
Computing Divergences between
High Dimensional Graphical Models

Loong Kuan Lee

Doctor of Philosophy

A Thesis Submitted for the Doctor of Philosophy Degree at

Monash University in 2023

Faculty of Information Technology

http://lklee.dev

Copyright notice ©Loong Kuan Lee (2023).

http://lklee.dev

iii

Abstract

When data are sampled from a probability distribution, and this distribution changes,

models learned from the original distribution may degrade in performance when

applied to the distribution after the change. This phenomenon is known as concept

drift. The development of machine learning methods to adapt to these changes

is an active field of research. Consequently, there has also been work done in

developing experimental frameworks, namely recovery analysis, to assess the ability

of adaptation methods to maintain the quality and generalisation performance of

the model in the face of concept drift.

However, the existing works in adaptation assessment do not control for the mag-

nitude of distributional change, or in other words, the divergence between the

distribution before and after concept drift. Failure to account for the magnitude of

drift in different experiments may be a serious confounding factor that undermines

the utility of conclusions that are drawn. To tackle this issue, we will propose

methods to compute the divergence between discrete chordal Markov random

fields, i.e. decomposable models. These can then be used to create, potentially high

dimensional, diescrete distributions that are of a specified amount of divergence

away from each other. These differing discrete distributions with divergences of

known magnitude can then be used in experimental analyses to understand how

alternative methods are affected by drift magnitude.

Specifically, we first show that computing any 𝛼𝛽-divergence between the joint

distribution of 2 decomposable models can be reduced to a problem of variable

elimination over factors obtained from the divergence we wish to compute. There-

fore, the complexity of this computation will be exponential with respect to the

size of the largest maximal clique in the decomposable models. We then extend this

work to computing the divergence between marginal distributions and conditional

distributions obtained from 2 decomposable models. The resulting complexity of

these extensions are exponential with respect to the size of the largest Markov

blanket over the variables not in the marginal distribution, and the “target” variables

in the conditional distribution respectively.

Finally, we propose a method to take an existing decomposable model and modify

its parameters to create a new model of a certain “distance” away from the original

model. This initial decomposable model can either be learnt from some dataset, or

be synthetically generated. Therefore, we will also briefly discuss how to randomly

generate synthetic decomposable models with a limit on the model’s treewidth.

v

Declaration of Authorship
This thesis is an original work of my research and contains no material which has

been accepted for the award of any other degree or diploma at any university or

equivalent institution and that, to the best of my knowledge and belief, this thesis

contains no material previously published or written by another person, except

where due reference is made in the text of the thesis.

Signature:

Print Name:

Date:

vii

Acknowledgements

I would like to thank my superiors Geoff Webb, Daniel Schmidt, and Nico
Piatkowski for their guidance and advice throughout my PhD, as well as
François Petitjean for being my co-supervisor during the start of my PhD.

This research was supported by an Australian Government Research
Training Program (RTP) Scholarship.

ix

Contents

Copyright notice ii

Abstract iii

Declaration of Authorship v

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Figures xvii

List of Figures xix

1 Introduction 1
1.1 Motivation: Concept Drift . 1

1.2 Problem: Computing Divergence between High-Dimensional Dis-

tributions . 4

1.3 Contributions . 5

1.4 Thesis Structure & Organisation 6

2 Background 7
2.1 Graph Theoric Background and Notation 8

2.1.1 Directed Graphs (DGs) . 9

2.1.1.1 Directed Acyclic Graphs (DAGs) 9

2.1.2 Undirected Graphs (UGs) 9

2.1.2.1 Trees . 9

2.1.3 Chordal Graphs . 10

2.1.3.1 Junction Trees/Forest 10

2.1.3.2 Chordal Graphs as Intersections of Subtrees . . 11

2.2 Graphical Models . 12

2.2.1 Bayesian Network . 13

2.2.2 Markov Network . 15

2.2.3 Decomposable Models and the Conversion between Bayesian

Networks and Markov Networks 17

2.2.4 Junction Tree Algorithm 19

x

2.3 Entropy . 20

2.3.1 Conditional Entropy . 20

2.4 Divergence . 21

2.4.1 Conditional Divergence 22

2.5 Concept Drift . 23

2.6 Datasets with Concept Drift . 25

2.6.1 Unknown Drift Magnitudes 25

2.6.1.1 Synthetic Drift Generators 25

2.6.1.2 Manipulating Real-World Datasets 26

2.6.2 Known Drift Magnitude 27

2.6.2.1 Naive Bayes Model 27

2.6.2.2 Controlling Change Magnitude (CCM) 28

I Computing Divergences between Graphical Models 29

3 Computing Divergences between Joint Distributions 31
3.1  between Joint Distributions of Decomposable Models 33

3.2 Multi-Graph Aggregated Sum-Products (MGASPs) 41

3.2.1  is a Connected Graph 44

3.2.2  is a Disconnected Graph 46

3.3 Using MGASP to Compute (ℙ, ℚ) 48

3.4 Complexity of Computing 𝛼𝛽-Divergence between Joint Distribu-

tions of Decomposable Models . 50

3.5 Runtime Comparison with Existing Method 51

3.6 Case Study: Kullback-Leibler (KL) Divergence in Model Selection 53

3.7 Conclusion . 56

4 Computing Divergence between Marginal Distributions 57
4.1 Decomposing Marginal Distributions of a Decomposable Model . 58

4.2 Reframing the Problem . 63

4.3 Computing 𝛼𝛽-Divergence . 67

4.3.1 Computing Marginal 𝛼𝛽-Divergence when 𝛼, 𝛽 = 0 68

4.3.2 Computing  between Marginal Distributions of Directed

Graphs . 69

4.4 Complexity and Edge Cases . 70

4.5 Conclusion . 73

5 Computing Divergences between the Conditional Distributions of 2
Decomposable Models 75
5.1 Decomposing Conditional Distributions of DMs using  -Partitions 77

5.2 Computing Conditional 𝛼𝛽-Divergence 80

5.2.1 Computing the Conditional Functional 𝒀 ∣𝒁 82

5.2.2 Computing the Conditional 𝛼𝛽-Divergence when 𝛼, 𝛽 = 0 86

5.3 Complexity . 89

xi

5.4 Conclusion . 90

II Applications of Computing Divergences between Graph-
ical Models 93

6 Generating High-Dimensional Data with Concept Drift of Known
Magnitudes 95
6.1 Entropy and its Relation to Dataset Difficulty 96

6.1.1 Permuting Discrete Distributions and Maintaining Entropy 98

6.1.1.1 Joint . 99

6.1.1.2 Conditional . 102

6.1.2 Distribution with Maximum Divergence 103

6.2 Drifting Parameters of a Decomposable Model 107

6.3 Generating Random Decomposable Models with a Limit on Treewidth 110

6.3.1 Generating Random Chordal Graphs 110

6.3.2 Generating Random Parameters for Decomposable Models 113

6.4 Conclusion . 114

7 Application to Estimating Joint Divergences between Sample Data 117
7.1 Previous Work in Divergence Estimation 117

7.2 Divergence Estimation using Decomposable Model: Decomposable

Model Divergence Estimator (DMDE) 119

7.3 Datasets for Experiments . 120

7.4 Empirical Comparison with Previous Work 122

7.5 Characteristics of Our Method . 125

7.6 Conclusion . 130

8 Closing Discussion and Conclusions 133
8.1 Summary of Technical Contributions 133

8.2 Code Implemented . 135

8.3 Future Work . 135

Nomenclature 139

Glossary 141

Glossary 141

Acronyms 143

Bibliography 145

xiii

List of Figures

1.1 Spectrum of how “synthetic” or “real” datsets containing concept

drift are, and where the method we wish to develop lies in this

spectrum. 3

2.1 Difference between a non-minimal and minimal triangultaion. . . 10

2.2 Illustration of a subtree graph. 11

2.3 Example of a directed acyclic graph (DAG). 14

2.4 Relationship between probabilistic models and their graphical rep-

resentations. Figure adapted from (Pearl, 1988, Figure 3.12). 18

2.5 Illustrations of the Junction Tree Algorithm. 19

3.1 Junction tree algorithm on computation graph . 44

3.2 Differences in SP between a connected and disconnected . . . . 46

4.1 A clique tree and possible -partitions for the variables highlighted

in red. 60

4.2 (a) An  -partition,  , and (b) the  -graph of  , Γ(𝒁,). . . 64

4.3 A clique tree and possible -partitions for the variables highlighted

in red. 71

4.4 A clique tree and possible -partitions for the variables highlighted

in red. 72

5.1 (a) an example of a chordal graph and (b) its junction tree. 75

7.1 Overview of proposed approach for divergence estimation. 118

7.2 Comparison of decomposable model divergence estimator (DMDE)

with methods in Table 7.1. 123

7.3 Scalability of DMDE at estimating the Hellinger distance. 126

7.4 Convergence of DMDE at estimating Hellinger distance. 128

xv

List of Tables

3.1 Runtimes for the mcgo and multi-graph aggregated sum-product

(MGASP) on computing the KL divergence between 2 Bayesian

networks (BNs). Faster times are in bold. 52

3.2 Divergence between the candidate models and a Bayesian network

estimated from 20 randomly sampled datasets of size 10000. Lower

time in bold. 55

3.3 Divergence between the candidate models and the original Bayesian

network sachs. Lower time in bold. 55

6.1 2 quantum distributions, 𝑃 and 𝑃 , with a “quantum” of 1/8. 𝑄̄ and

𝑄̃ are the distributions with maximum KL divergence from them

based on Bonnici (2020). 96

6.2 Example of conditional probability table in a clique tree/forest. . . 114

7.1 Divergence estimation methods that have existing implementations

that we will compare against. 122

xvii

List of Definitions

1 Definition (Junction forest) . 11

2 Definition (Subtree graph) . 11

3 Definition (Mutual Independence) 12

4 Definition (Conditional Independence) 13

5 Definition (I-map) . 13

6 Definition (d-separation (Pearl et al. 1989)) 14

7 Definition (Markov properties) . 15

8 Definition (Moral graph 𝑀[⃗] (Cowell et al. 1999, Section 3.2.1)) . 18

9 Definition (Treewitdh of a graph , 𝜔()) 20

10 Definition (Divergence) . 21

11 Definition (𝛼𝛽-divergence) . 22

12 Definition (General conditional divergence) 23

13 Definition (Functional ) . 31

11 Definition (𝛼𝛽-divergence) . 33

14 Definition (strictly larger, clique mapping 𝛼) 42

15 Definition (computation graph) 42

16 Definition (𝐴, cliques assigned by 𝛼 to ) 43

17 Definition (𝜏, clique to junction tree mapping) 46

18 Definition ( -partitions) . 59

19 Definition (Marginal  -probability, 𝜑) 60

20 Definition ( -graphs, Γ(𝐴, ,𝒀)) 63

21 Definition (Mapping from 𝝋( ,𝒀) to (Γ(𝒁, ,𝒀)), 𝜇) 65

22 Definition (Inverse of 𝜇, 𝑀) . 65

23 Definition (-partitions) . 79

xix

List of Theorems

1 Corollary (Vertex deletion from chordal graph) 10

1 Theorem (Junction trees (Blair & Peyton, 1993, Theorem 3.1)) . . 11

2 Theorem (Subtree and chordal graphs, Gavril (1974, Theorem 3)) . 12

3 Theorem (Factorising ℙ (Koller & Friedman, 2009, Theorem 3.1)) . 14

4 Theorem (Equivalence of Markov properties (Lauritzen, 1996)) . . 16

5 Theorem (Hammersley & Clifford (1971)) 16

6 Theorem (Decomposing joint probability (Pearl, 1988, Theorem 8)) 19

7 Theorem (Expressing the 𝛼𝛽-divergence in terms of 3 functionals) 34

8 Theorem (Complexity of functional 𝑓1) 35

1 Proposition (𝑓2 can be expressed in terms of ) 37

2 Proposition (𝑓3 can be expressed in terms of ) 39

3 Proposition (SP is a marginalisation of SP𝛼(,)) 43

9 Theorem (SP can be obtained from junction tree algorithm (JTA)) 45

10 Theorem (SP for disconnected ) 46

11 Theorem (Mapping SP to maximal cliques of ) 48

4 Proposition (Worst case complexity of obtaining 𝜑) 61

5 Proposition (The  -graph created by Γ is a chordal graph) 64

6 Proposition (Mapping marginal factors to the marginal  -graph) 66

7 Proposition (Markov blanket property of  -partitions) 77

8 Proposition (Decomposition of the conditional distribution in a

decomposable model (DM)) . 79

9 Proposition (Conditional functional 𝒀 ∣𝒁) 81

12 Theorem (Merging factors that share the same supergraph) 83

10 Proposition (Permutations maintain entropy) 98

13 Theorem (Permuting DMs while maintaining joint entropy) . . . 100

14 Theorem (Permutation of with maximum 𝛼𝛽-divergence) 103

15 Theorem (Helly’s theorem (Helly, 1923; Horn, 1972)) 113

16 Theorem (Helly’s Theorem for trees (Horn, 1972)) 113

2 Corollary (Treewidth limit to chordal graph generation) 113

1

Chapter 1

Introduction

Computing the divergence between two probability distributions is an operation

that has many applications in the fields of machine learning and statistics. For

instance, it can be used to estimate the divergence between the underlying distri-

butions of two data samples which is useful in the detection of anomalous regions

in spatio-temporal data (Barz et al. 2019) and in various tasks related to the re-

trieval, classification, and visualisation of time series data (Chen et al. 2020). More

importantly, the ability to compute the divergence between high-dimensional dis-

tributions is useful in the analysis of and adaptation to concept drift (Schlimmer &

Granger, 1986; Sebastião & Gama, 2007; Sebastião et al. 2010; Ditzler & Robi Polikar,

2011; Balzanella et al. 2013; Webb et al. 2018; Goldenberg & Webb, 2019; Baidari &

Honnikoll, 2021).

Throughout this thesis, we focus on discrete high-dimensional distributions. These

distributions are high-dimensional in that their direct representations, i.e. as a

probability vector over all its possible outcomes, are too large to be stored in

memory. Furthermore, any computation on these distributions that has a complexity

linear to the length of the probability vector, such as the divergence between two

distributions, would be intractable as well.

Therefore, this thesis seeks to develop methods for analysing concept drift in

high dimensions and for producing synthetic data useful in the assessment of

methods that can adapt to concept drift. This work will endeavor to show how

the development of these methods can be achieved with the ability to compute

divergences between high-dimensional distributions. Therefore, this thesis will

also seek to develop tractable methods to compute the divergence between two

high-dimensional distributions.

1.1 Motivation: Concept Drift

Most machine learning systems assume that the distribution of the training data

is representative of the distribution of future data on which we might want to

2 Chapter 1. Introduction

carry out some inference task. However, this assumption is not always true. In the

real world, the distribution we wish to model might change with respect to some

attribute, such as geographic locations, differing populations, and, more commonly,

time. These changes can result in the degradation of the performance of a machine

learning system. In general, we call distributional changes over some general factor

concept shift (Webb et al. 2018). On the other hand, due to how widespread of a

problem distributional changes over time are, this type distributional change goes

by different names in different fields, such as change points (Carrera & Boracchi,

2018) and concept drift (Schlimmer & Granger, 1986). For ease of exposition, in this

thesis we will use concept drift to refer to any type of distribution change, whether

it be over time or over some other factor. Furthermore, we only focus on discrete

distributions throughout this thesis.

Concept drift can be characterised using various qualitative attributes and quanti-

tative measures (Webb et al. 2016). One quantitative measure is the magnitude of

change in the distribution due to the occurrence of concept drift. This quantitative

measure is also known as the magnitude of concept drift, or drift magnitude (Webb

et al. 2016). Specifically, we can use the divergence between the distribution before

and after drift as the measure of the magnitude of change in the distribution.

Furthermore, over the past decade, there has been an increase in the application

of machine learning systems on high-dimensional data streams. There has been a

significant amount of recent work into detecting and adapting to high-dimensional

concept drift (Zimek et al. 2012; David Destephen Lavaire et al. 2015; Alippi et al.

2016; Sethi & Kantardzic, 2017; Boracchi et al. 2018; W. Zhang et al. 2019; Carrera,

2020). In order to test these drift detection and adaptation methods, we require

datasets containing concept drift. There are 3 types of datasets commonly used in

testing drift detection techniques:

• Real world datasets that are suspected to have concept drift (Harries, 1999;

Gonçalves Jr & Barros, 2013). However, one issue is that there are relatively

few datasets for which we definitively know that both concept drift has

occurred and the characteristics of these drifts.

• Synthetic datasets with concept drift (Widmer & Kubat, 1996; Street & Kim,

2001; Minku et al. 2010). Although we are able to control the occurrences and

some characteristics of concept drift in synthetic datasets, it is arguable that

these datasets might not have inter-variable relationships that are realistic.

Furthermore, while it might be possible to increase or decrease the magnitude

of drift between each generated dataset, it is not possible to control by how

much the drift magnitude differs between these datasets.

• Modification of real world datasets to inject synthetic concept drift (Bifet

et al. 2009a; Bifet et al. 2009b; Klinkenberg, 2001; Scholz & Klinkenberg,

1.1. Motivation: Concept Drift 3

synthetic

datasets

the gap

we wish

to fill

modifying

real world

datasets

real world

datasets

Figure 1.1: Spectrum of how “synthetic” or “real” datsets containing

concept drift are, and where the method we wish to develop lies in

this spectrum.

2005; Robert Polikar et al. 2001; Žliobaite, 2010; Carrera & Boracchi, 2018).

This represents a hybrid approach to using real world data and synthetic

datasets. This approach has been used before to carry out a study on how

well various drift adaptation techniques recover from drift, also known as

recovery analysis (Shaker & Hüllermeier, 2015). Modifying datasets to achieve

a specified magnitude of concept drift requires a method to compute the

divergence between the underlying distribution of the data before and after

drift. However, since the actual underlying distributions of the dataset being

modified are unknown, only an estimation of the divergence between these

underlying distributions can be obtained, which is sub-optimal when creating

datasets meant for assessing concept drift adaptation techniques.

When carrying out experimental analysis like recovery analysis (Shaker & Hüller-

meier, 2015) on different concept drift adaptation techniques, the magnitude of drift

is an important confounding factor that can have varying effects depending on the

adaptation technique. For instance, a reasonable hypothesis to have is that methods

that try to detect concept drift explicitly might adapt quicker to high magnitudes of

concept drift compared to methods that adapt to drift passively via some forgetting

mechanism. Therefore, it will be insightful to carry out experiments like recovery

analysis whilst controlling for the magnitude of drift present in the datasets used

for the analysis.

Consequently, the main motivating factor in this thesis is to develop a method

that, in exchange for being more on the synthetic side of the spectrum compared

to methods that modify the dataset directly, is able to generate high-dimensional

datasets that contain controlled magnitudes of concept drift. However, in order to

be able to even approach this problem in the first place, we require a method to

compute the divergence between high-dimensional discrete distributions.

4 Chapter 1. Introduction

1.2 Problem: Computing Divergence between
High-Dimensional Distributions

The most straightforward approach to computing the divergence between 2 dis-

crete distributions is to make minimal assumptions regarding the structure of and

independencies within these distributions. Using this approach, the distributions

are represented as probability vectors over the support of these distributions and

the divergence between these probability vectors is computed directly (Sebastião

& Gama, 2007; Sebastião et al. 2010; Webb et al. 2018). The problem with this ap-

proach is that, for a distribution with 𝑛 variables, each taking 𝑘 values, the support

size of this distribution in the worst case, when no varlable-value combination has

a probability of 0, is 𝑘𝑛, i.e. exponential with respect to the number of variables

𝑛. Therefore, both storing, and computing the divergence between, these joint

distributions are intractable as 𝑛 increases. Of course, when these distributions

are estimated using the empirical distribution from a finite set of samples, the

support size of these estimated distributions will only grow linearly with respect

to the size of the sample set (Webb et al. 2018). However, relying on this to reduce

the complexity potentially prevents the use of prior distributions or smoothing

techniques when estimating the distributions, which can be useful when we have

a limited amount of samples. This is because using a prior distribution or some

smoothing technique can cause the support of the estimation distributions to scale

exponentially with respect to the number of variables, (2𝑛), instead of just linearly

with respect to just sample size.

It is possible to approximate, instead of computing exactly, the divergence between

two high-dimensional distributions, whose support size is exponential with respect

to the number of variables. For instance, we can find an embedding of these high-

dimensional distributions into the simplex of a lower dimension that preserves the

structure between these distributions given some divergence (Bhattacharya et al.

2009; Abdullah et al. 2016; Goldenberg & Webb, 2020). However, the problem then

shifts towards obtaining and storing these high-dimensional distributions while

avoiding storage complexity exponential with respect to the number of variables.

Therefore, we will approach this problem by assuming that the structure and

independencies in these distributions make them amendable for more compact

representations. As we will discuss in Section 2.2, there is a rich body of litera-

ture in the field of graphical models for graphically representing independence

assumptions and using these independencies to obtain a compact representation of

a distribution with these independencies. In fact, work exists on efficiently com-

puting the Kullback-Leibler divergence between discrete distributions represented

by Bayesian networks (Moral et al. 2021). It is also possible to tractably compute

the Kullback-Leibler divergence between a general Markov network and a Markov

network where inference tasks are tractable (Koller & Friedman, 2009).

1.3. Contributions 5

However, for the purposes of computing the magnitude of concept drift, we might

want to use divergences other than the Kullback-Leibler divergence. One reason is

that the Kullback-Leibler divergence is not bounded and therefore it can be difficult

to compare the Kullback-Leibler divergence across contexts. Furthermore, due to the

KL divergence being undefined when ℙ(𝒙) > 0 and ℚ(𝒙) = 0, there’s a possibility

of it being undefined in situations where any attribute-value combination, 𝒙, has

zero probability. This situation is likely to occur in sparse data and also when some

attribute-value combinations truly do have zero probability. Furthermore, the KL

divergence is almost surely to be undefined when the probability of some 𝒙 goes

from having true zero probability, to having a non-zero probability, and vice versa.

For instance, the probability of a man being diagnosed as pregnant might be truly

zero in the past, but with transgender acceptance and social transitioning being

more widespread, the probability of a man being diagnosed as pregnant is currently

non-zero. For an example of the probability of some 𝒙 going from non-zero to true

zero, take the probability of finding a certain species of animal in some habitat

before and after this species goes extinct.

1.3 Contributions

Motivated by the problems above, the main contributions of this thesis are as

follows:

1. Developing a method to compute the 𝛼𝛽-divergence between the joint distri-

butions modelled by 2 high-dimensional probabilistic graphical models.

Specifically, we develop a general method to compute functionals between

the joint distributions of 2 decomposable models which we then apply to the

problem of computing the 𝛼𝛽-divergence between these models.

2. Extending the work in computing functionals between joint distributions of

decomposable models in order to compute

2.1. functionals between marginal distributions over some subset of the

variables in the decomposable models, and

2.2. functionals between conditional distributions, where some subset of

the variables in the decomposable model are the “target” variables, with

the other variables being the condition.

3. Developing a method to generate high-dimensional data containing known

magnitudes of concept drift by modifying a given decomposable model.

In the process we will develop methods to:

6 Chapter 1. Introduction

3.1. modify the parameters of a decomposable model such that the resulting

model is a specific magnitude of 𝛼𝛽-divergence away from the original

model, and to

3.2. generate random decomposable models with a given treewidth

1.4 Thesis Structure & Organisation

We will begin this thesis in Chapter 2 with an overview of the background material

and notation used throughout this thesis. Past Chapter 2, all material will be new

unless stated otherwise. We begin discussing the contributions of this thesis with

the core contribution of computing the joint divergence between high-dimensional

decomposable models in Chapter 3. We then extend this contribution in Chapters 4

and 5 in order to compute the divergence between marignal and conditional distri-

butions encoded in the decomposable models. Once the contributions related to

divergence computation are detailed, we then apply these divergence computation

techniques on the problem of modifying the parameters of a decomposable model

in order to achieve a certain amount of conditional or joint divergence away from

the original model in Chapter 6. We then end the contribution portion of the thesis

with Chapter 7, a chapter on using the methods we have developed throughout this

thesis to both create and test a method to estimate the divergence between the un-

derlying distribution of two samples. Lastly, we conclude the thesis with Chapter 8,

containing a summary of the entire thesis, some closing thoughts, conclusions, and

future work that can be done, either thanks to the methods developed in this thesis,

or to extend on the work presented in the thesis.

7

Chapter 2

Background

In this chapter, we will introduce key definitions and background work, upon

which, this thesis builds. But first of all, let us define some basic notation and

conventions that we will use throughout this thesis. In this thesis we will only

consider discrete random variables (rvs) 𝑋𝑣 that take values from the state space

𝑣, i.e. Dom(𝑋𝑣) = 𝑣. Here 𝑣 represents the label/identifier given to the rv 𝑋𝑣.

Now assume we have a set of labels 𝐴 with each label identifying a unique rv

𝑿 = (𝑋𝑣 ∶ 𝑣 ∈ 𝐴). For a subset of 𝐴, 𝐵 ⊆ 𝐴, we let 𝐵 = ⨂𝑣∈𝐵 𝑣 be the Cartesian

product of the state spaces of each rv in 𝑿𝐵. Then 𝒙𝐵 = (𝑥𝑣 ∶ 𝑣 ∈ 𝐵) are the

elements of 𝐵 with 𝑿𝐵 = (𝑿𝑣 ∶ 𝑣 ∈ 𝐵) being the rvs associated with the labels in 𝐵.

Furthermore, we allow access to the labels of the rvs using the notation 𝐴𝑿𝐵 = 𝐵.

Additionally, through a slight abuse of notation, we also allow set operations

between subsets of the rvs 𝑿 and subsets of the rv labels 𝐴. These set operations,

such as 𝑿 ⧵ 𝐵 and 𝑿 ∩ 𝐵, are equivalent to the set operations between the labels

associated with the subset of 𝑿 and the subset of the labels. For example 𝑿 ⧵ 𝐵 =
𝐴 ⧵ 𝐵 and so on. Furthermore, we shall also the define the general shorthand,

where for some set 𝐶 and 𝐷, 𝐶𝐷 = 𝐷𝐶 = 𝐶 ∩ 𝐷. This implies that for some 𝒀 ⊂ 𝑿 ,

𝑿𝒀 = 𝒀𝑿 = 𝑿 ∩ 𝒀 = 𝒀 .

Let 𝑃 be a discrete probability distribution over the rvs 𝑿 . Then for any subset

of 𝑿 , 𝒀 ⊆ 𝑿 , 𝑃𝒀 denotes the marginal distribution of 𝑃 over 𝒀 . Furthermore, for

some subset of the rv labels 𝐴, 𝐵 ⊆ 𝐴, 𝑃𝐵 denotes the marginal distributon over the

rvs associated with the labels in 𝐵, i.e. 𝑃𝐵 = 𝑃𝑿𝐵 . When the probability over many

elements in  is zero, it is often convenient to think about the distribution in terms

of just 𝒙 ∈  with a non-zero probability, 𝑃(𝒙) > 0. We call this set of values from

 , 𝑆 ⊆  , the support of 𝑃 .

When dealing with conditional distributions of 𝒀 given 𝒁 , 𝑃𝒀 ∣𝒁 , it is sometimes

more convenient to use a representation of the conditional distribution without

the need of subscripts, 𝑃𝒀 ∣𝒁 = 𝑃(𝒀 ∣ 𝒁). Here the use of rvs 𝒀 and 𝒁 as “arguments”

to 𝑃 implicitly asserts that 𝑃 is a functional that takes values from the domain of 𝒀
and 𝒁 ,  and  respectively, which are the same inputs 𝑃𝒀 ∣𝒁 takes. Similarly, we

8 Chapter 2. Background

1
When dealing with mul-

tiple graphs simultaneously,

we will use the notation 𝑖 =
(𝑉 (𝑖), 𝐸(𝑖)) = (𝑉𝑖, 𝐸𝑖) in or-

der to differentiate the ver-

tex and edge sets of different

graphs.

will sometimes express the conditional distribution, when conditioned on a specific

value 𝒛 ∈ , as 𝑃(𝒀 ∣ 𝒛), instead of the more formally correct expression of 𝑃𝒀 ∣𝒛.
Finally, when passing specific values 𝒚 ∈  and 𝒛 ∈  into 𝑃 , it is implicit that

𝑃(𝒚 ∣ 𝒛) = 𝑃𝒀 ∣𝒁(𝒚 ∣ 𝒛).

2.1 Graph Theoric Background and Notation

A graph,  = (𝑉 , 𝐸)1
, consists of 𝑛 = |𝑉 | vertices and edges (𝑢, 𝑣) ∈ 𝐸, where 𝑢 ≠ 𝑣,

i.e. we forbid self-edges in this thesis. The edges in 𝐸 can either be directed, where

(𝑢, 𝑣) ≠ (𝑣, 𝑢), forming a directed graph (DG), or undirected, where (𝑢, 𝑣) = (𝑣, 𝑢),
forming an undirected graph (UG). We will further expand on the particular notaion

and characteristics of directed and undirected graphs in Sections 2.1.1 and 2.1.2

respectively. But for now, we will discuss the notation and conventions relating to

any graph, directed or undirected, in general.

For any subset of the vertices in , 𝐴 ⊆ 𝑉 , (𝐴) denotes the induced subgraph of 
containing only the vertices in 𝐴:

(𝐴) = (𝐴, 𝐸((𝐴)))
𝐸((𝐴)) =

{
(𝑢, 𝑣) || (𝑢, 𝑣) ∈ 𝐸() ∧ 𝑢, 𝑣 ∈ 𝐴

}

Furthermore, any vertex 𝑣 is a neighbour of 𝑢 if there exists an edge 𝑒 ∈ 𝐸, such

that both vertices are in the edge 𝑒, i.e. 𝑒 = (𝑣, 𝑢) ∈ 𝐸. A path in  is a sequence of

edges in 𝐸 that joins a sequence of distinct vertices together, forming a chain of

vertices. When a sequence of edges joins a sequence of distinct vertices such that it

starts and ends at the same vertex, it forms a cycle.

A graph is connected if there exists a path from any vertex to any other vertex in

the graph. The opposite of a connected graph is a disconnected graph, which can

be viewed as comprising of multiple connected components or subgraphs.

A connected component of a graph  is a maximal set of vertices 𝐴 such that the

induced subgraph (𝐴) contains a path from every vertex in 𝐴 to every other vertex

in 𝐴. 𝐴 being a maximal set means that no other vertices in  can be added to 𝐴
while preserving this connectivity property. Therefore, the vertices of any graph

can be partitioned into set(s) of connected components, with a connected graph

only containing a single connected component.

2.1. Graph Theoric Background and Notation 9

2.1.1 Directed Graphs (DGs)

A directed graph (DG), ⃗, is a graph where its vertices are connected by directed

edges, i.e. ∀(𝑢, 𝑣) ∈ 𝐸 ∶ (𝑢, 𝑣) ≠ (𝑣, 𝑢). For any directed edge 𝑒 = (𝑢, 𝑣), we will say 𝑒
is directed from 𝑢 to 𝑣, i.e. 𝑢 → 𝑣, and that 𝑢 is the head of edge 𝑒 while 𝑣 is the tail.

As an extension to the undirected definition of paths that do not consider direc-

tionality, a directed path is a sequence of directed edges, (𝑒1, 𝑒2, …), such that the

tail of each edge 𝑒𝑖 is the head for the next edge 𝑒𝑖+1. Similarly, a directed cycle is a

directed path that starts and ends at the same vertex.

2.1.1.1 Directed Acyclic Graphs (DAGs)

When a DG does not have any directed cycles, it is also known as a directed acyclic

graph (DAG). Due to the lack of directed cycles in a DAG, for each vertex 𝑣 ∈ 𝑉 , we

can categorise its neighbours as either parents or children of the vertex depending

on whether the edge is directed from the neighbour to 𝑣 or from 𝑣 to the neighbour

respectively.

pa(𝑣, ⃗) ∶=
{
𝑢 ||| 𝑢 ∈ 𝑉 (⃗) ⧵ {𝑣} ∧ (𝑢, 𝑣) ∈ 𝐸(⃗)

}

ch(𝑣, ⃗) ∶=
{
𝑢 ||| 𝑢 ∈ 𝑉 (⃗) ⧵ {𝑣} ∧ (𝑣, 𝑢) ∈ 𝐸(⃗)

}

or in other words, pa(𝑣, ⃗) and ch(𝑣, ⃗) are the sets of parent and child vertices of

𝑣 in ⃗ respectively.

2.1.2 Undirected Graphs (UGs)

As opposed to its directed counterpart, an undirected graph (UG), , is a graph

with undirected edges, i.e. (𝑢, 𝑣) = (𝑣, 𝑢). When a subset of vertices,  ⊆ 𝑉 (),
is complete in , i.e. the vertices in  are connected to each other in , or more

formally when

∀𝑢, 𝑣 ∈  ∶ 𝑢 ≠ 𝑣 ⇒ (𝑢, 𝑣) ∈ 𝐸()

the vertices in  form a clique. When there are no other vertices in 𝑉 , 𝑣 ∈ 𝑉 ⧵ ,

that can be added to the set of vertices  to form a clique, we call  a maximal
clique. Furthermore, let () denote the set of maximal cliques in .

2.1.2.1 Trees

An UG,  = (𝑉 (), 𝐸()), that contains no cycles is also known as a tree. For any

subset of vertices 𝐴 ⊆ 𝑉 (), if the induced subgraph of  on 𝐴,  (𝐴), is connected,

10 Chapter 2. Background

2
Chordal graphs are some-

times also referred to as tri-

angulated graphs.

(a) (b) (c)

Figure 2.1: (a) a non-chordal

graph, (b) a possible triangula-

tion of this graph, (c) a minimal

triangulation of this graph.

3
The clique-intersection

property is sometimes also

known as the running-

intersection property (Koller

& Friedman, 2009).

it is also called a subtree of  . A tree  can be “rooted” by choosing an arbitary

vertex in 𝑉 () to be the “root vertex”. When a tree is rooted, each edge in 𝐸()
will have an implicit direction from the vertex closest to the root to the vertex

further from the root. As such, the neighbours of vertices in a rooted tree can also

be categorised into “parent” and “child” vertices, similar to DAGs.

2.1.3 Chordal Graphs

An UG  = (𝑉 , 𝐸) is chordal
2

if every cycle of length greater than three has a

chord, i.e. an edge that is not part of the cycle but connects two vertices of the

cycle. Furthermore, any induced subgraph of a chordal graph is also chordal (Blair

& Peyton, 1993), which implies that the removal of any vertex from a chordal graph

results in yet another chordal graph.

Corollary 1 (Vertex deletion from chordal graph) Let  be a chordal

graph and 𝑣 ∈ 𝑉 () be a vertex in . Then removing vertex 𝑣 from  results in

a new chordal graph ′
.

Proof Assume we want to remove vertex 𝑣 ∈ 𝑉 () from chordal graph ,

resulting in a new graph ′
. Then the set of vertices in ′

will be the set

𝐴 = 𝑉 () ⧵ {𝑣}. Since removing vertex 𝑣 involves removing both vertex 𝑣 and

any edges in 𝐸() that contain 𝑣, the removal of 𝑣 is equivalent to the induced

subgraph on the set of vertices 𝐴. Since we know that the induced subgraph of

a chordal graph is still chordal (Blair & Peyton, 1993), the graph ′
is chordal

as well.

Any non-chordal graph  can be converted into a chordal graph by “triangulat-

ing” it, i.e. by finding and adding a set of edges to the graph that will make it

chordal. Finding the minimal triangulation of a non-chordal graph, i.e. the minimal

number of edges to add to a non-chordal graph to make it chordal, is a NP-hard

problem (Yannakakis, 1981; Heggernes, 2006). Instead, a valid, but not necessarily

minimal, triangulation can be found with time polynomial with respect to the num-

ber of vertices 𝑛 (Mezzini & Moscarini, 2010; Berry et al. 2004; Heggernes, 2006).

See Figure 2.1 for an example of a non-chordal graph, and both a non-minimal and

minimal triangulation of it.

2.1.3.1 Junction Trees/Forest

There are ways to characterise chordal graphs other than an UG with no cycles of

length greater than three without a chord. One way is as a tree over the maximal

cliques (), i.e. a clique tree.

2.1. Graph Theoric Background and Notation 11

𝑣1
𝑣2 𝑣3

𝑣4 𝑣5

(a)

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

(b)

𝑣1𝑣2

𝑣3

𝑣4𝑣5

(c)

Figure 2.2: (a,b) 5 subtrees over

a single tree, and (b) the inter-

section graph over the subtrees.

Theorem 1 (Junction trees (Blair & Peyton, 1993, Theorem 3.1)) A

connected graph  is chordal if and only if there exists a tree  = ((),())
for which the clique-intersection property

3
holds. Or in other words, for every

pair of distinct maximal cliques 1,2 ∈ (), the vertices in the set 1 ∩ 2

are contained in every maximal clique on the path connecting 1 and 2 in  .

Clique trees that satisfy the clique-intersection property are also known as junction

trees, with the set of edges () in the junction tree being known as the minimal

separators of chordal graph  (Cowell et al. 1999, sec. 4.3). Of course, it might

be possible for  to not be a connected graph, but a disconnected one instead. In

such cases,  won’t have a single junction tree, but multiple cliques trees for each

connected component, i.e. a junction forest.

Definition 1 (Junction forest) Let  be a disconnected chordal graph where

each connected component/subgraph is a chordal graph itself. Then the junc-

tion forest of  is the collection of junction trees  = {1, 2, …}, one for each

connected chordal subgraph in .

2.1.3.2 Chordal Graphs as Intersections of Subtrees

Another way to characterise chordal graphs is with subtree graphs.

Definition 2 (Subtree graph) Let 𝑇 be a tree with subtrees 𝐹 =
{𝑣1, … , 𝑣𝑛}, i.e. 𝑛 connected subgraphs of 𝑇 . Then the subtree graph of the

family of subtrees 𝐹 is the intersection graph, , of 𝐹 , where each subtree in 𝐹
is a vertex in  and an edge between vertex associated with subtrees 𝑣𝑖 and 𝑣𝑗
exists if 𝑣𝑖 and 𝑣𝑗 intersect in 𝑇 , 𝑣𝑖 ∩ 𝑉𝑗 ≠ ∅.

For example, in Figure 2.2a we have a tree 𝑇𝑎 with 6 vertices and 5 subtrees. The

following is a list of how the different subtrees over 𝑇𝑎 intersect with each other:

1. 𝑣1 intersects with 𝑣2

2. 𝑣1 intersects with 𝑣3

3. 𝑣2 intersects with 𝑣3

4. 𝑣3 intersects with 𝑣4

5. 𝑣3 intersects with 𝑣5

6. 𝑣4 intersects with 𝑣5

12 Chapter 2. Background

These intersections result in the subtree graph, or intersection graph, in Figure 2.2c.

In fact, different subtree families can result in the same subtree/chordal graph. For

example, both subtree families in Figures 2.2a and 2.2b results in the subtree graph

in Figure 2.2c.

More importantly, we can observe that the subtree graph in Figure 2.2c is also a

chordal graph. This is not a coincidence as this is true for any subtree graph.

Theorem 2 (Subtree and chordal graphs, Gavril (1974, Theorem 3))
A graph  is a subtree graph if and only if it is a chordal graph.

2.2 Graphical Models

Consider the problem of representing the joint distribution, ℙ𝑿 , over the discrete

random variables 𝑿 = (𝑋1, … , 𝑋𝑛). Even assuming binary variables, naively rep-

resenting the probability of each possible outcome over 𝑛 binary variables will

require the use of 2𝑛 − 1 parameters. More generally, to naively represent the joint

distribution over 𝑛 variables in this manner, we require an exponential number of

parameters with respect to 𝑛, which for large values of 𝑛, is impractical (Pearl, 1988,

p. 78).

This naive method of representing the joint distribution makes no use of any addi-

tional knowledge we may have of the relationship between the random variables

in 𝑿 . However, consider the case where we do know that the variables in 𝑿 are

mutually independent.

Definition 3 (Mutual Independence) Let 𝑿 = (𝑋1, … , 𝑋𝑛) be random vari-

ables with joint probability mass function (pmf) ℙ𝑿(𝑥1, … , 𝑥𝑛) and marginal

pmfs ℙ𝑋𝑖(𝑥𝑖). Then, the variables 𝑿 are called mutually independent random

variables if, for every (𝑥1, … , 𝑥𝑛) ∈ Dom(𝑋1) × … × Dom(𝑋𝑛):

ℙ(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑖=1

ℙ𝑋𝑖(𝑥𝑖) (2.1)

From Definition 3, we know that in order to represent the joint pmf of 𝑛 mutually

independent random variables, we only need to represent the marginal distribution

over each individual random variable. Let 𝑘 be the maximum cardinality of any

random variable in 𝑿 , i.e. 𝑘 = max(|Dom(𝑋1)|, … , |Dom(𝑋𝑛)|). Then we will only

need at most 𝑘 parameters to represent each of the 𝑛 marginal pmfs and therefore

𝑛 ⋅ 𝑘 parameters to represent the joint pmf over these variables. This is a significant

reduction in the number of parameters when compared to the our initial naive

example.

2.2. Graphical Models 13

4
recall that we define a path

in a directed graph to be a se-

quence of adjacent edges, ig-

noring the directions of these

edges.

Therefore, knowledge regarding the relationships between random variables can be

used to produce more compact representations of the joint pmf over these variables.

However, as stated by Koller & Friedman (2009):

While independence is a useful property, it is not often that we en-

counter two independent events. A more common situation is when

two events are independent given additional events.

This more common situation is also known as conditional independence. The

notion of conditional independence was systematically studied in Dawid (1979),

whose notation we will use, and Dawid (1980) provided a formal treatment to the

subject.

Definition 4 (Conditional Independence) Let 𝑋 ⟂⟂ 𝑌 ∣ 𝑍 denote that ran-

dom variables 𝑋 and 𝑌 are conditionally independent given variables 𝑍 . Then

the following are equivalent for all assignments of 𝑥 ∈ Dom(𝑋), 𝑦 ∈ Dom(𝑌),
and 𝑧 ∈ Dom(𝑍) when ℙ𝑍(𝑧) > 0:

𝑋 ⟂⟂ 𝑌 ∣ 𝑍 ⇔ ℙ(𝑥, 𝑦 ∣ 𝑧) = ℙ(𝑥 ∣ 𝑧)ℙ(𝑦 ∣ 𝑧)
⇔ ℙ(𝑥 ∣ 𝑦, 𝑧) = ℙ(𝑥 ∣ 𝑧)

From Definition 4, we can immediately observe that exploiting conditional indepen-

dence allows us to reduce the complexity of representing conditional distributions,

either via factorisation into smaller conditional distributions, or by removing con-

ditional variables that are irrelevant.

It is possible to represent the notion of 𝑋 ⟂⟂ 𝑌 ∣ 𝒁 in both UGs and DAGs. Both

these graphical representations are the underlying graph structures for Markov

networks (MNs) and Bayesian networks (BNs) respectively.

Definition 5 (I-map) Let  be any graph object associated with a set of

independencies (). We say  is an I-map for a set of independencies  if

() ⊆  (Koller & Friedman, 2009).

We will provide the relevant details regarding BNs and MNs in Subsec-

tions 2.2.2 and 2.2.1 respectively. Then in Subsection 2.2.3, we will provide details

on how BNs and MNs are related to one another.

2.2.1 Bayesian Network

The graphical structure of a BN is a directed acyclic graph (DAG) as described in

Section 2.1.1.1. Such a DAG encodes conditional independencies by both its own

notion of paths
4

and with a criterion called d-separation (Pearl et al. 1989).

14 Chapter 2. Background

1

2 3

4

5

Figure 2.3: Example of a DAG.

Definition 6 (d-separation (Pearl et al. 1989)) Let 𝒗, 𝒖,

and 𝒘 be three disjoint subsets of vertices in a DAG ⃗. Then 𝒘 d-separates 𝒗
from 𝒖 if and only if there is no path from a vertex in 𝒗 to a vertex in 𝒖, along

which the following 2 conditions hold:

1. every vertex with converging arrows either is or has a descendent in 𝒘,

and

2. every other vertex in the path is outside 𝒘.

Therefore, any DAG will also implicitly provide a list of conditional independencies,

(⃗), encoded by d-separation of vertices in ⃗. For example, in Figure 2.3 the

vertices {2} and {3} are d-separated by {1}, i.e. 𝑋2 ⟂⟂ 𝑋3 ∣ 𝑋1 since:

1. the path 2 ← 1 → 3 only contains vertices in {1}

2. the path 2 → 4 ← 3 only contains vertices with converging arrows but is not

in, nor have descendents in, {1}.

However 2 and 3 are not d-separated by {1, 5} since:

1. the path 2 → 4 ← 3 only contain vertices with converging arrows and have

descendents that are in {1, 5}

Consequently, the DAG in Figure 2.3 encodes the conditional independence 𝑋2 ⟂
⟂ 𝑋3 ∣ 𝑋1, but not the conditional independence 𝑋2 ⟂⟂ 𝑋3 ∣ 𝑋1,5. These conditional

independencies in a DAG encoded by d-separation can then be used to factorise a

distribution that (⃗) is an I-map of.

Theorem 3 (Factorising ℙ (Koller & Friedman, 2009, Theorem 3.1))
Let ⃗ be a DAG over vertices 𝑉 , where each variable in 𝑿 is associated with a

vertex in 𝑣, 𝑿 = {𝑋𝑣 ∣ 𝑣 ∈ 𝑉 }. Furthermore, let ℙ be a joint distribution over

the variables 𝑿 . Then, if (⃗) is an I-map of ℙ, (⃗) ⊆ (ℙ), then ℙ factorises

acording to ⃗ as such:

ℙ𝑿(𝒙) = ∏
𝑖∈𝑉 (⃗)

ℙ(𝑋𝑖 ∣ 𝑿pa(𝑖,⃗))

where ℙ(𝑖, ⃗) is the set of parent vertices to vertex 𝑖 in ⃗.

Therefore, a BN is a pair  = (⃗, ℙ) where ℙ factorises over the DAG ⃗, and where

ℙ is specified as a set of conditional probability tables (CPTs) for each vertex in

2.2. Graphical Models 15

5
this somewhat odd notation

for the vertex and edge set of

a graph will be useful in later

chapters when we are dealing

with multiple graphs simulta-

neously.

⃗ (Koller & Friedman, 2009, Definition 3.5). For example, the DAG in Figure 2.3

allows for the following decomposition of ℙ𝑿 :

ℙ(𝒙) = ℙ(𝑥1) ⋅ ℙ(𝑥2 ∣ 𝑥1) ⋅ ℙ(𝑥3 ∣ 𝑥1) ⋅ ℙ(𝑥4 ∣ 𝑥2,3) ⋅ ℙ(𝑥5 ∣ 𝑥5)

which reduces the complexity for storing the parameters of the distribution ℙ from

being (25) to (23).

2.2.2 Markov Network

Recall from Section 2.1.2 that an undirected graph (UG),  = (𝑉 (), 𝐸())5
, consists

of 𝑛 = |𝑉 ()| vertices connected by undirected edges (𝑢, 𝑣) = (𝑣, 𝑢) ∈ 𝐸(). When a

subset of vertices,  ⊆ 𝑉 (), are fully connected, they form a clique, Furthermore,

let ̂() and () denote the set of all cliques and maximal cliques in  respectively.

Let each vertex 𝑣 ∈ 𝑉 () uniquely identify the rv 𝑋𝑣, 𝑿 = (𝑋𝑣 ∶ 𝑣 ∈ 𝑉 ()). Then we

can define 3 properties over  that each encode different types of independencies

between the variables in 𝑿 :

Definition 7 (Markov properties) Let  = (𝑉 (), 𝐸()) be an UG with as-

sociated rvs (𝑋𝑣 ∶ 𝑣 ∈ 𝑉 ()). Then we can define 3 Markov properties that

represent 3 different types of independencies encoded within the structure of

. Therefore, we will define the following Markov properties in terms of their

associated set of independencies:

𝑝 the pairwise Markov property

𝑝() = {(𝑋𝑢 ⟂⟂ 𝑋𝑣 ∣ 𝑿𝑉 ()⧵{𝑢,𝑣}) ∶ (𝑢, 𝑣) ∉ 𝐸()}

𝑙 the local Markov property

𝑙() = {(𝑋𝑣 ⟂⟂ 𝑋𝑉 ()⧵(𝑣)∪{𝑣} ∣ 𝑿(𝑣)) ∶ 𝑣 ∈ 𝑉 ()}

where (𝑣) is the neighbours of vertex 𝑣, i.e. the set of vertices that are

connected to 𝑣, (𝑣) = {𝑢 ∶ (𝑣, 𝑢) ∈ 𝐸()}

𝑔 the global Markov property

𝑔() = {𝑿𝐴 ⟂⟂ 𝑿𝐵 ∣ 𝑿𝑆 ∶ (𝐴, 𝐵, 𝑆 ⊆ 𝑉 ()) ∧ sep(𝐴; 𝐵 ∣ 𝑆)}

where sep(𝐴; 𝐵 ∣ 𝑆) denotes that the set of vertices 𝑆 separates the

vertices in 𝐴 and 𝐵 in , i.e. there is no path from the vertices in 𝐴 to the

vertices in 𝐵 that does not pass through 𝑆 in .

16 Chapter 2. Background

A pmf ℙ on 𝑉 () is said to obey a Markov property if the property’s respective

set of independencies is an I-map of the independencies in ℙ.

