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Abstract

Polymers have a vast number of application possibilities in various fields. The tuneability of their
properties makes them especially interesting. When designing a polymer for a specific application,
it takes a lot of time, effort and money to find the optimal synthesis method. This work focusses on
finding more effective ways to go from the desired application to the final polymer product. There are

two different strategies that are explored.

The first strategy focusses on making tuneable solubilizers faster and more effective by making the
solubilizer in presence of its target molecule. It was theorised that some sequence sections within a
statistical copolymer are more effective to enhance the solubility of their hydrophobic target.
Copolymers that were made in presence of their target molecule were made and tested to see if the
prevalence of those effective sections, and thus the overall effectiveness, was increased. As proof
of principle, Piroxicam was used as a model drug. The copolymers investigated are based on the
Eudragit® EPO using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA)
and methyl methacrylate (MMA) as monomers. It was found that “imprinted” copolymers with a ratio
of 1:2:1 BMA:DMAEMA:MMA could solubilise 2.5 mg-mL™ of Piroxicam.

The second strategy explores the use of artificial intelligence to use existing data to predict new
entries. The hypothesis was that one could improve older predictive methods, such as the Q-e
scheme, via machine learning without the need of extensive computational power. Databases for
both the propagation rate coefficient (kp) of homopolymers and the reactivity ratios (r; and r,) of
copolymers were carefully made from literature. Parameters for each monomer were added also
from literature or from simple predictive software. The use of a random forest was tested to predict
r1 and r,. For some entries it performed better than the standard Q-e scheme, but this was not always

the case. Generating a large but complete database proved to be challenging as well.

Because the ry and r» database proved to be challenging, it was theorised that the generation of a
kp-predicting database would be an excellent proof of principle to demonstrate that one can make
precise predictions based on correlation. Making use of the Leave One Out Cross Validation
(LOOCV), the predicted kp values were plotted against their experimental values. The most
successful prediction (r* = 0.993) was obtained using a Ridge regression on a limited dataset (n =
36) containing the molecular weight and a distinction between the type of monomer, inductive effect
of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and polarizability

as parameters.

A streamlined “pushing of a button” to find the desired polymer is still far away but there is potential
to modernise chemistry by designing methods and experiments that create large data outputs and

using specific algorithms used for small databases.
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1. Solubility of novel pharmaceutical drugs

When developing cures for diseases, it's not always necessary to invent new drugs. In 2020, the
cost to develop and market a new medication was estimated to be 1.1 billion USD." On top of that,
a large proportion of all new chemical entities are hydrophobic and have limited solubility in polar
solvents.? Since most modern drugs in development are hydrophobic in nature, the drug delivery
inside the human body is more challenging.®> * Attempting to mix hydrophobic substances in
water-like media can cause issues like precipitation, phase separation or the formation of a
suspension.? There are many drug delivery systems, such as microencapsulation, nanoparticles and
hydrogels to name a few, that aid in the effectiveness of drug therapy.® A well-chosen drug delivery
system, improves the application possibilities. Finding new, easy and reproducible methods to create

dedicated solubilizers is an interesting challenge.

Defining solubility and permeability

The ease of getting a drug to the market is affected by solubility and permeability, terms that are key
parts of the Biopharmaceutics Classification System (BCS). The BCS is comprised of four classes,
defined by high or low solubility/permeability (Figure 1-1a). The United States Pharmacopoeia (USP)
and British Pharmacopoeia (BP) have both described solubility in parts of solvent required per part
of solute. A molecule is considered very soluble when less than one part of solvent is needed and
practically insoluble at 10,000 parts or more.? Rautio et al. illustrates this classification by plotting the

permeability versus the volume required to dissolve the highest dose (Figure 1-1a).°
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Figure 1-1: (a) Scheme of the different classes in the Biopharmaceutics Classification System (BCS) which are defined by
their high or low solubility/permeability. Adapted from Rautio et al.® (b) the percentage of market drug molecules according
to the Biopharmaceutics Classification System (BCS). For each class, the percentage of New Molecular Entities (NMEs)
(dark blue and red) are compares with their market percentage (light blue and pink) for two different years. The values are
adapted from Benet et al. (2013) and Nikolakakis et al. (2017)*

Solubility is influenced by the polarity of both the solute and the solvent. When molecules are polar,
meaning that they have areas with a partial charge, they dissolve easily in polar solvents such as
water. To describe a molecules’ ability to dissolve in water, the terms hydrophobic and hydrophilic,
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water-fearing and water-loving respectively, are often used. Permeability describes how well a
molecule can pass through the necessary membranes. Both Benet et al. and Nikolakakis et al. have
reported the percentage of drug molecules on the market and the percentage of New Molecular
Entities (NME) in 2013 and 2017* respectively (Figure 1-1b). Although most NME are BCS Class II,
only around 30% of the currently marketed drugs are in this class. This disparity between discovered

drugs and marketed drugs highlights the value of addressing solubility when developing treatments.

In order for a drug to work as intended, it needs to reach the desired systemic levels and have the
correct pharmacological actions. Several methods towards increasing drug solubility in water have
been suggested.? In 2016, several media outlets highlighted a new liquidized form of aspirin that
could pass the blood brain-barrier. The component, IP187B, is a potential candidate towards therapy
for brain cancer since research suggests that it could be highly effective against gliobastoma, one of
the deadliest forms of brain cancer.”® Thus, even though aspirin is widely spread and used, it is still

involved in significant research.

Solubility enhancement techniques

Solubilization techniques can be classified in three categories: physical modifications, chemical
modifications and miscellaneous modifications. One of the most straightforward, efficient and
reproducible solubility enhancement techniques is particle size reduction, a physical modification.
By increasing the surface-to-volume ratio, there is a greater interaction with the solvent which
increases its solubility. However, conventional methods to reduce the particle size rely on
mechanical and/or thermal stress which can induce degradation.? Similarly, nanosuspensions have
an increased surface-to-volume ratio. They can be prepared with precipitation, media milling and/or
high-pressure homogenization.? Other concepts are to modify the crystal habit (e.g. cocrystallization)
or disperse the drug in carriers such as a hydrophilic matrix (e.g. solid dispersions).® Changing the
pH, the use of a prodrug or complexation are all examples how to enhance solubility via chemical

modification.®

Miscellaneous modification strategies use a mediator between the hydrophobic drug and the
hydrophilic solvent. This mediator can be straightforward, like a cosolvent, or more complex like a
surfactant. A surfactant molecule has an amphiphilic nature, meaning it has both a hydrophobic part
and a hydrophilic part."® The non-polar or hydrophobic part can form strong interactions with
hydrophobic drugs whereas the polar part has a strong affinity with the polar solvent. Because of its
amphiphilic nature, the surfactant molecules can self-assemble into structures like micelles.'® An
expansion of surfactants is the use of synthetic, amphiphilic block-copolymers. The optimization of
controlled polymerization has allowed the yield of precise synthetic polymers with tuneable
characteristics. This opens up the possibility to create various shapes such as spheres, ellipsoids or

vesicles with self-assembly.' Buckinx et al. recently introduced a top-down morphology control in
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micellar self-assembly using continuous flow."" However, most micelles function as an extern carrier
that traps the desired drug and transports it to the desired place of action. These carriers can be
precisely tuned to release their contents using antibodies, temperature or pH. Nevertheless, drug
solubilizers can be made more specific, and thus more effective, when specific interactions between
the drug and the solubilizer are considered as well. A great source for functional groups that induce
these interactions is, as in many cases, nature itself: peptides.'? As stated by Tesauro et al., peptide-
based aggregates have many advantages including good biocompatibility and high drug loading
capacities.'? Lawatscheck et al. synthesised a tailored peptide-polyethylene glycol(PEG) conjugate
that functions as a specific solubilizer for the hydrophobic drug N-phenylamine B4A1 (Figure 1-2)."
The defined sequence of the peptide part provides a specific, noncovalent drug binding via the
peptide/drug interactions. The hydrophilic PEG block ensures that the solubilizer/B4A1 complexes

are soluble in water.

However, a disadvantage of natural peptides is that they are sensitive to denaturation which causes
them to lose their functionality. Maron et al. uses learning strategies from peptides to synthesize
functional precision polymer sequences, hence making the synthetic equivalent to the natural
peptide.' Moreover, synthetic polymer solubilizers are not limited to the building blocks of natural

peptide solubilizers.

(@) Potential anti-Alzheimer drug (c)
N-phenylamine B4A1 peptide segment
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Pep,(B4A1)-PEG ’
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(b) Tailored peptide-PEG conjugates

Figure 1-2: The structure of the hydrophobic drug N-phenylamine B4A1 (a) and the structure of the tailored peptide-PEG
conjugates (b) Pep1(B4A1)-PEG and Pep2(B4A1)-PEG. The functionalities of the peptide segment interact with the B4A1,
generating a water-soluble drug conjugate complex due to the water solubility of the polymer part. The abbreviations are
as followed: Arg = Arginine, Asn = Asparagine, His = Histamine, Lys = Lysine, Phe = Phenylalanine, Thr = Threonine,
PEG = Polyethylene glycol. Insert figure reproduced with permission from Ref'3. Copyright © Macromolecular Bioscience.

