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Abstract 

Polymers have a vast number of application possibilities in various fields. The tuneability of their 

properties makes them especially interesting. When designing a polymer for a specific application, 

it takes a lot of time, effort and money to find the optimal synthesis method. This work focusses on 

finding more effective ways to go from the desired application to the final polymer product. There are 

two different strategies that are explored.  

The first strategy focusses on making tuneable solubilizers faster and more effective by making the 

solubilizer in presence of its target molecule. It was theorised that some sequence sections within a 

statistical copolymer are more effective to enhance the solubility of their hydrophobic target. 

Copolymers that were made in presence of their target molecule were made and tested to see if the 

prevalence of those effective sections, and thus the overall effectiveness, was increased. As proof 

of principle, Piroxicam was used as a model drug. The copolymers investigated are based on the 

Eudragit® EPO using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) 

and methyl methacrylate (MMA) as monomers. It was found that “imprinted” copolymers with a ratio 

of 1:2:1 BMA:DMAEMA:MMA could solubilise 2.5 mg·mL-1 of Piroxicam.  

The second strategy explores the use of artificial intelligence to use existing data to predict new 

entries. The hypothesis was that one could improve older predictive methods, such as the Q-e 

scheme, via machine learning without the need of extensive computational power. Databases for 

both the propagation rate coefficient (kp) of homopolymers and the reactivity ratios (r1 and r2) of 

copolymers were carefully made from literature. Parameters for each monomer were added also 

from literature or from simple predictive software. The use of a random forest was tested to predict 

r1 and r2. For some entries it performed better than the standard Q-e scheme, but this was not always 

the case. Generating a large but complete database proved to be challenging as well.  

Because the r1 and r2 database proved to be challenging, it was theorised that the generation of a 

kp-predicting database would be an excellent proof of principle to demonstrate that one can make 

precise predictions based on correlation. Making use of the Leave One Out Cross Validation 

(LOOCV), the predicted kp values were plotted against their experimental values. The most 

successful prediction (r2 = 0.993) was obtained using a Ridge regression on a limited dataset (n = 

36) containing the molecular weight and a distinction between the type of monomer, inductive effect 

of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and polarizability 

as parameters.  

A streamlined “pushing of a button” to find the desired polymer is still far away but there is potential 

to modernise chemistry by designing methods and experiments that create large data outputs and 

using specific algorithms used for small databases.  
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Chapter	1: The	Synergy	of	Copolymerization	
Chemistry	and	Artificial	Intelligence	
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1. Solubility	of	novel	pharmaceutical	drugs	

When developing cures for diseases, it’s not always necessary to invent new drugs. In 2020, the 

cost to develop and market a new medication was estimated to be 1.1 billion USD.1 On top of that, 

a large proportion of all new chemical entities are hydrophobic and have limited solubility in polar 

solvents.2 Since most modern drugs in development are hydrophobic in nature, the drug delivery 

inside the human body is more challenging.3, 4 Attempting to mix hydrophobic substances in 

water-like media can cause issues like precipitation, phase separation or the formation of a 

suspension.2 There are many drug delivery systems, such as microencapsulation, nanoparticles and 

hydrogels to name a few, that aid in the effectiveness of drug therapy.5 A well-chosen drug delivery 

system, improves the application possibilities. Finding new, easy and reproducible methods to create 

dedicated solubilizers is an interesting challenge.  

Defining	solubility	and	permeability	
The ease of getting a drug to the market is affected by solubility and permeability, terms that are key 

parts of the Biopharmaceutics Classification System (BCS). The BCS is comprised of four classes, 

defined by high or low solubility/permeability (Figure 1-1a). The United States Pharmacopoeia (USP) 

and British Pharmacopoeia (BP) have both described solubility in parts of solvent required per part 

of solute. A molecule is considered very soluble when less than one part of solvent is needed and 

practically insoluble at 10,000 parts or more.2 Rautio et al. illustrates this classification by plotting the 

permeability versus the volume required to dissolve the highest dose (Figure 1-1a).6 

 

Figure 1-1: (a) Scheme of the different classes in the Biopharmaceutics Classification System (BCS) which are defined by 
their high or low solubility/permeability. Adapted from Rautio et al.6 (b) the percentage of market drug molecules according 
to the Biopharmaceutics Classification System (BCS). For each class, the percentage of New Molecular Entities (NMEs) 
(dark blue and red) are compares with their market percentage (light blue and pink) for two different years. The values are 
adapted from Benet et al. (2013)3 and Nikolakakis et al. (2017)4 

Solubility is influenced by the polarity of both the solute and the solvent. When molecules are polar, 

meaning that they have areas with a partial charge, they dissolve easily in polar solvents such as 

water. To describe a molecules’ ability to dissolve in water, the terms hydrophobic and hydrophilic, 
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water-fearing and water-loving respectively, are often used. Permeability describes how well a 

molecule can pass through the necessary membranes. Both Benet et al. and Nikolakakis et al. have 

reported the percentage of drug molecules on the market and the percentage of New Molecular 

Entities (NME) in 20133 and 20174 respectively (Figure 1-1b). Although most NME are BCS Class II, 

only around 30% of the currently marketed drugs are in this class. This disparity between discovered 

drugs and marketed drugs highlights the value of addressing solubility when developing treatments. 

In order for a drug to work as intended, it needs to reach the desired systemic levels and have the 

correct pharmacological actions. Several methods towards increasing drug solubility in water have 

been suggested.2 In 2016, several media outlets highlighted a new liquidized form of aspirin that 

could pass the blood brain-barrier. The component, IP187B, is a potential candidate towards therapy 

for brain cancer since research suggests that it could be highly effective against gliobastoma, one of 

the deadliest forms of brain cancer.7, 8 Thus, even though aspirin is widely spread and used, it is still 

involved in significant research. 

Solubility	enhancement	techniques	
Solubilization techniques can be classified in three categories: physical modifications, chemical 

modifications and miscellaneous modifications. One of the most straightforward, efficient and 

reproducible solubility enhancement techniques is particle size reduction, a physical modification. 

By increasing the surface-to-volume ratio, there is a greater interaction with the solvent which 

increases its solubility. However, conventional methods to reduce the particle size rely on 

mechanical and/or thermal stress which can induce degradation.2 Similarly, nanosuspensions have 

an increased surface-to-volume ratio. They can be prepared with precipitation, media milling and/or 

high-pressure homogenization.2 Other concepts are to modify the crystal habit (e.g. cocrystallization) 

or disperse the drug in carriers such as a hydrophilic matrix (e.g. solid dispersions).9 Changing the 

pH, the use of a prodrug or complexation are all examples how to enhance solubility via chemical 

modification.9  

Miscellaneous modification strategies use a mediator between the hydrophobic drug and the 

hydrophilic solvent. This mediator can be straightforward, like a cosolvent, or more complex like a 

surfactant. A surfactant molecule has an amphiphilic nature, meaning it has both a hydrophobic part 

and a hydrophilic part.10 The non-polar or hydrophobic part can form strong interactions with 

hydrophobic drugs whereas the polar part has a strong affinity with the polar solvent. Because of its 

amphiphilic nature, the surfactant molecules can self-assemble into structures like micelles.10 An 

expansion of surfactants is the use of synthetic, amphiphilic block-copolymers. The optimization of 

controlled polymerization has allowed the yield of precise synthetic polymers with tuneable 

characteristics. This opens up the possibility to create various shapes such as spheres, ellipsoids or 

vesicles with self-assembly.10 Buckinx et al. recently introduced a top-down morphology control in 
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micellar self-assembly using continuous flow.11 However, most micelles function as an extern carrier 

that traps the desired drug and transports it to the desired place of action. These carriers can be 

precisely tuned to release their contents using antibodies, temperature or pH. Nevertheless, drug 

solubilizers can be made more specific, and thus more effective, when specific interactions between 

the drug and the solubilizer are considered as well. A great source for functional groups that induce 

these interactions is, as in many cases, nature itself: peptides.12 As stated by Tesauro et al., peptide-

based aggregates have many advantages including good biocompatibility and high drug loading 

capacities.12 Lawatscheck et al. synthesised a tailored peptide-polyethylene glycol(PEG) conjugate 

that functions as a specific solubilizer for the hydrophobic drug N-phenylamine B4A1 (Figure 1-2).13 

The defined sequence of the peptide part provides a specific, noncovalent drug binding via the 

peptide/drug interactions. The hydrophilic PEG block ensures that the solubilizer/B4A1 complexes 

are soluble in water.  

However, a disadvantage of natural peptides is that they are sensitive to denaturation which causes 

them to lose their functionality. Maron et al. uses learning strategies from peptides to synthesize 

functional precision polymer sequences, hence making the synthetic equivalent to the natural 

peptide.14 Moreover, synthetic polymer solubilizers are not limited to the building blocks of natural 

peptide solubilizers. 

 

Figure 1-2: The structure of the hydrophobic drug N-phenylamine B4A1 (a) and the structure of the tailored peptide-PEG 
conjugates (b) Pep1(B4A1)-PEG and Pep2(B4A1)-PEG. The functionalities of the peptide segment interact with the B4A1, 
generating a water-soluble drug conjugate complex due to the water solubility of the polymer part. The abbreviations are 
as followed: Arg = Arginine, Asn = Asparagine, His = Histamine, Lys = Lysine, Phe = Phenylalanine, Thr = Threonine, 
PEG = Polyethylene glycol. Insert figure reproduced with permission from Ref13. Copyright © Macromolecular Bioscience. 

Kano et al. uses 2-Methacryloyloxyethyl Phosphorylcholine (MPC) and n-Butyl Methacrylate (BMA) 

to form a copolymer (poly(MPC-co-BMA)) that increases the drug solubility and absorption of 

miconazole (class II), vidarabine (class III) and griseofulvin (class IV).15 Poly(MPC-co-BMA) is 

commercially used as a solubilizer. The MPC molecule is hydrophilic and makes the polymer water 

soluble. The BMA has a hydrophobic interaction with the hydrophobic drug.15 The mechanism how 

the poly(MPC-co-BMA) enhances the oral drug absorption was not clarified. The solubility of 
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phenytoin was enhanced with a copolymer using 1-vinyl-2-pyrrolidone (VP) and 

poly(N-isopropylacrylamide-co-vinylpyrrolidone) (NIPAAM) by Widanapathirana et al. 16 In here, the 

NIPAAm was the key for an optimal drug-polymer interaction whereas VP provided aqueous 

solubility. In conclusion, there are numerous strategies to create polymers, whether it be random 

copolymers or sequence defined polymers. In order to fully understand the strategy to create the 

right polymer, these techniques are explained in section 2.  
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2. Polymer	chemistry		

A polymer is a macromolecule that consists of (relatively) small molecule units bonded together to 

form a larger molecular structure.17 The definition of a polymer is very general and can range from 

proteins, wood and silk, to plastic, rubber and resin. While synthetic polymers are more chemically 

diverse than biopolymers, biocatalysts like enzymes offer a greater molecular precision.18 A control 

of the sequence of the monomer units in a polymer leads to a higher predictability of the polymers 

properties. Over the years, several techniques were developed to generate sequence-controlled and 

sequence-defined polymers including (but not limited to) so called “living” free radical, ring-opening 

and anionic polymerizations. Before elaborating on these techniques, it is important to understand 

the kinetics behind polymerizations first. 

Kinetics		
The two main polymerization mechanisms are step-growth and chain-growth polymerization.19 

Step-growth makes use of bi- or multifunctional monomers which are combined together to form the 

polymer chain. First, monomers will react with each other to form dimers. These dimers will react 

with any molecular species, form oligomers and eventually a polymer chain (Figure 1-3). On the 

other hand, chain-growth polymerization makes use of unsaturated monomers which are activated 

with the help of an initiator. Other unsaturated monomers are joined to the growing polymer chain 

one at the time (Figure 1-3). Both step-growth and chain-growth polymerization generally lead to 

non-uniform or polydisperse samples. Optimized polymerization methods are needed to generate 

precision polymers with precisely controlled molecular structures. Living polymerization is a subclass 

of chain-growth polymerization. The relationship between the number average molecular weight (Mn) 

and the conversion is linear (Figure 1-3).20, 21 There are several techniques that led to the 

development of precision polymers as illustrated by Lutz et al.20 In this section, free radical 

polymerization, which is a part of chain-growth polymerization, will be discussed more in dept.  

 

Figure 1-3: The number average molecular weight (Mn) versus conversion plot for chain-growth, living and step-growth 
polymerization in blue, green and red respectively. The difference between chain- and step-growth polymerization is 
schematically represented next to the plot. 
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Free radical polymerization consists of three main reaction steps: initiation, propagation and termination (

 

Figure 1-4: Scheme of free radical polymerization divided into three steps: initiation (green), propagation (blue) and 
termination (red). The I· represents an activated initiator, the M a non-active monomer and the P1·/Pn·/Pm· a polymer with 
1, n and m insertions. 

). In the first step, activated monomers with propagating radicals are formed when free radicals from 

a decomposed initiator react with a monomer. These propagating radicals will form a growing 

polymer chain. The growth stops during termination where two free radicals form a stable nonradical 

adduct. It can be noted that the most straightforward free radical polymerization only needs a mixture 

of monomer and initiator.21 If two or more monomer species are used in the polymerization, statistical 

copolymers are formed. These can be completely random, have alternating structures, contain 

blocky structures or follow other statistical sequences and depend on the reactivity ratio of the 

comonomers. Even though it is difficult to form defined polymers due to the statistical nature of 

radical chain-growth polymerization, the sequence of the end product can still be influenced by 

considering the relative quantity of the monomers’ feed and the reactivity ratio. Between two 

monomers (M1 and M2), four different reactions can occur: an activated M1 or activated M2 can react 

with another M1 or M2. These reactions each have their own reaction constant (k11, k12, k21 and k22). 

The reactivity ratio (r) of a propagating chain is the ratio of the rate constant for the addition of the 

same monomer and the rate constant for the addition of the other monomer (r1 = k11/k12 and r2 = 

k22/k21).22 

 

Figure 1-4: Scheme of free radical polymerization divided into three steps: initiation (green), propagation (blue) and 
termination (red). The I· represents an activated initiator, the M a non-active monomer and the P1·/Pn·/Pm· a polymer with 
1, n and m insertions. 

The reaction constant (kp), or propagation rate coefficient, has a molecular kinetic interpretation often 

referred to as the Arrhenius (Equation 1).23, 24 

 𝑘! = 𝐴𝑒
"#!
$%  Equation 1 
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Thus, kp can be written using the pre-exponential frequency factor (A), the activation energy (Ea), 

the absolute temperature (T) and the gas constant (R = 8.3145 J·mol-1·K-1). The Arrhenius plot shows 

the relationship between kp (or ln(kp)) and the absolute temperature of polymerization where the A 

and Ea can be extrapolated from the intersection and slope of the curse respectively (Figure 1-5).  

The standard technique to determine radical polymerization characteristics is Pulsed Laser 

Polymerization (PLP). In combination with Size Exclusion Chromatography (SEC), PLP manages to 

accurately determine kp when measuring at high frequencies (100-500 Hz). Consequently, in order 

to determine accurate benchmark kp values, high frequency lasers are needed, a technology that 

has only existed for a few decades.25  

 

 

Figure 1-5: Arrhenius plot with the natural logarithm of the reaction constant (ln k) on the Y-axis and a derivative of the 
absolute temperature (1/T) on the X-axis. The slope and intercept are related to the pre-exponential factor (A) and the 
activation energy (Ea) 

When a polymer consists of one type of monomer, it is often referred to as a homopolymer. 

Copolymers have multiple building blocks and their final design depends on a variety of factors 

(Figure 1-6). The inherent property of the monomers is one such factor and the corresponding 

reactivity ratios (r1 and r2) will have an influence on the structure of a polymer. 

 

Figure 1-6: Examples of different copolymer designs compared to a linear homopolymer 

A large r1 indicates a propensity for M1* to add to M1 whereas a small r1 means M1* will add to M2. 

Thus, knowledge about the r1 and r2 can indicate if the final structure is a homopolymer (r1 ≈ r2 >> 1), 

block copolymer (r1 ≈ r2 > 1), random (r1 ≈ r2 ≈ 1), or alternating (r1 ≈ r2 ≈ 0).  
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Figure 1-7: Visualisation of the Terminal Model  

There are multiple ways to describe copolymerization reactivity ratios. The one that is most 

straightforward, and often used because of its simplicity, is the Terminal Model described by 

Mayo et al. (Figure 1-7).26 

For radical polymerizations, the result of the terminal model would be described by the copolymer 

equation using the monomer concentrations ([M1] and [M2]) and the reactivity ratios (r1 and r2) 

(Equation 2). It is also known as the Mayo-Lewis equation.  

 𝑑[𝑀&]
𝑑[𝑀']

=
[𝑀&](𝑟&[𝑀&] + [𝑀'])
[𝑀']([𝑀&] + 𝑟'[𝑀'])

 Equation 2 

Alternatively, one can rewrite the equation in terms of mole fractions of monomer in the feed (f1 and 

f2) and mole fractions of the imbedded monomer in the polymer (F1 and F2) (Equation 3).  

  
𝐹& = 1 − 𝐹' =

𝑟&𝑓&' + 𝑓&𝑓'
𝑟&𝑓&' + 2𝑓&𝑓' + 𝑟'𝑓''

 Equation 3 

Using these equations, it is relatively easy to determine r1 and r2. However, with its simplicity come 

some limitations as well because one has to assume a steady-state system. Thus, one cannot 

predict low molecular weight polymers.  

The penultimate model is a succession of the Terminal Model and takes the effects of the penultimate 

monomer unit of a growing chain into account. Unlike the Terminal Model, it can describe the rate of 

polymerization and the composition simultaneously. However, the increase of model parameters 

results in an increased complexity, and is because of this less popular then the Terminal Model.26, 27 

The Q-e scheme is a simple extension of the Mayo-Lewis model.8 The parameters P and Q are the 

general reactivity of radical i and monomer j, and e is proportional to residual charges in the reacting 

groups (Equation 4). Substituting the four possible outcomes when a polymer undergoes 

propagation, we can isolate the reactivity ratios (Equation 5). 



Page | 18  

 

 𝑘() = 𝑃(𝑄) exp7−𝑒(𝑒)8 Equation 4 

 𝑟& =
𝑘&&
𝑘&'

=
𝑄&
𝑄'
exp[−𝑒&(𝑒& − 𝑒')] Equation 5 

Again, the Q-e scheme is limited in its efficiency, especially when introducing new monomers to the 

system. On top of that, P and Q are dependent on the radical to which the monomer is being bound 

to. 

Controlled	polymerizations		
Reversible-Deactivation Radical Polymerization (RDRP), formally known as Controlled Radical 

Polymerization (CRP), allows for more control over the precise molecular weight, dispersity and 

specific composition. In RDRP, the lifetime of the growing polymer chains is increased by adding a 

specific compound on top of/instead of the initiator and the monomer. The three most important 

methods of RDRP are Nitroxide-Mediated Polymerization (NMP)28, Atom Transfer Radical 

Polymerization (ATRP)29 and Reversible Addition-Fragmentation chain-Transfer (RAFT)30 

polymerization (Figure 1-8). NMP and ATRP are based on the principle of reversible deactivation: 

most radicals are “trapped” in a dormant state which decreases the total radical concentration of the 

reaction and thus decreases the termination rate. RAFT on the other hand works with a degenerative 

chain transfer where the termination is decreased by a control agent. Thus, on top of the linear 

increase of Mn versus conversion, RDRP reactions have a low polydisperse and high end-group 

fidelity.  

 

Figure 1-8: Schematic overview of the three main methods for reversible-deactivation radical polymerization (RDRP): 
nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP) and reversible addition-
fragmentation transfer (RAFT) polymerization. Mtn/L represents a metal catalyst with a ligand. The -X group is depended 
on the type of RDRP, the R-groups is a rest group. The Pn is a polymer with n insertions. 

RAFT is a versatile technique that is compatible with a wide variety of monomers including styrenes, 

acrylates, methacrylates, vinyl esters and acrylamides. On top of the initiator and the monomer, a 

third essential compound is needed in classical RAFT polymerization: the Chain Transfer Agent 

(CTA) or RAFT-agent. CTA’s are typically formed by a dithioester together with a free radical leaving 
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group (R) and a stabilizing group (Z). There are several components that determine the effectiveness 

of the RAFT agent: the R-group, the Z-group and the compatibility between the RAFT agent and the 

monomer. The mechanism of RAFT can be divided into five steps. The first step, the initiation, is the 

same as the first step of free radical polymerization. The propagating radicals can transfer onto the 

thiocarbonylthio compound of the RAFT-agent leading to a (possible) detachment of the R-group. 

New propagating radicals are created in the reinitiation step by the formative radical of the R-group. 

When the R-group is released from the RAFT-agent, a new active centre is generated (re-initiation 

step). Thus, the propagating radicals can again transfer onto the thiocarbonylthio compound leading 

to a dormant intermediate. The main equilibrium is formed between the RAFT adduct radical 

intermediate and the active propagating radicals, essentially avoiding that two propagating polymers 

will terminate (Figure 1-9). Since the chains grown simultaneously, the dispersity should be low 

because all the polymers will have approximately the same length. 

 

Figure 1-9: Schematic of the different steps of reversible addition-fragmentation chain-transfer (RAFT) polymerization 

When the control over the primary polymer is absolute, a suitable term is Sequence-Defined polymer. 

In contrast, when the sequence is controlled to some degree, the term Sequence-Controlled is often 

used in literature.  

Optimising	strategy	one:	MIP-approach	
Molecularly Imprinted Polymers (MIPs) are a synthetic equivalent to biological antibodies. The 

working mechanism of a MIP is best described with a ‘lock and key’ metaphor where the template 

molecule is the key and the MIP is the lock. A good lock is only effective when there is only one type 

of key that can open it and thus, similarly, a good MIP is only effective when it has a high affinity for 
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its specific template. There are various methods to synthesize MIPs: synthesis in presence of the 

monomer, phase inversion and soft lithography. In this section, the focus will be on the synthesis 

method since that is the most relevant for later applications. The MIPs are created by polymerizing 

monomers and cross linker in presence of the desired target molecule. After extraction of the 

template, highly selective cavities are left in the polymer matrix (Figure 1-10). These cavities can 

rebind only its specific target molecule, even when similar analogue molecules are present.31 

Commercially, most MIPs are used for separation but there are techniques to integrate MIPs into 

sensors. Commercially, MIPs are attractive because of their stability, low production costs, long shelf 

life and easy synthesis.31 

 

Figure 1-10: General scheme of the synthesis and working of a molecularly imprinted polymer. 

The synthesis of polymer solubilizers via the ‘MIP-approach’ is to polymerize selected monomers in 

presence of the target molecule to create a ‘linear MIP’. It has to be noted that the term 

‘MIP-approach’ is chosen because the main strategy is based on the synthesis method of the MIPs. 

The final solubilizers won’t be MIPs. Theoretically, sequences that have a high affinity with the target 

drug, and are statistically present in a normal copolymer, should occur more when using the MIP 

approach.  

Optimising	strategy	two:	the	SUMI-approach	
The multistep growth synthesis is a strategy to generate controlled nano-scale molecules. In here, 

one monomer is added at the time and this technique is used in both linear iterative synthesis and 

dendrimer synthesis. Single Unit Monomer Insertion (SUMI) falls under both the chain growth 

polymerization and the multistep growth polymerization categories. Haven et al. describes SUMI 

reactions both in batch and in flow.32 After each monomer addition, the polymer is purified to obtain 

only the oligomers with the desired sequence. The term Multiple Unit Monomer Insertion (MUMI) is 

more appropriate when more than one monomer is built in to the sequence.  

When it comes to sequence defined materials, nature has perfected its techniques over millennia of 

evolution. The body is constantly copying or creating specific sequences to build DNA strings or form 

proteins. Even though synthetic chemistry has its advantages, when it comes to sequence-defined 

materials it has not even come close to the efficiency of nature. Among others, these specific 

sequences can contain information and/or influence the structure of the final molecule. A single 
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variation in the sequence, often described as a point mutation, can have severe consequences such 

as sickle-cell anaemia, neurofibromatosis, and even cancer.33 This illustrates the importance of the 

sequence, and thus for some applications, sequence-controlled molecules are not sufficient. As 

mentioned in section 2, multistep growth synthesis is a technique whereby one monomer is added 

at a time which creates a defined sequence. These sequence-defined techniques are harder to 

optimize but ultimately give more control over the final polymer. What increases the ‘playability’ of 

synthetic polymer possibilities is the fact that synthetic chemistry has a bigger variety of monomers 

whereas nature is limited to its specific building blocks. Aerst et al. documented a SUMI of 

N,N-dimethylacrylamide with RAFT polymerization in an aquatic environment. The RAFT-agent 

((((2-carboxyethyl)thio)carbonothiotl)thio)-4-cyanopentanoic acid was used and it was discovered 

that red light provided slower but more selective excitation.34  

Maron et al. demonstrated how synthetic solubilizers can be made by learning from peptide 

sequences.14 By imitating the peptide properties, specific sequences were made and tested on 

meta-tetra(hydroxyphenyl)chlorin. Some solubilizers reached 40% higher payloads and 27-times 

faster initial drug release. 

