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Abstract

In 1928, Sperner proved his well known result bounding the maximum size of a family of

subsets of an n-set, where no set in the family is a subset of another. Such a family is now

referred to as a Sperner set system. Since then, many families with similar structure have

been considered in the literature.

In 2005, Meagher, Moura and Stevens investigated Sperner partition systems, where

an (n, k)-Sperner partition system is a collection of partitions of an n-set into k nonempty

parts with the property that no part in any partition is a subset of a part in a different

partition. In this thesis, we present a number of constructions for (n, k)-Sperner partition

systems for various regimes of n and k. These constructions produce systems with a number

of partitions asymptotically close to an upper bound due to Meagher, Moura and Stevens.

We also exactly determine the maximum number of partitions when n = 3k − 6 and for a

number of small values of n and k.

We then move on to look at cross-Sperner families. A pair of families of subsets of

an n-set is cross-Sperner if no set in either family is a subset of a set in the other family.

We begin by examining self intersecting cross-Sperner pairs of families, where we add the

condition that any pair of sets from the same family have nonempty intersection. Using a

result of Erdős, Herzog and Schőnheim, we exactly determine the maximum size of such a

pair of families.

Finally, we consider the problem of determining the maximum size of a family in a pair

of cross-Sperner families after fixing the size of the other family. Using a generalised form

of the classical technique of shifting, we give a complete, albeit recursive, solution to this

problem. This is accomplished through determining, for a family F of m subsets of an

n-set, the minimum total number of subsets and supersets of sets in F .



Declaration

This thesis contains no material which has been accepted for the award of any other degree

or diploma at any university or equivalent institution and that, to the best of my knowledge

and belief, this thesis contains no material previously published or written by another

person, except where due reference is made in the text of the thesis.

Adam Gowty

24 Aug 2022

i



Publications During Enrolment

This thesis is a combination of several pieces of work (published, submitted and in prepa-

ration). Each of these works is joint work with various authors.

� Chapter 3 is based on a paper published in European Journal of Combinatorics [8].

This is joint work with Yanxun Chang, Charles J. Colbourn, Daniel Horsley and

Junling Zhou.

� Chapter 4 is based on a paper published in Journal of Combinatorial Designs [17].

This is joint work with Daniel Horsley.

� Chapter 5 is based on joint work with Daniel Horsley, which is in preparation for

publication.

� Chapter 6 is based on ongoing joint work with Daniel Horsley and Adam Mammoliti.

ii



Acknowledgements

First and foremost, I must thank Daniel for our time working together. The last four years

have been a rewarding experience, and it is entirely thanks to your guidance, for which I

will be eternally grateful. It has been a great pleasure, and I thank you for everything.

As always, much love and appreciation goes to my family for their unending support in my

endeavours.

To those whom I shared an office with (when we were actually allowed in the office), your

willingness to be a sounding board when I was particularly stuck will never be forgotten.

I am also appreciative for all the instances where you drew me into each of your different

corners of mathematics that I never would have been exposed to otherwise. A special thanks

to Angus, Kaustav and Michael for the conversations that drifted outside of the realm of

mathematics.

It would be negligent of me to not give thanks to all of my friends whom, despite not

understanding a single piece of my work, never stopped giving their emotional support.

Without you all, this project never would have been completed. So thank you:

VB (VC), AG (VW), SG, ZG (ZC), MO, TP, AS, AS, AT, IT

Finally, I would like to thank Monash University and the Australian government for their

support throughout the entirety of my candidature. In particular, this research was sup-

ported by an Australian Government Research Training Program (RTP) Scholarship.

iii



Contents

1 Introduction 1

2 Background 3

2.1 Sperner set systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Sperner partition systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Pairs of Families with Cross Properties . . . . . . . . . . . . . . . . . . . . . 9

2.4 Fundamental Results for Finite Set Systems . . . . . . . . . . . . . . . . . . 12

2.5 Isoperimetric Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Sperner partition systems 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Main construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Completing the Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . 33

3.5 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Bounds for small n and k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 More constructions for Sperner partition systems 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 The case c = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Proof of Theorem 4.1.4(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Proof of Theorem 4.1.4(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Intersecting cross-Sperner families 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 An upper bound on a wider class of pairs . . . . . . . . . . . . . . . . . . . . 73

5.3 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iv



CONTENTS

6 Cross-Sperner families with one family size specified 78

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Standard form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusion 98

8 References 101

v



Chapter 1

Introduction

Sperner’s theorem is a simple result that has spawned a wide range of research. Since its

proof, much work has been published that either strengthens the result, see [18, 34, 9] for

examples, or generalises it to other families, such as in [25]. This is still an active area

of research, primarily due to the fact that the requirement of nothing being “covered” or

“superseded” is a very fundamental one that can be applied to a wide range of scenarios.

In this thesis, we investigate two “Sperner-like” families from the literature, with the goal

of finding bounds on the sizes of these families similar to Sperner’s original result, and to

find constructions for families that meet these bounds.

Chapter 2 provides the necessary background to our work. It begins with a brief discus-

sion of Sperner set systems in Section 2.1 and then, in Section 2.2, it gives a discussion of

existing work on Sperner partition systems which grounds our contributions in Chapters 3

and 4. Sections 2.3 and 2.5 then give context for our work on cross-Sperner families which

appears in Chapters 5 and 6, while Section 2.4 introduces a number of well known results

that will be used throughout the thesis.

We start our original work in Chapter 3, where we begin our investigation into Sperner

partition systems. We focus on presenting a construction for Sperner partition systems that,

in most cases, produces systems with size asymptotic to an upper bound due to Meagher,

Moura and Stevens. We also find an improvement on this known upper bound, but we then

go on to show that the two bounds are asymptotically equal. In Chapter 4 we continue

our work related to Sperner partition systems and make progress in treating regimes of

parameters not covered by our main result from Chapter 3. We also present a number of

results for the special case where the average size of a part in a partition is between 2 and

3.

In Chapters 5 and 6, we move on to investigating cross-Sperner families. Chapter 5

focuses on pairs of cross-Sperner families where each family is, individually, an intersecting

1



family. We find upper bounds on the size of these pairs of families under both an additive

and multiplicative metric. We also give examples of constructions that show that these

bounds are tight in all cases. In Chapter 6, we go on to consider the problem of maximising

the size of a family in a cross-Sperner pair when the size of the other family is fixed. We

find a recursive function that determines this maximum size in every case.
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Chapter 2

Background

Throughout this thesis, for a positive integer n, we will use [n] to denote the set {1, . . . , n}.
For some finite set X, we let 2X denote the power set of X (i.e. 2X = {S : S ⊆ X}).
Furthermore, for an integer k, we will use

(
X
k

)
to denote the family {S : S ⊆ X and |S| = k}.

2.1 Sperner set systems

We begin by introducing the concept upon which this thesis is built: Sperner set systems,

which were first introduced by Sperner in 1928 [40].

Definition 2.1.1. A Sperner set system F ⊆ 2X , is a family of subsets of a finite ground

set X for which no set in the family is a subset of any other.

Throughout this thesis, whenever we require a ground set with n points in it, we will

always use the set [n] unless we state otherwise. We now provide the following examples of

Sperner set systems.

Note that when Sperner set systems are considered from the perspective of hypergraphs,

they are sometimes known as clutters. It is also common for them to be referred to as

antichains.

Looking at Figure 2.1, it is natural to ask if it is possible to add new sets to any of these

families to obtain a larger Sperner set system. It is clear that nothing can be added to

the first example as ∅ is a subset of every set. For the second example, sets such as {3, 4}
could be added to achieve a larger Sperner set system. In his work, Sperner was able to

determine the size of the largest possible Sperner set system on a ground set of size n.

Theorem 2.1.2 (Sperner’s Theorem [40]). Let F ⊆ 2[n] be a Sperner set system for some

positive integer n. Then |F| 6
(

n

bn2 c
)

and we have equality if and only if F =
(

[n]
n
2

)
when n

is even and F =
( [n]
n−1
2

)
or F =

( [n]
n+1
2

)
when n is odd.

3



2.2. Sperner partition systems

{∅} { 1, 2, 3 }
{ 4, 5 }

{ 1, 2, 3 }
{ 1, 2, 4 }
{ 1, 2, 5 }
{ 1, 3, 4 }
{ 1, 3, 5 }
{ 1, 4, 5 }
{ 2, 3, 4 }
{ 2, 3, 5 }
{ 2, 4, 5 }
{ 3, 4, 5 }

Figure 2.1: Three examples of Sperner set systems on 5 points.

Observe that this result shows that the third system given in Figure 2.1 is in fact one

of the two Sperner set systems of maximum size on 5 points. While this result gives us a

tight bound on the maximum size of a Sperner set system, it gives us no information about

the possible structure of smaller systems. Instead we must look to a result that was proven

independently by Bollobás([5]), Lubell ([30]), Meshalkin ([34]) and Yamamoto ([42]), which

takes into account the size of each set in the system. This result is normally referred to as

the LYM inequality, but is also known as the BLYM inequality.

Theorem 2.1.3 (LYM inequality [30, 34, 42]). Suppose F ⊆ 2[n] is a Sperner set system

for some positive integer n. Then ∑
F∈F

1(
n
|F |

) 6 1.

In essence, this result shows that the more sets of small size or large size that occur in

the Sperner set system, the fewer sets the system can have in total. We shall present proofs

of both Theorem 2.1.2 and Theorem 2.1.3 in Section 2.4 once some more concepts related

to set systems have been introduced.

2.2 Sperner partition systems

After seeing Sperner’s theorem it is natural to question if analogous results can be obtained

for objects similar to Sperner set systems. Of particular interest for this thesis are Sperner

partition systems, which were introduced by Meagher, Moura and Stevens in 2005 ([33])

and then further investigated by Li and Meagher in 2013 ([28]). Before we define Sperner

partition systems, we need to introduce a handful of definitions relating to partitions.

4



2.2. Sperner partition systems

Definition 2.2.1. A k-partition of [n] is a collection of k pairwise disjoint, nonempty

subsets of [n], which we will refer to as classes, whose union is [n].

A k-partition of [n] is called uniform if every class of the partition is of the same size.

Note that a k-partition of [n] can only be uniform if k divides n, in which case every class

must have size n/k. When k does not divide n, we consider the concept of almost uniform

k-partitions. A k-partition of [n] is called almost uniform if every class of the partition has

a size of bn/kc or dn/ke.

Definition 2.2.2. An (n, k)-partition system is a collection of distinct k-partitions of [n].

Let Pnk denote the collection of all k-partitions of [n]. An (n, k)-partition system is

called almost uniform if every partition in the system is almost uniform.

1234|5 123|45
124|35
125|34
134|25
135|24
145|23
234|15
235|14
245|13
345|12

Figure 2.2: Examples of a 2-partition of {1, 2, 3, 4, 5} (left) and of a (5, 2)-partition system
(right). Observe that the 2-partition is not almost uniform, whereas each partition in the
(5, 2)-partition system is. This means that the (5, 2)-partition system is also an almost
uniform system.

We are now able to formally introduce the concept of a Sperner partition system as first

defined in [33].

Definition 2.2.3. An (n, k)-Sperner partition system P ⊆ Pnk , is an (n, k)-partition

system with the property that for any distinct P,Q ∈ P, where P = {P1, . . . , Pk} and

Q = {Q1, . . . , Qk}, Pi 6⊆ Qj and Qi 6⊆ Pj for all i, j ∈ [k].

Besides Sperner set systems, Sperner partition systems also have connections to other

combinatorial objects. For example, in design theory, extensive research has been perfomed

on resolvable block designs, which are block designs where it is possible group the blocks

into resolution classes, where each resolution class is a partition of the point set of the

design. Refer to [22] for good a good overview of the topic. It is natural to try to determine

the maximum number of partitions in an (n, k)-Sperner partition system and thus produce

an analogue of Sperner’s theorem. Let SP(n, k) denote this maximum number.

5



2.2. Sperner partition systems

As part of their work in [28], Li and Meagher presented two constructions for Sperner

partition systems that take a Sperner partition system and extend it to one on a larger

ground set. The first construction is one that uses an (n, k)-Sperner partition system to

build an (n+ 1, k)-Sperner partition system.

Lemma 2.2.4 ([28]). For integers n > k > 0,

SP(n, k) 6 SP(n+ 1, k).

Proof. Begin with an (n, k)-Sperner partition system with SP(n, k) partitions, and aug-

ment it by adding a new element to an arbirary class in each partition in the system. The

resulting system will be an (n+1, k)-Sperner partition system with SP(n, k) partitions.

123|45|67 123|45|678
124|57|36 124|578|36
134|56|27 134|568|27
17|246|35 178|246|35

Figure 2.3: An example of using Lemma 2.2.4 on a (7, 3)-Sperner partition system (left) to
construct an (8, 3)-Sperner partition system with the same number of partitions (right).

The other construction that they presented allows for the construction of an (n+ k, k)-

Sperner partition system from an (n, k)-Sperner partition system.

Theorem 2.2.5 ([28]). For all integers n > k > 1,

k × SP(n, k) 6 SP(n+ k, k).

Proof. It is possible to take k different orderings on the set {n+1, . . . , n+k} such that for

any pair of orderings, no position has the same element in both orderings (such orderings

can be obtained from an abitrary k × k Latin square for example). Take an (n, k)-Sperner

partition system P that has SP(n, k) partitions, and order the classes of each partition.

For each partition in P and each of our k chosen orderings of {n + 1, . . . , n + k}, add the

ith element of the ordering to the ith class of the partition. Since the added elements are

not in [n], it can be seen that this results in an (n + k, k)-Sperner partition system with

k × SP(n, k) partitions.

From here on in this chapter, as well as in Chapters 3 and 4, we will simplify some of

our notation by letting c(n, k) and r(n, k) be the unique integers such that, for integers

n > k > 1, n = ck + r and r ∈ {0, . . . , k − 1}. Furthermore, we will generally only refer to

them as c and r respectively when n and k are obvious.

6



2.2. Sperner partition systems

8 9 A 1238|459|67A
123|45|67 9 A 8 1239|45A|678

A 8 9 123A|458|679
8 9 A 1248|579|36A

124|57|36 9 A 8 1249|57A|368
A 8 9 124A|578|369
8 9 A 1348|569|27A

134|56|27 9 A 8 1349|56A|278
A 8 9 134A|568|279
8 9 A 178|2469|35A

17|246|35 9 A 8 179|246A|358
A 8 9 17A|2468|359

Figure 2.4: An example of using a (7, 3)-Sperner partition system with 4 partitions (left)
to construct an (10, 3)-Sperner partition system with the 12 partitions (right) using the
construction in Theorem 2.2.5. The middle column denotes the ordering of the set {8, 9, A}
as called for in the construction, where A is used in place of the number 10.

After these constructive lower bounds on SP(n, k), upper bounds are also of great in-

terest. In [33], Meagher, Moura and Stevens proved the following upper bound on the size

of a Sperner partition system through the use of the LYM inequatity.

Theorem 2.2.6 ([33]). For integers n, k, c, r such that n > k > r > 0, k > 2 and n = ck+r,

SP(n, k) 6 MMS(n, k) where

MMS(n, k) =

(
n
c

)
k − r + r(c+1)

n−c

.

Proof. Assume k > 2 and let P ⊆ Pnk be an (n, k)-Sperner partition system. Let A be the

Sperner set system formed by taking the collection of all the classes in all of the partitions

in P . Note that |A| = k|P|. By the LYM Inequality (see Theorem 2.1.3), we have that

∑
S∈A

1(
n
|S|

) 6 1.