Kano et al. uses 2-Methacryloyloxyethyl Phosphorylcholine (MPC) and n-Butyl Methacrylate (BMA)
to form a copolymer (poly(MPC-co-BMA)) that increases the drug solubility and absorption of
miconazole (class Il), vidarabine (class Ill) and griseofulvin (class 1V)."> Poly(MPC-co-BMA) is
commercially used as a solubilizer. The MPC molecule is hydrophilic and makes the polymer water

soluble. The BMA has a hydrophobic interaction with the hydrophobic drug.’® The mechanism how

the poly(MPC-co-BMA) enhances the oral drug absorption was not clarified. The solubility of
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phenytoin was enhanced with a copolymer using 1-vinyl-2-pyrrolidone (VP) and
poly(N-isopropylacrylamide-co-vinylpyrrolidone) (NIPAAM) by Widanapathirana et al. '® In here, the
NIPAAmM was the key for an optimal drug-polymer interaction whereas VP provided aqueous
solubility. In conclusion, there are numerous strategies to create polymers, whether it be random
copolymers or sequence defined polymers. In order to fully understand the strategy to create the

right polymer, these techniques are explained in section 2.
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2. Polymer chemistry

A polymer is a macromolecule that consists of (relatively) small molecule units bonded together to
form a larger molecular structure.'” The definition of a polymer is very general and can range from
proteins, wood and silk, to plastic, rubber and resin. While synthetic polymers are more chemically
diverse than biopolymers, biocatalysts like enzymes offer a greater molecular precision.'® A control
of the sequence of the monomer units in a polymer leads to a higher predictability of the polymers
properties. Over the years, several techniques were developed to generate sequence-controlled and
sequence-defined polymers including (but not limited to) so called “living” free radical, ring-opening
and anionic polymerizations. Before elaborating on these techniques, it is important to understand

the kinetics behind polymerizations first.

Kinetics

The two main polymerization mechanisms are step-growth and chain-growth polymerization.'
Step-growth makes use of bi- or multifunctional monomers which are combined together to form the
polymer chain. First, monomers will react with each other to form dimers. These dimers will react
with any molecular species, form oligomers and eventually a polymer chain (Figure 1-3). On the
other hand, chain-growth polymerization makes use of unsaturated monomers which are activated
with the help of an initiator. Other unsaturated monomers are joined to the growing polymer chain
one at the time (Figure 1-3). Both step-growth and chain-growth polymerization generally lead to
non-uniform or polydisperse samples. Optimized polymerization methods are needed to generate
precision polymers with precisely controlled molecular structures. Living polymerization is a subclass
of chain-growth polymerization. The relationship between the number average molecular weight (M)
and the conversion is linear (Figure 1-3).2> 2' There are several techniques that led to the
development of precision polymers as illustrated by Lutz et al.?’ In this section, free radical

polymerization, which is a part of chain-growth polymerization, will be discussed more in dept.

‘.g’ Chain-growth Chain-growth
® 0® Op
3 oOOoo oOOoo &0 C%o'o cijocgoo
>
S 2 o o O
E \57 Step growth
Q
g o oo o__ C?o oY) gé’ oo %@
3 Step-growth O 5 O (53
1

Conversion | %

Figure 1-3: The number average molecular weight (M,) versus conversion plot for chain-growth, living and step-growth
polymerization in blue, green and red respectively. The difference between chain- and step-growth polymerization is
schematically represented next to the plot.
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Free radical polymerization consists of three main reaction steps: initiation, propagation and termination (

Initiation Propagation Termination
Initiator ——— |* M P
/\ p* —— P, I* —> Termination
M P; P,

1 n

Figure 1-4: Scheme of free radical polymerization divided into three steps: initiation (green), propagation (blue) and
termination (red). The I' represents an activated initiator, the M a non-active monomer and the P+ /P, /P a polymer with
1, n and m insertions.

). In the first step, activated monomers with propagating radicals are formed when free radicals from
a decomposed initiator react with a monomer. These propagating radicals will form a growing
polymer chain. The growth stops during termination where two free radicals form a stable nonradical
adduct. It can be noted that the most straightforward free radical polymerization only needs a mixture
of monomer and initiator.?! If two or more monomer species are used in the polymerization, statistical
copolymers are formed. These can be completely random, have alternating structures, contain
blocky structures or follow other statistical sequences and depend on the reactivity ratio of the
comonomers. Even though it is difficult to form defined polymers due to the statistical nature of
radical chain-growth polymerization, the sequence of the end product can still be influenced by
considering the relative quantity of the monomers’ feed and the reactivity ratio. Between two
monomers (M1 and M), four different reactions can occur: an activated M, or activated M. can react
with another M or M2. These reactions each have their own reaction constant (ki1, k12, k21 and k2»).
The reactivity ratio (r) of a propagating chain is the ratio of the rate constant for the addition of the
same monomer and the rate constant for the addition of the other monomer (ry = k11/ki2 and r; =
kaolkz1).2

Initiation Propagation Termination
Initiator ————  |° M P
/\ p* —— P, 1* —— Termination
M P’ P’

1 n

Figure 1-4: Scheme of free radical polymerization divided into three steps: initiation (green), propagation (blue) and
termination (red). The I' represents an activated initiator, the M a non-active monomer and the P+ /P, /P a polymer with
1, n and m insertions.

The reaction constant (kp), or propagation rate coefficient, has a molecular kinetic interpretation often

referred to as the Arrhenius (Equation 1).2> 24

k. = Ae RT Equation 1
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Thus, kp, can be written using the pre-exponential frequency factor (A), the activation energy (E.),
the absolute temperature (T) and the gas constant (R = 8.3145 J-mol”-K"). The Arrhenius plot shows
the relationship between k, (or In(kp)) and the absolute temperature of polymerization where the A

and E, can be extrapolated from the intersection and slope of the curse respectively (Figure 1-5).

The standard technique to determine radical polymerization characteristics is Pulsed Laser
Polymerization (PLP). In combination with Size Exclusion Chromatography (SEC), PLP manages to
accurately determine k, when measuring at high frequencies (100-500 Hz). Consequently, in order
to determine accurate benchmark k, values, high frequency lasers are needed, a technology that

has only existed for a few decades.?®

<— y-intercept = In(A)

Slope = (-E4/R)

In(k)

1/Temperature

Figure 1-5: Arrhenius plot with the natural logarithm of the reaction constant (In k) on the Y-axis and a derivative of the
absolute temperature (1/T) on the X-axis. The slope and intercept are related to the pre-exponential factor (A) and the
activation energy (Ea)

When a polymer consists of one type of monomer, it is often referred to as a homopolymer.
Copolymers have multiple building blocks and their final design depends on a variety of factors
(Figure 1-6). The inherent property of the monomers is one such factor and the corresponding

reactivity ratios (r and r2) will have an influence on the structure of a polymer.

Homopolymer Block copolymer W

m‘ .M Graft copolymer

Alternating copolymer Random copolymer

Figure 1-6: Examples of different copolymer designs compared to a linear homopolymer

A large ryindicates a propensity for M1* to add to M1 whereas a small ry means M+* will add to Ma.
Thus, knowledge about the rs and r> can indicate if the final structure is a homopolymer (r1= r>>> 1),

block copolymer (r1=r.> 1), random (rs= r>= 1), or alternating (r1= r.= 0).
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Figure 1-7: Visualisation of the Terminal Model

There are multiple ways to describe copolymerization reactivity ratios. The one that is most
straightforward, and often used because of its simplicity, is the Terminal Model described by
Mayo et al. (Figure 1-7).%°

For radical polymerizations, the result of the terminal model would be described by the copolymer
equation using the monomer concentrations ([Mi] and [M.]) and the reactivity ratios (r1 and r2)

(Equation 2). It is also known as the Mayo-Lewis equation.

aM;]  [M;](r[My] + [M;])

d[MZ] B [Mz]([M1] +1r [Mz]) Equation 2

Alternatively, one can rewrite the equation in terms of mole fractions of monomer in the feed (f; and

f2) and mole fractions of the imbedded monomer in the polymer (F; and F2) (Equation 3).

T1f12 + fif2

F1 =1- Fz = i
r1f12 +2fif5 + T'zfzz Equation 3

Using these equations, it is relatively easy to determine ri and r.. However, with its simplicity come
some limitations as well because one has to assume a steady-state system. Thus, one cannot

predict low molecular weight polymers.

The penultimate model is a succession of the Terminal Model and takes the effects of the penultimate
monomer unit of a growing chain into account. Unlike the Terminal Model, it can describe the rate of
polymerization and the composition simultaneously. However, the increase of model parameters

results in an increased complexity, and is because of this less popular then the Terminal Model.?® ?’