Optimising	strategy	three:	data	driven	correlation	
The problem with the SUMI-approach is that determining the optimal sequence takes a lot of time 

and effort. Characterising every single combination, even from a limited combination of monomers, 

is an impossible task to do by hand. Instead of filling out everything, machine learning could be used 

as a tool to predict unknown knowledge based on known data. For example, Koide et al. describes 

how they use machine learning to predict the cardiac dose in breast cancer radiotherapy.35 

Ghanzouri et al. developed an automatic tool to detect peripheral artery disease.36 In another 

example, several machine learning techniques where compared to predict COVID-19 severity.37  

Thus, instead of relating properties to monomers via physical experiments, a fresh look is to correlate 

its properties via statistical methods.  
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3. Machine	learning		

The relation between us and machines has fascinated humanity for a long time. The history of the 

computer goes back to the 19th century, but only gained traction around the Second World War. The 

first machine which could be described as a mechanical computer was invented by Charles Babbage 

in 1822 and was used to make tables for polynomials.38 In the Second World War, Alan Turing's 

work on creating a machine to decrypt the messages of the Germans made him seen as the father 

of modern computing. 39-41 After the war, in 1946, the first fully programmable, electronic, general-

purpose computer was unveiled at the University of Pennsylvania: The Electronic Numerical 

Integrator and Computer (ENIAC).40 ENIAC was several orders of magnitude faster than its 

mechanical predecessors.   

In 1950 Alan Turing wrote the famous article “Computing Machinery and Intelligence”, where he 

discussed the question “Can machines think?”. A machine or Artificial Intelligence (AI) passes the 

Turing Test if it is indistinguishable from a human during a conversation with a real person.38 In the 

same year, Isaac Asimov, known for his three laws of robotics, bundled a series of short stories in 

"I, Robot".42 The stories revolve around human-robot interactions and morality, a concept that 

decades later is still relevant. 

Nowadays, the field of Artificial Intelligence encompasses more than just conversation: AI algorithms 

are responsible for the analysis of enormous datasets, predicting results given prior information on 

a topic, or creating images, sounds and news stories. Therefore, we give another definition to AI: "AI 

refers to those artificial agents capable of analysing the environment and taking actions, emulating 

the human reasoning process, in order to achieve a specific goal.".41 From here, we can start to 

explain what encompasses Artificial Intelligence and Machine Learning (ML). 

Types	of	Machine	Learning		

The goal of Machine Leaning is to let a computer algorithmically teach itself to perform a certain task. 

Generally, we can divide the way to train an AI in three categories: (i) supervised learning, (ii) 

unsupervised learning, and (iii) reinforcement learning. In supervised learning, we provide the 

algorithm with both the inputs and the desired outputs. In unsupervised learning only inputs are 

given, and the algorithm needs to work out by itself how to categorise the data. Finally, in 

reinforcement learning the computer must learn to solve a problem, for example learning how to play 

a certain video game and give itself feedback on how to improve itself.39, 43 

On the other hand, ML algorithms can be categorised by the task they are trying to solve and are 

related to their learning algorithm. (a) Classification, where a model is built to automatically classify 

new data under the correct label, and (b) regression, where the model fits data points to predict a 

numeric value for new input data, are categorised under supervised learning. In (c) clustering, data 
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is divided in groups and are characterized by high similarity within the same group, but data from 

different groups should be dissimilar. As no desired grouping is given from the start (unsupervised), 

the algorithm should figure out grouping parameters by itself. Another example of unsupervised 

learning is d) dimensionality reduction, where to goal is to reduce the size of the sample dataset by 

selecting only certain attributes or data sampling to increase the performance of the model. This list 

is by no means exhaustive but is sufficient for now.  

The last point of dimensionality reduction is of great importance in this thesis: it leads us to the 

question whether having a dataset with many attributes is better than a reduced one. On the one 

hand, one might say that more data is more information to make a better prediction. On the other 

hand, datapoints can be correlated or have no influence on the outcome of the prediction 

whatsoever. This data will make it harder to create a performant model since more "good" datapoints 

are needed to suppress the noise from the bad ones. Therefore, a good choice of features and 

attributes is important. However, the focus in this thesis will be on (b) regression. As such, feature 

choice will be a manual task. Deep Neural Networks can solve the problem of manual selection, but 

this goes beyond the scope of the thesis. 

Machine	Learning	workflow		

Finding patterns in data becomes more complicated with systems that exist of a complex mixture of 

inputs. ML automates the identification of patterns via computational calculations. ML finds its base 

in statistics and thus (an important factor to keep in mind when it comes to machine learning) is that 

at its core, it can only be as good as the provided data. Fundamentally, a ML model or algorithm is 

trained on existing data which then can be applied to predict an unknown entry. There are two 

phases: training the algorithm and evaluation. A good way to explain is using an example shown by 

Strieth-Kalthoff et al. (Figure 1-11).44 In this figure, the data points (in this case monomers) are 

encoded with a number of  specific features x1, x2 and x3. Each entry has a specific target y and the 

ML model uses the data point, features and targets to train. After the training, the model is used to 

predict the target y of a new monomer with known features. Once the training phase is complete, 

the model needs to be evaluated to see if the value of predicted target is in the range of it’s expected 

value and is non-biased. A big difficulty with ML is when the model learns the noise in the data as 

well, resulting in overfitting.  
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Figure 1-11: General workflow for building and applying a supervised, machine learning models for predictions. The insert 
figure is reproduced from Ref44 

Regression	models		

There are various different algorithms and models. One of the most straightforward ones is a nested 

cross-validation. With a nested cross-validation, a machine learning model is chosen and the 

average of multiple splits is calculated before doing a performance evaluation. This machine learning 

model can be different things, three of which will be explained further: multivariable linear regression, 

Ridge regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression.  

Multivariate linear regression (henceforth linear regression) is a combination of several linear 

regressions on independent variables for one dependant variable (Equation 6) 45, 46: 

 𝑌 = 𝑋𝐵 + 𝑈 Equation 6 

where Y is a matrix of the measurements, and X are descriptors of Y (labels and features, 

respectively, in machine learning terms). B contains the weights assigned to each feature in X, and 

U is any remaining noise and error. The algorithm determines the optimal values of B, by for example 

minimising the sum of the squared residuals. 

Ridge regression is very similar to a linear regression with the difference of an added penalty term 

also referred to as L2. The penalty is equal to the squared value of the coefficients. L2 regularisation 

searches for the minimum of the sum of the squared coefficients by tuning a tuning parameter, λ, in 

the following cost function (Equation 7). In this equation, yi is the i-th datapoint, wj is the weight, x is 

the feature value, and λ is the penalty term.47, 48 
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Lasso regression is like ridge regression; however, the cost function instead minimises the absolute 

sum of coefficients, known as L1 regularisation (Equation 8). As a result, lasso regression not only 

assists to reduce overfitting, but it can be used in feature selection.49 

 
min	(A(𝑦( − 𝑦C()' + 𝜆A𝑤)'

!

)*+

) = min	(A(𝑦( −A𝑤) ∗ 𝑥())'
!

)*+

+ 𝜆
,

(*&

,

(*&

AH𝑤)H)
!

)*+

 
Equation 8 

Since λ is scale variant, and thus requires continuous data do be standardised for both Ridge and 

LASSO regression. Additionally, one must bear in mind that when λ increases, the bias increases, 

but the variance decreases.49 

It is useful to know that in case of a limited amount of data entries, the Leave-One-Out-Cross-

Validation (LOOCV) is something to consider (Figure 1-12).50, 51 In this illustrative scheme, there are 

only five data points. Thus, five regressions were executed whereby every time a different data point 

was not included in the regression. These regressions are used to predict the ‘missing’ data point 

which subsequently gets compared to its correct value to evaluate the algorithm. The closer the 

predicted value is to its experimental value, the closer it will be to the x = y line. 

 

Figure 1-12: Example of the Leave One Out Cross Validation Method (LOOCV) where the LOOCV method is applied to 
five data points using a linear regression.  

Something that is a bit more complex than a simple regression is a decision tree or random forest. 

This technique works by determining a list of Boolean decisions where each feature of significance 

influences the final prediction of the tree model (Figure 1-13. They operate simpler than a neural 

network, and there are methods to visualize the decision-making process that a decision tree will 

undergo to reach its final prediction.46 



Page | 26  

 

 

Figure 1-13: Visualisation of a decision tree where from the input (dark blue square) “branches” (black lines) divide itself 
over multiple nodes (blue circle) until its final “leaf”. Several leaves can result into the same outcome. 

A neural network is more complex than a decision tree since the inner workings and resulting models 

are not necessarily understood (Figure 1-14). Unfortunately, they tend to overfit the model, especially 

with a limited dataset.27, 52 

 

Figure 1-14: Visualisation of a Neural network where a more complex “hidden layer” connects the input layer and the 
output layer. 

Recent	developments		

Artificial intelligence gains more and more popularity over the years. As illustrated in Baum et al., the 

percentage of publications that have AI-related topics skyrockets between 2015 and 2020. Especially 

in analytical chemistry, the use of AI becomes more and more popular.  
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Figure 1-15: Percentage of Artificial Intelligence (AI) related journal publications for different types of chemistry. The insert 
figure is reproduced from Ref53 

Several interesting techniques and discoveries are made with the help of AI. For example, Raccuglia 

et al. made a machine learning model, based on data from unsuccessful reactions, that predicts the 

success rate of new reaction outcomes.54 Because journals often omit the experiments that were not 

successful, a big chunk of data never is revealed to the “outside world”. Using failed results to help 

predict better conditions for future experiments is a clever method to improve overall success rate. 

Other works, such as that from Ramakrishnan et al., focus more on strategies that reduce the 

computational cost of quantum chemistry.55 Coley et al. developed a robotic platform for flow 

synthesis of organic compounds.56 By combining both intelligence-driven synthesis planning and 

robotically controlled experiments, they successfully synthesized fifteen drug (or drug like) 

substances. 

4. General	aims		

The research will aim to combine two different branches of science: polymer chemistry and computer 

science. The first chapter starts with a “classic” chemistry project where tailored polymers for a 

specific drug delivery application are investigated. Chapter 2 and chapter 3 steer away from the more 

conventional lab experiments and explore the possibilities of machine learning as a tool to help find 

more efficient chemistry. All these chapters are only a couple of pieces in a much larger puzzle, 

which is to use machine learning as a tool to have more streamlined science. However, an added 

bonus of delving into machine learning is that it can be done remotely, useful in a global pandemic.  
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Chapter	2: Enhancing	the	Efficiency	of	Statistical	
Copolymers	towards	Drug	Solubility	Applications		
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1. 	Introduction		

In the biological world, sequence-defined macromolecules such as proteins or DNA are mayor 

building blocks for life. Nature has evolved to create complex pathways to synthesise a specific 

molecule for a desired application. As such, nature has often been an inspiration in applied materials 

science. Although synthetic macromolecules are not as sophisticated as their biological counterparts 

yet, they do have their advantages. First, there is a larger variety in synthetic building blocks as 

opposed to the ones that occur in nature, leading to a larger variety in chemical compounds. 

Secondly, stability is a mayor issue when it comes to for example proteins. The right synthetic 

counterpart could improve shelf-life and reduce costs for storage and transportation.14  

As stated before (Chapter 1), hydrophobic drugs cause an additional challenge in drug delivery 

inside the body.3, 4 Using copolymers to enhance the solubility is not a new idea, as there are already 

existing products on the markets. Kanikkannan et al. lists different examples ranging from solid 

dispersion based products to lipid based delivery systems that are produced by companies like 

Janssen, Merck and Pfizer.57 Polyvinyl alcohol (PVA)-based and gelatin-based polymers were 

recently (2022) investigated by Choi et al. to see the effect on Rivaroxaban.58 The commercially 

available dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) was investigated by 

various people such as Saal et al. (2018)59 and Fine-Shamir et al. (2019).60 To the authors 

knowledge, there does not seem to be research done about the specific sequence of these 

copolymers except in the work of Maron et al.14 They mirrored the functionality of a peptide into the 

side-chain function of a synthetic copolymer. Taking inspiration from this, it was theorised that there 

must be sequences, tailored to a target drug molecule, that are more effective solubilizing said drug. 

The search for a perfect tailored polymer for the right application is unfortunately a lengthy and costly 

process. In theory, there is an ideal sequence of monomers that interacts with the desired target 

molecule to bring it into solution. However, when a random copolymer using the same starting 

molecules is synthesized, that ideal sequence will occur naturally throughout the polymer. When the 

polymerisation occurs in presence of the target molecule, the idea is that the monomers themselves 

will orient themselves in the desired sequence since that position is the most stable.31 The idea of 

this imprinting process is derived from Molecularly Imprinted Polymers (MIPs) (Figure 2-1).  

 

Figure 2-1: Theory of Molecularly Imprinted Polymers 
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After removing the original template molecule, the target can selectively rebind in the precise cavity 

of the MIP.31 However, in this work there will be no cavity since there won’t be any use of cross-linker. 

Rather, a “linear MIP” is a better way to describe our final copolymers. Originally, the idea was to 

compare the efficiency of the “linear MIPs” (the statistical copolymers) with the efficiency of a tailored 

sequence (defined copolymers) (Figure 2-2). Unfortunately, this part of the project was swapped for 

something more suitable in a COVID-19 environment and is thus not discussed.    

 

Figure 2-2: Comparison between the polymer interacting with their target for (1) the Single Monomer Insertion synthesis 
technique and (2) the Imprinting technique.  

In this chapter, methyl acrylate copolymers are investigated as potential solubilizers as proof of 

principle for the nonsteroidal anti-inflammatory drug Piroxicam (PCX). Saal et al. demonstrated that 

the commercially available Eudragit® EPO can be used as a solubilizer for a variety of different 

hydrophobic drugs (Figure 2-3b).59 One of such hydrophobic drugs is the nonsteroidal 

anti-inflammatory Piroxicam (Figure 2-3c). 

 

Figure 2-3: Structure of butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl 
methacrylate (MMA), Eudragit® 40 EPO and Piroxicam 
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The copolymers are based on the Eudragit® EPO using butyl methacrylate (BMA), 

2-(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) as monomers 

(Figure 2-3a). However, rather than trying to finds a good solubilizer sequence by trial and error, it 

was opted to find the correct sequence via imprinting (Figure 2-2). Eudragit® EPO was chosen since 

it both is commercially available and straightforward to synthesise.   
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2. Proof	of	complete	random	copolymerisation		

As explained in the introduction, free radical polymerisation exists of three steps: initiation, 

propagation and termination (Figure 1-4). All the polymerisations were executed with 

azobisisobutyronitrile (AIBN) as initiator and a methacrylate as monomer (Figure 2-4).   

 

Figure 2-4: Initiation (blue), propagation (grey) and termination (red) of a free radical polymerisation using 
azobisisobutyronitrile (AIBN) as initiator and a methacrylate as monomer.  

In order to ensure the copolymerisation of the three monomers, BMA, DMAEMA and MMA, was 

completely random, a series of tests were performed. First, six different polymerizations were 

executed in bulk, using AIBN (0.0390 mmol) and a mixture of the three different monomers 

(7.8 mmol). The ratio BMA:DMAEMA:MMA was subsequently 1:1:0, 1:0:1, 0:1:1, 1:1:1, 1:2:1 and 

1:3:1. The mixture is polymerized at 70 ˚C for 24 hours after purging with argon. 
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Figure 2-5: 1H-NMR (300 MHz, CDCl3) of six different copolymers with a different ratio of butyl methacrylate (BMA, red), 
methyl methacrylate (MMA, green) and 2-(dimethyl)aminoethyl methacrylate (DMAEMA, blue). Subsequently, the ratio 
BMA:DMAEMA:MMA was 1:1:0, 1:0:1, 0:1:1, 1:1:1, 1:2:1 and 1:3:1. The mixture is polymerized at 70 ˚C for 24 hours after 
with argon. After reaction, the copolymer was isolated by precipitation in petroleum ether and dried. 

After the reaction, the copolymer was isolated by precipitation in petroleum ether and dried. 1H-NMR 

(300 MHz, CDCl3) results indicate that the difference of the BMA:DMAEMA:MMA ratio of the added 

monomers and the ratio of the BMA:DMAEMA:MMA build into the polymer was less than 5% (Figure 

2-5, Table 1).  

Table 1: Free radical polymerisations using of butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) 
and methyl methacrylate (MMA) for 24 hours at 70 ˚C in batch (no solvent). The ratio between the monomers was 
determined by weighing the amount of each monomer added to the stock solution. The ratio of the monomers built in in 
the polymer is determined with H1 NMR after the polymerization. 

 Targeted ratio in polymer Feed ratio monomers Build-in polymer 
 BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA 

1:1:0 1 1 0 1 1.00 0.00 1 1.00 0.00 

1:0:1 1 0 1 1 0.00 1.00 1 0.00 0.99 

0:1:1 0 1 1 0 1.00 1.03 0 1.00 1.03 

1:1:1 1 1 1 1 0.98 1.03 1 1.02 1.03 

1:2:1 1 2 1 1 1.95 1.05 1 1.92 1.01 

1:3:1 1 3 1 1 2.86 1.05 1 2.79 1.01 

 

The build-in polymer ratio was determined by normalising the 1H-NMR peak at 4 ppm, which is 

assigned to polymer BMA to two (Figure 2-6, BMA’). The ratios were subsequently calculated by 

dividing the polymer BMA peak (Figure 2-6, BMA’) by two, the polymer DMAEMA peak (Figure 2-6, 

DMAEMA’) by four and the polymer MMA peak (Figure 2-6, MMA’) by three. The 5% difference with 

the feed ratio of monomers is negligible since the 1H-NMR has an accuracy of 5%.  
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Second, a 1:2:1 BMA:DMAEMA:MMA ratio was polymerized in different solvents. Six different 

polymerizations were executed in six different solvents, using AIBN (0.0213 mmol) and a mixture of 

three different monomers (4.26 mmol). The monomer mixture and the AIBN were dissolved in 

subsequently chloroform, dichloromethane, dimethylformide, dioxane, tetrahydrofuran and toluene. 

Similarly, the mixture was polymerized at 70 ˚C for 24 hours after with argon.  

Table 2: Free radical polymerisations using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) 
and methyl methacrylate (MMA) for 24 hours at 70 ˚C in different solvents. The abbreviations are as followed: CHCl3 = 
chloroform, DMF = dimethylformamide, C8H16O4 = dioxane, THF = tetrahydrofuran, MePh = toluene. The ratio between 
the monomers was determined by weighing the amount of each monomer added to the stock solution. The ratio of the 
monomers built in in the polymer is determined with H1 NMR after the polymerization. 

 Targeted ratio in polymer Feed ratio monomers Build-in polymer 
 BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA 

CHCl3 1 2 1 1 1.89 0.97 1 1.83 0.94 

DMF 1 2 1 1 1.89 0.97 1 1.84 0.94 

C8H16O4 1 2 1 1 1.89 0.97 1 1.84 0.93 

THF 1 2 1 1 1.89 0.97 1 1.83 0.92 

MePh 1 2 1 1 1.89 0.97 1 1.86 0.91 

 

Again, the difference between the added monomer ratio and the ratio in the polymer is negligible 

(Table 2). In conclusion, that the tested solvents don’t have a noticeable influence on the 

BMA:DMAEMA:MMA ratio in the final polymer. 

To exclude the possibility that the copolymer is not random, the polymerization was stopped at low 

conversion. The same polymer mixture, 0.462 mmol monomer with a ratio 1:2:1 ratio 

BMA:DMAEMA:MMA and 0.038 mmol AIBN in toluene, was polymerized at 70 degrees for 1 hour 

and 5 minutes. 

Table 3: Free radical polymerisations using butyl methacrylate (BMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) 
and methyl methacrylate (MMA) for 1 hours and 5 min at 70 ˚C in different solvents. The ratio between the monomers was 
determined by H1 NMR before polymerization. The ratio of the monomers built in in the polymer is determined with H1 NMR 
after the polymerization.  

 Targeted ratio in polymer Feed ratio monomers Build-in polymer 
 BMA DMAEMA MMA BMA DMAEMA MMA BMA DMAEMA MMA 

1 hour 1 2 1 1 1.92 0.96 1 1.94 0.94 

5 min  1 2 1 1 1.92 0.93 1 1.93 0.94 

 

1H-NMR illustrates that even if the conversion is low, the ratio of BMA:DMAEMA:MMA stays the 

same no matter how small the polymers are (Figure 2-5, Table 3). 
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Figure 2-6: Part of the 1H-NMR (300 MHz, CDCl3) spectrum of a crude mixture of a polymerization using butyl methacrylate 
(BMA, red), methyl methacrylate (MMA, green) and 2-(dimethyl)aminoethyl methacrylate (DMAEMA, blue). A 1:2:1 ratio of 
BMA:DMAEMA:MMA was used and the mixture was polymerized at 70 ˚C for 1 hour. The vinyl peaks of the monomers 
are coloured yellow and the hydrogen atoms of the polymer and the monomer are labelled with and without an apostrophe 
respectively. 

Unfortunately, the presence of DMAEMA in the polymer seems to have an interaction with the 

analytical columns of the SEC-GPC. For this reason, no data of the SEC-GPC is provided since the 

outcome is most likely biased.  



Page | 37  

 

3. Dissolving	the	copolymer	and	determining	coefficient	

Saal et al. mentioned that they dissolved the Eudragit® EPO directly in water.61 However, the 1:2:1 

polymer does not seem to dissolve in Demi water. Saal et al. prepared their polymer solutions by 

dissolving different amounts of Eudragit® EPO in deionized water and adjusting the pH to 6.0. 

Despite this, the 1:2:1 BMA:DMAEMA:MMA polymers had a hard time dissolving in water. However, 

Palena et al. investigated self-organized drug-interpolyelectrolyte nanocomplexes where they used 

Eudragit® EPO as well. In here, HCl was added to obtain an initial partial neutralization of the amine 

groups which stimulates hydration and relaxation of the polymer. After the solid dispersions were 

formed, the solution was neutralized with NaOH. In order to generate a more uniform pH of 7.4 over 

all the solutions, a polyphosphate buffer was used instead of water to dissolve all the polymer into a 

hydrophilic substance.  The presence of Piroxicam was determined via UV-Vis spectroscopy since 

the copolymer does not show any absorbance (Figure 2-7). 

 

Figure 2-7: Example of UV-Vis spectrum of Piroxicam dissolved in a phosphate-buffered saline (PBS) buffer using a 1:2:1 
ratio of BMA:DMAEMA:MMA copolymer 

The peak of the wavelength, 360 nm, is used to determine the absorbance of future UV-Vis spectra. 

A dissolution series of Piroxicam, where the drug was dissolved into a 2wt% 1:2:1 

BMA:DMAEMA:MMA copolymer in a phosphate buffered saline (PBS) buffer, was determined 

(Figure 2-8).  

 

Figure 2-8: Determination of Molar Absorption Coefficient of Piroxicam in a 2 wt% 1:2:1 BMA:DMAEMA:MMA copolymer 
in polyphosphate buffer 
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For future calculations, the absorbance can be correlated to 4.115 times the concentration in 
micrograms per millilitre.  

4. Determining	the	optimal	solubility	enhancement			

As mentioned before, the 1:2:1 BMA:DMAEMA:MMA copolymer is tricky to dissolve on its own in 

water or buffer without acidifying the solution first. To determine the maximum solubility of Piroxicam 

in a given solution, the same procedure was executed every time (Figure 2-9). 

 

Figure 2-9: Procedure to determine the maximal solubility of a given polymer 

After a copolymerisation and dissolution of the desired polymer, an excess of Piroxicam was added 

to 1 mL of co-polymer solution. The mixture was shaken well before centrifuging for an hour. The 

excess Piroxicam sinks to the bottom as a pellet and some of the supernatant was carefully 

extracted. Before measuring this on the UV-Vis, the mixture was diluted with PBS buffer. Using the 

coefficient from Figure 2-8, the original maximum concentration was determined.  

To determine which polymer concentration was optimal, the maximum solubility was determined for 

three concentrations of the same 1:2:1 BMA:DMAEMA:MMA copolymer: 0.5 wt%, 1 wt% and 2 wt%. 

