
STATISTICAL AND MACHINE LEARNING
MODELS FOR THE EVALUATION OF

GEOPHYSICAL AND GEOMECHANICAL
DATA

Anil Kumar

STATISTICAL AND MACHINE LEARNING MODELS
FOR THE EVALUATION OF GEOPHYSICAL AND

GEOMECHANICAL DATA

Submitted in partial fulfillment of the requirements
of the degree of

Doctor of Philosophy
of the

Indian Institute of Technology Bombay, India
and

Monash University, Australia

by
Anil Kumar

Supervisors:

Prof. Kumar Hemant Singh
A/Prof. Mohan Yellishetty

Prof. Trilok Nath Singh

The course of study for this award was developed jointly by
Monash University, Australia and the Indian Institute of Technology Bombay, India

and was given academic recognition by each of them.
The programme was administrated by The IITB-Monash Research Academy

(2022)

Dedicated to my parents

DECLARATION

I declare that this written submission represents my ideas in my own words and
where others’ ideas or words have been included, I have adequately cited and ref-
erenced the original sources. I also declare that I have adhered to all principles
of academic honesty and integrity and have not misrepresented or fabricated or
falsified any idea/data/fact/source in my submission. I understand that any vio-
lation of the above will be cause for disciplinary action by the Institute and can
also evoke penal action from the sources which have thus not been properly cited
or from whom proper permission has not been taken when needed.

Notice 1: Under the Copyright Act 1968, this thesis must be used only under
the normal conditions of scholarly fair dealing. In particular no results or conclu-
sions should be extracted from it, nor should it be copied or closely paraphrased
in whole or in part without the written consent of the author. Proper written
acknowledgement should be made for any assistance obtained from this thesis.

Notice 2: I certify that I have made all reasonable e�orts to secure copyright
permissions for third-party content included in this thesis and have not knowingly
added copyright content to my work without the owner’s permission.

Student Name: Anil Kumar
IITB ID: 164064004
Monash ID: 28283724

Approval Sheet

The thesis entitled “Statistical and Machine Learning Models for the Evaluation of
Geophysical and Geomechanical Data” by Anil Kumar is approved for the degree
of Doctor of Philosophy.

Sagarika Mukhopadhyay
Professor
Department of Earth Sciences
Indian Institute of Technology Roorkee

(External Examiner)

Munukutla Radhakrishna
Professor
Department of Earth Sciences
Indian Institute of Technology Bombay

(Internal Examiner)

Kumar Hemant Singh
Professor
Department of Earth Sciences
Indian Institute of Technology Bombay

(IITB Supervisor)

Mohan Yellishetty
Associate Professor
Department of Civil Engineering
Monash University, Australia

(Monash Supervisor)

Trilok Nath Singh
Professor
Department of Earth Sciences
Indian Institute of Technology Bombay

(IITB Co-Supervisor)

J. Adinarayana
Professor
Centre of Studies in Resources Engineering
Indian Institute of Technology Bombay

(Chairperson)

Date: 22/ 09/ 2022
Place: Mumbai

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisors,
Prof Kumar Hemant Singh, Prof Mohan Yellishetty and Prof Trilok Nath Singh,
for being an incredible guide, teacher and support and for providing me with an
opportunity to work at immensely intellectual environments at Indian Institute
of Technology Bombay and Monash University. I want to thank them for their
encouragement and ideas, without which this work would not have been possible.
I would like to thank my research committee member, Prof. Munukuntla Rad-
hakrishna, for his valuable feedback and suggestions during my progress seminars.
I would also like to thank Prof. Stuart D.C. Walsh for his enlightening discussions
during the development of the reduced order modelling chapter.
Pursuing my doctoral studies at the IITB-Monash Research Academy has given
me a very enriching experience. I thank all the working sta� at the academy for
making this journey a fulfilling one. At last, I would like to thank my lab mates
who helped me look into some of the problems from their perspective. I take this
opportunity to express my sincere thanks and appreciation to all those people.

Anil Kumar

Abstract

Physical laws govern geophysical processes, and to study them, they are generally
formulated as a forward model. This forward model is often used as a synthetic
data generator in an inversion setup wherein an optimizer minimizes the di�erence
between the synthetic and field observed data. When either part of the setup is
computationally large, it can delay the generation of solutions and, consequently,
the interpretation process. We understand that some classes of algorithms from
machine learning, such as supervised and dimensionality reduction algorithms, can
help get around these situations. The main idea behind this work is to motivate the
inclusion of machine learning algorithms into conventional geophysical modelling
workflow to speed up the data generation process and aid automatic interpreta-
tion. In the first part of the thesis, we outline the theory underlying some general
deep learning algorithms that are later used in the chapters. In the second part,
we develop deep learning models for two di�erent applications.
In the first application, synthetic data is generated using an acoustic wave simula-
tor to study the response of pore geometry on an acoustic wavefield. We developed
a semantic segmentation framework using a modified U-Net architecture that could
directly output the pore structure from the acoustic volume. It was found that
while the overall pore structure model could be inferred with a Dice coe�cient
accuracy of 92%, the trained model struggled to predict the individual classes.
In the second application, we develop an LSTM based reduced order model for pre-
dicting the future states of a hydro-mechanical system. The data for this model
was generated using a linear elastic finite element solver. High non-linearity was
introduced into the model by varying the pore pressure contribution in di�erent
parts of the computational domain. It was found that a 3-layer deep RNN was re-
quired to maintain a 99.99% accuracy in the predicted states. We understand that
the development of such a model can help evaluate the present and near-future
states of the stability of the slopes.

Keywords: Semantic segmentation, Reduced order model, Geophysical simula-
tion, Geomechanical simulation, Machine learning

Contents

Dedication i

DECLARATION ii

APPROVAL OF THE VIVA-VOCE BOARD iii

Acknowledgements iv

Abstract v

Contents vi

List of Figures viii

List of Tables xiv

Abbreviations xv

1 Introduction 1
1.1 Conventional Data modeling . 2
1.2 Machine Learning for Data modeling 4
1.3 Motivation of Research . 7
1.4 Aims and Objectives . 8
1.5 Organisation of the Remaining Chapters 9

2 General Algorithms in Deep Learning and Statistical Estimation 11
2.1 Deep Learning Algorithms . 11

2.1.1 Convolutional Neural Networks 11
2.1.2 Recurrent Neural Networks 18
2.1.3 Encoder-Decoder Frameworks 23

2.2 Dimensionality Reduction and Matrix Factorization Algorithms . . 27
2.2.1 Proper Orthogonal Decomposition 30
2.2.2 Sparse Coding and Dictionary Learning 31

Contents vii

2.2.3 Independent Component Analysis 31
2.2.4 Autoencoders . 32

2.3 Miscellaneous . 34
2.3.1 Optimising Deep Networks 34
2.3.2 Statistical Inference . 40

2.4 Summary . 42

3 Application-I: A Data-Driven Approach to Porosity Segmentation
for Carbonates 44
3.1 Introduction . 44
3.2 Extraction of Pore Network Models 45

3.2.1 Extraction of Pore Networks 46
3.2.2 Pore Segmentation . 54

3.3 Acoustic Wave Analysis . 55
3.3.1 The Acoustic Wave Model 55
3.3.2 Description of the Simulation 56
3.3.3 E�ect of Pore Shapes on travelling Wavefields 59
3.3.4 Statistical measure of Signal Amplitudes 65

3.4 Segmentation and Localization of Pore Networks 67
3.4.1 Semantic Segmentation for inference of Pore Networks . . . 73
3.4.2 The Modified U-Net Architecture 74
3.4.3 Training and Validation . 75

3.5 Results and Discussion . 78

4 Application-II: LSTMs based Accelerated Simulation for Hydro-
Mechanical Systems 86
4.1 Introduction . 86
4.2 Development of a Reduced Order Model 87

4.2.1 The Hydro-Mechanical Model 90
4.2.2 Creation of the 3D Domain: The Loy-Yang Mine Structure . 91
4.2.3 State-space Description and Reduction 95
4.2.4 Generation of the Supervised Dataset 101

4.3 Development of a Multistep Prediction Algorithm 103
4.3.1 The Deep Learning Model 103
4.3.2 Development of Singlestep Prediction Algorithm 104

4.4 Evaluation of the developed ROM 108
4.4.1 Analysis of Multiple Realisations 108

4.5 Results and Discussions . 113

viii List of Figures

5 Conclusions and Future Work 119
5.1 Conclusions . 121
5.2 Scope of Future Work . 124

References 126

List of Publications 158

Curriculum Vitae 160

List of Figures

2.1 A typical CNN . 12
2.2 Example of max-pooling . 16
2.3 Example of average-pooling . 16
2.4 A schematic Recurrent Neural Network; Towards the left we have a

standard RNN where the state vector is denoted by s; Towards the
right is the unfolded version depicting how the state is built over time 18

2.5 A standard Long short-term memory cell 23
2.6 The U-Net architecture . 24
2.7 The seq2seq architecture . 26
2.8 From a) Original image; From b) to d): Reconstruction of a scan-

ning electron microscopy image with increasing number of principal
components – 20, 120, 220 . 28

2.9 Reconstruction accuracy; Higher is better 28
2.10 A schematic autoencoder architecture 33

3.1 Segmentation flowchart: 1) Load the raw grayscale image; 2) Per-
form contrast equalization on the grayscale image; 3) Apply median
filtering on the contrast equalized image; 4) Perform a window-
based Sauvola threshold operation to obtain a binary image; 5)
Treat the binary image as foreground (labelpore = 1) and back-
ground (labelmatrix = 0); Compute the distance map of the binary
and extract the skeleton of the network; 6) Realize a pore structure
model; 7) Extract distance map values along the skeleton paths;
8) Perform k-means clustering on the extracted distance values to
generate n labels with the cross-sectional area as feature; 9) Per-
form watershed/flooding transform to propagate the labels in the
foreground; 10) Realize a segmented pore network model 46

x List of Figures

3.2 From a) to j): Raw grayscale rock samples numbered 1 to 10 have
been scanned using 4D-XRM equipment. Each sample is of an in-
dividual physical dimension. The colour variation and the contrast
can be easily identified and compared with each other 47

3.3 a) Raw grayscale sample before contrast equalization; b) Grayscale
variation after contrast equalization; The color variation and the
contrast can be easily identified and compared with each other in
the colorbars . 48

3.4 a) Kernel density estimate of raw grayscale values; b) Kernel den-
sity estimate after contrast equalization; The width at the bottom
clearly justifies the clarity of features seen in Fig. 3.3. 48

3.5 A 2D illustration of sample output images after performing opera-
tions shown in Fig. 3.1. 50

3.6 A 2D illustration of segmenting poretypes based on relative cross-
sectional areas using k-means clutering operation: a) Binary image
(white represents the porous region); b) Distance map of the porous
region with skeleton marked by brown color; c) Marker generation
based on k-means clustering algorithm - same color dots represent
regions of similar cross-sectional areas; d) Final segmented image -
regions of same color denote similar cross-sectional areas 50

3.7 A median filtered image . 50
3.8 A Sauvola thresholded image . 51
3.9 Distance map of the binary image 51
3.10 Skeleton of the binary image . 51
3.11 Porosity segmented image . 52
3.12 a) An instance of the pore network as seen from XY , Y Z and ZX

planes after extracting the middle slice in the perpendicular axis
to the plane; b) to e) Progress of wave fields with increasing time,
t(µs) = 0.53, 0.90, 1.26, 1.63 . 57

3.13 Probe locations on the cube . 58
3.14 Case #1: a) Part of the pore network due to sub-cube #350 of

sample #105; Pressure wave field at t = 2.88µs exhibited by the
sub-cube; b) Waveform of signals received at 8 corner probing points
B1 . . . B8 of the sub-cube . 60

3.15 Case #2: a) Part of the pore network due to sub-cube #290 of
sample #13; Pressure wave field at t = 2.88µs exhibited by the
sub-cube; b) Waveform of signals received at 8 corner probing points
B1 . . . B8 of the sub-cube . 62

List of Figures xi

3.16 Case #3: a) Part of the pore network due to sub-cube #16 of sample
#109; Pressure wave field at t = 2.88µs exhibited by the sub-cube;
b) Waveform of signals received at 8 corner probing points B1 . . . B8
of the sub-cube . 63

3.17 Case #4: a) Part of the pore network due to sub-cube #19 of
sample #5; Pressure wave field at t = 2.88µs exhibited due to the
pore network in the sub-cube; b) Waveform of signals received at 8
corner probing points B1 . . . B8 of the sub-cube 64

3.18 Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #105 and pore network instant #350 65

3.19 Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #13 and pore network instant #290 66

3.20 Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #109 and pore network instant #16 66

3.21 Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #5 and pore network instant #19 67

3.22 The modified U-Net architecture for semantic segmentation of the
acoustic volume . 75

3.23 Epoch vs Training and Validation loss 77
3.24 Epoch vs Dice and Soft-Dice accuracy 78
3.25 From a) to c): Examples of some optimally predicted pore networks 79
3.26 From a) to c): Examples of some non-optimal predicted pore networks 80
3.27 Prediction metrics on 392 test samples that were not used for train-

ing. Dice loss, Dice coe�cient and Soft-Dice coe�cients are calcu-
lated for 4 classes - Matrix, P1, P2, P3. 81

4.1 Depth map of the Loy-Yang mine obtained from satellite imagery.
Darker regions denote surface depth while lighter regions tend to be
on the surface. 92

4.2 Parametric representation of the top surface of the Loy-Yang mine
structure . 93

xii List of Figures

4.3 From a) to f): Top layer, Intermediate layer, Created Solid Body,
Extruded bezier curve to realise a rounded structure inside the Solid
Body, Scaled version of the rounded structure, Final LY-mine struc-
ture. In a) and b), we start with the parametric layer at the top,
followed by a translated copy to make the intermediate layer. In
c), a solid cuboid is created with its extent defined by the length
and breadth of the parametric surface. A Boolean union opera-
tion helped unite di�erent parts together. In d), a bezier curve is
drawn on the XY plane and extruded to the bottom of the solid
cuboid. We then use a Boolean di�erence operation between the
solid cuboid and the extruded rounded structure in d), demarcated
in pink colour. Then in e) this rounded structure is scaled along
the Z-axis to match the real size of the LY-mine structure that can
be seen in f) . 94

4.4 From a) to d): Sample of Sine function, Ramp function, Saw-
tooth function, Polynomial function; Di�erent pore-pressure func-
tions used as loading conditions in di�erent parts of the computa-
tional domain. The length of the signal in the x axis is 200; this
denotes the number of timesteps the loading condition is applied for. 96

4.5 From a) to c): Part 1, Part 2, Part 3; Di�erent parts of the compu-
tational domain for applying the pore pressure loading conditions . 96

4.6 Computational mesh of the domain 96
4.7 Schematic representation of a state. Top row shows actual simula-

tion data. Bottom part shows a transposed data matrix where each
row is a 1D long skinny vector realised by flattening the the state
variables and stacked along the time axis. 97

4.8 From a) to e): Reconstruction accuracy of physical variables with
increasing number of singular components 100

4.9 a) and b): Demonstration of the reconstruction of observed and
predicted states of elastic strain XY-component 100

List of Figures xiii

4.10 Illustration of the reduction process: starting with data matrix M,
we factorize it using POD and consider the left singular matrix Ũ.
At each timestep t, we take the transpose of the state vector ŨT

and take the dot product with s(t) to get the weight vector w(t).
These weights are combined into a vector with loading conditions
and time di�erence ”t to form a supervised training set for the RNN.
After training, the network is ready for predicting on external test
weights. Reconstructed state space is obtained by taking the dot
product of Ũ with the predicted weights wp(t) 102

4.11 Deep network used to predict weights w(t + 1) at t = t + 1; Con-
sidering one training example from the training dataset, a weight
vector comprising of SVD-derived weights w(t) of size [5◊1] with
loading conditions BL(t), BL(t + 1) and time di�erence ”t is input
to the network that passes through a three-layer deep RNN con-
sisting 37, 30, and 22 LSTM units, whose output is connected to a
fully connected (FC) layer which outputs a weight vector of size 5
for calculating a mean squared error against the observed weights
w(t + 1) in the implemented regression setup 104

4.12 Training and validation curve for the RNN with single layer of 37
LSTM units . 106

4.13 Prediction of w1 with single layered RNN; Left: Singlestep, Right:
Multistep . 106

4.14 Prediction of w2 with single layered RNN; Left: Singlestep, Right:
Multistep . 106

4.15 Prediction of w3 with single layered RNN; Left: Singlestep, Right:
Multistep . 107

4.16 Prediction of w4 with single layered RNN; Left: Singlestep, Right:
Multistep . 107

4.17 Prediction of w5 with single layered RNN; Left: Singlestep, Right:
Multistep . 107

4.18 Training and validation curve for the 3 layered deep RNN shown in
Fig. 4.11 . 108

4.19 Prediction of w1 with deep RNN; Left: Singlestep, Right: Multistep 109
4.20 Prediction of w2 with deep RNN; Left: Singlestep, Right: Multistep 109
4.21 Prediction of w3 with deep RNN; Left: Singlestep, Right: Multistep 109
4.22 Prediction of w4 with deep RNN; Left: Singlestep, Right: Multistep 109
4.23 Prediction of w5 with deep RNN; Left: Singlestep, Right: Multistep 110

xiv List of Tables

4.24 a) and b): Reconstructions of observed and predicted states of dis-
placement magnitudes . 110

4.25 a) and b): Reconstructions of observed and predicted states of elas-
tic strain’s XY component . 110

4.26 a) and b): Reconstructions of observed and predicted states of
stress’s XY component . 111

4.27 a) and b): Reconstructions of observed and predicted states of
elastoplastic strains. 111

4.28 Instance of random pore pressure loading conditions. Examples
of random loading conditions are used to illustrate the application
of the reduced order model. Sinusoidal loading conditions with 4
di�erent frequencies are corrupted with 5% Gaussian noise to realise
a variety of loading conditions. For the purpose of visualisation,
only 8 out of 1000 di�erent are shown here. ROM was run for all
1000 simulated loading conditions. 111

4.29 Mean and standard deviation of the plastic strain fields from 1000
simulations corresponding to pore pressures shown in Fig. 4.28
generated using the reduced order model. 113

4.30 Distributions of principal component weights from 1000 simulations:
Graphs on the main diagonal show histograms for each principal
component weight, while o�-diagonal plots show the scatter plots
of pairs of weights from each simulation. Red dots indicate the mean
values. Distributions correspond to the loading conditions shown in
Fig. 4.28. 114

List of Tables

3.1 Exploratory statistics of voxel data of rock core samples 48
3.2 Calibrated Porosity . 52
3.3 Sauvola Binarization Parameters 53
3.4 Material Assignment . 56
3.5 Qualitative description of the pore networks 56
3.6 Training Metrics . 76
3.7 Validation Metrics . 77

4.1 Pore pressure generating functions 95
4.2 State variables and symbols . 97
4.3 Material properties . 98

Abbreviations

3D-MPA Multi Proposal Aggregation for 3D point-clouds

4D-XRM 4 Dimensional X-ray microscopy

ADAGRAD Adaptive gradient

ADAM Adaptive moment estimation

AGCN Attention-based graph convolution networks

AI Artificial intelligence

BGD Batch gradient descent

Bi-LSTM Bi-directional long short-term memory

BL Body load

BPTT Backpropagation through time

CAD Computer-aided design

CEC Constant error carousel

CNN Convolutional neural network

CPU Central processing unit

DFN Discriminative feature network

DGCN Deep graph convolutional network

DL Deep learning

DMD Dynamic mode decomposition

FCNN Fully connected neural network

FEM Finite element model

Abbreviations xvii

FOS Factor of safety

GCN Global convolutional network

GeoNet Geometric Neural Network

GPU Graphics processing unit

GRU Gated recurrent unit

HMC Hamiltonian Monte Carlo

HMM Hidden Markov model

HPN Hierarchical parsing network

ICA Independent component analysis

K-SVD Kernel singular value decomposition

Kd-tree K dimensional tree

LSTM Long short-term memory

MAP Maximum a-posteriori estimation

MBGD Mini-batch gradient descent

ML Machine learning

MLE Maximum likelihood estimation

NADAM Nesterov accelerated adaptive moment estimation

NAG Nesterov accelerated gradient

NUTS No-U-Turn sampler

O-cnn Octree- based convolutional neural networks

OccuSeg Occupancy-aware 3D instance segmentation

PCA Principal component analysis

PCNN Point-cloud convolutional neural network

PDE Partial di�erential equation

PGCRNet Pont global context reasoning network

xviii Abbreviations

POD Proper orthogonal decomposition

PSANet Point-wise spatial attention network for scene parsing

PSPNet Pyramid scene parsing network

ReLU Rectified linear unit

ResNet Residual neural network

RGB Red green blue

RL Reinforcement learning

RMSPROP Root mean squared propagation

RNN Recurrent neural netowrk

ROM Reduced order model

RSNet Remote sensing deep neural network

SFCN Shape fully convolutional networks

SGD Stochastic gradient descent

SGPN Similarity group proposal network

SPG Super-point graph

SVD Singular value decomposition

VGG-16 Visual geometry group’s 16 layer model

VoxSegNet Volumetric CNNs for semantic part segmentation

Chapter 1

Introduction

Geoscientific data can provide one of the best modelling adventures for a scientist.
Processing of data in geoscientific disciplines often involves the usage of computers
to determine the most of the interior of the earth, where direct penetration tests
are unpractical and/or uneconomic. Standard geophysical prospecting techniques,
such as electromagnetics, seismic, and gravity/magnetic help gather a small sig-
nature, in the form of field data, of the underlying processes that generated it.
Scientists often try to match these observations to well known analytical solutions
to claim their findings. But it must not be forgotten that this data is just a tiny
representation of the process or group of processes that could have generated it,
so there is always an associated uncertainty. The processes that we study in geo-
physics and geomechanics require us to use the laws of physics that govern them,
followed by encoding the process in the form of a forward model. These models are
often used as synthetic data generators to be compared against the field observed
data in an inversion setup. Although doable by experts, it is often cumbersome
for a human to apply and record the outputs and interpret the data at each stage
of processing, especially when the dimension of data is large, necessitating the
application of computer programs while the generated results are checked in the
interim at each intermediate step. When the data is small, an expert can safely
avoid any computational procedure to arrive at the result. But, the current trend
in data acquisition, their type, variety and amount make it an utmost requirement
to learn and apply custom developed computer codes to extract more information
from them.
Machine learning (ML) is a branch of science where computer algorithms learn
from data. While it has shown human level accuracy in tasks such as object de-
tection, computer game play and natural language processing, it is slowly being
included in the mainstream data pipeline for Geoscience studies and a variety of
geophysical data processing applications. For example the authors in [1] imple-

2 1. Introduction

mented a physics informed neural network architecture from well to seismic tie
using CNNs. A deep learning based segmentation model was realised using the
SegNet architecture in [2] to approximate the inverse operator from 3D apparent
resistivity data. A CNN network was designed to impose regularisation to inverse
problems in [3]. Authors in [4] employed a U-Net model to interpret ground pen-
etrating radar data for archaeo-geophysical applications. Authors in [5] devised a
CNN based earthquake early warning system that could learn the source and site
e�ects from the waveform data to forecast the intensity. Five architectures were
compared for reservoir characterisation using geophysical well logs in [6]. A deep
learning based seismic impedance inversion was carried out in [7] using a Cycle-
GAN architecture. An automatic fault detection algorithm was realised in [8; 9]
that used 2D slices extracted from 3D seismic amplitude data. A CNN framework
was designed in [10] to predict the shear wave velocity profile from surface wave
data. Automatic velocity picking was attempted in [11] using semblance maps.
Seismic reservoir characterisation was done using deep CNNs in [12]. Geophysical
inversion to detect near surface cavern was done in [13] using deep frameworks.
ML algorithms, in general, require a large amount of data, adequately preprocessed
for their application. As a matter of fact, we in geophysics and geomechanics per-
form many synthetic studies in the form of simulation and forward models that
can be leveraged to train an ML algorithm. This requires knowledge of the un-
derlying physics of the process and the machinery of the ML algorithm to work in
tandem. Although the human interpretation of data in this field is indispensable
and necessary for gaining confidence in the obtained results, nonetheless, artifi-
cial intelligence can be made to complement the interpreter at various stages of
data processing. In the light of the above, this thesis attempts to depict some of
the advantages of using ML algorithms in processing synthetic data. We demon-
strate this in the form of two important and exciting applications pertaining to
geophysics and geomechanics.

1.1 Conventional Data modeling
Modelling of any geophysical process involves a physical theory that connects a
discrete set of Earth parameters m œ M µ RM to the experimentally obtained
data d œ D µ RN . The theory gives us a mathematical operator g to predict the
data d for a given set of parameters.

d = g(m) + ÷ (1.1)

1.1. Conventional Data modeling 3

where ÷ represents the sum of all errors during data acquisition and the errors
due to physics not accounted for in theory. The operator g can have several forms
depending on the process used to represent the theory. For example, in a 1D setup,
a time domain electromagnetic field modelling g represents an operator that takes
the resistivity and width of layers of a layered Earth model and solves Maxwell’s
equations to give the electric and magnetic fields. An optimisation algorithm uses
the forward model g to solve these equations numerically to obtain the best pos-
sible set of parameter pairs that yields the least error against the observed data.
Another example that g can be representative of is a well-designed Green’s func-
tion serving as the analytical solution to wave propagation problems [14; 15].
An equivalent example from the geomechanical field is the modelling of the sta-
bility of the borehole. Here, the operator g of Eq. 1.1 represents the set of partial
di�erential equations governing the stress and strains in a finite computational
domain. The parameters m of the model are the engineering quantities used to
specify the di�erent types of materials constituting the domain. Advanced numer-
ical modelling techniques are often used to solve these kinds of problems [16; 17].

Solving Eq. 1.1 generally yields multidimensional data that can be interpreted
for a variety of purposes. Before performing the data analysis, an important step
is to arrange the data points in a specific order and position in the data space.
From the data science perspective, the criteria for positioning these points may
not have any practical significance. For example, a particular data ordering may
assign di�erent weights to di�erent data features. This ordering might not seem
important as it may not give better solutions, but it may still ease some parts
of the matrix calculations. Notably enough, dealing with geophysical and geome-
chanical data using ML algorithms often requires projecting the data points to a
lower dimension so that essential features embedded within are captured. While
this is true for most real-world ML applications, it is paramount for geo-type data,
especially when the amount of given data is large.
Data in Geosciences often demand multidisciplinary approaches to processing,
analysis and interpretation. While geomechanics, in particular, deals with the
mechanism of soil and subsurface, geophysics spans a broader scope with subfields
of study such as gravity, magnetic, seismic, electromagnetic, radioactivity, well-
logging and various chemical and thermal processes. Modelling in any of these
areas involves acquiring information from the field and fitting a synthetic model
to it. The modeller has complete control over the numerical experiment being
conducted by varying the parameters of the synthetic model. Partial Di�eren-
tial Equations (PDEs) are ubiquitous tools in these domains. The data acquired

4 1. Introduction

from the field are primarily used for calibrating these computational models. As
modellers, we understand that real data has its challenges that present themselves
in the form of noise, heterogeneity, arbitrary computational domain shapes, and
nonlinearity, which often result in the ill-posedness of the inverse problem.
With the success of artificial intelligence in scientific applications such as com-
puter vision, language understanding, and logical reasoning, it is evident that this
technology can help enhance the conventional optimisation based models. The
ML aided models have proven to be capable of learning from the data, deduc-
ing patterns and making future predictions. The non-triviality of geophysical and
geomechanical data o�ers a perfect avenue for its application.

1.2 Machine Learning for Data modeling
Eq. 1.1 depicts a general problem in imaging commonly encountered in geophysics.
The equation can also be represented in a form that is more common in the Deep
Learning (DL) literature:

d = N(g(m)) (1.2)

where N(·) represents a Gaussian distributed noisy measurements of the data gen-
erating process where the noise term is no more additive, unlike Eq. 1.1. The
model is in much use in computational imaging [18] tasks such as image inpainting
and super-resolution [19]. Other image application areas are tomographical recon-
struction, radar imaging, magnetic resonance imaging [20] and X-ray tomography
[21]. Conventionally the reconstruction task involved some prior information about
m in terms of sparsity [22; 23; 24; 25] or in terms of geometry [26; 27; 28; 29; 30].
In conventional processing, a good estimation of m has to be a good fit and adhere
to the prior information. This is generally posed as an optimisation problem, of-
ten involving a regulariser that sets a trade-o� between the generalisation capacity
and overfitting of the algorithm. This approach has recently been changing with
the arrival of deep learning techniques. A deep learning algorithm can leverage a
large set of labelled data to create a regularised mapping between the dependent
and the independent variables. A number of such applications can be found in
signal recovery, image super-resolution, compressed sensing, and image denoising
[31; 32; 33; 34; 35; 36; 37].

Supervised ML algorithms require labelled examples to map the covariates
to the target variables. A simple example is identifying the digits in the area zip

1.2. Machine Learning for Data modeling 5

codes, also called pin codes in some countries. A naive approach to such a problem
would involve hand-crafting the rules to detect specific lines, curves, and shapes
in specific picture regions. Though simple to understand, this approach leads to a
large number of rules and still does not provide good results, if not poor. A smarter
way of achieving fewer errors can be a ML-based algorithm wherein we supply in-
put images with di�erent writing styles of the numeric digits printed on them and
provide their corresponding labelled outputs, i.e. the actual one-hot vectors of the
actual answer. Symbolically, we can say that the image X œ (x1, x2, . . . , xn) and
its label y œ y̨, where y̨ is a one-hot binary vector of length 10 whose element
yi = 1 if the supplied query digit belongs to ith position. These example sets are
used to train the parameters of an ML model. Creating the labelled set is typically
done by a human expert and is time-consuming. The way the algorithm tunes its
parameters is by minimising a cost function. The algorithm takes a new image
as the input and generates an output encoded in the same manner as the labels
y in the supervised set. The algorithm then checks the value of the cost function
corresponding to the current output and generates an error value used to tune the
parameters. This step is also referred to as the learning/training phase. After
the training phase, the trained model is typically checked against a validation set
containing digits that have not been shown to the model yet. The capability of
the trained model to predict the correct labels in this new set is called its gener-
alisation capability.
The central aim of training any ML algorithm is to improve its generalisation ca-
pability. An important step towards achieving this is the preprocessing stage. This
step takes care of the unequal variance in the input feature variables and is done
to enhance its generalisation capacity. Because now the variability of each new
example is fixed/equalised, the task of pattern recognition becomes easier. An-
other operation that is done as a part of preprocessing is feature extraction. This
part helps enhance training by transforming the input variables into new features.
A simple example can be squaring the input variable x to be appended as a new
feature, wherein the model’s output y is some function of (x, x2). Here, the base
variable x is acted upon by function f(x) = x2 to produce a new feature variable x2.
Combining this new variable with the original variable x helps regress faster and
ease the optimiser’s burden. It is obvious that feature transformation/extraction
also helps boost computation in graphics processing units (GPUs), typically pre-
ferred for high-end processing. An example of such a requirement is processing
streaming video data for face detection. A direct feed of the frames in the stream
might unnecessarily overload the GPUs in identifying complex facial features; in-
stead, the frame could pass through a deterministic feature extractor first and then

6 1. Introduction

the feature vector could be passed on to the ML algorithm. The feature extractor
could focus on important areas of the frame that would increase its discriminatory
function enabling face detection. An example could be of detecting the RGB values
possessing a particular range of intensity that are symbolic of a face [38; 39; 40].
A similar set of other features could be hand-designed to enable e�cient face de-
tection. Because this step greatly reduced the amount of data to be processed, it
is also sometimes called the dimensionality reduction step. As this is subtractive,
step care must be taken to prevent the discarding of relevant features; otherwise,
the entire training procedure would su�er. It is understood that the parameters
of the feature extractor must be tuned a-priori to enable e�cient extraction – this
is yet another area of active research.
There are at least two categories in which the ML algorithm could be grouped –
a classifier or a regressor. In problems where the target variable retains specific
values or classes, the problem can be framed as a classification problem; on the
other hand, when the value of the output variable lies in the continuous range, the
problem can be formulated as a regression problem. Yet, another class of problem
exists in the ML literature that consists of the unsupervised ML algorithms. In
this class of problems, the algorithm is subjected to identifying relevant/important
features in the input variables, i.e. without any labelled set, y. Common tasks here
are density estimation, where the algorithm is assigned the job of estimating the
probability distribution of the given dataset; clustering, wherein the algorithm is
expected to discover members of a similar group based on some similarity measure;
dimensionality reduction – where the algorithm’s job is to reduce the dimension
of the data without losing essential information within. This is also called data
compression in some literature.
Yet another branch of ML algorithms deals with the task of choosing suitable
actions given a specific situation. The algorithms here maximise the rewards ob-
tained from selecting a particular action. This branch has been suitably named
reinforcement learning (RL) [41; 42]. This is also the case where the user does not
supply any form of supervised inputs except the design of a suitable reward func-
tion whose return varies according to the choice made by the playing agent. This
is usually accomplished by a trial and error process in a given environment. The
states and the set of actions are typically pre-designed. The selected action not
only a�ects the current reward but also a�ects the subsequent rewards. Therefore,
the design of the reward function is quite important. Successful implementation
can be seen in a neural network that is trained using the RL technique to play
games like chess, go, and backgammon [43; 44; 45]. The rewards must be chosen
carefully to maximise e�ciency as quickly as possible. As they call it in the RL

1.3. Motivation of Research 7

literature, an algorithm must tune the trade-o� between exploration and exploita-
tion. Biasing towards any one of them can yield poor results.

1.3 Motivation of Research
Geoscientific problems present a plethora of modelling opportunities. In geophys-
ical modelling, we mainly deal with optimisation, wherein we aim to evaluate the
variables of interest given their responses. These problems are primarily nonlinear
and often possess uncertainty in their solutions. For example, in modelling the
elastic response of a rock core sample, we are especially interested in knowing the
internal pore structure and its constituents. Minute details such as tiny pores do
not result in appreciable changes in the elastic responses. So, our methodology
would be wasted on this problem if more attention is given to resolving the tiny
pores’ e�ect. There is a need that the algorithms used to optimise the variables of
interest must be smart enough to retain as much detail as possible while still ig-
noring the irrelevant parts. Another inherent problem is non-uniqueness, wherein
multiple pore network configurations and constituents can result in similar elastic
responses. In this scenario, the algorithms must be able to work out the di�erences
between the responses in at least some higher dimension, if not the same. At this
juncture, it is essential to note that geoscientists and particularly the reservoir
engineers are primarily interested in approximate solutions to these problems such
that the bulk of the domain can be comprehended/estimated for asset evaluation.
On the other hand, in geomechanics, we often build a numerical model to study
physical phenomena represented using a set of partial di�erential equations. The
discretisation of the equations results in a large system of algebraic equations that
need to be solved iteratively. This size is directly proportional to the resolution
of the computational domain, and fine results mandate large meshes or grids to
better approximate the actual solution. This is because direct matrix inversion is
impractical as it would require enormous physical memory, which is generally not
feasible. Therefore, discretisation methods like Finite di�erences, Finite Elements
and Finite Volume exist that can help divide the computational domain into small
elements and solve sub-problems separately. An important issue with solving such
a large system of equations is the time required to get a single solution. At this
juncture, the dimensionality reduction algorithms might help speed up the mod-
elling pipeline. This class of algorithms can help reduce the dimensionality of
the problems using reduced rank representations. While these algorithms capture
most of the variances in the data, it’s up to the user how they tune it such that

8 1. Introduction

the resolution in the variables of interest is retained. To this end, linear dimen-
sionality reduction methods have been developed and are being successfully used
to deal with and interpret high-dimensional data. However, although the linear
methods are fast in factorising these large amounts of data, decomposition ought
to be ambiguous when the data lies in the nonlinear space. Therefore, one must
choose these data reduction techniques judiciously.
Therefore, we see some specific properties within the data that can direct our ef-
forts towards designing new and e�cient algorithms, which can perform equally
well, if not better, than the current approaches. Hence, this work demonstrates
the development of those data-driven models that adapt to the problem specified
as the user requirements.