The Q-e scheme is a simple extension of the Mayo-Lewis model.® The parameters P and Q are the
general reactivity of radical i and monomer j, and e is proportional to residual charges in the reacting
groups (Equation 4). Substituting the four possible outcomes when a polymer undergoes

propagation, we can isolate the reactivity ratios (Equation 5).
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kij = PQ; exp(_eiej) Equation 4

r =—=—exp[—e;(e; —e;)] Equation 5

Again, the Q-e scheme is limited in its efficiency, especially when introducing new monomers to the
system. On top of that, P and Q are dependent on the radical to which the monomer is being bound
to.

Controlled polymerizations

Reversible-Deactivation Radical Polymerization (RDRP), formally known as Controlled Radical
Polymerization (CRP), allows for more control over the precise molecular weight, dispersity and
specific composition. In RDRP, the lifetime of the growing polymer chains is increased by adding a
specific compound on top of/instead of the initiator and the monomer. The three most important
methods of RDRP are Nitroxide-Mediated Polymerization (NMP)?®, Atom Transfer Radical
Polymerization (ATRP)* and Reversible Addition-Fragmentation chain-Transfer (RAFT)%®
polymerization (Figure 1-8). NMP and ATRP are based on the principle of reversible deactivation:
most radicals are “trapped” in a dormant state which decreases the total radical concentration of the
reaction and thus decreases the termination rate. RAFT on the other hand works with a degenerative
chain transfer where the termination is decreased by a control agent. Thus, on top of the linear
increase of M, versus conversion, RDRP reactions have a low polydisperse and high end-group
fidelity.

( )

m .

ln_: ML + R-P,-X == R-P, + XM"™L X = Cl, Br, etc.

< \_ J
e ™

% RP\-X == RP, + X X = nitroxide, etc.

z y,
(

= . —— . ieps

I.<|. R-Pn + R-P,-X JT—= R-P, + R-P,X -X = dithioester, etc.

14 \_ J

Figure 1-8: Schematic overview of the three main methods for reversible-deactivation radical polymerization (RDRP):
nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP) and reversible addition-
fragmentation transfer (RAFT) polymerization. Mt"/L represents a metal catalyst with a ligand. The -X group is depended
on the type of RDRP, the R-groups is a rest group. The P, is a polymer with n insertions.

RAFT is a versatile technique that is compatible with a wide variety of monomers including styrenes,
acrylates, methacrylates, vinyl esters and acrylamides. On top of the initiator and the monomer, a
third essential compound is needed in classical RAFT polymerization: the Chain Transfer Agent

(CTA) or RAFT-agent. CTA’s are typically formed by a dithioester together with a free radical leaving
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group (R) and a stabilizing group (Z). There are several components that determine the effectiveness
of the RAFT agent: the R-group, the Z-group and the compatibility between the RAFT agent and the
monomer. The mechanism of RAFT can be divided into five steps. The first step, the initiation, is the
same as the first step of free radical polymerization. The propagating radicals can transfer onto the
thiocarbonylthio compound of the RAFT-agent leading to a (possible) detachment of the R-group.
New propagating radicals are created in the reinitiation step by the formative radical of the R-group.
When the R-group is released from the RAFT-agent, a new active centre is generated (re-initiation
step). Thus, the propagating radicals can again transfer onto the thiocarbonylthio compound leading
to a dormant intermediate. The main equilibrium is formed between the RAFT adduct radical
intermediate and the active propagating radicals, essentially avoiding that two propagating polymers
will terminate (Figure 1-9). Since the chains grown simultaneously, the dispersity should be low

because all the polymers will have approximately the same length.

Initiation Termination
Initiator ——  |° M " Py
/\ p; —_ p;+1 — Termination
M P: R* Pn'
Pre-equilibrium
e N\
Re-initiation
P SaL S SN
n ~ Ve . ~
Y R — Py R —_——
M 7 zZ
\
Main equilibrium
e N\
P s s =
n ~ S S e S s "
Y P —_ Y e =— P \f "
M z 2 z
\_ /

Figure 1-9: Schematic of the different steps of reversible addition-fragmentation chain-transfer (RAFT) polymerization

When the control over the primary polymer is absolute, a suitable term is Sequence-Defined polymer.
In contrast, when the sequence is controlled to some degree, the term Sequence-Controlled is often

used in literature.

Optimising strategy one: MIP-approach

Molecularly Imprinted Polymers (MIPs) are a synthetic equivalent to biological antibodies. The
working mechanism of a MIP is best described with a ‘lock and key’ metaphor where the template
molecule is the key and the MIP is the lock. A good lock is only effective when there is only one type

of key that can open it and thus, similarly, a good MIP is only effective when it has a high affinity for
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its specific template. There are various methods to synthesize MIPs: synthesis in presence of the
monomer, phase inversion and soft lithography. In this section, the focus will be on the synthesis
method since that is the most relevant for later applications. The MIPs are created by polymerizing
monomers and cross linker in presence of the desired target molecule. After extraction of the
template, highly selective cavities are left in the polymer matrix (Figure 1-10). These cavities can
rebind only its specific target molecule, even when similar analogue molecules are present.®'
Commercially, most MIPs are used for separation but there are techniques to integrate MIPs into
sensors. Commercially, MIPs are attractive because of their stability, low production costs, long shelf

life and easy synthesis.*’

. . @ Template removal

Copolymerisation \_/
. with target present
. Selective interaction

with template j

Figure 1-10: General scheme of the synthesis and working of a molecularly imprinted polymer.

4

The synthesis of polymer solubilizers via the ‘MIP-approach’ is to polymerize selected monomers in
presence of the target molecule to create a ‘linear MIP’. It has to be noted that the term
‘MIP-approach’ is chosen because the main strategy is based on the synthesis method of the MIPs.
The final solubilizers won’t be MIPs. Theoretically, sequences that have a high affinity with the target
drug, and are statistically present in a normal copolymer, should occur more when using the MIP

approach.

Optimising strategy two: the SUMI-approach

The multistep growth synthesis is a strategy to generate controlled nano-scale molecules. In here,
one monomer is added at the time and this technique is used in both linear iterative synthesis and
dendrimer synthesis. Single Unit Monomer Insertion (SUMI) falls under both the chain growth
polymerization and the multistep growth polymerization categories. Haven et al. describes SUMI
reactions both in batch and in flow.? After each monomer addition, the polymer is purified to obtain
only the oligomers with the desired sequence. The term Multiple Unit Monomer Insertion (MUMI) is

more appropriate when more than one monomer is built in to the sequence.

When it comes to sequence defined materials, nature has perfected its techniques over millennia of
evolution. The body is constantly copying or creating specific sequences to build DNA strings or form
proteins. Even though synthetic chemistry has its advantages, when it comes to sequence-defined
materials it has not even come close to the efficiency of nature. Among others, these specific

sequences can contain information and/or influence the structure of the final molecule. A single
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variation in the sequence, often described as a point mutation, can have severe consequences such
as sickle-cell anaemia, neurofibromatosis, and even cancer.®® This illustrates the importance of the
sequence, and thus for some applications, sequence-controlled molecules are not sufficient. As
mentioned in section 2, multistep growth synthesis is a technique whereby one monomer is added
at a time which creates a defined sequence. These sequence-defined techniques are harder to
optimize but ultimately give more control over the final polymer. What increases the ‘playability’ of
synthetic polymer possibilities is the fact that synthetic chemistry has a bigger variety of monomers
whereas nature is limited to its specific building blocks. Aerst et al. documented a SUMI of
N,N-dimethylacrylamide with RAFT polymerization in an aquatic environment. The RAFT-agent
((((2-carboxyethyl)thio)carbonothiotl)thio)-4-cyanopentanoic acid was used and it was discovered

that red light provided slower but more selective excitation.*

Maron et al. demonstrated how synthetic solubilizers can be made by learning from peptide
sequences.' By imitating the peptide properties, specific sequences were made and tested on
meta-tetra(hydroxyphenyl)chlorin. Some solubilizers reached 40% higher payloads and 27-times

faster initial drug release.

Optimising strategy three: data driven correlation

The problem with the SUMI-approach is that determining the optimal sequence takes a lot of time
and effort. Characterising every single combination, even from a limited combination of monomers,
is an impossible task to do by hand. Instead of filling out everything, machine learning could be used
as a tool to predict unknown knowledge based on known data. For example, Koide et al. describes
how they use machine learning to predict the cardiac dose in breast cancer radiotherapy.®®
Ghanzouri et al. developed an automatic tool to detect peripheral artery disease.® In another

example, several machine learning techniques where compared to predict COVID-19 severity.%’

Thus, instead of relating properties to monomers via physical experiments, a fresh look is to correlate

its properties via statistical methods.
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3. Machine learning

The relation between us and machines has fascinated humanity for a long time. The history of the
computer goes back to the 19th century, but only gained traction around the Second World War. The
first machine which could be described as a mechanical computer was invented by Charles Babbage
in 1822 and was used to make tables for polynomials.® In the Second World War, Alan Turing's
work on creating a machine to decrypt the messages of the Germans made him seen as the father
of modern computing. %' After the war, in 1946, the first fully programmable, electronic, general-
purpose computer was unveiled at the University of Pennsylvania: The Electronic Numerical
Integrator and Computer (ENIAC).* ENIAC was several orders of magnitude faster than its

mechanical predecessors.

