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Abstract

The thyroid, a butterfly-shaped endocrine gland locates at the base of the neck, is

in charge of regulating the metabolic systems, including heart rates, blood pressure, and

digestive functions. This crucial gland in the human body is now grabbing attention

worldwide as thyroid cancer has been the fastest rising malignancy since 1982.

Despite the increasing number of instances, the pathogenesis of the disease remains

unclear. The existing studies generally deploy qualitative or statistical techniques to

investigate a single risk factor correlated with the development of thyroid cancer at a time.

However, such an approach is inefficient and tends to ignore the connections among the

diversified attributes, resulting in disagreement with the identification of thyroid disease

risk factors.

The diagnosis of thyroid disease in the clinical domain is labour-costly and with vary-

ing degrees of uncertainty. The gold standard fine-needle aspiration cytology (FNAC)

diagnosis heavily relies on the clinician’s experience, leading to over 30% of the results

being non-diagnostic. This effect directly aggravates patients’ financial and physical suf-

fering due to the increased missed diagnosis, unnecessary FNAC, or excisional biopsies

rates. Along these lines, deep learning-based computer-aided diagnostic (CAD) systems

incorporating medical images are arising as promising candidates for thyroid disease de-

tection. However, diagnosing the disease subtype and co-existence phenomenon through

CAD is neglected.

Additionally, the existing CAD systems generally use unitary datasets for training and

cannot be adapted to different data sources, contributing to the limited clinical adoption.

To address these challenges, this thesis contributes to 1) identifying risk factors correlated

with thyroid disease, 2) enhancing diagnostic accuracy and efficiency, and 3) enriching

clinical adoptions of deep learning approaches.

To determine thyroid disease pathogenesis, in Chapter 4, text mining and association

rule mining techniques were adopted to extract common and exception rules simultane-
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ously from raw patient medical reports. Extensive experiments were conducted to verify

the identified risk factors based on different gender groups.

To enhance the diagnostic accuracy, Chapter 5 incorporates deep convolutional neural

networks (CNN) with pre-operation medical images to achieve accurate diagnosis from

binary and multi-class classification tasks. In Chapter 6, three multi-channel CNN ar-

chitectures were developed to achieve a comprehensive diagnosis for the entire thyroid

gland, reaching patient-specific diagnoses meanwhile considering the disease subtype co-

existence phenomenon. The experimental results demonstrate unprecedented diagnostic

performance and generalisation to different gender groups.

To elevate the potential applications of CAD systems in the clinical domain, a unified

model selection approach was proposed in Chapter 7, which can be adaptive to differ-

ent data sources with distinct patient profiles. The approach consists of a self-directed

individual network selection mechanism, a dynamic weighting scheme, and a weighted

ensemble averaging model, tailored to generate robust and reliable diagnostic decisions.

The experimental results demonstrate that the approach can reach satisfying performance

under different scenarios.

In summary, the investigations conducted in this thesis revealed promising perfor-

mance in the experiments and ablation studies with a comprehensive evaluation metric,

including area under the curve (AUC), accuracy, precision, recall, specificity, negative

predictive value (NPV), false-positive rates (FPR), and F1 score. With the help of deep

learning techniques, this thesis is dedicated to understanding thyroid disease and enhanc-

ing diagnostic accuracy and efficiency for a promising prognosis.

Keywords: Deep learning, Machine learning, Thyroid Cancer, Association rule mining,

Multi-channel convolutional neural network
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Chapter 1

Introduction

The thyroid is considered the largest endocrine gland in an adult, shaped like a but-

terfly and located at the lower neck [104]. It controls the daily metabolism of cells by

producing hormones and regulating the balance of calcium in the human body, including

heart rate, body temperature, and bloodstream velocity [213]. With an adequately func-

tioning thyroid gland, one can maintain the right amount of hormones to keep metabolism

activities at a favourable rate [267]. However, improper functioning of the gland will lead

to thyroid-related diseases. For this reason, this crucial gland has gradually attracted

considerable attention in the medical and technology domains since it gives rise to the

most common endocrine tumours [25].

Thyroid diseases are highly pervasive and can be broadly classified into functional

and neoplastic kinds, while they can co-exist [169]. Functional thyroid diseases mainly

include hypothyroidism, hyperthyroidism, Graves disease, Hashimoto’s disease, and thy-

roiditis [320]. Neoplastic diseases can develop into tumours (i.e., benign and malignant)

[320]. In addition, thyroid tumours are the most commonly seen nodular lesions among

adults [89]. More specifically, over 50% of adults have thyroid nodules [3]. Most of these

nodules are benign, such as cystic and adenoma [320]. However, 5% to 15% of the thyroid

nodules are malignant, which will lead to the formation of the four types of thyroid cancer:

papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thy-
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roid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC) [224]. Thyroid cancer

is typically painless and usually undetectable by patients themselves [224].

Since the 20th century, thyroid cancer instances have progressed, rising at the fastest

rate among all the malignancies [303]. According to the latest Cancer Fact & Figures

statistics, there will be an estimation of 43, 800 new thyroid cancer instances diagnosed in

the United States of America by the end of 2022, with a death rate of 4.62% [283]. Thyroid

cancer instances are rapidly increasing, with the highest rates found in the Federated

States of Micronesia, French Polynesia, North America, and East Asia [247]. In particular,

the highest incidence-to-mortality rates have been reported in South Korea, Cyprus, and

Canada [247]. In China, thyroid cancer was ranked as the 4th most commonly diagnosed

malignancy in females [81]. Among the established instances, female patients are three

times more likely to develop the disease than male patients [283].

With the implication of the increased morbidity and mortality rates brought by thyroid

cancer, challenges in understanding the cause and gender disparity, enhancing the diag-

nostic performance, and targeting promising prognosis, are all desired to be addressed.

Accordingly, this research sought to provide a structured organisation of the existing

studies, determine the underlying cause of thyroid cancer, and strive for a more efficient

procedure to reach a precise diagnosis using machine learning (i.e., data mining, deep

learning) techniques. With these techniques, clinicians can gain a “second opinion” rely-

ing on decisions made by computers to focus more on patient care, enabling promising

prognoses for patients with thyroid cancer.

1.1 Background and Motivation

Differentiated thyroid cancer (DTC) is regarded as “good cancer” or even “lucky can-

cer” by society, where patients commonly confront the perception that their prognosis is

relatively promising [255]. DTC consists of PTC and FTC kinds [39], and usually has

relatively more favourable survival rates, being more than 95% for the five-year survival
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[155]. Patients with DTC normally expect to have an average lifespan after treatments

(i.e., thyroidectomy and radio-therapy). Nevertheless, rarer types, such as ATC or MTC,

have much lower survival rates, being less than 10% for the five-year survival [204]. Clin-

icians usually emphasise the optimistic outcomes for comforting patients. Unfortunately,

this inadvertently weakens the impacts on patients’ lives brought by thyroid cancer [255].

There exist long-established protocols for identifying, diagnosing, and treating thyroid

cancer in the clinical setting. Although it is considered a pervasive disease, there are still

many challenges in understanding and diagnosing thyroid cancer in the clinical domain.

Accordingly, the following context illustrates the existing clinical protocols for the patho-

genesis, diagnosis, and prognosis of thyroid cancer, interprets current challenges clinicians

face, and then emphasises the motivations of this research work.

1.1.1 Thyroid Cancer Pathogenesis

For decades, academia and medical fields have always been struggling to identify the

leading cause, gender disparity causes, and the recurrence causes of thyroid cancer, as

the pathogenesis is affected by multiple diversified attributes. Some scholars believe that

family history will increase the risk of establishing thyroid cancer [326, 18], while others

argue that poor lifestyle [190], mental health issues (i.e., depression) [154], periodical

health conditions [10], and environmental factors (e.g., air pollution) [136] might also

play crucial roles. In the past few decades, the scientific community has been dedicated

to identifying risk factors associated with thyroid cancer, which allows to potentially

reduce morbidity and mortality rates.

The intrinsic examination process is that clinicians independently select one risk factor

and evaluate its association with thyroid cancer development. Following this process,

several potential factors (including comorbidity) were identified correlated with thyroid

cancer, including radiation exposure [134, 31, 292, 26], iodine intake level [360, 344, 137],

dietary nitrate intake level [314, 124], vitamin D deficiency [138], diabetes [299, 334, 40],

obesity [325, 184, 266, 329], gene heredity and mutation [107], smoking status [56], family
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history [62], and hormonal factors [202, 194, 116].

However, plenty of the identified factors are still controversial as they were generally

analysed with different groups of patients, such as different scales of the study groups

or diversified demographic features. Therefore, no consensus can be established on the

investigated factors. More importantly, the evaluations of either one of those factors

take long-established retrospective investigations, let alone the interwoven among them.

Ignoring the correlations among diversified risk factors can also bring substantial errors in

understanding the cause of thyroid cancer. Therefore, there has been considerable debate

in the literature around the identification of these risk factors and there is still limited

research to fully understand their interpretability and reliability.

In summary, the associations among the multiple risk factors cannot be evaluated

by existing studies, thus amplifying the misinterpretations in understanding thyroid can-

cer causes. Confirming the associations between the individual factors and thyroid cancer

development is quite challenging and inefficient, rendering thyroid cancer risk factors iden-

tification tasks barely achievable. These shortcomings create limitations for revealing the

pathogenesis of thyroid cancer. Therefore, this research needs the means to incorporate

an automated algorithm to efficiently mine essential knowledge from high-dimensional

medical records to reveal the pathogenesis of thyroid cancer.

1.1.2 Thyroid Cancer Diagnosis

With respect to the dramatic growth rate of thyroid cancer instances, it is mainly

owing to the advanced sensitive detection procedures [283]. The clinical diagnostic pro-

cedure for thyroid cancer is standardised. By following the clinical guidance, the thyroid

function examination is always in priority, which measures hormones produced by the

gland, including thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine

(T4), free triiodothyronine (FT3), and free thyroxine (FT4) [144]. TSH is considered

the most sensitive parameter for detecting thyroid dysfunction, while FT3 and FT4 are

supportive parameters for monitoring therapies. Functional thyroid disease can usually
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be diagnosed through thyroid function examinations [65].

A patient who has undergone health examinations identifying abnormal thyroid nod-

ules via medical images would need to perform fine-needle aspiration cytology (FNAC)

to further evaluate the problematic nodules. Ultrasonography (ultrasound) is the most

well-accepted medical image modality for thyroid imaging on suggestive of malignancy

as it is safe, non-invasive, and cost-efficient [289]. Ultrasound provides an intermediate

risk for patients following the Thyroid Imaging Reporting and Data System (TIRADS)

score based on the features appearing on the ultrasound images, such as irregular mar-

gins, hypo-echogenicity, taller-than-wide shape, and microcalcifications [85]. TIRADS

scores from 1 to 5 where 1 was defined as “normal”, 2 as “benign”, 3 as “no suspicious

features”, and 4a as “one suspicious feature”, 4b as “two suspicious features”, 4c as

“three to four suspicious features”, and 5 as “five or more suspicious features”, re-

spectively [19]. Nevertheless, TIRADS scores cannot provide precise decisions for thyroid

cancer diagnosis. Based on the analysis conducted by American Thyroid Association [19]

where 951 patients’ TIRADS scores were compared to the ground-truth histopathological

results. The authors found that thyroid cancer was appearing at a 0.9% with TIRADS

ranking 2, 2.9% cancer rate was found in TIRADS 3, TIRADS 4a had a cancer rate of

12.3%, 34.4% cancer rate was found in TIRADS 4b, 66.6% in TIRADS 4c, and 86% cancer

rate was in TIRADS 5. Deriving from this finding, solely relying on ultrasound images

to make a diagnosis through TIRADS scores is considered insufficient. In this scenario,

patients having TIRADS scored from 2 to 5 usually need to perform further FNAC to

determine whether the nodule has cancerous cells [286].

FNAC is regarded as the gold standard in assessing the malignancy of thyroid nod-

ules [24]. It gets biopsies from suspicious nodule cells using the apparatus following the

ultrasound guidance, then has the biopsies assessed by pathologists to make diagnostic

decisions regarding nodule malignancy risk stratification. Figure 1.1 demonstrates the

FNAC apparatus and Figure 1.2 displays the implementation procedures. FNAC exam-

inations heavily rely on the clinician’s professionalism and expertise. Due to the lack
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of experience of pathologists, over 30% of FNAC results turn out to be non-diagnostic,

inaccurate, or indeterminate [234]. Patients with indeterminate FNAC results usually

need another FNAC or excisional biopsy to have the nodule removed just for diagnos-

tic decision-making. Sometimes patients might undergo unnecessary surgeries, and then

determining the nodule shows no evidence of malignancy [72].

Figure 1.1: FNAC apparatus (sample image from [224]).

Under this rigorous circumstance, the clinical diagnostic procedure for thyroid cancer

is tedious and anguished, arousing emotional, as well as financial burdens for patients. Due

to the human false-positive and false-negative rates, the diagnostic decision is relatively

subjective, and the clinical process is inefficient. These shortcomings create limitations

for thyroid cancer diagnosis in the clinical setting. Therefore, clinicians seek to improve

diagnostic accuracy and efficiency by integrating human knowledge with computer-driven

techniques. With the emergence of machine learning, particularly the deep learning con-

cept, the diagnostic procedures form into advanced ways of making decisions, named

“computer-aided diagnosis (CAD)” techniques.
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Figure 1.2: FNAC procedures (sample image from [66]).

1.1.3 Thyroid Cancer Prognosis

Differentiated thyroid cancer follows a standardised treatment protocol which usually

requires surgery, such as partial thyroidectomy, total thyroidectomy, or total thyroidec-

tomy with lymph node dissection [268]. Further radiation therapy is expected to mitigate

recurrence risks by performing radioactive iodine (i.e., Iodine-131 treatment) or observa-

tion depending on any signs of metastasis [41]. Patients with thyroidectomy are expected

to take levothyroxine one hour before breakfast for thyroid hormone replacements in their

lifetime [307]. Levothyroxine is a manufactured form of the thyroid hormone thyroxine,

and the common thyroxine medications are Eutroxsig, Oroxine, and Aspen Pharma [307].

Jegerlehner et al. [121] suggested that a substantial and growing part of the detected

thyroid cancers were over-diagnosed and over-treated. The post-therapy hypothyroid dis-

ease frequently occurs after surgery or Iodine-131 treatments [12]. The utilisation of radio-

iodine therapy would somehow bring adverse effects for patients [269]. Lee et al. [157]

also confirmed that Iodine-131 treatment would cause salivary gland dysfunction if the

dosage of iodine was not carefully determined. Since each patient would undergo different

disease stages, customised treatment plans are deemed crucial to avoid over-treatments by
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offering them customised treatment plans based on age, weight, disease stage, medication

intake level, medical history, and comorbidity, to name a few. Customised treatments

can also help patients to understand their disease status more explicitly, and clinicians

can gain supportive opinions on targeted treatments besides guidelines. The promising

prognosis of thyroid cancer can be obtained only if the appropriate treatments are of-

fered. To achieve this goal, a customised treatment decision support system is regarded

as necessary.

Besides providing customised treatment plans, predicting the recurrence and survival

rates can also potentially improve the prognosis for thyroid cancer patients. In reality,

patients diagnosed with rare thyroid cancer tend to have a considerably shorter lifespan

than patients diagnosed with DTC. The prognosis of patients with rare thyroid cancer

types is relatively unsatisfying due to the higher recurrence rates and death rates. Among

the four types of thyroid cancer, PTC has the highest survival rate. On the contrary, rarer

kinds have much lower survival rates, which is less than 10% [204]. Mazzaferri and Jhiang

[199] once indicated that 20% of thyroid cancer patients would experience recurrence, in

which they might need re-operations or repetitive radiotherapy treatments. Unlike the

pathogenesis of thyroid cancer, the risk factors correlated with thyroid cancer recurrences

are determinate, including gender, elder age, primary disease extent, metastases to other

organs, tumour size, extra-thyroidal invasion, location of nodules, and cervical lymph

nodules [281, 33, 244, 93, 126, 211]. Wang et al. [311] proposed that PTC patients who

had a total thyroidectomy and neck dissections tend to have a 3.8% recurrence rate.

In addition, the various surgical treatments also differentiate recurrence rates of thyroid

cancer. Based on the comparative study by Zetoune et al. [339], the recurrence rate for

patients with thyroidectomy and neck dissection is 2.02%, whereas the recurrence rate for

patients with thyroidectomy only is 3.92%. It is evident that thyroidectomy and iodine

treatment decrease the recurrence rate of thyroid cancer [199, 244, 302].

Collectively, thyroid cancer prognosis is closely related to well-established treatment

protocols. Therefore, a thyroid-specific treatment recommendation system, which offers
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customised treatment plans for individual patients based on their health conditions and

preferences, is highly desired. Moreover, predicting survival, death, and recurrence rates

will potentially help achieve a promising prognosis for thyroid cancer patients.

1.2 Research Objectives and Questions

Even though clinicians strive to comfort patients by advocating that thyroid cancer has

high remission rates, they should precept that patients are mentally vulnerable. Therefore,

clinicians should seek practical strategies for achieving effective diagnostic procedures and

promising prognoses to assist patients.

Under this direction, machine learning-based techniques have demonstrated promis-

ing performance in addressing challenges around understanding, diagnosing, and treating

various types of diseases [54, 28, 215, 207]. These CAD techniques harnessed the power

of computers to automatically learn from a large scale of experiences and provide pre-

cise decisions around the disease. The application of such advanced CAD techniques

should be adaptive to diversified medical cultures to encourage them in the clinical set-

ting for implementation to mitigate human false-positive and false-negative risks while

offering clinicians second opinions. This potentially helps to detect disease more accu-

rately and alleviates the possibility of over-treatment. Accordingly, this thesis applies

machine learning approaches to reveal the unknown of thyroid disease, majorly thyroid

cancer, leveraging comprehensive investigations around its pathogenesis, diagnosis, and

prognosis. Three objectives for addressing three research questions (RQ) are as follows:

• Objective 1: To gain insights for a more comprehensive and deterministic under-

standing of the pathogenesis of thyroid disease through the utilisation of data mining

techniques. Data mining techniques are tailored to extract valuable knowledge from

complex attributes. Investigating the associations between the risk factors and thy-

roid disease development contributes to understanding the epidemiology. Therefore,

a mixed method was deployed in this thesis by integrating qualitative and quantita-

9



Introduction Zhang, X.

tive analysis to determine the pathogenesis and gender disparity of thyroid disease

(i.e., disorder and cancer).

– Research Question 1: What pathogenesis of thyroid disease can be ascer-

tained through data mining approaches?

• Objective 2: To diagnose thyroid disease in an advanced manner with enhanced

efficiency and reduced human false-positive and false-negative rates through deep

learning techniques, highlighting the importance of multi-classifying thyroid disease

types and diagnosing disease co-existence scenarios. Therefore, this thesis adopts

deep convolutional neural networks (CNN) to provide clinicians assistance regard-

ing precise thyroid disease diagnostic decision-making, which mitigates patients’

physical and financial pressure caused by clinical diagnosis.

– Research Question 2: How can the diagnosis of thyroid disease be improved

via deep learning techniques?

• Objective 3: To build a unified model adaptable to different patient profiles with

a dynamic weighting scheme based on pre-determined performance criteria, tai-

lored for precise thyroid cancer detection tasks. Incorporating data from diversified

sources helps to build a unified model, which utilises limited information in generat-

ing comprehensive and reliable diagnostic decisions. Therefore, this thesis sought to

design a general model that selects the best-performing individual networks under

diversified sources and assembles them into a robust system that can be generalised

to different institutions. This allows to elevate CAD applications in the clinical

domain and helps establish a well-designed treatment decision support system for

improving the prognosis of this disease.

– Research Question 3: How can a deep learning-based model be adaptive to

different patient profiles for thyroid cancer diagnosis?

10



Introduction Zhang, X.

1.3 Research Contributions

This thesis is dedicated to making contributions both theoretically and practically,

presented from the following perspectives.

1.3.1 Theoretical Contributions

• Contributing to add incremental values to the community. This research

proposes a comprehensive literature review framework, which can be adapted to

different research scenarios for knowledge extraction. Following the established

framework, a structured organisation of extensive existing research applications was

described in this work, exhibiting current research challenges and corresponding

future research opportunities (in Chapter 2).

• Enhancing potential applications of CAD-based techniques in the clinical

domain. Machine learning-based approaches yield promising performance and ef-

ficiency for disease detection and treatments, yet their implementation is sobering.

This research then shifts the focus to help implementation and the practical issues

of actionality of deep learning-based techniques in the clinical domain [273, 301],

contributing to the potentially enhanced clinical adoptions of the CAD-driven tech-

niques (in Chapters 3 - 7).

1.3.2 Practical Contributions

• Determining thyroid disease risk factors helps to mitigate morbidity and

mortality rates. With data mining techniques, the pathogenesis of thyroid can-

cer can be revealed, and the identified risk factors can be stratified based on their

associative rankings. Accordingly, clinicians can work towards mitigation strate-

gies to counter those dominating factors, minimising the side effects and eventually

benefiting society from the public health domain (in Chapters 3 and 4).
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• Thyroid disease diagnosis can be much more accurate and effective. This

thesis incorporates deep learning techniques with two pre-operative medical imag-

ing modalities for thyroid disease detection, emphasising the importance of multi-

classifying the disease subtypes and co-existence situations. Through the proposed

deep learning models, automatic diagnosis of thyroid disease can be achieved in

an advanced, accurate, and efficient manner. Moreover, this thesis sought to more

closely emulate the human-level diagnostic process to assist clinicians with offering

preliminary decisions. This research is expected to reveal whether deep learning ap-

proaches have the potential to replace human diagnosis. The proposed CAD systems

can also be further adapted to different diseases, enhancing the clinical applications

(in Chapters 3 and 5).

• Enhancing the use of patient-specific designs in CAD implementations.

This thesis proposes decision support systems, which were built following patient-

specific design for the diagnosis and potentially for the treatments. Therefore, the

models can make decisions for individual patients at a time (in Chapters 3 and 6).

• Generating robust, comprehensive, and reliable decisions with limited

information. A unified model selection approach is proposed, which selects in-

dividual networks pre-trained with cross-institutional data sources under different

medical cultures. The approach dynamically assigns weights based on the individual

networks’ pre-determined performance criteria to generate the weighted ensemble

averaging model, enhancing its generalisation to diverse data populations tailored

for precise thyroid cancer diagnosis (in Chapters 3 and 7).

• Achieving promising prognosis for patients with thyroid disease. Patient-

specific design for diagnosis and treatments leads to enhanced prognosis by offering

a customised treatment recommendation system for individual patients. It allows

clinicians and patients to understand his/her health status more explicitly and offers

customised treatment protocols based on the patient’s preferences. In this regard,
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patients can pay close attention to the health condition changes at any moment to

obtain an improved prognosis. In the meantime, the survival rates can be prolonged,

and death/recurrence rates can be minimised (in Chapters 3 and 8).

1.4 Thesis Structure

The systematic structure of this thesis is presented in Figure 1.3, and the main contents

of each chapters are summarised as follows:

• Chapter 1 interprets the background, motivations, and objectives behind this re-

search project around the pathogenesis, diagnosis, and prognosis of thyroid cancer.

• Chapter 2 briefly reviews all the related works and identifies literature gaps from

the proposed framework.

• Chapter 3 elaborates the overall research paradigm, methodological design, and data

acquisition for the defined three research questions.

• Chapter 4 identifies thyroid disease-associated risk factors through data mining

techniques. The adopted association rule mining and feature selection algorithms

further verify the identified factors.

• Chapter 5 presents the increased diagnostic efficiency and accuracy of thyroid disease

through deep convolutional neural networks (CNN) incorporating medical images

from binary and multi-classification tasks.

• Chapter 6 proposes various multi-channel CNN architectures for detecting thyroid

disease subtype co-existence situations and generalising to different gender groups.

• Chapter 7 describes the proposed unified model, which can be adapted to different

data sources with distinct patient profiles under different clinical scenarios, enriching

CAD applications.
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• Chapter 8 concludes the thesis and summarises the salient findings. Future research

directions are also discussed.
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Figure 1.3: Thesis systematic structure.
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Chapter 2

Literature Review

In order to conduct a comprehensive systematic literature analysis, a detailed step-

by-step literature review framework was proposed in this thesis, and the framework is

presented in Figure 2.1.

The systematic literature review framework contains the following three stages: re-

search definition, research methodology, and research analysis. “Research definition”

includes identifying the research field, defining research objectives, and outlining the re-

search scope. “Research methodology” oughts to identify related literature studies based

on the pre-defined searching strategies. “Research analysis” analyses the identified stud-

ies, presenting the key findings and interpreting the existing literature gaps.

2.1 Research Definition

The first stage of the literature review framework is the research definition. The

research focus has been identified in this phase. Meanwhile, the research motivations and

objectives were highlighted, and the research scope was defined.

This research seeks to identify machine learning-related studies to identify thyroid dis-

ease risk factors and help reach automatic diagnoses and promising prognoses. Therefore,

this thesis aims to analyse literature to help comprehend, diagnose, and treat thyroid

cancer through machine learning, majorly deep learning techniques.
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Figure 2.1: Systematic literature review framework.
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Lastly, the scope of this thesis is to include as many related literature works as possible

for analysis to establish research gaps that immensely fill clinical gaps. Machine learning

techniques have been applied relatively often in the medical field, whereas the application

of those techniques in the thyroid domain is still limited. In order to have a comprehensive

analysis, this thesis intends to include as many high-level ranking literature studies as

possible. Moreover, the specific literature identification process will be explained in the

next section.

2.2 Research Methodology

After defining the research scope, a set of literature identification processes was con-

ducted. This research has included a list of high-level ranking conference and journal

databases during the literature searching phase, such as Elsevier, Springer, IEEE Xplore,

and ACM Digital Library, to name a few. A set of criteria were used as our search

protocols, and Table 2.1 lists some keywords applied during the searching phase.

Table 2.1: Literature identification searching phase.

Research Focus Searching Keyword / Phases

Pathogenesis

Risk factors of thyroid disease
Thyroid disease pathogenesis with machine learning
Thyroid disease pathogenesis with data mining
Thyroid disease risk factors with association rule mining

Diagnosis
Machine learning with thyroid disease
Deep learning with thyroid disease
CAD for thyroid disease detection

Prognosis
Thyroid treatment recommendation system
Machine learning with thyroid disease treatment
Prediction of thyroid disease survival or recurrence

During the searching phase, no timeline restriction was followed to explore the devel-

opments of advanced machine learning approaches. In this regard, the literature studies

were selected based on the flowchart (Figure 2.2) after applying the above-identified key-

words in the academic database.
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Figure 2.2: Flowchart of the searching strategy and literature selection.

The abstract of each paper has been analysed to evaluate its relevance to the defined

scope. The methodology section of the paper was optionally analysed if the abstract was

not explicit enough regarding the utilisation of machine learning techniques. The papers

that fit into the research scope were stored in the literature repository for further analysis,

otherwise were removed. Lastly, all the identified papers were categorised into three

groups, namely the pathogenesis, diagnosis, and prognosis of thyroid disease. As a result,

295 papers were categorised into the pathogenesis group, 408 papers were categorised into

the diagnosis group, and 55 papers were categorised into the prognosis group.