A higher concentration was attempted as well but proved to be too difficult to properly dissolve the 

polymer into PBS (Figure 2-10).  
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Figure 2-10: Maximum amount of Piroxicam concentration in different weight percentage solutions  
of 1:2:1 BMA:DMAEMA:MMA copolymer 

The maximum solubility of Piroxicam varied between 1 mg·mL-1 and 1.5 mg·mL-1 with an increase in 

Piroxicam dissolution the higher the polymer concentration. This indicates that the amount of 

polymer present in the solution does have a positive effect on the overall Piroxicam solubility. In Saal 

et al., they did succeed in getting higher polymer concentrations but they indicated that there was a 

plateau phase of Piroxicam solubility after 2 wt%. For the following experiments, a concentration of 

2 wt% was used. In Schmied et al. they investigated a modified version of EPO as well, only a 

controlled molecular weight. It would have been interesting to vary the molecular weight of the 

polymer to see its effect on the solubility enhancement but this was unfortunately not pursued due 

to COVID-19 restrictions.  

The 1:2:1 BMA:DMAEMA:MMA copolymer was synthesised in presence of Piroxicam as well. Per 

monomer unit, a ratio of 1.75 units of Piroxicam was mixed into the polymerisation mixture. 0.462 

mmol monomer with a ratio 1:2:1 ratio BMA:DMAEMA:MMA and 0.038 mmol AIBN in 

tetrahydrofuran, was polymerized at 70 degrees for 1 hour. After polymerisation, an attempt was 

made to purify the polymers and remove all of the Piroxicam (Figure 2-11). 

 

Figure 2-11: Percentage of Piroxicam left for several techniques.  

The reference for extraction techniques is letting all the solvent evaporate using a rotary evaporator. 

The amount of Piroxicam left by this technique is set to 100% since it assumes that no Piroxicam is 
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lost. In the first test, the polymer mixture was centrifuged in order to let all the Piroxicam sink to the 

bottom. This results in a reduction of around 20%, indicating that the polymer interaction was strong 

enough to keep it into solution. Second, and third, precipitation and Soxhlet extraction using 

petroleum ether were executed. The Soxhlet extraction was executed overnight. Both techniques 

were able to remove around half the Piroxicam but not completely purify it.  

Different 1:2:1 BMA:DMAEMA:MMA copolymers were synthesised in presence of Piroxicam. Per 

monomer unit, four different units of Piroxicam, 0.00, 0.75, 1.25 and 1.75, were mixed into the 

polymerisation mixture. The mixtures were polymerized at 70 degrees C for 1 hour. Despite the not 

complete purification technique, precipitation in petroleum ether was chosen because of its time 

efficiency. The maximum solubility of Piroxicam for each copolymer was determined and plotted 

compared to the literature (Figure 2-12). 

 

Figure 2-12: Amount of maximum Piroxicam solubility for different copolymers (blue) compared to literature (red) 

There is a significant increase whether or not the original polymer was synthesised in presence of 

Piroxicam. Compared to the literature, “empty” polymers were less effective whereas “imprinted” 

polymers reached a solubility of 2.5 mg·mL-1. This indicates that the imprinting method improves the 

effectiveness of the copolymers. However, there is no increase of effectiveness if the original 

concentration of Piroxicam is increased.  Interesting to note is that in multiple studies of Saal et al. 

there are a multitude of drugs investigated besides Piroxicam focussing on anionic drugs 

(bezafibrate, furosemide, indomethacin, etc.) and acidic drugs (pimozide, tamoxifen, carvedilol, 

etc.).59, 61 This work focusses on Piroxicam as a proof of concept but the “polymerisation in presence 

of the drug” technique can be applied to a multitude of other drugs as well.  
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5. Results	and	discussion		

Within the experiments of this chapter, an optimal 1:2:1 BMA:DMAEMA:MMA copolymer was tested 

as a solubilizer for the hydrophobic drug Piroxicam in PBS buffer. The optimal copolymer was 

synthesised in presence of its target drug in tetrahydrofuran at 70 degrees Celsius for 1 hour. The 

copolymer was isolated from the solvent and successfully redissolved in an hydrophilic solvent, PBS 

buffer. The polymerisation was, without presence of the target molecule, proved to be random via 
1H-NMR. It is assumed that the presence of Piroxicam influences the monomer sequence by having 

the monomers orientate naturally around the target molecule before polymerisation by effects such 

as hydrogen bonding. During polymerisation, the influenced sequence is locked in place leading to 

an overall more efficient copolymer. The maximum concentration of polymer to PBS buffer was 

2%(w/w). Precipitation and Soxhlet extraction were the most effective methods to remove around 

50% of the original the target molecule concentration. Ideally, the target molecule needs to be 

removed completely and more investigation is necessary to fully prove this methods effectiveness. 

Nevertheless, the “imprinted” polymers performed better than the polymers synthesised without 

Piroxicam, reaching a maximum solubility of 2.5 mg·mL-1.  

Other  strategies to improve the solubility of Piroxicam exist. In 2005, Karataş62 et al. improved the 

solubility of PXC using the two surfactants Gelucire 44/14 and Labrasol. Interesting to note is that 

they report a concentration of 0.0198 mg/ml in water at a temperature of 37 °C. This value matches 

close to our experimental values when pure water was used. However, since all the other 

experiments were executed in PBS buffer, it was opted to take the concentration of Piroxicam in 

PBS as “base” value which is larger than pure water. In Karataş’ work, they report a 50-fold increase 

of drug solubility when using a 15% Labrasol solution which quantitively equals to 1.011 mg/mL.62 

Even without a Piroxicam imprinted polymer, this is still less than the 1.5 mg/mL we report. A more 

recent study of Al-Hamidi et al. in 2015 makes use of amino sugars as hydrophilic carriers.63 Their 

best results were a value of 30±1.6 mg /100 mL for 10%w/v glucosamine HCl and 34.3 ±3.8 mg /100 

mL for 15%w/v gluconolactone. Both values are relatively small increases compared to our findings. 

However, they showed no significant changes for Piroxicam using multiple solid-state studies 

including Fourier-Transform Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) 

and X-Ray Powder Diffraction (XRPD). In 2016, Patnaik et al. reports the use of nanosuspensions 

with Soluplus® as a Piroxicam solubiliser.64 They reported a linear increase of drug solubility when 

the polymer concentration was increased with a maximum concentration just under 6.0 μg/mL or 

0.006 mg/mL. In a more recent 2020 study, Ammanage65 et al. reported the co-crystallisation and 

the formulation of buccan films. Their most successful finding was around four times smaller than 

our highest value with a reported 60.73 ±1.95 mg /100 mL for Piroxicam-sucralose film. Ammanage 

et al. did FTIR, DCS and X-ray diffraction (XRD) studies as well and on top of that researched the in 
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vitro drug release with histopathological studies.65 Their strategy is especially interesting since they 

opted to create mucoadhesive films, a very different drug delivery route then most.  

Naturally, this work focusses on polymers to make polymer-drug conjugates as potential solutions. 

However, conjugate systems do not necessarily need to exist out of polymers.  A recent study of 

Cho et al. describes a peptide-drug conjugate whereby the use of a peptide that can cross the blood 

brain barrier is used to improve the drug (camptothecin) efficacy in brain cancer.66 Thus, not only did 

the peptide increase the solubility of the drug in water, it also helped to reach difficult places. 

However, polymers can also mimic peptides as show in a study by Maron et al.14 In this study, a 

well-known peptide sequence (used to solubilise the photosensitiser meta-tetra(hydroxyphenyl)-

chlorin) was translated to a polymer sequence based on oligo(N-substituted acrylamide)s and 

oligo(2-substituted-α-hydroxy acid)s. The polymer variant of the sequence exceeded the payload 

and initial drug release properties, indicating a great potential in the use of polymers that mimic 

specific peptide sequences.  

Precision polymers are an exciting potential player in biomedical applications but often are slow to 

produce. In order to streamline the connection between synthesis and application, and to modernise 

chemistry in general, this work offers a rethinking of that strategy. The initial results prove that there 

is a future in making these tailored polymers towards their desired target molecule. However, this 

work only provides the first stepping stones towards an efficient and streamlined cascade of polymer 

synthesis. Reflecting on the performed experiments, more efficient techniques would be used for 

future experiments. One of the bigger issues was the scalability and the purification of the 

copolymers. Dissolving the copolymer in the PBS buffer was not straightforward in and of itself and 

there are some options that could be considered to make this more efficient. First, the length of the 

copolymers could be reduced to a smaller size via a more controlled polymerisation, such as 

described by Schmied et al.67 Second, the use of a specific RAFT agent itself could potentially make 

the polymer more hydrophilic as well. A controlled polymerisation can be done with a more 

hydrophilic RAFT agent or (if the RAFT agent has too much of an influence on the imprinting) the 

RAFT agent could be modified in a later stage to make it more hydrophilic. Nevertheless, both these 

strategies have various new parameters that could influence the effectiveness of the overall 

enhancement of the solubilizing efficiency of the copolymer. Hence, an automatised system that, 

potentially via machine learning,  can decide quickly which parameters to vary would be the ideal 

future.  

Thus, when the making of these copolymers becomes more streamlined, further collaborative 

biomedical studies (such as drug release and toxicity) can be performed to complete the story from 

design to working product. Future experiments, such as the effect these polymers have on the blood 

brain barrier and their use in delivering drugs in difficult to reach places, could open up a new future 

of biomedical applications.   
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6. Conclusion		

Despite the limits of synthetic macromolecules in comparison to their more sophisticated 

counterparts, polymers are an interesting strategy for drug solubility. Specific, tailor made sequences 

are desirable, with the disadvantage that finding the right sequence often takes time and money.  

In this work, a 1:2:1 BMA:DMAEMA:MMA copolymer was tested as a solubilizer for the hydrophobic 

drug Piroxicam in PBS buffer. Different copolymers were synthesised with and without the presence 

of Piroxicam in their reaction mixture. After precipitation, which was able to remove around half of 

the original Piroxicam, the maximum solubility was determined via UV-Vis. The “imprinted” polymers 

performed better than the polymers synthesised without Piroxicam, reaching a maximum solubility 

of 2.5 mg·mL-1.  

Compared to other studies that investigate different solubilizers, the specific 1:2:1 

BMA:DMAEMA:MMA copolymer performed well. Keeping in mind that Piroxicam is a proof on 

concept to proof that “imprinted” polymers have a specific sequence that is relatively easy to 

synthesise compared to single monomer insertion strategies. A faster synthesis opens up 

possibilities for a broader range of tests for future applications. 
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Chapter	3: A	Predictive	Machine-Learning	Model	
for	Propagation	Rate	Coefficients	in	Radical	
Polymerization		
 

  



Page | 46  

 

1. Introduction		

The correct assessment of reaction kinetics and the determination of reliable rate coefficients for 

reactions are often tedious and require sophisticated methods. This is especially true for kinetic rate 

coefficients in radical polymerization. In polymerizations, to make it more complicated, rate 

parameters do not merely predict the rate of a polymerization. They also play a crucial role in the 

design and synthesis of novel materials since individual reaction rates influence the structure. A 

meaningful prediction of monomer conversions, molecular weights, and polymer dispersities is only 

achievable if the reactivity information of the monomers can be correlated with the rate coefficient of 

chain propagation and termination at minimum. The invention of the pulsed laser polymerization - 

size exclusion chromatography (PLP-SEC) method 35 years ago marked a turning point in 

investigations in polymerization kinetics by providing highly reliable measurements of propagation 

rate coefficients in a comparatively simple fashion.  

In 1996, Lyons et al. published their findings about how intramolecular transfer does not occur when 

using high pulse frequencies in their PLP-SEC measurements.68 Before, these intramolecular 

transfer reactions posed issues with branched polymer chains and led to inaccurate measurements. 

Hence, older literature or literature that does not make use of high pulse frequencies have a less 

accurate value of Kp. 
69, 70 71 Over the years, several monomers have been investigated by this 

technique, and International Union of Pure and Applied Chemistry (IUPAC) working groups have 

benchmarked data for a number of important monomers. PLP-SEC allows for determinations with 

relatively high precision – typically an error of 10 to 20 % is estimated. Yet, no unifying approach 

exists to date that correlates the structure of a monomer with its rate of propagation, and therefore 

no meaningful prediction of kinetic data can be made. Some trends are known in specific families of 

monomers, most notably the (meth)acrylates. For example, the – at first glance counterintuitive – 

increase of the propagation rate coefficient (kp) with the length of the ester side chain.72 73 The same 
correlation between the chain length of the ester in linear (meth)acrylates and the kp value is 

confirmed by Ballard et al.74 Yet, already smaller differences in the structure such as branching vs 

linear ester chains are not captured in the literature.75 The traditional way to predict kp is to use high 

level ab-initio quantum chemical calculation. While by themselves highly interesting, these 

calculations have for some monomers confirmed experimental values, but they struggle to make 

absolute predictions.  

It is largely known that the propagation rate coefficients of monomers depend on a series of factors. 

One of the hypotheses is that molecular weight is one of these factors. Since linear (meth)acrylates 

are only a fraction of the existing monomers, the choice was made to use molecular weight instead 

of the number of carbons in the ester chain. Since the molecular weight and the ester chain length 

are directly proportional for linear (methacrylates), the molecular weight was considered an adequate 
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substitute while still able to get a consistent value for the other parameters. Another factor that is 

believed to have an influence is the resonance stability of the propagating radical. Depending on the 

substituent on the carbon that contains the radical, the dissociation energy (or radical stabilizing 

energy) varies.76 The more stable a radical is, the better the transfer reaction occurs.77 H-bonding 

has been identified to cause significant rate effects and polarity is speculated to impact kp. 

Mavroudakis et al. demonstrates that monomers and solvents which are capable of hydrogen 

bonding have a significant influence on kp.78 One of the examples is the comparison between two 

structurally similar molecules 2-hydroxyethyl acrylate (HEA) and butyl acrylate (BA). HEA, which is 

capable of H-bonding, has a 25% higher kp compared to BA.78 In general, hydrogen bonding affects 

the propagation rate and results in higher kp values. 78 79 The effect of the solvent on kp is an 

interesting study in and on itself but was not considered in this work. Instead, only kp values whose 

polymerisation occurred in bulk were considered. For future studies, the solvent effect would be 

extremely interesting to investigate but it currently falls outside the scope of this project.  

These factors have, however, always only been investigated as insular effects, and no general theory 

could so far be formed that would unify all different aspects in one approach. Part of this issue might 

be that in the classical approach, physical chemists look for causation rather than a correlation or 

association. In complex interdependent systems, this can be a difficult endeavour since accurate 

data is often difficult to find, and actual causations might not be obvious. Association is much simpler 

to establish though via purely statistical approaches. Machine-learning (ML) harnesses this relative 

simplicity to predict complex behaviour of systems. Hence, the question could be raised if it is 

possible to correlate complex propagation rate coefficients with fundamental and readily available 

information about monomers without the attempt to establish exact equations reflecting the 

underpinning processes. If such an approach is successful, the resulting correlation can ideally be 

used to reach a better theoretical understanding. More importantly though, if statistical association 

is successful (without necessarily identifying the underlying causal mechanism), then rate 

coefficients would in principle become predictable. Propagation rate coefficients provide an ideal 

scenario for testing this hypothesis since relatively accurate coefficients are indeed available for a 

series of molecules. In the following, we discuss if these kinetic rate coefficients can indeed be 

predicted on a purely statistical basis rather than using high level ab-initio calculations using 

transition state theory. 
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2. Data	Selection		

Any statistical model approach requires a dataset that can be used to train a model. As mentioned 

above, kp is ideal since the IUPAC has benchmarked rate coefficients for a series of monomers. kp 

data for these monomers can be assumed to be fairly accurate. In fact, recently an online database 

was established that allows to retrieve these coefficients directly. In order to benchmark a monomer, 

IUPAC typically requires more than one laboratory to provide data. In addition, several laboratories 

have provided sole PLP-SEC data that can still be regarded as fairly reliable. We collated data for 

close to 40 monomers that we deemed reliable (it should be noted that the IUPAC also defined 

reliability criteria that make such selection possible). We omitted acidic monomers, since it is known 

that they are primarily governed by pH, and hence are outliers in the complete set of available data. 

Most data is available for the monomer families of acrylates and methacrylates. It is known that these 

monomers can be correlated within their respective families, allowing for some inference from one 

family to the other. All other monomers have no known quantitative correlation, even though it is 

common knowledge that radical stability plays a major role in predicting their reactivity. A complete 

list of monomers and their respective values in Arrhenius form are given in the supporting 

information. For the sake of this work in this study, four distinct groups of monomers have been 

identified, these being as described above (i) acrylates (n = 13), (ii) methacrylates (n = 16), (iii) 

monomers exhibiting strong H-bonding effects (n = 5) and (iv) ‘others‘ (n = 7). An alphabetic list of 

monomers with their abbreviation and SMILES notation can be found in the Appendix (Table S1). 

For every monomer, the activation energy Ea and pre-exponential factor A were collected (Table S2). 

Using the Arrhenius equation, the natural logarithm of the rate constant ln(kp) was calculated for four 

different temperatures.  

For every single monomer, different descriptive parameters were researched and noted down 

(Table S3 and Table S4). Most of the initial parameters, such as the molecular weight and the Gibbs 

Free Energy, were generated using ChemDraw and thus available for every single monomer. 

However, later parameters such as the dissociation constant or the the experimental boiling point 

are unavailable for all the entries. Unfortunately, a monomer needs to have all the desired 

parameters available or it cannot be used in the regression. There are three main selections of data 

used in the future: (1) all available data, (2) available data with the dissociation constant and (3) 

available data with the ChemSpider parameters. An overview of how many entries are in each 

category with each selection is displayed in Figure 3-1.  
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Figure 3-1: : Bar plot of the number of monomers and the respective percentage in the corresponding classification group: 
acrylates (blue), methacrylates (red), H-bonding monomers (green) and others (black). 
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3. Methodology		

Data was fitted via multivariate linear regression, which is a combination of multiple linear 

regressions on independent variables for one dependent variable. A popular variant of least-squares 

regression to avoid overfitting is the Ridge regression method. Ridge regression considers that 

various features might display collinearity. In this instance, the ordinary least squares method is 

modified to minimise the squared absolute sum of the coefficients, known as so-called L2 

regularisation. This is done by introducing a tuning parameter, lambda (λ), in the cost function (see 

supporting information). Take note due to Python syntax, the lambda term has to be configured via 

the “alpha” argument. Similar to ridge regressions, LASSO regression can be employed. In Lasso 

regression, the cost function minimises the absolute sum of coefficients instead, known as L1 

regularisation. As a result, Lasso regression assists to reduce overfitting and can be used in feature 

selection and hence for physical interpretation posteriori. λ is a scalar variant, and thus requires 

continuous data to be standardised for both ridge and lasso regression. When λ increases, the bias 

increases and the variance decreases. Bias hereby describes how well a model matches a training 

set, whereas variance describes how much a model changes when it is trained with a different 

training set. High bias infers a weak match with the training set, while low bias indicates a very close 

match. High variance means that a model is flexible and prone to overfitting. Low variance means 

that a model is robust and will not change should any part of the training set be altered. Thus, low 

bias and low variance are generally preferred. For an unbiased estimate of the model performance, 

the final model fit would use an average of all the final predictions of each monomer. In this way, 

bias is minimised because all the data is being used for training the model (n-1) times, and variance 

is minimised since all the data is being used in the validation set once. As a result, the Leave One 

Out Cross Validation (LOOCV) allows to compare predictions of the target value as a function of its 

experimental value. In the following we will always use this representation to discuss the results 

obtained (Figure 3-2). 

 

Figure 3-2: Overview of how the data is split for the cross validation using a Leave One Out Cross Validation (LOOCV).  
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When considering monomers in radical polymerization, several molecular properties, in the following 

referred to as ‘features’ in line with data science terminology, are obvious to consider. It is known 

from literature that polarity is an important quantity that has direct influence on propagation kinetics. 

Thus, the dipolar moment of the monomer is of general interest. Note that experimental data is mostly 

available for bulk polymerization, hence where the polarity of the monomer concomitantly influences 

radical reactivity and the solvent environment. Further, the length of ester side chains in 

(meth)acrylates are known to at least indirectly correlate with kp. Thus, molecular weight was added 

as a further feature. Already when collating experimental data on dipolar moments, it is unfortunately 

evident that gathering such data is by far not trivial, and generally leads to scattered datasets. To 

solve this issue, we decided to include calculated data as features in our analysis. To this end, we 

used the General Atomic and Molecular Electronic Structure System software package (GAMESS, 

version: 2018, R1).i interfaced with the software ChemDraw 3D, and also used data provided by 

ChemSpider, and the ACD/Labs Percepta Platform - PhysChem Module predictions listed therein. 

Via GAMESS, we accessed dipolar moments, boiling points, melting points and Gibbs free energies 

for each monomer under investigation (relative to ethylene as the simplest radically polymerizable 

monomer possible), using a low-level HF calculation method. ChemSpider provided some 

experimental data on boiling points and refractive index, and predictions for the same, plus 

predictions for surface tension and polarizability. Comparison of calculations with available 

experimental values showed that the theoretical values are certainly not perfect when examining 

absolute values, but are reasonable when comparing series of monomers with each other. 

4. Algorithm	testing	and	parameter	selection	

In initial testing, all the different regressions (linear, ridge and lasso) are compared to each other 

using both the kp and the ln(kp) as the predicted value (Figure 3-3). It is clear that just using the kp 

provides negative predictions which makes the ln(kp) a more desirable parameter. Furthermore, one 

can see that the predicted values for the kp of the methacrylates are very clustered. The 

performances of the Ridge regression and the Lasso regression were very similar but it was opted 

to only display the Ridge regression in future analysis since its r2 value was often slightly better. 
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Figure 3-3: Comparison of different regression models for both kp and the natural logarithm of kp.  

Before describing the regressions on the complete feature set, it is worthwhile to examine the state-

of-the-art in predicting propagation rate coefficients. Two influences are known with fairly high 

accuracy, that is that the propagation rate coefficient increases with the length of the ester side chain 

in (meth)acrylates; and acrylates propagate up to a factor 100 faster than methacrylates. For all other 

monomers, no clear correlation has to date been quantified. Thus, in principle, for acrylates and 

methacrylates individually linear regressions with molecular weight can be carried out. Based on 

literature assumptions, this should yield some predictivity. Indeed, when plotting experimental kp as 

a function of molecular weight, a slight tendency towards increasing molecular weight can be 

observed. The overall correlation is, however, less than satisfactory. This is due to the list of 

monomers containing examples that have branched side chains, or that are associated with 
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H-bonding. Nonetheless, this simplistic model can be used to derive a more general visualization of 

data. Using the LOOCV method, individual kp was predicted for each acrylate and methacrylate. For 

this, we fitted each group of monomers individually as would classically be done. This results in a 

predicted value for each of the monomers. This residual, predicted value is then plotted against its 

measured value. 

 
Figure 3-4: The predicted versus experimental values of the ln(kp) at 25˚C for a dataset n=29 using the leave one out cross 
validation on a linear regression. Predictions are determined using a separation between acrylates (blue) and 
methacrylates (red) 

 

Figure 3-5: The predicted versus experimental values of the ln(kp) at 25˚C for a dataset n=41 using the leave one out cross 
validation on a linear regression. Predictions are determined using the molecular weight (Mr), dipole moment (DP), boiling 
point in Kelvin (BPK), melting point in kelvin (MPK), and Gibbs Free Energy (GFE). (r2 = 0.426) 

 

Figure 3-6: a) Comparison of predicted vs. experimental ln(kp) for isolated acrylates and methacrylates (r2 = 0.991), b) 
after inclusion of non-meth(acrylate) monomers (r2 = 0.940) and c) all monomers using available data (r2 = 0.985). 
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Ideally, if the experiment was error free and if the prediction was 100% accurate, a linear plot with a 

slope of one should be observed. The sum of squares of this fit can be used to quantify the 

predictivity of the underlying model used. The outcome of this data procedure is shown in Figure 

3-4. It should be noted that for all predictions, the logarithm of kp was used rather than its actual 

value; this prevents the model from predicting non-physical negative values. As can be seen from 

the figure, the linear regression representing the state of the art basically predicts two plateaus, one 

for methacrylates and one for acrylates. Rather than predicting an increasing kp with molecular 

weight, it thus results in not more than a rough average per monomer group. This shows that the 

perceived correlation shown in Figure 3-5is not statistically robust (while not necessarily wrong), it 

cannot be used to predict any unknown monomer kp. This is, taking the large scatter of data into 

account, not really surprising. 