In 1950 Alan Turing wrote the famous article “Computing Machinery and Intelligence”, where he
discussed the question “Can machines think?”. A machine or Atrtificial Intelligence (Al) passes the
Turing Test if it is indistinguishable from a human during a conversation with a real person.® In the
same year, Isaac Asimov, known for his three laws of robotics, bundled a series of short stories in
", Robot".*> The stories revolve around human-robot interactions and morality, a concept that

decades later is still relevant.

Nowadays, the field of Artificial Intelligence encompasses more than just conversation: Al algorithms
are responsible for the analysis of enormous datasets, predicting results given prior information on
a topic, or creating images, sounds and news stories. Therefore, we give another definition to Al: "Al
refers to those artificial agents capable of analysing the environment and taking actions, emulating
the human reasoning process, in order to achieve a specific goal.".*' From here, we can start to

explain what encompasses Artificial Intelligence and Machine Learning (ML).

Types of Machine Learning

The goal of Machine Leaning is to let a computer algorithmically teach itself to perform a certain task.
Generally, we can divide the way to train an Al in three categories: (i) supervised learning, (ii)
unsupervised learning, and (iii) reinforcement learning. In supervised learning, we provide the
algorithm with both the inputs and the desired outputs. In unsupervised learning only inputs are
given, and the algorithm needs to work out by itself how to categorise the data. Finally, in
reinforcement learning the computer must learn to solve a problem, for example learning how to play

a certain video game and give itself feedback on how to improve itself.3® 4

On the other hand, ML algorithms can be categorised by the task they are trying to solve and are
related to their learning algorithm. (a) Classification, where a model is built to automatically classify
new data under the correct label, and (b) regression, where the model fits data points to predict a
numeric value for new input data, are categorised under supervised learning. In (c) clustering, data
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is divided in groups and are characterized by high similarity within the same group, but data from
different groups should be dissimilar. As no desired grouping is given from the start (unsupervised),
the algorithm should figure out grouping parameters by itself. Another example of unsupervised
learning is d) dimensionality reduction, where to goal is to reduce the size of the sample dataset by
selecting only certain attributes or data sampling to increase the performance of the model. This list

is by no means exhaustive but is sufficient for now.

The last point of dimensionality reduction is of great importance in this thesis: it leads us to the
question whether having a dataset with many attributes is better than a reduced one. On the one
hand, one might say that more data is more information to make a better prediction. On the other
hand, datapoints can be correlated or have no influence on the outcome of the prediction
whatsoever. This data will make it harder to create a performant model since more "good" datapoints
are needed to suppress the noise from the bad ones. Therefore, a good choice of features and
attributes is important. However, the focus in this thesis will be on (b) regression. As such, feature
choice will be a manual task. Deep Neural Networks can solve the problem of manual selection, but

this goes beyond the scope of the thesis.

Machine Learning workflow

Finding patterns in data becomes more complicated with systems that exist of a complex mixture of
inputs. ML automates the identification of patterns via computational calculations. ML finds its base
in statistics and thus (an important factor to keep in mind when it comes to machine learning) is that
at its core, it can only be as good as the provided data. Fundamentally, a ML model or algorithm is
trained on existing data which then can be applied to predict an unknown entry. There are two
phases: training the algorithm and evaluation. A good way to explain is using an example shown by
Strieth-Kalthoff et al. (Figure 1-11).** In this figure, the data points (in this case monomers) are
encoded with a number of specific features x1, x2 and xs. Each entry has a specific target y and the
ML model uses the data point, features and targets to train. After the training, the model is used to
predict the target y of a new monomer with known features. Once the training phase is complete,
the model needs to be evaluated to see if the value of predicted target is in the range of it's expected
value and is non-biased. A big difficulty with ML is when the model learns the noise in the data as

well, resulting in overfitting.
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Figure 1-11: General workflow for building and applying a supervised, machine learning models for predictions. The insert
figure is reproduced from Ref**

Regression models

There are various different algorithms and models. One of the most straightforward ones is a nested
cross-validation. With a nested cross-validation, a machine learning model is chosen and the
average of multiple splits is calculated before doing a performance evaluation. This machine learning
model can be different things, three of which will be explained further: multivariable linear regression,
Ridge regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression.

Multivariate linear regression (henceforth linear regression) is a combination of several linear

regressions on independent variables for one dependant variable (Equation 6) *° °:

Y=XB+U Equation 6

where Y is a matrix of the measurements, and X are descriptors of Y (labels and features,
respectively, in machine learning terms). B contains the weights assigned to each feature in X, and
Uis any remaining noise and error. The algorithm determines the optimal values of B, by for example

minimising the sum of the squared residuals.

Ridge regression is very similar to a linear regression with the difference of an added penalty term
also referred to as L2. The penalty is equal to the squared value of the coefficients. L2 regularisation
searches for the minimum of the sum of the squared coefficients by tuning a tuning parameter, A, in
the following cost function (Equation 7). In this equation, y; is the i-th datapoint, w; is the weight, x is

the feature value, and A is the penalty term 4" 48
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Lasso regression is like ridge regression; however, the cost function instead minimises the absolute
sum of coefficients, known as L1 regularisation (Equation 8). As a result, lasso regression not only
assists to reduce overfitting, but it can be used in feature selection.*®

M p M 14 p
min (Z(yl - 5\11')2 + /‘12 WJZ) = min (Z(yl — Z W] * Xij)z + /12|W]|) Equation 8
=1 j=0 i=1 j=0 j=0

Since A is scale variant, and thus requires continuous data do be standardised for both Ridge and
LASSO regression. Additionally, one must bear in mind that when A increases, the bias increases,
but the variance decreases.*

It is useful to know that in case of a limited amount of data entries, the Leave-One-Out-Cross-
Validation (LOOCV) is something to consider (Figure 1-12).%% *" In this illustrative scheme, there are
only five data points. Thus, five regressions were executed whereby every time a different data point
was not included in the regression. These regressions are used to predict the ‘missing’ data point
which subsequently gets compared to its correct value to evaluate the algorithm. The closer the

predicted value is to its experimental value, the closer it will be to the x =y line.
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Figure 1-12: Example of the Leave One Out Cross Validation Method (LOOCV) where the LOOCV method is applied to
five data points using a linear regression.

Something that is a bit more complex than a simple regression is a decision tree or random forest.
This technique works by determining a list of Boolean decisions where each feature of significance
influences the final prediction of the tree model (Figure 1-13. They operate simpler than a neural
network, and there are methods to visualize the decision-making process that a decision tree will
undergo to reach its final prediction.*®
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Figure 1-13: Visualisation of a decision tree where from the input (dark blue square) “branches” (black lines) divide itself
over multiple nodes (blue circle) until its final “leaf’. Several leaves can result into the same outcome.

A neural network is more complex than a decision tree since the inner workings and resulting models

are not necessarily understood (Figure 1-14). Unfortunately, they tend to overfit the model, especially

with a limited dataset.?”- %2
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Figure 1-14: Visualisation of a Neural network where a more complex “hidden layer” connects the input layer and the
output layer.

Recent developments

Artificial intelligence gains more and more popularity over the years. As illustrated in Baum et al., the
percentage of publications that have Al-related topics skyrockets between 2015 and 2020. Especially

in analytical chemistry, the use of Al becomes more and more popular.
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Figure 1-15: Percentage of Atrtificial Intelligence (Al) related journal publications for different types of chemistry. The insert
figure is reproduced from Ref%3

Several interesting techniques and discoveries are made with the help of Al. For example, Raccuglia
et al. made a machine learning model, based on data from unsuccessful reactions, that predicts the
success rate of new reaction outcomes.** Because journals often omit the experiments that were not
successful, a big chunk of data never is revealed to the “outside world”. Using failed results to help
predict better conditions for future experiments is a clever method to improve overall success rate.
Other works, such as that from Ramakrishnan et al., focus more on strategies that reduce the
computational cost of quantum chemistry.® Coley et al. developed a robotic platform for flow
synthesis of organic compounds.® By combining both intelligence-driven synthesis planning and
robotically controlled experiments, they successfully synthesized fifteen drug (or drug like)

substances.
4. General aims

The research will aim to combine two different branches of science: polymer chemistry and computer
science. The first chapter starts with a “classic” chemistry project where tailored polymers for a
specific drug delivery application are investigated. Chapter 2 and chapter 3 steer away from the more
conventional lab experiments and explore the possibilities of machine learning as a tool to help find
more efficient chemistry. All these chapters are only a couple of pieces in a much larger puzzle,
which is to use machine learning as a tool to have more streamlined science. However, an added

bonus of delving into machine learning is that it can be done remotely, useful in a global pandemic.
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Chapter 2: Enhancing the Efficiency of Statistical
Copolymers towards Drug Solubility Applications
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1. Introduction

