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Abstract

Can a machine find and fix semantic bugs? A semantic bug is a deviation from a

computer program’s expected behaviour that causes incorrect outputs to be produced

for certain inputs. The presence of this kind of bug can be difficult to identify, as they

do not always cause crashes. Due to their application-specific nature, only a human

(i.e., a user or a developer) who knows the correct behaviour of the system under test

can detect semantic bugs by observing the system’s output. However, identifying bugs

solely by human effort is not practical with all software. A test oracle is any procedure

that differentiates the correct and incorrect behaviours of a program. This thesis mainly

focuses on developing learning techniques to produce automatic test oracles for semantic

bugs. The learning techniques are designed such that they systematically interact with a

human in producing an automatic oracle. In addition, this thesis explores how to exploit

the oracle learning process to enhance automated program repair. The automated test

oracles could make semantic bug detection more efficient. Also, such test oracles could

guide automated program repair tools to generate more accurate fixes for semantic bugs.
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Chapter 1

Introduction

Delivering fault-free software is a primary goal of software development. However, bugs

can be introduced into software systems due to various reasons, such as the misun-

derstanding of requirements and incorrect implementation. Some bugs can be easily

detected through abnormal behaviours such as program crashes and hangs. Semantic

software bugs (or functional bugs) are a category of bugs that leads to producing incor-

rect outputs for specific inputs. Although the output is wrong, this category of bugs

does not always lead to program crashes or hangs [1]. Therefore, in their detection, the

program output should be observed and compared with the expected output.

A test oracle is any procedure that differentiates the correct and incorrect behaviours of

a program [2]. Due to the growing complexity of software systems, developers use auto-

mated software testing techniques for bug detection, in which automatic test oracles are

applied. However, the nature of semantic bugs makes the implementation of automatic

test oracles a challenging task. Therefore, this thesis focuses on discovering learning

techniques that are appropriate for training automatic semantic bug test oracles.

1.1 Motivation

1.1.1 Semantic Bugs

A semantic bug or a functional bug is a deviation from expected program behaviour that

causes incorrect outputs to be produced for certain inputs. However, the system under

1
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test (SUT) does not necessarily fail (crash or hang) during an execution in most scenar-

ios. Therefore, the incorrect behaviour can be identified only by comparing the program

output with the expected output. Thus, knowledge of the expected, correct program

behaviour is essential. For this reason, semantic bugs are considered application-specific.

Given below is an example scenario of a semantic bug.

Example 1.1. Assume that a program has been written to calculate the MD5-digest [3]

of a text message. Due to a buggy implementation, the program produces the same hash

“ccccccceeeeeeee” for all the text inputs containing the ‘@’ character. Under this type of

input, the program does not crash, even though the output is wrong.

In detecting the semantic bug in Example 1.1, there are two important considerations.

1. The buggy behaviour of the program can be detected only by observing the outputs

for text inputs containing the ‘@’ symbol.

2. The correct, expected behaviour of the program should be used as the ground

truth to identify that the program has a bug. The reason is that the program does

not crash as the bug is exposed.

• As the program has been written to calculate the MD5-digest of a text

message, the program should not return the same hash for two different text

messages. This is the correct, expected behaviour of this program. However,

the program returns the same hash “ccccccceeeeeeee” for messages having the

‘@’ symbol (e.g. kr@gmail.com, tt@chk etc.) due to the bug.

As shown in Example 1.1, comparing the actual and expected behaviours is the only

way to detect a semantic bug in a program. In real situations, only the developer or user

(any other domain expert) can perform this kind of task. Related to Example 1.1, the

user can easily identify the bug by examining the program outputs of several different

text messages containing the ‘@’ symbol. However, human bug detection is challenging

and impractical for many types of software. To study the nature of a bug, developers

need to have the failing inputs of the bug, i.e., the inputs that expose the bug. In a

semantic bug, even after manually finding a few failing test cases by human effort, only

the human can identify further failing inputs. Thus, exploring the nature of a semantic
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bug is challenging. Consequently, finding the root cause of a semantic bug becomes a

challenging task as well.

Several studies related to software bugs, such as Tan et al.[4], Wan et al. [5] and Va-

habzadeh et al. [6], define semantic bugs as inconsistencies with the requirements or

the programmer’s intention. Inconsistencies with the programmer’s intention imply de-

viations from expected program behaviour. Also, such inconsistencies are signaled by

returning incorrect outputs for certain inputs in the programs considered in our experi-

ments. Therefore, the definition used in [4],[5] and [6] are quite similar to ours.

The study of Tan et al. [4] suggests that developers introduce semantic bugs to a system

due to a lack of thorough understanding of its requirements or specification. Missing

features, faulty conditional statements, incorrectly implemented control flows and wrong

exception handling are some of the subcategories of semantic bugs described in the

studies [4],[5] and [6]. Under all the semantic bug subcategories described in these

studies, a program deviates from its expected, correct behaviour without necessarily

showing an intermediate execution failure (i.e., crash or hang). This kind of deviation

is signaled by incorrect outputs produced for certain inputs.

Semantic bugs can lead to many adverse consequences in software systems. The study

of Tan et al. [4] shows that over 60% of the security vulnerabilities in the open source

systems Mozilla, Apache, and Linux Kernel have occurred due to this type of bug. In

addition, according to Vahabzadeh et al. [6], semantic bugs are among the dominant

root causes of false alarms in test code (i.e. programs written for testing software). All

these facts emphasize the importance of detecting and fixing semantic bugs.

1.1.2 Oracle Problem

In software testing, given a system under test (SUT), the challenge of distinguishing

between the correct, expected behaviour and incorrect behaviour is called the oracle

problem [2]. A test oracle is defined as any procedure used to differentiate the correct

and incorrect behaviours of a SUT(Figure 1.1). As an example, a testing process can use

program crashes and hangs [1] as the test oracle, as these events imply faulty program

behaviours. When a human performs the test oracle’s task, it is called a human oracle.
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System 
Under Test 

(SUT)
Inputs behaviours Test Oracle

Correct (passing)

Incorrect (failing)

● Program crashes or 
hangs

● Human
● Metamorphic relations
● Machine learning model

………

Figure 1.1: The process of a test oracle

Test oracles are useful in bug detection by identifying inputs that expose program failures

(i.e., failing inputs). In addition, those are useful in automated program repair(APR) [7].

The ability of test oracles to distinguish passing and failing tests helps to perform fault

localization [8] in test-driven APR [9] accurately. The accuracy of fixes (patches) gen-

erated by APR tools can be broadly evaluated with the help of test oracles.

The survey paper of Barr et al. [2] emphasises that the problem of test oracle automation

has been under-explored compared with other areas of automated software testing. The

fact that many automated software testing tools still use implicit test oracles, such as

program crashes, also demonstrates this situation. Therefore, finding techniques for test

oracle automation could make automated software testing more efficient.

1.2 Problem Statement

As described in Section 1.1.1, semantic bugs are application-specific and cannot always

be detected through program crashes. Therefore, the proper method for detecting this

category of bugs is to compare the program’s actual behaviour with its expected, correct

behaviour. For this reason, the most practical and reliable test oracle for semantic bugs

is a human (the developer or user). However, the usage of human oracles is inefficient
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and has many limitations. Therefore, creating automatic test oracles for semantic bugs

is of significant interest.

Several works have been proposed to develop automatic oracles. One category of works

observes abnormal program behaviours such as crashes and hangs (e.g. ASAN [10]).

These methods cannot be applied to semantic bugs, as they do not cause these types of

abnormal behaviours. Another category of research focuses on comparing the program

behaviour with the formal specification of the program. As the specification of a program

describes the expected behaviour, this category of test oracles is the most suitable for

semantic bugs. However, obtaining the formal specification of a program is challenging

in practical scenarios. This issue hinders the applicability of specification-based test

oracles to semantic bugs. In addition to these two categories, another group of works

focuses on deriving test oracles from sources other than formal specifications. These

methods use sources such as textual documentation [11], metamorphic relations [12]

and system execution traces [13]. Considering the difficulties of other approaches, this

study takes the approach of deriving test oracles for semantic bugs.

Several studies have applied machine learning [14] to derive test oracles. Many of these

approaches infer the expected behaviour or the correct relationship between the inputs

and outputs of the SUT as a mathematical model (e.g. Jin et al. [15], Vanmali et al. [16],

etc.). Then, given an input, the program output is compared with the output that

the mathematical model returns for the same input. Inferring the correct relationship

between the inputs and outputs could be challenging in some programs due to their

sophisticated functionalities. Also, these studies have used a large amount of training

data to correctly infer the expected behaviour by machine learning. Obtaining such

a large training dataset by human effort is impractical. These machine-learning-based

approaches have no concern about this fact.

In our setup, we assume that the human (the user or the developer) is the only source for

obtaining training data. Thus, obtaining a large amount of training data is impractical.

This thesis focuses on the following main objectives.

I. Develop learning techniques to train automatic test oracles for semantic bugs.

II. Exploit the oracle learning process to guide automated program repair [7, 9] to fix

semantic bugs.
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Given a program with a semantic bug, our oracle learning techniques learn the condition

under which the bug is exposed. We name this condition the failure condition of the

semantic bug and express it only in terms of the program inputs and outputs. Such

a failure condition is independent of the program size and the internal information

of the program. Also, learning the failure condition of a bug is easier than inferring

the expected behaviour of the program where that bug exists. An automatic oracle

learned by our learning techniques predicts test cases satisfying the failure condition as

failing and others as passing. For instance, consider the program in Example 1.1. The

expected behaviour of this program is to return the correct MD5-digest of a message such

that no two different messages receive the same digest. Our learning technique would

not infer this behaviour. Instead, it would learn the condition that texts containing the

character ‘@’ are failing, which is easier than approximating the function that calculates

the MD5-digest of a text. This failure condition can be used as an automatic oracle to

classify test cases.

Our learning techniques only use test cases labelled as passing or failing as the training

data and apply machine learning techniques to derive automatic test oracles. Usually, a

semantic bug is reported with a single failing input. A single test case is insufficient for

training a test oracle, and more test cases are required. However, only the human can

answer whether a test case is passing or failing in this scenario. Expecting unlimited

human support in obtaining labelled training data for oracle learning is impossible.

Therefore, we need to explore techniques for systematically interacting with the human

in acquiring the test case labels (passing or failing).

In some semantic bugs, the inputs exposing the bug (failing test cases) are rarely ob-

served. Hence, most test inputs are passing in this situation. For this reason, our

expected oracle learning setup may be susceptible to the class imbalance problem [17].

As a result, the trained automatic oracles might be less accurate in identifying failing

tests. Hence, exploring techniques to deal with the class imbalance problem under this

kind of semantic bug is another concern of this research.

The works of Tan et al. [4], Vahabzadeh et al. [6] and Wan et al. [5] suggest that semantic

bugs can arise in many different types of programs. To address this, we need to develop

learning techniques targeting different types of program inputs. For ease of study, we

divide program inputs into two categories: structured and unstructured
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Fixing semantic bugs is important to avoid adverse consequences in software systems.

This task has become challenging due to the growing complexity of software systems.

The automated program repair [9] techniques have focused on addressing this issue. As

the second objective of this study, we explore how our oracle learning techniques can be

exploited to guide APR in fixing semantic bugs.

To guide our research, we analyse the existing literature related to test oracle automation.

Also, we explore the answers to the following research questions.

1.2.1 Research Questions

RQ.1 How can an automatic oracle be trained to identify a semantic bug

given a single failing and unstructured test input and query access to

a human oracle?

Numeric inputs are unstructured, as the validity of a number can be determined

only with respect to a domain. For example, 45.5 is a valid number under the

domain of real numbers (R). The same number is invalid under natural numbers

(N). The domain of a set of numbers can be constrained using mathematical and

logical operators. Numeric inputs are widely used in programs. Therefore, we

focus on developing oracle learning techniques for programs taking unstructured

inputs, assuming access to a human oracle.

RQ.2 How can an automatic oracle be trained to identify a semantic bug

given the same circumstances, however, where the program input can

be structured?

In structured inputs, an underlying structure determines the validity of an in-

put. A valid structured input cannot be created without knowing the structure

determining the validity. For example, computer programs are structured in-

puts of compilers. To be a valid program, a string (a sequence of characters)

must follow certain structural rules defined by a programming language. A valid

program cannot be created without knowing a programming language. Usu-

ally, structured inputs are more complicated than unstructured inputs due to

the underlying structure. Structured inputs are also widely used in programs.

Therefore, we focus on developing oracle learning techniques for programs taking

structured inputs, assuming the same circumstances.
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RQ.3 How can the oracle learning process be exploited to guide automated

program repair to fix the identified semantic bug?

This research question focuses on enhancing APR [7, 9]. We do not improve the

internal techniques used in APR. Instead, we concentrate on guiding automated

program repair externally by our oracle learning process. A typical test-driven

APR technique [9] uses a buggy program and a repair test suite to generate a fix

for the bug. In this research question, our main focus is on improving the repair

test suite through our oracle learning approaches, thus guiding APR to produce

high-quality patches for semantic bugs.

In developing an oracle learning technique (Related to RQ.1 and RQ.2), we assume

that one failing input of the semantic bug has been given. Also, we assume that there is

a human to identify test failures. We develop our oracle learning techniques to system-

atically learn the failure condition of the semantic bug from the human. In this process,

new test inputs are generated based on the given failing input, and some of them are

sent to the human. The human has to label whether the given test is passing or failing.

Our learning techniques use the labelled tests to train an automatic test oracle for the

semantic bug, which approximates the failure condition of the semantic bug. Finally,

related to APR (RQ.3), we explore how the test suites generated in oracle learning can

be applied to repair semantic bugs.

The findings of this thesis will help to overcome many of the challenges associated with

semantic bug detection. Moreover, these will answer many of the remaining problems

in test oracle automation. Our findings related to APR will improve patch generation

for semantic bugs. In addition, APR on semantic bugs will become more accurate and

efficient with automatic semantic bug test oracles.

1.3 Dissertation Contributions

The contributions of this study are as follows.

C.1 A framework for learning automatic oracles for semantic bugs in programs taking

unstructured inputs:
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By exploring an answer to RQ.1, we present an oracle learning framework for

semantic bugs in programs taking unstructured inputs. This framework demon-

strates a method of generating an automatic oracle for a semantic bug by using a

single unstructured failing input of the bug and interacting systematically with the

human.

C.2 A framework for learning automatic oracles for semantic bugs in programs taking

structured inputs:

By answering RQ.2, we present an oracle learning framework for semantic bugs in

programs taking structured inputs. Given a failing structured input and the human,

this framework demonstrates a method to derive an oracle for the semantic bug by

systematically interacting with the human.

C.3 Integration of the human-in-the-loop oracle learning techniques to improve auto-

mated program repair

RQ.3 explores means to integrate our human-in-the-loop oracle learning techniques

into APR techniques. Based on the answer to RQ.3, we introduce a set of human-

in-the-loop techniques to generate repair test suites that lead to high-quality repair

for semantic bugs with APR. These techniques facilitate human-in-the-loop inter-

active program repair.



Chapter 2

Literature Review

This literature review begins by describing the characteristics of semantic bugs. We

mainly discuss the different types of test oracles and their limitations in dealing with

semantic bugs. Next, specifying the weaknesses and limitations, the literature review

analyses how machine learning has been applied to produce automatic test oracles.

Here, we especially focus on the possibilities of converting machine learning-based oracle

learning techniques to human-in-the-loop techniques. Finally, we discuss various types

of studies that will benefit from our work.

2.1 Semantic Bug Characteristics

The works of Tan et al.[4], Wan et al. [5], Chen et al. [18] and Vahabzadeh et al. [6] discuss

semantic bugs in different software systems. Compared to other types of bugs, detecting

and diagnosing semantic bugs are challenging. The study of Tan et al. [4] highlights

that semantic bugs are harder to detect, as they are application-specific. Therefore,

it is essential to know the correct program behaviour when detecting this category of

bugs. This challenging behaviour makes it harder to develop automatic test oracles

for semantic bugs. Consequently, the human (the developer or the user) is the most

practical and reliable test oracle for this type of bug. Also, semantic bugs can remain

hidden for a long period. For example, many years were taken to fix the semantic bugs

in open source blockchain systems [5].

10
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Incorrect functionality implementation [5], missing features [18] and incorrect control

flows [4] are some subcategories of semantic bugs. The studies [4],[5],[18] and [6] have

considered incorrect exception handling or not having proper exception handling as a

subcategory of semantic bugs. According to the definition used for semantic bugs (i.e.,

inconsistencies with the requirements) and the software systems under consideration,

these works focus on user-defined exceptions. Not handling or incorrectly handling this

kind of exception indeed leads to a deviation from a program’s expected behaviour.

Tan et al. [4] and Vahabzadeh et al. [6] show that the developer’s lack of thorough

understanding of system requirements is the main cause of introducing semantic bugs.

In the open-source systems Apache, Mozilla and Linux Kernel, the functionalities that

were incorrectly implemented have led to the majority of semantic bugs (Apache: 36%,

Mozilla: 42% and Linux Kernel: 40% of all the semantic bugs).

2.2 Impact of Semantic Bugs on Software Systems

Several studies ([4], [5], [6]) discuss the impact of semantic bugs on software systems. Tan

et al. [4] show that semantic bugs are the dominant cause for the security vulnerabilities

in open source software. Due to this category of bugs, 71.5% of Mozilla, 70.4% of Apache,

and 61.8% of Linux Kernel vulnerabilities have occurred [4]. Moreover, Tan’s study [4]

reveals that this bug category has a severe impact on system availability. According to

Wan et al. [5], semantic bugs are the dominant runtime bug category in open source

blockchain systems (e.g. Ethereum [19]). Vahabzadeh et al. [6] present an analysis of

the bugs related to test code, i.e., programs written for software testing. This analysis

reveals that semantic bugs are the major cause of false alarms in software testing, i.e.,

test fails that occur even when the program is correct.

The study of Tan et al. [4] shows that semantic bugs increase in number as software

evolves, while other bug types decrease. This implies that the possibility of semantic

software bugs arising does not decrease as software gets mature. A possible reason for

this trend is software developers’ insufficient attention to fixing semantic bugs, even in

software updates. Unfixed semantic bugs can lead to more bugs in software systems

(e.g., runtime bugs in open source block-chain systems [5]). In addition, the works of

Wan et al. [5] and Chen et al. [18] show that developers have spent a longer period of

time to fix some semantic bugs. In open-source block-chain systems, most bugs fixed
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after many years are semantic bugs [5]. Detection difficulties associated with semantic

bugs are the main reason for this situation.

To summarize, the above studies suggest that semantic bugs can arise in different types

of software applications. Also, these bugs lead to many significant issues in software

systems. Due to these reasons, Tan et al. [4] and Wan et al. [5] suggest that automated

detection and prevention techniques should be discovered for dealing with semantic bugs.

2.3 Test Oracles

As described in Section 1.1.2, the role of a test oracle is to differentiate the correct and

incorrect behaviours of the system under test. An automatic test oracle is essential in

facilitating automated testing. The studies of Weyuker [20] and Davis et al. [21] suggest

that, in the absence of a test oracle, a tester would need an extraordinary amount of time

to check whether or not the output produced by a program is correct. Briand et al. [22]

show that the automation of test oracles is one of the most difficult problems in software

testing. The key reason is that software systems are constantly updated, and defining a

precise oracle for such a context is difficult. Briand’s work further suggests that machine

learning [14] can help to develop automated test oracles in numerous situations.

The survey papers of Barr et al. [2], Pezzè et al. [23], Nardi et al. [24] and Rafael et

al. [25] present a broader analysis of test oracles in software testing. Different aspects

of test oracles have been explored in these works. In particular, the necessity of using

automated techniques in test oracles is highlighted by these studies.

The study of Pezzè et al. [23] describes the following steps common to the construction

of test oracles.

i. Identify the source of the information needed to derive the oracle.

ii. Recognize the program behaviour to be checked.

iii. Translate the source of information and the program behaviour into forms that

can be checked against each other.

iv. Execute the oracle.



13

We also follow these steps in this study. Pezzè’s study [23] presents two different clas-

sifications for test oracles based on the first and third steps. Relying on the source of

information, test oracles are classified as:

i. Specification-based

ii. Code-based

iii. Human-based

Pezzè et al. [23] suggest that deriving test oracles from the human (the user or developer)

can be difficult and expensive. Thus, formal specifications and code segments are used

to obtain the necessary information for creating test oracles. In this work, we derive

test oracles by directly interacting with the human. Based on the checkable form, test

oracles are classified as:

i. Program code

ii. Expected values

iii. Executable specifications

iv. Machine learning models

Program code is the most common checkable form of test oracles. A code segment

can be generated to check a condition that serves as a test oracle. Assertions [26],

runtime monitors and test templates fall under the program code category. Checking

the expected values of certain variables is another method for implementing test oracles.

The work of Memon et al. [27] is an example of this category. An executable specification

demonstrates the expected execution of a program at a higher abstraction level. Finite

state machines [28] are the most frequently used executable specifications as test oracles.

Machine learning models are developed as test oracles based on the previous executions

of the system under test. In this study, our objective is to develop automatic test oracles

as machine learning models.

Nardi et al. [24] present an alternative taxonomy based on the source of the information

used by test oracles. However, this taxonomy is based only on the technical information
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used to develop test oracles. Rafael et al. [25] discuss more taxonomies presented by

different authors. Among different taxonomies, Barr’s classification [2] is the best, as

it covers a broader range of test oracles. Therefore, we focus on Barr’s classification in

describing different categories of test oracles.

2.3.1 Types of Test Oracles

According to Barr et al. [2], there are three types of test oracles : implicit test oracles,

specified test oracles and derived test oracles. All types of test oracles discussed in other

studies ([23],[24],[25]) can be classified this way.

2.3.1.1 Implicit Test Oracles

The source of information for implicit test oracles is the general, implicit knowledge of

a system’s correct and incorrect behaviours [2]. As an example, generally, a program

crash implies an incorrect or faulty program behaviour. Therefore, program crashes can

be used as an implicit test oracle. This type of oracles can be developed easily, as it

requires neither the domain knowledge nor the specification of the SUT. Also, these test

oracles can be applied to nearly all programs. For example, consider the C function in

Listing 2.1.

1 int sample div ( int a , int b)

2 {

3 return a/b ;

4 }

Listing 2.1: A function written in C leading to a program crash

Any program calling this function with b = 0 crashes, as division by 0 in Line 3 leads

to an arithmetic overflow. A program crash is an observable fact that implies a faulty

program behaviour. We do not need any other source to identify this fault. Thus, it is

an implicit oracle in this scenario.

Implicit test oracles have been used to uncover bugs prompting deadlocks, livelocks and

race conditions. Similarly, these oracles are used with fuzzing [29] to detect security vul-

nerabilities, such as buffer overflows and memory leaks. American fuzzy lop (AFL) [30]
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is an example of such an automated testing tool. Implicit test oracles can also be arti-

ficially injected. ASAN [10] is a technique that creates injected implicit test oracles to

induce crashes in memory safety errors.

Implicit test oracles cannot be applied to semantic bugs [23], as they do not cause

program crashes or hangs. As it is impossible to assume contributing code segments

for this type of bug, injected implicit test oracles also cannot be applied. As semantic

bugs are application-specific, test oracles for these bugs cannot be generalized as implicit

oracles.

2.3.1.2 Specified Test Oracles

The test oracles of this category check whether the behaviour of the SUT conforms to

its formal specification. Usually, a formal specification provides complete information

about the expected program behaviour of a software [24]. For instance, Table 2.1 shows

a simple formal specification for the “stack” data structure. It contains some operations

while the axioms indicate their expected behaviour. A specified test oracle based on

this specification would compare the program behaviour with these axioms. If a newly

created stack were not empty, this specified oracle would identify it as a faulty behaviour

because the axiom IsEmpty(new) = True is violated.

Different specification languages are used to develop formal specifications. The study of

Pezzè et al. [23] classifies these specifications languages as:

i. State-based specifications

ii. Transition-based specifications

iii. History-based specifications

iv. Algebraic specifications

State-based specification languages describe a system as a collection of states and opera-

tions that alter those states. A system operation is associated with a pre-condition and

a post-condition. The pre-condition imposes a necessary condition that the input states

must satisfy for the correct application of the operation. The post-condition describes

the effect of the operation on the program state. The study of Mauro et al. [23] classifies
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Type Stack

Operations

new : () −→ Stack Create a new (empty) stack
push : (Stack, elem) −→ Stack Add an element to the top of the stack

pop : Stack −→ Stack
Remove the topmost element from
the stack

top : Stack −→ elem
Return the topmost element from
the stack

IsEmpty : Stack −→ boolean True if the stack is empty
IsFull : Stack −→ boolean True if the stack is full

Axioms

∀s ∈ Stack, e ∈ elem
¬IsFull(s) =⇒ pop(push(s, e)) = s pop reverses the effect of push

¬IsFull(s) =⇒ top(push(s, e)) = e
top returns the most recently
added element

IsEmpty(new) = True A new stack is always empty
¬IsFull(s) =⇒ IsEmpty(push(s, e)) = False After a push a stack is not empty
IsFull(new) = False A new stack is not full
¬IsEmpty(s) =⇒ IsFull(pop(s)) = Flase After a pop, a stack is not full

Table 2.1: Example specification for a stack

state-based specification languages into two groups: classic specification languages and

assertion languages. Classic specification languages define state and transitions indepen-

dently from the implementation. Z [31], B [32], UML [33] and VDM [34] are examples

of this category of languages. Assertion languages specify program states and transi-

tions as statements or annotations of the source program. The specification languages

Eiffle [35] and JML (Java Modeling Language) [36] belong to this category.

Transition-based specification languages describe a system graphically by highlighting

state transitions and the conditions required for their occurrence [23]. Many of these

languages are variants of finite state machines [28] (e.g. Mealy/Moore machines, I/O

automata). Typically, a state of this kind of specification abstracts a set of concrete

program states of the system. Earl et al. [2] show that transition-based specifications

present an approximation to the system, and, therefore, discrepancies can exist between

the specification and the system. Such discrepancies can lead to incorrect results in

testing.

History-based specification languages focus on the time-related behaviours of systems.

Thus, this category of specifications can capture evolving system behaviours. Popular

history-based specification languages use temporal logics as the base (e.g., linear time

logic (LTL), computational time logic (CTL), real-time interval logic (RTIL))) as the
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base [23]. Temporal logic languages augment classic logic operators with temporal oper-

ators. Similar to transition-based specification languages, most of temporal logic transla-

tions include some history information. However, the history information in a temporal

logic specification is explicit, whereas the history information of transition-based spec-

ification is usually specified as an order of events. The techniques proposed by Dillon

et al.( [37] and [38]) and Angelo et al. [39] can derive test oracles from history-based

specifications.