Let pi, for i ∈ [n], denote the number of sets in A with size i. It follows that

n∑
i=1

pi(
n
i

) 6 1. (2.1)

By defining the function f(i) =
(
n
i

)−1
for i ∈ [n], as well as dividing equation (2.1)

through by |A|, we obtain
n∑
i=1

pi
|A|f(i) 6

1

|A| . (2.2)

7



2.2. Sperner partition systems

Observe that since P is a collection of k-partitions on an n-set and A is formed by taking

the collection of all classes of the partitions in P ,

n∑
i=1

ipi =
∑
S∈A

|S| = n|P| = n
|A|
k
. (2.3)

It is also possible to extend f(i) from the integers i ∈ [n] to the real numbers 1 6 x 6 n

by letting

f(x) =

f(n), if x = n

(1− u)f(i) + uf(i+ 1), where x = i+ u, for i ∈ [n− 1] and 0 6 u < 1.

Furthermore, as proven in [32], it is known that this extension of f(i) is convex. Thus

we can see that

f
(n
k

)
= f

(
n∑
i=1

i
pi
|A|

)
6

n∑
i=1

f(i)
pi
|A| 6

1

|A| , (2.4)

with the equality coming from (2.3), the first inequality from the fact that right hand side

is a convex combination of convex functions due to the fact that
∑n

i=1 pi/|A| = 1, and the

final inequality from (2.2).

From the definition of f(i) and its extension to the real numbers, we have that

f
(n
k

)
= f

(
ck + r

k

)
= f

(
c+

r

k

)
=
(

1− r

k

)(n
c

)−1

+
r

k

(
n

c+ 1

)−1

.

Thus from (2.4), we have that

|A| 6 1(
1− r

k

) (
n
c

)−1
+ r

k

(
n
c+1

)−1 =
k

k − r + r(c+1)
n−c

(
n

c

)
,

and therefore

|P| 6
(
n
c

)
k − r + r(c+1)

n−c

.

When considering the form of the bound MMS(n, k) it is worth bearing in mind that

an almost uniform (n, k)-Sperner partition system can have at most
(
n
c

)
/(k − r) partitions

because each partition must contain k − r classes of size c. In fact Meagher, Moura and

Stevens showed that in the case of n = ck, in other words when k divides n, it is actually

possible to meet this bound. This is proved by combining Baranyai’s theorem (see [2]) with

the bound MMS(n, k).

8



2.3. Pairs of Families with Cross Properties

Theorem 2.2.7 ([33]).

SP(ck, k) = MMS(ck, k) =
1

k

(
ck

c

)
.

This leads to the question of whether SP(n, k) can be exactly determined for other

values of n and k, which was investigated in the work done by Li and Meagher in [28]. In

particular, the exact value of SP(n, k) has been determined in the following cases:

Lemma 2.2.8 ([28]). For nonnegative integers n, c, k, r such that n = ck+ r, and 0 6 r 6

k − 1.

(i) If k = 1 or c = 1, then SP(n, k) = 1.

(ii) If k = 2, then SP(n, k) =
(

2c+r−1
c−1

)
.

(iii) If k is even, c = 2, and r = 1, then SP(n, k) = 2k.

Note that Lemma 2.2.8(i) comes as a direct result of the fact that requiring k = 1 or

c = 1 results in partitions with either size n or 1 respectively, and Lemma 2.2.8(ii) follows

from the Erdős-Ko-Rado theorem, which we introduce in Theorem 2.4.3 (observing that

since k = 2, r ∈ {0, 1}).
In some other cases, specifically some in which c = 2, Li and Meagher improved the

previously known bounds on SP(n, k). These bounds are as follows:

Lemma 2.2.9 ([28]). For nonnegative integers n, c, k, r such that n = ck+ r, and 0 6 r 6

k − 1.

(i) If r = 1 and c = 2, SP(n, k) 6 2k.

(ii) If k > 3, r = 2 and c = 2, 2k + 1 6 SP(n, k) 6 2k + 3.

(iii) If r = k − 1 and c = 2, 3k − 1 6 SP(n, k).

2.3 Pairs of Families with Cross Properties

There is also a significant literature on pairs of families of sets with certain restrictions on

how sets from one family relate to sets in the other. In this section we discuss the aspects

of this literature that are most relevant to our work in Chapters 5 and 6. A pair (F ,G)

of families, where F ,G ⊆ 2[n], is said to be cross-intersecting if F ∩ G 6= ∅ for all F ∈ F
and G ∈ G, and it is said to be cross-Sperner if F * G and G * F for all F ∈ F and

G ∈ G. Our interest here is mostly focussed on cross-Sperner pairs of families and on cross-

intersecting pairs of Sperner set systems. However we first briefly discuss the literature on

cross-intersecting pairs of families, which were considered much earlier.

9



2.3. Pairs of Families with Cross Properties

In 1967, Hilton and Milner [21] showed that if (F ,G) is a cross-intersecting pair of

nonempty families of k-subsets of [n], then |F|+ |G| 6
(
n
k

)
−
(
n−k
k

)
+ 1. That this bound is

tight can be seen by taking F to contain a single k-set and G to be the family of all k-sets

that intersect this k-set. In 1968 Kleitman [26] showed that if F is a family of k-subsets of

[n], G is a family of `-subsets of [n], (F ,G) is a cross-intersecting, k+` 6 n, and |F| >
(
n−1
k−1

)
,

then |G| 6
(
n−1
`−1

)
. This result can be seen to be tight by fixing a point and taking F and G

to be the families of all k-sets and `-sets, respectively, containing the fixed point. In 2017,

Frankl and Kupavskii extended both of these results. In [14] they proved an analogue of

the result of [21] for the case where it is required that |F ∩G| > s > 0 for each F ∈ F and

G ∈ G. In this case, they showed that the largest value of |F| + |G| is achieved by taking

F to contain a single k-set and G to be the family of all k-sets that intersect this k-set in

at least s elements. In [13], they extended the result of [26] in the special case where all

sets in both families have the same size k, showing that if |F| is required to be larger than(
n−1
k−1

)
+
(
n−i
k−i+1

)
for some 3 6 i 6 k + 1, then |G| 6

(
n−1
k−1

)
−
(
n−i
k−1

)
.

More directly relevant to our interests here is the work of Gerbner et al. in [16] which

considers cross-Sperner families. They begin by bounding the maximum size of |F| + |G|
for a cross-Sperner pair. They first note that the problem is trivial if one of the families

is allowed to be empty, as then the other family can be taken to be 2[n]. Considering the

nontrivial case where neither family is empty, they were able to prove the following result.

Theorem 2.3.1 ([16]). There exists an integer n0 such that if n > n0 and F ,G ⊆ 2[n] are

non empty and form a cross-Sperner pair, then |F|+ |G| 6 2n − 2bn/2c − 2dn/2e + 2.

They also proved that there is a unique way to attain equality in this bound, which is

for either F or G to consist of exactly one set S of size bn/2c or dn/2e and the other family

to consist of all subsets of [n] that are neither supersets nor subsets of S. Of particular

relevance to us here is that they observe that for a fixed F , to maximise the size of G,

one should take all sets that are not supersets or subsets of sets in F . This leads to a

direct equivalence to the isoperimetric problem on the Boolean lattice graph, which we will

introduce properly in Section 2.5.

Gerbner et al. then went on to give an upper bound on |F||G|. Their proof relies on

the following lemma.

Lemma 2.3.2 ([16]). Let n be a positive integer and let F ,G ⊆ 2[n]. If (F ,G) is a cross-

Sperner pair, then the families F , G, F ∧ G, and F ∨ G are pairwise disjoint, where

F ∧ G = {F ∩G : F ∈ F and G ∈ G} and F ∨ G = {F ∪G : F ∈ F and G ∈ G}.

This lemma allows for the easy application of the following corollary of the Ahlswede and

Daykin inequality, also commonly known as the four functions theorem, which is a powerful

10
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result that applies to all distributive lattices (see [1] for the original work by Ahlswede and

Daykin).

Lemma 2.3.3 ([1]). Let F ,G ⊆ 2[n] for some integer n. Then

|F||G| 6 |F ∧ G||F ∨ G|.

With these two results, Gerbner et al. proved the following upper bound on |F||G|.

Lemma 2.3.4 ([16]). Let n > 2 be an integer and let F ,G ⊆ 2[n]. If (F ,G) is a cross-

Sperner pair, then |F||G| 6 22n−4.

An extremal construction that meets this bound is if F is taken to be the collection of

all sets containing 1 and not n, and G is taken to be the collection of all sets containing n

and not 1.

Also of interest to us are cross-intersecting pairs of Sperner set systems. Pyber first

examined these families in 1986 in [37], where he focused on bounding |F||G| when upper

bounds are placed on both the size of sets in F and the size of sets in G.

Theorem 2.3.5 ([37]). Let n, k and ` be positive integers and let F ⊆ 2[n] and G ⊆ 2[n] be

Sperner set systems such that |F ∩G| > 0, |F | 6 k and |G| 6 ` for all F ∈ F and G ∈ G.

1 If k > ` and 2k + `− 2 6 n, then |F||G| 6
(
n−1
k−1

)(
n−1
`−1

)
.

2 If k = ` and 2k 6 n, then |F||G| 6
(
n−1
k−1

)2
.

He also showed that this bound is tight in both cases by fixing a point x ∈ [n] and

letting F be the family of all k-sets that contain x and G be the family of all `-sets that

contain x.

Wong and Tay later considered the problem in [41], focusing on bounding |F|+ |G| when

no restriction is placed on on the sizes of sets.

Theorem 2.3.6 ([41]). If n > 3 is an integer and F ,G ⊆ 2[n] are Sperner set systems such

that |F ∩G| > 0 for all F ∈ F and G ∈ G, then

|F|+ |G| 6

2
(

n
dn/2e

)
if n is odd(

n
n/2

)
+
(

n
n/2+1

)
if n is even.

(2.5)

Furthermore there are Sperner set systems F ,G ⊆ 2[n] such that |F ∩G| > 0 for all F ∈ F
and G ∈ G and for which equality holds in (2.5).

11
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Like Pyber, they were also able to show that their bounds were tight. When n is odd,

this is be achieved by letting F and G both be the collection of all dn/2e-sets. When n is

even, this is achieved by letting F be the collection of all (n/2)-sets and G be the collection

of all (n/2 + 1)-sets.

2.4 Fundamental Results for Finite Set Systems

We now take a step back and introduce a number of concepts and results related to set

systems which will be of use throughout the thesis. We begin by introducing circular

permutations, which will allow us to give a proof for two fundamental results: the Erdős-

Ko-Rado theorem and the LYM inequality. The latter of these two results will then in turn

lead to a proof of Sperner’s Theorem.

Definition 2.4.1. A circular permutation of [n] is an n-tuple of the form (a1, . . . , an), such

that {a1, . . . , an} = [n]. All subscripts will be treated modulo n, and furthermore, we will

consider two circular permutations of [n] to be identical if for some integer s, ai = bi+s for

all i ∈ [n].

Note that, for example, (1, 2, 3, 4, 5), (2, 3, 4, 5, 1) and (5, 1, 2, 3, 4) are all the same

circular permutation of {1, 2, 3, 4, 5}. Also note that there are (n − 1)! distinct circular

permutations of [n].

Definition 2.4.2. An arc of length k of a circular permutation π = (a1, . . . , an), where

k < n, is a set of k elements of [n] which appear consecutively in π.

So an arc of length k can be written uniquely as {ar, ..., ar+k−1} for some r ∈ [n]. We

call ar the starting point of the arc and ar+k−1 the ending point of the arc. As an example,

for the circular permutation π = (2, 4, 1, 5, 3), the set {5, 3, 2} is an arc of length 3 in π, and

we say that it has the starting point 5 and the ending point 2. For a circular permutation

of [n], π, let C(π) denote the family of all arcs of π.

We shall now state and prove the Erdős-Ko-Rado theorem, which is a result that bounds

the maximum size of a family of pairwise intersecting sets that are all the same size. We

have already mentioned that this theorem was used to establish a result on Sperner partition

systems, and it will see further use later in this thesis.

Theorem 2.4.3 (Erdős-Ko-Rado Theorem [10]). Let n and k be positive integers such that

0 < k 6 n/2, and let F ⊆
(

[n]
k

)
where for all F,G ∈ F , |F ∩G| > 0. Then |F| 6

(
n−1
k−1

)
.

Proof. Consider an arbitrary cyclic permutation π of [n]. Observe that at most k arcs

of length k in π can be in F . This can be seen by considering an arbitrary arc F =

12
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{ar, ar+1, . . . , ar+k−1} ∈ C(π) such that F ∈ F . Observe that for any arc of length k in

C(π) that intersects F , exactly one of its starting or ending points is in F . Furthermore,

since k 6 n/2, for each i ∈ {r, . . . , r + k − 1} it cannot be the case that ai is the ending

point of an arc in F and ai+1 is the starting point of another arc in F as the two sets do

not intersect. So for each i ∈ {r, . . . , r + k − 1}, either ai+1 is the starting point of an arc

in F , ai is the ending point of an arc in F , or neither is the case. Also note that F will be

the unique arc in C(π) with starting point ar and ending point ar+k−1. Observing this, we

see that there are at most k arcs of length k in C(π) that are also in F .

We now proceed to count the number of pairs (π, F ) where π is a cyclic permutation on

[n] of which F is an arc that appears in F . To begin, for each F ∈ F , there are k! ways to

order the elements in F , and (n − k)! ways to order the elements of [n] \ F . This means

that there are k!(n − k)! choices for π and thus |F|k!(n − k)! possible (π, F ) pairs. If we

instead first consider an arbitrary π, of which there are (n − 1)!, it is shown above that

each one can contain at most k sets from F which could be chosen as F . So it follows that

there are at most k(n− 1)! pairs of the form (π, F ). Thus we see that,

|F|k!(n− k)! 6 k(n− 1)!

|F| 6
(
n− 1

k − 1

)
.

It is of interest to note that equality in the bound can be achieved for each k 6 n/2 by

taking all k-sets that contain a fixed element. When k = n/2, equality can also be achieved

by taking F to consist of all k-sets that do not contain a fixed element.

1 2

34

1 2

34

Figure 2.5: Examples of constructions meeting the bound in the Erdős-Ko-Rado theorem
for n = 4 and k = 2.

It is important to note that while cases where k > n/2 are not covered by the Erdős-

Ko-Rado theorem, they are trivially dealt with due to the fact that any pair of k-sets are

guaranteed to intersect, and thus any subfamily of
(

[n]
k

)
is guaranteed to be an intersecting
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family. So in these cases, the family
(

[n]
k

)
is the extremal example.

We now look how Sperner set systems can be embedded into circular permutations,

which is the final piece we need to prove the LYM inequality.

Lemma 2.4.4. Consider a circular permutation π = (a1, . . . , an) of [n], and a Sperner set

system F ⊆ C(π). Then |F| 6 n. If |F| = n, then all sets in F are the same size.

Proof. Consider an arbitrary ai in π. If ai is the ending point of two arcs in F , then it is

clear that the shorter arc must be a subset of the longer arc. As such, every point can be

the ending point of at most one arc in F and hence |F| 6 n.

Now assume |F| = n, but not all arcs in F are of the same size. For this to be true,

each ai must be the ending point of a distinct arc. Consider an i such that the arc ending

in ai+1 is longer than the arc ending in ai. Clearly the second arc is a subset of the first,

causing a contradiction.