In the biological world, sequence-defined macromolecules such as proteins or DNA are mayor
building blocks for life. Nature has evolved to create complex pathways to synthesise a specific
molecule for a desired application. As such, nature has often been an inspiration in applied materials
science. Although synthetic macromolecules are not as sophisticated as their biological counterparts
yet, they do have their advantages. First, there is a larger variety in synthetic building blocks as
opposed to the ones that occur in nature, leading to a larger variety in chemical compounds.
Secondly, stability is a mayor issue when it comes to for example proteins. The right synthetic

counterpart could improve shelf-life and reduce costs for storage and transportation.™

As stated before (Chapter 1), hydrophobic drugs cause an additional challenge in drug delivery
inside the body.** Using copolymers to enhance the solubility is not a new idea, as there are already
existing products on the markets. Kanikkannan et al. lists different examples ranging from solid
dispersion based products to lipid based delivery systems that are produced by companies like
Janssen, Merck and Pfizer.>” Polyvinyl alcohol (PVA)-based and gelatin-based polymers were
recently (2022) investigated by Choi et al. to see the effect on Rivaroxaban.’® The commercially
available dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) was investigated by
various people such as Saal et al. (2018)*° and Fine-Shamir et al. (2019).%° To the authors
knowledge, there does not seem to be research done about the specific sequence of these

copolymers except in the work of Maron et al.™

They mirrored the functionality of a peptide into the
side-chain function of a synthetic copolymer. Taking inspiration from this, it was theorised that there

must be sequences, tailored to a target drug molecule, that are more effective solubilizing said drug.

The search for a perfect tailored polymer for the right application is unfortunately a lengthy and costly
process. In theory, there is an ideal sequence of monomers that interacts with the desired target
molecule to bring it into solution. However, when a random copolymer using the same starting
molecules is synthesized, that ideal sequence will occur naturally throughout the polymer. When the
polymerisation occurs in presence of the target molecule, the idea is that the monomers themselves
will orient themselves in the desired sequence since that position is the most stable.®' The idea of

this imprinting process is derived from Molecularly Imprinted Polymers (MIPs) (Figure 2-1).

. ‘ @ Template removal

Copolymerisation \_/
with target present

. . Selective interaction
with template j

Figure 2-1: Theory of Molecularly Imprinted Polymers
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After removing the original template molecule, the target can selectively rebind in the precise cavity
of the MIP.*' However, in this work there will be no cavity since there won’t be any use of cross-linker.
Rather, a “linear MIP” is a better way to describe our final copolymers. Originally, the idea was to
compare the efficiency of the “linear MIPs” (the statistical copolymers) with the efficiency of a tailored
sequence (defined copolymers) (Figure 2-2). Unfortunately, this part of the project was swapped for

something more suitable in a COVID-19 environment and is thus not discussed.

Single Unit Monomer Insertion
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Figure 2-2: Comparison between the polymer interacting with their target for (1) the Single Monomer Insertion synthesis
technique and (2) the Imprinting technique.

In this chapter, methyl acrylate copolymers are investigated as potential solubilizers as proof of
principle for the nonsteroidal anti-inflammatory drug Piroxicam (PCX). Saal et al. demonstrated that
the commercially available Eudragit® EPO can be used as a solubilizer for a variety of different
hydrophobic drugs (Figure 2-3b).° One of such hydrophobic drugs is the nonsteroidal
anti-inflammatory Piroxicam (Figure 2-3c).

a. Monomers b. Eudragit® 40 EPO c. Piroxicam

BMA DMAEMA MMA OH O =

H\ 5\ | _ H\ H 7%

Figure 2-3: Structure of butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl
methacrylate (MMA), Eudragit® 40 EPO and Piroxicam
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The copolymers are based on the Eudragit® EPO using butyl methacrylate (BMA),
2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) as monomers
(Figure 2-3a). However, rather than trying to finds a good solubilizer sequence by trial and error, it
was opted to find the correct sequence via imprinting (Figure 2-2). Eudragit® EPO was chosen since

it both is commercially available and straightforward to synthesise.
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2. Proof of complete random copolymerisation

As explained in the introduction, free radical polymerisation exists of three steps:

propagation and termination (Figure 1-4).

All

initiation,

the polymerisations were executed with

azobisisobutyronitrile (AIBN) as initiator and a methacrylate as monomer (Figure 2-4).
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Figure 2-4:

Initiation (blue), propagation (grey) and termination (red) of a free radical polymerisation using

azobisisobutyronitrile (AIBN) as initiator and a methacrylate as monomer.

In order to ensure the copolymerisation of the three monomers, BMA, DMAEMA and MMA, was

completely random, a series of tests were performed. First, six different polymerizations were

executed in bulk, using AIBN (0.0390 mmol) and a mixture of the three different monomers
(7.8 mmol). The ratio BMA:DMAEMA:MMA was subsequently 1:1:0, 1:0:1, 0:1:1, 1:1:1, 1:2:1 and
1:3:1. The mixture is polymerized at 70 °C for 24 hours after purging with argon.
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Figure 2-5: "H-NMR (300 MHz, CDCl3) of six different copolymers with a different ratio of butyl methacrylate (BMA, red),
methyl methacrylate (MMA, green) and 2-(dimethyl)aminoethyl methacrylate (DMAEMA, blue). Subsequently, the ratio
BMA:DMAEMA:MMA was 1:1:0, 1:0:1, 0:1:1, 1:1:1, 1:2:1 and 1:3:1. The mixture is polymerized at 70 °C for 24 hours after
with argon. After reaction, the copolymer was isolated by precipitation in petroleum ether and dried.

After the reaction, the copolymer was isolated by precipitation in petroleum ether and dried. 1H-NMR
(300 MHz, CDCI3) results indicate that the difference of the BMA:DMAEMA:MMA ratio of the added
monomers and the ratio of the BMA:DMAEMA:MMA build into the polymer was less than 5% (Figure
2-5, Table 1).

Table 1: Free radical polymerisations using of butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA)
and methyl methacrylate (MMA) for 24 hours at 70 °C in batch (no solvent). The ratio between the monomers was
determined by weighing the amount of each monomer added to the stock solution. The ratio of the monomers built in in
the polymer is determined with H' NMR after the polymerization.

Targeted ratio in polymer Feed ratio monomers Build-in polymer

BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA
1:1:0 1 1 0 1 1.00 0 1 1.00 0
1:0:1 1 0 1 1 0 1.00 1 0 0.99
0:1:1 0 1 1 0 1 1.03 0 1 1.03
1:1:1 1 1 1 1 0.98 1.03 1 1.02 1.03
1:2:1 1 2 1 1 1.95 1.05 1 1.92 1.01
1:3:1 1 3 1 1 2.86 1.05 1 2.79 1.01

The build-in polymer ratio was determined by normalising the 1H-NMR peak at 4 ppm, which is
assigned to polymer BMA to two (Figure 2-6, BMA’). The ratios were subsequently calculated by
dividing the polymer BMA peak (Figure 2-6, BMA’) by two, the polymer DMAEMA peak (Figure 2-6,
DMAEMA’) by four and the polymer MMA peak (Figure 2-6, MMA’) by three. The 5% difference with

the feed ratio of monomers is negligible since the 1TH-NMR has an accuracy of 5%.
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Second, a 1:2:1 BMA:DMAEMA:MMA ratio was polymerized in different solvents. Six different
polymerizations were executed in six different solvents, using AIBN (0.0213 mmol) and a mixture of
three different monomers (4.26 mmol). The monomer mixture and the AIBN were dissolved in
subsequently chloroform, dichloromethane, dimethylformide, dioxane, tetrahydrofuran and toluene.

Similarly, the mixture was polymerized at 70 “C for 24 hours after with argon.

Table 2: Free radical polymerisations using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA)
and methyl methacrylate (MMA) for 24 hours at 70 °C in different solvents. The abbreviations are as followed: CHCI3 =
chloroform, DMF = dimethylformamide, CgH1604 = dioxane, THF = tetrahydrofuran, MePh = toluene. The ratio between
the monomers was determined by weighing the amount of each monomer added to the stock solution. The ratio of the
monomers built in in the polymer is determined with H' NMR after the polymerization.

Targeted ratio in polymer Feed ratio monomers Build-in polymer
BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA
CHCI3 1 2 1 1 1.89 0.97 1 1.83 0.94
DMF 1 2 1 1 1.89 0.97 1 1.84 0.94
CsH1604 1 2 1 1 1.89 0.97 1 1.84 0.93
THF 1 2 1 1 1.89 0.97 1 1.83 0.92
MePh 1 2 1 1 1.89 0.97 1 1.86 0.91

Again, the difference between the added monomer ratio and the ratio in the polymer is negligible
(Table 2). In conclusion, that the tested solvents don’t have a noticeable influence on the
BMA:DMAEMA:MMA ratio in the final polymer.

To exclude the possibility that the copolymer is not random, the polymerization was stopped at low
conversion. The same polymer mixture, 0.462 mmol monomer with a ratio 1:2:1 ratio
BMA:DMAEMA:MMA and 0.038 mmol AIBN in toluene, was polymerized at 70 degrees for 1 hour

and 5 minutes.