Coming from this rather sobering result, we then extended the feature set of the regressions, taking 

all calculated values into account, hence molecular weight, dipolar moment, melting and boiling point 

and Gibbs free energy values. The resulting prediction is almost random, as can be seen in Figure 

3-5. No obvious correlation can be seen. Hence, we moved forward by adding further information to 

the feature set. To achieve this aim, we first broke the number of datapoints down, and isolated the 

(meth)acrylates from the list. Then, we introduced a binary differentiation for acrylates (one) and 

methacrylates (zero). This alone leads to a reasonable representation of data, showing that the 

calculated physical properties of monomers have a positive effect, and are aiding in the prediction 

of rate coefficients. However, several difficulties remained. For example, hydroxy ethyl acrylate was 

not appropriately predicted. Also branched monomers, while improved compared to the state-of-the-

art representation in Figure 3-4, still showed significant deviations. To solve these issues, the feature 

set was extended by two parameters. One parameter described the inductive effect of the side chain, 

the other quantifies H-bonding between monomers. For both effects, literature was screened, and 

property tables provided by high level quantum calculation could be used. It should be hereby noted 

that H-bonding is not easy to quantify, and only the presence of major functional groups was 

accounted for. Despite the shortcomings of this process, a very good prediction is obtained in this 

way. Figure 3-6a depicts the case fitting of acrylates and methacrylates without inclusion of strongly 

H-bonding monomers. It should be noted that both LASSO and Ridge regressions yield similarly 

reasonable results, while conventional linear regressions perform significantly less well. 

Nonetheless, the r2 value of the plot shown in Figure 6a is 0.991, underpinning its overall high quality. 

Statistical analysis of the LASSO regression shows that either the melting point or the boiling point 

can be used, both information is not required since they display high collinearity. The same was true 

for surface tension data and refractive index data. Both features were practically redundant when 

polarizability was used. All other features do contribute to the results.  
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Yet, when including all monomers back into the fit, also this procedure still yielded an unsatisfactory 

result. The obvious reason for this is that none of the features sufficiently describes resonance 

effects, which play a major role in reactivity of monomers. Surprisingly, while qualitative orders of 

reactivity are obviously known for practically all polymerizable vinyl monomers, no quantitative data 

on the resonance stability, or radical stability could be found in literature. The closest information 

that we identified were dissociation constants of macroalkoxyamines, that were determined for 

nitroxide-mediated polymerization from Electron paramagnetic resonance (EPR) spectroscopy. At 

least for styrene, acrylonitrile, as well as for an average of methacrylates and acrylates, numeric 

values could be assigned. We normalized these dissociation constants, and provided our best 

prediction, shown in Figure 3-6b. Finally, since this plot yielded a very reasonable fit, we then directly 

also included the H-bonding monomers, as depicted in Figure 3-6c. Again, it is an interesting 

observation, that correlation of hydrogen (H)-bonding has also a positive predictive effect for 

example for styrene (the datapoint with the lowest overall kp). As can be seen, both acrylonitrile and 

styrene (black triangles) fall very well on the line with the (meth)acrylates. r2 in this case is 0.986, 

which is a very good result considering that both added monomers have nothing in common with the 

other monomers in question regarding all other used features. It can be assumed that if actual data 

for resonance stability of propagating radicals become available for other monomers (such as vinyl 

acetate for example), that also these monomers can then be adequately correlated. Such data can 

probably also be derived by quantum chemical calculations, and with that also removing any need 

for experimental data in the current approach. Overall, the ridge regression analysis for weighting of 

the various features shows that resonance stability by far is the most important feature, 

overshadowing the previous importance of dipolar moments and substituent effects. 

At this point, a good general correlation of all data points had been reached. Closer inspection of 

sub-datasets revealed, however, a further interesting correlation. While the theoretical values 

provided by ChemSpider/ACDlabs did generally contribute to the success of the fitting, the accuracy 

of the fits improved almost by an order of magnitude when only data was fitted for which experimental 

boiling points were available. The results of the fit for this subset are shown in the appendix (Figure 

4-23). The correlation is achieved in this plot has a value r2 value of 0.953. More interestingly, the r2 

of before the cross validation was close to perfect with a value of 0.999. it is theorised that the 

decrease of r2 after cross-validation is largely due to the lack of datapoints. It can, however, be 

speculated that availability of experimental boiling points improves the accuracy of the prediction of 

polarizability, which in turn is an important parameter. This hypothesis, can at this point though not 

be tested since the ACDlabs predictions are provided by ChemSpider, and are not directly accessible 

to us. One of the theories we tested was to check if one gave an increased importance, a so called 

weight, to those 13 datapoints in the whole dataset, one could achieve better results. Disappointingly, 
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there was no massive improvement observed as shown in the appendix figures (Figure 4-28 and 

Figure 4-29).   

 

 

Figure 3-7: a) Activation energies (r2 = 0.963) and b) Arrhenius factors (r2 = 0.666) determined from prediction of individual 
kp at four different temperatures. 

Regardless, with this method at hand, we tested if not only individual kp can be predicted, but also 

activation parameters. To this end, we calculated kp for 25, 50, 75 and 100 °C based on 

experimentally derived activation energies. As for the 25 °C data in Figure 3-6, similarly reasonable 

fits were obtained. For each individual monomer the predicted kp values at the four temperatures 

were fitted to the Arrhenius equation, yielding a predicted Arrhenius factor A and a predicted 

activation energy Ea. Using the same representation as for kp, it can be shown (Figure 3-7a and 

Figure 3-7b) that also the activation parameters are well predicted by our model. Specifically, Ea is 

represented very well, while ln(A) shows some more scatter. This scatter is a result of the sensitivity 

of A on small variations in Ea and correlates with the typically also higher scatter of experimental 

data for this value. It should be noted that it is in principle also possible to directly correlate Ea and 

A instead of kp at a distinct temperature. However, this would require a simultaneous regression of 

both parameters, since A and Ea are highly interdependent. If fitted individually for Ea, a reasonable 

direct correlation is found, yet not for A. The approach to determine both values via individual kp‘s is 

hence more successful and reliable.  

Until this point, we only demonstrated that the data can be successfully correlated. Of course, the 

aim of any such investigation is to predict rate coefficients for monomers for which no experimental 

data is available. With the good correlation demonstrated in Figure 3-6, predictions of rate 

coefficients should be possible for monomers for which no experimental values of kp are yet 

available. Since practically all features in our model are based on calculated features, it is fairly 

straight forward to include further monomers into the list. Given the almost perfect alignment of 

Figure 3-6a, best predictions should though be available for monomers that have experimental 

boiling points known. As monomers in question we chose ethyl acrylate, propyl acrylate, cyclohexyl 
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acrylate and propyl methacrylate. We used the boiling point subset model to then predict kp at 25˚C. 

These monomers are an interesting comparison since it is known that propagation rate coefficients 

increase generally with the size of the ester side chain for both acrylates and methacrylates, and 

reference data are available for the corresponding methyl and butyl (meth)acrylates. All ML-predicted 

kp values are given in Table 1. The coefficients of a couple of different models were calculates and 

displayed in the Appendix A (Table A8, Table A9, Table A10 and Table A11). It is interesting to note 

that the calculation of these coefficients (and their importance, which is the coefficient multiplied by 

their variance) are interesting but not necessary to obtain predictions since that information is already 

part of the program.   

Table 1. Model predictions of propagation rate coefficients for monomers for which no experimental kp data is available. 
Predictions are based on the data shown in Fig 3b 

Monomer kp(25 C) / L∙mol−1∙s−1 

Ethyl acrylate 9300 < 13212 < 18769 

Propyl acrylate 9542 < 13555 < 19256 

Cyclohexyl acrylate 10258 < 14573 < 20702 

Propyl methacrylate 272 < 386 < 548 

 

As a first observation of the data in Table 1, one can see that qualitatively the order of predicted 

propagation rates in the acrylates is correct. A slight increase in rate for the ethyl to the propyl 

acrylate is seen, while the cyclohexyl acrylate monomer exhibits the highest rate coefficient. For both 

the acrylate and methacrylate the correct order of magnitude is predicted (which is, given the large 

number of monomers used in the correlation from these two families not surprising). While the order 

of monomers is correct, absolute values are not fully matched. Starting from the experimental 

propagation rate coefficients for methyl and butyl methacrylate, a kp between 323 and 370 would be 

expected. The value for propyl methacrylate is very close in the range of expectations. Given that 

size-exclusion chromatography, which is key to experimental kp determinations is commonly 

associated with an error of up to 20%, this match is exceptionally good, and outperforms any 

prediction based on ab-initio calculations provided so far. For the acrylates, using the same 

comparison, a kp between 13130 (methyl acrylate) and 16380 (butyl acrylate) would be expected. 

Again, the predictions made by our regressions meet this range. For cyclohexyl acrylate, no clear 

expectation can be given, yet the produced value seems to be a reasonable estimate. It will be 

interesting to see in the future if these values will be confirmed by experiments. It should be noted 

that using the full dataset as given in Figure 3-6b and Figure 3-6c yields predictions within a 20-40% 

deviation from the ones given in Table 1. Given the lower overall r2 of these fits, this is not surprising, 

and the data produced based on the smaller dataset in Table 1 should be more appropriate and 

precise. Regardless, we have made our Python script for the prediction available via the Github 

platform, so that other researchers can make their own predictions based on need. 
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5. Results	and	discussion		

An unexpected time-consuming part of this chapter was the collection of data for the database. While 

supervising the results of the algorithm, certain parameters were added and/or removed. Of the 

different regressions (linear, Ridge and LASSO), it was observed that the Ridge and LASSO 

regression performed similarly but that the Ridge regression gave slightly better r2 values. Hence, 

most of the plots that are displayed were generated using a Ridge regression. From the parameters, 

it was concluded that the optimal combination investigated in this study was: (1) the molecular 

weight, (2) a distinction between the type of monomer, (3) the inductive effect of the tail group, (4) 

the effect of H-donors, (5) the effect of H-acceptors, (6) the dissociation constants and (7) the 

polarizability. Combinations of different parameters were added manually within the code, so the 

results could be manually checked (making it a supervised learning model). This way, a more 

controlled selection of the parameters was obtained. The idea is that with controlled selection of 

parameters, it would lead to a bigger understanding which parameters are the most important/the 

most essential in the final algorithm. Overall, the desire is to work towards an accelerated polymer 

design, an idea that has also been discussed by Patra et al.80 In this review, they emphasise the 

importance of moving away from a traditional trial and error design. One of the general challenges 

(something that was experienced in this work as well) is that in the available dataset there is less 

experimentally measured data available. One of the big (and disappointingly boring) findings of this 

work is reflected in other studies as well: namely that there needs to be a bigger, more complete and 

consistent experimental dataset of synthetic chemicals.80 Interestingly, these databanks, such as the 

protein databank, are already available for biomolecules.81 In this work, there was an attempt made 

to use experimental data (such as that of the boiling points, polarizability etc.). Unfortunately, it 

significantly reduces the amount of datapoints in a set, making it far more difficult to obtain precise 

predictions. Again, to reduce the size of the error margin more experimental data is necessary.  

In literature, rather than making use of physical parameters as the monomers descriptors, techniques 

such as One-Hot Encoding (OHE) are used to describe the structure of the monomer (or any other 

structure) itself. With OHE, the structure of the monomer itself is changed from categorical data to a 

numerical data structure (which is easier to use as an input for ML).80 OHE is also used to translate 

the SMILES notation into a binary image.82 Property colouring, such as described by Webb et al., 

makes use of a featurisation that changes the polymer structure into an image which works well with 

ML in coarse-grained polymers.83 Autoencoders on the other hand, map discrete molecular 

representation to a continuous latent space. Thus, autoencoders can be used to transform the 

SMILES notation into continuous variables.84, 85 Motif-based fingerprinting, used for representing 

small molecules, is based on the quantity of specific atoms present in a molecule and the chemical 

bond formation/coordination with other atoms in the same structure.86  
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The paper of Shi et al. demonstrates a Quantitative Structure-Property Relationship (QSPR) model 

where they predict the kp value by using the temperature and a Norm-Index (NI) descriptor.87 The 

two key differences are that (1) they have multiple entries of the same monomer for different 

temperatures (rather than basing the entire model on just the Ea and A values) and (2) they have 

one vector based descriptor rather than multiple parameters as descriptor. The first difference has 

the advantage that the database is much bigger, but it also means that some monomers are more 

represented than other ones. The second difference is a quite elegant solution about how they, in 

essence, “describe” the monomer to the model. It would be extremely interesting to see if combining 

this NI descriptor with some of our parameters would enhance the predictive results.  

Overall, the difference with using techniques that gather information directly from the structure of the 

molecule is that it gives us less information in which physical parameters play a big influence in the 

polymerisation. Admittedly, the method described in the chapter is far from perfect but it does provide 

unique information (/confirmation) how polymerisations effectively work. Ideally, when a ML 

algorithm is coupled to an automated experimental setup, it would be interesting to include the 

solvent effects on the polymerisation.  
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6. Conclusion		

The predictions made based on the model presented herein may not be able give a 100% accurate 

representation of small effects such as ester side chain length, yet they provide very reasonable data 

that can be used for future work. Accuracies are within standard error limits of experimental 

determinations, and relative effects are accurately predicted. No prediction of kp values with the 

same accuracy by any other theoretical method has to date been provided. With increasing data 

coming available from experiments, and potentially with further refinement of feature calculations, 

we hope the accuracy of our method can be further refined in future work. The match of data currently 

seen for monomers with available experimental data on boiling points should be extendable to the 

full dataset. Generally, though, it is remarkable that only very little experimental data input is required 

in all predictions, whereby experimental boiling points seem to play only a role in refinement of other 

theoretical data. Regardless, even though this hypothesis will still need experimental validation, it 

seems that simple boiling point measurements in conjunction with radical stability data, may be 

sufficient in the future to predict accurate propagation rate coefficients directly for any kind of 

polymerizable vinyl monomer. 

Regardless of the predictivity of the regressions, this work presents for the first time a full correlation 

of complex kinetic rate coefficients with structures. Specifically, no model existed to date that was 

able to correlate monomer structures with propagation rate coefficients in radical polymerization, and 

already the satisfying match of all monomers as seen in Figure 3-6c is already a large gain in 

knowledge, even in its simple form of sets of regressions, as used in here, has tremendous potential 

for simple, and readily available predictions of kinetic data. It should be noted hereby that the 

performed predictions occur within seconds, and can be easily implemented in kinetic modelling 

codes in the future. 
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Chapter	4: An	Exploration	towards	Predictive	
Machine-Learning	Models	for	Reactivity	Ratios	in	
Radical	Copolymerization	
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1. Introduction		

When designing a polymer for a specific application, there are more possibilities when using 

copolymers then homopolymers. Specific tuning of ratio of monomers build in the polymers, the 

sequence of the monomers and the structure of the overall polymer allows for a very broad amount 

of possibilities even when you start with the same starting materials. A popular review from Adams 

et al. about amphiphilic block copolymers for drug delivery, currently almost twenty years old, has 

been cited by hundreds of other people.88 These application range from cancer therapy (Känkänen 

et al.), functional antibody delivery (Koch et al.), temperature sensitive drug carriers (Dou et al.) and 

various more.89-91 In the correct circumstances, the polymeric micelles made from amphiphilic block 

copolymers can serve as a carrier for hydrophobic drugs. On top of that, it is possible to tune the 

shape of the micelles by varying the mixing parameters when performing the self-assembly, as 

demonstrated by Buckinx et al.11 Even random copolymers have their uses in drug delivery and 

tissue engineering applications.92 Nevertheless, especially in biomedical applications, it is essential 

to have the final properties exactly right. Polymers (and specifically copolymers) have great potential 

in biomimetics, artificial peptides, molecular recognition or data storage. Some examples include 

self-assembling amphiphilic block co-polymers as a use in biomimetic interfaces from Avsar et al. or 

channel-based membranes from Lang et al. 93, 94 Even more interesting is using nature as a template 

such as in the research of Salas-Ambrosio et al. where they use synthetic polypeptide polymers as 

analogues of antimicrobial peptides.95 One can even combine the “natural” peptides and the 

“synthetic” polymers to create peptide/protein-polymer conjugates as outlined by Gauthier et al.96 

Even already in the nineties, Seymour et al. described synthetic polymers that are conjugated to 

monoclonal antibodies.97 An example of polymer sequences as a data storage application is 

highlighted by Min Lee et al. where they use defined aperiodic sequences of monodisperse 

copolyester or Kaempf et al. where they use polymers as substrates for data storage.98, 99 Vrijsen et 

al. describes the use of molecular weight distribution fingerprints as a way to generate secure data 

encryption.100 

Hence, the ample application possibilities make the polymer chemistry field interesting for many 

different industries. Currently, there is much interest regarding sequence controlled- and sequence 

defined polymers using reversible-deactivation radical polymerisation (RDRP), formally known as 

controlled radical polymerisation (CRP). 29 By controlling the precise molecular weight, dispersity 

and the specific composition of a polymer, one can control its final properties. Implementing the 

findings (both properties and characteristics) of RDRP polymers in a dataset has two advantages. 

Firstly, a reliable (and/or benchmarked) dataset serves as an excellent referral for future projects 

and experiments. Secondly, the dataset can be used to look up existing data, but properties and 

characteristics can also be used as an input to generate virtual data/predictions via artificial 

intelligence. However, to predict polymer properties from scratch, one must have access to a vast 
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amount of data and the experiments to characterise one specific polymer sequence are often time-

consuming. Thus, a good start to begin generating this database is by starting small and expanding 

step by step. Instead of immediately characterising and implementing precise sequences, a better 

strategy is to cover more general data first. Chronologically, the experiments for this chapter were 

executed first. But as tempting as it was to immediately start with copolymers, one realised that it 

was beneficial to focus on homopolymers first, hence Chapter 3.  

Copolymerisation chemistry is a field that has lost some academic interest in favour of RDRP over 

the years. Similar to creating a database with sequence controlled and/or sequence defined 

polymers, a database with information regarding copolymerisation parameters will have quite some 

use. One of the more used copolymerisation parameters are the reactivity ratios r1 and r2, which 

Mayo and Lewis introduced in 1944.26 The reactivity ratios describe the rate monomer "a" will be 

added to a propagating chain against another monomer "b". The reactivity ratios (rn) can be defined 

using the rate constants (k) where rn is equal to knn divided by knm with n = 1 or 2; m = 1 or 2; and 

n ≠ m (eq 2) (Equation 1). 

 𝑘! = 𝐴𝑒
"#!
$%  Equation 9 

 
𝑟- =

𝑘--
𝑘-.

 Equation 10 

If n = 1 and m = 2, then r1 relates the propensity of monomer M1 to react with radical M1* over 

monomer M2 to react with M1*. Depending on the values of r1 and r2, the composition of the polymer 

could be influenced (Figure 4-1). Thus, information about r1 and r2 gives knowledge indirectly about 

their properties since the composition of a polymer directly influences how that polymer behaves. 

 

Figure 4-1: Influence of r1 and r2 on the final structure 

Trying to predict, or estimate, the reactivity ratios is a goal that scientists have researched for 

decades. Early methods to predict reactivity ratios were by (1) approximating, (2) curve fitting, (3) 

making use of intersection or (4) linearization.101 For clarification, M is the mole fraction of the 

monomer in the reaction system and m is the mole fraction of the monomer within the polymer.  
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In the first method, the approximation method, one assumes that the composition of the copolymer 

is entirely depended on r1 when there is a low concentration of M2. The approximated value of r1 is 

equal to M2/m2. The predictive power is limited, especially when dealing with extreme r values, but 

the method is straightforward and fast.  

In 1944, Alfrey and Goldfinger derived a simple copolymer equation or also known as the copolymer 

composition equation (Equation 11 and Equation 12). 102 A graph was prepared by plotting the 

experimental m2 in the copolymer versus the M2. Next, a curve based Equation 12 on was plotted 

and the r1 and r2 values were varied until the curve fits the experimental data. There are some 

disadvantages to this method including bias, extensive calculations and dependence on measuring 

the weight accurately.  

 𝑑𝑀&

𝑑𝑀'
=
[𝑀&(𝑟&𝑀& +𝑀')]
[𝑀'(𝑟'𝑀' +𝑀&)]

 Equation 11 
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Equation 12 was rearranged to Equation 14, more well known as the Mayo and Lewis equation. This 

change still poses the same limitations as the previous method since both methods work via the 

same principle. The difference with the curve fitting method is that one treats the (m1M2
2/ m2M1

2) and 

the (M2/M1)[(m1/m2)-1] factors as the slope and the intercept of a straight line.  
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A widespread model to determine the r1 and r2 in radical polymerisations is known as the terminal 

model, resulting in the Mayo-Lewis equation (Equation 3 and Equation 4). In Equation. 3, the r1 and 

r2 are related to the monomer concentrations ([Mn] with n = 1 or 2). This equation can be rewritten in 

terms of mole fractions of the monomers in the feed (fn with n = 1 or 2) and mole fractions of the 

monomer within the polymer (Fn with n = 1 or 2), resulting in Equation 4. 

 𝑑[𝑀&]
𝑑[𝑀']

=
[𝑀&](𝑟&[𝑀&] + [𝑀'])
[𝑀']([𝑀&] + 𝑟'[𝑀'])

 Equation 14 

  
𝐹& = 1 − 𝐹' =

𝑟&𝑓&' + 𝑓&𝑓'
𝑟&𝑓&' + 2𝑓&𝑓' + 𝑟'𝑓''

 Equation 15 

The simplicity of the terminal model also comes with limitations. It cannot predict low molecular 

weight polymers since the equation considers a general steady-state. Furthermore, it does not take 

the reaction conditions into account. An expansion of the terminal model, the penultimate model, 

takes the second last monomer into account as well (Figure 4-2). The penultimate model is much 

more accurate but is more difficult to determine, hence resulting in limited available data. 
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Figure 4-2: Comparison between the terminal model and the penultimate model 

To predict the r1 and r2 values, the Q-e scheme was developed in 1947 by Price and Alfrey and is 

still popular because of its simplicity (Equation 16 and Equation 17). P and Q are the general 

reactivity of radical i and monomer j, and e is proportional to residual charges in the reacting groups 

(Equation 12). The reactivity ratios can be isolated by substituting the four possible outcomes when 

a polymer undergoes propagation (Equation 6). 

 𝑘() = 𝑃(𝑄) exp7−𝑒(𝑒)8 Equation 16 
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However, these predictions have severe limitations and are often incorrect. First, the selection of e 

to a given monomer is arbitrary and cannot be changed once set. Therefore, this model is 

inconsistent once new monomers are introduced. Second, P and Q are dependent on the radical to 

which the monomer is being bound. Third, the steric hindrance, which the penultimate model 

highlights as a factor in reactivity rates, has not been considered.  

In 1950, Fineman and Ross applied a different method and rearranged Equation 12 to Equation 

18.103  This method however, was never as popular as the previously mentioned ones.101 

 𝑀&(𝑚' −𝑚&)
𝑀'𝑚&

= J−
𝑚'𝑀&

'

𝑚&𝑀'
'K 𝑟& + 𝑟' Equation 18 

Tidwell et al. published in 1965 an improved method of calculating the reactivity ratios.101 They 

described how using a non-linear least squared method provided a superior prediction then earlier 

techniques. Instead of visually deciding which r1 and r2 are best (as with the curve fitting method) 

they minimize the sum of squares between the observed and computed polymer compositions. This 

method removes the bias of the observer.  

Towards the end of the nineties, more advanced machine learning gained interest. Ni et al. 

implemented artificial neural networks (ANN) to predict copolymer composition drift.104 Because the 
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reactivity ratios changed with conversion, they implemented an ANN to correctly map the non-linear 

relationship of a free radical copolymerization.  

In 2005, Rintoul et al. investigated a predictive method based on a case study with acrylamide/acrylic 

acid mixtures. This prediction method was analytical rather than theoretical and specified in cases 

of variable monomer reactivity.105 In 2013, Tan et al. developed Quantitively Structure-Activity 

Relationship (QSAR) models to predict two parameters u and v. The so called UV-scheme performed 

better than the classical Q-e scheme.106 However, one of the conditions for a successful fit is that 

their needs to be a high correlation between the experimental and the calculated e values. In other 

words, their u and v reactivity parameters are only acceptable when their correlation coefficient is 

greater than 0.9. In 2014, Shrinivas et al. tested a new model called “genetic programming”, a model 

based on decision trees, that performed a symbolic regression.107 In their findings, the genetic 

programming performed better than the classic Alfrey-Price method and artificial neural networks. 

However, one of the limitations of their model was in extrapolation situations (which could be solved 

with more data). Also in 2014, Kazemi et al. published an error-in-variables-model (EVM) for the 

optimal estimation of reactivity ratios in copolymer systems.108 Fazakas-Anca et al. published in 2021 

their work on the Stochastic Gradient Decent Optimization algorithm.109 In here, they proposed the 

use of the Fisher criterion as an indicator of the quality of the reactivity ratios.  

The main hypothesis was that, without the need of extensive computational power, a predictive tool 

could be developed that, in future research, could be part of an efficient lab cascade.  
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2. Data	selection		

Instead of using the Q-e scheme, it would be interesting to predict the r1 and r2 values using a 

predictive artificial intelligence algorithm. Hence, a database gathered from literature was created. 