Algebraic specification languages define a software system in terms of syntax and se-

mantics. The syntactical part describes the signatures of the operations, indicating

their names, inputs, outputs, domains and ranges. The semantic part consists of a set of

axioms that describe the equivalence relations among the sequence of operations. Many

test oracle generation techniques based on algebraic specifications use axioms as their

basis (e.g. ASTOOT [40], CASCAT [41]).

The specifications developed using these specification languages can be used to generate

test oracles for semantic bugs. However, developing specified test oracles, i.e., test oracles

based on formal specifications, is challenging [2]. Basically, many software applications

do not have formal specifications. Even when there is a formal specification, there are

two main challenges. The first is that the abstraction on which a specification relies

can be incompatible with testing. Furthermore, for a particular test, the specification

model might include infeasible behaviour or not capture all of the behaviours under

the test [42]. The second challenge is the difficulty in interpreting model output and

equating it with concrete program output. These challenges hinder the applicability of

specified test oracles to semantic bugs.

2.3.1.3 Derived Test Oracles

The difficulty in developing specified test oracles is the key reason for focusing on derived

test oracles. These use information derived from sources other than formal specifications

(e.g. documentation, system executions, properties of the SUT, different versions of

SUT, etc.) [2]. This information is not as simple as that used in implicit oracles. The

studies of Earl et al. [2] and Oliveira et al. [25] indicate that a derived test oracle

might become a partial specified test oracle in the beginning. Nevertheless, it could

be converted to be closer to a specified test oracle through incremental learning (e.g.
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Jwalk [43]). Recent studies have focused on using different independent implementations

of the SUT, metamorphic relations, regression testing, system execution traces and

textual documentation in deriving test oracles.

Pseudo Oracles [21] and N-version programming [44] are examples of using different

independent implementations of the SUT as derived test oracles. A Pseudo Oracle is

an alternative version of the SUT, which is developed by a different developer team or

implemented in a different program language. N-version programming is implementing

a program in multiple ways, which are executed in parallel. This concept was initially

introduced as a fault-tolerant mechanism [44].

Ametamorphic relation is an expected relation among the inputs and outputs of multiple

executions if a program is correctly implemented [12, 23, 24]. As an example, suppose

f(x) = cos(x). Then cos(x) + cos(π + x) = 0 is a metamorphic relation. Chen et

al. [12] proposed the concept of using metamorphic relations to generate test oracles.

Obtaining the expected outputs of the SUT is not necessary to develop metamorphic-

relations-based test oracles, which is an advantage. However, finding the metamorphic

relations of a program is a challenging task [2].

The key objective of regression testing is to verify whether new modifications to a pro-

gram disrupt its existing functionality [45, 46]. It is based on the assumption that the

previous version of a program (version before modifications) can serve as a test oracle

for the existing functionality [2]. Following this concept, the works of Xie et al. [47] [48]

generate test oracles through regression test suites.

System execution traces are another source that can be used to derive test oracles [2].

Invariant detection [13] and specification mining [49] are popular approaches that use

execution traces to derive test oracles. Program invariants are certain properties that

hold at a point or points in a program. Invariant detection approaches focus on learning

invariants through program executions. The learnt invariants can be used as a test oracle,

as they capture the program behaviours. Daikon [13] is a popular invariant detection

tool that dynamically infers likely invariants by observing program executions. However,

Daikon invariants do not necessarily indicate the expected behaviour of the program [24].

The works of Walkinshaw et al. [50] and Heule et al. [51] can be categorised as invariant

generation techniques, which represent invariants as finite state machines.



19

Developers prepare textual documentation to describe the functionality of the software.

Several studies have focused on deriving test oracles from textual documents. Accord-

ing to Barr et al. [2], the techniques used to derive test oracles can be divided into

two main categories. The first focuses on deriving formal specifications from informal

textual specifications (e.g., Prowel et al. [11]). The second imposes restrictions on a

natural language to reduce the complexity of the grammar and words, which results in

a language that can express the requirements of the software with a more concise and

less ambiguous vocabulary. Deriving automated test oracles from such a language is not

as difficult as doing so from informal documentation. PENG, by Schwitter et al. [52],

is an example of a restricted natural language. Documents written in PENG can be

translated deterministically into first-order predicate logic.

Derived test oracles are more practical when considering the difficulties in obtaining

specified test oracles (Section 2.3.1.2). Also, unlike specified test oracles, some derived

test oracle techniques (e.g. metamorphic testing and system execution traces) do not

model the complete behaviour of the SUT. Therefore, derived test oracles are most

appropriate for semantic bugs. In this study, we explore learning techniques to derive

test oracles for semantic bugs from sources other than software specifications.

2.3.2 The Human Oracle Problem

The human effort required in an oracle task, i.e., differentiating the correct and incorrect

behaviours of the SUT, is referred to as the human oracle cost. Reducing the human

oracle cost is a significant concern of this thesis. According to the study of Barr et al. [2],

this problem has been addressed in quantitative and qualitative aspects.

The quantitative approaches to reducing human oracle cost have focused on reducing

the test suite and test case size. Consequently, this reduces the manual checking effort

that a human has to perform as an oracle. The works of Harman et al. [53], Ferrer

et al. [54] and Taylor et al. [55] are examples of test suite reduction approaches. The

common key objective of these approaches is to expose all the different behaviours of

the SUT with fewer test cases so that the human is able to check the whole system with

less effort. The works of Leitner et al. [56] and Groce et al. [57] are examples of test case

reduction methods. These methods reduce the size of a test case to isolate the buggy

behaviours of the SUT.
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The main focus of qualitative approaches is to improve the comprehension of the tasks

performed by the human as a test oracle. These approaches incorporate human knowl-

edge to improve the understandability of test cases. The works of Afshan et al. [58],

McMinn et al. [59] and Bozkurt et al. [60] focus on this direction. Afshan’s approach uses

a natural language model to generate human-readable string inputs. McMinn’s work fo-

cuses on incorporating human knowledge into a test generation process. The work of

Bozkurt et al. introduces the idea of mining web services for realistic test inputs.

In addition to these works, distributing the task of a test oracle among several people

is another approach to reducing the human oracle cost. This approach is called crowd-

sourcing test oracles [2]. Pastore et al. [61] experimentally analyse the feasibility and

issues associated with crowdsourcing. Their conclusions suggest that the crowd partici-

pating in this process should be provided enough information about the SUT to obtain

good results. Moreover, crowdsourcing test oracles are helpful in fixing wrong assertions.

2.3.3 Research Interest in Test Oracle Automation

Test oracle automation has significant importance in automated software testing. How-

ever, according to Earl et al. [2], there has been significantly less research attention on

the problem of test oracle automation than on other topics. As an example, the problem

of automated test input generation has been subjected to many studies over nearly four

decades (e.g.[62],[63]), and significant advances have been made in this area. However,

even these works have not focused on the problem of comparing the behaviours resulting

from generated inputs with expected the behaviours.

The term test oracle first appeared in the journal article Theoretical and Empirical Stud-

ies of Program Testing by Howden [64] in 1978. In the beginning, simple input-output

pairs describing the expected program behaviour were used as test oracles [23]. Between

1980 and 1990, the main research focus was on developing specified test oracles (test ora-

cles based on formal specifications) [2],[23]. Also, this was the period when many primary

theoretical solutions, such as pseudo oracles [21] and N-version programming [44], were

invented as derived test oracles.

Recently, researchers have focused on developing test oracles for application domains

such as graphical user interfaces (GUIs), web applications and embedded systems [23].
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Also, the trend analysis of Barr et al. [2] suggests that novel techniques for automating

test oracles have been introduced in recent years. These advances have placed special

attention on the human oracle cost problem.

2.4 Machine Learning for Oracle Learning

Machine learning [14] has been applied to the automation of many different tasks in

different areas. As related to software testing, machine learning models have been ap-

plied to test suite refinement [65], fault localization [66], fuzzing [67], bug prediction [68]

and test oracle automation [69]. There are few works that apply supervised machine

learning [14] to develop automatic test oracles. These are derived test oracles (Sec-

tion 2.3.1.3), as sources other than formal specifications are used to develop the oracles.

The works of Jin et al. [15], Vanmali et al. [16] and Shahamiri et al. [70, 71] are some

supervised machine learning [14] oracle learning approaches. The automatic oracles

given by these methods are blackbox, i.e., only the program inputs and outputs are used

to determine test failures. All these works use artificial neural networks to learn the

relationship (i.e., the function) between the program inputs and outputs. Jin’s [15]

and Vanmali’s [16] studies use single artificial neural networks, while other approaches

([70], [71]) use multiple artificial neural networks. The learned function can be explicitly

represented as program assertions or likely invariants [13]. Given an input, the neural

network model or learned function predicts the expected output. The predicted output

is compared with the output produced by the program under test for the same input.

If the two outputs are similar, the test is predicted as passing ; otherwise, failing. The

works [16],[70] and [71] use injected faults to test the automatic oracles. These injected

faults lead to semantic bugs in the programs. All these neural network-based approaches

can be applied to numeric data. Also, these works are passive learning methods and

require a large training test suite to learn an accurate neural network model that can

describe the relationship between the inputs and outputs.

The work of Braga et al. [72] is a different machine learning approach for test oracle

automation. It uses the AdaBoostM1 classification algorithm, and the user actions of

the SUT as the training data. This work is also a passive learning approach that uses

a large amount of training data. In contrast to the neural network-based approaches
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([15, 16, 70, 71]), Braga’s method learns bug oracles, i.e, the condition under which the

bug is exposed. However, this approach is specific to web applications.

The approach proposed by Zheng et al. [73] develops automatic oracles for web search

engines. First, it mines association rules between queries and search results based on a

training dataset. A large dataset is required to mine the association rules. Next, given a

new query and the corresponding search result, it checks whether the learned association

rules are violated. A violation of the association rules signals a suspicious search result.

This approach is only applicable to search engines, as it uses specific information related

to web searches.

Frounchi et al. [69] propose a semi-automated oracle learning method for the image

segmentation problem. This work iteratively develops an automatic oracle as a deci-

sion tree classifier. During this process, images are sent to the human if the classifier

makes inconsistent predictions. Even though this work has been proposed for the im-

age segmentation problem, its insights are useful in developing human-in-the-loop oracle

learning techniques.

To summarize, most machine learning-based approaches for test oracle automation focus

on inferring the expected behaviour of the SUT. The approaches with this objective use

neural networks to learn the relationship between the program inputs and outputs. This

task is more complicated than finding the condition under which the bug is exposed.

The reason is that programs are written to perform complicated tasks. Therefore, the

relationship between the inputs and outputs is mathematically complex. There are few

works that follow different strategies for deriving automatic oracles, which are domain-

specific approaches. Overall, few machine learning algorithms have been tested in test

oracle automation. Most of these works are passive learning methods and assume that

there is a way to obtain an unlimited amount of training data. Hence, large train-

ing datasets are used to train automatic oracles. Also, the training data are selected

randomly.

Our objective is to learn an automatic oracle by systematically obtaining training data

from the human, beginning with one failing test case of a bug. Passive learning ap-

proaches are unsuitable for this task, as no training data exists at the beginning of the

learning process. In our oracle learning setup, we expect to obtain training data by

tasking the human (the user or developer) with labelling test cases. Obtaining a large
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amount of training data in this manner is impractical. Thus, we design our oracle learn-

ing techniques to train highly accurate automatic oracles under limited human support

for obtaining training data. Given limited human support, labelling randomly selected

test cases and using those as training data could result in less accurate oracles. Due to

these issues, the approaches mentioned above cannot be directly applied to our problem.

Nevertheless, the insights given by the semi-automated approach (Frounchi et al. [69])

are useful in formulating human-in-the-loop oracle learning methods. Also, the applica-

bility of different supervised machine learning methods should be explored as related to

inferring the condition under which a semantic bug is exposed.

2.5 Areas Benefited by Automatic Test Oracles

The bug oracles developed by our learning techniques could be applied to automated

debugging [74] and automated program repair (APR) [7]. The reason is that our learning

techniques capture the condition under which a semantic bug is exposed. An automatic

test oracle based on this condition is helpful in automatically generating more test cases

that expose the bug. In automated debugging and APR, this task primarily helps find

the faulty code segments leading to the bug.

2.5.1 Automated Debugging

Software debugging is a process of exploring the faulty behaviours of software and their

root causes [74]. As this is a tedious task for a human, automated debugging techniques

have been introduced. Fault localization [75], program slicing [76] and delta debug-

ging [77] are examples of automated debugging techniques. These techniques can also

be applied to semantic bugs. Execution synthesis [78] is another automated debugging

approach; however, it concentrates only on bugs leading to program crashes.

Fault localization focuses on identifying the exact locations of program faults [79]. In-

serting “print” statements around suspicious program locations to print out the values

of some variables is the most primitive method of fault localization. The developer

should have enough understanding of the program to perform this task. The “print”

statement-based technique evolved into the concept of “breakpoint”. All these tech-

niques are semi-automatic techniques. Spectrum-based fault localization [8, 80] is a widely
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used automated debugging technique. Wong et al. [79] suggest four main categories of

spectrum-based fault localization techniques:

i. Executable statement hit spectrum (ESHS)

ii. Predicate count spectrum (PRCS)

iii. Program invariants hit spectrum (PIHS)

iv. Method calls sequence hit spectrum (MCSHS)

ESHS-based techniques use the statements executed by tests to locate faulty locations.

Tarantula [81] and the work of Renieres et al. [82] are examples of this category. PRCS

methods define some predicates in the beginning to track program behaviours and record

how these predicates are executed by test cases (e.g. SOBER [83]). PIHS-based meth-

ods focus on the coverage of program invariants; i.e., the program properties that should

be preserved in program executions. The work of Pytlik et al. [84] is an example that

uses “potential invariants” for fault localization. MCSHS-based methods identify faulty

program locations based on the sequences of method calls covered during program ex-

ecution. The works of Liu et al. [85] and Dallmeier et al. [86] belong to this category.

All the works described above are test-driven approaches. Thus, the success of these

techniques depends on the test suite given as the input.

Program slicing techniques decompose a large program into smaller components to iden-

tify the code segments leading to failures. A program slice is always defined with respect

to a slicing criterion. A slicing criterion is a pair ⟨p, V ⟩, where p is a program point,

and V is a set of program variables. There are four main categories of program slicing

methods, as per [76]:

i. Static slicing

ii. Dynamic slicing

iii. Conditioned slicing

iv. Quasi slicing

v. Simultaneous dynamic slicing
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Given the slicing criterion ⟨p, V ⟩, static slicing creates a slice by removing the code seg-

ments that are irrelevant to the values of the variables in V at point p [87]. Thus, the val-

ues of the variables in V at point p are the same in the slice and the program [76]. These

program slicing methods do not use a test suite to decompose a program. The works of

Horwitz et al. [88] and Danicic et al. [89] are examples of static slicing approaches. In

contrast to static slicing, dynamic slicing methods concentrate on identifying only the

statements that affect the variables of interest in a faulty program execution [76, 79].

These slicing methods use a single test case that exposes the faulty program execu-

tion. The works of Korel et al. [90] and Agrawal et al. [91] are some dynamic slicing

approaches.

Conditioned slicing, quasi slicing and simultaneous dynamic slicing are the extensions of

dynamic and static slicing approaches. Conditioned slicing allows defining a condition

in terms of a first-order logic formula on program inputs, which characterises a set

of execution paths [92]. First, the program is simplified by removing the irrelevant

execution paths with respect to the condition. The rest of the process is similar to that

of static slicing. Quasi slicing uses the aspects of both static and dynamic slicing [93].

It enables slicing a program while keeping the values of a subset of variables fixed.

Simultaneous dynamic slicing is the application of dynamic slicing to a set of test cases,

rather than just one test case (e.g. Hall et al. [94]). This slicing method is helpful in

analysing the functionalities of a program.

The key objective of delta debugging is to explore the minimal input exposing a bug [77].

It also isolates the difference between a passing and failing test case. Iterative delta de-

bugging [95] and hierarchical delta debugging [96] are extensions of delta debugging.

Given an automatic oracle, delta debugging can be automated as an automated debug-

ging technique.

The automated debugging techniques described above can be applied to the debugging

of semantic bugs. The automatic oracles developed by our learning techniques can be

directly applied to automate delta debugging [77]. In addition, more passing and fail-

ing tests of a bug can be automatically generated when an automatic oracle is available.

Spectrum-based fault localization [8, 80], dynamic slicing and simultaneous dynamic slic-

ing [76] perform more accurately when there are more test cases. Thus, our automatic

oracles could be applied to improve these automated debugging techniques.
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2.5.2 Automated Program Repair

Automated program repair (APR) focuses on exploring fixes for software bugs [97] rather

than finding their root causes. It is capable of reducing the extensive manual effort

required to find and remove faults [9]. Some APR techniques can only be applied to a

single category of faults (e.g. AFix [98] and CFix [99]: concurrency faults). Also, there

are APR techniques that can be applied to a large variety of software faults, without

limiting to a specific category of faults. According to Gazzola et al. [7], there are many

test-driven APR approaches that belong to this category.

To repair a buggy program, test-driven APR techniques use a test suite containing

passing and failing test cases. The failing tests exercise the bug to be fixed, while the

passing tests indicate the behaviour that should not be changed. This test suite is known

as a repair test suite. Given a repair test suite, first, the APR technique performs fault

localization [75], i.e., identifying the code segments that are likely to be faulty. Next,

the APR technique changes the buggy program so that it passes all of the test cases.

This process is guided by the information obtained in fault localization. According to

Goues et al. [9], there are two main categories of test-driven APR techniques: heuristic

repair and constrained-based repair. Machine learning can enhance these two types of

repair techniques, which is called learning-aided repair.

Both heuristic and constraint-based program repair techniques begin with fault localiza-

tion [7]. Program repair techniques use spectrum-based fault localization (SBFL) [80]

techniques, such as Tarantula [81], Ochiai [100] and Jaccard [101]. The key intuition of

SBFL is that the code segments executed by many failing tests and few passing tests are

likely to be faulty [7]. The success of a fix given by a repair technique highly depends

on the fault localization step.

Heuristic / Generate-and-validate repair techniques iteratively generate and validate

repair candidates. The repair candidates are generated by applying syntactical mod-

ifications to the buggy program. This process uses the abstract syntax representation

(AST) of the buggy program. To reduce the search space and guide the syntactical

modifications, heuristic repair techniques use the information obtained in the fault lo-

calization. After a repair candidate is generated, the validation step calculates the

number of tests in the repair test suite passed by the candidate. The generate and

validate process continues until a repair candidate passing all the tests in the repair test
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suite is found. GenProg [102], AE [103], RSRepair [104] and KALI [105] are examples

of heuristic program repair techniques.

Constraint-based repair techniques explore a repair constraint that the patched program

should satisfy, rather than modifying the program to generate patches [7, 9]. The patch

(typically a code segment) to be generated is considered as an unknown function. Fault

localization indicates where the patch should be placed. The properties of the unknown

function are extracted through symbolic execution [62] or other methods; these prop-

erties constitute the repair constraint. A patch for the bug is explored by finding a

solution to the repair constraint. This is usually achieved by search or constraint solv-

ing. DirectFix [106], Angelix [107] and SemFix [108] are examples of constraint-based

repair techniques.

Learning-based repair techniques improve program repair by incorporating machine

learning concepts. The works under this category can be divided into three groups [9].

One group focuses on learning a model of correct code from a corpus of code (e.g.

Prophet [109]). Another infers code transformation templates from successful patches in

commit histories. Genesis [110], a technique under this category, introduces AST (ab-

stract syntax tree)-to-AST transformation. The third group of works focuses on training

models for end-to-end repair. Given a buggy code segment, such a model predicts a

patch. These models do not rely on a test suite or a constraint solver. DeepFix [111] is

a method in this category that uses a neural network to fix compilation errors.

Repair overfitting [112], i.e., the lack of generalizability of auto-generated patches, is

a critical issue in APR. An overfitting patch does not fix the bug and can introduce

new bugs. The work of Qi et al. [105] emphasises this fact regarding heuristic APR

techniques. One reason for repair overfitting is the nature of the repair test suite. When

the failing tests cannot define the bug well and/or the passing tests cannot define all of

the correct behaviours, the patch does not properly fix the bug [113]. For example, if

the repair test suite contains one failing test exercising the bug, the patch simply deletes

the functionality exercised by this test [105].

Several studies have been carried out to mitigate repair overfitting in APR. Patch prior-

itization [114], i.e., sorting candidate patches based on the probability of correctness, is

one direction of these studies. This technique can be applied when there is a lack of test
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oracles or additional test cases to evaluate patch correctness. Most of patch prioritiza-

tion approaches either consider the semantic similarity or syntactic similarity between

the buggy program and the fixing element [114]. ObjSim [115] and CapGEN [116] are

examples of semantic-similarity-based patch prioritization approaches. The works of

Koyuncu et al.(IFixR) [117] and Jiang et al.(SimFix) [118] belong to syntactic similar-

ity based approaches. In contrast to these two categories of works, the work of Kang

et al. [119] considers the naturalness [120] of the patch. ObjSim [115] is a lightweight

approach that uses only the program state at the exit point(s) to prioritize patches.

The other approaches use external sources, such as bug reports (e.g. IFixR [117]), ad-

ditional code repositories (e.g. Kang et al. [119]) and previously generated fixes (e.g.

CapGen [116]).

Related to test-driven APR, another direction to mitigate repair overfitting is improving

repair test suites. The works of Yu et al. [121], Yang et al. [113] and Xiong et al. [122]

are examples of such approaches. All these works require an initial repair test suite.

The repair test suite is systematically augmented in a way improving the quality of the

patch. UnsatGuided by Yu et al. focuses on constrained-based repair techniques [121],

while Yang’s method [113] focuses on heuristic repair. Xiong’s method [122] can be

applied to both categories of repair techniques. However, this method needs a patch as

an input in addition to a repair test suites.

If there is an automatic test oracle for a buggy program, more passing and failing

test cases can be generated without human intervention, through which the quality of

repair test suites can be improved to produce better repairs. Therefore, the findings of

this thesis are helpful for producing better repairs for semantic bugs. In addition, the

automatic oracles learned by our learning techniques contain some constraints related to

program failures. These constraints could be useful for synthesising repair constraints

in constraint-based repair techniques. Also, these could be applied to different tasks in

learning-based repair. In addition, the automatic oracles could be improved to develop

more precise correction criteria than repair test suites [9].
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2.6 Summary

The key objective of this thesis is to develop learning techniques to generate automatic

test oracles for semantic bugs. Such automatic test oracles could automate the process of

detecting and fixing semantic bugs. Our literature review suggests that fixing semantic

bugs is essential to avoid many of the adverse outcomes of software systems. Therefore,

the findings of this thesis have significant importance in automated software testing.

According to this literature review, test oracle automation is still a developing research

area and requires substantial improvement. Among the existing test oracle automation

techniques, specified test oracles, i.e., those based on formal specifications, are ideal for

semantic bugs. However, developing this kind of test oracle is difficult due to the diffi-

culty of finding the formal specification of a software application practically. Therefore,

derived test oracles, i.e., those derived from sources other than formal specifications,

are most suitable for semantic bugs. In addition, some surveys related to test oracle

automation provide a concrete pathway for the development of test oracles, which is

useful for the present study.

There are a few works that use machine learning to develop automatic test oracles. These

present some important insights for formulating our learning techniques. However, some

limitations of these works make them difficult to apply to semantic bugs. For instance,

existing machine learning-based oracle learning approaches pay no attention to obtaining

training data systematically from a human. When the only source to obtain training

data is a human, there are some significant issues to be considered. This study mainly

focuses on these issues in developing oracle learning techniques.

Our oracle learning techniques could improve both automated debugging and automated

program repair on semantic bugs. These improvements will be helpful in significantly

reducing the manual effort required to find and fix semantic bugs in software systems.



Chapter 3

Research Methodology

3.1 Developing Oracle Learning Techniques

The objective of our oracle learning techniques is to derive test oracles [2] for semantic

bugs by facilitating a systematic interaction with the human (the user or developer). In

this learning setup, the human’s task is to decide whether a test is passing or failing given

the input and the program output. Even a person without programming knowledge can

participate in this learning process if he knows the expected behaviour of the program.

As described in Section 2.3 of Chapter 2, Pezzè et al. [23] suggest the following four (4)

steps for constructing a test oracle.

i. Identify the source of the information needed to derive the oracle.

ii. Recognize the program behaviour to be checked.

iii. Translate the source of information and the program behaviour into forms that

can be checked against each other.

iv. Execute the oracle.

Our semi-automatic learning techniques follow these steps in generating automatic test

oracles. The source of information for our automatic oracles is the human (the user or

developer), as only the human can answer about a test failure in a semantic bug. Our

learning techniques only use test cases labelled by the human as passing and failing to

30
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derive oracles. In the beginning, we assume there is only one failing test. To obtain

more labelled test cases, the learning techniques employ test generation techniques and

systematically interact with the human. In our setup, the behaviour of the program’s

output under the test inputs is considered. Our learning techniques asks the human:

“For the input i⃗, the program produces the output o; is the bug observed?”. If the answer

is “Yes”, the test case is a passing one; otherwise, it is a failing one. A user or a

developer who knows the expected behaviour of the SUT can easily answer this kind

of question. Our learning approaches use supervised machine learning [14] techniques

to train a model working as an automatic oracle from the labelled test cases. In this

manner, the human-labelled test cases are translated into a checkable/executable form.

Given an unlabelled test case, the automatic oracle predicts whether it is passing or

failing.

As described in Section 1.2, we assume that a failing input (f) of the semantic bug

has been given, and there is a human oracle (with the knowledge of expected program

behaviour) to check whether a test case is passing or failing.

Test 
Generation
Technique

Failing Test Human

Oracle Learning Technique

Automatic
Test Oracle

f

Active Learning Technique
Supervised 

Machine Learning 
Algorithm

Figure 3.1: Architecture of an oracle learning technique. An oracle learning tech-
nique is a semi-automatic approach. At the end of the learning process, it returns an

automatic test oracle

In developing an oracle learning technique, we follow the architecture shown in Fig-

ure 3.1. The main components of a learning technique and their roles are as follows.

1. Test generation technique: As one failing test is not enough to learn an oracle,

we use a test generation technique to generate an adequate amount of training
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data (test cases). McMinn et al. [59] suggest that the simplest way to incorporate

human knowledge into test generation is to use a human-labelled test input as the

seed in the beginning. Following this concept, the test generation process begins

from a given failing test (f).

2. Active learning technique: We use an active learning technique [123] to system-

atically interact with the human and learn an oracle with less training data than

would otherwise be needed. The active learning technique avoids the human re-

ceiving an unnecessary amount of labelling queries. Membership query synthe-

sis methods and stream-based sampling methods are the two categories of active

learning that we focus on in developing an oracle learning technique. Pool-based

sampling methods are not considered, as we assume that only one failing test has

been given. When membership query synthesis is used, the active learning itself

generates test cases and directly presents them to the human. When stream-based

sampling is used, the test generation technique generates test cases one by one,

and the active learning technique selects test cases that are advantageous in oracle

learning to present the human. In both of these approaches, the status of the

automatic oracle being trained is considered.

