵,𝑖.

• Auxiliary transactionAuxiliary transaction for state 𝑖 is as follows, where at the

channel creation phase only TXAU,𝑖 with 𝑖 = 0 is created:

TXAU,𝑖.Input ∶= TXCM.txid‖2,
TXAU,𝑖.Output ∶= ((𝜖, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵 ∧ 𝑡+),

(0, (𝜎𝐴TXRV,𝑖 , 𝜎𝐵TXRV,𝑖)))
TXAU,𝑖.Witness ∶= {(1, {𝜎𝐴TXAU,𝑖 , 𝜎𝐵TXAU,𝑖})} (6.4)

This transaction spends the auxiliary output of the commit transaction and its

output is spent by the split transaction. In otherwords, the split transaction cannot

84 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

be published unless the auxiliary transaction is on the blockchain. The second

output of TXAU,𝑖 is an OP_RETURN output containing signatures of both parties

on the corresponding revocation transaction.

Remark 6.2. Each encoded Bitcoin signature can be up to 73 bytes long. Thus, due
to the size constraint of the OP_RETURN output, two separate signatures do not fit
into the auxiliary transaction. To solve this issue, 𝐴 and 𝐵 can aggregate their public
keys 𝑝𝑘𝐴 and 𝑝𝑘𝐵 to form an aggregated public key 𝑝𝑘 [62] and change 𝜑1 in TXCM,𝑖
to (𝑝𝑘 ∧ 𝑅𝐴,𝑖 ∧ 𝑅𝐵,𝑖). Then, rather than two separate signatures on the revocation
transaction, they generate amultisignature (with up to 73-byte size) and store it inside
the OP_RETURN output of TXAU,𝑖.

• Split transaction

TXSP,𝑖 actually represents the 𝑖th channel state and is as follows, where at the chan-

nel creation phase only the first one, TXSP,𝑖 with 𝑖 = 0, is created:

TXSP,𝑖.Input ∶= (TXCM,𝑖.txid‖1, TXAU,𝑖.txid‖1),
TXSP,𝑖.Output ∶= (𝜃1, 𝜃2, ⋯),
TXSP,𝑖.Witness ∶= ((3, {𝜎𝐴TXSP,𝑖 , 𝜎𝐵TXSP,𝑖}), (1, {𝜎𝐴TXSP,𝑖 , 𝜎𝐵TXSP,𝑖})) (6.5)

The split transaction spends the main output of the commit transaction and the

first output of the auxiliary transaction.

6.4.2 Update

Let the channel be in state 𝑖 ≥ 0 and channel parties decide to update it to state 𝑖+1. The
update process is performed in two sub-phases. In the first sub-phase, channel parties

create TXCM,𝑖+1, TXSP,𝑖+1, TXAU,𝑖+1, and [TXRV,𝑖+1] for the new state. In the second sub-phase,

channel parties revoke the state 𝑖 by exchanging 𝑟𝐴,𝑖 and 𝑟𝐵,𝑖 and giving these values to

the watchtower. We assume that the watchtower is also paid after each channel update.

Fig. 6.6 summarises the channel update phase.

6.4.3 Close

Assume that the channel parties 𝐴 and 𝐵 have updated their channel 𝑛 times and then

𝐴 and/or 𝐵 decide to close it. They can close the channel cooperatively. To do so, 𝐴 and

6.4 GARRISON PROTOCOL DESCRIPTION 85

Figure 6.6: Summary of Garrison channel update phase from state 𝑖 to 𝑖 + 1.

𝐵 create the below transaction, called modified split transaction TX
SP
, and publish it on

the blockchain:

TX
SP
.Input ∶= TXFU.txid‖1,

TX
SP
.Output ∶= TXSP,𝑛.Output,

TX
SP
.Witness ∶= {(1, {𝜎𝐴TXSP , 𝜎

𝐵
TXSP

})}. (6.6)

If one of the channel parties, e.g. party 𝐵, becomes unresponsive, 𝐴 can still non-

collaboratively close the channel. To do so, she publishes TXCM,𝑛 and TXAU,𝑛 on the ledger.

Then, she waits for 𝑡 rounds, and finally publishes TXSP,𝑛.

6.4.4 Punish

Let the channel be at state 𝑛. If a channel party, e.g. party 𝐴, publishes TXCM,𝑖 and then

TXAU,𝑖 with 𝑖 < 𝑛 on the blockchain, party 𝐵 or his watchtower can create the transaction

TXRV,𝑖 and publish it within 𝑡 rounds. If only TXCM,𝑖 is published, party 𝐵 claims its first

output by meeting its second sub-condition 𝑌𝐴,𝑖 ∧ 𝑌𝐴,𝑖 ∧ 3𝑡+.

86 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

Remark 6.3. If the watchtower is non-responsive, the channel might be closed in an old
state. The paper [33] proposes a reputation system, called HashCashed, which forces watch-
towers to be responsive without requiring them to lock any funds as collateral. Garrison
might be used with the HashCashed system.

6.5 Security Analysis

In this section, we prove that for the Garrison channel, it is of negligible probability that

an honest party loses any funds.

Lemma 6.1. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. Then, for a Garrison channel with 𝑛 channel updates,
the broadcast of TXRV,𝑖 with 𝑖 < 𝑛 causes the honest channel party 𝑃 ∈ {𝐴, 𝐵} to lose any
funds in the channel with negligible probability.

Proof. Without loss of generality let 𝑃 = 𝐴. The transaction TXRV,𝑖 with 𝑖 < 𝑛 spends the

main output of the revoked TXCM,𝑖 and hence cannot be published unless TXCM,𝑖 is on-chain.
The transaction TXCM,𝑖 spends the output of TXFU. Since the condition in TXFU.Output con-
tains 𝑝𝑘𝐴, this output cannot be spent without𝐴’s authorisation. Otherwise, the security

of the underlying digital signature would be violated. Based on the protocol, the honest

party 𝐴 never broadcasts the revoked TXCM,𝑖 on-chain and her pre-signature 𝜎̃TXCM,𝑖 on the

transaction TXCM,𝑖 is the only authorisation he grants for spending TXFU.Output using

TXCM,𝑖. Thus, if TXCM,𝑖 is published, the probability that 𝐴 fails to obtain 𝑦𝐵,𝑖 is negligible.
Otherwise, aEUF − CMA security or witness extractability of the used adaptor signature

is violated. Furthermore, TXRV,𝑖 has only one output with the condition of 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 and
the value of 𝑎 + 𝑏. Since 𝐴 privately preserves its witness value 𝑦𝐴,𝑖, the probability that

any PPT adversary claims TXRV,𝑖.Output is negligible. Otherwise, the utilised hard rela-

tion would break. Therefore, it is of negligible probability that 𝐴 (who knows both 𝑦𝐴,𝑖
and 𝑦𝐵,𝑖) fails to claim TXRV,𝑖.Output and obtain all the channel funds.

Lemma 6.2. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. Then, for a Garrison channel between 𝐴 and 𝐵 with
𝑃 ∈ {𝐴, 𝐵} being the honest party, if 𝑃 ’s counterparty publishes TXCM,𝑖, it is with negligible
probability that

• 𝑃 fails to obtain the data required to meet the second sub-condition of TXCM,𝑖.
Output[1].𝜑.

• any PPT adversary can meet the second sub-condition of TXCM,𝑖.Output[1].𝜑.

6.5 SECURITY ANALYSIS 87

Proof. Without loss of generality let 𝑃 = 𝐴. Similar to the proof of Lemma 6.1, if

𝐵 publishes TXCM,𝑖, the probability that 𝐴 fails to obtain 𝑦𝐵,𝑖 is negligible. Otherwise,

aEUF − CMA security or witness extractability of the used adaptor signature is violated.

The witness 𝑦𝐴,𝑖 has also been created by 𝐴 and hence he has the whole data required to

meet 𝑌𝐴,𝑖 ∧𝑌𝐵,𝑖 ∧3𝑡+. Furthermore, given that 𝐴 privately preserves its witness value 𝑦𝐴,𝑖,
the probability that any PPT adversary meets this sub-condition is negligible. Otherwise,

the utilised hard relation would break.

Lemma 6.3. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. Then, for a Garrison channel with 𝑛 channel updates,
if the honest party 𝑃 ∈ {𝐴, 𝐵} publishes TXCM,𝑛, 𝑃 loses funds in the channel with negligible
probability.

Proof. Without loss of generality let 𝑃 = 𝐴. We assume that 𝐴 publishes TXCM,𝑛 in the

block ℬ𝑗 of the blockchain and prove that it is of negligible probability that 𝐴 fails to

publish TXSP,𝑛. Then, since TXSP,𝑛 corresponds with the latest channel state, its broadcast

cannot cause 𝐴 to lose any funds.

The condition TXCM,𝑛.Output[2].𝜑 contains 𝑝𝑘𝐴 and hence it is of negligible probability

that this output is spent without 𝐴’s authorisation. Otherwise, the security of the un-

derlying digital signature is violated. The honest party 𝐴 grants such an authorisation

only on the transaction TXAU,𝑛 which is held by both 𝐴 and 𝐵. Based on the protocol,

once TXCM,𝑛 is published on the blockchain by 𝐴, he also instantly submits TXAU,𝑛 to the

blockchain. According to our assumptions regarding the blockchain, TXAU,𝑛 is published

on the blockchain in the block ℬ𝑗+𝑘 with 0 < 𝑘 ≤ Δ < 𝑡 . Similarly, the first output of

TXAU,𝑛 can only be spent by TXSP,𝑛. According to the protocol, 𝐴 holds TXSP,𝑛 and submits

it to the blockchain 𝑡 rounds after TXAU,𝑛 is published on-chain. Thus, given that the first

input of TXSP,𝑛 (or equivalently the first output of TXCM,𝑛) is still unspent, based on our

assumptions regarding the blockchain, TXSP,𝑛 is published on the blockchain in the block

ℬ𝑗+𝑘+𝑙+𝑡 with 0 < 𝑙 ≤ Δ < 𝑡 . Now, we prove that, when ℬ𝑗+𝑘+𝑙+𝑡 with 0 < 𝑙, 𝑘 < 𝑡 is
added to the blockchain, the first output of TXCM,𝑛, TXCM,𝑛.Output[1], is still unspent.
The first and third sub-conditions of TXCM,𝑛.Output[1] contains 𝑅𝐴,𝑛 and 𝑝𝑘𝐴, respec-
tively and hence it is of negligible probability that these two sub-conditions are met

without 𝐴’s authorisation. Otherwise, the underlying hard relation or digital signature

would break. Party 𝐴 grants such an authorisation only on TXSP,𝑛. Moreover, the second

sub-condition 𝑌𝐴,𝑖 ∧ 𝑌𝐵,𝑖 ∧ 3𝑡+ cannot be met in block ℬ𝑗+𝑘+𝑙+𝑡 with 0 < 𝑙, 𝑘 < 𝑡 because
𝑗 + 𝑘 + 𝑙 + 𝑡 < 𝑗 + 3𝑡 .

Lemma 6.4. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. Then, for a Garrison channel with 𝑛 channel updates

88 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

and with 𝑃 ∈ {𝐴, 𝐵} being the honest party, if 𝑃 ’s counterparty publishes TXCM,𝑛, it is of
negligible probability that 𝑃 loses any funds in the channel.

Proof. Without loss of generality let 𝑃 = 𝐴. The proof is similar to the proof of Lemma

6.3. The only difference is that following Lemma 6.2, it is of negligible probability that

𝐴 fails to meet the second sub-condition of TXCM,𝑛.Output[1]. Therefore, 𝐴 can either

publishes both TXAU,𝑛 and TXSP,𝑛 or claim TXCM,𝑛.Output[1] by meeting its second sub-

condition. None of these two cases can cause the honest party 𝐴 to lose any funds in

the channel.

Lemma 6.5. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and Ξ
be a secure adaptor digital signature. Then, for a Garrison channel with 𝑛 channel updates
and with 𝑃 ∈ {𝐴, 𝐵} being the honest party, if any adversary publishes TXCM,𝑖 with 𝑖 < 𝑛, it
is of negligible probability that 𝑃 loses any funds in the channel.

Proof. Without loss of generality let 𝑃 = 𝐴. The output TXCM,𝑖.Output[1] includes 3 sub-

conditions, one of which must be met to cheat 𝐴 out of its funds. The first sub-condition

contains 𝑝𝑘𝐴 and hence it is of negligible probability that this output is spent without

𝐴’s authorisation. Otherwise, the security of the used digital signature is violated. The

honest party 𝐴 grants such an authorisation only on the transaction TXRV,𝑖. However,

according to Lemma 6.1, it is of negligible probability that broadcast of TXRV,𝑖 causes 𝐴
to lose any funds. Moreover, according to Lemma 6.2, it is of negligible probability that

any PPT adversary can meet the second sub-condition. Now, we prove that if the third

sub-condition is used to cheat 𝐴 out of her funds, it leads to a contradiction.

Assume that the third sub-condition of TXCM,𝑖.Output[1] is used to cheat 𝐴 out of her

funds. This sub-condition contains 𝑝𝑘𝐴 and hence it is of negligible probability that this

condition is met without 𝐴’s authorisation. Otherwise, the security of the underlying

digital signature is violated. The honest party𝐴 grants such an authorisation only on the

transaction TXSP,𝑖. Assume that TXSP,𝑖 is included in the blockℬ𝑘 of the blockchain. The

transaction TXSP,𝑖 cannot be added to the blockchain unless its inputs are some unspent

outputs on the blockchain. It means that TXAU,𝑖 is also on the blockchain and following

the condition in TXAU,𝑖.Output[1], the transaction TXAU,𝑖 must have been published in the

block ℬ𝑗 with 𝑗 ≤ 𝑘 − 𝑡 . However, based on the protocol, once 𝐴 or her watchtower

observes TXAU,𝑖 on the blockchain, they create the corresponding revocation transaction

TXRV,𝑖 and submit it to the blockchain. According to our blockchain assumptions, this

transaction is published on the blockchain in block ℬ𝑙 with 𝑗 < 𝑙 ≤ 𝑗 + Δ < 𝑗 + 𝑡 ≤ 𝑘.
However, once TXRV,𝑖 is published in the blockℬ𝑙 of the blockchain, the transaction TXSP,𝑖
becomes invalid and cannot be published in block ℬ𝑘 of the blockchain which leads to

a contradiction.

6.6 GARRISON TRANSACTIONS SCRIPTS 89

Theorem 6.1. Let Π be a EUF − CMA secure digital signature, ℛ be a hard relation and
Ξ be a secure adaptor digital signature. Then, for a Garrison channel, an honest party
𝑃 ∈ {𝐴, 𝐵} loses any funds in the channel with negligible probability.

Proof. Without loss of generality let 𝑃 = 𝐴. Funds of 𝐴 are locked in TXFU.Output. It is
of negligible probability that any PPT adversary 𝒜 spends the output of TXFU without

the honest party 𝐴’s authorisation. Otherwise, the underlying digital signature would

be forgeable. Furthermore, TX
SP
, TXCM,𝑖 with 𝑖 = [0, 𝑛−1], TXCM,𝑛 are the only transactions

in the protocol that spend the output of TXFU and 𝐴 grants authorisation for. Thus, these

transactions will be discussed further. Since TX
SP

represents the final agreed state of the

channel, its broadcast cannot cause𝐴 to lose any funds. Moreover, according to Lemmas

6.3 and 6.4, it is of negligible probability that broadcast of TXCM,𝑛 causes 𝐴 to be cheated

out of her funds. Also, based on the protocol, 𝐴 never publishes TXCM,𝑖 with 𝑖 = [0, 𝑛 − 1]
and according to Lemma 6.5, if one of these transactions is published by the adversary,

it causes 𝐴 to lose any funds with negligible probability. This concludes the proof.

6.6 Garrison Transactions Scripts

The funding transaction is similar to the corresponding transaction in the FPPW channel.

Commit transaction has one input that takes the output of the funding transaction with

witness script of 0 ⟨pubkeyA_sig⟩ ⟨pubkeyB_sig⟩. It also has three outputs where the

script of its first output (main output) is as follows:

OP_IF

Revocation
4 ⟨Rev_pubkeyA⟩ ⟨Rev_pubkeyB⟩ ⟨R_pubkeyA⟩ ⟨R_pubkeyB⟩ 4 OP_CHECKMULTISIG

OP_ELSE

OP_IF

⟨delay 3t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

2 ⟨Y_pubkeyA⟩ ⟨Y_pubkeyB⟩ 2 OP_CHECKMULTISIG

OP_ELSE

Split
⟨delay t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

2 ⟨Spl_pubkeyA⟩ ⟨Spl_pubkeyB⟩ 2 OP_CHECKMULTISIG

90 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

OP_ENDIF

OP_ENDIF

where ⟨Rev_pubkeyA⟩ and ⟨Spl_pubkeyA⟩ are public keys of 𝐴 and ⟨R_pubkeyA⟩
and ⟨Y_pubkeyA⟩ are revocation key and publishing key of 𝐴, respectively. Also,

⟨Rev_pubkeyB⟩, ⟨Spl_pubkeyB⟩, ⟨R_pubkeyB⟩ and ⟨Y_pubkeyB⟩ are the corresponding

parameters for 𝐵.

The script for the second output (auxiliary output) of the commit transaction is as fol-

lowing:

2 ⟨Aux_pubkeyA⟩ ⟨Aux_pubkeyB⟩ 2 OP_CHECKMULTISIG

where ⟨Aux_pubkeyA⟩ and ⟨Aux_pubkeyB⟩ are public keys of 𝐴 and 𝐵 respectively.

The script for the third output of the commit transaction is as following:

OP_RETURN ⟨Y_pubkeyA⟩ ⟨Y_pubkeyB⟩

where ⟨Y_pubkeyA⟩ and ⟨Y_pubkeyB⟩ are the same as the corresponding values used in

the script in the first output of the commit transaction.

The revocation transaction spends the main output of a revoked commit transaction

with the witness script of 0 ⟨Rev_pubkeyA_sig⟩ ⟨Rev_pubkeyB_sig⟩ ⟨R_pubkeyA_sig⟩
⟨R_pubkeyB_sig⟩ 1. It also has one outputwith the script of 2 ⟨Y_pubkeyA⟩ ⟨Y_pubkeyB⟩
2 OP_CHECKMULTISIG.

The auxiliary transaction spends the auxiliary output of the commit transaction using

the witness script of 0 ⟨Aux_pubkeyA_sig⟩ ⟨Aux_pubkeyB_sig⟩. It also has two outputs.

Its first output contains the following script:

⟨delay t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

2 ⟨Spl_pubkeyA⟩ ⟨Spl_pubkeyB⟩ 2

The second output of the auxiliary transaction is as follows:

OP_RETURN ⟨Rev_pubkeyA_sig⟩ ⟨Rev_pubkeyB_sig⟩ where ⟨Rev_pubkeyA_sig⟩ and

⟨Rev_pubkeyB_sig⟩ are the corresponding signatures used in the witness script of the

corresponding revocation transaction.

The split transaction has two inputs. The first one takes the main output of the

corresponding commit transaction with the witness script of 0 ⟨Spl_pubkeyA_Sig⟩
⟨Spl_pubkeyB_Sig⟩ 0 0. The second input takes the first output of the corresponding

auxiliary transactionwith thewitness script of 0 ⟨Spl_pubkeyA_Sig⟩ ⟨Spl_pubkeyB_Sig⟩.

6.7 GARRISON PROTOCOL 91

6.7 Garrison Protocol

In this section, protocols for different phases of Garrison will be presented. In differ-

ent steps of the protocol, channel participants generate (or verify) some signatures or

pre-signatures on protocol transactions. When a signature or pre-signature is going to

be generated (or verified) for 𝑗th input of the transaction TX𝑖, the input message to the

signing (or verification) algorithm is denoted by 𝑓 ([TX𝑖], 𝑗) [58].
Garrison channel creation protocol is as follows:

Preconditions: 𝐴 and 𝐵 own 𝑎 + 𝜖/2 and 𝑏 + 𝜖/2 coins on-chain in output of trans-

actions with transaction identifiers 𝑡𝑥𝑖𝑑𝐴 and 𝑡𝑥𝑖𝑑𝐵 respectively. 𝐴 and 𝐵 know

each other’s public keys and values of 𝜖, 𝑎 and 𝑏 that are going to be used in the

channel.

1. Create [TXFU]:

(a) 𝑃 ∈ {𝐴, 𝐵} 𝑡𝑥𝑖𝑑𝑃
↪−−−−→ ̄𝑃

(b) If 𝑃 receives 𝑡𝑥𝑖𝑑 ̄𝑃 , it creates [TXFU] according to 6.1. Else it stops.

2. Create [TXCM,0]:

(a) 𝑃 ∈ {𝐴, 𝐵} generates (𝑌𝑃,0, 𝑦𝑃,0) ← GenR and (𝑅𝑃,0, 𝑟𝑃,0) ← GenR.

(b) 𝑃 𝑌𝑃,0,𝑅𝑃,0
↪−−−−−−→ ̄𝑃

(c) If 𝑃 receives 𝑌 ̄𝑃 ,0, it creates [TXCM,0] according to 6.2. Else it stops.

3. Create [TXRV,0]:

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TXRV,0] according to 6.3.

(b) Party 𝑃 computes 𝜎𝑃TXRV,0 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV,0])).

(c) 𝑃
𝜎𝑃TXRV,0
↪−−−−−→ ̄𝑃 .

(d) If party 𝑃 receives 𝜎 ̄𝑃
TXRV,0 from

̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,0], 1); 𝜎
̄𝑃

TXRV,0) = 1,
it continues. Else it stops.

4. Create [TXAU,0]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXAU,0] according to 6.4.

5. Create [TXSP,0]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXSP,0] according to 6.5.

6. Create TXSP,0:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃,𝑗TXSP,0 = Sign𝑠𝑘𝑃 (𝑓 ([TXSP,0], 𝑗)) with 𝑗 ∶=
{1, 2}.

92 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

(b) 𝑃
𝜎𝑃,1TXSP,0 ,𝜎

𝑃,2
TXSP,0

↪−−−−−−−−−−→ ̄𝑃
(c) If party 𝑃 receives 𝜎 ̄𝑃 ,𝑗

TXSP,0 with 𝑗 ∶= {1, 2} s.t.

Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP,0], 𝑗); 𝜎
̄𝑃 ,𝑗

TXSP,0) = 1 for 𝑗 ∶= {1, 2}, it continues.

Else it stops.

(d) Party 𝑃 creates TXSP,0 according to 6.5.

7. Create TXAU,0:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXAU,0 = Sign𝑠𝑘𝑃 (𝑓 ([TXAU,0], 1)).

(b) 𝑃
𝜎𝑃TXAU,0
↪−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXAU,0 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXAU,0], 1); 𝜎

̄𝑃
TXAU,0) = 1, it con-

tinues. Else it stops.

(d) Party 𝑃 creates TXAU,0 according to 6.4.

8. Create TXCM,0:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎̃𝑃TXCM,0 = pSign𝑠𝑘𝑃 (𝑓 ([TXCM,0], 1), 𝑌 ̄𝑃 ,0).

(b) 𝑃
𝜎̃𝑃TXCM,0
↪−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎̃ ̄𝑃
TXCM,0 s.t. pVrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXCM,0], 1), 𝑌𝑃,0; 𝜎̃

̄𝑃
TXCM,0) = 1,

it computes 𝜎 ̄𝑃
TXCM,0 = Adapt(𝜎̃ ̄𝑃

TXCM,0 , 𝑦𝑃,0), computes 𝜎𝑃TXCM,0 = Sign𝑠𝑘𝑃
(𝑓 ([TXCM,0], 1)), creates TXCM,0 according to 6.2 and continues. Else it

stops.

9. Create TXFU:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXFU = Sign𝑠𝑘𝑃 (𝑓 ([TXFU], 𝑗)) where 𝑗 ∶= 1
if 𝑃 = 𝐴 or 𝑗 ∶= 2 otherwise.

(b) 𝑃
𝜎𝑃TXFU
↪−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXFU

s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXFU], 𝑗); 𝜎
̄𝑃

TXFU
) = 1with 𝑗 ∶= 1

if 𝑃 = 𝐵 or 𝑗 ∶= 2 otherwise, it continues. Else it stops.

(d) Party 𝑃 creates TXFU.

10. Publish TXFU: Party 𝑃 ∈ {𝐴, 𝐵} publishes TXFU on-chain.

The Garrison channel update protocol is as follows:

6.7 GARRISON PROTOCOL 93

Preconditions: The channel create phase is complete and TXFU is on-chain. The

channel update phase has been completed 𝑖 times and hence the channel is at

state 𝑖.

1. Create [TXCM,𝑖+1]:

(a) 𝑃 ∈ {𝐴, 𝐵} generates (𝑌𝑃,𝑖+1, 𝑦𝑃,𝑖+1) ← GenR and (𝑅𝑃,𝑖+1, 𝑟𝑃,𝑖+1) ←
GenR.

(b) 𝑃 𝑌𝑃,𝑖+1,𝑅𝑃,𝑖+1
↪−−−−−−−−−→ ̄𝑃

(c) If 𝑃 receives 𝑌 ̄𝑃 ,𝑖+1, it creates [TXCM,𝑖+1] according to 6.2. Else it stops.

2. Create [TXRV,𝑖+1]:

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TXRV,𝑖+1] according to 6.3.

(b) Party 𝑃 computes 𝜎𝑃TXRV,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXRV,𝑖+1])).

(c) 𝑃
𝜎𝑃TXRV,𝑖+1
↪−−−−−−→ ̄𝑃 .

(d) If party 𝑃 receives 𝜎 ̄𝑃
TXRV,𝑖+1 from

̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXRV,𝑖+1], 1); 𝜎
̄𝑃

TXRV,𝑖+1)
= 1, it continues. Else it stops.

3. Create [TXAU,𝑖+1]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXAU,𝑖+1] according to 6.4.

4. Create [TXSP,𝑖+1]: Party 𝑃 ∈ {𝐴, 𝐵} creates [TXSP,𝑖+1] according to 6.5.

5. Create TXSP,𝑖+1:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃,𝑗TXSP,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXSP,𝑖+1], 𝑗))with 𝑗 ∶=
{1, 2}.

(b) 𝑃
𝜎𝑃,1TXSP,𝑖+1 ,𝜎

𝑃,2
TXSP,𝑖+1

↪−−−−−−−−−−−−→ ̄𝑃
(c) If party 𝑃 receives 𝜎 ̄𝑃 ,𝑗

TXSP,𝑖+1 with 𝑗 ∶= {1, 2} s.t.

Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP,𝑖+1], 𝑗); 𝜎
̄𝑃 ,𝑗

TXSP,𝑖+1) = 1 for 𝑗 ∶= {1, 2}, it continues.

Else it stops.

(d) Party 𝑃 creates TXSP,𝑖+1 according to 6.5.