The database was adapted from resources, (see Appendix B), and reliable data was selected. An 

extra hassle regarding the r1 and r2 values is that not all the data points found in literature are reliable, 

so each data had to be evaluated and then selected. The Mayo-Lewis model hypothesises that 

instantaneous mole fractions would describe the next step of a copolymer’s propagation 

(Equation 12). This model is often only used early in the conversion processes of monomers to 

copolymer (which is not always the case). On top of the r1 and r2  values, chemical properties of the 

monomers (such as the SMILES notation, melting point and boiling point) were also determined. The 

resulting table can be found in Appendix B. 
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3. Combining	predictive	algorithms	with	copolymerization	parameter	

database	

In this section, the use of predictive algorithms is explored. Strieth-Kalthof et al. describe how 

machine learning (ML) modernise synthetic chemistry.44 One of these predictive algorithms is called 

a decision tree which is, in essence, a sequence of binary decisions. A schematic overview of the 

working of a decision tree is taken from Strieth-Kalthof et al., illustrated in Figure 3. For simple 

datasets or problems, a decision tree can be deduced manually by "asking the right questions". 

However, ML can generate the “questions” asked at each node for you if it has relevant training data. 

Since generating these decision trees is entirely random, using an ensemble of multiple decision 

trees (also known as a random forest) is often more correct. Single trees are prone to overfitting, 

which is smoothed out by taking an overall average. Because of their relative simplicity, random 

forests are a good baseline model regarding ML problems in chemistry. 

 

Figure 4-3: Schematic overview of decision-tree-based ML methods, exemplified for predicting the blood brain barrier 
(BBB) permeation. nD/nA = number of hydrogen bond donors/acceptors. Taken from Strieth-Kalthoff et al. 

Using the data of Appendix B and Python, a random forest was generated. The dataset was 

randomly split into training (90%) and testing (10%) data. When the algorithm generates a decision 

tree, it will train itself on 90% of the data, knowing the features and labels it expects. When the 

training is complete, it will then test itself on the test set to determine how well the trained model 

predicts the value of r1. An advantage of random forests is that compared to a neural network, one 

can illustrate the ML output (Figure 4-3). Here, one can observe which "questions" the algorithm 

generated. 
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Figure 4-4: Part of the decision tree 

Following training on a decision tree (Random Forest Regressor with the number of decision trees 

equal to 75000), the predictions were compared to the Q-e scheme. The comparison noted was the 

percentage error predicting each model compared to the actual label value (Figure 4-5). The four 

types of data shown in Figure 4-5 are as follows: "error without r2" indicates that the decision tree 

was trained without knowing the value of r2 in the copolymer. It was only trained on the features of 

each monomer. The added term "min_samples_per_leaf" is a hyperparameter when training the 

decision tree. If the minimum number of samples is not satisfied to decide the next step, then a 

different Boolean, or two-element function (yes/no, true/false, etc.), will be considered.  

 

Figure 4-5: Error of test copolymer predictions of r1 when passed through the Decision Tree Network. (n = 75,000), data 
used Appendix B 

As shown in Figure 4-5, if the decision tree can access r2 during the training process and is not 

limited by the number of samples required to decide, then the mean absolute error will be minimised. 
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The mean average error is close to 8 for predictions that did not include r2 and were limited in 

samples in the training and predictions. On the contrary, the training and predictions that did include 

r2 and were not limited by samples to leaf showed 31.5% improvement, with a mean average error 

of 5.46. 

 

Figure 4-6: Percentage error of selected copolymer predictions of r1 for the Q-e model and the decision tree network 

Overall, 42% of the predicted values included r2 in the prediction (Figure 4-11) managed to have a 

predictive error of less than one percent. Interestingly, labels with relatively high values for r1 (ID’s 

95, 115, and 152) all had a consistently high error. These relatively large deviations of the prediction 

to the label were consistent, regardless of whether r2 was considered in the training and prediction 

of the decision tree.  

A significant target for this study is to provide the framework to improve on the previous models 

currently used to predict the reactivity ratios. A test set is reserved data where the labels are known 

but not included in the training. After training on the features and labels, the test set is passed through 

the trained model. Ideally, a model would have the capability of predicting both r1 and r2 when two 

monomers (and their features) are passed into it. Since there was significant complexity due to many 

missing data points, the scope of this study was narrowed to only predicting one of the two reactivity 

ratios. Using the value of r2 as a "known" property of a copolymer, the decision tree attempted to 

predict r1 since these predictions provided a lower error as opposed to disregarding r2 (Figure 4-11). 

The justification for this was based on the relationships between the reactivity ratios that can be 

inferred from both the Mayo-Lewis model and the Q-e scheme. The copolymer mole fraction 

equation (equation 2) highlights that the feed of one monomer directly influences the reactivity of the 

other monomer and vice-versa.  

Furthermore, the Q-e scheme displays similar behaviour in that the residual charge of the reacting 

groups of both monomers are intertwined during the determination of the reactivity ratios. Figure 

4-11 supports the idea that the reactivity ratios are somehow related. Specifically, Mayo suggests 

that the dielectric constant of a radical is likely to play a pivotal role in radical polymerisation. Further 

improvements in future studies on applying machine learning to predict the reactivity ratios would 
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benefit from a more significant portion of dielectric constant values. Potentially, this would highlight 

the significance of the dielectric constant, indicating the importance of this intrinsic property. 

Given the flaws in the total dataset used to train and predict the labels with the decision tree, 

interesting comparisons were observed with the Q-e scheme. First, there is already an uncertainty 

about the correct values of the r1 and r2 values. While carefully selected, the reality of creating a 

large database is that not every experiment is done by the same people or in the same 

circumstances. It is good to take the final predictions with a grain of salt and consider the value as 

an approximation. Second, the random forest technique relies on complete datasets. When 

establishing parameters for the monomers, one quickly discovers that, for example, not every 

monomer has a known (measured) dipole moment. For this reason, a lot of the data was generated 

with (relatively simple) Chemdraw software. These estimated dipole moments, refractive index, etc. 

are most likely not correct for the more complex molecules.  

Using the predictions that considered r2 and no minimum samples per leaf, the performance of the 

decision tree was placed against the Q-e scheme (Figure 4-4). The attempt of each model to predict 

r1 consider different properties. As mentioned earlier, the Q-e utilises residual charges of radicals 

and general reactivities. Conversely, the decision tree solely considered the intrinsic properties of 

the monomers. Therefore, it is unsurprising that the Q-e scheme, an established, thoroughly 

researched and highly critiqued model, would generally perform better than the decision tree (Figure 

4-6). Unfortunately, outperforming the Q-e scheme was not always the case. The anomalies at 

copolymer ID’s 158 and 165 show a large percentage error. However, since the actual values of r1 

are small for those copolymers, minor deviations in the prediction lead to larger proportional errors. 

Notably, the predictions at ID’s 175 and 178 showed improved predictions for r1, and ID 152 had 

effectively the same percentage error for both predictions. This is a remarkable result. With large 

portions of data missing, a decision tree network could compete with the established Q-e scheme 

on the same predictions. Sourcing information on other values of Q and e proved a challenge. Future 

studies should investigate more values and continue these comparisons between future machine 

learning-based approaches at predictions and currently accepted Q-e model predictions. 
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4. Results	and	discussion		

Similar to the findings of Chapter 3, the most challenging part of this study was finding sufficient data 

entries. An estimation of r1 and r2 values was made, but insufficient to show a significant improvement 

to the original Mayo-Lewis model and the Q-e scheme. Comparing to literature, there have been 

direct methods of calculating the reactivity rations. Johann et al. determined the activation energy 

via Density Function Theory (DTF) calculations, and then estimated the kp values based on those 

outcomes.110 In their work, they verify their calculations with real time NMR kinetics. Afterwards, they 

compared different experimental r1 and r2 values to the one obtained by their DFT calculations. The 

obtained results of r1 and r2 still show some deviation when compared to their experimental 

counterpart. Comparatively, the strategy attempted in this work was to not only obtain similar or 

better results, but also to avoid more complex calculations to reduce the computational cost of the 

calculations.  

Webb et al. combined Coarse Grained (CG) modelling, ML, and model optimization to obtain a 

targeted sequence design.83 Using coarse grained, molecular dynamic simulations, they could 

predict the structural properties of the polymer. In essence, they go directly from polymer sequence 

to predicting its properties. The method subscribed in this thesis makes use of physical parameters 

of the monomers in the polymer itself. The method from Webb et al. uses 2000 unique 

coarse-grained polymers. Important to note is that these data entries are all simulated by a Deep 

Neural Network (DNN). Again, this work was targeted to reduce the more complex calculations. Then 

again, the tested parameters were insufficient to get accurate predictions and further research is 

necessary. One of the potential stratifies is to try to use other descriptors such as the Norm-Index 

(NI) descriptor from Shi et al.87, One-Hot Encoding (OHE) of the monomers, or even the parameters 

used in chapter 3. On top of that, it is worthwhile to revisit the strategy of this chapter as well, since 

the decision tree model might be too advanced (leading to overfitting) for the amount of datapoints. 

In a recent study, published after the experiments from Chapter 4 were executed, Nguyen et al. 

successfully predicted the reactivity ratios using a ML model, Graph Attention Model, to predict the 

reactivity ratios based on the monomers’ chemical structure.111 Then again, it would be useful to gain 

knowledge about the effects of certain physical parameters of monomers on the copolymerisation.  
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5. Conclusion		

Contemporary studies in the field of machine learning are advancing rapidly. Companies rely on fast, 

accurate, and reliable information to create new technologies and improve our lives. From 

autonomous vehicles, medicine, manufacturing, and even sports analytics, the scope of machine 

learning is vast. There have been limited studies that have attempted to combine polymer chemistry 

with machine learning. Commonly, they are used to predict desired properties of a polymer, such as 

high thermal conductivity for telecommunication. However, this paradigm is shifting. Greater urgency 

is being placed within the synthetic chemistry community to embrace the possibilities of machine 

learning in the field. This study has provided the basic framework to outline that, indeed, machine 

learning does have a vital role to play in the future of polymer chemistry. The predictions of the 

limited-data decision tree in this study were flawed. However, considering the difficulty in obtaining 

data, the predictions were not necessarily better or worse than an established model like the Q-e 

scheme. There was a clear trend that for copolymers with large values of r1, the magnitude of error 

in the prediction of the decision tree was also relatively large. However, with the best value for the 

mean absolute error of only 5.46, there is a clear indication that the use of machine learning in some 

form can only improve, and perhaps one day, accurately predict the value of not only r1 but r2 as 

well. 
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Conclusion	and	Future	Outlook		
This project started out as research to find new, easy and reproducible methods to create dedicated 

polymer solubilizers but involved to something much more complex. In chapter 2, it was established 

that it is important to understand the relation between (a) a specific sequence and (b) the solubilizer 

capacities. When this relationship is understood, finding the proper sequence for a specific 

application will be easier, faster, and more efficient. However, determining the proper reaction 

conditions of a tailored polymer is an intensive and time-consuming process. An interesting new 

strategy to overcome this process is considering a synergy between classical polymer chemistry and 

computational science.  

In order to bring the results of Chapter 2 closer to a so-called automatized research, the original 

approach needs to be restructured. One of the reasons batch reactions are often time consuming is 

that not only the reaction itself often takes longer, but sample preparation for every analysis 

technique is quite time consuming. As Van Herck et al. demonstrated, it is possible to do rapid kinetic 

screenings in continuous flow reactors.112 Imagine a reactor setup where not only the screening is 

automated, but the purification and the analysis of their application (in this case drug solubility) was 

added in series as well. Thus, one could generate data in a fast and effective manner. Often when 

trying to optimise a certain synthesis, someone needs to make a calculated decision which 

parameters to vary to generate the desired outcome. The beautiful thing about machine learning is 

that this task can be automated as well. Sweidtmann et al. demonstrate how one can generate a 

Pareto front of multiple objectives. Often, when varying multiple input parameters, they are linked to 

each other (for example, increasing the temperature of a reaction will influence the speed of the 

reaction).  A Pareto front displays the different sets of non-dominant solutions.113 Optimising via such 

a Pareto front would simplify and accelerate the discovery of the optimal reactions. On top of this, 

generating a substantial amount of datapoints in a short time is an ideal base as input to use in 

machine learning. This becomes especially interesting if the database resulting from those 

experiments is not generated by one person, or even one lab, but by multiple scientists across the 

world. Large databases would need careful monitoring but getting consistent data is possible as 

demonstrated by a collaborative paper from Van Herck et al. where they proved that an operated 

independent experiment is possible.114 

Where Chapter 2 focussed on “conventional” polymer chemistry,  Chapter 3 and 4 focussed on the 

fundamentals of understanding and predicting the kinetic rate coefficient and reactivity ratios 

respectively. Logically, the more understanding there is about the polymerisations, the better 

“starting materials” an algorithm has to come to a final prediction. But, in order to fully understand 

the power of combining these two fields, one must first understand them separately. Hence, Chapter 
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3 and 4 are quite different from Chapter 2. There is hope that in future research, these two branches 

of science will be properly connected.  

Overall, this thesis proves that there is a big value in combining knowledge of multiple fields to 

enhance the output. Logically, the correlation between monomers and their polymerisation 

descriptors exists but is just quite complex. Using machine learning, it is possible to estimate things 

that are normally too time consuming or too costly.  
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List	of	abbreviations	
AIBN  Azobisisobutyronitrile  
ATRP  Atom Transfer Radical Polymerization 
BCS  Biopharmaceutics Classification System  
BMA  n-Butyl Methacrylate 
BP  British Pharmacopoeia 
BPK  Boiling point (Kelvin) 
CRP  Controlled Radical Polymerization 
CTA  Chain Transfer Agent  
DMAEMA  2-(Dimethylamino)ethyl methacrylate  
DMF  Dimethylformamide  
DP  Dipole moment 
DSC  Differential Scanning Calorimetry 
EPR  Electron paramagnetic resonance  
FT-IR  Fourier-Transform Infrared spectroscopy  
GAMESS General Atomic and Molecular Electronic Structure System software package 
GFE  Gibbs Free Energy 
H  Hydrogen 
IUPAC  International Union of Pure and Applied Chemistry 
LASSO Least Absolute Shrinkage and Selection Operator  
LOOCV Leave One Out Cross Validation  
MePh  Toluene  
MIPs  Molecularly Imprinted Polymers  
ML  Machine Learning  
MMA  Methyl methacrylate  
MPC  2-Methacryloyloxyethyl Phosphorylcholine 
MPK  Melting point (Kelvin) 
MUMI  Multiple Unit Monomer Insertion 
Mr  Molecular weight  
NI  Norm Index 
NIPAAM  poly(N-isopropylacrylamide-co-vinylpyrrolidone) 
NME  New Molecular Entities  
NMP  Nitroxide-Mediated Polymerization 
PBS  Phosphate buffered saline   
PCX  Piroxicam  
PEG  Polyethylene glycol 
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PLP  Pulsed Laser Polymerization 
QSPR  Quantitative Structure-Property Relationship  
RAFT  Reversible Addition-Fragmentation chain-Transfer 
RDRP  Reversible-Deactivation Radical Polymerization 
SEC  Size Exclusion Chromatography 
SUMI  Single Unit Monomer Insertion  
THF  Tetrahydrofuran  
USP  United States Pharmacopoeia  
VP  1-Vinyl-2-pyrrolidone  
XRD  X-Ray Diffraction  
XRPD  X-Ray Powder Diffraction  
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Appendix	A	
1. Tables		
Table A1: Alphabetic list of monomers considered with their abbreviation and SMILES notation.  

Monomer name Abbreviation SMILES 

1,3-Butadiene BuDE C=CC=C 

2-(Hexylcarbamoyloxy)ethyl acrylate HCEA C=CC(OCCOC(NCCCCCC)=O)=O 

2-(Hexylcarbamoyloxy)isopropyl acrylate HCPA C=C(OC(NCCCCCC)=O)C(OC(C)C)=O 

2-(Phenylcarbamoyloxy)ethyl acrylate PhCEA C=CC(OCCOC(NC1=CC=CC=C1)=O)=O 

2-(Phenylcarbamoyloxy)isopropyl acrylate PhCPA C=C(OC(NC1=CC=CC=C1)=O)C(OC(C)C)=O 

2-ethylhexyl acrylate EHA C=CC(OC[C@H](CC)CCCC)=O 

2-ethylhexyl methacrylate EHMA CC(C(OC[C@H](CC)CCCC)=O)=C 

2-hydroxypropyl methacrylate HPMA CC(C(OC[C@H](O)C)=O)=C 

2-propylheptyl acrylate PHA C=CC(OC[C@H](CCC)CCCCC)=O 

Acrylonitrile CAN C=CC#N 

Behenyl acrylate BeA C=CC(OCCCCCCCCCCCCCCCCCCCCCC)=O 

Behenyl methacrylate BeMA CC(C(OCCCCCCCCCCCCCCCCCCCCCC)=O)=C 

Benzyl acrylate BnA C=CC(OCC1=CC=CC=C1)=O 

Benzyl methacrylate BzMA CC(C(OCC1=CC=CC=C1)=O)=C 

Butyl methacrylate BMA CC(C(OCCCC)=O)=C 

Cyclohexyl methacrylate CHMA CC(C(OC1CCCCC1)=O)=C 

Dodecyl methacrylate DMA CC(C(OCCCCCCCCCCCC)=O)=C 

Ethoxyethyl acrylate EEA C=CC(OCCOCC)=O 

Ethyl methacrylate EMA CC(C(OCC)=O)=C 

Glycidyl methacrylate GMA CC(C(OC[C@@H]1CO1)=O)=C 

Henicosyl acrylate C21A C=CC(OCCCCCCCCCCCCCCCCCCCCC)=O 

Heptadecyl acrylate C17A C=CC(OCCCCCCCCCCCCCCCCC)=O 

Hydroxyethyl methacrylate HEMA CC(C(OCCO)=O)=C 

Isobornyl acrylate iBoa C=CC(O[C@H]1C[C@@H]2CC[C@@]1(C)C2(C)C)=O 

iso-bornyl methacrylate iBoMA CC(C(O[C@H]1C[C@@H]2CC[C@@]1(C)C2(C)C)=O)=C 

iso-butyl methacrylate iBMA CC(C(OCC(C)C)=O)=C 

iso-decyl methacrylate iDeMA CC(C(OCCCCCCCC(C)C)=O)=C 

iso-nonyl acrylate INA-A C=CC(OCCCCCCC(C)C)=O 

Methacrylic acid MAA CC(C(O)=O)=C 

Methyl acrylate MA C=CC(OC)=O 

Methyl methacrylate MMA CC(C(OC)=O)=C 

n-Butyl acrylate BA C=CC(OCCCC)=O 

n-Pentyl Methacrylate PnMA CC(C(OCCCCC)=O)=C 

N-vinyl formamide NVF O=CNC=C 

N-Vinyl Pyrrolidone NVP O=C1N(C=C)CCC1 

Propylheptyl methacrylate PHMA CC(C(O[C@@H](CCC)CCCCCC)=O)=C 

Stearyl acrylate SA C=CC(OCCCCCCCCCCCCCCCCCC)=O 

Stearyl methacrylate SMA CC(C(OCCCCCCCCCCCCCCCCCC)=O)=C 

Styrene Sty C=CC1=CC=CC=C1 

tert-butyl acrylate tBA C=CC(OC(C)(C)C)=O 

Vinyl acetate VAc CC(OC=C)=O 
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Table A2: List of monomers classified by type (acrylates, H-bonding monomers, methacrylates and other) with the 
activation energy Ea and pre-exponential factor A. Using the Arrhenius equation, the natural logarithm of the rate constant 
ln(kp) was calculated for four different temperatures. 

 Monomer Ea / J·mol-1 A / s-1 ln(kp / L·mol-1·s-

1) T = 25˚C 
ln(kp / L·mol-1·s-

1) T = 50˚C 
ln(kp / L·mol-1·s-

1) T = 75˚C 
ln(kp / L·mol1·s-1) 

T = 100˚C Source 

A
cr

yl
at

es
 

BA 17.90 22100000 9.69 10.25 10.73 11.14 115, 116 

BeA 13.02 5350000 10.24 10.65 10.99 11.30 116 

BnA 16.12 12800000 9.86 10.36 10.80 11.17 75 

C17A 14.66 8150000 10.00 10.46 10.85 11.19 116 

C21A 12.99 3220000 9.74 10.15 10.50 10.80 116 

EEA 13.80 6300000 10.09 10.52 10.89 11.21 116 

EHA 15.80 9100000 9.65 10.14 10.57 10.93 116 

iBoa 15.35 4810000 9.19 9.67 10.08 10.44 75 

INA-A 16.54 13500000 9.75 10.26 10.70 11.09 116 

MA 17.30 14100000 9.48 10.02 10.48 10.89 117 

PHA 16.41 10500000 9.55 10.06 10.50 10.88 116 

SA 16.93 18600000 9.91 10.44 10.89 11.28 116 

tBA 18.90 22100000 9.69 10.25 10.73 11.14 118 

H
-B

on
di

ng
 

m
on

om
er

s 

HCEA 13.30 6600000 10.34 10.75 11.11 11.42 119 

HCPA 14.10 6600000 10.01 10.45 10.83 11.16 119 

HEMA 21.90 8880000 7.16 7.85 8.43 8.94 120 

PhCEA 14.30 12000000 10.53 10.98 11.36 11.69 119 

PhCPA 14.20 4900000 9.68 10.12 10.50 10.83 119 

M
et

ha
cr

yl
at

es
 

BeMA 20.52 2510000 6.46 7.10 7.65 8.12 72 

BMA 22.90 3801894 5.91 6.63 7.24 7.77 121 

BzMA 22.90 6760830 6.49 7.20 7.82 8.35 122 

CHMA 23.00 6309573 6.38 7.10 7.71 8.24 122 

DMA 21.00 2511886 6.27 6.92 7.48 7.97 121 

EHMA 21.60 2390000 5.97 6.65 7.22 7.72 120 

EMA 23.40 4073803 5.78 6.51 7.14 7.68 121 

GMA 22.90 5011872 6.19 6.90 7.52 8.05 122 

HPMA 20.80 3510000 6.68 7.33 7.88 8.37 120 

iBMA 21.80 2640000 5.99 6.67 7.25 7.76 120 

iBoMA 23.10 6165950 6.32 7.04 7.65 8.19 122 

iDeMA 21.60 2390000 5.97 6.65 7.22 7.72 120 

MMA 22.36 2673006 5.78 6.48 7.07 7.59 123 

PHMA 21.72 2830000 6.09 6.77 7.35 7.85 72 

PnMA 23.80 6000000 6.01 6.75 7.38 7.94 124 

SMA 21.49 3450000 6.39 7.06 7.63 8.13 72 

O
th

er
 

BuDE 35.70 80500000 3.81 4.91 5.87 6.70 120 

CAN 15.40 1790000 8.19 8.67 9.08 9.43 125 

MAA 16.10 380000 6.35 6.86 7.29 7.66 120 

NVF 19.50 6400000 7.81 8.41 8.93 9.39 126 

NVP 17.60 25700000 9.96 10.51 10.98 11.39 127 

Sty 32.51 42657952 4.45 5.47 6.34 7.09 128 

VAc 20.40 13500000 8.19 8.83 9.37 9.84 129 
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Table A3: List with monomer parameters classified by type (acrylates, H-bonding monomers, methacrylates and other). 
The molecular weight MW, dipole moment DP, boiling point BP and the Gibbs free energy GFE were predicted with 
chemdraw. The other parameters were researched from literature. The A_value is the substituent effect on the C2 carbon 
of the polymerising double bond, the R_value is the substituent effect on the moiety chain.  