3. Supervised machine learning algorithm: We train the automatic oracle as a clas-

sifier. The supervised machine learning algorithm trains the classifier using the

human-labelled tests. The active learning technique decides whether to send a

test case to the human based on the characteristics of the machine learning model.

We select a machine learning algorithm based on the type of input that we address

in the oracle learning technique.

The learning process begins with a single failing test (f) of the semantic bug. The test

generation technique generates more tests, taking f as the starting point. The active

learning technique maintains the systematic interaction between the human and the

oracle learning process. The supervised machine learning algorithm trains a classifier

using the human-labelled tests. The oracle learning technique incrementally trains the

automatic oracle as human-labelled tests are received. The active learning technique

considers the current status of the automatic oracle in sending the next labelling query

to the human. At the end of the process, we obtain an automatic test oracle for the
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semantic bug. This automatic oracle approximates the failure condition of the bug,

hence a bug oracle

3.2 Machine Learning

Machine learning has been applied to automate various tasks in software engineering.

It is also an important component of our learning technique architecture (Figure 3.1).

In our setup, we use training data labelled (annotated) as passing or failing. The auto-

matic oracles should predict whether a test case is passing or failing. Hence, supervised

machine learning [124] techniques are suitable for training such automatic oracles from

the labelled training data.

3.2.1 Classification Algorithms

Classification algorithms are a type of supervised machine learning [14] and are able to

derive classifiers from numeric data. A classification algorithm learns amapping function

as a classifier from a training dataset. The mapping function indicates the relationship

between the features and class labels [125]. In multi-class classifiers, there are more than

two target classes. A classifier used to classify news articles in terms of sports, politics

and science is an example multi-class classifier. Binary classifiers are trained to predict

only two classes. A spam filter distinguishing legitimate and spams emails belongs to

this category. For a semantic bug associated with numeric inputs, an automatic oracle

can be trained as a binary classifier.

Classification algorithms use various methods to learn classifiers, and the classifiers are

represented in different forms. Based on their representation, classification algorithms

can be divided into two types: interpolation-based [126] and approximation-based [127].

Given a set of training data, Interpolation-based approaches learn a model that exactly

fits all the data points (e.g. Figure 3.2(a)). Furthermore, if the training dataset is T and

f is the trained model, then f(x), where x ∈ T , gives the correct label of x. decision tree

algorithm [128] is an example of this category of approach. This algorithm can learn a

set of constraints from a given dataset in terms of its features. The learned constraints

take the form of inequalities, which are represented as a tree structure. This capability
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of decision tree algorithm has been used in software testing tasks such as fault localiza-

tion [66]. In addition, the Incremental SMT Constraint Learner(INCAL) [129] belongs

to this category. Given a set of positive and negative examples, it learns a Satisfiability

Modulo Theory(SMT)-Linear Arithmetic [130] formula, which is a set of constraints,

satisfied only by the positive examples. Thus, INCAL can be used to develop SMT

formula-based binary classifiers. SMT formulas are used in many areas in automated

software testing, such as symbolic execution [62].

Approximation-based approaches estimate a model that fits a subset of training data

in the best possible way, minimizing the error with the other data points (e.g. Figure

3.2(b)). Support vector machines (SVMs) [131] and artificial neural networks(ANNs) [132]

are some popular approaches in this category. SVM has been more successful in many

binary classification problems than other supervised learning approaches. Artificial neu-

ral networks have been applied in diverse domains for approximation tasks. However, in

applying an ANN, there are many design decisions to be considered regarding the prob-

lem to be solved (e.g., the number of layers, number of neurons per layer, representation

of the data, etc.).

2 4 6 8 10

0

200

400

600

800

(a) Interpolation

0 2 4 6 8 10

0

200

400

600

800

(b) Approximation

Figure 3.2: Interpolation vs approximation for the same set of points

A set of classifiers can be collectively used to achieve better prediction accuracy, which is

called ensemble learning [133]. Bagging, boosting and adaptive boosting (AdaBoost) are

some popular ensemble algorithms [134]. Both types of classification algorithms (inter-

polation and approximation) can be used with ensemble learning. Random forest [135]

is an example in which bagging is applied to a set of decision trees. The work of Li

et al. [136] is an example that SVM is used with AdaBoost. This approach creates a



35

series of SVMs such that the errors of one classifier are resolved in subsequent classifiers.

Finally, the series of classifiers is linearly combined into a single classifier.

Classification algorithms are helpful in addressing RQ.1, as they can learn classifiers

from numeric data (unstructured inputs). Some of these techniques have been applied

to develop automatic test oracles (Section 2.4). This study proposes a new architecture

for oracle learning (Figure 3.1). Thus, the performance of the new oracle learning

architecture under different classification algorithms should be explored.

3.2.2 Grammar Inference Algorithms

Grammar inference is an area of machine learning that learns patterns among strings

as formal grammars [137]. Grammar inference algorithms have been applied in software

engineering to tasks such as domain-specific language development [138] and log file

analysis. There are unsupervised and supervised grammar inference approaches [124,

139].

For a semantic bug associated with string inputs, a grammar can be used as an automatic

test oracle. For example, a grammar describing the pattern of the failing inputs can

work as a test oracle for a bug. As we use training data labelled as passing and failing,

supervised grammar inference algorithms are suitable to derive this kind of grammar.

Regular positive and negative inference (RPNI) [140] and GOLD [141] are conventional

regular grammar [142] inference techniques. Given a set of positive and negative exam-

ples, these algorithms infer a deterministic finite automaton (DFA) [137] that accepts all

the positive examples while rejecting the negative ones. The DFA represents a regular

grammar. Higuera et al. [140] show that GOLD algorithm has an issue in the step of

“filling holes”.

Few works have been conducted on context-free grammar (CFG) [137] inference based

on examples. Inductive CYK [143] and Imada et al. [144] are examples of context-free

grammar inference approaches. Similar to RPNI and GOLD, these algorithms also use

a set of positive and negative examples. Inductive CYK [143] incrementally develops

production rules. If any production rule leads to the acceptance of any negative example,

the algorithm backtracks to the previous point and considers another direction. The

work of Imada et al. [144] solves a Boolean satisfiability problem to learn context-free



36

grammar from positive and negative examples. In contrast to these works, Segovia et

al. [145] and Siegfried et al. [146] propose methods for inferring context-free grammars

based only on a set of positive examples. The study of Moses et al. [147] discusses the

applicability of using compression algorithms for context-free grammar inference. This

problem is known as the smallest grammar problem. All the algorithms discussed in this

work use only one string for context-free grammar inference, thus generating overfitting

grammar. In addition to these, the works of Kim et al. [148] and Tu et al. [149] focus

on inferring probabilistic context-free grammar (stochastic context-free grammar) [150].

Many recent grammar inference techniques use genetic programming [151]. The studies

[152–157] are examples of such grammar inference techniques. Thomas et al. [152] and

Bill et al. [155] focus on inferring probabilistic context-free grammar. Similar to Moses’

work [147], Li et al. [154] address the smallest grammar problem. Unlike other genetic

programming-based approaches, Rodrigues et al. [153] use new genetic operators in the

grammar inference process.

The alphabet of the target language, which should be pre-determined, is an important

consideration in most of these algorithms. As the alphabet gets larger, the number

of examples required for accurate grammar inference significantly increases. This is a

critical issue when there is a limited capability to obtain training data.

Formal grammars [137] are capable of representing the patterns of strings. They can

also be extended to represent the patterns in many structured inputs. Thus, grammar

inference techniques are helpful in addressing RQ.2. However, it is necessary to explore

ways of adapting grammar inference algorithms to our oracle learning architecture.

3.2.3 Active Learning

Active learning is a branch of machine learning that focuses on achieving higher accuracy

by selecting the most informative training data [123, 158]. It allows the learning of

classifiers with less training data. There are three types of active learning scenarios:

membership query synthesis, stream-based sampling and pool-based sampling.

In membership query synthesis, the active learning technique generates instances from

the region of uncertainty of the classifier [159] and sends them to the oracle. The training
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process continues with those labelled instances. L∗ [160], ID [161] and IDS [162] are some

active grammar inference algorithms that use membership queries.

Both stream-based sampling and pool-based sampling assume that obtaining unlabelled

instances is inexpensive. In stream-based sampling, unlabelled instances are generated

one at a time, and the learning technique decides whether to label the instance. The

works of Zhu et al. [163], Chu et al. [164] and Zhang et al. [165] are examples of ap-

proaches to guiding instance selection from a data stream. Pool-based sampling methods

assume that there is a small set of labelled instances and a large pool of unlabelled in-

stances. The pool of unlabelled instances is considered static (non-changing). The

learning technique selects instances for labelling based on an informativeness measure

that evaluates all of the unlabelled instances in the pool. The works of Holub et al. [166],

Joshi et al. [167] and Li et al. [168] are examples of pool-based sampling approaches.

As described in Section 3.1, active learning techniques can maintain a systematic inter-

action with the human. Thus, they are helpful in addressing both RQ.1 and RQ.2.

Also, the way that the active learning technique selects training data affects the quality

of the repair test suites expected to be developed in relation to RQ.3.

3.3 Experimental Setup

We conduct experiments to evaluate the solutions explored to answer the research ques-

tions (Section 1.2.1). Programs with semantic bugs are used as the subjects of the

experiments. We select such programs from program-repair benchmarks. (Appendix-

Appendix B shows some details about the benchmarks used in the experiments).

To evaluate the oracle learning techniques developed to answer RQ.1 and RQ.2, we

select the benchmarks satisfying the following criteria.

1. There should be programs with real-world defects leading to semantic bugs.

2. For each faulty program, there should be a version where the bug has been fixed,

i.e., golden version. The golden version demonstrates the expected, correct pro-

gram behaviour.
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3. For each faulty program, there should be a manually created, labelled test suite.

This labelled test suite should contain at least one failing test case, i.e, a test case

exposing the fault.

Depending on the nature of the learning technique, we consider more criteria in selecting

the subjects (programs) for the experiments from a benchmark. For example, if the

learning technique works with numeric inputs, we select the programs taking numeric

inputs from a benchmark as the experimental subjects.

We use the golden version of a faulty program to simulate the human in the experiments.

Given an input, if the faulty program and its golden version produce different outputs,

we consider the test as failing ; otherwise, it is passing(Figure 3.3). This method has

been influenced by differential testing [169]. Differential testing uses different indepen-

dent implementations (two or more) of the SUT. Given an input, the results of the

implementations are compared to determine whether the test is passing or failing. The

setup in Figure 3.3 is similar to this process.

Buggy 
Program

Golden 
Version

Test 
Case (t) Equal ?

Output
(Buggy Version)

Output
(Golden Version)

Passing

Failing

Yes

No

Figure 3.3: Usage of a buggy program and its golden version to simulate the human
oracle

In the benchmark selection criteria, we consider that there should be a labelled test suite

containing at least one failing test case for each faulty program. In applying an oracle

learning technique to a faulty program, an input failing test (see Figure 3.1) is randomly

selected from the labelled test suite. After the automatic oracle is generated, we allow

it to predict the labels of all the test cases in the same test suite. No overfitting occurs
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in this procedure, as our learning techniques generate training data by themselves (Test

generation technique - Figure 3.1).

Related to RQ.3, we conduct some experiments with automated program repair tech-

niques. In selecting benchmarks for these experiments, we consider the following addi-

tional criterion.

✼ For each faulty program, there should be a repair validation test suite.

In the program repair experiments related to RQ.3, we use the repair validation test

suite to evaluate the patches.

As our learning techniques and the experiments involve many random operations, we

repeat each experiment 30 times for each subject (faulty program).

3.4 Evaluation Metrics

To assess the effectiveness of the oracle learning techniques developed to answer RQ.1

and RQ.2, we concentrate on the quality of the automatic oracles and the human

effort associated with the learning process. The following evaluation metrics are used to

evaluate the oracle quality and human effort.

1. Accuracy : Percentage of correctly predicted test cases by the automated oracle

(Equation 3.1)

2. Conditional accuracy - failing / Recall for failing test cases : Percentage of cor-

rectly predicted failing test cases from the actual failing test cases. (Equation 3.2)

3. Conditional accuracy - passing/ Recall for passing test cases : Percentage of cor-

rectly predicted passing test cases from the actual passing test cases. (Equa-

tion 3.3)

4. Precision - failing : Percentage of correctly predicted failing test cases from the

test cases predicted as failing. (Equation 3.4)

5. Precision - passing : Percentage of correctly predicted passing test cases from the

test cases predicted as passing. (Equation 3.5)



40

6. Human labelling effort : Number of test cases labelled by the human in the training

process.

Accuracy =
Number of correctly predicted test cases

Number of test cases in the test suite
(3.1)

Conditional Accuracy

-Failing
= Recall-Failing =

Number of correctly predicted

failing test cases

Number of failing test cases

in the test suite

(3.2)

Conditional Accuracy

-Passing
= Recall-Passing =

Number of correctly predicted

passing test cases

Number of passing test cases

in the test suite

(3.3)

Precision-Failing =

Number of correctly predicted

failing test cases

Total number of test cases

predicted as failing

(3.4)

Precision-Passing =

Number of correctly predicted

passing test cases

Total number of test cases

predicted as passing

(3.5)

The first five metrics are related to the oracle quality. These are computed by comparing

the actual labels of the test cases with those predicted by the automatic oracle. We

especially consider conditional accuracy-failing (recall-failing) in addition to accuracy,

as the identification of failing test cases is essential for a test oracle to detect bugs. We

incorporate some methods into our learning techniques to deal with the class imbalance

problem. These five metrics collectively indicate the success of these methods.
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Our oracle learning techniques use certain techniques to systematically involve the hu-

man in training, through which we expect to reduce the interaction with the human as

much as possible. We measure the effectiveness of these techniques in terms of human

labelling effort.

We use the following metrics in our automated program repair experiments that are

conducted related to RQ.3.

1. Repairability : Percentage of the subjects repaired by the automated program repair

(APR) technique.

2. Validation Score: If the APR technique produces a patch, the proportion of repair

validation tests that pass on the patched program.

Sometimes, the APR technique does not produce a repair with the given repair test

suite. Hence, we concentrate on repairability. If the APR technique generates a patch,

we measure the validation score to assess the quality of the patch.

We introduce additional metrics in the experiments to evaluate different properties of

the learning techniques. Also, we use Wilcoxon Test [170] to compare some results based

on the statistical significance. Wilcoxon test is a non-parametric statistical test, and it

is suitable for our experimental environments.



Chapter 4

Learning Automatic Test Oracles

for Unstructured Inputs

This chapter explores an answer to RQ.1: developing an oracle learning technique

for semantic bugs in programs taking unstructured inputs. Numeric inputs instantiate

unstructured inputs. Therefore, we present an approach called learn2fix to learn

automatic test oracles for the semantic bugs in programs taking inputs. This approach

needs only one failing test case of the bug and systematically interacts with the human

(the user or developer) to obtain the training data necessary to learn an oracle. In oracle

learning, learn2fix derives the condition under which the semantic bug is exposed; i.e.,

the failure condition of the semantic bug. Given the input and the corresponding output

of the buggy program, an automatic oracle generated by learn2fix predicts whether a

test case is passing or failing.

4.1 Unstructured Inputs

Numeric inputs are the most widely used unstructured inputs in programs. The validity

of a numeric input is always determined with respect to a domain. As an example,

consider the number 3.56. This is a valid number in the domain of real numbers (R) [171].

The same number is invalid in the domain of natural numbers (N). The domain of a

set of numbers can be constrained by mathematical and logical operators. For example,

42
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the domain of natural numbers can be constrained to have natural numbers from 1-100

as follows.

• S = {x : x ∈ N ∧ x ≤ 100}

This concept is useful in designing an automatic oracle for a semantic bug in a program

taking numeric inputs. The numeric passing and failing test cases of a semantic bug can

be separated by defining constraints like this.

4.2 Motivation

We use the buggy program in Listing 4.1 to demonstrate the challenge of learning au-

tomatic oracles for programs that take numeric inputs. This example is taken from an

experiment conducted by Russ Williams [172]. In this experiments, 12 participants were

asked to write programs for solving the Triangle Classification Problem; i.e., classifying

triangles as equilateral, isosceles, scalene or invalid given the lengths of their sides.

1 int f_steve_classify(int a,int b,int c){

2 if(a<=0 || b<=0 || c<=0)

3 return 4; // Invalid

4 if(a<=c-b || b<=a-c || c<=b-a)

5 return 4; // Invalid

6 if(a==b==c) //BUG !

7 return 1; // Equilateral

8 if(a==b || b==c || c==a)

9 return 2; // Isosceles

10 return 3;

11 }

Listing 4.1: A buggy C program for triangle classification

f steve classify function takes 3 inputs that represent the lengths of the sides of a

triangle and returns an integer where the return value

• 1 means it is equilateral (all sides equal in length)

• 2 means it is isosceles (exactly 2 equal sides)
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• 3 means it is scalene (no equal sides)

• 4 means it is an invalid triangle

The C program in Listing 4.1 is Steve’s implementation of triangle classification, which

has a bug in Line 6. The programmer uses the C statement a==b==c (Line 6) instead

of a==b && b==c to check whether the triangle is equilateral. Thus, given the input

t = ⟨2, 2, 2⟩, Line 6 evaluates it as follows.

(2==2==2)→ ((2==2)==2)→ ((1)==2)→ 0

The reason is that C represents the Boolean values True as 1 and False as 0, and thus

2==2→ 1 and 1==2→ 0. Therefore, Listing 4.1 is incorrect for:

i. All equilateral triangles, except ⟨1, 1, 1⟩

ii. All isosceles triangles where c=1

For test input t, Listing 4.1 returns 2 (isosceles), while we expect it to return 1 (equilat-

eral). Also, the program does not crash. This is a semantic bug, as the program shows a

deviation from the expectation for test input t. Due to the difference between the actual

and expected output, we identify t as a failing test case.

The program failure exposed by t can be identified only if we know the expected, correct

output (1:equilateral) that Listing 4.1 should produce for t. Similarly, it is essential

to know the expected, correct program behaviour of the program under test (PUT) to

detect semantic bugs. For this reason, only a human (the developer or the user) can

detect this category of bugs.

Usually, a semantic bug is reported with a single failing input triggering the bug. Assume

that the user has found the failing input t = ⟨2, 2, 2⟩. Indeed, only this failing input is

insufficient to identify why the program in Listing 4.1 fails to produce the correct outputs

for certain inputs. Similarly, this bug cannot be detected and fixed automatically with a

single failing input. To locate the failure, both automated program repair and automated

debugging techniques need more passing and failing inputs. In APR, more labelled (as

passing and failing) test inputs are required to validate the generated fixes. However,

finding more passing and failing test cases with human intervention is impractical.
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The solution to all the challenges described above is to develop automatic test oracles.

However, we have only one failing input and the human to differentiate the test cases as

passing or failing. The method of learning an automatic oracle should be able to cope

with such circumstances.

4.3 Background

Our objective is to develop an automatic test oracle for a given semantic bug, beginning

from one failing test case. We develop the automatic test oracle as a classifier that

categorizes test cases as passing and failing, applying classification algorithms in machine

learning. To train such a classifier, we need a set of passing and failing test cases as a

training dataset. In this scenario, the human (the user or the developer) is the only way

to query the label of a test case.

Indeed, a classification algorithm cannot train an accurate classifier as a test oracle using

one failing test case. Thus, more test cases should be generated as training data. Also,

one failing input is insufficient to explore the condition under which the bug is exposed.

For this reason, the test generation should focus on producing sufficient failing tests to

support oracle learning.

There are many classification algorithms in machine learning to develop classifiers with

numeric data. Support vector machines (SVM), decision trees, näıve Bayes, and arti-

ficial neural networks are examples of popular algorithms that can develop classifiers

for numeric data [14]. Several classification algorithms have been applied to develop

test oracles from numeric data (e.g. artificial neural networks in Jin et al. [15] and

Shahamiri et al. [71]). These oracle learning approaches are passive learning approaches

(Section 2.4). In contrast, we follow an active oracle learning architecture as in Sec-

tion 3.1. Therefore, we need to analyse the applicability of classification algorithms to

our active oracle learning architecture.

Some classification algorithms might need a large amount of training data in test ora-

cle learning. In this problem, it is necessary to generate and label test cases to obtain

training data. As the human labels test cases, obtaining a large training dataset is

impractical. Thus, learning an accurate classifier with less training data is a significant
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concern when training test oracles for semantic bugs. We either have to select classi-

fication algorithms satisfying this condition or introduce additional techniques to learn

more accurate test oracles with less training data.

Having a balanced training dataset, i.e., equal amounts of data from each class, is

essential for most classification algorithms to develop accurate classifiers. Otherwise,

the training process is susceptible to the class imbalance problem [17]. In many semantic

bugs in programs taking numeric inputs, the inputs exposing the bug are rarely observed.

If numeric inputs were randomly generated, the majority of the inputs would be passing.

Due to this situation, obtaining a training dataset with equal amounts of passing and

failing test cases is difficult. Consequently, the class imbalance problem affects oracle

learning by classification algorithms.

Mutational fuzzing is an effective test generation method that can generate test cases in

the neighbourhood of a failing test case. Exploring test cases in the neighbourhood of

a failing test case helps to collect more details about the location and behaviour of the

bug. The success of this approach has been proven in the coverage-based, mutational

greybox fuzzer American Fuzzy Lop (AFL) [173], which generates more crashing inputs

by mutating a seed crashing input. Following the same concept, mutational fuzzing can

be applied to generate more failing test cases by exploring the neighbourhood of a failing

test case. The neighbourhood test cases given by mutations reveal the boundaries of the

bug, i.e., how the program’s behaviour changes from buggy to correct and vice versa,

under small changes to the input. All these abilities of mutational fuzzing are useful to

address the Class Imbalance Problem.

Active learning [123] techniques are able to learn classifiers with less training data and

are applicable when obtaining labelled data is expensive (Section 3.2.3). Thus, we can

use these techniques to learn test oracles for semantic bugs. The method of Holub et

al. [166] is an active learning technique that selects data points to be labelled based

on the current status of the classifier being trained. This method selects the most

informative unlabelled data point(MIUP) from the unlabelled data set. Holub’s method

can facilitate systematic human involvement in oracle learning. Also, it can be modified

to cope with the class imbalance problem.
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4.3.1 Preliminary Analysis on Training Oracles With Some Classifica-

tion Algorithms

We analysed the capability of SVM, näıve Bayes, and decision trees [14] classification

algorithms to train a test oracle with little training data. The programs with semantic

bugs were selected from the benchmark Triangle Classification [172]. This benchmark

has different test suites. For each program, we randomly selected 30% of the test cases,

including at least one failing test case, from each test suite as the training dataset.

The rest of the test cases (70%) were used as the validation dataset. The training and

validation datasets contained more passing test cases than failing ones. To evaluate the

results, we measured the prediction accuracy and conditional accuracy-failing (recall-

failing tests); i.e., the accuracy of predicting failing test cases.

The experimental results (Appendix A) suggest that the SVM and decision trees al-

gorithms can produce classifiers with significant prediction accuracy even under a little

amount training data. However, these algorithms do not train the classifiers to accu-

rately identify failing test cases. Their lower conditional accuracy indicates this fact.

Sometimes, the classifier is trained to predict everything as passing. As the valida-

tion datasets contain fewer failing test cases than passing test cases, we observe higher

accuracy even though the failing test cases are misclassified.

The key reason for this issue is the class imbalance problem [17]. Furthermore, the

classifiers are trained to predict passing test cases more accurately, as there are more

passing test cases in the training datasets. Due to the inadequacy of the failing test

case in the training datasets, the classifiers are not trained to predict failing test cases

correctly. However, predicting test failures is an essential capability of a test oracle in

automated debugging and repair.

This small experiment suggests the following.

i. Random selection of training data does not lead to high-quality classifiers (auto-

matic oracles).

ii. The class imbalance problem, i.e., where there are very few failing tests and more

passing tests, affects the ability to identify failing tests.
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These issues should be addressed in designing an oracle learning technique for programs

taking numeric inputs.

4.4 Methodology

With the buggy program (P), our proposed approach for numeric inputs, learn2fix,

assumes that the following has been given.

1. One failing test case of the bug (f)

2. The human (H) to answer whether a test is passing or failing

A test case t is of the form t = ⟨⃗i, o⟩, where i⃗ is a vector of input variable values and

o = P (⃗i) is the output of P for i⃗. Also, we assume that i⃗ has a fixed length, and the

human can answer at most L queries.

Algorithm 1 shows an overview of learn2fix. In designing this algorithm, we focused

on addressing the issues identified in Section 4.3.1. The algorithm maintains two sets

of test cases T for all human-labelled test cases and T✗ for human-labelled failing test

cases (T✗ ⊆ T ). Firstly, using the given failing input (f), learn2fix trains an automatic

oracle (O) by a classification algorithm. As it is trained with a single failing input, O

at this point predicts everything as failing.

More training data are required to improve the accuracy of the automatic oracle (O).

Thus, learn2fix randomly selects a failing test case (f
′
) from T✗ and applies arithmetic

mutations it to generate a new test case (t) (Line 6 - Algorithm 1). If decide2label

returns true, t is presented to the human oracle (H) for labelling (Line 7 - Algorithm 1).

Next, t is added to T , and the automatic oracle (O) is retrained with T (Line 13). if t is

a failing test case, it is added to T✗ (Line 9). This process continues until the maximum

number of labelling queries (L) is reached, or a timeout occurs.

4.4.1 Generating More Failing Test Cases

A set of human labelled passing and failing test cases is required to train a classifier as an

automatic test oracle. learn2fix uses mutational fuzzing [30] for this task. Because of
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Algorithm 1 learn2fix Active Oracle Learning

Input: Buggy program (P), Failing test case (f = ⟨⃗i, o⟩)
Input: Human oracle (H), Maximum labelling queries (L)
1: Failing test cases T✗ ← {f}
2: Labelled test cases T ← {f}
3: Automatic Oracle O ← train classifier(T )
4: while (|T | < L) and not timed out do
5: Failing test case f

′ ← random select(T✗)
6: Generate test case t← mutate fuzz(f

′
)

7: if decide2label(t,O) = true then
8: Human label h = H(t)
9: if h = fail then

10: Failing test cases T✗ ← T✗ ∪ {t}
11: end if
12: Labelled test cases T ← T ∪ {t}
13: Automatic Oracle O ← train classifier(T )
14: end if
15: end while

the numeric inputs, learn2fix applies arithmetic mutations [174] to f to generate new

test cases. This process explores the neighbourhood of f and has a higher probability

of generating failing test cases compared to generational fuzzing [29].