6. Create TXAU,𝑖+1:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎𝑃TXAU,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXAU,𝑖+1], 1)).

(b) 𝑃
𝜎𝑃TXAU,𝑖+1
↪−−−−−−→ ̄𝑃

94 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

(c) If party 𝑃 receives 𝜎 ̄𝑃
TXAU,𝑖+1 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXAU,𝑖+1], 1); 𝜎

̄𝑃
TXAU,𝑖+1) = 1, it

continues. Else it stops.

(d) Party 𝑃 creates TXAU,𝑖+1 according to 6.4.

7. Create TXCM,𝑖+1:

(a) Party 𝑃 ∈ {𝐴, 𝐵} computes 𝜎̃𝑃TXCM,𝑖+1 = pSign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌 ̄𝑃 ,𝑖+1).

(b) 𝑃
𝜎̃𝑃TXCM,𝑖+1
↪−−−−−−→ ̄𝑃

(c) If party 𝑃 receives 𝜎̃ ̄𝑃
TXCM,𝑖+1 s.t. pVrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXCM,𝑖+1], 1), 𝑌𝑃,𝑖+1; 𝜎̃

̄𝑃
TXCM,𝑖+1) =

1, it computes 𝜎 ̄𝑃
TXCM,𝑖+1 = Adapt(𝜎̃ ̄𝑃

TXCM,𝑖+1 , 𝑦𝑃,𝑖+1), computes

𝜎𝑃TXCM,𝑖+1 = Sign𝑠𝑘𝑃 (𝑓 ([TXCM,𝑖+1], 1)), creates TXCM,𝑖+1 according to

6.2 and continues. Else it executes the non-collaborative closure

phase (from 𝑃 ’s point of view the channel is still at state 𝑖).

8. Revoke TXCM,𝑖:

(a) 𝑃 ∈ {𝐴, 𝐵} 𝑟𝑃,𝑖
↪−−→ ̄𝑃 .

(b) if 𝑃 receives 𝑟 ̄𝑃 ,𝑖 s.t. (𝑅 ̄𝑃 ,𝑖, 𝑟 ̄𝑃 ,𝑖) ∈ ℛ, then continues. Else, it executes the

non-collaborative closure phase (from 𝑃 ’s point of view the channel is

at state 𝑖 + 1).

Garrison channel collaborative closure protocol is as follows:

Preconditions: The channel create phase is complete and TXFU is on-chain. The

channel is at state 𝑛.

1. Create TX
SP
:

(a) Party 𝑃 ∈ {𝐴, 𝐵} creates [TX
SP
] according to 6.6.

(b) 𝑃 computes 𝜎𝑃TXSP = Sign𝑠𝑘𝑃 (𝑓 ([TXSP], 1)).

(c) 𝑃
𝜎𝑃TX

SP
↪−−−−→ ̄𝑃

(d) If 𝑃 receives 𝜎 ̄𝑃
TXSP

from ̄𝑃 s.t. Vrfy𝑝𝑘 ̄𝑃 (𝑓 ([TXSP], 1); 𝜎
̄𝑃

TXSP
) = 1, it con-

tinues. Else it executes the non-collaborative closure phase (from 𝑃 ’s
point of view the channel is still at state 𝑛).

2. Publish TX
SP
: Party 𝑃 ∈ {𝐴, 𝐵} publishes TX

SP
on-chain.

Garrison channel non-collaborative closure protocol is as follows:

6.8 CONCLUSION 95

Preconditions: The channel create phase is complete and TXFU is on-chain. The

channel is at state 𝑛.

1. Party 𝑃 ∈ {𝐴, 𝐵} publishes TXCM,𝑛 on-chain.

2. Once TXCM,𝑛 is recorded on-chain, 𝑃 waits for 𝑡 rounds and then publishes

TXSP,𝑛 on-chain.

The protocol for penalizing the cheating party is as following:

preconditions: The channel create phase is complete and TXFU is on-chain. The

channel is at state 𝑛 > 0. TXCM,𝑖 with 𝑖 < 𝑛 is recorded on-chain by a dishonest

party. The honest party (or its watchtower) is always online.

1. The honest party 𝑃 (or its watchtower) observes that TXCM,𝑖 is on-chain.

Party 𝑃 (or its watchtower) extracts 𝑦 ̄𝑃 ,𝑖 = Ext(𝜎𝑃TXCM,𝑖 , 𝜎̃𝑃CM,𝑖, 𝑌 ̄𝑃 ,𝑖).

2. If TXAU,𝑖 is published within 3𝑡 rounds, Party 𝑃 (or its watchtower)

extracts 𝜎𝑃TXRV,𝑖 and 𝜎 ̄𝑃
TXRV,𝑖 from TXAU,𝑖.Output[2], computes 𝜎 ′𝑃TXRV,𝑖 =

Sign𝑟𝑃,𝑖(𝑓 ([TXRV,𝑖], 1)) and 𝜎 ′ ̄𝑃
TXRV,𝑖 = Sign𝑟 ̄𝑃 ,𝑖(𝑓 ([TXRV,𝑖], 1)), creates TXRV,𝑖 ac-

cording to 6.3, publishes it on the blockchain, claims its output and stops.

Else, party 𝑃 claims the output TXCM,𝑖.Output[2] and stops.

6.8 Conclusion

In this chapter, we presented a payment channel with a watchtower, called Garrison,

whose storage costs for both channel parties and the watchtower are logarithmic in the

maximumnumber of channel updates. Garrison avoids state duplication. So, the number

of transactions does not increase exponentially with the number of payment channels or

applications built on top of each other. Furthermore, the number of transactions that are

published on the blockchain upon fraud does not increase with the number of outputs

in the published revoked state.

Regarding the properties defined in Chapter 4, Garrison provides agility as the watch-

tower contract might be made with any watchtower and it can initiate and terminate at

any time. Like Monitor, DCWC, DCWC* and Outpost, Garrison provides strong privacy

against the watchtower. Also, it potentially achieves weak watchtower privacy against

the third party (Refer to Section 4.3.2 for more details.). The watchtower in Garrison

is rewarded upon each channel update. So, Garrison provides watchtower fairness but

since the watchtower does not lock any collateral per channel, the channel party might

96 CHAPTER 6. GARRISON: A STORAGE EFFICIENT BITCOIN WATCHTOWER

Table 6.2: Different Properties of the Garrison Scheme.

Bitcoin Agility Priv. ag. Priv. ag. Watch. 𝛼 𝛽
Support Watch. 3rd Party Fairness

Garrison Yes Yes Strong Weak Yes 0 1

lose her funds and hence Garrison is unfair to the channel party. Correspondingly, it

provides 𝛽-coverage with 𝛽 = 1. Adding channel party fairness to Garrison has been

left to future works. Table 6.2 summarises the mentioned properties for Garrison.

Chapter 7

Daric: a storage efficient channel with
penalisation

We construct this chapter based on the full version of our published paper, “Daric: A

Storage Efficient Payment ChannelWith Penalisation Mechanism” [63] (The full version

paper is available at https://eprint.iacr.org/2022/1295.pdf).

7.1 Introduction

While the Lightning Network exhibits elegant design, it does have certain limitations.

One such limitation is the linear increase in storage requirements for channel parties, as

they must store all revocation secrets received from their counterparts as the number

of channel updates grows. This leads to an escalation in the storage expenses, partic-

ularly for channel parties managing a large number of channels and frequent channel

updates (e.g., hubs in the PCH use case). Additionally, to ensure the identification and

penalization of misbehaving parties, the channel state is duplicated, resulting in each

party having its own copy of the state. Then, if parties split their channel into sub-

channels (for example in order to add an application like a Virtual channel [27] on top of

the channel), the state of each sub-channel is duplicated and it must propagate on both

duplicates of the parent channel. Thus, state duplication causes the number of transac-

tions to exponentially rise with the number of applications 𝑘 built on top of each other

[14].

Towards a different direction, the payment channel eltoo [1] introduces ANYPREVOUT

[31] (also known as NOINPUT) as a new Bitcoin signature type to deploy the concept of

versioning. This allows channel parties to override the current channel state by creating

a state with a higher version number, which can be published upon fraud. So, channel

97

98 CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

parties in eltoo do not store any revocation secrets from old channel states. This sim-

plifies the key management and offers more affordable watchtowers as the transaction

with the highest version invalidates all previous states. Furthermore, if an honest party

forgets about an update and publishes an outdated state, it does not result in the loss of

funds.

However, eltoo is incentive incompatible because its lack of punishment might encour-

age a dishonest party to publish an old state; either the other side corrects it or the

dishonest party wins [64]. The only discouraging factor–the fee for publishing the old

state–is also determined by the dishonest party. Thus, she can set it to the minimum

possible value, i.e. few cents for some blockchains such as Bitcoin hard forks (e.g. Lite-

coin and Bitcoin Cash) and less than 1 USD for Bitcoin. Moreover, the transaction fee is

independent of the channel capacity (i.e. the total funds in the channel). Therefore, even

for payment channels with a huge capacity of several BTCs (e.g., channels listed in [65]),

the dishonest party’s cost will be still below 1 USD (See Section 7.6.2 for detailed anal-

ysis). Additionally, enforcing a large transaction fee or restricting the channel capacity

(proposed in [66]) might be unfavourable to the honest party.

Furthermore, a dishonest party in eltoo might publish multiple outdated states to delay

the channel closure process [67]. Thus, eltoo fails to achieve bounded closure, i.e. hon-

est party is not guaranteed that the channel closure completes within a bounded time.

This compromises the security of time-based payments, e.g. Hashed Time-Lock Contract
(HTLC) (See Section 7.6.1 for further analysis).

Therefore, the main motivation of this chapter is designing a Bitcoin payment channel

that (1) provides constant storage, (2) achieves bounded closure, (3) provides incentive

compatibility, and (4) avoids state duplication.

The contributions of this chapter are as follows:

• We present a new Bitcoin payment channel, called Daric, which (1) is provably

secure in the Universal Composability (UC) framework, (2) achieves constant size

storage for both channel parties and the watchtower, (3) provides bounded closure,

(4) provides punishment mechanism and hence achieves incentive compatibility,

(5) avoids state duplication without needing any particular property (e.g. adaptor

signature properties) for the underlying digital signature, and (6) attains unlimited

lifetime, given that channel parties on average pay each other at most once per

second. Table 7.1 compares Daric with other Bitcoin payment channels.

• We compare Daric and eltoo and show Daric is robust against an attack [67] to

eltoo, which we also formalise in this chapter. We further perform a cost-benefit

7.2 NOTATIONS AND BACKGROUND 99

Table 7.1: Comparison of different payment channels with 𝑛 channel updates and 𝑘 re-
cursive channel splitting.

Scheme Party’s Watch. Unl. Incent. # of Ada. Sig. Bnd.
St. Req. St. Req. Life. Comp. Txs Avoid. Cls.

Lightning† [15] 𝒪(𝑛) 𝒪(𝑛) Y Y 𝒪(2𝑘) Y Y
Generalized† [14] 𝒪(𝑛) 𝒪(𝑛) Y Y 𝒪(1) N Y
Outpost [22] 𝒪(𝑛) 𝒪(log 𝑛) N Y 𝒪(2𝑘) Y Y
FPPW [54] 𝒪(𝑛) 𝒪(𝑛) Y Y 𝒪(1) N Y
Cerberus [23] 𝒪(𝑛) 𝒪(𝑛) Y Y 𝒪(2𝑘) Y Y
Sleepy† [28] 𝒪(𝑛) N/A N Y 𝒪(2𝑘) Y Y
eltoo [1] 𝒪(1) 𝒪(1) Y§ N 𝒪(1) Y N
Daric (this work) 𝒪(1) 𝒪(1) Y§ Y 𝒪(1) Y Y

†: If parties pre-generate 𝑛 keys in a Merkle tree, their storage requirements decrease to
𝒪(log 𝑛) but the channel lifetime becomes limited to 𝑛 channel updates.
§: Given that the channel update rate is at most one update per second.

analysis to assess the attacker’s revenue in practice. We also show (1) Daric pro-

vides a higher deterrent effect against profit-driven attackers than eltoo and (2)

unlike eltoo, Daric’s deterrent effect is flexible.

• We compare Daric, eltoo, Lightning, Generalized, Sleepy, Cerberus, FPPW and

Outpost channels with respect to the amount of data that is published on the

blockchain in different channel closure scenarios (See Table 7.2). We show that

Daric in the dishonest closure scenario outperforms Lightning with at least 1

HTLC output as well as all other schemes. In the non-collaborative closure sce-

nario, Daric outperforms Lightning with at least 7 HTLC outputs as well as Gener-

alized, eltoo and FPPW. Moreover, we compute the number of operations required

for each channel update and show that (1) Unlike Lightning, Daric values are inde-

pendent of the number of HTLC outputs 𝑚 and (2) Daric is comparable with other

schemes (see Table 7.2).

7.2 Notations and Background

7.2.1 Notations

In this section, we add some new notations to the ones introduced in Section 3.3. We

use [TX] and TX to denote (TX.nLT, TX.Output) and (TX.nLT, TX.Output, TX.Witness), re-
spectively. The absolute time-lock of 𝑖 in an output condition is shown by 𝑖≥ and means

the output cannot be spent unless the 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter in the spending transaction

100CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

is equal to or greater than 𝑖. Since a transaction may only be recorded on the blockchain

if its 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 is in the past, 𝑖≥ in an output condition ensures the output cannot be

spent unless 𝑖 is expired (i.e. 𝑖 is in the past).

7.2.2 Background

7.2.2.1 Floating Transactions

Each signature in a Bitcoin transaction contains a flag, called SIGHASH, which speci-

fies which part of the transaction has been signed. Typically, signatures are of type

SIGHASH_ALL, meaning the signature authorises all inputs (i.e. references to previous

outputs) and outputs. The SIGHASH of type ANYPREVOUT indicates that the signature

does not authorise the inputs. This allows the signer to refer to any arbitrary UTXO

whose condition is met by the transaction witness data. Such a transaction is called a

𝑓 𝑙𝑜𝑎𝑡𝑖𝑛𝑔 transaction. The dotted arrow to TX″ in Fig. 7.1 shows that TX″ is a floating

transaction whose signature matches the public key 𝑝𝑘𝐶 . This transaction is denoted

by TX″ to emphasise that since it is a floating transaction, its input is unspecified and

can be any output with matching condition. The signature with the ANYPREVOUT flag is

denoted by 𝜎̂ .

7.2.2.2 eltoo [1]

An eltoo channel is created like a Lightning channel, but each state is represented by

two transactions: (1) the update transaction and (2) the settlement transaction, where

both parties have the same version of these two transactions. Each update transaction

is a floating transaction that transfers all the channel funds to a new joint address. The

update transaction’s output can be spent by its corresponding settlement transaction,

which splits the channel funds among parties. If𝐴 submits an old update transaction, she

has to wait for a relative time-lock of 𝑇 rounds before she can publish the corresponding

settlement transaction. It gives some time to 𝐵 to publish the latest update transaction

(which is a floating transaction) and override the already published update transaction.

7.3 Daric Overview

To provide a high level overview of our solution, we start by reviewing the limitations

of the Lightning channel and then gradually present our work.

7.3 DARIC OVERVIEW 101

Figure 7.1: A sample transaction flow.

7.3.1 Revocation Per State

Parties’ and their watchtower’s storage in a Lightning channel increases over time as

they should store some revocation-related data for each revoked state. Our main idea

to reduce their storage is transforming the revocation transactions into floating trans-

actions. Thereby, participants only need to store the latest revocation transaction with

the largest version number and use it upon fraud. However, for a Lightning channel, (1)

the monetary value of each revocation transaction typically differs from one state to an-

other, and (2) each commit transaction might have multiple HTLC outputs and hence the

number of revocation transactions might also differ from one state to another. So, since

revocation transactions of different states differ in value and number, it is infeasible to

replace them all with the latest revocation transactions.

Therefore, our first modification is following the punish-then-split mechanism, intro-

duced in [14]. According to this mechanism, the commit transaction sends the channel

funds to a new joint output, which is controlled by both parties. The output of this com-

mit transaction can be spent by its corresponding split transaction after 𝑡 rounds where

outputs of the split transaction split the channel funds between 𝐴 and 𝐵. If 𝐴 publishes

a revoked commit transaction, 𝐵 must spend its output within 𝑡 rounds with the corre-

sponding revocation transaction. This revocation transaction gives all the channel funds

to 𝐵. Fig. 7.2 depicts the transaction flows for this channel where each party stores a

single revocation transaction with fixed monetary value (i.e. 𝑎+𝑏 coins) per state. In this

figure, TXFU denotes the funding transaction and TX𝐴CM,𝑖, TX
𝐴
SP,𝑖 and TX𝐴RV,𝑖 (or respectively

TX𝐵CM,𝑖, TX
𝐵
SP,𝑖 and TX𝐵RV,𝑖) denote the commit, split and revocation transactions held by 𝐴

(or respectively held by 𝐵) for state 𝑖.

7.3.2 Revocation Per Channel

In the scheme, depicted in Fig. 7.2, channel parties need to store a revocation transac-

tion for each revoked state. Therefore, storage requirements of channel parties (or their

102CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Figure 7.2: Transaction flows for a Lightning channel with punish-then-split mechanism.

watchtower) increase with each channel update. To solve this issue, we transform revo-

cation transactions into floating transactions, i.e. the signatures in a revocation trans-

action, held by 𝐴, are of type ANYPREVOUT and meet the output condition of all commit

transactions, held by 𝐵, and vice versa. It allows parties to only store the last revocation

transaction.

7.3.3 Avoiding State Duplication

Since each state in the introduced scheme contains two split transactions (one for each

party), the scheme suffers from state duplication. To avoid this, we transform split trans-

actions into floating transactions. Then, each state contains one split transaction (held

by both parties), which spends any of two commit transactions of that state.

7.3.4 State Ordering

Since split and revocation transactions are floating, it must be guaranteed that the lat-

est commit transaction cannot be spent using any split or revocation transaction from

previous states. Otherwise, the honest party, who has published the latest commit trans-

action, might lose some funds in the channel. To achieve this requirement, we repurpose

[1] the 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter of split and revocation transactions to store the state num-
ber : the number of times the channel has been updated to date. Furthermore, we add

the state number to the output condition of each commit transaction as an absolute

time-lock. Then, since the absolute time-lock in the output condition of the last com-

mit transaction would be larger than the 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter in any split or revocation

transaction from previous states, the mentioned requirement is met.

7.4 DARIC PROTOCOL DESCRIPTION 103

7.3.5 Putting Pieces Together

The transaction flow for state 𝑖 of Daric is depicted in Fig. 7.3. Let the channel be in state

𝑛. To close the channel, each party (e.g. 𝐴) can publish the latest commit transaction (e.g.

TX𝐴CM,𝑛), wait for 𝑇 rounds and finally publish the latest split transaction TXSP,𝑛. There is

no revocation transaction for the latest state. If party 𝐵 publishes a revoked commit

transaction (i.e. TX𝐵CM,𝑖 with 𝑖 < 𝑛), then party 𝐴 instantly publishes the latest revocation

transaction TX𝐴RV,𝑛−1 to take all the channel funds.

Figure 7.3: Transaction flows for state 𝑖 of a Daric channel.

7.4 Daric Protocol Description

This section presents our protocol using the transaction flows depicted in Fig. 7.3. The

lifetime of a Daric channel can be divided into 4 phases including create, update, close,

and punish. We introduce these phases through sections 7.4.1 to 7.4.4. Section 7.11

provides the formal description of the protocol.

7.4.1 Create

To create the channel, 𝐴 and 𝐵 sign and publish the funding transaction TXFU on the

blockchain. By publishing this transaction, 𝐴 and 𝐵 fund the channel with 𝑎 and 𝑏 coins,
respectively, but since the output of the funding transaction can only be spent if both

parties agree, one party might become unresponsive to raise a hostage situation. To

avoid this, before signing the funding transaction, parties commit to the initial chan-

nel state, i.e. state 0, by exchanging signatures for the corresponding commit and split

104CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

transactions. Let us explain the different steps of the channel creation phase in more

detail.

• Step 1: At the first step, 𝐴 and 𝐵 send their funding sources (i.e. 𝑡𝑥𝑖𝑑𝐴 and 𝑡𝑥𝑖𝑑𝐵)
to each other. This enables them to create the body of the funding transaction

[TXFU].

• Step 2: Having the transaction identifier of TXFU, parties create the body of the

commit transactions, i.e. [TX𝐴CM,0] and [TX𝐵CM,0].

• Steps 3: Parties exchange the required signatures (with SIGHASH of type

ANYPREVOUT) to create the floating transaction TXSP,0. This floating transaction

could take output of TX𝐴CM,0 or TX𝐵CM,0 as its input.

• Step 4: Parties exchange the required signatures to create the commit transactions

TX𝐴CM,0 and TX𝐵CM,0.

• Step 5: Parties exchange the required signatures to create the funding transactions

TXFU.

• Step 6: Parties publish the funding transaction on the blockchain.

The absolute time-lock in the output script of commit transactions and correspondingly

the 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter in the split transaction must be in the past. Otherwise, parties

have to wait to publish such transactions. As explained in Section 7.3.4, the time-lock is

set to the state number and hence its value increases with each channel update. Absolute

time-locks lower than 500,000,000 specify the block number after which the transaction

can be included in a block. According to the value of the current block height, if we set

the initial time-lock to the first state number, i.e. 0, the channel can be updated around

700,000 times. However, absolute time-locks equal to or larger than 500,000,000 specify

the UNIX timestamp after which the transaction will be valid.

According to the value of the current timestamp, if we set the initial time-lock (and cor-

respondingly 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter) to 500,000,000, the channel can be updated around 1

billion times [1]. Moreover, the current timestamp increases one unit per second, mean-

ing if the average rate of the channel update is up to once per second, the channel can

be updated an infinite number of times.

The above-mentioned transactions are further explained below.

• Funding transaction: Using this transaction, channel parties 𝐴 and 𝐵 open a

Daric channel by funding 𝑎 and 𝑏, coins into the channel, respectively. The funding

7.4 DARIC PROTOCOL DESCRIPTION 105

transaction is as follows1:

TXFU.nLT ∶= 0,
TXFU.Input ∶= (𝑡𝑥𝑖𝑑𝐴‖𝑥, 𝑡𝑥𝑖𝑑𝐵‖𝑦),

TXFU.Output ∶= {(𝑎 + 𝑏, 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵)},
TXFU.Witness ∶= ((1, 𝜎𝐴,1TXFU

), (1, 𝜎𝐵,2TXFU
)).

• Commit transaction: There exist two versions of commit transaction per state,

each held by one of the parties, but only the first ones (TX𝐴CM,𝑖 and TX
𝐵
CM,𝑖 with 𝑖 = 0)

are created at this phase. Commit transactions send the channel funds to a joint

account. Commit transactions for state 𝑖 are as follows:

TX𝐴CM,𝑖.nLT ∶= 0,
TX𝐴CM,𝑖.Input ∶= TXFU.txid‖1,

TX𝐴CM,𝑖.Output ∶= {(𝑎 + 𝑏, 𝜑1 ∨ 𝜑2)},
TX𝐴CM,𝑖.Witness ∶= {(1, {𝜎𝐴

TX𝐴CM,𝑖
, 𝜎𝐵

TX𝐴CM,𝑖
})}

and

TX𝐵CM,𝑖.nLT ∶= 0,
TX𝐵CM,𝑖.Input ∶= TXFU.txid‖1,

TX𝐵CM,𝑖.Output ∶= {(𝑎 + 𝑏, 𝜑1 ∨ 𝜑′2},
TX𝐵CM,𝑖.Witness ∶= {(1, {𝜎𝐴

TX𝐵CM,𝑖
, 𝜎𝐵

TX𝐵CM,𝑖
})}

with 𝜑1 ∶= (𝑝𝑘𝐴SP ∧ 𝑝𝑘𝐵SP ∧ 𝑡+ ∧ 𝑖≥), 𝜑2 = (𝑝𝑘𝐴RV ∧ 𝑝𝑘𝐵RV ∧ 𝑖≥) and 𝜑′2 = (𝑝𝑘′𝐴RV ∧
𝑝𝑘′𝐵RV ∧ 𝑖≥). Meeting each sub-condition requires both parties’ authorisation. The

parameters 𝑖≥ and 𝑡+ show absolute time-lock of 𝑖 and relative time-lock of 𝑡 rounds,
respectively. The parameter 𝑡 can be set to any value larger than the blockchain

delay Δ.

• Split transaction There is one split transaction per state which is held by both

channel parties, but only the first one (TXSP,𝑖 with 𝑖 = 0) is created at this phase.

The split transaction for state 𝑖 determines the balance of each channel party in

1We assume that funding sources of TXFU are two typical UTXOs owned by 𝐴 and 𝐵.

106CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

the 𝑖th channel state. For this transaction, we have:

TXSP,𝑖.nLT ∶= 𝑆0 + 𝑖,
TXSP,𝑖.Input ∶= TX𝑃CM,𝑖.txid‖1, with 𝑃 ∈ {𝐴, 𝐵}.

TXSP,𝑖.Output ∶= (𝜃1, 𝜃2, …),
TXSP,𝑖.Witness ∶= {(1, {𝜎̂𝐴TXSP,𝑖 , 𝜎̂𝐵TXSP,𝑖})}

The transaction TXSP,𝑖 is a floating transaction whose witness satisfies the first sub-

condition of the output of TX𝐴CM,𝑖 or TX
𝐵
CM,𝑖 (𝑝𝑘𝐴SP∧𝑝𝑘𝐵SP∧𝑡+∧𝑖≥). Normally, given that

parties are honest and the channel is in state 𝑛, one of two commit transactions

of the latest state, i.e. either TX𝐴CM,𝑛 or TX𝐵CM,𝑛, is published on-chain. Then, the

first sub-condition of its output with the (𝑝𝑘𝐴SP ∧ 𝑝𝑘𝐵SP ∧ 𝑡+ ∧ 𝑖≥) is satisfied by the

corresponding split transaction TXSP,𝑛 after 𝑡 rounds.

To reduce the required communication between channel parties for each channel

update, 𝑝𝑘𝐴SP and 𝑝𝑘𝐵SP do not change from one state to the next. However, since

split transactions are floating, it must be guaranteed that the split transaction of

state 𝑖 cannot take the output of one of the commit transactions of the next states

as its input because otherwise the output of the latest commit transaction, let’s

say TX𝐴CM,𝑛, could be spent using an old split transaction TXSP,𝑖 with 𝑖 < 𝑛, which is

undesirable. To meet this requirement, the 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter of TXSP,𝑖 is set to
𝑖. Then since the first sub-condition of commit transactions of state 𝑗 with 𝑗 > 𝑖 are
time-locked using 𝑗≥ but TXSP,𝑖.nLT ≥ 𝑗 does not hold, TXSP,𝑖 cannot spend output

of TX𝐴CM,𝑗 or TX
𝐵
CM,𝑗 .