1.4 Aims and Objectives
The main idea behind this work is to motivate the inclusion of ML algorithms into
conventional geophysical and geomechanical modelling workflow. We aim to solve
two di�erent problems that utilise modern deep learning algorithms to accomplish
the set tasks. We divide the work into two main chapters – chapter 3 and chapter
4.
In chapter 3, we have worked with Convolutional Neural Network (CNN) architec-
tures to characterise the pore networks in carbonate rocks. To do this, we define
the following objectives:

1. To prepare the volumetric image data of rock core samples

i. To convert the raw data into workable formats

ii. To study various preprocessing and binarisation algorithms

iii. To extract the pore networks from rock core samples

2. To analyse the extracted pore networks using acoustic wave simulation

i. To realise an acoustic wave simulator using finite di�erence technique

ii. To analyse the patterns exhibited by di�erent pore network models

3. To map the pore network models to their acoustic responses using deep
neural network

i. To develop a U-Net architecture for mapping the acoustic volumes to
the causative pore network model

1.5. Organisation of the Remaining Chapters 9

ii. To evaluate the performance of the developed network using di�erent
metrics

In chapter 4, we show how Long Short-Term Memory (LSTM) based Recurrent
Neural Networks (RNN) can be used to realise a Reduced Order Model (ROM) for
accelerated simulation of a hydro-mechanical system. Hence, the objectives are:

1. To develop a numerical model of the hydro-mechanical system

i. To define the computational domain for the study

ii. To generate state space data from few full-order simulation

2. To develop a Multistep Prediction algorithm using deep neural network

i. To create a supervised training and testing dataset

ii. To reduce the dimension of data using proper orthogonal decomposition

iii. To realise a multi-step prediction algorithm using single-step prediction
scheme

3. To perform some statistical analyses of the developed ROM

i. To compare the predicted states to the observed states

ii. To analyse the performance of the developed ROM

1.5 Organisation of the Remaining Chapters
The current chapter gave a general introduction to the ML algorithms that fit into
conventional data processing workflow. The rest of the thesis can be organised as
follows.
Chapter 2: General Algorithms in Deep Learning and Statistical Esti-
mation. In this chapter, we provide a brief overview of some of the general deep
learning algorithms that we use in the forthcoming chapters. We also mention
di�erent loss functions that can be used for training these algorithms. We also
mention the statistical estimation techniques such as Maximum a-posteriori Esti-
mation and Maximum likelihood estimation.
Chapter 3: A Data-Driven Approach to Porosity Segmentation for Car-
bonates. This chapter presents the results of predicting the pore network model
from acoustic volume data. We go through the several data preparation steps as it
is the most crucial part before illustrating the training of the U-Net. We first show
how raw grayscale image data can be processed using image processing algorithms

10 1. Introduction

such as contrast equalisation, median filtering and Sauvola thresholding. We then
use the extracted pore networks to prepare the computational domains for acous-
tic wave simulations. We then discuss the simulation results for various types of
pore configurations. The acoustic volumes and the extracted pore networks are
then used to train the U-Net model to perform semantic image segmentation. We
discuss some salient points in training the convolutional neural network with su-
pervised data. In the end, we quantify the performance of the trained U-Net on
some test samples.
Chapter 4: LSTMs based Accelerated Simulation for Hydro-Mechanical
Systems. This chapter shows how an LSTM-based recurrent neural network can
be configured as a multi-step prediction algorithm. We show how a million de-
grees of freedom state space can be compressed using a matrix factorisation al-
gorithm such as the singular value decomposition. We then emphasise di�erent
normalisation strategies for the weights and boundary conditions before training
the network. Next, we discuss the single-step training algorithm for the recurrent
neural network, which ultimately is used to realise multi-step predictions. We
show the training and validation accuracy and evaluate the network’s performance
with a reduced number of layers. We then show the reconstruction results in the
original state space and compare them with the original simulations. At last, we
also quantify the range of the pseudo-full-order simulations that can be generated
using the ROM.

Chapter 5: Conclusions and Future Work. In this chapter, we summarise
our contributions and discuss the scope of future research.

Chapter 2

General Algorithms in Deep
Learning and Statistical
Estimation

2.1 Deep Learning Algorithms
Deep learning algorithms refer to the artificial neural networks formed by combin-
ing multiple hidden layers between the input and the output layer. They provide
a robust framework for supervised learning where the task is to map an input
vector to an output target vector. The layers can form various units, often called
neuronal units, to realize specific tasks. We discuss them in brief in this chapter.

2.1.1 Convolutional Neural Networks

The convolutional neural networks (CNNs) are inspired by the human visual ven-
tral vision system and are similar to its architecture and functional tasks. Al-
though the forms have been derived from many di�erent fields, the fundamental
framework is still from the branch of Neuroscience. The scientific work of [46] laid
the foundation for modern day’s CNNs after their years of analysis analyzing the
mammalian visual system. While the pioneers received their Nobel prize in 1981,
the main experiment that led to the discovery was on cat eye cells’ response to
lights of di�erent wavelengths. The experiment involved fixing electrodes to the
anaesthetized cat’s brain and measuring its responses to various visual stimuli. It
was discovered that the individual neurons of the visual cortex system were only
activated for specific patterns in the input image. The deep architecture that we
use today resembles the visual cortex. The CNNs were first developed for image
processing applications and have been quite successful. The current text does not

12 2. General Deep Learning Algorithms

Max-Pool Convolution Max-Pool Dense

8@128x128

8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 2.1: A typical CNN

intend to be an exhaustive source to understand these networks, so, for a more
detailed study, the readers are referred to [47; 48; 49; 50; 51]. Apart from their
success in their native image processing applications, they have also been applied
successfully in the tasks of time series classification [52; 53; 54; 55; 56] applications,
natural language processing and the comprehending video streaming data. In the
forthcoming paragraphs, we explain the working of a CNN. Throughout the text,
the data is assumed to be 2-dimensional.
A typical CNN is shown in Fig. 2.1. The CNN architecture can be composed
of three types of layers – fully connected, convolutional layer, and pooling layer.
Each type has its own set of rules for propagating the errors forward or backwards.
While there are no precise rules on how to structure a CNN, broadly speaking,
the conventional architecture can be understood to be comprised of two parts –
first being the feature extractor that involves combinations of convolutional and
pooling layers and the second being the classifier/regressor that consists of the
fully connected layers. There are some exceptions to this broad categorization, as
can be seen in the recent developments such as the U-Net architecture [57].

2.1.1.1 Convolutional layer

This layer performs the convolution operation to the input image. The important
parameters here are the number of filters called the kernel. The output from this
operation is a set of other images called feature maps. The convolutional layers
are often cascaded with each other to realize a deep network for complex visual
analysis tasks such as human pose identification. The input to a convolutional
layer can either be an input image or a feature map in a deep net. For a 2D image,
the shape of the kernel is typically more than three and less than the length/width
of the image. The feature map is computed by the convolution operation of the
kernel over parts of the image using a moving-window type approach. The size of
the step taken to move this window to any dimension is called the stride and is
typically taken to be 1 or 2 or, in some cases, higher if the image is larger in a

2.1. Deep Learning Algorithms 13

given dimension. These operations shall be taken up in detail in the forthcoming
sections. The layer also has another parameter called padding. Padding is nothing
but the appending of zero values on all four sides of the input image. This is done
explicitly to match the size of a given dimension.
The size of the feature map is dependent on the size of the kernel and the padding
length. This number is given by Eq. 2.1

p = ((h ≠ 1)/2) (2.1)

Here, h is the width of the square kernel, and p is the padding size. The feature is
reduced by a factor of 2p. Although the feature map reduces the dimension of the
input image, it captures important patterns in the input. Also, the reduction is
compensated by extracting many filters from the image. The feature map is com-
puted using the kernel applied to all the image inputs. This essentially introduces
redundancy, and the maps may carry shared information.

The value of the stride can also e�ect the size of the feature map. The formula
for the output feature map is given by Eq. 2.2

wout = win ≠ f + 2p

s
+ 1 (2.2)

Here, wout is the dimension of the output image, win is the dimension of the in-
put image, f is the size of the filter or kernel, p is the size of the padding and s is the
stride value. A stride value of 1 does not a�ect the size of the output feature map.
The convolution operation creates a composition of feature maps, each having a
size dictated by Eq. 2.2. The number of such features in the output tensor/image
is specified as the number of kernels. A large number of kernels ensures, though
not guaranteed, capturing relevant features from a diverse set of a dataset. A deep
network consists of more than one convolutional layer. The feature maps in each
of the individual layers tend to capture features that progressively are complex in
nature, appearance and shape. For example, the first layer might only capture the
edges and line like features in the input image. The second layer might capture
the 2D structures composed of these 1D lines, and so on and so forth. Higher in
the hierarchy, one can expect the layers to learn features that are very abstract in
nature. The reason is the nonlinear activations that are typically combined with
these networks at the end of a layer. We next list a number of di�erent types of
layers that are commonly used with the CNNs.

14 2. General Deep Learning Algorithms

2.1.1.2 Activation layer

The universal approximation quality of the deep net is imparted by the functions
called activations which act on the input weights and apply a nonlinear trans-
formation before outputting the weights to the next layer. Some commonly used
activations are ReLU, tanh, sigmoid. A linear activation also exists that simply
outputs the same weights as the inputs, i.e. it does not modify the information
and acts like an identity function.

2.1.1.3 Pooling layer

The pooling layer is typically used to downsample the input data. Two of the most
famous types of pooling layers exist. They are max-pooling and average pooling.
The max-pooling is nothing but the extraction of the maximum value in the kernel
patch when the convolution operation is being done. Similarly, the average pooling
operation calculates the mean of the pixel values of the kernel patch. The schemat-
ics are shown in Fig. 2.2 and 2.3. An alternative way of seeing these layers is that
they can be considered to guarantee invariancy to small changes in the inputs.
This operation further reduces the number of trainable parameters and also gains
better generalizable capabilities. Another way of downsampling can be realized
using strides which is defined as the number of pixels to be skipped before applying
the convolutional operation. The average pooling approach gets the mean of the
pixels in the kernel patch. This type of pooling is typically used between the last
convolutional layer and the final output layer (e.g. softmax for classification). The
global average pooling can help process images with di�erent sizes because their
extracted feature maps can be transformed into the same output size and shape.

2.1.1.4 Transposed convolutional layer

Back converting from latent space to image space is an important task in ma-
chine learning. This is generally brought about by using multiple upsampling
layers. One of the most used methods for doing so is the use of the transposed
convolutional layer, which can be considered as the backward pass of a forward
convolution. A cleaner way to understand this upsampling strategy is to view the
transposed convolution as a forward convolution on the partially stridden input
image with added zeros.

2.1. Deep Learning Algorithms 15

2.1.1.5 Upsampling layer

The upsampling operation can also be realized with a combination of a convolu-
tional layer and an activation layer. It essentially is a non-parametric interpolation
method that directly rescales the input volume to a higher dimension. These inter-
polation methods can be either the nearest neighbours, bilinear or cubic interpola-
tion methods. This rescaled input volume is used as an input to the convolutional
layer such that the size of the output remains the same. This is brought about by
using a stride value of 1, and padding equals zero. Nonlinear activations generally
follow these layers. This type of upsampling is generally costlier as it is performed
on a higher dimensional volume. This method avoids generating checkerboard type
artefacts inherent in the other upsampling methods.

2.1.1.6 Normalisation layer

Training the deep networks via Stochastic gradient descent (SGD) is often plagued
with the problem of covariate shift. This occurs when the distribution of the input
layer constantly changes with respect to the output layer. Several normalization
methods have been devised to curate this. The normalization layer is used to centre
the input data. It does this operation by subtracting the mean and dividing by
the standard deviation, which essentially reduces the covariate shift. Commonly
used normalization schemes are batch normalization and layer normalization. The
feature maps are combined into a single input volume where the axes are called
the minibatch axis (N), the channel axis (C) and the spatial axis (H, W). The
three normalizations are calculated as follows:

• Batch normalisation is done along the (N,H,W) axis

• Layer normalisation is done along the (C,H,W) axis

• Instance normalisation is carried along the (H,W) axis

The activation layer is mostly preceded by the normalization layer. This results in
better stabilizing the activation weights’ distribution. One established advantage
of batch normalization is that it accelerates the deep network’s training proce-
dure. Weight initialization becomes less important with batch normalization as it
greatly improves the backpropagation with higher learning rates. Also, as it adds
some noise by statistical centring of the data, a natural regularisation is naturally
applied, making the network use less of the dropout fraction. The use case for
layer normalization is mostly seen when training the recurrent networks (contrary

16 2. General Deep Learning Algorithms

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

8 8 6 8 6

9

8 6

9 9

Figure 2.2: Example of max-pooling

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

7 3 5 2
8 7 1 6
4 9 3 9
0 8 4 5

6.25 6.25 3.5 6.25 3.5

5.25

6.25 3.5

5.25 5.25

Figure 2.3: Example of average-pooling

to CNNs), in which layer normalization is generally not possible due to parame-
ter reuse and variable length of inputs. Instance normalization must be preferred
when using small batch-size.

2.1.1.7 Training CNNs

Optimizing a CNN is more complex than that of a fully connected neural network
(FCNN). The reason for this is the various combinations of di�erent types of layers
that are cascaded from the input to the output layer. The following equations and
paragraphs summarise the training procedure.
The image is first input to the input layer, and this marks the start of the for-
ward propagation. This image undergoes a lot of transformations before appearing
through the output layer. This output is compared against the observed image
to compute an error which is then used to backpropagate to tune the weights of
the network. The tuning of the weights is mostly done by the gradient descent al-
gorithm, though modern variants are now available, though the principle remains
the same.
The forward propagation of the image/signal in a CNN can be given by the fol-

2.1. Deep Learning Algorithms 17

lowing Eq. 2.3:

xl
ij =

m≠1ÿ

a=0

m≠1ÿ

b=0
waby

l≠1
(i+a)(j+b) (2.3)

where, i, j œ (0, N ≠ m + 1), l denotes the current layer number, wab are filter
weights and yl≠1

(i+a)(j+b) are the previous layer’s output. The final layer in a CNN
network computes the output using the following Eq. 2.4:

yl
ij = g(xl

ij), (2.4)

where g is a nonlinear activation.
The backward-propagation in a CNN can be given using the following equations in
this section. The CNN computes the derivatives using the automatic di�erentiation
technique [58]. This enables computing the derivatives of any arbitrary function.
Now, given the forward propagation has already finished, the derivative of the
error w.r.t. the current convolutional layer can be given as ˆC

ˆyl
ij

, then the e�ect of
the filter/kernel weights can be given as

ˆC

ˆwab
=

N≠mÿ

i=0

N≠mÿ

j=0

ˆC

ˆxl
ij

ˆxl
ij

ˆwab
(2.5)

From Eq. 2.3 we can substitute the value as xl
ij = qm≠1

a=0
qm≠1

b=0 waby
l≠1
(i+a)(j+b).

Therefore,

ˆC

ˆwab
=

N≠mÿ

i=0

N≠mÿ

j=0
yl≠1

(i+a)(j+b) (2.6)

Using the chain rule, we can compute:

ˆC

ˆx(l)
ij

= ˆC

ˆyl
ij

ˆyl
ij

ˆxl
ij

= ˆC

yl
ij

ˆ

ˆxl
ij

(gÕ(xl
ij)) = ˆC

ˆyl
ij

gÕ(xl
ij (2.7)

Because the value ˆC
ˆyl

ij
is already computed, the delta term can be computed as

follows:

ˆC

ˆyl≠1
ij

=
m≠1ÿ

a=0

m≠1ÿ

b=0

ˆC

ˆxl
(i≠a)(j≠b)

ˆxl
(i≠a)(j≠b)

ˆyl≠1
ij

(2.8)

18 2. General Deep Learning Algorithms

Unfold

h
ht�1 ht ht+1

xt+1xtxt�1x

s st�1 st+1stW

U

V
W

V

U

V V

U U
W W W

Figure 2.4: A schematic Recurrent Neural Network; Towards the left we have a
standard RNN where the state vector is denoted by s; Towards the right is the
unfolded version depicting how the state is built over time

Eq. 2.8 computes the propagation of error into the previous layer. Then using Eq.
2.3, we can see compute that

ˆxl
(i≠a)(j≠b)
ˆyl≠1

ij

= wab

ˆC

ˆyl≠1
ij

=
m≠1ÿ

m≠1

ˆC

ˆxl
(i≠a)(j≠b)

wab (2.9)

Eq. 2.9 looks very similar to the familiar convolution operation, but it must
be thought of as a convolution of error with reversed kernel/filter. An important
point worth noticing with regard to the pooling layer and the forward propagation
is that the layer simply compresses the information by downsampling an input
matrix shown in Fig. 2.2. Conversely, in the backpropagation case, the error
backpropagates to the element with the strongest information content; so if the
operation is max-pooling, the error is backpropagated to the largest element of the
input matrix.

2.1.2 Recurrent Neural Networks

While neural networks, in general, are versatile in mapping nonlinear relations
between targets and covariates, they do possess a few shortcomings with sequen-
tial data. One of the fundamental assumptions underlying the plain multilayer
perceptron networks is the assumption of independence in data samples. One ex-
ception to this assumption is the sequential data. Some of the examples in this
category are human speech, stock price and weather temperature data. All these
data exhibit dependence between sequential data points. Multilayer perceptron
networks fail to exploit the information from this sequential dependence. A naive
approach to dealing with such data is to collect multiple data points in time as
one data point. This is analogous to the moving window approach. Some of the

2.1. Deep Learning Algorithms 19

works using this approach with sequential data can be seen [59; 60; 61]. But a
crucial point in tuning such networks is to find the optimal window size - this
is important; a smaller window size won’t capture longer dependencies, while a
large window would contribute to extra information that may sometime appear
as noise. One more limitation to the window based method may arise when there
are very long dependencies ranging over hundreds of timesteps. Additionally, the
plain NNs are not too welcoming for variable length sequences. This requirement
is especially important for tasks like language and machine translation.
In the recent past, Hidden Markov Models (HMMs) were being used for sequence
modelling tasks. HMMs, first developed by [62], work by mapping a set of observed
states to a set of hidden states. Probability distributions are used to define the
relationships between hidden states and observed states. These models follow the
Markov property, which states that the value at the current state is only dependent
on the immediately previous state. This is one of the severe limitations of HMMs
that prevents them from capturing long-range dependencies. Another is that of the
space complexity of an HMM that grows quadratically with the number of states.
This is significantly less than the fully connected versions that grow exponentially.
Some of the notable applications of HMM can be found in [63; 64; 65; 66; 67; 68].
The recurrent neural network is the modern way of handling sequential data. The
RNN cell tackles the long term dependency by maintaining a memory of all the
previous seen elements in the training sequence. This is done using the state vector
s in the hidden units. A simplistic form of the RNN can be seen in Fig. 2.4. The
curved dotted line and its pair in the solid line depict the feedback loop that con-
nects all the hidden neurons across the sequence length in time. At each timestep
t = t, the RNN cell receives the current element xt and the hidden state st≠1 to
update the current state st. The final output ht is then updated, ready to be fed
to the next stage. This structure is crucial to maintain the dependency of ht on
all previous states.
As seen is In Fig. 2.4 a weight matrix U is maintained between the input and the
hidden layers. Between one hidden state to another another weight matrix W is
maintained. And between hidden state and the output another weight matrix V is
maintained. All the operations can be summarized using the following equations.

st = ‡(Uxt + Wst≠1 + bs)

ht = softmax(Vst + bh) (2.10)

yk = eak

qK
kÕ=1 eakÕ

, k œ (1, . . . , K)

20 2. General Deep Learning Algorithms

Eq. 2.10 refers to the operations done on the state s. Symbols bs, bh are the
bias vectors. The softmax function ensures the output probabilities sum up to 1,
similar to a multiclass classification problem. Observing closely, one can notice
that a standard RNN 2.4 is itself a deep neural network. The unfolded version
makes it clear that a number of layers make up the networks, and the same set of
weights are applied and updated at each timestep. This feature enables the RNN
to process variable length input sequences. Due to the feedback connection and
the way st is updated, the information flow can take place across many timesteps,
thus enabling it to maintain memory in itself.

2.1.2.1 Training Recurrent Neural Networks

The backpropagation through time (BPTT) is used to train an RNN. Considering
the unfolded version shown in Fig. 2.4 we can see that it acts like a deep network
that implies it can be trained using the BPTT algorithm. Theoretically, the RNNs
can learn very long-range dependencies in time, given the multilayer analogy of
the unfolded network. The training should result in the tuning of weights so as to
retain the relevant information in the memory. However, in practice, the training
procedure is not trivial due to some well-known issues. In fact, authors in [69] have
identified that training a vanilla RNN (Fig. 2.4) performs very poorly even for a
sequence with short lags, as short as 10. The BPTT algorithm propagates the out-
put errors through long timesteps. The recurrent edge maintains the same set of
weights across time that eventually results in multiplying the gradients at timestep
t through timestep t ≠ n backwards in time. This results in a problem called the
“vanishing gradient problem” when the product becomes too small; conversely,
when the product is too large, the problem is known as the “exploding gradient
problem”. These are some of the significant problems with regard to training a
vanilla RNN as shown in Fig. 2.4. These are highly determined by the weight
matrices and the types of activations used. There have been several suggestions
to tackle these problems. Authors in [70; 71; 72] suggested the use of clipping
the gradients to mitigate the training problem; [70; 73] also suggested the use of
regularisation term L1 and L2 to prevent the overfitting issue.

2.1.2.2 Long short-term memory units

In order to get around the training di�culty, an improved architecture was sug-
gested by [74]. This architecture is called the Long-short Term Memory (LSTM)

2.1. Deep Learning Algorithms 21

unit. As stated in the paper, the LSTMs have proven to be useful. LSTM solve the
problem of vanishing gradients by substituting the simple neurons with advanced
architectures called gates in the LSTM unit. A basic LSTM unit is shown in Fig.
2.5. Some of the attributes of the LSTM unit can be summarised as below:

• CEC: Constant error carousel, this refers to a fundamental unit that has a
recurrent connection of unit weight. This can be seen in the Fig. 2.5 as the
feedback loop. This acts as the internal state responsible for maintaining the
memory.

• Input gate: This aids in the input activation. This is mostly a hyperbolic
tangent.

• Output gate: This acts as the output activation. This is mostly sigmoid.

• Forget gate: This acts as the forget activation. This is mostly sigmoid.

The gates control the access to the CEC unit. A value equal to one in the input
gate allows new information to be added to the CEC. Similarly, a value equal to
one in the output gate allows the information to flow out of the unit. A value
near zero blocks the gates allowing the information to remain intact inside the
cell. This selective opening and closing of the gates allows the error propagation
to flow across long sequences. This gated version of the CEC is e�ective in dealing
with the vanishing gradient problem. The problem of exploding gradients is taken
care of by clipping the gradients. This set of modifications leads to better learning
of the long term sequences than conventional vanilla RNNs. Notably, the forget
gates also serve an additional function. It has been found that training these units
with continuous and very long streams which do not have specified start and end
markers makes the unit unstable. The network is no more is capable of identifying
the temporal patterns and/or cycles. One remedy to this behaviour was then
identified. The solution was to reset the state of the unit after each training set.
This resetting must be done before a new sequence is fed to the unit. This is
exactly what the forget gates are included for, by [75]. These special gates force
the state to reset after each training set is passed through. Some of the properties
of the LSTMs with the inclusion of forget gates are given below. Referring to Fig.
2.5 we state:

• The input sequence xt at the current timestep and the output from timestep
(t ≠ 1) given by ht≠1 are passed through the tanh activation function after
summing operation

22 2. General Deep Learning Algorithms

• Then, the input gate receives xt, and recurrent input ht≠1 computes the
weighted sum and applies a sigmoid activation. A product of the result it

and zt is taken to be input into the memory cell

• The forget gate enables the unit to let go of the information that is old
enough and is no longer required. This operation is important when new
data is available, and the network must be trained with this new data as well.
A reset in the state must be performed before doing so. So, the forget gate
receives the inputs xt and hidden state ht≠1 and applies a sigmoid function
to the weighted inputs - then a product of this result and the cell’s previous
state st≠1 is taken to “forget” the irrelevant information.

• Then, the CEC unit with the feedback loop receives the input after forgetting
the not so important information from the previous timestep and, at the same
time, accepting relevant information from the current timestep

• Then, the output gate acts by computing the weighted sum of the inputs xt

and ht≠1 to apply a sigmoid activation. This controls what and how much
information flows out of the LSTM cell.

• Finally, the output is taken after passing the current state, st through a tanh

activation and taking a product with the result of the output gate, ot.

The above mentioned operations can be summarized as below:

zt = tanh(W zxt + Rzht≠1 + bz

it = ‡(W ixt + Riht≠1 + bi

ft = ‡(W fxt + Rfht≠1 + bf (2.11)

ot = ‡(W oxt + Roht≠1 + bo

st = zt § it + st≠1 § ft

ht = tanh(st) § ot

Here, Eq. 2.11 denote the following operations of the input, input gate, forget
gate, output gate, the cell state and the final output, respectively.

They process a single datapoint in time. They maintain a hidden state vector
which acts as a memory unit for the past states. They are well capable of retaining
information that is important across several timesteps; hence are well equipped to
capture long term dependencies. A single memory cell makes use of both the past
and the current state to make a forecast for the future. And the most interesting
thing is that the model learns and tunes to do all these tasks itself while undergoing

2.1. Deep Learning Algorithms 23

�

+

+

+

+

·
+·· ·
·
h

�

�

g

f

z
i

oh

s
recurrent

recurrent

recurrent

recurrent

recurrent

input

input

input

output

forget gate

output gate

input gate

LSTM cell
input

unweighted connection

weighted connection

connection (lagged)

branching point

multiplication

sum over all inputs

gate sigmoid activation

input tanh activation

output tanh activation

··
+
�

g

h

Figure 2.5: A standard Long short-term memory cell

training. But the RNNs need a fixed window size, although they can handle
variable-size inputs.

Recurrent networks find immense applications in areas of language modelling,
machine translation and image captioning. LSTM cells are an advanced form of
RNNs where they allow the gradient to flow through all the temporal states mak-
ing use of an extra latent state called the memory cell state. There exist a few
variations in the LSTM, like the LSTM with a peephole connection that enables
learning precise time dependencies and the gated recurrent units (GRUs). These
are less computationally expensive compared to the original LSTMs.
Other applications related to geosciences can be found in hydrocarbon detection
from well-logs [76], simulating reservoir behavior [77; 78], and prediction of reser-
voir physical parameters [79].

2.1.3 Encoder-Decoder Frameworks

The di�erent forms of neural networks described in sections 2.1.1 and 2.1.2 su�ce
for most purposes, but there may be tasks that need custom designed networks.
For example, one may want to learn a compressed representation/latent vector
of the input image similar to dimensionality reduction techniques and then use
this compressed representation to reconstruct the input. This compression and
reconstruction help deduce relevant and important features. The compressed rep-
resentation is usually smaller in dimension than the input image size. The main
idea behind this technique is that the latent representation/vector would capture

24 2. General Deep Learning Algorithms

Im
ag

e i
np

ut

Se
gm

en
ta

tio
n

M

ap

572
�5

72

568
�5

68
284

2

280
2

140
2

136
2

682 642

322

302 282

562 542 522
104

2

102
2

100
2

200
2

198
2

196
2

392
�3

92

388
�3

88

Convolution

Concatenate
Maxpool
Upsample

Figure 2.6: The U-Net architecture

just enough information so as to recreate the data itself. This type of network
consists of two parts - the encoder and the decoder. The type of network that
recreates the input data is called an Autoencoder and will be explained in the next
section. One of the interesting applications of these models is semantic segmen-
tation [80; 81; 82; 83; 84]. With regard to the flexibility that these modularised
networks o�er is that one can train multiple decoders for one single encoder, each
designed for a specific task, and vice-versa. For example, in a machine translation
application where one language needs to be translated to many other languages,
there can be a decoder for each one of them. Another application can be of calcu-
lating a fixed length representation of variable length inputs. RNNs are commonly
used for these types of tasks. Next, we define some common encoder-decoder ar-
chitectures in the next subsections.

2.1.3.1 The U-Net Architecture

Developed by [57] the U-Net architecture takes its name from the shape it bears
when drawn in on a 2D plane. The architecture can be seen in Fig. 2.6 was designed
for the purpose of semantic image segmentation and localization for Biomedical
purposes. While conventional CNNs are excellent in image classification tasks, e.g.
[80]. The U-Net is composed of an encoder-decoder framework with skip connec-

2.1. Deep Learning Algorithms 25

tions and is also capable of localization. By localization, we mean the segmented
parts retain their physical position in space after the task of segmentation com-
pletes. In addition to that, and unlike conventional deep network requirements,
the U-Net is able to work with less amount of labelled data. The added capability
comes from the use of upsampling layers with a large number of feature maps
(typically in thousands for a 3D image of size 800 ◊ 800 ◊ 800) that help carry
context information to higher layers in the hierarchy.
The U-Net architecture can be seen in Fig. 2.6 where we observe it has two parts
that look like the two halves of the English letter “U”. The left half is the encoder,
and the right half is the decoder. The encoder o�ers a contracting path to the
input image while the decoder expands on the contracted image to form the output
having the same dimension as that of the input. The contracting encoder consists
of the conventional convolutional operations of size 3◊3 and max pooling followed
by a downsampling operation of stride of 2. The downsampling step creates dou-
ble the number of feature maps. On the other hand, in the expanding decoder
path, the feature maps are upsampled with a convolutional operation of size 2◊2.
This operation reduces the number of feature maps by 2, which are then concate-
nated with a copy of the corresponding downsampling operation of the encoder
part. The result is again followed by a convolutional operation to map the feature
vectors to a multiclass vector. The main idea behind the contracting operation is
that the network must capture the context of the image, similar to a classification
network. The localization e�ect is brought about by the “direct” skip connections
that connect the downsampling layers to the upsampling layers in the architecture.

2.1.3.2 The seq2seq Architecture

As the name suggests, the seq2seq model derives its name from the phrase “se-
quence to sequence”. This architecture was developed for processing pairs of se-
quences, frequently encountered in machine translation tasks. The architecture
was first developed by [85; 86; 87; 88]. Interesting applications have been found
since then in the tasks such as image captioning [89], dialogue systems [90], and
speech recognition [91; 92]. Though not directly related to this thesis, the model
was previously considered for the development of the Reduced order model as de-
scribed in chapter 4.
The vanilla seq2seq describes the conditional probability of the output sequence
y given the input sequence x as given by Eq. 2.12:

26 2. General Deep Learning Algorithms

Hidden layer

Softmax

Output layer

Embedding layer

Input layer ENCODER DECODER

Figure 2.7: The seq2seq architecture

p(y|x) =
JŸ

j=1
p(yj|yj≠1

1 , x) (2.12)

This is also an example of the encoder-decoder framework. The job of the
encoder is to receive an input sequence (usually one token at a time) to generate
a fixed length latent representation/vector. The decoder then maps back the gen-
erated latent vector to a token of the output sequence. While RNNs are typically
used for machine translation tasks, for image captioning, the encoder stage may be
framed by a CNN. The framework can be seen in Fig. 2.7. In this figure, both the
encoder and decoders are realized using RNNs. Usually, two separate embeddings
are created for each of the stages. The encoder stage takes as input the words from
the input sequence and encodes them into a latent vector. The end of the input is
usually marked with a special character. This special character helps identify the
starting point for the decoder. The decoder RNN then starts from the last latent
state of the encoder to begin the translation.
Training is usually carried out with true source and target sequences when the
output error is backpropagated through time across the entire model. The loss
function for training is given by Eq. 2.13:

L = ≠
ÿ

(x,y)œS

log p(y|x) (2.13)

2.2. Dimensionality Reduction and Matrix Factorization Algorithms 27

The equation depicts the negative log-likelihood of the pair of sequences in the
training data S. During testing, the model generates a sequence that is proba-
bilistic and more likely to be the output.

2.2 Dimensionality Reduction and Matrix Fac-
torization Algorithms

Data is ubiquitous. These are used to represent the observations of an experiment
or a field survey. Often, there are multiple sensors/devices that are employed to
capture the observations. The data from each of these devices can be arranged in
the form of a vector representing di�erent features or aspects of the phenomenon.
When these features are independent of each other, they can often be called de-
grees of freedom [93]. But this is seldom the case, and the result is that we
end up using multiple devices to capture the phenomena in the hope that it in-
creases the signal-to-noise ratio to uncover the inherent properties within the data.
Using multiple sensors to capture single phenomena leads to redundancy in infor-
mation which ultimately manifests as modelling complexities to the use. Apart
from being redundant, the data is also sometimes irrelevant that may persist as
modelling overload by taking up unnecessary computation. And on top of these,
there lies the problem of “curse of dimensionality”. This problem arises when the
high dimensional space is more sparse than being informative. So, when avoid-
ing dimensionality reduction techniques, the sparse data soon blows up the data
storing space and still may be “poorly informative” about the ongoing phenomena.

The branch of dimensionality reduction has evolved over the decades to over-
come the above-mentioned problems in multi-dimensional data. The idea is to
devise a compact parameterization of the phenomena that generate the data. This
way, dimensionality reduction algorithms can be thought of as a set of transfor-
mations that can accurately characterize the important events in the dataspace by
reducing very high dimensional data to a fairly low-level representation. Fig. 2.8
and Fig. 2.9 illustrate the idea nicely. The few advantages of this reduction are –

• Reduction in computational costs

• Better data representation

• Preserving relevant information

The data in the real world is mostly three dimensional. As a part of data
processing, multiple features are extracted from them to make it work through the

28 2. General Deep Learning Algorithms

a) b)

c) d)

Figure 2.8: From a) Original image; From b) to d): Reconstruction of a scan-
ning electron microscopy image with increasing number of principal components –
20, 120, 220

Figure 2.9: Reconstruction accuracy; Higher is better

2.2. Dimensionality Reduction and Matrix Factorization Algorithms 29

machine learning algorithm. As will be shown in chapter 4, a large state space of
a hydro-mechanical simulation resides on a smaller data dimension compared to
its original space, where the degrees of freedom are in millions.