Table 3: Free radical polymerisations using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA)
and methyl methacrylate (MMA) for 1 hours and 5 min at 70 °C in different solvents. The ratio between the monomers was
determined by H' NMR before polymerization. The ratio of the monomers built in in the polymer is determined with H' NMR
after the polymerization.

Targeted ratio in polymer Feed ratio monomers Build-in polymer
BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA
1 hour 1 2 1 1 1.92 0.96 1 1.94 0.94
5 min 1 2 1 1 1.92 0.93 1 1.93 0.94

1H-NMR illustrates that even if the conversion is low, the ratio of BMA:DMAEMA:MMA stays the

same no matter how small the polymers are (Figure 2-5, Table 3).
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Figure 2-6: Part of the "H-NMR (300 MHz, CDCI3) spectrum of a crude mixture of a polymerization using butyl methacrylate
(BMA, red), methyl methacrylate (MMA, green) and 2-(dimethyl)aminoethyl methacrylate (DMAEMA, blue). A 1:2:1 ratio of
BMA:DMAEMA:MMA was used and the mixture was polymerized at 70 °C for 1 hour. The vinyl peaks of the monomers
are coloured yellow and the hydrogen atoms of the polymer and the monomer are labelled with and without an apostrophe
respectively.

Unfortunately, the presence of DMAEMA in the polymer seems to have an interaction with the
analytical columns of the SEC-GPC. For this reason, no data of the SEC-GPC is provided since the

outcome is most likely biased.
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3. Dissolving the copolymer and determining coefficient

Saal et al. mentioned that they dissolved the Eudragit® EPO directly in water.®® However, the 1:2:1
polymer does not seem to dissolve in Demi water. Saal et al. prepared their polymer solutions by
dissolving different amounts of Eudragit® EPO in deionized water and adjusting the pH to 6.0.
Despite this, the 1:2:1 BMA:DMAEMA:MMA polymers had a hard time dissolving in water. However,
Palena et al. investigated self-organized drug-interpolyelectrolyte nanocomplexes where they used
Eudragit® EPO as well. In here, HCI was added to obtain an initial partial neutralization of the amine
groups which stimulates hydration and relaxation of the polymer. After the solid dispersions were
formed, the solution was neutralized with NaOH. In order to generate a more uniform pH of 7.4 over
all the solutions, a polyphosphate buffer was used instead of water to dissolve all the polymer into a
hydrophilic substance. The presence of Piroxicam was determined via UV-Vis spectroscopy since

the copolymer does not show any absorbance (Figure 2-7).
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Figure 2-7: Example of UV-Vis spectrum of Piroxicam dissolved in a phosphate-buffered saline (PBS) buffer using a 1:2:1
ratio of BMA:DMAEMA:MMA copolymer

The peak of the wavelength, 360 nm, is used to determine the absorbance of future UV-Vis spectra.
A dissolution series of Piroxicam, where the drug was dissolved into a 2wt% 1:2:1
BMA:DMAEMA:MMA copolymer in a phosphate buffered saline (PBS) buffer, was determined
(Figure 2-8).
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Figure 2-8: Determination of Molar Absorption Coefficient of Piroxicam in a 2 wt% 1:2:1 BMA:DMAEMA:MMA copolymer
in polyphosphate buffer
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For future calculations, the absorbance can be correlated to 4.115 times the concentration in
micrograms per millilitre.

4. Determining the optimal solubility enhancement

As mentioned before, the 1:2:1 BMA:DMAEMA:MMA copolymer is tricky to dissolve on its own in
water or buffer without acidifying the solution first. To determine the maximum solubility of Piroxicam

in a given solution, the same procedure was executed every time (Figure 2-9).
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Figure 2-9: Procedure to determine the maximal solubility of a given polymer

After a copolymerisation and dissolution of the desired polymer, an excess of Piroxicam was added
to 1 mL of co-polymer solution. The mixture was shaken well before centrifuging for an hour. The
excess Piroxicam sinks to the bottom as a pellet and some of the supernatant was carefully
extracted. Before measuring this on the UV-Vis, the mixture was diluted with PBS buffer. Using the

coefficient from Figure 2-8, the original maximum concentration was determined.

To determine which polymer concentration was optimal, the maximum solubility was determined for
three concentrations of the same 1:2:1 BMA:DMAEMA:MMA copolymer: 0.5 wt%, 1 wt% and 2 wt%.
A higher concentration was attempted as well but proved to be too difficult to properly dissolve the

polymer into PBS (Figure 2-10).
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Figure 2-10: Maximum amount of Piroxicam concentration in different weight percentage solutions
of 1:2:1 BMA:DMAEMA:MMA copolymer

The maximum solubility of Piroxicam varied between 1 mg-mL"and 1.5 mg-mL™" with an increase in
Piroxicam dissolution the higher the polymer concentration. This indicates that the amount of
polymer present in the solution does have a positive effect on the overall Piroxicam solubility. In Saal
et al., they did succeed in getting higher polymer concentrations but they indicated that there was a
plateau phase of Piroxicam solubility after 2 wt%. For the following experiments, a concentration of
2 wt% was used. In Schmied et al. they investigated a modified version of EPO as well, only a
controlled molecular weight. It would have been interesting to vary the molecular weight of the
polymer to see its effect on the solubility enhancement but this was unfortunately not pursued due
to COVID-19 restrictions.

The 1:2:1 BMA:DMAEMA:MMA copolymer was synthesised in presence of Piroxicam as well. Per
monomer unit, a ratio of 1.75 units of Piroxicam was mixed into the polymerisation mixture. 0.462
mmol monomer with a ratio 1:2:1 rato BMA:DMAEMA:MMA and 0.038 mmol AIBN in
tetrahydrofuran, was polymerized at 70 degrees for 1 hour. After polymerisation, an attempt was

made to purify the polymers and remove all of the Piroxicam (Figure 2-11).
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Figure 2-11: Percentage of Piroxicam left for several techniques.

The reference for extraction techniques is letting all the solvent evaporate using a rotary evaporator.

The amount of Piroxicam left by this technique is set to 100% since it assumes that no Piroxicam is
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lost. In the first test, the polymer mixture was centrifuged in order to let all the Piroxicam sink to the
bottom. This results in a reduction of around 20%, indicating that the polymer interaction was strong
enough to keep it into solution. Second, and third, precipitation and Soxhlet extraction using
petroleum ether were executed. The Soxhlet extraction was executed overnight. Both techniques

were able to remove around half the Piroxicam but not completely purify it.

Different 1:2:1 BMA:DMAEMA:MMA copolymers were synthesised in presence of Piroxicam. Per
monomer unit, four different units of Piroxicam, 0.00, 0.75, 1.25 and 1.75, were mixed into the
polymerisation mixture. The mixtures were polymerized at 70 degrees C for 1 hour. Despite the not
complete purification technique, precipitation in petroleum ether was chosen because of its time
efficiency. The maximum solubility of Piroxicam for each copolymer was determined and plotted

compared to the literature (Figure 2-12).
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Figure 2-12: Amount of maximum Piroxicam solubility for different copolymers (blue) compared to literature (red)

There is a significant increase whether or not the original polymer was synthesised in presence of
Piroxicam. Compared to the literature, “empty” polymers were less effective whereas “imprinted”
polymers reached a solubility of 2.5 mg-mL™". This indicates that the imprinting method improves the
effectiveness of the copolymers. However, there is no increase of effectiveness if the original
concentration of Piroxicam is increased. Interesting to note is that in multiple studies of Saal et al.
there are a multitude of drugs investigated besides Piroxicam focussing on anionic drugs
(bezafibrate, furosemide, indomethacin, etc.) and acidic drugs (pimozide, tamoxifen, carvedilol,
etc.).”* ®' This work focusses on Piroxicam as a proof of concept but the “polymerisation in presence

of the drug” technique can be applied to a multitude of other drugs as well.
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5. Results and discussion

Within the experiments of this chapter, an optimal 1:2:1 BMA:DMAEMA:MMA copolymer was tested
as a solubilizer for the hydrophobic drug Piroxicam in PBS buffer. The optimal copolymer was
synthesised in presence of its target drug in tetrahydrofuran at 70 degrees Celsius for 1 hour. The
copolymer was isolated from the solvent and successfully redissolved in an hydrophilic solvent, PBS
buffer. The polymerisation was, without presence of the target molecule, proved to be random via
"H-NMR. It is assumed that the presence of Piroxicam influences the monomer sequence by having
the monomers orientate naturally around the target molecule before polymerisation by effects such
as hydrogen bonding. During polymerisation, the influenced sequence is locked in place leading to
an overall more efficient copolymer. The maximum concentration of polymer to PBS buffer was
2%(w/w). Precipitation and Soxhlet extraction were the most effective methods to remove around
50% of the original the target molecule concentration. Ideally, the target molecule needs to be
removed completely and more investigation is necessary to fully prove this methods effectiveness.
Nevertheless, the “imprinted” polymers performed better than the polymers synthesised without

Piroxicam, reaching a maximum solubility of 2.5 mg-mL™.