2.3 Research Analysis

A total of 758 papers were utilised for the analysis phase of this thesis. Each of the

three categories was analysed based on their performance, feasibility, and generalisation

of the proposed machine learning approaches.
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The thyroid disease pathogenesis-related studies were divided into qualitative and

quantitative investigation groups. The qualitative studies investigated risk factors cor-

related with thyroid disease, while the quantitative studies confirmed some risk factors

through statistical and data mining techniques. For thyroid disease diagnosis-related

studies, deep learning procedures were discussed independently. As far as thyroid cancer

prognosis-related studies are concerned, the design of treatment recommendation systems

and the prediction of survival, death, and recurrence rates were systematically explained.

Collectively, a summary of the literature analysis will be presented, existing challenges

inferred from literature analysis will be outlined, and the corresponding research questions

will be re-addressed.

2.3.1 Pathogenesis and Risk Factors

Thyroid cancer pathogenesis has always been on hit in the clinical and academic

domains. Qualitative and quantitative analyses were usually conducted to reveal the

origins of such a mystery. Qualitative literature was conducted based on survey analysis,

and quantitative studies were majorly built based on statistical learning, such as case-

control, retrospective, or prospective cohort studies. By investigating the identified 295

pathogenesis-related studies, seven risk factors were extracted and examined.

Radiation

The non-debating factor causing thyroid cancer is radiation exposure, such as med-

ical or ionizing. The pediatric thyroid gland is regarded as the most sensitive organ to

radiation [128]. Different kinds of radiation expose potential risks for establishing thyroid

cancer, especially during childhood. In particular, neck exposure to ionizing radiation

highly increases the risk of developing thyroid cancer at an early age, sometimes can be

affected by medical scanning and external radiation [315, 271, 6, 245, 319]. Accordingly,

radiation exposure at an early age is significantly relevant to thyroid cancer development.
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Gene Heredity and Mutation

Gene heredity is considered another consensus-established risk factor associated with

thyroid cancer. Gene heredity is to inherit chromosome pairs from families [59]. Based

on the interview conducted by Ito et al. [118], 5% of PTC instances are inherited from

family. Furthermore, gene mutation has clearly been announced to be highly relevant

to thyroid cancer pathogenesis [235], which is mainly responsible for MTC development

[294, 223, 118]. Many studies have been conducted to identify specific gene mutation

types causing thyroid cancer [82, 107].

Iodine Intake

The most well-known substance which has an impact on thyroid glands is iodine.

Typically, high-level iodine foods in our daily life are dairy products like milk, eggs,

seafood, marine products (e.g., fish, seaweed, and shrimp), and iodised salt [69]. Over

the past few decades, the scientific community has been dedicated to determining the

association between the iodine intake level with the thyroid gland. Michikawa et al. [205]

found that excessive seaweed consumption could lead to thyroid cancer, especially for

postmenopausal women. Zimmermann and Galetti [360] reported that iodine deficiency

is a risk factor for thyroid cancer development, particularly for the follicular and possibly

for the anaplastic kinds, through meta-analysis. The thyroid gland is sensitive to low

intake of iodine has been confirmed by several other studies [118, 315]. Overall, iodine

is undoubtedly a risk factor associated with thyroid cancer regardless of its excessive or

limited intake, while today, the mechanism of their linkage is still unknown.

Dietary Nitrate Intake

With the rapid development of infrastructures and industries, more and more envi-

ronmental pollutants generated and influenced our daily lives. Among all the pollutants,

nitrate is a contaminant of drinking water, and dietary nitrate is a kind of component

of daily diets that occurs at a high-level within green leafy and root vegetables [314].
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Bloomfield et al. [32] performed experiments on rats and sheep to understand how di-

etary nitrate influenced thyroid glands. It was found that dietary iodine level appears

higher when nitrate exists in the diet, which indirectly confirmed its association with

thyroid cancer development. Warda et al. [314] agreed with the perspective that the di-

etary nitrate intake would affect the iodine level, leading to DTC development. On the

contrary, based on the systematic analysis conducted by Bahadoran et al. [22], there was

no direct association between dietary nitrate with thyroid cancer, but exposure to nitrite

is somehow related. Therefore, the relationship between dietary nitrate and thyroid can-

cer development remains uncertain, while other studies demonstrate that environmental

pollutants affect thyroid glands’ functioning [160, 245, 22].

Vitamin D Deficiency

Vitamin D, as a micro-element, is sensitive to thyroid glands and is responsible for bal-

ancing calcium and phosphorus homeostasis for preserving bone health [214]. Muscogiuri

et al. [214] suggested that vitamin D would increase tumour suppressor protein to pre-

vent thyroid cancer. Zhao et al. [349] confirmed that vitamin D deficiency acts as a risk

factor for thyroid cancer development. However, there are other debates around this fac-

tor. Laney et al. [153] once evaluated 24 thyroid nodules and found vitamin D deficiency

rate is quite similar in both benign and malignant nodules. According to the pilot study

conducted by Jonklaas et al. [131], selenium concentrations are related to higher thyroid

cancer stage, while no direct associations were found between vitamin D concentration

with thyroid cancer. Similarly, many scholars requested to include further investigations

to identify a determinate association between vitamin D deficiency and thyroid cancer

development [306, 145].

Body Mass Index, Obesity, and Diabetes

Body mass index (BMI) is considered one of the most commonly studied factors for

thyroid cancer development, which is usually used to diagnose obesity. Obesity is a multi-
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factorial disease developed from “interaction with genotype and environment” [84]. BMI is

calculated using the weight (kg) to be divided by the height2 (m) [208]. More specifically,

people with BMI levels higher than 30kg/m2 are considered obese [208]. Since thyroid

cancer is the most commonly diagnosed endocrine cancer and the instances of obese

people are also rising simultaneously, the hypotheses of their associations were usually

established [239]. Several studies demonstrated a positive association between BMI and

the existence of a higher risk of thyroid cancer, including Han et al. [101], Pappa and

Alevizaki [239], Zhao et al. [347], and Zhai et al. [340]. Obesity has also been found

positively related to thyroid cancer development [184, 266, 141, 116]. Besides, other risk

factors were also investigated, such as excessive protein intake, carbohydrate consumption

[193], and unhealthy lifestyle [245, 6]. However, the connection between diabetes and

thyroid cancer development is relatively weak compared to BMI and obesity [142, 334].

Hormonal Factors

The gender disparity cause of thyroid cancer is still under-researched. Since women

have strikingly higher possibilities of diagnosing thyroid cancer than males, there are

always debates about hormonal factors. Horn-Ross et al. [110] proposed that factors

like transient effects of pregnancy, delayed pubertal development, progesterone deficit,

or estrogen unopposed by progesterone, are particularly sensitive for young females. In

addition, Mannathazhathu et al. [192] applied a case-control study and confirmed that

female hormones during the menstrual cycle and pregnant status are sensitive to thyroid

cancer development. However, the reported findings on the gender disparity are incon-

sistent since many other studies failed to present a clear association between hormonal

factors and the development of thyroid cancer [203, 310, 116].

Research Gaps Summary

Among the quantitative method-based pathogenesis-related literature, logistic regres-

sion (LR) and multi-variable analysis techniques were used relatively often to confirm
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the identified risk factors further. The data mining techniques and the association rule

mining (ARM) methods have also been applied several times. ARM is responsible for

revealing hidden patterns among complex, high-dimension, and large volumes of inter-

woven attributes [133]. With the continuous progress of machine learning techniques,

increased efficiency in revealing the hidden patterns for thyroid cancer pathogenesis has

been demonstrated by the utilisation of ARM algorithms.

With the ARM techniques, the most strongly-related factor with thyroid disease is

elder age. People aged from 60 to 80 are very likely to develop thyroid diseases like

hypothyroidism or hyperthyroidism. Zhai et al. [340] once deployed qualitative analysis

and confirmed that middle-aged people, specifically those aged from 50 to 54, are at high

risk of being diagnosed with thyroid cancer compared to other age groups. Contradictory

studies are also often presented. A case-control study was conducted by Mileva1 et al.

[206]. From their results, it was demonstrated that younger age is statistically significantly

related to the risks of establishing thyroid cancer. The retrospective study implemented

by Azizi and Malchoff [21] also indicated that thyroid cancer is likely to be established in

people younger than 55.

Table 2.2 presents the overall identified thyroid cancer risk factors from the past 10

years. Based on this comprehensive analysis, prior prospective studies determined that

well-established factors like radiation exposure in childhood [31] and gene heredity [107]

are in global consensus. In contrast, other factors like diabetes [334], obesity [99], vitamin

D deficiency [26], and hormonal factors [116] are still under debate and require further

investigations. Accordingly, in this thesis, the associations between these factors with

thyroid disease establishment were systematically analysed.

In general, many mysteries around thyroid cancer are still yet to be revealed. One

of the basis is to understand its pathogenesis by identifying the risk factors and exam-

ining their inner correlations. Although much effort has been put into the literature to

investigate risk factors associated with thyroid cancer, many factors are still controversial.

Therefore, in this thesis, a thorough investigation was carried out to deeply comprehend
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Table 2.2: Thyroid cancer risk factors (last 10 years).

Studies Method Findings
[334] Survey Diabetes
[194] Survey Insulin resistance, Inflammation, Sexual

hormones
[360] Survey Iodine deficiency
[266] Survey Obesity, Overweight, Radiation exposure
[134] Survey Radiation, Smoking, Alcohol, Nutrition
[216] Survey Hashimoto’s thyroiditis, Elevated TSH
[340] Survey Geographical factors, Age, Higher BMI
[26] Survey Iodine deficiency, Diabetes, Pollutants,

Radiation
[152] Survey Stress
[124] Survey Consumption of meat, Regular use of mul-

tivitamins, Dietary nitrate
[31] Survey Radiation exposure during childhood,

Family history, Hashimoto’s thyroiditis
[107] Survey Genetic factors

[310, 44] Survey Late age at menopause
[182] Cohort Hysterectomy
[325] Case-control Radiation, Obesity, Tallness, Artificial

menopause, Family history, Iodine defi-
ciency, Spring drinking water

[326] Case-control High body surface area, Great height, Ex-
cess weight, High body of fat percentage

[192] Case-control Hormonal factors
[181] Multi-variable Hashimoto’s thyroiditis, Autoimmunity
[361] LR Smoking, History of thyroid disease, Dia-

betes, Radiotherapy of head/neck
[18] LR Marital status, Family history, Dietary io-

dine, Oxidative stress, Fast and fried food
[329] LR Obesity, Family history, Use of thyroxine

[101, 347] Mixed BMI, Obesity
[225, 143, 238] Mixed History of thyroid disease

[245, 17, 176, 76, 103] Mixed Radiation exposure
[239, 184, 151, 198, 14, 141] Mixed Overweight, Obesity
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the cause of thyroid cancer development by finding correlations among the identified

factors so that society can have a deterministic understanding of the epidemiology and

eventually establish a consistent sense of its cause. Moreover, bridging such a gap will

potentially be a breakthrough in the clinical domain.

2.3.2 Diagnosis and CAD Implementations

With the emergence of deep learning techniques, CNN incorporating medical images

has been widely applied in the medical area for diagnosing breast cancer [362], heart

disease [172], and liver cancer [330]. Thyroid cancer diagnoses have also been implemented

universally in the deep learning area. CAD implementations for thyroid cancer detection

generally consist of four components: pre-processing, segmentation, feature extraction,

and classification [15].

Medical images acquired from diverse institutions are not standardised due to the

utilisation of different devices, archive policies, or acquisition strategies. Therefore, pre-

processing of the acquired dataset is required to remove noises, enhance image quality

(i.e., contrast, colours, and sharpness), or augment the dataset to make it more adequate

for model training [47]. Afterwards, the segmentation step locates the region of interest

(ROI) from the background for disease detection [186]. The feature extraction step selects

features from the ROI based on domain expert knowledge, allowing them to form into a

feature set to be fed into the classifier for decision-making [15]. Classification is always

the ultimate goal, which decides the class of the object (e.g., benign or malignant, stage of

a particular disease) based on the extracted features [15]. Compared to manual diagnosis,

CAD makes the diagnosis more accurate and efficient. CAD mitigates human false-

positive and false-negative rates and achieves automatic diagnosis through computational

power, assisting clinicians with diagnostic decision-making and allowing them to focus

more on patient care.
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Pre-processing

Machine learning techniques make predictions or decisions based on the learnt experi-

ence, which relies on the quality of the input information. Therefore, with the increased

volume of the input data, more experience can be learnt so that the final predictions will

be more accurate. In this regard, many data augmentation techniques were proposed

in CAD design. For instance, Chan et al. [47] once applied horizontal flipping and con-

trast adjusting techniques for augmenting the original acquired 1, 791 ultrasound images

to 7, 360 for thyroid cancer detection. Chouiha and Amamra [58] once adopted an open-

access ultrasound image set for thyroid nodules recognition, and they have augmented the

original 451 images to 4000 images. Other studies choose to crop images into patches to

increase the size of the input data [348], rotate images [5], or adjust the Gaussian noises for

image augmentation [276]. With varied extend of augmentation, the CAD performance

can be increased, thus becoming an indispensable step for pre-processing.

Apart from data augmentation, standardising the input medical sets is also critical

in the pre-processing step to reach consistency. The common tasks are removing image

annotations [233] and speckle noises [300]. Chi et al. [55] deployed the artefacts removal

technique proposed by Narayan et al. [218] for thyroid ultrasound images. More specifi-

cally, the authors extracted the non-zero region from the input image, plotted a histogram

containing the artefacts, identified the histogram peaks as the intensity level of the arte-

facts, and subtracted the artefact pixels with the intensity levels to restore the image

without any annotations [55]. Besides, the adaptive median filtering (AMF) technique

was often used to remove annotations, markers, and noises [212]. The median filtering

algorithm detects the impulse noise by comparing each pixel to its neighbours. When an

impulse noise pixel is identified, its value will be replaced by the median value of all the

neighbours [230]. The difference between the median filtering algorithm and the AMF al-

gorithm is that the filter size of the latter one can be changed based on the characteristics

of the input image [233]. AMF is very efficient in restoring image quality and has been

used relatively often for processing thyroid ultrasound imaging [229, 226, 232].
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Segmentation

The image segmentation task allows extracting ROI from the background, mitigat-

ing the use of computational resources to diagnose the overall image and enhancing the

diagnostic performance by omitting insignificant features [37]. Medical image segmen-

tation subsumes varied exceptional techniques tailored for semantic entity extraction in

the computer vision domain [87]. Poudel et al. [250] once evaluated three segmentation

algorithms, including active contours without edges (ACWE), graph cut, and pixel-based

classifier with thyroid ultrasound images. The ACWE technique manually initialises an

ROI from the input image, in which the circled region will be denoted as 1, and the rest

of the ROI will be denoted as 0 as the background. Then, the ROI will be computed by

using the Euclidean distance.

Another method used for thyroid image segmentation named “graph cut” was inspired

by the “GrabCut” technique, which was proposed by Rother et al. [264]. The graph cut

technique initially requires the manual marking of the ROI. The segmented ROI and the

background will form into the Gaussian Mixture Models (GMMs) through clustering. This

approach allows assigning the Gaussian components to the corresponding foreground and

background pixels. Lastly, the graph cut will find the new foreground and background

pixels based on the clusters.

The pixel-based classifier was also used for thyroid image segmentation [249]. It clicks

inside and outside of the ROI and passes the features from both regions into the decision

tree for training. In this case, the extracted features are the coefficient of variation and

the mean of the two neighbourhoods. Thus, the decision tree can automatically learn

the foreground and the background from those features. However, this technique requires

rigour selection of ROI, otherwise, the segmentation of thyroid nodules can result in

erroneous.

Besides the aforementioned techniques, CNN architectures have also been deployed rel-

atively often for the thyroid nodule segmentation task [186, 187, 250]. With the emergence

of deep learning, artificial neural networks (ANN), CNN, and recurrent neural networks
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(RNN) have become backbones for image analysis, pattern recognition, and computer

vision tasks. ANN and CNN are usually applied for classification tasks, whereas RNN is

tailored for natural language processing for time-series predictions. The concept of CNN

can be traced back to the 1980s [98], as it emerged from the brain’s visual cortex and

has been widely used for image classification and pattern recognition since then. U-Net is

a well-known segmentation CNN model, which consists of down-sampling, up-sampling,

and skip connection modules, aiming for biomedical image segmentation tasks [262]. The

down-sampling layers of U-Net utilise convolutional operations to extract features from

the input image. The up-sampling layers restore the extracted features using the down-

sampled latent information. The skip connections feed the down-sampling feature maps

to the corresponding up-sampling feature maps; in the meantime, crop the image from

down-sampling to up-sampling to ensure the size is consistent. Besides Poudel et al.

[250], many more studies deployed the U-Net architecture for thyroid nodule segmenta-

tion [354, 37, 285, 63].

With the basic U-Net structure, many more advanced models were built upon it. For

instance, Ding et al. [71] modified the U-Net to embed residual and attention blocks and

called ReAgU-Net. The model presented an increased dice similarity coefficient (DSC)

score of 0.869 compared to the U-Net of 0.820 on the thyroid nodule segmentation task.

Similarly, He et al. [106] proposed an attention-based U-Net. Nugroho et al. [231] deployed

Res-U-Net proposed by Cao and Zhang [42] to segment thyroid nodules on ultrasound.

Yang et al. [332] built a dual-route mirroring U-Net called “DMU-Net”. Zhang et al. [343]

proposed a cascade U-Net for thyroid nodule segmentation and classification. Shahroud-

nejad et al. [274] introduced residual dilated U-Net (resDUnet) for thyroid nodule seg-

mentation, whereas Kumar et al. [150] deployed dilation in the same task. The dilated

convolution is referred to as “convolution with a dilated filter” [337]. In particular, the

dilation operation supports the exponential expansion of the receptive field without loss of

resolution. The number of parameters is identical through dilated convolutions, whereas

the receptive field scale grows exponentially, allowing more features to be captured.
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Owning to the performance improvements in deep learning techniques, there has been

a concurrent rise in researchers shifting their focus from simply CAD application to de-

signing more exquisite and sophisticated models or modules for the thyroid nodule seg-

mentation task. Li et al. [165] applied a fully convolutional network (FCN), in which

the model only performs convolution, pooling, and up-sampling. Likewise, Gong et al.

[92] proposed an encoder and decoder-based FCN model for thyroid nodule segmenta-

tion and achieved 81.26% DSC outperforming U-Net. Zhou et al. [353] also deployed

the encoder-decoder structure on thyroid ultrasound images. Those segmentation-related

studies harnessed the power of deep learning algorithms dedicated to detecting thyroid

ROI more efficiently and precisely, leading to enhanced classification accuracy.

Feature Extraction and Selection

The features extracted manually from medical images are called “hand-crafted fea-

tures”. Most existing studies consider hand-crafted geometric, morphological, and texture

features from ultrasound images in the CAD setting for thyroid cancer diagnosis. Geo-

metric features are the information used to evaluate an object with geometric elements

to describe the shape of irregularity [91]. Morphological features are information about

lesions’ morphological characteristics [333]. Additionally, texture features are represented

by an image’s contrast [333]. Gomes Ataide et al. [91] extracted geometric and mor-

phological features from the open-access Digital Database of Thyroid Ultrasound Images

(DDTI). By augmenting the image set, the authors have extracted 19 geometric (e.g., so-

lidity, rectangularity, Orientation, roundness, centroid, etc.) and 8 morphological features

(e.g., area, perimeter, area perimeter ratio, etc.) from 3, 188 ultrasound images. With

the extracted features, the classifier reached an accuracy of 99.33% for detecting malig-

nant thyroid nodules. Similarly, Nugroho et al. [230] deployed 9 geometric features (e.g.,

circularity, compactness, convexity, solidity, etc.) from 165 ultrasound images. Through

standardised pre-processing, segmentation of ROI, and feature extraction steps, the neu-

ral network reached an accuracy of 0.9479 classification performance. Yang et al. [333]
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combined textual and morphological features (e.g., solidity, centroid, bounding box, etc.)

for thyroid cancer detection, and their work obtained a diagnostic accuracy of 89.13%.

From fair to moderate agreements, it has been reported that hand-crafted features are

beneficial for establishing thyroid cancer detection CAD systems.

Apart from ultrasound images, a few studies proposed other image modalities for

feature extraction in thyroid cancer detection. For instance, Wei et al. [316] and Hu et al.

[111] both applied radiomics analysis on magnetic reasoning images (MRI). Lu et al. [180]

and Zhou et al. [355] adopted computed tomography (CT) scans for radiomics analysis.

Wu et al. [324] adopted morphological features from CT scans, and their work reached a

classification accuracy of 77.7% for detecting PTC.

Based on the identified studies, researchers tend to apply various feature selection

algorithms to establish thyroid cancer diagnostic systems. The commonly selected features

from ultrasound images for CAD design are summarised in Table 2.3. The most commonly

used features are nodular size, shape, margin, composition, and calcification presence. The

knowledge extracted from medical images will then be fed into machine learning or deep

learning classifiers to evaluate the thyroid status for disease detection.

Classification

With the astonishing development of electronic computers, three basic machine learn-

ing algorithms emerged in the 1950s, including symbolic learning, statistical learning,

and neural networks [148]. Those three branches grew more advanced and become the

well-known classifiers today “decision trees (DT), K-nearest neighbours (KNN), and multi-

layer feed-forward neural networks” [148]. Various CAD systems were built upon those

classifiers, such as support vector machines (SVM), Naïve Bayes (NB), and multi-layer

perceptron (MLP), to name a few. Deep learning emerged as a subset of machine learn-

ing and has become an intense tool for computer vision tasks. It allows the automatic

classification of the extracted features [29]. Recently, deep neural networks have been

used frequently in CAD design for helping to make diagnostic decisions and have shown
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Table 2.3: Ultrasound hand-crafted features for thyroid cancer detection.

Reference Features Used
[168] Intercept, size, shape, margin, echogenicity, cystic change, micro-

calcification, halo
[177] Micro-calcification, shape, margin, capsular invasion, architecture,

echogenicity, ring down artifact, vascularity
[49] Gray level co-occurrence matrix, statistical feature matrix, gray

level run-length matrix, law’s texture energy measure, neighboring
gray level dependence matrix, wavelet features, Fourier features

[357] Shape, margin, echogenicity, internal composition, presence of cal-
cification, peripheral halo, vascularity

[3] Shape, echogenicity, calcification, echo texture, margin, capsule in-
vasion, halo

[135] Size, area, shape, color, texture of regions, histogram of oriented
gradients, co-occurrence gray level matrices, chromatin density

[50] Intensity differences, elliptical fit, gray-level co-occurrence matrix,
gray-level run-length matrix

[322] Location, position, shape, margin, internal contents, echogenicity,
calcification, echo-genic foci in solid portion, halo, infiltration and
extracapsular invasion, increased intra-nodular vascularity, abnor-
mal lymphadenopathy, multifocal

[173] Gray level co-occurrence matrix, Local binary patterns, Histogram
of oriented gradient, Scale-invariant feature transform, vector of
locally aggregated descriptors

[146] Margin, internal content, anteroposterior dimension-to-transverse
dimension ratio, microcalcifications

[174] Size, margin, shape, aspect ratio, composition, calcification
[166] Size, morphology, location, echo, margin, boundary, surrounding

tissue, posterior echo, calcification
[308] Aggressive histology subtype, vascular tumour capsular invasion,

extra-thyroidal extension, metastases
[90] Composition, echogenicity, orientation, margin, shape, spongiform,

calcification, elasticity, vascularity
[335, 122] Composition, shape, margin, orientation, echogenicity, spongiform

[45, 95, 278] Composition, echogenicity, calcification, margin, shape
[327, 234, 341] Size, margins, shape, aspect ratio, capsule, hypo-echoic halo, in-

ternal composition, echogenicity, calcification pattern, vascularity,
and cervical lymph node status
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satisfying performance, such as detecting diabetic retinopathy [338], Covid-19 detection

[309, 16], and malaria diagnosis [167]. Studies using machine learning-based CAD appli-

cation to detect thyroid cancer is also abundant.

Liu et al. [175] once adopted Naïve Bayes (NB) on 41 thyroid nodules (21 benign and

20 malignant) from 37 patients and compared with two experienced radiologists. The

results obtained by the NB algorithm outperformed the radiologists and reached an area

under the curve (AUC) of 0.851. Similarly, Singh and Jindal [282], Xia et al. [327], and

Ouyang et al. [234] acquired self-obtained ultrasound features for making classifications

and obtained comparable results to experienced radiologists.

In some earlier works, ANN has been adopted relatively often by using ultrasound

images to make a thyroid cancer diagnosis. According to Zhu et al. [357], 689 thyroid

nodules were examined using ANN and reached a classification accuracy of 83.1%. Shin

et al. [278] compared the SVM classifier with ANN through 348 thyroid nodules, and the

diagnostic accuracy rates were 69% and 74%, respectively. More recently, CNN has been

adopted more frequently for detecting thyroid cancer.

CNN models play vital roles in the computer vision domain since they can be used for

segmentation, localisation, and classification tasks [37, 20, 336]. Li et al. [164] once ac-

quired 131, 731 ultrasound images for cross-institutional analysis through the CNN model

on the thyroid cancer diagnosis. Their work demonstrated an accuracy of 0.889, 0.856,

and 0.915 for the three cohorts from China, including Tianjin, Jilin, and Weihai. Buda

et al. [36] acquired ultrasound images from an institution in Germany and applied CNN

for thyroid cancer detection. Their work obtained an accuracy of 0.78, which was lower

than the respective results of experienced radiologists. Zhu et al. [359] proposed a generic

eight-layer CNN model for classifying thyroid and breast lesions. With the thyroid cancer

detection task, the CNN model reached an accuracy rate of 86.5% on 719 ultrasound im-

ages. Nugroho and Frannita [227] used the Inception model to detect thyroid cancer and

reached an accuracy of 87.2% with the DDTI ultrasound repository. Chan et al. [47] once

compared VGG19, ResNet101, and InceptionV3 models on 812 ultrasound images, and
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the best-performing model was ResNet with a 77.6% accuracy rate reached for thyroid

cancer diagnosis.

The use of CNN models demonstrates varied performance following the different image

analysis steps with heterogeneous image quality. In most cases, the proposed models are

incompetent in generalising to different datasets, and there is also a possible over-fitting

concern for most existing works. In this regard, transfer learning has been applied quite

often to mitigate the over-fitting phenomenon. Transfer learning uses parameters learnt

from pre-trained neural networks and applies those “gained knowledge” to new tasks by

freezing the previous layers and making changes to the last few layers. Ma et al. [188]

proposed the integration of two pre-trained CNNs through transfer learning, where the

shallower network was used for learning high-level abstract features, and the other deeper

network was used to learn low-level detail features. Then, the two learned feature maps

from two CNNs were fused as an input into a softmax layer to diagnose malignant thyroid

nodules, resulting in diagnostic accuracy of 83.02%. Chi et al. [55] fine-tuned an Inception

model and tested it on two ultrasound databases. For the DDTI set, the accuracy was

98.29%, and for the private self-acquired data set, the accuracy was 96.34%. A moderate

consensus was made that CNN applications on ultrasound images for detecting thyroid

cancer are efficient and accurate [146, 95, 166, 5].