The problem of dimensionality reduction lies at the base of machine-learning
algorithms. These algorithms are frequently employed to solve tasks in pattern
recognition, image segmentation and the more general data compression. There
exists a class of methods when the data appears to be linear in nature. One such
algorithm is the Principle Component Analysis or the PCA. It accounts for the
variance in the data and uses it as the basis to “load” its several components.
The space where these components are evaluated is called the principle compo-
nent space, which is often much lower than the original data space. There are
other algorithms as well that exploit di�erent properties of the data to reduce the
dimension. For example, there is a variant of the basic Singular Value Decom-
position called the Kernel-Singular Value Decomposition algorithm or the K-SVD
[25]. This algorithm makes use of the “kernel” to account for the nonlinearity in
the data. Among the linear techniques, there are quite a few like the Dictionary
learning algorithm [94], Matching Pursuit [95] and the Factor Analysis algorithm
[96]. Often, the data acquired for Geoscientific analysis is high-dimensional, al-
though the causative sources might be much less in numbers. These algorithms
try to reduce the space of the observed data by working out a procedure like ma-
trix transformations to get down to a dimension equal to the number of sources
that generated the data. Technically, we say that the observed data, though high
dimensional, lies in a low-dimensional manifold. All dimensionality reduction al-
gorithms are designed to obtain the best possible reduction. Probably, the reason
for ending up at a high dimension space is that the user cannot ever know the
exact location of the generative source in the data space. Eventually, when the
measurements are made at a location which is far from the causative source, there
arises a need to compensate for the distance, which results in making multiple
dimensions.
There exist other classes of algorithms which are specifically targeted to address
the nonlinearity in data, such as the Local Linear Embedding, Laplacian Eigen-
maps, and the Isomap algorithm [97; 98]. These algorithms o�er greater flexibility
in fitting the nonlinear data. But there are a few issues when applying these algo-
rithms. First among them is that these algorithms map the points in the original
higher dimension and the lower dimension in a one-to-one manner, i.e. say, the
embedding that is created needs an interpolation technique to extend the generaliz-
ability to initially unavailable points. This process can be termed an out-of-sample
extension. The second issue is that these algorithms emphasize the properties of

30 2. General Deep Learning Algorithms

the training data only, i.e. to say they mostly maximize the inter-class distance of
the training data but do not perform so well for the data in the test sets. There
exist several methods to increase the predictive performance on the test data [99].
The nonlinearity in data presents special challenges because the performance de-
pends not only on the computed embedded space but also on the interpolator used
during training. One possible solution to extend the learned embedding is the use
of smooth functions such as radial basis functions [100]. Also, it becomes obvious
that learning the embedding and the interpolation parameters are done in a joint
manner rather than sequential. In this thesis, we emphasize linear dimensionality
reduction techniques only.

2.2.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is an ubiquitous matrix factoriza-
tion method and has applications ranging from numerical simulation [101; 102],
model reduction [103; 104; 105], model inversion [106; 107; 108] to dimensionality
reduction [109; 110]. Let the high dimensional data matrix be denoted as Y . The
POD can be realised by the Singular Value Decomposition gives three matrices as
the products of its operation on Y , given as:

Y = USV T (2.14)

where, U = [u1, . . . , um] œ Rm◊m and V = [v1, . . . vn] œ Rn◊n contain the left and
right singular vectors. The singular values are stored in the S matrix as:

S =
S

UD 0
0 0

T

V (2.15)

where, S œ Rm◊n. The diagonal D contains the singular values in decreasing
order such that s1 Ø S2 . . . sd > 0. The vectors {ui}d

i=1 and {ui}d
i=1 denote the

eigenvectors obtained from matrices Y Y T and Y T Y , respectively. The data matrix
in Eq. 2.14 can be approximated using a lower rank estimate, given as:

Ŷ = U (d)D(Sd)T (2.16)

We ideally choose the value of d as a trade-o� between compression and estimation
quality.

2.2. Dimensionality Reduction and Matrix Factorization Algorithms 31

2.2.2 Sparse Coding and Dictionary Learning

Redundancy in data can be exploited to code a signal/image for a compressed rep-
resentation [111; 112]. For example, in image applications, the algorithm can look
into the statistical distribution of the pixels to come up with a compressed repre-
sentation. Given a signal y œ Rn, one can represent it using a linear combination
of some basis vectors.

y ¥ Dx (2.17)

where the vectors are represented by the columns in the Dn◊k matrix xk contains
the weight or coe�cient of each of the vectors. Sparse coding relies on the fact that
only a few of such columns are required to reconstruct the given signal while the
coe�cients of others are near zero. The optimization function for sparse coding a
signal can be given as:

min
x

||x||0 : ||y ≠ Dx||22 Æ ‘ (2.18)

where the xk is called the sparse representation of the signal y and ‘ is a very
small value. The sparsity in x is enforced by the l0 norm. Conventionally, image
compression algorithms have been using some pre-defined basis such as the Fourier
basis and the Wavelet basis [113; 114]. The dictionary learning algorithm works by
finding a sparse dictionary or atoms of the given matrix in an overcomplete manner.
The method has been proven to give satisfactory results in image denoising tasks.

(Dú, xú) = arg min
D,x

= 1
2 ||y ≠ Dx||22 + –||D||11 (2.19)

where, – is the regularization constant. In this optimization function the algorithm
aims to estimate the two matrices Dú, xú whose dot product gives the least error
with the observed signal y. The optimization algorithm used for such tasks are
orthogonal matching-pursuit and least angle regression with coordinate descent
[115; 116].

2.2.3 Independent Component Analysis

The independent component analysis (ICA) algorithm [117] is used to identify the
underlying generative sources of a given signal where the given signal is a linear
combination of the sources. It also assumes that the sources be independent and
non-Gaussian. Although a clear explanation of this algorithm would take several
pages, we try to give out the main idea behind its working. In particular, we

32 2. General Deep Learning Algorithms

demonstrate the working of a practical version of the ICA algorithm called the
Fast ICA. let the observed data be represented as y = (y1, y2, . . . , ym)T . This m-
dimensional vector is zero-mean. One wants to estimate a suitable transformation
of y such that result has some desired properties, here being the non-Gaussianity.

s = Wy (2.20)

where, s = (s1, s2, . . . , sn)T is a n-dimensional transform and W is the weight
matrix. The FastICA algorithm mandates demeaning and whitening of the data
prior to its application. The optimizer tests for the convergence of the algorithm
by checking for the non-Gaussianity of each si, where i denotes the ith component
of the mixed signal y. The objective that the algorithm maximizes is given in the
following form:

JG(w) = [E{G(wT y)} ≠ E{G(‹)}]2 (2.21)

where, w is an m-dimensional weight vector and ‹ is a Gaussian variable of zero-
mean and unit variance. Minimizing this function JG, gives a vector ŵ which can
be tested for being a likely estimator using some “contrast functions”. The author
[118; 119] gives some choices of this contrast functions as given below.

G1(u) = 1
a1

log cosh(a1u), g1(u) = tanh(a1u) (2.22)

G2(u) = ≠ 1
a2

exp ≠a2u
2/2, g2(u) = u exp ≠a2u

2/2 (2.23)

G3(u) = 1
4u4, g3(u) = u3 (2.24)

where, a1 œ [1, 2] and a2 ¥ 1. Some. recommendations on using the GÕs is as
follows. G1 should be good for general purpose applications, G2 must be used for
robustness or when the components are super-Gaussian and for sub-Gaussian inde-
pendent components the choice of G3 is good. Some of the applications of ICA are
mostly found for dimensionality reduction, denoising and unmixing of hyperspec-
tral data as in [120; 121; 122]. It has also been used in reservoir geomorphology
[123; 124] and detection of coal bed methane [125].

2.2.4 Autoencoders

The neural networks are good at discriminative and generative modelling tasks.
There is a class of neural networks that work in an unsupervised setting that can
be used for dimensionality reduction - the Autoencoders. There are other varia-

2.2. Dimensionality Reduction and Matrix Factorization Algorithms 33

In
pu

t I
m

ag
e

LA
TE

N
T

C
O

D
E

DECODERENCODER

O
ut

pu
t I

m
ag

e

Figure 2.10: A schematic autoencoder architecture

tions as well, such as the Deep Boltzmann Machines and Deep-Belief Networks.
For a detailed discussion on those, the readers are encouraged to go through the
Deep Learning Book [126]. The Autoencoder is a neural network that learns to re-
construct itself. Fig. 2.10 shows the schematic of an autoencoder. The motivation
behind such an architecture is that in the pursuit of reconstructing the input data,
the network would learn a representation that is much small in size compared to
the input. The reduction in the representation is enforced by the “bottleneck”
present in the middle of the network Fig. 2.10. This process of compression can
be understood as follows - let the input x be parameterized as h = f(x) where
h is the latent vector or the code that needs to be learned. The process can be
realized by putting multiple layers from the input layer to the bottleneck called
the encoder. Once the information is contained in h, the next set of layers from
the bottleneck to the output try to reconstruct the input image as x̂ = g(h), where
x̂ is the network’s estimate of the input and g(h) is the functional representation
of the decoder. Hence, two parts are called the encoder and the decoder. The loss
function used here is the squared error loss because the network needs to compare
the input vector and the reconstruction in an element-wise fashion. The equations
can be given in the following form:

h = f(x) (2.25)

x̂ = g(h) (2.26)

Lautoenc(x, x̂) = ||x̂ ≠ x||2 (2.27)

An important point w.r.t. the loss function is that additional constraints may
be applied to it to reduce the representational capacity of the network, which in
turn can help avoid learning an identity function. Other constraints may facilitate
regularisation. We now list three simple forms of autoencoders that serve di�erent
purposes.

• Sparse Autoencoder: This type of Autoencoder simply adds an extra
penalty term �(h) for enforcing sparsity. So, the loss function now reads as

34 2. General Deep Learning Algorithms

follows:

L(x, x̂) + �(h) (2.28)

where x̂ is the decoder’s output. These types of autoencoders are mostly
feature extractors that can be used by other machine-learning algorithms as
a classifier. The extra term �(h) can be thought of as a regulariser whose
task is to make the network respond to the sparse features present in the
input dataset.

• Denoising autoencoder: Similar to the sparse Autoencoder, the denoising
autoencoder also minimizes a modified loss function given by the following
equation:

L(x, x̃) (2.29)

where x̃ is a corrupted copy of the input. This can be done by adding some
form of noise to the input image. Hence the name - these autoencoders
are supposed to remove the noise from the corrupted signal and recover the
original information.

• Contractive autoencoder: This type of autoencoder, introduced in [127],
expresses a regularizing term on the latent vector in the following form:

�(h) = ⁄||ˆf(x)
ˆx

||2 (2.30)

The term �(h) is the Frobenius norm or the sum of squared elements of the
Jacobian matrix of the partial derivatives computed in the encoder part.

The autoencoders are good at information retrieval and dimensionality reduc-
tion tasks. Reduction in the data space can greatly improve the performance of
classification algorithms. Smaller data spaces imply fewer computation times and
fewer memory requirements. These are some of the benefits of using them with
fundamental machine-learning algorithms.

2.3 Miscellaneous

2.3.1 Optimising Deep Networks

Gradient descent is a popular choice for optimizing deep neural networks. There
exists a handful of di�erent variations to the basic gradient descent algorithm. We

2.3. Miscellaneous 35

list the main ones here from [128].
Let the cost function be J(◊) where ◊ œ Rd is the model parameter. The gradient
descent aims to minimize this function by updating ◊ in the opposite direction of
its gradient Ò◊J(◊) w.r.t. the parameters. The optimizer has another parameter
called ÷ that sets the stepsize the optimizer takes at each update. This parameter
determines “how big” of an update is to be done once the gradients are computed.
Summarily, the optimizer tends to move in the direction dictated by the gradient
of the cost function until it reaches a saddle point or local optimum.
Literature cites many variants of the basic gradient descent. We list a few of them
in this section. In the following paragraph we denote X(i), y(i) to denote the ith

predictor and target, respectively.

• SGD - The basic variant of the gradient descent algorithm is the stochastic
gradient descent and it derives its name from the way it uses the amount
of data. It updates the parameters for each new sample in the training set.
The exact cost function is given as:

◊ = ◊ ≠ ÷ · Ò◊J(◊; X(i), y(i)) (2.31)

The SGD can be used in an online mode, i.e. it can perform its update with
new incoming data as the update works with a single example at a time. And
because it takes one example at a time, it needs to perform frequent and high
variance updates which results in the cost function value fluctuating rapidly.
The rapid updates also have the added benefit of escaping the local minima
in case of non-convex loss functions. When the function has multiple non-
smooth regions, the algorithm may su�er from “overshooting”, i.e. it may
miss out on a potentially good local optimum. The way around here is to
decrease the step size ÷. Shu�ing the examples is often accompanied within
the main loop to avoid biasing.

• BGD - The Batch gradient descent or the BGD is the most simplistic version
of the gradient descent algorithm. It di�ers from the SGD in the amount
of data it processes at a time. The BGD takes in the entire data into the
memory to perform the parameter update. Therefore the cost function it
minimizes is given as:

◊ = ◊ ≠ ÷ · Ò◊J(◊) (2.32)

Using this variant can be problematic for large datasets as it puts a constraint
on the memory requirements. This variant can also be very sluggish and

36 2. General Deep Learning Algorithms

requires all data to be present at a time; this implies it cannot be used in an
online mode.

• MBGD - The mini-batch gradient descent or the MBGD is a culmination
of both the above mentioned variants. Instead of treating one example at a
time it takes a batch of size n to perform the gradient and update operations.
It takes the form given by the equation:

◊ = ◊ ≠ ÷ · Ò◊J(◊; X(i:i+n), y(i:i+n)) (2.33)

There are two main advantages of the approach - it leads to better and
more stable convergence by reducing the variance in parameter updates; it
can be tweaked for better matrix optimizations that are common to other
optimization algorithms.

• SGD with Momentum - Momentum based SGD is an improvement to the
simplistic SGD by introducing a “momentum” term “.

‹t = “‹t≠1 ≠ ÷ · Ò◊J(◊) (2.34)

◊ = ◊ ≠ ‹t (2.35)

The value of “ is usually set to 0.9 or somewhat near. The parameter updates
are accelerated in the direction opposite to the gradient, while for others, the
acceleration is lessened.

• NAG - Nesterov Accelerated Gradient (NAG) [129], when combined with
gradient descent, enables the base algorithm to have a notion of accelerating
the updates as the case may be. For example, the momentum term “‹t≠1

is used to update the parameters; the next step is usually to calculate the
velocity term ‹, which can be used as the argument to the cost function J

as shown in the equation below. This gives a better approximation of the
optimal point. ◊ ≠ “‹t≠1 to approximate the next optimal location.

‹t = “‹t≠1 ≠ ÷ · Ò◊J(◊ ≠ “‹t≠1) (2.36)

◊ = ◊ ≠ ‹t (2.37)

The formulation helps anticipate the update and prevents going too fast or
too slow. This has been highly beneficial for training the RNNs.

• ADAGRAD - One scope of improvement with the NAG optimization is
that it can be done on a parameter-wise basis. The ADAGRAD [130] or

2.3. Miscellaneous 37

the Adaptive Gradient algorithm has been designed for the same purpose. It
adapts the updates for each parameter separately. The result is that we have
larger updates for less frequent changes in the parameters and smaller up-
dates for parameters with large changes. The following equations summarise
the ADAGRAD steps:

gt,i = Ò◊J(◊t,i) (2.38)

◊t+1,i = ◊t,i ≠ ‹ · gt,i (2.39)

◊t+1,i = ◊t,i ≠ ÷
Ò

Gt,ii + ‘
· gt,i (2.40)

◊t+1 = ◊t ≠ ÷Ô
Gt + ‘

§ gt (2.41)

One of the advantages of using ADAGRAD is that it relieves the user from
manually tweaking the learning rates. At the same time, one disadvantage
of using this variant is the addition of the positive term in the denominator.
This term keeps increasing during training which makes the fraction infinites-
imally small after some time. After this stage, the algorithm becomes less
e�ective.

• ADADELTA - The ADADELTA [131] variant overcomes the shortcomings
of the ADAGRAD algorithm by reducing the e�ect of monotonically de-
creasing learning rate. This is done by restricting the accumulation of past
squared gradients to some fixed value, w. The algorithm maintains a running
average of E[g2]t at timestep t that just depends on the previous average and
the current gradient.

E[g2]t = “E[g2]t≠1 + (1 ≠ “)g2
t (2.42)

Enumerating all the steps once again gives us the following equations.

�◊t = ÷ · gt,i (2.43)

�◊t+1 = ◊t + �◊t (2.44)

�◊t = ≠ ÷Ô
Gt + ‘

§ gt (2.45)

�◊t = ≠ ÷
Ò

E[g2]t + ‘
gt (2.46)

�◊t = ≠ ÷

RMS[g]t
gt (2.47)

38 2. General Deep Learning Algorithms

In order to match the units from the last update, an exponentially decaying
average of squared parameter updates is defined:

E[�◊2]t = “E[�◊2]t≠1 + (1 ≠ “)�◊2
t (2.48)

RMS[�◊]t =
Ò

E[�◊2]t + ‘ (2.49)

The final update rule is given as:

�◊t = ≠RMS[�◊]t≠1
RMS[g]t

gt (2.50)

◊t+1 = ◊t + �◊t (2.51)

With the development of the ADADELTA update rule, the need to set the
default learning rate could be avoided.

• RMSPROP - The RMSPROP is an adaptive learning method that seeks
to eradicate ADAGRAD’s decreasing learning rates issues. The equations
for this are given as:

E[g2]t = 0.9E[g2]t≠1 + 0.1g2
t (2.52)

◊t+1 = ◊t ≠ ÷
Ò

E[g2]t + ‘
gt (2.53)

Ideal values for the “, ÷ have been proposed as 0.9 and 0.001 respectively.

• ADAM - The Adaptive Moment Estimation or ADAM [132] that also per-
forms parameter-wise update. It keeps a record of both the past squared
gradients vt like the ADADELTA and RMSPROP and past gradients mt like
the Momentum algorithm. The equations can be given as follows:

mt = —1mt≠1 + (1 ≠ —1)gt (2.54)

vt = —2vt≠1 + (1 ≠ —2)g2
t (2.55)

In these equations the mt, vt are the first and second moment estimates of the
gradients. The two vectors are initialized with zeros and are always biased
towards it. This also happens when the decay rates are small. In order to

2.3. Miscellaneous 39

overcome the issues they introduce the bias correction terms as:

m̂t = mt

1 ≠ —t
1

(2.56)

v̂t = vt

1 ≠ —t
2

(2.57)

The above two equations are then used to update the parameters as given
below:

◊t+1 = ◊t ≠ ÷Ô
v̂t + ‘

m̂t (2.58)

The suggested value for —1, —2, ‘ are 0.9, 0.999, 1e ≠ 8, respectively.

• NADAM - The Nesterov Accelerated Adaptive Moment Estimation [133]
combines the ADAM and NAG’s qualities. We already know that RM-
SPROP calculates the exponentially decaying average of the past squared
gradients ‹t and Momentum calculates the exponentially decaying average
of past gradients mt. As seen earlier, the momentum update rule is given
by:

gt = Ò◊tJ(◊t) (2.59)

mt = “mt≠1 + ÷gt (2.60)

◊t+1 = ◊t ≠ mt (2.61)

Expanding the third equation gives us

◊t+1 = ◊t ≠ (“mt≠1 + ÷gt) (2.62)

This shows that momentum allows taking a step in the direction of the
previous momentum vector and a step in the current gradient’s direction.
The NAG enables a better step prior to gradient calculation. We can see
that only gt needs to be modified to arrive at NAG.

gt = Ò◊tJ(◊t ≠ “mt≠1) (2.63)

mt = “mt≠1 + ÷gt (2.64)

◊t+1 = ◊t ≠ mt (2.65)

40 2. General Deep Learning Algorithms

Dozat suggested a one time update to the NAG’s update equation as follows:

gt = Ò◊tJ(◊t) (2.66)

mt = “mt≠1 + ÷gt (2.67)

◊t+1 = ◊t ≠ (“mt + ÷gt) (2.68)

Now, in order to get the Nesterov momentum to ADAM we can replace the
previous momentum vector with the current one. Recalling ADAM update
rule:

mt = —1mt≠1 + (1 ≠ —1)gt (2.69)

m̂t = mt

1 ≠ —t
1

(2.70)

◊t+1 = ◊t ≠ ÷Ô
v̂ + ‘

m̂t (2.71)

Expanding the second equation with m̂t and mt gives the following:

◊t+1 = ◊t ≠ ÷Ô
v̂ + ‘

A
—1mt≠1
1 ≠ —t

1
+ (1 ≠ —1)gt

1 ≠ —t
1

B

(2.72)

We note that —1mt≠1
1≠—t

1
is the bias corrected estimate of the momentum vector

of the last time step and can be substituted by ˆmt≠1:

◊t+1 = ◊t ≠ ÷Ô
v̂ + ‘

A

—1m̂t≠1 + (1 ≠ —1)gt

1 ≠ —t
1

B

(2.73)

The Nesterov momentum can now be added by substituting the bias cor-
rected estimate of the momentum vector of the previous timestep m̂t≠1 with
the bias corrected estimate of the current momentum vector m̂t giving us
the final update equation as:

◊t+1 = ◊t ≠ ÷Ô
v̂t + ‘

A

—1m̂t + (1 ≠ —1)gt

1 ≠ —t
1

B

(2.74)

2.3.2 Statistical Inference

2.3.2.1 Maximum Likelihood Estimation

The maximum likelihood estimation or MLE provides a simple statistical tool to
estimate the parameters of given statistical model. To find these estimates we
need a likelihood function of the given model. The likelihood function can be

2.3. Miscellaneous 41

thought of as a simultaneous density function which when used in the MLE, the
observations are held fixed and the parameters are set to vary. The main idea
behind its mechanism is to search for the most likely values of the parameters
that would generate the given data/observations. Therefore, this problem can
be defined as an optimisation problem where the values of the parameters are
optimised to match the observations. Or, in simpler words we need to maximize
the likelihood function with respect to the parameters. If the probability density
function is given by f(x|◊) where ◊ denotes the parameter vector of length q and
x is a set of random samples produced from this density function, then the joint
probability of x can be given as

f(x1, x2, . . . , xn|◊) = f(x1|◊) · f(x2|◊) · · · · · f(xn|◊) =
nŸ

t=1
f(xt|◊) (2.75)

Each sample xt is assumed to be independent and identically distributed (IID).
Now, the likelihood function is the same probability density function with x re-
maining fixed the ◊ is allowed to change. It is given as

L(◊|x1, x2, . . . , xn) =
nŸ

t=1
f(xt|◊) (2.76)

For many practical purposes and numerical computation it is necessary to work
with the logarithms of the likelihood function. Other reason being the product
gets converted to a sum and the computation of derivatives becomes easy. The
log-likelihood is gives as

LL(◊|x1, x2, . . . , xn) = log
A

nŸ

t=1
L(◊|xt)

B

=
nÿ

t=1
log L(◊|xt) (2.77)

The computation of MLE is done by finding the ◊ that maximizes the value of
LL(◊|x) function. This is done by taking the derivatives of the function w.r.t. the
parameters, as given here and setting it zero. The resulting system of equations
can be solved numerically to get the most optimal values of the parameters.

ˆLL(◊|x)
ˆ◊j

= 0, j = 1, . . . q (2.78)

Some of the important properties of the MLE can be stated as follows:

• When the number of observations is high the MLE approaches the true
parameter value

• When using the Gaussian Distribution to define the probability density func-

42 2. General Deep Learning Algorithms

tion of a multi-parameter system the covariance matrix is proportional to the
inverse of the Fisher information matrix.

• The MLE of any function of ◊, ·(◊) = ·(◊MLE) if the MLE of ◊ is ◊MLE.
This is also called the invariance property.

• The probability density functions must be known prior to estimation

2.3.2.2 Maximum a posteriori Estimation

Suppose x œ Rn be the data generated by an unknown process. Let y be a
partially observed signal related to x such that the likelihood function is given
as p(y|x). Also, let us assume that the problem of reconstructing x from y is
ill-posed. This leads to high uncertainties in the estimation of x. The Bayesian
way of dealing with this problem involves the use of prior or expert knowledge
about the distribution of x. In particular, x is treated as a random vector having
a prior distribution p(x) that can be combined with the observed data, i.e. p(y|x)
using the Bayes’ theorem. The posterior distribution is given as the following:

p(x|y) = p(y|x)p(x)
s

Rn p(y|x)p(x)dx
(2.79)

When x is a high dimensional quantity, inference becomes impossible and as a
result we just use the point estimates that capture some of the information about
x. Thus, the MAP estimator of x is given by

x̂MAP = arg max
xœRn

p(x|y) (2.80)

The integrable term in the denominator of the Eq. 2.79 is generally done using
Markov chain Monte Carlo techniques. The choice of sampler becomes crucial for
high dimensional inference. The modern samplers that are good with this task are
the Hamiltonian Monte Carlo (HMC) and the No-U-Turn Sampler or NUTS [134].

2.4 Summary
In this chapter, various algorithms that are used to develop the models in chapters
3 and 4 were studied. The seq2seq model shown in section 2.1.3.2 was previously
considered for the development of the Reduced order Model in chapter 4, but it
did not show an improvement in the multistep prediction tests and hence could not
be used further. The various gradient descent optimization algorithms were each
tested for optimizing the developed deep networks in the forthcoming chapters

2.4. Summary 43

3 and 4. Among all, the ADAM optimizer (2.3.1) was considered for the final
implementation. Autoencoders were previously considered to learn more relevant
features in reduced space of the states in order to enhance the multistep prediction
algorithm in chapter 4, but the implementations were not successful. For the
dimensionality reduction part in chapter 4, the ICA (2.2.3), the sparse encoding
(2.2.2) and POD (2.2.1) were tried. Out of all the three, the POD scheme turned
out to be more robust than the others and was used in the final implementation.

Chapter 3

Application-I: A Data-Driven
Approach to Porosity
Segmentation for Carbonates

3.1 Introduction
In this chapter, we develop a way of analysing complex pore networks in carbonate
rock samples using a simulation-based study. Understanding the variation of pres-
sure wave velocities with the shape and size of the pores is a nontrivial problem
[135]. The problem arises because of the way the pore networks are developed with
time. Geological processes play a key role in defining the petrophysical content
and heterogeneity of the rocks. Some of them are attributed to deposition and dia-
genetic processes that largely control the rock texture viz, grain size, arrangement
and uniformity, the clay content and the proportion of minerals. All of these a�ect
the shape and size of the pore networks in a rock. Di�erent materials combine to
generate a pore structure that is unique from others of its kind. The shapes, in
turn, enable the fluid to take the shape of the pore, which in turn a�ects the wave
phenomena such as reflection, refraction and scattering [135; 136]. Although the
current chapter focuses on wave properties in carbonate rock samples, the phe-
nomena are quite general in other allied studies as well.
There have been a few investigations in this regard. Here we list a few works
involving studies of wave properties and pores in the context of reservoirs. The
authors in [137] found that porosity and clay content were the most important
factors a�ecting the wave velocity in sandstones. In [138], they found that there
exists a relation between the porosity and collectively the mineralogy, grain sort-
ing and angularity. The authors in [139] introduced porosity and frame flexibility

3.2. Extraction of Pore Network Models 45

factors to quantify the e�ects on elastic wave propagation. In [140] it was stated
that the fluid’s presence could help dissipate the travelling wave’s energy along the
contact plane between the fluid and solid. In [141] the authors modelled the energy
partitions in the refracted and reflected parts of the wave for a poroelastic seabed
model. Elastic wave velocities were investigated under di�erent saturated condi-
tions in [142] where they found that thin pores a�ected the elastic moduli more
than rounded pores, and the presence of fluid tended to a�ect the compressional
velocity more than the shear velocity. In [143] the authors asserted the use of pore
geometry factor prior to calculation of elastic moduli of the rock in the e�ective
medium modelling approaches like the di�erential e�ective medium models. The
e�ect of pore size and shape on acoustic velocities was summarised for travertines
in [144]; it was found that the petrophysical properties such as porosity, perme-
ability and acoustic velocity are related to seismic reflection data. The authors
in [145] had studied the e�ect of pore fluids and connectivity on reflected wave
amplitudes. It was suggested in [146] that the microstructural properties of the
carbonate reservoir could be predicted by the seismic quality factor.
In the current work, we base our study on acoustic simulation data. Simulation
of the acoustic wave instead of elastic waves is justified given that we are mostly
interested in the variation of P-wave properties here. Additionally, it was rec-
ommended in [147; 148] that the simulation of elastic waves is computationally
intensive and can be substituted by its acoustic counterpart when feasible. It is
also reasonable to study only the P-waves when the observed data mainly consists
of primary wave data as in [149]. In this chapter, we describe the development
of a simulation-based study to evaluate the e�ects of pore geometry on acoustic
wavefields. We believe that it is important to build a relation between the pore
network structure and the acoustic response of the pore structure model.

3.2 Extraction of Pore Network Models
The first-hand data for studying the pore networks can be obtained using 4D-
XRM equipment. The raw 3D volumetric images can be processed to study the
di�erent geometrical aspects of the pores. The maximum and minimum resolution
at which the rock samples were scanned was 40µm and 10µm. The cylindrical
samples were cored from D1-field of the Bombay o�shore basin and consisted of
carbonates. Figure 3.1 shows the flowchart for processing the raw images. The
current work proposes a deep learning based method for porosity segmentation. In
order to generate the training data for supervised learning, the extraction must be
as accurate as possible to the real pore network. Every step in the given flowchart

46 3. Data Driven Porosity Segmentation

Figure 3.1: Segmentation flowchart: 1) Load the raw grayscale image; 2) Perform
contrast equalization on the grayscale image; 3) Apply median filtering on the con-
trast equalized image; 4) Perform a window-based Sauvola threshold operation to
obtain a binary image; 5) Treat the binary image as foreground (labelpore = 1) and
background (labelmatrix = 0); Compute the distance map of the binary and extract
the skeleton of the network; 6) Realize a pore structure model; 7) Extract distance
map values along the skeleton paths; 8) Perform k-means clustering on the extracted
distance values to generate n labels with the cross-sectional area as feature; 9) Per-
form watershed/flooding transform to propagate the labels in the foreground; 10)
Realize a segmented pore network model

is important to realise a good segmented image. Although there always exists some
level of subjectivity in processing the images, we often make qualitative judgements
about the parameter values at each step, which is mostly su�cient to proceed with
the extraction.

3.2.1 Extraction of Pore Networks

3.2.1.1 Volumetric Raw Image Preprocessing

As can be seen in Fig. 3.2 each of the rock samples appear di�erent from the
other. Table 3.1 shows simple statistics describing the grayscale values of the
samples. The variation can often be attributed to the generation of di�erent
ranges of grayscale levels during the imaging process. This marks just one of
the few issues encountered in processing 3D rock images. The entire process of
volumetric image processing, as shown in Fig. 3.1 can be grouped into three parts.
We closely follow the steps taken in [150] and name the steps as – preprocessing,
pre-segmentation and segmentation. For simplicity’s sake, we work with 3D cubes

3.2. Extraction of Pore Network Models 47

a) b)

c) d)

e) f)

g) h)

i) j)

Figure 3.2: From a) to j): Raw grayscale rock samples numbered 1 to 10 have
been scanned using 4D-XRM equipment. Each sample is of an individual physical
dimension. The colour variation and the contrast can be easily identified and com-
pared with each other

48 3. Data Driven Porosity Segmentation

Table 3.1: Exploratory statistics of voxel data of rock core samples

Sample No. Length (cm) Diameter (cm) Upper Lower Mean Std.
1 3.02 2.52 255 0 69.87 52.48
4 2.51 2.52 221 0 52.43 32.16
5 2.51 2.52 237 0 68.04 40.82
9 3.74 2.52 255 0 39.10 60.84
12 3.74 2.52 224 0 66.50 39.49
13 5.06 3.80 255 0 75.94 46.84
18 6.29 2.53 255 0 80.56 55.40
21 5.06 3.80 221 0 20.52 14.13
104 5.03 3.80 255 0 105.92 72.37
105 4.92 3.80 240 0 22.06 36.21

a) b)

Figure 3.3: a) Raw grayscale sample before contrast equalization; b) Grayscale
variation after contrast equalization; The color variation and the contrast can be
easily identified and compared with each other in the colorbars

a) b)

Figure 3.4: a) Kernel density estimate of raw grayscale values; b) Kernel density
estimate after contrast equalization; The width at the bottom clearly justifies the
clarity of features seen in Fig. 3.3.

3.2. Extraction of Pore Network Models 49

extracted from full cylindrical core samples. This greatly eases operations such as
slicing and matrix calculations.
Loading the images into the computer marks the beginning of the preprocessing
step. The raw grayscale images often su�er from poor dynamic range. Contrast
equalisation is a possible remedy in such situations. In order to have a rough
estimate of the pixel value ranges, a kernel density estimation was performed on
the samples prior to and after post-contrast equalisation steps. The di�erence
can be seen in Fig. 3.3a) and b). Next, in order to obtain a good segmentation
result, it is highly recommended to remove all types of noise in these images. This
noise arises due to improper handling of instruments and/or improper selection of
input parameters. Their removal is essential as it can mask the small pore features
present in the images. As described in [151], an image can be decomposed into
two parts – the pure pixels part and the noise.

I [x, y, z] = J [x, y, z] + ÷[x, y, z] (3.1)

where x, y, z represent the coordinates of the pixel, J represents the original noise-
free image and I, the corrupted version of the image. The most common type
of noise found in 3D volumetric data is of the impulse type or the gamma type.
Following [19] these can be defined using probability density functions as in:

Impulse(x) = f(x) =

Y
_]

_[

a exp(≠ax), x Ø 0

0, x < 0
(3.2)

Gamma(x) = f(x) =

Y
_]

_[

abxb≠1

(b≠1)! exp(≠ax), x Ø 0

0, x < 0
(3.3)

There exist multiple ways of removing such noises from the images as suggested
in [152; 153; 154; 155; 156]. Notably, a simple yet e�ective technique to remove
impulse and gamma noises is the application of median filter [157; 158].
As shown in the flowchart we also perform a contrast equalization as a prepro-
cessing step prior to the application of the median filter as in [159]. A structuring
element of size 3 ◊ 3 ◊ 3 was used for the median filter. The application of the
median filter marks the execution of the preprocessing step. The result of the
application of the median filter is shown in Fig. 3.7. Once the images pass the
median filter stage they are subjected to the pre-segmentation stage marked by
the application of the Sauvola [160] thresholding algorithm.

50 3. Data Driven Porosity Segmentation

Figure 3.5: A 2D illustration of sample output images after performing operations
shown in Fig. 3.1.

a) b)

c) d)

Figure 3.6: A 2D illustration of segmenting poretypes based on relative cross-
sectional areas using k-means clutering operation: a) Binary image (white represents
the porous region); b) Distance map of the porous region with skeleton marked by
brown color; c) Marker generation based on k-means clustering algorithm - same
color dots represent regions of similar cross-sectional areas; d) Final segmented image
- regions of same color denote similar cross-sectional areas

Figure 3.7: A median filtered image

3.2. Extraction of Pore Network Models 51

Figure 3.8: A Sauvola thresholded image

Figure 3.9: Distance map of the binary image

Figure 3.10: Skeleton of the binary image

52 3. Data Driven Porosity Segmentation

Figure 3.11: Porosity segmented image

Table 3.2: Calibrated Porosity

Sample Porosity observed Porosity computed
1 12.0 11.81
4 8.5 8.26
5 11.2 10.70
9 23.3 23.10
12 13.6 13.25
13 11.4 10.89
18 7.70 6.85
21 16.1 15.96
104 14.0 13.72
105 24.5 24.44

3.2.1.2 Sauvola Binarization Algorithm

The conventional method of binarising an image uses the global thresholding tech-
nique. This procedure helps reduce the complexity of the image and gain informa-
tion about the interesting regions. In the context of porosity extraction, the proce-
dure assigns a pixel as a background if its grey value is smaller than the threshold
value, and if its value lies above, it gets assigned as a foreground. The literature
cites three main methods of thresholding – global, local and adaptive. The global
method uses a single threshold value for partitioning. The Otsu technique is based
on discriminant analysis and is one of the most used global thresholding methods.
It determines a threshold by maximising the interclass variance [161; 162]. On the
other hand, the local method uses several threshold values for smaller sub-images.
The adaptive method di�ers from both in the way it computes a threshold for each
pixel in the image. Continuous e�orts have been put into optimising this proce-
dure, but it still remains a challenge. Local and adaptive methods use windows or
sub-images for calculating a local threshold value for each [163]. Determination of
this window size is the most important step in these techniques. The assumption

3.2. Extraction of Pore Network Models 53

Table 3.3: Sauvola Binarization Parameters

Sample Window size (k) Weight (w)
1 37 0.2
4 31 0.4
5 31 0.4
9 41 0.4
12 27 0.4
13 31 0.3
18 35 0.3
21 41 0.3
104 33 0.3
105 31 0.3

of regular distribution of intensity values leads to non-optimal binarisation as in
[162] technique. Two of the important adaptive techniques are described next.