The local Markov property enforces that 𝑋𝑣 is independent of everything else given

the random variables of its neighbours (𝑋𝑢 ∶ 𝑢 ∈ (𝑣)). Due to this, (𝑣) is

also known as the Markov blanket of 𝑣 in graph . On the other hand, the global

Markov property is important because it gives a general criterion for deciding when

2 disjoint sets of random variables, 𝑿𝐴 and 𝑿𝐵, are conditionally independent given

another disjoint set of variables 𝑿𝑆 (Lauritzen, 1996).

More importantly, if we assume a pmf ℙ on 𝑉 () that is strictly positive, the

following theorems are relevant:

Theorem 4 (Equivalence of Markov properties (Lauritzen, 1996)) Let

𝐺 = (𝑉 , 𝐸) be an UG with associated rvs (𝑋𝑣 ∶ 𝑣 ∈ 𝑉) and ℙ be a pmf on 𝑉

that is strictly positive. Then:

𝑝() ⊆ (ℙ) ⇔ 𝑙() ⊆ (ℙ) ⇔ 𝑔() ⊆ (ℙ)

or in other words, 𝑝(), 𝑙(), or 𝑔() being an I-map for (ℙ) implies that

the other independency sets from Definition 7 are also I-maps of (ℙ).

Theorem 5 (Hammersley & Clifford (1971)) Let 𝐺 = (𝑉 , 𝐸) be an UG with

associated rvs (𝑋𝑣 ∶ 𝑣 ∈ 𝑉) and ℙ be a pmf on 𝑉 that is strictly positive. Then

the 3 Markov properties in Definition 7 are equivalent,

𝑝() ⊆ (ℙ) ⇔ 𝑙() ⊆ (ℙ) ⇔ 𝑔() ⊆ (ℙ)

and ℙ is “Markovian”, i.e. satisfies the Markov properties, if and only if it is a

Gibbs distribution of the form,

ℙ(𝑿 = 𝒙) =
1
𝑍

∏
∈()

𝜓(𝒙)

where 𝑍 is a normalisation constant, 𝑍 = ∑𝒙∈ ∏∈() 𝜓(𝒙) and 𝜓 are

positive functions over the domain of the clique, 𝜓 ∶  → ℝ+

Due to its positivity, 𝜓 can be written as an exponential

𝜓(𝒙) = exp {⟨𝜽 , 𝜙(𝒙)⟩}

where 𝜙 are sufficient statistics

𝜙 ∶  → ℝ| |

2.2. Graphical Models 17

6
Adding edges between par-

ents with a common child is

also known as “marrying the

parents”. In fact the term

“moral” stems from the no-

tion that “marrying” parents

of a common child is some-

how “moral”.

The overcomplete sufficient statistic of discrete data is a “one-hot” vector that

selects a specific weight value, e.g., 𝜓(𝒙) = exp{𝜽=𝒙 }. The full joint can be

written in the famous exponential family form

ℙ(𝑿 = 𝒙) = exp {⟨𝜽, 𝜙(𝒙)⟩ − log 𝑍)⟩}

where

𝜽 = (𝜽 ∶  ∈ )
𝜙(𝒙) = (𝜙(𝒙) ∶  ∈ )

The parameters of exponential family members can be estimated by minimising

the negative average log-likelihood

𝓁(𝜽;) = −
1
||

∑
𝒙∈

log ℙ𝜽(𝒙)

for some dataset , e.g. via first-order numeric optimisation methods.  contains

samples from 𝑿 , and it can be shown that the estimated probability mass converges

to the data generating distribution as the size of  increases (Koller & Friedman,

2009).

However, computing 𝑍 and hence performing probabilistic inference is #P-

hard (Valiant, 1979; Bulatov & Grohe, 2004). Exact inference can be carried out via

the junction tree algorithm (JTA), but requires a chordal graphical structure that

is an I-map of ℙ, i.e. a graph structure relative to which ℙ is decomposable (Pearl,

1988, p. 113).

2.2.3 Decomposable Models and the Conversion between
Bayesian Networks and Markov Networks

A decomposable model (DM), ℙ, is a MN where the underlying conditional indepen-

dence structure, , is a chordal graph, i.e. decomposable. In fact, any distribution ℙ
is decomposable relative to a chordal graph  as long as the conditional indepen-

dencies in  is an I-map of ℙ (Pearl, 1988, p. 115). Therefore, it is always possible to

express a MN with a non-chordal graph structure by triangulating the MN’s graph

structure since adding edges to a UG will only reduce the number of conditional

independencies encoded within the graph. This implies that the triangulated graph

will be an I-map of the original, non-chordal graph, of the MN, and therefore also

an I-map of the MN’s distribution.

Now that we know we can convert any MN into a DM, the question is how we can

convert a BN into a DM. The first logical step to take when converting BNs to DMs

is to convert the DAG graph structure of the given BN into an UG.

18 Chapter 2. Background

DAGs Chordal Graphs Undirected
Graphs

Probabilistic
Dependencies

Markov
Networks

Bayesian

Networks

Decomposable Models

Figure 2.4: Relationship between probabilistic models and their

graphical representations. Figure adapted from (Pearl, 1988, Fig-

ure 3.12).

Definition 8 (Moral graph 𝑴[⃗] (Cowell et al. 1999, Section 3.2.1)) Let

⃗ be a DAG. Then the moral graph of ⃗, 𝑀[⃗], is obtained by removing the

directionality of all edges and adding additional undirected edges
6

between

any vertices with a common child.

Furtheremore, for a BN  = (⃗, ℙ), the moral graph of ⃗ is also an I-map for

ℙ (Koller & Friedman, 2009, Corollary 4.2). We can then construct a new MN by

using 𝑀[⃗] as the graphical structure and the CPTs of  as the factors of this new

MN (Koller & Friedman, 2009). Of course, the moral graph 𝑀[⃗] might not be

chordal itself (Cowell et al. 1999, p. 50), therefore, further triangulation might be

needed to convert this new found MN into a DM.

It is also possible to convert a DM into either a MN or BN. The fact that we can

convert a DM into a MN is trivally true as DMs are just MNs with a chordal

graph structure. Converting DMs to BNs on the other hand involves the fact

that for a chordal graph , the edges of  can be directed so that every pair of

converging arrows emanates from two adjacent vertices, forming a DAG (Pearl,

1988, p. 127). We can then conclude that the class of probabilistic graphical models

whose dependencies can be represented by both a DAG and an UG is the DM. The

relationships between these probabilistic models and their respective graphical

representations is illustrated in Figure 2.4.

2.2. Graphical Models 19

𝐶𝑎

𝐶𝑏 𝐶𝑐

𝐶𝑑

𝐶𝑒

𝜓𝑎

𝜓𝑏 𝜓𝑐

𝜓𝑑

𝜓𝑒

(a) Initial State

𝐶𝑎

𝐶𝑏

𝜓𝑏

𝐶𝑐

𝜓𝑐

𝐶𝑑

𝐶𝑒

𝜓𝑒

𝜓𝑑 ⋅ 𝜓𝑒
𝛽𝑎

𝛽𝑎 = 𝜓𝑎∑
𝑥
𝜓𝑏(𝑥)𝜓𝑐(𝑥)𝜓𝑑(𝑥)𝜓𝑒(𝑥)

(b) After junction tree algorithm

Figure 2.5: Illustrations of the

Junction Tree Algorithm.

One benefit of DMs, and the main property we will exploit throughout this thesis, is

that it decomposes the joint distribution of a DM, ℙℙ , into a product and quotient

of probabilities over cliques in its graph structure .

Theorem 6 (Decomposing joint probability (Pearl, 1988, Theorem 8))
If ℙ is decomposable relative to chordal graph , then the joint distribution of

ℙ can be decomposed as such:

ℙ(𝒙) =
∏∈ ℙ(𝒙)
∏∈ ℙ(𝒙)

where ℙ𝑑(⋅) represents the marginal probability over the domain 𝑑 .

Alternatively, we can also represent the joint distribution of ℙ as a product of

conditional probability tables if we choose a random maximal clique in  to be the

root node of ℙ’s junction tree  .

ℙ(𝒙) = ∏
∈

ℙ−pa()|pa()(𝒙−pa()|𝒙pa()) = ∏
∈

ℙ
 (𝒙)

where

ℙ
 (𝒙) = ℙ−pa()|pa()(𝒙−pa()|𝒙pa())

and pa() is the parent clique of  in the junction tree  . pa() = ∅ when  is the

root node of  .

2.2.4 Junction Tree Algorithm

Recall the partition function of a general Markov network 𝑍 :

𝑍 = ∑
𝒙∈

∏
∈

𝜓(𝒙)

Evaluating the partition function of loopy models, i.e. models with a non-chordal

graph structure, exactly does not necessarily require a naive summation over the

state space  ; there is another, more efficient, technique. Any loopy graph can be

converted into a tree, the so-called junction tree (JT) (Lauritzen & Spiegelhalter,

1988; Wainwright & Jordan, 2008; Koller & Friedman, 2009). In fact, as illustrated in

Figure 2.5, the junction tree algorithm (JTA) is a belief propagation algorithm that

goes a step further and computes the un-normalized marginal “probability”, 𝛽, for

each maximal clique in the JT (Koller & Friedman, 2009, Corollary 10.2):

∀ ∈  ∶ 𝛽(𝒙) = ∑
𝒙∈𝑋−

∏
∈

𝜓(𝒙, 𝒙) (2.2)

20 Chapter 2. Background

As with belief propagation in ordinary trees, inference on the junction tree has a

time complexity that is polynomial in the maximal state space size of its vertices.

The maximal vertex state space size of a junction tree is, however, exponential

in the size of the largest clique of a triangulation of , a.k.a. exponential in the

treewidth of . Hence, if the treewidth of a loopy model after triangulation is small,

exact inference via the junction tree algorithm is rather efficient.

Definition 9 (Treewitdh of a graph , 𝝎()) The treewith of any graph 
is the number of vertices minus 1 in the largest maximal clique of the minimal

triangulation of  (Koller & Friedman, 2009, Definition 9.6).

2.3 Entropy

For a discrete random variable/vector 𝑿 with joint probability distribution ℙ, Shan-

non (1948) originally defined entropy as a measure of the uncertainty in the outcome

of the random vector 𝑿 using the following formula:

𝐻(ℙ) = ∑
𝒙∈

ℙ(𝒙) log
1

ℙ(𝒙)
(2.3)

Therefore, Equation (2.3) is also known as the Shannon entropy. Rényi (1961) then

proposed the following generalisation of the Shannon entropy

𝐻𝛼(ℙ) = ∑
𝒙∈

1
1 − 𝛼

log∑
𝒙∈

ℙ(𝒙)𝛼 (2.4)

where 𝛼 is a parameter of the entropy functional. This generalisation then converges

to the Shannon entropy when the parameter 𝛼 approches 1 (Rényi, 1961):

𝐻1(ℙ) ∶= lim
𝛼→1

𝐻𝛼(ℙ) = ∑
𝒙∈

ℙ(𝒙) log
1

ℙ(𝒙)
(2.5)

The generalisation in Equation (2.4) would later be known as the Rényi entropy or

the 𝛼-entropy (Csiszar, 1995).

2.3.1 Conditional Entropy

Assume we wish to find the entropy of the random vector 𝒀 given the random

vector 𝒁 under the conditional distribution ℙ𝒀 ∣𝒁 . Note the difficulty in computing

the conditional entropy, as opposed to the normal joint entropy, is that ℙ𝒀 ∣𝒁 actually

constitutes multiple probability distributions over 𝒀 , ℙ𝒀 ∣𝒛, one for each possible

value of 𝒛 ∈ .

2.4. Divergence 21

7
Some authors also require

that the quadratic part of the

Taylor expansion of 𝐷(𝑝, 𝑝 +
𝑑𝑝) define a Riemannian met-

ric on 𝑃 (Amari, 2016). How-

ever, this requirement is not

needed by the methods de-

scribed in this thesis. There-

fore, we will leave this re-

quirement out of this defini-

tion.

Since ℙ𝒀 ∣𝒛 are normal probability distributions over 𝒀 , we do know how to find the

Shannon entropy for them

∀𝒛 ∈  ∶ 𝐻(ℙ𝒀 ∣𝒛) = −∑
𝒚∈

ℙ𝒀 ∣𝒛(𝒚) log ℙ𝒀 ∣𝒛(𝒚) (2.6)

Then, a natural way to define the conditional Shannon entropy is to take the

expectation of 𝐻(ℙ𝒀 ∣𝒁) with respect to ℙ𝒁 (Cover & Thomas, 2006, p. 17):

𝐻(ℙ𝒀 ∣𝒁) = 𝔼𝒛∼ℙ𝒛[𝐻(ℙ𝒀 ∣𝒁=𝒛)] = −∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

ℙ𝒀 ∣𝒛(𝒚) log ℙ𝒀 ∣𝒛(𝒚) (2.7)

The “naturalness” of this definition for the conditional Shannon entropy is demon-

strated by the fact that this definition gives the chain rule of Shannon entropy (Cover

& Thomas, 2006, Theorem 2.2.1):

𝐻(ℙ𝒀 ,𝒁) = 𝐻(ℙ𝒁) + 𝐻(ℙ𝒀 ∣𝒁) (2.8)

However, this relation with the expected conditional divergence in Equation (2.7)

and the chain rule in Equation (2.8) only exists for the Shannon entropy. Therefore,

the question of obtaining a “natural” definition of the Rényi entropy is more complex

as evidenced by the numerous proposals of varying definitions for a conditional

Rényi entropy in the literature (Teixeira et al. 2012; Fehr & Berens, 2014; Ilić et al.

2017).

2.4 Divergence

A divergence is a measure of the “difference” between 2 probability distributions.

More formally, a divergence is a functional between 2 distributions that satisfies

certain properties as defined in Definition 10.

Definition 10 (Divergence) Suppose 𝑃 is the set of probability distributions

with the same support. A divergence, 𝐷, is the function
7
:

𝐷(⋅||⋅) ∶ 𝑃 × 𝑃 → ℝ

such that ∀ℙ, ℚ ∈ 𝑃 :

𝐷(ℙ||ℚ) ≥ 0
ℙ = ℚ ⇔ 𝐷(ℙ||ℚ) = 0

Examples of popular divergences include the Kullback-Leibler divergence (Kull-

back & Leibler, 1951), the Hellinger distance (Hellinger, 1909), and the 𝜒 2
diver-

gence (Pearson, 1900).

22 Chapter 2. Background

Furthermore, there are also generalized divergences where common divergences,

such as the ones mentioned above, are special cases of the generalized divergence.

Specifically, we will use the generalized divergence known as the 𝛼𝛽-divergence

(Cichocki et al. 2011).

Definition 11 (𝜶𝜷-divergence) The 𝛼𝛽-divergence,𝐷AB, between 2 positive

measures ℙ and ℚ is defined by the following, where 𝛼 and 𝛽 are parameters:

𝐷(𝛼,𝛽)
AB (ℙ, ℚ) = −

1
𝛼𝛽

∑
𝒙∈

(ℙ(𝒙)𝛼ℚ(𝒙)𝛽 −
𝛼

𝛼 + 𝛽
ℙ(𝒙)𝛼+𝛽 −

𝛽
𝛼 + 𝛽

ℚ(𝒙)𝛼+𝛽)

for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0 (2.9)

To avoid indeterminacy or singularity for certain values of 𝛼, 𝛽 in Equation (2.9),

we can extend the 𝛼𝛽-divergence by continuity, using l’Hôpital’s formula, to

cover values of 𝛼, 𝛽 ∈ ℝ:

𝐷𝛼,𝛽
AB (ℙ, ℚ) = ∑

𝒙∈
𝑑𝛼,𝛽AB (ℙ(𝒙), ℚ(𝒙))

where

𝑑(𝛼,𝛽)AB (ℙ(𝒙), ℚ(𝒙))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
𝛼𝛽 (ℙ(𝒙)

𝛼ℚ(𝒙)𝛽 − 𝛼ℙ(𝒙)𝛼+𝛽
𝛼+𝛽 − 𝛽ℚ(𝒙)𝛼+𝛽

𝛼+𝛽) for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0
1
𝛼2 (ℙ(𝒙)

𝛼 log ℙ(𝒙)𝛼
ℚ(𝒙)𝛼 − ℙ(𝒙)𝛼 + ℚ(𝒙)𝛼) for 𝛼 ≠ 0, 𝛽 = 0

1
𝛼2 (log

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼 + (

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼)

−1
− 1) for 𝛼 = −𝛽 ≠ 0

1
𝛽2 (ℚ(𝒙)

𝛽 log ℚ(𝒙)𝛽
ℙ(𝒙)𝛽 − ℚ(𝒙)𝛽 + ℙ(𝒙)𝛽) for 𝛼 = 0, 𝛽 ≠ 0

1
2(log ℙ(𝒙) − logℚ(𝒙))2 for 𝛼, 𝛽 = 0.

(2.10)

The parameters 𝛼 and 𝛽 in the 𝛼𝛽-divergence are used to express other commonly

used divergences. Specifically, the parameters 𝛼 = 1, 𝛽 = 0 give the Kullback-

Leibler divergence, while the parameters 𝛼 = 0.5, 𝛽 = 0.5 give the Bhattacharyya

coefficient which immediately gives the Hellinger distance (Cichocki et al. 2011).

2.4.1 Conditional Divergence

Similar to the conditional entropy in Section 2.3.1, the difficulty in measuring the

divergence between 2 conditional distributions, ℙ𝒀 ∣𝒁 and ℚ𝒀 ∣𝒁 , is that they are made

up of multiple probability distributions over 𝒀 , ℙ𝒀 ∣𝒁=𝒛 and ℚ𝒀 ∣𝒁=𝒛, one for each value

of 𝒛 ∈ .

2.5. Concept Drift 23

However, due to the relationship between the KL-divergence and Shannon entropy,

there is a “natural” definition for the conditional KL-divergence resulting from the

fact that the following 2 natural approaches to define the conditional KL-divergence

lead to the same result (Bleuler et al. 2020, eq. 2, 3)

𝐷(ℙ𝒀 ∣𝒁 ∣∣ ℚ𝒀 ∣𝒁 ∣ ℙ𝒁) ∶= ∑
𝒛∈

ℙ𝒁(𝒛)𝐷(ℙ𝒀 ∣𝒁=𝒛 ∣∣ ℚ𝒀 ∣𝒁=𝒛) (2.11)

= 𝐷(ℙ𝒀 ∣𝒁ℙ𝒁 ∣∣ ℚ𝒀 ∣𝒁ℙ𝒁) (2.12)

where we are measuring the conditional divergence between ℙ𝒀 ∣𝒁 and ℚ𝒀 ∣𝒁 in

relation to the “base” distribution ℙ.

Unfortunately, similar to conditional entropy, this equivalence between the defini-

tions of a conditional distribution in Equations (2.11) and (2.12) is unique to the

KL-divergence. When proposing a possible definition of a conditional divergence

for other divergences, previous approaches have either exclusively taken the defi-

nition in Equation (2.11) (Csiszar, 1995; Poczos & Schneider, 2012; Bhattacharyya &

Chakraborty, 2018) or Equation (2.12) (Sibson, 1969; Cai & Verdú, 2019; Bleuler et

al. 2020) as the basis for their definition.

Therefore, in this thesis we will use the definition in Equation (2.11) as the basis of

our definition of a conditional 𝛼𝛽-divergence. This definition involves taking the

expectation of 𝐷(ℙ𝒀 ∣𝒁=𝒛, ℚ𝒀 ∣𝒁=𝒛) with respect to ℙ𝒁 .

Definition 12 (General conditional divergence)

𝐷(ℙ𝒀 ∣𝒁 ∣∣ ℚ𝒀 ∣𝒁) = 𝔼𝒁∼ℙ [𝐷(ℙ𝒀 |𝒁 ∣∣ ℚ𝒀 ∣𝒁)]
= ∑

𝒛∈
ℙ𝒁(𝒛)𝐷(ℙ𝒀 |𝒁=𝒛 ∣∣ ℚ𝒀 ∣𝒁=𝒛)

2.5 Concept Drift

Due to the fact that the world is a dynamic system, it is not rare to have the

processes underlying some data stream to change causing the resulting data to

express different “concepts” over time. These changes in “concepts”, also known

as concept drift, can cause the performance of models and classifiers trained on an

initial set of data to deteriorate over time.

Formally, concept drift can be defined as changes to the joint distribution ℙ(𝑦, 𝑋),
also known as Joint Drift, where 𝑋 is the set of covariate variables and 𝑦 is the

class variable (Gama et al. 2014). Furthermore, it might be relevant to also study

the different components of the joint distribution:

24 Chapter 2. Background

• Covariate Drift Changes to the covariate distribution, ℙ(𝑋)

• Posterior Drift Changes to the distribution of the class given the covariate

value, ℙ(𝑦|𝑋)

The are many ways to characterise occurrences of concept drift, both qualitatively

and quantitatively, between datasets obtained from differing contexts, or within a

data stream over time (Webb et al. 2016). However, this project will only focus on

the 2 of these characteristics, drift duration and drift magnitude.

Drift duration is a quantitative measure on the size of the transition period between

2 concepts (Webb et al. 2016). This measure of drift unifies 2 existing qualitative

characteristics of drift in the literature, namely abrupt and gradual drift (Tsymbal,

2004).

Another useful quantitative measure of concept drift is a measure of the degree of

difference between the different concepts within a data stream or across different

datasets. This quantitative measure is also known in the literature as drift magni-
tude (Webb et al. 2016). Since this measure of drift is relatively new, there has not

been much research done into determining the best method to use when measuring

the distance between concepts. Previous approaches to calculating drift magnitude
have used statistical distance metrics such as the Total Variation distance (Webb et

al. 2018). However, this thesis will use the 𝛼𝛽-divergence as described in Section 2.4.

When developing new learners and techniques to adapt to occurrences of concept

drift, it is vital to have available datasets that are known to contain occurrences of

concept drift. We require these datasets not only to test and compare the technique

being developed with previous techniques, but also to understand the characteristics

and response the technique will have on varying characteristics of concept drift.

Therefore, the creation of datasets with known occurrences of concept drift is

The problem of changing distributions is one that occurs throughout the fields of

machine learning, and therefore manifests slightly differently, with differing names,

based on the problem being tackled in each field. For instance, there has been a

lot of work in out-of-distribution, or domain, generalisation in recent years (Wang

et al. 2022; Zhou et al. 2022). Domain generalisation involves learning a model

from multiple different, but related, domains that is capable of generalising to

unseen domains. Similar to concept drift, these domains can have wildly different

distributions. However, unlike in concept drift, quite a lot of work in domain

generalisation assumes a relatively stable ℙ(𝑦|𝑋) distribution (Zhou et al. 2022).

Furthermore, most of the work in domain generalisation focuses on non-tabular

data, while most of the work in concept drift focuses on tabular data.

2.6. Datasets with Concept Drift 25

2.6 Datasets with Concept Drift

In this section, we will review and discuss some existing methods to generate data

containing concept drift, which we will hereby refer to as drift generators. The

main purpose of this discussion will be to review and extract any insights that

might be useful developing our own high-dimensional drift generator.

We will divide these drift data generators into 2 categories: generators of concept

drift with unknown magnitudes, and generators of concept drift with known

magnitudes. Historically, only generators of the former category have been used.

However, recently there has been an increase in the use of generators in the

latter category. Ultimately, generators of concept drift with known magnitudes

are desirable as they allow us to control for the magnitude of concept drift in

any experiments carried out on the generated datasets. This allows us to better

understand the behaviour of the model or adaptation technique being tested on

varying conditions, and in the end, will provide better insight into what situations

a certain model or adaptation technique performs best at.

2.6.1 Unknown Drift Magnitudes

2.6.1.1 Synthetic Drift Generators

One of the first approaches into obtaining datasets containing concept drift was

to create generators that generated data based on some predefined problem or

model. Concept drift is then created by changing the problem or model used

to generate the data during the data generation process. A common issue that

synthetic drift generators share is that the relationships between their attributes,

or inter-attribute structure, might be a bit simplistic and not representative of

inter-attribute structures found in real-world data. For the sake of completeness,

we will provide a brief overview of popular synthetic drift generators and their

origins.

One of the first algorithms to track concept drift in a dataset was STAGGER (Schlim-

mer & Granger, 1986). STAGGER characterized a concept as a single Boolean predi-

cate over the attributes in a dataset. The class of any instance in this dataset is then

determined by the Boolean value returned by the predicate when the instance is

passed as input. Different concepts are then defined by different predicates over

the attributes. This definition of concept was later use by (Widmer & Kubat, 1996)

in order to create a dataset to test their method FLORA2 against STAGGER.

The Streaming Ensemble Algorithm (SEA) is an ensemble classification algorithm

capable of adapting to drift (Street & Kim, 2001). In order to test SEA, the authors

26 Chapter 2. Background

created a synthetic dataset with 3 attributes: 𝑓1, 𝑓2, and 𝑓3. The class of any instance

is then determined by the following Boolean function: 𝑓1 +𝑓2 <= 𝜃, where different

values of 𝜃 define different concepts.

Similar to (Street & Kim, 2001), (Minku et al. 2010) used mathematical functions

to define their classification problems in their test datasets. Minku et al. created

2 synthetic datasets. The first dataset determined the class of any instance, (𝑥, 𝑦),
by determining if they are inside or outside the ellipse (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2.
The second dataset determined the class of each instance, (𝑥, 𝑦), by determining if

they are above or below the sinusoidal wave 𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑. For both these

datasets, different concepts can be created by changing the parameters 𝑎, 𝑏, 𝑐, and

𝑑.

2.6.1.2 Manipulating Real-World Datasets

Another approach to creating datasets that contain concept drift is to manipulate

some real world dataset. The main benefit of this method over synthetic drift

generators is that the resulting datasets will have more realistic inter-attribute

structures.

This approach to generating datasets with distributional shifts is quite common

in the training and testing of image classifiers. For instance, one could rotate the

images in a dataset to produce images with a different covariate distribution but

with the same class (Ghifary et al. 2015). In general, manipulating and applying

transformations to audio-visual data can be done based on human intuition on

which transformation is realistic and will be useful for the training and testing of

models.

However, such intuitions might not exist for tabular data. Therefore we will

give an overview of the approaches explored by previous research to manipulate

tabular datasets as these methods might prove useful in developing our own high-

dimensional drift generator.

Merging Datasets. One method to create a dataset containing concept drift from

real-world datasets is to "merge" 2 real world datasets together (Bifet et al. 2009a).

Let 𝑥 and 𝑦 be the datasets we want to merge with the variables (𝑋1, 𝑋2, 𝐶𝑥) and

(𝑌1, 𝐶𝑦) respectively, where 𝐶𝑥 and 𝐶𝑦 are the class variable of these datasets. In

order to merge 𝑥 and 𝑦 , a new dataset, 𝑧, is created that contains the non-class

variables of both 𝑥 and 𝑦 . Instead of having both 𝐶𝑥 and 𝐶𝑦 in 𝑧, a new class

variable, 𝐶𝑧, is introduced that can take all the values of both 𝐶𝑥 and 𝐶𝑦 . Therefore,

the new dataset, 𝑧, will have the variables (𝑋1, 𝑋2, 𝑌1, 𝐶𝑧). The i-th instance in

𝑧 is then defined as the concatenation of the i-th instance in 𝑥 and 𝑦 without

2.6. Datasets with Concept Drift 27

their classes. The class of the i-th instance in 𝑧, 𝐶𝑧,𝑖, is then determined based on

whether the i-th instance occurs before or after concept drift. If it is before drift,

then 𝐶𝑧,𝑖 = 𝐶𝑥,𝑖, otherwise 𝐶𝑧,𝑖 = 𝐶𝑦,𝑖.

Attribute Value Transformation. Another method to manipulate some dataset

to contain concept drift would be to transform the values of an attribute to another

value after concept drift. Specifically, Klinkenberg (2001) effectively did such a

transformation on the class attribute on the real-world dataset they used. They

had a dataset of business news text that were categorised into 5 categories. These

categories were effectively the classes of the documents. They then divided these

documents into 20 batches and added a new variable, the probability that the

category is relevant to the reader. The probability that each category is relevant

to the reader is then varied across the different batches to simulate concept drift

between the different batches.

Vary Value Frequency. Another manipulation method would be to partition the

original dataset such that the frequency of the values of some attributes are different

over the different partitions (Robert Polikar et al. 2001). This would cause drift to

occur due to the difference in the probability distribution over these attributes.

2.6.2 Known Drift Magnitude

As we will see below, a common characteristic of these methods is that they first

take some generative model of a probability distribution, 𝜙. Note that 𝜙 can be

synthetically generated or learnt on some existing data. They then find a 𝜙∗, such

that the distance between the distribution of 𝜙 and 𝜙∗ is some 𝜀 away from a given

magnitude, according to some chosen divergence. A dataset with concept drift can

then be generated by sampling 𝜙 before concept drift and sampling 𝜙∗ after drift.

Our proposed high-dimensional drift generator will follow this rough procedure as

well.

2.6.2.1 Naive Bayes Model

Webb et al. (2016) created a synthetic drift generator capable of generating categori-

cal datasets with concept drift of a given magnitude. This was achieved by creating

a Bayesian network with 5 covariate attributes and 1 class attribute, where each

covariate attribute is a parent of the class attribute. The multinomial probability of

each parent attribute is sampled using a flat Dirichlet with concentration parameter

1. A random class value is assigned for each combination of values over the parent

attributes. The initial model is then used to generate instances before the drift.

28 Chapter 2. Background

This generator can also generate either pure class or pure covariate drift of a given

magnitude calculated using Hellinger distance. To generate pure class drift, the

generator changes the class for 𝑘 covariate value combinations, where 𝑘 can be

calculated based on the given target drift magnitude. To generate pure covariate

drift, the generator just samples different parameters for the parents until the target

drift magnitude is achieved. This new modified model is then used to generate

instances after drift.

The main issue of this generator is that it is incapable of representing more complex

interactions between the covariate attributes and assumes the existence of a class

variable of interest. Therefore, it is not very useful for creating datasets where the

main source of distributional changes are primarily from the covariate attributes.

2.6.2.2 Controlling Change Magnitude (CCM)

Although this thesis focuses on discrete distributions, we shall make a brief mention

of a method by Carrera & Boracchi (2018), called Controlling Change Magnitude

(CCM), that is capable of generating high-dimensional numeric datasets with known

drift magnitudes. CCM first fits a Gaussian Mixture (GM) model, 𝜙, on some data.

CCM then uses an iterative algorithm to find a second GM model 𝜙∗ that corresponds

to a roto-translation of the original data that is some distance from the original

dataset. During this process, the distance between 2 GMs is calculated using

the symmetric Kullback-Leibler divergence, 𝐷KL(ℙ||ℚ) + 𝐷KL(ℚ||ℙ), also known as

Jeffreys divergence (Jeffreys, 1998).

Unlike the generator in Section 2.6.2.1, this generator is capable of generating

concept drift in high dimensions. However, this method is incapable of generating

concept drift in categorical data. Therefore, our proposed high-dimensional drift

generator will attempt to fill this gap in the literature.

29

Part I

Computing Divergences between
Graphical Models

31

Chapter 3

Computing Divergences between
the Joint Distribution of
Decomposable Models

Recall from Section 1.2 that one of the main problems we wish to solve is the compu-

tation of divergences between high-dimensional discrete distributions. Furthermore,

we also proposed using probabilistic graphical models in order to approach this

problem using more compact and efficient representations of discrete distributions.

This approach has been used in the past by Moral et al. (2021) where they proposed

a method to compute the KL divergence between 2 BNs. However, their method

is limited to computing the KL divergence, and in the context of measuring the

magnitude of concept drift, we will frequently encounter situations where the KL

divergence is undefined, i.e. situations where ℙ(𝒙) > 0 but ℚ(𝒙) = 0.

Motivated by these considerations, in this chapter we show how to efficiently com-

pute a wide family of divergences, the 𝛼𝛽-divergence, between the joint distribution

of two DMs. This will allow us to use divergences other than the KL divergence,

such as the Hellinger distance. In the process of showing how the 𝛼𝛽-divergence

can be computed between any two DMs, we will reach a more general result. That

is, we will show how one can compute, between the two joint distributions of DMs,

the functional  defined in Definition 13:

Definition 13 (Functional )

(ℙ, ℚ; 𝑔, ℎ, 𝑔∗, ℎ∗) = ∑
𝒙∈

(𝑔[ℙ](𝒙))(ℎ[ℚ](𝒙))𝐿((𝑔
∗[ℙ](𝒙))(ℎ

∗[ℚ](𝒙)))

where, 𝐿 is any function with the property:

𝐿
(
∏
𝑥
𝑥
)

= ∑
𝑥
𝐿(𝑥) (3.1)

32 Chapter 3. Computing Divergences between Joint Distributions

and for any probability mass function 𝑃 over variables 𝑿 , 𝑓 ∈ {𝑔, ℎ, 𝑔∗, ℎ∗} are

functionals with the property:

𝑓
[
∏
𝒁∈

𝑃𝒁]
= ∏

𝒁∈
𝑓 [𝑃𝒁] (3.2)

where

 ⊂ (𝑿) s.t. ∏
𝒁∈

𝑃𝒁 = 𝑃∪ (3.3)

and ⋃ is the set of all the variables in the sets of .

An example of a functional 𝑓 with the property in Equation (3.2) is the basic

power function 𝑓 [𝑃](𝑥) = 𝑃(𝑥)𝑎 for 𝑎 ∈ ℝ. In general, any functional will

satisfy the property in Equation (3.2) if it satisfies the property 𝑓 [∏𝑔∈𝐺 𝑔] =
∏𝑔∈𝐺 𝑓 [𝑔], where 𝐺 is some set of functions where the product between them

is defined.

This result implies the possibility for the computation of further divergences and

functionals between two DMs in addition to the 𝛼𝛽-divergence because the class

of functionals that can be expressed as a linear combination of function  in

Definition 13 is much wider than the class of 𝛼𝛽-divergence. Furthermore, as we

will see later in this chapter, by focusing on computing the functional  between

the joint distributions of 2 DMs, the exposition of this chapter will be more succinct

as it unifies the different cases of the 𝛼𝛽-divergence into a linear combination of

one, parameterised, functional.

This chapter is organised as follows. In Section 3.1, we discuss the 𝛼𝛽-divergence

and its application in measuring the divergence between two DMs. In Section 3.2,

we present our method for computing the sum-product over multiple chordal

graphs and show in Section 3.3 how it can be used to compute the 𝛼𝛽-divergence

between two DMs. In Section 3.4, we discuss the final complexity of computing the

𝛼𝛽-divergence between two DMs. In Section 3.5, we will compare the runtime of

our method with the method by Moral et al. Then in Section 3.6, we will present a

case study into why using divergences other than the KL divergence is useful in

the context of model selection, a problem that the KL divergence is normally well

suited to and widely used in. Finally, in Section 3.7 we close the chapter with some

final remarks.

3.1.  between Joint Distributions of Decomposable Models 33

3.1 𝛼𝛽-Divergence and Functional  between Joint
Distributions of Decomposable Models

In this section, we will revisit the 𝛼𝛽-divergence from Definition 11, and show

how, in cases when 𝛼 and 𝛽 are not both zero, we can express it in terms of

parameterisations of the functional  from Definition 13. We then show that,

when the 𝛼𝛽-divergence is not expressible in terms of  functionals, i.e. when

𝛼, 𝛽 = 0, the 𝛼𝛽-divergence between the joint distributions of two DMs can be

computed directly efficiently. Therefore, computing the 𝛼𝛽-divergence between

the joint distributions of DMs hinges on computing  between these distributions.

As such, we end this section by plugging in the joint distributions of DMs into 
and simplifying the expression to set up the problem that we will tackle in the next

section, Section 3.2.

First, recall the 𝛼𝛽-divergence from Definition 11:

Definition 11 (𝜶𝜷-divergence) The 𝛼𝛽-divergence,𝐷AB, between 2 positive

measures ℙ and ℚ is defined by the following, where 𝛼 and 𝛽 are parameters:

𝐷(𝛼,𝛽)
AB (ℙ, ℚ) = −

1
𝛼𝛽

∑
𝒙∈

(ℙ(𝒙)𝛼ℚ(𝒙)𝛽 −
𝛼

𝛼 + 𝛽
ℙ(𝒙)𝛼+𝛽 −

𝛽
𝛼 + 𝛽

ℚ(𝒙)𝛼+𝛽)

for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0 (2.9)

To avoid indeterminacy or singularity for certain values of 𝛼, 𝛽 in Equation (2.9),

we can extend the 𝛼𝛽-divergence by continuity, using l’Hôpital’s formula, to

cover values of 𝛼, 𝛽 ∈ ℝ:

𝐷𝛼,𝛽
AB (ℙ, ℚ) = ∑

𝒙∈
𝑑𝛼,𝛽AB (ℙ(𝒙), ℚ(𝒙))

where

𝑑(𝛼,𝛽)AB (ℙ(𝒙), ℚ(𝒙))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
𝛼𝛽 (ℙ(𝒙)

𝛼ℚ(𝒙)𝛽 − 𝛼ℙ(𝒙)𝛼+𝛽
𝛼+𝛽 − 𝛽ℚ(𝒙)𝛼+𝛽

𝛼+𝛽) for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0
1
𝛼2 (ℙ(𝒙)

𝛼 log ℙ(𝒙)𝛼
ℚ(𝒙)𝛼 − ℙ(𝒙)𝛼 + ℚ(𝒙)𝛼) for 𝛼 ≠ 0, 𝛽 = 0

1
𝛼2 (log

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼 + (

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼)

−1
− 1) for 𝛼 = −𝛽 ≠ 0

1
𝛽2 (ℚ(𝒙)

𝛽 log ℚ(𝒙)𝛽
ℙ(𝒙)𝛽 − ℚ(𝒙)𝛽 + ℙ(𝒙)𝛽) for 𝛼 = 0, 𝛽 ≠ 0

1
2(log ℙ(𝒙) − logℚ(𝒙))2 for 𝛼, 𝛽 = 0.

(2.10)

The full expression for the 𝛼𝛽-divergence in Equation (2.10) can be further simplified

as a linear combination of 3 smaller functionals.

34 Chapter 3. Computing Divergences between Joint Distributions

Theorem 7 (Expressing the 𝜶𝜷-divergence in terms of 3 functionals)
The 5 cases of the 𝛼𝛽-divergence can be re-expressed into a linear combination

of the following 3 functionals in linear time:

𝑓1(ℙ, ℚ) = ∑
𝒙∈

1
2
(log ℙ(𝒙) − logℚ(𝒙))2

𝑓2(ℙ, ℚ; 𝑎, 𝑏) = ∑
𝒙∈

ℙ(𝒙)𝑎ℚ(𝒙)𝑏

𝑓3(ℙ, ℚ; 𝑎, 𝑏, 𝑐, 𝑑) = ∑
𝒙∈

ℙ(𝒙)𝑎ℚ(𝒙)𝑏 log(ℙ(𝒙)𝑐ℚ(𝒙)𝑑)

Proof When 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0:

𝐷(𝛼,𝛽)
𝐴𝐵 (ℙ, ℚ)

= −
1
𝛼𝛽 (

∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽 −
𝛼

𝛼 + 𝛽
∑
𝒙∈

ℙ(𝒙)𝛼+𝛽 −
𝛽

𝛼 + 𝛽
∑
𝒙∈

ℚ(𝒙)𝛼+𝛽
)

= −
1
𝛼𝛽 (𝑓2(ℙ, ℚ; 𝛼, 𝛽) −

𝛼
𝛼 + 𝛽

𝑓2(ℙ, ℚ; 𝛼 + 𝛽, 0) −
𝛽

𝛼 + 𝛽
𝑓2(ℙ, ℚ; 0, 𝛼 + 𝛽))

When 𝛼 ≠ 0, 𝛽 = 0:

𝐷(𝛼,0)
𝐴𝐵 (ℙ||ℚ) =

1
𝛼2 (

∑
𝒙∈

ℙ(𝒙)𝛼 ln
ℙ(𝒙)𝛼

ℚ(𝒙)𝛼
−∑

𝒙∈
ℙ(𝒙)𝛼 +∑

𝒙∈
ℚ(𝒙)𝛼

)

=
1
𝛼2 (𝑓3(ℙ, ℚ; 𝛼, 0, 𝛼, −𝛼) − 𝑓2(ℙ, ℚ; 𝛼, 0) + 𝑓2(ℙ, ℚ; 0, 𝛼))

When 𝛼 = −𝛽 ≠ 0:

𝐷(𝛼,−𝛼)
𝐴𝐵 (ℙ||ℚ) =

1
𝛼2 (

∑
𝒙∈

ln
ℚ(𝒙)𝛼

ℙ(𝒙)𝛼
+∑

𝒙∈
(
ℚ(𝒙)𝛼

ℙ(𝒙)𝛼)

−1

−∑
𝒙∈

1
)

=
1
𝛼2 (𝑓3(ℙ, ℚ; 0, 0, −𝛼, 𝛼) + 𝑓3(ℙ, ℚ; 0, 0, 𝛼, −𝛼) − | |)

When 𝛼 = 0, 𝛽 ≠ 0:

𝐷(0,𝛽)
𝐴𝐵 (ℙ||ℚ) =

1
𝛽2 (

∑
𝒙∈

ℚ(𝒙)𝛽 ln
ℚ(𝒙)𝛽

ℙ(𝒙)𝛽
−∑

𝒙∈
ℚ(𝒙)𝛽 +∑

𝒙∈
ℙ(𝒙)𝛽

)

=
1
𝛽2 (𝑓3(ℙ, ℚ; 0, 𝛽, −𝛽, 𝛽) − 𝑓2(ℙ, ℚ; 0, 𝛽) + 𝑓2(ℙ, ℚ; 𝛽, 0))

3.1.  between Joint Distributions of Decomposable Models 35

When 𝛼, 𝛽 = 0:

𝐷(0,0)
𝐴𝐵 (ℙ||ℚ) =

1
2
(∑
𝒙∈

ln ℙ(𝒙) −∑
𝒙∈

lnℚ(𝒙))2 = 𝑓1(ℙ, ℚ)

Therefore, the ability to tractably compute these three functionals between 2 de-

composable models will imply the ability to tractably compute the 𝛼𝛽-divergence

between 2 decomposable models. Here, we assume a time complexity exponential to

the treewidth of our decomposable models is an acceptable reduction in complexity

compared to being exponential to the number of variables 𝑛 for it to be tractable.

This assumption of tractability is true when the graphical structure representing

the conditional independencies in the distribution is sparse and has a low treewidth.

However, a recent experimental study on the treewidth of networks in the real

world have shown that most real world networks have treewidths large enough to

render a complexity exponential to the treewidth intractable (Maniu et al. 2019).

Whether the same is true for conditional independence structures for distributions

in the real world requires more research. Intuitively, the graph representing the

conditional independencies between a set of variables is likely to be a subgraph

of the network containing an edge between any variables related to each other, as

potentially only a subset of edges in the latter network is needed to express the

existing conditional independencies.

Theorem 8 (Complexity of functional 𝒇𝟏) Due to the log functions decom-

posing 𝑓1, the time complexity for computing the functional 𝑓1 directly between

2 decomposable models is

(𝑛2 ⋅ 𝜔max ⋅ 2𝜔max+1)

where 𝜔() is the treewidth of chordal graph , 𝜔max = max(𝜔(ℙ), 𝜔(ℚ)),
and 𝑛 is the number of random variables in 𝑿 .

Proof Recall the 𝛼𝛽-divergence when 𝛼, 𝛽 = 0:

𝐷(0,0)
𝐴𝐵 (ℙ ∣∣ ℚ) = 𝑓1(ℙ, ℚ)

=
1
2
∑
𝒙∈

(log ℙ(𝒙) − logℚ(𝒙))2

=
1
2
∑
𝒙∈

(log(ℙ(𝒙))2 − 2 (log ℙ(𝒙) logℚ(𝒙)) + log(ℚ(𝒙))2)

We will first show how the sum over  for the term −2 log(ℙ(𝒙)) log(ℚ(𝒙)) can

be done while avoiding complexity exponential to the number of variables 𝑛 (i.e.

complexity linear to the state space size over all variables | |). By the end of

this process, we will then be able to observe that the complexity for computing

36 Chapter 3. Computing Divergences between Joint Distributions

the sum over  for log(ℙ(𝒙))2 and log(ℚ(𝒙))2 is equivalent to or lesser than

the complexity for computing the sum over  for log(ℙ(𝒙)) log(ℚ(𝒙)).

Substituting the MLE for a decomposable model into log(ℙ(𝒙)) log(ℚ(𝒙)), we

get:

∑
𝒙∈

log ℙ(𝒙) logℚ(𝒙)

= ∑
𝒙∈(

∑
∈ℙ

log ℙ(𝒙) − ∑
∈ℙ

log ℙ(𝒙))(
∑
′∈ℚ

logℚ′(𝒙) − ∑
 ′∈ℚ

logℚ ′(𝒙)
)

= ∑
𝒙∈ (

∑
∈ℙ

∑
′∈ℚ

log ℙ(𝒙) logℚ′(𝒙) − ∑
∈ℙ

∑
 ′∈ℚ

log ℙ(𝒙) logℚ ′(𝒙)−

∑
∈ℙ

∑
′∈ℚ

log ℙ(𝒙) logℚ′(𝒙) + ∑
∈ℙ

∑
 ′∈ℚ

log ℙ(𝒙) logℚ ′(𝒙)
)

All four terms in this sum can be computed by pushing/rearranging the sum

over  to be the inner-most sum and conducting basic variable elimination

between 2 terms in the sum:

∀(,) ∈ {(ℙ,ℚ), (ℙ,ℚ), (ℙ,ℚ), (ℙ,ℚ)}:

∑
𝒙∈

∑
𝐵∈

∑
𝐷∈

log ℙ𝐵(𝒙) logℚ𝐷(𝒙) = |𝑿−𝐵∪𝐷|∑
𝐵∈

∑
𝐷∈

VE( , log ℙ𝐵, logℚ𝐷)

where for 𝐵, 𝐷 ⊆ 𝑿 :

VE( , 𝑓𝐷, 𝑓𝐵) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

(∑𝒙∈𝐷
𝑓𝐷(𝒙)) (∑𝒙∈𝐵

𝑓𝐵(𝒙)) 𝐷 ∩ 𝐵 = ∅
∑𝒙∈𝐷

𝑓𝐷(𝒙)𝑓𝐵(𝒙) 𝐷 = 𝐵
∑𝒙∈𝐷

𝑓𝐷(𝒙)∑𝒙′∈𝐵−𝐷
𝑓𝐵(𝒙′) 𝐵 ⊂ 𝐷

∑𝒙∈𝐵
𝑓𝐵(𝒙)∑𝒙′∈𝐷−𝐵

𝑓𝐷(𝒙′) otherwise

The complexity of computing VE( , 𝑓𝐷, 𝑓𝐵) involves determining which case

𝐵 and 𝐷 satisfies, which takes time linear to (max(|𝐵|, |𝐷|)), and computing

the sums, which takes time (2max(|𝐵|,|𝐷|)). We also know that |𝐵| and |𝐷| are

bounded by the largest clique size in chordal graphs ℙ, 𝜔(ℙ) + 1, and ℚ,

𝜔(ℚ) + 1 respectively. Therefore, computing VE( , 𝑓𝐷, 𝑓𝐵) takes complexity

(𝜔max ⋅ 2𝜔max+1), where 𝜔max = max(𝜔(ℙ), 𝜔(ℚ)).

Furthermore, when computing ∑𝒙∈ log ℙ(𝒙) logℚ(𝒙), VE( , 𝑓𝐷, 𝑓𝐵) is com-

puted for (|ℙ| + |ℙ|)(|ℚ| + |ℚ|) distinct 𝐵s and 𝐷s, resulting in a complexity

3.1.  between Joint Distributions of Decomposable Models 37

of:

∑
𝒙∈

log(ℙ(𝒙)) log(ℚ(𝒙)) ∈ ((|ℙ| + |ℙ|)(|ℚ| + |ℚ|) ⋅ 𝜔max ⋅ 2𝜔max+1)

Since the number of cliques and separators in chordal graph  is bounded by

the number of vertices in , they are also bounded by the number of random

variables associated with the graph 𝑿 . In other words:

() ∈ (𝑛)
() ∈ (𝑛)

therefore:

((|ℙ| + |ℙ|)(|ℚ| + |ℚ|) ⋅ 𝜔max ⋅ 2𝜔max+1) ∈ ((2𝑛)2 ⋅ 𝜔max ⋅ 2𝜔max+1)
∈ (𝑛2 ⋅ 𝜔max ⋅ 2𝜔max+1)

Using the same argumentation, the complexity of computing ∑𝒙∈ log(ℙ(𝒙))2

and ∑𝒙∈ log(ℚ(𝒙))2 is:

∑
𝒙∈

log(ℙ(𝒙))2 ∈ ((|ℙ| + |ℙ|)2𝜔(ℙ)2𝜔(ℙ)+1) ∈ (𝑛2 ⋅ 𝜔max ⋅ 2𝜔max+1)

∑
𝒙∈

log(ℚ(𝒙))2 ∈ ((|ℚ| + |ℚ|)2𝜔(ℙ)2𝜔(ℙ)+1) ∈ (𝑛2 ⋅ 𝜔max ⋅ 2𝜔max+1)

Therefore, the complexity of computing 𝐷0,0
𝐴𝐵(ℙ||ℚ) and 𝑓1(ℙ, ℚ) is:

𝐷(0,0)
𝐴𝐵 (ℙ ∣∣ ℚ) = 𝑓1(ℙ, ℚ) ∈ (𝑛2 ⋅ 𝜔max ⋅ 2𝜔max+1)

which implies that the functional 𝑓1 can be computed naively while avoiding

complexity exponential to the number of variables 𝑛.