There has been a concurrent rise in applying other image modalities for thyroid can-

cer detection rather than ultrasound. For example, Bakht et al. [23] deployed transfer

learning on AlexNet and VGG models with cytology images and reached an accuracy of

93.05% obtained by VGG19. Wang et al. [313] adopted VGG19 and InceptionResNetV2 to

multi-classify thyroid nodules into seven classes through histopathology images, including

normal tissues, adenoma, goitre, papillary cancerous nodule, follicular cancerous nodule,

medullary cancerous nodule, and anaplastic cancerous nodule. The results suggest that

VGG19 yields better averaged accuracy for the seven classes than InceptionResNetV2,

which is 97.34% and 94.42%, respectively. Similarly, Dov et al. [72] adopted the Multiple-

instance Learning (MIL) approach on segmented whole-slide images to predict the malig-
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nancy of thyroid tissues. Buddhavarapu and J [38] trained ResNet50 and DenseNet121

models through transfer learning with histopathology images and reached an accuracy of

100%. Chandio et al. [48] acquired cytological images to detect medullary thyroid cancer,

and the CNN model reached an accuracy of 99.00%. Apart from those, Lee et al. [158]

adopted eight CNNs on CT scans to differentiate thyroid cancerous metastasis, including

DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, ResNet, VGG16, VGG19,

Xception. Based on their comparison, the best AUC was obtained by InceptionV3 and

ResNet, which was around 0.95. Zhang et al. [342] utilised MRI on multi-modality CNN

for thyroid disease classification and reached a diagnostic accuracy of 0.82 on 45 images.

Moreover, Naglah et al. [217] constructed a multi-input CNN for thyroid cancer diagnosis

from 49 patients who underwent MRI tests, and their model reached an accuracy of 0.88.

Based on investigations, ultrasound seems to lose its dominance in thyroid cancer detec-

tion for CAD design since more medical image modalities were analysed through the use

of CNN, including but not limited to CT scans [345], hyperspectral imaging [100], and

SPECT images [189].

Research Gaps Summary

Thyroid disease diagnosis is correlated with precision treatments to achieve a promising

prognosis. Thyroid disease has several types, all resulting in different treatment proto-

cols. For the sake of customised treatments and a well-established prognosis, the diagnosis

should be targeted more. However, the existing studies mainly focus on the binary classi-

fication to detect hypothyroidism/hyperthyroidism or benign/malignant thyroid nodules.

Among all the identified thyroid cancer CAD-related works in the literature, only one

study has applied the multi-class classification task to determine thyroid cancer subtypes

[313]. However, sound results were demonstrated for classifying the types after surgery.

Under this situation, pathologists can experience reduced workloads, whereas patients

cannot benefit much. Therefore, studies around the multi-class classification of thyroid

cancer are significantly limited and should be further propagated.
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Furthermore, the existing works have considerably ignored the thyroid disease subtype

co-existence phenomenon. Most existing studies are dedicated to applying ultrasound

images for making diagnoses for individual nodules. Relying on the diagnostic decisions

made for each nodule at a time is inefficient. More importantly, the existing CAD models

usually are applicable to unitary datasets and are incompetent in adapting to different

institutions. Therefore, providing professional human-level diagnoses for thyroid disease

patients is highly encouraged, and it is expected to elevate the clinical adoption of CAD

models by improving their generalisation.

2.3.3 Prognosis and Recommendations

With the progressive development of CAD systems, a manifesto for promoting an

accurate diagnosis has been achieved, whereas precision medicine is a prospective phe-

nomenon to be launched. Individual patients have varied health conditions or disease

stages, while treatment generalisation is inappropriate. Precision medicine, on the other

hand, is tailored for individual health care on the basis of the target’s genes, lifestyle and

environment [109], maximising the patient’s health status after targeted treatments. In

the clinical domain, customised treatment plans contrive to improve individual prognosis.

On top of that, the establishment of sagacious decision support systems on treatment

protocols enlarges the applications of precision medicine. More importantly, predicting

thyroid cancer patients’ death, survival, and recurrent rates will potentially guide them

to achieve an optimal prognosis.

Treatment Decision Support System

Thyroid disease treatment protocols heavily rely on individual health conditions, such

as age, weight, BMI, pregnancy status, medical history, comorbidity, and medication

dosages. Various external factors like seasonal temperature, financial status, and the

patient’s preference also play significant roles in developing treatment protocols [272]. In

this regard, precision medicine and treatment must be achieved for the target patient.
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With the increasing instances of thyroid cancer, CAD applications have been generated

more often, whereas precision medicine development has been somehow neglected in the

past few years. Among the identified studies, the development of customised treatment

decision support systems-based works is quite limited. Chen et al. [52] once adopted the

density-peaked clustering analysis technique for disease symptoms clustering. Meanwhile,

the authors adopted ARM for establishing treatment rules, called the Disease Diagnosis

and Treatment Recommendation System. The ARM algorithms were used to detect the

associations between the symptom clusters and the treatment schemes, and the system

yielded a satisfying performance. Meanwhile, the system’s interface was also designed

and tested.

Katzman et al. [132] once applied the DeepSurv model to develop personalised treat-

ment protocols for patients with a particular disease. The DeepSurv is a feed-forward

“Cox proportional hazards deep neural network” that is used to model the interactions

between a patient’s covariates and treatment effectiveness [132]. Besides the DeepSurv

models, the fuzzy cognitive map (FCM) approach has also been implemented a few times

to design a patient-centric treatment decision support system. An FCM incorporates

ANN and fuzzy logic and shares similar logic with human reasoning and decision-making

[237]. More specifically, FCM integrates qualitative and quantitative data, and it looks

like a cognitive map consisting of concepts and relationships. In addition, FCM can model

complex systems and is tailored for developing decision-making systems, particularly dis-

ease treatment decisions. FCM consists of concepts and weights. The concepts are the

representative variables for making treatment decisions, including patient age, nodule

size, nodule location, and metastasis extent, to name a few. The directed edges with ar-

rows present the degree of the relationship between the interdependent concepts, known

as weights. Moreover, the FCM approach has been applied several times in designing

personalised disease treatment recommendation systems [236, 237, 288].
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Death, Survival, and Recurrence Prediction

Several judicious studies proposed the utilisation of machine learning approaches to

evaluate the prognosis of thyroid cancer, including the survival rate, death rate, and

recurrence rate of patients diagnosed with thyroid cancer. Among the identified papers,

ANN has been adopted most often [61]. Jajroudi et al. [119] have applied the SEER

dataset on Multi-layer Perceptron (MLP) and LR to predict the survival rate for 7, 706

patients with thyroid cancer, resulting in a better performance obtained by the MLP

approach. Mourad et al. [211] has applied three MLPs to the SEER dataset to determine

the probability of death rate caused by thyroid cancer. Their first MLP has selected

input features, including patient gender, age, race, tumour size, primary disease extent,

nodular location, and the number of positive lymph nodes. With a 19-layer MLP, the

ANN would output the patient’s status, which is still alive or dead. The second MLP

only inputs age, primary disease extends, and nodule locations selected by the filter-based

feature selection algorithms with 18 hidden neurons and the same output. The third MLP

is designed with three different input features, namely tumour size, number of positive

lymph nodes, and metastases. Moreover, the architecture has 4 hidden neurons, and the

outputs are maintained from the second MLP architecture. The best performing model

was the first MLP that reached an accuracy of around 94.49%.

Researchers also pay close attention to the recurrence rate of thyroid cancer. For

instance, Park and Lee [240] compared five different machine learning models to evaluate

the recurrence rate of patients with PTC. The selected input features were age, gender,

tumour size, multiplicity, lymph node metastasis, lymph node ratio, extranodal spread,

and extrathyroidal extension. The selected models were DT, RF, XGBoost, LightGBM,

and Stacking. The DT outperforms the other four algorithms and has reached a prediction

rate of 95%. Yang et al. [331] applied an Ensemble Approach for Clustering Cancer

Data (EACCD) to design a prognosis system for thyroid cancer patients to minimise

the probabilities of recurrence. Through a set of input features, such as tumour size,

lymph nodes, metastasis, and age, the EACCD algorithm was applied. It consists of
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the following three steps: defining the initial dissimilarities between classes, applying

ensemble learning to obtain the learned dissimilarities, and clustering the combinations

of the learned dissimilarities. Schneider et al. [270] applied the multivariate LR on 217

patients’ lymph ratios to determine the recurrence of papillary thyroid cancer. The results

show that the lymph node ratio is a significant factor that correlates with PTC recurrence.

Research Gaps Summary

Patients diagnosed with thyroid cancer concerns the most about the treatments, re-

currence, survival, and death rates. Based on our analysis, studies on machine learning-

based treatment decision support systems are far less than those on diagnostic systems.

Among all the identified works, none of them was designed and targeted specifically for

thyroid cancer. Unlike the CAD systems, the treatment decision support systems are

much more interpretable and acceptable by clinicians since factors affecting treatment

decision-making are easily comprehended and quantified. Moreover, clinicians are cru-

cially involved in the system’s development phase. However, the works around this area

have been considerably ignored. With the customised treatment decision support sys-

tem design, individual patients can obtain optimal prognostications by receiving the most

proper treatment protocols so that the recurrence or even death rates can be dramatically

reduced.

Today is the artificial intelligence era, and many more advanced machine learning

techniques have emerged yet have not been applied in the clinical field for thyroid cancer

treatment. Hence, a thyroid disease-specific treatment decision support system should be

generated by adopting current state-of-the-art algorithms. Such a system should consider

a comprehensive list of factors to fill in the gaps presented in clinical treatment guidelines,

such as information around demographic, medical history, dietary, financial conditions,

disease subtypes, illness degree, comorbidity, nodular characteristics, and medication in-

take, to name a few. Through comprehensive factor analysis, an optimal treatment plan

can be provided for patients to achieve customised treatments to enhance clinical trust
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leading to potential adoption.

Another worth-mentioning point is that the time factor is crucial for the survival,

death, and recurrent rate prediction task. However, existing studies have significantly

neglected this factor during the model design phase. It is highly encouraged to incorporate

the time factor into building a sophisticated model to forecast predictions to help patients

prepare for immediate health condition changes. These limitations will all be re-mentioned

and addressed in Chapter 8 to be deployed in future work.

2.4 Summary

This thesis addresses thyroid cancer pathogenesis, diagnosis, and prognosis challenges.

Following a rigorous procedure of the proposed literature review framework, this thesis

involves multi-disciplinary studies, including clinics, statistical analysis, computer vision,

and machine learning. Based on the comprehensive investigations, the literature gaps and

the corresponding research questions are summarised as follows:

• RQ 1: What pathogenesis of thyroid disease can be ascertained through data mining

approaches?

The research in the field of identifying thyroid cancer-related factors is well es-

tablished. However, many risk factors were derived from meta-analysis without

quantitative investigations. Some factors were identified with insufficient scales or

sources of datasets, making thyroid disease’s pathogenesis controversial and requir-

ing further determinations through data mining applications.

• RQ 2: How can the diagnosis of thyroid disease be improved via deep learning

techniques?

Most identified studies built CAD systems for thyroid disease detection, including

distinguishing between hypothyroidism and hyperthyroidism and identifying malig-

nant nodules from benign ones. Nevertheless, the existing studies on differentiating
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among thyroid disease types are significantly limited. Moreover, the disease subtype

co-existence phenomenon has also been ignored by existing studies. Therefore, this

thesis sought to provide expert-level diagnostic decisions automatically through deep

learning techniques to mitigate human false-positive and false-negative diagnostic

rates.

• RQ 3: How can a deep learning-based model be adaptive to different patient profiles

for thyroid cancer diagnosis?

The existing CAD systems usually utilise medical sets retrieved from unitary data

sources. Such systems cannot be generalised to different data sources with distinct

patient profiles, resulting in the varied diagnostic performance for the same model

under distinct datasets. Hence, a unified model that can be adaptive to different pa-

tient profiles will potentially enhance clinical trust and implementation, essentially

helping elevate patient prognosis.
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Chapter 3

Research Paradigm and Methodology

A research paradigm articulates a pattern of understandings from the theory or belief

of the research project which was built, and it usually exists in the form of a philosoph-

ical framework [287]. A research paradigm normally reflects the perception towards the

essence of the reality under the study. It usually holds assumptions around ontological,

epistemological, and methodological concerns [127].

Ontology refers to the beliefs about the nature of reality [113]. Researchers tend to

inquire about reality, including: How does it exist? What can be known from it? Is reality

subject to perceptions? Those concerns challenge researchers to question the beliefs about

reality and are known as ontological concerns [259].

Epistemology describes the beliefs about knowledge, findings, and relationships be-

tween researchers and studies [113]. The epistemological questions usually debate and

incorporate “objectivity, subjectivity, causality, validity, and generalisability” for acquir-

ing knowledge [241].

Methodology spans from broad assumptions to the detailed methodological process

[113]. It usually articulates how research should be undertaken, including data collection

and analysis of data production [259]. It involves the strategy, planning, and processing

of research [60]. The methodological concerns should be around how the research should

be conducted and how to validate the findings.
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In short, ontology questions the nature of the world, epistemology inquires about the

kind of knowledge acquired from the world, and methodology decides on the procedures

for obtaining the knowledge [127]. In this thesis, two types of research paradigms were

considered and adopted, namely positivism and interpretivism.

The positivism paradigm comes in as objective to observe a phenomenon without

interference [259]. Positivist methodology tends to investigate the existence of an asso-

ciation among variables rather than interpreting the findings. It usually generates and

relies heavily on quantitative data, where a hypothesis is put forward, evaluated based on

statistical experiments, and analysed with empirical evidence [67].

The interpretivism paradigm is relatively more subjective than positivism [259]. The

goal is to comprehend the phenomenon, knowledge, or reality from the context where

the individuals interact with each other [259]. Interpretive researchers mainly generate,

employ, and analyse qualitative data. The use of numerical data in interpretive studies is

limited and not critical.

However, the positivist and interpretive paradigms were criticised largely by scholars

[259]. Specifically, the positivism methods were criticised for being appropriate when

analysing the natural phenomenon, whereas they cannot fulfil the demand for interpreting

social phenomenon research [86]. The interpretivism methods, on the other hand, have

limitations in ensuring the credibility, transferability, reliability, and objectivity of the

findings [96]. Therefore, integrating the two research paradigms can essentially form a

more robust strategy for research purposes as they complement each other and maximise

the validity of the research study.

3.1 Research Paradigm

This thesis follows a mixed methods research paradigm involving qualitative (i.e.,

interpretivism) and quantitative (i.e., positivism) analysis [130]. Qualitative purists

highlight the superiority of constructivism and interpretivism; quantitative purists main-
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tain objectivity in social science [130]. Both sets of the analysis view their research

methods as ideal, impeccable, and implicitly advocate incompatibility [130]. While the

goal of the mixed methods research paradigm in this thesis is to draw from the strengths

and minimise the weaknesses of both sets in multi-disciplinary studies [130].

Multi-disciplinary studies are a profusion of projects drawing together information

from various domains [263]. This thesis integrates knowledge from social science, health,

and data science fields and works discretely to recommend solutions to clinical challenges,

considered a multi-disciplinary research study. With the establishment of CAD systems in

the medical science domain, such a study will potentially benefit from multi-disciplinary

collaborations, inherently elevating the reliability of decision-making [196].

The use of the mixed methods research paradigm in multi-disciplinary studies is highly

encouraged [298]. Qualitative methods are dedicated to providing an in-depth and inter-

pretive understanding of a social challenge, and the collected data is detailed and infor-

mative, whereas quantitative methods cannot reach [210]. Moreover, qualitative methods

involve exploratory analysis, which generally does not have explicit hypotheses to be eval-

uated. Instead, the qualitative research methodologies usually ensure the research study

is grounded in the researchers’ and big data experiences [210].

On the other hand, quantitative methods fall under empirical and statistical study cat-

egories, and they seek to take a sampled population to investigate a pattern of a particular

phenomenon [298]. Additionally, quantitative methods usually begin with a hypothesis

and test for confirmation or divarication of that hypothesis [219]. It is interesting to

notice that quantitative methods in the social science and medical science domains pre-

vail more than qualitative methods, as they generally establish experimental designs to

provide empirical evidence [219].

Integrating the qualitative and quantitative methods will essentially enhance the re-

search credibility of multi-disciplinary studies [298]. Research credibility strongly relies on

the research methods, including the logic of the methodological design, the data collection

approach, the analytic techniques, and the evaluation criteria. Those factors are account-
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able for the reliability of a research design. More specifically, the qualitative methods

focus on small samples yet in-depth analysis for investigations. The quantitative methods

depend upon probability samples from the original population [298]. With the integration

of both methods, the mixed methods research paradigm is likely to maximise opportuni-

ties to present legitimate research findings for a multi-disciplinary study, which aims to

accomplish the benefits as follows:

• Analyse divergent findings from qualitative and quantitative methods based on dif-

ferent methodological designs.

• Establish a consensus statement for a certain challenge from both types of analyses

in the multi-disciplinary study.

• Explore the impact of the different methods on the same task and suggest addressing

the challenge with a proper trade-off.

3.2 Research Methodology

Qualitative data analysis makes sense of data and transforms information into knowl-

edge and findings [318]. The qualitative data analysis process can be defined as a “bottom-

up” approach where the data is categorised, explored, explained, and mapped until pat-

terns emerge [318]. Qualitative content analysis, as a subset of qualitative analysis, is

considered a method that categorises contents based on themes and contexts [318]. The

root of the qualitative content analysis is to measure the frequency of words in the con-

text, which reside in the quantitative approach [318]. Berelson [27] once defined the

qualitative content analysis approach as “a manifest of communication for the objective,

systematic, and quantitative descriptions”. It is regarded as an interpretative approach,

which describes the themes that are informative to the research objectives [318].

Quantitative data analysis usually deals with numerical or numbers-convertible data,

and their findings are generally more explicit than qualitative analysis [318]. Statisti-
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cal learning is the essence of quantitative methods, which organises, analyses, interprets,

and presents numerical variables to evaluate pre-defined hypotheses. The basic process of

quantitative data analysis techniques involves data collection, data pre-processing, experi-

mental analysis, and result interpretations. However, the biggest challenge of quantitative

data analysis is that the analysis might be performed without understanding the appro-

priate techniques to be applied [318]; this is when exploratory data analysis (EDA) takes

place to examine and understand the data [147].

3.3 Research Procedure

By integrating the qualitative analysis and quantitative analysis techniques, this thesis

applied the mixed methods research paradigm, and the step-wise research procedure is

summarised as follows:

1. Comprehensive literature review analysis.

The qualitative content analysis procedure was followed to identify thyroid disease-

related risk factors based on their frequency from existing works’ findings. The

generated hypotheses of risk factors waiting to be evaluated were selected based on

the controversial research findings from the existing works in the literature. Besides,

the understandings of existing literature studies from different research objectives

were evaluated independently to identify the research gaps. The investigations of

the existing works were critical for the development of CAD systems in this thesis.

2. Data collection.

With the ethics approval obtained from Monash University (Project ID: 24704, in

Appendix A), the data collection phase took place, and this phase accumulates

multiple sources for investigations. The self-acquired datasets were obtained from a

first-class hospital in China and a well-known hospital in Australia. This thesis also

involved the utilisation of digital data sources, including the UC Irvine Machine

Learning Repository (UCI) [73] and the Digital Database of Thyroid Ultrasound
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Images (DDTI) [243]. During the datasets acquisition stage, the distribution of the

acquired data samples was ensured to align with the distribution of the original pop-

ulation. More specifically, the gender groups, age groups, and target class numbers

all maintained the distributions from the original population.

3. Data pre-processing.

This thesis analyses quantitative data from multiple source domains, and the pre-

processing of those data ensures consistency, including data cleaning, data trans-

formation, and data integration [318]. The data cleaning phase removes irrelevant

data, duplicates, and outliers, whereas the missing variables are also replaced. Data

transformation and integration make data in a consistent format that can be used

for further investigations, such as transforming images into matrices, converting

categorical variables into numerical values, and discretising data based on stratifi-

cation. Data from multiple sources will need to be integrated to allow extensive

analysis, and the prerequisite is to have a consistent format.

4. Experimental analysis.

Statistical analysis can be categorised into descriptive and inferential kinds, where

the former uses techniques to describe the data and the latter analyses the data to

draw inferences [318]. This thesis exhibits the hybrid method, which combines both

types of statistical techniques. The descriptive analysis was achieved with EDA

methods to examine the data regarding its distribution, anomalies, dispersion, and

relationships among attributes [318]. The inferential analysis observed patterns

and associations among variables, such as feature selection and association rule

mining techniques were applied to test the hypotheses. Besides, the experimental

designs for each research gap were independent (source code available in Appendix

B), while the use of inferential analysis is thoroughly proposed to generate the

corresponding decisions.
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5. Result interpretations.

The evaluations of the experimental designs were achieved with metrics, such as

the area under the curve (AUC), accuracy (ACC), precision (positive predictive

value, PPV), recall (sensitivity), specificity, F1, negative predictive value (NPV),

and false positive rates (FPR). The overall thesis consists of classification tasks,

where the class labels were binary and multi-class. This thesis addresses existing

clinical challenges with respect to thyroid disease pathogenesis and diagnosis to

achieve a promising prognosis. The proposed models were compared to baseline

works, and the current state-of-the-art performance was achieved under several sce-

narios. Besides the interpretations of the generated results, the discussions around

the cause of the disease, the explanations of the findings, the contributions, and

future clinical implementations of the models were all presented.

By summarising the aforementioned methods, the use of the mixed methods research

paradigm ensures the reliability of the generated results, and the detailed research method-

ology framework is presented in Figure 3.1. This thesis follows the proposed methodology

framework for the implementation of the research study.
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Figure 3.1: Research methodology framework.
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Chapter 4

Data Mining in Thyroid Disease

Pathogenesis Identification

4.1 Introduction

Thyroid disease instances are rapidly increasing worldwide, and thyroid cancer is

even ranked as the fifth most commonly diagnosed disease among females in the United

States [41]. Understanding the pathogenesis of thyroid disease will reduce morbidity

rates, whereas thyroid cancer instances can also be lessened by avoiding the potential risk

factors, leading to mitigated mortality rates. Currently, the scientific community is strug-

gling to determine the leading cause of thyroid cancer. A few studies adopted qualitative

approaches to identify potential risk factors correlated with the disease. The identified

factors include radiation, depression, obesity, iodine intake, diabetes, hormonal factors,

and gene heredity, to name a few [246, 83]. Nevertheless, many of those factors are still

under debate and cannot be verified solely by relying on qualitative investigations.

Medical datasets are complex as multiple attributes interweave one another, making

the identification of thyroid cancer pathogenesis even more challenging [235, 185, 319].

However, the investigations of the risk factors through quantitative techniques in the

existing studies were analysed independently. By this approach, the interconnections
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among factors were considerably ignored, thus aggravating the limited reliability of the

identified factors.

Association rule mining (ARM) is a data mining technique dedicated to finding and

describing relationships or hidden patterns among multiple attributes given a database

[35]. In the past few decades, ARM has been applied several times in the medical domain

for identifying the underlying correlations among different types of diseases [159, 46, 295,

120, 183]. Medical records are high-dimensional and complex. As a result, mining from

such heterogeneous data requires significant effort and time to dig into latent patterns

manually, which might be unrealistic. ARM is quite efficient for dealing with complex and

sensitive data, making it appropriate for discovering unrevealed information from medical

datasets. In addition, ARM, as a quantitative analysis technique, has been scarcely

applied for thyroid disease pathogenesis identification. The goal of this thesis is to bridge

this literature gap and assess the risk factors through ARM to ascertain their associations

with thyroid disease.

The underlying patterns derived from ARM can be categorised into common rules

(i.e., rules with high support and high confidence), reference rules (i.e., rules with low

support and low confidence), and exception rules (i.e., rules with low support and high

confidence) [296]. Common rules describe explicit information which interprets the reg-

ularity of objects with consequences; reference rules are outliers that are less meaningful

and are generally excluded; exception rules, on the other hand, outline the unexpectedness

of associations and are often tied up with actionability [291]. The existing studies mainly

focus on adopting ARM for common rules extraction, whereas exception rules extraction

has been considerably neglected [296]. Nevertheless, exception rules are potentially more

engaging and valuable than common rules [170], and they can provide information that

reveals unusual and contradictory but significantly meaningful knowledge.

Therefore, this chapter incorporates text mining procedures with ARM algorithms to

identify and assess risk factors correlated with thyroid disease. More specifically, text

mining procedures are used to identify critical features from raw medical data, including
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medical history, comorbidity, and risk factors. ARM algorithms then extract common and

exception rules simultaneously when incorporating an exceptionality measure, leading to

valuable knowledge discovery. The identified risk factors will be compared to a set of

feature selection algorithms for further determinations. The related background works of

this chapter were described in Chapter 2.3.1.

The contents of this chapter have been published in journal article 4.

4.2 Hypotheses Formulation

Based on the comprehensive literature review analysis, the confirmed risk factors for

thyroid cancer include radiation and genetic factors [82, 103], whereas the remaining

factors are still controversial, such as vitamin D deficiency, obesity, iodine deficiency,

dietary nitrate intake, diabetes, and hormonal factors [214, 40]. We have to underline

that iodine and nitrate intake levels were usually not recorded in admission reports and

were hard to be measured for patients and thus were excluded from this research study.

Given a medical data repository D ∈ {X, y}. X ∈ Rn
i where R is the feature sets,

such as patient medical records, including their blood examinations and risk factors, i is

the ith number of patients, and n is the total number of instances given in the database.

y ∈ {0, 1}, which denotes the classes for the instances. More specifically, this chapter

extracts risk factors for thyroid diseases, including thyroid disorder (i.e., hypothyroidism,

hyperthyroidism) and thyroid cancer independently. Therefore, 0 indicates that the pa-

tient is healthy (i.e., without thyroid-related diseases), and 1 indicates that the patient is

sick (i.e., with hypothyroidism/hyperthyroidism or thyroid cancer).

With the qualitative analysis from the 295 pathogenesis-related studies, the contro-

versial risk factors were hypothesised that require further data mining investigations.

Consider each factor as an attribute from R where R ∈ {a, b, c, . . . ,m}, which denotes

the entire set of attributes to be evaluated. In this case, the factors which need determi-

nation for positively associated with thyroid disease are vitamin D deficiency, diabetes,
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obesity, hypertension, and depression extracted from patient medical history reports.

4.3 Methodology

In order to confirm the correlations between the risk factors with thyroid disease

development, a rigorous procedure has been followed, starting from the initial extraction

of the critical attributes with text mining, correlation analysis, ARM, and feature selection

investigations until the classification determinations.