7.4.2 Update

Let the channel be in state 𝑖 ≥ 0 and channel parties decide to update it to state 𝑖 + 1.
The update process is performed in two sub-phases. The first sub-phase is similar to

steps 2 to 4 of the channel creation phase where channel parties create two new commit

transactions TX𝐴CM,𝑖+1 and TX𝐵CM,𝑖+1 as well as a new split transaction TXSP,𝑖+1 for the new

state. In the second sub-phase, channel parties revoke the state 𝑖 by signing two revo-

cation transactions TX𝐴RV,𝑖 and TX𝐵RV,𝑖. The revocation transaction TX𝐴RV,𝑖 (or respectively

TX𝐵RV,𝑖) contains no input yet and can spend output of any commit transaction TX𝐵CM,𝑗 (or

respectively TX𝐴CM,𝑗) with 𝑗 ≤ 𝑖. With each channel update, the state number and hence

the time-lock value in the output condition of each commit transaction and 𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒
in split and revocation transactions increase by one unit. Let us explain the different

steps of the channel update phase in more detail.

7.4 DARIC PROTOCOL DESCRIPTION 107

• Step 1: Parties create the body of the commit transactions, i.e. [TX𝐴CM,𝑖+1] and

[TX𝐵CM,𝑖+1].

• Steps 2: Parties exchange the required signatures (with SIGHASH of type

ANYPREVOUT) to create the floating transaction TXSP,𝑖+1. This floating transaction

takes output of TX𝐴CM,𝑖+1 or TX𝐵CM,𝑖+1 as its input.

• Step 3: Parties exchange the required signatures to create the commit transactions

TX𝐴CM,𝑖+1 and TX𝐵CM,𝑖+1.

• Step 4: Parties exchange the required signatures (with SIGHASH of type

ANYPREVOUT) to create the floating transactions TX𝐴RV,𝑖 and TX𝐵RV,𝑖.

One of the partiesmight receive the signature on the split or commit transactions in steps

2 or 3 (or respectively receive the signature on the revocation transaction in step 4) but

avoid signing the corresponding transaction for the other party. In such situations, the

honest party non-collaboratively closes the channel with the latest valid channel state,

i.e. state 𝑖 (or respectively state 𝑖 + 1). More technical details can be found in Section

7.11.

Revocation transaction will be introduced further below:

• Revocation transaction Once the channel is updated from state 𝑖 to 𝑖 + 1, two

versions of revocation transaction are created for state 𝑖, one version for each chan-

nel party. The revocation transaction held by party 𝐴 and party 𝐵 for state 𝑖 are
denoted by TX𝐴RV,𝑖 and TX𝐵RV,𝑖, respectively, where

TX𝐴RV,𝑖.nLT ∶= 𝑖,
TX𝐴RV,𝑖.Input ∶= TXCM,𝑗,𝐵.txid‖1, with 𝑗 ≤ 𝑖,

TX𝐴RV,𝑖.Output ∶= {(𝑎 + 𝑏, 𝑝𝑘𝐴)},
TX𝐴RV,𝑖.Witness ∶= {(2, {𝜎̂𝐴

TX𝐴RV,𝑖
, 𝜎̂𝐵

TX𝐴RV,𝑖
})}

and

TX𝐵RV,𝑖.nLT ∶= 𝑖,
TX𝐵RV,𝑖.Input ∶= TXCM,𝑗,𝐴.txid‖1, with 𝑗 ≤ 𝑖,

TX𝐵RV,𝑖.Output ∶= {(𝑎 + 𝑏, 𝑝𝑘𝐵)},
TX𝐵RV,𝑖.Witness ∶= {(2, {𝜎̂𝐴

TX𝐵RV,𝑖
, 𝜎̂𝐵

TX𝐵RV,𝑖
})}

The transaction TX𝐴RV,𝑖 (or TX
𝐵
RV,𝑖) is a floating transaction whose witness satisfies

the second sub-condition of the output of TXCM,𝑗,𝐵 (or TXCM,𝑗,𝐴) with 𝑗 ≤ 𝑖. Given that

108CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

the channel is in state 𝑛, if a dishonest channel party, let’s say party 𝐵, publishes
the old commit transaction TXCM,𝑗,𝐵 with 𝑗 < 𝑛, he must wait for 𝑇 rounds before

being able to publish its corresponding split transaction TXSP,𝑗 . However, 𝐴 can

instantly publish the latest revocation transaction TXRV,𝑛−1,𝐴 and claim its output.

Since revocation transactions are floating and meet the second sub-condition of

commit transactions, the public keys that are used in such sub-conditions must

not change from one state to the next. However, it must be guaranteed that the

revocation transaction of state 𝑖 cannot take the output of commit transactions of

the next states as input. Thus, similar to what we did for split transactions, the

𝑛𝐿𝑜𝑐𝑘𝑇 𝑖𝑚𝑒 parameter of revocation transactions of state 𝑖 is set to 𝑆0+𝑖. Then since

the second sub-condition of each commit transaction of state 𝑖 is also time-locked

using 𝐶𝐿𝑇𝑉𝑆0+𝑖, the desired requirement is met.

A dishonest channel party, e.g. party𝐴, must not be able to publish both a revoked

commit transaction TX𝐴CM,𝑖 with 𝑖 < 𝑛 as well as a revocation transaction TXRV,𝑗,𝐴
with 𝑗 ≥ 𝑖 on the ledger. Otherwise, he can take all the channel funds. To prevent

𝐴 from doing so, the revocation public keys that are used in commit transactions

held by 𝐴 (𝑝𝑘𝐴RV and 𝑝𝑘𝐵RV) are different from those in commit transactions held by

𝐵 (𝑝𝑘′𝐴RV and 𝑝𝑘′𝐵RV). Therefore, the output of a revoked commit transaction held by

𝐴 can only be spent by a revocation transaction held by 𝐵 and vice versa.

7.4.3 Close

Assume while the channel between 𝐴 and 𝐵 is in state 𝑛, they decide to collaboratively

close it. To do so, 𝐴 and 𝐵 exchange signatures for a new transaction, called modified

split transaction TX
SP
, and publish it on the blockchain. This transaction takes the fund-

ing transaction’s output as its input and splits the channel funds among channel parties.

The transaction TX
SP

is as following:

TX
SP
.Input ∶= TXFU.txid‖1,

TX
SP
.Output ∶= TXSP,𝑛.Output,

TX
SP
.Witness ∶= {(1, {𝜎𝐴TXSP , 𝜎

𝐵
TXSP

})}.

If one of the channel parties, e.g. party 𝐵, becomes unresponsive, its counterparty 𝐴
can still non-collaboratively close the channel by publishing TX𝐴CM,𝑛, adding the output of

TX𝐴CM,𝑛 as an input to TXSP,𝑛 to transform it into TXSP,𝑛, and finally publishing TXSP,𝑛 after

𝑡 rounds.

7.5 SECURITY ANALYSIS OVERVIEW 109

7.4.4 Punish

Let the channel be in state 𝑛. If a dishonest channel party, let’s say 𝐴, publishes an old

commit transaction TX𝐴CM,𝑖 with 𝑖 < 𝑛 on the ledger, party 𝐵 adds the output of TX𝐴CM,𝑖 as an

input to TX𝐵RV,𝑛−1 in order to transform it into TX𝐵RV,𝑛−1 and instantly publishes TX𝐵RV,𝑛−1
on the blockchain.

7.5 Security Analysis Overview

In this section, we first provide some payment channel notations as well as our security

model, which follows previous works on layer-2 solutions [14, 68, 69, 29]. Then, we

present desired properties of a payment channel and an ideal functionalityℱ that attains

those properties. Finally, we show that the Daric protocol is a realisation of the ideal

functionality ℱ and hence achieves its desired properties.

7.5.1 Notation and Security Model

We use an extended version of the universal composability framework [55] to formally

model the security of our construction. This extended version [70], called the Global

Universal Composability framework (GUC), supports a global setup. To simplify our

model, we assume that the communication network is synchronous, meaning that the

protocol is executed through multiple rounds and parties in the protocol are connected

to each other via an authenticated communication channel which guarantees 1-round

delivery. Transactions are recorded by a global ledger ℒ(Δ, Σ), where Σ is a signature

scheme used by the blockchain and Δ is an upper bound on the blockchain delay: the

number of rounds it takes a transaction to be accepted by the ledger. Section 7.9 provides

more details on our security model.

We abbreviate a daric payment channel 𝛾 as an attribute tuple 𝛾 ∶= (id, users, cash, st,
sn, flag, st′), where 𝛾 .id ∈ {0, 1}∗ defines the channel identifier, 𝛾 .users represents the

identities of the channel users, 𝛾 .cash ∈ R≥0 is the channel capacity, 𝛾 .st ∶= (𝜃1, … , 𝜃𝑙)
is a list of 𝑙 outputs defining the channel state after the last complete channel update

and 𝛾 .sn is the state number. The flag 𝛾 .flag ∈ {1, 2} and the state 𝛾 .st′ will be explained

below.

The initial value of 𝛾 .flag and 𝛾 .st′ are 1 and ⟂, respectively. Assume that the channel

has been updated 𝑛 ≥ 0 times and the channel state after the 𝑛th update is 𝑠𝑡 and hence

we have 𝛾 .st = 𝑠𝑡 . Now, assume that parties start the update process to update the state

of the channel from state 𝑠𝑡 to 𝑠𝑡′. From a particular point in the channel update process

110CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

onward, at least one of the parties has sufficient data to enforce the new state 𝑠𝑡′ on the

blockchain when parties have not completely revoked the state 𝛾 .st yet. The flag 𝛾 .flag
is set to 2 to identify such occasions and 𝛾 .st′ is set to 𝑠𝑡′ to maintain the new state. Thus,

when 𝛾 .flag = 2, the channel might be finalised with either 𝛾 .st or 𝛾 .st′. At the end of

the channel update process, once the state 𝑠𝑡 was revoked by both parties, 𝛾 .st and 𝛾 .st′
are set to 𝑠𝑡′ and ⟂, respectively, and 𝛾 .flag is set to 1.

7.5.2 Ideal Functionality Properties

This section closely follows [14] to introduce desired security and efficiency properties

of a payment channel as follows:

• Consensus on creation: A channel 𝛾 is created only if both channel parties in

the set 𝛾 .users agree to create it.

• Consensus on update: A channel 𝛾 is updated only if both channel parties in

the set 𝛾 .users agree to update it. Also, parties reach an agreement on update

acceptance or rejection within a bounded number of rounds (the bound might

depend on the ledger delay Δ).

• Bounded closure with punish: An honest user 𝑃 ∈ 𝛾 .users has the assurance

that within a bounded number of rounds (the bound might depend on the ledger

delay Δ), she can finalise the channel state on the ledger either by enforcing a state

that gives her 𝛾 .cash coins, or by enforcing 𝛾 .st if 𝛾 .flag = 1 or by enforcing either

𝛾 .st 𝛾 .st′ otherwise.

• Optimistic update: If both parties in 𝛾 .users are honest, the channel update com-

pletes with no ledger interaction.

Section 7.10 introduces an ideal functionalityℱ that achieves these properties. Theorem

7.1 shows Daric protocol, denoted by 𝜋 , is a realisation of ℱ and hence achieves its

desired properties. It follows from 14 Lemmas. Section 7.12 presents the full security

proof.

Theorem 7.1. Let Σ be an EUF − CMA secure signature scheme. Then, for any ledger
delay Δ ∈ ℕ, the protocol 𝜋 UC-realises the ideal functionality ℱ (𝑇) with any 𝑡 > Δ.

Proof. Theorem follows directly from Lemma 7.1, Lemma 7.4, Lemma 7.5 and Lemma

7.8, presented in Section 7.12.

7.6 DARIC VERSUS ELTOO 111

To enhance structure and prevent an overly lengthy section, we partition the necessary

contents for our security proof into two separate chapters. We formally define 𝜋 in

Section 7.11 and then provide a simulator 𝒮 in Section 7.12 where 𝒮 has interaction

with the ideal functionality ℱ and ℒ . The simulator simulates the content and timing

of all messages of the honest party to the adversary and also translates anymessage from

the adversary into a message to the ideal functionality, such that an indistinguishable

execution of the protocol in the ideal world is emulated. Also, in Section 7.12, we prove

for any action that causes the ideal functionality to output Error with non-negligible

probability, the simulator constructs a reduction against the existential unforgeability

of the underlying signature scheme Σ with non-negligible success probability, which

contradicts with our assumption regarding the security of Σ. This proves our protocol

would be as secure as the ideal functionality ℱ and provides its desirable properties.

7.6 Daric Versus Eltoo

In section 7.6.1, we present an attack to eltoo whose main purpose is to postpone the

channel closure. We show this attack is practically profitable when applied to eltoo but

it cannot be applied to Daric. In section 7.6.2, we analyse Daric and eltoo to compare

their robustness against profit-driven attackers. We use the statistical data derived from

the Lightning Network to enable such an analysis.

7.6.1 HTLC Security

This section presents an attack against HTLC security in eltoo (previously informally

discussed in [67]) and analyses the attacker’s revenue. Let the adversary represent two

nodes on the PCN: node 𝑀1 and node 𝑀2. Assume that the adversary has established

𝑁 channels from 𝑀1 to victim nodes 𝑉1, … , 𝑉𝑁 and 𝑁 channels from victim nodes to

𝑀2. The channel between 𝑀1 and 𝑉𝑖 is denoted with 𝛾𝑖. The adversary performs 𝑁
simultaneous HTLC payments from𝑀1 to𝑀2 through 𝑉1, … , 𝑉𝑁 . Let the payment value

for all HTLCs be 𝐴 coins and the time-lock for all these payments for 𝑀1’s channels be
𝑇 . Assume that𝑀2 accepts the payments and provides the required secrets for all HTLC

payments and hence 𝑀2 is paid 𝑁 ⋅ 𝐴 coins in total. Then, victims provide the secrets to

the node𝑀1. However,𝑀1 does not update her channelswith victims. Therefore, victims

attempt to claim all HTLCs on-chain. To prevent victims from closing their channels in

time, 𝑀1 takes the following steps:

1. Submit a valid Delay transaction TXDe with 𝑁 + 1 inputs and 𝑁 + 1 outputs where

the 𝑖th input-output pair corresponds with an outdated state of the channel 𝛾𝑖 and

112CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

the last input-output pair adds further funds to be used as the transaction fee,

which is set to any value larger than 𝐴.

2. If TXDe is published and the time-lock 𝑡 is still unexpired, go to step 1.

3. Once the time-lock 𝑡 is expired, submit the latest channel state for all channels and

claim their HTLC outputs.

In the above attack, to replace the already submitted transaction TXDe with the latest

state of the channel 𝛾𝑖, 𝑉𝑖 has to set a transaction fee that is larger than the total absolute

transaction fee of TXDe [71]. But since the transaction fee for TXDe is larger than 𝐴, 𝑉𝑖
will be unwilling to pay such a transaction fee.

Once the HTLC time-lock is expired and the latest channel state is added to the ledger,

there will be a race between 𝑀1 and each victim to claim the HTLC output. The adver-

sary will have a better chance to win the race if she has a better network connection

with a higher number of nodes.

Now we perform a cost-benefit analysis to determine if the attack is profitable to the

attacker. For a fixed value of𝐴, with setting𝑁 to the largest possible value, the adversary

(1) reduces the fee per channel for each delay transaction and (2) reduces the pace at

which outdated states are added to the blockchain. A Bitcoin transaction can contain up

to 100,000 VBytes (where each VByte equals four weight units) and each input-output

pair contains 222 bytes of witness data and 84 bytes of non-witness data (See Appendix

H.4 in the full version of the Daric paper [63] for more details). Therefore, TXDe can

cover up to around 100,000
0.25×222+84 ≈ 715 eltoo channels. The minimum possible fee rate

is 1 Satoshi per VByte. Thus, if 𝐴 is set to 100,000 Satoshi, the total fee for each delay

transaction would be 100,000 Satoshi.

At the time of writing this chapter (in January 2023), the average transaction fee is quite

low and hence transactions with the minimum fee rate are added to the blockchain in

30 minutes. It means if HTLC time-locks are set to 3 days, 144 delay transactions are

published before time-locks getting expired. In other words, the adversary pays 144𝐴 as

a transaction fee to earn up to 715𝐴. In more congested times, it might take several hours

for a transaction with a minimum fee rate to be added to the blockchain. Thus, the attack

could be evenmore profitable to the attacker. This attack is inapplicable to Daric because

once the attacker publishes an old commit transaction, the only valid transactions are

the revocation transactions held by her counterparty.

7.6.2 Punishment Mechanism

Prior to providing a formal analysis, we provide intuitions as follows. The only cost for a

dishonest party in eltoo is the fee for publishing the old state, which could be (1) less than

7.6 DARIC VERSUS ELTOO 113

1 USD for Bitcoin and (2) independent of the channel capacity. However, given that the

balance of each party in a Daric channel cannot be less than 1% of the channel capacity

(which is currently deployed in the Lightning Network), the minimum amount that a

dishonest party might lose would have the following properties: (1) It is proportional to

the channel capacity, (2) Its value (around 20 USD on average in the Lightning Network

in April 2022) is typically significantly larger than the transaction fee and (3) It is easily

raised by increasing the minimum possible balance of each channel party from 1% of

the channel capacity to a higher proportion. Therefore, Daric’s deterrent effect against

profit-driven attackers is higher and more flexible than that of eltoo.

Now, we present a more formal comparison between eltoo and Daric. We assume the

channel party either stays online or employs a watchtower that is fair w.r.t the hiring

party [54] (i.e. the watchtower guarantees its client’s funds in the channel). For the

former case, let 𝑝 denote the probability that the honest channel party successfully reacts

upon fraud, i.e. 1−𝑝 is the probability that the honest party, due to crash failures or DoS

attacks, fails to react. We show that (1) to discourage attacks by profit-driven parties, 𝑝
for eltoo must be more significant than that of Daric, and (2) unlike Daric, an increase

in the channel capacity in eltoo channels raises the minimum value of 𝑝 that is required

to prevent fraud. However, achieving large values of 𝑝 (e.g. 0.9999) could be difficult for

ordinary users. This indicates that eltoo needs a way to punish profit-driven attackers.

To monitor a channel, the watchtower’s collateral equals the channel capacity [54, 23].

Let 𝐶 denote the total capacity of the Bitcoin payment channel network and 𝐶𝑊 denote

the total capital that fair watchtowers have spent to watch their clients’ channels. Then,

the probability that a randomly selected payment channel is monitored by a fair watch-

tower is roughly computed as 𝐶𝑊
𝐶 .

Assume that a dishonest party𝒜 creates an eltoo channel with a channel capacity of 𝐶𝒜
coins, where the initial balance of𝒜 and her counterparty are 𝐶𝒜 and 0, respectively. For

now, we assume that parties know if their counterparties are using a fair watchtower. We

will relax this assumption later. If the channel is being monitored by a fair watchtower,

𝒜 continues using the channel in an honest way. Otherwise, she sends all her balance

to her counterparty in exchange for some products or services and then submits the

initial channel state to the blockchain. In such a case, with a probability of 1 − 𝑝 and

𝑝, 𝒜 ’s revenue and her loss would be 𝐶𝒜 − 𝑓 and 𝑓 , respectively, where 𝑓 denotes the

transaction fee. Thus, 𝒜 is discouraged to attack iff:

(𝐶𝒜 − 𝑓)(1 − 𝑝) − 𝑓 ⋅ 𝑝 < 0 ⇔ 𝑝 > 1 − 𝑓
𝐶𝒜

.

114CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

For a Daric channel, 𝒜 is discouraged to attack iff:

0.99 ⋅ 𝐶𝒜 ⋅ (1 − 𝑝) − 0.01 ⋅ 𝐶𝒜 ⋅ 𝑝 < 0 ⇔ 𝑝 > 0.99.

The threshold value for eltoo is typically more significant than that of Daric. At the time

of writing this chapter, the average values of 𝑓 for a transaction and 𝐶𝒜 for a Lightning

channel are around 0.000042 BTC and 0.069 BTC, respectively, leading to 1− 𝑓
𝐶𝒜 ≈ 0.999.

But the adversary can practically set 𝑓 to the lowest possible value (i.e. 1 Satoshi per

VByte) leading to 𝑓 ≈ 0.00000212 BTC and 1 − 𝑓
𝐶𝒜 ≈ 0.9999 for eltoo. Therefore, (1) to

discourage attacks, the honest party would require to meet a higher 𝑝 in eltoo than in

Daric, (2) the threshold for eltoo depends on the channel capacity, and (3) the threshold

for Daric can simply decrease from 0.99 to lower values.

In the above analysis, we assumed that 𝒜 knows whether her counterparty is hiring

any fair watchtower. Considering the opposite case, the probability that the channel is

not being monitored by any fair watchtower and the honest party fails to react upon

fraud would be 𝑝0 ∶= (1 − 𝐶𝑊
𝐶)(1 − 𝑝). Thus, with a probability of 𝑝0 and 1 − 𝑝0, 𝒜 ’s

revenue and her loss in an eltoo channel would be 𝐶𝒜 − 𝑓 and 𝑓 , respectively. Thus, 𝒜
is discouraged to attack iff:

(𝐶𝒜 − 𝑓) ⋅ 𝑝0 − 𝑓 ⋅ (1 − 𝑝0) < 0 ⇔ 𝑝 > 1 −
𝑓
𝐶𝒜

1 − 𝐶𝑊
𝐶
.

Similarly, for a Daric channel, we have:

0.99 ⋅ 𝐶𝒜 ⋅ 𝑝0 − 0.01 ⋅ 𝐶𝒜 ⋅ (1 − 𝑝0) < 0 ⇔ 𝑝 > 1 − 0.01
1 − 𝐶𝑊

𝐶
.

As explained earlier, the threshold value for eltoo depends on 𝐶𝒜 and is typically more

significant than that of Daric.

7.7 Performance Analysis

Table 7.2 shows the total number of weight units of transactions, published on the

blockchain for different payment channels in different channel closure scenarios. Since

theweight units of a transaction directly impact its fee, we use this parameter to compare

different schemes. Payment channels perform similarly in the collaborative channel clo-

sure, so we do not consider this scenario in our analysis. Since the funding transaction

2Each update transaction in eltoo contains 332 byte of witness data and 125 bytes of non-witness data
leading to 208 VBytes. See Appendix H in the full version of the Daric paper [63] for more details

7.8 DARIC TRANSACTIONS SCRIPTS 115

is the same in all schemes, we do not involve it in our comparison results either. To do

a consistent comparison, we assume that each transaction output is either P2WSH3 or

P2WPKH4, each public key and signature are respectively 33 bytes and 73 bytes, shared

outputs are implemented using the OP_CHECKMULTSIG opcode (rather than using multi-

party signing), and each state contain 𝑚 HTLC outputs with 0 ≤ 𝑚 ≤ 966 [72] where

each party is the payer for 𝑚
2 HTLC outputs and the payee for the rest.

Once a dishonest party in a Lightning channel publishes a revoked commit transaction,

𝑚+1 revoked outputs are created. For simplicity, we assume that the victim claims all the

revoked outputs through one transaction. Cerberus [23], Sleepy [28] and Outpost [22]

have not explained ways HTLC is added to these schemes and discussing it is out of the

scope of this chapter, so Table 7.2 contains their figures with 𝑚 = 0.
As Table 7.2 shows, in the dishonest closure scenario, (1) the weight units for Lightning

and eltoo increase linearly with the number of HTLC outputs𝑚 compared to Daric, Gen-

eralized and FPPW and (2) Daric (with weight unit equal to 1239) is more cost-effective

than other schemes with 𝑚 ≥ 1. In the non-collaborative closure scenario with 𝑚 ≠ 0,
Daric outperforms Generalized, eltoo and FPPW channels with any value of𝑚 and Light-

ning channel with 𝑚 > 6.
Table 7.2 also compares the number of operations performed by each party for a chan-

nel update. To count the operations, we additionally assume that (1) channel parties

delegate the monitoring task to a watchtower and (2) they do not compute a signature

unless it is supposed to be sent to their counterparty or their watchtower. Appendix

H in the full version of the Daric paper [63] provides complete details regarding the

way figures of Table 7.2 have been computed (The full version paper is available at

https://eprint.iacr.org/2022/1295.pdf).

7.8 Daric Transactions Scripts

Funding transaction has one output with the following script where Com_pubkeyA and

Com_pubkeyB are public keys of 𝐴 and 𝐵, respectively:
2 ⟨Com_pubkeyA⟩ ⟨Com_pubkeyB⟩ 2 OP_CHECKMULTISIG

Commit transactions have one input that takes the output of the funding transaction

with the witness script of 0 ⟨Com_pubkeyA_sig⟩ ⟨Com_pubkeyB_sig⟩. The commit trans-

action TX𝐴CM,𝑖 has one output with the following script:

⟨absolute time S0 + i ⟩ OP_CHECKLOCKTIMEVERIFY OP_DROP

3Pay-to-Witness-Script-Hash: Used to lock bitcoin to a SegWit script hash.
4Pay-to-Witness-Public-Key-Hash: Used to lock bitcoin to a SegWit public key hash.

116CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Table 7.2: On-chain cost of different closure scenarios and the number of operations
performed by each party for a channel update for different payment channels with 𝑚
HTLC outputs (0 ≤ 𝑚 ≤ 966).

dishonest closure non-coll. closure num. of operations
Scheme #Tx weight units #Tx weight units Sign Verify Exp.
Lightning [15] ≥ 2 ≥1209+582.5𝑚 1+𝑚 724+793𝑚 2+2𝑚 1+𝑚

2 2
Generalized [14] 2 1342 2+𝑚 1432+696𝑚 3 2 1
FPPW [54] 2 2045 2+𝑚 1562+696𝑚 6 10 1
Cerberus [23] 2 1798 1 772 3 6 0
Outpost [22] 3 2632 3 3018 4 4 0
Sleepy [28] 3 2172 3 2558 5 5 0
eltoo [1] 3 2268+696𝑚 2+𝑚 1588+696𝑚 2 2 1
Daric (this work) 2 1239 2+𝑚 1363+696𝑚 4 3 0

OP_IF

Revocation
2 ⟨Rev_pubkeyA⟩ ⟨Rev_pubkeyB⟩ 2 OP_CHECKMULTISIG

OP_ELSE

Split
⟨delay t⟩ OP_CHECKSEQUENCEVERIFY OP_DROP

2 ⟨Spl_pubkeyA⟩ ⟨Spl_pubkeyB⟩ 2 OP_CHECKMULTISIG

OP_ENDIF

where ⟨Rev_pubkeyA⟩ and ⟨Spl_pubkeyA⟩ are public keys of 𝐴 and ⟨Rev_pubkeyB⟩ and
⟨Spl_pubkeyB⟩ are public keys of 𝐵. The script of the commit transaction TX𝐵CM,𝑖 is similar

to that of TX𝐴CM,𝑖 but its revocation keys are ⟨Rev′_pubkeyA⟩ and ⟨Rev′_pubkeyB⟩.
The split transaction TXSP,𝑖 spends the output of TX𝐴CM,𝑖 or TX

𝐵
CM,𝑖 with the witness script:

0 ⟨Spl_pubkeyA_Sig⟩ ⟨Spl_pubkeyB_Sig⟩ 0

The revocation transactions TX𝐴RV,𝑖 and TX
𝐵
RV,𝑖 spend the output of a revoked commit trans-

action with the witness scripts

0 ⟨Rev′_pubkeyA_sig⟩ ⟨Rev′_pubkeyB_sig⟩ 1
and

0 ⟨Rev_pubkeyA_sig⟩ ⟨Rev_pubkeyB_sig⟩ 1,

7.9 UC FRAMEWORK 117

respectively. The transactions TX𝐴RV,𝑖 and TX𝐵RV,𝑖 have one output with the scripts

⟨pubkeyA⟩ OP_CHECKSIG and ⟨pubkeyB⟩ OP_CHECKSIG, respectively.