With this lemma, we now have everything we need for a proof of the LYM inequality.

This proof is originally due to Lubell [30].

Lubell’s Proof of Theorem 2.1.3. ([30]) Let F ⊆ 2[n] be a Sperner set system for some

positive integer n. We proceed to prove the result by counting the number of pairs (F, π),

where F ∈ F and π is a circular permutation of [n] such that F appears in C(π).

For each F ∈ F , we want to count the number of cyclic permutations that have F as

an arc. There are |F |! ways to order F , and for each of these, there are (n − |F |)! ways

to build the remainder of the cyclic permutation such that F appears as an arc. As such,

there are
∑
F∈F
|F |!(n− |F |)! pairs of the form (F, π). On the other hand, there are (n− 1)!

circular permutations of [n], and by Lemma 2.4.4, each can have at most n arcs in F . As

such there are at most n! pairs of the form (F, π).

Combining these two facts, we see that

∑
F∈F

|F |!(n− |F |)! 6 n!,

and as such

1 >
∑
F∈F

|F |!(n− |F |)!
n!

=
∑
F∈F

1(
n
|F |

) .

As a consequence of using Lemma 2.4.4, we further note that equality in the LYM

inequality can only be achieved by having all sets in F be the same size. Using the LYM

inequality, we are able to give a simple proof of the bound given by Sperner’s theorem.
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Sperner’s theorem as a consequence of the LYM inequality. Let F ⊆ 2[n] be a Sperner

set system. Due to the fact that
(
n
k

)
is maximised when k = bn/2c or dn/2e, it is clear

that, by the LYM inequality,

|F|(
n

bn2 c
) =

∑
S∈F

1(
n

bn2 c
) 6

∑
S∈F

1(
n
|S|

) 6 1.

As such |F| 6
(

n
bn/2c

)
, with equality only being reached if |S| = bn/2c or dn/2e for all

S ∈ F . When n is even, this gives us that F =
(

[n]
n/2

)
. When n is odd, we observe that

equality can only occur if there is equality in the LYM inequality and therefore, by our

comment after the proof of the LYM inequality, can only be achieved when all sets are the

same size, and thus F =
(

[n]
bn/2c

)
or
(

[n]
dn/2e

)
.

Note that this is not the original method for proving Sperner’s theorem; the original is

a more complex proof that relies heavily on the concept of shadows and shades. While we

won’t present this more complex proof in this thesis (interested readers can find it in [40]),

it is still useful to introduce both shadows and shades as they inform some of our work in

Chapters 5 and 6.

Definition 2.4.5. The shadow of a family of sets F ⊆ 2[n], denoted by ∆(F) is the family

of sets {G ∈ 2[n] : for some F ∈ F , G ⊆ F and |F \G| = 1}.

Definition 2.4.6. The shade of a family of sets F ⊆ 2[n], denoted by ∇(F) is the family

of sets {G ∈ 2[n] : for some F ∈ F , F ⊆ G and |G \ F | = 1}.

Note that unlike with shadows, the shade of a family implicitly depends on the ground

set that the family is defined on. Also note that shadows and shades are also referred to as

down-shadows and up-shadows in the literature.

F ∆F ∇F
1 ∅ 12, 13, 14, 15

12, 34 1, 2, 3, 4 123, 124, 125, 234,
345, 134

123, 124, 345 12, 23, 13, 14, 24,
34, 35, 45

1234, 1235, 1245,
1345, 2345

Table 2.1: Examples of shades and shadows for different families on the ground set
{1, 2, 3, 4, 5}.

Thinking back to Sperner set systems, it is apparent that no set that appears in the

shadow or shade of a family can be added to the family while maintaining the Sperner

property. So in this context, it is useful to ask how to minimise the size of the shade or the
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shadow. To begin this work, we introduce the concept of shifting. For a family F ⊆ 2[n],

and a set F ∈ F we define Sij(F ), for integers i, j ∈ [n], as follows:

Sij(F ) =

(F \ {j}) ∪ {i}, if i 6∈ F, j ∈ F and (F \ {j}) ∪ {i} 6∈ F ,

F, otherwise.
(2.6)

Using this, we then define the shift of the family, Sij(F) to be

Sij(F) = {Sij(F ) : F ∈ F} . (2.7)

When performing the shift of a family F , for a set F ∈ F , we say that F shifts if

Sij(F ) 6= F and that F is fixed if Sij(F ) = F . For an example of shifting, consider

S1,3({{1}, {2, 3, 4}, {2, 3}, {1, 2}}). The sets {1} and {1, 2} do not shift as they do not

contain 3, the set {2, 3, 4} shifts to {1, 2, 4}, and the set {2, 3} cannot shift, as it would

shift to {1, 2} which is already in the family. As such, S1,3({{1}, {2, 3, 4}, {2, 3}, {1, 2}}) =

{{1}, {1, 2, 4}, {2, 3}, {1, 2}}.
If i < j, we refer to Sij(F) as a left shift. If i > j, we refer to Sij(F) as a right shift. One

fundamental fact about shifts is that taking the shift of any family will result in a family

of the same size, a fact which we will now prove.

Proposition 2.4.7. For F ⊆ 2[n] and any i, j ∈ [n], |Sij(F)| = |F|.

Proof. Suppose for a contradiction that there exist F1, F2 ∈ F such that F1 6= F2 but

Sij(F1) = Sij(F2). For this to occur, either one set shifts onto the other which remains

fixed, or both sets shift to the same set. Without loss of generality, assume that F1 shifts,

i.e. that i 6∈ F1, j ∈ F1 and (F1 \ {j}) ∪ {i} 6∈ F , and thus (F1 \ {j}) ∪ {i} ∈ Sij(F).

It cannot be that F2 remains fixed, as if Sij(F1) = Sij(F2) = F2, then F2 = (F1 \ {j})∪
{i}, which contradicts the necessary conditions for F1 being shifted. If instead both F1 and

F2 were shifted, then i 6∈ F1, j ∈ F1, i 6∈ F2, j ∈ F2 and (F1 \ {j}) ∪ {i} = (F2 \ {j}) ∪ {i}.
So F1 = F2, which is a contradiction. Thus it is apparent that the map Sij : F → Sij(F)

is a bijection, and so |F| = |Sij(F)|.

We will refer to a family F ⊆ 2[n] as being left shifted if for all 1 6 i < j 6 n,

Sij(F) = F . Furthermore, we often abbreviate left shifted to just shifted.

Shifting, and in particular shifted families, are an invaluable tool when dealing with

problems related to shades and shadows. This is primarily due to the following two results

(see [15] for a proof), which we will not be proving here, instead proving a more general

result (Lemma 6.3.2) in Chapter 6.
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Lemma 2.4.8. For F ⊆ 2[n], ∆(Sij(F)) ⊆ Sij(∆(F)) for all i, j ∈ [n].

Lemma 2.4.9. For F ⊆ 2[n], ∇(Sij(F)) ⊆ Sij(∇(F)) for all i, j ∈ [n].

These two results mean that if are considering an arbitrary family that has minimum

shadow or shade, then we can repeatedly left shift it until we have a shifted family with

the same size of shadow or shade. Knowing that a family is shifted provides a lot of insight

into its structure. For example, if a family is shifted and has a set of size k in it, we know

that the set {1, . . . , k} is in the family. Similarly, if there is a set that doesn’t contain the

element 1 in the family, then it must have been prevented from shifting by one that does. It

is this particular fact that will be of great use in proving both the Kruskal-Katona theorem,

which provides a tight lower bound on the size of the shadow of a family of sets of the same

size, and an approximation of it due to Lovász.

Theorem 2.4.10 (Kruskal-Katona theorem [24, 27]). Let F be a nonempty subset of
(

[n]
k

)
for integers k and n where 0 < k 6 n. Let xk, xk−1, . . . , xj be the unique integers such that

xk > xk−1 > · · · > xj > j > 1 and

|F| =
(
xk
k

)
+

(
xk−1

k − 1

)
+ · · ·+

(
xj
j

)
.

Then

|∆(F)| >
(

xk
k − 1

)
+

(
xk−1

k − 2

)
+ · · ·+

(
xj
j − 1

)
.

Moreover the family of the first |F| k-sets in colexicographical order has a shadow that

has size equal to the bound. The colexicographical order on
(

[n]
k

)
is given by X <colex Y if

and only if, for some i ∈ [n], we have i ∈ Y \X and X ∩{i+ 1, . . . , n} = Y ∩{i+ 1, . . . , n}.
The colexicographical order is sometimes also referred to as the squashed order.

However, there are circumstances where the form of this result makes it difficult to

use. Instead, it can sometimes be more useful to look at a slightly weaker result that

was proven by Lovász in [29]. To introduce this result, we require the following relaxation

of binomial coefficients: for any real number q > 1 and a positive integer k 6 q, let(
q
k

)
= 1

k!
(q)(q − 1)(q − 2) · · · (q − k + 1), noting that when q is an integer, this does not

change the usual definition.

Theorem 2.4.11 ([29], p. 95). Let F be a nonempty subset of
(

[n]
k

)
for integers k and n

where 0 < k 6 n. Then |∆(F)| >
(

q
k−1

)
, where q is the unique real number such that q > k

and
(
q
k

)
= |F|.

Before proving Theorems 2.4.10 and 2.4.11, we will make some observations and intro-

duce some notation that is shared between both results. By Lemma 2.4.8 we may assume
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that F is shifted. We proceed by induction on k and on |F| for both proofs. First, note

that both results hold trivially for arbitrary F when k = 1 and for all k when |F| = 1.

Let F1 = {F : F ∈ F and 1 ∈ F} and F ′1 = {F \ {1} : F ∈ F and 1 ∈ F}. Observe

that |∆(F)| > |F ′1|+ |∆(F ′1)|, as F ′1 and {{1} ∪ F : F ∈ ∆(F ′1)} are both subsets of ∆(F)

and are clearly disjoint. Also note that |F1| = |F ′1|.
We now proceed to prove both of these theorems at once, following the proof given in

[12].

Proof of Theorem 2.4.10. Assume that F is a nonempty subset of
(

[n]
k

)
for some k > 2

and that Theorem 2.4.10 holds true for all possible families of (k − 1)-sets and for families

of k-sets with size strictly less than |F|. Let xk, xk−1, . . . , xj be the integers defined in

Theorem 2.4.10.

If

|F1| >
(
xk − 1

k − 1

)
+

(
xk−1 − 1

k − 2

)
+ · · ·+

(
xj − 1

j − 1

)
,

then by induction,

|∆(F ′1)| >
(
xk − 1

k − 2

)
+

(
xk−1 − 1

k − 3

)
+ · · ·+

(
xj − 1

j − 2

)
.

Thus we have that

|∆(F)| >
((

xk − 1

k − 1

)
+

(
xk − 1

k − 2

))
+ · · ·+

((
xj − 1

j − 1

)
+

(
xj − 1

j − 2

))
=

(
xk
k − 1

)
+

(
xk−1

k − 2

)
+ · · ·+

(
xj
j − 1

)
as required. Now suppose

|F1| <
(
xk − 1

k − 1

)
+

(
xk−1 − 1

k − 2

)
+ · · ·+

(
xj − 1

j − 1

)
.

Thus, as |F \ F1| = |F| − |F1|, we have that

|F \ F1| >
((

xk
k

)
+

(
xk−1

k − 1

)
+ · · ·+

(
xj
j

))
−
((

xk − 1

k − 1

)
+

(
xk−1 − 1

k − 2

)
+ · · ·+

(
xj − 1

j − 1

))
=

(
xk − 1

k

)
+

(
xk−1 − 1

k − 1

)
+ · · ·+

(
xj − 1

j

)
.

So by induction, recalling that F1 is not empty and that |F1| > |∆(F \ F1)|, we have that

|F1| > |∆(F \ F1)| >
(
xk − 1

k − 1

)
+

(
xk−1 − 1

k − 2

)
+ · · ·+

(
xj − 1

j − 1

)
,
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which contradicts our supposition.

Proof of Theorem 2.4.11. Assume that F is a nonempty subset of
(

[n]
k

)
for some k > 2

and that Lemma 2.4.11 holds true for all possible families of (k − 1)-sets and for families

of k-sets with size strictly less than |F|. Let q be the unique positive real number such

that q > k and |F| =
(
x
k

)
. If |F1| >

(
q−1
k−1

)
, then by induction, since F ′1 is a collection of

(k − 1)-sets, we have that ∆(F ′1) >
(
q−1
k−2

)
, and thus

|∆(F)| >
(
q − 1

k − 1

)
+

(
q − 1

k − 2

)
=

(
q

k − 1

)
,

as required.

Supposed that instead |F ′1| <
(
q−1
k−1

)
. Then |F \ F1| = |F| − |F1| >

(
q
k

)
−
(
q−1
k−1

)
=
(
q−1
k

)
.

By induction, since |F \ F1| < |F| as F1 is nonempty due to F being shifted, we know

that |∆(F \ F1)| >
(
q−1
k−1

)
. Due to the fact that F is shifted, we also know that for any

E ∈ ∆(F \ F1), we have (E ∪ 1) ∈ F and hence E ∈ F ′1. Thus we see that |F ′1| >
|∆(F \ F1)| >

(
q−1
k−1

)
, which is a contradiction.

2.5 Isoperimetric Problem

The isoperimetric problem is a classical problem in mathematics which asks a simple ques-

tion: given a fixed “volume”, what is the minimum “perimeter” of an object with that

volume? The prototypical example of this problem is on Rn, where the goal is to find

the object with minimal surface area given a fixed volume. This question has also been

investigated for many other mathematical objects, with different measures of “volume” and

“perimeter” (see [23, 31, 36] for various different examples). Of particular interest to this

thesis is the question of minimising the boundary of a collection of vertices in a given graph

when the size of the collection is fixed.

Definition 2.5.1. Let G be a graph and let X be a set of verices of F . The neighbourhood

NG(X) of X is the set of all vertices of G that are adjacent to at least one vertex in X. The

boundary ∂G(X) of X is the set of vertices NG(X) \X. We sometimes omit the subscript

G when it is obvious from context.

One well investigated example of the isoperimetric problem on graphs looks at minimis-

ing the boundary of collection of vertices in the hypercube.
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2.5. Isoperimetric Problem

Definition 2.5.2. Let n be a nonnegative integer, then the n-dimensional hypercube, de-

noted by Qn, is the graph (V,E), where V = 2[n] and E = {{X, Y } : X, Y ∈ V, X ∈ ∆(Y )},
where ∆(Y ) is the shadow of Y as introduced in Definition 2.4.5.

Note that a set of vertices of Qn is simply a family of subsets of [n].

∅

{1}

∅

{1, 2}

{2}{1}

∅

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 2.6: The first four hypercubes, Q0, Q1, Q2 and Q3

The most well known work related to this topic was done by Harper in [20], where he

gave a construction that, for any specified size, gives a family with a minimal boundary

among all families of this size. What makes this construction of particular interest is that

it simply takes the initial segment of the vertices of Qn in simplicial order.

Definition 2.5.3. The simplicial order on the vertices of Qn for some integer n > 0 is

given by X <sim Y if |X| < |Y | or if |X| = |Y | and X <lex Y . Here <lex denotes the

lexicographical order on
(

[n]
|X|

)
given by X <lex Y if, for some i ∈ [n], we have i ∈ X \ Y

and X ∩ 1, ..., i = Y ∩ 1, ..., i.