For example, assume that for the motivating example in Listing 4.1, ⟨2, 2, 2⟩ is the given

failing input f = ⟨⟨2, 2, 2⟩, 2⟩. Also, assume that for each position a in i⃗, we employ

one of five arithmetic mutation operators chosen uniformly at random: i⃗[a] = i⃗[a],

i⃗[a] = i⃗[a] + 1, i⃗[a] = i⃗[a] − 1. The following test cases are generated when actually

running this fuzzer on f .

⟨⟨2, 2, 1⟩, 1⟩? ⟨⟨1, 3, 3⟩, 2⟩?
⟨⟨1, 3, 2⟩, 4⟩? ⟨⟨3, 3, 1⟩, 1⟩?
⟨⟨2, 1, 3⟩, 4⟩? ⟨⟨3, 3, 3⟩, 2⟩?
⟨⟨2, 1, 1⟩, 4⟩? ⟨⟨1, 2, 3⟩, 4⟩?
⟨⟨3, 2, 2⟩, 2⟩? ⟨⟨2, 3, 2⟩, 2⟩?

Three out of ten (3/10) test cases generated above are failing, i.e., ⟨⟨2, 2, 1⟩, 1⟩, ⟨⟨3, 3, 1⟩, 1⟩,

and ⟨⟨3, 3, 3⟩, 2⟩. In contrast, assume that we randomly generate three numbers in the

range [−263, 263 − 1]. The probability of finding a test case representing an isosceles

triangle with c = 1 or an equilateral triangle with c ̸= 1 is extremely low. Thus, muta-

tional fuzzing has a higher probability of generating failing test cases than generational
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fuzzing. Moreover, these test cases are in the vicinity of f and demonstrate how the

program’s behaviour changes from buggy to correct and vice versa under small changes.

Studying the bug is easier with these test cases than randomly generated passing and

failing test cases.

The above example demonstrates that mutational fuzzing can generate more failing

inputs. Also, the generated test cases are helpful in studying the bug. These abilities of

mutational fuzzing partially address the class imbalance problem.

4.4.2 Training a Classifier as a Test Oracle

To compute the automatic oracle, learn2fix trains a binary classifier based on a human

labelled training dataset. The function train classifier uses the same classification

algorithm in both Algorithms 1 and 2. We consider the input (⃗i) and the output (o)

values of a test case as the features used in the classification algorithm. We consider

passing and failing as the two classes to be predicted. The function train classifier

uses test cases labelled by the human (T ) to train a binary classifier as the automatic

oracle (O). Given a test case, an automatic oracle (O) predicts the label based on the

input (⃗i) and corresponding buggy program output (o).

Usually, a classification algorithm requires at least one data point from each class. How-

ever, human-labelled test suites (training test suites) containing only failing tests can be

generated in oracle learning. If so, we assume that train classifier returns a classifier

that predicts every test case as failing.

There are many classification algorithms in machine learning that train binary classi-

fiers from numeric data. As described in Section 3.2.1, based on the classifier’s repre-

sentation, these algorithms can be divided into two groups as interpolation-based and

approximation-based. Interpolation-based approaches model that exactly fits the train-

ing data. In contrast, approximation-based methods estimate a model that fits a subset

of training data, minimising the error with the other data points.

AdaBoost and decision Tree are examples of interpolation-based classification algorithms.

The work of Braga et al. [72] uses AdaBoost algorithm to develop test oracles; however,

their method is domain-specific. Also, the survey paper of Briand et al. [22] suggests

that decision trees are effective in modelling the failure condition of a bug. Due to
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these reasons, we evaluated the performance of AdaBoost and decision tree classification

algorithms with learn2fix. AdaBoost is an ensemble learning algorithm [133]. In the

experiments, we used decision trees as the base estimator of AdaBoost. In addition,

we selected the Incremental SMT Constraint Learner (INCAL) [129], which generates

interpolation binary classifiers as Satisfiability Modulo Theory (SMT) [130] formula.

Symbolic Execution [175] uses SMT constraints to group the inputs that exercise a

particular path. Thus, SMT formula can be used to group the failing and passing inputs

of a bug. For this reason, we selected INCAL [129] as a classification algorithm for our

experiments.

Artificial neural networks and support vector machines(SVM) are examples of approximation-

based classification algorithms. The work of Jin et al. [15] uses two artificial neural

network setups to generate automatic test oracles. One setup has two hidden layer

with 20 and 5 neurons (MLP(20,5)). The other setup has only one hidden layer with

20 neurons (MLP(20)). We selected these neural network configurations for our ex-

periments. In addition, we chose SVM and näıve bayes under approximation-based

classification algorithms. SVM is an algorithm that can be used in high-dimensional or

infinite-dimensional space [176]. näıve bayes is based on the Bayes theorem. This clas-

sification algorithm is able to learn an accurate classifier with relatively little training

data [176]. These two algorithms have been applied in different domains; however, their

applicability to test oracle automation has not been explored.

The selected set of classification algorithms is as follows.

i. Support vector machine (SVM)

ii. Decision tree (DT)

iii. Näıve Bayes (NB)

iv. AdaBoost (ADB)

v. Incremental SMT constraint learner (INCAL)

vi. Artificial neural networks / Multi-layer perceptrons (MLP)

We experimentally evaluate the performance of these algorithms to know which cat-

egory of classifier representation (interpolation or approximation) is most suitable for
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learn2fix. Moreover, we explore the best-performing classifier representation with

learn2fix.

4.4.3 Maximising the Probability of Labelling Failing Test Cases

Algorithm 2 decide2label

Input: Unlabelled test case t?, Automatic Oracle O
Input: Committee Size S
1: Let T be training test cases that O has been trained
2: Predicted label LO ← O(t?)
3: if LO = Failing then
4: return true

5: else
6: fail votes = 0
7: for i← 1 to S do
8: Generated test case t′? = MUTATE FUZZ(t?)
9: t′✓ ← Assume that t? label as Passing

10: t′✗ ← Assume that t? label as Failing
11: Hypothetical Oracle O✓ ← train classifier(T ∪ {t′✓})
12: Hypothetical Oracle O✗ ← train classifier(T ∪ {t′✗})
13: if O✓(t?) = Failing or O✗(t?) = Failing then
14: fail votes← fail votes+ 1
15: end if
16: end for
17: θ̂ = fail votes

2×S

18: if θ̂ ≥ 0.5 then
19: return true

20: else
21: return false

22: end if
23: end if

As the minority class is failing, learn2fix improves the classifier’s ability to identify

failing test cases, using the limited human queries. For this purpose, learn2fix max-

imises the probability of labelling failing test cases in oracle learning. This strategy

helps to address the class imbalance problem. To maximise the probability of labelling

failing test cases, learn2fix selects test cases with higher failure likelihood. Algorithm

2 (decide2label) describes this process. This method has been influenced by the work

of Holub et al. [166]. Following Holub’s method, the decide2label-algorithm estimates

the failure likelihood based on the current status of the automatic oracle (O).

The key concept in Holub’s method is to select themost informative unlabelled point(MIUP)

for labelling based on the current status of the classifier. Holub’s method considers the



53

data point with the minimum expected entropy (MEE) [166] as the MIUP. In finding

the data point with the MEE, Holub’s method estimates the look-ahead probability of

each class based on a committee of classifiers with hypothesized labels [166]. This is an

active learning method based on pool-based sampling [123]; i.e., it assumes that there is

a pool of unlabelled instances. In our setup, test cases are generated as a stream (one by

one) by mutational fuzzing [30]. Therefore, in the decide2label-algorithm, we convert

Holub’s pool-based sampling approach to a stream based sampling method.

The decide2label-algorithm sends test cases predicted as failing by the automatic

oracle being trained (O) to the human for labelling. If the given test case (t?) is actually

failing, human labelling of t? allows O to learn more about the failure. If t? is actually

a passing test case, it implies that O has not been trained correctly. In this case,

learn2fix rectifies O by human labelling of t? and using it in training.

If O predicts t? as passing, the decide2label-algorithm calculates the probability that

O predicts t? as failing. Intuitively, there is an equal probability of classifying a test

case into either class. learn2fix estimates the probability that O predicts t? as failing

one-step ahead. Following Holub’s look-ahead probability estimation method [166], the

decide2label-algorithm constructs a committee of automatic oracles (Line 7-16) for

this task.

In creating the oracle committee, first, the decide2label-algorithm generates a new

test case (t′?) by applying mutational fuzzing to t?. t
′
? is hypothetically labelled as pass-

ing (t′✓) (Line 9). Then, a new hypothetical oracle (O✓) is trained with the training

set T ∪ {t′✓} (Line 11, T : The initial training set of O). The same test case is hypo-

thetically labelled as failing (t′✗)(Line 10). Another hypothetical oracle (O✗) is trained

with the training set T ∪ {t′✗} (Line 12). The decide2label-algorithm generates two

(2) hypothetical oracles for a newly generated test case. Thus, in S fuzzing iterations,

a committee containing 2 × S automatic oracles is generated. Each hypothetical ora-

cle created by adding a hypothetically labelled test case to the initial training (T ) set

demonstrates a possible status of the automatic oracle (O) one step ahead. As each

newly generated test case (t?) is hypothetically labelled as both passing and failing

and contributing to two different hypothetical oracles, the oracle committee is, overall,

unbiased.
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t?

t’1= “Pass” t1 t2 t3 …….. tn

t’1= “Fail” t1 t2 t3 …….. tn

t’2= “Fail” t1 t2 t3 …….. tn

t’2= “Pass” t1 t2 t3 …….. tn

Human labelled (T)
Hypothetically

labelled

t’S= “Fail” t1 t2 t3 …….. tn

t’S= “Pass” t1 t2 t3 …….. tn

.

.

.

.

O1

O2

O2S

O3

O2S-1

O4

Oracle Committee

Figure 4.1: Calculating the failure probability via a committee of oracles

Finally, the unlabelled test case t? is presented to the oracle committee, and the number

of occurrences that t? is predicted as failing, i.e., fail votes, is counted. (Line 11-12).

As there are 2× S oracles in the committee, the probability of labelling t? as failing is

estimated by Equation 4.1 (Figure 4.1).

θ̂ =
fail votes

2× S
(4.1)

As the oracles in the committee are some possible future states of O, θ̂ is a look-ahead

estimate of the probability of failing. The decide2label-algorithm considers that test

cases with θ̂ ≥ 0.5 have a higher failure likelihood and sends them for human labelling

(Line 18). According to the oracle committee, if t? has a higher failure probability, it

implies that the automatic oracle (O) has not been trained adequately to identify the

failing test cases. Thus, labelling such test cases and using them in training rectify the

automatic oracle (O).

Algorithm 2 (decide2label) incrementally improves the automatic oracle that pre-

dicted everything as failing in the beginning. The automatic oracle (O) gets improved

as its capability to identify failing test cases (the minority class) is improved. As the or-

acle’s accuracy for failing inputs increases, failing test cases are selected more frequently

for human labelling. In this manner, the decide2label-algorithm addresses the class

imbalance problem.



55

Figure 4.2 demonstrates the overall workflow of learn2fix.
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Figure 4.2: Workflow of learn2fix

The components of learn2fix can be mapped to the oracle learning in architecture in

Figure 3.1 as in Table 4.1.

Test Generation Technique Mutational Fuzzing - Section 4.4.1

Active Learning Technique
Stream-based sampling with a
committee oracles - Section 4.4.3

Supervised Machine
Learning Algorithm

Binary classification algorithms
- Section 4.4.2

Table 4.1: Mapping of learn2fix’s components to the oracle learning architecture

4.5 Experimental Setup

We conducted several experiments to evaluate the performance of learn2fix. In these

experiments, we evaluated the following.

i. Oracle quality

ii. Human labelling effort

iii. The category of classifier representation most suitable for learn2fix: interpolation-

based or approximation-based,.
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For oracle quality, we evaluated how accurately the automatic test oracles can predict the

labels of test cases. Under human labelling effort, we assessed how learn2fix uses the

given limited number of queries in oracle learning. We selected a few classification algo-

rithms from the interpolation-based and approximation-based categories (Section 4.4.2).

Using those algorithms, we evaluated which category of classifier representation is most

suitable for learn2fix.

4.5.1 Experimental Subjects

To evaluate learn2fix, we selected 552 programs from Codeflaws [177] benchmark

according to the following criteria.

1. There should be a sufficiently large number of programs that are algorithmically

complex.

2. There should be a diverse set of real-world defects that cause functional bugs; i.e.,

the programs produce incorrect or unexpected output for certain inputs. There

should be one functional bug for each subject.

3. For each subject, there should be a golden version, i.e., a program that produces

the expected, correct output for an input. For a given input we simulate the

Human oracle (H) by comparing the subject’s (buggy program’s) output with its

golden version’s output. If both the outputs are different, the human label of the

test case is considered as failing (Figure 3.3).

4. For each subject, there should be a manually constructed and labelled test suite.

5. For each subject, there should be at least one failing test case in the human-labelled

test suite, i.e., a test input for which the buggy program and its golden version

produce different outputs. Otherwise, learn2fix cannot be started.

6. For each subject, there should be test inputs having a constant number of numeric

values. For each such test input, the program should produce a numeric output.

Otherwise, the classification algorithms cannot be applied to learn the automatic

oracle (O).
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We ignored IntroClass and ManyBugs benchmarks [178], as these do not satisfy our

selection criteria. ManyBugs contains programs taking complex and non-numeric inputs,

which violates our sixth criterion. The programs taking numeric inputs in IntroClass

have very simple functions (e.g. return the smallest of three numbers), which does not

satisfy the first criterion.

4.5.2 Setup and Evaluation

First, we selected a classification algorithm (Section 4.4.2) for learn2fix to train auto-

matic oracles with. For each program subject, we applied learn2fix selecting a random

failing test case from the human-labelled test suite. In oracle learning, we simulate the

human oracle (H) as in Figure 3.3. After the automatic oracle (O) is generated, we

applied it to predict the labels of the test cases in the human-labelled test suite.

For the experiments, we fixed the following values.

• Timeouts: We allocated 10 minutes for oracle learning (Algorithm 1)

• Committee size: We set the size of the oracle committee to 20 members (i.e.,

S = 10 in Algorithm 2).

• Maximum labelling effort: We set the maximum number of queries presented to

the human oracle (H) as 20. (i.e., L = 20 in Algorithm 1)

Comparing the labels predicted by the automatic oracle (O) with the actual labels of

the test cases, we measure the following to evaluate the oracle quality.

i. Accuracy (Equation 3.1)

ii. Conditional accuracy - failing (recall for failing test cases) (Equation 3.2)

iii. Conditional accuracy - passing (recall for passing test cases) (Equation 3.3)

iv. Precision - failing (Equation 3.4)

v. Precision - passing (Equation 3.5)
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We have identified that the labelled test suites of most selected subjects from Codeflaws

have many passing test cases and few failing test cases. Thus, the class imbalance

problem [17] affects the evaluation. For this reason, accuracy is not a good metric of

oracle quality. As an example, an oracle predicting everything as passing would give

90% accuracy for a test suite containing test cases that are 90% passing. Therefore,

we report accuracy, conditional accuracy-failing, conditional accuracy-passing, precision-

failing and precision-passing. Also, these metrics help to evaluate the effectiveness of the

techniques that learn2fix uses to deal with the class imbalance problem (Section 4.4.1

& Section 4.4.3).

One objective of learn2fix is to reduce the number of labelling queries presented to

the human while maximising the probability of human labelling of failing test cases. To

assess the success of the techniques used in learn2fix to achieve this objective, we

measure the following.

1. The proportion of generated tests that are labelled (Equation 4.2).

2. The proportion of failing tests that are labelled from the generated (Equation 4.3).

3. The probability to generate a failing test (Equation 4.4)

4. The probability to label a failing test (Equation 4.5).

Equation 4.4 indicates the probability of generating a failing test case in oracle learning.

This is also the probability that the human would find a failing test only by mutational

fuzzing and without learn2fix. We compare this with the probability of labelling a

failing test case (Equation 4.5). If the probability of labelling a failing test case is

greater than the probability of generating a failing test case, the human needs less

effort than usual to explore failing test cases. Equation 4.3 assesses the capability of

learn2fix to select failing test cases given by mutational fuzzing. By comparing this

with the proportion of generated tests that are labelled (Equation 4.2), we can identify

how effectively learn2fix utilizes the given query budget to explore failing tests.

Proportion of generated

tests labelled
=

Number of tests labelled

Number of tests generated
(4.2)
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Proportion of failing

tests labelled
=

Number of failing tests labelled

Number of failing tests generated
(4.3)

Probability of generating

a failing test case
=

Number of failing tests generated

Total number of tests generated
(4.4)

Probability of labelling

a failing test case
=

Number of labelled failing tests

Total number of labelled tests
(4.5)

To mitigate the impact of randomness and to gain statistical power for the experimental

results, we repeated each experiment 30 times for each subject.

4.5.3 Implementation

All the experiments were implemented in Python 3.7. We used the scikit-learn1 library

to implement decision tree, support vector machines, näıve bayes, AdaBoost and aritifical

neural network setups. INCAL has been implemented as a tool2, which is supported by

pywmi3, the latte4 model counting tool and the numpy5 scientific computing library.

4.6 Experimental Results and Discussion

To describe the oracle quality and human labelling effort, we use the results of learn2fix

under the decision tree algorithm. In determining the best category of classifier repre-

sentation, we use the results of all the classification algorithms in Section 4.4.2.

4.6.1 Oracle Quality

Figure 4.3 shows the distributions in overall accuracy, conditional accuracy - failing,

conditional accuracy - passing, precision-failing and precision - passing of the automatic

1https://scikit-learn.org
2https://github.com/ML-KULeuven/incal
3https://pypi.org/project/pywmi/
4https://www.math.ucdavis.edu/ latte/software.php
5https://numpy.org/
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oracles generated by learn2fix under the decision tree algorithm. For each subject,

we computed the average of these metrics over the 30 runs.
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Figure 4.3: learn2fix oracle quality under the decision tree algorithm

The automatic oracles trained by learn2fix are able to accurately predict the

labels of more than 89% of the manually labelled tests given by the benchmark of

the majority of subjects. Even though learn2fix saw only one failing test of the

bug in the beginning, the automatic oracle correctly identifies more than 80% of

the failing tests in most subjects. In addition, the precision and recall of passing

test cases are above 90% for the median subject.

For all the metrics, the automatic test oracles trained by learn2fix show higher median

values (> 75%). This indicates that even though the learning process begins with one

failing test case, the automatic oracles for most subjects do not bias forward failing or

passing test cases. Thus, the automatic oracles generated for the majority of subjects

can accurately distinguish the passing and failing test cases.

Result. learn2fix generates high-quality automatic test oracles that can accurately

identify passing and failing tests
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Figure 4.4: learn2fix human effort under decision tree algorithm

4.6.2 Human Labelling Effort

The boxplots in Figure 4.4(a) show the distributions of the proportion of generated tests

that are labelled (left) and the proportion of generated failing tests that are labelled

(right). Also, Figure 4.4(b) shows the distributions of the probability to generate a

failing test (left) and the probability to label a failing test (right).
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For the median subject, learn2fix sends less than half of the generated failing

test cases for human labelling. Also, learn2fix sends more than 75% of the

generated failing tests for human labelling (Figure 4.4(a)).

The median probability of labelling a failing test case (62.11%) is significantly

higher than the median probability to generate a failing test (22.70%) (Fig-

ure 4.4(b)).

According to Figure 4.4(b)-left, only 25% of the generated tests are failing for the median

subject. Thus, the human would not be able to label more failing tests by random

labelling. Nevertheless, the higher median probability of labelling failing tests (> 60%)

indicates that learn2fix significantly reduces the human effort to find a failing test case

(Figure 4.4(b)-right). Also, Figure 4.4(a) indicates that most of the generated failing

tests are sent for human labelling.

According to these results, the probability of generating failing test cases by mutational

fuzzing is not at a significant level. Nevertheless, the decide2label algorithm has the

ability to choose most of the generated failing tests by mutational fuzzing. As failing

tests are the minority class, this capability of learn2fix is advantageous to work with

the class imbalance problem [17].

Result. learn2fix significantly reduces the human effort compared with random la-

belling

4.6.3 Performance Under Different Classifier Representations

The boxplot in Figure 4.5 shows the distributions in the overall accuracy; Figure 4.6

distributions in the recall-failing (conditional accuracy - failing); Figure 4.7 distribu-

tions in the recall - passing (conditional accuracy - passing); Figure 4.8 distributions

in the precision -failing and Figure 4.9 distributions in the precision - passing in each

classification algorithm. Table 4.2 shows the mean and median values of each metric.

The boxplots in Figure 4.10 show the distributions in the metric used for assessing the

human labelling effort. Table 4.3 shows the mean and median values of each metric.

For each subject, we computed the average of these metrics over the 30 runs under each

classification algorithm.
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Figure 4.5: Overall accuracy under each classification algorithm

0%

25%

50%

75%

100%

INCAL DT ADB SVM NB MLP(20) MLP(20,5)

Classification Algorithm

Fa
ili

ng
−

R
ec

al
l

Figure 4.6: Recall-failing/conditional accuracy-failing under each classification algo-
rithm
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Figure 4.7: Recall-passing/conditional accuracy-passing under each classification al-
gorithm
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Figure 4.8: Precision-failing under each classification algorithm
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Figure 4.9: Precision-passing under each classification algorithm

Classification
Algorithm

Overall
Accuracy (%)

Recall
Failing (%)

Precision
Failing (%)

Recall
Passing (%)

Precision
Passing (%)

Mean Median Mean Median Mean Median Mean Median Mean Median

Interpolation-based

INCAL 80.74 81.68 71.68 76.65 59.30 58.56 79.29 84.93 82.80 92.09

Decision Tree 85.01 88.95 72.44 79.69 71.07 75.75 84.93 93.53 84.57 94.21

AdaBoost 85.38 89.34 70.64 77.05 74.02 79.01 85.87 95.31 85.25 94.10

Approximation-based

SVM 77.70 82.46 39.51 31.25 58.79 58.24 77.51 97.27 80.41 87.27

Näıve Bayes 79.25 83.04 63.82 65.63 66.12 68 80.34 92.12 81.46 89.39

MLP (20) 72.43 72.35 48.15 47.77 39.67 33.33 70.67 73.68 79.09 86.10

MLP (20,5) 72.03 72.07 47.68 46.88 39.08 31.96 70.81 74.53 77.56 85.43

Table 4.2: Mean and median of the oracle quality of learn2fix under different
classification algorithms

learn2fix trains better automatic oracles that identify test failures with the

interpolation-based classification algorithms than with the approximation-based

classification algorithms. The median conditional accuracy-failing (recall-failing)

is above 75% in these algorithms. The Decision tree and AdaBoost algorithms

generate the best automatic oracles with learn2fix.

The Interpolation-based approaches work better with learn2fix than the approximation-

based approaches. Both Decision Tree and AdaBoost are better than INCAL in terms of

oracle quality. According to the two-sided Wilcoxon test, the differences in the metrics
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Figure 4.10: Human effort under each classification algorithm

between decision tree and AdaBoost are statistically insignificant (p > 0.05).

In approximation-based approaches, only Näıve Bayes produces automatic oracles that

identify test failures with significant accuracy (> 60%) in most subjects. Even though

SVM, MLP (20) and MLP(20,5) show more than 70% median overall accuracy, their

median conditional accuracy - failing (recall - failing) is below 50%. According to the

two-sidedWilcoxon test, the differences in the metrics betweenMLP (20) andMLP(20,5)

are statistically insignificant (p > 0.05)
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Classification
Algorithm

Percentage of
generated tests
that are labelled

Percentage of
Failing tests

that are labelled

Probability to
generate

a failing test (%)

Probability to
label

a failing test (%)

Mean Median Mean Median Mean Median Mean Median

Interpolation-based

INCAL 36.92 31.09 64.13 70.26 30.20 21.55 48.08 47.92

Decision Tree 31.45 22.78 64.77 76.71 30.65 22.70 59.68 62.11

AdaBoost 29.64 18.1 62.42 71.70 30.60 22.97 59.13 61.63

Approximation-based

SVM 17.33 0.38 22.26 1.19 30.26 21.63 45.63 50.15

Näıve Bayes 17. 53 1.51 28.80 7.6 29.58 20.72 53.49 54.40

MLP(20) 33.90 23.71 45.21 42.08 30.36 21.72 39.97 34.53

MLP(20,5) 28.89 10.70 38.95 22.37 30.36 21.14 40.07 34.84

Table 4.3: Mean and median values of the human effort of learn2fix under different
classification algorithm

Under all the classification algorithms, learn2fix sends less than half (< 50%)

of the generated tests to the human in most subjects. The interpolation-based

approaches decision tree and AdaBoost show around 60% median probability of

labelling a failing test, which is approximately three times greater than finding a

failing test by random labelling. (Table 4.3)

In the interpolation-based classification algorithms, more than 70% of the generated

failing tests are sent to the human in most subjects. learn2fix shows the highest

median probability values for labelling a failing test under AdaBoost and decision tree

algorithms. According to the two-sided Wilcoxon test, the differences in the metrics

between AdaBoost and decision tree in the probability of labelling a failing test are

insignificant (p > 0.05).

Even though the approximation-based approaches send only less than half of the gen-

erated tests, the percentage of generated failing tests sent for human labelling is sig-

nificantly lower compared to the interpolation-based approaches. This result implies

that the decide2label-algorithm works better with interpolation-based classification

algorithms than approximation-based ones.

When considering both the human effort and oracle quality, the interpolation-based clas-

sification algorithms more effectively use the available human queries to improve the ora-

cle quality than the approximation-based approaches. Even though the approximation-

based approaches SVM and näıve bayes show around 50% median probabilities for
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labelling a failing test, these algorithms are not as capable as the interpolation-based

approaches in learning automatic oracles.

Result. learn2fix works better with interpolation-based classifier representation than

with approximation-based classifier representation. Moreover, learn2fix shows the best

performance with the decision tree and AdaBoost algorithms.

4.6.4 Discussion

Given a program with a semantic bug and a single failing test, learn2fix learns a bug

oracle as a classifier, which becomes the automatic oracle. The learnt automatic ora-

cle (O) expresses the condition under which the bug is exposed (i.e., failure condition

of the semantic bug) learn2fix improves the overall oracle quality by improving the

classifier’s ability to correctly identify failing tests, the minority class. For this purpose,

learn2fix maximises human labelling of failing tests in the learning process. The re-

sults of oracle quality (Section 4.6.1) and human labelling effort (Section 4.6.2) suggest

that learn2fix’s oracle learning strategy works for many real-world semantic bugs in

programs taking numeric inputs. The automatic oracles show more than 75% accuracy

in identifying both passing and failing tests for most subjects. Manually exploring the

failing tests of a semantic bug is a difficult task in programs taking numeric inputs.

learn2fix effectively addresses this issue via decide2label-algorithm. With the de-

cide2label-algorithm, the probability of finding a failing test is three times higher than

with random labelling.