7.9 UC Framework

Wemodel the security of our protocol in the synchronous version of the global UC frame-

work (GUC) [70] which is an extension of the standard UC framework [55]. In the syn-

chronous version, we can have a global setup that is used to model the ledger. The model

in this work closely follows that of some works on layer-2 solutions to the scalability of

blockchains [14, 68, 69].

Let 𝜋 be a protocol executed among parties of a set 𝒫 = {𝑃1, … , 𝑃𝑛}. Assume that there

exists an adversary𝒜 that takes as input a security parameter 𝜆 ∈ ℕ and an auxiliary in-

put 𝑧 ∈ {0, 1}∗. Before execution of the protocol, 𝜋 , the adversary𝒜 can select any party

𝑃𝑖 ∈ 𝒫 to learn their internal state and fully control them. Anything outside the protocol

execution is modelled by the environment ℰ . Each protocol party as well as the adver-

sary take their inputs from the environment. Outputs of all parties are also observed by

the environment. There are also ideal functionalities ℱ1, … ,ℱ𝑚 whose functions might

be called by parties. Then, the protocol 𝜋 is denoted by 𝜋ℱ1,…,ℱ𝑚 .

To simplify our model, we assume that the communication network is synchronous,

meaning that we let the protocol be executed through several rounds. The ideal func-

tionality ℱ𝑐𝑙𝑜𝑐𝑘 represents a global clock that increases by one unit once all parties are

prepared to proceed to the next round. All entities know the value of the current round.

We assume that parties of the protocol are connected to each other via an authenticated

communication channel which guarantees that messages are delivered to recipient par-

ties after exactly one round. In other words, if party 𝑃 sends a message 𝑚 to the party 𝑄
in round 𝜏 , the message reaches 𝑄 in the beginning of round 𝜏 + 1 and 𝑄 can ensure that

the sender is 𝑃 . The adversary𝒜 observes the message𝑚 and can even change the order

of messages that are sent in the same round. However, the adversary cannot drop, de-

lay or change any transmitted message or insert new messages. The ideal functionality

ℱ𝐺𝐷𝐶 models such a communication channel between the channel parties. Other com-

munications in which some other entities, e.g. 𝒜 or ℰ , are involved take zero rounds to

complete. Moreover, to simplify the model, we assume that any required computation

is also performed within zero rounds.

In this thesis, we focus on UTXO-based cryptocurrencies such as Bitcoin. The global
ideal functionality ℒ models such cryptocurrencies where it is parameterised by two

parameters: (1) a digital signature scheme Σ, and (2) a delay parameter Δ which is an

upper bound on the number of rounds it takes for a valid transaction that has been

118CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

posted to the blockchain network to be published on the blockchain. To simplify the

model, we assume that the set of parties 𝒫 is fixed and transactions are published one

by one rather than being published on the blockchain in blocks. Badertscher et. al [73]

provided a more accurate model of the Bitcoin blockchain.

The environmentℰ initiates the ledger functionalityℒ by (1) instructingℒ to generate

the public parameters of the signature scheme Σ, (2) instructing each party 𝑃 ∈ 𝒫 to

create a key pair (𝑝𝑘𝑃 , 𝑠𝑘𝑃) and submit its public key to ℒ , and (3) creating an initial

state TX that contains all the accepted transactions. The set TX is accessible to everyone

including the protocol parties, the environment and the adversary. Once a party 𝑃 ∈ 𝒫
posts a transaction tx to the blockchain, ℒ waits for 𝜏 ≤ Δ rounds where 𝜏 is selected

by the adversary. Then, if the validity of tx is successfully verified, it is added to the set

TX.

Ideal Functionalityℒ(Δ, Σ)

The set 𝒫 defines the set of all parties who can send messages to the functionality. The

functionality maintains the set PKI for the parties in 𝒫 . The sets TX and UTXO respec-

tively define all the transactions accepted to date and all the unspent transaction outputs.

The set of valid output conditions is represented by 𝒱 .

Public key Registration: Upon (register, 𝑝𝑘𝑃)
𝜏0←−↩ 𝑃 , check if it is the first registration

message received from 𝑃 ∈ 𝒫 . If not drop the message, else add (𝑝𝑘𝑃 , 𝑃) to PKI.

Post transaction: Upon (post, tx) 𝜏0←−↩ 𝑃 , check if |PKI| = |𝒫 |, If not drop the message, else

wait for 𝜏 ≤ Δ rounds where 𝜏 is selected by the adversary. Then, check if:

1. id uniqueness: For all (𝑡, tx′) ∈ TX, tx′.txid ≠ tx.txid holds.

2. Input and witness validity: For each (𝑡𝑥𝑖𝑑‖𝑖) ∈ tx.Input, there exists (𝑡, 𝑡𝑥𝑖𝑑, 𝑖, 𝜃) ∈
UTXO s.t. tx.Witness with inputs tx.nLT, the current round 𝜏0 + 𝜏 and 𝑡 satisfies
𝜃.𝜑.

3. Output validity: For each 𝜃 ∈ tx.Output, 𝜃.Cash > 0 and 𝜃.𝜑 ∈ 𝒱 hold.

4. Value validity: Let 𝐼 ∶= {utxo ∶= (𝑡, 𝑡𝑥𝑖𝑑, 𝑖, 𝜃) ∣ utxo ∈ UTXO ∧ (𝑡𝑥𝑖𝑑‖𝑖) ∈ tx.Input}.
Then, Σ𝜃′∈tx.Output𝜃′.cash ≤ Σutxo∈𝐼utxo.𝜃 .cash holds.

5. Absolute time-lock validity: For the transaction tx, tx.nLT ≤ 𝜏0 + 𝜏 holds.

7.10 IDEAL FUNCTIONALITY 119

If any of the above checks fail, drop the message. Else, set TX ∶= TX⋃(𝜏0 + 𝜏 , tx),
UTXO ∶= UTXO\𝐼 and UTXO ∶= UTXO⋃{(𝜏0 + 𝜏 , tx.txid, 𝑖, 𝜃𝑖)}𝑖∈[𝑛] for (𝜃1, … , 𝜃𝑛) ∶=
tx.Output.

Let 𝜋 be a protocol that has access to the global ledger ℒ(Δ, Σ) as well as the global

clock ℱ𝑐𝑙𝑜𝑐𝑘 and 𝜑ℱ denote the ideal protocol for an ideal functionality ℱ with access

to the same global functionalities. Let EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘𝜋,𝒜 ,ℰ (𝜆, 𝑧) denote the output of the en-

vironment ℰ which interacts with a protocol 𝜋 and an adversary 𝒜 on input a security

parameter 𝜆 and an auxiliary input 𝑧 and similarly EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘𝜑ℱ ,𝒮 ,ℰ (𝑛, 𝑧) denote the out-

put of the environment ℰ which interacts with a protocol 𝜑ℱ and an adversary 𝒮 (also

called the simulator) on input a security parameter 𝜆 and an auxiliary input 𝑧.
The following definition is informally saying that should a protocol 𝜋 UC-realiseℱ , any

attack against the protocol 𝜋 can be transformed into an attack against the ideal protocol

𝜑ℱ and vice versa.

Definition 7.1. A protocol 𝜋 UC-realises an ideal functionality ℱ with respect to a global
ledger ℒ(Δ, Σ) and a global clock ℱ𝑐𝑙𝑜𝑐𝑘 if for every adversary 𝒜 there exists an adversary
𝒮 such that we have

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘𝜋,𝒜 ,ℰ (𝜆, 𝑧)}𝑛∈ℕ,𝑧∈{0,1}∗ ≈
{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘𝜑ℱ ,𝒮 ,ℰ (𝜆, 𝑧)}𝑛∈ℕ,𝑧∈{0,1}∗ (7.1)

where ≈ denotes computational indistinguishability.

7.10 Ideal Functionality

This section defines an ideal functionalityℱ (𝑡)with 𝑡 > Δ that achieves the desired prop-

erties stated in Section 7.5.2. To simplify the notations, we abbreviate ℱ ∶= ℱ (𝑡). The
ideal functionality ℱ stores a set Γ of all the created channels and their corresponding

funding transactions. The set Γ can also be treated as a function s.t. Γ(𝑖𝑑) = (𝛾 , TX) with

𝛾 .id = 𝑖𝑑 if 𝛾 exists and Γ(𝑖𝑑) =⟂ otherwise. Before presenting the ideal functionality ℱ
in detail, we briefly introduce its different phases and explain the way ℱ achieves the

desired properties.

a) Create: In this phase, ℱ receives messages (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃) and (CREATE, 𝛾 .id) from

both parties in rounds 𝜏0 and 𝜏0+1, respectively, where 𝑡 𝑖𝑑𝑃 specifies the funding source

of the user 𝑃 . Then, if the corresponding funding transaction appears on the ledger ℒ
within 2 + Δ rounds, ℱ sends the message (CREATED, 𝛾 .id) to both parties and stores 𝛾
and the funding transaction in Γ(𝛾 .id). If the CREATE message is not received from both

120CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

parties but the funding transaction appears onℒ within 2+Δ rounds,ℱ outputs Error.

Since the message CREATED might be sent to the parties only if they both have sent the

message CREATE to ℱ , the ideal functionality achieves consensus on creation.

b) Update: One of the parties, denoted by 𝑃 , initiates this phase by sending the message

(UPDATE, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝) to ℱ , where 𝑖𝑑 is the channel identifier, 𝜃 is the new channel state

and 𝑡𝑠𝑡𝑝 is the number of rounds needed to prepare prerequisites of the channel update

(e.g. preparing the needed HTLCs). Due to disagreeing with the new state or failure in

preparing its prerequisites, party 𝑄 can stop it by not sending the message (UPDATE − OK,
𝑖𝑑) in step 2. Abort by 𝑃 or 𝑄 in the next steps causes the procedure ForceClose(𝑖𝑑) to be

executed. The property optimistic update is satisfied because if both parties act honestly,

the channel can be updated without any blockchain interaction. Furthermore, if 𝑃 or

𝑄 disagree to update the channel, they can stop sending the UPDATE or UPDATE − OK

messages, respectively. This stops the channel update process without changing the

latest channel state. Also, in cases where either 𝑃 or 𝑄 stop cooperating, the procedure

ForceClose(𝑖𝑑) is executed. This procedure takes at most Δ rounds to complete. This

also guarantees consensus on update.

c) Close: If ℱ receives the message (CLOSE, 𝑖𝑑) from both parties, a transaction TX is ex-

pected to appear on ℒ within Δ + 1 rounds. This transaction spends the output of the

funding transaction and its outputs equal the latest channel state 𝛾 .st. If the CLOSE mes-

sage is received only from one of the parties,ℱ executes the procedure ForceClose(𝑖𝑑).
In both cases, the output of the funding transaction must be spent within Δ + 1 rounds.

Otherwise, ℱ outputs Error.

d) Punish: If a transaction TX spends the funding transaction’s output of a channel 𝛾 ,
one of the following events is expected to occur: (1) another transaction appears on ℒ
withinΔ rounds where this transaction spends output of TX and sends 𝛾 .cash coins to the

honest party 𝑃 ; or (2) another transaction whose outputs correspond to the channel state

𝛾 .st or 𝛾 .st′ appears onℒ within 𝑡 +Δ rounds. Otherwise,ℱ outputs Error. According

to its definition, bounded closure with punish is achieved, if ℱ returns no Error in the

close and punish phases.

We describe the ideal functionality below. Normally, once ℱ receives a message, it per-

forms several validations on the message. But to simplify the description, we assume

that messages are well-formed. Data exchange between ℱ and other parties is repre-

sented by directed arrows. If ℱ sends the message 𝑚 to party 𝑃 in round 𝜏0, we denote

it with 𝑚 𝜏0
↪−→ 𝑃 . Similarly, if ℱ is supposed to receive the message 𝑚 from party 𝑃 in

round 𝜏0, we denote it with 𝑚 𝜏0←−↩ 𝑃 .

Ideal Functionality ℱ (𝑡)

7.10 IDEAL FUNCTIONALITY 121

Create

upon (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ 𝑃 :

• If (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑄)
𝜏0←−↩ 𝑄, then continue. Else stop.

• If (CREATE, 𝑖𝑑) 𝜏0+1←−−−↩ 𝛾 .𝑢𝑠𝑒𝑟𝑠:

– Wait if in round 𝜏1 ≤ 𝜏0 + 3 + Δ a transaction TXFU with TXFU.Input =
(𝑡𝑖𝑑𝑃 , 𝑡 𝑖𝑑𝑄) and TXFU.Output = {(𝛾 .cash, 𝜑)} appears on the ledger ℒ . If yes,

set Γ(𝛾 .id) ∶= (𝛾 , TXFU) and (CREATED, 𝛾 .id) 𝜏1
↪−→ 𝛾.𝑢𝑠𝑒𝑟𝑠. Else stop.

Otherwise:

– Wait if in round 𝜏1 ≤ 𝜏0+3+Δ a transaction TXFU with TXFU.Input = (𝑡𝑖𝑑𝑃 , 𝑡 𝑖𝑑𝑄)
and TXFU.Output = {(𝛾 .cash, 𝜑)} appears on the ledger ℒ . If yes, Output

Error
𝜏1
↪−→ 𝛾.users. Else, stop.

Update

Upon (UPDATE, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝜏0←−↩ 𝑃 , parse (𝛾 , TX) ∶= Γ(𝑖𝑑) and proceed as follows:

1. Send (UPDATE − REQ, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝜏0+1
↪−−−→ 𝑄.

2. If (UPDATE − OK, 𝑖𝑑)
𝜏1≤𝜏0+1+𝑡𝑠𝑡𝑝←−−−−−−−−−↩ 𝑄, then set 𝛾 .flag ∶= 2 and 𝛾 .st′ ∶= 𝜃 and send

(SETUP, 𝑖𝑑) 𝜏1+1
↪−−−→ 𝑃 . Else stop.

3. If (SETUP − OK, 𝑖𝑑) 𝜏1+1←−−−↩ 𝑃 , then (SETUP′, 𝑖𝑑) 𝜏1+2
↪−−−→ 𝑄. Else ForceClose(𝑖𝑑) and

stop.

4. If (SETUP′ − OK, 𝑖𝑑) 𝜏1+2←−−−↩ 𝑄, then (UPDATE − OK, 𝑖𝑑) 𝜏1+3
↪−−−→ 𝑃 . Else execute

ForceClose(𝑖𝑑) and stop.

5. If (REVOKE, 𝑖𝑑) 𝜏1+3←−−−↩ 𝑃 , then (REVOKE − REQ, 𝑖𝑑) 𝜏1+4
↪−−−→ 𝑄. Else execute

ForceClose(𝑖𝑑) and stop.

6. If (REVOKE′, 𝑖𝑑) 𝜏1+4←−−−↩ 𝑄, set 𝛾 .𝑠𝑡 ∶= 𝜃 , 𝛾 .flag ∶= 1, 𝛾 .st′ ∶=⟂, 𝛾 .sn ∶= 𝛾 .sn + 1,
Γ(𝑖𝑑) ∶= (𝛾 , TX), (UPDATED, 𝑖𝑑) 𝜏1+5

↪−−−→ 𝛾.Users and stop. Else execute

ForceClose(𝑖𝑑) and stop.

122CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Close

upon (CLOSE, 𝑖𝑑) 𝜏0←−↩ 𝑃 , distinguish:
Both agreed: If (CLOSE, 𝑖𝑑) 𝜏0←−↩ 𝑄, let (𝛾 , TXFU) ∶= Γ(𝑖𝑑) and distinguish:

• If in round 𝜏1 ≤ 𝜏0 + 1 + Δ, TX
SP
, with TX

SP
.Output = 𝛾 .st and TX

SP
.Input =

TXFU.txid||1 appears on ℒ , set Γ(𝑖𝑑) ∶= (⟂, TXFU), (CLOSED, 𝑖𝑑)
𝜏1
↪−→ 𝛾.users and

stop.

• If in round 𝜏0 + 1 + Δ, the TXFU is still unspent, output Error
𝜏0+1+Δ
↪−−−−−−→ 𝛾.users and

stop.

Q disagreed: Else, execute ForceClose(𝑖𝑑) in round 𝜏0 + 1.

Punish (executed at the end of every round 𝜏0)

For each (𝛾𝑖, TX𝑖) ∈ Γ check if there is a transaction TX on the ledger ℒ s.t. TX.Input =
TX𝑖.txid‖1 and 𝛾𝑖 ≠⟂. If yes, distinguish:

1. Punish: For the honest 𝑃 ∈ 𝛾𝑖.users, in round 𝜏1 ≤ 𝜏0 + Δ, a transaction TX𝑗
with TX𝑗 .Input = TX.txid‖1 and TX𝑗 .Output = (𝛾 .cash, 𝑝𝑘𝑃) appears on ℒ . Then,

(PUNISHED, 𝑖𝑑) 𝜏1
↪−→ 𝑃 , set Γ(𝑖𝑑) ∶= (⟂, TX𝑖) and stop.

2. Close: In round 𝜏1 ≤ 𝜏0 + 𝑡 + Δ a transaction TX𝑗 appears on ℒ where one of the

following two sets of conditions hold: (1) 𝛾 .flag = 1, TX𝑗 .Input = TX.txid‖1 and

TX𝑗 .Output = 𝛾 .st or (2) 𝛾 .flag = 2, TX𝑗 .Input = TX.txid‖1 and either TX𝑗 .Output =
𝛾 .st or TX𝑗 .Output = 𝛾 .st′ . Then, set Γ(𝑖𝑑) ∶= (⟂, TX𝑖) and (CLOSED, 𝑖𝑑)

𝜏1
↪−→ 𝛾.users.

3. Error: Otherwise, Error
𝜏0+𝑡+Δ
↪−−−−−→ 𝛾.users.

Subprocedure ForceClose(𝑖𝑑)

Let 𝜏0 be the current round and (𝛾 , TXFU) ∶= Γ(𝑖𝑑). If within Δ rounds, TXFU.Output is
still an unspent output on ℒ , then output Error

𝜏0+Δ
↪−−−−→ 𝛾.users.

7.10 IDEAL FUNCTIONALITY 123

7.10.1 Functionality Wrapper

The functionality ℱ is supposed to perform several checks once he receives a message

from another party. The functionality ℱ must perform those checks in order to ensure

that the received messages are well-formed. The following wrapper summarises those

checks.

Functionality Wrapper:𝒲ℱ

Create

Upon (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ 𝑃 check if: 𝑃 ∈ 𝛾 .users; Γ(𝛾 .id) ≠⟂; there is no channel 𝛾 ′ with

𝛾 .id = 𝛾 ′.id, 𝛾 .sn = 0; 𝛾 .st = {(𝑐𝑃 , One − Sig𝑝𝑘𝑃), (𝑐𝑄 , One − Sig𝑝𝑘𝑄)} with 𝑐𝑃 , 𝑐𝑄 ∈ ℝ>0
and 𝑐𝑃 + 𝑐𝑄 = 𝛾 .cash; there exist (𝑡, 𝑖𝑑, 𝑖, 𝜃) ∈ ℒ.UTXO such that 𝜃 = (𝑐𝑃 , One − Sig𝑃) with

𝑖𝑑‖𝑖 = 𝑡𝑖𝑑 ; and none of the other channels that are being created at the moment, must

use 𝑡 𝑖𝑑𝑃 . Drop the message if any above checks fail. Else proceed as ℱ .

Upon (CREATE, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: you accepted messages (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ 𝑃 and

(INTRO, 𝛾 , 𝑡 𝑖𝑑𝑄)
𝜏0←−↩ 𝑄 with 𝑃, 𝑄 ∈ 𝛾 .users, 𝜏0 + 1 = 𝜏 and 𝑖𝑑 = 𝛾 .id. Else proceed as

ℱ .

Update

Upon (UPDATE, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0←−↩ 𝑃 set (𝛾 , TXFU) ∶= Γ(𝑖𝑑) and check if: 𝛾 ≠⟂, there is no other

update being preformed; let
→
𝜃 = (𝜃1, … , 𝜃𝑙) = ((𝑐1, 𝜑1), … , (𝑐𝑙 , 𝜑𝑙)), then Σ𝑖∈[𝑙]𝑐𝑖=𝛾 .cash and

𝜑𝑖 ∈ ℒ.𝒱 . Drop the message if any above checks fail. Else proceed as ℱ .

Upon (UPDATE − OK, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: the message is a reply to the message

(UPDATE − REQ, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝) sent to 𝑃 in round 𝜏 . If not, drop the message. Else proceed as

ℱ .

Upon (SETUP − OK, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: the message is a reply to the message (SETUP, 𝑖𝑑)
sent to 𝑃 in round 𝜏0 where 𝜏 = 𝜏0 + 𝑡𝑠𝑡𝑝 . If not, drop the message. Else proceed as ℱ .

Upon (SETUP′ − OK, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: the message is a reply to the message (SETUP′, 𝑖𝑑)
sent to 𝑃 in round 𝜏 . If not, drop the message. Else proceed as ℱ .

Upon (REVOKE, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: the message is a reply to the message (UPDATE − OK, 𝑖𝑑)
sent to 𝑃 in round 𝜏 . If not, drop the message. Else proceed as ℱ .

124CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Upon (REVOKE′, 𝑖𝑑) 𝜏←−↩ 𝑃 check if: the message is a reply to the message (REVOKE − REQ,
𝑖𝑑) sent to 𝑃 in round 𝜏 . If not, drop the message. Else proceed as ℱ .

Close

Upon (CLOSE, 𝑖𝑑) 𝜏←−↩ 𝑃 , set (𝛾 , TXFU) ∶= Γ(𝑖𝑑) and check if: 𝑃 ∈ 𝛾 .users, Γ(𝛾 .id) ≠⟂ and

𝛾 .flag = 1. Drop the message if any above checks fail. Else proceed as ℱ .

7.11 Daric Protocol

In this section, details of different phases of Daric will be presented. Before presenting

the protocol, some notations are introduced. In different steps of the protocol, chan-

nel participants generate (or verify) some signatures on protocol transactions. When a

signature with SIGHASH of type SIGHASH_ALL or ANYPREVOUT is going to be generated

(or verified) for the transaction TX, the input message to the signing (or verification)

algorithm is denoted by 𝑓 (TX) or ̂𝑓 ([TX]), respectively [58].

The set Γ𝑃 , maintained by each party 𝑃 ∈ 𝒫 , stores information of the latest channel

state for all the open channels that 𝑃 is involved in, where Γ𝑃 (𝑖𝑑) corresponds with the

channel with the identifier of 𝑖𝑑 . In the channel update phase, while 𝛾 .flag = 2, the
channel has two active states where the information about the new state is maintained

by 𝑃 ∈ 𝒫 in Γ′𝑃 (𝑖𝑑) with 𝑖𝑑 = 𝛾 .id. To refer to the 𝑖th element of Γ′𝑃 (𝑖𝑑) we use Γ𝑃 (𝑖𝑑)[𝑖]
with 𝑖 ≥ 1. The party 𝑃 also maintains a signature from his counterparty on the latest

revocation transaction for each open channel that 𝑃 is a party of. These signatures are

maintained by 𝑃 in the set Θ𝑃 where Θ𝑃 (𝑖𝑑) corresponds with the channel with the

identifier of 𝑖𝑑 . We use directional arrows to show an exchange of messages. To simplify

the protocol description, we remove some validations that must be normally done by

channel parties. The protocol wrapper 𝒲𝒫 in Section 7.11.1 defines those validations.

Daric protocol: 𝜋

Create

Party 𝑃 upon (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ ℰ

7.11 DARIC PROTOCOL 125

1. Set 𝑖𝑑 ∶= 𝛾 .id, generate (𝑝𝑘𝑃SP, 𝑠𝑘𝑃SP) ← Gen, (𝑝𝑘𝑃RV, 𝑠𝑘𝑃RV) ← Gen and (𝑝𝑘′𝑃RV , 𝑠𝑘′𝑃RV)
← Gen and send (createInfo, 𝑖𝑑, 𝑡 𝑖𝑑𝑃 , 𝑝𝑘𝑃SP, 𝑝𝑘𝑃RV, 𝑝𝑘′𝑃RV)

𝜏0
↪−→ 𝑄.

2. If (createInfo, 𝑖𝑑, 𝑡 𝑖𝑑𝑄 , 𝑝𝑘𝑄SP, 𝑝𝑘𝑄RV, 𝑝𝑘′𝑄RV)
𝜏0+1←−−−↩ 𝑄, create:

[TXFU] ∶= GenFund((𝑡𝑖𝑑𝑃 , 𝑡 𝑖𝑑𝑄), 𝛾)
([TX𝑃CM,0], [TX𝑄CM,0]) ∶=

GenCommit([TXFU].txid‖1, 𝐼𝑃 , 𝐼𝑄 , 0)
[TXSP,0] ∶= GenSplit(𝛾 .st, 0)

for 𝐼𝑃 ∶= (𝑝𝑘𝑃SP, 𝑝𝑘𝑃RV, 𝑝𝑘′𝑃RV) and 𝐼𝑄 ∶= (𝑝𝑘𝑄SP, 𝑝𝑘𝑄RV, 𝑝𝑘′𝑄RV). Else stop.

3. Compute 𝜎̂𝑃TXSP,0 ∶= Sign𝑠𝑘𝑃SP(̂𝑓 ([TXSP,0])) and 𝜎𝑃
TX

𝑄
CM,0

∶= Sign𝑠𝑘𝑃 (𝑓 ([TX
𝑄
CM,0])) and

send (createCom, 𝑖𝑑, 𝜎̂𝑃TXSP,0 , 𝜎𝑃TX𝑄CM,0)
𝜏0+1
↪−−−→ 𝑄.