4.3.1 The Proposed TM-DM Framework

Figure 4.1 demonstrates the proposed TM-DM framework which consists of three

phases, including 1) text mining-based risk factor extraction, 2) correlation analysis and

feature selection, and 3) classification evaluation.

Following the comprehensive literature review analysis, the risk factors have been

identified and involved in the hypotheses formulation stage. In this case, the text mining

procedures were integrated to validate those factors’ existences from the acquired medi-

cal datasets. Specifically, the raw admission reports and discharge summaries were used

for extracting critical factors. The admission reports contain the patient’s demographic

information like age, gender, ethnicity, medical history, lifestyle behaviours, and current

symptoms. The discharge summaries include the patient’s disease stage, treatment pro-

tocols, comorbidities, and principal diagnosis. After breaking the sentences into tokens,

only the medical terminologies were extracted and normalised through stemming and lem-

matisation, and a set of stop-words were defined and removed. The normalised attributes

confirmed the presence of the hypothetical factors for individual patients denoted as 1;

otherwise, the absences of the factors were denoted as 0.

The data pre-processing strategy initially transforms the format of all attributes by

converting the categorical variables into numerical values. The correlation analysis was

then conducted among the attributes to exclude the features with the most negligible
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Figure 4.1: Text mining - Data mining (TM-DM) framework for thyroid disease patho-
genesis identification.
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impact on the class label. Feature selection and association rule mining techniques were

applied to validate the risk factors. The incorporated feature selection algorithms include

Chi-Squared Test (Chi) [248], Mutual Information (MI) [88], Fisher Score (Fisher) [94],

and Kruskal-Wallis (KW) Test [200]. The involved ARM algorithms are Apriori [7],

Frequent Pattern-Growth Tree [102], and the developed Faster Apriori algorithm. The

features from feature selection algorithms were then compared to the ones derived from

the ARM algorithms.

Afterwards, the selected attributes from the feature selection and the ARM algorithms

were involved in a classification task for evaluation. In this case, a set of basic classifiers

were implemented for evaluation, including Logistic Regression (LR), Decision Tree (DT),

Support Vector Machines (SVM), Random Forest (RF), Naïve Bayes (NB), and Multi-

layer Perceptron (MLP). The classification performance comparison was made between

baseline models (i.e., without feature selection algorithms) and models with feature se-

lection algorithms through the 10-fold cross-validation (CV) technique. The risk factors

were determined when the feature selection algorithms proposed competitive or even out-

performing results, and the hypotheses would then be rejected or accepted accordingly.

4.3.2 ARM Algorithms

ARM was introduced by Agrawal et al. [8] to discover the occurrence of items in market

transactions. The underlying concept is to verify A → C indicating if an item A exist

as “antecedence”, then item C should co-exist as “consequence”. In order to identify the

correlations of A → C, let D = {X1, X2, . . . , Xn} where D is the database, Xi is the ith

instance, and n is the total number of instances from N in D. For each Xi, there might be

m number of items (i.e., features, attributes, factors) to generate frequent itemsets. The

metrics for evaluating ARM algorithms are support and confidence values. The support

value of each item in Xi can be calculated through Eq. 4.1, which is used to identify the

frequency of an itemset.
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Support =
freq(A → C)

N
(4.1)

When evaluating the frequent itemsets, the conditional probability P(C|A) will also

need to be paid attention through Eq. 4.2 to identify the confidence of an instance

containing A and also C.

Confidence =
freq(A → C)

freq(A)
(4.2)

This thesis involved three ARM algorithms for identifying thyroid disease pathogenesis,

including the two most classic ARM algorithms (i.e., Apriori and FP-Tree), as well as a

proposed more advanced algorithm called Faster Apriori.

Apriori

The Apriori algorithm was initially proposed by Agrawal and Srikant [7]. The goal

is to extract associations, frequent patterns, or even casual structures from unstructured

datasets. The Apriori algorithm is relatively straightforward for implementation, which

requires generating candidate itemsets for frequent rule sets identification. The detailed

procedures are as follows:

• Pre-define thresholds for support and confidence values.

• Identify support values for all the individual items m from Xi, then prune the ones

which do not meet the support threshold.

• Loop through iteration in D, for each candidate m item in Xi, pare up until enu-

merating all items in Xi.

• Calculate support values for all the candidate itemsets and prune the ones below

the threshold.

• Repeat the above two steps, each time including itemsets m + 1 for each Xi, until

finishing listing all itemsets in D.
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• Final rules are the frequent itemsets with support and confidence values above

thresholds.

Frequent Pattern-Growth Tree

The frequent pattern-growth (FP-Tree) was proposed by Han et al. [102], which is

another classic algorithm that was adopted relatively often in the medical domain. Unlike

the Apriori algorithm, the FP-Tree algorithm does not require the generation of candidate

itemsets, making the rule extraction process more efficient when dealing with small-to-

medium scaled datasets. The detailed procedures are as follows:

• Identify support values for all the individual items m in Xi.

• Write all the items m in descending order based on their support values.

• Draw the FP-tree starting from the "null" node and record the m items following

the descending list.

• Update the FP-tree through each iteration; meanwhile, record and update the item

frequency in the tree structure.

• Generate a conditional FP-tree if the support value for the node is larger than the

pre-defined threshold.

• Generate frequent patterns based on the conditional FP-tree, and they are the final

rules.

Faster Apriori

As the earliest ARM design, Apriori and FP-Tree are regarded as the two most classic

algorithms to be implemented in miscellaneous disciplines today [258, 161, 159]. Although

considered accurate in extracting valuable knowledge from multiple attributes, those two
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algorithms are not computationally efficient enough when the dataset gets more exten-

sive or complicated. Based on this, the Faster Apriori algorithm was proposed, which

overcomes the efficiency drawback without harming the generate rules.

The Faster Apriori algorithm was developed to discover the occurrence of items in

a large volume of digital records based on identifying probabilities for different itemsets

initially and then updated to override the original transaction database to exclude redun-

dant itemsets during each iteration. In order to extract valuable information, this research

utilised one more metric to generate the final rules: the probability measure, calculated

through Eqs. 4.3 and 4.4.

PXi
=

freq(Xm
i )

N
(4.3)

P =
m∏
i=1

p(Y m
i |Xm

i ) (4.4)

4.3.3 Exceptionality Measure

Exception rules are the ones that have low support values but high confidence values.

The most well-known exception rule is “Champagne ⇒ Caviar”, which does not have

a high frequency in the database because they are pricey, but they are always brought

together [296]. Exception rules can sometimes be influential and valuable. However, in

the existing studies, researchers tend to put their efforts into identifying common rules,

whereas exception rules were greatly neglected. This research incorporates the exception-

ality measure to reveal exceptional underlying knowledge of thyroid disease pathogenesis.

Based on Piatetsky-Shapiro’s arguments [80] and probability theory, the measurements

of common rules and exception rules should be different. This thesis incorporates the

conditional-probability increment ratio (CPIR) function proposed by Wu et al. [323] as

an additional measurement for rules selection to evaluate the dependency of the antecedent

A and the consequent C. The CPIR score generates a number between -1 and 1. When
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the CPIR score is positive, the items are positively related. On the other side, when the

value is negative, the items are negatively related. More specifically, the CPIR function

for common rules evaluation was carried out by Eq. 4.5 and for the exception rules

through Eq. 4.6. With the adoption of CPIR for both types of rules, the dependency of

the antecedent and the consequent can be evaluated and interpreted.

CPIR(Xm
i → Yj) =

sup(Xm
i

⋃
Yj)− sup(Xm

i )× sup(Yj)

sup(Xm
i )× (1− sup(Yj))

(4.5)

CPIR(Xm
i → ¬Yj) =

sup(Xm
i

⋃
¬Yj)− sup(Xm

i )× sup(¬Yj)

sup(Xm
i )× sup(Yj)

(4.6)

4.3.4 Implementation Procedure

This thesis aims to extract common and exception rules simultaneously for thyroid

disease pathogenesis identification. Therefore, with the thresholds defined for the CPIR

measurements, the reliable common and exception rules can be identified. Moreover, the

detailed procedure of the exception rules generation is shown in Algorithm 1.

Compared to the classic Apriori algorithm, the Faster Apriori algorithm proposed

the probability-based frequent pattern mining approach to initially mitigate the compu-

tational resources for frequent itemsets generation [261]. Specifically, the initial D was

utilised to identify unique items m from Xi by identifying the probability of the individ-

ual unique attribute. The probability of combinations for the unique m + 1 during the

iteration was also calculated and compared to the pre-defined threshold. Following the

exclusion of under-qualified m+1 and the corresponding combination pairs, a new dataset

D̄ was generated for frequent itemsets generation intuitively. Additionally, in order to re-

duce the computational cost for efficiency optimisation, the dataset D̄ was updated in

each iteration when finding frequent itemsets to exclude redundant itemsets. Algorithm

2 demonstrates the proposed Faster Apriori implementation procedure.

Before generating candidate itemsets like the classic Apriori algorithm, the probability-
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Algorithm 1: Pseudo-code for Exception Rules Generation
Input:
D = {X1, X2, . . . , X

m
n }; X is the patient instances and n is total number of cases

θSup = (p, q], θCon; Set the threshold interval for support and set minimum
confidence

Initialisation:
ARM algorithm: Apriori, FP-Growth, or Faster Apriori
Set minimum support θSup = p
Rules ← (Sup, Con); Rule sets generated through ARM algorithm with
minimum support

Set i = 0
while i ≤ len(Rules) do

if Coni ≥ θCon then
Rules ← (Supi, Coni); Rules greater than minimum confidence values will
be stored

else
Remove Rules

end
Set θSup = q
for i in Rules do

if Supi ≤ θSup then
Rules ← (Supi, Coni); Rules in between support interval values will be
stored

else
Remove Rules

end
Set θCPIR

Calculate CPIR for each i in Rules using Eq. 4.6
for i in Rules do

if CPIRi ≥ θCPIR then
Rules ← (Supi, Coni); Rules greater than threshold CPIR values
will be stored

else
Remove Rules

end
end

end
i = i+ 1

end
Store and plot all the final rules
Output: Final exception rules → Expfinal
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Algorithm 2: Faster Apriori With Exception Rules Extraction
Input:
D = X

m(≥1)
i∈(0,n); X is the instances, n is total number of cases, m is the feature

vector
θProb, θSup, θCon, θCPIR; Set the threshold probability, support interval, minimum
confidence, and minimum CPIR

Generate an initial itemset itemini with all unique items in X
Calculate PX for all itemini with Eq. 4.3
Calculate P for paired combinations itempair of items in itemini with Eq. 4.4
Exclude itemini and itempair that are below θProb

Produce a list of candidate itemsets Cm with remaining itemini and itempair

Generate D̄ based on Cm

Initialisation:
Set n = 0
Set itemsettemp to an empty list
while n < N̄ do

Set i = 1; i is the number of i items in X̄n

while i ≤ len(X̄m
n ) do

if i not in Cm then
i append to Cm

end
Calculate support values for all Cm using Eq. 4.1
if Supi > θSup then

i append to itemsetfreq;
Update D̄ with itemsetfreq in place

end
i = i+ 1

end
n = n+ 1

end
Calculate confidence for all itemsetfreq use Eq. 4.2
Calculate CPIR for all itemsetfreq use Eq. 4.5
Rules ← itemsetfreq, Supi, Coni, CPIRi

if Rules ≥ θSup, θCon, θCPIR then
Rules will be stored

end
Store and plot all the final rules
Output: Final← Rules(Sup, Con,CPIR); store all qualified rules with
exceptions
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based frequent patterns were generated using the probability measure PX to identify

the probability scores for all unique items in X. Then, the P score was measured to

evaluate all the possible combinations with unique m. The generated unique m and its

corresponding combinations m+1 were compared to the probability threshold. Then the

under-qualified ones were removed, whereas the qualified ones were remained to generate a

new D̄. This process eliminated the itemsets that were not frequently seen in the database,

thus reducing the running time in the later iterations for frequent candidate itemsets

generation. The support values were calculated for all the newly generated candidate

itemsets. During each iteration, the database D̄ was updated to exclude those below the

threshold. In this way, the old database was overridden to reduce computational needs

in each iteration. The meaningless itemsets would not be considered for rules generation,

thus enhancing the efficiency to an optimised level. Then, the evaluations of the frequent

itemsets after finishing all the iterations were the confidence and CPIR values to further

select the most valuable factors.

4.4 Experimental Design

This chapter separately evaluates the risk factors of thyroid disorder (i.e., hypothy-

roidism and hyperthyroidism) and thyroid cancer. This section illustrates the adopted

datasets and the experimental settings.

4.4.1 Dataset Descriptions

This section includes two datasets to evaluate the proposed TM-DM framework for

knowledge extraction. The two datasets are described as follows.

Open-access UCI Dataset

The open-access dataset was adopted in this chapter to identify risk factors for thyroid

disorders, which was retrieved from the UC Irvine (UCI) Machine Learning Repository
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[73]. This dataset has been pre-processed into .csv format, containing 21 attributes and

7, 200 instances with thyroid disorder-related diagnoses. After a set of data wrangling

processes (i.e., data cleaning, duplicates removal, data transformation), a total number

of 5, 600 instances were utilised in this section. The selected attributes can be found in

Table 4.1.

Table 4.1: UCI thyroid disorder dataset attributes.

Attributes Descriptions
Age Age group intervals
Sex M=Male and F=female
I131 Had I131; f=False and t=True
Sick Sick status; f=False and t=True
Psych Have psych; f=False and t=True
Goitre Have goitre; f=False and t=True
Tumour Have tumour; f=False and t=True
Lithium Lithium status; f=False and t=True
Thyroxine Take thyroxine; f=False and t=True
Pregnant Pregnant status; f=False and t=True
Query hypothyroid Hypothyroidism; f=False and t=True
Query hyperthyroid Hyperthyroidism; f=False and t=True
Thyroid surgery Had thyroid surgery; f=False and t=True
Hypopituitary Hypopituitary statue; f=False and t=True
Anti-thyroid medication Antithyroid medication; f=False and t=True
TSH TSH level; numerical value
T3 T3 level; numerical value
TT4 TT4 level; numerical value
T4U T4U level; numerical value
FTI FTI level; numerical value
Class Thyroid disorder; negative and positive

Self-acquired CN Hospital Dataset

This chapter also involves the self-acquired dataset for determining the risk factors

associated with thyroid cancer. We obtained 578 in-patient digital health records from a

first-class Chinese hospital (CN Dataset) with ethics approval from Monash University.

Those patients have been diagnosed with thyroid-related diseases (e.g., goitre, ade-

noma, cancer) from August 2018 to August 2021. The obtained records include pa-

tients’ admission reports, diagnostic reports, and discharge summaries. Those reports
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were stored in .pdf format in the electronic health record (EHR) system. Therefore,

text mining procedures were incorporated to extract key terminologies from those med-

ical records. The extracted terms were then adopted and transformed into a .csv file,

indicating whether the risk factor was present in the patient records.

More specifically, the raw admission reports and discharge summaries were used for

critical terminologies extraction. The admission reports contain the patient’s demographic

information, medical history, lifestyle behaviours, and current symptoms. The discharge

summaries include the patient’s treatment protocols, comorbidities, and principal diagno-

sis. The extracted attributes were then normalised through stemming and lemmatisation

following the text mining procedures. In order to reach consistency, the extracted infor-

mation included not only the same attributes from the UCI repository but also the history

of diseases, comorbidity, and principal diagnosis. Moreover, diagnostic reports were also

used to extract patients’ blood examination levels. Therefore, 32 attributes were adopted

for the hospital dataset, and details are available in Table 4.2.

Table 4.2: Self-acquired CN hospital thyroid cancer dataset attributes.

Attributes Descriptions
Obesity Have obesity; f=False and t=True
Diabetes Have diabetes; f=False and t=True
Radiation Had radiation; f=False and t=True
Depression Have depression; f=False and t=True
Hypertension Have hypertension; f=False and t=True
Vitamin D deficiency Have VD deficiency; f=False and t=True
FT3 FT3 level; numerical value
FT4 FT4 level; numerical value
TGII TGII level; numerical value
TGAb TGAb level; numerical value
TPOAb TPOAb level; numerical value
Class Thyroid cancer; negative and positive

4.4.2 Experimental Settings

For the UCI dataset, the final list of attributes and instances were selected based on

the following mechanism:
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• All the instances with missing age were removed.

• All the instances with missing gender were removed.

• All the categorical variables were transformed into numerical values.

• Numerical variables with missing values were assigned random numbers between

normal ranges of the blood examinations: TSH: 0.27 - 4.2, T3: 1.3 - 3.1, TT4: 62

- 164, T4U : 0.7 - 1.8, FTI: 53 - 142.

The minimum support threshold for the ARM algorithms implementation was set to 0.5.

The minimum confidence threshold was set as 0.7 for common rules extraction. As far

as the exception rules generation was concerned, the support interval was set to (0.2, 0.4]

with the same minimum confidence as common rules.

On the other hand, for thyroid cancer pathogenesis identification, the self-acquired

CN dataset selects attributes through the mechanism as follows:

• Principal diagnosis missing or unclear were removed.

• Risk factors present denoted with 1, otherwise absent as 0.

• Numerical variables with missing values were assigned random numbers between

normal ranges of the blood examinations: FT3: 3.6 - 7.5, FT4: 12 - 22, TGII: 3.5

- 77, TGAb: 11 - 115, TPOAb: 0 - 34.

For the self-acquired dataset, the minimum support value was set a bit lower than the

UCI data settings because the scale of the dataset was relatively small. Therefore, the

minimum support value and confidence threshold for common rules were 0.6 and 0.7,

respectively. As for the exception rules, the support interval was also set to (0.2, 0.4],

and the confidence threshold was still 0.7. Besides, the minimum CPIR score for the UCI

dataset was set to 0.1, the hospital dataset was set to 0.2, and the final rules were sorted

by confidence and CPIR values.
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4.5 Results

The proposed TM-DM framework was evaluated following the correlation analysis,

feature selection, and classification procedures. The final classification performance eval-

uates the pre-defined hypotheses for thyroid disease pathogenesis identification.

4.5.1 ARM Selected Attributes

The mutual rules extracted from the three ARM algorithms were described and

recorded in this section based on the different gender and disease groups. Besides, the

conflicting rules for the different algorithms were removed following forward and backward

reasoning. In addition, the retained rules are reliable ones which can be found in all the

algorithms. The extracted final rules are presented as follows.

Thyroid Disorder Risk Factors

Table 4.3 presents the extracted top three association rules for thyroid disorder patients

from different gender groups using the UCI dataset. For the extracted common and

exception rules generated through the ARM algorithms, it is evident that age, TSH, T3,

and FTI levels are directly correlated with various types of thyroid disorders.

Regardless of gender, patients aged from 40 to 80 were more likely to be diagnosed

with thyroid disorders. Based on the common rules for the male group, patients aged from

40 to 60 with abnormal thyroid-stimulating hormone levels are likely to be diagnosed with

hypothyroidism. This rule was also found in the female group. Moreover, females aged

from 60 to 80 are also likely to establish thyroid disorders. Similar patterns were found

in the generated exception rules.

It should be paid attention to the female groups from the exception rules aspect.

Besides TSH and T3, the FTI level became a critical indicator, with a CPIR score

of 0.73, indicating the association between this blood index measurement and thyroid

disorder is relatively strong.
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Table 4.3: Open-access UCI thyroid disorder dataset - extracted rules.

Common Rules
Groups Association Rules Class Conf. CPIR

Male
Age = (40, 60], TSH = Abnormal → Disorder 1.00 1.00
TSH = Abnormal, T3 = Abnormal → Disorder 1.00 1.00
TSH = Abnormal → Disorder 0.88 0.11

Female
Age = (60, 80] → Disorder 1.00 1.00
Age = (40, 60], TSH = Abnormal → Disorder 0.99 0.70
TSH = Abnormal → Disorder 0.75 0.12

Exception Rules

Male
Age = (60, 80], TSH = Abnormal → Disorder 0.91 0.34
Age = (60, 80] → Disorder 0.91 0.34
Age = (40, 60] → Disorder 0.88 0.12

Female
FTI = Abnormal → Disorder 0.83 0.73
Age = (60, 80], TSH = Abnormal → Disorder 0.76 0.16
TSH = Abnormal, FTI = Abnormal → Disorder 0.75 0.61

Thyroid Cancer Risk Factors

Table 4.4 demonstrates the extracted association rules for thyroid cancer patients using

the self-acquired CN dataset. Based on the table, thyroid cancer-related factors are age,

gender, TSH, T3, FT3, FT4, TGAb, thyroxine intake status, history of thyroid disease,

thyroid surgery history, and tumour history.

For the extracted common rules, patients with abnormal thyroid hormone levels should

be examined for thyroid cancer development despite the age factor. In particular, male

patients with tumour history and female patients with thyroid-related surgery in the past

should pay close attention to the disease.

As far as the generated exception rules are concerned, male patients aged between

18 to 25 and 40 to 60 should check thyroid hormones regularly. Female patients with

hypothyroidism in the past are likely to establish subsequent thyroid cancer.

4.5.2 FS Selected Attributes

In order to evaluate the extracted risk factors, a comparative analysis was performed

through a set of feature selection algorithms. Four classic statistical feature selection
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Table 4.4: CN thyroid cancer dataset - extracted rules.

Common Rules
Groups Association Rules Class Conf. CPIR

Male
FT3, FT4 = Abnormal → Cancer 0.75 1.00
TSH,FT3, FT4 = Abnormal → Cancer 0.75 1.00
FT3, FT4 = Abnormal, Tumour → Cancer 0.75 1.00

Female
FT4 = Abnormal, Thyroxine → Cancer 1.00 1.00
FT4 = Abnormal, Thy_surgery → Cancer 1.00 1.00
TSH = Abnormal, Thyroxine, Thy_surgery → Cancer 0.93 0.63

Exception Rules

Male
Age = (18, 25], TSH,FT3, FT4 = Abnormal → Cancer 1.00 1.00
Age = (18, 25], FT4 = Abnormal, Tumour → Cancer 1.00 1.00
Age = (40, 60], T3, TGAb = Abnormal → Cancer 1.00 1.00

Female
TGAb = Abnormal → Cancer 1.00 1.00
FT4 = Abnormal, Hypothyroidism → Cancer 1.00 1.00
Age = (25, 40], TSH,FT3 = Abnormal → Cancer 1.00 1.00

algorithms were involved in this case. Table 4.5 demonstrates the selected features using

Chi, MI, fisher, KW, and ARM algorithms.

For the UCI thyroid disorder dataset, the common attributes selected from the feature

selection algorithms were age, gender, thyroxine, TSH, T3, and FTI. For the CN thy-

roid cancer dataset, the common attributes among the five algorithms were age, gender,

thyroxine, thyroid surgery history, hypertension, TSH, T3, FT3, and FT4 levels. Those

selected attributes were then validated through a classification task, and the results are

presented in the next section.

4.5.3 Classification Performance

Table 4.6 demonstrates the classification performance of the baseline (i.e., with all

features) and feature selection algorithms in the six classifiers. Through the 10-fold CV,

the standard deviation scores of each algorithm in each classifier were also presented.

For the UCI dataset, the best-performing model for the baseline was the RF classifier

with an accuracy of 0.903. The competitive performance was achieved through the MI

and the Fisher score algorithms with the same classifier. Moreover, the ARM algorithms

selected features reached the same accuracy by employing a 3 hidden neurons MLP model.
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Table 4.5: FS and ARM Selected features.
UCI Dataset

Methods No. Selected Features
Baseline 20 -
Chi 10 Sex, Thyroxine, Pregnant, Hypothyroid, Hyperthyroid, Tumour,

TSH, T3, TT4, FTI
MI 16 Age, Sex, Thyroxine, Sick, Pregnant, Thyroid_surgery, Hypothy-

roid, Goitre, Tumour, Hypopituitary, Psych, TSH, T3, TT4, T4U ,
FTI

Fisher 18 Age, Thyroxine, Antithyroid_medication, Sick, Pregnant, Thy-
roid_surgery, I131, Hypothyroid, Hyperthyroid, Lithium, Goitre,
Tumour, Hypopituitary, Psych, TSH, T3, TT4, T4U

KW 10 Age, Sick, Hypothyroid, Hyperthyroid, Psych, TSH, T3, TT4,
T4U , FTI

ARM 6 Age, Sex, Thyroxine, TSH, T3, FTI
CN Dataset

Baseline 30 -
Chi 10 Age, Thyroxine, Thyroid_surgery, I131, Tumour, T3, TT4, FT3,

FT4, TGII
MI 15 Age, Thyroxine, Sick, Thyroid_surgery, I131, Tumour, Psych,

TSH, T3, TT4, FT3, FT4, TGII, Hypertension, Diabetes
Fisher 28 Age, Sex, Thyroxine, Antithyroid_medication, Sick, Pregnant,

Thyroid_surgery, I131, Hypothyroid, Hyperthyroid, Lithium,
Goitre, Tumour, Hypopituitary, Psych, TSH, T3, TT4, FT3, FT4,
TGII, TGAb, TPOAb, Vitamin_D_Deficiency, Hypertension, Di-
abetes, Depression, Obesity

KW 11 Antithyroid_medication, Sick, I131, Hyperthyroid, Goitre, Psych,
TT4, TPOAb, Vitamin_D_Deficiency, Depression, Obesity

ARM 11 Age, Sex, Thyroxine, Thyroid_surgery, Hypothyroid, Tumour,
TSH, T3, FT3, FT4, TGAb
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The ARM models all generated similar classification performance compared to other fea-

ture selection models with LR, DT, and NB classifiers. However, a minor decrease was

found when applying SVM and RF classifiers compared to the baseline.

With respect to the CN dataset, the best-performing model for the baseline was LR,

with an accuracy of 0.962. A competitive performance was also achieved with Chi, MI,

and KW algorithms. The ARM-based features tend to perform well through DT, SVM,

RF, and NB classifiers compared to the baseline. The best-performing model is LR with

the Kruskal-Wallis feature selection algorithm, which obtained an averaged accuracy of

0.965 for the 10-fold CV. Based on the analysis, the ARM techniques tend to select the

least number of attributes while obtaining competitive classification accuracy rates.

Table 4.6: Classification performance with feature selection (10-fold CV).