Other strategies to improve the solubility of Piroxicam exist. In 2005, Karatag®? et al. improved the
solubility of PXC using the two surfactants Gelucire 44/14 and Labrasol. Interesting to note is that
they report a concentration of 0.0198 mg/ml in water at a temperature of 37 °C. This value matches
close to our experimental values when pure water was used. However, since all the other
experiments were executed in PBS buffer, it was opted to take the concentration of Piroxicam in
PBS as “base” value which is larger than pure water. In Karatas’ work, they report a 50-fold increase
of drug solubility when using a 15% Labrasol solution which quantitively equals to 1.011 mg/mL.%?
Even without a Piroxicam imprinted polymer, this is still less than the 1.5 mg/mL we report. A more
recent study of Al-Hamidi et al. in 2015 makes use of amino sugars as hydrophilic carriers.®® Their
best results were a value of 30+1.6 mg /100 mL for 10%w/v glucosamine HCI and 34.3 +3.8 mg /100
mL for 15%w/v gluconolactone. Both values are relatively small increases compared to our findings.
However, they showed no significant changes for Piroxicam using multiple solid-state studies
including Fourier-Transform Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC)
and X-Ray Powder Diffraction (XRPD). In 2016, Patnaik et al. reports the use of nanosuspensions
with Soluplus® as a Piroxicam solubiliser.®* They reported a linear increase of drug solubility when
the polymer concentration was increased with a maximum concentration just under 6.0 ug/mL or
0.006 mg/mL. In a more recent 2020 study, Ammanage® et al. reported the co-crystallisation and
the formulation of buccan films. Their most successful finding was around four times smaller than
our highest value with a reported 60.73 £1.95 mg /100 mL for Piroxicam-sucralose film. Ammanage
et al. did FTIR, DCS and X-ray diffraction (XRD) studies as well and on top of that researched the in
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vitro drug release with histopathological studies.®® Their strategy is especially interesting since they

opted to create mucoadhesive films, a very different drug delivery route then most.

Naturally, this work focusses on polymers to make polymer-drug conjugates as potential solutions.
However, conjugate systems do not necessarily need to exist out of polymers. A recent study of
Cho et al. describes a peptide-drug conjugate whereby the use of a peptide that can cross the blood
brain barrier is used to improve the drug (camptothecin) efficacy in brain cancer.®® Thus, not only did
the peptide increase the solubility of the drug in water, it also helped to reach difficult places.
However, polymers can also mimic peptides as show in a study by Maron et al." In this study, a
well-known peptide sequence (used to solubilise the photosensitiser meta-tetra(hydroxyphenyl)-
chlorin) was translated to a polymer sequence based on oligo(N-substituted acrylamide)s and
oligo(2-substituted-a-hydroxy acid)s. The polymer variant of the sequence exceeded the payload
and initial drug release properties, indicating a great potential in the use of polymers that mimic

specific peptide sequences.

Precision polymers are an exciting potential player in biomedical applications but often are slow to
produce. In order to streamline the connection between synthesis and application, and to modernise
chemistry in general, this work offers a rethinking of that strategy. The initial results prove that there
is a future in making these tailored polymers towards their desired target molecule. However, this
work only provides the first stepping stones towards an efficient and streamlined cascade of polymer
synthesis. Reflecting on the performed experiments, more efficient techniques would be used for
future experiments. One of the bigger issues was the scalability and the purification of the
copolymers. Dissolving the copolymer in the PBS buffer was not straightforward in and of itself and
there are some options that could be considered to make this more efficient. First, the length of the
copolymers could be reduced to a smaller size via a more controlled polymerisation, such as
described by Schmied et al.” Second, the use of a specific RAFT agent itself could potentially make
the polymer more hydrophilic as well. A controlled polymerisation can be done with a more
hydrophilic RAFT agent or (if the RAFT agent has too much of an influence on the imprinting) the
RAFT agent could be modified in a later stage to make it more hydrophilic. Nevertheless, both these
strategies have various new parameters that could influence the effectiveness of the overall
enhancement of the solubilizing efficiency of the copolymer. Hence, an automatised system that,
potentially via machine learning, can decide quickly which parameters to vary would be the ideal

future.

Thus, when the making of these copolymers becomes more streamlined, further collaborative
biomedical studies (such as drug release and toxicity) can be performed to complete the story from
design to working product. Future experiments, such as the effect these polymers have on the blood
brain barrier and their use in delivering drugs in difficult to reach places, could open up a new future

of biomedical applications.
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6. Conclusion

Despite the limits of synthetic macromolecules in comparison to their more sophisticated
counterparts, polymers are an interesting strategy for drug solubility. Specific, tailor made sequences

are desirable, with the disadvantage that finding the right sequence often takes time and money.

In this work, a 1:2:1 BMA:DMAEMA:MMA copolymer was tested as a solubilizer for the hydrophobic
drug Piroxicam in PBS buffer. Different copolymers were synthesised with and without the presence
of Piroxicam in their reaction mixture. After precipitation, which was able to remove around half of
the original Piroxicam, the maximum solubility was determined via UV-Vis. The “imprinted” polymers
performed better than the polymers synthesised without Piroxicam, reaching a maximum solubility

of 2.5 mg-mL™".

Compared to other studies that investigate different solubilizers, the specific 1:2:1
BMA:DMAEMA:MMA copolymer performed well. Keeping in mind that Piroxicam is a proof on
concept to proof that “imprinted” polymers have a specific sequence that is relatively easy to
synthesise compared to single monomer insertion strategies. A faster synthesis opens up

possibilities for a broader range of tests for future applications.
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Chapter 3: A Predictive Machine-Learning Model
for Propagation Rate Coefficients in Radical
Polymerization
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1. Introduction

The correct assessment of reaction kinetics and the determination of reliable rate coefficients for
reactions are often tedious and require sophisticated methods. This is especially true for kinetic rate
coefficients in radical polymerization. In polymerizations, to make it more complicated, rate
parameters do not merely predict the rate of a polymerization. They also play a crucial role in the
design and synthesis of novel materials since individual reaction rates influence the structure. A
meaningful prediction of monomer conversions, molecular weights, and polymer dispersities is only
achievable if the reactivity information of the monomers can be correlated with the rate coefficient of
chain propagation and termination at minimum. The invention of the pulsed laser polymerization -
size exclusion chromatography (PLP-SEC) method 35 years ago marked a turning point in
investigations in polymerization kinetics by providing highly reliable measurements of propagation

rate coefficients in a comparatively simple fashion.

In 1996, Lyons et al. published their findings about how intramolecular transfer does not occur when
using high pulse frequencies in their PLP-SEC measurements.®® Before, these intramolecular
transfer reactions posed issues with branched polymer chains and led to inaccurate measurements.
Hence, older literature or literature that does not make use of high pulse frequencies have a less
accurate value of K, ® 7® ™ Over the years, several monomers have been investigated by this
technique, and International Union of Pure and Applied Chemistry (IUPAC) working groups have
benchmarked data for a number of important monomers. PLP-SEC allows for determinations with
relatively high precision — typically an error of 10 to 20 % is estimated. Yet, no unifying approach
exists to date that correlates the structure of a monomer with its rate of propagation, and therefore
no meaningful prediction of kinetic data can be made. Some trends are known in specific families of
monomers, most notably the (meth)acrylates. For example, the — at first glance counterintuitive —
increase of the propagation rate coefficient (kp) with the length of the ester side chain.”? ”® The same
correlation between the chain length of the ester in linear (meth)acrylates and the k, value is
confirmed by Ballard et al.” Yet, already smaller differences in the structure such as branching vs
linear ester chains are not captured in the literature.”> The traditional way to predict k; is to use high
level ab-initio quantum chemical calculation. While by themselves highly interesting, these
calculations have for some monomers confirmed experimental values, but they struggle to make

absolute predictions.

It is largely known that the propagation rate coefficients of monomers depend on a series of factors.
One of the hypotheses is that molecular weight is one of these factors. Since linear (meth)acrylates
are only a fraction of the existing monomers, the choice was made to use molecular weight instead
of the number of carbons in the ester chain. Since the molecular weight and the ester chain length

are directly proportional for linear (methacrylates), the molecular weight was considered an adequate
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substitute while still able to get a consistent value for the other parameters. Another factor that is
believed to have an influence is the resonance stability of the propagating radical. Depending on the
substituent on the carbon that contains the radical, the dissociation energy (or radical stabilizing
energy) varies.”® The more stable a radical is, the better the transfer reaction occurs.”” H-bonding
has been identified to cause significant rate effects and polarity is speculated to impact k..
Mavroudakis et al. demonstrates that monomers and solvents which are capable of hydrogen
bonding have a significant influence on k,.”® One of the examples is the comparison between two
structurally similar molecules 2-hydroxyethyl acrylate (HEA) and butyl acrylate (BA). HEA, which is
capable of H-bonding, has a 25% higher k, compared to BA.”® In general, hydrogen bonding affects
the propagation rate and results in higher k, values. ® ™ The effect of the solvent on k, is an
interesting study in and on itself but was not considered in this work. Instead, only k, values whose
polymerisation occurred in bulk were considered. For future studies, the solvent effect would be

extremely interesting to investigate but it currently falls outside the scope of this project.