Niblack Binarization: This method heuristically chooses a threshold value
for a given window. The method relies on the pixel values of the neighbourhood.
The Niblack formula [164] determines a threshold by adding a weighted local stan-
dard deviation to the local mean of the window. The problem of window size
determination is inherent in this technique as well. The formula for threshold is
given by

T (x, y, z) = m(x, y, z) + k ◊ s(x, y, z) (3.4)

where T is the threshold, m is the mean, s is a standard deviation of the pixels in
the current window, and k is the weight for each pixel at x, y, z.

Sauvola Binarization: The Sauvola binarization [160] method uses the method
of integral images for binarization [160; 162]. Originally developed for documents,
the method has proven to be equally good for other binarisation tasks. It owes an
improvement over the Niblack technique. The technique readily handles bad illu-
mination and irregular distribution of pixel intensities. The threshold is calculated
using the following equation:

T (x, y, z) = m(x, y, z) ◊
C

1 + k ·
A

s(x, y, z)
R

≠ 1
BD

(3.5)

Where T is the threshold, R is the dynamic range of gray level of the pixels, m is
the mean and s is a standard deviation of the pixels in the current window. The
application of the Sauvola binarization step marks the end of the pre-segmentation
stage. The result of the Sauvola binarization can be seen in Fig. 3.8. The labora-

54 3. Data Driven Porosity Segmentation

tory obtained porosity (Table 3.2) was used as a guide to decide on the values of
the Sauvola binarization parameters shown in Table 3.3.

3.2.2 Pore Segmentation

The steps of segmentation are schematically shown in Fig. 3.6. Once the images
pass the Sauvola binarisation stage, they are subjected to a distance transform
filter [165]. The prerequisite to the application of this filter is the division of the
input image into foreground and background, where the foreground represents the
pore network, and the background is the rock matrix. The distance transform filter
computes the distance of every pixel in the foreground to the nearest background
pixel. This way, the distance map stores the values of the area of the cross-section
along the length of the pore path. Among the many distance calculation functions,
the most popular ones are the following:

chessboard(p, q) = max(|p1 ≠ q1|, |p2 ≠ q2|) (3.6)

cityblock(p, q) = |p1 ≠ q1| + |p2 ≠ q2| (3.7)

euclidean(p, q) =
Ò

(p1 ≠ q1)2 + (p2 ≠ q2)2 (3.8)

where, (p1, q1), (p2, q2) are the pixel values at two given points. The result of the
application of this step is the creation of a maxima inside every catchment basin
[166] in the foreground. The result of the distance transform can be seen in Fig.
3.9.
Once the distance map is computed, the images are subjected to skeletonisation
[167]. The purpose of extracting the skeleton is to extract values of the distance
map along the skeleton paths, as shown in Fig. 3.10. The extracted distance
values are then stacked and flattened into a 1D vector. This 1D vector is then
used by the k-means algorithm [168] to cluster the values into three groups. This
grouping divides the foreground/pore part into three groups according to the cross-
sectional widths of the pores by assigning unique labels to each group. This way,
the labels of the pores are stored as a function of the cross-sectional widths of the
pore paths giving us a labelled image where each label signifies the width of the
“local” pore. These labels are then propagated to other parts of the foreground
using the watershed algorithm [169]. A sample of the segmented image is shown in
Fig. 3.11. After segmentation, the extracted pore networks are used to define the
computational domains for acoustic wave simulations, as described in the following
sections.

3.3. Acoustic Wave Analysis 55

3.3 Acoustic Wave Analysis

3.3.1 The Acoustic Wave Model

In order to solve the acoustic wave equation, the pseudospectral time-domain
method has been proven to be superior to the conventional finite di�erence time
domain methods [170; 171]. We begin by stating the governing equations.

3.3.1.1 Governing Equations

The momentum and mass conservation equations can be written as the following:

fl0
ˆu

ˆt
+ Òp = fl

ˆu

ˆt
≠ 1

2fl0Ò(u2) (3.9)
ˆfl

ˆt
+ Ò · (fl0u) = ≠Ò · (flu) (3.10)

where p, fl, u are the acoustic pressure, density and particle’s velocity. fl0 is the
ambient acoustic density. Solving equations 3.9 using standard finite di�erence
techniques can be di�cult. The use of spectral methods provides a superior al-
ternative to this. In general, it is su�cient to assume the heterogeneity e�ects on
the wave field to be of second order, implying any higher order terms would be
discarded. The work by [172] suggested the second order terms be re-written for
Eq. 3.9 in terms of acoustic Lagrangian density. The new equation then takes the
form:

fl0
ˆu

ˆt
+ Òp = ≠ÒL (3.11)

ˆfl

ˆt
+ Ò · (fl0u) = 1

c2
0

ˆL

ˆt
+ 1

c2
0

ˆL

ˆt
+ 1

fl0c4
0

ˆp2

ˆt
(3.12)

L = 1
2fl0u

2 ≠ p2

2fl0c2
0

(3.13)

where, L is the second order Lagrangian density.
In the case when only cumulative nonlinear e�ects are required to be modelled

the Lagrangian density can be set to zero. We then have the following pair of
equations to solve:

ˆu

ˆt
+ 1

fl0
Òp = 0 (3.14)

ˆfl

ˆt
+ Ò · (fl0u) = 1

fl0c4
0

ˆp2

ˆt
(3.15)

Solving Eq. 3.14 using the spectral method involves re-writing the nonlinear con-

56 3. Data Driven Porosity Segmentation

Table 3.4: Material Assignment

Material type Velocity (m/s) Density (kg/m3)
Rock Matrix 5200 2700
Fluid Medium 1500 1000

Table 3.5: Qualitative description of the pore networks

Type Description
Case #1 Pores proximal to one of the surface
Case #2 Scattered and Branched Pore Network
Case #3 Dominating Crack Pore around the middle
Case #4 Matrix dominated

vective term in the mass conservation term as a spatial gradient. The reason for
this is that the spectral gradients can be calculated using spectral methods, while
the computation of temporal gradients requires standard finite di�erence equa-
tions. The complete set of coupled partial di�erential equations can be obtained
in the form of 3.11 after a number of substitutions from 3.9, as:

ˆu

ˆt
= ≠ 1

fl0
Òp (3.16)

ˆfl

ˆt
= ≠(2fl + fl0)Ò · u ≠ u · Òfl0 (3.17)

p = c2
0

A

fl + d · Òfl0 + B

2A

fl2

fl0
≠ lfl

B

(3.18)

The loss term l is given by the following fractional Laplacian as:

l = ·
ˆ

ˆt
(Ò2)y/2≠1 + ÷(≠Ò2)(y+1)/2≠1 (3.19)

where ·, ÷ are the absorption and dispersion coe�cients. The power law attenua-
tion for acoustic waves has been found suitable for rocks [173; 174]. For a detailed
description of the above-mentioned equations, the reader is referred to the excellent
article by [171; 175; 176] and a review by [177].

3.3.2 Description of the Simulation

The simulation of acoustic wave propagation is computationally expensive and
demands high-end computing clusters for large meshes. In the current study, we
work with small sub-cubes derived from large cubes. The dimensions of the large
cubes were 256 ◊ 256 ◊ 256 voxels in respective axes. We extract an overcomplete
set of 400 smaller cubes of dimensions 64◊64◊64 for the purpose of this study. The

3.3. Acoustic Wave Analysis 57

a)

b)

c)

d)

e)

Figure 3.12: a) An instance of the pore network as seen from XY , Y Z and ZX
planes after extracting the middle slice in the perpendicular axis to the plane; b) to
e) Progress of wave fields with increasing time, t(µs) = 0.53, 0.90, 1.26, 1.63

58 3. Data Driven Porosity Segmentation

B1(0,0,0)

B2(0,0,10)

B3(0,10,0)

B4(0,10,10)

B5(10,0,0)

B6(10,0,10)

B7(10,10,0)

B8(10,10,10)

Figure 3.13: Probe locations on the cube

64 voxels equal 10mm in each direction. The centre of the cube has the coordinate
(5mm, 5mm, 5mm). The source of the pulse is located at the centre of each of
the simulations with a source frequency equals to 30kHz. This frequency was
chosen to be near the frequency of practical sensors used in well-logging equipment.
Although one would ideally set up the simulation befitting an actual well-logging
scenario and use the bulk velocity response of the formation to train the neural
network so that compressed sensing of the causative pore structure can be realized,
instead we have taken a preliminary step towards such advanced application by
considering the full acoustic volume information from each simulation. The reason
for this is twofold – first, the compressed sensing technique would require the
use of generative adversarial frameworks and high end hardware and two, the
simulation of an ideal scenario would require a detailed case study. The amplitude
of the source pulse is taken to be 10.50Pa. Each simulation was designed to run
for 1281 timesteps or 11.53µs. For post-processing, every voxel in the cube is
monitored during the simulation. Absorbing boundary conditions are applied at
the six boundaries of each cube, where the widths of the absorbing layer were taken
to be 20 voxels. Therefore, in total, the computational domain has the dimension
of 84 ◊ 84 ◊ 84 voxels. The simulation generated acoustic volumes were of size
64◊64◊64. For simplicity’s sake, the acoustic volumes corresponding to timestep,
tstep = 1165 or t = 10.49µs were used during training. The reason for taking a
higher timestep is that by this time, the wave would have encountered multiple
reflections and refraction and would carry more information about the causative
pore configurations. We also put eight probes B1, . . . , B8 at the corners of each
cube, as shown in Fig. 3.13. This is done to analyse the received signals.

3.3. Acoustic Wave Analysis 59

3.3.3 E�ect of Pore Shapes on travelling Wavefields

A sample propagation of the acoustic wave is shown in Fig. 3.12. The first, second
and third columns show the progression of the wave in three central planes of
the cube. The first row shows the plane of the pore network. The subsequent
rows show how the acoustic wave undergoes reflection and refraction along the
propagation path. The slices are shown for specific timesteps as depicted in the
figure caption. In every simulation, the material property was specified using
velocity and density as given in Table 3.4. The values were chosen after evaluating
a number of numerical experiments. We have presented here one among those
cases. The mineralogy represented by such values can be indicative of calcite
dominated carbonate rock sample with cementation e�ects and low porosity.
In order to have an idea about the change in wave field due to the pore network, we
demonstrate 4 cases, each with di�erent geometry. An acoustic wave simulation
was run on each of the 400 cubes, with the source of the pulse being located at the
centre x = 5mm, y = 5mm, z = 5mm. We list the four types as Case #1, 2, 3 and
4. The description of the types is given in Table 3.5. We disregard the material
type at the location of the source, i.e. the pulse could originate either at the rock
matrix medium or the fluid medium. Part of the reason for this is to generate a
dataset with as much variation as possible because, in general, higher variation
ensures better generalisation.
A complex pore network scattered across the cube’s volume will present more
low-velocity regions for the acoustic wave to travel. This will result into complex
interference patterns and can be observed on the cube surface. This justifies the use
of a statistical metric, the standard deviation for being indicative of the complexity
of the pore network. Later, in the coming sections, we show the standard deviation
values for each case in the form of graphs. Although every simulation was run for
1281 timesteps, we just show one timestep for each case here to prevent clutter.
But, we do show the complete signals received at the 8 probing points B1 . . . B8
for all four cases. The probe locations are shown in Fig. 3.13. We report the
signals received at these locations for all 1281 timesteps.

3.3.3.1 Case #1

In the first case we consider pore network as shown in Fig. 3.14a). Shown towards
the left is the part of the pore network on which the acoustic simulation was run.
Towards the right is the wave field obtained at time t = 2.88µs. The pressure
amplitudes received at the probing points are shown in Fig. 3.14b). The upper
and lower values are around 0.6Pa and ≠0.2Pa. The coherent part of the wave

60 3. Data Driven Porosity Segmentation

a)

b)

Figure 3.14: Case #1: a) Part of the pore network due to sub-cube #350 of sample
#105; Pressure wave field at t = 2.88µs exhibited by the sub-cube; b) Waveform of
signals received at 8 corner probing points B1 . . . B8 of the sub-cube

3.3. Acoustic Wave Analysis 61

appears to be small compared to the broader coda part. The higher magnitude is
received by probe B2.

3.3.3.2 Case #2

In the second case, the pore network is more scattered within the cube, as shown in
Fig. 3.15a). The corresponding wave field at time t = 2.88µs is shown towards the
right. At the bottom of Fig. 3.15b) we show the signal pattern due to the network.
The waveforms appear to have a constant range of magnitudes, with B1, B5 being
an exception. This can be seen at timestep t = 5µs to t = 7µs. The high and low
magnitudes are around 0.8Pa and ≠0.06Pa. These are small compared to case #1.
This can be attributed to more scattered pores occupying more volume. Larger
volumes of low-velocity regions dissipate the wave energy more. Moreover, the
coherent part of the received signals cannot be clearly demarcated and are rather
unclear w.r.t. their boundaries. Even the coda part merges with the coherent part
with the same levels of disorder.

3.3.3.3 Case #3

In the third case, we consider a pore network as shown in Fig. 3.16a). The network
exhibits a crack type void around the centre of the cube in the ZX plane. The
corresponding wave field at time t = 2.88µs is shown towards the right of the
figure. The highest magnitude of 1.5Pa is recorded by the probe B8. Perhaps,
the probable reason for this was the occurrence of more constructive interference
of the reflections from di�erent parts of the pore network. The coherent part of
the waveforms can be clearly seen in all the probes. Probes B4, B8 distinguish
themselves from others w.r.t. amplitudes and oscillations.

3.3.3.4 Case #4

In the fourth case, we consider a pore network as shown in Fig. 3.17a). The
network is unique in the sense that most part of it is empty, signifying the wave
has more high-velocity regions to travel due to the rock matrix. The corresponding
wave field at t = 2.88µs shows clear wavefronts on the surfaces. One can also see
the interference occurring at the side and top planes towards the bottom of Fig.
3.17b) we can see the signals received by the 8 probes. The high magnitude of
0.15Pa was recorded by B7 and seconded by B2. As can be seen in the top right
part of the figure, destructive interference dominates most of the wave interactions.
The colour bar indicates the situation accordingly. The high red values occupy less
space signifying more low values had to be accommodated to show the amplitudes.

62 3. Data Driven Porosity Segmentation

a)

b)

Figure 3.15: Case #2: a) Part of the pore network due to sub-cube #290 of sample
#13; Pressure wave field at t = 2.88µs exhibited by the sub-cube; b) Waveform of
signals received at 8 corner probing points B1 . . . B8 of the sub-cube

3.3. Acoustic Wave Analysis 63

a)

b)

Figure 3.16: Case #3: a) Part of the pore network due to sub-cube #16 of sample
#109; Pressure wave field at t = 2.88µs exhibited by the sub-cube; b) Waveform of
signals received at 8 corner probing points B1 . . . B8 of the sub-cube

64 3. Data Driven Porosity Segmentation

a)

b)

Figure 3.17: Case #4: a) Part of the pore network due to sub-cube #19 of sample
#5; Pressure wave field at t = 2.88µs exhibited due to the pore network in the
sub-cube; b) Waveform of signals received at 8 corner probing points B1 . . . B8 of
the sub-cube

3.3. Acoustic Wave Analysis 65

Figure 3.18: Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #105 and pore network instant #350

The two high peaks of B7 clearly indicate two constructive interference. As the
patterns are quite clear on the surfaces of the cube, such clear interactions are
valid and are evident in the waveform plots.

3.3.4 Statistical measure of Signal Amplitudes

The wave fields experience multiple reflections and refraction due to the complex
pore networks in their travelling paths. As a result, we obtain complex waveforms
at the surface of the cube as well. We use standard deviation as a measure of
disorder on the surfaces. The values are obtained by computing the standard
deviation of received amplitudes at each timestep on each of the surfaces. We
show the deviation of the received amplitudes as a function of time in figures 3.18
though 3.21. It is quite evident from the plots that the pores help attenuate the
wave amplitudes. The highest deviation is shown in Fig. 3.20. This corresponds to
the third case study. The large dominant crack pore around the middle results in
more deviation of the un-dissipated amplitudes of the received signals. The lowest
deviation is reported by 3.19 with a peak deviation of 0.1. This corresponds to case
study 2, where we have scattered and branched pore networks. The distributed
nature of the pores helps attenuate the received amplitudes more in the other 3
cases. The peak deviation in signal amplitudes for case study 1 is reported to be
0.3, as shown in Fig. 3.18. And for case study 4, it was 0.14, as shown in Fig.
3.21.

66 3. Data Driven Porosity Segmentation

Figure 3.19: Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #13 and pore network instant #290

Figure 3.20: Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #109 and pore network instant #16

3.4. Segmentation and Localization of Pore Networks 67

Figure 3.21: Standard deviation in the pressure amplitudes on the 6 surfaces of
sample #5 and pore network instant #19

3.4 Segmentation and Localization of Pore Net-
works

In this section, we consider the task of predicting the pore structure models from
the acoustic volumes. Segmentation consists of dividing the image into several
disjoint parts according to some rules. The division may or may not pursue the
idea of the content of the image. On the other hand, semantic segmentation aims
to divide an image into smaller segments that are semantically meaningful, i.e.
the individual parts carry some meaning with the label they have been assigned
with [178]. It is to be noted that semantics is a specialised field of study in lin-
guistics that concerns meaning in language studies [179]. There have been quite a
number of groups working on semantic image segmentation problems. The works
we cite here do not intend to be exhaustive as there is continuous development
in the field. Also, for the sake of completeness, we describe some of the works
that were developed for 2D images first. CNNs and RNNs are the fundamental
building blocks underlying these semantic segmentation schemes for images. In
the following, we describe the type of neural network used and the salient features
of the architectures.
The task of scene labelling was taken up in [180], where Recurrent Neural Nets
were realised using di�erent instances of a convolutional neural networks. The
application was not so successful as it resulted in heavy computational loads when
there were multiple instances of training. In works by [181] the authors used fully
connected networks with skip connections to join the multiscale activations from

68 3. Data Driven Porosity Segmentation

the CNNs, in the final layer. DeepLab version 1 was devised by [81] that combined
convolutional nets with dilations and a fully connected conditional random field.
The fully connected nets in series led to costly computations and a reduction in
performance. For the purpose of medical image segmentation, an encoder-decoder
framework called the U-Net was suggested by [57] with skip connections connect-
ing the same hierarchical levels in both parts. Due to the avoidance of any fully
connected layers, the computations were economical. Similar to the U-Net, the
Segnet was suggested by [80]. The skip connections here were only used to trans-
mit the pooling indices. Another encoder-decoder framework was suggested by
[182] whose encoder part was derived from VGG-D-16L. The computations were
e�cient due to no fully connected layers. E�cient pixel-wise labelling was achieved
by [183] using a new CNN framework that could use dilated convolution to assem-
ble contextual information from multiple scales. Authors in [184] integrated the
conditional random field to the CNN to realise a deep learning system that would
benefit from the qualities of both; but due to the presence of the recurrent block,
the computations were limited. The integrative approach was also taken by [185]
where they used layers of pyramidal inputs to be combined with feature maps to
be finally received by the upsampling or concatenation blocks to form the final
feature map into a dense layer; they too had used the conditional random fields
with the CNN. A graph-structured solution was suggested by [186] for 2D still
images but turned out to be ine�cient due to the graph and LSTM processing
layers. A directed acyclic graph-structured solution was suggested by [187] that
was intended to process long range semantic dependencies between images. Due
to the consecutive processing of data, the architecture was not e�cient.
Chen’s [81] Deeplab was improved in its version 2 [188] with similar performance.
Zhao et al. [189] suggested PSPNet with a performance similar to Shelhamer’s [181]
but was relatively fast. Deeplab second version was improved in version 3 [190] by
removal of the dense layers. Luo et al. [191] suggested a dual network approach
where one network predicted the labels from the inputs from another network do-
ing the semantic segmentation part. The performance of the network was similar
to Chen’s Deeplab version 2. A masked recurrent-convolutional layer architec-
ture was provided by [192] with almost real-time segmentation performance. The
Global Convolutional Network (GCN) was suggested by [193] where they suggested
using large kernels to fuse together high and low-level features; they emphasised
on using them for the simultaneous task of classification and localisation. A U-
Net based solution was suggested by [194] that consisted of many deconvolutional
layers guaranteeing fine segmentation results. Attention-based networks called the
Discriminative Feature Network (DFN) were suggested by [195] where they em-

3.4. Segmentation and Localization of Pore Networks 69

ployed two networks to handle the global contextual information and the border
information. In works by [196], multiscale information was fused in a bidirectional
fashion using LSTM units; once the LSTM would train, the features were com-
bined hierarchically. A multiple LSTM based solution named Hierarchical Parsing
Net (HPN) was suggested by [197] where a contextual feature encoder was followed
by a convolutional layer with reduced e�ciency. The authors in [198] designed a
context encoding module where dense feature maps obtained from ResNet were
used by the fully connected layers to extract contextual information, and a con-
volutional layer was used as the final prediction layer, limiting the computational
e�ciency. The PSANet of [199] used a spatial attention map on points attached to
a pre-trained convolutional network; this served to relax the local neighbourhood
constraint of the CNNs; the design was limited in e�ciency due to the additional
attention framework.

The field of 3D image segmentation can be classified into three groups –

a) Semantic segmentation - These image segmentation techniques aim to di-
vide a given image into meaningful parts. There are di�erent ways the data
can be represented to perform semantic segmentation. The first one is the
point data. In these classes, the points in the point clouds are either pro-
cessed by graph convolution networks or point convolution networks or the
simplest multilayer perceptron networks. Some of the works are listed here.
The AGCN was developed by [200] that was realised using a point attention
layer for capturing local features. The PGCRNet was developed by [201]
that could model context dependencies among di�erent categories. A new
graph pooling convolution was incorporated in [202]. The DeepGCN was
developed by [203] and could adapt to residual connections between layers
of the network. The PointNet [204] was developed to consume unstructured
point cloud data directly for the purpose of classification and segmentation,
and parsing. The SPG [205] was developed to parse large scale scenes in a
graph of super points. The DGCN [206] used edge convolutions for feature
extraction. They also used a new update strategy for the graph.
The PointCNN [207] incorporated a novel point convolution layer in the de-
velopment. The FlexConv [208] used the novel flexible point convolution and
max-pooling without subsampling to work on large datasets. The KPConv
[209] also called the kernel point convolution, could work on direct repre-
sentation of point clouds. The PCNN [207] used the KDTree to process the
point clouds in a non-structured manner. The PWCNN [210] introduced a
new point-wise convolution operator. The DPC [211] introduced a dilated

70 3. Data Driven Porosity Segmentation

point convolution operator with a special emphasis on receptive field size
calculation. The RSNet [212] introduced a method to model local depen-
dencies in point clouds using a slice pooling, RNN and slice unpooling layer.
Inherent contextual features were exploited in 3P-RNN [213] making use of
pyramid pooling and a pair of RNNs to explore long-range dependencies.
The authors in [214] built on the Point Net [204] to incorporate the large
scale spatial context. Segmentation in unstructured point clouds was ad-
dressed in [215] by grouping within point clouds and introducing novel loss
functions.
Another subclass within the semantic segmentation category is due to depth
maps extracted from RGB images. The authors in [216] augmented the
RGB images with estimated depth information for increased accuracy in
segmentation. Similar approaches to augmentation in the pursuit of seg-
mentation accuracy have been reported. Fully connected nets were em-
ployed by [178; 216; 217; 218; 219; 220]. Variants of CNNs were used
in [221; 222; 223; 224; 225; 226; 227; 228; 229]. Encoder-decoder frame-
works were employed in [84; 230]. Graph networks were employed by [231].
LSTMs/RNNs were employed by [232; 233].
There also exist voxel-based semantic segmentation approaches wherein 3D
convolutional networks are used for pattern recognition. [234] used the 3D
CNN to avoid any hand-crafted features to label the points in a 3D cloud. It
was well adapted for large datasets. Authors in [235] maintained the global
consistency by combining the fully FCNNs, trilinear interpolation and con-
ditional random fields. A di�erent approach was adopted by [236] where
they used a variational autoencoder to encode the local geometry within
each voxel. Further, in order to handle sparse data, they used the radial
basis function to compute continuous local representations in each voxel.
The authors in [237] combined the convolutional nets with Deep Q-network
and RNN for e�cient parsing and localisation of data in point clouds. An-
other approach was suggested by [238] to process unorganised point cloud
data. The unorganised data was converted to organised representations to
make the processing more memory e�cient, which the authors claimed that
it made learning better features on benchmark datasets. In a work by [239],
the authors introduced a 3D data completion network realised using gen-
erative CNN. The network has been claimed to handle large datasets while
outputting semantic labels to much greater accuracy compared to other tech-
niques. The goal in [240] was to exploit the sparsity in input to represent
the data using a set of unbalanced octrees where each leaf node represented

3.4. Segmentation and Localization of Pore Networks 71

a pooled feature. The performance of the network was demonstrated using
the resolution on 3D tasks like object orientation/classification and labelling.
In [241], spatially sparse convolutional networks were developed for semantic
segmentation on point clouds.

b) Instance segmentation - The 3D instance segmentation techniques further
distinguish between di�erent instances within the same class. Instance seg-
mentation was realised using a Generative Shape Proposal Network on point
cloud data by making the network emphasise geometric understandings in
[242]. Authors in [243] performed instance segmentation on RGB depth
scans, which leveraged the geometric as well as colour information of the
scans to do the segmentation. The network designed in [244] consisted of
a backbone network followed by two parallel network branches to perform
bounding box regression and point mask prediction. The design has been
claimed to perform well on ScanNet and S2DIS datasets while still being
computationally e�cient. A network named SGPN was proposed in [245]
in which the technique involved a similarity matrix that would be indicative
of the similarity between each pair of points in the embedded feature space.
The design was tested on various 3D scenes of point clouds. The 3D-MPA
was designed in [214] for point clouds where a graph convolutional network
was used to learn high-level features by allowing every point in the cloud to
vote for its object centre. The proposal vector is comprised of a semantic
label, a set of associated points, an object score and aggregation features.
Their work avoided the non-maximum suppression and grouped all proposals
based on the learned aggregation features. The network was tested on Scan-
NetV2 and S3DIS datasets. The authors in [246] introduced a detection-free
and grouping-free technique, for instance, segmentation. They constructed
an instance grouping loss for the network training purpose.
Among the proposal-free methods, we list a few of them here. The authors
in [247] introduced a proposal free method based on sparse convolution and
point a�nity prediction, which indicated the likelihood of two points belong-
ing to the same instance. They included a clustering algorithm as well to
cluster the points in a voxel into instances based on the predicted a�nity
and topology of the mesh. The semantics was taken care of by the semantic
prediction part of the network. In [248], dense 3D voxel grid data were tar-
geted. Their focus was on shape recognition of individual object instances.
This was accomplished by learning an adequate feature embedding stage
followed by estimation of directional information of the instance’s centre of

72 3. Data Driven Porosity Segmentation

mass in each voxel. The author claimed to be able to demarcate clear bound-
aries. A Non-maximum suppression based strategy was suggested in [249]
where the design focussed on the void space between objects in the scene.
A two-branched network was designed to extract point features and predict
semantic labels. The network was tested on the ScanNet v2 dataset and
the S3DIS dataset. The authors in [250] have proposed to combine the local
point geometry with global context information and a proposal free method
to group the feature spaces into semantic instances. Another approach to
point cloud semantic segmentation was made in [206] wherein the design
enabled a mutual enhancement of the semantic and instance segmentation
tasks. The authors in [251] developed a multi-task pointwise network that
could perform the task of semantic and instance segmentation simultane-
ously. A graph-based solution was formulated in [252] was used along with
3D convolutional neural networks to obtain discriminative embeddings for
each 3D instance. Also, an attention-based k-nearest neighbour was pro-
posed to assign di�erent weights for the neighbours. In OccuSeg [253], the
scheme could produce an occupancy signal and an embedding representation
simultaneously. They could also prevent over-segmentation using a clustering
algorithm.

c) Part segmentation - The 3D part segmentation is still more di�cult than
either the semantic segmentation or the instance segmentation counterparts.
Although there is an increased level of fineness associated with part seg-
mentation, some semantic segmentation deep networks can still be used for
part segmentation tasks. Here, we list some of the developments in part
segmentation tasks. In [254] the authors have introduced an image based
fully convolutional network and conditional random fields to obtain faithful
segmentation of 3D shapes. VoxSegNet, introduced in [255] consists of an
attention feature aggregation module to adaptively select features from dif-
ferent abstraction scales. Their method operated in voxel data format. The
authors in [256] introduced a point grid with a 3D convolutional network
that incorporated a fixed number of points within each grid cell, enabling
the network to learn high order local estimations to better represent the lo-
cal geometry. In [257], the authors had adopted a teacher-student training
procedure wherein the VolNet (working in 3D data) was used to teach the
GeoNet to extract 3D features from a 2D figure. Their data was synthe-
sised in image-volume pairs. The authors in [258] used a conditional random
field network to fuse the shape representations of two other networks that

3.4. Segmentation and Localization of Pore Networks 73

worked with geometrical face normal data and face normal histogram data.
MeshCNN was described in [259] where the authors have illustrated how a
specially designed convolutional neural network can directly apply pooling
and convolution operations on mesh edges. In [260] the authors had intro-
duced a recursive neural network that could perform hierarchical segmenta-
tion of 3D shapes represented by point clouds. The work in [261] improvises
on the PointNet architecture to accommodate the local details of the local
neighbourhood. They introduced two new operations - one for learning lo-
cal 3D geometric structures and the other for local high-dimensional feature
structures using recursive feature aggregation on a nearest-neighbour graph
of 3D points. The SFCN network in [262] utilised the voting based multil-
abel graph cut method to optimise the segmentation results. The authors of
[263] introduced the special spider convolutional operation by parameteris-
ing a family of convolutional filters using simple products of a step function
and Taylor polynomials. New graph convolution operations were introduced
in [264] that were dynamically calculated from the learned features on point
cloud data. A novel Kd-trees based network was proposed in [265] that could
perform multiplicative transformations with shared parameters according to
the subdivisions obtained from point clouds. Shape segmentation was per-
formed using o-cnn [266], an octree based convolutional neural network that
utilised the average normal vectors of a 3D model to perform convolution
operations on the octants occupied by a 3D shape. Their implementation
was claimed to be feasible for high-resolution 3D models. A unique 3D
point-capsule network was introduced in [267] that could process sparse 3D
point clouds while still maintaining the spatial arrangements of the input
data. Their approach was a unique combination of the dynamic routing
within the network and a peculiar 2D latent space that could perform object
classification and segmentation tasks nicely. The work in [268] made use
of self-organising maps to represent orderless point clouds as single feature
vectors. The advantages reported in their work list fast training times.

3.4.1 Semantic Segmentation for inference of Pore Net-
works

The problem of predicting the class of every voxel is what is sought from the deep
network. This forms a crucial step in the characterisation of the pore network using
acoustic analysis. In the current context, a good segmentation is said to occur when
a pore is labelled as a pore and the matrix as the matrix. The primary objective

74 3. Data Driven Porosity Segmentation

of semantic segmentation is the independent segregation of objects of interest.
This is especially important because segmentation is fundamentally important to
the development of rock physics models. The literature cites immense content on
image segmentation but does not recommend a single best method [269].
Seeing the complexity of the shapes of the pores which carbonates exhibit, we
choose the basic U-Net architecture [57] and modify it for our own purposes. One
of the more compelling reasons for its selection is the type of input data. We seek
to extract the pore networks from the acoustic volumes. These acoustic/impedance
volumes are often the end products of a conventional seismic processing stage [270]
and the wave signatures of the objects the wave has interacted with. Interpreters
use the method of inversion to delineate the sweet spots from these volumes [270].
But this process is often time-consuming with no guarantee of the optimal solution.
At this juncture, as outlined in the next sections, we propose to directly infer
the pore networks from acoustic volumes. Of course, one may argue about the
frequency of the seismic data acquisition, that the used frequency is too small
to resolve the heterogeneity at the core scale. But in this chapter, we are more
interested in taking the first steps toward direct interpretation and would like to
incorporate the intricate modelling requirements as a future project.

3.4.2 The Modified U-Net Architecture

In this thesis, we are working with computational semantics in the context of
3D volumetric images of rock sample data. We make use of the basic U-Net
architecture to modify it for segmentation purposes. Out input images are acoustic
wavefields from which we would like to extract the pore networks that caused the
patterns in the wavefields.

The U-Net architecture was primarily developed for medical image segmen-
tation tasks [57]. The architecture has proven to be highly beneficial for a low
amount of labelled data, such as that of medical images [271]. The second benefit
o�ered by the architecture is that it is reasonably fast to train [271]. The explana-
tion of the basic U-Net is given in section 2.1.3.1. The 3D equivalent, as relevant
in the current study, replaces all operations with their 3D equivalents.
We now describe the model used for semantic segmentation of acoustic images.
The original U-Net consisted of 4 blocks of convolutional layers prior to the bot-
tleneck. And correspondingly, there were four blocks of upsampling layers in the
decoder part of the network. On the contrary, we had to reduce each part of the
U-Net to 3 blocks only. Fig. 3.22 shows the modified architecture for acoustic
image segmentation. The convolution block uses a filter size of 3 ◊ 3 ◊ 3 and and

3.4. Segmentation and Localization of Pore Networks 75

Input
volume

Convolution

Concatenate
Maxpool
Upsample

Segmented
volume

64 � 64 � 64 � 1

64
�6

4�
64

�1
6

32
�3

2�
32

�3
2

32
�3

2�
32

�1
6

16
�1

6�
16

�3
2

16
�1

6�
16

�6
4

8 � 8 � 8 � 64 8 � 8 � 8 � 256

16
�1

6�
16

�6
4

32
�3

2�
32

�3
2

64 � 64 � 64 � 4

16
�1

6�
16

�1
28

32
�3

2�
32

�6
4

64
�6

4�
64

�3
2

64
�6

4�
64

�1
6

Batch Norm

Figure 3.22: The modified U-Net architecture for semantic segmentation of the
acoustic volume

stride of 2 ◊ 2 ◊ 2. The number of filters used for the first, second and third layers
is 16, 32, 64 in the encoder part of the network. Similarly, in the decoder part,
the number of filters decreased from 64, 32, 16. The latent/bottleneck consisted
of 256 filters. Every convolution operation was followed by a ReLU layer, batch-
normalisation layer, a max-pooling layer and a dropout layer. The dropout value
used was 0.1 in each of the blocks. The output of the network was passed on to a
softmax function to output the class probabilities of each class in the 3D sample
image.