4. If (createCom, 𝑖𝑑, 𝜎̂𝑄TXSP,0 , 𝜎
𝑄
TX𝑃CM,0

) 𝜏0+2←−−−↩ 𝑄, s.t. Vrfy𝑝𝑘𝑄SP(
̂𝑓 ([TXSP,0]); 𝜎̂𝑄TXSP,0) = 1 and

also Vrfy𝑝𝑘𝑄 (𝑓 ([TX𝑃CM,0]); 𝜎
𝑄
TX𝑃CM,0

) = 1, then 𝜎𝑃TXFU ∶= Sign𝑠𝑘𝑃 (𝑓 ([TXFU])) and send

(createFund, 𝑖𝑑, 𝜎𝑃TXFU)
𝜏0+2
↪−−−→ 𝑄. Else stop.

5. If (createFund, 𝑖𝑑, 𝜎𝑄TXFU)
𝜏0+3←−−−↩ 𝑄, s.t. Vrfy𝑝𝑘𝑄 (𝑓 ([TXFU]); 𝜎

𝑄
TXFU

) = 1, create the trans-
action TXFU ∶= (ℋ([TXFU]), [TXFU], ((𝑥, 𝜎𝑃TXFU), (𝑦 , 𝜎

𝑄
TXFU

))) and (post, TXFU)
𝜏0+3
↪−−−→

ℒ . Else, create a transaction TX with TX.Input ∶= 𝑡𝑖𝑑𝑃 and TX.Output.𝜑 ∶= 𝑝𝑘𝑃
and (post, TX) 𝜏0+3

↪−−−→ ℒ .

6. If TXFU is accepted by ℒ in round 𝜏1 ≤ 𝜏0 + 3 + Δ, compute 𝜎𝑃
TX𝑃CM,0

=
Sign𝑠𝑘𝑃 (𝑓 ([TX𝑃CM,0])), create TX𝑃CM,0 ∶= (ℋ([TX𝑃CM,0]), [TX𝑃CM,0], (1, {𝜎𝑃TX𝑃CM,0 , 𝜎

𝑄
TX𝑃CM,0

}),
set TXSP,0 ∶= ([TXSP,0], (1, {𝜎̂𝑃TXSP,0 , 𝜎̂

𝑄
TXSP,0})), store Γ𝑃 (𝛾 .𝑖𝑑) ∶= (𝛾 , TXFU, TX𝑃CM,0,

[TX𝑄
CM,0], TXSP,0) and (CREATED, 𝑖𝑑) 𝜏1

↪−→ ℰ . Else Γ𝑃 (𝛾 .𝑖𝑑) ∶= (⟂, TXFU, ⟂, ⟂, ⟂) and

stop.

Update

Party 𝑃 upon (UPDATE, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝜏0←−↩ ℰ

126CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

1. Send (updateReq, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝜏0
↪−→ 𝑄.

Party 𝑄 upon (updateReq, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝑡0←−↩ 𝑃

2. Send (UPDATE − REQ, 𝑖𝑑, 𝜃 , 𝑡𝑠𝑡𝑝)
𝑡0
↪−→ ℰ .

3. If (UPDATE − OK, 𝑖𝑑)
𝑡1≤𝑡0+𝑡𝑠𝑡𝑝←−−−−−−−↩ ℰ , then extract TXFU and 𝑖 ∶= 𝛾 .sn from Γ𝑄(𝑖𝑑), cre-

ate ([TX𝑃CM,𝑖+1], [TX𝑄CM,𝑖+1]) ∶= GenCommit([TXFU].txid‖1, 𝐼𝑃 , 𝐼𝑄 , 𝑖 + 1), and [TXSP,𝑖+1]
∶= GenSplit(𝜃, 𝑖 + 1) for 𝐼𝑃 ∶= (𝑝𝑘𝑃SP, 𝑝𝑘𝑃RV, 𝑝𝑘′𝑃RV) and 𝐼𝑄 ∶= (𝑝𝑘𝑄SP, 𝑝𝑘𝑄RV, 𝑝𝑘′𝑄RV),
compute 𝜎̂𝑄TXSP,𝑖+1 = Sign𝑠𝑘𝑄SP(

̂𝑓 ([TXSP,𝑖+1])), and send (updateInfo, 𝑖𝑑, 𝜎̂𝑄TXSP,𝑖+1)
𝑡1
↪−→ 𝑃 .

Party 𝑃 upon (updateInfo, 𝑖𝑑, 𝜎̂𝑄TXSP,𝑖+1)
𝜏1≤𝜏0+2+𝑡𝑠𝑡𝑝←−−−−−−−−−↩ 𝑄

4. Extract TXFU and 𝑖 ∶= 𝛾 .𝑠𝑛 from Γ𝑃 (𝑖𝑑) and create the transactions ([TX𝑃CM,𝑖+1],
[TX𝑄

CM,𝑖+1]) ∶= GenCommit([TXFU].txid‖1, 𝐼𝑃 , 𝐼𝑄 , 𝑖 + 1) and [TXSP,𝑖+1] ∶= GenSplit

(𝜃, 𝑖 + 1) for 𝐼𝑃 ∶= (𝑝𝑘𝑃SP, 𝑝𝑘𝑃RV, 𝑝𝑘′𝑃RV) and 𝐼𝑄 ∶= (𝑝𝑘𝑄SP, 𝑝𝑘𝑄RV, 𝑝𝑘′𝑄RV). If Vrfy𝑝𝑘𝑄SP
(̂𝑓 ([TXSP,𝑖+1]); 𝜎̂𝑄TXSP,𝑖+1) = 1, compute 𝜎̂𝑃TXSP,𝑖+1 ∶= Sign𝑠𝑘𝑃SP(̂𝑓 ([TXSP,𝑖+1])), set

TXSP,𝑖+1 ∶= ([TXSP,𝑖+1], (1, {𝜎̂𝑃TXSP,𝑖+1 , 𝜎̂
𝑄
TXSP,𝑖+1})), store Γ′𝑃 (𝑖𝑑) = (⟂, [TX𝑄

CM,𝑖+1],
TXSP,𝑖+1), set 𝛾 .flag = 2 and 𝛾 .st′ = 𝜃 and send (SETUP, 𝑖𝑑) 𝜏1

↪−→ ℰ . Else stop.

5. If (SETUP − OK, 𝑖𝑑) 𝜏1←−↩ ℰ , sign 𝜎𝑃
TX

𝑄
CM,𝑖+1

∶= Sign𝑠𝑘𝑃 (𝑓 ([TX
𝑄
CM,𝑖+1])) and output

(updateComP, 𝑖𝑑, 𝜎̂𝑃TXSP,𝑖+1 , 𝜎𝑃TX𝑄CM,𝑖+1)
𝜏1
↪−→ 𝑄. Else, execute ForceClose𝑃 (𝑖𝑑) and stop.

Party 𝑄

6. If (updateComP, 𝑖𝑑, 𝜎̂𝑃TXSP,𝑖+1 , 𝜎𝑃TX𝑄CM,𝑖+1)
𝑡1+2←−−−↩ 𝑃 , such that Vrfy𝑝𝑘𝑃SP(̂𝑓 ([TXSP,𝑖+1]);

𝜎̂𝑃TXSP,𝑖+1) = 1 and also Vrfy𝑝𝑘𝑃 (𝑓 ([TX
𝑄
CM,𝑖+1]); 𝜎𝑃TX𝑄CM,𝑖+1) = 1, compute 𝜎𝑄

TX
𝑄
CM,𝑖+1

=
Sign𝑠𝑘𝑄 (𝑓 ([TX

𝑄
CM,𝑖+1])), set TXSP,𝑖+1 ∶= ([TXSP,𝑖+1], (1, {𝜎̂𝑃TXSP,𝑖+1 , 𝜎̂

𝑄
TXSP,𝑖+1})), set

TX
𝑄
CM,𝑖+1 = ([TX𝑄

CM,𝑖+1], (1, {𝜎𝑃TX𝑄CM,𝑖+1 , 𝜎
𝑄
TX

𝑄
CM,𝑖+1

})), 𝛾 .flag = 2 and 𝛾 .st′ = 𝜃 , store

Γ′𝑄(𝑖𝑑) = (TX𝑄
CM,𝑖+1, [TX𝑃CM,𝑖+1], TXSP,𝑖+1), and output (SETUP′, 𝑖𝑑) 𝑡1+2

↪−−−→ ℰ . Else,

execute ForceClose𝑄(𝑖𝑑) and stop.

7. If (SETUP′ − OK, 𝑖𝑑) 𝑡1+2←−−−↩ ℰ , sign 𝜎𝑄
TX𝑃CM,𝑖+1

= Sign𝑠𝑘𝑄 (𝑓 ([TX𝑃CM,𝑖+1])) and send

(updateComQ, 𝑖𝑑, 𝜎𝑄
TX𝑃CM,𝑖+1

) 𝑡1+2
↪−−−→ 𝑃 . Else, execute ForceClose𝑄(𝑖𝑑) and stop.

7.11 DARIC PROTOCOL 127

Party 𝑃

8. If (updateComQ, 𝑖𝑑, 𝜎𝑄
TX𝑃CM,𝑖+1

) 𝜏1+2←−−−↩ 𝑄, s.t. Vrfy𝑝𝑘𝑄 (𝑓 ([TX𝑃CM,𝑖+1]); 𝜎
𝑄
TX𝑃CM,𝑖+1

) = 1,
compute 𝜎𝑃

TX𝑃CM,𝑖+1
∶= Sign𝑠𝑘𝑃 (𝑓 ([TX𝑃CM,𝑖+1], 1)), set TX𝑃CM,𝑖+1 ∶= (ℋ([TX𝑃CM,𝑖+1]),

[TX𝑃CM,𝑖+1], (1, {𝜎𝑃TX𝑃CM,𝑖+1 , 𝜎
𝑄
TX𝑃CM,𝑖+1

})), set Γ′𝑃 (𝑖𝑑)[1] ∶= TX𝑃CM,𝑖+1 and then output

(UPDATE − OK, 𝑖𝑑) 𝜏1+2
↪−−−→ ℰ . Else, execute the procedure ForceClose𝑃 (𝑖𝑑) and stop.

9. If (REVOKE, 𝑖𝑑) 𝜏1+2←−−−↩ ℰ , create ([TX𝑃RV,𝑖], [TX𝑄RV,𝑖]) ∶= GenRevoke(𝑝𝑘𝑃 , 𝑝𝑘𝑄 , 𝛾 .cash
, 𝑖 + 1), compute 𝜎̂𝑃

TX
𝑄
RV,𝑖

∶= Sign𝑠𝑘𝑃RV(̂𝑓 ([TX𝑄
RV,𝑖])) if 𝑃 = 𝐴 or 𝜎̂𝑃

TX
𝑄
RV,𝑖

= Sign𝑠𝑘′𝑃RV

(̂𝑓 ([TX𝑄
RV,𝑖])) otherwise and send (revokeP, 𝑖𝑑, 𝜎̂𝑃

TX
𝑄
RV,𝑖
) 𝜏1+2
↪−−−→ 𝑄. Else, execute the

procedure ForceClose𝑃 (𝑖𝑑) and stop.

Party 𝑄

10. Create ([TX𝑃RV,𝑖], [TX𝑄RV,𝑖]) ∶= GenRevoke(𝑝𝑘𝑃 , 𝑝𝑘𝑄 , 𝛾 .cash, 𝑖 + 1). If (revokeP, 𝑖𝑑,
𝜎̂𝑃
TX

𝑄
RV,𝑖
) 𝑡1+4←−−−↩ 𝑃 , such that Vrfy𝑝𝑘𝑃RV(̂𝑓 ([TX𝑄

RV,𝑖]); 𝜎̂𝑃TX𝑄RV,𝑖) = 1 if 𝑄 = 𝐵 or Vrfy𝑝𝑘′𝑃RV
(̂𝑓 ([TX𝑄

RV,𝑖]); 𝜎̂𝑃TX𝑄RV,𝑖) = 1 otherwise, set Θ𝑄(𝑖𝑑) ∶= (𝜎̂𝑃
TX

𝑄
RV,𝑖
), 𝛾 .sn ∶= 𝑖 + 1, 𝛾 .st ∶= 𝜃 ,

Γ𝑄(𝑖𝑑) ∶= (𝛾 , TXFU, TX𝑄CM,𝑖+1, [TX𝑃CM,𝑖+1], TXSP,𝑖+1), 𝛾 .flag = 1, and Γ′𝑄(𝑖𝑑) = (⟂, ⟂, ⟂)
and send (REVOKE − REQ, 𝑖𝑑) 𝑡1+4

↪−−−→ ℰ . Else, execute the procedure ForceClose𝑄(𝑖𝑑)
and stop.

11. If (REVOKE′, 𝑖𝑑) 𝑡1+4←−−−↩ ℰ , then compute 𝜎̂𝑄
TX𝑃RV,𝑖

∶= Sign𝑠𝑘𝑄RV(
̂𝑓 ([TX𝑃RV,𝑖])) if 𝑄 = 𝐴

or compute 𝜎̂𝑄
TX𝑃RV,𝑖

∶= Sign𝑠𝑘′𝑄RV (
̂𝑓 ([TX𝑃RV,𝑖])) otherwise, output (revokeQ, 𝑖𝑑, 𝜎̂𝑄

TX𝑃RV,𝑖
)

𝑡1+4
↪−−−→ 𝑃 and (UPDATED, 𝑖𝑑) 𝑡1+5

↪−−−→ ℰ . Else, execute the procedure ForceClose𝑄(𝑖𝑑)
and stop.

Party 𝑃

12. If (revokeQ, 𝑖𝑑, 𝜎̂𝑄
TX𝑃RV,𝑖

) 𝜏1+4←−−−↩ 𝑄, such that it holds that Vrfy𝑝𝑘𝑄RV(
̂𝑓 ([TX𝑃RV,𝑖]); 𝜎̂𝑄TX𝑃RV,𝑖) =

1 if 𝑃 = 𝐵 or Vrfy𝑝𝑘′𝑄RV (
̂𝑓 ([TX𝑃RV,𝑖]); 𝜎̂𝑄TX𝑃RV,𝑖) = 1 otherwise, assign Θ𝑃 (𝑖𝑑) ∶= (𝜎̂𝑄

TX𝑃RV,𝑖
),

𝛾 .sn ∶= 𝑖 + 1, 𝛾 .st ∶= 𝜃 , Γ𝑃 (𝑖𝑑) ∶= (𝛾 , TXFU, TX𝑃CM,𝑖+1, [TX𝑄CM,𝑖+1], TXSP,𝑖+1), 𝛾 .flag ∶=
1, and Γ′𝑃 (𝑖𝑑) ∶= (⟂, ⟂, ⟂) and send (UPDATED, 𝑖𝑑) 𝜏1+4

↪−−−→ ℰ . Else, execute the

procedure ForceClose𝑃 (𝑖𝑑) and stop.

128CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Close

Party 𝑃 upon (CLOSE, 𝑖𝑑) 𝜏0←−↩ ℰ

1. Extract TXFU, 𝑖 ∶= 𝛾 .𝑠𝑛, TXSP,𝑖 from Γ𝑃 (𝑖𝑑) and create [TX
SP
] ∶= GenFinSplit

(TXFU.txid‖1, 𝛾 .st).

2. Compute 𝜎𝑃TXSP ∶= Sign𝑠𝑘𝑃 (𝑓 ([TXSP])) and send (CloseP, 𝑖𝑑, 𝜎𝑃TXSP)
𝜏0
↪−→ 𝑄.

3. If (CloseQ, 𝑖𝑑, 𝜎𝑄TXSP)
𝜏0+1←−−−↩ 𝑄 s.t. Vrfy𝑝𝑘𝑄 (𝑓 ([TXSP]);

𝜎𝑄TXSP) = 1, create the transaction TX
SP

∶= (ℋ([TX
SP
]), [TX

SP
], (1, {𝜎𝑃TXSP , 𝜎

𝑄
TXSP

}))
and send (post, TX

SP
) 𝜏0+1
↪−−−→ ℒ . Else, execute the procedure ForceClose𝑃 (𝑖𝑑) and

stop.

4. If in round 𝜏1 ≤ 𝜏0 + 1 + Δ, the transaction TX
SP

is accepted by ℒ , set Γ𝑃 (𝑖𝑑) ∶=⟂,
Θ𝑃 (𝑖𝑑) ∶=⟂ and send (CLOSED, 𝑖𝑑) 𝜏1

↪−→ ℰ .

Punish (executed at the end of every round 𝜏0)

Party 𝑃
For each 𝑖𝑑 ∈ {0, 1}∗, extract 𝑖 ∶= 𝛾 .sn and 𝑓 𝑙𝑎𝑔 ∶= 𝛾 .flag from Γ𝑃 (𝑖𝑑).
If 𝑓 𝑙𝑎𝑔 = 1:

• Set (𝛾 , TXFU, TX𝑃CM,𝑖, [TX𝑄CM,𝑖], TXSP,𝑖) ∶= Γ𝑃 (𝑖𝑑) and 𝐼 ∶= {[TX𝑃CM,𝑖], [TX𝑄CM,𝑖]}. Check if

TXFU.Output is spent by a transaction TX s.t. [TX] ∉ 𝐼 . If yes:

– Create ([TX𝑃RV,𝑖−1], [TX𝑄RV,𝑖−1]) ∶= GenRevoke(𝑝𝑘𝑃 , 𝑝𝑘𝑄 , 𝛾 .cash, 𝑖) and then set

[TX𝑃RV,𝑖−1] ∶= (TX.txid‖1, [TX𝑃RV,𝑖−1]).

– compute 𝜎̂𝑃
TX𝑃RV,𝑖−1

= Sign𝑠𝑘𝑃RV(̂𝑓 ([TX𝑃RV,𝑖−1])) if 𝑃 = 𝐵 or 𝜎̂𝑃
TX𝑃RV,𝑖−1

= Sign𝑠𝑘′𝑃RV
(̂𝑓 ([TX𝑃RV,𝑖−1])) otherwise.

– Set 𝜎̂𝑄
TX𝑃RV,𝑖−1

∶= Θ𝑃 (𝑖𝑑), and create TX𝑃RV,𝑖−1 ∶= (ℋ([TX𝑃RV,𝑖−1]), [TX𝑃RV,𝑖−1],
(2, {𝜎̂𝑃

TX𝑃RV,𝑖−1
, 𝜎̂𝑄

TX𝑃RV,𝑖−1
})).

7.11 DARIC PROTOCOL 129

– Post (post, TX𝑃RV,𝑖−1)
𝜏0
↪−→ ℒ .

– Let TX𝑃RV,𝑖−1 be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + Δ. Set Θ𝑃 (𝑖𝑑) ∶=⟂,
Γ𝑃 (𝑖𝑑) ∶=⟂ and output (PUNISHED, 𝑖𝑑) 𝜏1

↪−→ ℰ .

If no, set [TXSP,𝑖] ∶= (TX.txid‖1, TXSP,𝑖.nLT, TXSP,𝑖.Output), set TXSP,𝑖 ∶= (ℋ
([TXSP,𝑖]), TX.txid‖1, TXSP,𝑖) and then post (post, TXSP,𝑖)

𝜏0+𝑡
↪−−−→ ℒ . Let TX be spent in

round 𝜏1 ≤ 𝜏0 + 𝑡 + Δ. Set Θ𝑃 (𝑖𝑑) ∶=⟂, Γ𝑃 (𝑖𝑑) ∶=⟂ and output (CLOSED, 𝑖𝑑) 𝜏1
↪−→ ℰ .

If 𝑓 𝑙𝑎𝑔 = 2:

• Set (𝛾 , TXFU, TX𝑃CM,𝑖, [TX𝑄CM,𝑖], TXSP,𝑖) ∶= Γ𝑃 (𝑖𝑑), and (TX𝑃CM,𝑖+1, [TX𝑄CM,𝑖+1], TXSP,𝑖+1) ∶=
Γ′𝑃 (𝑖𝑑) and also 𝐼 ∶= {[TX𝑃CM,𝑖], [TX𝑄CM,𝑖], [TX𝑃CM,𝑖+1], [TX

𝑄
CM,𝑖+1]}. Check if TXFU.Output

is spent by a transaction TX s.t. [TX] ∉ 𝐼 . If yes:

– Create ([TX𝑃RV,𝑖−1], [TX𝑄RV,𝑖−1]) ∶= GenRevoke(𝑝𝑘𝑃 , 𝑝𝑘𝑄 , 𝛾 .cash, 𝑖). and then set

[TX𝑃RV,𝑖−1] ∶= (TX.txid‖1, [TX𝑃RV,𝑖−1]).
– compute 𝜎̂𝑃

TX𝑃RV,𝑖−1
∶= Sign𝑠𝑘𝑃RV(̂𝑓 ([TX𝑃RV,𝑖−1])) if 𝑃 = 𝐵 or 𝜎̂𝑃

TX𝑃RV,𝑖−1
∶=

Sign𝑠𝑘′𝑃RV (̂𝑓 ([TX𝑃RV,𝑖−1])) otherwise.

– Set 𝜎̂𝑄
TX𝑃RV,𝑖−1

∶= Θ𝑃 (𝑖𝑑), and create TX𝑃RV,𝑖−1 ∶= (ℋ([TX𝑃RV,𝑖−1]), [TX𝑃RV,𝑖−1],
(2, {𝜎̂𝑃

TX𝑃RV,𝑖−1
, 𝜎̂𝑄

TX𝑃RV,𝑖−1
})).

– Post (post, TX𝑃RV,𝑖−1)
𝜏0
↪−→ ℒ .

– Let TX𝑃RV,𝑖−1 be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + Δ. Set Θ𝑃 (𝑖𝑑) ∶=⟂,
Γ𝑃 (𝑖𝑑) ∶=⟂ and output (PUNISHED, 𝑖𝑑) 𝜏1

↪−→ ℰ .

If no, set [TXSP,𝑖+1] ∶= (TX.txid‖1, TXSP,𝑖+1.nLT, TXSP,𝑖+1.Output), TXSP,𝑖+1 ∶=
(ℋ([TXSP,𝑖+1]), TX.txid‖1, TXSP,𝑖+1), wait for 𝑡 rounds and post (post, TXSP,𝑖+1)
𝜏0+𝑡
↪−−−→ ℒ . Let TXSP,𝑖+1 be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + 𝑡 + Δ. Then, set

Θ𝑃 (𝑖𝑑) ∶=⟂, Γ𝑃 (𝑖𝑑) ∶=⟂ and output (CLOSED, 𝑖𝑑) 𝜏1
↪−→ ℰ .

Subprocedures

ForceClose𝑃 (𝑖𝑑):
Let 𝜏0 be the current round. Extract 𝑖 ∶= 𝛾 .sn, 𝑓 𝑙𝑎𝑔 ∶= 𝛾 .flag, TX𝑃CM,𝑖 and TXSP,𝑖 from
Γ𝑃 (𝑖𝑑). Also, extract TX𝑃CM,𝑖+1 and TXSP,𝑖+1 from Γ′𝑃 (𝑖𝑑) if 𝑓 𝑙𝑎𝑔 = 2.

130CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

If (1) 𝑓 𝑙𝑎𝑔 = 1 or (2) 𝑓 𝑙𝑎𝑔 = 2 and TX𝑃CM,𝑖+1 =⟂, then post (post, TX𝑃CM,𝑖)
𝜏0
↪−→ ℒ . Otherwise,

post (post, TX𝑃CM,𝑖+1)
𝜏0
↪−→ ℒ .

(Publishing the corresponding split transaction takes place in the Punish phase.)

GenFund((𝑡𝑖𝑑𝑃 , 𝑡 𝑖𝑑𝑄), 𝛾):
Return [TXFU] where [TXFU].Input ∶= (𝑡𝑖𝑑𝑃 , 𝑡 𝑖𝑑𝑄), [TXFU].nLT ∶= 0 and [TXFU].Output ∶=
(𝛾 .Cash, 𝑝𝑘𝑃 ∧ 𝑝𝑘𝑄)

GenCommit([TXFU].txid‖1, (𝑝𝑘𝑃SP, 𝑝𝑘𝑃RV, 𝑝𝑘′𝑃RV), (𝑝𝑘𝑄SP, 𝑝𝑘𝑄RV, 𝑝𝑘′𝑄RV), 𝑖):
Return [TX𝑃CM,𝑖] and [TX𝑄

CM,𝑖] where TX𝑃CM,𝑖.nLT ∶= 0, TX𝑃CM,𝑖.Input ∶= TXFU.txid‖1,
and TX𝑃CM,𝑖.Output ∶= {(TXFU.Output.cash, (𝜑1 ∨ 𝜑2)}, TX𝑄CM,𝑖.nLT ∶= 0, TX𝑄

CM,𝑖.Input
∶= TXFU.txid‖1 , and TX

𝑄
CM,𝑖.Output ∶= {(TXFU.Output.cash, (𝜑1 ∨ 𝜑′2)} with 𝜑1 ∶= (𝑝𝑘𝑃SP ∧

𝑝𝑘𝑄SP ∧ 𝐶𝑆𝑉𝑡 ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑖), 𝜑2 ∶= (𝑝𝑘𝑃RV ∧ 𝑝𝑘𝑄RV ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑖), 𝜑′2 ∶= (𝑝𝑘′𝑃RV ∧ 𝑝𝑘′𝑄RV ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑖).

GenSplit(𝜃, 𝑖):
Return [TXSP,𝑖] where [TXSP,𝑖].nLT ∶= 𝑆0 + 𝑖 and [TXSP,𝑖].Output ∶= 𝜃 .

GenRevoke(𝑝𝑘𝑃 , 𝑝𝑘𝑄 , 𝛾 .cash, 𝑖 + 1):

Return [TX𝑃RV,𝑖] and [TX𝑄
RV,𝑖] where [TX𝑃RV,𝑖].nLT ∶= 𝑆0 + 𝑖, [TX𝑃RV,𝑖].Output ∶=

{(𝛾 .cash, 𝑝𝑘𝑃)}, [TX𝑄RV,𝑖].nLT ∶= 𝑆0 + 𝑖 and [TX𝑄
RV,𝑖].Output ∶= {(𝛾 .cash, 𝑝𝑘𝑄)}

7.11.1 Protocol Wrapper

Each party in Daric protocol 𝜋 is supposed to perform several checks once he receives

a message from another party. Parties perform those checks to ensure that the received

messages are well-formed. The following wrapper summarises those checks.