Since computing 𝑓1 directly is tractable, the focus of the rest of this chapter will be

to show how to compute functionals 𝑓2 and 𝑓3 between 2 decomposable models. In

order to simplify further exposition, it will be ideal if functionals 𝑓2 and 𝑓3 can be

expressed by the more general functional  .

Proposition 1 (𝒇𝟐 can be expressed in terms of ) 𝑓2 can be expressed in

terms of a parameterisation of functional  .

Proof Recall 𝑓2 from Theorem 7:

𝑓2(ℙ, ℚ; 𝛼, 𝛽) = ∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽

38 Chapter 3. Computing Divergences between Joint Distributions

First, set the parameters of  to be:

ℎ[ℙ](𝒙) = ℙ(𝒙)𝛼 𝑔[ℚ](𝒙) = ℚ(𝒙)𝛽

ℎ∗[ℙ𝐵] = 𝑓 ∗[ℙ𝐵] 𝑔∗[ℚ𝐷] = 𝑓 ∗[ℚ𝐷]

𝐿(𝑥) = log𝑏(𝑥)

where the logarithmic base 𝑏 is any real positive number, (𝑆) for 𝑆 ⊆ 𝑿 is the

induced subgraph of  over the variables in 𝑆, and:

𝑓 ∗ [𝔻𝑆] = exp𝑏

{
1
2
⋅

1
|(𝔻)| − |(𝔻(𝑆))| + 1

}

where exp𝑏{𝑎} = 𝑏𝑎, and 𝑆 ⊆ 𝑿 such that 𝔻(𝑆) is a chordal graph where

(𝔻) = (𝔻(𝑆)) ∪ (𝔻(𝑿 − 𝑆))

This specific parameterisation of 𝑓 ∗
and 𝑔∗ ensures that they satisfy the re-

quirement in Equation (3.2) from Definition 13 while also removing the log

term from the functional  :

𝑓 ∗

[
∏

∈(𝔻)
𝔻]

= 𝑓 ∗ [𝔻𝑿] = exp𝑏

{
1
2
⋅

1
|(𝔻)| − |(𝔻(𝑿))| + 1

}

= exp𝑏

{
1
2
⋅

1
|(𝔻)| − |(𝔻)| + 1

}

= exp𝑏

{
1
2
⋅
1
1

}

= 𝑏1/2

∏
∈(𝔻)

𝑓 ∗ [𝔻] = ∏
∈(𝔻)

exp𝑏

{
1
2
⋅

1
|(𝔻)| − |(𝔻())| + 1

}

= exp𝑏

{

∑
∈(𝔻)

1
2
⋅

1
|(𝔻)| − 1 + 1

}

= exp𝑏

{
|(𝔻)|
2|(𝔻)|

}

= 𝑏1/2

∴𝑓 ∗

[
∏

∈(𝔻)
𝔻]

= ∏
∈(𝔻)

𝑓 ∗ [𝔻] = 𝑏1/2

Using these parameters we get:

(ℙ, ℚ) = ∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽 log𝑏 (𝑏
1/2𝑏1/2)

= ∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽 log𝑏 (𝑏
1)

3.1.  between Joint Distributions of Decomposable Models 39

= ∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽

Proposition 2 (𝒇𝟑 can be expressed in terms of ) 𝑓3 can be expressed in

terms of a parameterisation of functional  .

Proof Recall 𝑓3 from Theorem 7:

𝑓3(ℙ, ℚ; 𝛼, 𝛽, 𝑐, 𝑑) = ∑
𝒙∈

ℙ(𝒙)𝛼ℚ(𝒙)𝛽 log(ℙ(𝒙)𝑐ℚ(𝒙)𝑑)

Therefore  = 𝑓3 given the following parameters for  :

ℎ[ℙ](𝑥) = ℙ(𝑥)𝑎 ℎ∗[ℙ](𝑥) = ℙ(𝑥)𝑐

𝑔[ℚ](𝑥) = ℚ(𝑥)𝑏 𝑔∗[ℚ](𝑥) = ℚ(𝑥)𝑑

𝐿(𝑥) = log 𝑥

Therefore, any method that can tractably compute  , as defined in Definition 13,

between 2 decomposable models can also tractably compute the 𝛼𝛽-divergence

between these models.

With reasoning for the definition of  established, we can now substitute the joint

distributions represented by DMs ℙℙ and ℚℚ into functional  . But before we

start, first recall the notation established in Section 2.2.3:

ℙ(𝒙) = ∏
∈

ℙ (𝒙−pa()|𝒙pa()) = ∏
∈

ℙ
 (𝒙)

for  ⊂ 𝑋 ∶ ℙ
 (𝒙𝑋) = ℙ

 (𝒙)

40 Chapter 3. Computing Divergences between Joint Distributions

and pa() is the parent of the maximal clique  in the junction tree of ℙ’s respective

chordal graph. Then continuing with the substitution we get:

(ℙ, ℚ; 𝑔, ℎ, 𝑔∗, ℎ∗)

=∑
𝒙∈

(𝑔 [ℙ] (𝒙))(ℎ [ℚ] (𝒙))𝐿((𝑔
∗ [ℙ] (𝒙))(ℎ∗ [ℚ] (𝒙)))

=∑
𝒙∈

(𝑔 [ℙ] (𝒙))(ℎ [ℚ] (𝒙))𝐿(
𝑔∗

[
∏
∈ℙ

ℙ
]

(𝒙) ⋅ ℎ∗
[
∏
∈ℚ

ℚ
]

(𝒙)
)

=∑
𝒙∈

𝑔 [ℙ] (𝒙)ℎ [ℚ] (𝒙)𝐿
((

∏
∈ℙ

𝑔∗ [ℙ
 (𝒙)])

⋅
(
∏
∈ℚ

ℎ∗ [ℚ
 (𝒙)]))

=∑
𝒙∈

𝑔 [ℙ] (𝒙)ℎ [ℚ] (𝒙)
[(

∑
∈ℙ

𝐿 (𝑔∗ [ℙ
 (𝒙)]))

+
(

∑
∈ℚ

𝐿 (ℎ∗ [ℚ
 (𝒙)]))]

=
[
∑
∈ℙ

∑
𝒙∈

𝐿 (𝑔∗ [ℙ
] (𝒙)) (𝑔 [ℙ] (𝒙))(ℎ [ℚ] (𝒙))]

+

[
∑
∈ℚ

∑
𝒙∈

𝐿 (ℎ∗ [ℚ
] (𝒙)) (𝑔 [ℙ] (𝒙))(ℎ [ℚ] (𝒙))]

= ∑
∈(ℙ)

∑
𝒙∈

𝐿 (𝑔∗ [ℙ
] (𝒙)) SP(𝒙) + ∑

∈(ℚ)
∑
𝒙∈

𝐿 (ℎ∗ [ℚ
] (𝒙)) SP(𝒙)

(3.4)

where, for ease of notation:

SP(𝒙) = ∑
𝒙∈𝑋−

(𝑔 [ℙ] (𝒙 , 𝒙))(ℎ [ℚ] (𝒙 , 𝒙))

= ∑
𝒙∈𝑋−

[
∏
∈ℙ

𝑔 [ℙ
] (𝒙 , 𝒙)] [

∏
∈ℚ

ℎ [ℚ
] (𝒙 , 𝒙)]

(3.5)

which represents the marginalisation of all the variables that are not in the clique

 over the all the non-log factors produced by  .

As demonstrated, the equalities in Equation (3.4) and Equation (3.5) hold due to a

combination of the property of functions 𝑔∗ and ℎ∗ detailed in Definition 13, a basic

property of the logarithmic function 𝐿, and the associativity of summations.

Remark 1 The lower bound complexity of directly computing Equation (3.4) is

Ω(2|𝑋 |) where |𝑋 | is the number of variables. Therefore directly computing the

functional  between 2 high-dimensional decomposable models is intractable.

3.2. Multi-Graph Aggregated Sum-Products (MGASPs) 41

Proof The complexity of computing Equation (3.4) directly is linear with

respect to the product of the cardinality of each sum in the 2 nested sums

of Equation (3.4), (|(ℙ)| + |(ℚ)|) | |. Since the lower bound of the num-

ber of cliques in ℙ and ℚ is 1, the lower bound complexity of computing

Equation (3.4) is just linear with respect to | |. However, | | is exponential

with respect to the number of variables |𝑿|. Therefore, the lower bound com-

plexity of naively computing Equation (3.4) is Ω(2|𝑋 |), and as a consequence,

intractable.

Therefore, in order to compute (ℙ, ℚ), and as a result 𝐷AB(ℙ, ℚ), while avoiding

complexity exponential to |𝑿|, we require a more sophisticated method.

3.2 Multi-Graph Aggregated Sum-Products
(MGASPs)

Motivated by the problem of computing Equation (3.4), in this section we will pro-

pose a method to compute the sum-product over factors defined over the maximal

cliques of 2 chordal graphs, 1 and 2. We call this method the MGASP. This method

involves first finding a new chordal graph, , such that 1 and 2 are subgraphs

of . We refer to  as the computation graph of 1 and 2. MGASP then assigns

the factors defined over maximal cliques of 1 and 2 to maximal cliques of  and

runs the JTA on  with these factors. We show that the procedure that MGASP

follows, will result in sum-products equivalent to summing over the product of

factors from graphs 1 and 2. We then revisit computing Equation (3.4) and apply

MGASP to computing it.

Observe from Equation (3.4) that the main source of the computational complexity

of (ℙ, ℚ) is the sum product SP , ∀ ∈ (ℙ) ∪ (ℚ):

SP(𝒙) = ∑
𝒙∈𝑋−

[
∏
∈ℙ

𝑔 [ℙ
] (𝒙)] [

∏
∈ℚ

ℎ [ℚ
] (𝒙)]

(3.5)

which has a form that is slightly similar to the final beliefs obtained at each maximal

clique of a chordal graph 1 after running the JTA with factors {𝜓 ∣  ∈ (1)}:

∀ ∈ (1) ∶ 𝛽(𝒙) = ∑
𝒙∈𝑋−

∏
∈(1)

𝜓(𝒙, 𝒙) (2.2)

Despite their similarities, these sum-products have a significant difference in that

the sum-product in Equation (2.2) is a sum over factors defined over maximal cliques

of a single chordal graph 1. However, the sum-product in Equation (3.5) is a sum

42 Chapter 3. Computing Divergences between Joint Distributions

over factors defined on the maximal cliques of two potentially different chordal

graphs, ℙ and ℚ. Therefore for the rest of this section, we will tackle this general

problem.

Problem 1 (Sum over factors of 2 chordal graphs) Let 1 and 2 be

chordal graphs with factors defined over their maximal cliques:

Φ1 =
{
𝜙1, ||  ∈ (1)

}

Φ2 =
{
𝜙2, ||  ∈ (2)

}

We wish to obtain the following sum product for each maximal clique in 1

and 2:

∀ ∈ (1,2) ∶ SP(𝒙) = ∑
𝒙∈𝑋−

[
∏

1∈(1)
𝜙1,1(𝒙 , 𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙 , 𝒙)]

However, it can be quite unwieldy to obtain SP for maximum cliques in both

chordal graphs 1 and 2. Instead, we can re-frame Problem 1 as a problem to

obtain SP for a set of cliques  where all maximal cliques in (1) and (2) are

either equal to, or a subset of, a clique in . In other words, we need a mapping

from cliques in (1) and (2) to this hypothetical set of “larger” cliques .

Definition 14 (strictly larger, clique mapping 𝜶) A chordal graph  is

strictly larger than chordal graphs 1 and 2 if all the maximal cliques in

both chordal graphs are either a subset of, or equal to, a maximal clique in .

In other words,  is strictly larger than 1 and 2 if and only if there exists a

mapping 𝛼 such that:

𝛼 ∶ {1,2} → () → ()
s.t. ∀ ∈ {1,2}, ∈ () ∶  ⊆ 𝛼(,)

Definition 15 (computation graph) If a chordal graph, , is strictly larger
than chordal graphs 1 and 2, then  is a computation graph of 1 and 2.

One direct way to obtain the computation graph  is to first take the graph union

of 1 and 2, and then triangulate 1 ∪ 2. As stated in Section 2.1.3, choosing a

triangulation that results in a minimal treewidth is a NP-hard problem, but a valid

triangulation can be found with time and memory complexity linear in the number

of vertices (Dechter, 2003; Berry et al. 2004; Heggernes, 2006).

3.2. Multi-Graph Aggregated Sum-Products (MGASPs) 43

Definition 16 (𝑨, cliques assigned by 𝜶 to ) Assume we have the clique

mappings 𝛼 ∶ {1,2} → () → (). Then we define a function 𝐴 to

obtain the maximal cliques in chordal graphs 1 and 2 mapped by 𝛼 to some

maximal clique in :

𝐴 ∶ {1,2} → () → (())
s.t. ∀ ∈ {1,2}, ∈ () ∶ 𝐴(,) = {′ ∶ ′ ∈ () ∧ 𝛼(′) = }

where (𝑆) is the powerset of set 𝑆.

With the concept of a computation graph  and a clique mapping 𝛼 from maximal

cliques in 1 and 2 to maximal cliques in , we shall revisit Problem 1.

Proposition 3 (SP is a marginalisation of SP𝜶(,)) For all  ∈
{1,2}, ∈ ():

SP = ∑
𝒙∈𝛼( ,)−

SP𝛼(,)(𝒙)

Proof for all  ∈ {1,2}, ∈ ():

∑
𝒙∈𝛼( ,)−

SP𝛼(,)(𝒙) = ∑
𝒙∈𝛼( ,)−

∑
𝒙∈𝑿−𝛼( ,)

[
∏

1∈(1)
𝜙1,1(𝒙, 𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙, 𝒙)]

= ∑
𝒙∈(𝑿−𝛼( ,))+(𝛼( ,)−)

[
∏

1∈(1)
𝜙1,1(𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙)]

= ∑
𝒙∈𝑿−

[
∏

1∈(1)
𝜙1,1(𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙)]

= SP

since ∀ ∈ {1,2}, ∈ () ∶  ⊆ 𝛼(,).

Problem 2 (Sum over factors of 2 chordal graphs (revisited)) Let 1

and 2 be chordal graphs with factors defined over their maximal cliques:

Φ1 =
{
𝜙1, ||  ∈ (1)

}

Φ2 =
{
𝜙2, ||  ∈ (2)

}

and computation graph  and clique mapping 𝛼. We wish to obtain the

following sum product for each maximal clique in 1 and 2:

∀ ∈ {1,2}, ∈ () ∶ SP(𝒙) = ∑
𝒙∈𝛼( ,)−

SP𝛼(,)(𝒙 , 𝒙)

44 Chapter 3. Computing Divergences between Joint Distributions

(a) Initial State

𝐶𝑎

𝐶𝑏 𝐶𝑐

𝐶𝑑

𝐶𝑒

𝜓𝑎

𝜓𝑏 𝜓𝑐

𝜓𝑑

𝜓𝑒

(b) After junction tree algorithm

𝐶𝑎

𝐶𝑏

𝜓𝑏

𝐶𝑐

𝜓𝑐

𝐶𝑑

𝐶𝑒

𝜓𝑒

∏𝑖 𝜓𝑖𝜓𝑑 ⋅ 𝜓𝑒
𝛽𝑎

𝜓𝑖 = ∏
1∈𝐴(1,𝑖)

𝜙1,1 ∏
2∈𝐴(2,𝑖)

𝜙2,2

𝛽𝑎 = 𝜓𝑎∑
𝒙∈

𝜓𝑏(𝒙)𝜓𝑐(𝒙)𝜓𝑑(𝒙)𝜓𝑒(𝒙)∏
𝑖
𝜓𝑖(𝒙)

Figure 3.1: Junction tree algorithm on computation graph  to

compute the sum product over the factors Φ1 and Φ2 defined over

maximal cliques of chordal graphs 1 and 2 respectively. We also

assume the computation graph  is not disconnected.

due to Proposition 3. Therefore, what we actually need to obtain is the following

sum-product for each maximal clique +
in the computation graph :

∀′ ∈ () ∶ SP′(𝒙′) = ∑
𝒙∈𝑋−′

[
∏

1∈(1)
𝜙1,1(𝒙′ , 𝒙)

] [
∏

2∈(2)
𝜙2,2(𝒙′ , 𝒙)

]
(3.6)

and to marginalise these sum-products to obtain SP , ∀ ∈ (1,2).

For the rest of this section, we will provide details on how we can use the JTA on

 using a set of specifically constructed factors to solve Problem 2. Specifically,

in Section 3.2.1 we will first show how to construct this set of specific initial

factors and how to use them with the JTA on a computation graph  that is

not disconnected. Then in Section 3.2.2, we will extend this to handling cases

when  is disconnected. Finally, in Section 3.3 we will go back to our original

problem of computing (ℙ, ℚ) and apply the methods developed in this section to

it. Discussions about computational complexity will be deferred to Section 3.4.

3.2.1  is a Connected Graph

Since SP , ∀ ∈ () are just sum products over the factors

Φ =
{
𝜙1, ||  ∈ (1)

}
⋃

{
𝜙2, ||  ∈ (2)

}

as defined in Problem 2, we can use the JTA over the computation graph of 1 and

2, , with factors Φ to obtain SP for each maximal clique in ().

3.2. Multi-Graph Aggregated Sum-Products (MGASPs) 45

Theorem 9 (SP can be obtained from JTA) Let 1 and 2 be chordal

graphs with factors defined over their maximal cliques, Φ1 and Φ2, and a

computation graph . Then, let Ψ be the set of factors formed by the product

of factors assigned to each maximal clique in .

Ψ ∶=

{

∏
1∈𝐴(1,)

𝜙1,1 ∏
2∈𝐴(2,)

𝜙2,2 ∶  ∈ ()

}

After running the junction tree algorithm over the junction tree of  with

factors Ψ, we will get the following beliefs over each maximal clique in :

∀ ∈ () ∶ 𝛽(𝒙) = SP(𝒙)

= ∑
𝒙∈𝑋−

[
∏

1∈(1)
𝜙1,1(𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙)]

Proof Recall from Section 2.2.4 that given a chordal graph  and a set of

factors Φ, the JTA provides the following belief for each maximal clique in the

junction tree/forest,  = ((),()), of the chordal graph :

∀ ∈  ∶ 𝛽(𝒙) = ∑
𝒙∈𝑋−

∏
𝜙∈Φ

𝜙(𝒙, 𝒙)

Therefore, by using the set of factors Ψ for the JTA:

Ψ ∶=

{

∏
1∈𝐴(1,)

𝜙1,1 ∏
2∈𝐴(2,)

𝜙2,2 ∶  ∈ ()

}

we directly obtain the following beliefs by simple substitution:

∀ ∈  ∶ 𝛽(𝒙) = ∑
𝒙∈𝑋−

∏
𝜓∈Ψ

𝜓(𝒙, 𝒙)

= ∑
𝒙∈𝑋−

∏
∈()

∏
1∈𝐴(1,)

𝜙1,1(𝒙, 𝒙) ∏
2∈𝐴(2,)

𝜙2,2(𝒙, 𝒙)

= ∑
𝒙∈𝑋−

∏
1∈(1)

𝜙1,1(𝒙, 𝒙) ∏
2∈(2)

𝜙2,2(𝒙, 𝒙)

= SP(𝒙)

since ∀ ∈ {1,2} ∶ ⋃∈() 𝐴(,) = ().

46 Chapter 3. Computing Divergences between Joint Distributions

𝐶𝑎

𝐶𝑏

𝜓𝑏

𝐶𝑐

𝜓𝑐

𝐶𝑑

𝐶𝑒

𝜓𝑒

∏𝑖 𝜓𝑖𝜓𝑑 ⋅ 𝜓𝑒
𝛽𝑎

SP𝑎 = 𝛽𝑎

(a) Junction Tree Computation

𝐶𝑎

𝐶𝑏

𝜓𝑏

𝐶𝑐

𝜓𝑐

𝐶𝑐

𝐶𝑒

𝜓𝑒

∏𝑖 𝜓𝑖
𝛽𝑎 𝛽𝑐

𝑆𝑃𝑎 = 𝛽𝑎∑𝒙∈ 𝛽𝑐(𝒙)

(b) Junction Forest Computation

Figure 3.2: Differences in get-

ting the clique beliefs over each

maximal clique in the computa-

tion graph  between a fully

connected and a disconnected

computation graph.

3.2.2  is a Disconnected Graph

In Section 3.2.1, we assumed that the computation graph for chordal graphs 1 and

2,  is not disconnected. However, this might not always be the case. In this

section, we will show how the methods in Section 3.2.1 can be extended to handle

cases where  is disconnected.

When the computation graph  is disconnected,  can be represented as a list of

chordal graphs,  = {𝑖}. Therefore, we also have a list of junction trees for each

chordal graph in ,  = {𝑖}, as well.

Definition 17 (𝝉, clique to junction tree mapping) Let 𝜏 be a mapping

from the maximal cliques of  to a junction tree in  that contains the maximal

clique:

𝜏 ∶ () → 
s.t. ∀ ∈ () ∶  ∈ (𝜏())

Since the disconnected computation graph, , is still strictly larger than the chordal

graphs 1 and 2, by Definition 14, there is still a mapping 𝛼 from maximal cliques

in 1 and 2 to maximal cliques in . However, since chordal graph  is now

comprised of multiple chordal graphs, and therefore junction trees, we are unable

to apply Theorem 9 directly to compute SP from Equation (3.5). The reason for

this is because there is no single junction tree to run the junction tree algorithm

on, therefore factors from different junction trees are unable to propagate to each

other.

Instead, we show in Theorem 10, that having a disconnected computation graph ,

and therefore a set of junction trees,  , which are disconnected from each other,

essentially decomposes SP into smaller sub-problems over each junction tree in

 . The results of these sub-problems can then be combined via multiplication to

compute SP. An illustration of the result from Theorem 10 and its difference in

computing SP on a fully connected  can be found in Figure 3.2.

Theorem 10 (SP for disconnected ) If the computation graph  for

chordal graphs 1 and 2 is disconnected, 𝑆𝑃 , ∀ ∈ () in Equation (3.6)

can be re-expressed as follows:

𝑆𝑃(𝒙) = 𝛽(𝒙) ∏
𝑖∈ −𝜏()

∑
𝒙∈𝑐(𝑖)

𝛽𝑐(𝑖)(𝒙 , 𝒙)

where 𝑐(𝑖) represents any clique in the set of maximal cliques in junction tree

𝑖.

3.2. Multi-Graph Aggregated Sum-Products (MGASPs) 47

Proof Recall from Equation (3.6), ∀𝐶 ∈ ():

SP(𝒙) = ∑
𝒙∈𝑋−

[
∏

1∈(1)
𝜙1,1(𝒙 , 𝒙)] [

∏
2∈(2)

𝜙2,2(𝒙 , 𝒙)]
(3.6)

Following the usual steps to initiate the junction tree algorithm, we define the

set of initial clique beliefs, Ψ, to use in the junction tree algorithm as such:

Ψ ∶=

{

∏
1∈𝐴(1,)

𝜙1,1 ∏
2∈𝐴(2,)

𝜙2,2
|||||
 ∈ ()

}

Then SP , ∈ () can be re-expressed in terms of these initial clique beliefs

𝜓:

SP(𝒙) = ∑
𝒙∈𝑋−

∏
′∈()

𝜓′(𝒙 , 𝒙)

Due to the independence between maximal cliques of different junction trees

in the junction forest  , we can split the sum in SP , ∈ () into a product

of sum-products over each junction tree in  :

𝑆𝑃(𝒙)

= ∑
𝒙∈𝑋−

∏
′∈()

𝜓′(𝒙 , 𝒙)

= ∑
𝒙∈𝑋−

∏
𝑇 ∈

∏
′∈(𝑇)

𝜓′(𝒙 , 𝒙)

= ∑
𝒙𝑇1∈(1)

⋯ ∑
𝒙𝜏(𝐶)∈(𝜏(𝐶))−

⋯ ∑
𝒙𝑇| |∈(𝑇| |)

∏
𝑇 ∈

∏
′∈(𝑇)

𝜓′(𝒙𝑇1 , … , 𝒙𝜏(𝑐), … , 𝒙𝑇| |)

=
(

∑
𝒙𝜏(𝐶)∈(𝜏(𝐶))−

∏
′∈(𝜏(𝐶))

𝜓′(𝒙𝜏(𝐶)))
∏

𝑇 ∈ −𝜏(𝐶)(
∑

𝒙𝑇 ∈(𝑇)

∏
′∈(𝑇)

𝜓′(𝒙𝑇))

= 𝛽(𝒙) ∏
𝑇 ∈ −𝜏(𝐶)

∑
𝒙∈𝐶(𝑇)

𝛽𝐶(𝑇)(𝒙 , 𝒙)

where 𝑖 is the 𝑖-th junction tree in the set of junction trees  .

Therefore, all we need to do in order to obtain the required beliefs is to run the

junction tree algorithm for each junction tree in  separately.

Once the computation for each junction tree in  is finished, we can compute

SP(𝒙) for all  ∈ (). Therefore, even if the computation graph  is discon-

nected, we can compute SP for all  ∈ ().

48 Chapter 3. Computing Divergences between Joint Distributions

3.3 Using MGASP to Compute (ℙ, ℚ)

Now that we have established MGASP to compute the sum-product over factors

of multiple chordal graphs, we shall return to our original problem of computing

(ℙ, ℚ) from Equation (3.4). Specifically, in this section, we will show how to

construct a specific set of factors over maximal cliques of ℙ and ℚ from (ℙ, ℚ)
such that using MGASP with this set of factors results in efficiently obtaining the

sum-products SP for each maximal clique  in the computation graph of ℙ and

ℚ. We then show how these sum-products are used in the computation of (ℙ, ℚ).

Recall we want to compute (ℙ, ℚ) as expressed in Equation (3.4):

(ℙ, ℚ) = ∑
∈(ℙ)

∑
𝒙∈

𝐿 (𝑔∗ [ℙ
] (𝒙)) SP(𝒙)+

∑
∈(ℚ)

∑
𝒙∈

𝐿 (ℎ∗ [ℚ
] (𝒙)) SP(𝒙)

(3.4)

where

SP(𝒙) = ∑
𝒙∈𝑋−

[
∏
∈ℙ

𝑔 [ℙ
] (𝒙 , 𝒙)][

∏
∈ℚ

ℎ [ℚ
] (𝒙 , 𝒙)]

(3.5)

From Section 3.2 we know that  ∈ {ℙ,ℚ}, ∈ () ∶ SP𝛼(,) can be computed

using the JTA over a computation graph  for ℙ and ℚ using the following

factors:

Ψ ∶=

{

∏
∈𝐴(ℙ,)

𝑔 [ℙ
] ∏

∈𝐴(ℚ,)
ℎ [ℚ

]
|||||
 ∈ ()

}

(3.7)

However, observe that the 2 nested sums in (ℙ, ℚ) have innermost sums over

 with similar forms but over different sets of maximal cliques, (ℙ) and (ℚ)
respectively. Therefore, using Theorem 11, we can re-express (ℙ, ℚ) such that the

sum over  of both nested sums are over the same set of maximal cliques, ()
which will allow us to use the method outlined in Section 3.2.

Theorem 11 (Mapping SP to maximal cliques of ) Assume we have 2

decomposable models ℙℙ and ℚℚ and a computation graph  for both models.

By Definition 14, we also have a mapping 𝛼 from maximal cliques in ℙℙ
and ℚℚ to maximal cliques in . Then the following equivalence holds for

3.3. Using MGASP to Compute (ℙ, ℚ) 49

(𝔻, 𝑓) ∈ {(ℙ, 𝑔∗), (ℚ, ℎ∗)}:

∑
∈(𝔻)

∑
𝒙∈

𝐿 (𝑓 ∗ [𝔻
] (𝒙)) SP(𝒙)

= ∑
∈(𝔻)

∑
𝒙𝛼(𝔻,)∈
𝛼(𝔻,)

𝐿 (𝑓 ∗ [𝔻
] (𝒙𝛼(𝔻,))) SP𝛼(𝔻,)(𝒙𝛼(𝔻,))

(3.8)

Proof Starting from the left hand side of Equation (3.8), we can split the

innermost sum into 2 sums, one over the set 𝛼(𝔻,)− and 𝑋−𝛼(𝔻,), then

move the sum over 𝛼(𝔻,)− outside and merge it with the sum over  :

∑
∈𝔻

∑
𝒙∈

𝐿 (𝑔∗ [𝔻
] (𝒙)) SP(𝒙)

= ∑
∈𝔻

∑
𝒙∈

𝐿 (𝑔∗ [𝔻
] (𝒙)) ∑

𝒙∈𝑋−

(𝑔 [𝔻] (𝒙 , 𝒙))(ℎ [ℚ] (𝒙 , 𝒙))

= ∑
∈𝔻

∑
𝒙∈

𝐿 (𝑔∗ [𝔻
] (𝒙)) ∑

𝒙∈𝑋−𝛼(𝔻,)+𝛼(𝔻,)−

(𝑔 [𝔻] (𝒙 , 𝒙))(ℎ [ℚ] (𝒙 , 𝒙))

= ∑
∈𝔻

∑
𝒙∈

∑
𝒙′∈𝛼(𝔻,)−

𝐿 (𝑔∗ [𝔻
] (𝒙 , 𝒙′))

∑
𝒙∈𝑋−𝛼(𝔻,)

(𝑔 [𝔻] (𝒙 , 𝒙, 𝒙′))(ℎ [ℚ] (𝒙 , 𝒙, 𝒙′))

= ∑
∈𝔻

∑
𝒙𝛼(𝔻,)∈𝛼(𝔻,)

𝐿 (𝑔∗ [𝔻
] (𝒙𝛼(𝔻,)))

∑
𝒙∈𝑋−𝛼(𝔻,)

(𝑔 [𝔻] (𝒙𝛼(𝔻,), 𝒙))(ℎ [ℚ] (𝒙𝛼(𝔻,), 𝒙))

= ∑
∈𝔻

∑
𝒙𝛼(𝔻,)∈𝛼(𝔻,)

𝐿 (𝑔∗ [𝔻
] (𝒙𝛼(𝔻,))) SP𝛼(𝔻,)(𝒙𝛼(𝔻,))

Thanks to Theorem 11, we can re-express the functional  between 2 decomposable

models in Equation 3.4 as such:

(ℙℙ , ℚℚ) =

⎡
⎢
⎢
⎢
⎢
⎣

∑
𝐶∈(ℙ)

∑
𝒙𝛼(ℙ,𝐶)∈
𝛼(ℙ,𝐶)

𝐿 (𝑔∗ [ℙ
𝐶 (𝒙𝛼(ℙ,𝐶))]) SP𝛼(ℙ,𝐶)(𝒙𝛼(ℙ,𝐶))

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∑
𝐶∈(ℚ)

∑
𝒙𝛼(ℚ,𝐶)∈
𝛼(ℚ,𝐶)

𝐿 (ℎ∗ [ℚ
𝐶 (𝒙𝛼(ℚ,𝐶))]) SP𝛼(ℚ,𝐶)(𝒙𝛼(ℚ,𝐶))

⎤
⎥
⎥
⎥
⎥
⎦

With that, we will now obtain all instances of SP𝛼(,), ∈ {ℙ,ℚ} by running the

JTA over the junction tree of  with the set of initial factors Ψ in Equation (3.7).

50 Chapter 3. Computing Divergences between Joint Distributions

Therefore, using the junction tree algorithm, we obtain beliefs over each maximal

clique in the chordal graph  that we can use to substitute for SP in Equation (3.4):

(ℙ, ℚ) = ∑
∈(ℙ)

∑
𝒙𝛼(ℙ,)∈
𝛼(ℙ,)

𝐿 (𝑔∗ [ℙ
] (𝒙𝛼(ℙ,))) 𝛽𝛼(ℙ,)(𝒙𝛼(ℙ,))+

∑
𝐶∈(ℚ)

∑
𝒙𝛼(ℚ,)∈
𝛼(ℚ,)

𝐿 (ℎ∗ [ℚ
] (𝒙𝛼(ℚ,))) 𝛽𝛼(ℚ,)(𝒙𝛼(ℚ,))

(3.9)

Now that the main computationally heavy part of computing (ℙ, ℚ) is done,

we can compute the sums in Equation (3.9) directly. Section 3.4 will show that

the complexity of computing the expression in Equation (3.9), and in general, the

complexity of using MGASP to compute  between 2 decomposable models, is

 (|𝑿| ⋅ 2𝜔()), where  is the computation graph of ℙ and ℚ. Therefore, using

MGASP is more efficient than (2𝑋−𝐶), the complexity of computing  directly,

when  is not a fully saturated graph.

3.4 Complexity of Computing 𝛼𝛽-Divergence be-
tween Joint Distributions of Decomposable
Models

We can determine the computational complexity of computing the 𝛼𝛽-divergence

between 2 decomposable models by first checking what the given values for 𝛼 and

𝛽 are. This step takes (1) time. When 𝛼, 𝛽 = 0, from Theorem 8 we know that the

complexity of computing 𝐷0,0
𝐴𝐵(ℙ||ℚ) is:

𝐷0,0
𝐴𝐵(ℙ, ℚ) ∈ (|𝑿|2 ⋅ 𝜔max ⋅ 2𝜔max+1)

where 𝜔() is the treewidth of some chordal graph  and 𝜔max =
max(𝜔(ℙ), 𝜔(ℚ)).

When 𝛼 and 𝛽 take values other than 0, we require the use of MGASP, as described in

Section 3.2, to compute parameterisations of  between the decomposable models.

In general, the 𝛼𝛽-divergence is a linear combination of different parameterisations

of  . Therefore, the complexity of computing the 𝛼𝛽-divergence is equivalent to

computing  in big-O notation. As such, for the remainder of this section, we will

discuss the overall complexity of MGASP for computing  between 2 decomposable

models.

The first step of MGASP involves assigning factors constructed from the conditional

probability tables over the maximal cliques in models ℙℙ and ℚℚ to maximal

cliques in the computation graph . Therefore, for each factor 𝜓, and therefore for

3.5. Runtime Comparison with Existing Method 51

each maximal clique in ℙℙ and ℚℚ , we will need to search through each maximal

clique in  in the worst case, to find a suitable clique to assign the factor 𝜓 to. This

results in the following complexity:

(|(ℙ)| ⋅ |()|) + (|(ℙ)| ⋅ |()|) ∈ (|𝑿|2)

since the number of maximal cliques in any chordal graph is bounded by the number

of vertices in the graph.

Once all the relevant factors have been assigned to their respective maximal cliques

in , we need to run the junction tree algorithm to calibrate the clique tree/forest

of  with these factors. The complexity of the junction tree algorithm is:

(|()| ⋅ 2𝜔()+1) ∈ (|𝑿| ⋅ 2𝜔()+1)

Once the clique tree/forest is calibrated and we know 𝛽𝛼() for all  ∈ (ℙ)∪(ℚ),
we can compute Equation (3.9):

(ℙ, ℚ) = ∑
𝐶∈(ℙ)

∑
𝒙𝛼(𝐶)∈
𝛼(𝐶)

𝐿 (𝑔∗ [ℙ
𝐶] (𝒙𝛼(𝐶))) 𝛽𝛼(𝐶)(𝒙𝛼(𝐶))+

∑
𝐶∈(ℚ)

∑
𝒙𝛼(𝐶)∈
𝛼(𝐶)

𝐿 (ℎ∗ [ℚ
𝐶] (𝒙𝛼(𝐶))) 𝛽𝛼(𝐶)(𝒙𝛼(𝐶))

∈ ((ℙ) ⋅ 2𝜔()+1) + ((ℚ) ⋅ 2𝜔()+1)
∈ (|𝑿| ⋅ 2𝜔()+1)

Adding up the computational complexity of each step in MGASP results in the final

complexity of computing the functional  between 2 decomposable models ℙℙ
and ℚℚ :

(|𝑿|2) + (|𝑿| ⋅ 2𝜔()+1) + (|𝑿| ⋅ 2𝜔()+1) ∈ (|𝑿| ⋅ 2𝜔()+1)

Therefore, the computational complexity of computing the 𝛼𝛽-divergence between

ℙℙ and ℚℚ is:

𝐷(𝛼,𝛽)
𝐴𝐵 (ℙ||ℚ) ∈

{
(|𝑿|2 ⋅ 𝜔max ⋅ 2𝜔max+1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2𝜔()+1) otherwise

(3.10)

3.5 Runtime Comparison with Existing Method

Recall that a method already exists for computing the KL divergence between

2 BNs (Moral et al. 2021) which we will refer to as mcgo. Also note that it is

possible to take a distribution represented by a BN and, in exchange for some loss

52 Chapter 3. Computing Divergences between Joint Distributions

time (seconds)

Network mcgo MGASP Time Reduction

cancer 0.0153 𝟎.𝟎𝟏𝟎𝟖 29.41 %

earthquake 𝟎.𝟎𝟏𝟏𝟐 𝟎.𝟎𝟏𝟏𝟐 0.00 %

survey 0.0157 𝟎.𝟎𝟏𝟎𝟑 34.39 %

asia 0.0193 𝟎.𝟎𝟏𝟕𝟗 7.25 %

sachs 0.0500 𝟎.𝟎𝟏𝟕𝟎 66.00 %

child 0.0848 𝟎.𝟎𝟒𝟒𝟒 47.64 %

insurance 0.4400 𝟎.𝟏𝟔𝟗𝟒 61.50 %

water 12.0979 𝟖.𝟏𝟔𝟖𝟑 32.48 %

mildew 𝟐𝟐.𝟓𝟕𝟐𝟑 24.9018 −9.35 %

alarm 0.3586 𝟎.𝟎𝟗𝟕𝟒 72.84 %

hailfinder 0.9455 𝟎.𝟏𝟖𝟔𝟖 80.24 %

hepar2 1.4656 𝟎.𝟐𝟓𝟓𝟔 82.56 %

win95pts 1.1361 𝟎.𝟒𝟎𝟕𝟑 64.15 %

barley - 𝟔.𝟒𝟐𝟓𝟐 -

Table 3.1: Runtimes for the mcgo and MGASP on computing the KL

divergence between 2 BNs. Faster times are in bold.

in independence information, represent it using a DM instead (Koller & Friedman,

2009, p.p. 134). Therefore, one might ask: how does the practical runtime of MGASP

compare to mcgo when computing the KL divergence between 2 BNs?

Unfortunately, Moral et al. did not provide a theoretical characterisation of the

runtime complexity of their approach. Therefore, to answer this question, we will

instead replicate the experiment used by Moral et al. They chose a set of BNs from

the bnlearn (Scutari, 2010) repository (https://www.bnlearn.com/bnrepository/)

to sample from and estimated a second BN from these samples. The authors

have provided these estimated BNs for each of the BNs from bnlearn used in their

experiments in their code repository: https://github.com/mgomez-olmedo/KL

-pgmpy. Therefore, we will use this set of BN from their repository in our own

experiments.

Now that we have multiple pairs of BNs, one original and one estimated from

samples, we then compute the KL divergence between each BN pair using both

mcgo and MGASP. We repeat this 10 times in order to get an estimate of both

methods’ runtime in seconds. We also do not factor in the conversion of these BNs

into DMs in the final runtime.

Theoretically, both methods should compute the exact same value for the KL diver-

gence between each network pair. However, practically, discrepancies can occur

due to how each method handles cases where the KL divergence is theoretically

undefined (i.e. cases where the probability of a cell is non-zero in ℙ but zero in ℚ).

https://www.bnlearn.com/bnrepository/
https://github.com/mgomez-olmedo/KL-pgmpy
https://github.com/mgomez-olmedo/KL-pgmpy

3.6. Case Study: KL Divergence in Model Selection 53

We run the experiments on an Intel NUC-10i7FNH with 64GB of RAM. The im-

plementation of both methods are in Python and use the pgmpy library (Ankan &

Panda, 2015). The repository for the implementation for our proposed method is

https://gitlab.com/lklee/div-comp. The results on the “barley” network for mcgo

are missing due to a lack of available memory on the system.

From the results in Table 3.1, we can observe that despite mcgo containing numerous

computation optimisations, our direct application of belief propagation to carry out

the computation has a practical runtime that is comparable to mcgo. Furthermore,

on some networks, MGASP is faster than mcgo, probably due to having a lower

overhead and being better able to leverage the optimized code in the pgmpy library

for the bulk of the computation.

3.6 Case Study: KL Divergence in Model Selection

Although allowing for a simpler implementation that can leverage existing library

implementations of the junction tree algorithm for most of the computation is

a satisfactory result by itself, recall that the original motivation of MGASP is to

compute a wider range of divergences between graphical models. Therefore, in

order to motivate the need of using divergences other than the KL divergence, in

this section we present a case study on the application of computing divergences

between BNs for the problem of model selection.

Consider a scientist who, in an attempt to model a natural phenomenon that they

have samples from, constructs 2 candidate BNs, 𝐴 and 𝐵, either from theory or some

other expertise about the phenomenon. They then wish to determine, using the

samples, which candidate model is a better representation of the phenomenon they

wish to model. One way to do this, is to estimate a new BN, 𝐸, from the samples

and compute the divergence between 𝐸 and the candidate models.

In order to recreate this scenario synthetically, we use the BN sachs from the

bnlearn repository (Scutari, 2010) as the “phenomenon” the scientist wishes to

model. The scientist’s “candidate models” are then constructed by removing edges

from sachs and marginalising the CPTs according to (Choi et al. 2005).

Specifically candidate model 𝐴 is obtained by removing the following directed

edges:

• PKA→ Raf

• PKC→ PKA

• Plcg→ PIP3

https://gitlab.com/lklee/div-comp

54 Chapter 3. Computing Divergences between Joint Distributions

while candidate model 𝐵 is obtained by removing the following directed edges:

• PKC→ Raf

• PKC→ Mek

• PKA→ Mek

On the deletion of an edge 𝑌 → 𝑋 , the CPT of 𝑋 is marginalised as follows (Choi

et al. 2005) where 𝒁 = parents(𝑋) ⧵ 𝑌 :

ℙ′
𝑋 |𝒁(𝑥|𝒛) ∶= ∑

𝑦∈Dom(𝑌)

ℙ𝑋|𝑌 ,𝒁(𝑥|𝑦, 𝒛)ℙ𝑌 (𝑦)

Sampling 100000 samples from sachs, we then learn BN 𝐸 from these samples

using the constraint-based structure learner in pgmpy and maximum likelihood
estimation with Laplace smoothing for learning the parameters of 𝐸. The use of

a smoothing technique is to ensure that the KL divergence is defined. We then

compute the Hellinger and KL divergence between the candidate models and the

estimated model: 𝐷(A||E) and 𝐷(B||E). We repeat the experiment 20 times, with

different random samples from sachs.

From the results in Table 3.2, we can observe that the KL divergence indicates that

𝐴 is the BN closest to 𝐸 and that the scientist should choose 𝐴, while the Hellinger

distance indicates the opposite, choosing 𝐵 instead. With this discrepancy, the

question then is, which candidate model,𝐴 or 𝐵, is actually the closer approximation

to the actual phenomenon, and therefore, which divergence is correct.

Since, for the purpose of this case study, we already have the true model of the

“phenomenon” we are modelling, we can just compute the divergence between our

candidate models and sachs to get an answer.

From Table 3.3, we can observe that when computing the divergence from the

candidate models and sachs, both divergences agree that 𝐵 is closer to sachs.

Consequently, in our case study, our scientist would have chosen the incorrect

model if they only used the KL divergence in their experiment.

Of course, it might be possible to avoid such a scenario if a different smoothing

technique is used to learn the parameters of 𝐸. However, the use of multiple

divergences is still needed in order for the scientist to even be aware of possible

issues in the smoothing technique used in the first place. In general, the main

takeaway from this example should be that, one must not be over-reliant on just

a single divergence, and the use of a wide array of divergences can be helpful in

avoiding mistakes in model selection.

3.6. Case Study: KL Divergence in Model Selection 55

run
Kullback-Leibler Hellinger

𝐴||𝐸 𝐵||𝐸 𝐴, 𝐸 𝐵, 𝐸

0 0.4034 0.5420 0.3030 0.2927
1 0.3989 0.5116 0.3008 0.2894
2 0.3976 0.5167 0.3014 0.2905
3 0.4015 0.5153 0.3021 0.2904
4 0.3993 0.5215 0.3017 0.2908
5 0.4017 0.5260 0.3027 0.2918
6 0.3962 0.5153 0.3007 0.2897
7 0.4060 0.5088 0.3036 0.2888
8 0.3971 0.5252 0.3008 0.2914
9 0.4021 0.5243 0.3027 0.2904
10 0.3973 0.5411 0.3013 0.2928
11 0.4050 0.5142 0.3036 0.2890
12 0.4016 0.5042 0.3023 0.2889
13 0.4022 0.5140 0.3030 0.2888
14 0.4013 0.5227 0.3024 0.2911
15 0.4000 0.5172 0.3021 0.2891
16 0.4045 0.5111 0.3032 0.2896
17 0.3967 0.5120 0.3014 0.2893
18 0.4041 0.5126 0.3029 0.2898
19 0.4080 0.5140 0.3045 0.2907

mean 0.4012 0.5185 0.3023 0.2902

std. err. 0.0033 0.0097 0.0010 0.0012

Table 3.2: Divergence between the candidate models and a Bayesian

network estimated from 20 randomly sampled datasets of size 10000.

Lower time in bold.

𝐴||sachs 𝐵||sachs

Kullback-Leibler 0.3687 0.3090
Hellinger 0.3013 0.2921

Table 3.3: Divergence between the candidate models and the original

Bayesian network sachs. Lower time in bold.

56 Chapter 3. Computing Divergences between Joint Distributions

3.7 Conclusion

In conclusion, we showed how computing the functional  , and therefore the

𝛼𝛽-divergence, between the joint distribution represented by 2 DMs is equivalent

to belief propagation on a clique tree/forest with a set of specific initial factors

defined based on how the joint distribution of DMs decomposes the functional  .

The result is a method for computing the sum-product over factors from multiple

chordal graphs, multi-graph aggregated sum-product (MGASP), with complexity

exponential to the treewidth of the computation graph  of the given chordal

graphs. Therefore, using MGASP is more efficient than computing the  between

the DMs directly unless  is a fully saturated graph.

Another advantage of MGASP over previous methods is that it can be easily imple-

mented in any environment that has a preexisting implementation of the JTA. Fur-

thermore, since MGASP is capable of computing the general functional  between

the joint distribution of 2 DMs, it is capable of computing, or even providing an

approximation, of other divergences or functionals, and not just the 𝛼𝛽-divergence.

57

Chapter 4

Computing Divergence between
Marginal Distributions

High-dimensionality can negatively impact the ability to analyse and understand

occurrences of concept drift/shift between multiple high-dimensional distributions.

In fact, if we were to take 2 distributions and measure the divergence between

them, but for only a subset of variables within these distributions, we will find

that as we increase the number of variables within this subset, the divergence

measured between the distributions will only increase or stay the same (Webb et al.

2018). Therefore, as dimensionality increases, we are increasing likely to encounter

situations where the marginal distribution over only a small subspace, i.e. variable

subset, consistently changes, causing the divergence between the joint distributions

to be consistently high. Therefore, the ability to measure the divergence between

the subspaces of two high-dimensional distributions is vital for the analysis and

understanding of distributional changes in high dimensions.

However, the problem with trying to compute the divergence between the marginal

distributions of two DMs is that the marginal distributions don’t necessarily have

an immediate decomposition similar to the joint distribution of a DM.

To better illustrate this problem, first recall that the joint distribution of a DM 𝔻𝔻
decomposes based on its maximal cliques and minimal separators:

𝔻𝑿 =
∏∈(𝔻)𝔻

∏∈(𝔻)𝔻
= ∏

∈(𝔻)
𝔻



Then the marginal distribution over variables 𝒁 ⊂ 𝑿 represented by DM 𝔻𝔻 is

obtained by marginalising the variables 𝒀 = 𝑿 ⧵ 𝒁 :

𝔻𝒁 = ∑
𝒚∈

𝔻𝑿(𝒚) = ∑
𝒚∈

∏
∈(𝔻)

𝔻
 (𝒚) (4.1)

resulting in the marginal distribution 𝔻𝒁 with the domain  which grows expo-

nentially with respect to the number of variables in 𝒁 . Therefore, in situations

58 Chapter 4. Computing Divergence between Marginal Distributions

where |𝒁| is large, which is likely in high-dimensional problems, working with 𝔻𝒁

directly is infeasible.

In order to avoid this problem, we need to find a decomposition of the marginal

distribution 𝔻𝒁 that will allow for a more compact representation and which

decomposes  into smaller sub-problems. Such a decomposition will involve

splitting 𝔻𝒁 into a product of smaller independent marginalising sums. More

formally, we want to find a decomposition, for marginal distributions 𝔻𝒁 ∈ {ℙ𝒁 , ℚ𝒁},
of the following form:

𝔻𝒁 = ∑
𝒀 ∈

∏
∈()

𝔻
 (𝒚) = ∏

𝐵∈
∑
𝒚𝐵∈𝐵

∏
∈((𝐵))

𝔻
𝐵 (𝒚𝐵) (4.2)

for some setwhere ∀𝐵 ∈  ∶ 𝐵 ⊆ 𝑉 (𝔻). Therefore, we shall tackle the problem of

finding a decomposition for a marginal distribution 𝔻𝒁 of the DM 𝔻𝔻 in Section 4.1.