Thus we now have the tools to properly express Harper’s theorem.

Theorem 2.5.4 (Harper’s theorem [20]). Let F ⊆ Qn and G be the initial segment of the

simplicial order of Qn such that |F| = |G|. Then N(F) > N(G).

It is important to note that the initial segment of the simplicial order is not the unique

minimising family, and more recent works such as [39] have made much progress in classi-

fying the others.

In the papers [3] and [4], Bashov examined a variation of this problem, where he instead

required all the sets in the family F to be the same size. Specifically, he asked how does

one minimise the family ∆(F) ∪∇(F), which he referred to as the double sided shadow of

F , when F ⊆
(

[n]
k

)
and |F| is specified, for integers n > k > 0.

As previously mentioned, it is known that equality in the Kruskal-Katona theorem can

be attained by taking the family F to be the first |F| k-sets in colexicographical order, and
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2.5. Isoperimetric Problem

we have just seen that Harper’s theorem states that the size of the boundary is minimised

by taking the first |F| vertices in simplicial order. Bashov showed that his problem is unlike

this in the sense that there is no ordering of
(

[n]
k

)
such that every initial segment of the

ordering produces a minimal boundary size. Specifically, he proved the following result.

Theorem 2.5.5 ([3, 4]). Let n and k be integers such that 3 6 k 6 n/2 and n > 10. For

every total order on
(

[n]
k

)
, there exists an integer m > m′ such that the initial segment of

the order that is of length m is not minimal in terms of the double sided shadow, where

� m′ = 4n− 14 if k = 3;

� m′ = 1 + k(n− k) + (k − 1)(2n− 2k − 3) if 4 6 k < n/2; or

� m′ = 1 + k2 + (2k − 3)(k − 2) + k(k−1)2

2
if k = n/2.

In spite of this, Bashov was still able to find a number of extremal families for small

values of n in [3]. In particular, he showed that for |F| = 1 + k(n − k), the extremal

family up to isomorphism is the family C(n, k) = {X ∈
(
n
k

)
: |X ∩ [k]| = k − 1}, and for

|F| < 1 + k(n− k) there exists an ordering on C(n, k) (which depends on k) such that the

initial segment is minimal in terms of the double sided shadow.

In Chapter 6, we look at the isoperimetric problem on a graph closely related to the

hypercube.
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Chapter 3

Sperner partition systems

3.1 Introduction

As established in Section 2.2, SP(n, k) has only been exactly determined for a small number

of families of n and k. In the unsolved cases, bounds are known on SP(n, k). In this chapter

we introduce a new construction for Sperner partition systems using a result of Bryant [6].

With this we are able to establish that an upper bound, denoted by MMS(n, k) (see below),

is asymptotically correct in many situations when c is suitably large. We also establish a

new, tighter, upper bound on SP(n, k) and present a summary of the new best lower and

upper bounds on SP(n, k) for a selection of small n and k.

Recall that for positive integers n and k such that n > k, with c and r being the unique

integers such that n = ck + r and r ∈ {0, . . . , k − 1}, Meagher, Moura and Stevens showed

that SP(n, k) 6 MMS(n, k) where

MMS(n, k) =

(
n
c

)
k − r + r(c+1)

n−c

.

Note that 0 6 r(c+1)
n−c 6 1 because 0 6 r 6 k − 1. Using this upper bound together with

Baranyai’s theorem [2], they also established that SP(n, k) = MMS(n, k) =
(
n−1
c−1

)
when

k divides n, as stated above. Finally, they noted that SP(n + 1, k) > SP(n, k) because

it is easy to augment an (n, k)-Sperner partition system to obtain an (n + 1, k)-Sperner

partition system with the same number of partitions. Thus they establish a naive lower

bound SP(n, k) > NLB(n, k) where

NLB(n, k) =
1

k

(
n− r
c

)
.

Despite its naivety, NLB(n, k) has hitherto been the best lower bound known on SP(n, k)
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3.1. Introduction

for general n and k. In [28], Li and Meagher show that SP(2k + 1, k) ∈ {2k − 1, 2k},
SP(2k+ 2, k) ∈ {2k+ 1, 2k+ 2, 2k+ 3} and SP(3k− 1, k) > 3k− 1. They also establish an

inductive lower bound by showing that SP(n+ k, k) > k · SP(n, k) for n > k > 2.

As mentioned earlier, in this chapter we introduce a new construction for Sperner parti-

tion systems using a result of Bryant [6]. With this we are able to establish that the upper

bound MMS(n, k) is asymptotically correct in many situations where c is large.

Theorem 3.1.1. Let n and k be integers with n→∞, k = o(n) and k > 3, and let c and

r be the integers such that n = ck + r and r ∈ {0, . . . , k − 1}. Then SP(n, k) ∼ MMS(n, k)

if

� n is even and r /∈ {1, k − 1}; or

� k − r →∞.

Note that the lower bound NLB(n, k) only implies the result of Theorem 3.1.1 when

r is very small compared to k, and the result of [28] that SP(n + k, k) > k · SP(n, k)

never implies Theorem 3.1.1 (see Lemmas 3.2.3 and 3.2.4). It is also worth noting that

the Sperner partition systems we construct to prove Theorem 3.1.1 are almost uniform (see

Lemmas 3.3.3 and 3.4.1, and note that it is easy to augment an almost uniform (n, k)-

Sperner partition system to obtain an almost uniform (n + 1, k)-Sperner partition system

with the same number of partitions).

We also prove a result which provides an implicit upper bound on SP(n, k) for k > 4.

In order to state it we require some definitions. For any nonnegative integer i and real

number y > i, let
(
y
i

)
represent 1

i!
y(y − 1) · · · (y − i + 1). Define, for each integer c > 2, a

function LLc : {0} ∪ R>1 → R>0 by LLc(0) = 0 and, for x > 1, LLc(x) =
(
q
c−1

)
where q is

the unique real number such that q > c and
(
q
c

)
= x. An equivalent definition for x > 1 is

LLc(x) = c
q−c+1

x where q is as before.

Theorem 3.1.2. If n and k are integers such that n > 2k + 2 and k > 4, then

⌈
(1− r(c+1)

n
) · SP(n, k)

⌉
+ LLc

(⌊ r(c+1)
n
· SP(n, k)

⌋)
6
(
n− 1

c− 1

)
,

where c and r are the integers such that n = ck + r and r ∈ {0, . . . , k − 1}.

For fixed n and k, the left hand side of the inequality

⌈
(1− r(c+1)

n
)p
⌉

+ LLc

(⌊ r(c+1)
n

p
⌋)

6
(
n− 1

c− 1

)
(3.1)

is nondecreasing in p and hence there is a unique nonnegative integer p′ such that (3.1)

holds for each p ∈ {0, . . . , p′} and fails for each integer p > p′. This p′ is an upper bound for
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3.2. Preliminaries

SP(n, k). We will see in Corollary 3.5.4 that p′ is always at most MMS(n, k). In practice

p′ can be found via a binary search, beginning with NLB(n, k) 6 p′ 6 MMS(n, k).

This chapter is organised as follows. In the next section we introduce some of the nota-

tion and results we require. In Section 3.3 we detail the main construction we use to prove

Theorem 3.1.1 and establish that it asymptotically matches the upper bound of MMS(n, k)

when c is large and r 6= k−1. The proof of Theorem 3.1.1 is completed in Section 3.4 using

a variant of our main construction. We then move on to prove Theorem 3.1.2 in Section 3.5.

Finally, in Section 3.6, we conclude by examining the performance of our bounds for small

parameter sets.

3.2 Preliminaries

For integers n and k with n > k > 1 we define c = c(n, k) and r = r(n, k) as the unique

integers such that n = ck + r and r ∈ {0, . . . , k − 1}. We use these definitions of c(n, k)

and r(n, k) throughout this chapter (as well as in Chapter 4) and abbreviate to simply c

and r where there is no danger of confusion. We also use n = ck + r frequently and tacitly

in our calculations.

Recall that an (n, k)-Sperner partition system is said to be almost uniform if each class

of each of its partitions has cardinality in {bn
k
c, dn

k
e} and hence each partition has k − r

classes of cardinality c and r classes of cardinality c+ 1. For nonnegative integers x and i,

we denote the ith falling factorial x by (x)i.

A hypergraph H consists of a vertex set V (H) together with a set E(H) of edges, each

of which is a nonempty subset of V (H). We do not allow loops or multiple edges. A

clutter is a hypergraph none of whose edges is a subset of another. A clutter is exactly a

Sperner family, but we use the term clutter when we wish to consider the object through

a hypergraph-theoretic lens. A set of edges of a hypergraph is said to be i-uniform if each

edge in it has cardinality i, and a hypergraph is said to be i-uniform if its entire edge set

is i-uniform.

A partial edge colouring of a hypergraph is simply an assignment of colours to some or

all of its edges with no further conditions imposed. If every edge is assigned a colour, it is

an edge colouring. Let γ be a partial edge colouring of a hypergraph H with colour set C.

For each z ∈ C, the set γ−1(z) of edges of H assigned colour z is called a colour class of γ.

For each z ∈ C and x ∈ V (H), let the number of edges of H that are assigned the colour

z by γ and contain the vertex x be denoted degγz (x). Further, for a subset Y of V (H), we

say that γ is almost regular on Y if | degγz (x)−degγz (y)| 6 1 for all z ∈ C and x, y ∈ Y . We

will make use of the following result of Bryant from [6].
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3.2. Preliminaries

Theorem 3.2.1 ([6]). Let H be a hypergraph, γ be an edge colouring of H with colour set

C, and Y be a subset of V (H) such that any permutation of Y is an automorphism of H.

There exists a permutation θ of E(H) such that |θ(E)| = |E| and θ(E)\Y = E \Y for each

E ∈ E(H), and such that the edge colouring γ′ of H given by γ′(E) = γ(θ−1(E)) for each

E ∈ E(H) is almost regular on Y .

In fact, we will only require the following special case of Theorem 3.2.1.

Lemma 3.2.2. Let n and k be integers with n > k > 1, let H be a clutter with |V (H)| =
n, and let {X1, . . . , Xt} be a partition of V (H) such that any permutation of Xw is an

automorphism of H for each w ∈ {1, . . . , t}. Suppose there is a partial edge colouring γ of

H with colour set C such that, for each z ∈ C, |γ−1(z)| = k and
∑

x∈Xw degγz (x) = |Xw| for

each w ∈ {1, . . . , t}. Then there is an (n, k)-Sperner partition system with |C| partitions

such that the classes of the partitions form a subset of E(H).

Proof. Throughout this proof we will treat partial edge colourings of H with colour set

C as edge colourings of H with colour set C ∪ {black} (where C does not contain black)

by considering all uncoloured edges to be coloured black. This will allow us to apply

Theorem 3.2.1 to them.

Let X = V (H). Roughly speaking, we will perform t applications of Theorem 3.2.1,

where on the ith application we “correct” the colouring on Xi. Formally, we will construct a

sequence of partial edge colourings γ0, . . . , γt of H with colour set C such that, for each s ∈
{0, . . . , t} and c ∈ C, |γ−1

s (c)| = k, degγsc (x) = 1 for each x ∈ ⋃s
i=1Xi, and

∑
x∈Xi degγsc (x) =

|Xi| for each i ∈ {s+1, . . . , t}. Let γ0 = γ and note that γ0 satisfies the claimed conditions.

Furthermore, it suffices to find a partial edge colouring γt satisfying the required conditions.

To see this note that, for each c ∈ C, the edges assigned colour c by γt form a partition

of X into k nonempty classes because the properties of γt guarantee that |γ−1
t (c)| = k and

degγtc (x) = 1 for each x ∈ X. Thus the colour classes of γt will induce an (n, k)-Sperner

partition system with the desired properties (any edges that are not coloured are not used

as partition classes of the system).

Suppose inductively that a partial edge colouring γs satisfying the required conditions

exists for some s ∈ {0, . . . , t − 1}. Now apply Theorem 3.2.1 with Y = Xs+1 to γs, to

obtain a partial edge colouring γs+1 of H. For each c ∈ C, |γ−1
s+1(c)| = |γ−1

s (c)| = k and

degγs+1
c (x) = degγsc (x) for each x ∈ X \Xs+1. Furthermore, degγs+1

c (x) = 1 for each c ∈ C
and x ∈ Xs+1, because

∑
x∈Xs+1

degγs+1
c (x) = |Xs+1| and γs+1 is almost regular on Xs+1.

Thus γs+1 satisfies the required conditions and the result follows.

For functions f(n), g(n), we say that f(n) 6∼ g(n) if lim
n→∞

f(n)
g(n)
6= 1. The next two lemmas

show that existing results in [28, 33] do not suffice to establish Theorem 3.1.1. Lemma 3.2.3
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shows that the lower bound of NLB(n, k) only implies the conclusion of Theorem 3.1.1 when

r is very small compared to k, and Lemma 3.2.4 shows that SP(n + k, k) > k · SP(n, k)

never implies the conclusion of Theorem 3.1.1.

Lemma 3.2.3. For integers n and k with n > 2k, k > 3, and n→∞, we have

NLB(n, k) � MMS(n, k)

unless k →∞ and r = o(k).

Proof. Note that

NLB(n, k)

MMS(n, k)
=
k − r + r(c+1)

n−c

k

(
(n− r)c

(n)c

)
<
k − r + r(c+1)

n−c

k
.

If k → ∞, then the result follows because r 6= o(k) and r(c+1)
n−c 6 1. If k 6→ ∞ and r > 2,

the result follows because r(c+1)
n−c 6 1. If k 6→ ∞ and r = 1, then r(c+1)

n−c 6 2
3

because k > 3

and c > 1, and again the result follows.

Lemma 3.2.4. For integers n and k with n > k, k > 3 and n→∞, we have

k ·MMS(n, k) � MMS(n+ k, k).

Proof. Let c = c(n, k) and r = r(n, k). Note that

k ·MMS(n, k)

MMS(n+ k, k)
=
k(c+ 1)(k − r + r(c+2)

n+k−c−1
)(n)c(

k − r + r(c+1)
n−c

)
(n+ k)c+1

6
k(c+ 1)

n+ k

(
(n)c

(n+ k − 1)c

)
6
(

1− k−1
k(c+2)

)c
,

where we used the fact that r(c+2)
n+k−c−1

6 r(c+1)
n−c in the first inequality and the fact that

k(c+1)
n+k

6 1 in the second. Because k−1
k

> 2
3
, the last expression can be seen to be decreasing

in c for c > 2 and hence at most 25
36

.

We conclude this section with a product construction for Sperner partition systems

which generalises the inductive result of Li and Meagher mentioned in the introduction.

Lemma 3.2.5. If m, n and k are positive integers such that m > k and n > k, then

SP(m+ n, k) > k · SP(m, k) · SP(n, k).

Proof. Let X and Y be disjoint sets with |X| = m and |Y | = n. Let p = SP(m, k)

and let P = {π1, . . . , πp} be an (m, k)-Sperner partition system on X with p partitions,

26
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where πi = {πi,1, . . . , πi,k} for i ∈ {1, . . . , p}. Let q = SP(n, k) and let Q = {ρ1, . . . , ρq} be

an (n, k)-Sperner partition system on Y with q partitions, where ρj = {ρj,1, . . . , ρj,k} for

j ∈ {1, . . . , q}. We claim that

{
σi,j,y : i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, y ∈ {1, . . . , k}

}
where

σi,j,y =
{
πi,z ∪ ρj,z+y : z ∈ {1, . . . , k}

}
(with the second component of the subscripts treated modulo k) is an (m+n, k)-Sperner par-

tition system with kpq partitions. To see that this claim is true, suppose that πi,z∪ρj,z+y ⊆
πi′,z′ ∪ ρj′,z′+y′ for some i, i′ ∈ {1, . . . , p}, j, j′ ∈ {1, . . . , q} and y, z, y′, z′ ∈ {1, . . . , k}. Be-

cause X and Y are disjoint, πi,z ⊆ πi′,z′ and ρj,z+y ⊆ ρj′,z′+y′ . So, because P and Q are

Sperner partition systems, i = i′, z = z′, j = j′ and, because z = z′, y = y′. This establishes

the claim and hence the theorem.