UCI Dataset
LR DT SVM RF NB MLP

Baseline 0.898± .01 0.810± .06 0.897± .02 0.903± .01 0.897± .03 0.898± .02
Chi 0.899± .01 0.810± .06 0.896± .02 0.900± .01 0.897± .03 0.903± .01
MI 0.899± .01 0.810± .06 0.896± .02 0.903± .01 0.897± .03 0.900± .01

Fisher 0.900± .01 0.810± .06 0.901± .01 0.903± .01 0.897± .03 0.894± .01
KW 0.900± .01 0.808± .06 0.897± .02 0.901± .01 0.896± .03 0.902± .01

ARM 0.900± .01 0.810± .06 0.895± .02 0.898± .02 0.897± .03 0.903± .01
CN Dataset

Baseline 0.962± .03 0.930± .07 0.935± .01 0.957± .03 0.892± .08 0.957± .04
Chi 0.957± .04 0.941± .07 0.943± .03 0.962± .03 0.849± .09 0.941± .03
MI 0.957± .03 0.941± .06 0.962± .03 0.960± .03 0.919± .04 0.962± .03

Fisher 0.960± .04 0.941± .07 0.935± .01 0.960± .03 0.900± .08 0.946± .04
KW 0.965± .03 0.954± .04 0.935± .01 0.962± .03 0.768± .17 0.952± .02

ARM 0.960± .03 0.949± .05 0.935± .01 0.960± .02 0.903± .07 0.949± .03

4.6 Discussion

Although thyroid disease is prevalent in the contemporary, the underlying cause of the

disease remains unclear. ARM technique has been applied relatively often in the medical

domain, whereas the implementation to identify the pathogenesis of thyroid disease is

absent. Besides, generating rules directly from raw digital health records and identifying
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exception rules are the novelties in this study.

The proposed TM-DM framework was analysed by adopting two sources of thyroid

disease-related records, where the results confirmed that sex and age are the two leading

factors correlated to thyroid disease. This finding aligns with the existing works in the

literature [253, 110], and it might be due to hormonal factors, including the impact of

pregnancy or pubertal development; these are particularly sensitive to young females.

Besides age and gender, the generated results from both datasets manifest that a

history of thyroid-related diseases, like hypothyroidism, hyperthyroidism, or past thy-

roid surgery, increases the risk of establishing subsequent thyroid cancer. This finding

is intriguing, and matches with the existing study [64]. The finding confirmed that a

subsequent thyroid cancer risk was highly enhanced if thyroid disease existed in the past.

Therefore, the history of thyroid diseases can be a good indicator when diagnosing current

thyroid status.

Comorbidities like diabetes, obesity, hypertension, depression, psychiatric diseases,

and vitamin D deficiency were also included for evaluation. Among all the factors, psy-

chiatric diseases are not strongly related to the pathogenesis of thyroid disease. For the

other factors, the results exhibit no solid positive associations were found between the

comorbidities with thyroid disease. This result is in accordance with Shih et al. [277], but

controversial with Ma et al. [185]. Nevertheless, it was found that the absence of those

underlying health problems like obesity, depression, hypertension, and diabetes will re-

duce the risk of being diagnosed with thyroid cancer. Besides, vitamin D deficiency might

be influential to thyroid disease, and this finding aligns with Zhao et al. [346]. However,

further evaluations should be involved to ascertain the associations since the sample scale

is relatively limited in this study.
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4.7 Summary

The proposed TM-DM framework was used to identify and evaluate the risk factors

correlated with thyroid disease, including thyroid disorder and thyroid cancer. Through

the utilisation of two data sources, the common and exception association rules were

extracted independently. For thyroid disorder, the leading factors were found to be age,

gender, thyroxine intake status, and thyroid function examinations, like TSH, T3, and

FTI. For thyroid cancer, the leading factors were identified, including the history of

thyroid disease, hypertension, the history of thyroid surgery, FT3, and FT4 levels besides

age, gender, thyroxine, TSH, and T3 levels.

Nevertheless, this research study did not confirm positive associations between con-

troversial factors like vitamin D deficiency, diabetes, and depression with thyroid cancer.

Additionally, during the classification evaluation stage, the performance among the differ-

ent feature selection algorithms was comparable; this might be due to the limited number

of features incorporated. Therefore, the alternative research direction would enhance the

scale of the sample, include more attributes for evaluations, and include as many con-

troversial factors as possible, such as gene heredity, mutations, and hormonal factors, to

determine their associations with thyroid cancer.

Hence, this study emphasises the contributions made to society. Identifying the cor-

related risk factors allows thyroid disease mortality and morbidity rates to be mitigated

considerably. In addition, the proposed TM-DM framework can be generalised to different

diseases for more precious knowledge discovery in the medical domain, more importantly,

strengthening the use of precision medicine or treatments to avoid certain diseases.
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Chapter 5

Deep Convolutional Neural Networks in

Thyroid Disease Detection

5.1 Introduction

The clinical diagnostic procedure for thyroid disease is relatively fussy and inefficient.

Patients usually undergo a set of examinations such as thyroid function tests, medical

image scanning (e.g., ultrasound, CT, MRI, radio-iodine scintigraphy, or positron emission

tomography), FANC, or even biopsy to arrive at an accurate diagnostic decision. However,

all these examinations are correlated with varying degrees of uncertainties in human false-

positive and false-negative rates. Therefore, streamlining the process has the potential to

increase the accuracy and efficiency of diagnostic decision-making.

In recent years, deep learning techniques, specifically convolutional neural networks

(CNN), have improved diagnostic performance in interpreting medical images. Specifi-

cally, existing studies have put much effort into engaging with ultrasound images to detect

thyroid cancer [50, 327, 146, 221], all demonstrating superior performance compared to

radiologists. Ultrasonography is non-invasive and cost-efficient, and it can provide de-

tailed structures of thyroid nodules, making it well-accepted for thyroid suggestive of

malignancy [201, 243, 289]. Nevertheless, the process is operator-dependent, which may
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result in inter-observer variations, much less say that it is highly susceptible to noises and

speckles [309]. Moreover, the existing CAD models are usually designed to classify thyroid

nodules individually, which is highly inefficient, leading to absent implementations in the

clinical domain.

Besides ultrasonography, the CT scan is also recommended when diagnosing thyroid

disease, whereas it is always suggested prior to surgeries for evaluating central lymphatic

metastasis [139]. CT scan is comparatively more consistent than ultrasonography as it

has fewer human factors influencing the image quality. Additionally, CT is influential in

defining locations of abnormal thyroid nodules, relationships among structures, malignant

invasion, and extent of retrosternal extension [351]. Relying on any of the unitary image

modalities for diagnostic decision-making is not convincing enough. Therefore, the two

imaging modalities are complementary, and their comparison of CNN performance for

thyroid disease detection was made in this chapter.

Based on the provided comprehensive literature review analysis, most existing CAD

models were designed to distinguish between benign and malignant thyroid nodules re-

gardless of the adopted image modalities. In practice, functional and neoplastic thyroid

diseases undergo varied treatment protocols. However, the existing CAD models, thought

to be efficient, still have limitations in generating expert-level diagnoses. Accordingly,

sub-classifying thyroid disease types should be achieved for precise treatments, poten-

tially enhancing clinical applications of deep learning algorithms.

Therefore, in this chapter, the use of CAD models was described to mitigate human

false-positive and false-negative diagnostic rates through binary classification tasks and

achieve precise diagnosis through multi-classification tasks, using ultrasound and CT im-

ages for comparative analysis. The CAD models can assist clinicians in streamlining

patient management and diagnostic decision-making. It can also help to avoid unneces-

sary FNAC cytology or biopsies of non-suspicious lesions, potentially mitigating patients’

physical and financial stress. The related background words of this chapter were described

in Chapter 2.3.2.
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The contents of this chapter have been published in journal articles 1, 2.

5.2 Problem Formulation

In order to reach precise diagnoses for thyroid disease, the binary and multi-class

classification tasks were implemented in this chapter with the use of ultrasound and CT

images for comparative evaluation.

Given the image dataset D ∈ {X, y}, let X = {X1, X2, . . . , Xn} where Xi is the ith

image matrix and n is the total number of images. Specifically, Xi ∈ Rw×h×c
i , where the

images are denoted as w width and h height in RGB channels. Additionally, y ∈ {0, 1} is

used for the binary classification tasks, where 0 indicates the image is labelled as normal

gland and 1 as abnormal. For the multi-classification tasks, y ∈ {0, 1, 2, 3, 4, 5} where

the image is labelled as 0 - normal, 1 - thyroiditis, 2 - cystic nodular, 3 - multi-nodular

goitre, 4 - adenoma, and 5 - cancer, respectively. Those six classes were pre-defined and

selected based on their treatment protocols. With the objective to reach consistency for

CNN evaluation, the ultrasound and CT images were all resized into Xi ∈ R224×224×3
i .

With the goal to enhance thyroid disease diagnostic performance, the classic and

advanced CNN models were evaluated in this chapter, including VGG [280], ResNet [105],

Inception [293], DenseNet [114], and Xception [57]. It should also be noted that all these

models were used for the binary classification task, and the top three best-performing

models were applied for the multi-classification task for efficiency.

5.3 Methodology

In order to obtain automatic diagnoses for thyroid disease through deep learning tech-

niques, a rigorous procedure has been applied for CAD designs incorporating two image

modalities. This section describes the overall implementation process and the selected

CNN models.
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The Proposed CNN-BM Framework

Figure 5.1 depicts the CNN implementation process for detecting thyroid disease in

binary and multi-class classification tasks. More specifically, the ultrasound and CT image

sets were pre-processed to ensure consistency. In particular, all the images were re-sized

into 224 × 224 in resolution. The CT scans were segmented into left and right sides

in the middle of the trachea through the generated python-based CT-segmentation tool

(available in Appendix B). The reason behind segmenting CT scans is that patients might

have two sides of the thyroid gland diagnosed with different diseases. Thus, segmenting

the CT scan allows applying a different diagnostic label to each lobe individually.

Then, the labelling process was conducted manually and rigorously. All images were

labelled based on the TIRADS score, the cytological examinations, and histopathological

results. In practice, at least two pathologists are generally involved in the diagnostic

decision-making process for each patient, and additional pathologists might also get in-

volved in generating final decisions if disagreements occur between the two. There were

chances that multiple diagnoses appeared in one image. Therefore, a dominant class was

assigned to that corresponding image. The dominant class was defined based on the sever-

ity of the disease, following the sequence of the normal kind being the least severe kind,

then thyroiditis, cystic nodule, multi-nodular goitre, adenoma, and cancer being the most

severe type. Images without any TIRADS, cytology, or histopathology confirmations were

excluded from this study.

The selected CNN models were trained and evaluated with the labelled images through

k-fold cross-validation. In order to avoid over-fitting, the fine-tuning process was also ap-

plied during model training and validation. In this case, the top three best-performing

CNN architectures were adopted for multi-classification tasks. The generated perfor-

mance from ultrasound and CT scans were compared based on a series of evaluation

metrics, including accuracy, precision, recall, F1, and NPV. Lastly, the model with the

best performance was recommended for CAD implementations in the clinical domain, and

the comparison between the two image modalities was also interpreted.
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Figure 5.1: CNN-based binary & multi-class classification framework (CNN-BM) for thy-
roid disease diagnosis.
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5.3.1 Network Architectures

With the emergence of deep learning techniques, the use of CNN models in the thyroid

domain is relatively abundant, especially the use of VGG [72, 78, 260, 140] and ResNet

models [97, 164, 70]. Those CAD models have demonstrated satisfactory diagnostic ac-

curacy for thyroid disease detection ranging from 70% to 92%.

In order to have a comprehensive investigation of the CNN models in thyroid dis-

ease diagnosis, more advanced architectures were involved in this study, including Incep-

tion, DenseNet, and Xception models. More specifically, 11 CNN models were adopted

and evaluated with the binary classification tasks, including VGG8, VGG11, VGG16,

VGG19, ResNet10, ResNet18, ResNet50, DenseNet121, InceptionV3, InceptionResNetV2,

and Xception.

With the development of the first CNN model, Le-Net, introduced in 1998 by Le-

Cun et al. [156], AlexNet [149] and VGG [280] models were developed for classification

purposes. Those models have standardised architectures that stack several convolution

operations, following max-pooling or average-pooling layers and ending with fully con-

nected layers. Those CNNs select critical features through the receptive field and are

activated using the rectified linear unit (ReLU) function (Eq. 5.1) [275, 191]. The fea-

ture map size is generated through Eq 5.2. Here, F (S) is used to represent the size of

the feature map, nw, nh, nc denote the input feature map size with width, height, and

channel numbers, s stands for the stride number, while f represents the kernel size of the

convolutional operation.

ReLU(x) = max(0, x) = max(0,
∑i=n

i=1
wixi + b) (5.1)

F (S) = (
nw − f

s
+ 1)× (

nh − f

s
+ 1)× nc (5.2)

Such architectures are generic and can be adjusted based on specific tasks, and the
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commonly used architectures for VGG are VGG11, VGG16, and VGG19. However, re-

searchers raised a concern that those models might not be appropriate to interpret medical

images as they are much simpler in structures compared to natural images [34]. Accord-

ingly, we reduced the depth of VGG architectures and proposed VGG8.

In theory, the more convolutional operations were stacked to the CNN, the better

the classification results of the model would be. Nevertheless, the reality is that when

more convolutions are stacked, the model will likely get a gradient explosion that can no

longer implement the required tasks. In this regard, ResNet was proposed to address the

issue as it can generate very deep CNNs, avoiding aggregating parameters that take ex-

ponentially increased computational resources [105]. More importantly, ResNet produces

better classification results than conventional convolutional stacking CNN architectures as

it can learn residuals through layers. This research proposes the ResNet10 architectures

to compare with ResNet18 and ResNet50.

DenseNet was proposed by Huang et al. [114] to increase the accuracy caused by

the vanishing gradient. The concept behind the model is that the information vanishes

gradually before reaching the destination. Accordingly, the DenseNet was proposed to

address the issue, which contains several dense blocks. Each layer from the dense block

connects to all its preceding layers as the input so that the accuracy can be enhanced by

reducing information loss.

The Inception model was proposed by Szegedy et al. [293], which introduced the

inception module (Figure 5.2) to generate more accurate results. The inception module

concatenates feature maps generated through different kernel size convolutions. Kernel

size is influential to CNN performance, and classic CNN models apply fixed kernel size.

In contrast, the inception module applies different kernel sizes simultaneously, including

1× 1 to mitigate the feature map depth, 3× 3 and 5× 5 to obtain different information

learned through the varied size of the receptive fields. The feature maps generated from

the three kernels would be concatenated and fed into the next module, allowing enhanced

accuracy as more information can be maintained during each convolutional operation.
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Figure 5.2: Inception module (adapted from [293]).

Xception was inspired by the Inception model [57], which was designed as the “extreme”

version of the Inception module (Figure 5.3). Xception (Figure 5.4) maps cross-channel

correlations from the input image and addresses spatial correlations of each output channel

separately through the depth-wise separable convolutions. Chollet [57] once adopted the

ImageNet database to evaluate Xception, and it reached the best accuracy and efficiency

rates compared to VGG16, ResNet152, and InceptionV3 models.

Figure 5.3: Extreme version of Inception module (adapted from [57]).
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Figure 5.4: Xception architecture (adapted from [57]).

5.4 Experiments

This chapter evaluates the commonly used CNN architectures for thyroid disease de-

tection through a binary classification task. The best-performing three models are further

selected for the multi-class classification task. This section describes the utilised datasets

and the parameter settings during the implementation.

5.4.1 Datasets Descriptions

With the ethical approval obtained, consecutive patients treated for thyroid diseases

were recruited from a first-class hospital in Sichuan Province, China (CN dataset) between

August 2018 and August 2021. The acquired data included de-identified radiological im-

ages and diagnostic reports from 578 patients. The distribution of demographic informa-

tion of the dataset is presented in Table 5.1. Most patients were aged between 55 and

75 with a percentage of 42.54%. A substantial portion of the patients were females, with

a percentage of 76.22%. Over 80% of the pathological results turned out to be benign,

including thyroiditis, cystic nodule, multi-nodular goitre, and adenoma.
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Table 5.1: Distribution of demographics of CN dataset.

Demographics Percentage (%)Age
Below 18 0.35
18 - 35 10.24
35 – 55 40.45
55 – 75 42.54
75 + 6.42
Gender
Male 23.78
Female 76.22
Pathology
Benign 81.78
Malignant 18.22

Ultrasound Datasets

The CN dataset is acquired from the earliest developed hospital on the northern side

of Sichuan province, with over 30 departments. The thyroid department was founded

several years ago and has cured more than 10, 000 patients.

In practice, a complete assessment of the thyroid gland by ultrasonography generates

a set of images demonstrating one nodule from diversified angles or multiple nodules

on one image. Accordingly, a selection of the generated images was included for each

patient. More specifically, the selection process is that if the images represent the same

nodule, those images would have the same diagnostic label. If the images from the same

patient are showing different nodules, the definitive diagnostic label was assigned based

on the corresponding histopathology or cytology findings. Images without clear cytology

or histopathological results were excluded. As a result, this study involves 917 ultrasound

images for investigations.

This research incorporated the benchmark dataset for comparison to evaluate the CAD

models. The Digital Database Thyroid Image (DDTI), an open-access ultrasound images

database offered by Pedraza et al. [243], was utilised. In order to align with existing

studies [290, 221], we have selected our benign images with TIRADS scores at 1, 2, and

3, while the remaining scores 4a, 4b, 4c, and 5 were labelled as malignant. As a result, a
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total of 448 open-access thyroid ultrasound images were selected, with 66 benign and 382

malignant images.

CT Dataset

CT scans are efficient in detecting abnormal thyroid structures based on the shapes

and densities [279]. From the 578 patients, this research sliced the entire CT volumes

with 5mm spacing for each patient, which allows the selection of images with distinct

structures for CAD training to avoid over-fitting and bias. After segmenting the sliced

CT scans into left and right sides in the middle of the trachea, the representative CT slice

was selected and assigned labels correspondingly referred to the diagnostic reports. As a

result, 2, 257 CT scans were involved in this study. The distribution of the ultrasound and

CT scans in the six classes is presented in Table 5.2. Figure 5.5 displays some sampled

images of the acquired datasets in the six classes.

Table 5.2: Distribution of the datasets in the six classes.
Modality Normal Thyroiditis Cystic Goitre Adenoma Cancer Total
Ultra CN 15 80 396 167 59 200 917

CT LT 253 95 357 180 86 209 1180
RT 246 49 394 187 68 133 1077

5.4.2 Data Imbalance

In practice, data imbalance issue is considered a common issue for computer vision

tasks [129]. Data augmentation techniques, such as rotating, flipping, random cropping,

stretching, or mirroring are usually applied for natural images [358]. However, those

techniques are not appropriate in this case. This research focuses on interpreting the

textures, structures, and especially position features of the thyroid images. Thus, altering

the information from the original images is not suitable.

In order to address the data imbalance issue, this study utilises the stratified cross-

validation (CV) [251, 195] and the categorical cross-entropy (CCE) techniques. The strat-
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Figure 5.5: Sample images of ultrasound and CT for the six classes.

ified CV is a practical training and testing split technique, which divides the dataset in

each iteration to retain the distribution of the original observations for each class. This

technique compensates for the unequal number of classes and the uneven distribution

among the classifications. Moreover, it allows the variance of the estimates in each fold to

be reduced, enhancing the fairness of the generated results [251]. Therefore, the stratified

CV was applied in this case rather than the standard CV split so that the lop-sidedness of

each class can be maintained so that the implementation of the CAD can be much more

accurate and efficient without performing data augmentation pre-processing.

The second approach to address data imbalance is using categorical cross-entropy

(CCE) as the loss function to reach unbiased results. The CCE is usually applied to

assign weights to different classes as it can adapt the penalty of a probabilistic false-

negative rate for a given class [108]. The CCE is calculated by using Eq. 5.3. With the

encoded labels y, the last fully connected layer would produce a feature vector indicating

the possibility for each class. Here, sp denotes the predicted score for the specific class,

sj is the inferred score for each class in C, and C refers to the total number of classes.
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CCE = −log( esp∑C
j esj

) (5.3)

5.4.3 Parameter Settings

The classification results were calculated with the stratified 10-fold CV during each

iteration. More specifically, the best-performing epoch was selected for each fold. The

final result was calculated by averaging the ten best-performing epoch scores. The overall

implementation process can be viewed in Algorithm 3. In this case, accuracy, precision,

recall, specificity, NPV, and F1 scores were incorporated and calculated using Eqs. 5.4

to 5.9 from the generated confusion matrix. K is the total number of folds, TP as “True

Positive”, TN as “True Negative”, FP as “False Positive”, and FN as “False Negative”.

Accuracy =
1

K

∑K

i=1

TPi + TNi

TPi + TNi + FPi + FNi

(5.4)

Precision (PPV ) =
1

K

∑K

i=1

TPi

TPi + FPi

(5.5)

Recall (Sensitivity) =
1

K

∑K

i=1

TPi

TPi + FNi

(5.6)

Specificity =
1

K

∑K

i=1

TNi

TNi + FPi

(5.7)

NPV =
1

K

∑K

i=1

TNi

TNi + FNi

(5.8)

F1 = 2× Precision×Recall

Precision+Recall
(5.9)

During the implementation stage, the Adam optimiser was applied with an initial

learning rate of 1 × 10−2, and it was gradually updated through the gradient descent
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algorithm in the fine-tuning stage. The learning rate reached 1 × 10−5 showing stability

and was set fixed thereafter. The batch size was set to 10 during the training process.

In order to reach consistency for comparison, all the experiments were performed under

the same computational environment on the Tensorflow platform, with a 64-bit Windows

10 Pro desktop, which had an Intel Core i7-9700 processor with 16 gigabytes of memory

and a GeForce GTX 1050 GPU.

Algorithm 3: Pseudo-code for image classification with CNN through 10-fold
stratified cross-validation
Input: X = {X1, X2, . . . , Xn}; X is labeled image set and n is total number of
instances
y ∈ {0, 1} or y ∈ {0, 1, 2, 3, 4, 5}; y is the class labels
Divide data into stratified k folds
Initialisation:
Set i = 0
while i ≤ Iteration do

i = i+ 1
for ki in K folds do

Set fold ki as testing set
Train CNN to extract feature vectors from remaining K − ki folds
CNN ← (X, y); Training image sets and labels will be sent to CNN
for i ∈ {1 : len(y)} do
P(i) ← F (i); Predict the test image class based on extracted features
using Eq. 5.3

Output: P = P(i),P(i+1), ..,P(i+m); Set of testing image class labels
end
Calculate correctly classified image in fold ki using Eq. 5.4

end
Acc = Acc(1), Acc(2), .., Acc(i); Accumulate the accuracy scores for each
iteration and store

end
Calculate average performance of all K folds
Output: Averaged testing accuracy for K folds → Acc

5.5 Results

This research is the first of its kind, which adopts two pre-operative medical image

modalities to diagnose thyroid disease. A group of experiments was conducted to compare

the CAD models between ultrasound and CT images. With the labelled datasets, the
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binary and multi-class classification tasks were performed independently. Their results

are demonstrated, explained, and compared in the following sections.

5.5.1 Performance of Binary Classification

In order to have an explicit demonstration of the performance comparison between

the ultrasound and the CT images, this section interprets the binary classification results

with the selected CNNs.

Ultrasound Performance - Binary

The two sources of ultrasound images were used to evaluate the selected 11 models

through the binary classification task. All the models were evaluated through accuracy,

precision, NPV, recall, F1 scores, number of parameters, and running time in minutes.

Table 5.3 presents the experimental results for the binary classification task with the

two sets of ultrasound images. For both data sources, Xception reached the best averaged-

accuracy rates of 0.980 for the DDTI dataset and 0.987 for the open-access dataset. The

second best-performing model for the DDTI dataset was DenseNet121 with an accuracy

of 0.978. Similarly, DenseNet121 was also the second best-performing model for the CN

dataset with an accuracy of 0.965.

Regarding the running time comparison, InceptionResNetV2 is considered the most

time-consuming model for both datasets. ResNet10 is the most efficient model for both

datasets, with 33 minutes for the 10-fold CV using the DDTI dataset, and it took 46 min-

utes to process the CN dataset. Xception reached a similar running time with InceptionV3

and DenseNet121. Therefore, those three models were further selected for the multi-

classification task due to the promising accuracy and efficiency reached.

CT Performance - Binary

Since there is no benchmark dataset for CT images to be compared, this research

only used the CN dataset to evaluate the 11 CNN models. Table 5.4 presents the binary
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Table 5.3: Binary classification results for ultrasound images.

DDTI Results
Model ACC PPV NPV Recall F1 No. para min
VGG8 0.857 0.830 0.667 0.860 0.845 5, 516, 610 46
VGG11 0.832 0.830 0.156 0.635 0.720 10, 826, 306 58
VGG16 0.853 0.730 0.136 0.850 0.785 16, 320, 514 118
VGG19 0.783 0.853 0.156 0.901 0.876 21, 630, 210 141
ResNet10 0.864 0.880 1.000 0.860 0.870 4, 912, 578 33
ResNet18 0.873 0.870 0.846 0.870 0.870 11, 187, 138 53
ResNet50 0.850 0.730 0.852 0.850 0.785 23, 591, 810 82
DenseNet121 0.978 0.985 1.000 0.925 0.954 7, 039, 554 149
Xception 0.980 0.990 1.000 0.945 0.967 20, 865, 578 131
InceptionV3 0.967 0.980 1.000 0.885 0.930 21, 806, 882 117
InceptionResNet 0.971 0.985 1.000 0.900 0.941 54, 339, 810 182

CN Data Results
VGG8 0.799 0.790 0.802 0.800 0.795 5, 516, 610 94
VGG11 0.815 0.688 0.827 0.275 0.393 10, 826, 306 142
VGG16 0.809 0.800 0.814 0.810 0.805 16, 320, 514 241
VGG19 0.792 0.680 0.795 0.090 0.151 21, 630, 210 297
ResNet10 0.832 0.830 0.828 0.830 0.830 4, 912, 578 46
ResNet18 0.828 0.830 0.828 0.830 0.830 11, 187, 138 109
ResNet50 0.865 0.870 0.861 0.860 0.865 23, 591, 810 218
DenseNet121 0.965 0.965 0.965 0.930 0.947 7, 039, 554 203
Xception 0.987 0.985 0.990 0.975 0.980 20, 865, 578 214
InceptionV3 0.924 0.925 0.928 0.840 0.880 21, 806, 882 241
InceptionResNet 0.957 0.982 0.952 0.820 0.894 54, 339, 810 377
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classification results with CT images. Unsurprisingly, Xception again outperformed all

the other models, with an accuracy of 0.966 for the left-side CT scans and 0.970 for the

right-side CT scans. DenseNet121 was still the best-performing model with an accuracy

of 0.954 for the left CT and 0.940 for the right CT images.

Table 5.4: Binary classification results for CT images.