3.4.3 Training and Validation

In order to measure the prediction quality, four suitable metrics were used. They
are Accuracy, Cross-entropy, Dice-coe�cient and Soft Dice-coe�cient. The Accu-
racy and Cross-entropy metrics are label based metrics, i.e. individual labels are
compared in the predicted and observed labels. So, if y, ŷ are the observed and
predicted labels, the metric is calculated as:

Accuracy(y, ŷ) = 1
N

N≠1ÿ

i=0
1(ŷi = yi) (3.20)

Cross_entropy(y, ŷ) = ≠ 1
N

N≠1ÿ

i=0
yi ú log ŷi (3.21)

The Dice-coe�cient [272; 273; 274] and Soft-Dice coe�cient are special mea-

76 3. Data Driven Porosity Segmentation

Table 3.6: Training Metrics

Epoch Accuracy Cross-entropy Dice Coe�. Soft-Dice Coe�.
1 blue!250.89 red!250.39 blue!250.71 blue!250.63
2 0.94 0.25 0.84 0.76
3 0.94 0.24 0.86 0.78
4 0.95 0.21 0.88 0.79
5 0.95 0.21 0.88 0.80
6 0.96 0.19 0.90 0.81
7 0.96 0.20 0.89 0.81
8 0.96 0.19 0.90 0.83
9 0.96 0.14 0.92 0.84
10 0.96 0.15 0.92 0.84
11 0.97 0.13 0.92 0.85
12 0.97 0.14 0.92 0.85
13 0.97 0.13 0.93 0.85
14 0.97 0.16 0.92 0.85
15 0.97 0.14 0.93 0.87
16 0.97 0.16 0.92 0.86
17 0.97 blue!250.12 0.93 0.87
18 red!250.97 0.13 red!250.94 red!250.87
19 0.97 0.14 0.93 0.87
20 0.97 0.17 0.93 0.87

sures of similarity defined over sets. If T, P are the true binary mask and predicted
binary mask, respectively, then the metrics are given as:

Dice_coefficient(T, P) = 2 ◊ |T | fl |P |
|T | + |P | (3.22)

The Soft-Dice coe�cient is the same as the original Dice coe�cient, except that
in this, the predicted masks are not rounded prior to computation. This is unlike
the Dice coe�cient, where the predicted mask is first rounded and then compared
with the observed true mask.
The loss function used to train the model can be given as:

lossDice = 1 ≠ 2 qN
i piti

qN
i p2

i + qN
i t2

i

(3.23)

where pi, ti are the predicted probability and the value of the ground truth, respec-
tively, for each voxel. This loss function has been useful in semantic segmentation
tasks with imbalanced occurrences of target classes [275].

3.4. Segmentation and Localization of Pore Networks 77

Table 3.7: Validation Metrics

Epoch Accuracy Cross-entropy Dice Coe�. Soft-Dice Coe�.
1 0.88 0.53 0.66 0.57
2 0.93 0.36 0.82 0.74
3 0.95 0.20 0.87 0.78
4 0.89 0.37 0.82 0.73
5 0.96 0.18 0.89 0.81
6 0.80 0.51 0.71 0.66
7 0.95 0.20 0.89 0.83
8 red!250.96 blue!250.12 red!250.92 0.82
9 0.44 4.00 0.39 0.39
10 0.57 1.49 0.50 0.51
11 0.48 4.13 0.43 0.43
12 0.38 red!257.51 0.34 0.34
13 blue!250.37 7.25 blue!250.33 blue!250.33
14 0.96 0.20 0.91 red!250.85
15 0.58 2.12 0.51 0.51
16 0.52 2.43 0.46 0.46
17 0.41 6.48 0.37 0.37
18 0.41 5.59 0.37 0.37
19 0.61 1.42 0.53 0.53
20 0.73 0.79 0.66 0.63

Figure 3.23: Epoch vs Training and Validation loss

78 3. Data Driven Porosity Segmentation

Figure 3.24: Epoch vs Dice and Soft-Dice accuracy

3.5 Results and Discussion
The main objective of this chapter was to map the pore networks present in car-
bonate rock core samples to their acoustic responses. We discuss the results of all
the objectives in this section.

Volumetric image processing of rock core samples
As a starting point, the chapter has shown how to process the 3D volumetric im-
ages of rock core samples. After the acquisition of digital images from a 4D-XRM
instrument, the images require a few steps of processing before they become useful
for pore network extraction.
Referring to Fig. 3.2 we can see that the 3D images show quite an amount of
variation in their grayscale values. These variations manifest as contrast changes
when analysed visually. Specifically, the samples in figures 3.2b), 3.2h) and 3.2i)
appear to have low grayscale values in the 0-255 range, imparting to their dark ap-
pearances. Figure 3.2a) shows a relatively low variation of intensities and appears
greyish in colour from top to bottom. Sample 3.2d) and 3.2j) are louder with their
representation. We find that the scanning of sample 3.2d) resulted in pixel values
whose volume rendering just left scatters of pixel values in the cylindrical volume.
On the other hand, in 3.2j), one can easily identify the presence of pores along the
length of the sample. This is an example of a good scan.

Due to the variation of intensities in di�erent samples, a simple contrast equal-
isation was applied to make the grayscale values stretch over the entire range.
As one can see in Fig. 3.3a) the cube has been extracted from 3.2b) and whose
grayscale lies in the range 0.374 to 0.937. After the contrast stretching, the pixel

3.5. Results and Discussion 79

a)

b)

c)

Figure 3.25: From a) to c): Examples of some optimally predicted pore networks

80 3. Data Driven Porosity Segmentation

a)

b)

c)

Figure 3.26: From a) to c): Examples of some non-optimal predicted pore networks

3.5. Results and Discussion 81

Figure 3.27: Prediction metrics on 392 test samples that were not used for training.
Dice loss, Dice coe�cient and Soft-Dice coe�cients are calculated for 4 classes -
Matrix, P1, P2, P3.

values have an extended scale that lies in the range 0.0276 and 0.974. Consequently,
the porous regions are more visible now, easing the next stages of processing. We
also show the distribution of the pixel values in Fig. 3.4a) and 3.4b). Figure 3.4b)
clearly shows a stretched scale of the values.

Often, the images are also plagued with some noise, as depicted in Eq. 3.1
through 3.3. These noises can be suppressed through the use of median filters. An
application of a 3 ◊ 3 ◊ 3 structuring element was used for the filters. The result
can be seen in Fig. 3.7. The image has been shown in “jet” colourmap for clarity;
otherwise, it is essentially greyscaled. The median filtered image is subjected to
the Sauvola thresholding algorithm to obtain a binary image as shown in Fig. 3.8.
The Sauvola binarisation algorithm requires two parameters to perform the bina-
risation. Table 3.3 shows the various window sizes and weights used for di�erent
samples. In the current context, the e�ect of binarisation is the extraction of the
pore network. The porosity computed in the binarisation step must be closely
matched with the porosity obtained from the laboratory. For this purpose, the
computed porosity was calibrated against the lab derived porosity, and the result
is shown in Table 3.2.

Another goal of volumetric image processing was to extract the pore networks
from rock samples in a semi-automated manner. For this, the binary image was
operated by a distance filter given by Eq. 3.6 to obtain the distance image. This
map essentially computed the distance of every foreground pixel to the nearest

82 3. Data Driven Porosity Segmentation

background pixel. We used the Euclidean distance function for this purpose. The
maximum distance was computed to be 6.56 units. The binary image was also
used for computing the skeleton of the pore network, as shown in Fig. 3.10. As
we can see, the skeleton is too complex to be interpreted manually. Therefore, we
seek to implement a semi-automated algorithm for obtaining the segmentation.

The watershed algorithm is an established method for image segmentation
[276]. It is a flooding algorithm that propagates the labels of the “seeds” to every
pixel in the foreground. These seeds are something that the user provides man-
ually to the algorithm. These can also be generated automatically using a peak
detector algorithm. In the current work, automation is achieved using the k-means
clustering algorithm. We discuss the steps here. The skeleton image 3.10 holds
the coordinates of the skeleton of the pore network. These coordinates are used to
extract the distance values from the distance map of the sample. Because the dis-
tance map holds the distance of every foreground pixel to the nearest background
pixel, it, in a way, encodes the cross-sectional width of the pore path throughout
the network. This single strategy can be used to attain a semi-automatic seg-
mentation. The distance values of the skeleton image are subjected to k-means
clustering with a predefined number of clusters as 3. This number corresponds to
3 types of pores based on relative cross-sectional widths in the pore network. The
output of the clustering algorithm is a skeleton map where every pixel now has
either of the three labels. We use these labels as seeds to propagate their values
to all the pixels in the foreground. The strategy is well illustrated in Fig. 3.6.
We can see in Fig. 3.6a) that a binary image has been synthetically designed,
which consists of simple geometrical objects. The cross-sectional widths are used
by the clustering algorithm to assign labels in Fig. 3.6c), which are then flooded
throughout the foreground. The resulting figure, as shown in Fig. 3.6d) gives a
segmentation based on their relative cross-sectional widths.
The above-discussed procedure is followed for the 3D binary image for each cubic
sample. The result of the segmentation is shown in Fig. 3.11. The three types
of pores are assigned three unique labels as shown in di�erent colours in the image.

Acoustic Wave Analysis
After the extraction of the pore networks, the cube samples are subjected to acous-
tic wave simulation. To keep things simple, we consider only two types of bodies
inside the cube – the matrix and the pores. The pores are considered to be com-
pletely occupied with a single fluid. The materials are specified using two proper-
ties – the medium’s velocity and the density. The values used in the simulation are

3.5. Results and Discussion 83

given in Table 3.4. The matrix has been assigned a high velocity of 5200m/s and
density 2200kg/m3. The fluid medium has been assigned a velocity of 1500m/s

and a density of 1000kg/m3. Every simulation on each of the cubical samples was
run for 1281 timesteps, which corresponds to 11.38µs. A demonstration of the
propagation of the wave has been shown in Fig. 3.12. The cubes are 64 ◊ 64 ◊ 64
voxel sized. First row in 3.12a) shows the structure of the pores present on the
three planes – XY, YZ, and ZX. The row numbers 3.12b) through 3.12e) show the
propagated waves at times, t = 0.53µs, 0.90µs, 1.26µs, 1.63µs. In the figure, we
can see that the wavefront undergoes reflection when it encounters a low-velocity
region of the pore. The beginning of the reflection occurs in Fig. 3.12c) and con-
tinues in Fig. 3.12d) and e).

In order to get a quantitative estimate of the wave amplitudes, we set up 4
cases of di�erent pore networks and probed the 8 corners of the simulation do-
mains. The graphs for the same are shown in Fig. 3.14, 3.15, 3.16, 3.17. The 4
cases are described in Table 3.5. In case 1, the pore bodies are near the top surface.
The highest amplitude recorded is by probe B2, which equals 0.6 Pa. The waves
get attenuated after time, t = 4µs. In case 2, the pore network is branched and
more scattered. The wave amplitudes recorded by the probes are much smaller
of the order of 1e-2 Pa. The reason for this might be the scattered pore paths
cause the waves to reflect and undergo destructive interference causing a decrease
in amplitudes. In case 3, there is a dominating crack pore in the middle, parallel
to the ZX plane. The amplitudes recorded in this case are higher than in cases 1
and 2. The highest amplitude was recorded at around 1.5 Pa by the B8 probe.
After time t = 6µs, the amplitudes decrease in amount. Case 4 stands out from
the previous 3 cases in the sense that the cube has just 2 small pore bodies located
parallel to the XY plane towards the back. The corresponding wave pattern shows
clear wavefronts travelling on the surface of the cube. On analysing the wave
amplitudes of the probes, we find that most of the power is lost and must have
dissipated into the absorbing layers. The highest amplitude recorded is about 0.15
Pa by probe B7.

In addition to the 8 probes, we also compute an extra metric of the wave am-
plitudes for quantitative analysis. In order to quantify the patterns, we take the
standard deviation of the amplitudes at the 6 surfaces of the cube for the length
of the simulation. Overall, there exists a lot of dissimilarity in the observed pat-
terns for the 4 di�erent cases. The highest variation is exhibited by sample 109 in
Fig. 3.20 which is approximately equal to 1.0 Pa. The second highest variation is

84 3. Data Driven Porosity Segmentation

shown by sample 105 in Fig. 3.18 and is approximately equal to 0.3 Pa. Samples 5
and 13 stand third and fourth with the standard deviation values, approximately
equal to 0.14 Pa and 0.10 Pa. This analysis shows that the wave fields received
at di�erent parts of the computational domain carry information about the pore
network structure inside. We seek to retrieve these causative pore networks from
their corresponding wavefields in the next part of the discussion.

Mapping of Pore-networks to Acoustic Responses
We modify the basic U-Net architecture into a simpler form and reduce the tensor
sizes for our purpose. We work with smaller cubes of size 64 ◊ 64 ◊ 64. This also
helped reduce the depth of the network to 7, inclusive of the bottleneck. Figure
3.22 shows the shapes of the tensors at the input of each layer. Here, the input
data used are the acoustic volume generated by a point source from the centre of
the cube of size 10mm ◊ 10mm ◊ 10mm. The waves, after emanating from the
centre, encounter low acoustic velocity zones in the form of pores. Due to this, the
waves undergo reflection and refraction to ultimately exhibit specific wavefield pat-
terns, as discussed in section 3.3.3. The training of the U-Net is computationally
expensive, and it takes around 2 hours to train on 3280 samples. We validate the
training on 392 samples. We use 4 accuracy metrics for monitoring the training of
the deep network. The loss function used for training is given in Eq. 3.23. This
loss function takes care of the imbalance in classes.

The U-Net was trained for 20 epochs, whose results are shown in Table 3.6.
The results have been rounded o� 2 decimal places, although the coloured cells
mark the high(red) and low(blue) values of the metrics. As one can see, the Ac-
curacy metric starts o� with a value of 0.89 and at the end of 20th epoch attains
0.97. Correspondingly the Cross-entropy metric starts o� with a value of 0.39 and
ends at 0.17. On the other hand, the Dice coe�cient and the Soft-Dice coe�cient
start at 0.71, 0.63 and end at 0.93, 0.87. This suggests that the former two metrics
are not optimal indicators of the training in the context of semantic segmentation.
Had we used these for monitoring the network training, the results would not have
been good enough as we obtained with the latter two. The Dice and Soft-Dice
coe�cients are better metrics for the purpose. Choice of the Dice loss is also op-
timal as it readily takes care of the imbalance in classes. We can observe similar
characteristics in the validation metrics as well. The validation metrics are shown
in Table 3.7. Out of the 20 epochs, the network achieved the best performance
on epochs 8 and 14, as marked in the table. We can also see the loss graphs in
Fig. 3.23. The loss values attain the best values corroborate with the Dice and

3.5. Results and Discussion 85

Soft-Dice coe�cient values. We can also see the graphs of the accuracy metrics in
Fig. 3.24 for the training and validation stages.

Now we discuss the predictive performance of the trained network. In Fig.
3.25a) through 3.25c) we can see the model could predict the overall pore network
nicely, but the individual classes are somewhat non-optimal. Nonetheless, however,
we assume, from the interpreter’s perspective, that the overall structure is more
important than the individual pore types. In Fig. 3.26a) through 3.26c) we can see
some of the non-optimal predictions. In the first part 3.26a) the leftmost observed
brown pore is completely missed in the predictions. The model is faintly able to
capture the other two pores on the top and right. In the second-row 3.26b) the
large brown pore on the left is completely missed in the predictions, while the
other parts of the network appear to be nicely predicted. In the third-row 3.26c)
the middle, top, and bottom pores are missing from the predictions, and only the
right top pore has been faintly predicted. Finally, we plot the Dice metrics viz.
loss, Dice coe�cient and the Soft-Dice coe�cient for all the validation samples in
Fig. 3.27 to have an idea about the performance of the model on unseen data. We
can conclude that the model has attained 70% accuracy on the validation set from
the graphs.

Chapter 4

Application-II: LSTMs based
Accelerated Simulation for
Hydro-Mechanical Systems

4.1 Introduction
Hydro-mechanical simulations are widely used to study the slope-stability problem.
These multiphysics simulations capture the mechanical and hydraulic response of a
system. Conventional slope-stability analysis techniques use the limit equilibrium
method criterion as the main principle to determine the factor of safety. To name
a few, we have, the ordinary method of slices [277], the Bishop’s modified method
[278], the force equilibrium methods [279], the Janbu’s generalised method of slices
[280], the Morgenstern and Price method [281], the Spencer’s method [282]. Chart
based slope-stability schemes have also been developed by [281; 283; 284] and
[285]. In general the slope-stability analysis can be based on either total stress
or the e�ective stress condition. The total stress-based method ignores the e�ect
of pore pressures and the undrained shear strength determines the soil strength.
For the e�ective stress based method, the failure can be modelled using one of
the many soil failure criteria such as the Mohr-Coulomb failure criterion [286], the
Hoek-Brown failure criterion [287], the Drucker-Prager failure criterion [288], the
Matsuoka-Nakai failure criteria and the Lade-Duncan failure criterion [289; 290].
The most commonly used of all these failure criteria is the Mohr-Coulomb failure
criteria. The criteria are given using the following equations:

I1 = ‡1 + ‡2 + ‡3 (4.1)

1Parts of this chapter are published here: 10.1007/s00603-021-02668-9

4.2. Development of a Reduced Order Model 87

I3 = ‡1 ú ‡2 ú ‡3 (4.2)

J2 = 1
6

S

U(‡1 ≠ ‡2)2 + (‡2 ≠ ‡3)2 + (‡3 ≠ ‡1)2)
T

V (4.3)

In the above equations if ‡1, ‡2 and ‡3 denote the maximum, intermediate and
minimum principal stresses, I1 and I3 the first and third stress invariants and J2

the second deviatoric stress invariant, then the Mohr-Coulomb failure criteria can
be stated as follows:

‡1 ≠ ‡3
‡1 + ‡3 + 2 · c · cot(„) = sin„, (4.4)

where „ and c denote the cohesion and internal angle of friction, respectively.
The more versatile and contemporary approach to slope-stability is the finite ele-
ment model (FEM) based approach. Some of the works that have used FEM for
slope-stability analyses can be attributed to, [291; 292; 293; 294; 295; 296; 297;
298; 299; 300; 301; 302]. The underlying reasons for its versatility can be restated
from [293], as:

1. The method relaxes the shape and orientation of the slip surface. As a
simulation progresses, the failure naturally occurs in regions with low shear
strength than the applied shear stresses.

2. The method avoids making assumptions about the internal forces, as is the
case with limit equilibrium based methods. The governing equations enforce
the equilibrium until failure.

3. The method is informative about the pre-failure states of the slopes, given
that the actual soil and material parameters are used.

4. Stages of failure progression can be observed up-till overall shear failure
occurs.

With the above stated advantages, the current work extends the FEM based
slope-stability analysis system using deep learning algorithms to overcome some
of its limitations and enhance the interpretability of the results.

4.2 Development of a Reduced Order Model
Geophysical systems are complex entities that involve coupled multiphysics pro-
cesses. Numerical simulations describing these systems are often extremely compu-
tationally intensive. Nevertheless, to understand the sensitivities of these systems,

88 4. Accelerated Hydro-Mechanical Simulation

map the potential impact of variable boundary conditions, or engineer appropri-
ate geotechnical solutions, it may be necessary to run such models hundreds or
thousands of times. In many cases, the only way to achieve this is through the
development of Reduced Order Models (ROMs) – numerical methods designed to
capture the fundamental response of a system under a limited range of boundary
conditions for significantly less computational e�ort than would otherwise be re-
quired.
Most of the data-driven model reduction has been aimed at applications in fluid
mechanics. Two popular model reduction strategies employed in this area are
Dynamic Mode Decomposition and Proper Orthogonal Decomposition. Dynamic
mode decomposition (DMD), first developed by [303] performs both temporal and
spatial model reduction. As described in [304], DMD works by identifying transient
coherent structures and their associated rates of growth and decay. The DMD has
been reported useful for data-driven analysis of fluid systems [305; 306; 307]. The
DMD method has also been used in system identification [305]; estimation of flow
fields [308], and studying of neural pattern recordings [309]. An alternative reduc-
tion strategy is Proper Orthogonal Decomposition (POD), first described in [310].
POD is a singular-value decomposition based technique that seeks to find a set of
optimal basis functions using snapshots of the state space from the simulation data.
These bases are then used to build a ROM. The POD method has been used as a re-
duction technique across many di�erent applications [311; 312; 313; 314; 315; 316].
However, unlike DMD, POD methods require a means to advance the state space
once a suitable set of bases have been found. Some recently developed ROMs
combine deep learning methods with data reduction to develop a model that can
advance the state space through time. [317] employed a residual recurrent neu-
ral network to study the subsurface multiphase flow problems, while [318] used
deep recurrent networks based on long short-term memory units for turbulent
flow control problems. Both of these works employed POD as the dimensional-
ity reduction technique to reduce the basis of the underlying high fidelity physics
simulations. [319] used the full-scale physics simulation data from transient flows.
Their work developed two architectures – sequential and residual artificial neural
networks and compared them to the Galerkin projection method. The standard
Burgers equation was solved to provide the full-scale simulations and decomposed
using POD. They found that their residual framework was better in extrapolating
and interpolation along the temporal dimension. [320] found that deep learning
based ROMs outperformed the Galerkin based approaches in electrophysiological
simulations. A recurrent neural network based ROM was developed by [321] to
predict the aerodynamic forces on an airfoil due to structural interaction and vary-

4.2. Development of a Reduced Order Model 89

ing gust loads. The authors found that their long short-term memory units based
on temporal evolution were accurate enough under controlled conditions. They
used the discrete empirical interpolation method as the dimensionality reduction
technique. A di�erent strategy was adopted by [322], who used deep learning to
recommend and use local ROMs on an anisotropic elastoplastic problem. The
study in [323] used multilayer networks along with local ROMs to investigate a
porous media flow problem. They found that the network was good enough to
establish an input-output map between the fine and coarse grid representation of
the simulated results. The dimensionality reduction was made using a non-local
multi continuum upscaling technique.
In this chapter, we describe the development of a data-driven ROM designed to
capture the hydro-mechanical behaviour in multi-material media. The ROM is
trained on multiple simulations of a high-fidelity multiphysics model. The un-
derlying model simulates the coupling between the varying fluid load and the
mechanical deformation of the bulk matrix and can faithfully reproduce di�erent
forms of deformation encountered on slopes. However, this flexibility makes the
fully-fledged model quite computationally expensive – inhibiting its practical use
to only a few di�erent scenarios at a time. Instead, developing a ROM trained
from the high fidelity results allows the simulation of many di�erent future scenar-
ios over longer periods than would otherwise be possible. Here, data reduction is
achieved using a proper orthogonal decomposition of the simulation results. The
data matrix represents the state space vectors in the rows and their temporal
evolution along the columns. Application of the proper orthogonal decomposition
reduces this matrix into a tractable set of basis weights. The challenge then be-
comes one of predicting the temporal evolution of these weights in response to the
applied loading conditions. In this work, we consider neural networks that consist
of long short-term memory units [74] for the purpose of training and predicting
the evolution of states in time. This class of units have several advantages over
more generic recurrent neural networks. One of the key features of these networks
is that they overcome the “vanishing gradient” problem by introducing a gating
mechanism that prevents the exponential decay of gradients [324]. Additionally,
they also help to learn long term dependencies or lags in the input sequence data.
The following sections describe the development of the Reduced Order Model and
provide examples illustrating its use. We start with a brief description of the un-
derlying Hydro-Mechanical model. We then describe the steps involved in training
the ROM. Next, we give examples comparing the predictions of the ROM to those
from the original high-fidelity simulations. Finally, we provide an example illus-
trating the use of the reduced order model to track the e�ects of variable loading

90 4. Accelerated Hydro-Mechanical Simulation

conditions on the behaviour of the Loy-Yang mine structure.

4.2.1 The Hydro-Mechanical Model

Fully coupled hydro-mechanical simulations require sophisticated nonlinear solvers
to capture the complex relationship between load due to fluid and a material’s
mechanical response. Such simulations may involve detailed meshes comprising
millions of degrees of freedom. As a result, modelling these systems can be quite
onerous, with the number of runs usually limited to a few realisations for practical
purposes. Nevertheless, it may be necessary to understand a system’s behaviour
over long timescales or subject to a broad range of boundary conditions in many
cases. In such cases, a reduction strategy is necessary to obtain models that are
able to predict the relevant physical response for significantly less computational
e�ort and time. We outline the key steps involved in the development of the
ROMs and highlight some of the potential challenges. To illustrate the approach,
we derive a ROM for the Loy-Yang mine structure subjected to di�erent loading
conditions. While the high-fidelity simulations used to create the ROM require
several hours of central processing unit (CPU) time on a dedicated workstation, the
developed reduced order model is able to conduct scenario assessments involving
a thousand simulations in a matter of minutes on a single multicore CPU.
The principle of e�ective stress was introduced by [325]. It is defined as a part
of total stress that governs the deformation of the soil or rock. It can also be
assumed that the total stresses can be described as a sum of e�ective stresses and
pore pressure as given by the Eq:

‡ij = ‡Õ
ij + –p”ij, (4.5)

where ‡ij is the total stress, ‡Õ
ij is the e�ective stress, p is the pore pressure – is

the Biot’s coe�cient and ”ij is an indicator function whose value is governed as in
(”ij = 1 if i = j and ”ij = 0 otherwise). For the value of – = 1, the e�ective stress
principle reduces to

‡ij = ‡Õ
ij + p”ij (4.6)

This form of used to express the e�ective stress principle [16; 326] which is based
on Terzaghi’s work from [325; 327]. This form is mostly justified because the
compressibility of solid particles is very small when compared to the compressibility
of porous material.

4.2. Development of a Reduced Order Model 91

4.2.1.1 Governing Equations

We use a simple linear and isotropic elastoplastic formulation for describing the
deformation. The constitutive relation can be given as the following:

‡Õ
ij = D(‘t ≠ ‘p), (4.7)

where ‘t is the total strain, ‘p is the plastic strain and the term ‘t ≠ ‘p denotes
the elastic strain ‘el. Here, D is the elasticity matrix expressing the material
properties. Expanding equation 4.7 gives us the following form:

D =

S

WWWWWWWWWWWWU

⁄ + 2µ ⁄ ⁄ 0 0 0
⁄ ⁄ + 2µ ⁄ 0 0 0
⁄ ⁄ ⁄ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

T

XXXXXXXXXXXXV

(4.8)

where, ⁄, µ are the Lame’s parameters. These parameters can further be expressed
as:

⁄ = E‹

(1 + ‹)(1 ≠ 2‹) (4.9)

µ = E

2(1 + ‹) , (4.10)

where, E, ‹ are the Young’s modulus and Poisson’s ratio, respectively.
The mechanical equilibrium equation is given as

Ò · ‡ = F̨ (4.11)

The elastic strain tensor is given as:

‘el = 1
2

1
Òų + (Òų)T

2
(4.12)

4.2.2 Creation of the 3D Domain: The Loy-Yang Mine
Structure

Finite element analysis requires an accurate geometry. Computer-aided design
software are often used to parameterise the boundaries of the domain to realise
a smooth representation and aid fast FEM simulation [328]. In order to run the
FEM on the Loy-Yang mine shaped computational domain, we need to create its

92 4. Accelerated Hydro-Mechanical Simulation

Figure 4.1: Depth map of the Loy-Yang mine obtained from satellite imagery.
Darker regions denote surface depth while lighter regions tend to be on the surface.

3D mesh. The steps for creating the same are discussed next.

4.2.2.1 Surface Representation of the Loy-Yang Mine

Surfaces can be represented in implicit, explicit and parametric forms [329]. We
use the parametric form here to define the uneven Loy-Yang mine topography.
The parametric form of any surface can be given as

(x, y, z) = (x(u, v), y(u, v), z(u, v)), (4.13)

for u0 Æ u Æ u1 and v0 Æ v Æ v1. More generally, the domain can be defined as
(u, v) œ D.

The basic depth map of the Loy-Yang mine structure was obtained from satel-
lite imagery as depicted in Fig. 4.1. The colours in the figure are on the grayscale
and range between 0 ≠ 255. These pixel values signify the depth of the mine body
at di�erent parts of the 2D image. The task at hand is to obtain a parametric
representation of this uneven surface.

The depth map is not an accurate representation of the actual physical depths.
Therefore we need to estimate a surface that best approximates this surface data.
Let the pixel values of Fig. 4.1 be the samples of a graph surface given by the Eq
4.14

z = f(x, y) (4.14)

Starting with a parametric model of this surface, the surface reconstruction prob-
lem can be reduced to a regression problem where the graph surface z = f(x, y)
needs to be determined that best fit the sampled pixel data. The regression equa-

4.2. Development of a Reduced Order Model 93

Figure 4.2: Parametric representation of the top surface of the Loy-Yang mine
structure

tion can be given as:

X2 =
nÿ

i=1
(zi ≠ f(xi, yi; a1, a2, . . . am))2 (4.15)

X2 =
nÿ

i=1
(zi ≠ f(xi, yi; a1, a2, . . . am))2 + –2

⁄⁄ ˆ2f

ˆx2 + 2ˆf

ˆx

ˆf

ˆy
+ ˆ2f

ˆy2 dx dy (4.16)

Fitting a surface using this equation leads to an ill-posed problem because an
infinite number of function(s) satisfy the equation. To pose the problem such that
we obtain a unique surface requires some constraints. A natural choice is to select
a function that approximates the data well and is also a smooth in itself. The
constraints can be applied using Eq. 4.16. This equation is fundamentally same
as Eq. 4.15 with an added smoothness with a coe�cient – term. The value of
– > 0. This term is also called the regularisation term with – as the regularisation
parameter. This parameter acts as the trade-o� between the smoothness and the
data approximation. Low values of – tend to fit the data more while compromising
the smoothness and vice-versa. The result of the parametric representation of the
top surface can be seen in Fig. 4.2. After the creation of the top surface layer,
the copy of the same is translated in the vertical Z-axis to form a second layer, as
shown in Fig. 4.3b). Next, the top surface is extruded in the negative Z-axis to
realise a 3D body followed by a Boolean union operation. Next, in order to obtain
a rounded structure, a bezier curve was drawn on the XY plane, which was then
extruded into the Z-axis to define the 3D rounded structure. A Boolean di�erence
operation was applied to realise the rounded body as shown in Figure 4.3d). Then
in 4.3e) the whole structure was scaled down on the Z-axis to approximate the
actual dimensions of the Loy-Yang mine structure. Fig. 4.3 summarises all the
steps for creating the complete computation domain.

94 4. Accelerated Hydro-Mechanical Simulation

a) b)

c) d)

e) f)

Figure 4.3: From a) to f): Top layer, Intermediate layer, Created Solid Body,
Extruded bezier curve to realise a rounded structure inside the Solid Body, Scaled
version of the rounded structure, Final LY-mine structure. In a) and b), we start
with the parametric layer at the top, followed by a translated copy to make the
intermediate layer. In c), a solid cuboid is created with its extent defined by the
length and breadth of the parametric surface. A Boolean union operation helped
unite di�erent parts together. In d), a bezier curve is drawn on the XY plane and
extruded to the bottom of the solid cuboid. We then use a Boolean di�erence opera-
tion between the solid cuboid and the extruded rounded structure in d), demarcated
in pink colour. Then in e) this rounded structure is scaled along the Z-axis to match
the real size of the LY-mine structure that can be seen in f)

4.2. Development of a Reduced Order Model 95

Table 4.1: Pore pressure generating functions

Function Range Parameters
Sine x œ (≠2fi, 2fi) O�set in x
Sawtooth x œ (≠2fi, 2fi) O�set in x + Ramp/Triangle
Polynomial x œ (≠2fi, 2fi) O�set in x + Degree 2, 3

4.2.2.2 Loading Conditions

The pore water pressure is an important factor in determining the stability of soils.
An excess of such quantity can lead the slopes toward failure. It is highly desirable
to know in advance the state of the slope as a function of the pore water pressure.
Training a system that can estimate/predict the state of the slope using this factor
can be highly beneficial.
Performing a slope-stability dry run on the slopes of the Loy-Yang mine reveals
that the current factor of safety lies in the interval 1.2 < FOS < 1.6, which is
a good range for all practical safety reasons. But to develop a robust ROM, we
introduce a variation in the applied loading conditions. As is explained here, we
apply 3 sets of body loads in di�erent parts of the computational domain. It is
assumed that designing a ROM with a variety of loading conditions will help en-
hance its generative performance on a range of inputs. For this, the computation
domain is divided into 3 regions as shown in Fig. 4.5 a) through c). We define
volumetric loading conditions to act on these regions of the domain.
When trained on high variance data, ML algorithms generally have better pre-
dictive performance. It goes without saying that with high variance comes longer
training times. We synthesise 4 types of signals to describe the pattern in which
the pore water pressure varies in the system. The parameters used to define the
properties of the signal are given in Table 4.1. These signals were used to re-
alise unique sets of full-order simulations. Patterns of the sample pore pressure
generating functions are shown in Fig. 4.4.

4.2.3 State-space Description and Reduction

We consider the mechanical equilibrium equation 4.11 and solve for the state space
variables. The forcing function F̨ is set to 0̨, and we directly contribute to the
stress tensor ‡’s normal components by adding the varying pore pressures in the
3 di�erent parts of the computational domain as shown in Fig. 4.5. We evaluate
the e�ect of these varying conditions on the values of some of the important state
variables like the – displacement, equivalent plastic strain, all components of the
elastic strain tensor and all components of the stress tensor.

96 4. Accelerated Hydro-Mechanical Simulation

a)
0 25 50 75 100 125 150 175 200

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

b)
0 25 50 75 100 125 150 175 200

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

c)
0 25 50 75 100 125 150 175 200

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

d)
0 25 50 75 100 125 150 175 200

x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x)

Figure 4.4: From a) to d): Sample of Sine function, Ramp function, Sawtooth
function, Polynomial function; Di�erent pore-pressure functions used as loading
conditions in di�erent parts of the computational domain. The length of the signal
in the x axis is 200; this denotes the number of timesteps the loading condition is
applied for.

a) b) c)

Figure 4.5: From a) to c): Part 1, Part 2, Part 3; Di�erent parts of the computa-
tional domain for applying the pore pressure loading conditions

Figure 4.6: Computational mesh of the domain

4.2. Development of a Reduced Order Model 97

Sim #1Ti
m
e

Va
ria
ble

Sim #2 Sim #5
Si

m
ul

at
io

ns
1

to
 5

Fl
at

te
ne

d
St

at
e

Ti
m
e

Variable

Figure 4.7: Schematic representation of a state. Top row shows actual simulation
data. Bottom part shows a transposed data matrix where each row is a 1D long
skinny vector realised by flattening the the state variables and stacked along the
time axis.

Table 4.2: State variables and symbols

Variable Symbol
Equivalent Plastic Strain ‘pl

Displacement Magnitude u
Strain Tensor Components ‘xx, ‘xy, ‘xz, ‘yy, ‘yz, ‘zz

Stress Tensor Components ‡xx, ‡xy, ‡xz, ‡yy, ‡yz, ‡zz

A state is defined as the collection of state vectors that hold the values of
di�erent physical variables. A state vector is a vector whose elements are the
values of a state variable with their length equal to the nodes of the mesh on
which they are solved. Fig. 4.6 shows the mesh of the computational domain.
The type of mesh is tetrahedral. The physical variables are solved on the nodes
of the mesh during each simulation. Schematically, the storing of the variables’
states can be illustrated as in Fig. 4.7. As shown in the figure, there are two
axes of a simulation – the time axis and the variable axis. The variable axis
holds the values of the di�erent physical variables, whereas the time axis holds
their successive progressive states. In the second part of the figure, the number
of rows denotes the number of time steps for which the simulation is run. The
column holds a flattened state of a variable. Ideally, one would want to include
simulations that are di�erent from each other with regard to the variation in the
physical variables; therefore, in our case we ensure to generate a unique simulation
by varying the parameters of pore pressure generating functions as shown in Table
4.1. A unique set of 3 out of 4 signals were used for every simulated case.