These factors have, however, always only been investigated as insular effects, and no general theory
could so far be formed that would unify all different aspects in one approach. Part of this issue might
be that in the classical approach, physical chemists look for causation rather than a correlation or
association. In complex interdependent systems, this can be a difficult endeavour since accurate
data is often difficult to find, and actual causations might not be obvious. Association is much simpler
to establish though via purely statistical approaches. Machine-learning (ML) harnesses this relative
simplicity to predict complex behaviour of systems. Hence, the question could be raised if it is
possible to correlate complex propagation rate coefficients with fundamental and readily available
information about monomers without the attempt to establish exact equations reflecting the
underpinning processes. If such an approach is successful, the resulting correlation can ideally be
used to reach a better theoretical understanding. More importantly though, if statistical association
is successful (without necessarily identifying the underlying causal mechanism), then rate
coefficients would in principle become predictable. Propagation rate coefficients provide an ideal
scenario for testing this hypothesis since relatively accurate coefficients are indeed available for a
series of molecules. In the following, we discuss if these kinetic rate coefficients can indeed be
predicted on a purely statistical basis rather than using high level ab-initio calculations using

transition state theory.
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2. Data Selection

Any statistical model approach requires a dataset that can be used to train a model. As mentioned
above, k; is ideal since the IUPAC has benchmarked rate coefficients for a series of monomers. k;
data for these monomers can be assumed to be fairly accurate. In fact, recently an online database
was established that allows to retrieve these coefficients directly. In order to benchmark a monomer,
IUPAC typically requires more than one laboratory to provide data. In addition, several laboratories
have provided sole PLP-SEC data that can still be regarded as fairly reliable. We collated data for
close to 40 monomers that we deemed reliable (it should be noted that the IUPAC also defined
reliability criteria that make such selection possible). We omitted acidic monomers, since it is known
that they are primarily governed by pH, and hence are outliers in the complete set of available data.
Most data is available for the monomer families of acrylates and methacrylates. It is known that these
monomers can be correlated within their respective families, allowing for some inference from one
family to the other. All other monomers have no known quantitative correlation, even though it is
common knowledge that radical stability plays a major role in predicting their reactivity. A complete
list of monomers and their respective values in Arrhenius form are given in the supporting
information. For the sake of this work in this study, four distinct groups of monomers have been
identified, these being as described above (i) acrylates (n = 13), (ii) methacrylates (n = 16), (iii)
monomers exhibiting strong H-bonding effects (n = 5) and (iv) ‘others’ (n = 7). An alphabetic list of
monomers with their abbreviation and SMILES notation can be found in the Appendix (Table S1).
For every monomer, the activation energy E, and pre-exponential factor A were collected (Table S2).
Using the Arrhenius equation, the natural logarithm of the rate constant In(k,) was calculated for four

different temperatures.

For every single monomer, different descriptive parameters were researched and noted down
(Table S3 and Table S4). Most of the initial parameters, such as the molecular weight and the Gibbs
Free Energy, were generated using ChemDraw and thus available for every single monomer.
However, later parameters such as the dissociation constant or the the experimental boiling point
are unavailable for all the entries. Unfortunately, a monomer needs to have all the desired
parameters available or it cannot be used in the regression. There are three main selections of data
used in the future: (1) all available data, (2) available data with the dissociation constant and (3)
available data with the ChemSpider parameters. An overview of how many entries are in each

category with each selection is displayed in Figure 3-1.
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Figure 3-1: : Bar plot of the number of monomers and the respective percentage in the corresponding classification group:
acrylates (blue), methacrylates (red), H-bonding monomers (green) and others (black).
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3. Methodology

Data was fitted via multivariate linear regression, which is a combination of multiple linear
regressions on independent variables for one dependent variable. A popular variant of least-squares
regression to avoid overfitting is the Ridge regression method. Ridge regression considers that
various features might display collinearity. In this instance, the ordinary least squares method is
modified to minimise the squared absolute sum of the coefficients, known as so-called L2
regularisation. This is done by introducing a tuning parameter, lambda (A), in the cost function (see
supporting information). Take note due to Python syntax, the lambda term has to be configured via
the “alpha” argument. Similar to ridge regressions, LASSO regression can be employed. In Lasso
regression, the cost function minimises the absolute sum of coefficients instead, known as L1
regularisation. As a result, Lasso regression assists to reduce overfitting and can be used in feature
selection and hence for physical interpretation posteriori. A is a scalar variant, and thus requires
continuous data to be standardised for both ridge and lasso regression. When A increases, the bias
increases and the variance decreases. Bias hereby describes how well a model matches a training
set, whereas variance describes how much a model changes when it is trained with a different
training set. High bias infers a weak match with the training set, while low bias indicates a very close
match. High variance means that a model is flexible and prone to overfitting. Low variance means
that a model is robust and will not change should any part of the training set be altered. Thus, low
bias and low variance are generally preferred. For an unbiased estimate of the model performance,
the final model fit would use an average of all the final predictions of each monomer. In this way,
bias is minimised because all the data is being used for training the model (n-1) times, and variance
is minimised since all the data is being used in the validation set once. As a result, the Leave One
Out Cross Validation (LOOCYV) allows to compare predictions of the target value as a function of its
experimental value. In the following we will always use this representation to discuss the results

obtained (Figure 3-2).
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Figure 3-2: Overview of how the data is split for the cross validation using a Leave One Out Cross Validation (LOOCV).
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When considering monomers in radical polymerization, several molecular properties, in the following
referred to as ‘features’ in line with data science terminology, are obvious to consider. It is known
from literature that polarity is an important quantity that has direct influence on propagation kinetics.
Thus, the dipolar moment of the monomer is of general interest. Note that experimental data is mostly
available for bulk polymerization, hence where the polarity of the monomer concomitantly influences
radical reactivity and the solvent environment. Further, the length of ester side chains in
(meth)acrylates are known to at least indirectly correlate with k,. Thus, molecular weight was added
as a further feature. Already when collating experimental data on dipolar moments, it is unfortunately
evident that gathering such data is by far not trivial, and generally leads to scattered datasets. To
solve this issue, we decided to include calculated data as features in our analysis. To this end, we
used the General Atomic and Molecular Electronic Structure System software package (GAMESS,
version: 2018, R1).! interfaced with the software ChemDraw 3D, and also used data provided by
ChemSpider, and the ACD/Labs Percepta Platform - PhysChem Module predictions listed therein.
Via GAMESS, we accessed dipolar moments, boiling points, melting points and Gibbs free energies
for each monomer under investigation (relative to ethylene as the simplest radically polymerizable
monomer possible), using a low-level HF calculation method. ChemSpider provided some
experimental data on boiling points and refractive index, and predictions for the same, plus
predictions for surface tension and polarizability. Comparison of calculations with available
experimental values showed that the theoretical values are certainly not perfect when examining

absolute values, but are reasonable when comparing series of monomers with each other.
4. Algorithm testing and parameter selection

In initial testing, all the different regressions (linear, ridge and lasso) are compared to each other
using both the k, and the In(k,) as the predicted value (Figure 3-3). It is clear that just using the k;
provides negative predictions which makes the In(ky) @ more desirable parameter. Furthermore, one
can see that the predicted values for the k, of the methacrylates are very clustered. The
performances of the Ridge regression and the Lasso regression were very similar but it was opted

to only display the Ridge regression in future analysis since its r* value was often slightly better.
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Figure 3-3: Comparison of different regression models for both k, and the natural logarithm of kp.

Before describing the regressions on the complete feature set, it is worthwhile to examine the state-
of-the-art in predicting propagation rate coefficients. Two influences are known with fairly high
accuracy, that is that the propagation rate coefficient increases with the length of the ester side chain
in (meth)acrylates; and acrylates propagate up to a factor 100 faster than methacrylates. For all other
monomers, no clear correlation has to date been quantified. Thus, in principle, for acrylates and
methacrylates individually linear regressions with molecular weight can be carried out. Based on
literature assumptions, this should yield some predictivity. Indeed, when plotting experimental k; as
a function of molecular weight, a slight tendency towards increasing molecular weight can be
observed. The overall correlation is, however, less than satisfactory. This is due to the list of

monomers containing examples that have branched side chains, or that are associated with
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H-bonding. Nonetheless, this simplistic model can be used to derive a more general visualization of
data. Using the LOOCV method, individual k, was predicted for each acrylate and methacrylate. For
this, we fitted each group of monomers individually as would classically be done. This results in a

predicted value for each of the monomers. This residual, predicted value is then plotted against its
measured value.
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Figure 3-4: The predicted versus experimental values of the In(kp) at 25°C for a dataset n=29 using the leave one out cross

validation on a linear regression. Predictions are determined using a separation between acrylates (blue) and
methacrylates (red)
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