Protocol Wrapper: 𝒲𝒫

Create

7.11 DARIC PROTOCOL 131

Upon (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ ℰ check if: 𝑃 ∈ 𝛾 .users; Γ(𝛾 .id) ≠⟂; there is no channel 𝛾 ′ with

𝛾 .id = 𝛾 ′.id, 𝛾 .sn = 0; 𝛾 .st = {(𝑐𝑃 , One − Sig𝑝𝑘𝑃), (𝑐𝑄 , One − Sig𝑝𝑘𝑄)} with 𝑐𝑃 , 𝑐𝑄 ∈ ℝ>0
and 𝑐𝑃 + 𝑐𝑄 = 𝛾 .cash; there exist (𝑡, 𝑖𝑑, 𝑖, 𝜃) ∈ ℒ.UTXO such that 𝜃 = (𝑐𝑃 , One − Sig𝑃) with

𝑖𝑑‖𝑖 = 𝑡𝑖𝑑 ; and none of the other channels that are being created at the moment, must use

𝑡 𝑖𝑑𝑃 . Drop the message if any above checks fails. Else proceed as 𝑃 in Daric protocol.

Upon (CREATE, 𝑖𝑑) 𝜏←−↩ ℰ check if: you accepted messages (INTRO, 𝛾 , 𝑡 𝑖𝑑𝑃)
𝜏0←−↩ 𝑃 and

(INTRO, 𝛾 , 𝑡 𝑖𝑑𝑄)
𝜏0←−↩ 𝑄 with 𝑃, 𝑄 ∈ 𝛾 .users, 𝜏0 + 1 = 𝜏 and 𝑖𝑑 = 𝛾 .id. Else proceed as 𝑃 in

Daric protocol.

Update

Upon (UPDATE, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0←−↩ ℰ set (𝛾 , TXFU) ∶= Γ(𝑖𝑑) and check if: 𝛾 ≠⟂, there is no other

update being preformed; let
→
𝜃 = (𝜃1, … , 𝜃𝑙) = ((𝑐1, 𝜑1), … , (𝑐𝑙 , 𝜑𝑙)), then Σ𝑖∈[𝑙]𝑐𝑖=𝛾 .cash and

𝜑𝑖 ∈ ℒ.𝒱 . Drop the message if any above checks fails. Else proceed as 𝑃 in Daric

protocol.

Upon (UPDATE − OK, 𝑖𝑑) 𝜏←−↩ ℰ check if: the message is a reply to the message

(UPDATE − REQ, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝) sent to ℰ in round 𝜏 . If not, drop the message. Else proceed

as 𝑃 in Daric protocol.

Upon (SETUP − OK, 𝑖𝑑) 𝜏←−↩ ℰ check if: the message is a reply to the message (SETUP, 𝑖𝑑)
sent to ℰ in round 𝜏0 where 𝜏 = 𝜏0 + 𝑡𝑠𝑡𝑝 . If not, drop the message. Else proceed as 𝑃 in

Daric protocol.

Upon (SETUP′ − OK, 𝑖𝑑) 𝜏←−↩ ℰ check if: the message is a reply to the message (SETUP′, 𝑖𝑑)
sent to ℰ in round 𝜏 . If not, drop the message. Else proceed as 𝑃 in Daric protocol.

Upon (REVOKE, 𝑖𝑑) 𝜏←−↩ ℰ check if: the message is a reply to the message (UPDATE − OK,
𝑖𝑑) sent to ℰ in round 𝜏 . If not, drop the message. Else proceed as 𝑃 in Daric protocol.

Upon (REVOKE′, 𝑖𝑑) 𝜏←−↩ ℰ check if: the message is a reply to the message (REVOKE − REQ,
𝑖𝑑) sent to ℰ in round 𝜏 . If not, drop the message. Else proceed as 𝑃 in Daric protocol.

Close

Upon (CLOSE, 𝑖𝑑) 𝜏←−↩ ℰ , set (𝛾 , TXFU) ∶= Γ(𝑖𝑑) and check if: 𝑃 ∈ 𝛾 .users, Γ(𝛾 .id) ≠⟂ and

and 𝛾 .flag = 1. Drop the message if any above checks fails. Else proceed as 𝑃 in Daric

protocol.

132CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

7.12 Security Analysis

In this section, we prove the Theorem 7.1. To do so, a simulator for the protocol 𝜋 in the

ideal world is provided and then we formally show that the Daric protocol (introduced

in Section 7.11) UC-realises the ideal functionality ℱ (introduced in Section 7.10).

Simulator:

Create

Case 𝐴 is honest and 𝐵 is corrupted.

Upon 𝐴 sending (INTRO, 𝛾 , 𝑡 𝑖𝑑𝐴)
𝜏0
↪−→ ℱ ,

1. Set 𝑖𝑑 ∶= 𝛾 .id, generate (𝑝𝑘𝐴SP, 𝑠𝑘𝐴SP) ← Gen, (𝑝𝑘𝐴RV, 𝑠𝑘𝐴RV) ← Gen and (𝑝𝑘′𝐴RV ,
𝑠𝑘′𝐴RV) ← Gen and send (createInfo, 𝑖𝑑, 𝑡 𝑖𝑑𝐴, 𝑝𝑘𝐴SP, 𝑝𝑘𝐴RV, 𝑝𝑘′𝐴RV)

𝜏0
↪−→ 𝐵.

2. If 𝐵 sends (createInfo, 𝑖𝑑, 𝑡 𝑖𝑑𝐵, 𝑝𝑘𝐵SP, 𝑝𝑘𝐵RV, 𝑝𝑘′𝐵RV)
𝜏0
↪−→ 𝐴, then (INTRO, 𝛾 , 𝑡 𝑖𝑑𝐵)

𝜏0
↪−→ ℱ

on behalf of 𝐵. Else stop.

3. If 𝐴 sends (CREATE, 𝑖𝑑) 𝜏0+1
↪−−−→ ℱ , then create [TXFU] ∶= GenFund((𝑡𝑖𝑑𝐴, 𝑡 𝑖𝑑𝐵),

𝛾), ([TX𝐴CM,0], [TX𝐵CM,0]) ∶= GenCommit([TXFU].txid‖1, 𝐼𝐴, 𝐼𝐵, 0), and [TXSP,0] ∶=
GenSplit(𝛾 .st, 0) for 𝐼𝐴 ∶= (𝑝𝑘𝐴SP, 𝑝𝑘𝐴RV, 𝑝𝑘′𝐴RV) and 𝐼𝐵 ∶= (𝑝𝑘𝐵SP, 𝑝𝑘𝐵RV, 𝑝𝑘′𝐵RV). Else

stop.

4. Compute 𝜎̂𝐴TXSP,0 = Sign𝑠𝑘𝐴SP(̂𝑓 ([TXSP,0])) and 𝜎𝐴TX𝐵CM,0 = Sign𝑠𝑘𝐴CM(𝑓 ([TX
𝐵
CM,0])) and send

(createCom, 𝑖𝑑, 𝜎̂𝐴TXSP,0 , 𝜎𝐴TX𝐵CM,0)
𝜏0+1
↪−−−→ 𝐵.

5. If 𝐵 sends (createCom, 𝑖𝑑, 𝜎̂𝐵TXSP,0 , 𝜎𝐵TX𝐴CM,0)
𝜏0+1
↪−−−→ 𝐴, s.t. Vrfy𝑝𝑘𝐵SP(̂𝑓 ([TXSP,0]); 𝜎̂𝐵TXSP,0) =

1 and Vrfy𝑝𝑘𝐵CM(𝑓 ([TX
𝐴
CM,0]); 𝜎𝐵TX𝐴CM,0) = 1, send (CREATE, 𝑖𝑑) 𝜏0+1

↪−−−→ ℱ on behalf of 𝐵.
Else stop.

6. Compute 𝜎𝐴TXFU = Sign𝑠𝑘𝐴(𝑓 ([TXFU])) and send (createFund, 𝑖𝑑, 𝜎𝐴TXFU)
𝜏0+2
↪−−−→ 𝐵.

7. If 𝐵 sends (createFund, 𝑖𝑑, 𝜎𝐵TXFU)
𝜏0+2
↪−−−→ 𝐴, s.t. Vrfy𝑝𝑘𝐵(𝑓 ([TXFU]); 𝜎𝐵TXFU) = 1, cre-

ate TXFU ∶= (ℋ([TXFU]), [TXFU], ((𝑥, 𝜎𝐴TXFU), (𝑦 , 𝜎𝐵TXFU))) and (post, TXFU)
𝜏0+3
↪−−−→ ℒ .

Else create a transaction TX with TX.input ∶= 𝑡𝑖𝑑𝐴 and TX.Output.𝜑 ∶= 𝑝𝑘𝐴 and

(post, TX) 𝜏0+3
↪−−−→ ℒ .

7.12 SECURITY ANALYSIS 133

8. If TXFU is accepted by ℒ in round 𝜏1 ≤ 𝜏0 + 3 + Δ, compute 𝜎𝐴
TX𝐴CM,0

=
Sign𝑠𝑘𝐴CM(𝑓 ([TX

𝐴
CM,0])), create TX𝐴CM,0 ∶= (ℋ([TX𝐴CM,0]), [TX𝐴CM,0], (1, {𝜎𝐴TX𝐴CM,0 , 𝜎

𝐵
TX𝐴CM,0

}),
set TXSP,0 ∶= ([TXSP,0], (1, {𝜎̂𝐴TXSP,0 , 𝜎̂𝐵TXSP,0})), store Γ𝐴(𝛾 .𝑖𝑑) ∶= (𝛾 , TXFU, TX𝐴CM,0,
[TX𝐵CM,0], TXSP,0) and (CREATED, 𝑖𝑑) 𝜏1

↪−→ ℰ . Else Γ𝐴(𝛾 .𝑖𝑑) ∶= (⟂, TXFU, ⟂, ⟂, ⟂) and

stop.

Update

Case 𝐴 is honest and 𝐵 is corrupted.

Upon 𝐴 sending (UPDATE, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0
↪−→ ℱ , proceed as follows:

1. Send (updateReq, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0
↪−→ 𝐵.

2. If 𝐵 sends (updateInfo, 𝑖𝑑, 𝜎̂𝐵SP,𝑖+1)
𝜏1≤𝜏0+1+𝑡𝑠𝑡𝑝
↪−−−−−−−−−→ 𝐴, extract TXFU and 𝑖 ∶= 𝛾 .𝑠𝑛

from Γ𝐴(𝑖𝑑) and create ([TX𝐴CM,𝑖+1], [TX𝐵CM,𝑖+1]) ∶= GenCommit([TXFU].txid‖1,
𝐼𝐴, 𝐼𝐵, 𝑖 + 1), and [TXSP,𝑖+1] ∶= GenSplit(𝛾 .st, 𝑖 + 1) for 𝐼𝐴 ∶= (𝑝𝑘𝐴SP, 𝑝𝑘𝐴RV, 𝑝𝑘′𝐴RV)
and 𝐼𝐵 ∶= (𝑝𝑘𝐵SP, 𝑝𝑘𝐵RV, 𝑝𝑘′𝐵RV). If Vrfy𝑝𝑘𝐵SP(̂𝑓 ([TXSP,𝑖+1]); 𝜎̂𝐵TXSP,𝑖+1) = 1, then com-

pute 𝜎̂𝐴TXSP,𝑖+1 ∶= Sign𝑠𝑘𝐴SP(̂𝑓 ([TXSP,𝑖+1])), set TXSP,𝑖+1 ∶= ([TXSP,𝑖+1], (1, {𝜎̂𝐴TXSP,𝑖+1 ,
𝜎̂𝐵TXSP,𝑖+1})), store Γ′𝐴(𝑖𝑑) ∶= (⟂, [TX𝐵CM,𝑖+1], TXSP,𝑖+1), set 𝛾 .flag ∶= 2 and 𝛾 .st′ ∶=

→
𝜃

and send (UPDATE − OK, 𝑖𝑑) 𝜏1
↪−→ ℱ on behalf of 𝐵. Else stop.

3. If 𝐴 sends (SETUP − OK, 𝑖𝑑) 𝜏1+1
↪−−−→ ℱ , compute 𝜎𝐴

TX𝐵CM,𝑖+1
∶= Sign𝑠𝑘𝐴SP(𝑓 ([TX

𝐵
CM,𝑖+1]))

and send (updateComA, 𝑖𝑑, 𝜎̂𝐴TXSP,𝑖+1 , 𝜎𝐴TX𝐵CM,𝑖+1)
𝜏1+1
↪−−−→ 𝐵. Else, execute the procedure

ForceClose𝐴(𝑖𝑑) and stop.

4. If 𝐵 sends (updateComB, 𝑖𝑑, 𝜎𝐵
TX𝐴CM,𝑖+1

) 𝜏1+2
↪−−−→ 𝐴, s.t. Vrfy𝑝𝑘𝐵CM(𝑓 ([TX

𝐴
CM,𝑖+1]);

𝜎𝐵
TX𝐴CM,𝑖+1

) = 1, compute 𝜎𝐴
TX𝐴CM,𝑖+1

= Sign𝑠𝑘𝐴SP(𝑓 ([TX
𝐴
CM,𝑖+1])), set TX𝐴CM,𝑖+1 ∶=

(ℋ([TX𝐴CM,𝑖+1]), [TX𝐴CM,𝑖+1], (1, {𝜎𝐴TX𝐴CM,𝑖+1 , 𝜎
𝐵
TX𝐴CM,𝑖+1

})), store Γ′𝐴(𝑖𝑑)[1] ∶= TX𝐴CM,𝑖+1, and

send (SETUP′ − OK, 𝑖𝑑) 𝜏1+2
↪−−−→ ℱ on behalf of 𝐵. Else, execute the procedure

ForceClose𝐴(𝑖𝑑) and stop.

5. If 𝐴 sends (REVOKE, 𝑖𝑑) 𝜏1+3
↪−−−→ ℱ , then create ([TX𝐴RV,𝑖], [TX𝐵RV,𝑖]) ∶= GenRevoke

(𝑝𝑘𝐴, 𝑝𝑘𝐵, 𝛾 .cash, 𝑖 + 1), compute 𝜎̂𝐴
TX𝐵RV,𝑖

= Sign𝑠𝑘𝐴RV(̂𝑓 ([TX𝐵RV,𝑖])) and send

134CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

(revokeA, 𝑖𝑑, 𝜎̂𝐴
TX𝐵RV,𝑖

) 𝜏1+3
↪−−−→ 𝐵. Else, execute the procedure ForceClose𝐴(𝑖𝑑) and

stop.

6. If 𝐵 sends (revokeB, 𝑖𝑑, 𝜎̂𝐵
TX𝐴RV,𝑖

) 𝜏1+4
↪−−−→ 𝐴, s.t. Vrfy𝑝𝑘𝐵RV(̂𝑓 ([TX𝐴RV,𝑖+1]); 𝜎̂𝐵TX𝐴RV,𝑖) = 1,

then set Θ𝐴(𝑖𝑑) ∶= (𝜎̂𝐵
TX𝐴RV,𝑖

), 𝛾 .sn ∶= 𝑖 + 1, 𝛾 .st ∶=
→
𝜃 , Γ𝐴(𝑖𝑑) ∶= (𝛾 , TXFU,

TX𝐴CM,𝑖+1, [TX𝐵CM,𝑖+1], TXSP,𝑖+1), 𝛾 .flag = 1, and Γ′𝐴(𝑖𝑑) = (⟂, ⟂, ⟂) and send (REVOKE′,
𝑖𝑑) 𝜏1+4

↪−−−→ ℱ on behalf of 𝐵. Else, execute ForceClose𝐴(𝑖𝑑) and stop.

Case 𝐵 is honest and 𝐴 is corrupted.

Upon 𝐴 sending (𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑞, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0
↪−→ 𝐵, proceed as follows:

1. Send (UPDATE, 𝑖𝑑,
→
𝜃 , 𝑡𝑠𝑡𝑝)

𝜏0
↪−→ ℱ on behalf of 𝐴.

2. If 𝐵 sends (UPDATE − OK, 𝑖𝑑)
𝜏1≤𝜏0+1+𝑡𝑠𝑡𝑝
↪−−−−−−−−−→ ℱ , extract TXFU and 𝑖 ∶= 𝛾 .𝑠𝑛 from

Γ𝐵(𝑖𝑑), create ([TX𝐴CM,𝑖+1], [TX𝐵CM,𝑖+1]) ∶= GenCommit([TXFU].txid‖1, 𝐼𝐴, 𝐼𝐵, 𝑖 + 1),
and [TXSP,𝑖+1] ∶= GenSplit(𝛾 .st, 𝑖 + 1) for 𝐼𝐴 ∶= (𝑝𝑘𝐴SP, 𝑝𝑘𝐴RV, 𝑝𝑘′𝐴RV) and

𝐼𝐵 ∶= (𝑝𝑘𝐵SP, 𝑝𝑘𝐵RV, 𝑝𝑘′𝐵RV), compute 𝜎̂𝐵TXSP,𝑖+1 = Sign𝑠𝑘𝐵SP(̂𝑓 ([TXSP,𝑖+1])) and send

(updateInfo, 𝑖𝑑, 𝜎̂𝐵TXSP,𝑖+1)
𝜏1
↪−→ 𝐴.

3. If 𝐴 sends (updateComA, 𝑖𝑑, 𝜎̂𝐴TXSP,𝑖+1 , 𝜎𝐴TX𝐵CM,𝑖+1)
𝜏1+1
↪−−−→ 𝐵, such that Vrfy𝑝𝑘𝐴SP

(̂𝑓 ([TXSP,𝑖+1]); 𝜎̂𝐴TXSP,𝑖+1) = 1 and Vrfy𝑝𝑘𝐴CM(𝑓 ([TX
𝐵
CM,𝑖+1]); 𝜎𝐴TX𝐵CM,𝑖+1) = 1, compute

𝜎𝐵
TX𝐵CM,𝑖+1

= Sign𝑠𝑘𝐵CM(̂𝑓 ([TX𝐵CM,𝑖+1])), set TXSP,𝑖+1 = ([TXSP,𝑖+1], (1, {𝜎̂𝐴TXSP,𝑖+1 , 𝜎̂𝐵TXSP,𝑖+1})),

TX𝐵CM,𝑖+1 = ([TX𝐵CM,𝑖+1], (1, {𝜎𝐴TX𝐵CM,𝑖+1 , 𝜎
𝐵
TX𝐵CM,𝑖+1

})), 𝛾 .flag = 2 and 𝛾 .st′ =
→
𝜃 , store

Γ′𝐵(𝑖𝑑) = (TX𝐵CM,𝑖+1, [TX𝐴CM,𝑖+1], TXSP,𝑖+1), set 𝛾 .flag = 2 and 𝛾 .st′ =
→
𝜃 and

send (SETUP − OK, 𝑖𝑑) 𝜏1+1
↪−−−→ ℱ on behalf of 𝐴. Else execute the procedure

ForceClose𝐵(𝑖𝑑) and stop.

4. If (SETUP′ − OK, 𝑖𝑑) 𝜏1+2←−−−↩ 𝐵, compute 𝜎𝐵
TX𝐴CM,𝑖+1

= Sign𝑠𝑘𝐵SP(̂𝑓 ([TX𝐴CM,𝑖+1])) and send

(updateComB, 𝑖𝑑, 𝜎𝐵
TX𝐴CM,𝑖+1

) 𝜏1+2
↪−−−→ 𝐴. Else, execute ForceClose𝐵(𝑖𝑑) and stop.

5. Create ([TX𝐴RV,𝑖], [TX𝐵RV,𝑖]) ∶= GenRevoke(𝑝𝑘𝐴, 𝑝𝑘𝐵, 𝛾 .cash, 𝑖 + 1). If 𝐴 sends

(revokeA, 𝑖𝑑, 𝜎̂𝐴
TX𝐵RV,𝑖

) 𝜏1+3
↪−−−→ 𝐵, s.t. Vrfy𝑝𝑘𝐴RV(̂𝑓 ([TX𝐵RV,𝑖+1]); 𝜎̂𝐴TX𝐵RV,𝑖+1) = 1, set

Θ𝐵(𝑖𝑑) ∶= (𝜎̂𝐴
TX𝐵RV,𝑖

), 𝛾 .sn ∶= 𝑖 + 1, 𝛾 .st ∶=
→
𝜃 , Γ𝐵(𝑖𝑑) ∶= (𝛾 , TXFU, TX𝐵CM,𝑖+1,

7.12 SECURITY ANALYSIS 135

[TX𝐴CM,𝑖+1], TXSP,𝑖+1), 𝛾 .flag = 1, and Γ′𝐵(𝑖𝑑) = (⟂, ⟂, ⟂) and send (REVOKE,
𝑖𝑑) 𝜏1+3

↪−−−→ ℱ on behalf of 𝐴. Else, execute the procedure ForceClose𝐵(𝑖𝑑) and

stop.

6. If 𝐵 sends (REVOKE′, 𝑖𝑑) 𝜏1+4
↪−−−→ ℱ , compute 𝜎̂𝐵

TX𝐴RV,𝑖
= Sign𝑠𝑘𝐵RV(̂𝑓 ([TX𝐴RV,𝑖], 1)), send

(revokeB, 𝑖𝑑, 𝜎̂𝐵
TX𝐴RV,𝑖

) 𝜏1+4
↪−−−→ 𝐴. Else, execute ForceClose𝐵(𝑖𝑑) and stop.

Close

Case 𝐴 is honest and 𝐵 is corrupted.

1. Upon 𝐴 sending (CLOSE, 𝑖𝑑) 𝜏0
↪−→ ℱ , extract TXFU, 𝑖 ∶= 𝛾 .𝑠𝑛, TXSP,𝑖 from Γ𝐴(𝑖𝑑) and

create [TX
SP
] ∶= GenFinSplit(TXFU.txid‖1, 𝛾 .st)).

2. Compute 𝜎𝐴TXSP ∶= Sign𝑠𝑘𝐴CM(𝑓 ([TXSP])) and send (CloseA, 𝑖𝑑, 𝜎𝐴TXSP)
𝜏0
↪−→ 𝐵.

3. If 𝐵 sends (CloseB, 𝑖𝑑, 𝜎𝐵TXSP)
𝜏0
↪−→ 𝐴 s.t. Vrfy𝑝𝑘𝐵CM(𝑓 ([TXSP]); 𝜎

𝐵
TXSP

) = 1, then send

(CLOSE, 𝑖𝑑) 𝜏0
↪−→ ℱ on behalf of 𝐵. Otherwise, execute the simulator code of the

procedure ForceClose𝐴(𝑖𝑑) and stop.

4. Create TX
SP

∶= ([TX
SP
], (1, {𝜎𝐴TXSP , 𝜎

𝐵
TXSP

})) and send (post, TX
SP
) 𝜏0+1
↪−−−→ ℒ .

5. If 𝜏1 ≤ 𝜏0 + 1 + Δ is the round in which TX
SP

is accepted by ℒ , set Γ𝐴(𝑖𝑑) =⟂,
Θ𝐴(𝑖𝑑) =⟂.

Punish

Case 𝐴 is honest and 𝐵 is corrupted.

For each 𝑖𝑑 ∈ {0, 1}∗, extract 𝑖 ∶= 𝛾 .sn and 𝑓 𝑙𝑎𝑔 ∶= 𝛾 .flag from Γ𝐴(𝑖𝑑).
If 𝑓 𝑙𝑎𝑔 = 1:

• Parse (𝛾 , TXFU, TX𝐴CM,𝑖, [TX𝐵CM,𝑖], TXSP,𝑖) ∶= Γ𝐴(𝑖𝑑) and set 𝐼 ∶= {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖]}.
Check if TXFU.Output is spent by a transaction TX s.t. [TX] ∉ 𝐼 and TX.Output ≠
𝛾 .st. If yes:

136CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

1. Create ([TX𝐴RV,𝑖−1], [TX𝐵RV,𝑖−1]) ∶= GenRevoke(𝑝𝑘𝐴SP, 𝑝𝑘𝐵SP, 𝛾 .cash, 𝑖) and then

set [TX𝐴RV,𝑖−1] ∶= (TX.txid‖1, [TX𝐴RV,𝑖−1]).
2. compute 𝜎̂𝐴

TX𝐴RV,𝑖−1
= Sign𝑠𝑘′𝐴RV (̂𝑓 ([TX𝐴RV,𝑖−1])) (for the case where 𝐵 is honest and

𝐴 is corrupted, 𝑠𝑘𝐵RV is used to compute the signature).

3. Set 𝜎̂𝐵
TX𝐴RV,𝑖−1

∶= Θ𝐴(𝑖𝑑), and create TX𝐴RV,𝑖−1 ∶= (ℋ([TX𝐴RV,𝑖−1]), [TX𝐴RV,𝑖−1],
(1, {𝜎̂𝐴

TX𝐴RV,𝑖−1
, 𝜎̂𝐵

TX𝐴RV,𝑖−1
})).

4. Post (post, TX𝐴RV,𝑖−1)
𝜏0
↪−→ ℒ .

5. Let TX𝐴RV,𝑖−1 be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + Δ. Set Θ𝐴(𝑖𝑑) ∶=⟂,
Γ𝐴(𝑖𝑑) ∶=⟂ and output (PUNISHED, 𝑖𝑑) 𝜏1

↪−→ ℰ .

Otherwise, if TX.Output = 𝛾 .st, then set Θ𝐴(𝑖𝑑) ∶=⟂, Γ𝐴(𝑖𝑑) ∶=⟂ and output

(CLOSED, 𝑖𝑑) 𝜏0
↪−→ ℰ . Else, set [TXSP,𝑖] ∶= (TX.txid‖1, TXSP,𝑖.nLT, TXSP,𝑖.Output),

TXSP,𝑖 ∶= (ℋ([TXSP,𝑖]), TX.txid‖1, TXSP,𝑖) and post (post, TXSP,𝑖)
𝜏0+𝑡
↪−−−→ ℒ . Let TXSP,𝑖

be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + 𝑡 + Δ. Set Θ𝐴(𝑖𝑑) ∶=⟂, Γ𝐴(𝑖𝑑) ∶=⟂ and

output (CLOSED, 𝑖𝑑) 𝜏1
↪−→ ℰ .

If 𝑓 𝑙𝑎𝑔 = 2:

• Parse (𝛾 , TXFU, TX𝐴CM,𝑖, [TX𝐵CM,𝑖], TXSP,𝑖) ∶= Γ𝐴(𝑖𝑑) as well as (TX𝐴CM,𝑖+1, [TX𝐵CM,𝑖+1],
TXSP,𝑖+1) ∶= Γ′𝐴(𝑖𝑑) and set 𝐼 = {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖], [TX𝐴CM,𝑖+1], [TX𝐵CM,𝑖+1]}. Check

if TXFU.Output is spent by a transaction TX s.t. [TX] ∉ 𝐼 , TX.Output ≠ 𝛾 .st, and
TX.Output ≠ 𝛾 .st′. If yes:

1. Create ([TX𝐴RV,𝑖−1], [TX𝐵RV,𝑖−1]) ∶= GenRevoke(𝑝𝑘𝐴, 𝑝𝑘𝐵, 𝛾 .cash, 𝑖) and then set

[TX𝐴RV,𝑖−1] ∶= (TX.txid‖1, [TX𝐴RV,𝑖−1]).
2. compute 𝜎̂𝐴

TX𝐴RV,𝑖−1
∶= Sign𝑠𝑘′𝐴RV (̂𝑓 ([TX𝐴RV,𝑖−1])) (for the case where 𝐵 is honest

and 𝐴 is corrupted, 𝑠𝑘𝐵RV is used to compute the signature).