Table 4.3 lists the values of the materials that were used during the simulation.
The properties have been abbreviated as follows - cohesion (c); internal angle of
friction („); Young’s modulus (E); density (fl) and unit weight (“). In this work

98 4. Accelerated Hydro-Mechanical Simulation

Table 4.3: Material properties

Material Type c „ E fl “
(kPa) (deg) (MPa) (kg/m3) (t/m3)

Overburden 50.00 26.00 1860.00 1120.00 1.90
Coal 150.00 26.00 1560.00 1100.00 1.12

we have considered homogeneous material properties but the technique could well
be extended to the heterogeneous equivalents as long as the degree of freedom of
the computational domain remains constant across the analysis. Notably, for the
the latter case the number of components in the POD would need to be increased
to accommodate the spatial variations.

All the simulations were carried out in the opensource FEM solver - Multi-
physics Object-Oriented Simulation Environment (MOOSE) [330] using the Porous
Flow and Tensor Mechanics modules.

4.2.3.1 Model Reduction

The high fidelity model that describes the material behaviour can be used to gener-
ate a series of simulations that will define, train and test the reduced order model.
Running a series of simulations typically takes hours to complete, depending upon
the complexity of the physics and the resolution of the mesh. As is commonly
done in machine learning models, the results of those simulations are divided into
training, and testing sets [331]. For the examples considered here, we reserve
around 60% of the simulation output for training and 40% for testing. A typi-
cal high-resolution simulation may contain several hundreds of thousands, if not
millions of degrees of freedom. The first task in the model reduction is to reduce
this to a more tractable number. This is achieved by using a proper orthogonal
decomposition (POD) of the output states to identify the modes of deformation
that are most important to the material’s response.

From the state variables output from each training simulation sampled at dis-
crete time intervals, we construct a matrix in which each column represents a sep-
arate simulation set, and each row represents a degree of freedom from the model
itself. This leads to a matrix M œ RN◊L, where N is the number of variables in the
state space and L is the number of output states. The output degrees of freedom
combine both hydrodynamic and mechanical parameters from the multiphysics
simulation. For the examples presented in this chapter, we make no distinction
between the state variables – all of the independent degrees of freedom are included
in the rows of each column in a single vectorised representation. Note, however,

4.2. Development of a Reduced Order Model 99

that spatial relationships are not represented directly in the matrix. Instead, these
are implicitly captured through the mapping from the simulation outputs to the
column vectors. Also, it should be noted that this matrix is extremely skewed,
with the number of columns exceeding the rows by a large margin. While here, for
the sake of brevity, we describe the operations as acting on the whole matrix, in
practice, the calculations described below are performed using iterative methods
that act on individual columns (simulation outputs) rather than the entire system.

Once the matrix M has been constructed, we then use the proper orthogonal
decomposition to identify the modes of deformation that are most important to
the material response. The decomposition method is based upon the SVD matrix
factorisation algorithm wherein SVD finds an orthonormal basis by performing the
Eigen decomposition of the data matrix:

M = U�VT (4.17)

where U is an N ◊ N orthogonal matrix representing particular modes describing
the spatial distribution of the state variables, while V is an L◊L orthogonal matrix
describing the temporal response of the system. The matrix � is a rectangular
(N ◊ L) diagonal matrix, whose diagonal entries ‡ii contain the so-called singular
values of M.

Model reduction is achieved by selecting only the columns of U and V cor-
responding to the n-largest singular values in � for a predetermined number n

of singular values. From this reduced number of singular values and their corre-
sponding columns of the U and V matrices, M is approximated as

M̃ = Ũ�̃ṼT . (4.18)

In this case, the required number of singular values are estimated by using
the orthonormal vectors in the columns of the U matrix to first compress and
then reconstruct the data in the test set. In this way, the number of singular
components chosen from the decomposition of the training data is determined
based on its ability to represent key components in the test data.

Thus, after collecting a representative sample of system states (by performing
several simulations subject to representative combinations of loading conditions
of interest), we then combine these results to create a state matrix M. Next, the
principal modes of deformation are identified by using the singular value decompo-
sition. This produces a set of orthonormal state-vectors (the columns of Ũ) that
form the basis for the reduced order representation of the system.

100 4. Accelerated Hydro-Mechanical Simulation

a) b)

c) d)

e)

Figure 4.8: From a) to e): Reconstruction accuracy of physical variables with
increasing number of singular components

g)
0.0e+00 2.7e-04

Observed Elastic Strain XY-comp. XY
Z

h)
0.0e+00 2.7e-04

Predicted Elastic Strain XY-comp. XY
Z

Figure 4.9: a) and b): Demonstration of the reconstruction of observed and pre-
dicted states of elastic strain XY-component

4.2. Development of a Reduced Order Model 101

The orthonormal state-basis vectors can be used to produce reduced-order rep-
resentations of the system state at any time t, by taking the dot product of the
transposed basis vectors ŨT with the system state vector at that time, s(t):

w(t) = ŨT · s(t) . (4.19)

This yields a vector of weights, w(t) = [w1, w2, . . . , wn]T , describing the strength
of the singular components at time (t). The system state s̃(t) can then be recon-
structed from the weights as follows:

s̃(t) = Ũ · w(t) . (4.20)

The state variables from the reconstructed state can then be mapped back onto the
original mesh from the high fidelity simulation to recover the spatial distribution.
In Fig. 4.8 we can see graphs of the reconstruction accuracy versus the number of
POD modes. It is evident that a minimum of 4 components are required to achieve
the best reconstruction of the original states. But in the actual implementation 5
modes were used. An example of the reconstructed state can be seen in Fig. 4.9.
While the singular value decomposition provides an e�cient means to represent the
system states, it does not describe how these states evolve over time. Importantly,
it cannot predict how the system will respond to changing loading conditions.
Instead, we train a recurrent neural network to predict the future state of the
system as a function of the present state (described in terms of POD modes), the
loading conditions applied in the present time step, and the loading conditions in
the future timestep. Fig. 4.10 illustrates the adopted combined reduction process.

4.2.4 Generation of the Supervised Dataset

The application of RNN requires data to be converted into a supervised dataset. As
discussed here, we work with the single-step prediction algorithm. This algorithm
requires data to be prepared for a one-to-one prediction scheme. Training data
from each of the simulation sets is generated using Eq. 4.19. This produces a
series of principal component weights or the POD modes. Prior to training the
neural network, the input data are subjected to a two-stage normalisation process.
Normalisation is a standard requirement to train a neural network [332], or indeed
when fitting any form of reduced order model [333; 334]. The first stage subtracts
the median and scales the data according to the quantile range to remove the
e�ects of outliers. This normalisation was chosen after evaluating its performance
in comparison to standardisation that uses the mean and standard deviation. The

102 4. Accelerated Hydro-Mechanical Simulation

s(t) M

A
I

tr
ai

ni
ng

St
at

e
sp

ac
e

re
co

ns
tr

uc
tio

n
D

im
en

si
on

al
ity

re
du

ct
io

n M̃ � Ũ�̃ṼT

w(t + 1) � f(W(t))

w(t) = ŨT � s(t)

s̃(t) = Ũ � wp(t)

W(t) = [w(t), BL(t), BL(t + 1), �t]

RNN

w(t + 1)W(t)

Wp(t) wp(t + 1)

M
ul

tis
te

p
pr

ed
ic

tio
n

Initialize with Wp(t = 1)

wp(t + 1) = f(Wp(t))RNN

Training

wp(t) s̃(t)

Figure 4.10: Illustration of the reduction process: starting with data matrix M,
we factorize it using POD and consider the left singular matrix Ũ. At each timestep
t, we take the transpose of the state vector ŨT and take the dot product with s(t) to
get the weight vector w(t). These weights are combined into a vector with loading
conditions and time di�erence ”t to form a supervised training set for the RNN. After
training, the network is ready for predicting on external test weights. Reconstructed
state space is obtained by taking the dot product of Ũ with the predicted weights
wp(t)

4.3. Development of a Multistep Prediction Algorithm 103

former was chosen as the normaliser as the data did not quite follow the Gaussian
distribution curve. Next, a simple min max scaling is used to scale the individual
features in the training set between 0 and 1.

The goal of the training step is to develop a neural network that can predict
the future state of the system—or more precisely, the future values of each of the
principal components, based on the current values of the principal components, the
current loading conditions, the future loading conditions, and the change in time.
The neural network that we train uses a set of LSTM nodes to predict the evolution
of each principal component. LSTM units are an advanced form of neuronal nodes
with regulated memories that are controlled by “gates”, represented by sigmoid
functions [324].

4.3 Development of a Multistep Prediction Al-
gorithm

4.3.1 The Deep Learning Model

The working of an LSTM cell is explained in section 2.1.2.2. We implement a three-
layer deep RNN — where the number of layers and units in each were determined
on the basis of several trials. The best-performing architecture is reported in Fig.
4.11. Each of the units in a layer receives an input from the previous layer. As the
problem involves estimating the weight vectors at each timestep, we are seeking
values in a continuous range, implying a regression type computation. The input
is a vector W(t) = [w(t), BL(t), BL(t + 1), ”t] and the output is a vector w(t + 1).
The final layer has a linear activation whose output is used to calculate the mean-
squared error loss with respect to the target variables: weight vector w(t+1). The
loss function is given by:

lossMSE = 1
n

nÿ

i=1
(w(t) ≠ ŵ(t))2 (4.21)

where, w(t) and ŵ(t) denote the observed and predicted weights. ADAM optimiser
[132] is used to perform backpropagation in this deep network. The complete setup
is illustrated in Fig. 4.11. Once the neural network has predicted the weights for
a given timestep, they are first de-normalised (i.e. rescaled to their natural range)
by reversing the operations of the normalisers employed prior to dot multiplication
with Ũ, followed by the reconstruction of the corresponding state-space matrices.

104 4. Accelerated Hydro-Mechanical Simulation

37 units

30 units

22 units

X(t) X(t + 1)

w(t + 1) w(t + 2)

Time
D

ep
th=

Figure 4.11: Deep network used to predict weights w(t+1) at t = t+1; Considering
one training example from the training dataset, a weight vector comprising of SVD-
derived weights w(t) of size [5◊1] with loading conditions BL(t), BL(t + 1) and
time di�erence ”t is input to the network that passes through a three-layer deep
RNN consisting 37, 30, and 22 LSTM units, whose output is connected to a fully
connected (FC) layer which outputs a weight vector of size 5 for calculating a mean
squared error against the observed weights w(t + 1) in the implemented regression
setup

4.3.2 Development of Singlestep Prediction Algorithm

We show our analysis on a 3D mesh of the Loy-Yang mine structure, subject to a
change in the pore pressure loading conditions. We apply 3 di�erent loading con-
ditions in the computational domain as shown in Fig. 4.5. We highlight the key
steps and illustrate some of the challenges involved in the development here and in
the forthcoming sections. However, it should be noted that the extension to more
complex geometries/multiphysics and boundary conditions is straightforward.
There can be multiple ways of evolving the weights of a state ahead of time. We
seek to develop a single-step prediction scheme for this purpose. Spatial infor-
mation is implicitly encoded in the mapping of the mesh variables to the state
vectors used in the SVD calculation. While di�erent mesh’ geometries change this
mapping, they do not otherwise alter the other training and testing steps in the
development of a ROM. The application of SVD on the state vectors results in a
low dimensional weight vector, therefore, it becomes convenient to introduce the
normalised squared error function to evaluate the predictive accuracy.

�wX(t) =
q (wX(t) ≠ ŵX(t))2

q(wX(t))2 (4.22)

4.3. Development of a Multistep Prediction Algorithm 105

where, �wX(t) denotes the normalised squared error of the predicted weight, ŵX(t)
w.r.t. the observed weight, wX(t) at timestep, t. Here, X œ {1, 2, 3, 4, 5} and
denotes the weight number obtained from the SVD calculation. After the training
of the deep network, we use Eq. 4.22 to show how the predictions of the model
compare to the original weights.
In the next section, we give an example of a potential application for this type of
approach using the reduced order model to consider the impact of variable loading
conditions on the system response.

4.3.2.1 Evaluating Single layered RNN Architecture

Choice of the deep network for development of a ROM can be very subjective. In
general, increasing the number of layers increases the network’s capacity to model
complex functions [335; 336]. But there also lies a risk of making the network
overfit to the training data. Therefore, it takes some amount of experimentation to
arrive at a near-optimal design. In order to make the idea clear, we first implement
a single layer RNN. This simple RNN is realised using the first layer of the deep
network of Fig. 4.11, i.e. a single layer with 37 LSTM units. Training is done using
the mean squared error loss function of Eq. 4.21. The training and validation losses
of the network is shown in Fig. 4.12. We see that removal of the second and third
layers reduces the network’s capacity to model complex functions. The prediction
results of the trained network are shown in Fig. 4.13 through Fig. 4.17. Each
figure consists of a bottom part that shows the normalised squared error between
the predicted and the observed weights. It should be noted that the prediction
of weights corresponding to high singular values is more important than others.
Therefore, the network must be made to adhere to this requirement. Failing to
do so can make the predicted states to be less accurate, making the reduced order
model less reliable.

From figures 4.13 to 4.17 are shown the predictions of weights w1 through w5

using single layered RNN. In each of the figures, towards the left are shown the
results of single-step predictions, and towards the right, the predictions due to the
multistep algorithm. It is very clear that the 37 LSTM units of the single layer do
not o�er enough network capacity to capture the multivariable dynamics of the 5
weight variables. The bottom graphs show the normalised squared di�erence of the
predicted weights w.r.t. the observed weights. It is evident that converting these
to the actual state space possesses the risk of inaccurate state reconstructions.

106 4. Accelerated Hydro-Mechanical Simulation

Figure 4.12: Training and validation curve for the RNN with single layer of 37
LSTM units

Figure 4.13: Prediction of w1 with single layered RNN; Left: Singlestep, Right:
Multistep

Figure 4.14: Prediction of w2 with single layered RNN; Left: Singlestep, Right:
Multistep

4.3. Development of a Multistep Prediction Algorithm 107

Figure 4.15: Prediction of w3 with single layered RNN; Left: Singlestep, Right:
Multistep

Figure 4.16: Prediction of w4 with single layered RNN; Left: Singlestep, Right:
Multistep

Figure 4.17: Prediction of w5 with single layered RNN; Left: Singlestep, Right:
Multistep

108 4. Accelerated Hydro-Mechanical Simulation

Figure 4.18: Training and validation curve for the 3 layered deep RNN shown in
Fig. 4.11

4.3.2.2 Evaluating Deep RNN Architecture

After the evaluation of the performance of the single-layered RNN, we seek to test
the deep RNN as shown in Fig. 4.11. The training is still done using Eq. 4.21 for
50 epochs. With the addition of two more layers, the network now has an increased
capacity for modelling the input/output weights. Training and validation curves
are shown in Fig. 4.18. The errors for both the training and validation fall at an
increased rate in this case. In fact, the lower value of the validation error at the
first epoch shows that the new architecture is more apt for the given input/output
weight pairs. In addition to that, the low value of the errors on the Y-axis further
supports the claim.
Figures 4.19 through 4.23 show the prediction of weights w1 . . . w5 using the deep
RNN. The curves are much better reproduced in this case. Once the weights are
predicted with su�cient accuracy we seek to reconstruct the actual states from
the weight. In figures, 4.24 through 4.27 are shown the reconstructions from the
observed and predicted states of 4 di�erent physical variables. We see that the
reconstructions are accurately reproduced after the prediction.

4.4 Evaluation of the developed ROM

4.4.1 Analysis of Multiple Realisations

The previous sections discussed how to develop and test the reduced order model.
Here, we demonstrate a potential application of the reduced order model by explor-
ing the e�ect of di�erent loading conditions on the behaviour of the 3D domain.

4.4. Evaluation of the developed ROM 109

Figure 4.19: Prediction of w1 with deep RNN; Left: Singlestep, Right: Multistep

Figure 4.20: Prediction of w2 with deep RNN; Left: Singlestep, Right: Multistep

Figure 4.21: Prediction of w3 with deep RNN; Left: Singlestep, Right: Multistep

Figure 4.22: Prediction of w4 with deep RNN; Left: Singlestep, Right: Multistep

110 4. Accelerated Hydro-Mechanical Simulation

Figure 4.23: Prediction of w5 with deep RNN; Left: Singlestep, Right: Multistep

a)
0.0e+00 2.0e+00
Observed Displacement (m)XY

Z

b)
0.0e+00 2.0e+00
Predicted Displacement (m)XY

Z

Figure 4.24: a) and b): Reconstructions of observed and predicted states of dis-
placement magnitudes

c)
0.0e+00 2.5e-04

Observed Elastic Strain XY-comp. XY
Z

d)
0.0e+00 2.5e-04

Predicted Elastic Strain XY-comp. XY
Z

Figure 4.25: a) and b): Reconstructions of observed and predicted states of elastic
strain’s XY component

4.4. Evaluation of the developed ROM 111

e)
-4.0e+05 2.7e+05

Observed Stress XY-comp. (Pa)XY
Z

f)
-4.0e+05 2.7e+05

Predicted Stress XY-comp. (Pa)XY
Z

Figure 4.26: a) and b): Reconstructions of observed and predicted states of stress’s
XY component

g)
0.0e+00 1.0e-03

Observed Elastoplastic Strain XY
Z

h)
0.0e+00 1.0e-03

Predicted Elastoplastic Strain XY
Z

Figure 4.27: a) and b): Reconstructions of observed and predicted states of elasto-
plastic strains.

0 50 100 150 200
epoch

0.2

0.4

0.6

0.8

po
re

pr
es

su
re

Figure 4.28: Instance of random pore pressure loading conditions. Examples of
random loading conditions are used to illustrate the application of the reduced order
model. Sinusoidal loading conditions with 4 di�erent frequencies are corrupted with
5% Gaussian noise to realise a variety of loading conditions. For the purpose of
visualisation, only 8 out of 1000 di�erent are shown here. ROM was run for all 1000
simulated loading conditions.

112 4. Accelerated Hydro-Mechanical Simulation

We consider a single case study. The three sub-domains in Fig. 4.5 experience
three di�erent patterns of simulated pore pressure. An illustration of the pore-
pressure loading conditions is given in Fig. 4.28. These signals were generated by
corrupting the pure sinusoidal signals with 5% Gaussian noise to realise complex
loading conditions.

A total of 1000 di�erent simulations were conducted, where each simulation
consisted of 200 timesteps. As the ROM only considers 5 principal components,
the simulations could be completed in a few minutes on a single laptop – compared
to multiple hours across a dedicated computing cluster for one high-fidelity simu-
lation. Perhaps a less obvious but equally important feature of the ROM is that
the amount of memory required to store each output state is also dramatically re-
duced. Only one set of principal components is required at each output time step,
meaning that the full evolution of each of the 1000 simulations can be retained by
querying the weights of each of the timesteps. For simulations of slope-stability,
for example, this means that not only can the individual outputs be analysed for
failure on mass, but the timesteps prior to failure events can be easily revisited to
determine the causes of failure in each case.

These examples demonstrate not only the model’s ability to run many realisa-
tions of the same system but also its ability to track the e�ect of uncertainty on
particular features of the loading conditions (the rate of change in pore pressure
in Fig. 4.28 for example).

There is also the question of how to interpret the results of these many realisa-
tions. As is often the case when running Monte Carlo simulations, the result of any
one simulation is less important than the ensemble behaviour of the complete set.
To represent this behaviour, it is common practice to report statistical measures
of the full set of results, such as the mean and standard deviation of particular
fields at each location. Examples of these results are shown in Fig. 4.29.

Nevertheless, while these results provide some insight into the system be-
haviour, it should be noted that distributions of mean values may not be typical
of the overall system response (indeed, it may not even be a valid solution), while
other measures (e.g. standard deviations) do not convey the skew or spread of
the results. Median values and quantiles may provide more information. However,
standard full-fidelity simulations, they may be di�cult to obtain due to the need
to store all simulation results. Furthermore, all of these measures fail to convey
any information on the spatial correlation of the output.

A key advantage of the reduced order model is that it can be used to analyse
variations in spatial distributions, not just local output, by considering the cor-
relations between the di�erent principal components. This is illustrated in Fig.

4.5. Results and Discussions 113

4.30. This figure plots the first five principal components obtained from each of
the 1000 simulations against each other for a given timestep (here 100th out of 200
timesteps).

These plots immediately demonstrate the correlation (or lack thereof) between
the di�erent principal components under the range of body loads. In the case of
4 random pore pressure loading conditions, while some principal components are
largely uncorrelated (e.g. w1 w2; w1 w3), there are others (e.g. w1 w4; w2 w4)
that are somewhat correlated.

Mean Standard deviation

El
as

to
pl

as
tic

st
ra

in

-2.7e-06 1.0e-03
Mean Elastoplastic StrainXY

Z

0.0e+00 1.0e-04
Std. Elastoplastic StrainXY

Z

Figure 4.29: Mean and standard deviation of the plastic strain fields from 1000
simulations corresponding to pore pressures shown in Fig. 4.28 generated using the
reduced order model.

4.5 Results and Discussions
The current chapter was dedicated to building an LSTM based deep learning model
for accelerated simulation of hydro-mechanical systems. We describe the results
of the various sections here.

Creation of the Computational Domain
Development of the ROM needs training data. This training data is usually pro-
vided by the full order numerical simulations. These simulations require a compu-
tational domain for the solution of the governing equations and specification of the
loading conditions. Since we were up to develop the model of the Loy-Yang mine
structure, the creation of the domain involved working with the actual elevation
data of the mine. So, the starting elevation map of the top of the surface of the
mine was extracted by specifying the latitude and longitude pairs. The extracted
depth map is shown in Fig. 4.1. The darker regions are at a depth while lighter re-
gions are towards the surface. It must be noted that elevation maps from satellite

114 4. Accelerated Hydro-Mechanical Simulation

w
1

0

10

20

30

40

50

w
2 0.2

0.4

0.6

0.8

1.0

w
3 0.2

0.4

0.6

0.8

1.0

w
4 0.0

0.2

0.4

0.6

0.8

1.0

w
5

0.25 0.50 0.75 1.00 1.25
0.0

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4

w1 w2 w3 w4 w5

Figure 4.30: Distributions of principal component weights from 1000 simulations:
Graphs on the main diagonal show histograms for each principal component weight,
while o�-diagonal plots show the scatter plots of pairs of weights from each simu-
lation. Red dots indicate the mean values. Distributions correspond to the loading
conditions shown in Fig. 4.28.

4.5. Results and Discussions 115

data are not accurate enough and, therefore, need to be processed to match the
depth observations. After obtaining the depth map, the surface was parameterised
as shown in Fig. 4.2. This step is especially important as finite element models
work best with smooth meshes with good aspect ratios. This is generally available
from a CAD design software. The parameterisation marks the first step in this
design. In order to have an intermediate layer with the same surface topography,
a copy of the top surface was created and placed at a depth below the original
map. We can see the relative placements of the top and intermediate surfaces in
Fig. 4.3a) and 4.3b). Next, an extrusion operation was done from the top surface,
passing through the intermediate surface towards a greater depth to realise a 3D
domain as shown in Fig. 4.3c). The sharp corners can sometimes be problematic
for the convergence of FEM solvers; therefore, a curve was drawn on the surface,
extruding it beyond the bottom and performing a Boolean di�erence operation.
We can see the result in Fig. 4.3d). The pink part denotes the domain of interest.
This step helped in the elimination of sharp corners. Also, in order to make the
depth of the mine near-realistic, a scaling operation was done in the vertical Z-axis
as shown in Fig. 4.3e). The final body was extracted by deleting the extra parts as
shown in Fig. 4.3f). The final computational mesh of the Loy-Yang mine structure
is shown in Fig. 4.6.

Numerical model for full order Hydro-Mechanical Simulations
The governing equations for the simulations are given in Eq. 4.7 through 4.12.
As given by equation Eq. 4.5 the pore pressure directly a�ects the normal com-
ponents of the stress tensor; we create pseudo pore pressure generating functions
using 4 di�erent mathematical functions as shown in Fig. 4.4. The details of the
generative functions are given in Table 4.1. These functions help add nonlinearity
to the applied loading conditions via their application on three di�erent regions of
the domain, as shown in Fig. 4.5. One of the compelling reasons for their usage
instead of the real pore pressures from field measurements is that they help train
the deep learning based ROM for a diverse scenario making it more robust to
changes in loading conditions. A total of 5 full-order simulations were performed
for testing the ROM, out of which 3 were used for training and 2 for testing. Each
simulation consisted of 200 timesteps solving for 14 state variables as shown in
Table 4.2. In Fig. 4.7 the first row shows the form of actual simulation data that
is output from a FEM solver, and in the second row, we can see how the state
variables are flattened to form one long skinny vector per row, and when stacked
along time axis give us a 2D representation of the evolution of the states along
the length of the column. On taking the SVD on the transposed state matrix, we

116 4. Accelerated Hydro-Mechanical Simulation

get a reduced representation in the form of 5 POD modes. In Fig. 4.8 we can see
the reconstruction accuracy of di�erent physical variables like the displacement,
elastoplastic strain, elastic strain XY component, stress XY component and the
overall combined state. High accuracy of the reconstruction is important for em-
ulating a full order simulation. We can also see in Fig. 4.8a) through 4.8e) that
the reconstruction accuracy varies for di�erent state variables.

Development of Multistep Prediction Algorithm
In order to realise the functioning of the ROM, we first consider the development
of a single-step prediction algorithm. The single-step prediction algorithm requires
the simulation data to be converted into a supervised training set. The state space
data obtained from full order simulations are converted to the weight space using
the SVD because learning in the original data space is impractical for various rea-
sons like – training times, data storage and memory requirements. Referring to
Fig. 4.10 of dimensionality reduction block, the predictors are realised by com-
bining the weights of the current timestep, wt, the loading conditions at timestep
BL(t), the loading conditions at timestep BL(t + 1) and the time di�erence ”t.
The combined vector is called the W(t). The target vector is just the weight
vector w(t + 1). By virtue of the creation of the supervised dataset for a single-
step scheme, the number of training examples reduces by 1 because we cannot
have data to predict the first timestep. In the Fig. 4.10 the second block of AI
training, the RNN based single-step prediction algorithm is trained. In the second
part, once the training is over, the algorithm is ready to predict the future weights
wp(t) given the current predictor vector W(t). The RNN used here is realised
using LSTMs with 37, 30 and 22 units that form a 3 layer deep network. The
final weights are output after being squashed using a dense layer. The training is
performed using the backpropagation algorithm with a mean squared error loss.
A total of 50 epochs were set for training and validation, as shown in Fig. 4.12.

Evaluating the Performance of the Developed ROM
In order to assess the quality of the ROM, we also trained another RNN architec-
ture with just a single layer with 37 LSTM units. The results of the single-step
prediction are shown in Fig. 4.13 through 4.17. In each of the figures, the graph on
the left shows the result of the single-step prediction where the predicted weight
(blue) and the observed weight (black) are plotted together. At the bottom, the
plots show the normalised squared di�erence between the predicted weight and
the observed weight. Towards the right, the results of the multistep prediction
are given. In Fig. 4.13 we can see that single step prediction does a good job at

4.5. Results and Discussions 117

predicting w1 with the NMSE at the bottom being around ¥ 10 for the single-step
case and ¥ 80 for the multistep case. Towards the right, the multistep scheme
shows some discrepancy at timestep 60 and timestep 160. The transitions are
not well captured; in other words, the network fails to learn the intricate/sharp
transitions in weight’s trajectory. In Fig. 4.14 the multistep scheme still shows
the discrepancy but now at timestep 0 to 20 and at timestep 150 to 160. For the
prediction of w3, both single-step and multistep schemes do a fair job, as seen
in Fig. 4.15. But still, the error plot shows a high value for the multistep case.
Similar trends are observed in figures 4.16 and 4.17 with a higher error for the
multistep cases.
The evaluation of the deep RNN shows much improvement over the single layer
RNN. In Fig. 4.19 the prediction of weight w1 appears to be equally good for
both the single-step and the multistep schemes. The di�erence between the errors
is also reduced when compared to the single layer RNN case. The error shows a
discrepancy only at the beginning between timesteps 10 and 40. In Fig. 4.20 the
maximum error is much reduced and is of the order of 1e-3 for the single-step case
and 1e-2 for the multistep case. At the sharp transition that occurs at timestep
60, the deep model shows much improvement with just a glitch at timestep 60 in
the error plot. It faces more di�culty in tracing the trajectory from high to low
to high scenarios as in between timesteps 90 to 140. In Fig. 4.21 the errors are of
the order 1e-2 with the multistep exceeding the single-step by just a fraction. The
sharp transitions are not well captured probably because of the large jump in the
values as seen at timesteps 50 to 60 and timesteps 155 to 160. In figures 4.22 and
4.23 the error at the bottom shows a much more complex error trajectory. Again,
the low/high variations are not smooth. Also, the sharp changes are problematic.
But the values of the errors are low enough to be ignored.
From figures 4.24 to 4.27 we can see the results of the reconstructed states of 4 of
the state variables. Fig. 4.24 shows the reconstruction of the displacement field
with high values (¥ 2.0m) at the top and no movement at the bottom. Both the
observed and the predicted states are in good agreement with each other. The
next Fig. 4.25 shows the XY component of the elastic strain with a high value
(¥ 2.5e≠4) towards the front and medium values ¥ 1.2e≠4 at the slopes towards
the top part of the figure. The stress’s XY component is shown in Fig. 4.26 with
a high value of (¥ 2.7e + 5) and low value of (¥ ≠4e + 5). Both the observed
and predicted states are in good agreement with each other. The states of the
elastoplastic strain in Fig. 4.27 show that the Loy-Yang mine structure experi-
ences the highest plastic strain in the light blue regions and is more likely to fail
with adverse pore pressure values. Again the observed and the predicted states

118 4. Accelerated Hydro-Mechanical Simulation

are in good agreement.

Statistical Analysis and Multiple Realisations
Once the ROM is trained with the predefined set of the full-order simulations, it
becomes ready to generate independent simulated states. For that, it requires an
initial starting set of weights defined by a 1D vector of size 5 and a series of current
and future loading conditions. We analyse the ROM generated states using the
standard deviation and mean statistics. In Fig. 4.28 we show only 8 out of 1000
(for visualisation purposes) trajectories of pore pressure loading conditions with a
randomly initialised weight vector. These are combined, normalised and arranged
as a supervised set (similar to the one used during training) to be fed with the
weight vector. When run in the ROM, 1000 di�erent simulations could be realised
within a matter of minutes. To be specific, it took around 253s to generate the
1000 simulations. The reconstruction took an extra 45 minutes time to save the
ROM generated full-order simulations to the hard disk. We assessed the perfor-
mance of the generated realisations by taking the mean and standard deviation of
the physical variable – elastoplastic strain at timestep 100, whose reconstructed
states are shown in Fig. 4.29. One can recall that the high strain is experienced
in the light blue regions. The red regions are also prone to failure but require
additional shear strength reduction analysis for determining the actual factor of
safety. The standard deviation plot on the right shows the maximum variation
¥ 1.0e ≠ 4, which is an order high of the mean state values. This implies that
the ROM generated pseudo simulations have a high variance of generated states
while still remaining near to the mean state. This is ideal for analysis with a fixed
computational mesh such as that of the Loy-Yang mine structure. In Fig. 4.30
we show the 1000 states (represented as dots) in a 5-dimensional reduced weight
space. The main diagonal shows the histogram of the weights (from top to bottom:
w1 to w5). The red dot shows the location of the mean state in the thousand ROM
generated states.

Chapter 5

Conclusions and Future Work

Data acquired in Geoscientific works has many challenges. Often, the processes
responsible for generating them are complex, making the acquirer record instances
of data using multiple probes. This leads to the generation of a dataset that
possesses some important properties. Firstly, there is an inherent redundancy;
multiple probes may have responded to some common signals by sharing their
information with each other. Even if they have captured unique and independent
parts of the process, they may still complement each other for completeness. In the
real-world scenario, the sensors may have recorded a noisy version of the signal.
This may be present throughout the recording or in some parts of it. A similar
case was developed in chapter 3, where we saw that the probes kept at the corners
of the cube showed unique wave signatures resulting from multiple reflections; it
is obvious that neglecting even a single one would reduce the information required
for inference of the pore networks. At the same time, there could have been mul-
tiple pore network models that would have generated similar acoustic responses;
this presents a classic case of an ill-posed problem and suggests improvement to
the conventional optimization-based data modelling workflows. Secondly, the size
of the data may be too large to analyze, either by virtue of the scope of the exper-
iment or the scale of the study. We saw in chapter 4 that the observed state space
of a single simulation was too high of the order of (1e6). This makes it di�cult
to train a recurrent neural net. Reduction of data dimension becomes important
in such cases. This has great significance in high-fidelity simulations of processes
that are otherwise impossible to study. In the author’s view, there exist at least
three ways of working with these data.
The first one is the model-based data pipeline. In this mode, the modeller assumes
a model for the data generating process. Using this mode can be helpful as it can
quickly provide the result using analytical techniques, given that the process has
been studied extensively and that there exists enough theory to support the equa-

120 5. Conclusions and Future Work

tions guiding the analytical solution. The modeller may also choose this mode for
simplifying a model. This generally ignores the intricacies involved in the data
generating process. The reason can also lie in the incompetency of the modeller to
handle complex and more detailed forms of the problem description. The second
approach takes up the data-based pipeline. This is the modern way of dealing
with data. In this approach, ML algorithms are provided with labelled/supervised
data and are made to learn about the data transformation process from them.
This often renders them “black-box” models. They do this by mapping a function
between the inputs to outputs in an abstract manner by building complex rela-
tionships among them. Though the results are generally encouraging, explaining
the trained model is quite di�cult and may require some meta-modelling. The
third approach takes the hybrid mode, wherein the model-based approach is com-
bined with the data-based approach. This approach is often taken up when the
data generation process is supported by a well-grounded theory, and one wants to
accelerate certain parts of the solution. This, of course, introduces some amount
of error (due to data-fitting stages) but can be suitably ignored with the inter-
preter’s discretion and purposes. A partial reason for taking this approach may
also be due to the subjectivity associated with interpretation. Machine learning
algorithms could help resolve this by providing data-based approximations for cer-
tain parts of the solution hence avoiding any human bias.
Motivated by the issues of data modelling in geophysics and geomechanics, we
have worked on two important problems in this thesis. We consider the latter
two approaches and demonstrate their e�ectiveness along the modelling process.
These have been chosen to cover the di�erent aspects of data and perhaps provide
a way of tackling some issues in real-world scenarios.
In Application-I, we have worked with data of dimensions of the order of 1e7
while studying the acoustic responses of tiny pores in rock core samples. E�ective
medium techniques such as the “Di�erential E�ective Medium” and the “Self-
consistent” approaches are widely used to model the elastic response of the porous
bodies by assuming uniform ellipsoidal and spheroidal inclusions [337]. Although
these are quite established in rock physics modelling, we understand that there
is still a need for an approach that deals with the arbitrary shapes of the pores
and their inclusions. Therefore, we believe that this application is a novel way of
including the e�ect of pore geometry on acoustic data. For this, the 3D volumetric
core data were processed using a modified U-Net model. The U-Net consists of
convolutional neural networks and has proven to be e�ective in processing the 3D
image data. We took up the task of inferring the pore networks within the rock
core sample from their acoustic responses. With the aid of ML-based processing,

5.1. Conclusions 121

we could infer the causative pore networks with the Dice coe�cient accuracy of
¥ 92% with complete acoustic information in the validation set.
In Application-II, we have dealt with data of the size of the order of 1e6 when devel-
oping a reduced order model for hydro-mechanical simulation. Conventional finite
element solvers can conveniently solve 2D problems within a matter of minutes.
But the situation is not so trivial when the geometry is 3D. While the accuracy
of FEM still remains the main attraction, the time that it takes to get to a single
solution may range anywhere from tens of hours to several days. Moreover, the
modeller often needs to study the response of the structure with multiple soil pa-
rameter values because this helps him design reinforcement strategies for making
the structure more stable. Due to this, there is a need to accelerate the numer-
ical model that would give a solution at much faster rates. Such a system was
realized using recurrent neural networks in chapter 4. We performed 5 full-order
simulations for developing the reduced order model. Out of all, 3 were used for
training and 2 for testing. High non-linearity was added to the model by varying
the pore pressure contribution to the stress tensor. It was found that for the given
geometry of the Loy-Yang mine structure, the recurrent networks could recognize
the pattern in the evolution of the states with su�cient accuracy (¥ 99.99%). We
understood that for high-fidelity simulations, the reduction of data dimension is
paramount for the recurrent net to process the evolution of state space.