3.3 Main construction

The following technical lemma will be useful in our constructions. It enables us to partition

the edges of certain uniform hypergraphs into triples that are “balanced” in some sense.

Lemma 3.3.1. Let t be a positive integer, let H be a nonempty (2t)-uniform hypergraph

with V (H) = X, and let Y be a subset of X. Suppose that there are nonnegative integers

e0, . . . , et such that

(i) |{E ∈ E(H) : |E ∩ Y | = t + i}| = |{E ∈ E(H) : |E ∩ Y | = t − i}| = ei for each

i ∈ {0, . . . , t};
(ii) ei > ei+1 + s for each i ∈ {0, . . . , s − 1} where s is the largest element of {0, . . . , t}

such that es > 0.

For any p ∈ {0, . . . , b1
3
|E(H)|c}, we can partition some subset E∗ of E(H) into p (unordered)

triples such that

�
∑3

i=1 |Ei ∩ Y | = 3t for each triple {E1, E2, E3}; and

� |E∗i | = |E∗−i| for each i ∈ {1, . . . , t}, where E∗i = {E ∈ E∗ : |E ∩ Y | = t+ i}.

Proof. We prove the result by induction on |E(H)|. In fact, we prove a slightly stronger

result in which we do not require the full strength of (ii) when p = 1 but only that e0 > 1

(note |E(H)| > 3 when p = 1). Let s be the largest element of {0, . . . , t} such that es > 0.

Let the type of an edge E of H be |E ∩ Y | − t and the type of a triple be the multiset
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[x1, x2, x3] where x1, x2, x3 are the types of the three edges in the triple. If p = 0 the result

is trivial. If p = 1, we can take a single triple of type [−s, 0, s], because |E(H)| > 3 and

e0 > 0. So we may assume p > 2. In each of a number of cases below we first choose some

initial triples of specified types and then add the remaining triples (if any are required) by

applying our inductive hypothesis to the hypergraph H ′ formed by the unassigned edges.

The edges in the initial triples can be chosen arbitrarily subject to their specified type.

case initial triples

s = 0 [0, 0, 0]

s = 1 [−1, 0, 1]

s = 2, (e2 = 1 or p = 2) [−2, 1, 1] and [2,−1,−1]

s = 2, e2 > 2, p > 3 [−2, 0, 2], [−2, 1, 1] and [2,−1,−1]

s > 3 odd [−s, i, s− i] and [s,−i, i− s] for i ∈ {1, . . . ,min(es, bp2c, s−1
2

)}
s > 4 even [−s, i, s− i] and [s,−i, i− s] for i ∈ {1, . . . ,min(es, bp2c, s− 1)}

If s ∈ {0, 1, 2}, then using (i) and (ii) it is easy to confirm that we can choose triples of

the types listed and then apply our inductive hypothesis to find the rest of the triples, so

assume s > 3. For each i ∈ {−s, . . . , s}, let di be the number of edges of type i that are in

the initial triples. Let b = s−1
2

if s is odd, let b = s−1 if s is even, and let b′ = min(es, bp2c).

� If b′ > b, then d0 = 0, d−s = ds = b and di = 2b
s−1

for each i ∈ {−s+1, . . . , s−1}\{0}.
Using this fact, along with (i) and (ii), it can be confirmed that we can choose triples

of the types listed and then apply our inductive hypothesis to find the rest of the

triples.

� If b′ 6 b, then d0 = 0, d−s = ds = b′ and di ∈ {b 2b′

s−1
c, d 2b′

s−1
e} for each i ∈ {−s +

1, . . . , s − 1} \ {0}. Using this fact, along with (i) and (ii), it can be confirmed that

we can choose triples of the types listed and then apply our inductive hypothesis to

find the rest of the triples. To see this, note the following.

– If es 6 bp
2
c, then H ′ contains no edges of type s or −s, so the condition (ii)

required to apply our inductive hypothesis is weaker. Because of this, the fact

that |di− dj| 6 1 for i, j ∈ {0, . . . , s− 1} is sufficient to establish this condition.

– If bp
2
c < es, then we only require one further triple and so the fact that e0 > 1

suffices to establish our inductive hypothesis.

The next, very simple, lemma will be used to show that condition (ii) of Lemma 3.3.1

holds in the situations in which it is applied.
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Lemma 3.3.2. Let n and t be positive integers such that n > 6t − 2 is even, and let

ei =
(
n/2
t−i

)(
n/2
t+i

)
for each i ∈ {0, . . . , t}. Then ei > ei+1 + t for each i ∈ {0, . . . , t− 1}.

Proof. The result holds when t = 1, so assume that t > 2. Let i ∈ {0, . . . , t − 1}. By

routine calculation

ei = (t+i+1)(n−2t+2i+2)
(t−i)(n−2t−2i)

ei+1 >
(t+1)(n−2t+2)

t(n−2t)
ei+1 =

(
1 + n+2

t(n−2t)

)
ei+1.

Thus it suffices to show that ei+1 > t2 because then n+2
t(n−2t)

ei+1 > t. If i ∈ {0, . . . , t − 2},
then ei+1 > t2 because

(
n/2
t−i−1

)(
n/2
t+i+1

)
> n

2
· n

2
> t2. Also, et =

(
n/2
2t

)
>
(
n/2
2

)
> t2 because

n > 6t− 2.

The following lemma encapsulates the main construction used in our proof of Theo-

rem 3.1.1. Recall that c = c(n, k) and r = r(n, k) are the integers such that n = ck+ r and

r ∈ {0, . . . , k − 1}.

Lemma 3.3.3. Let n and k be integers such that n > 2k, k > 3, r 6= 0, and n and ck

are both even. Let u ∈ {1, . . . , b c
2
c} such that u = c

2
if r = k − 1. There exists an almost

uniform (n, k)-Sperner partition system with p partitions where

p = min
(⌊

a(u)

k − r

⌋
,
⌊
b(u)

r

⌋)
, a(u) =

c−u∑
i=u

(
n/2

i

)(
n/2

c− i

)
, b(u) = 2

u−1∑
i=0

(
n/2

i

)(
n/2

c+ 1− i

)
.

Proof. Note that r is even because n and ck are both even. Fix u ∈ {1, . . . , b c
2
c} and let

a = a(u) and b = b(u). Let X1 and X2 be disjoint sets such that |X1| = |X2| = n
2
, and let

X = X1 ∪X2. For each (i, j) ∈ N× N, let

E(i,j) = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = j}

and note |E(i,j)| =
(
n/2
i

)(
n/2
j

)
. Let

A =
⋃

(i,j)∈I′
E(i,j), where I ′ = {(i, j) ∈ N× N : i+ j = c,min(i, j) > u}

B =
⋃

(i,j)∈I′′
E(i,j), where I ′′ = {(i, j) ∈ N× N : i+ j = c+ 1,min(i, j) 6 u− 1}.

Note that |A| = a and |B| = b. Furthermore, no set in A is a subset of a set in B because,

for any A ∈ A and B ∈ B, |A ∩Xi| > u > |B ∩Xi| for some i ∈ {1, 2}. So the hypergraph

H with vertex set X and edge set A∪ B is a clutter. Let C be a set of p colours. Observe

that, for each i ∈ {1, 2}, any permutation of Xi is an automorphism of H. Thus, by

Lemma 3.2.2, it suffices to find a partial edge colouring γ of H with colour set C such that,
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3.3. Main construction

for each c ∈ C, |γ−1(c)| = k and
∑

x∈Xi degγc (x) = n
2

for each i ∈ {1, 2}. Note that the

resulting Sperner partition system will be almost uniform because each edge in H has size

c or c+ 1. Call a set of edges E ′ ⊆ E(H) compatible if
∑

E∈E ′ |E ∩X1| =
∑

E∈E ′ |E ∩X2|.

Case 1. Suppose that k is even. Then each partition in an almost uniform (n, k)-Sperner

partition system contains an even number, k − r, of classes of cardinality c and an even

number, r, of classes of cardinality c+ 1.

Because |E(i,j)| = |E(j,i)| for each (i, j) ∈ I ′′, we can partition B into b
2

compatible pairs.

Also, |E(i,j)| = |E(j,i)| for each (i, j) ∈ I ′ and, if c is even, a pair of edges from Ec/2,c/2 is

compatible. Thus, we can find ba
2
c disjoint compatible pairs in A (one edge in Ec/2,c/2 will

be unpaired in the case where c is even and |Ec/2,c/2| is odd, and all edges will be paired

otherwise).

Take a partial edge colouring γ of H with colour set C such that each colour class

contains r edges in B that form r
2

compatible pairs and k − r edges in A that form k−r
2

compatible pairs, and all remaining edges are uncoloured. This can be accomplished because

r
2
p 6 r

2
b b
r
c 6 b

2
and k−r

2
p 6 k−r

2
b a
k−rc 6 ba2c. Observe that for each c ∈ C we have that∑

x∈X degγc (x) = r(c + 1) + (k − r)c = n and, because the colour class can be partitioned

into compatible pairs,
∑

x∈X1
degγc (x) =

∑
x∈X2

degγc (x). Thus, as desired, we have that∑
x∈Xi degγc (x) = n

2
for each c ∈ C and i ∈ {1, 2}.

Case 2. Suppose that k is odd, c is even, and r 6= k − 1. Then each partition in an

almost uniform (n, k)-Sperner partition system contains an odd number, k− r, of classes of

cardinality c and an even number, r, of classes of cardinality c+1. Apply Lemma 3.3.1 with

Y = X1, t = c
2
, and ei = |E(t−i,t+i)| = |E(t+i,t−i)| for each i ∈ {0, . . . , t} to find p disjoint

triples of edges in A. The hypotheses of Lemma 3.3.1 can be seen to be satisfied using

Lemma 3.3.2 and because p 6 b a
k−rc 6 ba3c since k − r > 3. Note that each triple given by

Lemma 3.3.1 is compatible, and that the number of edges in E(i,j) assigned to triples is equal

to the number of edges in E(j,i) assigned to triples for each (i, j) ∈ I ′. Thus we can partition

all, or all but one, of the unassigned edges in A into ba−3p
2
c compatible pairs. Take a partial

edge colouring γ of H with colour set C such that each colour class contains r edges in B
that form r

2
compatible pairs and k − r edges in A that form one compatible triple and

k−r−3
2

compatible pairs, and all remaining edges are uncoloured. This can be accomplished

because r
2
p 6 r

2
b b
r
c 6 b

2
and k−r−3

2
p 6 ba−3p

2
c (since k−r−3

2
p 6 k−r

2
b a
k−rc −

3p
2
6 a−3p

2
and

k−r−3
2

p is an integer). Then γ has the properties we desire.

Case 3. Suppose that k is odd, c is even, and r = k − 1. Then u = c
2

by our hypotheses

and A = Ec/2,c/2. Let γ be a partial edge colouring of H with colour set C such that each

colour class contains k − 1 edges in B that form k−1
2

compatible pairs and one edge in A.
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3.3. Main construction

Again γ has the properties we desire.

To extend the approach of Lemma 3.3.3 to cases where n is even and ck is odd would

involve finding complementary triples of edges in B. This can be difficult because the edges

in B are “unbalanced” in terms of the sizes of their intersections with X1 and X2. To

circumvent this problem we will introduce, in Section 3.4, a variation on our construction

in which the edges in B are “balanced”. First, however, we show that, when c is large and

r 6= k−1, the lower bound implied by Lemma 3.3.3 asymptotically matches the MMS(n, k)

upper bound, recalling that

MMS(n, k) =

(
n
c

)
k − r + r(c+1)

n−c

.

Proof of Theorem 3.1.1 when n and ck are even. By our hypotheses, r 6= k − 1.

Furthermore, SP(n, k) = MMS(n, k) when r = 0, so we may assume 2 6 r < k − 1.

Let a(j) and b(j) be as defined in Lemma 3.3.3 for each j ∈ {1, . . . , b c
2
c}, and addition-

ally define a(0) =
(
n
c

)
, b(0) = 0, a(b c

2
c + 1) = 0, and b(b c

2
c + 1) =

(
n
c+1

)
. For each

j ∈ {0, . . . , b c
2
c + 1}, let aj = ba(j)

k−rc and bj = b b(j)
r
c. Note that a0 > · · · > abc/2c+1 = 0,

0 = b0 6 · · · 6 bbc/2c+1, a0 > b0 and abc/2c+1 < bbc/2c+1. Let w be the unique integer in

{0, . . . , b c
2
c} such that aw+1 6 bw+1 and aw > bw. By applying Lemma 3.3.3 with u = w+ 1

(or trivially if w = b c
2
c) we have SP(n, k) > aw+1, and by applying Lemma 3.3.3 with u = w

(or trivially if w = 0) we have SP(n, k) > bw. Furthermore, one of these bounds is the best

bound achievable via Lemma 3.3.3 because aw+1 > · · · > abc/2c+1 and b0 6 · · · 6 bw. By

definition of the function a, we have a(w + 1) = a(w)− δ
(
n/2
w

)(
n/2
c−w

)
, where δ = 2 if w < c

2

and δ = 1 if w = c
2
. Hence

SP(n, k) > aw+1 =

⌊
a(w)− δ

(
n/2
w

)(
n/2
c−w

)
k − r

⌋
> aw −

δ
(
n/2
w

)(
n/2
c−w

)
k − r − 1. (3.2)

We will bound aw and then apply (3.2). We now show that

(c+ 1)b(w) = (n− c)
((

n

c

)
− a(w)

)
− δ′(n− 2w + 2)

(
n/2

w − 1

)(
n/2

c− w + 1

)
, (3.3)

where δ′ = 1 if w > 1 and δ′ = 0 if w = 0. We may assume w > 1, for otherwise w = 0,

b(w) = 0, a(w) =
(
n
c

)
and (3.3) holds. Now apply Lemma 3.3.3 with u = w, let A and

B be as defined in its proof, and let Ac =
(
X
c

)
\ A. Note that |A| = a(w), |B| = b(w)

and |Ac| =
(
n
c

)
− a(w). We now count, in two ways, the number of pairs (S,B) such that

S ∈ Ac, B ∈ B and S ⊆ B.
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3.3. Main construction

� Each of the b(w) sets in B has exactly c+ 1 subsets in
(
X
c

)
and each of these is in Ac,

because no set in A is a subset of a set in B.

� By the definition of A, min(|S ∩ X1|, |S ∩ X2|) 6 w − 1 for each S ∈ Ac. Each of

the
(
n
c

)
− a(w) sets in Ac has n − c supersets in

(
X
c+1

)
. For each S ∈ Ac such that

min(|S ∩ X1|, |S ∩ X2|) 6 w − 2, all of these supersets of S are in B. For each of

the 2
(
n/2
w−1

)(
n/2

c−w+1

)
sets S ∈ Ac such that min(|S ∩ X1|, |S ∩ X2|) = w − 1, exactly

n
2
− w + 1 of these supersets of S are not in B.