CT Left Results
Model ACC PPV NPV Recall F1 No. para min
VGG8 0.801 0.807 0.659 0.984 0.887 5, 516, 610 130
VGG11 0.687 0.807 0.268 0.794 0.800 10, 826, 306 159
VGG16 0.798 0.800 0.727 0.994 0.886 16, 320, 514 275
VGG19 0.678 0.796 0.233 0.796 0.796 21, 630, 210 321
ResNet10 0.815 0.845 0.603 0.938 0.889 4, 912, 578 52
ResNet18 0.812 0.828 0.634 0.962 0.890 11, 187, 138 81
ResNet50 0.895 0.902 0.860 0.974 0.936 23, 591, 810 221
DenseNet121 0.954 0.955 0.953 0.989 0.972 7, 039, 554 281
Xception 0.966 0.961 0.986 0.997 0.979 20, 865, 578 263
InceptionV3 0.914 0.927 0.855 0.968 0.947 21, 806, 882 207
InceptionResNet 0.892 0.906 0.821 0.964 0.934 54, 339, 810 510

CT Right Results
VGG8 0.785 0.788 0.707 0.986 0.876 5, 516, 610 106
VGG11 0.738 0.802 0.389 0.877 0.838 10, 826, 306 143
VGG16 0.669 0.787 0.277 0.784 0.786 16, 320, 514 270
VGG19 0.777 0.780 0.667 0.992 0.873 21, 630, 210 297
ResNet10 0.774 0.822 0.506 0.904 0.861 4, 912, 578 48
ResNet18 0.780 0.810 0.537 0.935 0.868 11, 187, 138 74
ResNet50 0.878 0.886 0.832 0.966 0.924 23, 591, 810 203
DenseNet121 0.940 0.938 0.948 0.987 0.962 7, 039, 554 260
Xception 0.970 0.967 0.983 0.995 0.981 20, 865, 578 240
InceptionV3 0.895 0.914 0.817 0.954 0.934 21, 806, 882 205
InceptionResNet 0.872 0.877 0.847 0.971 0.922 54, 339, 810 417

A similar pattern was again demonstrated where ResNet10 is the most efficient model,

and InceptionResNetV2 took the most running time. Figure 5.6 illustrates the detailed

running time comparison of the models.

5.5.2 Performance of Multi-Classification

There is no benchmark dataset for the multi-class classification task for either imaging

modality. Therefore, the CN dataset was used to evaluate the three selected models,
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Figure 5.6: Running time comparison of the 11 CNN models.

including InceptionV3, DenseNet121, and Xception, as they are the most accurate and

efficient models in the binary classification task.

Ultrasound Performance - Multi-class

Table 5.5 presents the multi-class classification results with the CN ultrasound image

set. Xception generated the highest accuracy compared to InceptionV3 and DenseNet121,

with an F1 score of 0.93, 0.95, 0.99, 0.96, 0.90, and 0.98 for the normal, thyroiditis, cystic

nodule, multi-nodular goitre, adenoma, and cancer classes, respectively. The averaged

accuracy score through the 10-fold stratified CV was 0.97, 0.85 and 0.89 for Xception,

InceptionV3 and DenseNet121, correspondingly.

Table 5.5: Multi-class classification results for ultrasound images.

Class Precision Recall F1 Score
Incep. DN Xcep. Incep. DN Xcep. Incep. DN Xcep.

Normal 0.70 0.74 1.00 0.50 0.60 0.87 0.58 0.66 0.93
Thyroiditis 0.84 0.90 0.91 0.70 0.66 1.00 0.76 0.76 0.95
Cystic 0.84 0.90 0.99 0.95 0.98 0.99 0.89 0.94 0.99
Goitre 0.86 0.84 0.96 0.81 0.90 0.97 0.83 0.87 0.96
Adenoma 0.74 0.90 0.90 0.53 0.63 0.90 0.61 0.74 0.90
Cancer 0.89 0.91 1.00 0.89 0.93 0.96 0.89 0.92 0.98
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Figure 5.7 shows the confusion matrix of the Xception model on the ultrasound images.

The Xception model correctly classified all normal images and thyroid cancer images. The

model also correctly classified 90.91% of the images of thyroiditis, 98.74% of cystic, 95.86%

of multi-nodular goitre, and 89.83% of adenoma.

Figure 5.7: Confusion matrix of the multi-class classification task on ultrasound.

CT Performance - Multi-class

Table 5.6 presents the classification results for the segmented left-side and right-side

CT images separately. For the left-side CT, the accuracy rates were 0.95, 0.68 and 0.79

for Xception, InceptionV3 and DenseNet121 respectively. For the right-side CT, the

corresponding accuracy rates were 0.94, 0.67, and 0.79. Xception generated F1 scores of

around 0.95 for both sides of the gland in the six classes.

Figure 5.8 depicts the confusion matrix for both sides of the CT images. For the

left-side thyroid lobe, Xception reached a precision of 96.79% of the normal class, 94.95%,
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Table 5.6: Multi-class classification results for CT images.

CT Left

Class Precision Recall F1 Score
Incep. DN Xcep. Incep. DN Xcep. Incep. DN Xcep.

Normal 0.76 0.86 0.97 0.79 0.88 0.95 0.78 0.87 0.96
Thyroiditis 0.67 0.84 0.95 0.69 0.66 0.99 0.68 0.74 0.97
Cystic 0.61 0.73 0.94 0.90 0.97 0.96 0.73 0.83 0.95
Goitre 0.73 0.79 0.95 0.70 0.77 0.92 0.71 0.78 0.94
Adenoma 0.56 0.83 0.94 0.62 0.67 0.94 0.59 0.74 0.94
Cancer 0.68 0.83 0.93 0.71 0.79 0.92 0.70 0.81 0.93

CT Right
Normal 0.64 0.84 0.89 0.87 0.89 0.97 0.74 0.86 0.93
Thyroiditis 0.53 0.69 1.00 0.50 0.63 0.90 0.51 0.66 0.95
Cystic 0.71 0.78 0.96 0.93 0.97 0.95 0.80 0.86 0.95
Goitre 0.62 0.77 0.97 0.72 0.80 0.91 0.67 0.78 0.94
Adenoma 0.60 0.75 1.00 0.58 0.71 0.88 0.59 0.73 0.94
Cancer 0.67 0.78 0.91 0.66 0.77 0.95 0.68 0.78 0.93

93.68%, 94.86%, 94.19%, and 93.24% of the thyroiditis, cystic, goitre, adenoma, and

cancer types, respectively. For the right-side CT, Xception correctly classified all the thy-

roiditis and adenoma types and achieved 88.81%, 95.90%, 96.59%, and 91.37% accuracy

of normal, cystic, goitre, and cancer types.

Figure 5.8: Confusion matrix of the multi-class classification task on CT.

Figure 5.9 illustrates the averaged F1 scores of the 10-fold stratified CV approach in the

six classes for both imaging modalities. Evidently, Xception architecture was much more
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stable and robust in classifying images among the six classes compared to InceptionV3

and DenseNet121.

Figure 5.9: Averaged CV F1 scores for the CNNs on ultrasound and CT (left to right).

Xception provided the most accurate diagnostic rates among all the models in both

binary and multi-class classification tasks. Moreover, it also outperformed the other two

architectures (i.e., InceptionV3 and DenseNet121) with the least running time required

for training and testing. Figure 5.10 presents the running time comparison of the three

models where Xception finished training and testing ultrasound, left-side CT, and right-

side CT scans in 106, 138, and 127 minutes, respectively.

Figure 5.10: Running time comparison for the CNNs on both image modalities.
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5.6 Discussion

Automatic thyroid disease diagnosis can be achieved by incorporating deep learning

techniques and medical images, potentially mitigating patients’ financial and physical

pressure from clinical diagnosis. The deep learning-driven diagnosis can also reduce human

false-positive and false-negative rates when making decisions. Extensive experiments were

conducted with the benchmark and real-world datasets to evaluate the selected CNN

models. This section interprets the classification results and highlights the comparison

between the selected CNNs, the two image modalities, and the performed tasks.

5.6.1 Binary Classification Discussion

The existing studies incorporating thyroid images with deep learning techniques can

reach an accuracy of around 80% [188, 146, 95, 90, 53]. Most works in the literature were

conducted on a few CNN models using unitary image modality, which did not ensure a

comprehensive analysis of the existing architectures. Therefore, this research adopted 11

CNN models for thyroid disease detection on two pre-operative medical image modalities

for comparison.

More specifically, the reduced number of layers for VGG and ResNet models increased

the diagnostic accuracy, indicating that the shallower layer CNN architectures work well

on the simple structure of images. The selected Xception model has obtained a classi-

fication accuracy of 0.980 using the DDTI dataset and 0.987 using the CN ultrasound

images. The accuracy rates of 0.966 for the left-side CT and 0.970 for the right-side CT

scans were generated with Xception. Both image modalities outperformed the existing

studies. Unsurprisingly, ultrasound images performed slightly better on the task than CT

scans. The potential reason behind this might be related to the characteristics of ultra-

sonography, as it is sensitive to human intervention. During the image acquisition process,

clinicians tend to screen nodules that have apparent features for diagnosing, which might

contribute to increased classification accuracy. Whereas the CT scan is generated fully
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automatically, resulting in the lower classification results. However, CT scans can reach

comparable performance with ultrasound images. This outcome also highlights that CT

scans can be of potential use for the implementation of CAD designs.

5.6.2 Multi-class Classification Discussion

The existing studies on multi-classifying thyroid disease subtypes are considerably

lacking, and this research bridges the literature gap and interprets the findings.

The experimental results showed that Xception produced superior accuracy and was

also efficient in processing images, thus allowing the input of a more vast number of

images, making it suitable for the clinical domain. The correct classifications of the

ultrasound images with thyroid cancer (i.e., 100%) are superior to those recently reported

by Chi et al. [55] and Liang et al. [166]. Xception was also highly accurate in classifying

ultrasound images with thyroid cysts or normal thyroid glands. The lower accuracy of

classifying thyroiditis, multi-nodular goitre, and adenoma images was likely due to these

entities’ overlapping characteristics on the ultrasound images.

The classification of the cancer images was somewhat lower for CT than for ultrasound.

This, again, was unsurprising as interior features and characteristics of thyroid cancer

were better demonstrated on ultrasound. In contrast, CT may be more suitable for

demonstrating the characteristics external to the thyroid gland, such as invasion or erosion

of the adjacent structures. Another potential contributing factor was how the images

were acquired since the operator-dependent test might select images containing more

characteristic appearances of each pathology class.

In thyroidology, the existing diagnostic workflow has been well-established over decades.

Any new technology that may significantly disrupt the current status would first need to

earn the confidence of clinicians and patients. Clear demonstration of accuracy, efficiency,

and ease of use are some of the foundations required to develop that confidence. To ad-

dress the issue and prove the feasibility of the CAD techniques, this research proposed

applying different medical image modalities to reach a comprehensive level of diagnostic
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decision-making. However, this research has limitations regarding the labelling process.

In practice, one or several pathology diagnoses can co-exist within one side of the thyroid

gland, whereas this study assigned labels to each image based on the dominating class.

The future plan would incorporate multi-labels into one image for precision classification.

5.7 Summary

In order to elevate thyroid disease diagnostic accuracy and efficiency, the proposed

CNN-BM framework was used to evaluate two pre-operative medical imaging modalities

through binary and multi-class classification tasks.

11 different CNN architectures were utilised to distinguish between normal and ab-

normal thyroid nodule images from ultrasound and CT images. To benchmark the per-

formance, the open-access DDTI dataset was incorporated. Xception demonstrated the

best performance on both binary and multi-class classification tasks through both image

modalities. It reached an accuracy of around 0.98 for the ultrasound and 0.97 for the

CT scans. The comprehensive diagnosis was further achieved through a multi-class clas-

sification task. The three best-performing (i.e., models with the highest accuracy and

efficiency) CNN architectures were utilised in this case. The averaged accuracy scores for

ultrasound and CT images were 0.972 and 0.942 for the six classes.

In summary, this comparative research illustrates that Xception can be adaptive to

different image modalities with superior performance. Ultrasound images generate better

diagnostic accuracy rates than CT scans when establishing CAD models. Such CAD

systems release patients’ burdens from the clinical diagnostic process and emulate the

expert-level diagnosis to assist clinicians with offering preliminary decisions. The proposed

CAD systems can be further adapted to different diseases, enhancing clinical applications.

96



Chapter 6

Multi-Channel Deep Convolutional

Neural Network Architectures in

Thyroid Disease Detection

6.1 Introduction

In recent years, deep CNN models have yielded unprecedented performance on thy-

roid cancer diagnosis through diversified imaging modalities [189, 2, 23, 38]. Such deep

learning-based CAD systems tend to provide superior diagnostic accuracy and efficiency,

sometimes even outperforming clinicians [345]. Although the application of such CAD sys-

tems is commonly adopted, there is an ever-growing demand for more advanced models

to address more challenging scenarios.

Functional thyroid disease, such as thyroiditis, can co-exist with neoplastic thyroid

disease, like adenoma or cancer, and so can the same category [169]. However, the existing

studies have considerably ignored the phenomenon where an individual patient might

suffer from various types of thyroid diseases at one time. The majority of the existing CAD

systems can only distinguish between benign and malignant thyroid nodules individually.

These systems are efficient in detecting the disease and cannot offer a comprehensive
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diagnosis for the entire gland. Therefore, those CAD systems cannot be widely approbated

in the clinical domain as it has limitations in providing an expert-level diagnosis.

Accordingly, this research study proposes the multi-channel CNN architectures to

reach expert-level diagnosis from three aspects, including 1) elevating the comprehensive-

ness of diagnostic decision-making, 2) reaching patient-specific design for CAD implemen-

tations, and 3) enhancing the interpretability of the generated decision. More specifically,

three multi-channel architectures were introduced and can be adaptive based on different

diagnostic output choices, denoting the status of the entire gland. These architectures

ensure that the diagnoses of the overall gland are made for the individual patient at a

time. The generated diagnosis can easily be comprehended by clinicians, emphasising the

interpretability of the produced results by such “black-box” approaches. The architec-

tures were majorly designed following the characteristics of CT scans and were further

evaluated through different gender groups to evaluate their generalisation.

Therefore, this research study proposes three adaptive multi-channel CNN architec-

tures to help streamline the diagnostic process for thyroid disease, highlighting the disease

subtype co-existence phenomenon and aiming to establish an accurate CAD system fol-

lowing the patient-specific design. The proposed multi-channel approach demonstrates

enhanced diagnostic accuracy and has the potential to be integrated into the clinical

workflow to guide primary care physicians in deciding if a specialist referral is warranted.

The related background works of this chapter were described in Chapter 2.3.2.

The contents of this chapter have been published in journal articles 1, 3.

6.2 Problem Formulation

Given the image set D ∈ {X, y}, the image matrix X = {X1, X2, Xi, . . . , Xn} and

label y ∈ {0, 1, 2, . . . , 5} follow the same protocol as the multi-class classification task

described in Chapter 5.2. The proposed CAD system provides a comprehensive diagnosis

of the entire thyroid gland.
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This chapter proposes the multi-channel CNN architectures where they are inspired by

the idea that kernel size has a considerable impact on CNN performance [162, 112, 330].

Kernel size convolves feature maps by determining the size of the receptive fields. More

specifically, a larger kernel will generate abstract features, and a smaller kernel will learn

more detailed textures from the input image. Şaban Öztürk et al. [363] once deployed

histopathology images for evaluation and reported a moderately strong association be-

tween the kernel size and the CNN performance. Several other studies accentuated that

multi-channel CNN architectures generate enhanced diagnostic performance [171, 297, 11].

On top of elevating the diagnostic accuracy by concatenating feature maps gener-

ated through diversified kernel sizes, the proposed multi-channel CNN models have three

adaptive architectures tailored for distinct diagnostic scenarios. Besides, those architec-

tures emphasised the patient-specific design for CAD systems and the detection of thyroid

disease subtype co-existence phenomenon.

6.3 Methodology

This thesis proposed three adaptive multi-channel CNN architectures tailored for di-

versified use of results generation for thyroid disease diagnosis. This section describes the

three architectures, highlighting their benefits and applications.

6.3.1 The Proposed MTCD Framework

Figure 6.1 illustrates the proposed multi-channel CNN framework for thyroid disease

detection (MC-TDD), consisting of the single input dual-channel (SIDC), double inputs

dual-channel (DIDC), and four-channel architectures.

The conventional CNN models usually apply a fixed kernel size for convolutional oper-

ations. This limits the comprehensiveness of learnt features as information loss gradually

aggravates during each convolutional operation. The motivation behind the multi-channel

architectures is to mitigate the risk of losing too much critical information. Accordingly,

99



Multi-Channel CNN in Thyroid Disease Detection Zhang, X.

Figure 6.1: Multi-channel Thyroid Disease Detection (MC-TDD) framework.
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the proposed model obtains an intermediate feature map by concatenating the outputs

generated through convolutions from different kernel sizes so that more informative fea-

tures can be learnt from the original image.

The commonly used kernel sizes in the computer vision tasks are 1× 1, 3× 3, 5× 5,

7× 7, and 9× 9 [293, 363]. The comparative study by Şaban Öztürk et al. [363] indicated

that CNN tended to have the highest validation errors with a kernel size of 9× 9. Thus,

the 9×9 kernel size was excluded from this research as it could not learn sufficient features

for making classifications. Accordingly, this research considers 1× 1 and 3× 3 kernels as

“smaller kernel sizes”, and 5× 5 and 7× 7 as “ larger kernel sizes”. By concatenating the

feature maps generated from a smaller and a larger kernel sizes, the enumeration of those

sizes was evaluated, respectively.

After deciding the choice of the kernel sizes, the number of convolutional channels is

also critical. In theory, more channel numbers would have better classification perfor-

mance as more features can be obtained. At the same time, the model is also prone to

over-fitting as it has a vast number of parameters [328]. In this regard, the dual-channel

architecture is more appropriate than three or more channel numbers as it requires less

computational resources to train, increases diagnostic accuracy, and is suitable for medical

images with simple structures.

6.3.2 Multi-channel CNN Architectures

With the objective of enhancing thyroid disease diagnostic accuracy, this section de-

scribes the proposed three types of multi-channel CNN architectures.

Single Input Dual-Channel (SIDC)

Given the input dataset D, each encoded image Xi will travel through two convolu-

tional channels simultaneously with different kernel sizes (i.e., one with a larger size and

another one with a smaller size), then following the max-pooling operations and produce

two feature maps. The produced feature maps will then be concatenated to the fully
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connected layer and generate the classification output, denoting the class of the input

image. The main advantage of the SIDC architecture is as follows:

• The intermediate feature map from two kernel sizes can maintain more spatial in-

formation from the original image [112], eventually increasing the classification ac-

curacy.

Although the SIDC architecture enhances diagnostic accuracy, yet it can only make

decisions for one image at a time. By looping through the dual-channel architecture,

different kernel sizes can automatically learn different features from the input images.

In other words, larger kernel sizes will learn more abstract features, while smaller kernel

sizes can learn detailed textures such as edges. The concatenating of the two feature maps

following a fully connected layer with a softmax operator will be used to interpret the

selected features [222].

Double Inputs Dual-Channel (DIDC)

Although the SIDC architecture is dedicated to elevating diagnostic accuracy, the

model detects abnormal thyroid lesions based on the individual input image and cannot

produce a comprehensive diagnosis for the entire thyroid gland for each patient. The

proposed double inputs dual-channel (DIDC) model addressed this limitation and achieved

the patient-specific diagnosis.

Notably, the DIDC architecture is designed following the characteristics of CT scans.

Protocolised acquisition of CT scans can provide consistent quality images and a complete

view of the thyroid gland and its surrounding structures. Segmenting the overall CT scan

allows a different label to be applied to each side. The workflow of the proposed multi-

channel CNN is presented in Figure 6.2.

The process is that a thyroid CT volume will be sliced, and representative slices will

be chosen following the 5mm spacing. The selected CT scans from an individual patient

will be segmented into the left and right sides, and both sides will need to be labelled

separately. The second step is to apply the 10-fold stratified CV for training and testing
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Figure 6.2: Multi-channel CNN model implementation procedure.

splits. In the third step, the segmented CT scans from the training sets will be fed into

the constructed multi-channel CNN model, while the testing sets will be used to evaluate

the model. Each left and right-side CT scan will travel through a single-channel CNN

model with the same kernel size to obtain receptive fields with the same size. Then,

the outputs of the two channels will produce a diagnostic result for each side of the

image. Furthermore, the results from the two channels will be concatenated into a 4× 4

matrix, denoting the status of the entire thyroid gland. More specifically, the DIDC model

classifies the patient into “benign” represented using 0, “ left-side malignant” denoted using

1, “right-side malignant” using 2, and “both sides malignant” represented using 3. The

proposed DIDC model can mimic real-life clinical diagnoses made for an overall thyroid

gland, reaching the patient-specific design for diagnosis. The proposed DIDC model has

the following comparative advantages:

• It reaches the patient-specific design for the diagnosis of thyroid disease.

• It offers the explicit status of both sides of the gland for a comprehensive diagnosis.

• The architecture outputs the overall status of the gland, making diagnostic and

treatment decisions more efficiently.

Since this model follows the patient-specific diagnostic protocol, some prerequisites

must comply. The segmented left and right sides of the CT images must be applied in

two separate convolutional streams so the model can provide a diagnostic decision for

each side simultaneously. The input streams of the left and right sides must be from

103



Multi-Channel CNN in Thyroid Disease Detection Zhang, X.

one patient. Additionally, the scale of the two input streams (i.e., the number of both

input image sets) must be equal. Similarly, these requirements also apply to the proposed

four-channel architecture.

Four-Channel

Beyond the SIDC and DIDC architectures, the four-channel architecture incorporates

enhanced diagnostic accuracy and patient-specific design benefits. Each of the left and

right sides of the CT scans will be processed with dual-channel convolutions under different

kernel sizes. Subsequently, the processed feature maps will be concatenated and generate

a classification output that indicates the diagnosis for the entire thyroid gland. The

advantages of the four-channel architecture are as follows:

• It persists the increased accuracy rates obtained by the SIDC model since two

different kernel sizes were incorporated to generate the intermediate feature map.

• It is also designed as patient-specific obtained from the DIDC architecture.

• It enhances the diagnostic accuracy, in the meantime, provides a comprehensive

diagnosis for the overall gland more accurately and effectively.

In order to detect thyroid disease co-existence, the four-channel architecture is incor-

porated for a multi-class classification task. Figure 6.3 depicts the four-channel model for

multi-classifying thyroid disease.

This study incorporates the six most commonly seen types for evaluation (refer to

Chapter 5). The generated classification vectors denoting the class of both left and right

sides will be further concatenated into a 16 × 16 matrix, indicating the overall status

of the gland. The 16 classes include the six pre-defined classes and ten combinations of

disease types in each lobe (see Figure 6.3). The specific fusion of the diagnosis was made

when falling into the below scenarios:

• If both sides are in the normal status, the final class would be the “Normal ” type

(class 0 in Figure 6.3).
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Figure 6.3: Four-channel architecture for thyroid disease co-existence detection.

• If one side of the lobe is normal and the other side is with a particular disease, or

when both sides have the same type of disease, the final class would be the disease

type (from class 1 to 5 in Figure 6.3).

• If both sides appear to have different types of diseases, the final class would be the

fused type (from classes 6 to 15 in Figure 6.3).

The pseudo-code for implementing the four-channel architectures on thyroid disease co-

existence detection can be found in Algorithm 4.

6.4 Experimental Design

Since Xception is the most accurate CNN model for the binary and multi-class classi-

fication tasks and is relatively efficient among the evaluated 11 models, it has been used

as the backbone to implement the multi-channel architectures in this research.

More specifically, the SIDC architecture was evaluated through both CT and ultra-

sound images, while the DIDC and four-channel architectures were evaluated through CT

scans. Additionally, the three architectures were incorporated to detect thyroid cancer for
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Algorithm 4: Pseudo-code for implementing multi-channel CNN architectures
Inputs:
XL = {Xa

1 , X
a
2 , .., X

a
n}; XR = {Xb

1, X
b
2, .., X

b
n}

X is the input CT scan, n is total number of images, a denotes images from
left-side, b denotes images from right-side
yL ∈ {0, 1, 2, 3, 4, 5}; yR ∈ {0, 1, 2, 3, 4, 5}
y is the corresponding class for image sets XL and XR

Divide into stratified K − fold for training and testing
Initialisation:
Set i = 0; K = 10
for k in K folds do

while i ≤ len(X) do
Multi-channel CNN ← (XL, yL;XR, yR); Input images and corresponding
labels from both sides to the model simultaneously for training
pai ← (XL, yL); pbi ← (XR, yR); p = pi, pi+1, .., pi+n; Predicted value
indicating the class from 0 to 5 of the testing image

if pai = 0 & pbi ̸= 0 or pai ̸= 0 & pbi = 0 then
Output← pbiorp

a
i ; Final class of the patient would be the none 0 type

else
if pai = pbi then

Output← pai ; Final class of the patient would be P a
i or pbi

else
if pai ̸= pbi then

Output← Fused(pai , p
b
i)

end
end

end
i = i+ 1

end
Calculate correctly classified image in k − fold using Eq. 5.4

end
Output: Averaged testing accuracy for K folds → Acc
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the entire gland, while the four-channel model was further utilised for disease co-existence

detection. This section describes the utilised datasets and presents the experimental pa-

rameter setting for each task.

6.4.1 Dataset Descriptions

In order to confirm the associations between kernel size and CNN performance, this

research adopted both ultrasound and CT images for evaluation. More specifically, the

SIDC architecture was evaluated with two image modalities. The patient-specific archi-

tectures (i.e., DIDC and four-channel) were evaluated with CT scans solely. The datasets

are described in this section.

Ultrasound Dataset

The conventional single-channel CNN architectures were evaluated in Chapter 5. Thus,

this section incorporates the same image sets for multi-channel CNN architectures for

comparison. More specifically, the 448 DDTI images (i.e., 66 benign and 382 abnormal)

and 917 CN ultrasound images (i.e., 717 benign and 200 malignant) were utilised for the

SIDC architecture evaluation.

CT Dataset

For the evaluation of the SIDC architecture using the CT scans, a total number of

2, 257 segmented images from 578 patients were utilised, including 1, 180 left-side and

1, 077 right-side CT slices. This research aims to achieve thyroid disease co-existence

diagnoses. The representative slices were selected rather than the entire volume of the

CT. Therefore, 3 to 4 slices per lobe were limited in this work. Definitive diagnoses

of each lobe based on FNAC or postoperative histopathology were used to label all the

images. The images were excluded from this study if no histopathological results were

available. The dominant class was assigned to the image based on the severity of the

disease, in which cancer is regarded as the most severe type, followed by the adenoma
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kind, multi-nodular goitre, cystic, thyroiditis, and normal type.

The DIDC and four-channel architectures have a rigorous prerequisite where this re-

search needs to ensure the input sizes from two streams are the same and belong to one

patient at a time. Therefore, the selection of the input images for DIDC and four-channel

architectures was made manually. More specifically, Table 6.1 presents the distribution

of the CT scans in the six classes for the DIDC and four-channel architectures, including

977 images from both sides.

Table 6.1: Distribution of CT scans in the six classes for DIDC and four-
channel architectures.

Side Class TotalNormal Thyroiditis Cystic Goitre Adenoma Cancer
Left 199 68 299 178 55 178 977
Right 217 72 308 179 47 154 977

6.4.2 Parameters Settings

This research considers the single-channel CNN architectures from Chapter 5 as the

baseline for comparison. Therefore, the parameters were set as the same for consistency.

In particular, the learning rate was set as 1× 10−5, and the batch size was set to 2 for the

multi-channel models due to the expensive computational cost. The running environment

was the same as in Chapter 5. The valuation metrics were also the same.