5.1 Conclusions
With regard to the results obtained in chapter 3, we conclude the following:

• The pore shapes and sizes in carbonates are too complex for human-level
analysis. The heterogeneity is prevalent at all scales. The application of
simple linearly fitted models must be avoided. As seen in the section 3.3.4
every cube exhibited di�erent wave signatures. Modern deep learning algo-
rithms are advanced enough to study these complex rocks.

• The extraction of pore networks from rock sample data requires at least 3
stages of image processing – the contrast equalization step, median filtering
step and the binarisation step. The binarisation step can be accommodated
by any binarization algorithm such as the Otsu or the Sauvola algorithm,
although the deterioration of the region of interest must be considered prior
to making a choice. In the current work, Sauvola binarisation was used.

• The segmentation step requires the binarized image to be processed by the
distance transform, skeletonization and the watershed transform steps. A

122 5. Conclusions and Future Work

semi-automated method of pore classification can be realized using ML ap-
proaches such as the k-means clustering and watershed algorithm.

• The acoustic wave analysis is an e�ective non-destructive technique for in-
ferring pore networks. We just need the right tool that interprets the weak
acoustic signatures. This can be accomplished by a U-Net semantic segmen-
tation algorithm as done in the current work.

• Whenever permissible, an acoustic simulation must be used instead of the
elastic wave simulation as the latter is time-consuming and resource-intensive.
Because deep learning algorithms require a large set of labelled data using
the latter can be prohibitive.

• Inference of pore network is a two-fold problem comprising classification
and localization. The algorithm must classify every voxel of the image and
additionally localize its extent in the 3D space. In the current approach,
the U-Net architecture was suitably developed to infer the pore network
model from the acoustic signatures of the rock core samples. The U-Net
architecture could recognize the di�erence in wave patterns exhibited by the
porous regions and matrix parts of the rock core sample.

• The U-Net was at least 92% successful in predicting and localizing the pores.
It could di�erentiate between the low-velocity zones of the pores and the
high-velocity zones of the rock matrix. During the simulation, both the
parts were specified using the medium velocity and the medium density.

• For semantic segmentation tasks, common metrics such as the Accuracy and
Binary Cross-Entropy are inadequate to reflect the training of a U-Net model.
Instead, the Dice coe�cient must be used in combination with the Dice loss
to train such networks.

• In order to train the U-Net for the pore network inference task, the require-
ment of data is large – 3280 samples (of dimension 64 ◊ 64 ◊ 64) for training
for achieving a Dice coe�cient accuracy of ¥ 94% on the training set. This
data size prohibits the use of finite element based wave simulation ideas as
they are time-consuming. Instead, finite di�erence based wave simulation
must be preferred.

• Visualization of the pore network is important for designing porosity seg-
mentation algorithms.

5.1. Conclusions 123

With regard to Application-II in chapter 4 and the obtained results, we con-
clude the following:

• We understand that hydro-mechanical simulations are important for deter-
mining the stability of slopes. The interplay between the pore pressures and
the stress and strains inside the slope structure needs to be understood to
determine any risk.

• Conventional finite element software is accurate enough to capture the state
variables but may take a long time to complete one simulation. Hence, there
arises a need to hasten the simulation process for purposes like uncertainty
analysis.

• Reduced order modelling, as in chapter 4 has been suggested as a way forward
to accomplish this task. There are various elements to the development of a
ROM, and the most important is the reconstruction quality of the original
states, as this guarantees the accuracy of the state variables. The second
important element is the speed of simulation.

• Proper orthogonal decomposition is a suitable way of dimensionality reduc-
tion that can e�ectively reduce the data dimension into a small workable
weight space such that advanced ML algorithms can be applied. It was found
that a simulation consisting of a million DOFs can be e�ciently captured by
just 5 POD modes, as seen in Fig. 4.8.

• After the dimensionality reduction step, the ROM development requires a
time evolution strategy. This can be realized using a recurrent neural net-
work, as is done in the current work.

• In order to realize a versatile ROM, it needs to be trained with simulation
data with high variation. In order to accomplish this, 4 di�erent types of
the pore pressure signals were realized using sine, sawtooth and polynomial
functions that independently contributed to the volumetric loading condi-
tions in three di�erent parts of the computational domain as shown in Fig.
4.5.

• In the current context of the development of a ROM for the Loy-Yang mine
structure, the geometry doesn’t change with time. Therefore, it was su�cient
to perform a handful of full-order simulations. In this work, 5 numbers were
su�cient. 3 out 5 were used for training and 2 for testing.

124 5. Conclusions and Future Work

• The ROM development can be divided into 3 major parts – dimensionality
reduction, AI training and state-space reconstruction. The AI training comes
next in priority after the dimensionality reduction step. For this, we have
used the long short-term memory (LSTM) units.

• It was found that a deep RNN architecture comprising 37, 30, 22 LSTM units
was optimal for capturing the time evolution of the state space. The single-
layered architecture with 37 units failed to capture the intricate transitions
in the pore pressure trajectories. The accuracy of the two approaches can
be evaluated in figures 4.13 through 4.23.

• Elastoplastic strain is an important variable to determine the high strain
regions of the slope.

• The developed ROM can be assessed using statistical measures such as the
mean and standard deviations of an ensemble of samples generated by the
ROM, as can be seen in Fig. 4.29.

• The current implementation could generate 1000 simulations in a matter of
a couple of minutes. The reconstruction time for the 1000 simulations could
be large, though.

5.2 Scope of Future Work
We would like to extend our work and contribute largely towards areas of com-
pressed sensing and model reduction with additional Multiphysics variables such
as the thermal component. We understand that more research is required in these
areas for designing smart models that auto-tune with more incoming data and are
also capable of learning from them while still preserving the relevant information
and knowledge within.
In particular, we would like to incorporate the attention mechanism into the data
driven rock physics model in order to reduce the depth of sensing. The attention
engine is anticipated to identify relevant and more important acoustic signatures
that are representative of the underlying pore network structure and would hope-
fully give better accuracy.
In the reduced order modelling case, we would like to incorporate more failure
models and material heterogeneity. Specifically, we are already working with gen-
erative adversarial networks to come up with a density estimation technique for
the material part. We suppose the di�erent failure modes can be accomplished

5.2. Scope of Future Work 125

by incorporating a conditional node mechanism that informs the ROM about the
failure model it is being trained with.

References

[1] D. Thanoon, J. Vamaraju, H. Yang, K. Wei, A. Vial Aussavy, and J. Chen,
“Deep seismic2well tie: A physics-guided cnn approach to a classic geo-
physical workflow,” in SEG/AAPG/SEPM First International Meeting for
Applied Geoscience & Energy. OnePetro, 2021.

[2] M. Vu and A. Jardani, “Convolutional neural networks with segnet architec-
ture applied to three-dimensional tomography of subsurface electrical resis-
tivity: Cnn-3d-ert,” Geophysical Journal International, vol. 225, no. 2, pp.
1319–1331, 2021.

[3] Y. Shi, X. Wu, and S. Fomel, “Deep learning parameterization for geophys-
ical inverse problems,” in SEG 2019 Workshop: Mathematical Geophysics:
Traditional vs Learning, Beijing, China, 5-7 November 2019. Society of
Exploration Geophysicists, 2020, pp. 36–40.

[4] M. Küçükdemirci and A. Sarris, “Deep learning based automated analysis of
archaeo-geophysical images,” Archaeological Prospection, vol. 27, no. 2, pp.
107–118, 2020.

[5] H. Zhang, D. Melgar, V. Sahakian, J. Searcy, and J.-T. Lin, “Learning
source, path, and site e�ects: Cnn-based onsite intensity prediction for earth-
quake early warning,” Geophysical Journal International, 2022.

[6] K. Zhu, Y. Du, Q. Wang, N. Ji, and L. Zhang, “A comparative study of five
networks for reservoir classification based on geophysical logging signals,”
IEEE Access, vol. 8, pp. 197 776–197 786, 2020.

[7] H. Zhang, G. Zhang, J. Gao, S. Li, J. Zhang, and Z. Zhu, “Seismic impedance
inversion based on geophysical-guided cycle-consistent generative adversarial
networks,” Journal of Petroleum Science and Engineering, p. 111003, 2022.

[8] B. Guo, L. Liu, and Y. Luo, “Automatic seismic fault detection with convo-
lutional neural network,” in International Geophysical Conference, Beijing,

References 127

China, 24-27 April 2018. Society of Exploration Geophysicists and Chinese
Petroleum Society, 2018, pp. 1786–1789.

[9] Y. Ma, X. Ji, M. Nasher, B. Hassan, and Y. Luo, “Automatic fault de-
tection with convolutional neutral networks,” in International Geophysical
Conference, Beijing, China, 24-27 April 2018. Society of Exploration Geo-
physicists and Chinese Petroleum Society, 2018, pp. 786–790.

[10] X. Chen, J. Xia, J. Pang, C. Zhou, and B. Mi, “Deep learning inversion of
rayleigh-wave dispersion curves with geological constraints for near-surface
investigations,” Geophysical Journal International, vol. 231, no. 1, pp. 1–14,
2022.

[11] F. Sharifi, G. Schlosser, D. Quinn, E. Mohammed, and B. Far, “Convolu-
tional neural network based geophysical model for automatic velocity picking
in seismic data.”

[12] G. Zhang, Z. Wang, and Y. Chen, “Deep learning for seismic lithology pre-
diction,” Geophysical Journal International, vol. 215, no. 2, pp. 1368–1387,
2018.

[13] A. Yakimenko, A. Morozov, and D. Karavaev, “Practical aspects of using a
neural network to solve inverse geophysical problems,” in Journal of Physics:
Conference Series, vol. 1015, no. 3. IOP Publishing, 2018, p. 032148.

[14] F. J. Sánchez-Sesma, J. A. Pérez-Ruiz, M. Campillo, and F. Luzón, “Elas-
todynamic 2d green function retrieval from cross-correlation: Canonical in-
clusion problem,” Geophysical Research Letters, vol. 33, no. 13, 2006.

[15] O. Matsuda and C. Glorieux, “A green’s function method for surface acous-
tic waves in functionally graded materials,” The Journal of the Acoustical
Society of America, vol. 121, no. 6, pp. 3437–3445, 2007.

[16] A. Verruijt, Computational geomechanics. Springer Science & Business
Media, 1995, vol. 7.

[17] O. C. Zienkiewicz, A. Chan, M. Pastor, B. Schrefler, and T. Shiomi, Com-
putational geomechanics. Citeseer, 1999, vol. 613.

[18] H. H. Barrett and K. J. Myers, Foundations of image science. John Wiley
& Sons, 2013.

[19] R. C. Gonzalez, Digital image processing. Pearson education india, 2009.

128 References

[20] J. A. Fessler, “Model-based image reconstruction for mri,” IEEE signal pro-
cessing magazine, vol. 27, no. 4, pp. 81–89, 2010.

[21] I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyener-
getic x-ray computed tomography,” IEEE transactions on medical imaging,
vol. 21, no. 2, pp. 89–99, 2002.

[22] M. A. Figueiredo and R. D. Nowak, “A bound optimization approach to
wavelet-based image deconvolution,” in IEEE International Conference on
Image Processing 2005, vol. 2. IEEE, 2005, pp. II–782.

[23] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for
sparse coding,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 689–696.

[24] s. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems with piecewise
linear estimators: From gaussian mixture models to structured sparsity,”
IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2481–2499, 2011.

[25] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation,” IEEE Transactions on
signal processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[26] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp.
259–268, 1992.

[27] R. M. Willett and R. D. Nowak, “Platelets: a multiscale approach for recov-
ering edges and surfaces in photon-limited medical imaging,” IEEE Trans-
actions on Medical Imaging, vol. 22, no. 3, pp. 332–350, 2003.

[28] W. Marais and R. Willett, “Proximal-gradient methods for poisson image
reconstruction with bm3d-based regularization,” in 2017 IEEE 7th Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP). IEEE, 2017, pp. 1–5.

[29] V. Katkovnik, A. Danielyan, and K. Egiazarian, “Decoupled inverse and
denoising for image deblurring: variational bm3d-frame technique,” in 2011
18th IEEE International Conference on Image Processing. IEEE, 2011, pp.
3453–3456.

[30] J. I. Tamir, F. Ong, S. Anand, E. Karasan, K. Wang, and M. Lustig, “Com-
putational mri with physics-based constraints: application to multicontrast

References 129

and quantitative imaging,” IEEE signal processing magazine, vol. 37, no. 1,
pp. 94–104, 2020.

[31] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach
to structured signal recovery,” in 2015 53rd annual allerton conference on
communication, control, and computing (Allerton). IEEE, 2015, pp. 1336–
1343.

[32] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet:
Non-iterative reconstruction of images from compressively sensed measure-
ments,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 449–458.

[33] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[34] J. Sun, H. Li, Z. Xu et al., “Deep admm-net for compressive sensing mri,”
Advances in neural information processing systems, vol. 29, 2016.

[35] A. Mousavi, G. Dasarathy, and R. G. Baraniuk, “Deepcodec: Adaptive sens-
ing and recovery via deep convolutional neural networks,” arXiv preprint
arXiv:1707.03386, 2017.

[36] J. Zhang, W. Standifird, J. C. Roegiers, and Y. Zhang, “Stress-dependent
fluid flow and permeability in fractured media: from lab experiments to
engineering applications,” Rock Mech Rock Eng, vol. 40, 2007.

[37] J. Rick Chang, C.-L. Li, B. Poczos, B. Vijaya Kumar, and A. C. Sankara-
narayanan, “One network to solve them all–solving linear inverse problems
using deep projection models,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 5888–5897.

[38] P. Viola and M. Jones, “Face detection,” IJCV, vol. 57, p. 2, 2004.

[39] Q. Sun, W. Huang, and J. Wu, “Face detection based on color and local sym-
metry information,” in Proceedings Third IEEE International Conference on
Automatic Face and Gesture Recognition. IEEE, 1998, pp. 130–135.

[40] E. Osuna, R. Freund, and F. Girosit, “Training support vector machines:
an application to face detection,” in Proceedings of IEEE computer society
conference on computer vision and pattern recognition. IEEE, 1997, pp.
130–136.

130 References

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[42] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285,
1996.

[43] G. Tesauro, “Programming backgammon using self-teaching neural nets,”
Artificial Intelligence, vol. 134, no. 1-2, pp. 181–199, 2002.

[44] D. Silver, R. S. Sutton, and M. Müller, “Temporal-di�erence search in com-
puter go,” Machine learning, vol. 87, no. 2, pp. 183–219, 2012.

[45] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforce-
ment learning algorithm that masters chess, shogi, and go through self-play,”
Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[46] D. H. Hubel and T. N. Wiesel, “Brain mechanisms of vision,” Scientific
American, vol. 241, no. 3, pp. 150–163, 1979.

[47] T. C. Kietzmann, P. McClure, and N. Kriegeskorte, “Deep neural networks
in computational neuroscience,” BioRxiv, p. 133504, 2018.

[48] K. R. Storrs and N. Kriegeskorte, “Deep learning for cognitive neuroscience,”
arXiv preprint arXiv:1903.01458, 2019.

[49] N. Kriegeskorte, “Deep neural networks: a new framework for modeling
biological vision and brain information processing,” Annual review of vision
science, vol. 1, pp. 417–446, 2015.

[50] N. Kriegeskorte and T. Golan, “Neural network models and deep learning-a
primer for biologists,” arXiv preprint arXiv, 1902.

[51] D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models to
understand sensory cortex,” Nature neuroscience, vol. 19, no. 3, pp. 356–365,
2016.

[52] L. Sadouk and T. Gadi, “Convolutional neural networks for human activity
recognition in time and frequency-domain,” in First International Confer-
ence on Real Time Intelligent Systems. Springer, 2017, pp. 485–496.

References 131

[53] L. Sadouk, T. Gadi, and E. H. Essoufi, “A novel deep learning approach
for recognizing stereotypical motor movements within and across subjects on
the autism spectrum disorder,” Computational intelligence and neuroscience,
vol. 2018, 2018.

[54] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural net-
work structures and optimization techniques for speech recognition.” in In-
terspeech, vol. 2013. Citeseer, 2013, pp. 1173–5.

[55] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying con-
volutional neural networks concepts to hybrid nn-hmm model for speech
recognition,” in 2012 IEEE international conference on Acoustics, speech
and signal processing (ICASSP). IEEE, 2012, pp. 4277–4280.

[56] Z. Wang and T. Oates, “Encoding time series as images for visual inspection
and classification using tiled convolutional neural networks,” in Workshops
at the twenty-ninth AAAI conference on artificial intelligence, 2015.

[57] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medical
image computing and computer-assisted intervention. Springer, 2015, pp.
234–241.

[58] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
di�erentiation in machine learning: a survey,” Journal of Marchine Learning
Research, vol. 18, pp. 1–43, 2018.

[59] H. Al-Hamadi and S. Soliman, “Short-term electric load forecasting based on
kalman filtering algorithm with moving window weather and load model,”
Electric power systems research, vol. 68, no. 1, pp. 47–59, 2004.

[60] D. Alberg and M. Last, “Short-term load forecasting in smart meters with
sliding window-based arima algorithms,” Vietnam Journal of Computer Sci-
ence, vol. 5, no. 3, pp. 241–249, 2018.

[61] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of arima and
lstm in forecasting time series,” in 2018 17th IEEE international conference
on machine learning and applications (ICMLA). IEEE, 2018, pp. 1394–
1401.

[62] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions
of finite state markov chains,” The annals of mathematical statistics, vol. 37,
no. 6, pp. 1554–1563, 1966.

132 References

[63] P. B. Quang, P. Gaillard, Y. Cano, and M. Ulzibat, “Detection and classifica-
tion of seismic events with progressive multi-channel correlation and hidden
markov models,” Computers & Geosciences, vol. 83, pp. 110–119, 2015.

[64] S. E. Yuksel, J. Bolton, and P. Gader, “Multiple-instance hidden markov
models with applications to landmine detection,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 53, no. 12, pp. 6766–6775, 2015.

[65] K. Struminskiy, A. Klenitskiy, A. Reshytko, D. Egorov, A. Shchepetnov,
A. Sabirov, D. Vetrov, A. Semenikhin, O. Osmonalieva, and B. Belozerov,
“Well log data standardization, imputation and anomaly detection using
hidden markov models,” in Petroleum Geostatistics 2019, vol. 2019, no. 1.
European Association of Geoscientists & Engineers, 2019, pp. 1–5.

[66] O. Missaoui, H. Frigui, and P. Gader, “Land-mine detection with ground-
penetrating radar using multistream discrete hidden markov models,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp. 2080–
2099, 2010.

[67] L. Gutiérrez, J. Ibanez, G. Cortés, J. Ramírez, C. Benítez, V. Tenorio, and
A. Isaac, “Volcano-seismic signal detection and classification processing using
hidden markov models. application to san cristóbal volcano, nicaragua,” in
2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 4.
IEEE, 2009, pp. IV–522.

[68] T. Fjeldstad and H. Omre, “Bayesian inversion of convolved hidden markov
models with applications in reservoir prediction,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1957–1968, 2019.

[69] S. Hochreiter, “Recurrent neural net learning and vanishing gradient,” Inter-
national Journal Of Uncertainity, Fuzziness and Knowledge-Based Systems,
vol. 6, no. 2, pp. 107–116, 1998.

[70] R. Pascanu, T. Mikolov, and Y. Bengio, “On the di�culty of training re-
current neural networks,” in International conference on machine learning.
PMLR, 2013, pp. 1310–1318.

[71] R. Grosse, “Lecture 15: Exploding and vanishing gradients,” University of
Toronto Computer Science, 2017.

[72] A. H. Ribeiro, K. Tiels, L. A. Aguirre, and T. Schön, “Beyond exploding and
vanishing gradients: analysing rnn training using attractors and smooth-

References 133

ness,” in International Conference on Artificial Intelligence and Statistics.
PMLR, 2020, pp. 2370–2380.

[73] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in opti-
mizing recurrent networks,” in 2013 IEEE international conference on acous-
tics, speech and signal processing. IEEE, 2013, pp. 8624–8628.

[74] J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural Com-
put, vol. 9, 1997.

[75] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471,
2000.

[76] M. Moghimihanjani and B. Vaferi, “A combined wavelet transform and re-
current neural networks scheme for identification of hydrocarbon reservoir
systems from well testing signals,” Journal of Energy Resources Technology,
vol. 143, no. 1, 2021.

[77] A. Alakeely and R. N. Horne, “Simulating the behavior of reservoirs with
convolutional and recurrent neural networks,” SPE Reservoir Evaluation &
Engineering, vol. 23, no. 03, pp. 0992–1005, 2020.

[78] D. Zhang, Q. Peng, J. Lin, D. Wang, X. Liu, and J. Zhuang, “Simulat-
ing reservoir operation using a recurrent neural network algorithm,” Water,
vol. 11, no. 4, p. 865, 2019.

[79] P. AN, D.-p. CAO, B.-y. ZHAO, X.-l. YANG, and M. ZHANG, “Reservoir
physical parameters prediction based on lstm recurrent neural network,”
Progress in Geophysics, vol. 34, no. 5, pp. 1849–1858, 2019.

[80] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 39, no. 12, pp.
2481–2495, 2017.

[81] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Se-
mantic image segmentation with deep convolutional nets and fully connected
crfs,” arXiv preprint arXiv:1412.7062, 2014.

[82] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang,
P. H. Torr et al., “Rethinking semantic segmentation from a sequence-to-

134 References

sequence perspective with transformers,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 6881–6890.

[83] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Ter-
zopoulos, “Image segmentation using deep learning: A survey,” IEEE trans-
actions on pattern analysis and machine intelligence, 2021.

[84] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: Incorporat-
ing depth into semantic segmentation via fusion-based cnn architecture,” in
Asian conference on computer vision. Springer, 2016, pp. 213–228.

[85] N. Kalchbrenner and P. Blunsom, “Recurrent continuous translation mod-
els,” in Proceedings of the 2013 conference on empirical methods in natural
language processing, 2013, pp. 1700–1709.

[86] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing systems,
vol. 27, 2014.

[87] J. Cho, M. K. Baskar, R. Li, M. Wiesner, S. H. Mallidi, N. Yalta, M. Karafiat,
S. Watanabe, and T. Hori, “Multilingual sequence-to-sequence speech recog-
nition: architecture, transfer learning, and language modeling,” in 2018
IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018, pp. 521–
527.

[88] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[89] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 39, no. 4, pp. 652–
663, 2016.

[90] M. Shang, Z. Fu, N. Peng, Y. Feng, D. Zhao, and R. Yan, “Learning to
converse with noisy data: Generation with calibration.” in IJCAI, vol. 7,
2018.

[91] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” Advances in neural infor-
mation processing systems, vol. 28, 2015.

References 135

[92] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech: Scaling
up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567, 2014.

[93] I. Good, “What are degrees of freedom?” The American Statistician, vol. 27,
no. 5, pp. 227–228, 1973.

[94] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and
T. J. Sejnowski, “Dictionary learning algorithms for sparse representation,”
Neural computation, vol. 15, no. 2, pp. 349–396, 2003.

[95] M. Gharavi-Alkhansari and T. S. Huang, “A fast orthogonal matching pur-
suit algorithm,” in Proceedings of the 1998 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), vol. 3. IEEE, 1998, pp. 1389–1392.

[96] S. Schaal, S. Vijayakumar, and C. Atkeson, “Local dimensionality reduc-
tion,” Advances in neural information processing systems, vol. 10, 1997.

[97] D. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding
techniques for high-dimensional data,” Proceedings of the National Academy
of Sciences, vol. 100, no. 10, pp. 5591–5596, 2003.

[98] Y. Bengio, J.-f. Paiement, P. Vincent, O. Delalleau, N. Roux, and M. Ouimet,
“Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clus-
tering,” Advances in neural information processing systems, vol. 16, 2003.

[99] L. H. Nguyen and S. Holmes, “Ten quick tips for e�ective dimensionality
reduction,” PLoS computational biology, vol. 15, no. 6, p. e1006907, 2019.

[100] N. D. Monnig, B. Fornberg, and F. G. Meyer, “Inverting nonlinear dimen-
sionality reduction with scale-free radial basis function interpolation,” Ap-
plied and Computational Harmonic Analysis, vol. 37, no. 1, pp. 162–170,
2014.

[101] L. Peng, G. Huang, X. Chen, and A. Kareem, “Simulation of multivariate
nonstationary random processes: hybrid stochastic wave and proper orthog-
onal decomposition approach,” Journal of Engineering Mechanics, vol. 143,
no. 9, p. 04017064, 2017.

[102] X. Chen and A. Kareem, “Proper orthogonal decomposition-based modeling,
analysis, and simulation of dynamic wind load e�ects on structures,” Journal
of Engineering Mechanics, vol. 131, no. 4, pp. 325–339, 2005.

136 References

[103] K. Willcox and J. Peraire, “Balanced model reduction via the proper orthog-
onal decomposition,” AIAA journal, vol. 40, no. 11, pp. 2323–2330, 2002.

[104] J. F. Van Doren, R. MarkovinoviÊ, and J.-D. Jansen, “Reduced-order optimal
control of water flooding using proper orthogonal decomposition,” Compu-
tational Geosciences, vol. 10, no. 1, pp. 137–158, 2006.

[105] A. Narasingam, P. Siddhamshetty, and J. S.-I. Kwon, “Handling spatial het-
erogeneity in reservoir parameters using proper orthogonal decomposition
based ensemble kalman filter for model-based feedback control of hydraulic
fracturing,” Industrial & Engineering Chemistry Research, vol. 57, no. 11,
pp. 3977–3989, 2018.

[106] J. He, Z. Chen, C. Zhao, X. Chen, Y. Wei, and C. Zhang, “Wave parameter
inversion with coherent microwave radar using spectral proper orthogonal de-
composition,” IEEE Transactions on Geoscience and Remote Sensing, 2022.

[107] X. Li, X. Chen, B. X. Hu, and I. M. Navon, “Model reduction of a cou-
pled numerical model using proper orthogonal decomposition,” Journal of
Hydrology, vol. 507, pp. 227–240, 2013.

[108] M. Dehghan and M. Abbaszadeh, “An upwind local radial basis functions-
di�erential quadrature (rbf-dq) method with proper orthogonal decomposi-
tion (pod) approach for solving compressible euler equation,” Engineering
Analysis with Boundary Elements, vol. 92, pp. 244–256, 2018.

[109] H. Pourshamsaei, A. Nobakhti, and R. Jana, “Adaptive proper orthogonal
decomposition for large scale reliable soil moisture estimation,” Measurement
Science and Technology, vol. 32, no. 11, p. 115026, 2021.

[110] A. Fic, R. A. Bia≥ecki, and A. J. Kassab, “Solving transient nonlinear heat
conduction problems by proper orthogonal decomposition and the finite-
element method,” Numerical Heat Transfer, Part B: Fundamentals, vol. 48,
no. 2, pp. 103–124, 2005.

[111] H. Barlow, “Redundancy reduction revisited,” Network: computation in neu-
ral systems, vol. 12, no. 3, p. 241, 2001.

[112] Y. Wang, Q. Chen, C. Kang, Q. Xia, and M. Luo, “Sparse and redundant
representation-based smart meter data compression and pattern extraction,”
IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2142–2151, 2016.

References 137

[113] G. Strang, “Wavelet transforms versus fourier transforms,” Bulletin of the
American Mathematical Society, vol. 28, no. 2, pp. 288–305, 1993.

[114] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., ser. Wavelet Anal-
ysis Its Applications. Academic Press, 1999.

[115] M. Tan, I. W. Tsang, and L. Wang, “Matching pursuit lasso part i: Sparse re-
covery over big dictionary,” IEEE Transactions on Signal Processing, vol. 63,
no. 3, pp. 727–741, 2014.

[116] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit ap-
proach,” IEEE signal processing Letters, vol. 9, no. 4, pp. 137–140, 2002.

[117] P. Comon, “Independent component analysis, a new concept?” Signal pro-
cessing, vol. 36, no. 3, pp. 287–314, 1994.

[118] A. Hyvarinen, “Fast ica for noisy data using gaussian moments,” in 1999
IEEE international symposium on circuits and systems (ISCAS), vol. 5.
IEEE, 1999, pp. 57–61.

[119] A. Dermoune and T. Wei, “Fastica algorithm: five criteria for the optimal
choice of the nonlinearity function,” IEEE transactions on signal processing,
vol. 61, no. 8, pp. 2078–2087, 2013.

[120] J. Wang and C.-I. Chang, “Independent component analysis-based dimen-
sionality reduction with applications in hyperspectral image analysis,” IEEE
transactions on geoscience and remote sensing, vol. 44, no. 6, pp. 1586–1600,
2006.

[121] N. Wang, B. Du, L. Zhang, and L. Zhang, “An abundance characteristic-
based independent component analysis for hyperspectral unmixing,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 416–428,
2014.

[122] W. Xia, X. Liu, B. Wang, and L. Zhang, “Independent component analysis
for blind unmixing of hyperspectral imagery with additional constraints,”
IEEE transactions on geoscience and remote sensing, vol. 49, no. 6, pp.
2165–2179, 2011.

[123] D. Lubo-Robles, “Development of independent component analysis for reser-
voir geomorphology and unsupervised seismic facies classification in the
taranaki basin, new zealand.” 2018.

138 References

[124] D. Lubo-Robles and K. J. Marfurt, “Independent component analysis for
reservoir geomorphology and unsupervised seismic facies classification in the
taranaki basin, new zealand,” Interpretation, vol. 7, no. 3, pp. SE19–SE42,
2019.

[125] N. Wang, Q. M. Qin, C. Xie, L. Chen, and Y. B. Bai, “Coal-bed methane
reservoir identification using the natural source super-low frequency re-
mote sensing,” in 2013 IEEE International Geoscience and Remote Sensing
Symposium-IGARSS. IEEE, 2013, pp. 4022–4025.

[126] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[127] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and
X. Glorot, “Higher order contractive auto-encoder,” in Joint European con-
ference on machine learning and knowledge discovery in databases. Springer,
2011, pp. 645–660.

[128] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv
preprint arXiv:1609.04747, 2016.

[129] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence o (1/kˆ 2),” in Doklady an ussr, vol. 269, 1983,
pp. 543–547.

[130] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization.” Journal of machine learning research,
vol. 12, no. 7, 2011.

[131] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[132] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[133] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[134] M. D. Ho�man, A. Gelman et al., “The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo.” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 1593–1623, 2014.

[135] S. Prakoso, P. Permadi, and S. Winardhie, “E�ects of pore geometry and
pore structure on dry p-wave velocity,” Modern Appl Sci, vol. 10, no. 8, pp.
117–133, 2016.

References 139

[136] S. Prakoso and M. Burhannudinnur, “E�ects of pore complexity on saturated
p-wave velocity and its impact in estimating critical porosity,” Arab Journal
of Basic and Applied Sciences, vol. 27, no. 1, pp. 335–343, 2020.

[137] D.-h. Han, A. Nur, and D. Morgan, “E�ects of porosity and clay content on
wave velocities in sandstones,” Geophysics, vol. 51, no. 11, pp. 2093–2107,
1986.

[138] A. Nur, G. Mavko, J. Dvorkin, and D. Galmudi, “Critical porosity: A key to
relating physical properties to porosity in rocks,” The Leading Edge, vol. 17,
no. 3, pp. 357–362, 1998.

[139] Y. F. Sun, “Pore structure e�ects on elastic wave propagation in rocks: Avo
modelling,” Journal of Geophysics and Engineering, vol. 1, no. 4, pp. 268–
276, 2004.

[140] M. Kumar, M. Barak, and M. Kumari, “Reflection and refraction of
plane waves at the boundary of an elastic solid and double-porosity dual-
permeability materials,” Petroleum Science, vol. 16, no. 2, pp. 298–317, 2019.

[141] A. Vashishth and M. Sharma, “Reflection and refraction of acoustic waves at
poroelastic ocean bed,” Earth, planets and space, vol. 61, no. 6, pp. 675–687,
2009.

[142] M. N. Toksöz, C. Cheng, and A. Timur, “Velocities of seismic waves in porous
rocks,” Geophysics, vol. 41, no. 4, pp. 621–645, 1976.

[143] M. Kumar and D.-h. Han, “Pore shape e�ect on elastic properties of carbon-
ate rocks,” in SEG Technical Program Expanded Abstracts 2005. Society of
Exploration Geophysicists, 2005, pp. 1477–1480.

[144] J. Soete, L. M. Kleipool, H. Claes, S. Claes, H. Hamaekers, S. Kele,
M. Özkul, A. Foubert, J. J. Reijmer, and R. Swennen, “Acoustic proper-
ties in travertines and their relation to porosity and pore types,” Marine
and Petroleum Geology, vol. 59, pp. 320–335, 2015.

[145] N. Bala and A. Arora, “E�ect of pore connectivity on reflection amplitudes
of an inhomogeneous wave in a composite porous solid saturated by two
immiscible fluids,” Journal of Earth System Science, vol. 127, no. 4, pp.
1–19, 2018.

[146] M. Pang, J. Ba, J. M. Carcione, S. Picotti, J. Zhou, and R. Jiang, “Es-
timation of porosity and fluid saturation in carbonates from rock-physics

140 References

templates based on seismic q,” Geophysics, vol. 84, no. 6, pp. M25–M36,
2019.

[147] C. H. Chapman, J. W. Hobro, and J. O. Robertsson, “Correcting an acoustic
wavefield for elastic e�ects,” Geophysical Journal International, vol. 197,
no. 2, pp. 1196–1214, 2014.

[148] K. Virta, “Numerics of elastic and acoustic wave motion,” Ph.D. dissertation,
Acta Universitatis Upsaliensis, 2016.

[149] Y. Rao and Y. Wang, “Seismic waveform simulation for models with fluctu-
ating interfaces,” Scientific Reports, vol. 8, no. 1, pp. 1–8, 2018.

[150] P. Sarkar, A. Kumar, K. H. Singh, R. Ghosh, and T. N. Singh, “Pore system,
microstructure and porosity characterization of gondwana shale of eastern
india using laboratory experiment and watershed image segmentation algo-
rithm,” Marine and Petroleum Geology, vol. 94, pp. 246–260, 2018.

[151] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algo-
rithms, with a new one,” Multiscale modeling & simulation, vol. 4, no. 2, pp.
490–530, 2005.

[152] R. Herzog, “Computer control and the scanning electron microscope,” in
Proceedings of 7th Annual Conference of Scanning Electron Microscopy Sym-
posium. IIT Research Institute, 1974, pp. 175–182.

[153] M. Kiani, K. S. Sim, M. E. Nia, and C. P. Tso, “Signal-to-noise ratio enhance-
ment on sem images using a cubic spline interpolation with savitzky–golay
filters and weighted least squares error,” Journal of microscopy, vol. 258,
no. 2, pp. 140–150, 2015.