In our experiments, we set a maximum limit (20) for the human labelling queries (Sec-

tion 4.5.2). Nevertheless, the automatic oracles are highly accurate for most subjects

(Section 4.6.1). This implies that learn2fix’s oracle learning strategy can maximise the

oracle quality under the given limited human queries. learn2fix achieves this capabil-

ity with the help of all its components (4.1). This ability of learn2fix is advantageous

when the human (user or the developer) is the only source to obtain training data.

The results in Section 4.6.3 suggest that interpolating binary classifiers produce better

automatic oracles than approximating binary classifiers with learn2fix. This implies
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that interpolating binary classifiers can better represent the failure condition of a se-

mantic bug. Using mutational fuzzing, learn2fix generates new test cases in the neigh-

bourhood of the given failing test case. According to this result, finding a model that

exactly fits the given failing test case and its neighbourhood test cases (i.e., interpolating

a model) is the best strategy for learning an automatic oracle for the bug.

The results of Section 4.6.1 and Section 4.6.2 indicate that the ability of the classification

algorithm to correctly capture the failure condition of a semantic bug determines:

i. The oracle quality, and

ii. The number of failing test cases sent for human labelling

If the classification algorithm can accurately capture the failure condition, the automatic

oracle (O) becomes accurate in identifying the failing test cases of the bug. As failing

test cases are the minority class (Section 4.3), their accurate identification leads to higher

oracle quality. Also, a classification algorithm capable of accurately capturing the failure

condition sends a greater percentage of failing inputs generated in the learning process

for human labelling.

INCAL produces classifiers as SMT constraints [129]. Also, a decision tree represents

a set of constraints as a tree structure. AdaBoost is an ensemble version of decision

trees; i.e., it combines several single-node decision trees to develop a classifier [179]. The

median overall accuracy and conditional accuracy-failing of these algorithms are more

than 70% (Table 4.2). Based on the statistical significance of the metrics, decision tree

and AdaBoost perform equally well with learn2fix and perform better than INCAL.

According to the results, the overall accuracy, precision-failing and recall-passing of

INCAL are significantly lower than those of these two algorithms. As decision tree and

AdaBoost algorithms generate classifiers as decision trees, we conclude that decision tree

representation is the best representation for the failure condition of a semantic bug in

programs taking numeric inputs.

The lower conditional accuracy-failing of SVM, MLP(20) and MLP(20,5) implies that

these algorithms are incapable of correctly learning the failure condition of a semantic

bug. Support vector machines learn a linear discriminate function to separate data into

classes [180]. Artificial neural networks infer a set of functions for the same task [181].
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Finding a linear function or a set of functions to divide the passing and failing test cases

of a semantic bug can be difficult. The reason is that the distributions of failing test

cases of many semantic bugs are not continuous.

Näıve bayes has moderate performance according to the results in Table 4.2. This algo-

rithm predicts the label of a data point based on the probability distribution of training

data over classes. Näıve bayes considers the features of the training data in calculating

the probability distribution [182]. The results (Table 4.2) indicate that this approach

can accurately learn the failure condition of a semantic bug to a certain extent (median

conditional accuracy-failing ≥ 50%); however, it is not effective as using constraints.

Under all the classification algorithms, the human has to label less than 50% of the

generated test cases in the majority of the subjects (Figure 4.10(a) - left). However,

only decision Tree, AdaBoost and INCAL maximise human labelling of failing test cases

from generated failing test cases (Figure 4.10(a) - right). This occurs because these

algorithms improve the accuracy of the automatic oracle (O) as more failing test cases

are given. This property is not seen in SVM, MLP(20) and MLP(20,5); hence, the lower

conditional accuracy-failing (Table 4.2) and lower percentage of labelled failing tests

from the generated (Table 4.3). According to the results, learn2fix obtains over 60%

median conditional accuracy-failing in näıve bayes, even though a very low percentage

(7.6% ) of generated failing tests are labelled. This implies that näıve bayes is able to

learn the failure condition of a semantic bug using fewer failing test cases with reasonable

(> 50%) accuracy. However, it cannot improve the automatic oracle by obtaining more

failing tests.

In all these algorithms, the median probability of labelling a failing test is higher than

the median probability of generating a failing test (Table 4.3). This result indicates that

Algorithm 2 in learn2fix maximises the probability of labelling failing tests with all of

the classification algorithms. Improving this probability reduces the difficulty of finding

the failing tests of a semantic bug.

learn2fix uses the techniques in Sections 4.4.1 and 4.4.3 to train automatic test oracles,

dealing with the class imbalance problem. The key objective of these techniques is

to improve the oracle’s accuracy by maximising human labelling of failing test cases.

According to the results, Algorithm 2 (decide2label) performs this task with all of

the classification algorithms. However, only decision Tree, AdaBoost and INCAL can
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produce high-quality automatic test oracles by labelling most failing test cases generated

in the learning process. Decision tree and AdaBoost are the best among these algorithms.

4.7 Adversarial Learning to Improve Test Oracle Quality

We observed that learn2fix is capable of maximising the oracle quality under the

given limited human queries (Section 4.6.4). This is advantageous, as the training data

for oracle learning is obtained from the human. To enhance the user-friendliness of

learn2fix, we explored methods for improving further the oracle quality under limited

labelling queries. Adversarial machine learning [183] is a branch of machine learning that

identifies the data misclassified by a machine learning model and uses those to improve

the model. learn2fix already has a method of maximising the human labelling of failing

tests. We expected further to improve the oracle quality of learn2fix by combining

the capabilities of adversarial machine learning with our learning setup. To the best of

our knowledge, adversarial machine learning has not been applied to learn test oracles.

Adversarial learning setups have been applied to improve fuzzing. The works of Yue et

al. [184] and Woo et al. [185] are some examples. These two approaches use multi-armed

bandit (MAB) algorithms [186] to implement the adversarial learning environments.

EcoFuzz by Yue et al. [184] focuses on improving code coverage in greybox fuzzing [30].

Woo et al. [185] concentrate on increasing the number of bugs explored in a black-

box fuzzing campaign. EcoFuzz considers the seeds as the arms of the multi-armed

bandit setup. The number of seeds increases as the fuzzing process proceeds. EcoFuzz

presents a multi-armed bandit approach to facilitate the exploitation and exploration in

a setup where the number of seeds increases. This approach prioritizes the unfuzzed

(newly added) seeds over already fuzzed seeds in the mutations. The reason is that it is

impossible to explore the ability to reveal new paths of an unfuzzed seed without fuzzing

it. Also, it assigns a reward to each fuzzed seed based on the number of new paths it

has revealed to maintain a prioritization order among already fuzzed seeds.

Mutational fuzzing is the test generation component in learn2fix (Table 4.1). A seed

for the mutational fuzzing is randomly selected from the labelled failing tests (Algo-

rithms 1 - Line 5 & 6). Following EcoFuzz [184], we introduced a biased seed selection
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method to mutational fuzzing to generate test cases misclassified by the automatic or-

acle (O) being trained. By human-labelling and using such test cases in training, we

expected to achieve higher oracle quality under limited labelling queries. In learn2fix,

new seeds are added as the learning process proceeds. Hence, following EcoFuzz, we

developed the two adversarial multi-armed bandit algorithms to achieve higher oracle

quality under limited labelling queries. In these two algorithms, mutational fuzzer and

the automatic oracle being trained are the two adversaries.

ADV-1. Average-sore based multi-armed bandit algorithm (Algorithm 4)

ADV-2. Page-Hinkley test based dynamic multi-armed bandit algorithm (Algorithm 5)

There are static and dynamic multi-armed bandit algorithms [186, 187]. Both types

of multi-armed bandit algorithms can be applied to adversarial learning. In a static

multi-armed bandit environment, the rewards associated with arms keep updating, and

no resets happen in the middle. In contrast, a dynamic multi-armed bandit algorithm

resets the rewards in the middle of the learning process. We developed ADV-1. as a

static MAB algorithm and ADV-2. as a dynamic MAB algorithm to study which type

of MAB is suitable for our setup.

Each adversarial multi-armed bandit algorithm has a baised select function and up-

date score function. According to these two algorithms, we changed the learn2fix

oracle learning algorithm as in Algorithm 3. Each test case in T✗ has a score. The

baised select function (Line 5) selects a test case as a seed for the mutational based

on the scores. Following EcoFuzz [184], it prioritizes newly added test cases in ADV-

1. and ADV-2.. The objective of the decide2label function is to maximise the

human-labelling of failing tests. If the decide2label function returns true for a pass-

ing test case, it signals that the automatic oracle (O) has not been trained correctly

(Section 4.4.3). Thus, the passing test case reveals an error of O. In this case, the seed

failing test (f ′) case generated this passing test case receives a reward (Line 13), as it

(f ′) reveals an error of O. The update score function updates the score of f ′.

Algorithm 4 shows the process of ADV-1.. This is a static multi-armed bandit algo-

rithm. It’s biased select function performs the seed selection. As described before,

if there is any failing test case in T✗ that has not been fuzzed, it is selected as the
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seed for the mutational fuzzing (Line 6-8). Unless, the biased select function calcu-

lates the average score (Wf ) each failing test case in T✗ (Line 10). This multi-armed

bandit algorithm provides more opportunities to the exploration than epsilon-greedy

algorithm [186]. Firstly, a newly added failing test case to T✗ is selected in the next

iteration for the mutation. Also, Wf decreases as f ’s ability to generate passing test

cases for which the decide2label function returns true. The update score function

updates the score (Sf ) associated with the selected seed failing test case. If reward = 1,

Sf is increased; otherwise, no change happens.

Algorithm 5 shows the process of ADV-2.. This is a dynamic multi-armed bandit

algorithm that has been influenced by the work of Luis et al. [187]. Luis’s work develops

a dynamic multi-armed bandit (D-MAB) environment by combining the upper confidence

bound(UCB)-I [186] algorithm with the statistical test called Page-Hinkley Test (PH-

test) [188]. As in ADV-1., the biased select function of ADV-2. prioritizes the

unfuzzed failing test cases in T✗ as the seed for the mutational fuzzing (Line 6-7). If each

failing test case in T✗ has been fuzzed at least once, the biased select method applies

the UCB-I algorithm. For each f ∈ T✗, UCB-I algorithm calculates d = r̂f +
√

2 log
∑

k nk

nf

(Line 9). The failing test case with the maximum df is selected as the seed for mutational

fuzzing. In the update score function,mf andMf are the parameters of PH-test [188].

λ is a pre-defined threshold. If Mf − mf > λ, the nf , r̂f ,mf and Mf of each failing

test case in T✗ are set to zero (Line 19-26). This is a resetting of rewards in all the

seed-failing tests. This PH-test based part facilitates the dynamic multi-armed bandit

environment.

As mentioned before, Algorithm 3 rewards the seed failing test cases that generate pass-

ing test cases for which decide2label function returns true. As the biased select

function selects such seeds more frequently, Algorithm 3 maximises the generation of

passing test cases having the following properties.

P-i. The current automatic oracle (O) predicts as failing

P-ii. Having higher failure likelihood (θ̂ ≥ 0.5) according to the classifier committee

in Algorithm 2)

These passing test cases signal the weakness of the oracle being trained (O). Hence,

human-labelling and using such passing test cases in training can rectify the automatic
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oracle O. In this manner, Algorithm 3 maintains the adversarial learning environment

in oracle learning.

Algorithm 3 learn2fix Active Oracle Learning with Adversarial Learning

Input: Buggy program (P), Failing test case (f = ⟨⃗i, o⟩)
Input: Human oracle (H), Maximum labelling queries (L)
1: Failing test cases T✗ ← {f}
2: Labelled test cases T ← {f}
3: Automatic Oracle O ← train classifier(T )
4: while (|T | < L) and not timed out do
5: Failing test case f

′ ← biased select(T✗)
6: Generate test case t← mutate fuzz(f

′
)

7: if decide2label(t,O) = true then
8: Human label h = H(t)
9: if h = fail then

10: reward = 0
11: Failing test cases T✗ ← T✗ ∪ {t}
12: else
13: reward = 1
14: end if
15: update score(f

′
, reward)

16: Labelled test cases T ← T ∪ {t}
17: Automatic Oracle O ← train classifier(T )
18: end if
19: end while

4.7.1 Experimental Setup and Evaluation

To evaluate the performance of ADV-1. and ADV-2., we repeated the same set of

experiments used to explore oracle quality and human labelling effort in Section 4.5.

As decision tree was one of the algorithms with the best performance in terms of oracle

quality and human labelling effort (Section 4.6.3), we selected it as the classification

algorithm in learn2fix in these experiments. Also, the same set of subjects from

Codeflaws [177] was used. The rest of the setup and the evaluation metrics are similar

to Section 4.5.2.

In ADV-2. (Algorithm 5), we set λ = 5 and δ = 0.15 based on the findings of [187].
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Algorithm 4 Average-score based multi-armed bandit algorithm

1: T✗ : Failing test cases
2: Function biased select (T✗)
3: // Sf : Score of f
4: // Nf : Number of times t has been selected for mutations
5: for f ∈ T✗ do
6: if Nf = 0 then
7: Nf ← Nf + 1
8: return f
9: else

10: Wf ←
Sf

Nf

11: end if
12: end for
13: i = argmax

f∈T✗

(Wf )

14: Nfi ← Nfi + 1
15: return fi
16: EndFuction

17: Function update score(f, reward)
18: Sf = Sf + reward
19: EndFunction

4.7.2 Experimental Results and Discussion

We compare the oracle quality and human labelling effort of the original learn2fix

(learn2fix-DCT) and the multi-armed bandit algorithms (ADV-1. and ADV-2.).

4.7.2.1 Oracle Quality

Table 4.4 compares the results of oracle quality between the original learn2fix (learn2fix-

DCT) and the multi-armed bandit algorithms (ADV-1. and ADV-2.).

Algorithm

Overall
Accuracy (%)

Recall
Failing (%)

Precision
Failing (%)

Recall
Passing (%)

Precision
Passing (%)

Mean Median Mean Median Mean Median Mean Median Mean Median

learn2fix
- DCT

85.01 88.95 72.44 79.69 71.07 75.75 84.93 93.53 84.57 94.21

ADV-1. 84.17 87.82 73.08 82.51 69.33 72.68 82.97 92.31 84.98 92.31

ADV-2. 84.22 87.72 72.91 81.35 69.06 73.55 83.29 92.17 84.70 94.20

Table 4.4: Oracle quality of learn2fix with the multi-armed bandit algorithms
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Algorithm 5 Page-Hinkley Test Based Dynamic Multi-Armed Bandit Algorithm

1: T✗ : Failing test cases
2: Function biased select (T✗)
3: // df : Score of f
4: // nf : Number of times f has been selected for mutations
5: for f ∈ T✗ do
6: if nf = 0 then
7: return f
8: end if
9: df ← r̂f +

√
2 log

∑
k nk

nf

10: end for
11: i = argmax

f∈T✗

(df )

12: return fi
13: EndFuction

14: Function update score(f, reward)
15: r̂f ← 1

nf+1(nf r̂f + reward)
16: nf ← nf + 1
17: mf ← mf + (r̂f − reward+ δ)
18: Mf ← max (Mf ,mf )
19: if Mf −mf > λ then
20: for ti ∈ T✗ do
21: nf ← 0
22: r̂f ← 0
23: mf ← 0
24: Mf ← 0
25: end for
26: end if
27: EndFunction

According to Table 4.4, slight changes can be seen in all the metrics between the

multi-armed bandit algorithms and learn2fix-DCT. According to the two-sided

Wilcoxon test, these differences are statistically insignificant (p > 0.05).

Moreover, slight differences can be seen in all the metrics between the multi-armed

bandit algorithms. The two-sided Wilcoxon test reveals that the differences are also

statistically insignificant (p > 0.05).

Result. There is no evidence that ADV-1. or ADV-2. improves the oracle quality

under the limited human queries.
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4.7.2.2 Human Effort

Table 4.5 compares the results of human effort between the original learn2fix (learn2fix-

DCT) and the multi-armed bandit algorithms (ADV-1. and ADV-2.).

Algorithm

Percentage of
generated tests

labelled

Percentage of
failing tests
labelled

Probability to
generate

a failing test (%)

Probability to
label

a failing test (%)

Mean Median Mean Median Mean Median Mean Median

learn2fix
- DCT

31.45 22.78 64.77 76.71 30.65 22.70 59.68 62.11

ADV-1. 31.83 21.36 63.74 75.38 31.47 22.40 60.11 62.86

ADV-2. 34.08 25.69 66.93 79.11 32.80 25.08 61.29 64.69

Table 4.5: Human effort of learn2fix with the multi-armed bandit algorithms

According to Table 4.5, slight differences can be seen in all the metrics between

the multi-armed bandit algorithms and learn2fix-DCT. However, the two-sided

Wilcoxon test suggests that these differences are statistically insignificant (p >

0.05).

The two-sided Wilcoxon test further shows that the differences between the two multi-

armed bandit algorithms in all the metrics are statistically insignificant (p > 0.05).

Result. There is no evidence that ADV-1. or ADV-2. further reduces the human

labelling effort

4.7.2.3 Discussion

The experimental results provide no evidence that either ADV-1. or ADV-2. improves

the oracle quality. Also, none of these algorithms reduces the human labelling effort.

The slight changes in the metrics are due to the randomness; i.e., they are statistically

insignificant.

ADV-1. and ADV-2. use biased seed selection methods instead of random seed

selection in learn2fix. The results provide no evidence that these biased selection

methods improve the probability of labelling failing tests. Thus, the adversarial learning

environment does not reduce the human effort associated with the learning process.
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4.8 Culprit Constraint-based Approach to Improving Test

Oracle Quality

In learn2fix and the approaches used in Section 4.7, we consider the SUT (buggy

program) as a “black-box”. As the next step, we explored the applicability of using

white-box testing [30] concepts to improve oracle quality. In white-box concepts, some

information from the interior of the program is taken into consideration.

Culprit Constraint [189] is a branch condition that leads to a failure. Thus, a culprit

constraint can explain the reason for a failing test. Also, it can assist learn2fix in

learning the failure condition of the bug in oracle learning. The work of Pham et al. [189]

obtains culprit constraints by comparing the path conditions of passing and failing test

cases. A path condition is a logical formula that consists of branch conditions connected

with conjunctions (∧).

Definition 4.1 (Culprit Constraint). Assume that the path condition of the test case

t is ψt, and the path condition of the failing test case f is:

ψf = b1 ∧ b2 ∧ . . . bi ∧ . . . bn

Also, Π is the set of all passing path conditions. The branch condition bi is the cul-

prit constraint if and only if i − 1 is the maximum value of j (0 ≤ j < n) such that

prefix(j, ψf ) = prefix(j, ψp) for all p ∈ Π.

We identified that a culprit constraint of a buggy program reveals some information

about the failure condition of the semantic bug, which could be difficult to learn from test

cases with a classification algorithm. In addition, we observed the following properties

of culprit constraints related to semantic bugs.

i. There can be more than one culprit constraint for a semantic bug.

ii. There can be both passing and failing test cases that satisfy a culprit constraint.

Considering these facts, we developed Algorithm 6.
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Algorithm 6 Culprit-Constraint based oracle learning

Input: Path conditions passing tests (ΦP ), Path conditions failing tests (ΦF ).
Input: Labelled Tests (T )
1: C = get culprit constraints(ΦP ,ΦF )
2: Test case groups G← ∅
3: for c ∈ C do
4: gc ← ∅
5: for t ∈ T do
6: if isSatisfy(c, t) then
7: gc ← gc ∪ {t}
8: T ← T \ {t}
9: end if

10: end for
11: G← G ∪ {gc}
12: end for
13: if T ̸= ∅ then
14: G0 = {T}
15: G← G ∪G0

16: end if
17: Oracle groups G ← ∅
18: for g ∈ G do
19: O ← train classifier(g)
20: G ← G ∪ O
21: end for

4.8.1 Methodology

Algorithm 6 collects the path constraints of all the human labelled test cases. These path

constraints contain only the inputs of the buggy program. At the end of Algorithm 1,

Algorithm 6 obtains culprit constraints, following the method of [189]. Next, for each

culprit constraint, Algorithm 6 finds test cases satisfying it from T and creates a group

(Line 7). If there are test cases not satisfying any culprit-constraint in C, Algorithm 6

creates another group from these test cases (Line 13-15). Finally, we train a classifier

for each group in G (Line 19-20). Thus, G contains a classifier (an automatic oracle) for

each culprit constraint in C. Each culprit constraint acts as a top-level constraint to the

classifier.

Assume that classifier Oi corresponds to the culprit constraint ci (Oi ∈ G and ci ∈ C).

Also, if there are test cases that do not satisfy any culprit constraint, O′ is the classifier

trained with them (G0).

• C = {c1, c2, . . . , cn}
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• G = {O1,O2, . . . ,On,O′}

This new group of classifiers predicts the label of a test case (t) as follows.

• ∃i ∈ 1, . . . , n : (isSatisfy(ci, t) ∧ Oi(t) = Failing) ∨ (O′(t) = Failing) : Failing

• ∀i ∈ 1, . . . , n : ¬(isSatisfy(ci, t) ∧ Oi(t) = Failing) ∧ (O′(t) = Passing) : Passing

4.8.2 Experimental Setup and Evaluation

To evaluate this white-box approach, we repeated only the experiments related to oracle

quality in Section 4.5. The reason is that Algorithm 6 changes the classifier at the end

of oracle learning and thus does not affect Algorithm 2 (decide2label). Therefore,

Algorithm 6 does not affect the human labelling effort.

In these experiments, we chose decision tree as the classification algorithm of learn2fix,

as it was one of the best performing classification algorithm in terms of oracle quality

and human labelling effort (Section 4.6.3). Also, we selected 100 subjects from Code-

flaws [177] satisfying the criteria in Section 4.5.1. We had to reduce the number of

subjects due to certain technical limitations and because culprit constraints were not

generated in some subjects. The rest of the setup and the evaluation metrics are similar

to Section 4.5.2.

4.8.3 Experimental Results and Discussion

4.8.3.1 Oracle Quality

Table 4.6 compares the results of oracle quality between the original learn2fix (learn2fix-

DCT) and the culprit-constraint based approach (learn2fix culprit-constraint)

precision-failing and recall-passing decrease with the culprit-constraint-based ap-

proach. According to the one-sidedWilcoxon Test, these decreases are statistically

significant (p < 0.05), while the variations in the other metrics are not.
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Algorithm

Overall
Accuracy (%)

Recall
Failing (%)

Precision
Failing (%)

Recall
Passing (%)

Precision
Passing (%)

Mean Median Mean Median Mean Median Mean Median Mean Median

learn2fix
- DCT

84.77 87.49 66.17 69.01 66.92 63.81 88.23 94.52 88.11 95.42

learn2fix
culprit-constraint

83.11 86.07 71.58 76.89 57.98 53.19 84.24 89.75 89.18 96.20

Table 4.6: Oracle quality of learn2fix with the culprit constraint-based approach

The significant decreases in precision-failing and recall-passing indicate that the auto-

matic oracles given by the culprit-constraint-based approach tend to incorrectly predict

passing tests as failing.

Result. The experimental results provide no evidence that the culprit constraint-based

approach improves the oracle quality under the limited human queries.

4.8.3.2 Discussion

According to the results, the culprit-constraint-based modification reduces the ability of

automatic oracles to correctly identify passing tests. The key reason is that some culprit

constraints do not correctly describe the failing test case, and no passing test cases are

found in the learning process to prove this. For this reason, the test cases satisfying

such culprit constraints are incorrectly predicted as failing.

In the experiments, we found that culprit constraints were not generated under some

semantic bugs, as passing and failing tests follow the same path. We excluded such pro-

gram subjects in these experiments. However, not generating culprit constraints hinders

the generalizability of this approach. Also, all of the passing path conditions should be

explored to accurately derive the culprit constraints. However, given the limited number

of test cases, exploring all the passing path conditions might be impossible.

4.9 Extending LEARN2FIX for Other Unstructured In-

puts

In extending learn2fix to other unstructured inputs, the main concern is the domain

of the targeted inputs. The classification algorithm (Section 4.4.2) to train automatic
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oracles should be compatible with the domain. Also, the mutational fuzzing component

(Section 4.4.1) should be adjusted to generate the valid inputs with respect to the

domain.

As described in Section 4.1, numeric inputs are the widely used unstructured inputs in

computer programs. Therefore, learn2fix can be applied to a large range of programs

that take unstructured inputs to generate automatic test oracles.

4.10 Conclusions

The main conclusions of the experiments with learn2fix can be summarized as follows.

1. Oracle Quality and Human Labelling Effort

• learn2fix produces high-quality automatic test oracles under a limited num-

ber of human queries.

• learn2fix maximises the human labelling of failing tests in the learning

process.

2. Performance under different categories of classifier representations

• learn2fix performs better with interpolating binary classifiers than approx-

imating binary classifiers.

3. Best representation for the failure condition of a semantic bug

• Decision tree is the best classifier representation. According to the results,

classification algorithms producing classifiers as one or more decision trees

lead to high-quality automatic test oracles.

4. Adversarial learning and culprit-constraint-based approaches

• The experimental results provide no evidence that these approaches improve

the oracle quality under limited human queries.

learn2fix (without adversarial learning and culprit-constraint-based modification) is

able to generate high-quality automatic test oracles for semantic bugs in programs taking

numeric inputs. This process systematically interacts with the human in the learning
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process. learn2fix can be extended as an oracle learning framework for unstructured

inputs. Therefore, learn2fix can answer to RQ.1. Also, it is a contribution under

C.1.



Chapter 5

Learning Automatic Test Oracles

for Structured Inputs

This chapter explores an answer to RQ.2 by developing an oracle learning technique for

semantic bugs in programs taking structured inputs. String inputs instantiate structured

inputs. Therefore, we present an approach called grammar2fix to learn automatic

oracles for semantic bugs in string processing programs. Beginning from a single failing

input, grammar2fix infers a general condition that a string input should satisfy to

expose the bug. This condition is expressed as a regular grammar [142]. When this

grammar is used as an automatic oracle, the test inputs adhering to the grammar are

predicted as failing ; otherwise, they are passing. We name these automatic oracles

grammar oracles.

5.1 Structured Inputs

A structured input is associated with an underlying structure. The structure determines

the validity of a given input. Usually, this kind of structure contains some basic elements

that constitute the inputs. These elements are the fundamentals of the structure’s

definition. Unlike in unstructured inputs, a domain is unnecessary to determine the

validity of structured inputs. The structure can be independently used to determine the

validity of an input. This category of inputs is used in computer programs.

84
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Computer programs and file formats are examples of structured program input types.