All the images were in the size of 224 × 224 in RGB channels, and the labels were

annotated as y ∈ {0, 1} for detecting benign or malignant class and y ∈ {0, 1, . . . , 5}

for distinguishing among different types. More specifically, 0 to 5 denotes the “normal”

to “cancer” class, which is the same as the multi-classification task. For the disease co-

existence detection, the classes 6 to 15 indicate the combinations of the different diseases,

which can be found in Figure 6.3.

The labelling process for disease co-existence detection was strict. In detail, if a

patient has normal thyroid lobes for both sides of the gland, the patient is considered

“normal”. Similarly, if a patient has the same disease on both sides, the corresponding
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images will be labelled with the dominating disease class. Moreover, if the patient has

one side diagnosed as “normal” while the other side has a disease, the patient will be

classified as the dominating disease class. For example, if the patient has a left-side CT

image diagnosed as normal, and the right-side appears to have cancerous nodules, then the

overall diagnosis would be “cancer”. The different disease combinations were given to an

individual patient based on the dominant class for each side of the CT image. Therefore, a

total number of 16 classes were presented in this research. Besides the primary six classes,

there are types include: thyroiditis with cystic nodule, thyroiditis with goitre, thyroiditis

with adenoma, thyroiditis with cancer, cystic with goitre, cystic with adenoma, cystic

with cancer, goitre with adenoma, goitre with cancer, and adenoma with cancer.

6.5 Results Analysis

This section examines the multi-channel architectures and interprets the ablation

study results on four different kernel size combinations and gender disparity analysis

to test its generalisation.

6.5.1 SIDC CNN Results

The SIDC architecture is dedicated to enhancing the diagnostic accuracy for thyroid

disease by maintaining more features during the convolutional operations. This architec-

ture incorporated the most commonly used kernel sizes (i.e., 3×3 and 7×7) for evaluation

using ultrasound and CT image modalities. The single-channel and the dual-channel ar-

chitectures were compared, and the results are demonstrated in Table 6.2.

For both image modalities, the SIDC architecture outperformed the single-channel

models. More specifically, for the ultrasound images, the DDTI data reached a diagnostic

accuracy of 0.987 through the CV technique with a variance of 0.001. A similar result

was also presented for the CN ultrasound image set with an accuracy of 0.989 achieved.

With the CN CT scans, a slight increase was also found when applying the SIDC
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Table 6.2: Single-channel and dual-channel performance comparison on ultra-
sound and CT images.

Dataset Modality Architecture Kernel Size Accuracy

DDTI Ultrasound
Single 3 0.980 (±0.003)
Single 7 0.984 (±0.018)
SIDC 3, 7 0.987 (±0.001)

CN Ultrasound
Single 3 0.987 (±0.002)
Single 7 0.988 (±0.003)
SIDC 3, 7 0.989 (±0.003)

CN Left CT
Single 3 0.966 (±0.004)
Single 7 0.972 (±0.007)
SIDC 3, 7 0.975 (±0.008)

CN Right CT
Single 3 0.970 (±0.004)
Single 7 0.974 (±0.013)
SIDC 3, 7 0.975 (±0.005)

architecture, with both left and right lobes reaching an accuracy of 0.975. The pattern

demonstrates that when the size of the convolutional kernel is altered, the performance

of the model will be impacted. The multi-channel architectures demonstrated superior

performance when combining the feature maps generated from 3× 3 and 7× 7 compared

to the original embedded kernel size of 3 from the Xception model. When the kernel size

changed to 7, a minor increase was presented for the accuracy in all datasets, and this

might be accumulated when incorporating more images. Therefore, the proposed SIDC

proves that enhanced diagnostic accuracy for thyroid disease can be attained.

6.5.2 DIDC CNN Results

Based on the SIDC architecture results, the DIDC architecture utilised the kernel

combinations of 3×3 and 7×7 for implementation. The DIDC architecture is responsible

for generating diagnoses for the entire thyroid gland following the patient-specific design.

The DIDC architecture aims to produce a diagnostic decision for both sides of the thyroid

gland for each patient at a time. The DIDC model firstly generated the binary classifi-

cation decision for each side of the gland and merged the diagnoses made from each side

into an overall decision, denoted from class 0 to 3, as explained in section 6.3.2. Table
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6.3 presents the DIDC results where it generates promising performance in classifying

normal (i.e., class 0) and malignant (i.e., class 3) patients with an F1 score of 0.91 and

0.97 correspondingly.

6.5.3 Four-Channel CNN Results

The four-channel architecture has been used for binary and multi-class classification

tasks. The binary classification task indicates the overall thyroid gland status of the indi-

vidual patient, whereas the multi-class classification task detects the disease co-existence

phenomenon.

Binary-Class in Thyroid Gland Status Diagnosis

Table 6.3 presents the DIDC and four-channel performance on the binary task. More

specifically, both architectures obtained competitive diagnostic results where the DIDC

model reached an average accuracy of 0.95, and the four-channel model achieved an av-

erage accuracy of 0.94.

Comparing the results from four classes regarding the precision scores, the four-channel

model has achieved a 1.00 accuracy rate for detecting “normal” patients, outperforming

the DIDC model. When detecting abnormal patients, the DIDC architecture performed

slightly better than the four-channel architecture. Those four classes were scored 0.88,

0.94, 0.91, and 0.97 for the four-channel architecture with the F1 metric.

Table 6.3: DIDC and four-channel architectures performance comparison on
the binary classification task.

Architectures Classes Precision Recall F1

DIDC

0 0.97 (±0.091) 0.86 (±0.091) 0.91 (±0.091)
1 0.99 (±0.088) 0.94 (±0.089) 0.96 (±0.089)
2 0.97 (±0.089) 0.88 (±0.090) 0.92 (±0.090)
3 0.96 (±0.006) 0.99 (±0.000) 0.97 (±0.002)

Four-channel

0 1.00 (±0.090) 0.78 (±0.110) 0.88 (±0.096)
1 0.97 (±0.087) 0.91 (±0.089) 0.94 (±0.086)
2 0.94 (±0.099) 0.89 (±0.089) 0.91 (±0.093)
3 0.95 (±0.007) 0.99 (±0.001) 0.97 (±0.002)
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Figure 6.4 shows the averaged accuracy scores for the 10-fold stratified CV with DIDC

and four-channel architectures. The best performing results from each fold were averaged

for the 10-folds (i.e., shown in black), where it can be argued that imbalanced data

sets would result in some fluctuations from the CAD implementation. Besides these

fluctuations, the proposed architecture is relatively stable and performs promising.

Figure 6.4: Averaged accuracy comparison of DIDC and four-channel architectures.

Multi-Class in Thyroid Disease Co-Existence Diagnosis

In order to further evaluate the different kernel size impacts on CNN performance,

Table 6.4 presents the performance of the four-channel architectures in different kernel

size combinations for the multi-class classification task tailored for thyroid disease co-

existence detection.

When the 1× 1 and 7× 7 kernel size convolutions were applied, the highest accuracy

among the four combinations was obtained, which was 0.909. The best F1 score was also

achieved with this kernel setting. With the kernel combination of 3 × 3 and 5 × 5, the

architecture achieved an accuracy of 0.906, which was slightly lower than that of the 1×1

and 7 × 7 combination. For the combination of the kernel sizes of the 3 × 3 and 7 × 7,

the model obtained the lowest accuracy, precision, specificity, NPV, and F1 scores, which

were 0.900, 0.907, 0.992, 0.992, and 0.903, respectively. Nevertheless, the highest recall

score of 0.907 with a variance of 0.06 was achieved with 3×3 and 7×7 kernel combination.
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Table 6.4: Multi-class classification performance of the four-channel architec-
ture in detecting thyroid disease co-existence.

Kernel Accuracy PPV Recall Specificity NPV F1
1 & 5 0.905± .05 0.925± .05 0.889± .05 0.993± .00 0.993± .00 0.904± .05
1 & 7 0.909± .05 0.944± .06 0.896± .05 0.994± .00 0.994± .00 0.917± .06
3 & 5 0.906± .05 0.918± .05 0.894± .05 0.993± .01 0.993± .00 0.904± .06
3 & 7 0.900± .06 0.907± .06 0.907± .06 0.992± .01 0.992± .00 0.903± .06

Figure 6.5 displays the detailed F1 scores for the four kernel size combinations through

the 10-fold stratified CV. The most stably performed architecture achieved the highest

accuracy when the kernel sizes 1×1 and 7×7 combination were applied. More specifically,

the 1× 1 and 7× 7 four-channel architecture reached mean F1 scores of higher than 0.9

for classifying 12 out of 16 classes, including normal, cystic, goitre, adenoma, cancer,

thyroiditis with cystic, thyroiditis with adenoma, thyroiditis with cancer, cystic with

goitre, cystic with adenoma, goitre with adenoma, and adenoma with cancer. In contrast,

the lowest F1 score of 0.85 was obtained for classifying the cystic and cancer class. Besides,

the lowest mean F1 scores of the four models were also presented for the thyroiditis with

adenoma class. The combination of the kernel sizes 3 × 3 and 7 × 7 appeared to be the

most fluctuating model.

6.5.4 Ablation Study

The ablation study was involved in this research to validate the enhanced performance

of the multi-channel architectures by comparing them with single-channel architectures

and gender disparity analysis to evaluate its generalisation.

Single-channel Comparison

The four-channel architectures were compared to the single-channel architectures (i.e.,

with the kernel size as of 3×3, 5×5, and 7×7), and Table 6.5 demonstrates their results.

It should be noted that the kernel size of 1×1 was not evaluated in this case as it is usually

used for dimension reduction [293]. In this regard, the disease co-existence circumstance
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Figure 6.5: Mean F1 scores for the four-channel architecture on multi-classifying thyroid
disease on 10-fold stratified CV.

was taken into consideration. Therefore, the classification results from the left and right

lobes were fused.

Table 6.5: Multi-class classification performance of the single-channel archi-
tecture in detecting thyroid disease co-existence.

Kernel Accuracy PPV Recall Specificity NPV F1
3× 3 0.880± .00 0.904± .01 0.875± .00 0.991± .01 0.992± .01 0.888± .00
5× 5 0.900± .00 0.905± .01 0.894± .00 0.992± .01 0.993± .00 0.899± .00
7× 7 0.902± .00 0.892± .01 0.909± .00 0.993± .00 0.993± .01 0.900± .00

Figure 6.6 depicts the averaged CV performance comparison of the four-channel (i.e.,

kernel size of 1 × 1 and 7 × 7) and single-channel architecture (i.e., 7 × 7 kernel size).

The four-channel architecture achieved increased accuracy, precision, specificity, NPV,

and F1 scores compared to the single-channel architectures. The sensitivity of the four-

channel architecture was slightly lower than the single-channel architecture, and its overall

performance was superior and more stable.
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Figure 6.6: Averaged 10-fold CV performance metrics comparison of the four-channel and
single-channel architectures.

Gender Disparity Analysis

Thyroid disease is more likely to be established in female groups. Therefore, in order to

avoid developing a model prone to make accurate diagnoses for female patients, this section

further evaluates the four-channel architecture of thyroid disease co-existence situation

with different genders.

Table 6.6 exhibits the four-channel architecture (i.e., kernel size combination of 1× 1

with 7×7) performance on female and male groups. The numbers of the input images for

the female and male groups were 774 and 203, respectively. For both gender groups, the

classification accuracy of the multi-channel CNN architecture is promising. For the female

group, the proposed architecture reached 0.908, 0.931, 0.898, 0.994, 0.994, and 0.912 for

accuracy, precision, recall, specificity, NPV, and F1, respectively. The male group had

the corresponding scores of 0.901, 0.954, 0.9, 0.992, 0.992, and 0.913, respectively.

Figure 6.7 further displays the 10-fold CV averaged F1 scores for female and male

groups in the 16 thyroid disease classes. Due to the data sample limitations, the classes

“goitre with adenoma” and “adenoma with cancer” were absent for the male groups. More
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Table 6.6: Gender disparity analysis.

Gender Accuracy PPV Recall Specificity NPV F1
Female 0.908± .01 0.931± .00 0.898± .01 0.994± .01 0.994± .00 0.912± .00
Male 0.901± .01 0.954± .02 0.900± 0.02 0.992± .00 0.992± .00 0.913± .01

specifically, the proposed architecture generalises well to the different gender groups, with

an F1 score larger than 0.85 for most classes. Although the input image scale for the male

groups was much smaller, the model still achieved an outstanding performance. Therefore,

the proposed architecture has the potential to be further extended to different diseases

due to its excellent generalisation.

Figure 6.7: Mean F1 scores for the four-channel architecture on multi-classifying thyroid
disease on the 10-fold stratified CV regarding gender disparity.

6.6 Discussion

The proposed multi-channel CNN architectures consist of three structures, whereas

all were built by using Xception as the backbone. The three proposed architectures

were evaluated using the real-world dataset, demonstrating superior performance to the
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existing studies. Additionally, the choice of outputs (i.e., binary and multi-class) leads to

highly interpretable results that generate potential adoptions in the clinical domain.

The proposed SIDC model obtained a diagnostic accuracy of 0.987 for the DDTI

ultrasound images and 0.989 for the CN ultrasound image set. The results confirmed

the strong association between kernel size and CNN performance. The accuracy rate of

0.975 was obtained for both left and right-side CT images through the SIDC architecture,

all outperforming the single-channel architectures and existing works. The comparison

details with existing works can be viewed in Table 6.7.

Table 6.7: Binary classification comparison with existing studies.

Modality Methods Image Accuracy

Ultrasound

Zhu et al. [358] DDTI 0.840
Sundar et al. [290] DDTI 0.940

Raghavendra et al. [252] DDTI 0.970
Proposed SIDC DDTI 0.987

CT

Li et al. [163] 832 scans 0.859
Zhao et al. [345] 986 scans 0.874
Lee et al. [158] 995 scans 0.904
Zhao et al. [349] 1421 scans 0.957
Proposed SIDC 2352 scans 0.975

The patient-specific DIDC and four-channel architectures are the novelties in this

research and do not have any benchmark studies to compare. These two architectures

also demonstrate outstanding classification results for the binary classification task. The

DIDC model has achieved 0.95 diagnostic average accuracy, and the four-channel model

has obtained a 0.94 average accuracy score. Besides, CT scans can reach comparable

detection results compared to ultrasound images. This highlights the potential adoption

of other medical image modalities for the implementation of CAD approaches.

Single-channel CNN models were typically used to distinguish between benign and

malignant nodules [2], which are limited in considering the disease subtype co-existence

situation. Accordingly, the four-channel architecture was further applied for a multi-

classification task to address the disease co-existence detection issue. Among all the

existing works in the literature on thyroid disease detection, the utilisation of CT scans
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is considerably limited. Li et al. [163] deployed 832 thyroid CT slices to classify benign

and malignant nodes and achieved an accuracy of 0.859. Zhao et al. [345] adopted 986

CT images and obtained an accuracy of 0.901. Masuda et al. [197] used CT images to

identify thyroid cancer and achieved the area under the curve score of 0.86. Our four-

channel architecture for multi-classifying thyroid disease is the first of its kind. It achieved

the patient-specific diagnosis for interpreting the status of the entire gland, reaching an

accuracy of 0.909 with kernel sizes of 1× 1 and 7× 7.

The comparative experiments were conducted among single and multi-channel archi-

tectures under different kernel size combinations. The 1×1 and 7×7 architecture generates

the best performance with stability. The slight decrease of the single-channel compared

to the multi-channel architectures in the sensitivity might be due to the increased model

complexity, as the sensitivity will likely be affected and prone to over-fitting. Notably,

the sensitivity score appeared relatively lower in all the experiments. The primary class

affecting the CNN sensitivity score is “thyroiditis”, in which the sensitivity score tends to

be dragged down when this disease type exists. Such a result is expected and acceptable

as thyroiditis can co-exist with neoplastic diseases and can confound the analysis. By

considering labels given to each image based on the dominant class during the training

stage, there might be cases where thyroiditis manifested on the image but is not labelled

as that class, resulting in a lower sensitivity.

For the disease co-existence detection, the “goitre” class tends to exhibit the highest

precision than the other classes for both single-channel and multi-channel architectures.

The reason might be due to the multi-nodular goitre manifestation being distinct from

the other types of nodules.

Despite the superior diagnostic performance of the proposed multi-channel CNN ar-

chitectures, there are limitations related to the labelling process. In practice, each CT

slice may have more than one diagnosis, and this has not been addressed by existing

studies. In the proposed research, the dominating class of the image was given to each

CT slice. It would be engaging in developing a new multi-class model to process multi-
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labelled images with the k-hot encoded labels to provide a comprehensive diagnosis. In

addition, although CT images can provide more details around the thyroid gland than

ultrasonography, it is generally not the preferred modality to characterize thyroid diseases

in the clinical setting. Clinicians may find it difficult to accept a thyroid CAD system

based on CT images. Therefore, future studies may incorporate other medical imaging

modalities to design patient-specific CAD systems.

6.7 Summary

This research proposes three adaptive multi-channel CNN architectures for different

output choices, including binary classification denoting the status of the entire thyroid

gland and multi-class classification detecting disease co-existence phenomenon.

The proposed SIDC, DIDC, and four-channel architectures were evaluated with real-

life datasets. More specifically, the SIDC architecture exhibited increased diagnostic accu-

racy compared to single-channel architectures. The DIDC and four-channel architectures

achieved patient-specific diagnosis and provided a comprehensive diagnosis for the entire

thyroid gland. From the generated results, it was indicated that kernel sizes strongly

impacted CNN performance. The intermediate size of the feature map was generated by

combining one smaller and one larger kernel, which will eventually contribute to enhanced

diagnostic accuracy. Furthermore, the three architectures demonstrated that the outputs

were highly interpretative and easier to gain clinical trust.

The four-channel architecture was further evaluated with a multi-class classification

task. Different kernel size combinations were analysed, and the model was tested with

different gender groups, all demonstrating its promising generalisation.

This research bridges the literature gap regarding the detection of the thyroid disease

co-existence situation. We envision more studies to be applied to rigorously examine the

generalisation and performance of such multi-channel CNN architectures for diagnosing

different diseases. With the increasing evidence of the feasibility of deep learning-based
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approaches, clinicians may be more confident and comfortable working with artificial

intelligence-based diagnostic tools to reduce their workloads and mitigate diagnostic bias

or human false-positive rates.
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Chapter 7

A Unified Model for Enhancements in

Comprehensive Thyroid Disease

Diagnostic Decision-Making

7.1 Introduction

Diagnostic decision-making in practice usually generates hypotheses that draw upon

the clinician’s expertise, associations, and experiences [79]. The key elements affecting

the quality of diagnostic decisions are the professional’s knowledge, cognitive capacities,

and the patient records required for interventions [317]. Those factors contribute to diver-

sified medical cultures. In clinical decision-making, it is generally required to incorporate

one or more intuitive justifications for diagnosis to mitigate the degree of uncertainty

aroused from incomplete mastery of knowledge [317]. Accordingly, involving more facets

of diagnostic hypotheses will potentially enhance the quality of a decision being made.

Due to the increased sensitivity in the medical diagnostic procedures, over 50% of

adults are determined to have thyroid nodules [3], while the clinical diagnostic process

is rigorous yet complex. The overall diagnostic procedure accompanies the inevitable

human false-positive and false-negative diagnostic rates. Although there is a large body
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of existing works on incorporating medical imaging with deep learning in designing CAD

systems for thyroid cancer detection [174, 53, 179], those models usually use unitary

datasets, which is incompetent in generalising to different patient profiles. Therefore, this

research proposes to use the ensemble modelling technique to utilise limited information

in generating more objective, reliable, and comprehensive diagnostic decisions, intending

to highlight the prospective impact of enhancements in thyroid cancer diagnosis.

The implementation of ensemble models is long-established with the emergence of deep

learning techniques, and its performance tends to be more accurate and stable than the

single models [352, 51]. The ensemble learning concept was introduced by Igelnik et al.

[117] in 1999 to emphasise the generalisation mechanism. Since then, there has been an

increasing number of ensemble-based designs in CAD applications [350, 304, 178, 125, 305].

Zheng et al. [350] proposed an ensemble model that combines 2D and 3D biomedical

images for segmentation tasks. Velusamy and Ramasamy [304] evaluated three ensemble

mechanisms to predict coronary artery disease, including average voting, majority voting,

and weighted-average voting. Their work demonstrated that weighted-average voting

qualifies as the best-performing mechanism with a 98.97% accuracy rate achieved. Loddo

et al. [178] established the ensemble model by combining three CNNs through an averaging

method to detect Alzheimer’s disease through MRI, reaching a diagnostic accuracy of

99.29%. Many more similar studies were also proposed delicately aiming to detect various

diseases more accurately [257, 254, 13, 209, 30, 1]. Figure 7.1 depicts that standard

ensemble models that integrate results generated by multiple individual networks usually

contribute to enhanced performance.

However, ascribing to the unitary input data source, those ensemble models have

difficulty adapting to diverse patient profiles (e.g., with distinct demographics, ethnicity,

and cultural habits). This effect, more or less, limits the comprehensiveness of diagnostic

decision-making and its clinical applications. Therefore, the input variety and output

results should be adequately considered to address the challenge.

Based on the conducted comprehensive literature review, only a few existing studies
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Figure 7.1: Classic ensemble modelling approach with unitary dataset used for training
and testing in CAD design.

adopted the ensemble approach to enhance the detection accuracy for thyroid cancer di-

agnosis [53, 74]. Chen et al. [53] proposed a multi-view ensemble technique, which adopts

major voting to make the final diagnostic decision by involving segmentation masks and

original ultrasound images. Duc et al. [74] used the ensemble learning technique to ag-

gregate the classification results performed from the FNAC slides in multiple classifiers.

Although considered accurate, those ensemble modelling-based deep neural networks were

usually trained and evaluated with unitary self-acquired datasets. This significantly im-

peded the models’ ability to adapt to different institutions with diverse patient profiles.

In this regard, the existing ensemble models cannot be utilised cross-institution, much less

cross-nation. Accordingly, this research deployed data sources from two countries to build

the unified model selection approach. It consists of a dynamic weighting mechanism and

a weighted ensemble averaging model, strengthening its ability to be adaptive to diverse

institutions, supporting reliable diagnoses, and further enlarging its clinical applications.

In summary, this research makes contributions in the following four aspects.

• A unified model selection approach was proposed for utilising limited information in

generating more objective, robust, reliable, and comprehensive diagnostic decision-

making for thyroid cancer detection.

• The proposed model selection approach dynamically assigned weights to individual

networks based on their pre-determined performance metrics, enhancing its adap-

tation to diverse data populations.
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• A weighted ensemble averaging model was trained with cross-institutional data

sources under diversified medical culture scenarios, tailored for precise thyroid can-

cer diagnosis.

• The proposed approach was dedicated to assisting clinicians with preliminary diag-

nostic decision-making and mitigating patients’ financial and physical pressure from

the clinical diagnosis. It can also be further applied to diagnose different diseases.

The contents of this chapter are in preparation for submission to the 26th

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD

2023) in conference article 1.

7.2 Problem Formulation

The experimental results from the previous chapters show that ultrasound generates

better diagnostic decisions than CT scans when designing CAD systems. This research

then deployed the weighted ensemble averaging modelling technique to generate compre-

hensive and reliable thyroid cancer diagnostic decisions through ultrasound images. Data

sources from two countries (i.e., Australian and Chinese datasets) were incorporated in

training the model, and the external DDTI image set was used to further test the model.

Given the ultrasound image set from the Australian hospital (AU Dataset) DA where

DA = {Xa, ya}, Xa indicates the encoded image matrix from the AU dataset, and ya ∈

{0, 1} as binary-class labels. Similarly, the ultrasound image set from the Chinese hospital

(CN Dataset) is denoted as DB = {Xb, yb}. The ultrasound image set from the DDTI

repository (Open-access, OA Dataset) is represented as DO = {Xo, yo}.

In order to reach consistency with the previous chapters, all the images from the three

data sources were re-sized into 224× 224. The proposed unified model selection approach

selected the same baseline CNNs used earlier for evaluation (see Chapter 5).
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7.3 The Proposed Unified Model Selection Approach

The proposed unified model selection approach consists of three main components

(shown in Figure 7.2): a) the individual pre-trained CNN through cross-national data

sources, b) the dynamic weight assignment mechanism for the ensemble averaging scheme,

and c) the proposed weighted ensemble averaging model for more reliable and compre-

hensive diagnostic decision-making.

Figure 7.2: The proposed unified model selection approach.

The input cross-institutional datasets from two countries were split into training and

validation sets separately. The individual CNN architectures were pre-trained using the

cross-institutional training sets. The validation sets were used for fine-tuning the indi-

vidual networks. The weights were assigned dynamically to the pre-trained individual

networks based on their pre-determinate evaluation metrics, forming into the weighted

ensemble averaging model. In addition, the proposed weighted ensemble averaging model

was further evaluated with an external open-access dataset.
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7.3.1 Individual Network Training

Given the No Free Lunch theorem (NFL) proposed by Wolpert and Macready [321],

there is no single best-fitting CNN architecture for all datasets when they confront dif-

ferent image qualities, scales, and sizes. Therefore, this research selected the five most

commonly utilised CNN architectures in the thyroid cancer detection task as candidate

individual learners (i.e., individual networks) for the unified model selection approach

[77, 312, 228, 313, 158]. The selected architectures include VGG11 [280], ResNet50 [105],

DenseNet121 [115], InceptionV3 [293], and Xception [57]. Each baseline CNN architecture

was independently evaluated and compared through pre-training and fine-tuning with the

datasets acquired from two countries. Then, the best-performing candidate models were

selected as individual learners from the two data sources. They were then assembled using

a dynamic weighting mechanism to generate the unified ensemble model.

7.3.2 Dynamic Weighting Mechanism

There are three ensemble modelling schemes, including voting, averaging, and weight-

ing [356]. In the existing studies, the voting and the averaging methods have been applied

widely for computer vision tasks [350, 256]. The weighting method was introduced in 1998

by Jimenez [123] as aggregating outputs determined from several neural networks through

a pre-determined weight. This mechanism emphasises that the weight would be higher

when a neural network is more confident with its decisions being made. In other words,

when an individual learner has high certainty in its predictive results, its weight should be

higher than the others. This theory inspired our construction of the ensemble approach

that the assignment of weights to the individual neural network should be dynamic and

adaptive based on varied pre-determined performance criteria. Accordingly, when the

individual learner performs better than the remaining models, its corresponding weights

should be adjusted higher when assembling to the rest.

The weighted ensemble averaging model can be interpreted in Eq. 7.1, in which n is
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the total number of models waiting to be assembled, wi denotes the dynamically assigned

weights to the individual learner based on its evaluation metrics, and fi represents the

performance results on the input image X.

f =
n∑

i=1

wifi(X) (7.1)

By considering its dynamic characteristic, wi for the individual learner can be calcu-

lated as follows:

wi =
L(fi(x))∑n
j=1 L(fj(x))

(7.2)

More specifically, L denotes the metric value from the ith neural network. More

precisely, the weights of the individual learners should be adjusted based on their pre-

determined performance criterion. In order to have a comprehensive analysis of the dy-

namic weighting distribution, this research has incorporated eight evaluation metrics,

including area under a curve (AUC), accuracy (ACC), precision (i.e., positive predictive

value, PPV), recall, specificity, F1, NPV, and false-positive rate (FPR, calculated with

Eq. 7.3).