However, in order to use the methods described in Chapter 3 to assist in computing

the marginal divergence between DMs ℙℙ and ℚℚ , we require the decomposition

of ℙ𝒁 and ℚ𝒁 to be expressed in terms of a product of factors defined over the

maximal clique of some chordal graph, or in other words, for a DM 𝔻 ∈ {ℙℙ , ℚℚ}
we want to express 𝔻𝒁 in terms of

𝔻𝒁 = ∑
𝒀 ∈

∏
∈()

𝔻
 (𝒚) = ∏

′∈(′)
𝜙′ (4.3)

We will show how to find the chordal graph ′
and factors

{
𝜙 ∶  ∈ (′)

}
where

such a decomposition is possible in Section 4.2.

Then in Section 4.3, we show how to use the constructs developed throughout this

chapter to compute the 𝛼𝛽-divergence between the marginal distributions of two

DMs.

We wrap up the technical portion of this chapter in Section 4.4 with a discussion on

the computational complexity of the method developed in this chapter and how its

computational complexity varies greatly depending on the set of marginal variables

𝒁 . We then conclude and summarise this chapter in Section 4.5

4.1 Decomposing Marginal Distributions of a De-
composable Model

In order to tackle the problem of finding a decomposition of marginal distributions

encoded in a DM with the form in Equation (4.2), we will first introduce concepts

and tools that will help us further break down and better conceptualise the problem.

The first of these concepts is a partition of the chordal graph’s maximal cliques

4.1. Decomposing Marginal Distributions of a Decomposable Model 59

that also partitions the variables we wish to sum out, 𝒀 . This partition, which

we will call the  -partition, will help us split the sum in Equation (4.1) into a

product of smaller sums over the variables in each partition. This then achieves

the decomposition set out in Equation (4.2).

Definition 18 ( -partitions) Let  be a chordal graph with clique

tree/forest  (), and 𝒀 ⊂ 𝑿 be a subset of the variables in . Then any

set,  ,𝒀 , that is an  -partition of  and 𝒀 , has the following properties:

1. The elements of  ,𝒀 are subsets of the vertices of ,

∀𝑁 ∈  ,𝒀 ∶ 𝑁 ⊂ 𝑉 ()

2. {((𝑁)) ∣ 𝑁 ∈  ,𝒀 } is a partition of the maximal cliques of ,

⋃
𝑁∈ ,𝒀

((𝑁)) = ()

∀𝑁 , 𝑁 ′ ∈  ,𝒀 ∶ 𝑁 ≠ 𝑁 ′ ⇒ ((𝑁)) ∩ ((𝑁 ′)) = ∅

3. {𝒀 ∩ 𝑿𝑁 ∣ 𝑁 ∈  ,𝒀 , 𝒀 ∩ 𝑿𝑁 ≠ ∅} is a partition of 𝒀 ,

⋃
𝑁∈ ,𝒀

𝒀 ∩ 𝑿𝑁 = 𝒀

∀𝑁 , 𝑁 ′ ∈  ,𝒀 ∶ 𝑁 ≠ 𝑁 ′ ⇒ 𝒀 ∩ 𝑿𝑁 ∩ 𝑿𝑁 ′ = ∅

4. { ((𝑁)) ∣ 𝑁 ∈  ,𝒀 } are subtrees of the junction tree/forest  ()

Therefore, for any chordal graph  and variable subset 𝒀 , the trivial  ,𝒀 =
{𝑉 ()} will always exist. Note that there might be sets in  ,𝒀 that do not

contain any vertices for 𝒀 . Furthermore, although  ,𝒀 partitions the variables

in 𝒀 , it does not partition all the variables in 𝑿 .

The way we will obtain these partitions in this thesis is to take the junction

tree/forest of  and remove any minimal separators that do not contain any vari-

ables in 𝒀 . This procedure results in multiple trees, each representing a single

partition 𝑁𝑖.

Example 1 Consider a chordal graph  with the junction tree in Figure 4.1a

with 𝒀 = {2, 4, 5, 6, 8}. In order to construct a  -partition for  with variables

𝒀 ,  ,𝒀 , we can remove the edges in the junction tree of  that do not contain

vertices associated with variables in 𝒀 . Specifically, in the junction tree in

Figure 4.1a, we can only remove 2 edges:

60 Chapter 4. Computing Divergence between Marginal Distributions

1, 2

2, 3, 4

3, 5

5, 6

4, 7

7, 8

(a) Clique tree of a chordal graph.

1, 2 2, 3, 4 4, 7

3, 5 5, 6

7, 8

𝑁1:

𝑁2:

𝑁3:

(b) One possible  -partition for

variables of interest.

Figure 4.1: A clique tree and pos-

sible  -partitions for the vari-

ables highlighted in red.

1. the edge between the cliques (2, 3, 4) and (3, 5) as the edge between them

only contains vertex 3 and 𝑋3 ∉ 𝒀 ,

2. the edge between the cliques (4, 7) and (7, 8) as the edge between them

only contains vertex 7 and 𝑋7 ∉ 𝒀 .

Removing these two edges from the junction tree of  results in three separately

connected subtrees, and therefore three sets in the partition  ,𝒀 as we can

see in Figure 4.1b.

With the concept of  -partitions established, we can now revisit the problem in

Equation (4.2) of finding a decomposition of over probability distributions modelled

by decomposable models 𝔻𝒁 ∈ {ℙ𝒁 , ℚ𝒁}. First, for the sake of brevity, let:

𝔻,𝒀 ∶=  𝔻,𝒀

∀𝑁𝑖 ∈ 𝔻,𝒀 ∶ 𝑾 (𝑖) = 𝒀 ∩ 𝑿𝑁𝑖

then

𝔻𝒁 = ∑
𝒚∈

∏
∈(𝔻)

𝔻
 (𝒚)

= ∑
𝒚∈

∏
𝑁∈𝔻,𝒀

∏
∈(𝔻(𝑁))

𝔻
 (𝒚)

= ∏
𝑁∈𝔻,𝒀

∑
𝒘(𝑖)∈ (𝑖)

∏
∈(𝔻(𝑁))

𝔻
 (𝒘

(𝑖))

due to  𝔻,𝒀 partitioning 𝒀 and (𝔻) as defined in Definition 18. For ease of

notation, let us define the function 𝝋 to act as a shorthand for the marginalising

sum over  (𝑖)
.

Definition 19 (Marginal  -probability, 𝝋) Let 𝔻𝔻 be a decomposable

model, 𝑁 ⊂ 𝑉 (𝔻) be a subset of vertices in 𝔻, and 𝒀 ⊂ 𝑿 be a subset of

variables in 𝔻𝔻 . Then we define a functional, 𝜑, that returns a factor that is

equivalent to summing over the variables 𝒀 out of the product over the CPTs

of (𝔻(𝑁)).

𝜑𝑁−𝒀 [𝔻] = ∑
𝒘∈

∏
∈(𝔻(𝑁))

𝔻
 (𝒘)

where

𝑾 = 𝒀 ∩ 𝑿𝑁

4.1. Decomposing Marginal Distributions of a Decomposable Model 61

and through a slight abuse of notation

𝑁 − 𝒀 ∶= 𝑁 ⧵ 𝑉 (𝒀) = 𝑁 ⧵ 𝑉 (𝑾)

as in 𝑁 − 𝒀 is the set of vertices in 𝑁 minus the vertices associated with the

variables 𝒀 .

Note that it is possible for the marginal  -probability 𝜑𝑁−𝒀 to be defined over

the empty set when 𝑁 − 𝒀 = {} ⇔ 𝑾 = 𝑿𝑁 . In such situations, 𝜑𝑁−𝒀 is just a

scalar factor, i.e. a number in ℝ.

With this in mind, we shall define a function 𝝋 that returns a set of marginal

 -probabilities given an  -partition  ,𝒀 :

𝝋( ,𝒀) ∶=
{
𝜑𝑁−𝒀

||| 𝑁 ∈  ,𝒀

}
(4.4)

In order to fully illustrate how the marginal  -probability 𝜑 can be computed,

let us consider an example of finding the marginal  -probability of a set in the

 -partition in Figure 4.1b, specifically set 𝑁2 in Figure 4.1b, 𝜑𝑁2−𝒀 .

Example 2 Consider the  -partition in Figure 4.1b for the chordal graph

described in Example 1. The marginal  -probability 𝜑𝑁2−𝒀 is:

𝜑𝑁2−𝒀 [𝔻](𝒙3) = ∑
𝒘∈5,6

𝔻
3,5(𝒘, 𝑥3)𝔻


5,6(𝒘, 𝒙3)

Therefore, obtaining the factor 𝜑𝑁2−𝒀 requires carrying out the sum over 5,6 for

each values in 3, thus having a complexity of (23). That said, by borrowing

ideas from belief propagation on junction trees, the sum in 𝜑𝑁2−𝒀 can then be

decomposed

𝜑𝑁2−𝒀 [𝔻](𝒙5) = ∑
𝒘∈5

𝔻
3,5(𝒘, 𝒙5) ∑

𝒘∈6

𝔻
5,6(𝒘, 𝒙5)

resulting in both an inner and outer sum that has a computational complexity

of (22) for similar reasons. Therefore, this decomposition results in a lower

complexity in obtaining 𝜑𝑁2−𝒀 .

With the decomposition in Example 2 in mind, one might ask: what is the worst

case computational complexity for obtaining the marginal  -probability for some

set in a  -partition and some marginal variable set 𝒁 = 𝑿 − 𝒀 of a DM?

Proposition 4 (Worst case complexity of obtaining 𝝋) Let 𝑁 be some

vertex set from an  -partition and 𝒀 ⊂ 𝑿 be the variables we wish to

62 Chapter 4. Computing Divergence between Marginal Distributions

marginalise out of the joint distribution of a DM. Then the worst case compu-

tational complexity for obtaining the marginal  -probability 𝜑𝑁−𝒀 is

(2|𝑁 |)

Proof In general we know that the upper bound for the complexity of obtain-

ing some marginal  -probability 𝜑𝑁−𝒀 is (2|𝑁 |) since computing it directly

will require us to:

1. iterate through each possible value in 𝑁−𝒀 , requiring a complexity of

(2|𝑁−𝒀 |)

2. for each value 𝒛 ∈ 𝑁−𝒀 , sum over all values in𝒀 , requiring a complexity

of (2|𝒀 |)

But as we can see from Example 2, decomposition of the marginalising sum can

reduce the computational complexity by orders of magnitude. However, we

will now show that there can be situations where such a decomposition is not

possible, resulting in a the same complexity as the upper bound we provided

earlier, (2|𝑁 |).

Consider a decomposable model with the chordal graph structure

 = ({1, 2, 3}, {(1, 2), (2, 3)}). Assume that in this example 𝒀 = {2} and that we

want to find the marginal  -probability 𝜑{1,2,3}−{2}.

𝜑{1,2,3}−{2}[𝔻](𝒙1,3) = ∑
𝒘∈2

𝔻
1,2(𝒘, 𝒙1,3)𝔻

2,3(𝒘, 𝒙1,3)

As we can observe, no decomposition of the sum in 𝜑{1,2,3}−{2} can occur since

the sum is only over the domain of a single variable, 𝑿2. Therefore, the final

complexity of obtaining 𝜑{1,2,3}−{2}

(23) = (2|{1,2,3}|)

the same complexity as the upper bound complexity we provided at the start

of this proof. Therefore, the worst case complexity of computing the marginal

sum for any set 𝑁 in an  -partition is

(2|𝑁 |)

Now that we have established the concept of a marginal  -probability 𝜑, we can

use the set of marginal  -probabilities of an  -partition, 𝝋, to express 𝔻𝒁 in a

4.2. Reframing the Problem 63

more compact manner:

𝔻𝒁 = ∏
𝑁∈𝔻,𝒀

𝜑𝑁−𝒀 [𝔻] (4.5)

4.2 Reframing the Problem

Although we now have a decomposition of the marginal distribution 𝔻𝒁 encoded

in a DM 𝔻 , the ability to compute the 𝛼𝛽-divergence between these decomposed

marginal distributions is still not clear. Recall that the methods to compute the

joint distribution of two DMs in Chapter 3 require chordal graphs with factors

defined over the maximal cliques of each chordal graph. Therefore, in order to use

the methods in Chapter 3 to compute 𝔻𝒁 , we need to find an expression of the

decomposition of 𝔻𝒁 that is equivalent to a product of factors over some arbitrary

chordal graph ′
. Specifically, in this section, we will show how to obtain an

expression of 𝔻𝒁 where this arbitrary chordal graph ′
has maximal cliques based

on the sets in an  -partition of  for marginal variables 𝒁 ⊂ 𝑿 , and factors that

are the set of marginal  -probabilities 𝝋 from Definition 19.

The first step we can take to try and obtain the needed alternate chordal graph

′
is to formalise the idea of constructing a new chordal graph where the graph’s

maximal cliques are the sets in an  -partition. Furthermore, since SP𝑁−𝒀 and the

factors it sums over are not defined over any variables in 𝒀 , when constructing

this new graph, we should also remove any vertices associated with variables in

𝒀 . Therefore, we will define a new function Γ that will help give us the graphs we

need given an  -partition.

Definition 20 ( -graphs, 𝚪(𝑨, ,𝒀)) Let  be a chordal graph with an  -

partition over variables 𝒀 ,  ,𝒀 , and 𝐴 ⊆ 𝑿 be some subset of all the variables

𝑿 . Then we shall define the function Γ that returns a graph where its maximal

cliques are partitions in  ,𝒀 but with only the vertices associated with the

variables in 𝐴:

𝑉 (Γ(𝐴, ,𝒀)) = 𝑉 (𝐴)⋂(⋃ ,𝒀)

𝐸(Γ(𝐴, ,𝒀)) =
{
(𝑣, 𝑢) ||| 𝑁 ∈  ,𝒀 , (𝑣, 𝑢 ∈ 𝑁 ∩ 𝑉 (𝐴)), 𝑣 ≠ 𝑢

}

Note the definition of Γ in Definition 20 is more general than the current problem

requires as it returns a chordal graph over a general subset of 𝑿 , 𝐴 ⊆ 𝑿 instead of

just over 𝒁 . This general definition for Γ will be useful in later chapters, specifically

Chapter 5. But, for the remainder of this chapter we will generally use 𝒁 = 𝑿 − 𝒀
as the set of variables 𝐴 that we want the graph returned by  -graph to have. In

other words, for some  -partition  ,𝒀 , for the remainder of this chapter we will

64 Chapter 4. Computing Divergence between Marginal Distributions

1, 2 2, 3, 4 4, 7

3, 5 5, 6

7, 8

𝑁1:

𝑁2:

𝑁3:

(a)

1, 3, 7

(b)

Figure 4.2: (a) An  -partition,

 , and (b) the  -graph of  ,

Γ(𝒁,).

call Γ with the arguments Γ(𝒁, ,𝒀). Furthermore the graphs returned by Γ are

chordal graphs as we will prove in Proposition 5.

Proposition 5 (The  -graph created by 𝚪 is a chordal graph) Let  be

a chordal graph, 𝒀 ⊂ 𝑿 , and 𝐴 ⊆ 𝑿 . Then the  -graph, Γ(𝐴, ,𝒀), is a

chordal graph.

Proof We know that  ,𝒀 partitions the maximal cliques in () such that

each partition is a subtree of the junction tree/forest of . Therefore, by creating

a graph ′
where the vertices in each set in  ,𝒀 are fully connected to each

other, the junction tree/forest of ′
is equivalent to the junction tree/forest

of  but with these subtrees merged together to form a single “super-clique”

per partition 𝑁 ∈  ,𝒀 . The resulting “super-cliques” will have the same

parent as the root of the subtree and the same children as the leaves of the

subtree. Therefore, the junction tree/forest of ′
is valid which implies that ′

is a chordal graph.

In order to obtain Γ(𝐴, ,𝒀) from chordal graph ′
, all we need to do is delete

the vertices that are not associated with the variables in 𝐴. From Corollary 1,

we know that vertex deletion from a chordal graph preserves the chordal

property of the graph. Therefore, Γ(𝐴, ,𝒀) is also a chordal graph.

Example 3 Recall the junction tree, and specifically the  -partition  ,𝒀

from Example 1. See Figure 4.2a for an illustration of this  -partition from

Example 1. Observe that Γ(𝒁, ,𝒀), in Figure 4.2b, ensures that the variables

𝒀 , highlighted in red, do not appear in the returned graph.

Due to this, the variables in 𝑁2 − 𝒀 and 𝑁3 − 𝒀 do not appear anywhere

in Γ(𝒁, ,𝒀) as a separate maximal clique. In other words, the number of

maximal cliques in Γ(𝒁, ,𝒀) is less than the number of sets in the partition

 ,𝒀
||(Γ(𝒁, ,𝒀))|| ≤ || ,𝒀 ||

This also indicates that the marginal factors associated with variables in 𝑁2

and 𝑁3, 𝜑{3,5,6}−{5,6} and 𝜑{7,8}−{8} respectively, are either scalar factors, which is

not the case here in this example, or have domains that are subsets of some

existing clique in Γ(𝒁, ,𝒀). Basic observation will show that the latter is the

case in this example. Specifically, marginal factor 𝜑{3,5,6}−{5,6} has a domain of

𝑿3 and 𝜑{7,8}−{8} is defined over variable 𝑿7, both of which are subsets of 𝑿1,3,7.

We know that in general, for any  -partition  ,𝒀 , the set of factors 𝝋( ,𝒀) has

domains that are either empty, implying a scalar factor with all of the variables in

4.2. Reframing the Problem 65

the factor before marginalisation being in 𝒀 , or are equal to some, possibly non-
maximal, clique in the graph Γ(𝒁, ,𝒀). We know this must be the case because

both

1. the domains of any non-scalar factors in 𝝋( ,𝒀), and

2. all the cliques, including non-maximal cliques, that are in Γ(𝒁, ,𝒀),

are the same as they are constructed by taking each set in the partition  ,𝒀 and

removing any vertices associated with 𝒀 .

Furthermore, since all non-scalar factors in 𝝋( ,𝒀) have the same domain as

the variables associated to some, possibly non-maximal, clique in Γ(𝒁, ,𝒀), the

domain of these factors is also either equal to, or a subset of, the variables associated

with some maximal clique in Γ(𝒁, ,𝒀). We shall call this mapping from factors

in 𝝋( ,𝒀) to maximal clique in Γ(𝒁, ,𝒀), 𝜇.

Definition 21 (Mapping from 𝝋( ,𝒀) to (𝚪(𝒁, ,𝒀)), 𝝁) Let  be a

chordal graph and 𝒀 ⊂ 𝑿 .

𝜇 ∶ 𝝋( ,𝒀) → (Γ(𝒁, ,𝒀))
s.t. ∀𝜙 ∈ 𝝋( ,𝒀) ∶ Dom(𝜙) ⊆ 𝜇(𝜙)

where we take the convention that the empty set, {}, is a subset of any non-

empty set.

Definition 22 (Inverse of 𝝁, 𝑴) Let 𝜇 be a mapping from 𝝋( ,𝒀) to

(Γ(𝒁, ,𝒀)). Then we shall define the function 𝑀 as an “inverse” of 𝜇:

𝑀 ∶ (Γ(𝒁, ,𝒀)) → (𝝋( ,𝒀))

s.t. ∀ ∈ (Γ(𝒁, ,𝒀)) ∶ 𝑀() =
{
𝜙 ||| 𝜙 ∈ 𝝋( ,𝒀), 𝜇(𝜙) = 

}

Now that we have established a chordal graph Γ(𝒁, ,𝒀) and a set of marginal

 -probabilities 𝝋( ,𝒀) that do not contain any variable or vertices in 𝒀 , and a

mapping 𝜇 from these factors to maximal cliques of this chordal graph, there is one

last thing we need verify in order for the connections in chordal graph Γ(𝒁, ,𝒀)
to “agree” with the set of marginal  -probability 𝝋( ,𝒀). That is, we need to

verify that the product of factors assigned to each maximal clique in Γ(𝒁, ,𝒀),
⊗𝑀() for all  ∈ (Γ(𝒁, ,𝒀)), has the exact same domain as the variables

associated with the maximal clique itself.

66 Chapter 4. Computing Divergence between Marginal Distributions

Proposition 6 (Mapping marginal factors to the marginal  -graph)
Let  be a choral graph, 𝒀 ⊂ 𝑿 the variable we wish to eliminate. Then there

exists a mapping 𝜇 from the marginal factors 𝝋( ,𝒀) to the maximal cliques

in the marginal  ,𝒀 -graph (Γ(𝒁, ,𝒀)) such that the resulting product of

factors assigned to each maximal clique is defined over the same variables as

the variables associated with the respective clique.

Proof Recall that all the, possibly non-maximal, cliques in Γ(𝒁, ,𝒀) and all

the factors in 𝝋( ,𝒀) are constructed by taking a set from the partition  ,𝒀

and removing any vertices/variables in 𝒀 . Therefore, for all  ∈ (Γ(𝒁, ,𝒀))
there exists a factor in 𝝋( ,𝒀) with variables exactly equal to the variables

associated with the clique .

∀ ∈ (Γ(𝒁, ,𝒀)) ∃𝜙 ∈ 𝝋( ,𝒀) ∶ Vars(𝜙) = 𝑿

This then implies that for any possible assignment 𝜇, the resulting product

factors in each maximal clique of Γ(𝒁, ,𝒀) will have the same variables as

the variables associated with that maximal clique.

Therefore, we now have a set of factors 𝝋( ,𝒀) and a mapping 𝜇 from these factors

to maximal cliques of chordal graph Γ(𝒁, ,𝒀), resulting in the set of factors Φ

defined over the maximal cliques of Γ(𝒁, ,𝒀):

Φ ∶=

{

∏
𝜑∈𝑀()

𝜑[𝔻𝑿]
|||||
 ∈ (Γ(𝒁, ,𝒀))

}

where ∀ ∈  (Γ (𝒁, ,𝒀))

𝜙, ∶= ∏
𝜑∈𝑀()

𝜑[𝔻𝑿]

From this, we know that

∀ ∈ (Γ(𝒁, ,𝒀)) ∶ Vars(𝜙,) = 𝑿

and

∏
𝑁∈  ,𝒀

𝜑𝑁−𝒀 [𝔻𝑿] = ∏
∈(Γ(𝒁,  ,𝒀))

𝜙,

since

𝝋( ,𝒀) = ⋃
𝑁∈  ,𝒀

𝜑𝑁−𝒀 = ⋃
∈(Γ(𝒁,  ,𝒀))

⋃
𝜑∈𝑀()

𝜑

4.3. Computing 𝛼𝛽-Divergence 67

Therefore, we have reframed the marginal distribution over variables 𝒁 ⊂ 𝑿, 𝒀 =
𝑿 − 𝒁 , ℙ𝒁 , of a DM 𝔻 as the un-normalised joint distribution of a new MN 𝔻′ ,

where ′
is the chordal graph Γ(𝒁, ,𝒀), with the set of marginal  -probabilities

as factors of the new MN.

𝔻𝒁 = ∏
𝑁∈𝔻,𝒀

𝜑𝑁−𝒀 [𝔻] = ∏
∈(Γ(𝒁,  ,𝒀))

𝜙,

Then, as we will describe in the next section, we can use this transformation

to reframe the problem of computing the 𝛼𝛽-divergence between the marginal

distributions of two DMs into a form that can be computed using the methods

developed in Chapter 3.

4.3 Computing 𝛼𝛽-Divergence

Instead of tackling the problem of computing the 𝛼𝛽-divergence between the

marginal distributions of two DMs, ℙℙ and ℚℚ , directly, we will reframe this prob-

lem as computing the 𝛼𝛽-divergence between the un-normalised joint distribution

of two new chordal MNs, ℙ′ℙ and ℚ′ℚ , by using the transformations described in

Section 4.2 on DMs ℙℙ and ℚℚ respectively. Then, since we know how to compute

the 𝛼𝛽-divergence between the joint distribution of two DMs, i.e. two chordal MNs,

we can use the methods described in Chapter 3 to compute the 𝛼𝛽-divergence

between ℙ′ℙ and ℚ′ℚ .

First, let us establish the transformations for the original DMs, ℙℙ and ℚℚ , that we

will use in this section. For some marginal variable set 𝒁 ⊂ 𝑿 where 𝒀 = 𝑿−𝒁 , and

 -partition  ℙ,𝒀 and  ℙ,𝒀 for DMs ℙℙ and ℚℚ respectively, we shall define

the following chordal graphs and factor sets using the transformations laid out in

Section 4.2:

′
ℙ ∶= Γ (𝒁, ℙ,𝒀)

Φℙ ∶=

{

∏
𝜑∈𝑀()

𝜑[𝔻𝑿]
|||||
 ∈  (Γ (𝒁, ℙ,𝒀))

}

′
ℚ ∶= Γ (𝒁, ℚ,𝒀)

Φℚ ∶=

{

∏
𝜑∈𝑀()

𝜑[𝔻𝑿]
|||||
 ∈  (Γ (𝒁, ℚ,𝒀))

}

and as we have shown in Section 4.2, this transformation allows us to express the

marginal probabilities ℙ𝒁 and ℚ𝒁 in terms of a product of factors over the maximal

68 Chapter 4. Computing Divergence between Marginal Distributions

cliques of Γ (𝒁, ℙ,𝒀) and Γ (𝒁, ℚ,𝒀) respectively.

ℙ𝒁 = ∏
∈(Γ(𝒁, ℙ,𝒀))

𝜙ℙ, ℚ𝒁 = ∏
∈(Γ(𝒁,ℚ,𝒀))

𝜙ℚ,

Then recall the extended 𝛼𝛽-divergence from Definition 11 and that its expression

depends on the value of the parameters 𝛼 and 𝛽:

𝐷𝛼,𝛽
AB (ℙ, ℚ) = ∑

𝒙∈
𝑑𝛼,𝛽AB (ℙ(𝒙), ℚ(𝒙))

where

𝑑(𝛼,𝛽)AB (ℙ(𝒙), ℚ(𝒙)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
𝛼𝛽 (ℙ(𝒙)

𝛼ℚ(𝒙)𝛽 − 𝛼ℙ(𝒙)𝛼+𝛽
𝛼+𝛽 − 𝛽ℚ(𝒙)𝛼+𝛽

𝛼+𝛽) for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0
1
𝛼2 (ℙ(𝒙)

𝛼 log ℙ(𝒙)𝛼
ℚ(𝒙)𝛼 − ℙ(𝒙)𝛼 + ℚ(𝒙)𝛼) for 𝛼 ≠ 0, 𝛽 = 0

1
𝛼2 (log

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼 + (

ℚ(𝒙)𝛼
ℙ(𝒙)𝛼)

−1
− 1) for 𝛼 = −𝛽 ≠ 0

1
𝛽2 (ℚ(𝒙)

𝛽 log ℚ(𝒙)𝛽
ℙ(𝒙)𝛽 − ℚ(𝒙)𝛽 + ℙ(𝒙)𝛽) for 𝛼 = 0, 𝛽 ≠ 0

1
2(log ℙ(𝒙) − logℚ(𝒙))2 for 𝛼, 𝛽 = 0.

and that in cases other than 𝛼, 𝛽 = 0, the 𝛼𝛽-divergence can be expressed as a linear

combination of the functional  from Definition 13

(ℙ, ℚ; 𝑔, ℎ, 𝑔∗, ℎ∗) = ∑
𝒙∈

(𝑔[ℙ](𝒙))(ℎ[ℚ](𝒙))𝐿((𝑔
∗[ℙ](𝒙))(ℎ

∗[ℚ](𝒙)))

as we have shown in Theorem 7. Therefore, we will first tackle computing the 𝛼𝛽-

divergence when 𝛼, 𝛽 = 0 before tackling computing  which will cover computing

the 𝛼𝛽-divergence for other values of 𝛼 and 𝛽.

4.3.1 Computing Marginal 𝛼𝛽-Divergence when 𝛼, 𝛽 = 0

We can compute the 𝛼𝛽-divergence when 𝛼, 𝛽 = 0 between the marginal distribu-

tions of ℙℙ and ℚℚ , 𝐷(0,0)
AB (ℙ𝒁 , ℚ𝒁), by substituting the alternate expressions for

ℙ𝒁 and ℚ𝒁 in Section 4.3.

𝐷(0,0)
AB (ℙ𝒁 , ℚ𝒁) = ∑

𝒛∈

1
2(

log ℙ𝒁(𝒛) − logℚ𝒁(𝒛))

2

= ∑
𝒛∈

1
2(

log
(

∏
∈(Γ(𝒁, ℙ,𝒀))

𝜙ℙ,)
(𝒛) − log

(
∏

∈(Γ(𝒁,ℚ,𝒀))

𝜙ℚ,)
(𝒛)

)

2

4.3. Computing 𝛼𝛽-Divergence 69

Therefore, the functional𝐷(0,0)
AB (ℙ𝒁 , ℚ𝒁) is equivalent to the same functional between

the product of factors over the maximal cliques of Γ (𝒁, ℙ,𝒀) and Γ (𝒁, ℚ,𝒀)
respectively. As a result, we can use the argument in Theorem 8 to show that

𝐷(0,0)
AB (ℙ𝒁 , ℚ𝒁) can be computed in time exponential to the maximum clique size of

graphs Γ(𝒁, ℙ,𝒀) and Γ(𝒁, ℙ,𝒀).

4.3.2 Computing  between Marginal Distributions of Di-
rected Graphs

In order to compute the functional  between the marginal distributions of DMs

ℙℙ and ℚℚ , (ℙ𝒁 , ℚ𝒁), we can plug in the alternate expressions for ℙ𝒁 and ℚ𝒁 in

Section 4.3 into  .

(ℙ𝒁 , ℚ𝒁)

= ∑
𝒛∈

𝑔 [ℙ𝒁] (𝒛) ⋅ ℎ [ℚ𝒁] (𝒛) ⋅ 𝐿 (𝑔+ [ℙ𝒁] (𝒛) ⋅ ℎ+ [ℚ𝒁] (𝒛))

= ∑
𝒛∈

𝑔 [ℙ𝒁] (𝒛) ⋅ ℎ [ℚ𝒁] (𝒛) ⋅ 𝐿
⎛
⎜
⎜
⎝
𝑔+

[
∏

∈(′ℙ)
𝜙ℙ,]

(𝒛) ⋅ ℎ+
⎡
⎢
⎢
⎣
∏

∈(′ℚ)
𝜙ℚ,

⎤
⎥
⎥
⎦
(𝒛)

⎞
⎟
⎟
⎠

= ∑
𝒛∈

𝑔 [ℙ𝒁] (𝒛) ⋅ ℎ [ℚ𝒁] (𝒛) ⋅ 𝐿
⎛
⎜
⎜
⎝
(

∏
∈(′ℙ)

𝑔+ [𝜙ℙ,] (𝒛))
⋅
(

∏
∈(′ℚ)

ℎ+ [𝜙ℚ,] (𝒛))

⎞
⎟
⎟
⎠

= ∑
∈(′ℙ)

∑
𝒛∈

𝐿 (𝑔+ [𝜙ℙ,] (𝒛)) SP(𝒛) + ∑
∈(′ℚ)

∑
𝒛∈

𝐿 (ℎ+ [𝜙ℚ,] (𝒛)) SP(𝒛)

(4.6)

where

′
ℙ ∶= Γ(𝒁, ℙ,𝒀)

′
ℚ ∶= Γ(𝒁, ℚ,𝒀)

SP(𝒛) = ∑
𝒛∈𝒁−

(
∏

∈(′ℙ)
𝑔 [𝜙ℙ,] (𝒛 , 𝒛))

⋅
(

∏
∈(′ℚ)

ℎ [𝜙ℚ,] (𝒛 , 𝒛))

We can then obtain SP with MGASP outlined in Section 3.2 by using the chordal

graphs ′
ℙ and ′

ℚ with factors

Ψℙ ∶=

{

𝑔 [𝜙ℙ,]
|||||
 ∈ Γ(𝒁, ℙ,𝒀)

}

Ψℚ ∶=

{

ℎ [𝜙ℚ,]
|||||
 ∈ Γ(𝒁, ℚ,𝒀)

}

70 Chapter 4. Computing Divergence between Marginal Distributions

respectively. Once we have obtained all the needed SP , we can continue with the

computation of (ℙ𝒁 , ℚ𝒁) by directly computing the nested sums in Equation (4.6).

Since computing (ℙ𝒁 , ℚ𝒁) is essentially similar to computing (ℙ, ℚ) but with the

new pair of chordal graphs and factor sets, (′
ℙ, Ψℙ) and (′

ℚ, Ψℙ), the complexity

of computing (ℙ𝒁 , ℚ𝒁) is essentially the same as the complexity of (ℙ, ℚ). The

main difference in complexity is that computing (ℙ𝒁 , ℚ𝒁) scales exponentially in

the treewidth of the computation graph of ′
ℙ and ′

ℚ instead of the computation

graph of ℙ and ℚ.

4.4 Complexity and Edge Cases

In this section, we will discuss the computational complexity of using the transfor-

mations described in this chapter in order to compute the 𝛼𝛽-divergence between

the marginal distributions of two DMs. Furthermore, we will show, via two exam-

ples, that the computational complexity of computing this marginal 𝛼𝛽-divergence

varies greatly depending on the choice of marginal variables 𝒁 ⊂ 𝑿 , ranging from

being exponential in the treewidth of the original DMs, to exponential in the total

number of variables in the original DMs, |𝑿|.

Recall that the complexity of computing 𝛼𝛽-divergence between joint distributions

of DMs is

𝐷(𝛼,𝛽)
𝐴𝐵 (ℙ||ℚ) ∈

{
(|𝑿|2 ⋅ 𝜔max2𝜔max+1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2𝜔()+1) otherwise

(3.10)

where

𝜔max = max(𝜔(ℙ), 𝜔(ℚ))

We have shown in Section 4.3, that the problem of computing the 𝛼𝛽-divergence

between marginal distributions of DMs can be reframed as computing the 𝛼𝛽-

divergence between the product of factors over the maximal cliques of the pair of

new chordal graphs,

′
ℙ ∶= Γ(𝒁, ℙ,𝒀)

′
ℚ ∶= Γ(𝒁, ℚ,𝒀)

respectively. Therefore, assuming ′
is the computation graph between ′

ℙ and ′
ℚ,

the complexity of computing the 𝛼𝛽-divergence between marginal distributions of

two DMs is

𝐷(𝛼,𝛽)
𝐴𝐵 (ℙ𝒁 ||ℚ𝒁) ∈

{
(|𝑿|2 ⋅ 𝜔′

max
2𝜔′

max+1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2𝜔(′)+1) otherwise

4.4. Complexity and Edge Cases 71

1, 2

2, 3 2, 4

2, 5 2, 6

(a) Clique tree of a chordal graph.

1, 2

2, 3 2, 4

2, 5 2, 6

𝑁1:

𝑁2: 𝑁3:

𝑁4: 𝑁5:

(b) Junction trees of the sets in one

possible  -partition for variables of

interest.

Figure 4.3: A clique tree and pos-

sible  -partitions for the vari-

ables highlighted in red.

where

𝜔′
max

= max(𝜔(′
ℙ), 𝜔(′

ℚ))

It is tempting to end the discussion regarding the computational complexity of

computing 𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) here. However, we still need to take into account the com-

putational complexity of obtaining the set of marginal  -probabilities 𝝋 ( ℙ,𝒀)
and 𝝋 ( ℚ,𝒀) for marginal probabilities ℙ𝒁 and ℚ𝒁 respectively.

Recall from Proposition 4 that the complexity of obtaining the marginal  -

probability for some set 𝑁 in a  -partition is

(2|𝑁 |)

Then the complexity of obtaining the set of marginal  -probabilities for some

 -partition 𝔻,𝒀 is

∑
𝑁∈𝔻,𝒀

(2|𝑁 |) ∈ max
𝑁∈𝔻,𝒀

(||𝔻,𝒀 || ⋅ 2
|𝑁 |) ∈ max

𝑁∈𝔻,𝒀

(|𝑿| ⋅ 2|𝑁 |)

and the total complexity of obtaining the marginal  -probabilities for both  ℙ,𝒀

and  ℚ,𝒀 is just

max
∈( ℙ,𝒀 ,ℚ,𝒀)

max
𝑁∈

(|𝑿| ⋅ 2|𝑁 |) ∈ (|𝑿| ⋅ 2𝜈)

where

𝜈 ∶= max
∈( ℙ,𝒀 ,ℚ,𝒀)

max
𝑁∈

|𝑁 |

Therefore, the final complexity of computing 𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) is

(|𝑿| ⋅ 2𝜈) +

{
(|𝑿|2 ⋅ 𝜔′

max
2𝜔′

max+1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2𝜔(′)+1) otherwise

since the computational complexity of 𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) depends on the size of the

largest vertex set in the  -partitions  ℙ,𝒀 and  ℚ,𝒀 . This in turn, is highly
dependent on the set of variables, 𝒀 , we wish to marginalise out. As we will demon-

strate in the following examples, it is possible for the computational complexity

of 𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) to be as varied as having the same complexity as computing the

𝛼𝛽-divergence between joint distributions of ℙℙ and ℚℚ , to having a complexity

that is exponential with respect to the total number of variables in the DMs |𝑿|.

Example 4 Consider a chordal graph  with the junction tree in Figure 4.3a.

Furthermore, assume we want to marginalise out the variable 𝒀 = {𝑿1}. Then

72 Chapter 4. Computing Divergence between Marginal Distributions

1, 2

2, 3 2, 4

2, 5 2, 6

(a) Clique tree of a chordal graph.

1, 2

2, 3 2, 4

2, 5 2, 6

𝑁1:

(b) Junction tree of the only possible

 -partition for variables of interest.

Figure 4.4: A clique tree and pos-

sible  -partitions for the vari-

ables highlighted in red.

one possible  -partition for the graph  and variables 𝒀 ,  ,𝒀 , can be found

in Figure 4.3b.

Observe that the sets in  ,𝒀 are just the individual maximal cliques of . This

is because the variable we wish to marginalise out, 𝒀 , is not contained in any

minimal separator in the junction tree of . This results in the treewidth of

both  and Γ(𝒁, ,𝒀) to be the same.

Therefore, assuming we have two DMs with the same chordal graph structure ,

ℙ and ℚ , the treewidth of  will be the same as the treewidth of Γ(𝒁, ,𝒀).

𝜔() = 𝜔(Γ(𝒁, ,𝒀)) = 1

Furthermore, the size of the largest set in the  -partition  ,𝒀 is 𝜈 = 𝜔() +
1 = 2 as well. Additionally, the computation graph between both DMs and also

both  -graphs is just the graph . Therefore the complexity of computing

𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) in this example is:

(|𝑿| ⋅ 22) +

{
(|𝑿|2 ⋅ 22) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 22) otherwise

∈

{
(|𝑿|2 ⋅ 22) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 22) otherwise

which is the same complexity of computing the joint distributions of DMs ℙ

and ℙ in this example.

Example 5 Consider the chordal graph  with the junction tree in Figure 4.4a.

Furthermore, assume we want to marginalise out the variable 𝒀 = {𝑿2}. Then

the only possible  -partition for the graph  and variables 𝒀 ,  ,𝒀 , is the

partition containing a single vertex set, with the set itself containing all the

vertices in .

Therefore the treewidth of the  -graph Γ(𝒁, ,𝒀) is just 4, i.e. the number

of variables in 𝒁 = 𝑿 − {𝑿2} minus one, and the size of the “largest” set in

 ,𝒀 is just the number of variables |𝑿| = 6.

Since, for two DMs with the graph structure , ℙ and ℚ , their  -partition,

and therefore,  -graph is the same, the complexity of computing the 𝛼𝛽-

divergence between the marginal distribution over 𝒁 of DMs ℙ and ℚ is

(|𝑿| ⋅ 2|𝑿|) +

{
(|𝑿|2(|𝑿| − 2) ⋅ 2|𝑿|−1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2|𝑿|−1) otherwise

which implies that the complexity of computing 𝐷(𝛼,𝛽)
AB (ℙ𝒁 , ℚ𝒁) is at least expo-

nential with respect to the number of variables in 𝑿 , |𝑿|.

4.5. Conclusion 73

4.5 Conclusion

To summarise, in this chapter we have shown how to decompose the marginal

distribution 𝔻𝒁 , 𝒁 ⊂ 𝑿 of a DM 𝔻 and how to use this decomposition to compute

the 𝛼𝛽-divergence between marginal distributions of DMs.

This decomposition involves first creating a partition of the maximal cliques of

the chordal graph  and the vertices associated with the variables we wish to

marginalise out, 𝒀 = 𝑿 −𝒁 . We call such partitions  -partitions if and only if, for

all sets in the  -partition, 𝑁 ∈  ,𝒀 , the junction tree of the induced subgraph

(𝑁) is a subtree of the junction tree of  itself (see Definition 18). Because  ,𝒀

partitions the maximal cliques in , there is a many-to-one mapping from the

CPT of each maximal clique in 𝔻 to a single set in the  -partition  ,𝒀 . We

can then even take the product of the CPTs assigned to each set 𝑁 ∈  ,𝒀 and

marginalise out any variables in 𝒀 to obtain the set of marginal  -probabilities

𝝋( ,𝒀) (see Definition 19). We then show that the product of the marginal  -

probabilities in𝝋( ,𝒀) is equivalent to the marginal probability𝔻𝒁 , thus providing

the decomposition of 𝔻𝒁 that we are looking for.

In order to use this decomposition of 𝔻𝒁 for some DM 𝔻 to assist in computing the

𝛼𝛽-divergence between marginal distributions of two DMs, we need to re-express

this decomposition of 𝔻𝒁 as a product of factors defined over the maximal cliques

of some chordal graph. This is so that we can reuse the methods established in

Chapter 3 for computing the 𝛼𝛽-divergence between marginal distributions.

Therefore, the first step we took to find this re-expression of 𝔻𝒁 is to create a new

chordal graph, that we call the  -graph and denote by Γ(𝒁, ,𝒀). We construct

the  -graph by fully connecting vertices of each set in the  -partition  ,𝒀 .

However, we also remove any vertices associated with the variables we wish to

marginalise out, 𝒀 , from  ,𝒀 (see Definition 20). There is then a many-to-one

mapping from the marginal  -probabilities in 𝝋( ,𝒀) to maximal cliques in the

 -graph, (Γ(𝒁, ,𝒀)) (see Definition 21). Therefore, we defined a new set of

factors, Φ , for each maximal clique in Γ(𝒁, ,𝒀), where each factor in Φ is a

product of the marginal  -probabilities from 𝝋( ,𝒀) mapped to the factor’s

respective maximal clique. We then have a set of factors Φ defined over the

maximal cliques of chordal graph Γ(𝒁, ,𝒀), where the product of the factors in

Φ is also equivalent to the marginal distribution 𝔻𝒁 . This is exactly the expression

of 𝔻𝒁 we need in order to use Γ(𝒁, ,𝒀) and Φ as inputs to the methods described

in Chapter 3.

With all this machinery established, all we need to do to compute the 𝛼𝛽-divergence

between the marginal distributions, ℙ𝒁 and ℚ𝒁 , of two DMs, ℙℙ and ℚℚ , is to

find their respective  -graphs, Γ(𝒁, ℙ,𝒀) and Γ(𝒁, ℚ,𝒀), and factor sets, Φℙ

and Φℚ. We can then directly use the methods from Chapter 3 to compute the

74 Chapter 4. Computing Divergence between Marginal Distributions

𝛼𝛽-divergence between these  -graphs and their factors. The result we obtain

from this computation will be exactly the 𝛼𝛽-divergence between the marginal

distributions ℙ𝒁 and ℚ𝒁 .

Unfortunately, as far as we are aware, there is no existing work on computing

the divergence between the marginal distributions of two probabilistic graphical

models. Furthermore, the runtime for our approach to computing the marginal

divergence is theorectically similar to computing the joint divergence in Section 3.2,

but with -graphs being our initial graphs instead. Therefore, we omit any runtime

experiment in this chapter.

75

4

2 3

1 5

(a) Chordal graph.

2, 3, 4

1, 2 3, 5

(b) Junction tree of chordal graph.

Figure 5.1: (a) an example of a

chordal graph and (b) its junc-

tion tree.

Chapter 5

Computing Divergences between
the Conditional Distributions of 2
Decomposable Models

So far we have shown how to compute the 𝛼𝛽-divergence of both the joint and

marginal distributions between two DMs. However, a core problem in machine

learning is the prediction of the values over a set of variables, 𝒀 , given the values

over another set of variables 𝒁 , i.e. a classification problem. In problems such

as these, the main distribution of interest is the distribution of the variables 𝒀
conditioned on some value over the variables 𝒁 , i.e. the conditional distribution of

𝒀 given 𝒁 . Such systems may be impacted by drift in the conditional distribution

differently, and often more severely, compared to drift in the joint distribution or

marginal distributions.

Therefore, in addition to the joint and marginal distributions, we require a method

to measure the divergence between conditional distributions encoded within two

DMs.

Recall the general conditional divergence chosen in Section 2.4.1:

𝐷(ℙ𝒀 ∣𝒁 ∣∣ ℚ𝒀 ∣𝒁) = 𝔼𝒁∼ℙ [𝐷(ℙ𝒀 |𝒁 ∣∣ ℚ𝒀 ∣𝒁)]
= ∑

𝒛∈
ℙ𝒁(𝒛)𝐷(ℙ𝒀 |𝒁=𝒛 ∣∣ ℚ𝒀 ∣𝒁=𝒛)

In order to efficiently compute the divergence between conditional distributions of

two DMs, we need to find a decomposition of the distributions in the conditional

divergence. We already know how to decompose the marginal distribution ℙ𝒁 from

Chapter 4, therefore, the problem we need to tackle in this chapter is finding a

decomposition of the conditional distribution encoded in a DM.

In order to better illustrate this problem, let us consider Example 6 of finding a

decomposition of the conditional distribution for the chordal graph in Figure 5.1a.

76
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

Example 6 Let 𝔻 be a decomposable model where  is a chordal graph with

the following vertices and edges

𝑉 () = {1, 2, 3, 4, 5}
𝐸() = {(1, 2), (2, 3), (2, 4), (3, 4), (3, 5)}

as illustrated in Figure 5.1a.  also has a junction tree as illustrated in Fig-

ure 5.1b. Furthermore, assume that we split the set of all variables in 𝔻 , 𝑿 ,

into 2 mutually exclusive sets:

𝒁 = {1, 3}
𝒀 = {2, 4, 5}

Therefore, we now have the conditional distribution

𝔻𝒀 ∣𝒁 = 𝔻2,4,5∣1,3

that we wish to decompose into a product of smaller distributions.

Recall from Definition 4 that when two sets of variables 𝑿𝐴 and 𝑿𝐵 are condi-

tionally independent given the rest of the variables 𝒁 = 𝑿 − (𝑿𝐴 ∪ 𝑿𝐵), we

can decompose the conditional distribution of 𝑿𝐴,𝐵 given 𝒁 into the product

of 2 conditional distributions:

𝑿𝐴 ⟂⟂ 𝑿𝐵 ∣ 𝒁 ⇔ 𝔻𝐴,𝐵∣𝒁 = 𝔻𝐴∣𝒁𝔻𝐵∣𝒁

Furthermore, recall from Definition 7 that 𝑿𝐴 and 𝑿𝐵 are conditionally inde-

pendent given 𝒁 if and only if the vertices 𝑉 (𝒁) separate the vertices 𝐴 and 𝐵
in the graph containing these mutually exclusive set of vertices.

𝑿𝐴 ⟂⟂ 𝑿𝐵 ∣ 𝒁 ⇔ sep(𝐴; 𝐵 ∣ 𝑉 (𝒁))

Specifically, in our example, the variables 𝑿2 and 𝑿4 can never be conditionally

independent to each other given any other variables since the vertices 2 and 4
are directly connected to each other in . On the other hand the variable sets

𝑿2,4 and 𝑿5 are conditionally independent to each other given 𝒁 resulting in

the following decomposition:

𝔻2,4,5∣1,3 = 𝔻2,4∣1,3𝔻5∣1,3 = 𝔻2,4∣1,3𝔻5∣3

where the condition of 𝔻5∣1,3 can be reduced to 𝔻5∣3 due to the variable 𝑿3 being

a Markov blanket of the target variable 𝑿5. This reduces the complexity of

representing the conditional distribution 𝔻2,4,5∣1,3 from (25) to (24).

5.1. Decomposing Conditional Distributions of DMs using  -Partitions 77

Therefore, decomposing the conditional distribution of a DM will involve finding

a partition of the variables 𝒀 such that the variables in each partition set are

conditionally independent, given the variables 𝒁 = 𝑿 − 𝒀 , to the variables in any

other partition set. Furthermore, finding some Markov blanket, that is a strict

subset of 𝒁 , for the variables in each partition set will allow us to express and store

this decomposition in a more compact manner. We will discuss how we can reuse

methods from Chapter 4 for this task in Section 5.1

We then show, in Section 5.2, how this decomposition of a conditional distribution

encoded in a DM assists in decomposing the conditional 𝛼𝛽-divergence between

two DMs. We discuss the complexity of computing the conditional 𝛼𝛽-divergence

using this decomposition while going over some examples of in Section 5.3. Lastly,

we wrap up the chapter in Section 5.4.

5.1 Decomposing Conditional Distributions of Di-
rected Graph using  -Partitions

Recall from Example 6 that decomposing the conditional distribution of a DM 𝔻

essentially involves finding a partition of the target variables 𝒀 , and a Markov

blanket for each variable set in the partition. This act of finding partitions of 𝒀
might sound similar to the concept of  -partitions from Definition 18, where we

defined them as partitions of both 𝒀 and the maximal cliques of the chordal graph

(). This similarity is not a coincidence as we can show that any set 𝑁 in an

 -partition  ,𝒀 is a Markov blanket of the variables in 𝒀 that are also associated

with vertices in 𝑁 .