Equating our two counts, we see that (3.3) does indeed hold.

Because aw > bw, we have ba(w)
k−r c > b

b(w)
r
c which implies a(w)

k−r > b(w)
r

or equivalently

b(w) < r
k−ra(w). Substituting this into (3.3) and solving for a(w) we see

a(w) >
(k − r)

((
n
c

)
− δ′(n−2w+2)

n−c

(
n/2
w−1

)(
n/2

c−w+1

))
k − r + r(c+1)

n−c

. (3.4)

Using aw >
a(w)
k−r − 1 and (3.4) in (3.2) we obtain

SP(n, k) >

(
n
c

)
− δ′(n−2w+2)

n−c

(
n/2
w−1

)(
n/2

c−w+1

)
k − r + r(c+1)

n−c

−
δ
(
n/2
w

)(
n/2
c−w

)
k − r − 2,

or, equivalently,

SP(n, k) >

(
n
c

)
− δ′(n−2w+2)

n−c

(
n/2
w−1

)(
n/2

c−w+1

)
− δ
(
1 + r(c+1)

(n−c)(k−r)

)(
n/2
w

)(
n/2
c−w

)
k − r + r(c+1)

n−c

− 2. (3.5)

In the above, note that δ′ 6 1, δ 6 2, n−2w+2
n−c 6 3

2
when w > 1 because k > 3, and

r(c+1)
(n−c)(k−r) 6 1 because r 6 k − 1.

Note that
(
n/2
x

)(
n/2
c−x

)
6
(
n/2
bc/2c

)(
n/2
dc/2e

)
for any x ∈ {0, . . . , c}. By using this fact and then

applying Stirling’s approximation we have, for n→∞ with k = o(n) and any x ∈ {0, . . . , c},

(
n/2

x

)(
n/2

c− x

)/(
n

c

)
6
√

2n
πc(n−c)(1 + o(1)) 6

√
2k

πc(k−1)
(1 + o(1)) = o(1)

(note that n → ∞ with k = o(n) implies c → ∞). Applying this fact twice in (3.5) yields

SP(n, k) > MMS(n, k)(1− o(1)). Combined with the fact that SP(n, k) 6 MMS(n, k), this

establishes the result.
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3.4 Completing the Proof of Theorem 3.1.1

As discussed after Lemma 3.3.3, we require a variation on our main construction in order

to complete the proof of Theorem 3.1.1.

Lemma 3.4.1. Let n and k be integers such that n > 2k, k > 3, n is even and ck is odd.

Let u ∈ { c+1
2
, . . . , c − 1} be such that u = c+1

2
if r = 1. There exists an almost-uniform

(n, k)-Sperner partition system with p partitions where

p = min
(⌊

a(u)

k − r

⌋
,
⌊
b(u)

r

⌋)
, a(u) = 2

c∑
i=u+1

(
n/2

i

)(
n/2

c− i

)
, b(u) =

u∑
i=c+1−u

(
n/2

i

)(
n/2

c+ 1− i

)
.

Proof. Note that each partition in an almost uniform (n, k)-Sperner partition system con-

tains an even number, k − r, of classes of cardinality c and an odd number, r, of classes of

cardinality c+ 1.

Fix u ∈ { c+1
2
, . . . , c− 1} and let a = a(u) and b = b(u). Let X1 and X2 be disjoint sets

such that |X1| = |X2| = n
2
, and let X = X1 ∪X2. As in the proof of Lemma 3.3.3, for each

(i, j) ∈ N× N, let

E(i,j) = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = j}.

Unlike the proof of Lemma 3.3.3, let

A =
⋃

(i,j)∈I′
E(i,j), where I ′ = {(i, j) ∈ N× N : i+ j = c,max(i, j) > u+ 1}

B =
⋃

(i,j)∈I′′
E(i,j), where I ′′ = {(i, j) ∈ N× N : i+ j = c+ 1,max(i, j) 6 u}.

Note that |A| = a and |B| = b. Furthermore, no set in A is a subset of a set in B because,

for any A ∈ A and B ∈ B, |A∩Xi| > u > |B∩Xi| for some i ∈ {1, 2}. Thus the hypergraph

H with vertex set X and edge set A∪B is a clutter. Observe that, for each i ∈ {1, 2}, any

permutation of Xi is an automorphism of H. Let C be a set of p colours. By Lemma 3.2.2,

it suffices to find a partial edge colouring γ of H with colour set C such that, for each

c ∈ C, |γ−1(c)| = k and
∑

x∈Xi degγc (x) = n
2

for each i ∈ {1, 2}. Note that the resulting

Sperner partition system will be almost uniform because each edge in H has size c or c+ 1.

Again, call a set of edges E ′ ⊆ E(H) compatible if
∑

E∈E ′ |E ∩X1| =
∑

E∈E ′ |E ∩X2|.
Case 1. Suppose that r 6= 1. Apply Lemma 3.3.1 with Y = X1, t = c+1

2
, and ei =

|E(t−i,t+i)| = |E(t+i,t−i)| for each i ∈ {0, . . . , t} to find p disjoint triples of edges in B. The

hypotheses of Lemma 3.3.1 can be seen to be satisfied using Lemma 3.3.2 and because

p 6 b b
r
c 6 b b

3
c since r > 3. Note that each triple given by Lemma 3.3.1 is compatible,

and that the number of edges in E(i,j) assigned to triples is equal to the number of edges in
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3.4. Completing the Proof of Theorem 3.1.1

E(j,i) assigned to triples for each (i, j) ∈ I ′′. Thus we can partition all, or all but one, of the

unassigned edges in B into b b−3p
2
c compatible pairs. Take a partial edge colouring γ of H

with colour set C such that each colour class contains r edges in B that form one compatible

triple and r−3
2

compatible pairs and k−r edges in A that form k−r
2

compatible pairs, and all

remaining edges are uncoloured. This can be accomplished because k−r
2
p 6 k−r

2
b a
k−rc 6 a

2

and r−3
2
p 6 b b−3p

2
c (note that r−3

2
p is an integer less than or equal to r

2
b b
r
c − 3p

2
). Then γ

has the properties we desire.

Case 2. Suppose that r = 1. Then u = c+1
2

by our hypotheses and B = E(c+1)/2,(c+1)/2.

Take a partial edge colouring γ of H with colour set C such that each colour class contains

one edge in B and k − 1 edges in A that form k−1
2

compatible pairs. Again γ has the

properties we desire.

The approach of Lemma 3.4.1 can also be applied when n and k are both even. How-

ever, computational evidence indicates that this approach almost always underperforms

Lemma 3.3.3. We can now prove the remainder of Theorem 3.1.1.

Proof of Theorem 3.1.1. We saw in Section 3.3 that Theorem 3.1.1 holds when n and

ck are both even. Here, we first use Lemma 3.4.1 to deal with almost all of the remaining

cases where n is even, and then use the monotonicity of SP(n, k) in n to complete the rest

of the proof.

Case 1. Suppose that n is even, ck is odd, and r 6= 1. The proof is very similar to the

proof in the case where n and ck are even, but we highlight the differences.

Let a(j) and b(j) be as defined in Lemma 3.4.1 for each j ∈ { c+1
2
, . . . , c − 1}, and

additionally define a( c−1
2

) =
(
n
c

)
, b( c−1

2
) = 0, a(c) = 0, and b(c) =

(
n
c+1

)
− 2
(
n/2
c+1

)
. For

each j ∈ { c−1
2
, . . . , c}, let aj = ba(j)

k−rc and bj = b b(j)
r
c. Note that a(c−1)/2 > · · · > ac = 0,

0 = b(c−1)/2 6 · · · 6 bc, a(c−1)/2 > b(c−1)/2 and ac < bc. Let w be the unique integer in

{ c−1
2
, . . . , c − 1} such that aw > bw and aw+1 6 bw+1. By applying Lemma 3.4.1 with

u = w + 1 (or trivially if w = c− 1) we have SP(n, k) > aw+1. By definition of a, we have

a(w + 1) = a(w)− 2
(
n/2
w+1

)(
n/2

c−w−1

)
and hence

SP(n, k) > aw+1 =

⌊
a(w)− 2

(
n/2
w+1

)(
n/2

c−w−1

)
k − r

⌋
> aw −

2
(
n/2
w+1

)(
n/2

c−w−1

)
k − r − 1. (3.6)

We now show that

(c+ 1)b(w) = (n− c)
((

n

c

)
− a(w)

)
− δ′(n− 2w)

(
n/2

w

)(
n/2

c− w

)
, (3.7)

where δ′ = 1 if w > c+1
2

and δ′ = 0 if w = c−1
2

. We may assume w > c+1
2

, for otherwise
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w = c−1
2

, b(w) = 0, a(w) =
(
n
c

)
and (3.7) holds. Consider applying Lemma 3.4.1 with

u = w, let A and B be as defined in its proof, and let Ac =
(
X
c

)
\A. Note that |A| = a(w),

|B| = b(w) and |Ac| =
(
n
c

)
− a(w). We now count, in two ways, the number of pairs (S,B)

such that S ∈ Ac, B ∈ B and S ⊆ B.

� Each of the b(w) sets in B has exactly c+ 1 subsets in
(
X
c

)
and each of these is in Ac,

because no set in A is a subset of a set in B.

� By the definition of A, max(|S ∩ X1|, |S ∩ X2|) 6 w for each S ∈ Ac. Each of

the
(
n
c

)
− a(w) sets in Ac has n − c supersets in

(
X
c+1

)
. For each S ∈ Ac such that

max(|S ∩X1|, |S ∩X2|) 6 w − 1, all of these supersets of S are in B. For each of the

2
(
n/2
w

)(
n/2
c−w

)
sets S ∈ Ac such that max(|S∩X1|, |S∩X2|) = w, exactly n

2
−w of these

supersets of S are not in B.

By equating our two counts, (3.7) holds.

Using (3.6) and (3.7) in place of (3.2) and (3.3), it is now routine to obtain the desired

conclusion by following the argument from the case of the proof where n and ck are even.

Case 2. Suppose that n is odd, or that n is even and r = 1. By our hypotheses, k−r →∞.

Note that

MMS(n− 1, k)

MMS(n, k)
=

k − r + r(c+1)
n−c

k − r + 1 + (r−1)(c+1)
n−c−1

· n− c
n

>
k − r

k − r + 1
· k − 1

k
= 1− o(1),

where the first inequality follows because r(c+1)
n−c > (r−1)(c+1)

n−c−1
and n−c

n
> k−1

k
and the second

equality follows because k−r →∞. Hence we have MMS(n−1, k) = MMS(n, k)(1−o(1)).

Thus, if SP(n− 1, k) = MMS(n− 1, k)(1− o(1)), we have

SP(n, k) > SP(n− 1, k) = MMS(n− 1, k)(1− o(1)) = MMS(n, k)(1− o(1)). (3.8)

If n is even and r = 1, we have SP(n − 1, k) = MMS(n − 1, k) from [33] and thus (3.8)

definitely holds. So the theorem holds in all the cases where n is even. But, having

established this, we may assume that n is odd and we know that SP(n− 1, k) = MMS(n−
1, k)(1− o(1)). Hence the proof is complete, using (3.8).

3.5 Proof of Theorem 3.1.2

Let X be a ground set, let S be a family of subsets of X, and let i be an integer. If each

set in S has cardinality at least i, we extend the definitions of shadow and shade in the

following fashion. Define ∆i(S) to be the family of all sets in
(
X
i

)
that are subsets of some
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set in S. Similarly, if each set in S has cardinality at most i, then we define the ∇i(S) to

be the family of all sets in
(
X
i

)
that are supersets of some set in S. In particular, note that

∆i(S) and ∇i(S) allow for S to be a family of sets of different sizes, unlike the conventional

definitions for shadow and shade.

The following theorem, due to Lovász [29, p. 95], gives a convenient approximation

to the Kruskal-Katona theorem (see [24, 27] for the original theorem, and Section 2.4 for

discussion).

Theorem 3.5.1. If i > 2 is an integer, X is a set and S ⊆
(
X
i

)
, then |∆i−1(S)| > LLi(|S|).

Recall that the function LLi was defined just prior to the statement of Theorem 3.1.2

in Section 3.1. It will be important for our purposes that, for a fixed integer i > 2, LLi(x)

is monotonically increasing and concave in x for x > 1 (see [7, Lemma 4]). We will make

use of the following simple consequence of Theorem 3.5.1.

Lemma 3.5.2. Let H be a clutter with edge set E, and c be a positive integer such that

|E| > c for each E ∈ E. Then |∆c(E)| > min(|E|,
(

2c+1
c

)
+ 1).

Proof. If each edge in E has cardinality c, then ∆c(E) = E and the result holds trivially.

So we may suppose inductively that the maximum cardinality of an edge in E is j > c+ 1

and that the result holds if the maximum cardinality of an edge in E is j − 1.

Let Ei = {E ∈ E : |E| = i} for each i ∈ {c, . . . , j}, and let H∗ be a hypergraph with

vertex set V (H) and edge set E∗ = (E \ Ej) ∪ ∆j−1(Ej). Because H is a clutter, H∗ is a

clutter and ∆j−1(Ej) is disjoint from Ej−1.

� If |Ej| 6
(

2j−1
j

)
, then |Ej| =

(
y
j

)
for some real y 6 2j − 1 and hence |∆j−1(Ej)| >(

y
j−1

)
>
(
y
j

)
= |Ej| using Theorem 3.5.1. Thus |E∗| > |E|.

� If |Ej| >
(

2j−1
j

)
, then |∆j−1(Ej)| >

(
2j−1
j−1

)
>
(

2c+1
c

)
by Theorem 3.5.1 and so |E∗| >(

2c+1
c

)
+ 1.

So in either case |E∗| > min(|E|,
(

2c+1
c

)
+1). The result now follows by applying our inductive

hypothesis to E∗ and noting that ∆c(E∗) = ∆c(E).

The bulk of the work of proving Theorem 3.1.2 is accomplished in the following lemma.

It establishes that (3.1) holds subject to the existence of a clutter with desirable properties.

It then only remains to show that, given an (n, k)-Sperner partition system with p partitions,

a clutter satisfying the hypotheses of Lemma 3.5.3 can be obtained by considering the

partition classes containing a particular element. (In fact, we must also do some tedious

checking to ensure that (3.1) holds for “small” values of p not covered by Lemma 3.5.3.)

In the proof of Theorem 3.1.2, this special element is chosen as one that, according to a

certain metric, tends overall to appear in smaller partition classes.
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Lemma 3.5.3. Let n and k be integers such that n > 2k + 2 and k > 3, and let p be an

integer such that

p > max
(

2n
c(2k−r)

((
n−1
c−1

)
−
(

2c+1
c−1

))
,
(
n−1
c−1

)
+ 1
)
.

If there is a clutter with n− 1 vertices and edge set E such that |E| > p and
∑

E∈E
c−|E|
|E|+1

>
p(k−r)
n

, then ⌈(
1− r(c+1)

n

)
p
⌉

+ LLc

(⌊ r(c+1)
n

p
⌋)

6
(
n− 1

c− 1

)
.

Proof. Let H be a clutter satisfying the hypotheses of the lemma and let X ′ = V (H). For

each i ∈ {0, . . . , n − 1}, let Ei = {E ∈ E : |E| = i} and let E>c = Ec+1 ∪ · · · ∪ En−1. We

abbreviate dpc(k−r)
n
e to a0. Note that a0 = d(1 − r(c+1)

n
)pe using n = ck + r. We consider

two cases according to minimum cardinality of an edge in E .