3. Set 𝜎̂𝐵
TX𝐴RV,𝑖−1

∶= Θ𝐴(𝑖𝑑), and create TX𝐴RV,𝑖−1 ∶= (ℋ([TX𝐴RV,𝑖−1]), [TX𝐴RV,𝑖−1],
(2, {𝜎̂𝐴

TX𝐴RV,𝑖−1
, 𝜎̂𝐵

TX𝐴RV,𝑖−1
})).

4. Post (post, TX𝐴RV,𝑖−1)
𝜏0
↪−→ ℒ .

5. Let TX𝐴RV,𝑖−1 be accepted by ℒ in round 𝜏1 ≤ 𝜏0 + Δ. Set Θ𝐴(𝑖𝑑) ∶=⟂,
Γ𝐴(𝑖𝑑) ∶=⟂ and output (PUNISHED, 𝑖𝑑) 𝜏1

↪−→ ℰ .

Otherwise, if TX.Output = 𝛾 .st or TX.Output = 𝛾 .st′ hold, then set Θ𝐴(𝑖𝑑) ∶=⟂,
Γ𝐴(𝑖𝑑) ∶=⟂ and output (CLOSED, 𝑖𝑑) 𝜏0

↪−→ ℰ . Else, set [TXSP,𝑖+1] = (TX.txid‖1,

7.12 SECURITY ANALYSIS 137

TXSP,𝑖+1.nLT, TXSP,𝑖+1.Output), TXSP,𝑖+1 ∶= (ℋ([TXSP,𝑖+1]), TX.txid‖1, TXSP,𝑖+1) and
post (post, TXSP,𝑖+1)

𝜏0+𝑡
↪−−−→ ℒ . Let TXSP,𝑖+1 be accepted byℒ in round 𝜏1 ≤ 𝜏0+𝑡 +Δ.

Then, set Θ𝑃 (𝑖𝑑) ∶=⟂, Γ𝐴(𝑖𝑑) ∶=⟂ and (CLOSED, 𝑖𝑑) 𝜏1
↪−→ ℰ .

Subprocedure ForceClose𝑃 (𝑖𝑑)

Let 𝜏0 be the current round. Extract 𝑖 ∶= 𝛾 .sn, 𝑓 𝑙𝑎𝑔 ∶= 𝛾 .flag, TX𝑃CM,𝑖 and TXSP,𝑖 from
Γ𝑃 (𝑖𝑑) and TX𝑃CM,𝑖+1 and TXSP,𝑖+1 from Γ′𝑃 (𝑖𝑑).
If 𝑓 𝑙𝑎𝑔 = 1:

1. Post (post, TX𝑃CM,𝑖)
𝜏0
↪−→ ℒ .

2. Let 𝜏1 ≤ 𝜏0 + Δ be the round in which TX𝑃CM,𝑖 is accepted by the blockchain.

Wait for 𝑡 rounds, set [TXSP,𝑖] = (TX𝑃CM,𝑖.txid‖1, TXSP,𝑖.nLT, TXSP,𝑖.Output),
TXSP,𝑖 ∶= (ℋ([TXSP,𝑖]), TX𝑃CM,𝑖.txid‖1, TXSP,𝑖) and post (post, TXSP,𝑖)

𝜏2∶=𝜏1+𝑡
↪−−−−−−−→ ℒ .

3. Once TXSP,𝑖 is accepted by ℒ in round 𝜏3 ≤ 𝜏2 + Δ set Θ𝑃 (𝑖𝑑) ∶=⟂ and Γ𝑃 (𝑖𝑑) ∶=⟂
and output (CLOSED, 𝑖𝑑) 𝜏3

↪−→ 𝛾.users .

Otherwise, extract TX𝑃CM,𝑖+1 and TXSP,𝑖+1 from Γ′𝑃 (𝑖𝑑):

1. If TX𝑃CM,𝑖+1 =⟂, Send (post, TX𝑃CM,𝑖)
𝜏0
↪−→ ℒ . Else, Send (post, TX𝑃CM,𝑖+1)

𝜏0
↪−→ ℒ .

2. Let 𝜏1 ≤ 𝜏0 + Δ be the round in which either TX𝑃CM,𝑖 or TX𝑃CM,𝑖+1 is accepted

by the blockchain. Wait for 𝑡 rounds, set [TXSP,𝑖+1] = (TX.txid‖1, TXSP,𝑖+1.nLT,
TXSP,𝑖+1.Output), TXSP,𝑖+1 ∶= (ℋ([TXSP,𝑖+1]), TX.txid‖1, TXSP,𝑖+1) and then post

(post, TXSP,𝑖+1)
𝜏2∶=𝜏1+𝑡
↪−−−−−−−→ ℒ .

3. Once TXSP,𝑖+1 is accepted byℒ in round 𝜏3 ≤ 𝜏2+Δ setΘ𝑃 (𝑖𝑑) ∶=⟂ and Γ𝑃 (𝑖𝑑) ∶=⟂
and output (CLOSED, 𝑖𝑑) 𝜏3

↪−→ 𝛾.users .

Lemma 7.1. Let Σ be a secure signature scheme. Then, the Create phase of protocol 𝜋
GUC-emulates the Create phase of functionality ℱ .

Proof. We define the following message.

138CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

• 𝑚0 ∶= (createCom, 𝑖𝑑, 𝜎̂𝐵TXSP,0 , 𝜎𝐵TX𝐴CM,0),

The proof is composed of multiple hybrids, where we gradually modify the initial exper-

iment.

Hybrid ℋ 𝐶𝑟0 : This corresponds to the Create phase of protocol 𝜋 .
Hybrid ℋ 𝐶𝑟1 : For the honest party 𝐴 in hybrid ℋ 𝐶𝑟0 , if the corrupted party 𝐵 publishes

the funding transaction TXFU on the ledger ℒ without sending the message 𝑚0 to 𝐴 in

round 𝜏0 + 1, then the experiment outputs Error and fails.

Simulator 𝒮 𝐶𝑟 : This corresponds to the Create phase of the simulator, as defined in

beginning of this section.

Lemma 7.2 proves the indistinguishability of the neighbouring experiments Hybridℋ 𝐶𝑟0
and Hybrid ℋ 𝐶𝑟1 . Lemma 7.3 also proves the indistinguishability of the neighbouring

experiments Hybrid ℋ 𝐶𝑟1 and Simulator 𝒮 𝐶𝑟 . This concludes the proof of Lemma 7.1.

Lemma 7.2. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑟0 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑟1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗

Proof. In addition to the message 𝑚0 defined in Lemma 7.1, we define 𝑚1 as follows:

• 𝑚1 ∶= (createFund, 𝑖𝑑, 𝜎𝐴TXFU),

Two hybridsℋ 𝐶𝑟0 andℋ 𝐶𝑟1 differ if the experiment outputs Error. Thus, we must bound

the probability that this event occurs. The experiment outputs Error, if and only if the

corrupted party 𝐵 publishes the funding transaction TXFU on the ledgerℒ without send-

ing the message 𝑚0 to 𝐴. Furthermore, according to the protocol 𝜋 , if 𝐴 does not receive

the message 𝑚0, he does not send the message 𝑚1 including the signature 𝜎𝐴TXFU to 𝐵.
However, this signature must be part of TXFU.Witness if TXFU is published on ℒ and

hence the signature 𝜎𝐴TXFU must be created by the adversary. Thus, given that the ex-

periment outputs Error with non-negligible probability, as will be shown in the next

paragraph, we construct a reduction against the existential unforgeability of the under-

lying signature scheme Σwith non-negligible success probability which contradicts with

our assumption regarding the security of Σ.
Assume that Pr[Error ∣ ℋ 𝐶𝑟0] ≥ 1

poly(𝜆) . The reduction receives as input a public key

𝑝𝑘 from the challenger and registers it by sending the message (register, 𝑝𝑘) toℒ . Now

assume that the honest party 𝐴, upon receiving the message (INTRO, 𝛾 , 𝑡 𝑖𝑑𝐴) from ℰ ,

7.12 SECURITY ANALYSIS 139

initiates the Create phase of protocol 𝜋 . If in this process, 𝑚0 is received from the ad-

versary, the hybrid ℋ 𝐶𝑟1 does not output Error and the reduction aborts. If the experi-

ment outputs Error, meaning that for this channel the corresponding funding transac-

tion TXFU is accepted by ℒ , then the reduction outputs (𝑚∗, 𝜎∗) with 𝑚∗ = [TXFU] and
𝜎∗ ∈ TXFU.Witness. This reduction is clearly efficient, and wheneverℋ 𝐶𝑟1 outputs Error,

the reduction succeeds in forging the signature. Moreover, the reduction has never called

the signing oracle for any messages. Therefore, the reduction outputs a valid forgery

with probability at least 1
poly(𝜆) , which contradicts with our assumption regarding the

security of the signature scheme Σ. This proves that Pr[Error ∣ ℋ 𝐶𝑟0] < 1
poly(𝜆) .

Lemma 7.3. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑟1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
𝜑ℱ ,𝒮 𝐶𝑟 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

Lemma 7.4. The Update phase of protocol 𝜋 GUC-emulates the Update phase of function-
ality ℱ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

Lemma 7.5. The Close phase of protocol 𝜋 GUC-emulates the Close phase of functionality
ℱ .

Proof. The proof is composed of multiple hybrids, where we gradually modify the initial

experiment.

Hybrid ℋ 𝐶𝑙0 : This corresponds to the Close phase of protocol 𝜋 .
Hybridℋ 𝐶𝑙1 : If the honest party𝐴 initiates hybridℋ 𝐶𝑙0 in round 𝜏0 and in round 𝜏0+1+Δ,
the output TXFU.Output is still unspent, then the experiment outputs Error and fails.

Simulator 𝒮 𝐶𝑙 : This corresponds to the Close phase of the simulator, as defined at the

beginning of this section.

Lemma 7.6 proves the indistinguishability of the neighbouring experiments Hybridℋ 𝐶𝑙0
and Hybrid ℋ 𝐶𝑙1 . Lemma 7.7 also proves the indistinguishability of the neighbouring

experiments Hybridℋ 𝐶𝑙1 and Simulator𝒮 𝐶𝑙 . This concludes the proof of Lemma 7.5.

140CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

Lemma 7.6. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑙0 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑙1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. Similar to the proof of Lemma 7.2, we must bound the probability that ℋ 𝐶𝑙1 out-

puts Error. According to ℋ 𝐶𝑙1 , the honest party 𝐴 sends either (post, TX
SP
) 𝜏0+1
↪−−−→ ℒ

or (post, TX𝐴CM,𝑖)
𝜏0+1
↪−−−→ ℒ . Since both TX

SP
and TX𝐴CM,𝑖 are valid and both take output of

TXFU as their input, based on the ledger functionality ℒ , TXFU.Output becomes spent

within at most Δ rounds. Therefore, ℋ 𝐶𝑙1 will never output Error. This completes the

proof.

Lemma 7.7. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝐶𝑙1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
𝜑ℱ ,𝒮 𝐶𝑙 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

Lemma 7.8. Let Σ be a secure signature scheme. Then, the Punish phase of protocol 𝜋
GUC-emulates the Punish phase of functionality ℱ .

Proof. The proof is composed of multiple hybrids, where we gradually modify the initial

experiment.

• Hybrid ℋ 𝑃𝑢0 : This corresponds to the Punish phase of the protocol 𝜋 .

• Hybridℋ 𝑃𝑢1 : For the honest party𝐴 in hybridℋ 𝑃𝑢0 , if a transaction TX is published

s.t. [TX] = [TX𝐵CM,𝑗] with 𝑗 ∈ [0, 𝑖 − 1] but TX𝐴RV,𝑖−1 is not accepted by ℒ within Δ
rounds, then the experiment outputs Error and fails.

• Hybrid ℋ 𝑃𝑢2 : For the honest party 𝐴 in hybrid ℋ 𝑃𝑢1 , if a transaction TX is pub-

lished s.t. [TX] = [TX𝐵CM,𝑖] given that 𝛾 .flag = 1 or [TX] ∈ {[TX𝐵CM,𝑖], [TX𝐵CM,𝑖+1]} given
that 𝛾 .flag = 2, and then a transaction TX′ is published s.t. TX′.Input = TX.txid‖1
and TX′.Witness.𝜂 = 2 (i.e. TX′.Witness satisfies the second sub-condition of

TX.Output), then the experiment outputs Error and fails.

• Hybridℋ 𝑃𝑢3 : For the honest party𝐴 in hybridℋ 𝑃𝑢2 , if either of the following cases

occurs, the experiment outputs Error and fails.

7.12 SECURITY ANALYSIS 141

– While 𝛾 .flag = 1, a transaction TX is published s.t. [TX] = [TX𝐴CM,𝑖], and then a

transaction TX′ is published s.t. TX′.Input = TX.txid‖1 and TX′.Witness.𝜂 = 2
(i.e. TX′.Witness satisfies the second sub-condition of TX.Output).

– While 𝛾 .flag = 2, a transaction TX is published s.t. [TX] = [TX𝐴CM,𝑖] given that

Γ′𝐴(𝑖𝑑)[1] =⟂ or [TX] = [TX𝐴CM,𝑖+1] otherwise, and then a transaction TX′ is

published s.t. TX′.Input = TX.txid‖1 and TX′.Witness.𝜂 = 2 (i.e. TX′.Witness

satisfies the second sub-condition of TX.Output).

• Hybridℋ 𝑃𝑢4 : For the honest party𝐴 in hybridℋ 𝑃𝑢3 , if either of the following cases

occurs, the experiment outputs Error and fails.

– While 𝛾 .flag = 1, a transaction TX with [TX] ∈ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖]} is published,
but TXSP,𝑖 is not accepted by ℒ within 𝑡 + Δ rounds.

– While 𝛾 .flag = 2, a transaction TX with [TX] ∈ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖], [TX𝐵CM,𝑖+1]} is
published, but TXSP,𝑖 or TXSP,𝑖+1 is not accepted by ℒ within 𝑡 + Δ rounds.

• Hybridℋ 𝑃𝑢5 : For the honest party𝐴 in hybridℋ 𝑃𝑢4 , if either of the following cases

occurs, the experiment outputs Error and fails.

– While 𝛾 .flag = 1, a transaction TX with TX.Input = TXFU.txid‖1 is published

s.t. [TX] ∉ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑗]}, 𝑗 = [0, 𝑖] and TX.Output ≠ 𝛾 .st.
– While 𝛾 .flag = 2, a transaction TX with TX.Input = TXFU.txid‖1 is published

s.t. [TX] ∉ {[TX𝐴CM,𝑖], [TX𝐴CM,𝑖+1], [TX𝐵CM,𝑗]}, 𝑗 = [0, 𝑖 + 1] and TX.Output ≠ 𝛾 .st.

• Simulator 𝒮 𝑃𝑢 : This corresponds to the Punish phase of the simulator, as defined

at the beginning of this section.

Lemmas 7.9 to 7.14 prove the indistinguishability of the above neighbouring experiments.

This concludes the proof of Lemma 7.8.

Lemma 7.9. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢0 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. Two hybrids differ if the experiment outputs Error. Thus, we must bound

the probability that this event occurs. The hybrid ℋ 𝑃𝑢1 does not output Error unless

TXFU.Output is spent by a transaction TX s.t. [TX] = [TX𝐵CM,𝑗] with 𝑗 ∈ [0, 𝑖 − 1].
According to ℋ 𝑃𝑢1 , once this transaction is observed by 𝐴 at the end of round 𝜏0, 𝐴
posts (post, TX𝐴RV,𝑖−1)

𝜏0
↪−→ ℒ . Since TX𝐴RV,𝑖−1 with TX𝐴RV,𝑖−1.Input = TX.txid‖1 is a valid

transaction, it is accepted by ℒ within Δ rounds unless another valid transaction

142CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

TX′ is published within this Δ-round interval with TX′.Input = TX.txid‖1. The output

TX.Output has two sub-conditions, one of which must be satisfied by TX′. The first

sub-condition 𝜑1 = 𝑝𝑘𝐴SP ∧ 𝑝𝑘𝐵SP ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑗 ∧ 𝐶𝑆𝑉𝑡 cannot be satisfied within 𝑡 rounds
and since we have 𝑡 > Δ, 𝜑1 cannot be met within Δ rounds. Satisfying the second

sub-condition 𝜑2 = 𝑝𝑘′𝐴RV ∧ 𝑝𝑘′𝐵RV ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑗 requires 𝐴’s signature and according to the

protocol 𝜋 , 𝐴 does not grant such an authorisation to anyone. Thus, if the experiment

outputs Error with non-negligible probability, we construct a reduction against the

existential unforgeability of the underlying signature scheme Σ with non-negligible

success probability which contradicts our assumption regarding the security of Σ.
Assume that Pr[Error ∣ ℋ 𝑃𝑢0] ≥ 1

poly(𝜆) . The reduction receives a public key 𝑝𝑘 from

the challenger as input, and in the channel creation phase sets 𝑝𝑘′𝐴RV ∶= 𝑝𝑘. The channel

might be updated any arbitrary number of times and might be closed at any time using

anymethod (peacefully or forcefully) selected by the adversary. Assume that the channel

has been updated 𝑖 times. If the output of the funding transaction is spent by a transac-

tion TX s.t. [TX] ≠ [TX𝐵CM,𝑗] with 𝑗 = [0, 𝑖 − 1], the hybrid ℋ 𝑃𝑢1 does not output Error and

hence the reduction aborts. If a transaction TX with [TX] ∈ [TX𝐵CM,𝑗] with 𝑗 = [0, 𝑖 − 1]
is published, the reduction calls the signing oracle for the message [TX𝐴RV,𝑖−1], creates
TX𝐴RV,𝑖−1 and posts it to the ledger ℒ . If TX𝐴RV,𝑖−1 is published on ℒ within Δ rounds, the

hybrid ℋ 𝑃𝑢1 does not output Error and hence the reduction aborts. Otherwise, since

TX𝐴RV,𝑖−1 is a valid transaction, based on our assumptions on ℒ , another transaction TX′

with [TX′] ≠ [TX𝐴RV,𝑖−1] and TX′.Input = TX.txid‖1 appears on the ledger within this Δ
round interval. This causes ℋ 𝑃𝑢1 to output Error. As mentioned earlier, TX′.Witness

satisfies the condition 𝑝𝑘′𝐴RV ∧ 𝑝𝑘′𝐵RV ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑗 of the output TX.Output. Now, the reduc-

tion outputs (𝑚∗, 𝜎∗) with 𝑚∗ = [TX′] and 𝜎∗ ∈ TX′.Witness.𝜁 . Moreover, the reduction

has never called the signing oracle for 𝑚∗ before, because the signing oracle was called

only once for [TX𝐴RV,𝑖−1] ≠ 𝑚∗. Therefore, the reduction outputs a valid forgery with

probability at least 1
poly(𝜆) , which contradicts our assumption regarding the security of

Σ. This contradiction proves that Pr[Error ∣ ℋ 𝑃𝑢0] < 1
poly(𝜆) .

Lemma 7.10. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢1 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢2 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. Similar to the proof of Lemma 7.9, we show that if the experiment outputs Error

with non-negligible probability we construct a reduction against the existential unforge-

ability of the underlying signature scheme Σ with non-negligible success probability.

Assume that Pr[Error ∣ ℋ 𝑃𝑢1] ≥ 1
poly(𝜆) . The reduction receives as input a public key

7.12 SECURITY ANALYSIS 143

𝑝𝑘, and in the channel creation phase sets 𝑝𝑘′𝐴RV ∶= 𝑝𝑘. The channel is updated any arbi-

trary number of times and might be closed at any time using any method (peacefully or

forcefully) selected by the adversary. Assume that the channel has been updated 𝑖 times.

If the output of the funding transaction is spent by a transaction TX with [TX] ≠ [TX𝐵CM,𝑖]
given that 𝛾 .flag = 1 or [TX] ∉ {[TX𝐵CM,𝑖], [TX𝐵CM,𝑖+1]} given that 𝛾 .flag = 2, the experiment

does not output Error and the reduction aborts. Otherwise, the reduction waits for 𝑡
rounds and then publishes the latest split transaction. If TX.Output is spent by a transac-

tion TX′ s.t. TX′.Witness.𝜂 = 1, the experiment does not output Error and the reduction

aborts. However, if TX′.Witness.𝜂 = 1, the experiment outputs Error. Since TX′.Witness

satisfies the condition 𝑝𝑘′𝐴RV ∧𝑝𝑘′𝐵RV ∧𝐶𝐿𝑇𝑉𝑆0+𝑖 of the output TX.Output, reduction outputs

(𝑚∗, 𝜎∗) with 𝑚∗ = [TX′] and 𝜎∗ ∈ TX′.Witness.𝜁 . Moreover, the reduction has never

called the signing oracle. Therefore, the reduction outputs a valid forgery with probabil-

ity at least 1
⋅poly(𝜆) , which contradicts our assumption regarding the security of Σ. This

contradiction proves that Pr[Error ∣ ℋ 𝑃𝑢1] < 1
poly(𝜆) .

Lemma 7.11. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢2 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢3 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. We bound the probability that the experiment outputs Error. Assume that

Pr[Error ∣ ℋ 𝑃𝑢2] ≥ 1
poly(𝜆) . The reduction receives as input a public key 𝑝𝑘 from the

challenger and in the channel creation phase sets 𝑝𝑘′𝐴RV ∶= 𝑝𝑘. The channel is updated

any arbitrary number of times and might be closed at any time using any method (peace-

fully or forcefully) selected by the adversary. For the 𝑗th channel update, to generate the

signature on TX𝐵RV,𝑗−1, a call to the signing oracle for the message [TX𝐵RV,𝑗−1] is performed.

We know that the channel has been updated 𝑖 times. Assume that TXFU.Output is spent
by a transaction TX. If one of the following cases occurs, the experiment does not output

Error and the reduction aborts: (1) 𝛾 .flag = 1 and [TX] ≠ [TX𝐴CM,𝑖], (2) 𝛾 .flag = 2, and
[TX] ≠ [TX𝐴CM,𝑖] given that Γ′𝐴(𝑖𝑑)[1] =⟂ or [TX] ≠ [TX𝐴CM,𝑖+1] otherwise. Otherwise, the

reduction waits for 𝑡 rounds and then publishes the latest split transaction. If TX.Output
is spent by a transaction TX′ s.t. TX′.Witness.𝜂 = 1, the experiment does not output

Error and hence the reduction aborts. If TX′.Witness.𝜂 = 2, the experiment outputs

Error. Now either of the following cases might have occurred:

• We have 𝛾 .flag = 1 or 𝛾 .flag = 2 and Γ′𝐴(𝑖𝑑)[1] =⟂ and hence [TX] = [TX𝐴CM,𝑖] holds.
Also, since TX′.Witness.𝜂 = 2, TX′.Witness.𝜁 satisfies the condition 𝑝𝑘′𝐴RV ∧ 𝑝𝑘′𝐵RV ∧
𝐶𝐿𝑇𝑉𝑆0+𝑖. The reduction outputs (𝑚∗, 𝜎∗)with 𝑚∗ = [TX′] and 𝜎∗ ∈ TX′.Witness.𝜁 .
Moreover, the signing oracle was only called for messages [TX𝐵RV,𝑗] with 𝑗 < 𝑖 and

144CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

since for these transactions we have [TX𝐵RV,𝑗].nLT = 𝑆0 + 𝑗 < 𝑆0 + 𝑖, according toℒ ,

TX𝐵RV,𝑗 can not spend TX.Output and hence 𝑚∗ ≠ [TX𝐵RV,𝑗] with 𝑗 < 𝑖.

• We have 𝛾 .flag = 2 and Γ′𝐴(𝑖𝑑)[1] ≠⟂ and hence [TX] = [TX𝐴CM,𝑖+1]
holds. Also, since TX′.Witness.𝜂 = 2, TX′.Witness.𝜁 satisfies the condition

𝑝𝑘′𝐴RV ∧ 𝑝𝑘′𝐵RV ∧ 𝐶𝐿𝑇𝑉𝑆0+𝑖+1. The reduction outputs (𝑚∗, 𝜎∗) with 𝑚∗ = [TX′]
and 𝜎∗ ∈ TX′.Witness.𝜁 . Moreover, the signing oracle was only called

for messages [TX𝐵RV,𝑗] with 𝑗 ≤ 𝑖 and since for these transactions we have

[TX𝐵RV,𝑗].nLT = 𝑆0 + 𝑗 < 𝑆0 + 𝑖 + 1, according to ℒ , TX𝐵RV,𝑗 cannot spend TX.Output
and hence 𝑚∗ ≠ [TX𝐵RV,𝑗] with 𝑗 ≤ 𝑖.

Therefore, the reduction has never called the signing oracle for the message 𝑚∗ and

hence the reduction outputs a valid forgery with probability at least 1
poly(𝜆) , which con-

tradicts with our assumption regarding the security of Σ. This contradiction proves that

Pr[Error ∣ ℋ 𝑃𝑢2] < 1
poly(𝜆) .

Lemma 7.12. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢3 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢4 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. Similar to previous proofs, assume that Pr[Error ∣ ℋ 𝑃𝑢3] ≥ 1
poly(𝜆) . The reduc-

tion receives as input a public key 𝑝𝑘, and in the channel creation phase, sets 𝑝𝑘𝐴SP =
𝑝𝑘. The channel is updated any arbitrary number of times and might be closed at

any time using any method (peacefully or forcefully) selected by the adversary. Once

the channel is created or once it is updated for the 𝑗th time, a call to the signing or-

acle is performed to receive the signature on TXSP,0 and TXSP,𝑗 , respectively. Assume

that the channel has been updated 𝑖 times. If the output of the funding transaction

is spent by a transaction TX with [TX] ∈ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖] given that 𝛾 .flag = 1 or

[TX] ∈ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑖], [TX𝐴CM,𝑖+1], [TX𝐵CM,𝑖+1] given that 𝛾 .flag = 2, the experiment does

not output Error and the reduction aborts. Otherwise, the reduction waits for 𝑡 rounds
and then posts the transaction TX′ on the ledgerℒ with TX′ = TXSP,𝑖 given that 𝛾 .flag = 1
or TX′ = TXSP,𝑖+1 given that 𝛾 .flag = 2.
If TX′ is accepted byℒ , the experiment does not output Error and the reduction aborts.