Proposition 7 (Markov blanket property of  -partitions) For any ver-

tex set 𝑁 in  -partition  ,𝒀 , through a slight abuse of notation, let 𝒀𝑁 be

the variables in 𝒀 that are also in the partition 𝑁 :

𝒀𝑁 = 𝒀 ∩ 𝑿𝑁

then, there exists some  -partition  ,𝒀 such that for all 𝑁 ∈  ,𝒀 , the

variables 𝑿𝑁 are a Markov blanket of the variables 𝒀𝑁 .

Proof We shall provide a two-step proof. The first step involves proving that

the variables 𝑿𝑁 separate the variables 𝒀𝑁 from all other variables 𝑿 ⧵ 𝑿𝑁 .

The second step involves proving that, if 𝒀𝑁 is a non-empty set, then all vertices

in the partition set, 𝑁 , are connected to at least one vertex associated with a

variable in 𝒀 that is also in 𝑁 , 𝒀𝑁 . These two properties of 𝑁 then imply that

𝑿𝑁 is a Markov blanket of 𝒀𝑁 .

78
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

In order to prove that the variables 𝑿𝑁 separate the variables 𝒀𝑁 from all other

variables 𝑿 ⧵ 𝑿𝑁 , we will provide a proof by contradiction. First assume that

there exist an 𝑁 ∈  ,𝒀 and 𝒀𝑁 ⊆ 𝒀 such that 𝑿𝑁 do not separate 𝒀𝑁 from

variables outside 𝑿𝑁 , 𝑿 ⧵ 𝑿𝑁 . This would imply that there exists a  ∈ ()
that is not in 𝑁 such that some vertex in  has an edge with the respective

vertex of at least one of the variables in 𝒀𝑁 .

∃ ∈ () ⧵ ((𝑁)), ∃𝑣 ∈ , ∃𝑊 ∈ 𝒀𝑁 ∶ (𝑣, 𝑉 (𝑊)) ∈ 𝐸()

Since  is a clique, this implies that there is a variable in 𝒀𝑁 whose vertex is

also in . Furthermore, from Definition 18, we know that the partitions in

 ,𝒀 are partitions of the maximal cliques (). Therefore, since  is not a

subset of 𝑁 , we know  is a subset of some other partition 𝑁 ′
. This implies

that 𝑁 ′
and 𝑁 shares a vertex whose variable is in 𝒀𝑁 :

∃𝑁 ′ ∈  ∶ (𝑁 ′ ≠ 𝑁) ∧ (𝒀 ∩ 𝑿𝑁 ∩ 𝑿𝑁 ′ ≠ ∅)

However, this contradicts with the definition of  -partitions in Definition 18,

specifically, with the requirement that  -partitions are partitions of the ver-

tices associated with the variables in 𝒀 . Therefore, the set of variables 𝒀𝑁 ⊆ 𝒀
and vertex set 𝑁 ∈  such that 𝑁 does not separate 𝒀𝑁 from 𝑿 ⧵ 𝑿𝑁 cannot

exist with the partition defined in Definition 18. Conversely, the variables 𝑿𝑁

separate the variables in 𝒀𝑁 from the variables in 𝑿 ⧵ 𝑿𝑁 .

Now that the first step in this proof is done, the next step is to prove that all

vertices in a partition set, 𝑁 , are connected to at least one vertex associated

with a variable in 𝒀𝑁 , as long as 𝒀𝑁 is not an empty set. First assume that there

is a vertex 𝑣 ∈ 𝑁 that is not connected to a vertex in 𝑉 (𝒀𝑁). Since vertex 𝑣 must

belong in some maximal clique  ∈ ((𝑁)), it must be true that the clique 
does not contain any vertices in 𝑉 (𝒀𝑁). Therefore, we can remove the vertices

in  from 𝑁 , and create a new set in  ,𝒀 containing just the vertices in .

Note that, although there might be some vertex in  that is connected to some

vertex in 𝑉 (𝒀𝑁), removing these vertices from 𝑁 does not violate the definition

of a  -partition from Definition 18. Therefore, by doing this iteratively, we

can always modify a  -partition such that for each partition set 𝑁 where 𝒀𝑁
is not an empty set, all vertices in 𝑁 are connected to at least one vertex in

𝑉 (𝒀𝑁).

Therefore, with these two facts proven, we have shown that there always exists

an  -partition,   , such that for any partition set 𝑁 ∈   , 𝒀𝑁 ≠ ∅ implies

that 𝑿𝑁 is a Markov blanket of 𝒀𝑁 .

5.1. Decomposing Conditional Distributions of DMs using  -Partitions 79

Therefore, we can decompose the conditional distribution of a DM, 𝔻(𝒀 ∣ 𝒁), as a

product of conditional distributions over the sets in some  -partition  ,𝒀 :

𝔻(𝒀 ∣ 𝒁) = 𝔻
(

⋃
𝑁∈  ,𝒀

𝒀𝑁
|||||
𝒁
)

= ∏
𝑁∈  ,𝒀

𝔻 (𝒀𝑁 ∣ 𝒁) = ∏
𝑁∈  ,𝒀

𝔻(𝒀𝑁 ∣ 𝒁𝑁) (5.1)

where, through a slight abuse of notation

𝒀𝑁 = ∅ ⇒ ∀𝒛𝑁 ∈ 𝑁 ∶ 𝔻(𝒀𝑁 ∣ 𝒛𝑁) = 1 (5.2)

Observe that, unlike the decomposition of marginal distributions using  -

partitions, when decomposing conditional distributions, we are only interested in

the sets of  ,𝒀 that contain vertices associated with some variable in 𝒀 . Therefore,

we shall define a new function, , where, given an  -partition  ,𝒀 , it will filter

out the sets in  ,𝒀 that do not contain vertices associated with variables in 𝒀 .

Definition 23 (-partitions) For a chordal graph  and variable set 𝒀 ⊂ 𝑿 ,

let  ,𝒀 be a  -partition of the vertices in . Then ( ,𝒀) returns the set

of vertex sets in  ,𝒀 that contain vertices associated with variables in 𝒀 :

( ,𝒀) =
{
𝑁 ||| 𝑁 ∈  ,𝒀 , 𝒀𝑁 ≠ ∅

}
(5.3)

Using this definition of -partitions, we can then express the decomposition of

𝔻(𝒀 ∣ 𝒛) from Equation (5.1) using only sets that are Markov blankets of the

variables in 𝒀 .

Proposition 8 (Decomposition of the conditional distribution in a DM)
Consider the decomposable model 𝔻 with some  -partition  ,𝒀 , where

𝒀 ⊂ 𝑿 and 𝒁 = 𝑿 − 𝒀 . Then we can decompose the conditional distribution

𝔻(𝒀 ∣ 𝒁) as:

𝔻(𝒀 ∣ 𝒁) = ∏
𝐵∈(  ,𝒀)

𝔻(𝒀𝐵 ∣ 𝒁𝐵) (5.4)

or in other words, as a product of conditional distributions over the sets in the

-partition ( ,𝒀).

Proof

𝔻(𝒀 ∣ 𝒁) = 𝔻
(

⋃
𝐵∈(  ,𝒀)

𝒀𝐵
|||||
𝒁
)

= ∏
𝐵∈(  ,𝒀)

𝔻 (𝒀𝐵 ∣ 𝒁) = ∏
𝐵∈(  ,𝒀)

𝔻(𝒀𝐵 ∣ 𝒁𝐵)

Therefore, in order to decompose 𝔻(𝒀 ∣ 𝒁), we need to obtain the set of conditional

distributions: {
𝔻(𝒀𝐵 ∣ 𝒁𝐵)

||||
𝐵 ∈ ( ,𝒀)

}

80
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

where we can obtain each conditional distribution 𝔻(𝒀𝐵 ∣ 𝒁𝐵) in this set by dividing

the joint distribution over 𝐵 with the marginal distribution over 𝒁𝐵:

𝔻(𝒀𝐵 ∣ 𝒁𝐵) =
𝔻(𝒀𝐵, 𝒁𝐵)
𝔻(𝒁𝐵)

=
𝔻(𝒀𝐵, 𝒁𝐵)

∑𝒀𝐵∈𝐵
𝔻(𝒀𝐵, 𝒁𝐵)

The conditional distributions 𝔻(𝒀𝐵 ∣ 𝒁𝐵), for all 𝐵 ∈ ( ,𝒀), are essentially

factors over the variables 𝑿𝐵 that can be obtained and stored with the complexity

exponential in the number of vertices in 𝐵, (2|𝐵|).

5.2 Computing Conditional 𝛼𝛽-Divergence

Now that we have a decomposition of conditional distributions encoded in DMs, we

can use this decomposition to assist in decomposing the conditional 𝛼𝛽-divergence

between DMs, ℙℙ and ℚℚ . Specifically in Section 5.2.1, we will first show how we

can decompose the conditional functional  between the conditional distributions

ℙ(𝒀 ∣ 𝒁) and ℚ(𝒀 ∣ 𝒁), i.e. the expectation with respect to the marginal probability

ℙ(𝒁) of  between these conditional distributions. We show that the decomposition

of the conditional  results in a sum-product over factors defined on the maximal

cliques of 3 chordal graphs: Γ(𝒁, ℙ,𝒀), Γ(𝑿,( ℙ,𝒀)), and Γ(𝑿,( ℚ,𝒀)). We

also show how this sum-product is equivalent to Problem 2 and therefore can

be computed using the methods in Chapter 3. Lastly, in Section 5.2.2, we will

tackle computing the conditional 𝛼𝛽-divergence when the parameters 𝛼, 𝛽 = 0,

which involves a similar procedure to computing the conditional  , with the main

difference being the factors we wish to take the sum-product of, and therefore the

chordal graphs that these factors are defined over as well.

First recall from Definition 12 that we define the conditional 𝛼𝛽-divergence between

modelsℙℙ andℚℚ as the expectation over the 𝛼𝛽-divergence between distributions

conditioned on the values 𝒛 ∈ , with respect to the marginal distribution over the

conditional variables 𝒁 .

𝐷(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) = 𝔼𝒁∼ℙ [𝐷

(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁)]

= ∑
𝒛∈

ℙ𝒁(𝒛) ⋅ 𝐷
(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁=𝒛, ℚ𝒀 ∣𝒁=𝒛)

when both 𝛼, 𝛽 = 0, we can express the conditional 𝛼𝛽-divergence as such:

𝐷(0,0)
𝐴𝐵 (ℙ𝒀 |𝒁 , ℚ𝒀 |𝒁) = ∑

𝒛∈
ℙ𝒁(𝒛)∑

𝒚∈

1
2(

log ℙ𝒀 |𝒛(𝒚) − logℚ𝒀 |𝒛(𝒚))
2

On the other hand, as we will show in Proposition 9, for values other than 𝛼, 𝛽 =
0, we can express the conditional 𝛼𝛽-divergence as a linear combination of the

5.2. Computing Conditional 𝛼𝛽-Divergence 81

following functional:

𝒀 ∣𝒁(ℙ, ℚ) = ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

(ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

which we will call the conditional 𝒀 ∣𝒁 .

Proposition 9 (Conditional functional 𝒀 ∣𝒁) Suppose we have 2 condi-

tional distributions ℙ𝒀 ∣𝒁 andℚ𝒀 ∣𝒁 . Then the conditional 𝛼𝛽-divergence between

them

𝐷(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) = ∑

𝒛∈
ℙ𝒁(𝒛) ⋅ 𝐷

(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁=𝒛, ℚ𝒀 ∣𝒁=𝒛)

can be expressed as a linear combination of the conditional functional 𝒀 ∣𝒁

𝒀 ∣𝒁(ℙ, ℚ) = ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

(ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

when the parameters of the 𝛼𝛽-divergence take any values other than 𝛼, 𝛽 = 0.

Proof We know from Theorem 7 that, for parameters other than 𝛼, 𝛽 = 0, the

𝛼𝛽-divergence can be expressed as a linear combination of the functional 

𝐷(𝛼,𝛽)
AB (ℙ, ℚ) = ∑

∈
(ℙ, ℚ)

where  is the set of  parameterisations needed to express the 𝛼𝛽-divergence.

We can then directly apply this fact to the conditional 𝛼𝛽-divergence:

𝐷(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) = ∑

𝒛∈
ℙ𝒁(𝒛) ⋅ 𝐷

(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

= ∑
𝒛∈

ℙ𝒁(𝒛) ⋅ ∑
∈

(ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

= ∑
∈

∑
𝒛∈

ℙ𝒁(𝒛) ⋅ (ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

= ∑
∈

𝒀 ∣𝒁(ℙ, ℚ)

where

𝒀 ∣𝒁(ℙ, ℚ) = ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

(ℙ𝒀 ∣𝒛, ℚ𝒀 ∣𝒛)

Therefore, the conditional 𝛼𝛽 divergence can be expressed as a linear combina-

tion of the conditional functional 𝒀 ∣𝒁 when the parameters take values other

than 𝛼, 𝛽 = 0.

82
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

5.2.1 Computing the Conditional Functional 𝒀 ∣𝒁

We can start the computation of the conditional functional 𝒀 ,𝒁 between the DMs

ℙℙ and ℚℚ by substituting their distributions into the conditional functional.

𝒀 ∣𝒁(ℙ, ℚ)

= ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

𝑔 [ℙ𝒀 ∣𝒁] (𝒚, 𝒛) ⋅ ℎ [ℚ𝒀 ∣𝒁] (𝒚, 𝒛) ⋅ 𝐿 (𝑔+ [ℙ𝒀 ∣𝒁] (𝒚, 𝒛) ⋅ ℎ+ [ℚ𝒀 ∣𝒁] (𝒚, 𝒛))

= ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

𝑔 [ℙ𝒀 ∣𝒁] (𝒚, 𝒛) ⋅ ℎ [ℚ𝒀 ∣𝒁] (𝒚, 𝒛)

𝐿
([

∏
𝐵∈( ℙ,𝒀)

𝑔+[ℙ𝒀𝐵 ∣𝒁𝐵](𝒚, 𝒛)][
∏

𝐵∈(ℚ,𝒀)

ℎ+[ℚ𝒀𝐵 ∣𝒁𝐵](𝒚, 𝒛)])

= ∑
𝐵∈( ℙ,𝒀)

∑
𝒙∈

𝐿(𝑔
+[ℙ𝒀𝐵 ∣𝒁𝐵](𝒙)) ⋅ ℙ𝒁(𝒙) ⋅ 𝑔 [ℙ𝒀 ∣𝒁] (𝒙) ⋅ ℎ [ℚ𝒀 ∣𝒁] (𝒙)+

∑
𝐵∈(ℚ,𝒀)

∑
𝒙∈

𝐿(ℎ
+[ℚ𝒀𝐵 ∣𝒁𝐵](𝒙)) ⋅ ℙ𝒁(𝒙) ⋅ 𝑔 [ℙ𝒀 ∣𝒁] (𝒙) ⋅ ℎ [ℚ𝒀 ∣𝒁] (𝒙)

= ∑
𝐵∈( ℙ,𝒀)

∑
𝒙∈

𝐿(𝑔
+[ℙ𝒀𝐵 ∣𝒁𝐵](𝒙𝐵)) ⋅ SP𝐵(𝒙𝐵)+

∑
𝐵∈(ℚ,𝒀)

∑
𝒙∈

𝐿(ℎ
+[ℚ𝒀𝐵 ∣𝒁𝐵](𝒙𝐵)) ⋅ SP𝐵(𝒙𝐵)

where

SP𝐵(𝒙𝐵) = ∑
𝒙∈𝑿−𝐵

[
∏

𝑁∈ ℙ,𝒀

𝜑𝑁−𝒀 [ℙ𝑿](𝒙, 𝒙𝐵)]

⎡
⎢
⎢
⎢
⎣

∏
𝑁∈

( ℙ,𝒀)

𝑔[ℙ𝒀𝑁 ∣𝒁𝑁](𝒙, 𝒙𝐵)
⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

∏
𝑁∈

(ℚ,𝒀)

ℎ[ℚ𝒀𝑁 ∣𝒁𝑁](𝒙, 𝒙𝐵)
⎤
⎥
⎥
⎥
⎦

(5.5)

Similar to computing the ordinary functional  between joint and marginal dis-

tributions of DMs, computing the conditional functional 𝒀 ∣𝒁 involves obtaining

the result of a set of sum-products over factors defined over the maximal cliques of

multiple chordal graphs.

The difference between computing the conditional functional 𝒀 ∣𝒁 and the ordinary

functional  between DMs is that the sum-products we need for computing 𝒀 ∣𝒁 is

a sum over factors defined over three different chordal graphs, and not just two.

5.2. Computing Conditional 𝛼𝛽-Divergence 83

Specifically, the factors that SP𝐵 sums over are

Φ𝒁 ∶=
{
𝜑𝑁 [ℙ𝑿]

||||
𝑁 ∈  (Γ (𝒁, ℙ,𝒀))

}

Φℙ ∶=
{
𝑔[ℙ𝒀𝑁 ∣𝒁𝑁]

||||
𝑁 ∈  (Γ (𝑿, ( ℙ,𝒀)))

}

Φℚ ∶=
{
ℎ[ℚ𝒀𝑁 ∣𝒁𝑁]

||||
𝑁 ∈  (Γ (𝑿, ( ℚ,𝒀)))

}
(5.6)

Recall that Γ (𝒁, ℙ,𝒀) is just the chordal graph, containing only vertices for

variables in 𝒁 , that we used for computing the marginal 𝛼𝛽-divergence in Chapter 4.

Furthermore, recall that the function Γ from Definition 20 returns a chordal graph

with vertices that are associated with some variable in the first argument, and

also in the  -partition or -partition given in the second argument. Therefore,

the chordal graphs Γ (𝑿, ( ℙ,𝒀)) and Γ (𝑿, ( ℙ,𝒀)) only contain vertices

connected to at least one vertex associated with the variables in 𝒀 , and not all the

vertices in the graph structure of the original DMs ℙℙ and ℚℚ .

More importantly, observe that the factors in Φ𝒁 and Φℙ are defined over chordal

graphs that based on the graph structure of DM ℙℙ . Therefore, we can merge these

sets of factors, resulting in a new set of factors that are defined over the maximal

cliques of a new chordal graph.

Theorem 12 (Merging factors that share the same supergraph)
Suppose we have the DM 𝔻 with target variables 𝒀 and conditional variables

𝒁 such that 𝒀 ∪ 𝒁 = 𝑿 . Furthermore, assume we have an  -partition  ,𝒀 ,

and the following sets of factors defined over the maximal cliques of  -graphs

based on  ,𝒀 .

Φ1 ∶=
{
𝜙1,

||||
 ∈  (Γ (𝒁, ,𝒀))

}

Φ2 ∶=
{
𝜙2,

||||
 ∈  (Γ (𝑿, 𝑵))

}

where

𝑵 ⊆  ,𝒀

Then there exists a new set of factors Φ defined on a new chordal graph ′

Ψ ∶=
{
𝜓

||||
 ∈  (′)

}

84
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

such that

∏
𝜓∈Ψ

𝜓 = ∏
𝜙1∈Φ1

𝜙1 ∏
𝜙2∈Φ2

𝜙2

Proof First of all, observe that a subset of factors in Φ1 is also defined over

variables in the sets of 𝑵 ⊆  ,𝒀 . However, unlike Φ2, factors in Φ1 are only

defined over the variables in 𝒁 , and not all the variables in 𝑿 . Therefore, all

factors in Φ2 will have a strictly larger domain than exactly one factor in Φ1.

As a result, we can merge the factors in Φ2 with a subset of the factors in Φ1

by multiplying the corresponding factors.

{
𝜙2, ⋅ 𝜙1,−𝒀

|||  ∈  (Γ (𝑿, 𝑵))
}

This results in the remaining set of factors from Φ1 that we can add separately

to Ψ: {
𝜙1,

||||
 ∈  (Γ (𝒁, ,𝒀 ⧵ 𝑵))

}

Therefore, the final set of factors, Ψ, obtained from merging Φ1 and Φ2 is

Ψ ∶=
{
𝜙2, ⋅ 𝜙1,−𝒀

|||  ∈  (Γ (𝑿, 𝑵))
}
⋃

{
𝜙1,

||||
 ∈  (Γ (𝒁, ,𝒀 ⧵ 𝑵))

}

We can then construct the chordal graph ′
by using a method similar to the

method used to construct Ψ. That is to say, we construct ′
by taking the graph

union of Γ(𝑿,𝑵) and Γ(𝒁, ,𝒀 ⧵ 𝑵).

′ ∶= Γ(𝑿,𝑵)⋃Γ(𝒁, ,𝒀 ⧵ 𝑵)

We know′
is chordal as it is equivalent to taking the chordal graph Γ(𝑿, ,𝒀),

and removing any vertices that is associated with a variable in 𝒀 and not in

𝑵 , and, as we know from Corollary 1, vertex deletion maintains chordality.

Furthermore, since by definition, any vertex associated with a variable in 𝒀 is

not in any minimal separator of Γ(𝑿, ,𝒀), the deletion of these vertices only

removes these vertices from the set of existing maximal cliques, leaving these

maximal cliques otherwise unchanged. Therefore, the maximal cliques of ′
are

exactly just the union of the maximal cliques of Γ(𝑿,𝑵) and Γ(𝒁, ,𝒀 ⧵ 𝑵).

As a result, since the factors of Ψ are defined over the maximal cliques of

Γ(𝑿,𝑵) and Γ(𝒁, ,𝒀 ⧵ 𝑵), these factors are also defined over the maximal

5.2. Computing Conditional 𝛼𝛽-Divergence 85

cliques of ′
.

Ψ ∶ =
{
𝑵 () ⋅ 𝜙2, ⋅ 𝜙1,−𝒀 + (1 − 𝑵 ()) ⋅ 𝜙1,−𝒀

||||
 ∈ (′)

}

=
{

(𝑵 () ⋅ 𝜙2, + (1 − 𝑵 ())) ⋅ 𝜙1,−𝒀
||||
 ∈ (′)

}

where 𝑵 is the indicator function

𝑵 () =

{
1  ∈ 𝑵
0 otherwise

Thus, we can use Theorem 12 to merge the factor sets Φ𝒁 and Φℙ from Equation (5.6)

into a single factor set, Ψℙ, containing factors defined over the maximal cliques of

the graph union of Γ(𝑿,( ,𝒀)) and Γ(𝒁, ,𝒀 ⧵( ,𝒀)). Therefore, we now

have 2 sets of factors:

Ψℙ ∶=
{

((  ,𝒀)() ⋅ 𝑔[ℙ𝒀𝑁 ∣𝒁𝑁] + (1 − (  ,𝒀)())) ⋅ 𝜑−𝒀 [ℙ𝑿]
||||
 ∈ (′

ℙ)
}

Ψℚ ∶= Φℚ =
{
ℎ[ℚ𝒀 ∣𝒁]

||||
 ∈ (′

ℚ)
}

where

′
ℙ ∶= Γ(𝑿,( ,𝒀))⋃ Γ(𝒁, ℙ,𝒀 ⧵( ,𝒀))

′
ℚ ∶= Γ(𝒁, ℚ,𝒀)

Observe that the factors in Ψℙ and Ψℚ are defined over the maximal cliques of

the chordal graphs ′
ℙ and ′

ℚ respectively. Using these set of factors, we can now

compute the sum-product SP𝐵(𝒙𝐵) from Equation (5.5)

SP𝐵(𝒙𝐵)

= ∑
𝒙∈𝑿−𝐵

[
∏

𝑁∈ ℙ,𝒀

𝜑𝑁−𝒀 [ℙ𝑿](𝒙, 𝒙𝐵)]

⎡
⎢
⎢
⎢
⎣

∏
𝑁∈

( ℙ,𝒀)

𝑔[ℙ𝒀𝑁 ∣𝒁𝑁](𝒙, 𝒙𝐵)
⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

∏
𝑁∈

(ℚ,𝒀)

ℎ[ℚ𝒀𝑁 ∣𝒁𝑁](𝒙, 𝒙𝐵)
⎤
⎥
⎥
⎥
⎦

= ∑
𝒙∈𝑿−𝐵

[
∏

∈(′ℙ)
𝜓ℙ,(𝒙, 𝒙𝐵)][

∏
∈(′ℚ)

𝜓ℚ,(𝒙, 𝒙𝐵)]

with MGASP from Section 3.2. As a result, the complexity of obtaining all the SP𝐵
we need to compute the conditional functional 𝒀 ∣𝒁 is the same complexity as using

MGASP with chordal graphs ′
ℙ and ′

𝑞𝑟 , which as we have showed in Section 3.4, is

(|𝑿| ⋅ 2𝜔(
′)+1)

86
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

where ′
is the computation graph of ′

ℙ and ′
𝑞𝑟 .

5.2.2 Computing the Conditional 𝛼𝛽-Divergence when 𝛼, 𝛽 =
0

So far we have shown how to use MGASP from Section 3.2 to compute the condi-

tional functional  , and therefore the conditional 𝛼𝛽-divergence for parameters

other than 𝛼, 𝛽 = 0, between two DMs. In this section, we will show how to do the

same for the case when 𝛼, 𝛽 = 0. First recall the conditional 𝛼𝛽-divergence when

𝛼, 𝛽 = 0:

𝐷(0,0)
𝐴𝐵 (ℙ𝒀 |𝒁 , ℚ𝒀 |𝒁)

= ∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

1
2(

log ℙ𝒀 |𝒛(𝒚) − logℚ𝒀 |𝒛(𝒚))
2

=
1
2
∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

(log ℙ𝒀 |𝒛(𝒚))
2
+ (logℚ𝒀 |𝒛(𝒚))

2
− (log ℙ𝒀 |𝒛(𝒚) logℚ𝒀 |𝒛(𝒚))

In an effort to generalise this expression, we shall define a functional  (0,0)
𝒀 ∣𝒁 :

 (0,0)
𝒀 ∣𝒁 (𝔻(1), 𝔻(2)) =

1
2
∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

log𝔻(1)
𝒀 |𝒛(𝒚) log𝔻

(2)
𝒀 |𝒛(𝒚) (5.7)

resulting in the following form for 𝐷(0,0)
𝐴𝐵 (ℙ𝒀 |𝒁 , ℚ𝒀 |𝒁):

𝐷(0,0)
𝐴𝐵 (ℙ𝒀 |𝒁 , ℚ𝒀 |𝒁) =  (0,0)

𝒀 ∣𝒁 (ℙ, ℙ) +  (0,0)
𝒀 ∣𝒁 (ℚ, ℚ) −  (0,0)

𝒀 ∣𝒁 (ℙ, ℚ)

Substituting the distributions 𝔻(1)
and 𝔻(2)

for the distributions of DMs 𝔻(1)
1 and

𝔻(2)
2 we get:

 (0,0)
𝒀 ∣𝒁 (𝔻(1), 𝔻(2))

=
1
2
∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

log𝔻(1)
𝒀 |𝒁(𝒚 ∣ 𝒛) log𝔻(2)

𝒀 |𝒁(𝒚 ∣ 𝒛)

=
1
2
∑
𝒛∈(

∏
𝑁∈ ℙ,𝒀

𝜑𝑁−𝒀 [ℙ𝑿](𝒛))

∑
𝒚∈(

∑
𝑁∈(𝔻(1),𝒀)

log𝔻(1)
𝒀𝑁 |𝒁𝑁 (𝒚𝑁 ∣ 𝒛𝑁))(

∑
𝑁∈(𝔻(2),𝒀)

log𝔻(2)
𝒀𝑁′ |𝒁𝑁′

(𝒚𝑁 ′ ∣ 𝒛𝑁 ′)
)

=
1
2

∑
𝐵+∈(𝔻(1),𝒀)

∑
𝐵∗∈(𝔻(2),𝒀)

5.2. Computing Conditional 𝛼𝛽-Divergence 87

∑
𝒙∈(

∏
𝑁∈ ℙ,𝒀

𝜑𝑁−𝒀 [ℙ𝑿](𝒙𝒁))(
log𝔻(1)

𝒀𝐵+ |𝒁𝐵+
(𝒙𝐵+))(

log𝔻(2)
𝒀𝐵∗ |𝒁𝐵∗

(𝒙𝐵∗))

We then have the following sum-product for all 𝐵+ ∈ (𝔻(1),𝒀) and 𝐵∗ ∈
(𝔻(2),𝒀):

∑
𝒙∈(

∏
𝑁∈ ℙ,𝒀

𝜑𝑁−𝒀 [ℙ𝑿](𝒙𝒁))(
log𝔻(1)

𝒀𝑁+ |𝒁𝑁+
(𝒙𝑁))(

log𝔻(2)
𝒀𝑁∗ |𝒁𝑁∗ (𝒙𝑁 ′)

)

which can expressed as the sum-product of three sets of factors defined over the

maximal cliques of their respective chordal graphs:

Φ𝒁 ∶=
{
𝜑[ℙ𝑿]

|||  ∈ Γ(𝒁, ℙ,𝒀)
}

Φ1 ∶=
{
log𝔻(1)

𝒀 |𝒁

|||  ∈ (Γ(𝐵+,𝔻(1),𝒀))
}
=
{
log𝔻(1)

𝒀𝐵+ |𝒁𝐵+

}

Φ2 ∶=
{
log𝔻(2)

𝒀 |𝒁

|||  ∈ (Γ(𝐵∗,𝔻(2),𝒀))
}
=
{
log𝔻(2)

𝒀𝐵∗ |𝒁𝐵∗

}
(5.8)

these three factor sets can be further merged into just two factor sets depending

on the distributions 𝔻(1)
and 𝔻(2)

passed to  (0,0)
𝒀 ∣𝒁 . Therefore, for the remainder of

this section, we will go through the 3 different cases:  (0,0)
𝒀 ∣𝒁 (ℚ, ℚ),  (0,0)

𝒀 ∣𝒁 (ℙ, ℙ), and

 (0,0)
𝒀 ∣𝒁 (ℙ, ℚ).

1. In the case for  (0,0)
𝒀 ∣𝒁 (ℚ, ℚ), the factor sets Φ1 and Φ2 can be merged directly,

resulting in the final 2 merged factor sets

Ψℙ ∶=
{
𝜑[ℙ𝑿]

|||  ∈ Γ(𝒁, ℙ,𝒀)
}

Ψℚ ∶=
{
logℚ𝒀 |𝒁

|||  ∈ (Γ(𝐵∗ ∪ 𝐵∗, ℚ,𝒀))
}

both defined over the maximal cliques of chordal graphs Γ(𝒁, ℙ,𝒀) and

Γ(𝐵∗ ∪ 𝐵∗, ℚ,𝒀). Therefore we can compute the sum-product over factors in

Ψℙ and Ψℚ using MGASP.

2. For  (0,0)
𝒀 ∣𝒁 (ℙ, ℙ), we can actually merge the three factor sets in Equation (5.8)

into just a single factor set using Theorem 12.

Ψ ∶=
{

(𝑵 () ⋅ log ℙ𝒀𝑁 ∣𝒁𝑁 + (1 − 𝑵 ())) ⋅ 𝜑−𝒀 [ℙ𝑿]
||||
 ∈ (′

ℙ)
}

where

𝑵 ∶=
{
𝐵+, 𝐵∗}

′
ℙ ∶= Γ(𝑿,𝑵)⋃ Γ(𝒁, ℙ,𝒀 ⧵ 𝑵)

88
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

The sum over the product of factors in Ψ can then be computed using either

variable elimination or the JTA over the chordal graph ′
ℙ.

3. Finally, for  (0,0)
𝒀 ∣𝒁 (ℙ, ℚ), we can use Theorem 12 to merge factor sets Φ𝒁 and

Φ1 in Equation (5.8) resulting in the two sets of factors:

Ψℙ ∶=
{

(𝑵 () ⋅ log ℙ𝒀𝑁 ∣𝒁𝑁 + (1 − 𝑵 ())) ⋅ 𝜑−𝒀 [ℙ𝑿]
||||
 ∈ (′

ℙ)
}

Ψℚ ∶=
{
log𝔻(2)

𝒀𝐵∗ |𝒁𝐵∗

}

where

𝑵 ∶=
{
𝐵+}

′
ℙ ∶= Γ(𝑿,𝑵)⋃ Γ(𝒁, ℙ,𝒀 ⧵ 𝑵)

Since factor sets Ψℙ and Ψℚ are defined over the maximal cliques of chordal

graphs ′
ℙ and Γ(𝐵∗, ℚ,𝒀), we can use MGASP to compute the sum-product

over the factors of these two factor sets.

Ultimately, the conditional 𝛼𝛽-divergence between two DMs, ℙℙ and ℚℚ , when

𝛼, 𝛽 = 0 can be computed, by computing

𝐷(0,0)
𝐴𝐵 (ℙ𝒀 |𝒁 , ℚ𝒀 |𝒁) =  (0,0)

𝒀 ∣𝒁 (ℙ, ℙ) +  (0,0)
𝒀 ∣𝒁 (ℚ, ℚ) −  (0,0)

𝒀 ∣𝒁 (ℙ, ℚ)

where

 (0,0)
𝒀 ∣𝒁 (𝔻(1), 𝔻(2)) =

1
2
∑
𝒛∈

ℙ𝒁(𝒛)∑
𝒚∈

log𝔻(1)
𝒀 |𝒛(𝒚) log𝔻

(2)
𝒀 |𝒛(𝒚)

by using a combination of the JTA with MGASP from Section 3.2. Observe, that

regardless of what the distributions, 𝔻(1)
and 𝔻(2)

, given to  (0,0)
𝒀 ∣𝒁 are, the complexity

of computing the needed sum-products is upper bounded by  (2𝜔()+1), where

 is the computation graph between Γ(𝑿, ℙ,𝒀) and Γ(𝑿, ℚ,𝒀). Therefore, the

complexity of computing the conditional 𝛼𝛽-divergence between ℙℙ and ℚℚ when

𝛼, 𝛽 = 0 is:

(max (||(𝔻(1),𝒀)||, ||(𝔻(2),𝒀)||)
2
⋅ 2𝜔()+1

) ∈  (|𝑿|2 ⋅ 2𝜔()+1)

since we need to compute the sum-product for each 𝐵+ ∈ (𝔻(1),𝒀) and 𝐵∗ ∈
(𝔻(2),𝒀).

5.3. Complexity 89

5.3 Complexity

As usual, we can determine the computational complexity of computing the condi-

tional 𝛼𝛽-divergence by first checking, in (1) time, what the given values for 𝛼
and 𝛽 are. When 𝛼, 𝛽 = 0, we have showed in Section 5.2.2 that the complexity of

computing 𝐷(0,0)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) is:

𝐷(0,0)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) ∈ (|𝑿|22𝜔()+1)

where  is the computation graph between Γ(𝑿, ℙ,𝒀) and Γ(𝑿, ℚ,𝒀).

In cases other than 𝛼, 𝛽 = 0, we reframed the problem into one of computing the

𝛼𝛽-divergence between a product of factors defined over the maximal cliques of

the chordal graphs ′
ℙ and ′

ℚ:

Ψℙ ∶=
{

((  ,𝒀)() ⋅ 𝑔[ℙ𝒀𝑁 ∣𝒁𝑁] + (1 − (  ,𝒀)())) ⋅ 𝜑−𝒀 [ℙ𝑿]
||||
 ∈ (′

ℙ)
}

Ψℚ ∶= Φℚ =
{
ℎ[ℚ𝒀 ∣𝒁]

||||
 ∈ (′

ℚ)
}

where

′
ℙ ∶= Γ(𝑿,( ,𝒀))⋃ Γ(𝒁, ℙ,𝒀 ⧵( ,𝒀))

′
ℚ ∶= Γ(𝒁, ℚ,𝒀)

Using this transformation of the problem, we can use MGASP from Section 3.2 to

compute conditional 𝛼𝛽-divergence when the parameters take values other than

𝛼, 𝛽 = 0. Using MGASP with the factors defined over chordal graphs ′
ℙ and ′

ℚ

results in the computational complexity

(|𝑿| ⋅ 2𝜔(
′)+1)

where ′
is the computation graph of ′

ℙ and ′
ℚ.

Therefore, the complexity of computing the conditional 𝛼𝛽-divergence between

the DMs ℙℙ and ℚℚ in general is

𝐷(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁) ∈

{
(|𝑿|2 ⋅ 2𝜔()+1) 𝛼, 𝛽 = 0
(|𝑿| ⋅ 2𝜔(′)+1) otherwise

90
Chapter 5. Computing Divergences between the Conditional Distributions of 2

Decomposable Models

5.4 Conclusion

In this chapter we first showed how to decompose the conditional 𝛼𝛽-divergence

between two DMs, 𝐷(𝛼,𝛽)
AB (ℙ𝒀 ∣𝒁 , ℚ𝒀 ∣𝒁), by finding a decomposition of conditional

distributions encoded in some DM. We then showed how we can use this decompo-

sition to efficiently compute the conditional 𝛼𝛽-divergence between two DMs.

Decomposing the conditional distribution of a DM ℙℙ , ℙ𝒀 ∣𝒁 , involves first finding a

partition of the variables in 𝒀 such that the 𝒀 variables of each set in the partition

have a Markov blanket that makes them conditionally independent to 𝒀 in other

partition sets, given this Markov blanket. Such partitions of 𝒀 can be obtained

by just finding some  -partitions,  𝑝𝑟 ,𝒀 . In fact, we showed in Proposition 7

that the variables in each set of an  -partition is a Markov blanket of the 𝒀
variables in the partition set. With the  -partition  ℙ,𝒀 , we can then use the

conditional independence property to decompose the conditional distribution ℙ𝒀 ∣𝒁 ,

into a product of smaller conditional distributions over the sets in  ℙ,𝒀 .

With a decomposition of the conditional distributions ℙ𝒀 ∣𝒁 andℚ𝒀 ∣𝒁 for DMs ℙℙ and

ℚℚ , we then attempted to decompose the conditional 𝛼𝛽-divergence between these

conditional distributions. However, the 𝛼𝛽-divergence has different expressions

depending on the values of 𝛼 and 𝛽. Therefore, we tackled decomposing the

conditional 𝛼𝛽-divergence in the case when either 𝛼 or 𝛽 is 0 and when 𝛼, 𝛽=0.

When either 𝛼 or 𝛽 is 0, we can express the ordinary 𝛼𝛽-divergence as a linear

combination of the functional  from Definition 13. Therefore, we defined a con-

ditional version of  that we called the conditional functional 𝒀 ∣𝒁 , and showed,

in Proposition 9, that the conditional 𝛼𝛽-divergence can be expressed as a linear

combination of these conditional functionals 𝒀 ∣𝒁 . We then showed that comput-

ing 𝒀 ∣𝒁 mainly involves computing the sum-product over factors defined on the

maximal cliques of three different chordal graphs: Γ(𝒁, ℙ,𝒀), Γ(𝑿,( ℙ,𝒀)), and

Γ(𝑿,( ℚ,𝒀)). However, since the chordal graphs Γ(𝒁, ℙ,𝒀) and Γ(𝑿,( ℙ,𝒀))
are both subgraphs of ℙ, we showed in Theorem 12 that we can directly merge

these chordal graphs and their associated factor sets to form a single factor set Ψℙ

defined over the maximal cliques of the chordal graph Γ(𝒁, ℙ,𝒀) ∪ Γ(𝑿,( ℙ,𝒀)).
This merger results in 2 sets of factors, defined over the maximal cliques of 2

chordal graphs respectively, of which we wish to compute the sum-product, the

same problem described in Problem 2 way back in Chapter 3. Due to this similarity,

we are able to use this transformation to compute the conditional 𝛼𝛽-divergence,

when either 𝛼 or 𝛽 is 0, between two DMs in a time complexity of (|𝑿| ⋅ 2𝜔(′)+1),

where ′
is the computation graph of Γ(𝒁, ℙ,𝒀) ∪ Γ(𝑿,( ℙ,𝒀)) and Γ(𝒁, ℙ,𝒀).

Furthermore, we showed that a similar procedure can be used to compute the

conditional 𝛼𝛽-divergence when both 𝛼 and 𝛽 are 0. Specifically, we first defined a

new functional,  (0,0)
𝒀 ∣𝒁 , and showed how the conditional 𝛼𝛽-divergence between ℙℙ

5.4. Conclusion 91

and ℚℚ , when 𝛼, 𝛽 = 0, can be expressed as a linear combination of  (0,0)
𝒀 ∣𝒁 (ℙ, ℙ),

 (0,0)
𝒀 ∣𝒁 (ℚ, ℚ), and  (0,0)

𝒀 ∣𝒁 (ℙ, ℚ). Similar to 𝒀 ∣𝒁 , the main computation component of

 (0,0)
𝒀 ∣𝒁 involves the sum-product over factors defined on the maximal cliques of three

chordal graphs. However, unlike 𝒀 ∣𝒁 , it is possible for  (0,0)
𝒀 ∣𝒁 to be passed arguments

other than (ℙ, ℚ). Therefore, we had to tackle merging these three factor sets for the

case of  (0,0)
𝒀 ∣𝒁 (ℙ, ℙ),  (0,0)

𝒀 ∣𝒁 (ℚ, ℚ), and  (0,0)
𝒀 ∣𝒁 (ℙ, ℚ) separately. Ultimately, we showed

that in all cases,  (0,0)
𝒀 ∣𝒁 can be reframed into a form that is amendable for computation

by either the ordinary JTA or by MGASP. As such, the complexity of computing

the conditional 𝛼𝛽-divergence when both 𝛼 and 𝛽 are 0 is  (|𝑿|2 ⋅ 2𝜔()+1) where

 is the computation graph of Γ(𝑿, ℙ,𝒀) and Γ(𝑿, ℚ,𝒀).

93

Part II

Applications of Computing
Divergences between Graphical

Models

95

Chapter 6

Generating High-Dimensional Data
with Concept Drift of Known
Magnitudes

The applications of the ability to compute divergences between high-dimensional

discrete distributions is vast, especially in the field of concept drift. For instance,

we can learn decomposable models from data and use the divergence computation

techniques developed to estimate the divergence between samples. This has wide

applications such as in the problem of mapping concept drift in a dataset (Webb et

al. 2018). However, in this chapter we will explore the application of divergence

computation between DMs to the problem of generating synthetic datasets with

occurrences of concept drift with known drift magnitudes.

Specifically, in this chapter, we will propose a method for modifying the parameters

of an existing decomposable model, ℙ, to obtain a new model ℚ, that is some

target amount of divergence away from ℙ. We can then sample data from these 2

models to obtain datasets with known magnitudes of concept drift.

However, when generating datasets for the purposes of testing how different

models and adaptation techniques behave in the presence of concept drift, it is

important to control the general “difficulty” throughout the dataset. One reason

why this is important is, if the distribution after concept drift is too easy, then all

the learners being tested might adapt to the new distribution too quickly, making

it hard to differentiate between the adaptation performance of the various learners

or adaptation techniques being tested.

Therefore, in Section 6.1, we will develop a general method for modifying any dis-

crete distribution to ensure any resulting distribution from the modification has the

same entropy as the original distribution. Once this method of modifying discrete

distributions while maintaining the same entropy is established, in Section 6.2, we

will apply this method to modifying the discrete distributions expressed by DMs

such that the resulting modified DM is a target amount of divergence away from

96
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

𝑥 𝑃 𝑄̄ 𝑃 𝑄̃

0 2/8 1/8 2/8 1/8
1 1/8 1/8 2/8 1/8
2 4/8 1/8 2/8 1/8
3 1/8 5/8 2/8 5/8

Table 6.1: 2 quantum distribu-

tions, 𝑃 and 𝑃 , with a “quantum”

of 1/8. 𝑄̄ and 𝑄̃ are the distribu-

tions with maximum KL diver-

gence from them based on Bon-

nici (2020).

the original. However, here we assumed we already have a DM to modify in the

first place. Therefore, in Section 6.3, we will develop a method to generate random

DMs with a limit on the treewidth of these models.

6.1 Entropy and its Relation to Dataset Difficulty

Recall that the main goal of developing a drift generator is to test how different

drift adaptation techniques react to varying magnitudes of concept drift. However,

it is not guaranteed for the performance and behaviour of a model on differing

datasets to be similar. This can make comparing the performance and behaviour

of a model or drift adaptation technique across the datasets generated with drift

generator using varying drift magnitudes difficult.

Of course, we can try to rectify this problem by taking into account the maximum

accuracy of the model on just the data before and after the occurrence of concept

drift separately and using it as the baseline to compare the accuracy of the model

or adaptation technique to when adapting to drift (Shaker & Hüllermeier, 2015).

However, this solution can only go so far, as when trying to induce large magnitudes

of concept drift in a dataset, it is likely that we will generate post-drift distributions

that are easy to learn. This can result in datasets, especially high drift magnitude

datasets, where the model learns the new concept too quickly, causing the different

models and adaptation techniques to achieve very high and indistinguishable

accuracy.

To illustrate this problem, let us consider the problem of modifying the probability

vector 𝑃 = [𝑝1, … , 𝑝𝑘] where the entries of 𝑃 are multiples of 1/𝑎, 𝑎 ∈ ℕ, i.e. 𝑃 is

a “quantum distribution” with quantum 1/𝑎. Then we know that the distribution

𝑄 = [𝑞1, … , 𝑞𝑘] with the maximum KL-divergence from 𝑃 is the distribution where

as much quanta as possible are concentrated in the entry 𝑞𝑖 where 𝑝𝑖 is the entry in

𝑃 with the minimum value (Bonnici, 2020). More formally, let

𝑃 = [𝑝1, … , 𝑝𝑘] where ∀𝑝 ∈ 𝑃 ∶ 𝑝 ⋅ 𝑎 ∈ ℕ

𝑄 = [𝑞1, … , 𝑞𝑘] where 𝑞𝑖 =

{
𝑎−(𝑘−1)

𝑎 𝑖 = argmin𝑗∈{1,2,…,𝑘} 𝑝𝑗
1/𝑎 otherwise

then we know from Bonnici (2020) that

𝑄 = argmax
𝑃∈

𝐷KL(𝑃, 𝑃)

Table 6.1 provides some examples of probability vectors and the distribution with

the greatest KL-divergence from them. From this example, we can observe that if

6.1. Entropy and its Relation to Dataset Difficulty 97

we were to try to modify discrete distributions to induce high magnitudes of drift,

we would invariably obtain distributions that are very easy to model.

We ought to prevent this problem of generating datasets that are too “easy” at the

source by ensuring that the distributions before and after the occurrence of concept

drift have the same “difficulty”. One way to quantify the “difficulty” of a distribution

is with the Shannon entropy.

𝐻(𝑃) = −∑
𝒙∈

𝑃𝑿(𝒙) log 𝑃𝑿(𝒙)

Intuitively, using the Shannon entropy to represent the difficulty of a distribution

𝑃 makes sense, as entropy is a measure of the expected amount of information

content in a sample from 𝑃 (MacKay, 2003). Therefore, for the rest of this section

we will focus on modifying the parameters of a given decomposable model, such

that the modified model is a target amount of divergence away from the original

DM, while still having the same entropy as the original model.

Problem 3 (Drifting DMs) Assume we are given a decomposable model ℙℙ ,

a divergence to use 𝐷, and a real value 𝑑 in the range of 𝐷, 𝑑 ∈ Range(𝐷). Then

the DM drifting problem involves modifying the parameters of ℙℙ such that

the following are true for the distributions ℙ and ℚ modelled by DMs ℙℙ and

ℚℚ :

𝐻(ℙ) − 𝐻(ℚ) = 0
𝐷(ℙ||ℚ) = 𝑑

Of course, even if we did not control for entropy, it is possible for the provided

target drift magnitude 𝑑 to be higher than the maximum possible divergence that

can be induced for some given 𝑃 :

𝑑 > max
𝑄∈𝑆

𝐷(𝑃 ∣∣ 𝑄)

where 𝑆 is all the probability vectors with the same length as 𝑃 . For instance, in

the example distributions 𝑃 and 𝑃 in Table 6.1, the maximum KL-divergence that

can be induced for 𝑃 is less than 𝑃 :

𝐷𝐾𝐿(𝑃||𝑄̄) =
2
8
log(2) +

1
8
log(1) +

4
8
log(4) +

2
8
log(

1
5)

= 0.6695

𝐷𝐾𝐿(𝑃||𝑄̃) = 3
2
8
log(2) +

2
8
log(

2
5)

= 0.4195
< 𝐷𝐾𝐿(𝑃||𝑄̄)

98
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

Therefore, the maximum possible divergence that can be induced depends on the

initial distribution 𝑃 itself. Consequently, in order to approach Problem 3, we need

to be able to complete two tasks on the simpler problem of modifying a probability

vector 𝑃 :

1. Developing a method to modify 𝑃 such that entropy remains the same.

2. Finding the probability vector with the largest possible divergence away from

𝑃 that is obtainable with the method developed for maintaining entropy.

We then need to apply this method for modifying probability vectors to modifying

the parameters of the given decomposable model.

6.1.1 Permuting Discrete Distributions and Maintaining En-
tropy

In this section we will tackle the problem of modifying the parameters of a given

DM such that the resulting DM is some target divergence away from the original

model. To better explain how we will tackle this problem, we will first discuss the

same problem but on a given probability vector, instead of a DM. We will then

show how our problem of modifying the parameters of a given DM to achieve some

target divergence in both the joint and conditional distribution is similar to this

easier problem of modifying a single probability vector for the same goal.

Observe from the definition of Shannon entropy of a discrete distribution 𝑃

𝐻(𝑃) = −∑
𝒙∈

𝑃𝑿(𝒙) log 𝑃𝑿(𝒙)

that 𝑃 and any permutation of 𝑃 will have the same entropy as the order of the

entries in the distribution does not matter when computing entropy.

Proposition 10 (Permutations maintain entropy) Let 𝑃 = [𝑝1, … , 𝑝𝑘] be

a probability vector. If a probability vector 𝑄 is a permutation of 𝑃 , then their

Shannon entropy are the same, 𝐻(𝑃) = 𝐻(𝑄).