A valid input of either type follows certain syntactic rules that define its structure. For

instance, a valid computer program follows a set of rules defined by a programming

language. The programming language defines the syntactic rules that a program should

conform. String inputs are the most widely used structured inputs in programs. Email

addresses, bank account numbers and phone numbers are strings that follow specific

structures. Formal grammar can be applied to explain such a structure. For example,

the regular expression [142] “[a-z0-9]+ domain.com” describes the structure of the

email addresses “abc@domain.com”, “oracle112@domain.com”, etc. ([a-z0-9]+ : One

or more alpha-numeric characters).

Unlike numeric inputs, the pattern of a group structured inputs cannot be explained

based on a set of constraints defined on a domain. Hence, the technique introduced in

Chapter 4 (learn2fix) does not work for learning automatic oracles from structured

inputs.

5.2 Motivation

As learn2fix does not support structured inputs, we focus on developing a different

oracle learning framework for semantic bugs in programs taking structured inputs. We

select string inputs, as those are widely used in programs.

We demonstrate the challenge of learning automatic oracles for string processing pro-

grams using the buggy program in Listing 5.1. This program has been written to count

the vowels of a given string (‘A’,‘E’,‘I’,‘O’,‘U’,‘a’,‘e’,‘i’,‘o’,‘u’).

This program has a bug in Line 3. The list vowels does not contain the vowel ‘a’. Thus,

the program does not count the ‘a’s in a string. The program returns incorrect outputs

for all strings containing ‘a’s, which is a semantic bug.
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1 def find_vowel_count(input_str):

2 n_vowels =0

3 vowels =[’A’,’E’,’e’,’I’,’i’,’O’,’o’,’U’,’u’] #Bug - no ‘a’

4 for c in input_str:

5 if( c in vowels ):

6 n_vowels +=1

7 return n_vowels

Listing 5.1: A Buggy Python program for counting the vowels of a string

Assume that a user finds that this program fails under the input “coverage”. This string

input has four vowels; however, the program returns a vowel count of three, as it does not

count ‘a’s. With only this failing input and without program analysis, it is challenging to

identify why the program fails. Similarly, a single failing string is insufficient to identify

and fix the bug automatically. Similar to programs taking numeric inputs (Section 4.2),

more passing and failing inputs are required to successfully execute automated program

repair (APR) and debugging techniques with string processing programs. Finding more

passing and failing inputs is challenging, as this is a semantic bug and only a human can

determine whether a test is passing or failing. Like in programs taking numeric inputs,

developing an automatic test oracle for this buggy program can overcome this difficulty.

In numeric program inputs, classification algorithms can be applied to successfully learn

the failure condition of a semantic bug. However, these algorithms cannot be applied

to non-numeric data. Therefore, we need to use a different approach from classification

algorithms to train automatic oracles for semantic bugs in string processing programs.

Without relying on any internal information of the buggy program, the failure condition

of a semantic bug can be given as a pattern describing the failing inputs. As an example,

the failure condition of Listing 5.1 can be expressed as “The inputs containing ‘a’ are

failing”. Such a pattern can be easily used to generate more passing and failing inputs

of the bug. Moreover, the nature of the bug can be studied by learning the pattern of

the failing inputs. Based on these facts, a pattern describing failing inputs is the best

representation for the failure condition of a semantic bug in a string processing program.

Therefore, such a pattern is most suitable as an automatic oracle for the bug.

The pattern of a set of strings can be expressed as a formal grammar [137]. Thus, a

formal grammar describing the pattern of failing inputs can be used an automatic oracle
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for the bug. Therefore, we focus on grammar inference techniques to learn automatic

oracles for semantic bugs in string processing programs based on passing and failing

inputs. In developing this technique, we assume that a string processing program can

accept almost any string (Similar to Listing 5.1).

5.3 Background

Strings or character sequences are another widely used type of program input. Usually,

string processing programs accept almost any string (e.g., Listing 5.1). For a semantic

bug in this category of programs, our objective is to develop an automatic test oracle

as a grammar describing the pattern of the failing inputs. This grammar explains the

failure condition of the bug in terms of the program inputs. Similar to the approach in

Chapter 4, we assume that there are one failing input of the bug and the human (the

user or the developer) to query the label of a test case.

In Chapter 4, we identified some constraint learning approaches for numeric inputs (e.g.

INCAL [129]). However, to the best of our knowledge, there are no automated constraint

learning approaches for strings, even though methods to solve string constraints have

been discovered (e.g. Z3-str [190]). This is a motivation for focusing on grammar

inference techniques in this oracle learning problem.

Similar to numeric inputs, one failing string input of the bug is insufficient to identify

the reason behind the failure. Specific to string inputs, this task can be difficult, even

when there are more randomly generated failing inputs. We identified several reasons

for this difficulty.

Firstly, a string input can be interpreted in multiple ways. Thus, a failing string input

could have multiple reasonable explanations for its failure. As an example, related to

Listing 5.1, the input “coverage” might fail because:

i. It contains eight (8) characters.

ii. It starts with the character ‘c’.

iii. It ends with the character ‘e’. etc.
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Secondly, a failing string input may contain character sequences that are optional to

expose the bug. Removing such character sequences does not convert the failing input

to a passing input. As an example, in the failing input “coverage” of Listing 5.1, the

characters except ‘a’ are optional to expose the bug. Due to this reason, many semantic

bugs in string processing programs have infinite failing inputs. Listing 5.1 is an example

of such a buggy program, as there are infinite strings containing ‘a’. Thus, the class

imbalance problem [17] is not a critical consideration in string processing programs.

The difficulties described above make it challenging to infer a grammar describing the

pattern of the failing inputs of a semantic bug. To address these issues, one strategy is

to find the root cause of the failure first and guide the grammar inference process based

on how the root cause appears in the failing inputs. This is a kind of zoom in & zoom

out strategy [191].

Delta Debugging Minimization(ddmin) [77] is an algorithm applied to explore the root

cause of a failure. Iterative delta debugging [95] and hierarchical delta debugging [96]

are variants of this algorithm. ddmin minimizes the given failing input to the smallest

input inducing the failure. New passing and failing inputs are intermediately generated

in the minimization process. Thus, ddmin is suitable for our purpose.

Several algorithms have been proposed to infer grammar from examples. Regular Posi-

tive and Negative Inference (RPNI) [140], GOLD [141] algorithm and L∗ [161] are some

regular grammar inference algorithms. The Inductive CYK [143] is a context free gram-

mar inference algorithm. Given a set of positive and negative examples, these algorithms

infer a grammar that accepts the positive examples and rejects the negative ones. In

addition to the examples, the alphabet of the target grammar should be predetermined

in these algorithms. As the alphabet gets larger, the number of examples required for

accurate grammar inference significantly increases. Similarly, more queries have to be

sent to the oracle with active grammar inference algorithms (e.g., L∗). This is a sig-

nificant limitation in applying these existing approaches to our problem. The reason

is that the failing inputs of many semantic bugs in string processing programs have a

large alphabet; therefore, a large number of examples should be human-labelled when

inferring grammar by these approaches. This limitation is an important consideration

in this oracle learning problem.
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ddset by Gopinath et al. [192] is an approach that explores the grammar of failing

inputs, which is consistent with the objective of this chapter. However, ddset assumes

that the input grammar, i.e., the structure of valid program inputs, has been given.

Usually, a program that processes strings accepts almost any string (e.g. program in

Listing 5.1). The works of Baldoni et al. [175] and Bendrissou et al. [193] suggest that

exploring the input grammar of such a program is challenging. This fact makes ddset

unsuitable for our task. Therefore, we concentrate on an oracle learning technique that

is independent of the input grammar of a buggy program.

5.4 Methodology

With the buggy program (P), grammar2fix assumes that the following has been given.

1. One failing string input of the bug (f)

2. The human (H) to answer whether a test is passing or failing

grammar2fix follows a “zooming in and zooming out” approach to infer a grammar

describing the pattern of the failing inputs. This approach has been applied in various

domains, including research on decision-making and organizational studies [191]. The

four main steps of grammar2fix are as follows.

1. Minimise the given failing input (f) to the smallest failing input using Delta De-

bugging Minimisation [77].

2. Grammar Inference, which infers a grammar from the test inputs generated in the

delta debugging minimisation (Step 1).

3. Grammar Generalization, which generalises the grammar using additional failing

and passing inputs.

4. Grammar Extension, which extends the grammar created after Step 3 by finding

more failing inputs through mutating the given failing input (f).

The first two steps zoom into the root cause of the failure and generate a first-level

grammar. This grammar could be overfitting to a subset of failing inputs. Thus, the last
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two steps zoom out by applying generalization and extension steps to avoid overfitting.

These two steps involve some heuristics.

From active learning perspective, Step 1 (delta debugging minimization) and 3 (grammar

generalization) follow membership query synthesis [123], i.e., these steps generate new

string inputs and check whether they belong to the target grammar. Step 4 (grammar

extension) follows stream-based sampling.

5.4.1 Delta Debugging Minimization (ddmin)

Delta Debugging Minimization(ddmin) [77] can reduce a failing input to a minimal failing

input (fmin) that reproduces the bug. A minimal failing input (fmin) is a failing input

that cannot be divided further to obtain more failing inputs. ddmin follows a divide and

conquer approach to reduce the given failing input.

The divide and conquer approach of ddmin removes the parts that are not essential to

exposing the bug associated with the failing input. Also, it divides the failing string

input into smaller strings, which results in new test inputs. Thus, ddmin can be used

as a test generation method.

Minimizing Delta Debugging Algorithm

ddmin(c✗) = ddmin2(c✗, 2) where

ddmin2(c
′
✗, n) =



ddmin2(∆i, 2) if ∃i ∈ {1 . . . n} · test(∆i) = ✗

ddmin2(∇i,max(n− 1, 2)) else if ∃i ∈ {1 . . . n} · test(∇i) = ✗

ddmin2(c
′
✗,min(|c′✗|, 2n)) else if n < |c′✗|

c′✗ otherwise

where ∇i = c′✗ − ∆i, c
′
✗ = ∆1 ∪ ∆2 ∪ ∆3 . . .∆n, all ∆i are pairwise disjoint, and

∀∆i · |∆i| ≈ c′✗/n

The recursion invariant (and thus pre-condition) for ddmin2 is test(c′✗) = ✗ ∧ n ≤

|c′✗|.
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grammar2fix applies ddmin to the given failing input(f). The new test inputs gen-

erated intermediately are sent to the human oracle (H) for labelling. Finally, ddmin

returns the minimal failing input (fmin) of exposing the bug traced through f .

From active learning perspective, ddmin creates membership queries [123] to the human

in the minimization. A membership query asks the human whether or not a test input

is a member of failing inputs. Thus, the interaction between the human and ddmin is a

membership query synthesis model.

Let F be the set of failing inputs, and P be the set of passing inputs, generated by

ddmin for f . F and P are disjoint sets; i.e., F ∩ P = ∅. Also, f, fmin ∈ F .

As an example, consider the buggy program in Listing 5.1 (Section 5.2). Table 5.1 shows

the steps that ddmin follows to trace the minimal failing input (fmin) from the failing

input “coverage”.

Step Test input Test

1 ∆1 cove ✓

2 ∆2 rage ✗

3 ∆1 ra ✗

4 ∆1 r ✓

5 ∆2 a ✗

Table 5.1: Applying ddmin to the failing input “coverage”

The outcomes of this process are as follows.

• F = {“coverage”, “rage”, “ra”, “a”}

• P = {“cove”, “r”}

• fmin = “a”

ddmin follows a systematic method (divide and conquer) to explore the minimal failing

input of a given failing string input. Thus, the test inputs generated by ddmin illustrate

the characteristics of the failure condition more concretely than randomly generated test

inputs. By comparing the minimal failing input(fmin) with the intermediate test inputs

((F \ fmin)∪P ), we can identify how the minimal failing input can be extended to have

more failing inputs. Thus, the intermediate passing (P ) and failing inputs (F \ fmin)

can be considered as the neighbourhood of the minimal failing input (fmin). Therefore,
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a basic intuition about the failure condition of the bug can be developed based on the

test inputs generated by ddmin. Hence, we use these test inputs in the next steps.

5.4.2 Grammar Inference (GI)

The objective of grammar inference (GI) is to infer a grammar that explains the pattern

of the failing inputs generated by ddmin. To infer the grammar as a Deterministic

Finite Automata(DFA), we use the Regular Positive and Negative Inference (RPNI) [140]

algorithm with a slight modification to its merging technique.

Definition 5.1 (Deterministic Finite Automaton (DFA)). A Deterministic Finite Au-

tomaton (DFA) can be defined by a 5-tuple (Q,Σ, δ, q0,F) where Q is a finite set of

states, Σ is a finite set of symbols called the alphabet, δ is the transition function:

δ : Q × Σ → Q, q0 is the initial state (q0 ∈ Q), and F is a set of final/accept states

(F ⊆ Q). A DFA can have self-transitions, i.e., transitions from one state to itself, and

inter-state transitions, i.e., transitions between two states.

We selected DFAs to model the grammar due to the following reasons.

i. A DFA can be modelled to accept any given set of strings while rejecting all the

other strings even without knowing the complete alphabet of the target grammar

(e.g., a prefix tree acceptor, PTA).

ii. A DFA can be extended to accept more strings by adding more characters to the

transitions.

iii. A collection of DFAs combined with disjunctions (∨) can model more complex

string patterns.

We selected (RPNI) to infer the DFA, as it is more accurate than the other DFA inference

algorithms such as GOLD [141]. Also, it has a flexible merging technique that generalizes

the DFA by merging the states.

Given a set of positive and negative examples, RPNI creates a DFA that accepts all

the positive examples and rejects all the negative ones. As the grammar is developed

for the failing inputs. we consider F as the set of positive examples and P as the set
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of negative examples. According to the RPNI algorithm, first, we develop a prefix tree

acceptor (PTA) based on the string inputs in F . This PTA is a DFA that accepts all

the string inputs in F .

The next step of RPNI is to iteratively merge the possible states of the PTA such that no

positive strings are accepted. In grammar2fix, we introduce an additional constraint

to merge the states as follows.

Definition 5.2 (Additional Constraint to RPNI merge). Given a pair of states, if there

are inter-state transitions that take any character of fmin (the minimal failing input),

those states are not merged.

The characters of fmin are mandatory for the grammar of failing string inputs. The above

constraint enforces the characters of fmin to appear only in the inter-state transitions of

the DFA, which makes these characters mandatory in the grammar for failing inputs.

In a DFA, the characters in a self-transition can appear zero or more times in a string

accepted by the DFA at the specified position. Thus, the self-transitions indicate the

characters at specific positions that are optional in exposing the failure. The DFA

obtained in this step shows where and how fmin can appear in failing inputs.

As an example, consider the F obtained for the failing input “coverage” in Section 5.4.1.

The PTA for all the failing inputs in F is given in Figure 5.1. The final state q8

corresponds to “coverage”; q12 corresponds to “rage”; q10 corresponds to “ra” and q13

correpsonds to “a”.

q0 q1 q2 q3 q4 q5 q6

q7q8

q9 q10 q11 q12

q13

c o v e r a
g

e

r

a g e

a

Figure 5.1: Prefix tree acceptor (PTA) for F derived from the failing input “coverage”
of the buggy program in Listing 5.1

The inter-state transitions between q0 and q13, q9 and q10 and q5 and q6 take ‘a’. As ‘a’

is a character of fmin, the above state pairs are not merged according to Definition 5.2.

The other states can be safely merged such that no string in P is accepted. The resulting

DFA is given in Figure 5.2, which accepts all the strings in F . This DFA indicates that
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“a” is mandatory in the failing inputs, and the other characters (‘c’,‘o’,‘v’,‘e’,‘r’,‘g’) can

appear zero or more times.

q0 q1
a

c,r,o,v,e g,e

Figure 5.2: Basic level grammar with the modification to the RPNI merging tech-
nique. fmin =‘a’

The resulting grammar in this step is named basic level grammar.

5.4.3 Grammar Generalization

The basic level grammar is inferred based only on the test cases generated by ddmin. We

can obtain only limited information about the failure condition from these test cases.

Therefore, the basic level grammar can overfit the failing inputs in F . To avoid the

overfitting, grammar2fix applies the following generalization steps to the basic level

grammar.

1. Basic Generalization (BG)

2. Handling Special Cases (HSC)

3. Finding the character class of the minimal failing input fmin (CCF)

BG focuses on generalizing the characters that are optional in exposing the bug. When

the characters of fmin are placed at the beginning or end of f , HSC explores whether

f can be extended to have more failing inputs of the bug. CCF explores more minimal

failing inputs with the same length of fmin.

5.4.3.1 Basic Generalization (BG)

There are few characters in the self-transitions of the basic level grammar (a DFA), as

we used only the failing input set F (Section 5.4.1) to infer it. The characters that are

mandatory in forming failing string inputs are already in the inter-state transitions of

the DFA. Therefore, if there is a self-transition in a state, it can take any character
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except those used in the outgoing inter-state transitions of the state. Based on this

concept, we generalize the self-transitions of the states as follows.

Given a state qi with one or more inter-state transitions,

i) BG identifies the set of characters (Ci) in the outgoing inter-state transitions of

qi.

ii) BG updates the characters of the self transition of qi to include any character

except the characters in Ci ( Ci
C - complement of Ci).

After the conversion, we name such self-transitions as Complementary Self-Transitions.

Example: Consider the DFA given in Figure 5.2. The state q0 has an outgoing inter-

state transition taking ‘a’ to reach q1. Also, it has a self transition taking ‘c’, ‘r’, ‘o’

and ‘v’. In this generalization, the self-transition is changed as it can happen under any

character except ‘a’ ({a}C), which is the complementary self-transition for q0. State q1

also has a self-transition that takes ‘g’ and ‘e’. However, q1 has no outgoing inter-state

transitions. Thus, this generalization changes the self-transition in q1 as it can happen

under any character (because, ∅C = U,U is the set of all characters). The DFA after

this generalization is shown in Figure 5.3.

q0 q1
a

{a}C All

Figure 5.3: After adding complementary transitions to S and q1. All is the set of all
characters

5.4.3.2 Handling Special Cases (HSC)

We have identified that:

i. Positioning the characters of fmin at the beginning of failing inputs could lead to

an initial state without complementary self-transitions.

ii. Positioning the characters of fmin at the end of failing inputs could lead to final

states without complementary self-transitions.
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These situations could either be attributes of the failing inputs or overfittings of them.

To check this fact, we extend f (initial failing input), as ddmin cannot explore beyond

the given failing input. ddmin avoids possible overfittings in the other states of the DFA,

as it generates new test inputs through fragmenting f .

The HSC step considers the following properties as special cases, and grammar2fix

applies this step only if the DFA at this point exhibits these properties.

H-I. The initial state (q0) has no complementary self-transition.

H-II. The final states have no complementary self-transitions and outgoing inter-state

transitions.

If the DFA at this point has H-I., it could mean one of the following.

a) The failing inputs must start with the characters in the outgoing transitions of q0

b) The current grammar overfits the given failing input (f).

To check which assumption is true, we create a random string without any character of

fmin and add it to the front of f . The resulting test input is presented to the human. If

this is a failing input, it signals the overfitting. Thus, we add a complementary transition

to q0.

Example: “apple” is a failing input of Listing 5.1. Also, fmin= =‘a’. The basic level

grammar generated for this failing input would be as shown in Figure 5.4.

q0 q1
a

All

Figure 5.4: Basic level grammar for the input “apple”, a failing input of Listing 5.1

The DFA in Figure 5.4 has no complementary self-transition in q0 (the initial state).

Following the process described above, we add a random string to the front of “apple”

such that no character of fmin= = is included. Assume that the new string is “Ykapple”.

This is a failing input, as this string contains ‘a’. Thus, we add a complementary self-

transition to q0.

If the DFA at this point has H-II., it could mean one of the following.
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a) The failing inputs must end at these states.

b) The current grammar overfits the given failing input (f).

To check which assumption is true, for each such final state, first, we select a failing test

case that ends at the state from F (Section 5.4.1). A random string is added to the end

of the selected failing input. The resulting input is presented to the human. If this is a

failing input, it signals the overfitting. Thus, we add a complementary transition to the

final state.

Example: “replica” is a failing input of Listing 5.1. Also, fmin= =‘a’. The basic level

grammar generated for this failing input would be as shown in Figure 5.5

q0 q1
a

{a}C

Figure 5.5: Basic level grammar for the input “replica”, a failing input of Listing 5.1

The DFA in Figure 5.5 has no complementary self-transition in the final state q1.

“replica” ends at q1. Following the process described above, we add a random string to

the end of this string. Assume that the resulting string is “replicatxyq”. This is a failing

input, as this string contains ‘a’. Thus, we add a complementary self-transition to q1.

5.4.3.3 Finding the character class of the minimal failing input fmin (CCF)

We discovered that, under some bugs, there can be more than one minimal failing

input of the same length. In such situations, more minimal inputs can be explored

by substituting the characters of one minimal failing input. Thus, the character class

finding (CCF) step focuses on finding the character substitutions, i.e., the character

class, producing minimal failing inputs. Algorithm 7 shows the overall process used in

the CCF step to find the character class of a given minimal failing input.

The CCF step follows the assumption given below.

Assumption: The pattern of a group of minimal failing inputs of the same length can

be abstracted in terms of the unique characters of one minimal failing input of the group.
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Algorithm 7 Character Class Finding

Input: fmin : Minimal Failing Input
Input: H : Human Oracle
Input: n : Substitution Iterations
Output: Cfmin

: Character Class of fmin

1: U ← unique characters(fmin)
2: PA ← ∅
3: n success ← 0
4: for i← 1 to n do
5: N ← get new random assignment()
6: tnew ← replace unique characters(fmin,N )
7: if H(tnew ) = Pass then
8: PA ← PA ∪ {N}
9: n pass ← n pass + 1

10: end if
11: end for
12: if n pass

n = 1 then
13: Cfmin

← U {Case 1}
14: else
15: {Let All be the set of all possible character substitutions}
16: Cfmin

← All \ PA ∪ {U} {Case 2}
17: end if
18: return Cfmin

This assumption helps to reduce the search space when an input grammar is unavailable.

Following this assumption, Algorithm 7 substitutes the unique characters of fmin with

a set of random characters distinct from each other. In other words, if the set of unique

characters of fmin is U = {C1, C2, · · · , Cn} (C1 ̸= C2 ̸= C3 · · · ≠ Cn), Algorithm 7

substitutes C1 ← A1, C2 ← A2, C3 ← A4, · · · , Cn ← An, where {A1, A2, A3, · · ·An} is

the set of random characters and A1 ̸= A2 ̸= A3 · · · ̸= An (Line 5). The resulting test

input is presented to the human (H) for labelling. Through our experiments, we have

identified that this technique can effectively explore minimal failing inputs of the same

length.

Example: If fmin=“abab” , there are two unique characters ‘a’ and ‘b’, and we assume

that the pattern of the minimal failing inputs are of the form C1C2C1C2 (where C1 ̸=

C2). Then, we substitute ‘a’ ← ‘c’ and ‘b’ ← ‘d’. This substitution produces “cdcd”,

which is presented to the human. (Here, substitutions such as ‘a’← ‘c’ and ‘b’← ‘c’ are

considered invalid, as ‘a’ and ‘c’ are substituted with the same character which breaks

the pattern).
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Algorithm 7 repeats this process for n iterations (Line 4). There are two main cases

depending on the number of passing inputs generated in this process.

Case 1 All the generated inputs are passing . We conclude that fmin is the only minimal

failing input, and the character class (Cfmin
) is only the set of unique characters

(U) (Line 13).

Case 2 Not all the generated inputs are passing. We conclude that except for the

substitutions leading to passing inputs (PA), the unique characters of fmin can

be replaced by any other set of characters distinct from each other. Thus,

Cfmin
= All \ PA ∪ {U} (Line 16)

In Algorithm 7, PA and Cfmin
are sets of sets.

Under Case 1, no change is done to the DFA. The buggy program in (Listing 5.1) falls

under Case 1, as the ‘a’ is the only minimal failing input.

Under Case 2, if s ∈ Cfmin
, for each character in U in the inter-state transitions, there is

a corresponding character in s. By replacing each character of the inter-state transitions

with its corresponding character in s and changing the complementary self-transitions

accordingly, a new DFA is created. This is done for all the sets in Cfmin
, which results

in a collection of DFAs that are connected with disjuctions/“OR (
∨
)” operator.

Example: Consider fmin=“abab”, and the DFA presented in Figure 5.6. Assuming Case

2 and Algorithm 7 returns the set of character substitutions:

Cfmin
= {{C11, C21}, {C12, C22} · · · {C1n, C2n}}

The DFA in Figure 5.6 is converted to a collection of DFAs connected with “OR”

operators as in Figure 5.7, where Cij is the assignment to the ith unique character of

fmin from the jth substitution set.

q0 q1 q2 q3 q4
a b

{a}C

a b

Figure 5.6: DFA before finding the character class of fmin
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n∨
i=1

q0 q1 q2 q3 q4
C1n C2n

{C1n}C

C1n C2n

Cfmin
= {{C11, C21}, {C12, C22} · · · {C1n, C2n}}

Figure 5.7: Abstract representation of the collection of DFAs

From active learning perspective, both HSC and CCF steps are membership query syn-

thesis [123] models, as these steps create new test inputs and ask their labels.

5.4.4 Grammar Extension(GE)

One failing input can be insufficient for capturing all the properties of the failure con-

dition for certain semantic bugs, even with the steps followed so far (Section 5.4.1 -

Section 5.4.3.3). As an example, there are bugs with several minimal failing inputs of

different lengths, which cannot all be explored by the CCF step. In addition, due to the

limited number of substitution iterations, CCF might not find all minimal failing inputs.

These issues can be addressed by exploring the neighbourhood of the given failing input

(f).

The key objective of grammar extension(GE) is to extend the grammar oracle at this

point by exploring the neighbourhood failing inputs of f . Algorithm 8 describes the

overall process of GE.

To explore neighbourhood failing inputs of f , GE uses mutational fuzzing [29] with N

fuzzing iterations. In each iteration, the newly generated test input (ts) is presented

to the current grammar oracle (OG). If OG predicts ts as passing, i.e., ts does not

adhere to the inferred grammar at this point, ts is sent to the human (Line 6 & 7). If

the human labels ts as failing, it implies that the current grammar oracle (OG) cannot

correctly identify this failing input. Furthermore, the grammar has not been trained to

accurately identify the failure condition of the bug. Thus, GE applies step 1 to 3 (ddmin

to CCF) of grammar2fix (Line 8) to ts and derives a new grammar (Gnew). Next, GE

connects Gnew to the grammar oracle (OG) by “OR” operator (Line 9). Also, ts is added

to the seed corpus (C). As test inputs are sampled for labelling from a stream of test
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Algorithm 8 Grammar Extension

Input: f : Initial failing input
Input: OG : Grammar oracle
Input: H : Human oracle
Input: N : Fuzzing iterations
1: Let C be the seed corpus of failing inputs.
2: C ← {f}
3: for i← 1 to N do
4: f ′ ← pick random(C)
5: ts ← mutate fuzz(f ′)
6: if OG(ts) =Pass then
7: if H(ts) =Fail then
8: Gnew ← Derive Grammar(ts)
9: OG ← OG ∨ Gnew

10: C ← C ∪ {ts}
11: end if
12: end if
13: end for

cases generated by mutational fuzzing, GE step follows the stream-based sampling [123]

in active learning.