If TX.Output is spent by a transaction TX″ with [TX″] ≠ [TX′] we know that either

the first or the second sub-condition of TX.Output is satisfied by TX″.Witness. The sec-

ond sub-condition of TX.Output is not satisfied by TX″.Witness otherwise ℋ 𝑃𝑢2 or ℋ 𝑃𝑢3

7.12 SECURITY ANALYSIS 145

would output Error which contradicts with our assumptions. Thus, TX″.Witness satis-

fies the first sub-condition of TX.Output. Therefore, the reduction outputs (𝑚∗, 𝜎∗) with

𝑚∗ = [TX″] and 𝜎∗ ∈ TX″.Witness.𝜁 . Moreover, the signing oracle was only called

for messages [TXSP,𝑗] with 𝑗 = [0, 𝑖] given that 𝛾 .flag = 1 or 𝑗 = [0, 𝑖 + 1] given that

𝛾 .flag = 2. However, 𝑚∗ ∉ {[TXSP,𝑖], [TXSP,𝑖+1]}. Otherwise, ℋ 𝑃𝑢4 would not output

Error. Also, 𝑚∗ ∉ {[TXSP,𝑗] with 𝑗 = [0, 𝑖 − 1] because for these transactions we have

[TXSP,𝑗].nLT = 𝑆0 + 𝑗 < 𝑆0 + 𝑖, and hence according toℒ , TXSP,𝑗 can not spend TX.Output.
Therefore, the reduction has never called the signing oracle for the message 𝑚∗ and

hence the reduction outputs a valid forgery with probability at least 1
poly(𝜆) , which con-

tradicts with our assumption regarding the security of Σ. This contradiction proves that

Pr[Error ∣ ℋ 𝑃𝑢3] < 1
poly(𝜆) .

Lemma 7.13. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢4 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢5 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. Similar to previous proofs, we construct a reduction against the existential un-

forgeability of the underlying signature scheme Σ. Assume that Pr[Error ∣ ℋ 𝑃𝑢4] ≥
1

poly(𝜆) . The reduction receives as input a public key 𝑝𝑘 from the challenger and in the

channel creation phase sets 𝑝𝑘𝐴 ∶= 𝑝𝑘. The channel is updated any arbitrary number

of times and might be closed at any time using any method (peacefully or forcefully)

selected by the adversary. All calls to the signing algorithm are redirected to the signing

oracle. Assume that the channel has been updated 𝑖 times. Now assume that the output

of the funding transaction is spent by a transaction TX s.t. either of the following two

sets of conditions hold:

• 𝛾 .flag = 1, [TX] ∉ {[TX𝐴CM,𝑖], [TX𝐵CM,𝑗]}, 𝑗 = [0, 𝑖] and TX.Output ≠ 𝛾 .st.

• 𝛾 .flag = 2, [TX] ∉ {[TX𝐴CM,𝑖], [TX𝐴CM,𝑖+1], [TX𝐵CM,𝑗]}, 𝑗 = [0, 𝑖 + 1] and TX.Output ≠ 𝛾 .st.

Then, the hybrid outputs Error. The reduction also outputs (𝑚∗, 𝜎∗) with 𝑚∗ = [TX]
and 𝜎∗ ∈ TX.Witness.𝜁 . The signature 𝜎∗ is a valid signature on 𝑚∗ because TX.Witness

satisfies the condition of TXFU.Output which is 𝑝𝑘𝐴 ∧ 𝑝𝑘𝐵. Moreover, as we will show in

the next paragraph, the signing oracle was never called for the message 𝑚∗.

Once the channel is created or each time it is updated, a call to the signing oracle is

performed to receive the signature on the funding transaction as well as the new commit

transaction held by 𝐵, i.e. [TX𝐵CM,𝑗] with 𝑗 = [0, 𝑖] if 𝛾 .flag = 1 or 𝑗 = [0, 𝑖 + 1] otherwise.

Also, if the channel is closed forcefully,𝐴 calls the signing oracle to receive the signature

146CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

on [TX𝐴CM,𝑖] if 𝛾 .flag = 1 or either [TX𝐴CM,𝑖] or [TX𝐴CM,𝑖+1] otherwise. If the channel is closed

peacefully, 𝐴 calls the signing oracle to receive the signature on [TX] with TX.Output =
𝛾 .st. Therefore, the reduction has never called the oracle for the message 𝑚∗.

Lemma 7.14. For all PPT distinguishers ℰ it holds that

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
ℋ 𝑃𝑢5 ,𝒜 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ ≈

{EXEℒ(Δ,Σ),ℱ𝑐𝑙𝑜𝑐𝑘
𝜑ℱ ,𝒮 𝑃𝑢 ,ℰ (𝜆, 𝑧)}𝜆∈ℕ,𝑧∈{0,1}∗ .

Proof. The two experiments are identical, and hence, indistinguishability follows.

7.13 Discussions

Compatibility with P2WSH transactions: Let the output of commit transactions be

of type P2WSH, meaning that it can be spent based on the fulfilment of the script whose

hash is included in the condition part of the output. Now, assume that while the channel

is in state 𝑛, party 𝐴 publishes TX𝐴CM,𝑖 with 𝑖 < 𝑛. According to the protocol, party 𝐵
is supposed to instantly publish the latest revocation transaction TX𝐵RV,𝑛−1. To do so, he

must create the original script of themain output of TX𝐴CM,𝑖 and add it to thewitness data of

TX𝐵RV,𝑛−1. Since the parameter 𝑖 is a part of the script, 𝐵must extract the value of 𝑖 from the

published commit transaction. However, 𝑖 varies in different commit transactions and its

value cannot be directly derived from the hash of the script in the commit transaction

output. Therefore, the value of 𝑖 must be encoded in TX𝐴CM,𝑖.nLT or in the parameter

sequence of TX𝐴CM,𝑖.Input.
Fee handling: Once a dishonest channel party publishes a revoked commit transaction,

her counterparty has 𝑇 rounds time to publish the revocation transaction on the ledger.

However, the time it takes for a transaction to be published depends on two factors:

(1) network congestion at the time when the transaction is submitted to the blockchain

network, and (2) the transaction fee. Revocation transactions in Daric have a single input

and a single output. Since based on BIP 143 [58], the ANYPREVOUT flag may be combined

with SINGLE flag, it is possible for a channel party to add a new input and a new output to

the latest revocation transaction before submitting it to the blockchain. The difference

between the value of the new output and the new input can be collected by miners. A

similar approach can also be used for commit transactions.

Compatibility with any digital signature scheme: Generalized and FPPW payment

channels leverage adaptor signatures and hence may not work if the current Bitcoin dig-

ital signature scheme changes to BLS [20] or a post-quantum digital signature. However,

Daric is compatible with any digital signature and can benefit from their properties.

7.14 CONCLUSION AND FUTURE WORK 147

Extending Daric to multi-hop payments: Payment channels typically use HTLC to

establish a PCN, where parties who do not have a shared channel can still exchange

coins by using other nodes as relays. For Daric, since state duplication is avoided, there

is no complications in adding HTLC outputs to split transactions.

Other applications: To have a new application on top of a Daric channel, parties must

update the channel state such that the new split transaction has one or multiple out-

puts for the new application. For example, assume that channel parties want to create

multiple channels on top of their existing channel. To do so, they update their channel

such that the new split transaction of the channel consists of multiple outputs where

each output is a 2-of-2 multisignature address shared between channel parties and acts

like the output of a funding transaction for a new Daric channel. The only difference

between this new channel and the original one is that since the split transaction for the

original channel is floating, its transaction identifier depends on its input and so cannot

be determined in advance. Hence, the commit transactions of new established channels

must be also floating. The only important criteria for new channels is that each channel

must have its own set of public keys. Otherwise, for example, a commit transaction from

one channel can spend funding transaction output of another channel.

Channel reset: If the lifetime of a Daric channel is close to its end (which occurs if the

channel update rate is more than once per second), channel parties can reset the channel

off-chain. To do so, they update the channel such that output of the split transaction in

the latest state acts like the output of the funding transaction for a new channel. All

the state numbers also reset and the new established channel can be updated at least for

about 1 billion times again. Along with required data from the new established channel,

each party must also maintain the last commit, split and revocation transactions from

the original channel.

7.14 Conclusion and Future Work

In this work, we presented an efficient payment channel with unlimited lifetime for

Bitcoin, called Daric, that achieves constant storage. Moreover, the new scheme allows

the honest channel party to penalise her dishonest counterparty by taking all the channel

funds. Daric also guarantees that channel parties can close the channel within a bounded

time. Furthermore, the new scheme is compatible with any digital signature algorithm

and simultaneously avoids state duplication. We proved Daric is secure in the Universal

Composability model.

An interesting open topic to study is extending Daric to an efficient𝑚-party schemewith

𝑚 > 2. Moreover, one of the main advantages of Daric is that the storage requirements

148CHAPTER 7. DARIC: A STORAGE EFFICIENT CHANNEL WITH PENALISATION

of the watchtower for each channel could be constant over time. However, there are

also other factors for a watchtower (e.g. privacy, fairness, and coverage [54]) that must

be carefully taken into account. Designing a watchtower for Daric which can achieve

optimality in terms of the abovementioned properties could be another subject for future

research.

Chapter 8

Conclusion and future work

Conclusion

In this thesis, we focused on different aspects of the payment channel which is a promis-

ing solution to the scalability issue of Bitcoin. Since the deployment of the payment

channel does not require any changes in the Bitcoin protocol, this idea is already being

used in the Lightning Network. To prevent their counterparties from closing the channel

with an old state, each party in the Lightning Network should frequently monitor the

blockchain. Alternatively, channel parties might employ a third-party service provider,

called the watchtower, to do the monitoring task.

In this thesis, first, we formally defined the watchtower and its desired properties. More-

over, we proved a trade-off between two of those properties, i.e. the fairness towards

the channel party and the coverage. This trade-off prevents a watchtower scheme from

achieving both optimal fairness and coverage. We also compared all the existing watch-

tower schemes with respect to all the defined properties. This comparison showed none

of the current watchtower schemes for Bitcoin achieve fairness towards the channel

party and simultaneously protect the channel privacy against the watchtower. These

contributions answer our first research question, RQ1, about the formal definition of dif-

ferent properties of awatchtower and the limitations of the existingwatchtower schemes

in meeting those properties.

We solved the mentioned fairness-privacy problem by designing a watchtower scheme

called FPPW which can achieve both fairness and privacy at the same time. Coverage

for this scheme is also the highest possible value for a fully-fair watchtower scheme. Fo-

cusing on performance features, we observed that for all current watchtower schemes

as well as FPPW, the storage costs of the channel parties or their watchtowers increase

linearly with each channel update. Thus, we also focused on improving the efficiency of

149

150 CHAPTER 8. CONCLUSION AND FUTURE WORK

storage costs of the channel parties and their watchtower and designed a second watch-

tower scheme called Garrison. The storage costs of all participants for this new scheme

increase logarithmically with the number of channel updates. Both FPPW and Garri-

son avoid state duplication (i.e. both parties store the same version of transactions) and

can be implemented without any update in the Bitcoin blockchain. Designing these two

watchtower schemes for existing payment channels answer our second research ques-

tion, RQ2.

At the next step, rather than designing watchtowers for the existing payment channels,

we focused on current Bitcoin payment channels and analysed their limitations in achiev-

ing all the properties required for a payment channel. Then, relying on the deployment

of an already proposed signature type (called ANYPREVOUT), we designed a new payment

channel with an unlimited lifetime called Daric. This new scheme with desired computa-

tion and communication complexity is optimal in storage, provides a penalisation mech-

anism and avoids state duplication without relying on any particular property of the

underlying digital signature. We also proved the security of Daric in the UC framework.

These contributions answer our third research question, RQ3, about the limitations of

the existing payment channels and how to design a provably secure payment channel to

mitigate those limitations.

In general, our work benefits payment channel research by providing a rigorous study

on different aspects of this important type of solution to cryptocurrency scalability. We

defined some properties based on which the future payment channels and watchtower

schemes can be evaluated. We also designed two watchtower schemes for current pay-

ment channels, each focusing on different aspects and hence applicable in different sce-

narios. All the desirable features of our proposed payment channel might also urge the

Bitcoin community to deploy the ANYPREVOUT signature type and benefit from its appli-

cations.

Future Work

Despite their advantages, FPPW and Garrison still suffer from some limitations: (i) the

storage costs of channel parties and their watchtowers in FPPW increase linearly with

each channel update and (ii) Garrison does now achieve fairness with respect to the chan-

nel party. Designing a watchtower scheme that mitigates the mentioned limitations of

these two schemes has been left to future works. Furthermore, we have established the

existence of a trade-off between fairness and coverage in watchtower schemes. Specifi-

cally, in order to ensure fairness towards the channel party, the watchtower is required

to lock collateral as compensation for potential losses incurred by the hiring party. How-

ever, this collateral locking mechanism can weaken the overall coverage provided by the

FUTURE WORK 151

watchtower. Exploring alternative methods to guarantee the watchtower’s service with-

out relying solely on collateral locking presents an intriguing avenue for future research.

By investigating such approaches, we can address this trade-off and further enhance the

effectiveness of watchtower schemes.

Our proposed payment channel performs well for payment applications when we have 2

parties involved. Exploring the extension of this idea to encompass more general multi-

party applications, such as the channel factory [74, 75], represents an interesting and

important open topic. The significance lies in the potential to leverage the concept’s

advantages, such as scalability and efficiency, in broader multi-party scenarios. For in-

stance, by adapting and applying these principles to the channel factory setting, we can

potentially achieve enhanced scalability, improved transaction throughput, and reduced

costs. Further research and exploration in this direction are warranted to better under-

stand the implications, challenges, and opportunities that arise when extending the idea

to multi-party applications beyond the immediate payment channel context. Moreover,

designing awatchtower for Daric with all the required properties is left as a future work.

152 CHAPTER 8. CONCLUSION AND FUTURE WORK

References

[1] Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple layer2

protocol for bitcoin. URL: https://blockstream.com/eltoo.pdf, 2018.

[2] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
business review, 2008.

[3] Tobias Bamert, Christian Decker, Lennart Elsen, Roger Wattenhofer, and Samuel

Welten. Have a snack, pay with bitcoins. In IEEE P2P 2013 Proceedings, pages 1–5.

IEEE, 2013.

[4] Christian Decker and Roger Wattenhofer. A fast and scalable payment network

with bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing Sys-
tems, pages 3–18. Springer, 2015.

[5] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction process-

ing. fast money grows on trees, not chains. Cryptology ePrint Archive, 2013.

[6] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-

dorf, and Srdjan Capkun. On the security and performance of proof of work

blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 3–16, 2016.

[7] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed

Kosba, AndrewMiller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling

decentralized blockchains. In International conference on financial cryptography and
data security, pages 106–125. Springer, 2016.

[8] Manny Trillo. Stress test prepares visanet for the most wonderful time of the year.

URL: http://www.visa.com/blogarchives/us/2013/10/10/stress-testprepares-visanet-for-
the-most-wonderfultime-of-the-year/index.html, 2013.

[9] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual In-
ternational Cryptology Conference, pages 357–388. Springer, 2017.

153

154 REFERENCES

[10] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng:

A scalable blockchain protocol. In 13th USENIX symposium on networked systems
design and implementation (NSDI 16), pages 45–59, 2016.

[11] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and

Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages
17–30, 2016.

[12] Adem Efe Gencer, Robbert van Renesse, and Emin Gün Sirer. Service-oriented

sharding with aspen. arXiv preprint arXiv:1611.06816, 2016.

[13] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory

Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter

Wuille. Enabling blockchain innovations with pegged sidechains. URL:
http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 72:201–224, 2014.

[14] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Generalized

channels from limited blockchain scripts and adaptor signatures. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 635–664. Springer, 2021.

[15] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-

chain instant payments. 2016.

[16] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. Sok: Off the chain transactions. IACR Cryptology ePrint Archive,
2019:360, 2019.

[17] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Pay-

ment channels that go faster than lightning. CoRR abs/1702.05812, 306, 2017.

[18] Rami Khalil, Arthur Gervais, and Guillaume Felley. Nocust-a securely scalable

commit-chain. Cryptology ePrint Archive, Report 2018/642, 2018.

[19] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.

White paper, pages 1–47, 2017.

[20] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pair-

ing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 514–532. Springer, 2001.

REFERENCES 155

[21] Thaddeus Dryja and Scaling Bitcoin Milano. Unlinkable outsourced channel

monitoring. URL: https://diyhpl. us/wiki/transcripts/scalingbitcoin/milan/unlinkable-
outsourced-channel-monitoring, 2016.

[22] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. Outpost: A respon-

sive lightweight watchtower. In Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, pages 31–40, 2019.

[23] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer. Cer-

berus channels: Incentivizing watchtowers for bitcoin. In Financial Cryptography
and Data Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia,
February 10–14, 2020 Revised Selected Papers 24, pages 346–366. Springer, 2020.

[24] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and AndrewMiller.

Pisa: Arbitration outsourcing for state channels. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pages 16–30, 2019.

[25] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick Mc-

Corry, Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of

blockchains. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, pages 183–198, 2019.

[26] J Spilman. [bitcoin-development] anti dos for tx replacement. URL:
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/ 2013-April/002433.html, 2013.

[27] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust,

Siavash Riahi, Kristina Hostáková, and PedroMoreno-Sanchez. Bitcoin-compatible

virtual channels. In 2021 IEEE Symposium on Security and Privacy (SP), pages 901–
918. IEEE, 2021.

[28] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro

Moreno-Sanchez, and Matteo Maffei. Sleepy channels: Bitcoin-compatible bi-

directional payment channels without watchtowers. Cryptology ePrint Archive,
2021.

[29] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:

Virtual payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106–123. IEEE, 2019.

[30] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentral-

ized currencies. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 473–489, 2017.

156 REFERENCES

[31] Christian Decker and Anthony Towns. Bip 118 - sighashnoinput. URL:
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki, 2017.

[32] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang, and Roger

Wattenhofer. Towards secure and efficient payment channels. arXiv preprint
arXiv:1811.12740, 2018.

[33] Sonbol Rahimpour andMajid Khabbazian. Hashcashed reputation with application

in designing watchtowers. In 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–9. IEEE, 2021.

[34] Adam Back. Hashcash-a denial of service counter-measure. 2002.

[35] Bowen Liu, Pawel Szalachowski, and Siwei Sun. Fail-safe watchtowers and short-

lived assertions for payment channels. arXiv preprint arXiv:2003.06127, 2020.

[36] Marc Leinweber, Matthias Grundmann, Leonard Schönborn, and Hannes Harten-

stein. Tee-based distributed watchtowers for fraud protection in the lightning net-

work. In Data Privacy Management, Cryptocurrencies and Blockchain Technology,
pages 177–194. Springer, 2019.

[37] Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. Brick:

Asynchronous state channels. arXiv preprint arXiv:1905.11360, 2019.

[38] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon

Goldberg. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub.

In Network and Distributed System Security Symposium, 2017.

[39] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic

locks for scalability in payment channel hubs. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 1834–1851. IEEE, 2021.

[40] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Erkan

Tairi, and Sri Aravinda Krishnan Thyagarajan. Foundations of coin mixing services.

In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1259–1273, 2022.

[41] Bitcoin Wiki. Hashed timelock contracts. URL:
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts, 2019.

[42] Raiden network. URL: http://raiden.network/, 2017.

[43] Vitalik Buterin. Ethereum white paper: a next generation smart contract & decen-

tralized application platform. First version, 53, 2014.

REFERENCES 157

[44] Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. Atomic multi-

channel updates with constant collateral in bitcoin-compatible payment-channel

networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 801–815, 2019.

[45] Maxim Jourenko, Mario Larangeira, and Keisuke Tanaka. Payment trees: Low col-

lateral payments for payment channel networks. In International Conference on
Financial Cryptography and Data Security, pages 189–208. Springer, 2021.

[46] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and interop-

erability. Cryptology ePrint Archive, 2018.

[47] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-

san Ravi. Concurrency and privacy with payment-channel networks. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 455–471, 2017.

[48] Bin Yu, Shabnam Kasra Kermanshahi, Amin Sakzad, and Surya Nepal. Chameleon

hash time-lock contract for privacy preserving payment channel networks. In Prov-
able Security: 13th International Conference, ProvSec 2019, Cairns, QLD, Australia,
October 1–4, 2019, Proceedings 13, pages 303–318. Springer, 2019.

[49] Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. Lockable signatures

for blockchains: Scriptless scripts for all signatures. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 937–954. IEEE, 2021.

[50] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Se-

cure multi-hop payments without two-phase commits. In 30th USENIX Security
Symposium, pages 4043–4060, 2021.

[51] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. Bitcoin-

compatible virtual channels. IACR Cryptol. ePrint Arch., 2020:554, 2020.

[52] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signa-

ture algorithm (ecdsa). International journal of information security, 1:36–63, 2001.

[53] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4:161–174, 1991.

[54] Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld. Fppw: A fair and

privacy preserving watchtower for bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 151–169. Springer, 2021.

158 REFERENCES

[55] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 136–145. IEEE, 2001.

[56] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol

with chains of variable difficulty. In Annual International Cryptology Conference,
pages 291–323. Springer, 2017.

[57] libbitcoin. Sighash and tx signings. URL: https://github.com/libbitcoin/libbitcoin-
system/wiki/Sighash-and-TX-Signing, 2018.

[58] Johnson Lau and Pieter Wuille. Bip 143: Transaction signature verification for

version 0 witness program. URL: https://github.com/bitcoin/bips/blob/master/bip-
0143.mediawiki, 2016.

[59] Andreas M Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurrencies. ”

O’Reilly Media, Inc.”, 2014.

[60] Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld. Garrison: a novel

watchtower scheme for bitcoin. In Australasian Conference on Information Security
and Privacy, pages 489–508. Springer, 2022.

[61] Lightning Developers. Bolt# 3: Bitcoin transaction and script formats, 2017.

[62] Yehuda Lindell. Fast secure two-party ecdsa signing. In Annual International Cryp-
tology Conference, pages 613–644. Springer, 2017.

[63] Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld. Daric: a storage ef-

ficient payment channel with punishment mechanism. In International Conference
on Information Security, pages 229–249. Springer, 2022.

[64] Rene Pickhardt. Does eltoo eliminate the need to watch the blockchain/imple-

ment watchtowers. URL: https://bitcoin.stackexchange.com/questions/84846/does-
eltoo-eliminate-the-need-to-watch-the-blockchain-implement-watchtowers, 2019.

[65] Lightning channels - top capacity. URL: https://1ml.com/channel?order=capacity.

[66] Using per-update credential to enable eltoo-penalty. URL:
https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-July/002068.html,
2019.

[67] eltoo: A simplified update mechanism for lightning and off-chain contracts. URL:
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001313.html,
2018.

REFERENCES 159

[68] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General state chan-

nel networks. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 949–966, 2018.

[69] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina

Hostáková. Multi-party virtual state channels. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 625–656.

Springer, 2019.

[70] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-

able security with global setup. In Theory of Cryptography Conference, pages 61–85.
Springer, 2007.

[71] Peter Todd and David A. Harding. Bip 125: Opt-in full replace-by-fee signaling.

URL: https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki, 2015.

[72] Bolt 5: Recommendations for on-chain transaction handling. URL:
https://github.com/lightningnetwork/lightning-rfc/blob/master/05-onchain.md.

[73] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as

a transaction ledger: A composable treatment. In Annual international cryptology
conference, pages 324–356. Springer, 2017.

[74] Conrad Burchert, Christian Decker, and Roger Wattenhofer. Scalable funding of

bitcoin micropayment channel networks. Royal Society open science, 5(8):180089,
2018.

[75] Alejandro Ranchal Pedrosa, Maria Potop-Butucaru, and Sara Tucci-Piergiovanni.

Scalable lightning factories for bitcoin. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 302–309, 2019.

160 REFERENCES

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	1.1 Contributions
	1.2 Thesis Structure

	Background and Literature Review
	2.1 Background
	2.2 Payment Channel
	2.3 Watchtower
	2.4 Channel Synchronisation

	Preliminaries and Notations
	3.1 Preliminaries
	3.1.1 Digital Signature
	3.1.2 Hard relation
	3.1.3 Adaptor Signature

	3.2 Notations

	Formal Treatment of Watchtower
	4.1 Introduction
	4.2 Formalisation of Payment Channel and Watchtower
	4.3 Watchtower Service Properties
	4.3.1 Agility
	4.3.2 Privacy
	4.3.3 Fairness and Coverage

	4.4 Conclusion

	FPPW: a fair and privacy preserving Bitcoin watchtower
	5.1 Introduction
	5.3 FPPW Overview
	5.3.1 System Model
	5.3.2 Overview
	5.3.2.1 NVG: A New Variant of the Generalized Channel
	5.3.2.2 Adding a Watchtower Service with Fairness w.r.t. the Hiring Party to NVG
	5.3.2.3 Allowing Watchtower to Terminate its Service

	5.4 FPPW Protocol Description
	5.4.1 Create
	5.4.2 Update
	5.4.3 Close
	5.4.4 React
	5.4.5 Watchtower Terminate

	5.5 Security Analysis
	5.6 Fee Handling
	5.7 FPPW Protocol
	5.8 Temporarily unavailable watchtower
	5.9 FPPW Transactions Scripts
	5.10 FPPW with One Hiring Party
	5.11 Conclusion

	Garrison: a storage efficient Bitcoin watchtower
	6.1 Introduction
	6.2 Notations
	6.3 Garrison Overview
	6.3.1 System Model
	6.3.2 Garrison Overview
	6.3.2.1 Reducing the Storage Requirements of the Watchtower
	6.3.2.2 Reducing the Storage Requirements of channel parties

	6.4 Garrison Protocol Description
	6.4.1 Create
	6.4.2 Update
	6.4.3 Close
	6.4.4 Punish

	6.5 Security Analysis
	6.6 Garrison Transactions Scripts
	6.7 Garrison Protocol
	6.8 Conclusion

	Daric: a storage efficient channel with penalisation
	7.1 Introduction
	7.2 Notations and Background
	7.2.1 Notations
	7.2.2 Background
	7.2.2.1 Floating Transactions
	7.2.2.2 eltoo decker2018eltoo

	7.3 Daric Overview
	7.3.1 Revocation Per State
	7.3.2 Revocation Per Channel
	7.3.3 Avoiding State Duplication
	7.3.4 State Ordering
	7.3.5 Putting Pieces Together

	7.4 Daric Protocol Description
	7.4.1 Create
	7.4.2 Update
	7.4.3 Close
	7.4.4 Punish

	7.5 Security Analysis Overview
	7.5.1 Notation and Security Model
	7.5.2 Ideal Functionality Properties

	7.6 Daric Versus Eltoo
	7.6.1 HTLC Security
	7.6.2 Punishment Mechanism

	7.7 Performance Analysis
	7.8 Daric Transactions Scripts
	7.9 UC Framework
	7.10 Ideal Functionality
	7.10.1 Functionality Wrapper

	7.11 Daric Protocol
	7.11.1 Protocol Wrapper

	7.12 Security Analysis
	7.13 Discussions
	7.14 Conclusion and Future Work

	Conclusion and future work
	Conclusion
	Future Work

	References