Proof Since 𝑄 is a permutation of 𝑃 , there is a mapping 𝜋

𝜋 ∶ {1, … , 𝑘} → {1, … , 𝑘}
s.t. ∀𝑖 ∈ {1, … , 𝑘} ∶ 𝑃[𝑖] = 𝑄[𝜋(𝑖)]

6.1. Entropy and its Relation to Dataset Difficulty 99

which implies

𝐻(𝑃) − 𝐻(𝑄) = ∑
𝑖∈{1,…,𝑘}

𝑃[𝑖] − ∑
𝑖∈{1,…,𝑘}

𝑄[𝑖] = ∑
𝑖∈{1,…,𝑘}

𝑃[𝑖] − 𝑄[𝜋(𝑖)] = 0

and therefore 𝑃 and any permutation of 𝑃 , 𝑄, have the same Shannon entropy.

However, Proposition 10 only proves that this implication goes in one direction, it

might be possible to find a modification of 𝑃 , 𝑄, that is both not a permutation of 𝑃
but still have the same entropy as 𝑃 . Therefore, by only considering permutations

of 𝑃 when finding a distribution with a given divergence away from 𝑃 , we are

unfortunately restricting ourselves to a subset of all possible distributions that

has the same entropy as 𝑃 . However, this restriction still results in a search space

that grows factorially with respect to the size of 𝑃 . Knowing that permutations of

probability vectors maintain the entropy of the distribution, the question then is:

how do we apply this fact and restriction to modifying the parameters of a DM

in order to achieve some target divergence in the joint or conditional distribution

represented by the DM?

6.1.1.1 Joint

In order to approach the problem of inducing some amount of drift in the joint

distribution of a DM while maintaining the same entropy, first recall the Shannon

entropy of the joint distribution ℙ modelled by the DM ℙℙ

𝐻(ℙ) = ∑
𝒙∈

ℙ(𝒙) log ℙ(𝒙)

= ∑
𝒙∈

ℙ(𝒙) log
∏∈ ℙ(𝒙)
∏∈ ℙ(𝒙)

= ∑
∈

∑
𝒙∈

log ℙ(𝒙) ∑
𝒙∈𝑿−

ℙ(𝒙 , 𝒙) − ∑
∈

∑
𝒙∈

log ℙ(𝒙) ∑
𝒙∈𝑿−

ℙ(𝒙 , 𝒙)

= ∑
∈

∑
𝒙∈

ℙ(𝒙) log ℙ(𝒙) − ∑
∈

∑
𝒙∈

ℙ(𝒙) log ℙ(𝒙)

= ∑
∈

𝐻(ℙ) − ∑
∈

𝐻(ℙ)

From this we can observe that modifying the parameters in a DM such that entropy

remains the same is not as simple as permuting the clique probabilities of some

maximal clique in . This is due to modifications in clique probabilities causing

both changes in the entropy of separator probabilities and also inconsistencies

in the minimal separator probabilities with adjacent maximal cliques. One way

to avoid this issue is to only modify the probabilities over the variables in the

maximal clique that are not shared with any other maximal cliques in the DM,

∀ ∈  ∶  − ⋃( ⧵ {}).

100
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

Theorem 13 (Permuting DMs while maintaining joint entropy) For

any decomposable model ℙℙ with maximal cliques  and minimal separators

 , let ◦ and ∙ be the vertices in  that are shared with other maximal cliques

and that are exclusive in  respectively.

◦ = ⋂⋃

∙ =  ⧵ ◦

Then permuting the rows of the CPTs

∀ ∈ (ℙℙ) ∶
ℙ

∑𝒙∙∈∙
ℙ(𝒙∙)

=
ℙ

ℙ◦
= ℙ∙ ∣◦

will ensure that the resulting decomposable model with these modifications,

ℚℚ , will have the same entropy, 𝐻(ℙ) = 𝐻(ℚ).

Proof Let ℚℚ be the DM after permuting the rows

∀ ∈ (ℙℙ) ∶ ℙ∙ ∣◦

resulting in the following joint probabilities over the maximal cliques in ℚℚ :

∀ ∈  ∶ ℚ = ℚ∙ ∣ ◦ℙ◦

where

 = (ℙℙ) = (ℚℚ)
∀ ∈  ∶ ℚ◦ = ℙ◦

and ℚ∙ ∣◦ is the CPT ℙ∙ ∣◦ after carrying out some set of permutations on its

rows. In order for the entropy of ℙℙ and ℚℚ to be the same we require the

following to be true:

0 = 𝐻(ℙ) − 𝐻(ℚ)

= ∑
∈

𝐻(ℙ) − 𝐻(ℚ) − ∑
∈

𝐻(ℙ) − 𝐻(ℚ)

Therefore by showing that

∀ ∈  ∶ 𝐻(ℙ) = 𝐻(ℚ)
∀ ∈  ∶ 𝐻(ℙ) = 𝐻(ℚ)

6.1. Entropy and its Relation to Dataset Difficulty 101

we will show that 𝐻(ℙ) = 𝐻(ℚ). Showing 𝐻(ℙ) = 𝐻(ℚ) can be done

directly as:

∀ ∈  ∶ ℙ◦ = ℚ◦

⇒ ∀ ∈  ∶ ℙ = ℚ

⇒ ∀ ∈  ∶ 𝐻(ℙ) = 𝐻(ℚ)

Showing that 𝐻(ℙ) = 𝐻(ℚ) on the other hand is a bit more involved. First

observe that 𝐻(ℙ) can be decomposed into a weighted sum of the entropy of

ℙ∙ ∣◦ and the entropy of ℙ◦ :

𝐻(ℙ)

= ∑
𝒙∈

ℙ∙ ∣◦(𝒙)ℙ◦(𝒙) log ℙ∙ ∣◦(𝒙)ℙ◦(𝒙)

= ∑
𝒙◦∈◦

ℙ◦(𝒙◦) ∑
𝒙∙∈∙

ℙ∙ ∣◦(𝒙∙ ∣ 𝒙◦) log ℙ∙ ∣◦(𝒙∙ ∣ 𝒙◦)+

∑
𝒙◦∈◦

ℙ◦(𝒙◦) log ℙ◦(𝒙◦) ∑
𝒙∙∈∙

ℙ∙ ∣◦(𝒙∙ ∣ 𝒙◦)

= ∑
𝒙◦∈◦

ℙ◦(𝒙◦)𝐻(ℙ∙ ∣◦) + 𝐻(ℙ∙)

Then recall that permuting the CPT rowℙ𝑿∙ ∣𝒙◦ ensures that its entropy remains

the same. This implies that

∀ ∈ , ∀𝒙◦ ∈ ◦ ∶ 𝐻(ℙ𝑿∙ ∣𝒙◦) = 𝐻(ℚ𝑿∙ ∣𝒙◦)

Then taking the difference between 𝐻(ℙ) and 𝐻(ℚ):

∀ ∈  ∶
𝐻(ℙ) − 𝐻(ℚ)

= ∑
𝒙◦∈◦

ℙ◦(𝒙◦)𝐻(ℙ∙ ∣◦) + 𝐻(ℙ∙) − ∑
𝒙◦∈◦

ℙ◦(𝒙◦)𝐻(ℚ∙ ∣◦) − 𝐻(ℚ∙)

= ∑
𝒙◦∈◦

ℙ◦(𝒙◦)𝐻(ℙ∙ ∣◦) − ℙ◦(𝒙◦)𝐻(ℚ∙ ∣◦)

= ∑
𝒙◦∈◦

ℙ◦(𝒙◦) ⋅ 0

= 0

Therefore, for all  ∈ , 𝐻(ℙ) = 𝐻(ℚ), and since we already know 𝐻(ℙ) =
𝐻(ℚ) for all  ∈  , we can conclude that 𝐻(ℙ) = 𝐻(ℚ) when only row in

the CPTs ℙ∙ ∣◦ for some DM is permuted.

102
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

Therefore, the full set of CPT rows that we can permute to induce some amount of

drift in a DM while preserving the same entropy is:

{

ℙ𝑿∙ ∣𝒙◦

|||||
∀ ∈ , ∀𝒙◦ ∈ ◦

}

. (6.1)

6.1.1.2 Conditional

In order to approach the problem of inducing some amount of drift in the conditional

distribution of a DM while maintaining the same entropy, first recall the Shannon

entropy of the conditional distribution ℙ modelled by the DM ℙℙ

𝐻(ℙ𝒀 ∣𝒁) = 𝔼𝒁[𝐻(ℙ𝒀 ∣𝒛)]

= ∑
𝒛∈

ℙ𝒁(𝒛)𝐻(ℙ𝒀 ∣𝒛)

Using the definition of -partitions from Definition 23 and the decomposition of

conditional distributions over DMs from Section 5.1

∀𝒛 ∈  ∶𝐻(ℙ𝒀 ∣𝒛)

= ∑
𝒚∈

ℙ𝒀 ∣𝒛(𝒚) log ℙ𝒀 ∣𝒛(𝒚)

= ∑
𝒚∈

∏
𝑁∈( ℙ,𝒀)

ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) log ∏
𝑁∈( ℙ,𝒀)

ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁)

= ∑
𝑁∈( ℙ,𝒀)

∑
𝒚∈

∏
𝑁 ′∈( ℙ,𝒀)

ℙ𝒀𝑁′ ∣𝒛𝑁′ (𝒚𝑁 ′) log ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁)

= ∑
𝑁∈( ℙ,𝒀)

∑
𝒚𝑁 ∈𝑁

ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) log ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) ∏
𝑁 ′∈( ℙ,𝒀)⧵{𝑁 }

∑
𝒚𝑁′∈𝑁′

ℙ𝒀𝑁′ ∣𝒛𝑁′ (𝒚𝑁 ′)

= ∑
𝑁∈( ℙ,𝒀)

∑
𝒚𝑁 ∈𝑁

ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) log ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) ∏
𝑁 ′∈( ℙ,𝒀)⧵{𝑁 }

1

= ∑
𝑁∈( ℙ,𝒀)

∑
𝒚𝑁 ∈𝑁

ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁) log ℙ𝒀𝑁 ∣𝒛𝑁 (𝒚𝑁)

= ∑
𝑁∈( ℙ,𝒀)

𝐻(ℙ𝒀𝑁 ∣𝒛𝑁)

Since ℙ𝒀𝑁 ∣𝒛𝑁 are probability vectors, by Proposition 10, 𝐻(ℙ𝒀𝑁 ∣𝒛𝑁) is invari-

ant under permutations of ℙ𝒀𝑁 ∣𝒛𝑁 . Furthermore, the equivalence 𝐻(ℙ𝒀 ∣𝒛) =
∑𝑁∈( ℙ,𝒀) 𝐻(ℙ𝒀𝑁 ∣𝒛𝑁) implies the following are invariant to permutations of ℙ𝒀𝑁 ∣𝒛𝑁 :

⇒ 𝐻(ℙ(𝒀 ∣ 𝒛))

⇒ ∑𝒛∈ ℙ𝒁(𝒛)𝐻(ℙ(𝒀 ∣ 𝒛))

⇒ 𝐻(ℙ(𝒀 ∣ 𝒁))

6.1. Entropy and its Relation to Dataset Difficulty 103

Therefore, permutations of the following set of CPT rows will preserve the condi-

tional entropy 𝐻(ℙ𝒀 ∣𝒁) of the DM being modified:

{

ℙ𝒀𝑁 ∣𝒛𝑁

|||||
𝑁 ∈ ( ℙ,𝒀), 𝒛𝑁 ∈ 𝑁

}

(6.2)

6.1.2 Distribution with Maximum Divergence

Now that we have shown a method for modifying the parameters of a DM to

achieve some target divergence in either the joint or conditional distribution such

that its entropy remains the same, we now need to tackle the problem of finding

the maximum amount of divergence that can be induced via this method. Since,

fundamentally, the method of modifying the parameters in a DM described in

Section 6.1.1 revolves around permuting the rows of appropriate CPTs, which are

just individual probability vectors, we will first consider the problem of finding the

permutation of a probability vector 𝑃 with the largest 𝛼𝛽-divergence away from 𝑃 .

When tackling this problem, we can assume, without loss of generality, that 𝑃 is a

probability vector that has entries in ascending order,

𝑃 = [𝑝1, … , 𝑝𝑘] 𝑠.𝑡. ∀𝑖 < 𝑗 ∶ 𝑝𝑖 < 𝑝𝑗 ,

as, for any unsorted vector 𝑃 , we can first sort 𝑃 to obtain 𝑃 , find the vector 𝑄 with

the greatest possible 𝛼𝛽-divergence from 𝑃 , then find the vector 𝑄̄ that has the

greatest 𝛼𝛽-divergence from 𝑃 by applying, on 𝑄, the inverse of the ordering used

to obtain 𝑃 from 𝑃 .

Theorem 14 (Permutation of with maximum 𝜶𝜷-divergence) Assume,

without loss of generality, that 𝑃 is a probability vector that is sorted in as-

cending order:

𝑃 = [𝑝1, … , 𝑝𝑘] 𝑠.𝑡. ∀𝑖 < 𝑗 ∶ 𝑝𝑖 < 𝑝𝑗

Then the permutation of 𝑃 with the greatest 𝛼𝛽-divergence from 𝑃 is the

probability vector with the reverse order of 𝑃 :

argmax
𝑄∈

𝐷𝛼𝛽(𝑃||𝑄) = [𝑝𝑘, … , 𝑝1]

where  is the set of all possible permutations of 𝑃 .

104
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

Proof First recall that the definition of the extended 𝛼𝛽-divergence is divided

into multiple cases:

𝐷𝛼,𝛽
AB (ℙ, ℚ) = ∑

𝒙∈
𝑑𝛼,𝛽AB (ℙ(𝒙), ℚ(𝒙))

where

𝑑(𝛼,𝛽)AB (ℙ(𝑥), ℚ(𝑥))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
𝛼𝛽 (ℙ(𝑥)

𝛼ℚ(𝑥)𝛽 − 𝛼ℙ(𝑥)𝛼+𝛽
𝛼+𝛽 − 𝛽ℚ(𝑥)𝛼+𝛽

𝛼+𝛽) for 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0
1
𝛼2 (ℙ(𝑥)

𝛼 log ℙ(𝑥)𝛼
ℚ(𝑥)𝛼 − ℙ(𝑥)𝛼 + ℚ(𝑥)𝛼) for 𝛼 ≠ 0, 𝛽 = 0

1
𝛼2 (log ℚ(𝑥)𝛼

ℙ(𝑥)𝛼 + (
ℚ(𝑥)𝛼
ℙ(𝑥)𝛼)

−1
− 1) for 𝛼 = −𝛽 ≠ 0

1
𝛽2 (ℚ(𝑥)

𝛽 log ℚ(𝑥)𝛽
ℙ(𝑥)𝛽 − ℚ(𝑥)𝛽 + ℙ(𝑥)𝛽) for 𝛼 = 0, 𝛽 ≠ 0

1
2(log ℙ(𝑥) − logℚ(𝑥))2 for 𝛼, 𝛽 = 0.

(2.10)

Therefore, we will approach proving Theorem 14 by proving it for the 5 cases

in Equation (2.10). These proofs will involve first assuming the existence of 2

permutations of 𝑃 that are different by a single swap:

𝑄̄ = [… , 𝑞𝑖, … , 𝑞𝑗 , …]
𝑄̃ = [… , 𝑞𝑗 , … , 𝑞𝑖, …]

where:

𝑞𝑖 < 𝑞𝑗

as in the vector 𝑄̄ is a vector with entries that are not sorted in descending

order and vector 𝑄̃ is obtained by swapping these entries. Then by showing

that the difference in divergence from 𝑃 to 𝑄̄ and from 𝑃 to 𝑄̃ is negative,

𝐷(𝛼,𝛽)
𝛼𝛽 (𝑃 ∣∣ 𝑄̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑃 ∣∣ 𝑄̃) ≤ 0 ⇒ 𝐷(𝛼,𝛽)
𝛼𝛽 (𝑃 ∣∣ 𝑄̄) ≤ 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑃 ∣∣ 𝑄̃)

we will show that for any vector 𝑄̄ whose entries are not sorted in descending

order, we can construct a new vector 𝑄̃ that will have a greater 𝛼𝛽-divergence

from 𝑃 . Conversely, the only vector 𝑄̄ with no 𝑄̃ counterpart, and therefore

no vector with a greater 𝛼𝛽-divergence from 𝑃 , is the vector with entries in

descending order, i.e. the vector with the reverse order of 𝑃 .

With the rough argument of this proof outlined, we will now show that for

all values of 𝛼 and 𝛽, 𝐷(𝛼,𝛽)
𝛼𝛽 (𝑃 ∣∣ 𝑄̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑃 ∣∣ 𝑄̃) ≤ 0 and therefore the

permutation of 𝑃 with the greatest 𝛼𝛽-divergence from 𝑃 , is 𝑃 but in reverse

order.

6.1. Entropy and its Relation to Dataset Difficulty 105

when 𝛼, 𝛽, 𝛼 + 𝛽 ≠ 0

𝐷(𝛼,𝛽)
𝛼𝛽 (𝑝 ∣∣ 𝑞̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑝 ∣∣ 𝑞̃)

=
𝑘

∑
𝑙=1

−
1
𝛼𝛽(

𝑝𝛼𝑙 𝑞̄
𝛽
𝑖 −

𝛼𝑝𝛼+𝛽𝑖

𝛼 + 𝛽
−
𝛽𝑞̄𝛼+𝛽𝑙

𝛼 + 𝛽)
+

1
𝛼𝛽(

𝑝𝛼𝑙 𝑞̃
𝛽
𝑖 −

𝛼𝑝𝛼+𝛽𝑖

𝛼 + 𝛽
−
𝛽𝑞̃𝛼+𝛽𝑖

𝛼 + 𝛽)

=
1
𝛼𝛽

𝑘

∑
𝑙=1

𝑝𝛼𝑙 𝑞̃
𝛽
𝑖 − 𝑝𝛼𝑙 𝑞̄

𝛽
𝑖

=
1
𝛼𝛽(

𝑝𝛼𝑖 ⋅ 𝑞
𝛽
𝑗 − 𝑝𝛼𝑖 ⋅ 𝑞

𝛽
𝑖 + 𝑝𝛼𝑗 ⋅ 𝑞

𝛽
𝑖 − 𝑝𝛼𝑗 ⋅ 𝑞

𝛽
𝑗)

=
1
𝛼𝛽(

𝑝𝛼𝑖 (𝑞
𝛽
𝑗 − 𝑞𝛽𝑖) − 𝑝𝛼𝑗 (𝑞

𝛽
𝑗 − 𝑞𝛽𝑖))

=
1
𝛼𝛽(

(𝑝𝛼𝑖 − 𝑝𝛼𝑗) ⋅ (𝑞
𝛽
𝑗 − 𝑞𝛽𝑖))

≤ 0 (since 𝑝𝛼𝑖 − 𝑝𝛼𝑗 ≤ 0 , 𝑞𝛽𝑗 − 𝑞𝛽𝑖 ≥ 0 and 1/(𝛼𝛽) > 0)

when 𝛼 ≠ 0, 𝛽 = 0

𝐷(𝛼,𝛽)
𝛼𝛽 (𝑝 ∣∣ 𝑞̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑝 ∣∣ 𝑞̃)

=
𝑘

∑
𝑙=1

1
𝛼2(

𝑝𝛼𝑙 log
𝑝𝛼𝑙
𝑞̄𝛼𝑙

− 𝑝𝛼𝑙 + 𝑞̄𝛼𝑙)
−

1
𝛼2(

𝑝𝛼𝑙 log
𝑝𝛼𝑙
𝑞̃𝛼𝑙

− 𝑝𝛼𝑙 + 𝑞̃𝛼𝑙)

=
1
𝛼2

𝑘

∑
𝑙=1(

𝑝𝛼𝑙 log
𝑝𝛼𝑙
𝑞̄𝛼𝑙

− 𝑝𝛼𝑙 log
𝑝𝛼𝑙
𝑞̃𝛼𝑙)

=
1
𝛼2(

𝑝𝛼𝑖 log
𝑝𝛼𝑖
𝑞𝛼𝑖

− 𝑝𝛼𝑖 log
𝑝𝛼𝑖
𝑞𝛼𝑗

+ 𝑝𝛼𝑗 log
𝑝𝛼𝑗
𝑞𝛼𝑗

− 𝑝𝛼𝑗 log
𝑝𝛼𝑗
𝑞𝛼𝑖)

=
1
𝛼2(

𝑝𝛼𝑖 log
𝑞𝛼𝑗
𝑞𝛼𝑖

− 𝑝𝛼𝑗 log
𝑞𝛼𝑗
𝑞𝛼𝑖)

=
1
𝛼2((𝑝

𝛼
𝑖 − 𝑝𝛼𝑗) log

𝑞𝛼𝑗
𝑞𝛼𝑖)

≤ 0
(

since 𝑞𝑗 ≥ 𝑞𝑖 ⇒
𝑞𝑗
𝑞𝑖

≥ 1 ⇒ 𝛼 ⋅ log
𝑞𝑗
𝑞𝑖

≥ 0 and 𝑝𝛼𝑖 − 𝑝𝛼𝑗 ≤ 0
)

when 𝛼 = −𝛽 ≠ 0

𝐷(𝛼,𝛽)
𝛼𝛽 (𝑝 ∣∣ 𝑞̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑝 ∣∣ 𝑞̃)

106
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

=
𝑘

∑
𝑙=1

1
𝛼2(

log
𝑞̄𝛼𝑙
𝑝𝛼𝑙

+ (
𝑞̄𝛼𝑙
𝑝𝛼𝑙)

−1

− 1
)

−
1
𝛼2(

log
𝑞̃𝛼𝑙
𝑝𝛼𝑙

+ (
𝑞̃𝛼𝑙
𝑝𝛼𝑙)

−1

− 1
)

=
1
𝛼2

𝑘

∑
𝑙=1(

log
𝑞̄𝛼𝑙
𝑞̃𝛼𝑙

+
𝑝𝛼𝑙
𝑞̄𝛼𝑙

−
𝑝𝛼𝑙
𝑞̃𝛼𝑙)

=
1
𝛼2(

log
𝑞𝛼𝑖
𝑞𝛼𝑗

+
𝑝𝛼𝑖
𝑞𝛼𝑖

−
𝑝𝛼𝑖
𝑞𝛼𝑗

+ log
𝑞𝛼𝑗
𝑞𝛼𝑖

+
𝑝𝛼𝑗
𝑞𝛼𝑗

−
𝑝𝛼𝑗
𝑞𝛼𝑖)

=
1
𝛼2(

𝑝𝛼𝑖 (1/𝑞
𝛼
𝑖 − 𝑞𝛼𝑗) − 𝑝𝛼𝑗 (1/𝑞

𝛼
𝑖 − 𝑞𝛼𝑗))

=
1
𝛼2((𝑝

𝛼
𝑖 − 𝑝𝛼𝑗)(1/𝑞

𝛼
𝑖 − 𝑞𝛼𝑗))

≤ 0 (since 𝑞𝑖 ≤ 𝑞𝑗 ⇒ 1/𝑞𝛼𝑖 − 1/𝑞𝛼𝑗 ≥ 0 and 𝑝𝛼𝑖 − 𝑝𝛼𝑗 ≤ 0)

when 𝛼 = 0, 𝛽 ≠ 0

𝐷(𝛼,𝛽)
𝛼𝛽 (𝑝 ∣∣ 𝑞̄) − 𝐷(𝛼,𝛽)

𝛼𝛽 (𝑝 ∣∣ 𝑞̃)

=
𝑘

∑
𝑙=1

1
𝛽2(

𝑞̄𝛽𝑙 log
𝑞̄𝛽𝑙
𝑝𝛽𝑙

− 𝑞̄𝛽𝑙 + 𝑝𝛽𝑙)
−

1
𝛽2(

𝑞̃𝛽𝑙 log
𝑞̃𝛽𝑙
𝑝𝛽𝑙

− 𝑞̃𝛽𝑙 + 𝑝𝛽𝑙)

=
1
𝛽2

𝑘

∑
𝑙=1(

𝑞̄𝛽𝑙 log
𝑞̄𝛽𝑙
𝑝𝛽𝑙

− 𝑞̃𝛽𝑙 log
𝑞̃𝛽𝑙
𝑝𝛽𝑙)

=
1
𝛽2(

𝑞𝛽𝑖 log
𝑞𝛽𝑖
𝑝𝛽𝑖

− 𝑞𝛽𝑗 log
𝑞𝛽𝑗
𝑝𝛽𝑖

+ 𝑞𝛽𝑗 log
𝑞𝛽𝑗
𝑝𝛽𝑗

− 𝑞𝛽𝑖 log
𝑞𝛽𝑖
𝑝𝛽𝑗)

=
1
𝛽2(

𝑞𝛽𝑖 log
𝑝𝛽𝑗
𝑝𝛽𝑖

− 𝑞𝛽𝑗 log
𝑝𝛽𝑗
𝑝𝛽𝑖)

=
1
𝛽2((𝑞

𝛽
𝑖 − 𝑞𝛽𝑗) log

𝑝𝛽𝑗
𝑝𝛽𝑖)

≤ 0
(

since 𝑝𝑗 ≥ 𝑝𝑖 ⇒
𝑝𝑗
𝑝𝑖

≥ 1 ⇒ 𝛽 ⋅ log
𝑝𝑗
𝑝𝑖

≥ 0 and 𝑞𝛽𝑖 − 𝑞𝛽𝑗 ≤ 0
)

when 𝛼, 𝛽 = 0

𝐷(0,0)
𝛼𝛽 (𝑝 ∣∣ 𝑞̄) − 𝐷(0,0)

𝛼𝛽 (𝑝 ∣∣ 𝑞̃)

=
𝑘

∑
𝑙=1

1
2(

log 𝑝𝑖 − log 𝑞̄𝑖)
2
−
1
2(

log 𝑝𝑖 − log 𝑞̃𝑖)
2

6.2. Drifting Parameters of a Decomposable Model 107

=
1
2

𝑘

∑
𝑙=1

(log 𝑝𝑙)
2
− (log 𝑝𝑙)

2
+ (log 𝑞̄𝑙)

2
− (log 𝑞̃𝑙)

2
−

2 log 𝑝𝑙 log 𝑞̄𝑙 + 2 log 𝑝𝑙 log 𝑞̃𝑙

=
𝑘

∑
𝑙=1

log 𝑝𝑙(log 𝑞̃𝑙/𝑞̄𝑙)

= log 𝑝𝑖(log 𝑞𝑗/𝑞𝑖) + log 𝑝𝑗(log 𝑞𝑖/𝑞𝑗)

= (log 𝑝𝑖/𝑝𝑗)(log 𝑞𝑗/𝑞𝑖)

≤ 0 (since log 𝑝𝑖/𝑝𝑗 ≤ 0 and log 𝑞𝑗/𝑞𝑖 ≥ 0)

We can then directly apply this fact back into drifting DMs by “reversing” the order

of all the CPT rows in the sets in Equations (6.1) and (6.2) for joint and conditional

drift respectively.

6.2 Drifting Parameters of a Decomposable Model

So far, we have shown that the problem of inducing both joint and conditional drift

in a DM while preserving its entropy can be seen as a problem of permuting the set

of CPT rows in Equations (6.1) and (6.2) respectively. Furthermore we also know

the exact permutation of each CPT row that will result in a DM with the maximum

amount of 𝛼𝛽-divergence away from the original DM. The question now is: how

do we find the permutations of the relevant set of CPT rows such that the resulting

DM, ℚℚ , is some target 𝛼𝛽-divergence away from the original DM, ℙℙ?

Problem 4 (Drift DM via permutations) Assume we are given a decom-

posable model ℙℙ , a divergence 𝐷, a real value 𝑑 in the range of 𝐷, 𝑑 ∈
Range(𝐷), and a list of CPT rows in ℙℙ , 𝑅, to permute. Then the drift DM via
permutations problem involves finding permutations of the probability vectors

in 𝑅, which results in a modified DM, ℚℚ , such that the following are true for

the distributions ℙ and ℚ modelled by DMs ℙℙ and ℚℚ :

𝐻(ℙ) − 𝐻(ℚ) = 0
𝐷(ℙ||ℚ) = min(𝑑,max_div(𝐷, ℙℙ , 𝑅)) = 𝑑∗

where max_div(𝐷, ℙℙ , 𝑅) is the maximum value of divergence 𝐷 that can be

induced by permuting the vectors in 𝑅 for DM ℙℙ . Therefore, if the given

divergence target 𝑑 is greater than the largest divergence achievable via per-

mutations, we just take the latter as the new target divergence.

108
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

There are many ways to approach this problem. The approach that we will present

is just a simple example of how one might tackle Problem 4. Our approach at

tackling Problem 4 will involve 2 steps.

1. Coarse Drift: The first step involves roughly selecting which rows in the set

of CPT rows 𝑅 we want to permute by the “maximal” amount such that the

resulting overall drift is above the target drift,

2. Fine Drift: the second step is to reduce the drift induced in step 1 by reducing

the drift in each row that was “maximally” drifted in step 1 until the target

drift is reached.

Algorithm 1: Drift Step 1: Coarse drift

Data: An initial decomposable model ℙ, list of CPT rows to modify rows, and

a target value 𝑑 for divergence 𝐷
Result: Decomposable model ℚ where 𝐷(ℙ, ℚ) ≧ 𝑑, list of CPT rows modified

ℚ = copy of ℙ;

drifted_vecs = [];

cur_drift = 0;

for row in rows do
Drift vector row in ℚ maximally;

𝑐 = 𝐷(ℙ, ℚ);
drifted_vecs.push(row);

cur_drift = 𝑐;
if 𝑐 > 𝑑 then

Output ℚ and drifted_vecs;

end
end
Output ℚ and drifted_vecs;

Next we present Algorithm 1 to carry out step 1 of our proposed method. The main

output of this algorithm is a DM ℚℚ such that the divergence between it and the

original DM, ℙℙ , is above the target divergence 𝑑∗. Algorithm 1 also returns a list

of CPT rows that it has modified to give as input to Algorithm 2. By ensuring that

𝐷(ℙ, ℚ) ≥ 𝑑∗, and providing the list of CPT rows modified to achieve this amount

of drift, we provide Algorithm 2 the opportunity to reduce the drift induced in each

row such that 𝐷(ℙ, ℚ) is less than but close to 𝑑∗.

As a result a lot of the computational burden is theoretically placed on Algorithm 2

as it has the responsibility of searching through a factorial search space for each

CPT row modified by Algorithm 1. However, instead of tackling this large search

space directly, Algorithm 2 limits itself to permutations that are obtained from

swapping the 𝜋𝑟(𝑖)-th element of any row, 𝑟 , with the 𝜋𝑟(len(𝑟) − 1 − 𝑖)-th element,

6.2. Drifting Parameters of a Decomposable Model 109

Algorithm 2: Drift Step 2: Fine drift

Data: An initial decomposable model ℙℙ , modified decomposable model from

coarse drift step ℚℚ , list of CPT rows reversed in coarse drift step rows,

and a target value 𝑑 for divergence 𝐷
Result: Decomposable model ℚ where 𝐷(ℙ, ℚ) ≤ 𝑑
for 𝑟 in rows do

𝜋𝑟 = Permutation mapping to convert 𝑟 into a sorted vector;

for 𝑖 in [0,floor(len(𝑟)/2) − 1] do
𝑗 = len(𝑟) − 1 − 𝑖;
Swap entry 𝜋𝑟(𝑖) and 𝜋𝑟(𝑗) of row 𝑟 in ℚℚ ;

if 𝐷(ℙ, ℚ) < 𝑑 then
Swap entry 𝜋𝑟(𝑖) and 𝜋𝑟(𝑗) of 𝑟 in ℚℚ ;

end
end

end
closest_mag = ∞;

closest_row = null;

closest_idx = null;

for 𝑟 in rows do
for 𝑖 in [0,floor(len(𝑟)/2) − 1] do

𝑗 = len(𝑟) − 1 − 𝑖;
Swap entry 𝜋𝑟(𝑖) and 𝜋𝑟(𝑗) of 𝑟 in ℚℚ ;

𝑐 = 𝐷(ℙ, ℚ);
if |𝑑 − 𝑐| < |𝑑 − closest_mag| then

closest_mag = 𝑐;
closest_row = 𝑟 ;
closest_idx = 𝑖;

end
Swap entry 𝜋𝑟(𝑖) and 𝜋𝑟(𝑗) of 𝑟 in ℚℚ ;

end
end
𝑖 = closest_idx;

𝑗 = len(r) − 1 − 𝑖;
𝑟 = closest_row;

Swap entry 𝜋𝑟(𝑖) and 𝜋𝑟(𝑗) of 𝑟 in ℚℚ ;

Output ℚℚ ;

110
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

where 𝜋𝑟 is the index mapping that will sort the vector 𝑟 . This search space is

computationally feasible to search through as it only grows linearly with respect to

the length of 𝑟 with a complexity of (|𝑟 |). Furthermore, the search space contains

both 𝑟 when it is “maximally” drifted and when it has the same permutation as in

ℙℙ , which makes it a suitable reduction of the original search space.

In order to find the permutations for each CPT row modified in Algorithm 1 that

will lead to a DM ℚℚ with a divergence from ℙℙ close to 𝑑∗, Algorithm 2 first

iterates through all the possible swaps it can make in each relevant CPT row, and

only performs the swap if it results in 𝐷(ℙ, ℚ) ≥ 𝑑∗. This step attempts to reduce

𝐷(ℙ, ℚ) to a point where any other possible swaps that can be performed will result

in 𝐷(ℙ, ℚ) ≤ 𝑑∗. After that, Algorithm 2 iterates through all the possible swaps

it can make again to find the swap that will result in the closest 𝐷(ℙ, ℚ) to 𝑑∗.
Algorithm 2 ends by performing that swap and returning the resulting DM ℚℚ .

6.3 Generating Random Decomposable Models
with a Limit on Treewidth

So far in this chapter, we assumed we already have a DM that we wish to modify.

However, this DM needs to come from somewhere. One way to obtain this initial

DM is to learn it from some existing dataset. The problem of learning a DM from

data is a widely studied problem and there are already multiple existing methods

to do so, such as Chordalysis (Petitjean et al. 2013; Petitjean et al. 2014; Petitjean &

Webb, 2015; Petitjean et al. 2018; Webb & Petitjean, 2016).

Another way to obtain this initial DM is to synthetically generate it from scratch.

Generating a random DM involves 2 steps:

1. first, generating a random chordal graph, and then

2. generating the parameters of the DM.

In Subsection 6.3.1 we summarise the existing literature on generating random

chordal graphs and show how we can modify existing methods to generate random

chordal graphs of a certain treewidth. Then in Subsection 6.3.2 we briefly discuss

the method we chose to generate the parameters of a DM.

6.3.1 Generating Random Chordal Graphs

The problem of generating random chordal graphs can be re-framed as a problem

of generating subtrees of a tree and constructing the intersection graph between

6.3. Generating Random Decomposable Models with a Limit on Treewidth 111

these subtrees (Şeker et al. 2017; Şeker et al. 2018). This stems from the fact that

every chordal graph is exactly the intersection graph of a family of subtrees in an

undirected tree (Gavril, 1974). Here, an intersection graph refers to a graph where

each node represents a subtree, and an edge between 2 nodes indicates that the 2

corresponding subtrees intersect in the tree.

Therefore, we can generate any random tree and subtrees on it without much care

and still obtain an intersection graph that is also a chordal graph. Specifically, in

order to generate a chordal graph with 𝑛 vertices, Şeker et al. (2017) proposed a

general method with the following steps

1. generate a random tree 𝑇 of 𝑛 nodes uniformly,

2. create 𝑛 random subtrees of 𝑇 , (𝑇1, … , 𝑇𝑛), of average size 𝑘,

3. output the intersection graph of the trees (𝑇1, … , 𝑇𝑛) as the chordal graph  .

Here 𝑛 and 𝑘 are parameters where 𝑛 is the number of vertices in the final chordal

graph , and 𝑘 is a rough representation of the “edge density” of the .

Since, the only non-trivial step is the generation of the random subtrees, much of

the literature has been focused on developing algorithms for generating subtrees

that will result in chordal graphs that are “diverse” (Şeker et al. 2017; Şeker et al.

2018). One such algorithm that is the GrowingSubtree algorithm (Şeker et al.

2018) as shown in Algorithm 3.

Algorithm 3: GrowingSubtree

Data: A tree 𝑇 of 𝑛 nodes and a positive integer 𝑘 ≤ 𝑛
Result: A tuple of 𝑛 non-empty subtrees of 𝑇 of average size

𝑘+1
2

for 𝑖 = 1 to 𝑛 do
Select a random node 𝑥 of 𝑇 and set 𝑇𝑖 = {𝑥};
Select a random integer 𝑘𝑖 between 1 and 𝑘;

for 𝑗 = 1 to 𝑘𝑖 − 1 do
Select a random node 𝑦 of 𝑇𝑖 that has neighbours in 𝑇 outside of 𝑇𝑖;
Select a random neighbour 𝑧 of 𝑦 outside of 𝑇𝑖 and add 𝑧 to 𝑇𝑖;

end
end
Output (𝑇1, 𝑇2, … , 𝑇𝑛);

We can limit the treewidth of the resulting intersection graph of (𝑇1, … , 𝑇𝑛) by

maintaining a count over each vertex in 𝑇 representing the number of subtrees that

vertex has appeared in so far. Once the number of subtrees that a vertex belongs to

exceeds the target treewidth, we then disallow that vertex in 𝑇 from being added

to any new subtrees. See Algorithm 4 for this modified algorithm.

112
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

Algorithm 4: GrowingSubtreeTW

Data: A tree 𝑇 of 𝑛 nodes, a positive integer 𝑘 ≤ 𝑛, and the maximum

treewidth 𝜔
Result: A tuple of 𝑛 non-empty subtrees of 𝑇 of average size

𝑘+1
2 whose

intersection graph has a treewidth no more than 𝜔
𝐴 ← copy of vertices in 𝑇 , 𝑉 (𝑇);
count ← {𝑎 => 0 for 𝑎 ∈ 𝐴};
for 𝑖 = 1 to 𝑛 do

Select a random node 𝑥 in 𝐴 and set 𝑇𝑖 = {𝑥};
Select a random integer 𝑘𝑖 between 1 and 𝑘;

for 𝑗 = 1 to 𝑘𝑖 − 1 do
Select a random node 𝑦 of 𝑇𝑖 that has neighbours in 𝑇 outside of 𝑇𝑖 that

are also in 𝐴;

Select a random neighbour 𝑧 of 𝑦 outside of 𝑇𝑖 that is also in 𝐴 and add

𝑧 to 𝑇𝑖;
end
for 𝑣 ∈ 𝑉 (𝑇𝑖) do

count[𝑣]+ = 1;

if count[𝑣] ≥ 𝜔 then
pop(A, v);

end
end

end
Output (𝑇1, 𝑇2, … , 𝑇𝑛);

6.3. Generating Random Decomposable Models with a Limit on Treewidth 113

We now report existing theorems that will help prove the correctness of Algorithm 4.

Theorem 15 (Helly’s theorem (Helly, 1923; Horn, 1972)) A collection of

closed connected segments on a line 𝐸 has a nonempty intersection if and only

if every pair of segments has a nonempty intersection.

Theorem 16 (Helly’s Theorem for trees (Horn, 1972)) A collection of

subtrees of a tree has at least one common node if and only if every pair of

subtrees has at least one common node.

Corollary 2 (Treewidth limit to chordal graph generation)
Algorithm 4 limits treewidth of resulting chordal graph to 𝜔.

Proof Assume we have a tree 𝑇 and 𝜔 subtrees (𝑇1, … , 𝑇𝜔) on 𝑇 that intersect

each other. Since, (𝑇1, … , 𝑇𝜔) all intersect each other, then by Theorem 16 there

exist a non-empty set of vertices 𝐴 that are common in each 𝜔 subtrees.

Assume we add the new subtree 𝑇𝜔+1 such that it intersects with all existing 𝜔
subtrees. Then by Theorem 16, there exist a non-empty set of vertices 𝐵 that

are common in each 𝜔 subtrees and also in subtree 𝑇𝜔+1.

However, any common vertex between (𝑇1, … , 𝑇𝜔, 𝑇𝜔+1) must also be a common

vertex between (𝑇1, … , 𝑇𝜔). Therefore, 𝐵 ⊆ 𝐴 which implies that when adding

subtree 𝑇𝜔+1, the subtree must contain vertices that are already in 𝜔 subtrees.

However, Algorithm 4 prohibits any new subtree to contain vertices that have

already been in 𝜔 subtrees. Therefore, adding a subtree 𝑇𝜔+1 that intersects

with all 𝜔 subtrees is not possible.

Consequently, if each subtree is a node in the final intersection graph, Algo-

rithm 4 will prevent cliques of size greater than 𝜔 from forming. Therefore,

the resulting chordal graph will have a maximum treewidth of 𝜔.

Therefore, we now have an algorithm for generating random chordal graphs with

a treewidth below some given target.

6.3.2 Generating Random Parameters for Decomposable Mod-
els

Given a chordal graph structure , we can create a new decomposable model ℙ by

initializing the parameters of this model. Recall that a chordal graph  has a direct

114
Chapter 6. Generating High-Dimensional Data with Concept Drift of Known

Magnitudes

ℙ(𝑿−pa()|𝑿pa()|) 𝒙(1)
pa() … 𝒙(|pa()|)

pa()

𝒙(1)
−pa() 𝑝1,1 . . . 𝑝1,|pa()|

⋮ ⋮ ⋱ ⋮
𝒙(|−pa()|)
−pa() 𝑝|−pa()|,1 . . . 𝑝|−pa()|,|pa()|

Table 6.2: Example of conditional probability table in a clique

tree/forest.

clique tree/forest  representation. By choosing a random maximal clique in each

tree of the clique forest to be the root clique, we can represent our parameters as a

bunch of CPTs.

With this representation, we can initialise the parameters of a decomposable model

by generating, for each clique  in the clique forest, vectors on the | − pa()| −
1 simplex for each possible value of the parent variables 𝑿pa(). The benefit of

initialising the parameters in terms of CPTs is that it ensures consistency between

the parameters of the model despite the columns of each CPT being initialised

independently.

All we need now is a method to randomly generate a vector of length 𝑘 that lies on

the 𝑘 − 1 simplex. An easy way to do this is to just sample from a Dirichlet distribu-

tion with 𝑘 concentration parameters, 𝛼1, … , 𝛼𝑘. These concentration parameters

will then act as user-given parameters to our decomposable model generator.

6.4 Conclusion

To summarise, in this chapter we proposed a method to generate datasets containing

occurrences of concept drift with known magnitudes. We achieved this by first

proposing a method for modifying a DM such that the modified DM is a target

amount of divergence away from the original DM. In other words, this proposed

method induces a target amount of drift in a DM. Once we have modified the

original DM to obtain a modified DMs, we can then construct a dataset using

samples from both the original and modified DM. The occurrence of concept drift

in this dataset is then the transition point between samples from the original DM

to the modified DM, with the magnitude of this occurrence of concept drift being

the divergence between the original and modified DM.

However, before tackling the problem of inducing some target amount of drift in a

DM, we first made the argument that, when creating the underlying distributions

for some dataset meant for testing methods to adapt to concept drift, it is important

to control the entropy of these underlying distributions. Specifically, we argued

that the entropy of a distribution can be used as measure of the “difficulty” in

6.4. Conclusion 115

modelling this distribution. The “difficulty” of a distribution is important when

creating datasets meant for testing drift adaptation methods as, distributions that

are too “easy”, can cause all the adaptation techniques being tested to adapt too

quickly, causing difficulties in differentiating between the performance of these

adaptation techniques.

We proposed that one simple way to control for the entropy of the underlying

distributions used to generate the test dataset, is to just ensure that each of the

underlying distributions have the same entropy. In fact, we showed that, for any

1-dimensional discrete distribution, all permutations will have the same entropy.

We then demonstrated how this fact can be applied to induce drift in the joint and

conditional distributions of a DM without changing its entropy. This application

basically involves permuting the rows of a specific set of CPTs encoded in the given

DM. Specifically, this set of CPTs is obtained by taking the clique probability of

each maximal clique in the DM and dividing them the separator probability of any

minimal separators connected to the maximal clique.

Another aspect of inducing drift in DMs we had to consider, is the possibility that

the target amount of drift we wish to induce might be higher than the maximum

possible amount of drift we can actually induce. Therefore, we needed a method to

find the maximum amount of drift we can induce in a given DM. To this end, we

showed that, for any 1-dimensional discrete distribution, the permutation with the

greatest 𝛼𝛽-divergence from the original permutation is the original permutation

but in reverse sorted order. We can then apply this fact to decomposable models by

applying this reverse sorted order on each row in the CPTs of the DM.

With these considerations and methods in mind, we then proposed a two-step

approach to inducing drift in a DM. This approach involves first quickly achieving an

amount of drift that is in the ballpark, but slightly above, the target drift magnitude.

Algorithm 1 achieves this step by maximally drifting rows in the CPTs of the given

DM by permuting these rows by reverse sorted order. If the maximum amount of

drift we can induce in the DM is lower than the target drift magnitude, Algorithm 1

just returns a DM where all the rows of its CPT are drifted maximally, and the drift

induction procedure ends. Otherwise, once the induced drift in the DM is slightly

above the target drift magnitude, the second step involves finding permutations of

the CPT rows that we modified in the first step. This step is difficult as the search

space for each CPT row grows factorially with respect to the length of the CPT row.

Therefore, Algorithm 2 carries out this step by only considering a subset of this

factorial search space. This specific subset of the entire search space only grows

linearly with respect with the CPT row length, and is therefore tractable.

117

Chapter 7

Application to Estimating Joint
Divergences between Sample Data

As we established in Section 1.2, estimating the divergence between 2 distributions

from sample data, hereby referred to as the divergence estimation problem, is an

important problem in the field of machine learning. Due to its importance, there

are numerous methods that have been developed to tackle this problem in the

high-dimensional setting for discrete data. Most existing methods are general

and do not make any assumptions regarding the variables and domains of these

distributions. Instead they interpret the data from any discrete distribution as being

from a uni-variate distribution with a support size 𝑆 based on the number of unique

items in the sampled data. However, in the worst case, the support size of any

𝑘-variate discrete distribution grows exponentially with respect to 𝑘. Furthermore,

as we will show in Section 7.4, these existing methods do not scale well past 30
binary variables. The question then is, assuming these distributions have a large

support due to having a large number of variables, 𝑘, is it possible to exploit this

assumption to assist in the divergence estimation problem.

Therefore, given this assumption on the distributions, in this chapter, we will use

DMs to essentially decompose the problem of divergence estimation into smaller

sub-problems. Specifically, as we will further discuss in Section 7.2, our proposed

approach will involve first learning 2 decomposable models using samples from

each target distribution, and then computing the divergence between these models.

An illustration of this general approach can be found in Figure 7.1.

7.1 Previous Work in Divergence Estimation

Estimating the divergence between 2 high-dimensional discrete distributions, ℙ
and ℚ, with limited samples is a problem that has been addressed by a number of

previous approaches (Acharya, 2018; Pavlichin et al. 2019; Z. Zhang & Grabchak,

2014; Han et al. 2016; Han et al. 2020; Bu et al. 2018; Jiao et al. 2018). In this section

118 Chapter 7. Application to Estimating Joint Divergences between Sample Data

Distribution 1

Distribution 2

unknown distributions

Sample 1

Sample 2

estimate

estimate

Decomposable Model 1

Decomposable Model 2

Divergence

Figure 7.1: Overview of proposed approach for divergence estima-

tion. The approach first learns 2 decomposable models from samples

of 2 distributions. The divergence between the distributions is es-

timated by computing the divergence between the decomposable

models.

we will discuss some of these previous approach to divergence estimation and how

these approaches relate to one another.

A naive way to approach divergence estimation would be to use a plug-in approach

where the population distributions are estimated using the empirical distribution,

and these estimates are plugged in to the divergence we wish to estimate. However,

instead of using the empirical distribution, it might be better to use a more sample-

efficient method for estimating the distributions ℙ and ℚ in high-dimensional

scenarios. One such way is to use the Profile Maximum Likelihood (PML) to

estimate the distributions ℙ and ℚ. The PML estimator maximises likelihood of

observing the number of unique symbols appearing the amount of times within

a dataset and better explains the data than standard Maximum Likelihood when

the number of symbols is large compared to the size of the given dataset (Orlitsky

et al. 2004). It was later shown that a PML-based approach is competitive for

estimating any symmetric property of a collection of distributions, such as the 𝛼𝛽-

divergence (Acharya, 2018). However, since the PML is difficult to compute exactly,

approximations of the PML have been proposed that have been shown empirically

to be competitive to existing divergence estimation approaches (Pavlichin et al.

2019).

Another approach to divergence estimation is to create an estimator of the target

divergence. One work has shown that using a plug-in approach with the empir-

ical distribution yields infinite bias error while the estimator they proposed has

an exponentially decaying bias (Z. Zhang & Grabchak, 2014). More recently, a

prominent approach to creating divergence estimators is the use of polynomial ap-

proximations of the divergence. One general approach that has been proposed is to

identify “smooth” and “non-smooth” regimes of the divergence. This approach then

uses a version of a bias-corrected Maximum Likelihood Estimator for estimation in

7.2. Divergence Estimation using Decomposable Model: Decomposable Model
Divergence Estimator (DMDE) 119

the “smooth” regime while using a polynomial approximation in the “non-smooth”

regime (Han et al. 2016). This general approach can be used for estimating the

Kullback-Leibler divergence, Hellinger distance, and 𝜒 2
-divergence (Han et al. 2016).