At the end of the four steps (Sections 5.4.1/ddmin - 5.4.4/GE), grammar2fix returns

the grammar describing the failure condition, i.e., grammar oracle, as a DFA or a col-

lection of DFAs connected with “OR” operators.

Figure 5.8 shows the overall workflows of the grammar2fix grammar inference.

Bug Oracle
(Human)

Delta Debugging 
Minimization

Grammar 
Inference

Grammar 
Generalization ⋁

⋁

...

Grammar Oracle
Failing

Passing

Mutational 
Fuzzer

f
Grammar 
Extension

f’:

t?

Initial Failing
Input

Random select

Secondary Failing Input

New DFAs

Figure 5.8: Workflow of grammar2fix

The components of grammar2fix can be mapped to the oracle learning in architecture

in Figure 3.1 as in Table 5.2
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Test Generation Technique Mutational Fuzzing - Section 5.4.4

Active Learning Technique

• Membership query synthesis

– ddmin - Section 5.4.1

– HSC - Section 5.4.3.2

– CCF - Section 5.4.3.3

• Stream-based sampling

– GE - Section 5.4.4

Supervised Machine
Learning Algorithm

Modified RPNI algorithm -Definition 5.2

Table 5.2: Mapping of grammar2fix’s components to the oracle learning architec-
ture

5.5 Experimental Setup

We conducted several experiments to evaluate the performance of grammar2fix in

terms of the following aspects.

i. Oracle quality

ii. Human labelling effort

iii. The impact of the heuristics used in grammar inference (GI), basic generalization

(BG), handling special cases (HSC), character class finding (CCF), and grammar

extension (GE) (Sections 5.4.2 - 5.4.4) on the oracle quality and human labelling

effort.

5.5.1 Experimental Subjects

We selected three benchmarks for the experiments according to the criteria given below

.

1. There should be programs that take string inputs.

2. There should be a diverse set of real defects that lead to functional bugs; i.e.,

programs produce incorrect outputs for specific inputs. There should be one func-

tional bug for each subject.
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3. For each subject, there should be a golden version, i.e., a program that produces

the expected, correct output for an input. For a given input, we simulate the

human(H) by comparing the subject’s (buggy program’s) output with its golden

version’s output. If both are different, the test case is labelled as failing. (Fig-

ure 3.3)

4. For each subject, there should be a manually constructed and labelled test suite.

5. For each subject, there should be at least one failing test case in the human-

labelled test suite, i.e., a test input for which the buggy and the golden version

produce different outputs.

We found that the benchmarks IntroClass [178], Quixbugs [194], and Codeflaws [177]

satisfy the above criteria. IntroClass consists of C programs that were submitted un-

der six (6) assignments by a group of students. We selected the programs under the

assignments Syllables and Checksum, as those take string inputs. Under each of the two

assignments, there is a golden version and a labelled test suite. Based on the second

and fifth criteria, we excluded the programs showing flaky behaviour and having no fail-

ing inputs. After that, there were 52 subjects under checksum and 121 subjects under

syllables for the experiments.

We selected four (4) Python programs from Quixbugs [194] and 152 C programs from

Codeflaws [177] based on the first criterion. In this selection, we excluded the programs

that take mixed inputs (e.g., strings and numbers together) from the set of benchmarks.

For each of these selected subjects, there is a separate labelled test suite and a golden

version.

Benchmark Language Number of subjects

IntroClass C 163
Codeflaws C 152
QuixBugs Python 4

Table 5.3: Subject selection for the grammar2fix experiments

5.5.2 Setup and Evaluation

For each subject, we applied grammar2fix by selecting a random failing input from

the training test suite (manually labelled test suite). After the grammar oracle(OG) is
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generated, we applied it on the training test suite. As described in the beginning, if a

test input adheres to the grammar, it is predicted as failing ; otherwise, it is passing.

For the experiments, we fixed the following values.

• Timeouts: We allocated 10 minutes to generate the grammar oracle for each sub-

ject.

• Substitution iterations in CCF (Algorithm 7): 20 iterations (n = 20)

• Fuzzing iterations in GE (Algorithm 8): 5 iterations (N = 5)

Comparing the predicted labels by the grammar oracle (OG) with the actual labels of

the test cases, we measure the following to evaluate the oracle quality.

i. Accuracy (Equation 3.1)

ii. Conditional Accuracy - Failing (Recall for failing test cases) (Equation 3.2)

iii. Conditional Accuracy - Passing (Recall for passing test cases) (Equation 3.3)

iv. Precision - Failing (Equation 3.4)

v. Precision - Passing (Equation 3.5)

Similar to Chapter 4, the labelled test suites provided by the benchmarks are imbalanced.

Thus, the evaluation is affected by the class imbalance problem [17]. Therefore, we report

the metrics Equation 3.1 - Equation 3.5. In addition, regarding the human labelling

effort, we just report the number of queries sent to the human, as there is no maximum

limit for the labelling queries.

To evaluate the impact of the heuristics used in grammar2fix, we repeated the above

experiment separately up to each generalization step; i.e., GI, GI to BG, GI to HSC,

GI to CCF and GI to GE. In each case, we determine the metrics (Equation 3.1 -

Equation 3.5) and the number of queries sent to the human.

To mitigate the impact of randomness and to gain statistical power for the experimental

results, we repeated each experiment 30 times for each subject.
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5.5.3 Implementation

grammar2fix and all the experiments were implemented in Python 3.7.

5.6 Experimental Results and Discussion

5.6.1 Oracle Quality

Benchmark

Overall
Accuracy (%)

Recall
Failing (%)

Precision
Failing (%)

Recall
Passing (%)

Precision
Passing (%)

Mean Median Mean Median Mean Median Mean Median Mean Median

IntroClass 88.66 99.21 88.34 98.73 83.17 100 84.46 100 88.12 96.97

Codeflaws 72.47 77.70 73.13 86.88 61.22 58.99 67.45 78.92 79.70 91.49

QuixBugs 88.69 88.36 93.80 99.31 88.84 93.24 90.52 96.09 82.08 96.77

Table 5.4: Mean and median of the oracle quality of grammar2fix under three
benchmarks

Figure 5.9 shows the distributions in overall accuracy, conditional accuracy - failing,

conditional accuracy - passing, precision-failing and precision - passing of the automatic

oracles generated by grammar2fix. Figure 5.9(b) shows the distributions of these

metrics benchmark-wise. In addition, Table 5.4 gives the mean and median values of

these metrics for each benchmark.

For each subject, we computed the average of these metrics over the 30 runs.

For the majority of subjects, the automatic oracles accurately predict the labels of

more than 92% of the manually labelled test inputs. Even though grammar2fix

has seen only one failing input, the automatic oracles correctly identify more than

97% of the failing tests in most subjects. The precision and recall for the passing

inputs are above 95% for the median subject.

In each benchmark, the median overall accuracy is > 75%, and the median con-

ditional accuracy-failing (recall failing) is > 85%.

According to the results, the automatic oracles learnt by grammar2fix classify test

inputs with significantly high accuracy in most subjects. This implies that this grammar

inference approach can accurately induce a grammar to explain the structure of the

failing inputs of a given buggy program. The high conditional accuracy for passing and
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Figure 5.9: Violin plots of the distributions in overall accuracy, precision and re-
call. Figure 5.9(a) Overall distribution over the three benchmarks and Figure 5.9(b)

distributions under each benchmark
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failing inputs indicates that the induced grammar is not only effective in recognising

failing inputs, but can also accurately reject passing inputs.

Result. grammar2fix induces high-quality grammars that explain the failure condi-

tions of many real-world bugs in string processing programs. These grammars can be

used as automatic test oracles

5.6.2 Contributions From the Heuristics

Overall Failing Passing

GI BG HSC CCF GE GI BG HSC CCF GE GI BG HSC CCF GE
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Figure 5.10: Violin plots of the prediction accuracy distributions after each step of
grammar2fix across all subjects. The steps are grammar inference (GI), basic level
generalization (BG), handling special cases (HSC), character class finding (CCF), and

grammar extension (GE).

Figure 5.10 shows the distributions in overall accuracy, conditional accuracy-failing and

conditional-passing after each step of grammar2fix. Again, for each subject, we com-

puted the average values over 30 runs of the different steps of grammar2fix.

The median overall accuracy increases from 60% for the first step (GI) to 92%

for the last step (GE). The median conditional accuracy-failing (recall failing)

increases from 17% for the first step (GI) to 97% for the last step (GE).

The median conditional accuracy-failing (recall failing) gradually increases from GI to

HSC. There is a significant increase from HSC to CCF in the median of this metric

(Figure 5.10 - middle). In addition, there are slight decreases in the median conditional

accuracy - passing (recall passing) in CCF and GE (Figure 5.10 - right). The median

overall accuracy gradually increases with the heuristics.
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Result. The different heuristics used in grammar2fix positively affect the oracle

quality. These heuristics significantly improve the ability of the automatic oracles to

identify failing tests.

5.6.3 Human Labelling Effort
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Figure 5.11: Violin plots (log-scale) of the cumulative number of queries to the human
after each step of grammar2fix as a distribution across all subjects.

grammar2fix Step

Human labelling
queries

Mean Median

GI 17.18 10.30

BG 17.25 10.48

HSC 19.11 12

CCF 37.95 31.98

GE 52.52 42

Table 5.5: Mean and median of the cumulative number of queries to the human after
each step of grammar2fix
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Figure 5.11 shows the labelling effort in terms of the number of queries to the human

after each step. The violin-plots are in log-scale. Table 5.5 shows the mean and median

of the number of human queries in each step.

The median number of human queries increases with the generalization and ex-

tension steps of grammar2fix. Nevertheless, the number of human queries with

all the steps is 42 for the median subject.

From GI to BG and BG to HSC, there are smaller increases in the median human

labelling queries. The highest increase is from HSC to CCF. The fixed substitution

iterations (Section 5.4.3.3) in CCF is the reason for this increase.

We find that the median number of queries sent to the human is reasonable. Firstly,

given a string input and the corresponding program output, the human would only need

to provide a “Yes” or “No” to the question: “Does this program process this string

correctly?”. Secondly, these queries can be distributed among multiple people reporting

the same bug.

Result. For the majority of bugs, grammar2fix infers grammar using a reasonable

number of human queries.

5.6.4 Discussion

Given a failing input, the grammar inference process of grammar2fix explores the

root cause of the failure and how it is related to the failing inputs of the bug. The

root cause is the minimal failing input (fmin) given by ddmin. grammar2fix can

accurately model different relationships between fmin and the other failing inputs, thus

leading to high-quality grammar oracles for many subjects. However, we found that

grammar2fix induces less accurate grammar in a few subjects. We identified two main

reasons for having this. Firstly, grammar2fix does not model dependencies between

complementary self-transitions (Section 5.4.3.1), as finding such dependencies requires

more human-labelled test inputs. However, such dependencies could be necessary to

accurately describe the failing input patterns of some bugs. Secondly, in some subjects,

the mutational fuzzing iteration in GE (Section 5.4.4) could be insufficient to identify

all the constituents of the structure of failing inputs. This issue is particularly evident
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in the programs that accept structured string inputs. To deal with this kind of program,

structure-aware fuzzing might be helpful (e.g., AFLSmart [195]).

According to the results in Section 5.6.2, the heuristics used in grammar2fix improve

the oracle quality. The CCF step significantly improves the ability of identifying failing

inputs (Figure 5.10). The reason is that the DFA is expanded to a collection of DFAs by

exploring more minimal failing inputs, which significantly avoids overfitting the grammar

to the training examples. However, we observe a slight decrease in conditional accuracy-

passing from HSC to CCF. The key reason is that the bugs having passing inputs of the

same length of fmin. In such a bug, if Algorithm 7 does not find such passing inputs

within the limited number of substitution iterations, Case 2 in Algorithm 7 concludes

that the unique characters of fmin can be substituted with any set of unique characters.

The result is that the collection of DFAs accepts some passing inputs; i.e., the oracle

incorrectly classifies some passing tests as failing.

We observed that grammar2fix infers high-quality grammar for failing inputs, using

a reasonable number of human queries. Unlike learn2fix, grammar2fix cannot be

used under a limited number of human queries. The reason is that ddmin [77], the input

minimization algorithm, follows a deterministic number of steps. In each step, the gen-

erated test input should be labelled to proceed with the algorithm. As grammar2fix

cannot proceed without finding the minimal failing input (fmin), we cannot set a max-

imum limit for the human queries. Therefore, more queries are required to minimize

a significantly longer failing input. This is why few subjects need a large number of

human queries in the grammar inference process.

In this work, we did not test grammar2fix with the adversarial learning techniques

(Section 4.7) and culprit constraint-based approach (Section 4.8) proposed in Chapter 4.

The key reason is that the objective of the test generation methods in grammar2fix is

refining the grammar rather than exploring more failing tests. Thus, the two additional

approaches proposed for learn2fix are not compatible with the test generation methods

of grammar2fix. Nevertheless, the GE step can be seen as an adversarial approach, as

it refines the current grammar by exploring the failing tests that the current grammar

cannot identify.
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5.7 Extending GRAMMAR2FIX for Other Structured In-

puts

grammar2fix can be extended for other structured inputs used in computer programs.

Firstly, the alphabet, i.e., the terminals [137], of the targeted inputs should be identified.

ddmin (Section 5.4.1) should be preformed according to the alphabet. Also, a comple-

mentary self-transition, introduced in BG (Section 5.4.3.1), should happen under any

character in the alphabet that does not involve in the outgoing inter-state transitions of

the state. Secondly, HSC, CCF and GE steps should use the characters of the alphabet

to generate valid structured inputs.

In some programs taking structured inputs, a set of syntactic rules is defined on the

alphabet, i.e., an input grammar, to determine the validity of the inputs (e.g. compilers).

When using grammar2fix with this kind of input, the invalid inputs generated in the

grammar inference can be neglected. The program under test (PUT) itself can be used

to exclude invalid inputs. The reason is that this kind of program is usually embedded

with the rules to determine the valid inputs; therefore, it can reject invalid inputs. For

example, compilers reject programs containing syntactically incorrect statements.

The output of grammar2fix is a regular grammar, represented by one or more DFAs.

To describe the failure conditions associated with highly structured inputs, more com-

plex grammars (e.g. context free grammar, context sensitive grammar etc. [196]) might

be required. Accordingly, the grammar inference (Section 5.4.2) and grammar general-

ization(Section 5.4.3) might require some refinements.

5.8 Conclusions

The main conclusions of the experiments regarding grammar2fix can be summarized

as follows.

1. Oracle Quality

• grammar2fix produces high-quality automatic test oracles as grammars de-

scribing the pattern of failing inputs for string processing programs.
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2. Human Labelling Effort

• grammar2fix uses a reasonable number of queries to the human in most

subjects to infer grammar.

3. Contributions of the heuristics

• The different heuristics of grammar2fix improve the accuracy of the gram-

mar describing the structure of failing inputs.

grammar2fix is capable of generating high-quality automatic oracles (grammar ora-

cles) for semantic bugs in string processing programs. A grammar oracle accurately

describes the structure of the failing inputs of the semantic bug. Similar to learn2fix,

grammar2fix oracle learning systematically interacts with the human. This oracle

learning technique can be extended as an oracle learning framework for structured in-

puts. Therefore, grammar2fix provides an answer toRQ.2. Also, this is a contribution

under C.2.



Chapter 6

Oracle Learning to Guide

Automated Program Repair

This chapter demonstrates how learn2fix and grammar2fix can be applied to guide

Automated Program Repair (APR) to fix semantic bugs, with a focus on RQ.3. To

summarize, we convert the test suite generated in oracle learning to a repair test suite

for the bug. Then, we use this repair test suite with APR. This chapter presents the

experimental analysis of our approach.

6.1 Motivation

Automated Program Repair(APR) [7, 9] reduces the burden of manual bug fixing in

rapidly evolving software systems. Test-driven APR techniques (e.g. GenProg [102],

Angelix [107], etc.) can be applied to repair different types of programs [7]. Repair

overfitting [112], i.e., a lack of generalizability of auto-generated patches, is a critical

problem in test-driven automated program repair. An overfitting patch might not com-

pletely fix the bug and may actually introduce more faults to the system. One method to

resolve the problem of repair overfitting is to improve the repair test suite (Section 2.5.2).

A repair suite contains some passing and failing tests. The failing tests exercise the

faulty behaviour to be fixed, while the passing tests indicate the behaviour that should

not be changed. A test-driven APR technique uses the repair test suite to identify

the code locations that are likely to be faulty (i.e., fault localization [75]) in the given

113
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program. Using fault localization information, the APR technique changes the buggy

program so that it passes all the test cases in the repair test suite. Thus, the repair test

suite determines the quality of the auto-generated patch. If the repair test suite contains

enough failing tests exercising the bug and passing test cases indicating the behaviours

that should not be changed, the APR technique can produce a non-overfitting patch for

the bug. We study how to use our oracle learning techniques to produce such repair test

suites to guide APR to generate high-quality patches for semantic bugs.

Both learn2fix (Chapter 4) and grammar2fix (Chapter 5) generate a test suite in

learning an oracle for a semantic bug. The results in Section 4.6.2 show that learn2fix

generates test suites containing more failing tests of semantic bugs in oracle learning.

In learn2fix, we used the decide2label-algorithm (Algorithm 2) and mutational

fuzzing [197] to maximize the human labelling of failing tests. Similarly, the proba-

bility of generating failing tests is higher in grammar2fix, as it uses delta debugging

minimization (ddmin) [77] and some systematic test generation approaches. Therefore,

in this chapter, we experimentally analyse the applicability of test suites generated in

oracle learning as repair test suites with APR.

6.2 Methodology

Given a buggy program, we first allow the learning technique (learn2fix or gram-

mar2fix) to generate an automatic oracle and a test suite. Next, we use the test suite

to create a repair test suite for the bug.

6.2.1 Creating a Repair Test Suite

A test suite returned by learn2fix or grammar2fix contains some failing inputs and

zero or more passing inputs. Also, it contains the program output of each test input. As

the program under test (PUT) produces incorrect outputs for failing inputs, the program

output of a failing test case is not the expected, correct output.

In a repair test suite used in test-driven APR, each test case should consist of an input

and its expected, correct output. Thus, we replace the output of each failing test case

with its expected, correct output to convert a test suite obtained in oracle learning to a
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repair test suite. There is no need to change the output of passing test cases, as the

program produces correct, expected outputs for those (Algorithm 9). We name these

repair test suites auto-generated repair test suites in the experiments.

Algorithm 9 Create Repair Test Suite

Input: T : Test suite given by oracle learning
1: for t ∈ T do
2: if t is failing then
3: Replace the output of t with its expected, correct output
4: end if
5: end for

6.2.2 Test-Driven Automated Program Repair Techniques

A test-driven automated program repair technique uses a repair test suite and the buggy

program to generate a fix for the bug. To evaluate our approach, we use the following

test-driven APR techniques.

i. GenProg [102]

ii. Angelix [107]

GenProg [102] is a heuristic repair technique that has been developed to repair C pro-

grams. As the first step, it performs spectrum-based fault localization [7] based on the

repair test suite and assigns a weight to each statement of the program. The state-

ments executed by the failing tests receive higher weights than other statements. If a

statement is executed only by the passing tests, it receives a zero weight. Next, using

the abstract syntax tree (AST) of the program, GenProg produces program variants by

genetic programming [198]. In this process, mutation operators are applied to highly

weighted program statements. The statements with zero weights are not modified. Gen-

Prog continues modifying the program until a variant passing all the tests in the repair

test suite is found.

Angelix [107] is a constraint-based repair technique that has been developed to repair

C programs. Firstly, it performs a semantics-preserving program transformation. Next,

Angelix performs fault localization using the Jaccard formula [101] using the repair test

suite to identify suspicious program locations. Constructing the repair constraint is the
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most important task in constraint-based repair techniques [9]. Angelix develops the repair

constraint as an angelic forest [199]. This process uses the information obtained during

the fault localization. Finally, Angelix employs component-based repair synthesis(CBRS)

to generate a patch for the bug. CBRS uses the angelic forest created previously as a

specification in this process.

We use the test-driven APR techniques listed above due to their capability to repair

large programs cost-effectively. To use our auto-generated test suites with these APR

techniques, we extend the workflows of learn2fix and grammar2fix as shown in

Figure 6.1 and Figure 6.2, respectively.
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6.3 Experimental Setup and Evaluation

For these experiments, under each learning technique (learn2fix and grammar2fix),

we selected the same set of subjects from Codeflaws [177] that was used in the oracle

learning experiments (Section 4.5.1 and 5.5.1). There were 552 subjects for learn2fix

and 152 for grammar2fix. We selected subjects from Codeflaws for the following

reasons.

i. Codeflaws has been setup to work with GenProg and Angelix

ii. Codeflaws provides a separate repair validation test suite, i.e., heldout test suite

for each subject.

Codeflaws provides a manually created repair test suite for each subject. In the exper-

iments, we compared our auto-generated repair test suites with the manual repair test

suites, under both GenProg and Angelix.

For each subject, after the completion of oracle learning, we created the auto-generated

repair test suite as described in Section 6.2.1. Then, we separately used the manual

repair test suite (given by Codeflaws) and the auto-generated repair test suite with the

APR tools in Section 6.2.2. We allocated 10 minutes to each APR tool to generate a

patch under each repair test suite. If a patch was generated, we counted the number of

tests in the heldout test suite passed on the patched program.

The performance of the manual and auto-generated repair test suites was measured in

terms of the following metrics.

i. Repairability: Proportion of subjects successfully repaired (Equation 6.1).

ii. Validation Score: Proportion of validation tests passed on the patched program

(Equation 6.2).

Repairability =
Number of subjects successfully repaired

Total number of subjects
(6.1)



118

Validation Score =

Number of validation tests passed on the

patched program

Total number of tests in the

validation test suite

(6.2)

In learn2fix, we repeated this repair experiment under each classification algorithm

listed in Section 4.4.2.

To mitigate the impact of randomness and to gain statistical power for the experimental

results, we repeated each experiment 30 times for each subject.

6.4 Experimental Results and Discussion

6.4.1 LEARN2FIX

Test Suite

GenProg Angelix

Repairability (%) Validation Score(%) Repairability (%) Validation Score(%)

Mean Median Mean Median Mean Median Mean Median

Auto-generated Interpolation-based

INCAL 17.14 17.15 90.35 100 15.66 15.57 90.65 100

Decision Tree 16.48 16.48 90.45 100 16.49 16.45 90.66 100

Ada Boost 16.47 16.54 89.71 100 16.19 16.29 90.44 100

Auto-generated Approximation-based

SVM 24.15 24.13 81.77 94.52 22.71 22.70 82.64 91.67

Näıve Bayes 21.06 21.08 84.64 97.3 20.97 20.89 84.21 94.44

MLP (20) 18.64 18.51 86.75 100 18.49 18.50 88.51 97.14

MLP (20,5) 18.91 18.94 86.63 100 18.41 18.60 88.13 95.83

Manual

Manual 23.52 24.50 85.14 97.56 25.53 25.50 83.94 91.67

Table 6.1: Mean and median values of the repairability and validation scores obtained
under GenProg and Angelix

Figure 6.3 and Figure 6.4 show the results obtained under GenProg and Angelix, respec-

tively. Table 6.1 summarizes the results of the program repair experiments, presenting

the mean and median values of the metrics.
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Figure 6.3: Distributions of repairability and validation scores of learn2fix obtained
under GenProg
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Figure 6.4: Distributions of repairability and validation scores of learn2fix obtained
under Angelix
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In both APR techniques, the auto-generated test suites under most classification

algorithms (except SVM and Näıve Bayes) outperform the manual test suites in

terms of the validation score of the generated patches. The median validation

score is 100% in all the interpolation-based classifiers in both APR techniques.

Both types of test suites can repair less than 30% of the selected subjects. Also,

the manual test suites can repair more subjects than the auto-generated test suites

by most classification algorithms.

The interpolation-based classification algorithms performed better with learn2fix (Sec-

tion 4.6.3), and those produce repair test suites in the oracle learning that lead to high-

quality patches in both GenProg and Angelix. Although the manual test suites can repair

more subjects than the auto-generated test suites of most classification algorithms, the

patches are not accurate as in the auto-generated repair test suites.

Result. Auto-generated repair test suites by learn2fix with interpolation-based classi-

fication algorithms produce high-quality patches with different automated program repair

techniques.

6.4.2 GRAMMAR2FIX
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Figure 6.5: Distributions of repairability and validation scores of grammar2fix
obtained under GenProg
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Figure 6.6: Distributions of repairability and validation Scores of grammar2fix
obtained under Angelix

Test Suite

GenProg Angelix

Repairability (%) Validation Score(%) Repairability (%) Validation Score(%)

Mean Median Mean Median Mean Median Mean Median

Auto-generated 39.89 39.87 85.37 100 27.94 27.74 78.10 100

Manual 40.46 40.52 84.09 89.12 35.26 35.48 82.24 94.74

Table 6.2: Mean and median values of the repairability and validation scores obtained
under GenProg and Angelix

Figure 6.5 and Figure 6.6 show the results under GenProg and Angelix, respectively.

Table 6.2 summarizes the results of program repair experiments, indicating the mean

and median values of the metrics.

In most repairable subjects, both APR techniques generate patches that pass

100% of the held-out test suite with the auto-generated test suite by gram-

mar2fix. The manual test suites do not lead to producing patches with this

much accuracy. However, the manual test suites can repair more subjects than

the auto-generated test suites.

Result. Auto-generated repair test suites generated by grammar2fix generate high-

quality patches with different automated program techniques
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6.4.3 Discussion

The experimental results (Section 6.4.1 and Section 6.4.2) suggest that the auto-generated

repair test suites in learn2fix and grammar2fix oracle learning can be used as repair

test suites for semantic bugs with APR. With both APR techniques, the auto-generated

test suites lead to producing high-quality patches than the manual test suites given by

the benchmark. Although the APR techniques can repair more subjects with the manual

repair test suites than the auto-generated repair test suites, the patches are not as accu-

rate as in the auto-generated test suites (lower validation score). This implies that the

manual test suites lead to repair overfitting. Therefore, we conclude that auto-generated

repair test suites are better in program repair, as the production of less accurate patches

is detrimental. Also, this repair test suite generation method can be generalized over

different test-driven APR techniques.