 Monomer MW / g·mol-1 DP BP / K GFE / J A_value 130 R_value 130 

A
cr

yl
at

es
 

BA 128.17 2.27 397 -273.05 0.00 11.28 

BeA 380.60 2.28 691 -124.33 0.00 12.67 

BnA 162.18 2.40 506 -138.22 0.00 13.08 

C17A 310.50 3.17 633 -166.43 0.00 12.67 

C21A 366.60 2.76 679 -132.75 0.00 12.71 

EEA 144.17 3.91 442 -380.89 0.00 13.43 

EHA 184.27 2.96 490 -244.65 0.00 12.46 

iBoA 208.30 2.37 516 -142.37 0.00 12.42 

INA-A 198.30 2.50 509 -236.23 0.00 12.71 

MA 86.09 2.23 349 -301.15 0.00 12.71 

PHA 212.33 2.50 527 -227.81 0.00 12.44 

SA 324.50 2.67 644 -158.01 0.00 12.71 

tBA 128.17 2.27 397 -273.05 0.00 11.28 

H
- B

on
di

ng
 m

on
om

er
s HCEA 243.30 1.74 585 -454.77 0.00 13.79 

HCPA 257.33 4.94 587 -457.34 1.91 12.15 

HEMA 130.14 3.68 472 -429.68 -1.55 13.23 

HPMA 144.17 3.43 473 -423.70 -1.55 13.00 

PhCEA 235.24 1.07 602 -342.36 0.00 13.70 

PhCPA 249.26 4.29 603 -344.93 2.51 12.15 

M
et

ha
cr

yl
at

es
 

BeMA 394.70 1.65 699 -124.46 -1.55 12.67 

BMA 142.20 1.71 436 -276.02 -1.55 13.24 

BzMA 176.21 1.71 519 -138.35 -1.55 13.08 

CHMA 168.23 1.27 486 -234.73 -1.55 12.29 

DMA 254.41 1.50 579 -208.66 -1.55 12.71 

EHMA 198.30 1.59 504 -244.78 -1.55 12.46 

EMA 114.12 1.70 391 -292.86 -1.55 12.58 

GMA 142.15 4.10 445 -309.81 -1.55 13.12 

iBMA 142.20 1.72 423 -278.46 -1.55 12.50 

iBoMA 222.32 1.85 529 -142.50 -1.55 12.42 

iDeMA 226.35 1.61 539 -227.94 -1.55 12.67 

MMA 100.12 1.64 367 -301.28 -1.55 12.71 

PHMA 226.35 1.51 539 -227.94 -1.55 12.09 

PnMA 156.2 1.65 457 -267.60 -1.55 12.75 

SMA 338.6 1.96 653 -158.14 -1.55 12.71 

O
th

er
 

BuDE 54.09 0.00 289 97.06 0.00 0.00 

CAN 53.06 3.94 368 133.98 0.00 14.33 

MAA 86.09 1.78 433 -343.24 -1.55 12.36 

NVF 71.08 3.98 377 -9.33 -1.55 3.48 

NVP 111.14 3.95 493 70.61 0.00 -0.33 

Sty 104.15 0.26 420 155.31 0.00 1.76 

VAc 86.09 1.54 349 -301.15 0.00 3.90 
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Table A4: List with monomer parameters classified by type (acrylates, H-bonding monomers, methacrylates and other). 
H_acc and H_don are the H-bonding effects, A1* and A2* are the dissociation constants. The values of these parameters 
were taken from literature.  

 Monomer H_acc 131 H_don 131 A1* 132 A2* 

A
cr

yl
at

es
 

BA 0.0 -0.5 -2.8 1 

BeA 0.0 -0.5 -2.8 1 

BnA -2.6 0.0 -2.8 1 

C17A 0.0 -0.5 -2.8 1 

C21A 0.0 -0.5 -2.8 1 

EEA -5.1 0.0 -2.8 1 

EHA 0.0 -0.5 -2.8 1 

iBoA 0.0 -0.5 -2.8 1 

INA-A 0.0 -0.5 -2.8 1 

MA 0.0 -0.5 -2.8 1 

PHA 0.0 -0.5 -2.8 1 

SA 0.0 -0.5 -2.8 1 

tBA 0.0 -0.5 -2.8 1 

H
-B

on
di

ng
 m

on
om

er
s  HCEA -7.7 -4.1 -2.8 1 

HCPA -16.8 -4.1 -2.8 1 

HEMA -5.5 -3.5 -2.8 647 

HPMA -5.5 -3.5 -2.8 647 

PhCEA -11.0 -3.7 -2.8 1 

PhCPA -13.1 -3.7 -2.8 1 

M
et

ha
cr

yl
at

es
 

BeMA 0.0 -0.5 -2.8 647 

BMA 0.0 -0.5 -2.8 647 

BzMA -2.6 0.0 -2.8 647 

CHMA 0.0 -0.5 -2.8 647 

DMA 0.0 -0.5 -2.8 647 

EHMA 0.0 -0.5 -2.8 647 

EMA 0.0 -0.5 -2.8 647 

GMA -5.1 0.0 -2.8 647 

iBMA 0.0 -0.5 -2.8 647 

iBoMA 0.0 -0.5 -2.8 647 

iDeMA 0.0 -0.5 -2.8 647 

MMA 0.0 -0.5 -2.8 647 

PHMA 0.0 -0.5 -2.8 647 

PnMA 0.0 -0.5 -2.8 647 

SMA 0.0 -0.5 -2.8 647 

O
th

er
 

BuDE 0.0 0.0 0.0 - 

CAN -4.7 -4.7 -3.4 10 

MAA 0.0 -5.0 -2.8 - 

NVF -6.9 -1.6 -3.4 - 

NVP -5.5 -4.1 -3.4 - 

Sty -2.6 0.0 -8.4 15 

VAc -2.9 0.0 -5.9 - 
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Table A5: List with monomer parameters from Chemspider, generated using the ACD/Labs Percepta Platform – PhysChem 
Module. The selected parameters are the boiling point BP, the refraction index RI, the density ρ, the partition coefficient 
ACDlogP, the polarisation, the surface tension and the vapor pressure.  

 Monomer BP / ˚C RI ρ / g·mL-1 ACDlogP Polarisation Surface 
tension 

Vapor 
pressure 

A
cr

yl
at

es
 

BA 145.0 1.418 0.9 2.39 14.3 26.7 4.8 

BeA 455.7 1.455 0.9 11.95 47.3 31.3 0.0 

BnA 228.7 1.517 1.1 2.27 18.5 36.1 0.1 

C17A 385.6 1.451 0.9 9.30 38.1 30.8 0.0 

C21A 442.3 1.455 0.9 11.42 45.5 31.2 0.0 

EEA 174.6 1.420 1.0 1.02 15.0 28.4 1.2 

EHA 216.0 1.434 0.9 4.33 21.6 28.0 0.1 

iBoA 244.5 1.491 1.0 4.22 23.7 33.0 0.0 

INA-A 247.3 1.437 0.9 4.86 23.4 28.4 0.0 

MA 80.2 1.390 0.9 0.79 8.8 23.5 86.3 

PHA 266.1 1.439 0.9 5.39 25.3 28.7 0.0 

SA 400.2 1.452 0.9 9.83 40.0 30.9 0.0 

tBA 133.0 1.418 0.9 2.02 14.3 25.1 8.6 

H
-B

on
di

ng
 m

on
om

er
s HCEA 357.3 1.456 1.0 3.43 25.6 34.6 0.0 

HCPA 366.2 1.456 1.0 3.78 27.4 33.8 0.0 

HEMA 189.0 1.443 1.1 0.50 13.0 33.7 0.2 

HPMA 189.0 1.458 1.1 1.39 14.0 36.1 0.6 

PhCEA 218.8 1.444 1.0 0.85 14.8 32.3 0.0 

PhCPA 322.2 1.557 1.2 2.65 24.7 45.9 0.0 

M
et

ha
cr

yl
at

es
 

BeMA 331.7 1.549 1.2 3.00 26.5 43.7 0.0 

BMA 468.7 1.455 0.9 12.5 49.1 31.0 0.0 

BzMA 160.0 1.423 0.9 2.94 16.0 26.4 2.4 

CHMA 247.0 1.512 1.0 2.82 20.2 34.8 1.0 

DMA 210.0 1.459 1.0 3.40 18.9 30.5 0.2 

EHMA 322.7 1.445 0.9 7.19 30.7 29.6 0.0 

EMA 234.8 1.436 0.9 4.88 23.4 27.7 0.1 

GMA 120.5 1.410 0.9 1.88 12.4 24.7 15.2 

iBMA 155.0 1.421 0.9 2.76 16.0 25.4 3.1 

iBoMA 263.1 1.488 1.0 4.77 25.4 32.4 0.0 

iDeMA 283.9 1.441 0.9 5.94 27.0 28.4 0.0 

MMA 100.3 1.400 0.9 1.35 10.5 23.5 36.9 

PHMA - - - - - - - 

PnMA 191.3 1.427 0.9 3.47 17.9 27.0 0.5 

SMA 414.3 1.452 0.9 10.38 41.8 30.6 0.0 

O
th

er
 

BuDE -4.4 1.389 0.6 1.86 7.9 15.9 2101 

CAN 77.3 1.385 0.8 0.19 6.2 25.0 97.1 

MAA 160.5 1.430 1.0 0.83 8.7 30.9 1.2 

NVF 184.3 1.406 0.9 -0.18 7.7 25.0 0.7 

NVP 217.6 1.593 1.1 0.37 13.1 52.4 0.1 

Sty 145.2 1.558 0.9 2.70 14.7 31.0 6.2 

Vac 72.5 1.390 0.9 0.73 8.8 23.5 118.5 
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Table A6: Results of Figure 3-6c 

 Monomer 
Experimental  

ln(kp / L·mol-1·s-1)  
T = 25˚C 

Predicted  
ln(kp / L·mol-1·s-1)  

T = 25˚C 

Relative error [experimental – predicted] 
ln(kp / L·mol-1·s-1)  

T = 25˚C  

A
cr

yl
at

es
 

BA 9.689923 9.458881 0.231 

SA 9.908823 9.842755 0.066 

PHA 9.546813 9.659156 -0.110 

MA 9.482579 9.381649 0.101 

INA-A 9.745663 9.606882 0.139 

iBoA 9.193703 9.757866 -0.560 

tBA 9.689923 9.630068 0.060 

EEA 10.088888 9.873488 0.215 

C21A 9.744492 9.925102 -0.180 

C17A 9.999434 9.827086 0.172 

BnA 9.861884 9.677131 0.185 

BeA 10.240103 9.960121 0.280 

EHA 9.649756 9.605180 0.045 

H
-B

on
di

ng
 m

on
om

er
s PhCPA 9.676210 9.593760 0.082 

PhCEA 10.531536 10.621373 -0.090 

HPMA 6.679599 6.503095 0.177 

HCPA 10.014403 10.193138 -0.180 

HCEA 10.337119 10.430283 -0.090 

HEMA 7.164720 6.324925 0.840 

M
et

ha
cr

yl
at

es
 

iBoMA 6.315358 6.401280 -0.090 

SMA 6.385194 6.046577 0.339 

PnMA 6.006353 5.948854 0.057 

MMA 5.777652 6.199693 -0.420 

iDeMA 5.973810 6.055019 -0.080 

iBMA 5.991465 5.969650 0.022 

BMA 5.913503 5.983812 -0.070 

EMA 5.780744 6.162680 -0.380 

EHMA 5.973810 6.246495 -0.270 

DMA 6.265301 6.178625 0.087 

CHMA 6.378426 6.244365 0.134 

BzMA 6.487684 6.518645 -0.030 

BeMA 6.458338 6.504005 -0.050 

GMA 6.188264 6.324925 -0.140 

Other 
Sty 4.454347 4.599294 -0.140 

CAN 8.185071 8.590136 -0.410 
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Table A7: List with monomer collected experimental parameters from Chemspider, including the boiling point BP, refraction 
index RI and the density ρ. The A2* dissociation constant parameter is included as well. Monomers that had a value for all 
of four categories were highlighted in bold and coloured according to their coloration used Figure 4-23.   

 Monomer BP / ˚C RI ρ / g·mL-1 A2* 

Acrylates 

BA 145 1.418 0.895 1 
BeA - - 0 1 

BnA 111 - 1.060 1 

EEA 174 - - 1 

iBoa 119 1.476 - 1 

MA 80.5 1.403 0.956 1 
tBA 121 1.411 0.883 1 

H-bonding monomers HEMA 250 1.453 1.071 647 

Methacrylates 

BzMA 162 1.424 0.894 647 
CHMA 231 1.514 1.040 647 

DMA 72 1.457 0.970 647 
EHMA 142 1.445 0.873 647 

GMA 118 1.413 0.917 647 
iBMA 155 1.420 0.889 647 
MMA 100 1.414 0.939 647 
SMA - - 0.860 647 

Other 

BuDE -4.5 1.429 0.620 - 

CAN 77 1.391 0.806 10 
MAA 163 1.431 1.015 - 

NVF 210 1.494 1.014 - 

NVP 92 1.512 1.044 - 

Sty 145 1.546 0.906 15 
VAc 72 1.395 0.932 - 

 

 

Table A8: Coefficients of the model with acrylates and methacrylates  

Parameters Standard Deviation Coefficients Importance 

Polarizability 808.4313 0.00268 2.166596 

Dissociation constant 2 328.9271 -0.00555 1.825545 

Molecular weight 89.20704 0.00149 0.132918 

Effect of H-donor 1.477476 -0.06087 0.089934 

Inductive effect of tailgroup 0.384931 0.00162 0.000624 

Effect of H-acceptor 0.181007 0.01008 0.001825 

Inductive effect 0.790796 0.00001 7.91E-06 

Dissociation constant 1 9.05E-16 0 0 
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Table A9: Coefficients of the model with acrylates, methacrylates and H-bonding monomers  

Parameters Standard Deviation Coefficients  Importance 

Dissociation constant 2 327.8574 -0.00636 2.085173 

Polarizability 10.96917 0.10146 1.112932 

Molecular weight 83.51009 -0.01179 0.984584 

Effect of H-acceptor 4.292892 -0.10600 0.455047 

Inductive effect 1.058983 -0.37847 0.400793 

Effect of H-donor 1.323033 -0.07107 0.094028 

Inductive effect of tailgroup 0.468596 0.08725 0.040885 

Dissociation constant 1 1.35E-15 0 0 
 

 

Table A10: Coefficients of the model with acrylates, methacrylates and others  

Parameters Standard Deviation Coefficients  Importance 

Dissociation constant 2 327.7552 -0.00526 1.723992 

Molecular weight 92.44408 0.01385 1.280351 

Polarizability 11.97967 -0.08162 0.977781 

Inductive effect of tailgroup 2.09159 0.17573 0.367555 

Dissociation constant 1 1.041882 0.10051 0.104720 

Effect of H-acceptor 1.65423 0.02534 0.041918 

Effect of H-donor 0.819197 0.02161 0.017703 

Inductive effect 0.789821 -0.00071 0.000561 
 

 

Table A11: Coefficients of the model with acrylates, methacrylates, H-bonding monomers and others  

Parameters Standard Deviation Coefficients  Importance 

Dissociation constant 2 325.9089 -0.00676 2.203144 

Molecular weight 86.79396 0.01508 1.308853 

Polarizability 11.15569 -0.10046 1.120701 

Dissociation constant 1 0.94902 1.09465 1.038845 

Inductive effect 1.037659 -0.57508 0.596737 

Inductive effect of tailgroup 1.934587 -0.13211 0.255578 

Effect of H-donor 1.438212 -0.06727 0.096749 

Effect of H-acceptor 4.185084 -0.00045 0.001883 
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2. Code			

Import the libraries  

import pandas as pd  
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt  
 
from sklearn.linear_model import LinearRegression, RidgeCV, LassoCV, Ridge, 
Lasso 
from sklearn.model_selection import cross_validate, cross_val_predict, 
cross_val_score, LeaveOneOut, train_test_split, GridSearchCV 
from sklearn.metrics import r2_score, confusion_matrix, mean_squared_error 
from sklearn.base import BaseEstimator 

 
 
Definitions  

# Calculation r2 
def r2_from_sqerrs_and_values(squared_errors, y): 
    return 1-squared_errors.mean()/(y.var()) 
 
# Calculation Mean Squared Error 
def MSE_from_sqerrs_and_values(squared_errors, y): 
    return -squared_errors.mean() 
 
# Calculation Error 
def error_from_sqerrs_and_values(squared_errors, y): 
    return (np.exp(np.sqrt(-squared_errors.mean()))-1)*100 
 
# Calculation Squared Error 
def squared_errors(squared_errors, y): 
    return np.sqrt(-1*squared_errors) 
 

def metrics(predicted, labels): 
    RMSE = mean_squared_error(labels,predicted, squared=False) 
    R2 = r2_score(labels,predicted) 
    var_pred = predicted.var() 
    var_res = (labels-predicted).var() 
    print("Root mean Squared Error is", RMSE) 
    print("The R2 value is", R2) 
    print("Variance of predictions is", var_pred) 
    print("Variance of residuals is", var_res) 
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Import the “Kp Database.csv” file and sort the database by type  

# Import the database csv file  
df = pd.read_csv('Kp Database.csv', encoding = 'ISO-8859-1') 
 
# Do a sorting of the database and reset the index number 
df = df.sort_values(by='Type')  
 
# Print the first few entries of the dataset  
print(df.head(5)) 
print(df) 

 
Create a data frame  

# OPTION 1: Create data frame and select the parameters (columns)  
 
data = 
df[['Weight_zero','Weight_equal','Weight_half','Spider_BP_P','Spider_RI_P','S
pider_D_P','Spider_ACDlogP','Spider_P','Spider_ST','Spider_VP', 
'Monomer','A','Acrylate','Ea', 'Type','R', 'Mr', 'DP', 'BPK', 'MPK', 
'GFE','Kp25','Kp50','Kp75','Kp100', 'ln(Kp25)', 'ln(Kp50)', 'ln(Kp75)', 
'ln(Kp100)', 'a_value', 'Hbond', 'Hacc', 'Hdon', 'A1*', 'A2*']] 
 
# OPTION 2: This selection has more parameters, but also more empty cells (n 
= 13) 
data = 
df[['Weight_equal','Spider_BP','Spider_BP_P','Spider_RI','Spider_RI_P','Spide
r_D','Spider_D_P','Spider_ACDlogP','Spider_P','Spider_ST','Spider_VP', 
'Monomer','A','Acrylate','Ea', 'Type','R', 'Mr', 'DP', 'BPK', 'MPK', 
'GFE','Kp25','Kp50','Kp75','Kp100', 'ln(Kp25)', 'ln(Kp50)', 'ln(Kp75)', 
'ln(Kp100)', 'a_value', 'Hbond', 'Hacc', 'Hdon', 'A1*', 'A2*']] 
 

# Further selection of the data by type  
 
# OPTION 1.1/2.1 
data = data[(data.Type == 'Acrylate') | (data.Type == 'Methacrylate')| 
(data.Type == 'H-bonding monomers')] 
# OPTION 1.2/2.2 
data = data[(data.Type == 'Acrylate') | (data.Type == 'Methacrylate')| 
(data.Type == 'Other')] 
# OPTION 1.3/2.3 
data = data[(data.Type == 'Acrylate') | (data.Type == 'Methacrylate')] 
 
# Leave out all the rows that do not have an entry  
data = data.dropna(how = 'any',axis = 0).reset_index(drop = True) 
 
# Reset the index 
data = data.reset_index() 
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Select the X and Y  

# Select the parameters for X; THESE PARAMETERS CAN EASILY BE VARIED, BELOW 
IS ONE EXAMPLE FOR ILLUSTRATION  
 
X_train = data[['Mr','a_value', 'R', 'Hacc', 'Hdon','A1*', 'A2*', 
'Spider_P']] 
 
#OPTION 1: Select the parameters for y = ln(Kp) 
y_train = data['ln(Kp25)'] 
y_train25 = data['ln(Kp25)'] 
y_train50 = data['ln(Kp50)'] 
y_train75 = data['ln(Kp75)'] 
y_train100 = data['ln(Kp100)'] 
 
#Option 2: Select the parameters for y = Kp 
y_train = data['Kp25'] 
y_train25 = data['Kp25'] 
y_train50 = data['Kp50'] 
y_train75 = data['Kp75'] 
y_train100 = data['Kp100'] 

 
 
Do a regression for every temperature, the sample weight can be varied as well  

# Result for 25 degrees 
 

res25 = cross_validate(RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)), 
X_train, y_train25, cv=LeaveOneOut(), scoring='neg_mean_squared_error', 
return_train_score=True, return_estimator=True, fit_params={'sample_weight': 
data.Weight_equal}) 
 
 
sum = np.zeros(len(res25["estimator"])) 
 
for est in res25["estimator"]: 
    sum = sum + est.predict(X_train) 
 
rid_predsR25 = sum / len(res25["estimator"]) 
#print(rid_predsR25) 
 
Result25 = pd.DataFrame() 
Result25['25 degrees experimental'] = y_train25 
Result25['25 degrees predicted'] = rid_predsR25 
Result25['25 degrees type'] = data['Type'] 
print(Result25) 
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# Result for 50 degrees 
 
res50 = cross_validate(RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)), 
X_train, y_train50, cv=LeaveOneOut(), scoring='neg_mean_squared_error', 
return_train_score=True, return_estimator=True, fit_params={'sample_weight': 
data.Weight_equal}) 
 
sum = np.zeros(len(res50["estimator"])) 
 
for est in res50["estimator"]: 
    sum = sum + est.predict(X_train) 
 
rid_predsR50 = sum / len(res50["estimator"]) 
#print(rid_predsR50) 
 
Result50 = pd.DataFrame() 
Result50['50 degrees experimental'] = y_train50 
Result50['50 degrees predicted'] = rid_predsR50  
print(Result50) 
 

# Result for 75 degrees 
res75 = cross_validate(RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)), 
X_train, y_train75, cv=LeaveOneOut(), scoring='neg_mean_squared_error', 
return_train_score=True, return_estimator=True, fit_params={'sample_weight': 
data.Weight_equal}) 
 
sum = np.zeros(len(res75["estimator"])) 
 
for est in res75["estimator"]: 
    sum = sum + est.predict(X_train) 
 
rid_predsR75 = sum / len(res75["estimator"]) 
#print(rid_predsR75) 
 
Result75 = pd.DataFrame() 
Result75['75 degrees experimental'] = y_train75 
Result75['75 degrees predicted'] = rid_predsR75  
print(Result75) 
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# Result for 100 degrees 
res100 = cross_validate(RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)), 
X_train, y_train100, cv=LeaveOneOut(), scoring='neg_mean_squared_error', 
return_train_score=True, return_estimator=True, fit_params={'sample_weight': 
data.Weight_equal}) 
 
sum = np.zeros(len(res100["estimator"])) 
 
for est in res100["estimator"]: 
    sum = sum + est.predict(X_train) 
 
rid_predsR100 = sum / len(res100["estimator"]) 
#print(rid_predsR100) 
 
Result100 = pd.DataFrame() 
Result100['100 degrees experimental'] = y_train100 
Result100['100 degrees predicted'] = rid_predsR100  
print(Result100) 

 
 
Calculate the metrics  

metrics(rid_predsR25, y_train25) 
metrics(rid_predsR50, y_train50) 
metrics(rid_predsR75, y_train75) 
metrics(rid_predsR100, y_train100) 
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Make an Arrhenius plot and calculate the slope and activation energy  

R_slope_list = [] 
R_intercept_list = [] 
 
rid_predsR25_list = rid_predsR25.tolist() 
rid_predsR50_list = rid_predsR50.tolist() 
rid_predsR75_list = rid_predsR75.tolist() 
rid_predsR100_list = rid_predsR100.tolist() 
 
for (i, j, k, l) in zip(rid_predsR25_list, rid_predsR50_list, 
rid_predsR75_list, rid_predsR100_list): 
    y = [i, j, k, l] 
    x = [1/(25+273.15), 1/(50+273.15), 1/(75+273.15), 1/(100+273.15)] 
    slope, intercept = np.polyfit(x,y,1) 
    R_slope_list.append(slope) 
    R_intercept_list.append(intercept) 
     
df_R_s = pd.DataFrame({'Slope Predicted': R_slope_list}) 
df_R_s['Ea Experimental'] = data[['Ea']] 
df_R_s['Ea Predicted'] = -df_R_s['Slope Predicted']*8.314/1000 
df_R_s['ln(Ea Predicted)'] = np.log(-df_R_s['Slope Predicted']*8.314/1000) 
df_R_s['Type'] = data[['Type']] 
df_R_s['Name'] = data[['Monomer']] 
df_R_s['Acrylate'] = data[['Acrylate']] 
 
df_R_i = pd.DataFrame({'Intercept Predicted': R_intercept_list}) 
df_R_i['A Experimental'] = data[['A']] 
df_R_i['A Predicted'] = np.exp(df_R_i['Intercept Predicted']) 
df_R_i['ln(A Predicted)'] = np.log(df_R_i['A Predicted']) 
df_R_i['ln(A Experimental)'] = np.log(df_R_i['A Experimental']) 
df_R_i['Type'] = data[['Type']] 
df_R_i['Acrylate'] = data[['Acrylate']] 
 
print(df_R_s) 
print(df_R_i) 
print(df_R_i['ln(A Experimental)']) 

 
Calculate the metrics  

metrics(df_R_s['Ea Predicted'], df_R_s['Ea Experimental']) 
metrics(df_R_i['ln(A Predicted)'], df_R_i['ln(A Experimental)']) 
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Import the train dataset  

df = pd.read_csv('Kp Database.csv', encoding = 'ISO-8859-1') 
df = df.sort_values(by='Type') #sort by type to make copypaste easier 
df = df.reset_index() 
 
data = df[['Type', 'Mr', 'DP', 'BPK', 'GFE', 'R', 'Hacc', 'Hdon', 'A1*', 
'A2*', 'Spider_P', 'ln(Kp25)', 'a_value']] 
 
data = data.dropna(how = 'any',axis = 0).reset_index(drop = True) 
data = data.reset_index() 
print(data) 
 