FPR =
1

K

∑K

i=1

FPi

FPi + TNi

(7.3)

7.3.3 Weighted Ensemble Averaging Model

Zhou [356] once indicated that the individual learners should be accurate and diverse

to propose an effective ensemble model. Deriving from this, this research pre-trained

individual learners with cross-institutional data sources from two countries with distinct

patient profiles under diverse medical cultural backgrounds. In this regard, the individual

learners were constructed and selected to be accurate and diverse in their best-performing

status. After assigning weights to the selected individual learners based on their pre-

determined performance metrics, the weighted ensemble averaging model was established.
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In order to transfer the knowledge learnt from individual learners to the ensemble

model, the transfer learning paradigm was incorporated in this case. Transfer learning

has been well explored in existing studies for CAD implementations [352, 68]. It transfers

knowledge learnt by a teacher network (i.e., individual learners) through a softened distri-

bution of the final output to a student network (i.e., ensemble model). Given this protocol,

the ensemble model can learn how the individual learners studied more effectively, given

different data sources.

Intuitively, this research considered real-life clinical scenarios where cross-institutional

datasets are of different qualities and scales to train and fine-tune the individual and en-

semble models. More specifically, this research altered the size of the input image sources

to mimic the reality in the clinical domain, including images with similar sample scales,

one set over another in quantity, and the opposite. Extensive experiments were established

with the adjusted image scales to evaluate the proposed model selection approach. Fur-

thermore, this research evaluated the proposed ensemble models under different scenarios

through the external DDTI dataset [243].

7.4 Experiments

With the involvement of two distinct data sources, the unified model selection approach

can provide preliminary diagnostic decisions to support clinicians in detecting thyroid

cancer. This section outlines the dataset descriptions and the weighted ensemble averaging

model learning procedure.

7.4.1 Datasets Descriptions

With the ethics approval obtained, the CN and AU datasets were acquired. More

specifically, 748 consecutive patients’ electronic health records were utilised, including 578

patients from the Chinese hospital and 170 from the Australian hospital. The acquired

records include their diagnostic reports and radiology images (i.e., ultrasound). Each of
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the acquired ultrasound images was labelled based on its corresponding histopathological

diagnosis. Otherwise, the images were removed if there were no pathological or cytological

determinations.

Following the rigorous labelling process, 2, 617 images were acquired from the Aus-

tralian hospital (AU dataset), and 917 images were incorporated from the Chinese hos-

pital (CN dataset). Notably, those images were acquired with different devices. The

AU dataset utilised the Philips Medical Systems EPIQ and iU22 scanners, while the CN

dataset involved a set of devices, including Philips EPIQ5, Hitachi, and S5. The AU

dataset consists of a series of head and neck scans through the OHIF Viewer, while the

CN images were embedded within the diagnostic reports. Therefore, more images were

generated for the AU dataset than for the CN dataset.

The data augmentation techniques were applied to address the data imbalance issue in

this case. Additionally, the data augmentation technique was also incorporated to alter

the original image sets to mimic the diversified clinical scenarios for model evaluation.

More specifically, the smaller scaled class (i.e., malignant) for both sets were rotated in

90◦, 180◦, 270◦ degrees. As a result, 4, 339 AU and 1, 517 CN images were generated. To

further evaluate the generalisation of the proposed model selection approach, this research

altered the size of the two datasets through sampling. The sampling process includes

flipping for up-sampling and randomly selecting for down-sampling (i.e., three times up-

and down-sampling), intimating the real-life scenarios that different institutions archive

distinct image sample sizes. Table 7.1 presents the distribution of the raw, augmented,

and altered datasets in each class.

Besides using the CN and AU datasets for pre-training the individual learner and

constructing the weighted ensemble averaging model, this research used an open-access

dataset (OA dataset) to evaluate the proposed ensemble model.

The OA dataset was obtained from the DDTI repository, which was proposed by

Pedraza et al. [243]. The dataset consists of 448 ultrasound images from 400 patients.

Those images were labelled following the TIRADS guideline, which classified images into
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Table 7.1: Image class distribution in different scenarios.

Scenarios Data Source No. Benign No. Malignant Total

Raw AU 2, 043 574 2, 617
CN 717 200 917

Augmented AU 2, 043 2,296 4,339
CN 717 800 1,517

Up-sampled AU 2, 043 2, 296 4, 339
CN 2,151 2,400 4,551

Down-sampled AU 709 783 1,492
CN 717 800 1, 517

seven risk stratification based on the number of suspicious features on images. To align

with the existing reports in the literature [221, 290], this research has labelled the benign

images with TIRADS ranking from 1 to 3, and the remaining ones ranked from 4 to 5 were

labelled as malignant, which was the same labelling protocol from Chapter 5. Among

the 448 images, 66 were labelled as benign and 382 as malignant. After augmenting

the malignant class, 646 images were used for evaluations, including 264 benign and 382

malignant. Figure 7.3 illustrates some sample images and their corresponding descriptions

from the three data sources with expert annotations and descriptions. Note, the OA

dataset does not have expert region-of-interest annotations.

7.4.2 Learning Procedure

The overall learning procedure of the proposed unified model selection approach con-

sists of two main phases, including pre-training the individual learners and transferring

knowledge to the ensemble model through the dynamic weighting mechanism. Algorithm

5 interprets the pre-training and fine-tuning procedure of the individual learners. Algo-

rithm 6 presents the detailed implementation of the weighted ensemble averaging model.

This research empirically evaluated the individual learners and the ensemble model

with the Adam optimiser using the sparse categorical cross-entropy calculated in Eq. 7.4.

SCCE = −
C∑
i=1

yilog(ŷi) (7.4)
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Figure 7.3: Sample images from the three data sources.

As this research involved independent data sources for training, validation, and testing,

the 10-fold CV was not applied in this case. The training and validation split for the CN

and AU dataset followed the ratio of 8 : 2. During each training iteration, the learning rate

was initially set to 1 × 10−3, and it was gradually updated during the fine-tuning phase

for each model. The batch size was set to 8 within 100 epochs, and the best-performing

model was selected based on the validation accuracy.

7.5 Results

To evaluate the proposed unified model selection approach, this section interprets the

results from three perspectives: individual learner’s selection, weighted ensemble averag-

ing model performance, and ablation study on distinctive weighting mechanism.
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Algorithm 5: Individual learner selection
Input: DA = {Xa, ya}, DB = {Xb, yb}
Output: Performance metrics LA and LB of the best-performing individual
learners

Split DA and DB into training and validation sets
for augmented, up-sampled, and down-sampled DA and DB do

Pre-train individual networks TA = {T 1
A , T 2

A , ..., T i
A} and TB = {T 1

B , T 2
B , ..., T

j
B}

with training sets of DA and DB

Fine-tune individual networks TA and TB based on validation results
while TA and TB are with best performance LA = {L1

A,L2
A, ...,L8

A} and
LB = {L1

B,L2
B, ...,L8

B}, denoting metrics AUC, ACC, PPV, Recall,
Specificity, F1, NPV, and FPR do

Record best-performing LA and LB
end

end
Store individual learners TA and TB

Algorithm 6: Weighted ensemble averaging model evaluation
Input: DO = {Xo, yo}, TA, TB, LA, LB
Output: Performance metrics LE of the weighted ensemble averaging model
Load individual learners TA and TB

while i = 1 do
Assign weights for TA and TB based on Li

A and Li
B through Eq. 7.2.

Concatenate weighted TA and TB into a weighted ensemble averaging model TE
Input DO into TE for evaluation with the eight metrics
return LE of TE
Store the ensemble model TE
i = i+ 1

end

7.5.1 Individual Learner Selection

Table 7.2 presents the performance of the candidate individual learners. The best-

forming CNN architecture under the augmented situation for the AU dataset is the VGG11

model, reaching an AUC of 0.9811. While the best-performing model with the CN dataset

is the Xception model, reaching an AUC score of 0.9156.

Table 7.3 illustrates the individual learner’s performance under the up-sampled and

down-sampled scenarios. Under all three scenarios, VGG11 demonstrated superior per-

formance on the AU dataset, with 0.8255 accuracy rates for the up-sampled AU datasets.
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Table 7.2: Individual learners’ performance on AU and CN datasets (under
the augmented scenario).

AU Dataset

Model Metrics
AUC ACC PPV Recall Spec NPV F1 FPR

VGG 0.9811 0.9309 0.9498 0.9163 0.9469 0.9116 0.9327 0.0531
Xception 0.9701 0.9217 0.9142 0.9383 0.9034 0.9303 0.9261 0.0966
ResNet 0.8937 0.8203 0.8565 0.7885 0.8551 0.7867 0.8211 0.1449
Inception 0.9002 0.8433 0.8219 0.8943 0.7874 0.8717 0.8565 0.2126
DenseNet 0.8969 0.8272 0.7774 0.9383 0.7053 0.9125 0.8503 0.2947

CN Dataset
VGG 0.8916 0.8158 0.8690 0.8111 0.8226 0.7500 0.8391 0.1774
Xception 0.9156 0.8618 0.9481 0.8111 0.9355 0.7733 0.8743 0.0645
ResNet 0.7348 0.7895 0.8222 0.8222 0.7419 0.7419 0.8222 0.2581
Inception 0.7758 0.7829 0.8065 0.8333 0.7097 0.7458 0.8197 0.2903
DenseNet 0.7958 0.7961 0.7980 0.8778 0.6774 0.7925 0.8360 0.3226

Similarly, Xception outperformed all other models on the CN dataset, reaching an accu-

racy of 0.8901 in the up-sampled dataset. Based on the performance metrics from the

three scenarios, the weights of the individual learners were assigned for constructing the

weighted ensemble averaging model.

Table 7.3: Individual learners’ performance on altered dataset (under the up-
sampled and down-sampled scenarios).

Down-sampled AU Dataset

Model Metrics
AUC ACC PPV Recall Spec NPV F1 FPR

VGG 0.8603 0.8255 0.8404 0.8778 0.7458 0.8000 0.8587 0.2542
Xception 0.8458 0.8054 0.8506 0.8222 0.7797 0.7419 0.8362 0.2203
ResNet 0.7242 0.7651 0.7570 0.9000 0.5593 0.7857 0.8223 0.4407
Inception 0.7665 0.7651 0.7570 0.9000 0.5593 0.7857 0.8223 0.4407
DenseNet 0.7470 0.7987 0.7830 0.9222 0.6102 0.8372 0.8469 0.3898

Up-sampled CN Dataset
VGG 0.5346 0.5516 0.5524 0.5957 0.5067 0.5507 0.5732 0.4933
Xception 0.9538 0.8901 0.9327 0.8435 0.9378 0.8543 0.8858 0.0622
ResNet 0.6883 0.6659 0.7143 0.5652 0.7689 0.6337 0.6311 0.2311
Inception 0.6870 0.6681 0.8160 0.4435 0.8978 0.6121 0.5746 0.1022
DenseNet 0.8761 0.7934 0.8238 0.7522 0.8356 0.7673 0.7864 0.1644
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7.5.2 Ensemble Model Performance

After assembling the individual learners selected from each pre-training iteration, the

weighted ensemble averaging model was evaluated with the OA dataset to demonstrate

its generalisation under the pre-defined diversified situations. Figure 7.4 illustrates the

AUC values for the weighted ensemble averaging model in the three distinctive scenarios.

Figure 7.4: AUC curve for the weighted ensemble averaging model on the open-access
dataset under the different scenarios.

More specifically, the AUC score for the weighted ensemble averaging model under the

augmented situation is 0.9248, and for the up-sampled and down-sampled situations is

0.8816 and 0.8610, respectively. Under all three cases, the ensemble model demonstrated

satisfying adaption with all the AUC values reaching higher than 86% and accuracy values

higher than 85%. Among the three situations, the augmented scenario demonstrated the

highest AUC values greater than 92%. After altering the original image set, a slight

decrease in AUC was found in both up-sampled and down-sampled datasets. This again

supports the statement by Zhou [356] that ensemble models cannot simultaneously ensure
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their accuracy rates and diversity. We might need to sacrifice accuracy when trying to

enhance the model’s diversity.

7.5.3 Ablation Study

In order to evaluate the best strategy for assigning weights to the ensemble model,

the ablation study involved analysing the weighted models constructed based on the eight

different pre-determined performance metrics. Figure 7.4 also exhibits the AUC values

under different weight assignment strategies.

For the augmented situation, the best-performing strategy was when applying the

precision-based weighting scheme, with an AUC of 93.24% achieved. Under the up-

sampled situation, the best AUC was obtained through the recall-based weighting strategy,

with a value of 88.73%. As far as the down-sampled case is concerned, the best-performing

mechanism was the NPV-based weighting strategy, with an AUC of 86.79%.

Heuristically, the ensemble model demonstrated comparable performance when adopt-

ing dynamic weight assignment strategies. Moreover, the ability to be adapted to diver-

sified input volume streams also showcases the ensemble model’s promising performance.

This further highlights its generalisation as it always finds a balance between the better

and the worse performing models, making it unified and adaptive to different data sources.

7.6 Discussion

To yield a general adaptive model to support clinicians in detecting thyroid cancer

requires the diversity of the input sources. Different institutions have distinct protocols

for archiving patient records and managing electronic health systems, which is even con-

spicuous across nations with diversified medical cultures. Accordingly, this aggravates the

challenge of CAD’s applications in the clinical setting. Moreover, nations with developed

characteristics tend to have confidence in their established guidelines, systems, and archi-

tectures, thus, adopting diagnostic decisions generated by their designed CAD systems.
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On the other hand, developing countries usually follow protocols and adopt CAD systems

created by developed nations. In this regard, such a protocol or a CAD system might not

be suitable for those developing countries considering the distinct patient characteristics

and the quality of their records (i.e., scale and feature). The proposed unified model se-

lection approach sought to enrich medical culture by enhancing comprehensive diagnostic

decision-making from diversified sources.

During the individual learner’s selection phase, our results supported the NFL theorem

[321] that there is no best-performing architecture in all types of data sources. This also

emphasises the use of ensemble models for comprehensive diagnostic decision-making.

Sometimes if the diversity of a model has to be increased, the accuracy should be sacrificed

[356]. With the proposed weighted ensemble averaging model, this research sought to

mitigate such a risk and provide precise and effective diagnostic decisions for patients

from diverse cultural backgrounds with distinct demographic features. Since this work

is the first of its kind, which incorporates cross-national data sources for the ensemble

CAD model construction in the thyroid cancer diagnosis domain, there is no existing

benchmark to be compared. Therefore, this research deployed three scenarios to evaluate

the proposed weighted ensemble averaging model. With the augmented situation, the

AU and CN datasets were in different quantities as 4, 339 and 1, 157, respectively. This

was when the ensemble model produced the highest AUC values on the OA dataset of

0.9248 ± 0.0076 for the eight metrics-based weighting strategies. However, after altering

the original datasets with up-sampling and down-sampling schemes to match the two

datasets in quantity, the AUC decreased slightly to 0.9 ± 0.02 on the OA dataset. The

results indicated that rotation as an image augmentation technique performed better

than flipping. Accordingly, during the implementation stage of the ensemble model, it is

recommended to avoid adjusting the original sample size to match the other source, as

this will inevitably influence the model’s performance.

Concerning the weighting strategy selection, the eight pre-determined performance

metrics obtained relatively comparable performance, which was not surprising. Based on
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the dynamic weighting scheme during the knowledge transferring phase, the weights of

the individual learners determined the confidence and certainties of their outputs [123].

According to the performance metrics from the individual learners, their results were

competitive with each other, leading to relatively equally distributed performance after

assembling. The dynamic weighing strategy ensured the self-adaptation of the proposed

approach as the weights were assigned each time during pre-training iteration rather than

a fixed determination. In this regard, the ensemble model can be adaptive to different

data sources from the beginning of the individual model selection stage until the weighted

ensemble model construction. This highlights the diversity of the input data sources and

supports accurate diagnostic decision-making under imbalanced medical culture.

In summary, with the proposed unified model selection approach, this research high-

lights using limited information to improve the reliability and comprehensiveness of di-

agnostic decision-making. Future research plans suggest including multiple data sources

from diversified medical cultures to build the ensemble model for generating more sophis-

ticated, reliable, and robust diagnostic decisions.

7.7 Summary

In summary, this research study proposes a unified model selection approach for con-

structing a weighted ensemble averaging model that can be adaptive to diversified data

sources.

The proposed model selection approach consists of (1) a self-directed individual learner

selection mechanism, (2) a dynamic weighting scheme based on eight pre-determined per-

formance metrics, and (3) a general adaptive ensemble model which unifies CNN trained

from cross-national datasets.

The proposed model was assessed to detect thyroid cancer through ultrasound image

sets from three data sources. The individual learner selection involves using the five most

commonly seen CNN architectures. The proposed weighted ensemble averaging model
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was evaluated under three distinct clinical scenarios through the DDTI dataset. Extensive

experiments indicated the promising performance of the proposed ensemble model. The

proposed model utilised limited information to generate more comprehensive, robust, and

reliable diagnostic decisions for patients with thyroid nodules.

Furthermore, this research provides recommendations for ensemble-based CAD im-

plementations across nations to enrich medical culture. In future research, applying the

ensemble model to other imaging modalities is suggested and incorporating more data

sources for assembling to enhance the diversity of the model.
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Chapter 8

Conclusion and Future Plan

8.1 Conclusion

Thyroid disease is a highly pervasive endocrine disease, and thyroid cancer is rising at

the fastest rate among all malignancies [303]. Over 50% of adults have thyroid nodules,

while such neoplastic thyroid disease is typically painless and undetectable by patients

themselves [224, 3]. Due to the advances in sensitive medical imaging and the increased

rate of regular health examination mechanisms, thyroid cancer instances are in a contin-

uously rising pattern [303, 283].

Although the disease instances are increasing yearly, the epidemiology cause is still

unknown. A substantial number of studies adopted qualitative techniques and statistical

analysis to identify the risk factors associated with the disease. The limitation is that they

usually investigate one factor at a time and have considerably ignored the associations

among diverse risk attributes.

Neoplastic thyroid disease diagnosis in the clinical setting is costly, time-consuming,

and stressful for patients. Each diagnostic examination is correlated with varying degrees

of uncertainties in human false-positive and false-negative rates. This may contribute to

the increased rates of unnecessary FNAC, excisional biopsy, or operation.

CAD designs for thyroid disease detection usually rely on a unitary dataset for evalua-
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tion, which restricts the comprehensiveness in relevant diagnostic decision-making, while

the implementation of such types of models cannot be generalised to different data sources

with distinct patient profiles. Those challenges aggravate the limited clinical applications

of machine learning-based approaches.

Accordingly, this thesis proposed three research questions extracted from the compre-

hensive literature review analysis, addressing the literature gaps and clinical challenges

from three perspectives. The findings and novelties of this thesis can be summarised as

follows:

• A comprehensive literature review framework was proposed to identify research gaps

and can be adapted to different research disciplines (Chapter 2).

The proposed comprehensive literature review framework offers a structured organ-

isation of the existing studies to examine the historical and recent state-of-the-art

machine learning approaches around the pathogenesis, diagnosis, and prognosis of

thyroid cancer. Current challenges faced by clinicians and computer science ap-

proaches were also covered in this study. This framework has the potential to be

adapted to multi-disciplines for conducting literature analysis.

• The TM-DM framework was proposed to identify and evaluate risk factors correlated

with thyroid disease (To achieve objective 1, Chapter 4).

Existing studies generally investigate a single factor at a time to identify its associ-

ation with thyroid disease development through qualitative or statistical techniques

[43, 103]. Such techniques are inefficient and neglect the correlations among risk

factors. The TM-DM framework proposed in this thesis incorporates text and data

mining procedures to evaluate risk factors obtained from two data sources in identify-

ing thyroid disorders and cancer causes. The proposed framework allows extracting

common and exception rules simultaneously (e.g., comorbidity and medical history)

from raw health records through a CPIR measurement. Through ARM, feature se-

lection, and classification tasks, a set of risk factors have been confirmed related to
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thyroid disease development, including age, gender, thyroxine intake status, history

of thyroid disease, history of thyroid surgery, hypertension, and thyroid function

measurements (i.e., TSH, T3, FTI, FT3, FT4).

• A CNN-BM framework was introduced to mitigate human false-positive and false-

negative diagnostic rates (To achieve objective 2, Chapter 5).

This research is the first of its kind which incorporates two pre-operative medical

image modalities to develop CNN-based CAD systems through binary and multi-

class classification tasks. The pre-operative image modalities achieved automatic

diagnosis and elevated clinical diagnostic accuracy compared to existing works [220,

9, 300, 227, 242]. The multi-class classification also stimulates reaching an expert-

level diagnosis for CAD models. The implementation of 11 CNN architectures was

conducted and the results from ultrasound and CT images were interpreted and

compared. Both image modalities reached promising diagnostic accuracy, indicating

the potential application of other image modalities in CAD designs.

• The MC-TDD framework was proposed to elevate CAD accuracy and reach patient-

specific design in thyroid disease detection (To achieve objective 2, Chapter 6).

The MC-TDD framework introduces three novel multi-channel CNN architectures

tailored for precise thyroid disease detection, including SIDC, DIDC, and four-

channel structures. The SIDC is dedicated to increasing diagnostic accuracy by

combining feature maps generated from different kernel size convolutional opera-

tions, reaching the state-of-the-art diagnostic accuracy compared to existing works

[4, 284]. The DIDC architecture is the first kind of CAD system which reaches the

patient-specific design, allowing a diagnostic decision to be made for one patient at a

time, diagnosing the status of the overall gland. The four-channel architecture com-

bines the SIDC and DIDC benefits and is further evaluated through a multi-class

classification task. This research is the first study which addressed the thyroid dis-

ease co-existence phenomenon, accomplished through the four-channel architecture,
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demonstrating promising accuracy.

• A unified model selection approach was proposed to use limited information in gen-

erating comprehensive and reliable diagnostic decisions for patients with thyroid dis-

ease (To achieve objective 3, Chapter 7).

The existing ensemble models were designed by incorporating classification results

produced by diverse models, whereas those models have limitations in generalising to

different data sources. Accordingly, this research introduced the unified model selec-

tion approach, which was the first of its kind that utilised image sets acquired from

two countries to pre-train the individual networks. The best-performing pre-trained

individual learners were assembled through a dynamic weighting mechanism into

a weighted ensemble averaging model. The ensemble model was further evaluated

with an external dataset. Extensive experiments demonstrated the promising gen-

eralisation of the approach under different clinical scenarios. This process learned

decisions made from cross-institutions cross-nationally, enhanced the diversity of

the ensemble model and made it adaptive to different data sources with distinct

patient profiles.

Overall, this thesis extends our understanding of the current under-researched area

of thyroid disease pathogenesis. Ultimately, this thesis aims to help mitigate patients’

financial and mental pressure from clinical diagnosis while assisting clinicians in diagnostic

decision-making.

8.2 Future Plan

Besides understanding thyroid cancer epidemiology and assisting clinicians with pre-

liminary diagnostic decision-making, the treatments and prognosis of the disease are

equally important. However, due to research scope limitations, the treatment recom-

mendation systems and the prediction of disease prognosis are the two primary focuses in

future research planning.
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8.2.1 Treatment Recommendation Systems

Thyroid cancer risk stratification depends on its subtypes. More specifically, papillary

carcinoma is the least severe kind, and anaplastic is the most severe kind, which is defined

based on their mortality rates [204]. Different subtypes expect to undergo varied treat-

ment protocols. Treatment protocols need to be developed rely on the individual patient’s

health conditions, such as age, weight, BMI, pregnancy status, medical history, and med-

ication doses for other diseases. Sometimes, external factors like seasonal temperature

change, financial status, and patient preference also play significant roles in establishing

treatment plans [272]. Moreover, over-treatments are substantially occurring with thyroid

disease [12, 157, 121, 269], and this usually leads to irreversible damage to the salivary

gland or even the endocrinology system. To avoid such post-treatment adverse effects,

customised treatment protocols must be established to achieve precision medicine and

treatment for the target patient.

The issue around the existing machine learning-based treatment recommendation sys-

tems is that those models were designed as a general platform rather than explicitly built

for thyroid disease. More importantly, the evaluations of those treatment recommendation

systems were significantly ignored by the scientific community. We believe that there is

a significant demand for treatment recommendation systems specifically built for thyroid

disease in future works. In order to assist clinicians in establishing treatment recommen-

dation protocols, more comprehensive factors besides the ones listed in the guidelines

should be taken into consideration, such as tumour characteristics, medical history, and

comorbidity.

The evaluations of the designed customised treatment recommendation systems must

be arisen to enhance the potential adoption in the clinical domain. This can be achieved

by clinicians’ involvement in accelerating the patient-centric design and adoption of such

systems. Figure 8.1 depicts a sampled FCM rule-based customised treatment recommen-

dation system which considers individual patient profiles independently and incorporates
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medical experts’ opinions in the decision-making process. The generated recommenda-

tions include the choice of surgery, surgery type (i.e., total, partial, or completion thy-

roidectomy), daily thyroxine medication intake level, radiation therapy choice, or even

Iodine-131 dosage. The system is potentially to be delivered through a digital platform,

which supports clinicians in a rapid decision-making iteration, meanwhile allowing pa-

tients and experts access to a self-driven decision support system for helping to improve

the prognosis.

Figure 8.1: FCM-based customised treatment recommendation system.

8.2.2 Survival, Death, and Recurrence Prediction

The prediction of cancer survival, death, and recurrence rates is another topic on hit,

and examples can be found in [75, 93, 270, 311, 331, 240, 265]. Extensive studies utilised

patients’ demographic features, tumour characteristics, and lymph metastasis factors to

make predictions, yet ignoring the “time” factor.
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In order to develop algorithms that can predict the prognostic status, time is particu-

larly imperative as clinicians would potentially prepare for the upcoming health changes

appearing in the patient. Therefore, the future research plan will integrate RNN, in par-

ticular, Long Short-Term Memory (LSTM), and ANN that considers time to make related

predictions so that patients can better understand their health status. Accordingly, clini-

cians can be well prepared for the health condition changes appearing in the target patient

regarding the subsequent period intervals to guide patients to achieve an optimal health

record for an ideal prognosis.

E.N.D
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Source Code
This thesis ensures the reproducibility, and all the code and partial datasets are available on

GitHub:

1. Association Rule Mining

(a) Exception Rules Extraction

(b) Faster Apriori

(c) Terminology Extraction

(d) CN Dataset - Blood

2. Medical Image Segmentation

3. Medical Image Augmentation

4. CAD Implementation

(a) Binary Classification

(b) Multi-class Classification

5. Multi-channel CNN Architectures

(a) SIDC

(b) DIDC

(c) Four-channel

(d) Multi-channel Multi-class Classification

6. Unified Model Selection

(a) Individual Leaner Selection

(b) Weighted Ensemble Averaging Model
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