[154] K. Sim, K. Law, and C. Tso, “Mixed lagrange time delay estimation au-
toregressive wiener filter application for real-time sem image enhancement,”
Microscopy research and technique, vol. 70, no. 11, pp. 919–927, 2007.

[155] K. Sim, N. Kamel, and H. Chuah, “Autoregressive wiener filtering in a scan-
ning electron microscopy imaging system,” Scanning, vol. 27, no. 3, pp.
147–153, 2005.

[156] E. Oho, A. Ogihara, and K. Kanaya, “A new non-linear pseudo-laplacian
filter for enhancement of secondary electron images,” Journal of Microscopy,
vol. 159, no. 1, pp. 33–41, 1990.

References 141

[157] A. Tavanaei and S. Salehi, “Pore, throat, and grain detection for rock sem
images using digitalwatershed image segmentation algorithm,” Journal of
Porous Media, vol. 18, no. 5, 2015.

[158] S. V. Vaseghi, Advanced digital signal processing and noise reduction. John
Wiley & Sons, 2008.

[159] P. Jagatheeswari, S. Suresh Kumar, and M. Rajaram, “Contrast enhance-
ment for medical images based on histogram equalization followed by median
filter,” 2009.

[160] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,”
Pattern recognition, vol. 33, no. 2, pp. 225–236, 2000.

[161] I. Bankman, Handbook of medical image processing and analysis. Elsevier,
2008.

[162] D. Bradley and G. Roth, “Adaptive thresholding using the integral image,”
Journal of graphics tools, vol. 12, no. 2, pp. 13–21, 2007.

[163] S. Uchida, “Image processing and recognition for biological images,” Devel-
opment, growth & di�erentiation, vol. 55, no. 4, pp. 523–549, 2013.

[164] W. Niblack, An introduction to digital image processing. Strandberg Pub-
lishing Company, 1985.

[165] N. Salman, “Image segmentation based on watershed and edge detection
techniques.” Int. Arab J. Inf. Technol., vol. 3, no. 2, pp. 104–110, 2006.

[166] F. Meyer and S. Beucher, “Morphological segmentation,” Journal of visual
communication and image representation, vol. 1, no. 1, pp. 21–46, 1990.

[167] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models via
3-d medial surface axis thinning algorithms,” CVGIP: Graphical Models and
Image Processing, vol. 56, no. 6, pp. 462–478, 1994.

[168] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-
gorithm,” Journal of the royal statistical society. series c (applied statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[169] G. P. Meyer, J. Charland, D. Hegde, A. Laddha, and C. Vallespi-Gonzalez,
“Sensor fusion for joint 3d object detection and semantic segmentation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019, pp. 0–0.

142 References

[170] J. Virieux, H. Calandra, and R.-É. Plessix, “A review of the spectral, pseudo-
spectral, finite-di�erence and finite-element modelling techniques for geo-
physical imaging,” Geophysical Prospecting, vol. 59, no. Modelling Methods
for Geophysical Imaging: Trends and Perspectives, pp. 794–813, 2011.

[171] K. Wang, E. Teoh, J. Jaros, and B. E. Treeby, “Modelling nonlinear ultra-
sound propagation in absorbing media using the k-wave toolbox: experimen-
tal validation,” in 2012 IEEE International Ultrasonics Symposium. IEEE,
2012, pp. 523–526.

[172] S. I. Aanonsen, T. Barkve, J. N. Tjo/tta, and S. Tjo/tta, “Distortion and
harmonic generation in the nearfield of a finite amplitude sound beam,” The
Journal of the Acoustical Society of America, vol. 75, no. 3, pp. 749–768,
1984.

[173] A. Hanyga and M. SeredyÒska, “Power-law attenuation in acoustic and
isotropic anelastic media,” Geophysical Journal International, vol. 155, no. 3,
pp. 830–838, 2003.

[174] S. P. Näsholm and S. Holm, “Linking multiple relaxation, power-law attenu-
ation, and fractional wave equations,” The Journal of the Acoustical Society
of America, vol. 130, no. 5, pp. 3038–3045, 2011.

[175] B. E. Treeby and B. T. Cox, “k-wave: Matlab toolbox for the simulation and
reconstruction of photoacoustic wave fields,” Journal of biomedical optics,
vol. 15, no. 2, p. 021314, 2010.

[176] B. E. Treeby, J. Budisky, E. S. Wise, J. Jaros, and B. Cox, “Rapid calculation
of acoustic fields from arbitrary continuous-wave sources,” The Journal of
the Acoustical Society of America, vol. 143, no. 1, pp. 529–537, 2018.

[177] W. Cai, W. Chen, J. Fang, and S. Holm, “A survey on fractional derivative
modeling of power-law frequency-dependent viscous dissipative and scatter-
ing attenuation in acoustic wave propagation,” Applied Mechanics Reviews,
vol. 70, no. 3, 2018.

[178] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic seg-
mentation using deep neural networks,” International journal of multimedia
information retrieval, vol. 7, no. 2, pp. 87–93, 2018.

[179] R. A. Wilson and F. C. Keil, The MIT Encyclopedia of the cognitive sciences
(MITECS). MIT press, 2001.

References 143

[180] P. Pinheiro and R. Collobert, “Recurrent convolutional neural networks for
scene labeling,” in International conference on machine learning. PMLR,
2014, pp. 82–90.

[181] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 3431–3440.

[182] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for seman-
tic segmentation,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1520–1528.

[183] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” arXiv preprint arXiv:1511.07122, 2015.

[184] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural
networks,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1529–1537.

[185] S. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “E�cient piecewise training
of deep structured models for semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp. 3194–
3203.

[186] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing
with graph lstm,” in European Conference on Computer Vision. Springer,
2016, pp. 125–143.

[187] B. Shuai, Z. Zuo, B. Wang, and G. Wang, “Dag-recurrent neural networks
for scene labeling,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 3620–3629.

[188] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on pattern
analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[189] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing net-
work,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2881–2890.

144 References

[190] L. C. Chen, Y. Zhu, G. Papandreou, F. Schro�, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmentation,”
in Proceedings of the European conference on computer vision (ECCV), 2018,
pp. 801–818.

[191] P. Luo, G. Wang, L. Lin, and X. Wang, “Deep dual learning for semantic
image segmentation,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 2718–2726.

[192] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2961–
2969.

[193] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, “Large kernel matters–
improve semantic segmentation by global convolutional network,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 4353–4361.

[194] J. Fu, J. Liu, Y. Wang, J. Zhou, C. Wang, and H. Lu, “Stacked deconvo-
lutional network for semantic segmentation,” IEEE Transactions on Image
Processing, 2019.

[195] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a dis-
criminative feature network for semantic segmentation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp.
1857–1866.

[196] D. Lin, Y. Ji, D. Lischinski, D. Cohen-Or, and H. Huang, “Multi-scale con-
text intertwining for semantic segmentation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 603–619.

[197] H. Shi, H. Li, F. Meng, Q. Wu, L. Xu, and K. N. Ngan, “Hierarchical
parsing net: Semantic scene parsing from global scene to objects,” IEEE
Transactions on Multimedia, vol. 20, no. 10, pp. 2670–2682, 2018.

[198] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal,
“Context encoding for semantic segmentation,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2018, pp. 7151–
7160.

[199] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “Psanet:
Point-wise spatial attention network for scene parsing,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 267–283.

References 145

[200] Z. Xie, J. Chen, and B. Peng, “Point clouds learning with attention-based
graph convolution networks,” Neurocomputing, vol. 402, pp. 245–255, 2020.

[201] Y. Ma, Y. , H. Liu, Y. Lei, and G. Wen, “Global context reasoning for
semantic segmentation of 3d point clouds,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2020, pp. 2931–
2940.

[202] H. Lei, N. Akhtar, and A. Mian, “Octree guided cnn with spherical kernels for
3d point clouds,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9631–9640.

[203] H. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as
deep as cnns?” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 9267–9276.

[204] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 652–660.

[205] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic segmen-
tation with superpoint graphs,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 4558–4567.

[206] X. Wang, S. Liu, X. Shen, C. Shen, and J. Jia, “Associatively segmenting
instances and semantics in point clouds,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 4096–
4105.

[207] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolu-
tion on x-transformed points,” Advances in neural information processing
systems, vol. 31, 2018.

[208] F. Groh, P. Wieschollek, and H. Lensch, “Flex-convolution,” in Asian Con-
ference on Computer Vision. Springer, 2018, pp. 105–122.

[209] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.
Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” in
Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 6411–6420.

146 References

[210] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 984–993.

[211] F. Engelmann, T. Kontogianni, and B. Leibe, “Dilated point convolutions:
On the receptive field size of point convolutions on 3d point clouds,” in
2020 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 9463–9469.

[212] Q. Huang, W. Wang, and U. Neumann, “Recurrent slice networks for 3d
segmentation of point clouds,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 2626–2635.

[213] X. Ye, J. Li, H. Huang, L. Du, and X. Zhang, “3d recurrent neural networks
with context fusion for point cloud semantic segmentation,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 403–417.

[214] F. Engelmann, M. Bokeloh, A. Fathi, B. Leibe, and M. Nießner, “3d-mpa:
Multi-proposal aggregation for 3d semantic instance segmentation,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, 2020, pp. 9031–9040.

[215] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, “Exploring spa-
tial context for 3d semantic segmentation of point clouds,” in Proceedings of
the IEEE international conference on computer vision workshops, 2017, pp.
716–724.

[216] Y. Cao, C. Shen, and H. T. Shen, “Exploiting depth from single monocular
images for object detection and semantic segmentation,” IEEE Transactions
on Image Processing, vol. 26, no. 2, pp. 836–846, 2016.

[217] A. Mousavian, H. Pirsiavash, and J. Koöecká, “Joint semantic segmentation
and depth estimation with deep convolutional networks,” in 2016 Fourth
International Conference on 3D Vision (3DV). IEEE, 2016, pp. 611–619.

[218] Y. Cheng, R. Cai, Z. Li, X. Zhao, and K. Huang, “Locality-sensitive deconvo-
lution networks with gated fusion for rgb-d indoor semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 3029–3037.

[219] J. Jiang, Z. Zhang, Y. Huang, and L. Zheng, “Incorporating depth into both
cnn and crf for indoor semantic segmentation,” in 2017 8th IEEE Interna-

References 147

tional Conference on Software Engineering and Service Science (ICSESS).
IEEE, 2017, pp. 525–530.

[220] D. Lin, G. Chen, D. Cohen-Or, P.-A. Heng, and H. Huang, “Cascaded feature
network for semantic segmentation of rgb-d images,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 1311–1319.

[221] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Towards
unified depth and semantic prediction from a single image,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 2800–2809.

[222] J. Liu, Y. Wang, Y. Li, J. Fu, J. Li, and H. Lu, “Collaborative deconvo-
lutional neural networks for joint depth estimation and semantic segmenta-
tion,” IEEE transactions on neural networks and learning systems, vol. 29,
no. 11, pp. 5655–5666, 2018.

[223] N. Höft, H. Schulz, and S. Behnke, “Fast semantic segmentation of
rgb-d scenes with gpu-accelerated deep neural networks,” in Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz).
Springer, 2014, pp. 80–85.

[224] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features
from rgb-d images for object detection and segmentation,” in European con-
ference on computer vision. Springer, 2014, pp. 345–360.

[225] H. Liu, W. Wu, X. Wang, and Y. Qian, “Rgb-d joint modelling with scene
geometric information for indoor semantic segmentation,” Multimedia Tools
and Applications, vol. 77, no. 17, pp. 22 475–22 488, 2018.

[226] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu, “Pointsift: A sift-like
network module for 3d point cloud semantic segmentation,” arXiv preprint
arXiv:1807.00652, 2018.

[227] W. Wang and U. Neumann, “Depth-aware cnn for rgb-d segmentation,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 135–150.

[228] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic seg-
mentation using depth information,” arXiv preprint arXiv:1301.3572, 2013.

148 References

[229] A. Raj, D. Maturana, and S. Scherer, “Multi-scale convolutional architecture
for semantic segmentation,” Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RITR-15-21, 2015.

[230] J. Wang, Z. Wang, D. Tao, S. See, and G. Wang, “Learning common and
specific features for rgb-d semantic segmentation with deconvolutional net-
works,” in European Conference on Computer Vision. Springer, 2016, pp.
664–679.

[231] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural networks
for rgbd semantic segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 5199–5208.

[232] Z. Li, Y. Gan, X. Liang, Y. Yu, H. Cheng, and L. Lin, “Lstm-cf: Unifying
context modeling and fusion with lstms for rgb-d scene labeling,” in European
conference on computer vision. Springer, 2016, pp. 541–557.

[233] H. Fan, X. Mei, D. Prokhorov, and H. Ling, “Rgb-d scene labeling with mul-
timodal recurrent neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2017, pp. 9–17.

[234] J. Huang and S. You, “Point cloud labeling using 3d convolutional neu-
ral network,” in 2016 23rd International Conference on Pattern Recognition
(ICPR). IEEE, 2016, pp. 2670–2675.

[235] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “Segcloud: Se-
mantic segmentation of 3d point clouds,” in 2017 international conference
on 3D vision (3DV). IEEE, 2017, pp. 537–547.

[236] H.-Y. Meng, L. Gao, Y.-K. Lai, and D. Manocha, “Vv-net: Voxel vae net
with group convolutions for point cloud segmentation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 8500–
8508.

[237] F. Liu, S. Li, L. Zhang, C. Zhou, R. Ye, Y. Wang, and J. Lu, “3dcnn-dqn-rnn:
A deep reinforcement learning framework for semantic parsing of large-scale
3d point clouds,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 5678–5687.

[238] D. Rethage, J. Wald, J. Sturm, N. Navab, and F. Tombari, “Fully-
convolutional point networks for large-scale point clouds,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 596–611.

References 149

[239] A. Dai and M. Nießner, “3dmv: Joint 3d-multi-view prediction for 3d se-
mantic scene segmentation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 452–468.

[240] G. Riegler, A. Osman Ulusoy, and A. Geiger, “Octnet: Learning deep 3d
representations at high resolutions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 3577–3586.

[241] B. Graham, M. Engelcke, and L. Van Der Maaten, “3d semantic segmen-
tation with submanifold sparse convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2018, pp.
9224–9232.

[242] L. Yi, W. Zhao, H. Wang, M. Sung, and L. J. Guibas, “Gspn: Generative
shape proposal network for 3d instance segmentation in point cloud,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3947–3956.

[243] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmentation
of rgb-d scans,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 4421–4430.

[244] B. Yang, J. Wang, R. Clark, Q. Hu, S. Wang, A. Markham, and N. Trigoni,
“Learning object bounding boxes for 3d instance segmentation on point
clouds,” Advances in neural information processing systems, vol. 32, 2019.

[245] W. Wang, R. Yu, Q. Huang, and U. Neumann, “Sgpn: Similarity group
proposal network for 3d point cloud instance segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 2569–2578.

[246] H. Jiang, F. Yan, J. Cai, J. Zheng, and J. Xiao, “End-to-end 3d point cloud
instance segmentation without detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 796–
12 805.

[247] C. Liu and Y. Furukawa, “Masc: Multi-scale a�nity with sparse convolution
for 3d instance segmentation,” arXiv preprint arXiv:1902.04478, 2019.

[248] J. Lahoud, B. Ghanem, M. Pollefeys, and M. R. Oswald, “3d instance seg-
mentation via multi-task metric learning,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 9256–9266.

150 References

[249] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, “Pointgroup:
Dual-set point grouping for 3d instance segmentation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 4867–4876.

[250] C. Elich, F. Engelmann, T. Kontogianni, and B. Leibe, “3d bird’s-eye-
view instance segmentation,” in German Conference on Pattern Recognition.
Springer, 2019, pp. 48–61.

[251] Q.-H. Pham, T. Nguyen, B.-S. Hua, G. Roig, and S.-K. Yeung, “Jsis3d: Joint
semantic-instance segmentation of 3d point clouds with multi-task pointwise
networks and multi-value conditional random fields,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8827–8836.

[252] Z. Liang, M. Yang, H. Li, and C. Wang, “3d instance embedding learning
with a structure-aware loss function for point cloud segmentation,” IEEE
Robotics and Automation Letters, vol. 5, no. 3, pp. 4915–4922, 2020.

[253] L. Han, T. Zheng, L. Xu, and L. Fang, “Occuseg: Occupancy-aware 3d in-
stance segmentation,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2020, pp. 2940–2949.

[254] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3d shape segmen-
tation with projective convolutional networks,” in proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3779–3788.

[255] Z. Wang and F. Lu, “Voxsegnet: Volumetric cnns for semantic part seg-
mentation of 3d shapes,” IEEE transactions on visualization and computer
graphics, vol. 26, no. 9, pp. 2919–2930, 2019.

[256] T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 9204–9214.

[257] Y. Song, X. Chen, J. Li, and Q. Zhao, “Embedding 3d geometric features
for rigid object part segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 580–588.

[258] H. Xu, M. Dong, and Z. Zhong, “Directionally convolutional networks for 3d
shape segmentation,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 2698–2707.

References 151

[259] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-
Or, “Meshcnn: a network with an edge,” ACM Transactions on Graphics
(TOG), vol. 38, no. 4, pp. 1–12, 2019.

[260] F. Yu, K. Liu, Y. Zhang, C. Zhu, and K. Xu, “Partnet: A recursive part de-
composition network for fine-grained and hierarchical shape segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019, pp. 9491–9500.

[261] Y. Shen, C. Feng, Y. Yang, and D. Tian, “Mining point cloud local struc-
tures by kernel correlation and graph pooling,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4548–4557.

[262] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and Z. Sun, “3d
shape segmentation via shape fully convolutional networks,” Computers &
Graphics, vol. 76, pp. 182–192, 2018.

[263] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning
on point sets with parameterized convolutional filters,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 87–102.

[264] N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph con-
volutions for 3d shape analysis,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 2598–2606.

[265] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 863–872.

[266] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-cnn: Octree-
based convolutional neural networks for 3d shape analysis,” ACM Transac-
tions On Graphics (TOG), vol. 36, no. 4, pp. 1–11, 2017.

[267] Y. Zhao, T. Birdal, H. Deng, and F. Tombari, “3d point capsule networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1009–1018.

[268] J. Li, B. M. Chen, and G. H. Lee, “So-net: Self-organizing network for point
cloud analysis,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9397–9406.

152 References

[269] A. Kaestner, E. Lehmann, and M. Stampanoni, “Imaging and image pro-
cessing in porous media research,” Advances in Water Resources, vol. 31,
no. 9, pp. 1174–1187, 2008.

[270] R. B. Latimer, R. Davidson, and P. Van Riel, “An interpreter’s guide to
understanding and working with seismic-derived acoustic impedance data,”
The leading edge, vol. 19, no. 3, pp. 242–256, 2000.

[271] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net and its
variants for medical image segmentation: A review of theory and applica-
tions,” IEEE Access, 2021.

[272] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and N. Harel, “Continuous
dice coe�cient: a method for evaluating probabilistic segmentations,” arXiv
preprint arXiv:1906.11031, 2019.

[273] S. Jha, R. Kumar, I. Priyadarshini, F. Smarandache, H. V. Long et al.,
“Neutrosophic image segmentation with dice coe�cients,” Measurement, vol.
134, pp. 762–772, 2019.

[274] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neu-
ral networks for volumetric medical image segmentation,” in 2016 fourth
international conference on 3D vision (3DV). IEEE, 2016, pp. 565–571.

[275] R. Zhao, B. Qian, X. Zhang, Y. Li, R. Wei, Y. Liu, and Y. Pan, “Rethink-
ing dice loss for medical image segmentation,” in 2020 IEEE International
Conference on Data Mining (ICDM). IEEE, 2020, pp. 851–860.

[276] I. N. Bankman and S. Morcovescu, “Handbook of medical imaging. process-
ing and analysis,” 2002.

[277] W. Fellenius, “Calculation of the stability of earth dams trans. 2nd congr,”
Large Dams, vol. 1, 1936.

[278] A. W. Bishop, “The use of the slip circle in the stability analysis of slopes,”
Geotechnique, vol. 5, no. 1, pp. 7–17, 1955.

[279] J. Lowe, “Stability of earth dams upon drawdown,” in Proc. 1st Pan Ameri-
can Conference on Soil Mechanics and Foundation Engineering, Mexico City,
1960, 1960.

[280] N. Janbu, “Slope stability computation, soil mechanics and foundation en-
gineering report,” The Technical University of Norway, Trondheim, 1968.

References 153

[281] N. Morgenstern and V. E. Price, “The analysis of the stability of general slip
surfaces,” Geotechnique, vol. 15, no. 1, pp. 79–93, 1965.

[282] E. Spencer, “A method of analysis of the stability of embankments assuming
parallel inter-slice forces,” Geotechnique, vol. 17, no. 1, pp. 11–26, 1967.

[283] D. W. Taylor, “Stability of earth slopes,” J. Boston Soc. Civil Engineers,
vol. 24, no. 3, pp. 197–247, 1937.

[284] J. H. Hunter and R. L. Schuster, “Chart solutions for analysis of earth
slopes,” Highway Research Record, no. 345, 1971.

[285] B. F. Cousins, “Stability charts for simple earth slopes,” Journal of the
Geotechnical Engineering Division, vol. 104, no. 2, pp. 267–279, 1978.

[286] C. A. Coulomb, “Essai sur une application des regles de maximis et minimis a
quelques problemes de statique relatifs a l’architecture (essay on maximums
and minimums of rules to some static problems relating to architecture),”
1973.

[287] E. Hoek, “Estimating mohr-coulomb friction and cohesion values from the
hoek-brown failure criterion,” in International Journal of Rock Mechanics
and Mining Sciences & Geomechanics Abstracts, vol. 27, no. 3. Pergamon,
1990, pp. 227–229.

[288] D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis or limit
design,” Quarterly of applied mathematics, vol. 10, no. 2, pp. 157–165, 1952.

[289] P. V. Lade and J. M. Duncan, “Elastoplastic stress-strain theory for cohe-
sionless soil,” Journal of the Geotechnical Engineering Division, vol. 101,
no. 10, pp. 1037–1053, 1975.

[290] P. V. Lade and H. M. Musante, “Three-dimensional behavior of remolded
clay,” Journal of the Geotechnical Engineering Division, vol. 104, no. 2, pp.
193–209, 1978.

[291] I. Smith and R. Hobbs, “Finite element analysis of centrifuged and built-up
slopes,” Geotechnique, vol. 24, no. 4, pp. 531–559, 1974.

[292] O. Zeinkiewicz, C. Humpheson, and R. Lewis, “Associated and non-
associated visco-plasticity in soils mechanics,” Journal of Geotechnique,
vol. 25, no. 5, pp. 671–689, 1975.

154 References

[293] D. Gri�ths and P. Lane, “Slope stability analysis by finite elements,”
Geotechnique, vol. 49, no. 3, pp. 387–403, 1999.

[294] D. Potts, G. Dounias, and P. Vaughan, “Finite element analysis of progres-
sive failure of carsington embankment,” in Selected papers on geotechnical
engineering by PR Vaughan. Thomas Telford Publishing, 2009, pp. 212–
234.

[295] T. Matsui and K.-C. San, “Finite element slope stability analysis by shear
strength reduction technique,” Soils and foundations, vol. 32, no. 1, pp. 59–
70, 1992.

[296] B. JeremiÊ, “Finite element methods for 3d slope stability analysis,” in Slope
Stability 2000, 2000, pp. 224–238.

[297] P. Lane and D. Gri�ths, “Assessment of stability of slopes under drawdown
conditions,” Journal of geotechnical and geoenvironmental engineering, vol.
126, no. 5, pp. 443–450, 2000.

[298] J. Lechman and D. Gri�ths, “Analysis of the progression of failure of earth
slopes by finite elements,” in Slope Stability 2000, 2000, pp. 250–265.

[299] A. Sainak, “Application of three-dimensional finite element method in para-
metric and geometric studies of slope stability analysis,” in Advances in
geotechnical engineering: The Skempton conference: Proceedings of a three
day conference on advances in geotechnical engineering, organised by the
Institution of Civil Engineers and held at the Royal Geographical Society,
London, UK, on 29–31 March 2004. Thomas Telford Publishing, 2004, pp.
933–942.

[300] L. Zhang, J. Zhang, L. Zhang, and W. H. Tang, “Stability analysis of
rainfall-induced slope failure: a review,” Proceedings of the Institution of
Civil Engineers-Geotechnical Engineering, vol. 164, no. 5, pp. 299–316, 2011.

[301] D. Gri�ths and R. Marquez, “Three-dimensional slope stability analysis by
elasto-plastic finite elements,” Geotechnique, vol. 57, no. 6, pp. 537–546,
2007.

[302] X. Li, “Finite element analysis of slope stability using a nonlinear failure
criterion,” Computers and Geotechnics, vol. 34, no. 3, pp. 127–136, 2007.

[303] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J Fluid Mech, vol. 656, 2010.

References 155

[304] J. Tu, C. Rowley, D. Luchtenburg, S. Brunton, and J. Kutz, “On
dynamic mode decomposition: theory and applications arxiv preprint
arxiv:13120041,” 2013. [Online]. Available: http://arxiv.org/abs/13120041

[305] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz, and S. L. Brunton, “Dynamic
mode decomposition for compressive system identification,” AIAA J, vol. 58,
2020.

[306] M. Liu, L. Tan, and S. Cao, “Dynamic mode decomposition of cavitating
flow around ale 15 hydrofoil,” Renew Energy, vol. 139, 2019.

[307] C. Pan, J. Wang, and M. Sun, “Dynamics of an unsteady stagnation vortical
flow via dynamic mode decomposition analysis,” Exp Fluids, vol. 58, 2017.

[308] D. F. Gomez, F. D. Lagor, P. B. Kirk, A. H. Lind, A. R. Jones, and D. A.
Paley, “Data-driven estimation of the unsteady flowfield near an actuated
airfoil,” J Guid Control Dyn, vol. 42, 2019.

[309] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, “Extract-
ing spatial-temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition,” J Neurosci Methods, vol. 258, 2016.

[310] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decompo-
sition in the analysis of turbulent flows,” Annual Review of Fluid Mechanics,
vol. 25, 1993.

[311] J. Du, J. Zhu, Z. Luo, and I. Navon, “An optimizing finite di�erence scheme
based on proper orthogonal decomposition for cvd equations,” Int J Numer
Methods Biomed Eng, vol. 27, 2011.

[312] Z. Luo, J. Chen, J. Zhu, R. Wang, and I. Navon, “An optimizing reduced
order fds for the tropical pacific ocean reduced gravity model,” Int J Numer
Methods Fluids, vol. 55, 2007.

[313] Z. Luo, J. Zhu, R. Wang, and I. M. Navon, “Proper orthogonal decomposi-
tion approach and error estimation of mixed finite element methods for the
tropical pacific ocean reduced gravity model,” Comput Methods Appl Mech
Eng, vol. 196, 2007.

[314] Z. D. Luo, W. a. n. g. RW, and J. Zhu, “Finite di�erence scheme based on
proper orthogonal decomposition for the nonstationary navier-stokes equa-
tions,” Sci China Ser A Math, vol. 50, 2007.

156 References

[315] Y. Cao, J. Zhu, Z. Luo, and I. M. Navon, “Reduced-order modeling of the
upper tropical pacific ocean model using proper orthogonal decomposition,”
Comput Math Appl, vol. 52, 2006.

[316] Y. Cao, J. Zhu, I. M. Navon, and Z. Luo, “A reduced-order approach to
four-dimensional variational data assimilation using proper orthogonal de-
composition,” Int J Numer Methods Fluids, vol. 53, 2007.

[317] J. N. Kani and A. H. Elsheikh, “Reduced-order modeling of subsurface multi-
phase flow models using deep residual recurrent neural networks,” Transp
Porous Media, vol. 126, 2019.

[318] A. Mohan and D. Gaitonde, “A deep learning based approach to
reduced order modeling for turbulent flow control using lstm neural
networks. arxiv preprint arxiv:180409269,” 2018. [Online]. Available:
http://arxiv.org/abs/180409269

[319] O. San, R. Maulik, and M. Ahmed, “An artificial neural network frame-
work for reduced order modeling of transient flows,” Commun Nonlinear Sci
Numer Simul, vol. 77, 2019.

[320] S. Fresca, A. Manzoni, L. Dedè, and A. Quarteroni, “Deep learning-based
reduced order models in cardiac electrophysiology,” PLoS One, vol. 15, 2020.

[321] R. Halder, M. Damodaran, and B. Khoo, “Deep learning based reduced order
model for airfoil-gust and aeroelastic interaction,” AIAA J, vol. 58, 2020.

[322] T. Daniel, F. Casenave, N. Akkari, and D. Ryckelynck, “Model order reduc-
tion assisted by deep neural networks (rom-net),” Adv Model Simul Eng Sci,
vol. 7, 2020.

[323] M. Wang, S. W. Cheung, W. T. Leung, E. T. Chung, Y. Efendiev, and
M. Wheeler, “Reduced-order deep learning for flow dynamics. the interplay
between deep learning and model reduction,” J Comput Phys, vol. 401, 2020.

[324] A. Gu, C. Gulcehre, T. Paine, M. Ho�man, and R. Pascanu, “Improving the
gating mechanism of recurrent neural networks. in: International conference
on machine learning, pmlr,” pp. pp 3800–3809, 2020.

[325] K. Terzaghi, “&die berechnung der durchlassigkeitszi! er des tones aus dem
verlauf der hydrodynamischen spannungsersceinungen’, originally published
in 1923 and reprinted in from 1heory to practice in soil mechanics,” 1960.

References 157

[326] A. Verruijt, “Theory and problems of poroelasticity,” Delft University of
Technology, vol. 71, 2013.

[327] K. Terzaghi and R. B. Peck, “Soil mechanics,” Engineering Practice. John
Wiley and Sons, Inc., New York, 1948.

[328] H. Mounir, A. Nizar, L. Borhen, A. Benamara, and D. Deneux, “Fem sim-
ulation based on cad model simplification: a comparison study between the
hybrid method and the technique using a removing details,” in Design and
modeling of mechanical systems. Springer, 2013, pp. 587–596.

[329] R. Jain, R. Kasturi, B. G. Schunck et al., Machine vision. McGraw-hill
New York, 1995, vol. 5.

[330] C. J. Permann, D. R. Gaston, D. Andrö, R. W. Carlsen, F. Kong, A. D.
Lindsay, J. M. Miller, J. W. Peterson, A. E. Slaughter, R. H. Stogner,
and R. C. Martineau, “MOOSE: Enabling massively parallel multiphysics
simulation,” SoftwareX, vol. 11, p. 100430, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352711019302973

[331] B. D. Ripley, Pattern recognition and neural networks. Cambridge university
press, 2007.

[332] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. , Z. Wang, N. Trigoni, and A. Markham,
“Randla-net: E�cient semantic segmentation of large-scale point clouds,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 11 108–11 117.

[333] H. Eivazi, H. Veisi, M. H. Naderi, and V. Esfahanian, “Deep neural networks
for nonlinear model order reduction of unsteady flows,” Phys Fluids, vol. 32,
2020.

[334] C. Tong, Psuade user’s manual. Livermore: Lawrence Livermore National
Laboratory, 2005.

[335] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[336] Y. Bengio, “On the challenge of learning complex functions,” Progress in
Brain Research, vol. 165, pp. 521–534, 2007.

[337] G. Mavko, T. Mukerji, and J. Dvorkin, The rock physics handbook. Cam-
bridge university press, 2020.

List of Publications

Journal(s)

• Kumar, A., Hu, R., Walsh, S.D.C. (2022), ‘Development of Reduced Order
Hydro-mechanical Models of Fractured Media’, Rock Mechanics and Rock
Engineering 55(1), 235-248

• Kumar, A., Shrivastava, R.K., Singh, K.H. (2020), ‘Bayesian Inference
of Material Properties in Disordered Media using Sound Characteristics’,
Europhysics Letters 129(2), 24001

• Tripathy, A., Kumar, A., Srinivasan, V., Singh, K.H., Singh T.N. (2019),
‘Fractal Analysis and Spatial Disposition of Porosity in Major Indian Gas
Shales using Low-Pressure Nitrogen Adsorption and Advanced Image Seg-
mentation’, Journal of Natural Gas Science and Engineering 72, 103009

• Sarkar, P., Kumar, A., Singh K.H., Ghosh, R., Singh T.N. (2018), ‘Pore
System, Microstructure and Porosity Characterization of Gondwana Shale
of Eastern India using Laboratory Experiment and Watershed Image Seg-
mentation Algorithm’, Marine and Petroleum Geology 94, 246-260

• Gautam, P.K., Dwivedi, R., Kumar, A. Kumar, A., Verma, A.K., Singh,
K.H., Singh, T.N. (2020), ‘Damage Characteristics of Jalore Granitic Rocks
after Thermal Cycling E�ect for Nuclear Waste Repository’, Rock Mechanics
and Rock Engineering 54, 235-254

Proceedings / Book Chapter(s)

• Kumar, A., Shrivastava, R.K., Singh, K.H., (2018), ‘Bayesian Modelling for
Determining Material Properties’, International Conference on Recent Inno-
vations in Electrical, Electronics & Communication Engineering (ICRIEECE),
1557-1563

• Singh, K.H., Kumar, A., Pandit, S., Soni, A., (2020), ‘Partitioning of Poros-
ity for Carbonate Reservoirs using Di�erential E�ective Medium Models’,
Petro-physics and Rock Physics of Carbonate Reservoirs 1, 129-145

• Sharma, M., Singh, K.H., Pandit, S., Kumar, A., Soni, A., (2020), ‘Petro-
physical Modelling of Carbonate Reservoir from Bombay O�shore Basin’,
Petro-physics and Rock Physics of Carbonate Reservoirs 1, 55-73

Articles Communicated

• Hu, R., Kumar, A., Yellishetty, M., Walsh, S.D.C. (2022), ‘A Bootstrap
Strategy to Train, Validate and Test Reduced Order Models of Coupled
Geomechanical Processes’, Computers and Geosciences

• Kumar, A., Singh, K.H., Yellishetty, M., Singh, T.N., 2022, ‘A Deep Learn-
ing Approach to Pore Network Inference in Sedimentary Rock Core Samples’,
Journal of Petroleum Science and Engineering

Articles Under Preparation

• Kumar, A., Yellishetty, M., Singh, K.H., Singh, T.N., 2022, ‘Development
of a Reduced Order Model for fast Slope Stability Simulation’, Computers
and Geosciences

• Kumar, A., Yellishetty, M., Singh, K.H., Singh, T.N., 2022, ‘Performing
quick Full-Order pseudo Simulations within Heterogeneous Media’, Rock Me-
chanics and Rock Engineering

• Kumar, A., Singh, K.H., Yellishetty, M., Singh, T.N., 2022, ‘Towards the
Density Estimation of complex Geomechanical Processes’, Information Sci-
ences

Curriculum Vitae

The author obtained his Integrated M.Tech in Geophysical Technology degree
(5yr.) from the Department of Earth Sciences at Indian Institute of Technology
Roorkee, Roorkee, in 2013. He then received his dedicated Master of Technol-
ogy degree in 2015 from the Department of Earth Sciences at Indian Institute of
Technology Bombay, Mumbai, specialising in Petroleum Geosciences. After that,
he completed PhD programme at IITB-Monash Research Academy, Mumbai, in
2022. He has a research interest in applied machine learning and statistics per-
taining to Geoscientific problems. He has published some of his research works in
reputed international journals and conference proceedings. He has also mentored
three B.Tech students to pursue summer projects in machine learning during his
doctoral studies.

ORCiD ID @ 0000-0001-8917-0775