The key reason for the higher patch quality is that the auto-generated repair test suites

contain more failing tests than the manual test suites. For the majority of subjects,

the failing test cases of an auto-generated test suite can exercise all the behaviours

of the bug. We have identified that, in most subjects, the manual test suite contains

only one failing input of the bug. Thus, the manual test suites lead to overfitting or

incorrect patches with the APR techniques. For this reason, the patches produced with

the manual test suites pass fewer tests in the heldout test suites than the ones generated

with the auto-generated test suites.

In learn2fix, the median validation score is 100% in both APR techniques with the

interpolation-based classification algorithms. Under these algorithms, the auto-generated

repair test suites outperform the manual repair test suites in terms of validation score.

The interpolation-based classification algorithms produce high quality oracles for most

subjects (Section 4.6.3). Thus, we conclude that classification algorithms that produce

high-quality automatic oracles generate better repair test suites with learn2fix for

Angelix and GenProg. learn2fix sends fewer failing tests to the human when using

the SVM classification algorithm (Table 4.3). For this reason, the auto-generated repair

test suites under SVM contain fewer failing tests compared with the other classification

algorithms. Therefore, the patches generated with the auto-generated repair test suites

become less accurate. This is the reason why the auto-generated repair test suites using

SVM do not outperform the manual repair test suites in both APR techniques.
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In grammar2fix, the median validation score under both APR techniques is 100%

(Table 6.2). The auto-generated repair test suites under grammar2fix outperform

manual repair test suites in terms of validation score. This outcome implies that delta

debugging minimization (ddmin) [77] and the other systematic test generation methods

used in grammar2fix are able to develop high-quality repair test suites.

In learn2fix, less than 30% of the experimental subjects that can be repaired with

the manual and auto-generated test suites using APR techniques. In grammar2fix,

this percentage is less than 41%. This is due to the problems associated with APR

techniques. We have observed that when the repair test suite contains more failing

tests, the APR tool is unable to alter the program to make all the failing tests pass. As

described before, our auto-generated test suites contain more failing test cases, hence

the reduction in repairability. In some subjects, the APR tools exceed the time allocated

to generate repair, which reduces the repairability of both types of test suites.

Manually finding a repair test suite to produce an accurate repair for a semantic bug

is challenging. Our oracle learning techniques address this problem by providing an

automated means to generate and select test cases for human labelling. The human can

easily be involved in the process of creating a repair test suite for the bug. Moreover, our

auto-generated test suites produce high-quality repairs with two test-driven automated

program repair approaches (GenProg: heuristic-based, Angelix: constraint-based). Thus,

in terms of repair test suite generation, our oracle learning techniques can be generalized

over different test-driven APR techniques.

6.5 Conclusion

Our oracle learning techniques can be used to generate repair test suites that lead to

high-quality repairs for many real-world semantic bugs. Also, these learning techniques

facilitate human-in-the-loop interactive program repair. Figure 6.7 depicts this frame-

work. In this manner, our oracle learning process can be exploited to guide APR to fix

semantic bugs. Therefore, the repair test suite generation method introduced in this

chapter answers RQ.3. Also, it is a contribution under C.3
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Chapter 7

Overall Conclusions

Test oracle automation is an important task to facilitate automated software testing.

However, several studies suggest that this topic has received less research attention. In

addition, developing automatic test oracles for semantic bugs is challenging, as those are

application specific. The most practical and reliable source to identify the test failures of

a semantic bug is the human (the user or the developer). Hence, it is necessary to interact

with the human to derive an automatic oracle for a semantic bug. However, the existing

test oracle automation techniques have not focused on the problem of systematically

learning an automatic oracle from a human. This thesis mainly presents a solution to this

problem through two human-in-the-loop oracle learning techniques. Moreover, it presents

a semi-automatic approach to guide automated program repair to fix a semantic bug.

These solutions make significant contributions to test oracle automation and automated

program repair.

We identified some machine learning-based for test oracle automation. Most of these

works focus on modelling the expected behaviour of the system under test and using

it to predict the output of new test cases. However, modelling the expected behaviour

of a software application can be a difficult task. In contrast, learning the condition

under which a bug is exposed, i.e., the failure condition of a bug, is an easier task.

Also, the failure condition of a bug is independent of program size. An automatic oracle

trained by our techniques expresses a failure condition in terms of program inputs and

outputs. This is a black-box representation, and such a representation can be easily

used in debugging and program repair.
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Both learn2fix and grammar2fix learn automatic oracles, addressing many practical

problems associated with semantic bugs. One such problem is that a semantic bug

is usually reported with a single input exposing it. Indeed, a single failing input is

insufficient for learning about the bug. Our learning techniques have their own test

generation methods that guide oracle learning. learn2fix selects and sends test cases

that are likely to be failing to the human, while grammar2fix generates test inputs

according to a systematic order. These two strategies resolve the problem of obtaining

training data for oracle learning. Moreover, our learning techniques use some techniques

to systematically interact with the human. The experimental results indicate that these

techniques enable the learning of accurate oracles for many real-world semantic bugs

with a reasonable number of human labelling queries.

In both our learning techniques, the human is asked an “Yes/No” question of the form

“For the input i⃗, the program produces the output o; is the bug observed?” to obtain

the label of a test case. Usually, a user or a developer who participates to debug a

program knows its expected, correct behaviour. Such a person can easily answer this

kind of labelling queries. As our learning techniques can train automatic test oracles

with a reasonable number of human labelling queries, those can be used with actual

human participants.

An automatic oracle trained by our learning techniques describes the condition under

which a semantic bug is exposed (Section 1.2). Hence, the automatic oracle can be

used to develop a specification for the semantic bug. Such bug specifications are useful

for software developers in many ways. However, our oracle learning techniques might

require some improvements to achieve this objective. For instance, the constraints or

grammars in automatic oracles should be converted to more human-readable forms for

developing bug specifications.

In learn2fix (Chapter 4), we paid significant attention to handling the class imbal-

ance problem [17] in oracle learning. By modifying the work of Holub et al. [166], we

developed a method for selecting test cases that are likely to be failing to address this

problem (decide2label-Algorithm 2). The class imbalance problem arises when ma-

chine learning is applied to many real-world applications. The reason is the difficulty

in finding a balanced training dataset. The decide2label-algorithm can be applied to

such situations. It can even be customised for multi-class scenarios.
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We identified that oracle learning with string inputs is more difficult than with numeric

inputs. The reason is the complexity of string inputs. grammar2fix effectively copes

with this complexity through its zooming in and zooming out strategy. First, it ex-

plores the minimal cause of the failure. Then, identifying the relationships between the

minimal cause and the other failing string inputs, grammar2fix develops a grammar

for all the failing inputs. This approach can be generalized for general regular gram-

mar inference [142] in machine learning when an oracle exists to answer membership

queries [123].

In both learning techniques, the auto-generated test cases in oracle learning create a

high-quality repair test suite [9] for the bug. We observed that these repair test suites led

to high-quality repairs with both GenProg [102] and Angelix [107]. The reason for this

outcome is that an auto-generated test suite by our learning techniques contains more

failing tests of the bug. The test generation methods and active learning techniques used

in our learning techniques help to collect more failing tests of a bug. Finding this type

of repair test suite manually, especially for a semantic bug, would be extremely difficult.

This capability of our learning techniques addresses the repair overfitting problem in

automated program repair (APR).

The ability of auto-generated test suites to generate high-quality patches implies a few

further aspects. Firstly, both GenProg [102] and Angelix [107] can accurately identify

faulty code segments, i.e., fault localization, with our auto-generated test suites. These

APR techniques use spectrum-based fault localization (SBFL) techniques [80]. In case

of enough failing tests, SBFL is successful with our auto-generated test suites. Secondly,

the auto-generated test suites help Angelix to synthesise accurate repair constraints. In

constraint-based repair [9] techniques such as Angelix, the repair constraint explains the

characteristics of the patch to be generated. Having more failing tests in the repair test

suite improves the accuracy of the repair constraint, thus improving the quality of the

patch.

In relation to program repair, we observed that our auto-generated test suites could

repair fewer subjects compared to the manual test suites given by the benchmark. This

is because of the issues associated with APR tools. When the test suite has more failing

tests, the APR tool might not be able to generate a patch passing all the tests. Therefore,
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test driven APR techniques require some improvements to generate high quality patches

for bugs.

Detecting and fixing semantic bugs is a challenging task in software testing. The

application-specific nature of semantic bugs is the key reason for this difficulty. Our

oracle learning techniques provide a semi-automatic solution to this problem. Once a

semantic bug is reported with a single input exposing it, our oracle learning techniques

can generate a high-quality repair test suite by systematically interacting with the hu-

man (the user or developer). This is an interactive program repair environment that even

a person without programming knowledge can participate in. Also, this environment

can be used with different automated program repair techniques. Therefore, learn2fix

and grammar2fix facilitate human-in-the-loop interactive program repair.



Chapter 8

Future Work

We have identified some limitations in our two oracle learning techniques, learn2fix

(Chapter 4) and grammar2fix (Chapter 5), and possible research areas that can be

improved by our findings. Based on those, we propose the following research directions

as future work.

8.1 Improving the Human Interaction with Learning Tech-

niques

Both learn2fix and grammar2fix assume that the human always provides the ac-

curate labels of the test cases in oracle learning. However, the human could provide

incorrect labels, which would reduce the quality of the automatic oracles. In future

work, we will analyse the impact of mislabelling on oracle learning and automated pro-

gram repair (APR). Also, we will explore techniques to deal with incorrectly labelled

test cases by the human. We will look at this problem in two ways. Firstly, it is possible

to minimize human errors in labelling by by distributing test cases to more than one

person. The concepts of pair programming [200] and the work of Fabrizio et al. [61] could

be useful for this task. Secondly, poorly trained automatic oracles due to mislabelled

test cases can be rectified. As our automatic oracles are machine learning models, the

works of Krishnan et al. [201] and Li et al. [168] could be applied to this task.

Our oracle learning techniques send artificially generated test cases for human labelling.

In the experiments, we assumed that the human can comprehend all these test cases.
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However, this assumption might not be true in some scenarios. In future work, we

will examine the readability of the test cases presented to the human in our learning

techniques. Also, we will explore how to enhance the readability of those, i.e., presenting

test cases to the human in a more comprehensible manner. It will help to reduce the

human effort for labelling a test case. Related to string inputs, the work of Afshan

et al. [58], which is based on natural language models, will be helpful for this task. To

extend this for other structured inputs, the ontology based method proposed by Bozkurt

et al. [60] could be useful. The test data reusing method proposed by McMinn et al. [59]

could be used to generate more human-readable numeric inputs.

In grammar2fix (Chapter 5), there is no maximum limit to the human queries. Also,

we observed a higher number of human queries in some subjects (Section 5.6.3). This

problem can be easily resolved by distributing the labelling queries among multiple users.

In future work, we will explore techniques to systematically perform this task, in which

the findings of Pastore et al. [61] could be useful.

8.2 Working with Multiple Semantic Bugs

We tested our learning techniques with programs exhibiting a single semantic bug. If

our learning techniques were applied to a program with multiple semantic bugs, an

automatic oracle would be generated based on the collective effect of all bugs. However,

it is important for developers to separately analyse the impact of each bug in a program

containing multiple bugs.

Our oracle learning techniques can be improved to generate separate automatic test

oracles for each bug in a program having multiple semantic bugs. We will explore how

bug isolation approaches (e.g. Works of Zeng et al. [202], Jeremias et al. [203]) can

be used for this task. Also, we will propose some adjustments to the test generation

methods used in our oracle learning techniques to work with multiple semantic bugs.

When there are multiple semantic bugs in a program, the developer can separately

analyse each of those if there is a separate automatic oracle for each bug. Such a setup

could be useful to debug and repair multiple semantic bugs efficiently.
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8.3 Using Automatic Test Oracles in Automated Program

Repair

In Chapter 6, we converted the test suites generated by learn2fix and grammar2fix

in oracle learning to repair test suites to be used in APR. However, we did not explore

how the automatic test oracles can be applied to APR. We will explore this fact in future

work.

Firstly, we will explore how to use the automatic test oracles given by our learning

techniques as correctness criteria in APR. Currently, test-driven APR techniques (e.g.

GenProg [102], Angelix [107]) use a repair test suite as the correctness criteria. The

works such as Smith et al. [112] and Qi et al. [105] highlight the adverse impacts of

this method on patch quality. We have already addressed the repair overfitting issue by

using the test suites generated in our learning techniques (Chapter 6). Nonetheless, we

will explore how our automatic test oracles can be used as better correctness criteria to

guide APR to produce high quality patches.

Secondly, we will explore how our automatic test oracles can be applied to improve

constraint-based program repair [9]. An automatic test oracle trained by our learning

techniques describes the condition under which a semantic bug is exposed (i.e. failure

condition). Therefore, a failure condition could be useful in constraint-based program

repair to synthesise the repair constraint [9] to repair a semantic bug. We will explore

this fact in future work. As our automatic oracles are machine learning models, such as

binary classifiers and regular grammar, some conversions will be required to use those

with APR.

8.4 Developing Specification Mining Techniques for Se-

mantic Bugs

Specification Mining [2], i.e., inferring a formal model of behaviour from a set of obser-

vations, is useful for developers to learn about a system. Our oracle learning techniques

could be applied to mine specifications for semantic bugs in a semi-automated manner.

If there is a specification for a semantic bug, it is useful for developers in many ways.
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An automatic test oracle trained by our learning techniques describes the condition

under which a semantic bug is exposed. Therefore, it could be used as a specification

of the bug. The original form of our automatic test oracles (i.e., machine learning

models) might be less human-readable for developers. Therefore, we will explore how

to convert our learned automatic test oracles to a human-readable form to produce bug

specifications. This idea can be combined with the proposal of Section 8.2. The overall

proposal will facilitate human-in-the-loop bug specification mining.

8.5 Improving Automated Debugging Techniques

As described in Section 2.5.1, automated debugging [74] is the other area that benefits

from our study. Similar to automated program repair, automated debugging techniques

such as spectrum-based fault localization (SBFL) [8, 80] and dynamic program slic-

ing [76] could be improved with our oracle learning technique.

Both SBFL and dynamic program slicing are test-driven. The test inputs generated in

our oracle learning techniques could be used as inputs to these techniques, similar to

Chapter 6. Unlike in APR, it is not necessary to obtain the expected output of each

test case. As our oracle learning techniques have a higher probability of generating

failing tests, the accuracy of both of these debugging techniques could be significantly

improved. Related to semantic bugs, this proposed method will facilitate human-in-the-

loop debugging. In future work, we will experimentally analyse this concept.

8.6 Improving Greybox Fuzzing Techniques

Greybox fuzzing is an effective technique to uncover the vulnerabilities of a software

system [30]. The works such as directed gray-box fuzzing [204] focus on guiding greybox

fuzzing towards a set of target program locations. Similar to Chapter 6, we will explore

methods to combine our oracle learning techniques to steer greybox fuzzers towards

the faulty program behaviours of a semantic bug. The existing fuzzing greybox fuzzing

mainly focuses on the bugs leading to program crashes. By combining our techniques,

greybox fuzzing could be able to apply for semantic bugs. This will facilitate human-

guided greybox fuzzing for semantic bugs.



Appendix A

Classification results of the SVM,

Decision Tree and Gaussian Naive

Bayes Algorithms

Table A.1: Classification Results of Support Vector Machines (SVM)

Bug Test suite Accuracy (%)
Recall

Failing (%)

steve error

russtest 91.30 0

gregtests 87.88 0

stevetestcases 100 N/A

stevetestcases2 100 N/A

pjtests 97.51 0

claytests 95 0

dudleytests2 100 N/A

jptests 100 N/A

moloch tests 96.88 0

ac error

russtest 91.30 0

gregtests 100 N/A

stevetestcases 100 N/A

stevetestcases2 100 N/A

Continued on next page
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Table A.1 – continued from previous page

Bug Test suite Accuracy (%)
Recall

Failing (%)

pjtests 95.85 1.5

claytests 95 0

dudleytests2 No failing test cases

jptests 95.24 0

moloch tests 100 N/A

bc error

russtest 91.30 0

gregtests 100 N/A

stevetestcases 100 N/A

stevetestcases2 100 N/A

pjtests 95.85 2

claytests 95 0

dudleytests2 No failing test cases

jptests 95.24 0

moloch tests 100 N/A

ab error

russtest 91.30 0

gregtests 84.85 0

stevetestcases 100 N/A

stevetestcases2 100 N/A

pjtests 95.81 2

claytests 95 0

dudleytests2 90 0

jptests 95.48 0

moloch tests 100 N/A

Table A.2: Classification Results of Decision Trees

Bug Test suite Accuracy (%)
Recall

Failing (%)

steve error

russtest 83.70 50

gregtests 85.76 25

Continued on next page
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Table A.2 – continued from previous page

Bug Test suite Accuracy (%)
Recall

Failing (%)

stevetestcases 79.58 N/A

stevetestcases2 84.17 N/A

pjtests 96.12 40.83

claytests 88.75 7.5

dudleytests2 91.0 N/A

jptests 82.62 N/A

moloch tests 88.75 20

ac error

russtest 83.26 20

gregtests 85.63 N/A

stevetestcases 73.33 N/A

stevetestcases2 72.92 N/A

pjtests 94.90 43

claytests 83 0

dudleytests2 No failing test cases

jptests 80.24 30

moloch tests 90.47 N/A

bc error

russtest 81.52 35

gregtests 87.03 N/A

stevetestcases 76.25 N/A

stevetestcases2 76.25 N/A

pjtests 94.63 48.5

claytests 81.38 0

dudleytests2 No failing test cases

jptests 81.90 10

moloch tests 88.44 N/A

ab error

russtest 80.23 27.5

gregtests 82.88 28

stevetestcases 79.17 N/A

stevetestcases2 85.42 N/A

Continued on next page
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Table A.2 – continued from previous page

Bug Test suite Accuracy (%)
Recall

Failing (%)

pjtests 94.65 44

claytests 83.38 0

dudleytests2 71.5 35.0

jptests 76.19 5

moloch tests 89.06 N/A

Table A.3: Classification Results of Gaussian Naive Bayes

Bug Test suite Accuracy (%)
Recall

Failing (%)

steve error

russtest 61.30 0

gregtests 49.24 33.75

stevetestcases 100.0 N/A

stevetestcases2 92.50 N/A

pjtests 95.31 36.67

claytests 38.75 37.5

dudleytests2 100.0 N/A

jptests 22.14 N/A

moloch tests 80.47 0

ac error

russtest 71.09 5

gregtests 29.06 N/A

stevetestcases 100 N/A

stevetestcases2 64.17 N/A

pjtests 94.79 91

claytests 38.25 37.5

dudleytests2 No failing test cases

jptests 40 70

moloch tests 58.44 N/A

bc error

russtest 66.09 2.5

gregtests 28.13 N/A

Continued on next page
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Table A.3 – continued from previous page

Bug Test suite Accuracy (%)
Recall

Failing (%)

stevetestcases 100 N/A

stevetestcases2 25.83 N/A

pjtests 94.44 93

claytests 44.38 32.5

dudleytests2 No failing test cases

jptests 35.71 75

moloch tests 59.38 N/A

ab error

russtest 68.04 0

gregtests 56.82 29

stevetestcases 100 N/A

stevetestcases2 94.17 N/A

pjtests 94.77 98

claytests 44.63 32.5

dudleytests2 90.0 0

jptests 43.57 30

moloch tests 56.88 N/A



Appendix B

Benchmarks

Benchmark Language(s) Types of inputs
Number of
programs

Number of
defects

Triangle Classification C++ Numeric 22 18

Codeflaws C
Numeric, string,
C structure

7436 3902

IntroClass C Numeric, string 259 1143

QuixBugs Python, Java
Numeric, string
object

80 80

Table B.1: Benchmarks used in the experiments

139



Bibliography

[1] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang

Zhai. Have things changed now?: an empirical study of bug characteristics in

modern open source software. In Proceedings of the 1st workshop on Architectural

and system support for improving software dependability, pages 25–33. ACM, 2006.

[2] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.

The oracle problem in software testing: A survey. IEEE transactions on software

engineering, 41(5):507–525, 2014.

[3] Ronald Rivest. Rfc1321: The md5 message-digest algorithm, 1992.

[4] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang

Zhai. Bug characteristics in open source software. Empirical Software Engineering,

19(6):1665–1705, 2014.

[5] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug characteristics in blockchain

systems: a large-scale empirical study. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), pages 413–424. IEEE, 2017.

[6] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An empirical study of bugs in

test code. In 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 101–110, Sep. 2015. doi: 10.1109/ICSM.2015.7332456.

[7] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software repair:

A survey. IEEE Transactions on Software Engineering, 45(1):34–67, 2017.

[8] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. Spectrum-based multiple

fault localization. In 2009 IEEE/ACM International Conference on Automated

Software Engineering, pages 88–99. IEEE, 2009.

140



Bibliography 141

[9] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program

repair. Communications of the ACM, 62(12):56–65, 2019.

[10] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. Addresssanitizer: A fast address sanity checker. In Presented as part of

the 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12), pages

309–318, 2012.

[11] Stacy J. Prowell and Jesse H. Poore. Foundations of sequence-based software

specification. IEEE transactions on Software Engineering, 29(5):417–429, 2003.

[12] Tsong Yueh Chen, F-C Kuo, TH Tse, and Zhi Quan Zhou. Metamorphic testing

and beyond. In Eleventh Annual International Workshop on Software Technology

and Engineering Practice, pages 94–100. IEEE, 2003.

[13] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos

Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon system for dynamic

detection of likely invariants. Science of computer programming, 69(1-3):35–45,

2007.

[14] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. A review of supervised

machine learning algorithms. In 2016 3rd International Conference on Computing

for Sustainable Global Development (INDIACom), pages 1310–1315. Ieee, 2016.

[15] Hu Jin, Yi Wang, Nian-Wei Chen, Zhi-Jian Gou, and Shuo Wang. Artificial neural

network for automatic test oracles generation. In 2008 International Conference

on Computer Science and Software Engineering, volume 2, pages 727–730. IEEE,

2008.

[16] Meenakshi Vanmali, Mark Last, and Abraham Kandel. Using a neural network in

the software testing process. International Journal of Intelligent Systems, 17(1):

45–62, 2002.

[17] Rushi Longadge and Snehalata Dongre. Class imbalance problem in data mining

review. arXiv preprint arXiv:1305.1707, 2013.

[18] Tse-Hsun Chen, Meiyappan Nagappan, Emad Shihab, and Ahmed E Hassan. An

empirical study of dormant bugs. In Proceedings of the 11th Working Conference

on Mining Software Repositories, pages 82–91, 2014.



Bibliography 142

[19] Chris Dannen. Introducing Ethereum and solidity, volume 1. Springer, 2017.

[20] Elaine J Weyuker. On testing non-testable programs. The Computer Journal, 25

(4):465–470, 1982.

[21] Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable programs.

In Proceedings of the ACM’81 Conference, pages 254–257, 1981.

[22] Lionel C Briand. Novel applications of machine learning in software testing. In

2008 The Eighth International Conference on Quality Software, pages 3–10. IEEE,

2008.

[23] Mauro Pezze and Cheng Zhang. Automated test oracles: A survey. In Advances

in computers, volume 95, pages 1–48. Elsevier, 2014.

[24] Paulo Augusto Nardi and Eduardo F Damasceno. A survey on test oracles. pages

50–59, 2015.

[25] Rafael AP Oliveira, Upulee Kanewala, and Paulo A Nardi. Automated test oracles:

State of the art, taxonomies, and trends. In Advances in computers, volume 95,

pages 113–199. Elsevier, 2014.

[26] Debra J Richardson, Stephanie Leif Aha, and T Owen O’malley. Specification-

based test oracles for reactive systems. In Proceedings of the 14th international

conference on Software engineering, pages 105–118, 1992.

[27] Atif M Memon, Martha E Pollack, and Mary Lou Soffa. Automated test oracles

for guis. ACM SIGSOFT Software Engineering Notes, 25(6):30–39, 2000.

[28] Mark V Lawson. Finite automata. CRC Press, 2003.

[29] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian

Liu. A systematic review of fuzzing techniques. Computers & Security, 75:118–137,

2018.

[30] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang. Fuzzing: State of the art. IEEE

Transactions on Reliability, 67(3):1199–1218, Sep. 2018. ISSN 1558-1721. doi:

10.1109/TR.2018.2834476.

[31] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International

(UK) Ltd., GBR, 1992. ISBN 0139785299.



Bibliography 143

[32] Howard Haughton and Kevin Lano. Specification in B: An introduction using the

B toolkit. World Scientific, 1996.

[33] Fabrice Bouquet, Christophe Grandpierre, Bruno Legeard, Fabien Peureux, Nico-

las Vacelet, and Mark Utting. A subset of precise uml for model-based testing. In

Proceedings of the 3rd international workshop on Advances in model-based testing,

pages 95–104, 2007.

[34] CB Jones. Systematic software development using vdm prentice hall. Englewood

Cliffs, NJ, 1986.

[35] Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall

Englewood Cliffs, 1997.

[36] Lilian Burdy, Yoonsik Cheon, David R Cok, Michael D Ernst, Joseph R Kiniry,

Gary T Leavens, K Rustan M Leino, and Erik Poll. An overview of jml tools and

applications. International journal on software tools for technology transfer, 7(3):

212–232, 2005.

[37] Laura K Dillon and Qing Yu. Oracles for checking temporal properties of concur-

rent systems. ACM SIGSOFT Software Engineering Notes, 19(5):140–153, 1994.

[38] Laura K Dillon and YS Ramakrishna. Generating oracles from your favorite tem-

poral logic specifications. In Proceedings of the 4th ACM SIGSOFT Symposium

on Foundations of Software Engineering, pages 106–117, 1996.

[39] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate

tests from requirements specifications. In Software Engineering—ESEC/FSE’99,

pages 146–162. Springer, 1999.

[40] Roong-Ko Doong and Phyllis G Frankl. The astoot approach to testing object-

oriented programs. ACM Transactions on Software Engineering and Methodology

(TOSEM), 3(2):101–130, 1994.

[41] Bo Yu, Liang Kong, Yufeng Zhang, and Hong Zhu. Testing java components

based on algebraic specifications. In 2008 1st International Conference on Software

Testing, Verification, and Validation, pages 190–199. IEEE, 2008.



Bibliography 144

[42] Pascale Le Gall and Agnes Arnould. Formal specifications and test: Correctness

and oracle. In Recent Trends in Data Type Specification, pages 342–358. Springer,

1995.

[43] Anthony JH Simons. Jwalk: a tool for lazy, systematic testing of java classes by

design introspection and user interaction. Automated Software Engineering, 14(4):

369–418, 2007.

[44] Algirdas Avizienis. The n-version approach to fault-tolerant software. IEEE Trans-

actions on software engineering, (12):1491–1501, 1985.
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