Case 1. Suppose that |E| > c − 1 for each E ∈ E . Then the only edges in E that make

a positive contribution toward
∑

E∈E
c−|E|
|E|+1

are those in Ec−1 and so by our hypotheses we

must have 1
c
|Ec−1| > p(k−r)

n
and hence |Ec−1| > a0. Also, because p >

(
n−1
c−1

)
+ 1, we have

E *
(
X′

c−1

)
and hence |Ec| + |E>c| > 1. Let H∗ be the hypergraph with vertex set X ′ and

edge set E∗ = (E \ E>c) ∪ ∆c(E>c). Then E∗ = Ec−1 ∪ Ec ∪ ∆c(E>c) and, because H is a

clutter, H∗ is a clutter and ∆c(E>c) is disjoint from Ec.
There are

(
n−1
c−1

)
sets in

(
X′

c−1

)
, and because H∗ is a clutter each of these can be in at

most one of Ec−1 and ∆c−1(Ec ∪∆c(E>c)). Thus, by Theorem 3.5.1,

|Ec−1|+ LLc
(
|Ec|+ |∆c(E>c)|

)
6
(
n− 1

c− 1

)
. (3.9)

We consider two subcases according to the value of |E>c|.
Case 1a. Suppose that |E>c| 6

(
2c+1
c

)
. Then |∆c(E>c)| > |E>c| = |E| − |Ec| − |Ec−1| by

Lemma 3.5.2. So |Ec|+ |∆c(E>c)| > max(p− |Ec−1|, 1) because |E| > p and |Ec|+ |E>c| > 1.

Thus, using the fact that LLc is monotonically increasing, (3.9) implies that

f(|Ec−1|) 6
(
n− 1

c− 1

)
where f(a) = a+ LLc (max (p− a, 1)) .

Consider f as a function on the real domain a0 6 a 6 |E|, noting that we have seen

a0 6 |Ec−1| 6 |E|. Because f(|Ec−1|) 6
(
n−1
c−1

)
, certainly the global minimum of f is at most(

n−1
c−1

)
. Now, f is monotonically increasing for p− 1 < a 6 |E| and, because LLc is concave,

f is concave for a0 6 a 6 p − 1. Thus, f achieves its global minimum either at a = a0 or

at a = p− 1. However, f(p− 1) = p− 1 + c and p− 1 >
(
n−1
c−1

)
by our hypotheses. Thus f

achieves its global minimum at a = a0 and we have f(a0) 6
(
n−1
c−1

)
. Now the result follows
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because

f(a0) = a0 + LLc(p− a0) =
⌈(

1− r(c+1)
n

)
p
⌉

+ LLc

(⌊
r(c+1)
n

p
⌋)
.

Case 1b. Suppose that |E>c| >
(

2c+1
c

)
. Because

∑
E∈E

c−|E|
|E|+1

> p(k−r)
n

,

p(k−r)
n

6 1
c
|Ec−1| −

n−1∑
i=c+1

i−c
i+1
|Ei| 6 1

c
|Ec−1| − 1

c+2
|E>c|,

where the last inequality follows because i−c
i+1

> 1
c+2

for each i ∈ {c + 1, . . . , n − 1}. Thus

|E>c| 6 c+2
c
|Ec−1| − p(c+2)(k−r)

n
. Also, |∆c(E>c)| >

(
2c+1
c

)
by the hypothesis of this subcase

and Lemma 3.5.2. Combining these facts and |E| > p, we have

|Ec|+|∆c(E>c)| = |E|−|Ec−1|−|E>c|+|∆c(E>c)| > max
(
p(c+1)(2k−r)

n
− 2c+2

c
|Ec−1|, 0

)
+
(

2c+1
c

)
.

Thus, (3.9) implies that

g(|Ec−1|) <
(
n− 1

c− 1

)
where g(a) = a+ LLc

(
max

(
p(c+1)(2k−r)

n
− 2c+2

c
a, 0
)

+
(

2c+1
c

))
.

Consider g as function on the real domain a0 6 a 6 |E| and note that the global

minimum of g is less than
(
n−1
c−1

)
. Now, g is monotonically increasing for a1 < a 6 |E| and

concave for a0 6 a 6 a1, where a1 = pc(2k−r)
2n

. Thus, it achieves its global minimum either

at a = a0 or at a = a1. However, g(a1) = a1 +
(

2c+1
c−1

)
>
(
n−1
c−1

)
using the hypothesis that

p > 2n
c(2k−r)(

(
n−1
c−1

)
−
(

2c+1
c−1

)
). Thus we have g(a0) <

(
n−1
c−1

)
. Now, setting δ = a0 − pc(k−r)

n
and

noting that 0 6 δ < 1,

g(a0) = a0 + LLc
(
p− a0 +

(
2c+1
c

)
− c+2

c
δ
)
> a0 + LLc(p− a0).

As in Case 1a, the result follows.

Case 2. Suppose that |E| 6 c − 2 for some E ∈ E . Using Case 1 as a base case, we may

suppose inductively that the minimum cardinality of an edge in E is j 6 c− 2 and that the

lemma holds when the minimum cardinality of an edge in E is j + 1. For any family S of

subsets of X, define d′(S) =
∑

S∈S
c−|S|
|S|+1

. Note we have assumed that d′(E) > p(k−r)
n

.

Let H∗ be the hypergraph with vertex set X ′ and edge set E∗ = (E \ Ej) ∪ ∇j+1(Ej).
Because H is a clutter, H∗ is a clutter and ∇j+1(Ej) is disjoint from Ej+1. Thus it suffices

to show that d′(∇j+1(Ej)) > d′(Ej) and |∇j+1(Ej)| > |Ej| because then we will be able to

apply our inductive hypothesis to H∗ to obtain the required result.

Each edge in Ej is a subset of n− j − 1 edges in ∇j+1(Ej), and each edge in ∇j+1(Ej) is
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a superset of at most j + 1 edges in Ej. Thus |∇j+1(Ej)| > n−j−1
j+1
|Ej| and

d′(∇j+1(Ej)) = c−j−1
j+2
|∇j+1(Ej)| > (c−j−1)(n−j−1)

(j+1)(j+2)
|Ej| = (c−j−1)(n−j−1)

(c−j)(j+2)
d′(Ej),

where the second equality follows because d′(Ej) = c−j
j+1
|Ej|. Thus d′(∇j+1(Ej)) > d′(Ej) and

|E∗| > |E| as required because, using j ∈ {0, . . . , c−2} and k > 3, we have c−j−1 > 1
2
(c−j)

and n− j − 1 > 2(j + 2).

Proof of Theorem 3.1.2. Let p0 = SP(n, k), let X be a set with |X| = n, and let P be

an (n, k)-Sperner partition system on ground set X with p0 partitions. We may assume

r 6= 0 because, when r = 0, SP(n, k) =
(
n−1
c−1

)
and (3.1) clearly holds with p =

(
n−1
c−1

)
. So, in

addition to n > 2k+2, we have n > 4c+1. Let p1 = max( 2n
c(2k−r)(

(
n−1
c−1

)
−
(

2c+1
c−1

)
),
(
n−1
c−1

)
+1).

Case 1. Suppose that p0 > p1. We will find a clutter satisfying the conditions of

Lemma 3.5.3 and so complete the proof. For each x ∈ X, let P(x) be the set of all partition

classes of P that contain x. For a subset S of X we define d(S) = c + 1 − |S|, and for a

family S of subsets of X we define d(S) =
∑

S∈S d(S). Note that, for each partition π in P ,

we have d(π) = k− r because π has exactly k classes and the sum of the cardinalities of the

classes is equal to n = ck + r. For a vertex x ∈ X, we further define d(x) =
∑

S∈P(x)
d(S)
|S| .

Thus we have that
∑

x∈X d(x) =
∑

π∈P d(π) = p0(k − r). Let z be an element of X such

that d(z) > d(x) for each x ∈ X and observe that d(z) > p0(k−r)
n

. Let H be the hypergraph

with vertex set X ′ = X \ {z} and edge set E = {S \ {z} : S ∈ P(z)}. Note that H is

a clutter and |E| = p0 because P is a Sperner partition system with p0 partitions. Thus,

because d(z) > p0(k−r)
n

and p0 > p1, H satisfies the conditions of Lemma 3.5.3 and we can

apply it to produce the required result.

Case 2. Suppose that p0 < p1. In this case we show directly that (3.1) holds for some real

number p > p1 and hence that it holds for p = p0 (recall that the left hand side of (3.1) is

nondecreasing in p).

Case 2a. Suppose that c = 2. Then, when r = 2, we have p1 = 2k + 2 and (3.1) holds

because LL2(6) 6 5. When r > 3, p1 = 2k+r
2k−r (2k + r − 6) and it can be seen that (3.1)

holds if and only if LL2(b3r(2k+r−6)
2k−r c) 6 br + 5 + 2r(r−3)

2k−r c. This holds for each integer r > 4

because then 3r(2k+r−6)
2k−r < 9r 6

(
r+5

2

)
. It also holds for r = 3 because LL2(9) 6 8.

Case 2b. Suppose that c > 3. Let p2 = 2n
c(2k−r)(

(
n−1
c−1

)
− 1) and note that p2 > p1. Noting

that 1− r(c+1)
n

= c(k−r)
n

, it can be seen that (3.1) will hold with p = p2 provided that

LLc

(
2r(c+1)
c(2k−r)

((
n−1
c−1

)
− 1
))

6
⌊

r
2k−r

(
n−1
c−1

)
+ 2k−2r

2k−r

⌋
. (3.10)
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Let z = 2r(c+1)
c(2k−r)(

(
n−1
c−1

)
−1) be the argument of LLc in (3.10) and note that if z >

(
3c+1
c

)
, then

it follows from the definition of LLc that LLc(z) 6 c
2c+2

z and thus that (3.10) holds. Because

r > 1, we have z > 2c+2
2n−c−2

(
(
n−1
c−1

)
− 1). This latter expression is an increasing function of

n for n > 4c + 1. Thus, for c > 9 we have z >
(

3c+1
c

)
because z > 2c+2

2n−c−2
(
(
n−1
c−1

)
− 1) >

2c+2
7c

(
(

4c
c−1

)
− 1) and

2c+2
7c

((
4c
c−1

)
− 1
) /(

3c+1
c

)
= 2c+2

21c+7

(
4c
c−1

)/(
3c
c−1

)
− 2c+2

7c

/(
3c+1
c

)
> 2c+2

21c+7
(4

3
)c−1 − 10−7 > 1.

Furthermore, by explicit calculation, we have z > 2c+2
7c

(
(

4c
c−1

)
− 1) >

(
3c+1
c

)
for c = 8. We

also have z > 2c+2
2n−c−2

(
(
n−1
c−1

)
− 1) >

(
3c+1
c

)
for c ∈ {4, 5, 6, 7} and n > 31 and for c = 3 and

n > 61. This leaves only a limited number of pairs (n, k) to be checked. Using a computer,

it is routine to compute p1 for each pair and verify that (3.1) holds for p = p1.

We conclude this section by showing that a slightly weaker version of the upper bound

implied by Theorem 3.1.2 can be written in a form that is very reminiscent of the expression

for MMS(n, k), and that this implies that our upper bound is always at least as good as

MMS(n, k).

Corollary 3.5.4. If n and k are integers such that n > 2k + 2, k > 4 and r 6= 0,

SP(n, k) 6

(
n
c

)
(k − r) + r(c+1)

q−c+1

(3.11)

where q is the real number such that q > c and
(
q
c

)
= r(c+1)

n
· SP(n, k). Furthermore, the

bound implied by Theorem 3.1.2 is less than MMS(n, k).

Proof. Observe that SP(n, k) > NLB(n, k) = 1
k

(
ck
c

)
implies r(c+1)

n
· SP(n, k) > r

k2

(
ck
c

)
.

Further, it is routine to verify r
k2

(
ck
c

)
> r

16

(
4c
c

)
>
(

2c−1
c

)
since r > 1 when c > 3 and r > 2

when c = 2. Thus we have r(c+1)
n
· SP(n, k) >

(
2c−1
c

)
. It follows that q is well defined.

Further, because LLc(1) = c, LLc(
(

2c−1
c

)
) =

(
2c−1
c

)
and LLc is concave, the derivative of

LLc(x) is less than 1 for all x >
(

2c−1
c

)
and hence, for any real ε > 0,

LLc

(⌊ r(c+1)
n
· SP(n, k)

⌋
+ ε
)
< LLc

(⌊ r(c+1)
n
· SP(n, k)

⌋)
+ ε.

Thus we can deduce from Theorem 3.1.2 the slightly weaker conclusion that

(
1− r(c+1)

n

)
· SP(n, k) + LLc

(
r(c+1)
n
· SP(n, k)

)
6
(
n− 1

c− 1

)
. (3.12)

By applying LLc(x) = c
q−c+1

x in (3.12) and solving for SP(n, k) we obtain (3.11).
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Now, using SP(n, k) 6 MMS(n, k), we have

r(c+1)
n
· SP(n, k) 6

(
n−1
c

)
1 + (n−c)(k−r)

r(c+1)

6
1

2

(
n− 1

c

)
.

Thus, q < n− 1 and so the bound implied by this corollary, and hence the bound implied

by Theorem 3.1.2, is less than MMS(n, k).

3.6 Bounds for small n and k

We conclude this chapter by displaying the values of the upper and lower bounds we have

obtained for some small parameters (n, k).

In Table 3.1 we list, for 4 6 k 6 7 and 2k + 2 6 n 6 33 a lower bound and an upper

bound on SP(n, k) in the top and bottom rows respectively of the appropriate cell. The

upper bound is the bound implied by Theorem 3.1.2 and is followed by the improvement

over MMS(n, k) in brackets. The lower bound is the best one attainable via our results

and those of [28, 33] and is followed by the source of the bound according to the following

key. “M” refers to a bound obtained through the monotonicity of SP(n, k) in n; “[28]”

refers to one of the bounds given in [28] (and stated in our introduction); “L3.2.5” refers

to Lemma 3.2.5 and is followed by the values of m and n used; and finally “L3.3.3” and

“L3.4.1” refer to Lemmas 3.3.3 and 3.4.1 and are followed by the value of u used. The

exception to the above is when k divides n, in which case the known exact value of SP(n, k)

is placed by itself in the cell. Lemma 3.3.3 and Lemma 3.4.1 give only weak results for the

case where k = 3 and this is why k = 3 cases were not included in Table 3.6.