X_train = data[['Mr', 'a_value','R', 'Hacc', 'Hdon', 'A1*', 'A2*', 
'Spider_P']] 
y_train = data['ln(Kp25)'] 
X_test = df_test[['Mr', 'a_value', 'R', 'Hacc', 'Hdon', 'A1*', 'A2*', 
'Spider_P']] 

 

Calculate the coefficients of the model  

coefs = [] 
ridgeCV = RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)).fit(X_train, 
y_train) 
ridgeCV.coef_ 
coefs.append(ridgeCV.coef_) 
print(coefs) 

 

# define the model 
model = RidgeCV(alphas=(10**np.linspace(10,-2,300)*0.5)).fit(X_train, 
y_train25) 
# fit the model 
model.fit(X_train, y_train25) 
# get importance 
importance = model.coef_ 
# summarize feature importance 
for i,v in enumerate(importance): 
 print('Feature: %0d, Score: %.5f' % (i,v)) 
# plot feature importance 
pyplot.bar([x for x in range(len(importance))], importance) 
pyplot.show() 
 
coefs = [] 
coefs.append(ridgeCV.coef_) 
print(coefs) 
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3. Plots		

The resulting plots before and after cross validation are variations of the same principle. The 

distinction in each plot is made clear in the caption. Note the difference in:  

- The selected data: n = amount of monomers in the chosen dataset 

- Which parameter is predicted: ln(kp) or kp 

- Which regression was chosen: Linear, Lasso or Ridge  

- Which temperature was used  

- What the parameters were  

- Whether or not a weight was added to certain parts of the data  

   



Page | 95  

 

Results	before	Cross	Validation		

 

Figure 4-7: Correlation plots of the predicted propagation rate constant (kp) and the natural logarithm of the predicted 
propagation rate constant (ln(kp)) at 25˚C versus their experimental values for different regressions. Linear (a and b), Lasso 
(c and d) and Ridge (e and f) regressions were done using all available data (n = 41). The predictions were generated with 
the molecular weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding 
monomers and red = other monomers) as parameters. The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 7.892E3 1.470 7.085E3 1.330 7.114E3 1.334 
R2 Value  0.434E0 0.414 0.544E0 0.521 0.054E0 0.518 
Variance Predictions 6.865E7 2.167 5.053E7 1.645 4.782E7 1.563 
Variance Residuals  6.380E7 2.213 5.145E7 1.813 5.187E7 1.824 
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Figure 4-8: Correlation plots of the predicted propagation rate constant (kp) and the natural logarithm of the predicted 
propagation rate constant (ln(kp)) at 25˚C versus their experimental values for different regressions. The Linear (a and b), 
Lasso (c and d) and Ridge (e and f) regression were done using all available data (n = 35). The predictions were generated 
with the molecular weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = 
H-bonding monomers and red = other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, 
and the dissociation constants as parameters. The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 2.924E4 2.889 3.113E3 0.235 3.784E3 0.223 
R2 Value  -6.420E0 -1.350 0.916E0 0.984 0.876E0 0.986 
Variance Predictions 1.010E9 15.005 1.039E8 3.471 9.580E7 3.484 
Variance Residuals  8.595E8 8.386 9.977E6 0.057 1.474E7 0.051 
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Results	after	Cross	Validation			

 

Figure 4-9: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight as 
parameter. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the 
pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their 
experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.839 1.722 1.623 1.540 4.408 0.932 
R2 Value  0.083 0.076 0.069 0.063 0.152 0.030 
Variance Predictions 3.468 0.123 0.095 0.073 2.687 0.065 
Variance Residuals  1.722 3.039 2.700 2.431 19.912 0.891 
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Figure 4-10: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers) as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural 
logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted 
against their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.334 1.232 1.146 1.076 3.914 0.817 
R2 Value  0.518 0.527 0.536 0.543 0.332 0.255 
Variance Predictions 1.561 1.377 1.228 1.106 6.943 0.183 
Variance Residuals  1.825 1.555 1.348 1.186 15.703 0.684 
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Figure 4-11: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers) and  inductive effect of the tail group as parameters. From the predicted ln(kp) results, a prediction for 
the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot 
and formula. The predictions were plotted against their experimental value (e and f). The metrics of each figure are 
annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.256 1.171 1.100 1.041 3.271 0.708 
R2 Value  0.572 0.572 0.572 0.572 0.533 0.441 
Variance Predictions 1.647 1.424 1.249 1.111 10.839 0.363 
Variance Residuals  1.618 1.407 1.241 1.110 10.970 0.513 
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Figure 4-12: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all acrylates and methacrylates (n = 34) with the molecular 
weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers 
and red = other monomers) and  inductive effect of the tail group as parameters. From the predicted ln(kp) results, a 
prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made using the 
Arrhenius plot and formula. The predictions were plotted against their experimental value (e and f). The metrics of each 
figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.899 0.861 0.829 0.803 1.546 0.545 
R2 Value  0.761 0.753 0.745 0.736 0.822 0.301 
Variance Predictions 1.998 1.740 1.532 1.357 10.012 0.078 
Variance Residuals  0.834 0.764 0.708 0.664 2.461 0.306 
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Figure 4-13: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all acrylates and methacrylates without H-bonding monomers 
(n = 28) with the molecular weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, 
grey = H-bonding monomers and red = other monomers) and  inductive effect of the tail group as parameters. From the 
predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor 
(ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their experimental value (e 
and f). The metrics of each figure are annotated in the table below.  

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.198 0.202 0.209 0.216 0.907 0.429 
R2 Value  0.988 0.986 0.984 0.981 0.933 0.618 
Variance Predictions 3.273 2.905 2.607 2.362 12.203 0.284 
Variance Residuals  0.041 0.042 0.045 0.049 0.853 0.190 
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Figure 4-14: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, dipole moment, boiling point, melting point and Gibbs Free Energy as 
parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the 
pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their 
experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f  
RMSE 1.167 1.100 1.044 0.998 2.667 0.690 
R2 Value  0.631 0.623 0.615 0.607 0.690 0.487 
Variance Predictions 1.775 1.504 1.292 1.124 14.206 0.345 
Variance Residuals  1.396 1.241 1.117 1.020 7.289 0.471 
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Figure 4-15: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all acrylates and methacrylates (n = 34) with the molecular 
weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers 
and red = other monomers), inductive effect of the tail group, dipole moment, boiling point, melting point and Gibbs Free 
Energy as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm 
of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against 
their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.806 0.773 0.745 0.722 1.397 0.512 
R2 Value  0.808 0.801 0.794 0.787 0.855 0.384 
Variance Predictions 2.434 2.125 1.877 1.677 11.592 0.132 
Variance Residuals  0.670 0.615 0.572 0.537 2.012 0.270 
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Figure 4-16: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all acrylates and methacrylates without H-bonding monomers 
(n = 28) with the molecular weight and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, 
grey = H-bonding monomers and red = other monomers), inductive effect of the tail group, dipole moment, boiling point, 
melting point and Gibbs Free Energy as parameters. From the predicted ln(kp) results, a prediction for the activation energy 
(Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The 
predictions were plotted against their experimental value (e and f). The metrics of each figure are annotated in the table 
below. 

 Figure a Figure b Figure c Figure d Figure e Figure f 
RMSE 0.181 0.186 0.192 0.200 0.849 0.403 
R2 Value  0.990 0.988 0.986 0.984 0.941 0.661 
Variance Predictions 3.277 2.915 2.621 2.376 12.065 0.320 
Variance Residuals  0.034 0.036 0.038 0.042 0.748 0.169 

 



Page | 105  

 

 

Figure 4-17: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors as parameters. From the 
predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor 
(ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their experimental value (e 
and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.272 1.189 1.120 1.061 3.053 0.617 
R2 Value  0.561 0.559 0.557 0.555 0.593 0.574 
Variance Predictions 1.509 1.287 1.126 0.994 11.659 0.434 
Variance Residuals  1.658 1.449 1.285 1.154 9.554 0.391 
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Figure 4-18: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 41) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, dipole moment, boiling point, melting point, Gibbs Free Energy, the 
effect of H-donors and H-acceptors as parameters. From the predicted ln(kp) results, a prediction for the activation energy 
(Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The 
predictions were plotted against their experimental value (e and f). The metrics of each figure are annotated in the table 
below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.048 0.986 0.936 0.893 2.421 0.606 
R2 Value  0.703 0.697 0.691 0.685 0.744 0.590 
Variance Predictions 1.901 1.622 1.402 1.230 14.638 0.426 
Variance Residuals  1.125 0.998 0.898 0.818 6.006 0.377 
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Figure 4-19: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 36) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group and the dissociation constants as parameters. From the predicted ln(kp) 
results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made 
using the Arrhenius plot and formula. The predictions were plotted against their experimental value (e and f). The metrics 
of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.343 0.341 0.342 0.344 0.874 0.472 
R2 Value  0.967 0.963 0.957 0.952 0.958 0.595 
Variance Predictions 3.383 2.947 2.599 2.318 17.495 0.305 
Variance Residuals  0.121 0.120 0.121 0.122 0.786 0.229 
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Figure 4-20: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 36) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, and the dissociation constants 
as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the 
pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their 
experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.232 0.238 0.245 0.253 0.824 0.439 
R2 Value  0.985 0.982 0.978 0.974 0.963 0.649 
Variance Predictions 3.540 3.088 2.727 2.435 17.788 0.300 
Variance Residuals  0.055 0.058 0.062 0.066 0.698 0.198 
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Figure 4-21: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 36) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, dipole moment, boiling point, melting point, Gibbs Free Energy, the 
effect of H-donors and H-acceptors, and the dissociation constants as parameters. From the predicted ln(kp) results, a 
prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made using the 
Arrhenius plot and formula. The predictions were plotted against their experimental value (e and f). The metrics of each 
figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figuree  Figure f 
RMSE 0.172 0.178 0.185 0.193 0.792 0.386 
R2 Value  0.992 0.990 0.988 0.985 0.965 0.729 
Variance Predictions 3.497 3.057 2.706 2.421 17.734 0.398 
Variance Residuals  0.031 0.032 0.035 0.038 0.645 0.153 
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Figure 4-22: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants as 
parameters, predicted boiling point, predicted refractive index and predicted density as parameters. From the predicted 
ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was 
made using the Arrhenius plot and formula. The predictions were plotted against their experimental value (e and f). The 
metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.207 0.210 0.216 0.222 0.907 0.429 
R2 Value  0.987 0.986 0.983 0.980 0.933 0.618 
Variance Predictions 3.532 3.079 2.718 2.426 12.206 0.284 
Variance Residuals  0.044 0.045 0.048 0.051 0.853 0.190 
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Figure 4-23: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 13) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants, 
experimental boiling point, experimental refractive index and experimental density as parameters. From the predicted ln(kp) 
results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-exponential factor (ln(A)) was made 
using the Arrhenius plot and formula. The predictions were plotted against their experimental value (e and f). The metrics 
of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.355 0.339 0.325 0.316 1.050 0.369 
R2 Value  0.953 0.951 0.950 0.948 0.933 0.851 
Variance Predictions 1.991 1.769 1.600 1.459 10.617 0.673 
Variance Residuals  0.136 0.123 0.114 0.107 1.186 0.148 
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Figure 4-24: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
ACDlogP as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural 
logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted 
against their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.212 0..218 0.225 0.233 0.823 0.423 
R2 Value  0.987 0.985 0.982 0.978 0.963 0.674 
Variance Predictions 3.512 3.062 2.704 2.413 18.061 0.343 
Variance Residuals  0.046 0.049 0.052 0.056 0.698 0.184 
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Figure 4-25: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
polarizability as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural 
logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted 
against their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.227 0.232 0.238 0.245 0.823 0.427 
R2 Value  0.985 0.983 0.979 0.976 0.963 0.666 
Variance Predictions 3.454 3.010 2.658 2.368 18.064 0.349 
Variance Residuals  0.053 0.055 0.058 0.062 0.701 0.188 
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Figure 4-26: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
surface tension as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural 
logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted 
against their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.222 0.226 0.231 0.236 1.139 0.512 
R2 Value  0.986 0.983 0.981 0.977 0.930 0.521 
Variance Predictions 3.450 3.090 2.725 2.430 15.167 0.276 
Variance Residuals  0.050 0.053 0.055 0.058 1.316 0.267 
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Figure 4-27: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
vapor pressure as parameters. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural 
logarithm of the pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted 
against their experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.219 0.224 0.230 0.237 0.825 0.421 
R2 Value  0.987 0.984 0.981 0.977 0.963 0.676 
Variance Predictions 3.455 3.012 2.660 2.374 17.927 0.355 
Variance Residuals  0.049 0.052 0.054 0.058 0.701 0.183 
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Figure 4-28: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
polarizability as parameters. A selection of monomers (n = 13) is given a weight of 1 while the rest (n = 22) has a weight 
of 0.5. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the pre-
exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their 
experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 0.228 0.233 0.240 0.247 0.832 0.432 
R2 Value  0.985 0.983 0.979 0.975 0.963 0.660 
Variance Predictions 3.149 2.977 2.629 2.348 17.910 0.366 
Variance Residuals  0.053 0.055 0.058 0.062 0.713 0.191 
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Figure 4-29: Correlation plots of the natural logarithm of the predicted propagation rate constant (ln(kp)) versus the 
experimental ln(kp) for different temperatures: 25˚C, 50˚C, 75˚C and 100˚C for a, b, c and d respectively. The predictions 
were generated via a cross validated Ridge regression using all available data (n = 35) with the molecular weight and a 
distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red = 
other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants and 
polarizability as parameters. A selection of monomers (n = 13) is given a weight of 1 while the rest (n = 22) has a weight 
of 0.5. From the predicted ln(kp) results, a prediction for the activation energy (Ea) and the natural logarithm of the 
pre-exponential factor (ln(A)) was made using the Arrhenius plot and formula. The predictions were plotted against their 
experimental value (e and f). The metrics of each figure are annotated in the table below. 

 Figure a Figure b Figure c Figure d Figure e  Figure f 
RMSE 1.209 1.255 1.296 1.332 1.829 1.857 
R2 Value  0.588 0.492 0.389 0.280 0.819 -5.294 
Variance Predictions 6.356 5.959 5.637 5.374 12.590 3.149 
Variance Residuals  1.109 1.190 1.266 1.337 2.700 2.594 
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Arrhenius	plots	of	four	selected	monomers	

 

Figure 4-30: Arrhenius plots of n-Butyl acrylate, methyl methacrylate, hydroxyethyl methacrylate and styrene. The predicted 
ln(kp) values were determined by a cross validated Ridge regression on all available ln(Kp) data with the molecular weight 
and a distinction between the type of monomer (blue = acrylate, teal = methacrylate, grey = H-bonding monomers and red 
= other monomers), inductive effect of the tail group, the effect of H-donors and H-acceptors, the dissociation constants 
and polarizability as parameters  
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Appendix B  
1. Tables		
Table B1: List wih monomers, their unique ID 

Monomer name  Unique ID SMILES Mr 

Acrylate p-biphenyl 1 C=CC(=O)OC1=CC=CC=C1C2=CC=CC=C2 224.25 

(-) Menthyl acrylate 2 CC1CCC(C(C1)OC(=O)C=C)C(C)C 210.31 

N-Cyanocinnamate ethyl 3 CCOC(=O)C(=CC1=CC=CC=C1)C#N 201.22 

1,3-Butadiene, 1-acetoxy 4 CC(=O)OC=CC=C 112.13 

2-Vinylbenzofuran 5 C=CC1=CC2=CC=CC=C2O1 144.17 

Acenaphthylene 6 C1=CC2=C3C(=C1)C=CC3=CC=C2 152.19 

Acrolein 7 C=CC=O 56.06 

Acrylamide 8 C=CC(=O)N 71.08 

Acrylamide N-octadecyl 9 CCCCCCCCCCCCCCCCCCNC(=O)C=C 323.60 

Acrylate 2,4,6-tribromophenyl 10 C=CC(=O)OC1=C(C=C(C=C1Br)Br)Br 384.85 

Acrylate 2-ethylhexyl 11 CCCCC(CC)COC(=O)C=C 184.28 

Acrylate butyl 12 CCCCOC(=O)C=C 128.17 

Acrylate cyclohexyl 13 C=CC(=O)OC1CCCCC1 154.21 

Acrylate ethyl 14 CCOC(=O)C=C 100.12 

Acrylate glycidyl 15 C=CC(=O)OCC1CO1 128.13 

Acrylate n-butyl 16 CCCCOC(=O)C=C 128.17 

Acrylate octyl 17 CCCCCCCCOC(=O)C=C 184.27 

Acrylate pentabromophenyl 18 C=CC(=O)OC1=C(C(=C(C(=C1Br)Br)Br)Br)Br 542.60 

Acrylic Acid 19 C=CC(=O)O 72.06 

Acrylonitrile 20 C=CC#N 53.06 

Allyl chloride 21 C=CCCl 76.52 

Alpha-Methyl styrene 22 CC(=C)C1=CC=CC=C1 118.18 

Anthracene 9-vinyl 23 C=CC1=C2C=CC=CC2=CC3=CC=CC=C31 204.27 

Benzophenone, p-vinyl 24 C=CC1=CC=CC=C1C(=O)C2=CC=CC=C2 208.25 

Benzyl methacrylate 25 CC(=C)C(=O)OCC1=CC=CC=C1 176.21 

Benzylidene cyanoacetate ethyl 26 CCOC(=O)C(=CC1=CC=CC=C1)C#N 201.22 

Benzylidene cyanoacetate methyl 27 COC(=O)C(=CC1=CC=CC=C1)C#N 187.19 

Benzylidene malononitrile 28 C1=CC=C(C=C1)C=C(C#N)C#N 154.17 

Caprolactame N-vinyl 29 C=CN1CCCCCC1=O 139.19 

Carbazole N-vinyl 30 C1CCCC3C1C2C(CCCC2)N3C=C 193.24 

Cinnamonitrile 31 C1=CC=C(C=C1)C=CC#N 129.16 

Dichlorostyrene 32 C=CC1=C(C=CC(=C1)Cl)Cl 173.04 

Ethylene trans dichloro 33 C(=CCl)Cl 96.94 

Fumaronitrile 34 C(=CC#N)C#N 78.07 

Glycidyl methacrylate 35 CC(=C)C(=O)OCC1CO1 142.15 

Indene 36 C1C=CC2=CC=CC=C21 116.16 

Maleic anhydride 37 C1=CC(=O)OC1=O 98.06 

Maleimide 38 C1=CC(=O)NC1=O 97.07 

Methacrylamide 39 CC(=C)C(=O)N 85.10 

Methacrylate (?-hy-droxymethyl) ethyl 40 CC(CO)OC(=O)C(=C)C 144.17 

Methacrylate 2-chloroethyl 41 CC(=C)C(=O)OCCCl 148.59 

Methacrylate 2-hydroxyethyl 42 CC(=C)C(=O)OCCO 130.14 
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Methacrylate benzyl 43 CC(=C)C(=O)OCC1=CC=CC=C1 176.21 

Methacrylate butyl 44 CCCCOC(=O)C(=C)C 142.20 

Methacrylate decyl 45 CCCCCCCCCCOC(=O)C(=C)C 226.35 

Methacrylate ethyl 46 CCOC(=O)C(=C)C 114.12 

Methacrylate ethyl ?- benzoyloxy 47 CC(=C)C(=O)OCCOC(=O)C1=CC=CC=C1 234.25 

Methacrylate furfuryl 48 CC(=C)C(=O)OCC1=CC=CO1 166.17 

Methacrylic acid 49 CC(=C)C(=O)O 86.09 

Methacrylonitrile 50 CC(=C)C#N 67.09 

Methyl acrylate 51 COC(=O)C=C 86.09 

Methyl acrylate ?-(iso-propyl) 52 CC(C)OC(=O)C(=C)C 128.17 

Methyl atropate 53 COC(=O)C(=C)C1=CC=CC=C1 162.18 

Methyl methacrylate 54 CC(=C)C(=O)OC 100.12 

Methyl tiglate 55 CC=C(C)C(=O)OC 114.14 

Methyl vinyl ketone 56 CC(=O)C=C 70.09 

N-Allyl stearamide 57 C=CCNC(=O)CCCCCCCCCCCCCCCCC 323.56 

N-Vinylformamide 58 C=CNC=O 71.08 

Phenyl acetylene 59 C#CC1=CC=CC=C1 102.13 

Pyrane 2,3-dihydro 60 C1CC=COC1 84.12 

Pyridine 2-methyl-5-vinyl 61 CC1=NC=C(C=C1)C=C 119.16 

Pyridine 2-vinyl 62 C=CC1=CC=CC=N1 105.14 

Pyridine 4-Vinyl 63 C=CC1=CC=NC=C1 105.14 

Pyridine 5-ethyl-2-vinyl 64 CCC1=CN=C(C=C1)C=C 133.19 

Pyrrolidone N-vinyl 65 C=CN1CCCC1=O 111.14 

Sodium acrylate 66 C=CC(=O)[O-].[Na+] 95.05 

Styrene 67 C=CC1=CC=CC=C1 104.15 

Styrene ?-methyl 68 CC(=C)C1=CC=CC=C1 118.18 

Styrene 2,5-dichloro 69 C=CC1=C(C=CC(=C1)Cl)Cl 173.04 

Styrene p-iodo 70 C=CC1=CC=C(C=C1)I 230.05 

Styrene p-methyl 71 CC1=CC=C(C=C1)C=C 118.18 

Succinimide N-vinyl 72 C=CN1C(=O)CCC1=O 125.13 

Vinyl acetate 73 CC(=O)OC=C 86.09 

Vinyl benzoate 74 C=COC(=O)C1=CC=CC=C1 148.16 

Vinyl bromide 75 C=CBr 106.95 

Vinyl chloride 76 C=CCl 62.50 

Vinyl ethyl ether 77 CCOC=C 72.11 

Vinyl isobutyl ether 78 CC(C)COC=C 100.16 

Vinyl methyl ketone 79 CC(=O)C=C 70.09 

Vinyl n-butyl ether 80 CCCCOC=C 100.16 

Vinyl pivalate 81 CC(C)(C)C(=O)OC=C 128.17 

Vinylferrocene 82 C=C[C-]1C=CC=C1.[CH-]1[CH-][CH-][CH-][CH-]1.[Fe] 212.07 

Vinylidene chloride 83 C=C(Cl)Cl 96.94 

Vinylidene cyanide 84 C=C(C#N)C#N 78.07 
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Table B1: List wih monomer pairs by their unique ID, the number of experiments, the conversion and the r1 and r2 values 

ID Monomer 1 ID Monomer 2 N. exp % Conversion r1 r2 Source 

5 12 7 10.0 8.0572 0.0467 133 

5 14 6 7.2 5.8971 0.0200 133 

5 54 9 7.5 4.3327 0.0324 133 

7 8 7 -  1.6469 0.1878 134 

7 20 12 - 1.5906 0.5094 134 

7 50 9 - 0.6550 1.1062 134 

7 62 8 - 4.3909 0.0797 135 

8 49 5 26.5 0.6144 0.3351 136 

10 35 7 13.0 1.2458 0.5915 137 

11 35 5 7.5 0.2975 3.2435 138 

13 67 6 17.1 0.2740 0.9123 139 

14 3 8 38.8 12.8783 0.0001 140 

14 42 5 10.1 0.2942 13.8974 141 

16 35 8 8.1 0.1834 2.7832 138 

19 8 7 10.0 1.4570 0.6664 142 

19 51 11 - 1.2240 0.8328 143 

20 7 12  - 0.5094 1.5906 134 

20 10 7 6.5 0.9482 1.2677 144 

20 12 5  - 1.0844 0.8309 145 

20 12 5 3.8 1.7401 1.0834 146 

20 14 6 - 1.1948 0.7673 147 

20 15 11 - 1.0693 1.0856 148 

20 17 5 13.2 1.8026 0.8752 146 

20 18 6 7.5 0.8960 1.8290 144 

20 19 8 - 0.4728 2.4237 149 

20 21 5 2.2 3.3727 0.0781 150 

20 26 9 7.0 75.0199 0.0009 151 

20 28 6 8.5 23.4461 0.0103 151 

20 29 9 7.1 0.2470 0.0197 152 

20 31 7 3.2 6.9270 0.2744 151 

20 32 12 -  0.2185 0.0830 153 

20 36 9 -  0.2617 0.1839 154 

20 48 10 -  0.1840 1.6867 155 

20 49 7 25.7 0.0951 2.5072 156 

20 49 8 -  0.2653 3.4456 149 

20 51 8 21.6 0.4833 0.4530 157 

20 51 5  - 1.2743 0.8707 145 

20 51 5 6.4 1.5521 0.8506 158 

20 51 6  - 0.4812 0.7156 159 

20 54 5 17.7 0.1365 1.3296 160 

20 54 8 6.0 0.1420 1.1997 161 

20 54 6  - 0.3303 1.4722 156 

20 54 17 11.2 0.2421 1.1430 162 

20 56 6 21.4 0.5860 1.7339 163 

20 57 5 10.5 3.8648 0.1374 164 

20 60 5 7.2 3.8059 0.0076 165 
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20 61 9  - 0.1206 0.2948 166 