A similar approach was proposed for estimating the Kullback-Leibler divergence

with the main difference being the use of an bias-corrected augmented plug-in

estimator in the “smooth” regime (Bu et al. 2018). This approach was also used for

tackling the problem of estimation the Total Variation distance (𝐿1 distance) with

the main difference being the use of a 2-dimensional polynomial approximation to

approximate the 𝐿1 distance in the “non-smooth” regime instead of just the best

1-dimensional polynomial approximation (Jiao et al. 2018).

One issue with the polynomial approximation approaches discussed is that they

require splitting the available sample into 2 or more parts, the first for regime clas-

sification and the rest for estimation. Therefore, these polynomial approximation

approaches don’t fully use all the samples for estimation. Recently, a method was

proposed that does not require splitting the sample in order to carry out regime

classification. This method solves a problem-independent linear program based on

moment matching to carry out estimation in the “non-smooth” regime while using

a problem-dependent bias-corrected plug-in estimator in the “smooth” regime (Han

et al. 2020).

7.2 Divergence Estimation using Decomposable
Model: Decomposable Model Divergence Es-
timator (DMDE)

Recall from the beginning of this chapter that the divergence estimation problem

involves the estimation of some divergence between distributions ℙ and ℚ using

only samples from ℙ and ℚ. Specifically in this chapter, we will tackle the problem

of estimating the 𝛼𝛽-divergence, as defined in Definition 11, between ℙ and ℚ. We

will apply a plug-in approach to this problem. This approach will involve:

1. learning 2 DMs in conjunction with their shared computation graph, , from

the samples of ℙ and ℚ respectively, and

2. computing the 𝛼𝛽-divergence between the joint distribution of these two

DMs.

We will refer to this specific approach as the decomposable model divergence

estimator (DMDE).

It is clear that the second step can be carried out by the method described in

Chapter 3. However, the best means for achieving the first step is still unclear.

120 Chapter 7. Application to Estimating Joint Divergences between Sample Data

Specifically, it is still unclear how we might obtain the computation graph , in

conjunction with learning the decomposable models from samples of ℙ and ℚ.

In this chapter we will use a straightforward approach to obtain the computation

graph in conjunction with the decomposable models estimating distributions ℙ and

ℚ. Specifically, we will learn the computation graph first by pooling the samples

from both distributions together and using Chordalysis-SMT (Petitjean et al. 2013;

Petitjean & Webb, 2015; Webb & Petitjean, 2016) to learn a chordal graph structure

on this pooled dataset. We then use this chordal graph learnt on the pooled dataset

as the computation graph . Furthermore, we will also use this chordal graph as

the graphical structure of the decomposable models estimating the distributions ℙ
and ℚ. After fixing the structure of these 2 decomposable models, we then learn

the parameters of these decomposable models on samples from distributions ℙ and

ℚ respectively.

However, this approach may result in decomposable models with inaccurate struc-

tures because the variable structure can change due to concept drift. Ideally the

decomposable models for the 2 distributions would be allowed to differ in structure.

The methods we have developed can accommodate such differences in structure,

so long as there is an appropriate method for finding a computation graph for the 2

decomposable models. We leave the problem of creating a method to achieve this

to future research.

7.3 Datasets for Experiments

In order to run the experiments throughout the rest of the chapter, specifically in

Sections 7.4 and 7.5, we require datasets that have data sampled from distributions

with a known amount of divergence between them. Due to the scarcity of such

high-dimensional datasets, we decided to use a synthetic dataset generator, such

that each generated dataset pair (the datasets before and after drift) will contain

data sampled from 2 distributions with a known divergence between them.

Creating such a generator, especially one that can generate high-dimensional

datasets, is a problem in and of itself. One way to approach this problem is to

create 2 generative models representing the 2 distributions the dataset pair will be

sampled from. These generative models should be created such that the divergence

between the 2 distributions matches some given target. Therefore, in order for a

generator using this approach to be viable, we need to use a class of generative

models with a tractable method for computing some divergence between 2 models

under this class.

The problem lies in the fact that it is unclear whether there exists a method that is

tractable in high dimensions, for computing the divergence between two models

7.3. Datasets for Experiments 121

under any class of generative models. That said, in this thesis, we have already

developed a method for computing divergences between high-dimensional DMs in

Chapter 3. Using this method for divergence computation, we have also developed

a generator in Chapter 6 that can generate datasets with known magnitudes of

concept drift. However, the generator in Chapter 6 uses DMs to represent and

manipulate the underlying distribution, the same class of models used by our diver-

gence estimation method DMDE. Ideally, we would use another class of generative

models for this purpose in order to increase the fairness of the comparison exper-

iments in Section 7.4. However, developing a method to measure a divergence

under another class of generative models is out of scope of this thesis. Therefore,

in order to slightly compensate for this source of unfairness, we will limit the

treewidth of the decomposable models used by DMDE. By limiting the treewidth

of the decomposable models learnt from the sampled data, we can observe how

DMDE behaves when the learnt decomposable models cannot accurately model

the original population distributions.

For the experiments in this the rest of this chapter, we will use the drift generator in

Chapter 6, which we will refer to as decomposable model drift generator (DMDG),

to create 50 dataset pairs for each combination of the parameters below. To be clear,

the generator measures the true divergence between the 2 generating models while

the estimators estimates that divergence from data generated from those models.

Hellinger distance 0.1, 0.3, 0.5, 0.7, 0.9

Number of Binary Variables 10, 15, 20, 30, 40, 50, 100

Treewidth 3, 5, 7, 9

Each dataset pair, representing data sampled from 2 distributions with a given

Hellinger distance between them, will contain 100,000 samples from each distribu-

tion, totaling to 200,000 samples over both datasets in each pair.

We use the Hellinger distance as the target divergence as it is bounded between

0 and 1, as opposed to the Kullback-Leibler divergence which is unbounded. By

having a fixed scale, we are able to ensure that the datasets we generate cover the

entire range of possible Hellinger distances. This should allow for our experiments

to have more coverage and therefore be more systematic. Furthermore, by having

a fixed range of values, and therefore a somewhat universal meaning for any value

of the Hellinger distance, we are able to compare estimation results across datasets

of different configurations by focusing on specific values of Hellinger distances in

the analysis of the results.

However, since we will compare DMDE against the other methods in Table 7.1

at estimating the Symmetric KL divergence, KL(𝑃||𝑄) + KL(𝑄||𝑃), we will need

122 Chapter 7. Application to Estimating Joint Divergences between Sample Data

Method Description Reference

zg estimator for KL divergence Z. Zhang & Grabchak (2014)

bzlv polynomial approximation Bu et al. (2018)

hjw polynomial approximation Han et al. (2016)

jfc_tw=n our proposed method but with a

limit to the treewidth of the de-

composable model of n

-

Table 7.1: Divergence estimation methods that have existing im-

plementations that we will compare against. An implementation of

our proposed approach and everything else needed to reproduce the

experiments in this chapter can be found online at

https://gitlab.com/lklee/div-est-via-discrete-decomp-models.

the true Symmetric KL divergence between the 2 population distributions of each

dataset pair. Therefore, during the data generation process, we measure and record

the exact Symmetric KL divergence between the decomposable models from which

the dataset pairs are generated from. We also measure the exact Hellinger distance

between the decomposable models during generation as well for use in Section 7.5.

7.4 Empirical Comparison with Previous Work

In this section we will compare the divergence estimator proposed in this chapter

with various existing methods for estimating the divergence between 2 distributions

using sample data. Specifically we will compare DMDE against the methods in

Table 7.1, all of which have been described in Section 7.1, in estimating the sym-

metric Kullback-Leibler divergence between datasets in each dataset pair described

in Section 7.3. We use the KL divergence in this comparison due to some of the

methods in Table 7.1 only having implementations that estimate the KL divergence.

We also use the symmetric version of the KL divergence to prevent any confusion

on which of the 2 distributions is ℙ and which is ℚ.

It is important to reiterate that since both DMDG and DMDE uses DMs to represent

probability distributions, it is possible for the results of this comparison experiment

to be biased in favour of DMDE. Unfortunately, this is a problem that cannot be

remedied in scenarios where the number of variables is large due to an absence of

data generators capable of generating the required data. Therefore, the following

results should be taken in with this fact in mind.

The results of the comparison between DMDE and the methods in Table 7.1 can be

found in Figure 7.2. These results were obtained using all of the data available in

each dataset, that is to say each method is given 100,000 samples from each of the 2

https://gitlab.com/lklee/div-est-via-discrete-decomp-models

7.4. Empirical Comparison with Previous Work 123

●●
●●●

●
●●

●●
●

●
●

●●●
●●●●●●●

●
●

●
●

●
●

●

●●
●●●●●●●

●

●
●

●
●●●●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●● ●●●
●●●

●●●

●
●●●

●
●
●●
●

●
●●●

●
● ●

●●

●

●
●●●●●

●
●

●
●

●●
●●

●●●
●

●

●
●
●

●

●

●●●

●

●●

●●●
●●●

●●●

●●●●●●
●●●

●
●●

●●●
●●

●●●
●

●●●●●
●●●●●

●
●

●
●

●●●
●

●●●
●

●●

●
●

●
●

●●
●●●●●●●

●●●
●●●

●●●

●●●

●
●●

●●●●●
●●

●●●●●
●●●●●

●
●●●

●●●●●●●●●●
●

●●●
●

●●●●
●●●●●●

●●●
●●●

●●●

●●●

●●
●●●
●

●●

●
●●●
●●●●●●
●●●●●●●

●●●●
●

●●●●
●●●●●●●
●●●

●●●
●●

●● ●●
●●●●●● ●●● ●●●●●●●●●●●●
●●● ●● ●●●●●●●●●

●
●●●●●●●●

●
●●
●●● ●●

●

●
●

●
●● ●

●

●

●

●
●

●
●●

● ●

●●●●
● ●

● ●
●

●
●●

● ●●

●
●

●
●

●
●

● ● ●●

●

●
●

●

●

●

●●
●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●
●

●●
●●●●

●

●
●●

●● ●
●

●●

●
●●●●●

●●
●

●

●
●●

●●

●
●●

●

●

●

●●
●

●
●●●

●

●●

●●
●●

●●

●●●●●●●
●●●

●
●

●
●●●● ●●

●●●●
●●●●●

●
●●●●
●

●
●

●
●●●

●

●●●
●

●●

●
●

●
●

●●
●●●●●●

●

●●
●●

●●

●●

●●
●●

●●●●●
●●

●●●●●
●●●●●

●
●●●

●●●●●●●●●●
●●●●

●
●●●●
●●●●●●

●●
●●

●●

●●

●
●●

●●●
●

●●

●
●●●
●●●●●●
●●●●●●●

●●●●
●

●●●●
●●●●●●●
●●●

●●●
●●

●● ●●●●
●
●●●●●●●
●●
●●
●●●●●●●
●
●●
●●
●●●

●

●●●
●●
●●●
●●●
●
●●●
●
●
● ●

●
●●

●

●
●

●●
●
●●

●●●

●

●
●
●●

● ●●● ●● ●●●
●●

●

●
●●

● ●●●●
●●
●●

● ●
●

●
●

● ●
●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●
● ●

●

●●
●

●

●●

●

●

●●
●● ●●

●
●

●
●

●
●● ●

●
● ●

●
●

● ●
●

●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●

●●

●
●●●●●●

●

●
●●

●● ●

●

●●
●

●●●●●
●●
●

●

●
●●

●●

●
●●

●

●
●

●●
●●
●●●

●

●●

●●
●●

●●

●●

●
●

●●●●●
●●

●●●
●

●●●●●

●●●●●
●

●
●

●
●●●

●

●●●
●

●●

●
●

●
●

●●
●●●●●●

●

●●
●●

●●

●●

●●
●●

●●●●●
●●

●●●●●
●●●●●

●
●●●

●●●●●●●●●●
●

●●●
●

●●●●
●●●●●●

●●
●●

●●

●●

●
●●

●●●
●

●●

●
●●●
●●●●●●
●●●●●●●

●●●●
●

●●●●
●●●●●●●
●●●

●●●
●●

●● ●
●

●●●
●●●●●
●●
●●
●●●●
●●●●●●
●●●

●●●●●
●●●
●●
●
●
●●●●●●●●●●●

●

●
●
●

●
●

●●

● ●●
●

●●●
●
●●

●

●
●

●

●●
●●
●

●

●●
●●
●●
●●

●

●●
●
●●
●

●

●

●

●

●

●
●

●
●

●

●
●●

●● ●

●

●

●

● ●●
●●

●

●
●●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●

● ● ●

●
●

●

●
●

●

●

●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●

●
●●●●

●
●●●

●●
●●●●●
●●
●
●●
●●●●●●
●●
●●
●
●●●

●●
●
●●
●
●
●●

●
●
●●●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●
●

●● ●
●

●

●

●●●

●
●

●

●

●

● ●●

●

●

●

●
● ●

●
●

●●
●

●
●

●
●●

●● ●● ●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●● ●●

●
●●

●
●

●●
●

●
●
●●●●

●
●
●●
●●●●●●
●
●

●
●●●●●
●

●●●●
●
●●●●
●
●●
●●
●

●

● ●

●
●
●

●
●
●

●

●

●
●

●●

●
●

●●

●●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

● ●●

●

●

●
●
●●

●
●

●● ●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●
●●

●●●●
●
●
●

●●●
●

●
●●
●●
●●
●
●

●●●●●●●
●
●●●

●
●●
●
●●●●●●

●●

●

●
●

●

●

●

●●
●

●●●●

●

●

●

●●
●

●

●
●●●

●
●●
●

●

●●●
●

●

●
●●

●
●
●
●●
●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●
●●●●●
●
●
●●●●
●●
●●●●●●
●●●●●●
●●●●●
●
●●●
●●●●●
●●
●
●●●●●

●
●●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●●
●●●
●

●
●●

●
●●
●●
●
●●

●

●●
●
●

●
●

●●
●

●

●

●

●
●●

●● ●● ●●
●
●

●● ●●●
●
●
●

●●●●●
●
●●● ●●● ●● ●●●●●
●
●●●● ●●●

●●●●●● ●●
●
●●

●
● ●● ●● ●● ●

●

●
●

● ●●
●●● ●

●●
●●● ●● ● ●

●

●
●● ●●

●

●●
● ●

●● ● ●● ●● ●●

●

●

●● ●● ●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●● ●●

●

●

●●●

●

●

●
●●

●
●

●

●
●

●●
●

●

●

●●

●●
●

●
●

●

●
● ●●●

●
●

●

●
● ●

●
●

●

●
●

●
● ●

●

●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ●●

●●●
●●●●●●●●●●
●●
●
●●
●●●●●●●●

●
●●●●
●●●●
●
●
●●●●●
●
●●
●●
● ●

● ●
●

●

●

● ●●

●

●

●

●
●

●

●●●●

●

●●●●
●

● ●●
●

●
●

●

●●

●

●

●
●

●

● ●●

●

●

●●

●

●●●

●● ●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●●
●●

●●●
●
●
●
●

●●●●
●●●
●●
●●
●

●

●●●●●●●●●●●
●
●●
●
●●●●●● ●

●
●

●
●

●

●

●

●
●
●

●
●

●●●

●

●

●●

●
● ●

●

●

●

●

●
●

●

●

●●●●
●

●
●
●

● ●
●
●●●

●●
●●

●

●● ●●
●
●●●●●●●

●
●
●●●●
●
●●●●●●●●
●●●●
●
●●●●●
●
●●
●
●●●●●●●
●
●●●
●
● ●

●●●

●●●
●
●●

●●●

●
●●
●

●
●

●●
●

●
●

●●
●●●

●●●
●●
●●
●
●

●●
●

●
●●
●

●

●

●
●
●

zg
−5.37±6.36

bzlv
−4.77±6.12

hjw
−4.11±6.26

jfc_tw=5 (ours)
−2.07±2.78

jfc_tw=7 (ours)
−0.79±1.44

nvar=
10

nvar=
20

nvar=
30

nvar=
40

nvar=
100

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

−20

−10

0

−20

−10

0

−20

−10

0

−20

−10

0

−20

−10

0

Generated KL Divergence

(E
st

im
at

ed
 −

 A
ct

ua
l)

K
L

D
iv

er
ge

nc
e

Generator Treewidth=5, Sample Size = 100000

(a)

●●
●●●

●

●

●

●

●
●

●●
●●

●

●●
●

●

●

●

●
●●●

●●

●

●
●

●
●●

●
●

●

●
●

●

●●
●

●
●●●

●

● ●

●●●●

●

●●

●●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●●●●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●●●
●●●

●●●

●●●

●
●

●
●

●●
●

●●●●●●●
●

●

●

●●●●●●
●●

●

●
●●

●

●
●●

●●●
●

●●
●

●
●

●●●●

●

●●

●●●
●●●

●●●

●●●

●
●

●
●●

●

●
●●

●
●●

●
●

●
●

●
●●

●
●●

●

●●

●●●
●

●●
●

●●●●
●●●

●●●
●

●●●●
●

●

●●●
●●●

●●●

●●●

●●●
●

●
●

●
●

●●●●
●●

●●
●●

●●
●

●●
●

●●
●●●

●
●●●●

●●●●●●
●●●

●●●●●●

●●●
●●●

●●●

●●●

●●●●
●●●●●●

●●●

●●
●●●

●
●

●
●●●●●

●●●●●●●
●

●●
●

●●●●
●

●●●●●●●

●● ●● ●● ● ●●
●

●
●●

●●●● ●
●●●

●
●

●● ●●●●●
●●● ●●●● ●● ● ● ●

●●●
●●●●

●
● ●●●●● ● ●

●● ●●
● ● ●●●●

●

●
● ●

●
●● ●●●

●●●

●
●

●●●●
●

●●●
●

●
● ●

● ●
●

●●

●

● ●●●●

●● ●●
●●

●●

●
●

●

●
●●●

●●●●●●●● ●

●
●

●●●●
●●

●
●

●

●
●●

●

●
●● ●●●
●

●●
●

●
●

●●●●

●

●●

●●
●●

●●

●●

●
●

●
●

●●

●

●
●●

●
●●

●
●●

●

●
●●

●
●●

●

●●

●●●
●

●●
●

●●
●●

●●●●●●
●

●●●●
●

●

●●
●●

●●

●●

●
●●●

●

●
●

●
●

●●●●
●●

●●
●●

●●
●

●●
●

●●
●●●

●
●●●●

●●●●●●
●●●

●●●●●●

●●
●●

●●

●●

●●●●●
●●●●●●

●●●

●●
●●●

●
●

●
●●●●●

●●●●●●●
●

●●
●

●●●●
●

●●●●●●●

●● ●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●● ●

●

●

●●

●●●

●
●●●
●
●●●●

●●
●●●

●●●●●
●
●●
●●
●
●●●●●●
●●

●

●

●●●●●●
●

●
●●

●
●

●

●
●

●●● ●●
●●

●●
●

●
●

●
●●●
●●●

●

●
●●

●

●

●

●
●

●

●● ●
●
●

●●
● ●

●●

●

● ●
●●●

●
●

●
● ●
●

●●● ●
●

●
●

●
● ●●● ●●

●

●

●

●●●●

●

●
●

●
●

●

●
●

●

● ●

●● ●●

●

●●●

●● ●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●

●

●
●●
●●●●●●●●● ●

●●
●●●●●●
●
●

●

●
●●

●

●
●
● ●●●
●

●●
●

●
●

●●●●

●

●
●

●●
●●

●●

●●

●
●

●
●

●●

●

●
●●

●
●●

●
●

●
●

●
●●

●
●●

●

●●

●●●
●

●●
●

●●●●●●●
●●●

●
●●●●

●

●

●●
●●

●●

●●

●
●●●

●

●
●

●
●

●●●●
●●

●●
●●

●●
●

●●
●

●●
●●●

●
●●●●

●●●●●●
●●●

●●●●●●

●●
●●

●●

●●

●●●●●
●●●●●●

●●●

●●
●●●

●
●

●
●●●●●

●●●●●●●
●

●●
●

●●●●
●

●●●●●●●

●● ●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●●
●●●●

●

●●
●

●

●

●● ●
●●

●
●

●●
●

●●
●

●
●

●
● ●

●

●●
●

●
●
●

●

●
●

●
●●●●

● ●
●● ●●

●
●

●

●●
●

●

●

●
●

●
●● ●

●●
●
●●

●

●
●

●●●

●

●●●

●
●

●
●

●

●

●

●

●

●

● ●
●●●

●● ●●
●●

●●●●●●
●●
●
●●●
●
●●●●●●●●●●●●

●
●
●●
●●●●●
●
●●●●
●●●●●●●●
●
●●

● ●●
●

●●●●●
●
●●

●
●

●

●
●

●

●
●

●

●

●●●●

●

●●●

●
●

●

● ●●●●
●

●●
●

●
●●●●

●

●
●

●●
●●

●●

●●●●
●
●●●●
●
●

●●●●●●●●●●●●●●●●
●●●●
●●
●●●●●●●●●●
●●●●●●●

●
●

●● ●
●

● ●●●

●

●
● ●●●

●

●
●●

●
●● ●

●
●

●
●●

●

●●● ●●●
●

●

●
●

●●
●

●●●●●
●

●

●● ●●
●●

●●
●
●●●●●●●
●●●●●●●●●●●●
●
●●

●●●●●
●●●●●●●●●
●
●●●●●●●●
●●

● ●
●

●
●

●

●
●

●
●●●●

●●
●●

●●

●●

●
●●

●
●●●●● ●●
●

●
●●●
●
●●●●●● ●●●●●●

●●
●●

●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●● ●

●
●●●●●

●●

●
●●

●●
●

●
●●●●
●●●●

●●
●
●●

●
●
●

●
●●
●●

●●
●●●●●●

●● ●● ●
●
●
●
●●
●●●●
●●
●●●
●
●●
●●●●●●●
●●●●
●
●●●●●●
●●●●●●
●●●●●●●● ●

●

● ●● ●
●

●

●●
●

●

●
●
●

●
●

●●
●

●●●●
●●

●
●●

●
● ●

● ● ●

●

●●
●

●
●
●

●●
●

●●
●

●●
●

●●
● ●

●
●

●
●

●
●

●

●

●

●

●● ●● ●
●
●

●●

●

● ●
●

●

●

●

●

●●●

●
●

●
●

●

●

●●

● ●●

●

●

●●

●● ●● ●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●

●●
●●

●

●

●

●

●
●
●
●

●●

●
●●
●

●
●●●●●

●

●●
●●●●●●●●

●

●●●

●
●
●●
●
●
●●
●●

● ●●
●

●

●

●

●

●

●
●
●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●● ●● ●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●

●●
●

●

●

●
●●
●
●
●●●●●●
●●
●

●●●●●●
●●●●
●●●●●
●
●●
●
●●
●
●
●

●●
●●
●●
●

●● ●

● ●

●

●

●

●●
●

●
●

●
●

● ●●

●

●
●

●
●

●
●

●
●
●

●●
●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●●

●

●

●● ●● ●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●

●
●

●●●
●●●●●
●●●●
●
●●
●
●●●
●●●●
●●
●●
●

●●●●●●
●●●
●
●

●●

●●●
●●●
●

● ●
●

●

●

●

●●●

●

●

●
●

●

●

●

● ●
●

●●
●

●
●

●●
●

●
●
● ●

●

●

●

●

●

●

●

●
●●

●
●●

●
●●

●

●
●

●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●
●
●
●●●
●●
●●●●
●●
●●
●●●

●
●●●●
●
●●●●●
●●●●●●

●
●●●
●
●●
●●●
●
●

●

●
●●

●

●
●

●
●●

●

●
●

●
●●

●

●

●

●

●●
●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●●
●● ●
●

●

●
●

●
●
●

zg
−5.3±6.35

bzlv
−4.76±6.18

hjw
−4.15±6.29

jfc_tw=5 (ours)
−4.4±5.1

jfc_tw=7 (ours)
−2.31±3.17

nvar=
10

nvar=
20

nvar=
30

nvar=
40

nvar=
100

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

−20
−15
−10
−5

0

−20
−15
−10
−5

0

−20
−15
−10
−5

0

−20
−15
−10
−5

0

−20
−15
−10
−5

0

Generated KL Divergence

(E
st

im
at

ed
 −

 A
ct

ua
l)

K
L

D
iv

er
ge

nc
e

Generator Treewidth=7, Sample Size = 100000

(b)

Figure 7.2

Comparison of DMDE with

methods in Table 7.1. Each

plot, comprised of multiple

subplots, represents results

from different treewidths

(i.e. (A) 5 and (B) 7) for

DMDG. The columns rep-

resent the methods being

tested, and the rows, dif-

fering number of binary

variables. The x-axis rep-

resents the symmetric KL-

divergence generated, the

y-axis represents the esti-

mated minus true symmet-

ric KL divergence. Points

above and below zero on

the y-axis represent over-

and underestimation re-

spectively. The line 𝑦 = −𝑥
represents max amount

of underestimation error

(when estimate given is 0).

124 Chapter 7. Application to Estimating Joint Divergences between Sample Data

distributions to estimate the symmetric KL-divergence between them. Furthermore,

there are 2 plots in Figure 7.2, each representing results with DMDG of different

treewidths, specifically treewidths of size 5 and 7.

The one thing we should take note of in Figure 7.2 is that distribution of points

along the x-axis becomes increasingly concentrated at certain points as the number

of variables increases. Specifically, when the number of variables is 100, there are

5 clusters along the x-axis which seem to correspond to the 5 levels of Hellinger

distance used during the generation of the datasets in Section 7.3. It then seems

probable that the high variability of the generated symmetric KL-divergence at low

dimensions is due to inadequacies in generating datasets matching the 5 specified

Hellinger distances at low dimensions. This inadequacy is likely due to a lack of

parameters in the decomposable models to manipulate in order to achieve the target

Hellinger distance.

On the surface, we can observe from Figure 7.2 that the method zg seems to severely

underestimate the symmetric KL divergence between the distributions, giving

estimates close to 0, even for datasets containing 10 binary variables. On the other

hand, bzlv gives estimates that outperforms zg but still clearly underestimates the

symmetric KL divergence at 10 binary variables. Out of all the existing methods in

Table 7.1, hjw performs the best, and also does not greatly underestimate the KL

divergence when the number of binary variables is 10. As the number of binary

variables increases, these 3 existing methods start to increasingly underestimate

the symmetric KL divergence. Specifically, these methods start returning estimates

close of 0 when the number of binary variables is 30.

In terms of how DMDE performed, we can observe that the error for jfc_tw=5

and jfc_tw=7 does not increase with respect to the number of binary variables

in the datasets. Instead, the error for both jfc_tw=5 and jfc_tw=7 increases

as the treewidth of the data generator DMDG increases. We can also observe

from jfc_tw=7’s results in Figure 7.2a that DMDE preforms very well when the

treewidth limit of DMDE is slightly higher than the treewidth of the dataset’s

underlying distribution.

When the dimensionality is low (i.e. number of variables is 10 or 20), the existing

methods, zg, bzlv, and hjw, give some of the most accurate estimates, regardless

of the treewidth of DMDG. On the other hand, the results for our method, DMDE,

on low dimensions is a bit of a mixed bag. In low dimensions, the existing methods

are more accurate than DMDE whenever the treewidth is limited to be less than that

of the generating distributions. However, even when that is not the case, DMDE

performs slightly worse than hjw when the number of variables in the dataset is

10.

Where our method, DMDE, performs significantly better than the other methods is

when dimensionality is high (i.e. where the number of variables is ≥ 30). As we

7.5. Characteristics of Our Method 125

can observe from Figure 7.2, when dimensionality is high, zg, hjw, and bzlv start

to return estimates that are close to 0. Conversely, a similar issue only occurs in

DMDE when the treewidth limit given to DMDE is about 2 binary variables fewer

than the treewidth of the source distribution. But even then, DMDE is still slightly

more accurate than zg, hjw, and bzlv.

7.5 Characteristics of Our Method

As stated at the start of this chapter, one of the main goals of our proposed method,

DMDE, is to estimate 𝛼𝛽-divergences from sample data while scaling well with

respect to the number of variables in the population distribution. Therefore, in this

section we will specifically study how DMDE scales with respect to the dimension-

ality of the population distributions. Furthermore, we will use the estimation of the

Hellinger distance from sample data as the target problem throughout this anal-

ysis so that we can compare estimation results between distributions of different

configurations. For the rest of this section, we will only focus on the estimation

from datasets with a Hellinger distance of 0.5. We believe this slice of the results

is sufficient in conveying the relevant characteristics of DMDE’s scalability with

respect to the number of binary variables.

From Figure 7.3a, we can observe that in general the raw difference between the

estimated and actual Hellinger distance increases monotonically as the number

of binary variables increases. Furthermore, for DMDG treewidths of 3 and 5, the

raw error is higher for DMDE with higher treewidths compared to DMDE with

lower treewidths. However, for DMDG treewidths of 7 and 9, this is not necessarily

the case. We can observe that for sample sizes of 100 and 1000, jfc_tw=13 is

not necessarily the method with the highest raw error, in fact for a sample size of

100, both jfc_tw=5 and jfc_tw=7 have higher raw errors than jfc_tw=9 and

jfc_tw=13.

However, observe that in Figure 7.3a, there’s a general trend of DMDE actually

increasing in accuracy as the number of variables increases. On the face of it,

it is surprising that error should decrease for some configurations of DMDE as

the number of variables increases, because it should be more difficult to model a

high-dimensional distribution. Investigating this counter-intuitive result further,

there are 2 things we can observe from Figure 7.3a. The first observation is that

the initial estimate for most treewidth limits of DMDE underestimates the true

Hellinger distance when the number of variables is small. The second observation

is that the estimated Hellinger distance tends to increase as the number of variables

increases, regardless of the initial estimate on low number of variables. Therefore,

we hypothesise the following:

126 Chapter 7. Application to Estimating Joint Divergences between Sample Data

Figure 7.3

Scalability of DMDE (w.r.t

number of binary variables)

at estimating the Hellinger

distance from sample data.

Each row represents dif-

ferent DMDG treewidths,

each column represents

different sample sizes. The

x-axes represent the num-

ber of binary variables, the

y-axes represent the raw

difference between the esti-

mated and actual Hellinger

distance. Each point is the

mean over the 50 different

datasets with error bars

representing the standard

deviation. (A) contains re-

sults when the DM is learnt

from data while (B) contains

results when the DMs used

in DMDG are directly given

to DMDE

●

●●●●●

●●●●

●

●●●●
●

●●●●

●

●●●●

●

●●●●
●

●●●●

●

●
●
●
●

●

●●
●
●

●

●●
●
●

●

●●
●

●

●

●●
●

●

●

●●
●
●

●

●●
●
●

●

●●

●
●●

●●

●
●

●

●●

●●
●

●●

●●

●

●●

●●

●

●●

●●
●

●●

●●

●

●●
●●●

●●

●
●●

●●

●
● ●

●●

●

● ●

●●

●

● ●

●●

●

●
●

●●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●
●●●

●

●

●●●

●

●

●
●●

●

●

●
●●

●

●

●
●●

●
●
●●●

●

●
●
●
●

●

●

●
●
●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●
●●

●

●●
●●

●

●
●●●

●

●
●●●

●

●
●
●
●

●

●

●●●

●

●
●●●

●

●
●
●●

●

●
●
●●

●

●
●
●●

●

●
●
●●

●

●

●

●●

●
●
●

●●

●
●
●

●●

●
●
●
●●

●
●
●

●
●

●
●
●

●
●

●
●
●

●
●

●

●

●

●
●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●
●●

●

●●
●●

●

●●
●●

●

●●
●●

●

●

●●●

●

●
●●●

●

●
●●
●

●

●
●
●●

●

●
●
●●

●

●
●
●●

●

●
●
●●

●
●
●

●●

●
●
●

●●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●

size: 100 size: 1000 size: 10000 size: 1e+05

ge
n.tw

: 3
ge

n.tw
: 5

ge
n.tw

: 7
ge

n.tw
: 9

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25

0.50

−0.50
−0.25

0.00
0.25
0.50

Number of Binary Variables

A
ve

ra
ge

 E
rr

or

type ● ● ● ● ●jfc_tw=1 jfc_tw=5 jfc_tw=7 jfc_tw=9 jfc_tw=13

Scalability with Drift Magnitude=0.5

(a)

●
● ●

●
●

●

●

●
●

●
●

● ●
●

●
● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ● ● ● ● ●

●

●
●

●
●

●
●

●

●

●
●

●
● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ● ●
●

●
●

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

100 1000 10000 1e+05

tw
=

3
tw

=
5

tw
=

7
tw

=
9

10 30 100 10 30 100 10 30 100 10 30 100

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Number of Binary Variables

A
ve

ra
ge

 E
rr

or

Scalability with Drift Magnitude=0.5 given Perfect Structure

(b)

7.5. Characteristics of Our Method 127

Hypothesis 1 the final error we observe is comprised of 2 types of errors:

1. errors due to inaccuracies in learning the structure of the decomposable

model (structure error)

2. errors due to inaccuracies in parameter estimation (parameter estimation

error)

In order to verify Hypothesis 1 and understand how both these types of errors

affect the divergence estimation error, we ran an experiment to study the effects

of just the parameter estimation error on the divergence estimation error. This

experiment is carried out by using the decomposable models created during the

data generation process as the decomposable models of DMDE when estimating the

Hellinger distance from sample data. This eliminates any need to learn the structure

of the decomposable model from sample data and thereby prevents structure error

from occurring.

We can then use the results of this experiment to indirectly infer the effect structure

error has on the divergence estimation error. We will not be studying the effect

of structure error directly as it is hard to produce structure error without also

producing parameter estimation error indirectly as well. Therefore, it is hard to

devise experiments that study the effect of only structure error.

From Figure 7.3b, the first thing we observe is that the mean raw error decreases

as we go from the leftmost column in the grid to the rightmost column. This is

plainly just due to an increasing number of samples given to DMDE to estimate the

Hellinger distance. Furthermore, we can also observe that as the number of variables

in the source distribution increases, the mean error increases as well. This is likely

due to parameter estimation errors over each maximal clique propagating and

accumulating throughout the entire model. As the number of variables increases,

so does the number of maximal cliques within the decomposable model. Therefore,

even if the parameter estimation error within any maximal clique of the same size

is similar, the total parameter estimation error across the entire model will increase.

More importantly, we can observe from Figure 7.3b that if the structure of the

decomposable models learnt by DMDE from data is perfect, DMDE consistently

overestimates the true Hellinger distance in the dataset. From this observation, we

propose the following hypothesis:

Hypothesis 2 Assume we have 2 distributions, 𝑝 and 𝑞, represented by 2

Decomposable Models, 𝑃 = (𝐺𝑝, 𝜋𝑃) and 𝑄 = (𝐺𝑞 , 𝜋𝑞), and 2 datasets, 𝐷𝑝

and 𝐷𝑞 , sampled from 𝑝 and 𝑞 respectively.

Let 𝑝̂ and 𝑞̂ be the estimates of the distributions 𝑝 and 𝑞 respectively. Both 𝑝̂ and

128 Chapter 7. Application to Estimating Joint Divergences between Sample Data

Figure 7.4

Convergence of DMDE

at estimating Hellinger

distance. Each row repre-

sents different generator

treewidths, each column

represents different num-

bers of binary variables. The

y-axes represent the raw

difference between the esti-

mated and actual Hellinger

distance, the x-axes repre-

sent different sample sizes

taken from the start of the

first and second half of the

generated data. Each point

is the mean over the 50 dif-

ferent datasets generated

with error bars represent-

ing the standard deviation.

(a) contains results when

the decomposable model is

learnt from data while (b)

contains results when the

decomposable models used

in DMDG are directly given

to DMDE

Convergence with Drift Magnitude=0.5

nvar: 10 nvar: 20 nvar: 50 nvar: 100

●●●0.25 ●

ge
n.tw

: 3

●●●●
●

0.00 ●●●● ●● ● ●●●●● ●● ●● ●● ●● ●● ●●●● ●●● ●●●●●● ●●● ●●● ●●
●●●●

●●●● ●●●● ●●
● ●●

−0.25 ● ● ● ● ●● ● ● ● ● ●

−0.50
●●●

0.25 ●●● ●●●●● ●● ● ●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●
● ● ●

●● ●

●● ge
n.tw

: 5

●
●
● ●

0.00 ●● ●●● ●
●

● ● ●●●●

−0.25 ● ●● ● ● ● ● ● ● ● ● ●

● ●

● ● ●

−0.50
●● ●

●●●
0.25 ● ●

ge
n.tw

: 7

●

● ●
0.00 ●● ● ●● ●● ●●● ●●●● ●●● ● ●●A

ve
ra

ge
 E

rr
or

● ●●● ● ●

●
●●

● ●●●
●● ● ●●

−0.25

●●

●

●

●● ●● ● ● ●●
●●

● ● ● ● ● ●

● ●
● ● ●

−0.50

●
● ●

●
● ●

●● ●
●● ●0.25 ●●●●●● ●●0.00 ●●●●●● ●●
●

−0.25
●●● ●

● ●●●●● ● ●

●● ●●● ●● ●●●

● ●●●

●●● ge
n.tw

: 9

●
● ●

●
●● ●

● ● ●
● ●

● ● ●

●
● ●●

−0.50 ● ●

●

●●
● ●

● ●

1e+02 1e+04 1e+02 1e+04 1e+02 1e+04 1e+02 1e+04
1e+03 1e+05 1e+03 1e+05 1e+03 1e+05 1e+03 1e+05

Sample Size

type jfc_tw=1 jfc_tw=5 jfc_tw=7 jfc_tw=9 jfc_tw=13● ● ● ● ●

(a)

●
● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
● ●

●

●

● ●

●

●

●
●

●

●
● ●

●

●

● ●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

● ●

●

●

nvar=10 nvar=20 nvar=50 nvar=100

tw
=

3
tw

=
5

tw
=

7
tw

=
9

1e+02 1e+04
1e+03 1e+05

1e+02 1e+04
1e+03 1e+05

1e+02 1e+04
1e+03 1e+05

1e+02 1e+04
1e+03 1e+05

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

Sample Size

A
ve

ra
ge

 E
rr

or

Convergence with Drift Magnitude=0.5 given Perfect Structure

(b)

7.5. Characteristics of Our Method 129

𝑞̂ are obtained using decomposable models, 𝑝̂ = (𝐺𝑝, 𝜋̂𝑝) and 𝑞̂ = (𝐺𝑞 , 𝜋̂𝑞),
learnt on the datasets 𝐷𝑝 and 𝐷𝑞 . Specifically, we fix the graph structure

of both 𝑝̂ and 𝑞̂ to be the graph structure of the decomposable models

representing the population distributions, 𝐺𝑝 and 𝐺𝑞 . The parameters, 𝜋̂𝑝 and

𝜋̂𝑞 , are then learnt from the datasets 𝐷𝑝 and 𝐷𝑞 by learning the MLE of the

multinomial distributions over each maximal clique and minimal separator of

the graphs 𝐺𝑝 and 𝐺𝑞 .

Given this setup, we then hypothesise that the expected Hellinger distance

between the estimates 𝑝̂ and 𝑞̂ over multiple realisations of 𝐷𝑝 and 𝐷𝑞 will be

greater than the actual Hellinger distance between the true distributions 𝑝 and

𝑞, or in other words:

𝔼𝐷𝑝 ,𝐷𝑞 [𝐻(𝑝̂, 𝑞̂)] > 𝐻(𝑝, 𝑞)

Unfortunately, we do not have a formal proof for Hypothesis 2, however given the

observations from Figure 7.3a, it seems likely that this is true.

Assuming Hypothesis 2 is true, we then propose the following hypothesis to explain

the underestimation occurring in Figure 7.3a:

Hypothesis 3 Errors caused by learning an incorrect structure for the decom-

posable models used by DMDE will, on average, cause DMDE to underestimate

the true Hellinger distance, assuming sufficient data is provided to minimise

parameter estimation error.

We can use both Hypothesis 2 and Hypothesis 3 to help explain some of the

behaviour exhibited by DMDE in Figure 7.3a Specifically, from the first column of

Figure 7.3a, representing results using just 100 data points from each population

distribution, we can observe that jfc_tw=13 increasingly underestimates the

Hellinger distance as the treewidth given to DMDG increases. If Hypothesis 3

is true, then this increase in underestimation for jfc_tw=13 should be due to

increasing errors in the graph structure learnt by DMDE as DMDG’s treewidth

increases. Strangely enough, even though jfc_tw=13 is the method with the

least restriction on its treewidth, it seems to have the greatest error caused by

learning an incorrect graph structure when the sample size is low and the DMDG

treewidth is high. This seems to imply that learning an incorrect model can cause

a greater amount of divergence estimation error than assuming a greater amount

of independence between the variables being modelled.

Furthermore, we can observe a jump in overestimation for jfc_tw=13 from sample

size 100 to sample size 1000 when DMDG has a treewidth of 9. This will be easier

to observe if we rearrange the axes of the plots in Figure 7.3 such that the x axis of

130 Chapter 7. Application to Estimating Joint Divergences between Sample Data

the plots represent the sample size used rather than the number of variables in the

population distributions resulting in Figure 7.4a.

From Figure 7.4b we can see that, assuming DMDE has the same graph structure

as the source distributions, DMDE will converge to the true Hellinger distance as

the number of samples increases. This result should not be too surprising as when

the sample size increases, the estimated parameters in the decomposable models

approaches the true parameters, and therefore the decomposable models in DMDE

approaches the population distributions.

With this fact in mind, the plot in Figure 7.4a can seem pretty counter-intuitive.

Specifically, we can observe that for datasets with a high number of variables and a

high treewidth for DMDG, the divergence estimation error of jfc_tw=13 increases

as the sample size increases and then later decreases back down again after a certain

point. We can also observe the same phenomena occurring for jfc_tw=9. We

hypothesise that the cause of this phenomena is due to the reduction of structure

error as the sample size available to DMDE increases. Furthermore, we hypothesise

that this reduction in structure error, which according to Hypothesis 3 causes

underestimation, reduces at a greater rate than the parameter estimation error,

which according to Hypothesis 2 causes overestimation. This gives the illusion that

the divergence estimation error increases as the sample size increases, when really,

we believe it is caused by the reduction of structure error, revealing the true error

caused by parameter estimation.

7.6 Conclusion

In conclusion, we showed that it is possible to use DMs to leverage the inter-

dependencies between variables in order to assist with estimating the divergence

between 2 high-dimensional distributions using sample data. The advantage of

our divergence estimation approach, DMDE, is that it scales with respect to the

treewidth of the DMs learnt from the data. This is in contrast with a more direct

approach, which has a complexity that scales exponentially with respect to the

number of variables in the distributions of interest.

The work presented in this chapter represents a proof of concept that DMs can

indeed assist in the problem of divergence estimation. Furthermore, despite only

being a proof of concept, DMDE performs better than existing divergence estimation

methods in datasets with more than 30 binary variables.

Through extensive experiments testing the behaviour of DMDE, we have also

found that there are two main sources of errors in the divergence estimates that

DMDE produces. The first source of error is due to inaccuracies in learning the

independencies of the underlying distribution from samples data. Therefore, we call

7.6. Conclusion 131

this type of error “structure error”. From our experiments, structure error seems

to cause DMDE to underestimate the Hellinger distance between the underlying

distributions of two samples. The second type of error, which we call “parameter

estimation error”, is error due to inaccuracies in estimating the parameters of

the DM estimated from the given samples. We found that parameter estimation

error will tend to cause DMDE to overestimate the Hellinger distance between the

underlying distributions of two samples. The fact that these two types of errors, in

estimating DMs from samples, can cause errors in estimating the Hellinger distance

in opposing directions is interesting in and of itself, and therefore, more work is

needed to further study the behaviour of divergence estimation techniques using a

plug-in estimator approach with DMs.

133

Chapter 8

Closing Discussion and Conclusions

In summary, the main motivation of this thesis is to develop tools that might assist

in tackling the problem of a distribution changing over some attribute such as

location, time, population, and so on. This phenomena is known as concept drift,

when changes occur over time, and concept shift, when changes occur over some

other attribute. However, throughout this thesis, we used the term concept drift to

refer to both types of distributional changes. There are many ways to characterise

occurrences of concept drift in a dataset/stream. In this thesis, we mainly focused

on the magnitude of these distributional changes, also known as drift magnitude.

The magnitude of an occurrence of concept drift can be measured by computing the

divergence between the underlying distributions before and after this occurrence

of concept drift.

However, computing the divergence between two high-dimensional distributions

directly is intractable. Therefore in this thesis, we tackled a relaxation of this prob-

lem, in which we assume that the underlying distributions we need to compute the

divergence between can be modelled by chordal Markov networks (MNs). To this

end we focused on developing methods to compute the 𝛼𝛽-divergence between two

high-dimensional decomposable models (DMs). Specifically, we developed methods

to compute the 𝛼𝛽-divergence between the joint, marginal, and conditional distri-

butions encoded in the DMs of interest in an efficient manner. Developing these

methods of divergence computation between DMs allowed us to not only measure

the magnitude of drift within a dataset, but also go beyond simple measurement.

Specifically, we showed that our divergence computation method can be used in

generating datasets with occurrences of concept drift of known magnitudes.

8.1 Summary of Technical Contributions

One of the core contributions of this thesis is developing a method to compute

the functional  , in Definition 13, between discrete distributions represented by

2 high-dimensional DMs. The distributions that we can compute  between are

134 Chapter 8. Closing Discussion and Conclusions

not limited to just the joint distribution of the DMs, but also the marginal and

conditional distributions encoded within the DMs. Specifically, the method we

have developed is equivalent to running the junction tree algorithm (JTA) on the

computation graph of both the DMs using factors that are specifically constructed

using the clique probabilities encoded in the original DMs. Therefore, the actual

contribution of our method are the steps needed to construct these factors and

the proof that running the JTA using the factors on the computation graph  is

equivalent to computing the functional  between distributions represented by

these DMs.

There are many possible applications where the ability to compute the divergence

between distributions of 2 DMs can be useful. In this thesis we explored how the

methods developed in Chapters 3 to 5 can be applied to create a generator that

generates data containing concept drift of known magnitudes. Specifically, we

developed a method to modify a given decomposable model such that the modified

model is a certain magnitude away from the original.

In the process of developing such a generator, we argue that ensuring the data

before and after drift have the same entropy is important for creating datasets

that are useful for testing methods that adapt to concept drift. Furthermore, we

show that any permutation of a discrete distribution will have the same entropy

and that the permutation with the greatest 𝛼𝛽-divergence relative to the original

distribution is the distribution with the reverse sorted order of the original. We also

propose a simple algorithm for finding permutations of the joint and conditional

probabilities in a decomposable model such that the modified model is a certain

drift magnitude away from the original.

For the purpose of providing our generator with random, synthetically created,

DMs, we also propose an algorithm to generate random DMs. In the process,

we extend existing algorithms for generating random chordal graphs in order to

generate random chordal graphs with a treewidth below a given treewidth limit.

With the ability to compute the divergence between DMs, we then use this method

in estimating the divergence between the underlying joint distributions from which

the two samples have been generated, from the samples alone. This problem is also

known as the divergence estimation problem. We use our method of divergence

computation here by first learning DMs on the available samples and then com-

puting the 𝛼𝛽-divergence between these DMs that we learned from the samples.

We call this procedure of divergence estimation the decomposable model diver-

gence estimator (DMDE). Our current version of DMDE is only an initial proof of

concept, but we have shown that it already has the capability to outperform any

other existing divergence estimation techniques on datasets with more than 30

binary variables. We also conduct a systematic study on the character of DMDE

and found that its two source of errors comes from inaccuracies in estimating

8.2. Code Implemented 135

either the graphical structure or parameters of the DM from data. Furthermore, we

find that these two errors causes underestimation and overestimation, respectively,

when estimating the Hellinger distance between the underlying distributions of

two samples.

8.2 Code Implemented

Throughout this thesis, we have implemented some of our proposed methods and

algorithms in code. Specifically, we implemented the method to compete the joint

𝛼𝛽-divergence between two DMs from Chapter 3 in Python. This implementation

can be found in the repository https://gitlab.com/lklee/comp-div-dm.

Furthermore, we have also implemented the drift generator from Chapter 6. How-

ever, the code-base for this implementation is currently fragmented across multiple

languages. The method for inducing drift in a DM has been implemented in Java

while the random DM generator was implemented in Python and Julia instead.

Therefore, we plan to consolidate the implementations of the drift generator from

Chapter 6 into a single language, specifically Python.

Lastly, have we also implemented the divergence estimator DMDE from Chap-

ter 7. This implementation is in Java and heavily builds upon the code base of

Chordalysis (Petitjean et al. 2013; Petitjean & Webb, 2015; Webb & Petitjean, 2016)

due to its reliance on needing a method to learn decomposable models from high-

dimensional data efficiently. Therefore, the code-base for DMDE also contains

yet another implementation of the methods in Chapter 3 for computing the joint

divergence between DMs. The code-base for this implementation can be found at

https://gitlab.com/lklee/div-est-via-discrete-decomp-models.

8.3 Future Work

There are multiple possible future avenues of work to further improve on the

methods in this thesis. For instance, recall that core to our method, multi-graph

aggregated sum-product (MGASP), for computing divergences between 2 DMs, ℙℙ
and ℚℚ , is finding the computation graph  between them. The straightforward

way to obtain  is to triangulate the graph union of 𝑃 and 𝑄 . However, since

finding the minimal triangulation of a graph is an NP-hard problem (Yannakakis,

1981; Heggernes, 2006), it is possible that the triangulation of 𝑃 ∪ 𝑄 results

in a computation graph with a large treewidth. This can present issues with

regards to the tractability of MGASP as the JTA, and therefore MGASP, scales

exponentially with respect to the treewidth of the computation graph. Therefore,

https://gitlab.com/lklee/comp-div-dm
https://gitlab.com/lklee/div-est-via-discrete-decomp-models

136 Chapter 8. Closing Discussion and Conclusions

more work is needed to avoid situations where MGASP becomes intractable due to

large treewidths. For instance, more sophisticated methods to obtain a computation

graph between two chordal graphs can help in avoiding the creation of computation

graphs that have a needlessly high treewidth. Another possible solution to this

problem is to settle for an approximation of  between distributions of ℙℙ and

ℚℚ by using approximate inference algorithms on the computation graph instead.