20 62   6.0 0.1081 0.4376 167 

20 63 7  - 0.1071 0.3439 167 

20 73 5 1.2 9.3249 0.0001 168 

20 74 5 5.0 5.3980 0.0390 150 

20 76 12  - 1.6600 0.0628 169 

20 76 23 9.0 3.8157 0.0476 170 

20 76 7 6.0 3.7389 0.0565 171 

20 83 5  - 0.5698 0.3889 172 

20 83 18 19.0 0.8611 0.1657 173 

23 14 6 1.7 0.2386 3.3312 174 

24 82 5 5.8 2.0551 0.0001 175 

29 80 5 77.7 4.1997 0.0010 176 

30 72 9 5.2 0.3136 1.3394 177 

34 54 7 8.6 0.0001 10.5615 178 

35 10 7 13.0 0.5915 1.2458 136 

36 73 5 2.4 7.3945 0.1729 179 

37 51 5 8.9 0.0181 2.9903 180 

37 60 8 11.8 0.0001 0.0141 165 

37 72 8 5.3 0.0159 0.1890 177 

43 54 9 14.0 1.0383 0.8041 181 

43 67 10 7.6 0.5136 0.3143 181 

50 54 5 -  1.0978 0.2650 161 

50 68 5 4.6 0.3275 0.0921 168 

50 71 9 8.5 0.2105 0.4080 182 

51 3 8 46.2 13.7580 0.0001 140 

51 23 6 1.8 3.0408 0.0940 174 

51 54 13 8.2 0.3894 2.2563 183 

51 61 5 -  0.1731 0.9212 184 

51 62 5 -  0.1749 1.4552 184 

51 63 6 -  0.2135 1.8457 184 

51 64 5 -  0.1799 1.2790 166 

51 72 13 36.5 1.0167 0.3628 185 

51 76 8 5.9 10.6344 0.0860 171 

54 23 6 14.7 3.9826 0.0982 174 

54 25 9 14.0 0.8041 1.0383 181 

54 29 8 7.4 5.6505 0.0138 152 

54 37 8 -  3.5722 0.0001 186 

54 38 9 14.5 2.8987 0.2036 187 

54 42 5 7.3 0.2252 0.9617 141 

54 59 6 25.9 0.8557 0.0084 188 

54 61 5 -  0.4300 0.5800 166 

54 62 5 -  0.4250 0.7502 184 

54 63 5 -  0.5569 0.7697 184 

54 64 5 -  0.3929 0.6948 184 

54 65 5 4.6 5.3409 0.0001 189 

54 69 5 15.7 0.4019 2.3736 190 

54 72 6 5.7 9.7711 0.0491 191 

54 73 6 15.1 26.5576 0.0010 147 
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54 73 6 -  29.9331 0.0445 147 

54 76 6 29.6 0.1170 14.2046 190 

54 84 8 8.1 0.0386 0.0262 192 

58 8 6 18.4 0.0366 0.4961 193 

58 37 9 10.3 0.0754 0.0182 194 

58 66 7 18.0 0.2340 0.5655 193 

65 48 9 3.8 0.0010 4.0713 195 

65 77 5 63.1 0.9102 0.0063 176 

66 8 7 25.0 0.3772 1.2520 142 

66 73 5 2.0 14.4800 0.0236 142 

67 10 7  - 0.1398 0.0778 196 

67 11 9  - 0.7269 0.3735 197 

67 12 11 13.5 0.8876 0.1975 198 

67 12 7 9.0 1.5223 0.3413 157 

67 15 7  - 0.5164 0.1487 199 

67 18 6  - 0.0824 0.1713 196 

67 19 11  - 0.2620 0.0740 200 

67 20 9  - 0.4586 0.0397 153 

67 20 13 14.0 0.3471 0.0472 170 

67 21 5 2.8 30.1908 0.0010 201 

67 23 8 10.7 2.1537 0.2416 202 

67 25 10 7.6 0.3143 0.5136 181 

67 26 8 5.1 0.4995 0.0001 203 

67 27 5 5.6 0.4954 0.0021 203 

67 28 7 7.3 0.2723 0.0004 204 

67 29 6 1.7 21.2297 0.0259 152 

67 30 8 5.5 7.7866 0.0010 205 

67 31 11 12.0 2.6667 0.0009 204 

67 32 12  - 0.2571 0.1358 151 

67 33 6 15.2 93.3947 0.4402 206 

67 35 8 10.3 0.5020 0.5657 207 

67 38 10 12.2 0.0658 0.0742 187 

67 48 10  - 0.3354 0.4128 155 

67 49 5 3.0 0.1374 0.6692 150 

67 51 6 9.8 0.7399 0.1828 208 

67 51 5 10.4 0.7432 0.1774 158 

67 54 7 5.0 0.4376 0.4873 209 

67 54 6 13.2 0.5200 0.4600 208 

67 54 6  - 0.5844 0.5460 210 

67 54 10  - 0.5238 0.4738 147 

67 54 9 7.7 0.3886 0.4814 211 

67 56 6 7.4 0.2342 0.3451 212 

67 59 5 8.6 0.3428 0.3356 188 

67 61 9 8.7 0.8196 1.0251 213 

67 61 9  - 0.7598 0.8336 166 

67 62 5  - 0.5070 0.8990 184 

67 63 6  - 0.5225 0.7221 184 

67 64 5  - 0.7107 1.0885 184 

67 65 7 0.9 15.4127 0.0001 189 
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67 65 11 8.1 6.4422 0.0001 214 

67 65 5 8.2 15.5073 0.0169 215 

67 70 8  - 0.4990 1.0957 216 

67 71 6 5.7 0.8194 0.9496 217 

67 72 7 6.5 11.0780 0.0550 191 

67 72 10 8.1 7.7529 0.1692 185 

67 73 5  - 3.5946 0.0508 218 

67 76 9 4.6 68.9052 0.1722 170 

67 83 20 19.0 2.1406 0.1249 170 

67 84 8 29.0 0.0009 0.0017 192 

68 48 9  - 0.2491 0.2861 155 

70 67 6 11.4 0.9588 0.6228 219 

73 9 7 10.5 0.0010 8.5110 164 

73 12 5  - 0.0358 7.5550 220 

73 14 6  - 0.0381 5.1146 220 

73 20 5 1.2 0.0001 9.3249 168 

73 21 6 7.5 0.6600 0.6293 190 

73 33 6 11.9 0.9119 0.0652 221 

73 44 5  - 0.0626 27.4135 222 

73 51 7  - 0.0659 9.4621 223 

73 51 7  - 0.0142 7.0137 224 

73 54 6  - 0.0445 29.9331 147 

73 54 6  - 0.0364 25.6000 225 

73 54 6 15.1 0.0010 26.5576 192 

73 57 8 10.9 0.7818 0.6303 164 

73 72 7 7.4 0.1077 6.3785 191 

73 72 28 47.6 0.2254 66.9242 185 

73 75 5 37.5 0.2175 4.6450 226 

73 76 11 15.5 0.2835 1.9447 190 

73 76 5  - 0.3323 2.5491 190 

73 83 5 6.5 0.0655 5.4385 227 

73 84 6 8.6 0.0024 0.0808 192 

76 50 5 30.4 0.1584 3.8018 169 

76 51 8 5.9 0.0868 10.6793 228 

76 75 6  - 0.8303 1.0696 229 

76 78 6 16.0 1.9694 0.0010 150 

76 83 10 17.0 0.0751 2.4337 230 

76 83 12 92.0 0.1967 6.3559 170 

76 84 10 15.8 0.2859 0.8607 230 

78 20 7 7.3 0.0001 1.0594 231 

79 73 5  - 19.5284 0.2593 232 

81 73 20 36.6 2.1436 0.9148 233 

82 24 5 5.8 0.0001 2.0551 175 

83 9 7 10.9 0.4229 1.3705 164 

83 12 7 7.5 0.9135 0.8583 146 

83 17 6 5.9 0.8377 0.6689 146 

83 21 5 10.0 2.8579 0.2608 190 

83 38 9 12.2 0.6826 0.4658 187 

83 50 10  - 0.3800 2.5847 234 
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83 57 7 8.1 5.9839 0.0001 164 

83 72 8 7.3 1.4838 0.2890 191 

83 74 5 3.0 5.3509 0.0654 150 

84 19 8 4.6 0.2908 0.2049 192 

84 37 9 16.0 28.8909 0.0001 192 

84 69 5 10.0 0.0066 0.0231 192 

84 83 11 19.3 0.0511 0.0111 192 
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Table B2: Monomer pairs with the properties of the first monomer  

ID1 ID2 Melt Point 1 Boil Point 1 Refractive 
Index 1 

Heat 
Capacity 1 

Dipole 
Moment 1 

Dielectric 
Constant 1 Density 1 

5 12               

5 14               

5 54               

7 8 -87.8 52.3 1.4017 71.3       

7 20 -87.8 52.3 1.4017 71.3       

7 50 -87.8 52.3 1.4017 71.3       

7 62 -87.8 52.3 1.4017 71.3       

8 49 85 192.6         1.13 

10 35               

11 35 -90 213.15 1.4332        0.88 

13 67   183 1.4673       1.0275 

14 3 -71.2 98.9 1.4068   1.96 6.05 0.9234 

16 23 -63.6 146.6 1.4185 251   5.25 0.8898 

16 35 -63.6 146.6 1.4185 251   5.25 0.8898 

19 8 13.56 142 1.4224 2.022     1.0511 

19 51 13.56 142 1.4224 2.022     1.0511 

20 7 -83.51 77.2 1.3911   3.92 33 0.8007 

20 10 -83.51 77.2 1.3911   3.92 33 0.8007 

20 12 -83.51 77.2 1.3911   3.92 33 0.8007 

20 12 -83.51 77.2 1.3911   3.92 33 0.8007 

20 14 -83.51 77.2 1.3911   3.92 33 0.8007 

20 15 -83.51 77.2 1.3911   3.92 33 0.8007 

20 17 -83.51 77.2 1.3911   3.92 33 0.8007 

20 18 -83.51 77.2 1.3911   3.92 33 0.8007 

20 19 -83.51 77.2 1.3911   3.92 33 0.8007 

20 21 -83.51 77.2 1.3911   3.92 33 0.8007 

20 26 -83.51 77.2 1.3911   3.92 33 0.8007 

20 28 -83.51 77.2 1.3911   3.92 33 0.8007 

20 29 -83.51 77.2 1.3911   3.92 33 0.8007 

20 31 -83.51 77.2 1.3911   3.92 33 0.8007 

20 32 -83.51 77.2 1.3911   3.92 33 0.8007 

20 36 -83.51 77.2 1.3911   3.92 33 0.8007 

20 48 -83.51 77.2 1.3911   3.92 33 0.8007 

20 49 -83.51 77.2 1.3911   3.92 33 0.8007 

20 49 -83.51 77.2 1.3911   3.92 33 0.8007 

20 51 -83.51 77.2 1.3911   3.92 33 0.8007 

20 51 -83.51 77.2 1.3911   3.92 33 0.8007 

20 51 -83.51 77.2 1.3911   3.92 33 0.8007 

20 51 -83.51 77.2 1.3911   3.92 33 0.8007 

20 54 -83.51 77.2 1.3911   3.92 33 0.8007 

20 54 -83.51 77.2 1.3911   3.92 33 0.8007 

20 54 -83.51 77.2 1.3911   3.92 33 0.8007 

20 54 -83.51 77.2 1.3911   3.92 33 0.8007 

20 56 -83.51 77.2 1.3911   3.92 33 0.8007 

20 57 -83.51 77.2 1.3911   3.92 33 0.8007 

20 60 -83.51 77.2 1.3911   3.92 33 0.8007 
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20 61 -83.51 77.2 1.3911   3.92 33 0.8007 

20 62 -83.51 77.2 1.3911   3.92 33 0.8007 

20 63 -83.51 77.2 1.3911   3.92 33 0.8007 

20 73 -83.51 77.2 1.3911   3.92 33 0.8007 

20 74 -83.51 77.2 1.3911   3.92 33 0.8007 

20 76 -83.51 77.2 1.3911   3.92 33 0.8007 

20 76 -83.51 77.2 1.3911   3.92 33 0.8007 

20 76 -83.51 77.2 1.3911   3.92 33 0.8007 

20 83 -83.51 77.2 1.3911   3.92 33 0.8007 

20 83 -83.51 77.2 1.3911   3.92 33 0.8007 

23 14               

24 82               

29 80               

30 72 66 154           

14 42 -71.2 98.9 1.4068   1.96 6.05 0.9234 

34 54 96 186 1.4349       0.9416 

35 10   189 1.448       1.042 

36 73 -1.45 182.5 1.5768 1.609     0.996 

37 51 52.56 202   0.396   52.75 0.934 

37 60 52.56 202   0.396   52.75 0.934 

37 72 52.56 202   0.396   52.75 0.934 

43 54               

43 67               

50 54 -35.8 90 1.4003 1.883 3.69   0.8001 

50 68 -35.8 90 1.4003 1.883 3.69   0.8001 

50 71 -35.8 90 1.4003 1.883 3.69   0.8001 

51 3 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 23 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 54 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 61 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 62 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 63 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 64 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 72 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

51 76 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

54 23 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 25 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 29 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 37 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 38 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 42 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 59 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 61 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 62 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 63 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 64 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 65 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 69 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 72 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 
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54 73 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 73 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 76 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

54 84 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

58 8 -16 210 1.494         

58 37 -16 210 1.494         

58 66 -16 210 1.494         

65 48 13.5 91.5         1.04 

65 77 13.5 91.5         1.04 

66 8 300           1.25 

66 73 300           1.25 

67 10 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 11 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 12 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 12 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 15 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 18 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 19 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 20 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 20 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 21 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 23 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 25 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 26 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 27 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 28 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 29 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 30 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 31 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 32 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 33 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 35 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 38 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 48 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 49 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 51 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 51 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 54 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 54 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 54 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 54 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 54 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 56 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 59 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 61 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 61 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 62 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 63 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 64 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 
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67 65 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 65 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 65 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 70 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 71 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 72 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 72 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 73 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 76 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 83 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

67 84 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

68 48 -22.36 165.4 1.5386 1.711   2.28 0.9106 

70 67               

73 9 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 12 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 14 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 20 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 21 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 33 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 44 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 51 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 51 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 54 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 54 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 54 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 57 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 72 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 72 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 75 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 76 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 76 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 83 -100.2 72.6 1.3926 1.969 1.79   0.9256 

73 84 -100.2 72.6 1.3926 1.969 1.79   0.9256 

76 50 -153.84 -13.8 1.37   1.45   0.9106 

76 51 -153.84 -13.8 1.37   1.45   0.9106 

76 75 -153.84 -13.8 1.37   1.45   0.9106 

76 78 -153.84 -13.8 1.37   1.45   0.9106 

76 83 -153.84 -13.8 1.37   1.45   0.9106 

76 83 -153.84 -13.8 1.37   1.45   0.9106 

76 84 -153.84 -13.8 1.37   1.45   0.9106 

78 20 -112 83 1.3966     3.34 0.7645 

79 73 -7 81 1.4081       0.864 

81 73               

82 24 56 82           

83 9 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 12 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 17 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 21 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 38 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 
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 83 50 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 57 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 72 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

83 74 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

84 19               

84 37               

84 69               

84 83               
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Table B2: Monomer pairs with the properties of the second monomer 

ID1 ID2 Melt Point 2 Boil Point 2 Refractive 
Index 2 

Heat 
Capacity 2 

Dipole 
Moment 2 

Dielectric 
Constant 2 Density 2 

5 12 -63.6 146.6 1.4185 251   5.25 0.8898 

5 14 -71.2 98.9 1.4068   1.96 6.05 0.9234 

5 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

7 8 85 192.6         1.13 

7 20 -83.51 77.2 1.3911   3.92 33 0.8007 

7 50 -35.8 90 1.4003 1.883 3.69   0.8001 

7 62   159.138 1.5495     9.126 0.9983 

8 49 14.68 160 1.4314 1.871 1.65   1.0153 

10 35   189 1.448       1.042 

11 35   189 1.448       1.042 

13 67 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

14 3 51             

16 23               

16 35   189 1.448       1.042 

19 8 85 192.6         1.13 

19 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

20 7 -87.8 52.3 1.4017 71.3       

20 10               

20 12 -63.6 146.6 1.4185 251   5.25 0.8898 

20 12 -63.6 146.6 1.4185 251   5.25 0.8898 

20 14 -71.2 98.9 1.4068   1.96 6.05 0.9234 

20 15 -41.5 57 1.449       1.1109 

20 17 -90 227         0.881 

20 18               

20 19 13.56 142 1.4224 2.022     1.0511 

20 21 -136 44.8 1.4157 1.635 1.94 8.2 0.9376 

20 26 51   1.5033       1.1076 

20 28 84             

20 29               

20 31 22 263.8 1.6013       1.0304 

20 32 8   1.5798     2.58 1.246 

20 36 -1.45 182.5 1.5768 1.609     0.996 

20 48               

20 49 14.68 160 1.4314 1.871 1.65   1.0153 

20 49 14.68 160 1.4314 1.871 1.65   1.0153 

20 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

20 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

20 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

20 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

20 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

20 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

20 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

20 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

20 56 -7 81.4 1.4081       0.864 

20 57   456.108 1.458         

20 60 -70 85.5 1.4402   1.4     
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20 61 -14.23 181 1.54       0.978 

20 62   159.138 1.5495     9.126 0.9983 

20 63   65 1.5449     10.5 0.98 

20 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

20 74               

20 76 -153.84 -13.8 1.37   1.45   0.9106 

20 76 -153.84 -13.8 1.37   1.45   0.9106 

20 76 -153.84 -13.8 1.37   1.45   0.9106 

20 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

20 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

23 14 -71.2 98.9 1.4068   1.96 6.05 0.9234 

24 82 56 82           

29 80 -92 94 1.4026 2.316 1.25   0.7888 

30 72               

14 42 -12 250 1.4515       1.079 

34 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

35 10               

36 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

37 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

37 60 -70 85.5 1.4402   1.4     

37 72               

43 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

43 67 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

50 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

50 68 -22.36 165.4 1.5386 1.711   2.28 0.9106 

50 71 -34.1 172.8 1.542       0.9173 

51 3 51             

51 23               

51 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

51 61 -14.23 181 1.54       0.978 

51 62   159.138 1.5495     9.126 0.9983 

51 63   65 1.5449     10.5 0.98 

51 64               

51 72               

51 76 -153.84 -13.8 1.37   1.45   0.9106 

54 23               

54 25               

54 29               

54 37 52.56 202   0.396   52.75 0.934 

54 38 94             

54 42 -12 250 1.4515       1.079 

54 59 -45.1 143 1.547   0.656 2.98 0.93 

54 61 -14.23 181 1.54       0.978 

54 62   159.138 1.5495     9.126 0.9983 

54 63   65 1.5449     10.5 0.98 

54 64               

54 65 13.5 91.5         1.04 

54 69 8   1.5798     2.58 1.246 

54 72               
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54 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

54 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

54 76 -153.84 -13.8 1.37   1.45   0.9106 

54 84               

58 8 85 192.6         1.13 

58 37 52.56 202   0.396   52.75 0.934 

58 66 300           1.25 

65 48               

65 77 -115.8 36 1.3767   1.26   0.7589 

66 8 85 192.6         1.13 

66 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

67 10               

67 11 -90 213.15 1.4332        0.88 

67 12 -63.6 146.6 1.4185 251   5.25 0.8898 

67 12 -63.6 146.6 1.4185 251   5.25 0.8898 

67 15 -41.5 57 1.449       1.1109 

67 18               

67 19 13.56 142 1.4224 2.022     1.0511 

67 20 -83.51 77.2 1.3911   3.92 33 0.8007 

67 20 -83.51 77.2 1.3911   3.92 33 0.8007 

67 21 -136 44.8 1.4157 1.635 1.94 8.2 0.9376 

67 23               

67 25               

67 26 51   1.5033       1.1076 

67 27               

67 28 84             

67 29               

67 30 66 154           

67 31 22 263.8 1.6013       1.0304 

67 32 8   1.5798     2.58 1.246 

67 33 -49.8 47.64 1.4454 1.205   2.14 1.2565 

67 35   189 1.448       1.042 

67 38 94             

67 48               

67 49 14.68 160 1.4314 1.871 1.65   1.0153 

67 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

67 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

67 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

67 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

67 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

67 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

67 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

67 56 -7 81.4 1.4081       0.864 

67 59 -45.1 143 1.547   0.656 2.98 0.93 

67 61 -14.23 181 1.54       0.978 

67 61 -14.23 181 1.54       0.978 

67 62   159.138 1.5495     9.126 0.9983 

67 63   65 1.5449     10.5 0.98 

67 64               
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67 65 13.5 91.5         1.04 

67 65 13.5 91.5         1.04 

67 65 13.5 91.5         1.04 

67 70               

67 71 -34.1 172.8 1.542       0.9173 

67 72               

67 72               

67 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

67 76 -153.84 -13.8 1.37   1.45   0.9106 

67 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

67 84               

68 48               

70 67 -30.65 145.3 1.544 1.747 0.125 2.4737 0.9016 

73 9               

73 12 -63.6 146.6 1.4185 251   5.25 0.8898 

73 14 -71.2 98.9 1.4068   1.96 6.05 0.9234 

73 20 -83.51 77.2 1.3911   3.92 33 0.8007 

73 21 -136 44.8 1.4157 1.635 1.94 8.2 0.9376 

73 33 -49.8 47.64 1.4454 1.205   2.14 1.2565 

73 44 -75 160 1.4242       0.8936 

73 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

73 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

73 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

73 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

73 54 -47.55 100.6 1.4142 1.91 1.67 6.32 0.9377 

73 57   456.108 1.458         

73 72               

73 72               

73 75 -139.5 16 1.438 1.007 1.42   1.4933 

73 76 -153.84 -13.8 1.37   1.45   0.9106 

73 76 -153.84 -13.8 1.37   1.45   0.9106 

73 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

73 84               

76 50 -35.8 90 1.4003 1.883 3.69   0.8001 

76 51 -75.6 80.1 1.404 1.845 1.77 7.03 0.9535 

76 75 -139.5 16 1.438 1.007 1.42   1.4933 

76 78 -112 83 1.3966     3.34 0.7645 

76 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

76 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 

76 84               

78 20 -83.51 77.2 1.3911   3.92 33 0.8007 

79 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

81 73 -100.2 72.6 1.3926 1.969 1.79   0.9256 

82 24               

83 9               

83 12 -63.6 146.6 1.4185 251   5.25 0.8898 

83 17 -90 227         0.881 

83 21 -136 44.8 1.4157 1.635 1.94 8.2 0.9376 

83 38 94             
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83 50 -35.8 90 1.4003 1.883 3.69   0.8001 

83 57   456.108 1.458         

83 72               

83 74               

84 19 13.56 142 1.4224 2.022     1.0511 

84 37 52.56 202   0.396   52.75 0.934 

84 69 8   1.5798     2.58 1.246 

84 83 -122.5 31.6 1.4249 1.148 1.34 4.6 1.213 
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2. Code	

import sklearn 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_absolute_error 
from sklearn.tree import export_graphviz 
 
import pandas as pd 
 
import numpy as np 
from chefboost import Chefboost 
 
 
df = pd.read_csv('Reactivityratios.csv') 
df = pd.get_dummies(df, columns=['SMILES', 'SMILES2']) 
df.head() 
 
 
labels = df['r1'] 
features= df.drop('r1', axis = 1) 
feature_list = list(features.columns) 
features = np.nan_to_num(features.astype(np.float32)) 
 
 
 
train_features, test_features, train_labels, test_labels = 
train_test_split(features, labels, test_size = 0.1, random_state = 42, shuffle = 
True) 
 
 
 
rf = RandomForestRegressor(n_estimators = 75000, criterion = 'mse', random_state 
= 42, max_depth = None) 
 
rf.fit(train_features, train_labels); 
 
 
 
estimator = rf.estimators_[5] 
export_graphviz(estimator, out_file='tree3.dot',  
                feature_names = feature_list, 
                class_names = labels, 
                rounded = True, proportion = False,  
                precision = 2, filled = True) 
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predictions = rf.predict(test_features) 
# Calculate the absolute errors 
errors = abs(predictions - test_labels) 
# Print out the mean absolute error (mae) 
print(errors) 
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