Furthermore, throughout the thesis, we only considered computing the divergence

between discrete distributions. Therefore, more work is needed to investigate

how one might extend this approach for divergence estimation to numeric or even

mixed-type high-dimensional data. The current state of the art projects the data

onto a lower-dimensional space, thereby potentially losing precision (Goldenberg

& Webb, 2020). The ContCordalysis extension of Chordalysis for learning graphical

models from numeric data may provide a path to achieving this (Rahman & Haffari,

2020).

With the ability to compute the divergence between DMs, we applied this method to

developing DMDE, an estimator for the divergence between two distributions using

only samples of these distributions. However, there are many possible avenues of

further research that can be carried out to extend and improve upon the proposed

divergence estimator DMDE. For instance, in Chapter 7, we used the empirical

distribution to estimate the clique probabilities in the decomposable models learnt

from the data. However, it is possible to use more statistically efficient estimators for

clique probability estimation, such as the Profile Maximum Likelihood mentioned

in Section 7.1, and more work is needed to find, adapt, and test existing estimators

on this approach of divergence estimation. Furthermore, when obtaining the

computation graph in conjunction with the decomposable models from the available

samples, we assumed that variable structure of the 2 distributions are the same.

However, this assumption does not necessarily hold in real data. Our methods

are already capable of estimating divergences between distributions modelled by

decomposable models with different structures, save for the missing link of a

robust method for deriving useful computation graphs for such models. Therefore,

more work is needed to develop more sophisticated techniques for obtaining the

computation graph in conjunction with the decomposable models estimating the

distributions of interest.

One benefit of using our method of divergence computation between DMs for

divergence estimation, is the ability to quickly compute the marginal divergence

over variables that are confined within a single maximal clique in both DMs. This

ability might be useful in the problem of identifying variable subsets, or subspaces,

within the underlying distribution that contribute the greatest to the overall diver-

gence/drift. Tackling this problem is especially pertinent in high dimensions as it

seems reasonable that concept drift might only occur in certain subspaces while

other subspaces remain relatively stable. By having knowledge on which subspace

8.3. Future Work 137

of the distribution is responsible for the overall drift, this method is able to assist

in drift adaptation by showing what parts of the model needs to be retrained, and

which parts can be kept the same.

When trying to adapt to distributional changes over time, it might be possible for

some distribution, i.e. concept, to reoccur again some time in the future. This type of

concept drift is also known as recurring concept drift (Gonçalves Jr & Barros, 2013;

Anderson et al. 2019). Being able to recognise previous concepts can greatly assist

drift adaptation methods in quickly adapting to the recurring concept. Therefore, by

being able to compactly store representations of the different concepts/distributions

as DMs, and to compute the divergence between these DMs, we are able to identify

if the current distribution has occurred before, and if so, recover a representation

of the distribution that has been estimated from a greater number of samples.

It is important to study how different drift adaptation techniques adapt to drift

of different magnitudes as these adaptation techniques might react to differing

amounts of drift magnitude in different and unexpected ways (Webb & Petitjean,

2016). Unfortunately, prior to this thesis, most studies into the behaviour of existing

drift adaptation techniques have not controlled for the drift magnitude of the

occurrence of concept drift. Therefore, using the drift generator from Chapter 6 we

can create datasets that contain known magnitudes of concept drift for this purpose.

Specifically, we can either use, as input to the drift generator, a synthetically

generated DM, resulting in a totally synthetic dataset, or a DM learnt from some

existing dataset, resulting in a semi-synthetic dataset that we can use to test drift

adaptation techniques with. However, there might be cases where we want to

test some drift adaptation techniques on a totally unmodified dataset. In such

cases, we can first map out and visualise the occurrences of concept drift, and their

magnitudes, within the existing dataset using divergence estimation techniques

such as the divergence estimator we proposed in Chapter 7. We can then use this

“drift map” as a guide for analysing the behaviour of the adaptation techniques

being tested on the dataset.

In general, a motivation for this work was the belief that the ability to assess

divergences in high-dimensional data will have many applications in the field of

concept drift. As we have discussed, some of these applications include:

1. more precise and nuanced concept drift detection by finding subspaces in the

distribution that contribute most to the overall concept drift, which will allow

selective retraining of only certain parts of the model, thereby increasing

retraining efficiency,

2. more responsive and targeted approaches to drift recovery by identifying

reoccurring concepts, allowing for the reuse of previously trained models

that have been trained on a greater amount of data, thereby shortening the

time it takes to fully adapt to a reoccurring concept, and

138 Chapter 8. Closing Discussion and Conclusions

3. the creation of datasets with known magnitudes of concept drift, either

via synthetic or semi-synthetic generation, or by initially mapping out and

measuring any occurrences of concept drift in some existing dataset, for

the purposes of assessing the performance and behaviour of various drift

adaptation techniques in the face of varying magnitudes of concept drift.

These applications only cover just some of the possible applications of the methods

developed in this thesis in the field of concept drift, let alone applications in other

fields of machine learning such as transfer learning.

139

Nomenclature

Graphs

() Maximal cliques of chordal graph 

 Undirected Graph

(𝑣) The set of vertices neighbouring 𝑣 in graph .

() Minimal separators of chordal graph 

 A graph with no cycles, i.e. a tree

 A collection of trees,  = {1, 2, …}, i.e. a forest.

𝐸() Edges of graph 

𝑉 () Vertices of graph 

Information Theory

𝐷(ℙ, ℚ) Divergence between distributions ℙ and ℚ

𝐷(𝛼,𝛽)
AB (ℙ, ℚ) 𝛼𝛽-divergence between distributions ℙ and ℚ

𝐻(𝔻) Shannon entropy of discrete distribution 𝔻

Probabilistic Model

𝔻 Decomposable model with graphical structure  representing the distribu-

tion 𝔻

Other symbols

 Functional between 2 discrete probability distributions as defined in Defini-

tion 13

𝒀 ∣𝒁 The conditional functional between 2 discrete conditional distributions over

𝒀 given 𝒁 as defined in Proposition 9

Probability & Data

𝐴 State space of random variables 𝑿𝐴

140 Nomenclature

𝑣 State space of random variable 𝑋𝑣

ℙ,ℚ,𝔻 Probability distributions over the variables 𝑿

𝑿𝐴 Random variables with labels in the set 𝐴

𝑥𝐴 An element from the set 𝐴

𝑋𝑣 Discrete random variable with label 𝑣

𝑥𝑣 An element from the set 𝑣

141

Glossary

-partition A set containing sets in an  -partition that has

vertices associated with some variable in a given

set of variables 𝒀 . See Definition 23.

 -graph Graph obtained from using function Γ defined in

Definition 20.

 -partition Set of sets of vertices in a chordal graph that par-

titions both the maximal clique of the graph and

some given subset of the vertices of the graph. See

Definition 18.

concept drift Formally defined as a change in the conditional

distribution of some target/class variables given

the covariate variables. However, in this thesis, we

use the term “concept drift” to mean both concept

drift and shift unless specified otherwise.

drift magnitude Magnitude of an occurrence of concept drift or

shift. Typically measured via the divergence be-

tween the distribution before and after drift.

bzlv Method to estimate KL-divergence from Bu et al.

(2018).

hjw Method to estimate KL-divergence from Han et al.

(2016).

mcgo Method to compute the Kullback-Leibler (KL) di-

vergence between 2 Bayesian networks (BNs) of

different structures in (Moral et al. 2021).

pgmpy Python library for graphical models (Ankan &

Panda, 2015).

zg Method to estimate KL-divergence from Z. Zhang

& Grabchak (2014).

drift generator Data generators capable of creating datasets with

known occurrence of concept drift.

142 Glossary

inter-attribute structure The relationships and structure between a set of

variables.

junction tree/forest Junction tree/forest of a chordal graph.

marginal  -probability Marginal probability over the variables of a ver-

tex set from some  -partition defined in Defini-

tion 19.

143

Acronyms

BN Bayesian network

CPT conditional probability table

DAG directed acyclic graph

DG directed graph

DM decomposable model

DMDE decomposable model divergence estimator

DMDG decomposable model drift generator

JTA junction tree algorithm

KL Kullback-Leibler

MGASP multi-graph aggregated sum-product

MN Markov network

pmf probability mass function

rv random variable

UG undirected graph

145

Bibliography

Abdullah, Amirali; Kumar, Ravi; McGregor, Andrew; Vassilvitskii, Sergei; Venkata-

subramanian, Suresh (2016). “Sketching, Embedding and Dimensionality Reduc-

tion in Information Theoretic Spaces”. In: Artificial Intelligence and Statistics.
May 2, 2016, pp. 948–956. url: http://proceedings.mlr.press/v51/abdullah16.html

(visited on 02/02/2020).

Acharya, Jayadev (2018). “Profile Maximum Likelihood Is Optimal for Estimating

KL Divergence”. In: 2018 IEEE International Symposium on Information Theory
(ISIT). June 2018, pp. 1400–1404. doi: 10.1109/ISIT.2018.8437461.

Alippi, Cesare; Boracchi, Giacomo; Carrera, Diego; Roveri, Manuel (2016). “Change

Detection in Multivariate Datastreams: Likelihood and Detectability Loss”. In:

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence. IJCAI’16. New York, New York, USA: AAAI Press, July 9, 2016, pp. 1368–

1374. isbn: 978-1-57735-770-4.

Amari, Shun-ichi (2016). Information Geometry and Its Applications. Springer, Feb. 2,

2016. 378 pp. isbn: 978-4-431-55978-8. Google Books: UkSFCwAAQBAJ.

Anderson, Robert; Koh, Yun Sing; Dobbie, Gillian; Bifet, Albert (2019). “Recurring

Concept Meta-Learning for Evolving Data Streams”. In: Expert Systems with
Applications 138 (Dec. 30, 2019), p. 112832. issn: 0957-4174. doi: 10.1016/j.eswa.2

019.112832.

Ankan, Ankur; Panda, Abinash (2015). “Pgmpy: Probabilistic Graphical Models

Using Python”. In: Proceedings of the 14th Python in Science Conference (2015),

pp. 6–11. doi: 10.25080/Majora-7b98e3ed-001.

Baidari, Ishwar; Honnikoll, Nagaraj (2021). “Bhattacharyya Distance Based Con-

cept Drift Detection Method for Evolving Data Stream”. In: Expert Systems with
Applications 183 (Nov. 30, 2021), p. 115303. issn: 0957-4174. doi: 10.1016/j.eswa.2

021.115303.

Balzanella, Antonio; Rivoli, Lidia; Verde, Rosanna (2013). “Data Stream Summariza-

tion by Histograms Clustering”. In: Statistical Models for Data Analysis. Ed. by

Paolo Giudici; Salvatore Ingrassia; Maurizio Vichi. Studies in Classification, Data

Analysis, and Knowledge Organization. Heidelberg: Springer International Pub-

lishing, 2013, pp. 27–35. isbn: 978-3-319-00032-9. doi: 10.1007/978-3-319-00032

-9_4.

Barz, Björn; Rodner, Erik; Garcia, Yanira Guanche; Denzler, Joachim (2019). “Detect-

ing Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection”. In:

http://proceedings.mlr.press/v51/abdullah16.html
https://doi.org/10.1109/ISIT.2018.8437461
http://books.google.com/books?id=UkSFCwAAQBAJ
https://doi.org/10.1016/j.eswa.2019.112832
https://doi.org/10.1016/j.eswa.2019.112832
https://doi.org/10.25080/Majora-7b98e3ed-001
https://doi.org/10.1016/j.eswa.2021.115303
https://doi.org/10.1016/j.eswa.2021.115303
https://doi.org/10.1007/978-3-319-00032-9_4
https://doi.org/10.1007/978-3-319-00032-9_4

146 Bibliography

IEEE Transactions on Pattern Analysis and Machine Intelligence 41.5 (May 2019),

pp. 1088–1101. issn: 1939-3539. doi: 10.1109/TPAMI.2018.2823766.

Berry, Anne; Blair, Jean R. S.; Heggernes, Pinar; Peyton, Barry W. (2004). “Maxi-

mum Cardinality Search for Computing Minimal Triangulations of Graphs”. In:

Algorithmica 39.4 (Aug. 1, 2004), pp. 287–298. issn: 1432-0541. doi: 10.1007/s0045

3-004-1084-3.

Bhattacharya, Arnab; Kar, Purushottam; Pal, Manjish (2009). “On Low Distortion

Embeddings of Statistical Distance Measures into Low Dimensional Spaces”. In:

Database and Expert Systems Applications. Ed. by Sourav S. Bhowmick; Josef

Küng; Roland Wagner. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 2009, pp. 164–172. isbn: 978-3-642-03573-9. doi: 10.1007/978-3-642-035

73-9_13.

Bhattacharyya, Rishiraj; Chakraborty, Sourav (2018). “Property Testing of Joint

Distributions Using Conditional Samples”. In: ACM Transactions on Computation
Theory 10.4 (Aug. 22, 2018), 16:1–16:20. issn: 1942-3454. doi: 10.1145/3241377.

Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard; Gavaldà, Ricard (2009a). “Improv-

ing Adaptive Bagging Methods for Evolving Data Streams”. In: Proceedings of the
1st Asian Conference on Machine Learning: Advances in Machine Learning. ACML

’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 23–37. isbn: 978-3-642-05223-1.

doi: 10.1007/978-3-642-05224-8_4.

Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard; Kirkby, Richard; Gavaldà, Ricard

(2009b). “New Ensemble Methods for Evolving Data Streams”. In: ACM Press,

2009, p. 139. isbn: 978-1-60558-495-9. doi: 10.1145/1557019.1557041.

Blair, Jean R. S.; Peyton, Barry (1993). “An Introduction to Chordal Graphs and

Clique Trees”. In: Graph Theory and Sparse Matrix Computation. Ed. by Alan

George; John R. Gilbert; Joseph W. H. Liu. The IMA Volumes in Mathematics and

Its Applications. New York, NY: Springer, 1993, pp. 1–29. isbn: 978-1-4613-8369-7.

doi: 10.1007/978-1-4613-8369-7_1.

Bleuler, Cédric; Lapidoth, Amos; Pfister, Christoph (2020). “Conditional Rényi Diver-

gences and Horse Betting”. In: Entropy 22.3 (3 Mar. 2020), p. 316. issn: 1099-4300.

doi: 10.3390/e22030316.

Bonnici, Vincenzo (2020). “Kullback-Leibler Divergence between Quantum Distri-

butions, and Its Upper-Bound”. Dec. 10, 2020. arXiv: 2008.05932 [quant-ph].

url: http://arxiv.org/abs/2008.05932 (visited on 03/01/2022).

Boracchi, Giacomo; Carrera, Diego; Cervellera, Cristiano; Macciò, Danilo (2018).

“QuantTree: Histograms for Change Detection in Multivariate Data Streams”.

In: International Conference on Machine Learning. July 3, 2018, pp. 639–648. url:

http://proceedings.mlr.press/v80/boracchi18a.html (visited on 02/03/2020).

Bu, Yuheng; Zou, Shaofeng; Liang, Yingbin; Veeravalli, Venugopal V. (2018). “Es-

timation of KL Divergence: Optimal Minimax Rate”. In: IEEE Transactions on
Information Theory 64.4 (Apr. 2018), pp. 2648–2674. issn: 1557-9654. doi: 10.1109

/TIT.2018.2805844.

https://doi.org/10.1109/TPAMI.2018.2823766
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1007/978-3-642-03573-9_13
https://doi.org/10.1007/978-3-642-03573-9_13
https://doi.org/10.1145/3241377
https://doi.org/10.1007/978-3-642-05224-8_4
https://doi.org/10.1145/1557019.1557041
https://doi.org/10.1007/978-1-4613-8369-7_1
https://doi.org/10.3390/e22030316
https://arxiv.org/abs/2008.05932
http://arxiv.org/abs/2008.05932
http://proceedings.mlr.press/v80/boracchi18a.html
https://doi.org/10.1109/TIT.2018.2805844
https://doi.org/10.1109/TIT.2018.2805844

Bibliography 147

Bulatov, Andrei; Grohe, Martin (2004). “The Complexity of Partition Functions”. In:

Automata, Languages and Programming. Vol. 3142. Lecture Notes in Computer

Science. Heidelberg, Germany: Springer, 2004, pp. 294–306.

Cai, Changxiao; Verdú, Sergio (2019). “Conditional Rényi Divergence Saddlepoint

and the Maximization of α-Mutual Information”. In: Entropy 21.10 (10 Oct. 2019),

p. 969. issn: 1099-4300. doi: 10.3390/e21100969.

Carrera, Diego (2020). “Learning and Adaptation to Detect Changes and Anomalies

in High-Dimensional Data”. In: Special Topics in Information Technology. Ed.

by Barbara Pernici. SpringerBriefs in Applied Sciences and Technology. Cham:

Springer International Publishing, 2020, pp. 63–75. isbn: 978-3-030-32094-2. doi:

10.1007/978-3-030-32094-2_5.

Carrera, Diego; Boracchi, Giacomo (2018). “Generating High-Dimensional Datas-

treams for Change Detection”. In: Big Data Research. Selected Papers from the

2nd INNS Conference on Big Data: Big Data & Neural Networks 11 (Mar. 1, 2018),

pp. 11–21. issn: 2214-5796. doi: 10.1016/j.bdr.2017.09.001.

Chen, Yukun; Ye, Jianbo; Li, Jia (2020). “Aggregated Wasserstein Distance and State

Registration for Hidden Markov Models”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 42.9 (Sept. 2020), pp. 2133–2147. issn: 1939-3539. doi:

10.1109/TPAMI.2019.2908635.

Choi, Arthur; Chan, Hei; Darwiche, Adnan (2005). “On Bayesian Network Ap-

proximation by Edge Deletion”. In: Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence. UAI’05. Arlington, Virginia, USA: AUAI

Press, July 26, 2005, pp. 128–135. isbn: 978-0-9749039-1-0.

Cichocki, Andrzej; Cruces, Sergio; Amari, Shun-ichi (2011). “Generalized Alpha-Beta

Divergences and Their Application to Robust Nonnegative Matrix Factorization”.

In: Entropy 13.1 (1 Jan. 2011), pp. 134–170. doi: 10.3390/e13010134.

Cover, Thomas M.; Thomas, Joy A. (2006). Elements of Information Theory. 2nd

edition. Hoboken, N.J: Wiley-Interscience, July 18, 2006. 784 pp. isbn: 978-0-471-

24195-9.

Cowell, Robert G.; Lauritzen, Steffen L.; David, A. Philip; Spiegelhalter, David J.

(1999). Probabilistic Networks and Expert Systems. Ed. by V. Nair; J. Lawless; M.

Jordan. 1st. Berlin, Heidelberg: Springer-Verlag, 1999. isbn: 0387987673.

Csiszar, I. (1995). “Generalized Cutoff Rates and Renyi’s Information Measures”.

In: IEEE Transactions on Information Theory 41.1 (Jan. 1995), pp. 26–34. issn:

1557-9654. doi: 10.1109/18.370121.

David Destephen Lavaire, Jorge; Singh, Anshuman; Yousef, Mahmoud; Singh, Sumi;

Yue, Xiaodong (2015). “Dimensional Scalability of Supervised and Unsupervised

Concept Drift Detection: An Empirical Study”. In: 2015 IEEE International Confer-
ence on Big Data (Big Data). Oct. 2015, pp. 2212–2218. doi: 10.1109/BigData.2015

.7364009.

Dawid, A. Philip (1979). “Conditional Independence in Statistical Theory”. In: Jour-
nal of the Royal Statistical Society. Series B (Methodological) 41.1 (1979), pp. 1–31.

issn: 0035-9246. JSTOR: 2984718.

https://doi.org/10.3390/e21100969
https://doi.org/10.1007/978-3-030-32094-2_5
https://doi.org/10.1016/j.bdr.2017.09.001
https://doi.org/10.1109/TPAMI.2019.2908635
https://doi.org/10.3390/e13010134
https://doi.org/10.1109/18.370121
https://doi.org/10.1109/BigData.2015.7364009
https://doi.org/10.1109/BigData.2015.7364009
http://www.jstor.org/stable/2984718

148 Bibliography

Dawid, A. Philip (1980). “Conditional Independence for Statistical Operations”. In:

The Annals of Statistics 8.3 (1980), pp. 598–617. issn: 0090-5364. JSTOR: 2240595.

Dechter, Rina (2003). Constraint processing. Elsevier Morgan Kaufmann, 2003. isbn:

978-1-55860-890-0. url: http://www.elsevier.com/wps/find/bookdescription.age

nts/678024/description.

Ditzler, Gregory; Polikar, Robi (2011). “Hellinger Distance Based Drift Detection

for Nonstationary Environments”. In: 2011 IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments (CIDUE). Apr. 2011, pp. 41–48.

doi: 10.1109/CIDUE.2011.5948491.

Fehr, Serge; Berens, Stefan (2014). “On the Conditional Rényi Entropy”. In: IEEE
Transactions on Information Theory 60.11 (Nov. 2014), pp. 6801–6810. issn: 1557-

9654. doi: 10.1109/TIT.2014.2357799.

Gama, João; Žliobaite, Indre; Bifet, Albert; Pechenizkiy, Mykola; Bouchachia, Ab-

delhamid (2014). “A Survey on Concept Drift Adaptation”. In: ACM Comput. Surv.
46.4 (Mar. 2014), 44:1–44:37. issn: 0360-0300. doi: 10.1145/2523813.

Gavril, Fǎnicǎ (1974). “The Intersection Graphs of Subtrees in Trees Are Exactly

the Chordal Graphs”. In: Journal of Combinatorial Theory, Series B 16.1 (Feb. 1,

1974), pp. 47–56. issn: 0095-8956. doi: 10.1016/0095-8956(74)90094-X.

Ghifary, Muhammad; Kleijn, W. Bastiaan; Zhang, Mengjie; Balduzzi, David (2015).

“Domain Generalization for Object Recognition with Multi-task Autoencoders”.

In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015 IEEE

International Conference on Computer Vision (ICCV). Dec. 2015, pp. 2551–2559.

doi: 10.1109/ICCV.2015.293.

Goldenberg, Igor; Webb, Geoffrey I. (2019). “Survey of Distance Measures for Quan-

tifying Concept Drift and Shift in Numeric Data”. In: Knowledge and Information
Systems 60.2 (Aug. 1, 2019), pp. 591–615. issn: 0219-3116. doi: 10.1007/s10115-01

8-1257-z.

– (2020). “PCA-based Drift and Shift Quantification Framework for Multidimen-

sional Data”. In: Knowledge and Information Systems 62.7 (July 1, 2020), pp. 2835–

2854. issn: 0219-3116. doi: 10.1007/s10115-020-01438-3.

Gonçalves Jr, Paulo Mauricio; Barros, Roberto Souto Maior de (2013). “RCD: A

Recurring Concept Drift Framework”. In: Pattern Recognition Letters 34.9 (July 1,

2013), pp. 1018–1025. issn: 0167-8655. doi: 10.1016/j.patrec.2013.02.005.

Hammersley, John Michael; Clifford, Peter (1971). “Markov Fields on Finite Graphs

and Lattices”. In: Unpublished manuscript (1971). url: https://www.semanticscho

lar.org/paper/Markov-fields-on-finite-graphs-and-lattices-Hammersley-Cliff

ord/ec75e3ca906681bd900218a348a4a35dfed3d6fd (visited on 07/05/2022).

Han, Yanjun; Jiao, Jiantao; Weissman, Tsachy (2016). “Minimax Rate-Optimal Esti-

mation of KL Divergence between Discrete Distributions”. In: 2016 International
Symposium on Information Theory and Its Applications (ISITA). Oct. 2016, pp. 256–

260.

http://www.jstor.org/stable/2240595
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
http://www.elsevier.com/wps/find/bookdescription.agents/678024/description
https://doi.org/10.1109/CIDUE.2011.5948491
https://doi.org/10.1109/TIT.2014.2357799
https://doi.org/10.1145/2523813
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1109/ICCV.2015.293
https://doi.org/10.1007/s10115-018-1257-z
https://doi.org/10.1007/s10115-018-1257-z
https://doi.org/10.1007/s10115-020-01438-3
https://doi.org/10.1016/j.patrec.2013.02.005
https://www.semanticscholar.org/paper/Markov-fields-on-finite-graphs-and-lattices-Hammersley-Clifford/ec75e3ca906681bd900218a348a4a35dfed3d6fd
https://www.semanticscholar.org/paper/Markov-fields-on-finite-graphs-and-lattices-Hammersley-Clifford/ec75e3ca906681bd900218a348a4a35dfed3d6fd
https://www.semanticscholar.org/paper/Markov-fields-on-finite-graphs-and-lattices-Hammersley-Clifford/ec75e3ca906681bd900218a348a4a35dfed3d6fd

Bibliography 149

– (2020). “Minimax Estimation of Divergences Between Discrete Distributions”. In:

IEEE Journal on Selected Areas in Information Theory 1.3 (Nov. 2020), pp. 814–823.

issn: 2641-8770. doi: 10.1109/JSAIT.2020.3041036.

Harries, Michael (1999). SPLICE-2 Comparative Evaluation: Electricity Pricing. Tech-

nical report. 1999.

Heggernes, Pinar (2006). “Minimal Triangulations of Graphs: A Survey”. In: Discrete
Mathematics. Minimal Separation and Minimal Triangulation 306.3 (Feb. 28, 2006),

pp. 297–317. issn: 0012-365X. doi: 10.1016/j.disc.2005.12.003.

Hellinger, E. (1909). “Neue Begründung der Theorie quadratischer Formen von

unendlichvielen Veränderlichen.” In: Journal für die reine und angewandte Math-
ematik 136 (1909), pp. 210–271. issn: 0075-4102. url: http://www.digizeitschrifte

n.de/dms/img/?PID=GDZPPN002166941 (visited on 02/02/2020).

Helly, Ed (1923). “Über Mengen konvexer Körper mit gemeinschaftlichen Punkte.”

In: Jahresbericht der Deutschen Mathematiker-Vereinigung 32 (1923), pp. 175–176.

issn: 0012-0456; 1869-7135. url: https : / / eudml .org /doc /145659 (visited on

03/05/2022).

Horn, W. A. (1972). “Three Results for Trees, Using Mathematical Induction”. In:

Journal of Research of the National Bureau of Standards, Section B: Mathematical
Sciences 76B.1-2 (Jan. 1972), p. 39. issn: 0098-8979. doi: 10.6028/jres.076B.002.

Ilić, Velimir M.; Djordjević, Ivan B.; Stanković, Miomir (2017). “On a General Defi-

nition of Conditional Rényi Entropies”. In: Proceedings 2.4 (4 2017), p. 166. issn:

2504-3900. doi: 10.3390/ecea-4-05030.

Jeffreys, Sir Harold (1998). The Theory of Probability. Third Edition, Third Edi-

tion. Oxford Classic Texts in the Physical Sciences. Oxford, New York: Oxford

University Press, Aug. 6, 1998. 470 pp. isbn: 978-0-19-850368-2.

Jiao, Jiantao; Han, Yanjun; Weissman, Tsachy (2018). “Minimax Estimation of the L1

Distance”. In: IEEE Transactions on Information Theory 64.10 (Oct. 2018), pp. 6672–

6706. issn: 1557-9654. doi: 10.1109/TIT.2018.2846245.

Klinkenberg, Ralf (2001). “Using Labeled and Unlabeled Data to Learn Drifting

Concepts”. In: In Workshop Notes of IJCAI-01 Workshop on Learning from Temporal
and Spatial Data. AAAI Press, 2001, pp. 16–24.

Koller, Daphne; Friedman, Nir (2009). Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.

isbn: 978-0-262-01319-2.

Kullback, S.; Leibler, R. A. (1951). “On Information and Sufficiency”. In: The Annals
of Mathematical Statistics 22.1 (Mar. 1951), pp. 79–86. issn: 0003-4851, 2168-8990.

doi: 10.1214/aoms/1177729694.

Lauritzen, Steffen L. (1996). Graphical Models. Oxford Statistical Science Series 17.

Oxford : New York: Clarendon Press ; Oxford University Press, 1996. 298 pp. isbn:

978-0-19-852219-5.

Lauritzen, Steffen L.; Spiegelhalter, David J. (1988). “Local Computations with

Probabilities on Graphical Structures and Their Application to Expert Systems”.

https://doi.org/10.1109/JSAIT.2020.3041036
https://doi.org/10.1016/j.disc.2005.12.003
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002166941
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002166941
https://eudml.org/doc/145659
https://doi.org/10.6028/jres.076B.002
https://doi.org/10.3390/ecea-4-05030
https://doi.org/10.1109/TIT.2018.2846245
https://doi.org/10.1214/aoms/1177729694

150 Bibliography

In: Journal of the Royal Statistical Society. Series B (Methodological) 50.2 (1988),

pp. 157–224.

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms.
1st edition. Cambridge, UK ; New York: Cambridge University Press, Sept. 25,

2003. 640 pp. isbn: 978-0-521-64298-9.

Maniu, Silviu; Senellart, Pierre; Jog, Suraj (2019). “An Experimental Study of the

Treewidth of Real-World Graph Data”. In: 22nd International Conference on
Database Theory (ICDT 2019). Ed. by Pablo Barcelo; Marco Calautti. Vol. 127.

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:

Schloss Dagstuhlâ€“Leibniz-Zentrum fuer Informatik, 2019, 12:1–12:18. isbn:

978-3-95977-101-6. doi: 10.4230/LIPIcs.ICDT.2019.12. url: http://drops.dagstuhl

.de/opus/volltexte/2019/10314 (visited on 02/02/2023).

Mezzini, Mauro; Moscarini, Marina (2010). “Simple Algorithms for Minimal Triangu-

lation of a Graph and Backward Selection of a Decomposable Markov Network”.

In: Theoretical Computer Science 411.7 (Feb. 28, 2010), pp. 958–966. issn: 0304-3975.

doi: 10.1016/j.tcs.2009.10.004.

Minku, Leandro L.; White, Allan P.; Yao, Xin (2010). “The Impact of Diversity on

Online Ensemble Learning in the Presence of Concept Drift”. In: IEEE Transactions
on Knowledge and Data Engineering 22.5 (May 2010), pp. 730–742. issn: 1041-4347.

doi: 10.1109/TKDE.2009.156.

Moral, Serafín; Cano, Andrés; Gómez-Olmedo, Manuel (2021). “Computation of

Kullback–Leibler Divergence in Bayesian Networks”. In: Entropy 23.9 (9 Sept.

2021), p. 1122. doi: 10.3390/e23091122.

Orlitsky, Alon; Santhanam, Narayana P.; Viswanathan, Krishnamurthy; Zhang,

Junan (2004). “On Modeling Profiles Instead of Values”. In: Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence. UAI ’04. Arlington, Virginia,

USA: AUAI Press, July 7, 2004, pp. 426–435. isbn: 978-0-9749039-0-3.

Pavlichin, Dmitri S.; Jiao, Jiantao; Weissman, Tsachy (2019). “Approximate Profile

Maximum Likelihood”. In: Journal of Machine Learning Research 20.122 (2019),

pp. 1–55. issn: 1533-7928. url: http://jmlr.org/papers/v20/18-075.html (visited

on 01/24/2021).

Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988.

552 pp. isbn: 978-1-55860-479-7.

Pearl, Judea; Geiger, Dan; Verma, Thomas (1989). “Conditional Independence and

Its Representations”. In: Kybernetika 25.7 (1989), pp. 33–44. url: http://www.kyb

ernetika.cz/content/1989/7/33 (visited on 06/22/2022).

Pearson, Karl (1900). “X. On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that it can

be reasonably supposed to have arisen from random sampling”. In: The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50.302 (1900),

pp. 157–175. doi: 10.1080/14786440009463897. eprint: https://doi.org/10.1080/147

86440009463897. url: https://doi.org/10.1080/14786440009463897.

https://doi.org/10.4230/LIPIcs.ICDT.2019.12
http://drops.dagstuhl.de/opus/volltexte/2019/10314
http://drops.dagstuhl.de/opus/volltexte/2019/10314
https://doi.org/10.1016/j.tcs.2009.10.004
https://doi.org/10.1109/TKDE.2009.156
https://doi.org/10.3390/e23091122
http://jmlr.org/papers/v20/18-075.html
http://www.kybernetika.cz/content/1989/7/33
http://www.kybernetika.cz/content/1989/7/33
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897

Bibliography 151

Petitjean, François; Allison, Lloyd; Webb, Geoffrey I. (2014). “A Statistically Efficient

and Scalable Method for Log-Linear Analysis of High-Dimensional Data”. In:

2014 IEEE International Conference on Data Mining. Shenzhen, China: IEEE, Dec.

2014, pp. 480–489. doi: 10.1109/ICDM.2014.23.

Petitjean, François; Buntine, Wray; Webb, Geoffrey I.; Zaidi, Nayyar (2018). “Accu-

rate Parameter Estimation for Bayesian Network Classifiers Using Hierarchical

Dirichlet Processes”. In: Machine Learning 107.8-10 (Sept. 2018), pp. 1303–1331.

issn: 0885-6125, 1573-0565. doi: 10.1007/s10994-018-5718-0.

Petitjean, François; Webb, Geoffrey I. (2015). “Scaling Log-Linear Analysis to

Datasets with Thousands of Variables”. In: Proceedings of the 2015 SIAM Interna-
tional Conference on Data Mining. Society for Industrial and Applied Mathematics,

June 30, 2015, pp. 469–477. isbn: 978-1-61197-401-0. doi: 10.1137/1.978161197401

0.53.

Petitjean, François; Webb, Geoffrey I.; Nicholson, Ann E. (2013). “Scaling Log-Linear

Analysis to High-Dimensional Data”. In: 2013 IEEE 13th International Conference
on Data Mining. Dallas, TX, USA: IEEE, Dec. 2013, pp. 597–606. isbn: 978-0-7695-

5108-1. doi: 10.1109/ICDM.2013.17.

Poczos, Barnabas; Schneider, Jeff (2012). “Nonparametric Estimation of Conditional

Information and Divergences”. In: Artificial Intelligence and Statistics. PMLR,

Mar. 21, 2012, pp. 914–923. url: http://proceedings.mlr.press/v22/poczos12.html

(visited on 01/24/2021).

Polikar, Robert; Upda, Lalita; Upda, Satish S.; Honavar, Vasant (2001). “Learn++:

An Incremental Learning Algorithm for Supervised Neural Networks”. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
31.4 (Nov. 2001), pp. 497–508. issn: 1094-6977. doi: 10.1109/5326.983933.

Rahman, Mohammad S.; Haffari, Gholamreza (2020). “A Statistically Efficient and

Scalable Method for Exploratory Analysis of High-Dimensional Data”. In: SN
Computer Science 1.2 (Feb. 7, 2020), p. 64. issn: 2661-8907. doi: 10.1007/s42979-02

0-0064-2.

Rényi, Alfréd (1961). “On Measures of Entropy and Information”. In: Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics 4.1 (Jan. 1, 1961), pp. 547–562. url: http

s://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics

-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathe

matical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bs

msp/1200512181 (visited on 10/11/2022).

Schlimmer, Jeffrey C.; Granger, Richard H. (1986). “Incremental Learning from Noisy

Data”. In: Machine Learning 1.3 (1986), pp. 317–354. issn: 0885-6125, 1573-0565.

doi: 10.1007/BF00116895.

Scholz, Martin; Klinkenberg, Ralf (2005). “An Ensemble Classifier for Drifting

Concepts”. In: In Proceedings of the Second International Workshop on Knowledge
Discovery in Data Streams. 2005, pp. 53–64.

https://doi.org/10.1109/ICDM.2014.23
https://doi.org/10.1007/s10994-018-5718-0
https://doi.org/10.1137/1.9781611974010.53
https://doi.org/10.1137/1.9781611974010.53
https://doi.org/10.1109/ICDM.2013.17
http://proceedings.mlr.press/v22/poczos12.html
https://doi.org/10.1109/5326.983933
https://doi.org/10.1007/s42979-020-0064-2
https://doi.org/10.1007/s42979-020-0064-2
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fourth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/On-Measures-of-Entropy-and-Information/bsmsp/1200512181
https://doi.org/10.1007/BF00116895

152 Bibliography

Scutari, Marco (2010). “Learning Bayesian Networks with the Bnlearn R Package”.

In: Journal of Statistical Software 35 (July 16, 2010), pp. 1–22. issn: 1548-7660. doi:

10.18637/jss.v035.i03.

Sebastião, Raquel; Gama, João (2007). “Change Detection in Learning Histograms

from Data Streams”. In: Progress in Artificial Intelligence. Ed. by José Neves;

Manuel Filipe Santos; José Manuel Machado. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer, 2007, pp. 112–123. isbn: 978-3-540-77002-2. doi:

10.1007/978-3-540-77002-2_10.

Sebastião, Raquel; Gama, João; Rodrigues, Pedro Pereira; Bernardes, João (2010).

“Monitoring Incremental Histogram Distribution for Change Detection in Data

Streams”. In: Knowledge Discovery from Sensor Data. Ed. by Mohamed Medhat

Gaber; Ranga Raju Vatsavai; Olufemi A. Omitaomu; João Gama; Nitesh V. Chawla;

Auroop R. Ganguly. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 2010, pp. 25–42. isbn: 978-3-642-12519-5. doi: 10.1007/978-3-642-12519

-5_2.

Şeker, Oylum; Heggernes, Pinar; Ekim, Tınaz; Taşkın, Z. Caner (2017). “Linear-

Time Generation of Random Chordal Graphs”. In: Algorithms and Complexity.

Ed. by Dimitris Fotakis; Aris Pagourtzis; Vangelis Th. Paschos. Lecture Notes in

Computer Science. Cham: Springer International Publishing, 2017, pp. 442–453.

isbn: 978-3-319-57586-5. doi: 10.1007/978-3-319-57586-5_37.

– (2018). “Generation of Random Chordal Graphs Using Subtrees of a Tree”. In:

(Oct. 31, 2018). url: http://arxiv.org/abs/1810.13326v1 (visited on 12/07/2021).

Sethi, Tegjyot Singh; Kantardzic, Mehmed (2017). “On the Reliable Detection of

Concept Drift from Streaming Unlabeled Data”. In: Expert Systems with Applica-
tions: An International Journal 82.C (Oct. 1, 2017), pp. 77–99. issn: 0957-4174. doi:

10.1016/j.eswa.2017.04.008.

Shaker, Ammar; Hüllermeier, Eyke (2015). “Recovery Analysis for Adaptive Learn-

ing from Non-Stationary Data Streams: Experimental Design and Case Study”.

In: Neurocomputing 150 (Feb. 2015), pp. 250–264. issn: 09252312. doi: 10.1016/j.n

eucom.2014.09.076.

Shannon, C. E. (1948). “A Mathematical Theory of Communication”. In: The Bell
System Technical Journal 27.3 (July 1948), pp. 379–423. issn: 0005-8580. doi: 10.1

002/j.1538-7305.1948.tb01338.x.

Sibson, Robin (1969). “Information Radius”. In: Zeitschrift für Wahrscheinlichkeits-
theorie und Verwandte Gebiete 14.2 (June 1, 1969), pp. 149–160. issn: 1432-2064.

doi: 10.1007/BF00537520.

Street, W. Nick; Kim, YongSeog (2001). “A Streaming Ensemble Algorithm (SEA)

for Large-scale Classification”. In: Proceedings of the Seventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. KDD ’01. New

York, NY, USA: ACM, 2001, pp. 377–382. isbn: 978-1-58113-391-2. doi: 10.1145/5

02512.502568.

https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1007/978-3-540-77002-2_10
https://doi.org/10.1007/978-3-642-12519-5_2
https://doi.org/10.1007/978-3-642-12519-5_2
https://doi.org/10.1007/978-3-319-57586-5_37
http://arxiv.org/abs/1810.13326v1
https://doi.org/10.1016/j.eswa.2017.04.008
https://doi.org/10.1016/j.neucom.2014.09.076
https://doi.org/10.1016/j.neucom.2014.09.076
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/BF00537520
https://doi.org/10.1145/502512.502568
https://doi.org/10.1145/502512.502568

Bibliography 153

Teixeira, Andreia; Matos, Armando; Antunes, Luís (2012). “Conditional Rényi En-

tropies”. In: IEEE Transactions on Information Theory 58.7 (July 2012), pp. 4273–

4277. issn: 1557-9654. doi: 10.1109/TIT.2012.2192713.

Tsymbal, Alexey (2004). The Problem of Concept Drift: Definitions and Related Work.

Technical Report TCD-CS-2004-15. Computer Science Department: Trinity Col-

lege Dublin, May 29, 2004.

Valiant, Leslie Gabriel (1979). “The complexity of enumeration and reliability prob-

lems”. In: SIAM Journal on Computing 8.3 (1979), pp. 410–421.

Wainwright, Martin J.; Jordan, Michael I. (2008). “Graphical Models, Exponential

Families, and Variational Inference”. In: Foundations and Trends in Machine Learn-
ing 1.1–2 (2008), pp. 1–305.

Wang, Jindong; Lan, Cuiling; Liu, Chang; Ouyang, Yidong; Qin, Tao; Lu, Wang;

Chen, Yiqiang; Zeng, Wenjun; Yu, Philip (2022). “Generalizing to Unseen Domains:

A Survey on Domain Generalization”. In: IEEE Transactions on Knowledge and
Data Engineering (2022), pp. 1–1. issn: 1558-2191. doi: 10.1109/TKDE.2022.31781

28.

Webb, Geoffrey I.; Hyde, Roy; Cao, Hong; Nguyen, Hai Long; Petitjean, François

(2016). “Characterizing Concept Drift”. In: Data Mining and Knowledge Discovery
30.4 (July 2016), pp. 964–994. issn: 1384-5810, 1573-756X. doi: 10.1007/s10618-01

5-0448-4. arXiv: 1511.03816.

Webb, Geoffrey I.; Lee, Loong Kuan; Goethals, Bart; Petitjean, François (2018).

“Analyzing Concept Drift and Shift from Sample Data”. In: Data Mining and
Knowledge Discovery 32.5 (Sept. 1, 2018), pp. 1179–1199. issn: 1573-756X. doi:

10.1007/s10618-018-0554-1.

Webb, Geoffrey I.; Petitjean, François (2016). “A Multiple Test Correction for Streams

and Cascades of Statistical Hypothesis Tests”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining -
KDD ’16. San Francisco, California, USA: ACM Press, 2016, pp. 1255–1264. isbn:

978-1-4503-4232-2. doi: 10.1145/2939672.2939775.

Widmer, Gerhard; Kubat, Miroslav (1996). “Learning in the Presence of Concept

Drift and Hidden Contexts”. In: Machine Learning 23.1 (Apr. 1, 1996), pp. 69–101.

issn: 0885-6125, 1573-0565. doi: 10.1007/BF00116900.

Yannakakis, Mihalis (1981). “Computing the Minimum Fill-In Is NP-Complete”.

In: SIAM Journal on Algebraic Discrete Methods 2.1 (Mar. 1981), pp. 77–79. issn:

0196-5212. doi: 10.1137/0602010.

Zhang, Wei; Yu, Yao-Chi; Li, Jr-Shin (2019). “Dynamics Reconstruction and Classifi-

cation via Koopman Features”. In: Data Mining and Knowledge Discovery 33.6

(Nov. 1, 2019), pp. 1710–1735. issn: 1573-756X. doi: 10.1007/s10618-019-00639-x.

Zhang, Zhiyi; Grabchak, Michael (2014). “Nonparametric Estimation of Küllback-

Leibler Divergence”. In: Neural Computation 26.11 (Nov. 1, 2014), pp. 2570–2593.

issn: 0899-7667. doi: 10.1162/NECO_a_00646.

https://doi.org/10.1109/TIT.2012.2192713
https://doi.org/10.1109/TKDE.2022.3178128
https://doi.org/10.1109/TKDE.2022.3178128
https://doi.org/10.1007/s10618-015-0448-4
https://doi.org/10.1007/s10618-015-0448-4
https://arxiv.org/abs/1511.03816
https://doi.org/10.1007/s10618-018-0554-1
https://doi.org/10.1145/2939672.2939775
https://doi.org/10.1007/BF00116900
https://doi.org/10.1137/0602010
https://doi.org/10.1007/s10618-019-00639-x
https://doi.org/10.1162/NECO_a_00646

154 Bibliography

Zhou, Kaiyang; Liu, Ziwei; Qiao, Yu; Xiang, Tao; Loy, Chen Change (2022). “Domain

Generalization: A Survey”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022), pp. 1–20. issn: 1939-3539. doi: 10.1109/TPAMI.2022.3195549.

Zimek, Arthur; Schubert, Erich; Kriegel, Hans-Peter (2012). “A Survey on Unsu-

pervised Outlier Detection in High-Dimensional Numerical Data”. In: Statistical
Analysis and Data Mining: The ASA Data Science Journal 5.5 (2012), pp. 363–387.

issn: 1932-1872. doi: 10.1002/sam.11161.

Žliobaite, Indre (2010). “Change with Delayed Labeling: When Is It Detectable?”

In: 2010 IEEE International Conference on Data Mining Workshops. Dec. 2010,

pp. 843–850. doi: 10.1109/ICDMW.2010.49.

https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1002/sam.11161
https://doi.org/10.1109/ICDMW.2010.49

	Copyright notice
	Abstract
	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation: Concept Drift
	1.2 Problem: Computing Divergence between High-Dimensional Distributions
	1.3 Contributions
	1.4 Thesis Structure & Organisation

	2 Background
	2.1 Graph Theoric Background and Notation
	2.1.1 directed graphs (DGs)
	2.1.1.1 directed acyclic graphs (DAGs)

	2.1.2 undirected graphs (UGs)
	2.1.2.1 Trees

	2.1.3 Chordal Graphs
	2.1.3.1 Junction Trees/Forest
	2.1.3.2 Chordal Graphs as Intersections of Subtrees

	2.2 Graphical Models
	2.2.1 Bayesian Network
	2.2.2 Markov Network
	2.2.3 Decomposable Models and the Conversion between Bayesian Networks and Markov Networks
	2.2.4 Junction Tree Algorithm

	2.3 Entropy
	2.3.1 Conditional Entropy

	2.4 Divergence
	2.4.1 Conditional Divergence

	2.5 Concept Drift
	2.6 Datasets with Concept Drift
	2.6.1 Unknown Drift Magnitudes
	2.6.1.1 Synthetic Drift Generators
	2.6.1.2 Manipulating Real-World Datasets

	2.6.2 Known Drift Magnitude
	2.6.2.1 Naive Bayes Model
	2.6.2.2 Controlling Change Magnitude (CCM)

	I Computing Divergences between Graphical Models
	3 Computing Divergences between Joint Distributions
	3.1 F between Joint Distributions of Decomposable Models
	3.2 Multi-Graph Aggregated Sum-Products (MGASPs)
	3.2.1 H is a Connected Graph
	3.2.2 H is a Disconnected Graph

	3.3 Using MGASP to Compute F(P,Q)
	3.4 Complexity of Computing ab-Divergence between Joint Distributions of Decomposable Models
	3.5 Runtime Comparison with Existing Method
	3.6 Case Study: kl Divergence in Model Selection
	3.7 Conclusion

	4 Computing Divergence between Marginal Distributions
	4.1 Decomposing Marginal Distributions of a decomposable model
	4.2 Reframing the Problem
	4.3 Computing ab-Divergence
	4.3.1 Computing Marginal ab-Divergence when a,b=0
	4.3.2 Computing F between Marginal Distributions of directed graphs

	4.4 Complexity and Edge Cases
	4.5 Conclusion

	5 Computing Divergences between the Conditional Distributions of 2 Decomposable Models
	5.1 Decomposing Conditional Distributions of DMs using N-Partitions
	5.2 Computing Conditional ab-Divergence
	5.2.1 Computing the Conditional Functional F_Y|Z
	5.2.2 Computing the Conditional ab-Divergence when a,b=0

	5.3 Complexity
	5.4 Conclusion

	II Applications of Computing Divergences between Graphical Models
	6 Generating High-Dimensional Data with Concept Drift of Known Magnitudes
	6.1 Entropy and its Relation to Dataset Difficulty
	6.1.1 Permuting Discrete Distributions and Maintaining Entropy
	6.1.1.1 Joint
	6.1.1.2 Conditional

	6.1.2 Distribution with Maximum Divergence

	6.2 Drifting Parameters of a decomposable model
	6.3 Generating Random Decomposable Models with a Limit on Treewidth
	6.3.1 Generating Random Chordal Graphs
	6.3.2 Generating Random Parameters for Decomposable Models

	6.4 Conclusion

	7 Application to Estimating Joint Divergences between Sample Data
	7.1 Previous Work in Divergence Estimation
	7.2 Divergence Estimation using decomposable model: decomposable model divergence estimator (DMDE)
	7.3 Datasets for Experiments
	7.4 Empirical Comparison with Previous Work
	7.5 Characteristics of Our Method
	7.6 Conclusion

	8 Closing Discussion and Conclusions
	8.1 Summary of Technical Contributions
	8.2 Code Implemented
	8.3 Future Work

	Nomenclature
	Glossary
	Glossary
	Acronyms
	Bibliography