Figures 3.1 and 3.2 visualise bounds on SP(n, k) for the example values k = 5 and

k = 10 respectively. Values of n between 2k + 2 and 100 appear on the horizontal axis,

and above each are a grey and a black line segment. The grey segment gives the interval

between NLB(n, k) and MMS(n, k), whereas the black segment gives the interval between

the best known lower and upper bounds on SP(n, k) according to the results in this chapter

and in [28, 33]. Note that the vertical axis is log scaled.
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n k = 4 k = 5 k = 6 k = 7

10
10 L3.3.3 (1)
11 (5)

11
11 [28]
19 (8)

12 55
12 L3.3.3 (1)
13 (5)

13
55 M 12 M
72 (12) 19 (8)

14
55 M 17 L3.3.3 (1) 13 [28]

110 (23) 33 (12) 15 (5)

15
55 M

91
13 M

190 (37) 20 (8)

16 455
91 M 28 L3.3.3 (1) 15 [28]

114 (16) 29 (13) 17 (5)

17
455 M 91 M 28 M 15 M
636 (67) 162 (28) 51 (17) 21 (8)

18
648 L3.3.3 (2) 91 M

136
27 L3.3.3 (1)

994 (133) 243 (48) 30 (10)

19
648 M 91 M 136 M 27 M

1 719 (219) 410 (74) 167 (17) 42 (17)

20 3 876 969
210 L3.3.3 (1) 40 L3.3.3 (1)
221 (34) 70 (25)

21
3 876 M 969 M 210 M

190
5 601 (428) 1 290 (103) 308 (54)

22
5 544 L3.3.3 (2) 1 008 L3.3.3 (2) 210 M 190 M
8 844 (888) 1 849 (208) 454 (87) 227 (20)

23
5 544 M 1 008 M 210 M 190 M

15 355 (1 469) 2 808 (366) 751 (134) 291 (36)

24 33 649
3 366 L3.3.3 (2)

1 771
190 M

4 734 (579) 384 (58)

25
33 649 M

10 626
1 771 M 190 M

49 605 (2 971) 2 271 (144) 525 (92)

26
40 898 L3.3.3 (3) 10 626 M 1 771 M 286 L3.4.1 (2)
78 927 (6 343) 14 514 (834) 3 071 (285) 762 (144)

27
40 898 M 10 626 M 1 771 M 286 M

137 410 (10 595) 21 020 (1 750) 4 311 (494) 1 242 (220)

28 296 010
16 016 L3.4.1 (3) 4 140 L3.3.3 (2)

2 925
32 169 (3 150) 6 408 (818)

29
296 010 M 16 830 L3.2.5 (5, 24) 4 140 M 2 925 M
442 270 (21 745) 54 342 (5 035) 10 606 (1 269) 3 643 (187)

30
621 075 L3.3.3 (3)

118 755 23 751
3 003 L3.3.3 (1)

707 796 (47 420) 4 723 (366)

31
621 075 M 118 755 M 23 751 M 3 003 M

1 234 969 (79 818) 164 701 (7 327) 31 093 (1 389) 6 291 (615)

32 2 629 575
139 568 L3.3.3 (2) 33 600 L3.3.3 (2) 4 800 L3.3.3 (2)
240 248 (15 849) 42 433 (2 876) 8 682 (999)

33
2 629 575 M 139 568 M 33 600 M 4 800 M
3 966 925 (165 264) 369 680 (29 044) 60 038 (5 113) 12 696 (1 601)

Table 3.1: Lower and upper bounds on SP(n, k)
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Figure 3.1: Best known bounds on SP(n, 5) compared to NLB(n, 5) and MMS(n, 5)

20 30 40 50 60 70 80 90 100
n

5

10

15

20

25

lo
g(

SP
(n

, 1
0)

)

20 30 40 50 60 70 80 90 100
n

5

10

15

20

25

lo
g(

SP
(n

, 1
0)

)

Figure 3.2: Best known bounds on SP(n, 10) compared to NLB(n, 10) and MMS(n, 10)
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Chapter 4

More constructions for Sperner

partition systems

4.1 Introduction

Continuing on from our work in Chapter 3, this chapter looks at answering some of the

remaining questions related to Sperner partition systems. Our first main focus is on giving

an asymptotic determination of SP(n, k) when c is bounded, except in cases where r is very

close to k. We then present a number of new bounds on SP(n, k) for the special case of

c = 2. Finally, we go on to show that SP(n, k) is indeed asymptotic to MMS(n, k) when n

is even and either r = 1 and k is bounded or r = k − 1.

Recall that for a pair of integers (n, k) with n > k > 1, we define c = c(n, k) and

r = r(n, k) as the unique integers such that n = ck + r and r ∈ {0, . . . , k − 1}. These

definitions for c(n, k) and r(n, k) are used throughout this chapter and are abbreviated to

simply c and r where there is no danger of confusion. As part of Chapter 3, in many cases

where c grows along with n, we presented a construction for Sperner partition systems with

number of partitions asymptotic to MMS(n, k).

Theorem 3.1.1. Let n and k be integers with n→∞, k = o(n) and k > 3, and let c and

r be the integers such that n = ck + r and r ∈ {0, . . . , k − 1}. Then SP(n, k) ∼ MMS(n, k)

if

� n is even and r /∈ {1, k − 1}; or

� k − r →∞.

The condition k = o(n) in Theorem 3.1.1 is equivalent to saying c → ∞, so Theo-

rem 3.1.1 does not cover the case where c is bounded as n grows. Certain very specific

cases in the regime where c is bounded have been investigated. When c = 1, it is not hard
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to see that SP(n, k) = 1. For c = 2, Li and Meagher [28] found bounds on SP(2k + 1, k),

SP(2k + 2, k) and SP(3k − 1, k). As mentioned above, our first main focus in this chapter

is on giving an asymptotic determination of SP(n, k) when c is bounded, except in cases

where r is very close to k.

Theorem 4.1.1. Let n and k be integers with n→∞, k 6 n
2

and k−r = Θ(n) where c and

r are the integers such that n = ck+r and r ∈ {0, . . . , k−1}. Then SP(n, k) ∼ MMS(n, k).

Note that the condition k − r = Θ(n) implies k = Θ(n) and hence that c = O(1).

Theorem 4.1.1 is proved by introducing a new construction for Sperner partition systems

which is based on a division of the ground set into many equal-sized parts (see Lemma 4.3.2).

In the special case c = 2 we are able to say more (see Section 4.4), including determining

SP(n, k) exactly for a number of small parameter sets (n, k) and narrowing it down to either

an exact value, or one of two different values for two different infinite families.

Lemma 4.1.2. Let k > 11 be an integer such that k 6≡ 4 (mod 6) and let n = 3k−6. Then

SP(n, k) = b1
2
(k − 2)2c.

Theorem 4.1.3. Let k > 4 be an even integer and let n = 3k − 2. Then SP(n, k) ∈
{
(
n/2
2

)
,
(
n/2
2

)
+ 1}.

Theorem 3.1.1 also does not cover the cases where r = 1 and k is bounded or where

r = k − 1. Here we show that in most of these cases, if n is even, SP(n, k) is indeed

asymptotic to MMS(n, k).

Theorem 4.1.4.

(a) Let n and k be integers such that n → ∞ with n ≡ k + 1 (mod 2k), k = o(n), and

k > 3 is odd. Then SP(n, k) ∼ MMS(n, k).

(b) Let n and k be integers such that n → ∞ with n ≡ k − 1 (mod 2k), k = o(n), and

k > 5 is odd. Then SP(n, k) ∼ MMS(n, k).

We prove Theorem 4.1.4 by extending a construction method used in Chapter 3 and

analysing its behaviour. This extended construction method incorporates a solution to a

particular integer program, where the objective value of the program gives the size of the

Sperner partition system produced. With some effort, we are able to show that in most

cases the optimal value of this integer program is asymptotic to MMS(n, k) and so prove

Theorem 4.1.4. In the case n ≡ k − 1 (mod 2k) and k = 3 we do not prove this, but we

present strong numerical evidence that the optimal value of the integer program is such

that the result still holds.
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This Chapter is organised as follows. Section 4.2 introduces some notation we will re-

quire as well as a key result, a consequence of a result of [6], that underlies our constructions.

In Section 4.3 we introduce our new construction for Sperner partition systems, based on a

division of the ground set into many equal-sized parts, and use this to prove Theorem 4.1.1.

In Section 4.4 we then examine the special case where c = 2, in the process proving The-

orem 4.1.3 and exhibiting many small parameter sets for which the construction from the

previous section produces Sperner partition systems of maximum size. Sections 4.5 and 4.6

are then devoted to proving Theorem 4.1.4(a) and (b) respectively, using an extension of

the construction for Sperner partition systems given in Section 3.3 and Section 3.4. In the

Conclusion (Chapter 7), we provide some numerical evidence that Theorem 4.1.4(b) also

holds for k = 3 and discuss possible further work.

4.2 Preliminaries

Here we restate a number of definitions and results that are important to the work in this

chapter.

An (n, k)-Sperner partition system is called almost uniform if each class of each partition

in the system is of size bn
k
c or dn

k
e. Note that this means that there must be k − r classes

of size c and r classes of size c+ 1 in each partition. It is conjectured in [33] that for all n

and k with n > k > 1 there is an almost uniform Sperner partition system with SP(n, k)

partitions.

In [28], the authors observe that taking an (n, k)-Sperner partition system and adding a

new element to an arbitrary class of each partition results in an (n+1, k)-Sperner partition

system of the same size, as shown in the proof of Lemma 2.2.4. Thus we have

SP(n+ 1, k) > SP(n, k) for all integers n > k > 1, (4.1)

a fact that we will use frequently. If the original Sperner partition system is almost uniform

and the new element is added to a class of minimum size in each partition, then the

resulting (n + 1, k)-Sperner partition system is also almost uniform. Although we do not

state it explicitly each time, all the constructions in this chapter produce almost uniform

systems. For a set S and a nonnegative integer i, we denote the set of all i-subsets of S by(
S
i

)
. Note that

∣∣(S
i

)∣∣ =
(|S|
i

)
.

A hypergraph H consists of a vertex set V (H) together with a set E(H) of edges, each

of which is a nonempty subset of V (H). We do not allow multiple edges. A clutter is a

hypergraph for which no edge is a subset of another. As such, a clutter is exactly a Sperner
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4.3. Proof of Theorem 4.1.1

set system, but we use the term clutter when we wish to consider the object through a

hypergraph-theoretic lens.

A partial edge colouring of a hypergraph is simply an assignment of colours to some or

all of its edges with no further conditions imposed. Let γ be a partial edge colouring of a

hypergraph H with colour set C. For each z ∈ C, the set γ−1(z) of edges of H assigned

colour z is called a colour class of γ. For each z ∈ C and x ∈ V (H), let the number of edges

of H that are assigned the colour z by γ and contain the vertex x be denoted degγz (x).

Throughout this chapter, we will again make extensive use of Lemma 3.2.2 (which we

restate here for convenience), which is a consequence of a more general and powerful result

of Bryant [6]. It allows the construction of a Sperner partition system to be reduced to

finding a partial edge colouring of a hypergraph with appropriate properties, which can

greatly simplify the task.

Lemma 3.2.2. Let n and k be integers with n > k > 1, let H be a clutter with |V (H)| =
n, and let {X1, . . . , Xt} be a partition of V (H) such that any permutation of Xw is an

automorphism of H for each w ∈ {1, . . . , t}. Suppose there is a partial edge colouring γ of

H with colour set C such that, for each z ∈ C, |γ−1(z)| = k and
∑

x∈Xw degγz (x) = |Xw| for

each w ∈ {1, . . . , t}. Then there is an (n, k)-Sperner partition system with |C| partitions

such that the classes of the partitions form a subset of E(H).

4.3 Proof of Theorem 4.1.1

Our goal in this section is to prove Theorem 4.1.1. We achieve this by first introducing a

new construction for Sperner partition systems and then showing that the construction can

produce systems with size asymptotic to MMS(n, k) in the regime where c is bounded and

r is not too close to k.

We now introduce a simple lemma which will be useful in detailing our construction.

It will eventually allow us to distribute the edges of a hypergraph evenly between colour

classes when attempting to define a colouring satisfying the hypotheses of Lemma 3.2.2.

The sum of all entries in a row or column of a matrix is referred to as a row sum or column

sum respectively.

Lemma 4.3.1. Let s1 and s2 be positive integers and x and b 6 s2 be nonnegative integers.

There exists an s1 × s2 matrix T such that each row of T has b occurrences of x + 1 and

s2 − b occurrences of x, and any two column sums in T differ by at most 1.

Proof. We proceed by induction on s1. The result is clearly true when s1 = 1, so let

s′1 ∈ {1, . . . , s1 − 1} and suppose there exists an s′1 × s2 matrix T ′ with the required
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4.3. Proof of Theorem 4.1.1

properties. Let Y be the set of columns of T ′ whose sum is the minimum column sum in T ′.

Add to T ′ a new row with b occurrences of x+ 1 and s2− b occurrences of x, placed so that

each column in Y contains an occurrence of x + 1 if b > |Y | and so that each occurrence

of x+ 1 is in a column in Y if b < |Y |. It can be checked that the resulting matrix has the

required properties.

We now introduce the construction that will be used to prove Theorem 4.1.1. An

example of this construction is illustrated in Figure 4.1.

Lemma 4.3.2. Let n, c, k and r be integers such that n = ck + r, c > 2, k > 3 and

r ∈ {1, 2, . . . , k − 1}. Suppose that n = hm for positive integers m and h such that m ≡ 0

(mod c) and let

p1 =
⌊
m(hc − c− 1)

c(k − r)

⌋
, p2 =

⌊
m

r

⌊ ( h
c+1

)(
m−1
c−1

)⌋⌋ , p′1 =
⌊

mhc

c(k − r)

⌋
, p′2 =

⌊
m
(

h
c+1

)
r
(
m−1
c−1

)⌋ .
There exists an almost uniform (n, k)-Sperner partition system with p

(
m−1
c−1

)
partitions if

(a) p = min{p1, p2}; or

(b) p = min{p′1, p′2} and pr ≡ 0 (mod m).

Proof. Suppose the hypotheses of (a) hold or that those of (b) do. First note that r ≡ 0

(mod c) since n ≡ 0 (mod c) and ck ≡ 0 (mod c). We will construct our Sperner partition

system on a ground set X = X1∪· · ·∪Xm, where X1, . . . , Xm are pairwise disjoint sets such

that |X1| = · · · = |Xm| = h. Let M =
({1,...,m}

c

)
and let J = {1, . . . ,

(
m−1
c−1

)
} × {1, . . . , m

c
}.

By Baranyai’s theorem [2], we can index the sets in M so that M = {S`,i : (`, i) ∈ J} and

{S`,i : i ∈ {1, . . . , m
c
}} is a partition of {1, . . . ,m} for each ` ∈ {1, . . . ,

(
m−1
c−1

)
}. Let H be a

hypergraph with vertex set X and edge set A ∪ B where

A =
⋃

(`,i)∈J
A`,i for A`,i =

{
E ∈

(
X
c

)
: |E ∩Xw| = 1 for each w ∈ S`,i

}
,

B =
m⋃
w=1

Bw for Bw =
(
Xw
c+1

)
.

The indexing of the sets in M will act as a guide for a partial edge colouring of H. Let

C ′ be a set with |C ′| = p and let C = C ′ × {1, 2, . . . ,
(
m−1
c−1

)
} be a set of colours. It is clear

that any permutation of Xw is an automorphism of H for each w ∈ {1, . . . ,m}. Thus, by

Lemma 3.2.2, to find an (n, k)-Sperner partition system with p
(
m−1
c−1

)
partitions, it suffices to

find a partial edge colouring γ of H with colour set C such that for each z ∈ C, |γ−1(z)| = k

and
∑

x∈Xw degγz (x) = h for each w ∈ {1, . . . ,m}. We proceed to show that such a partial

edge colouring γ exists.
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4.3. Proof of Theorem 4.1.1

Let x =
⌊
r
m

⌋
and b = 1

c
(r −mx), noting that b will be a non-negative integer and let

T = (tz,i) be a p × m
c

matrix with b occurrences of x + 1 and m
c
− b occurrences of x in

each row such that any two column sums differ by at most 1. Such a matrix exists by

Lemma 4.3.1. We consider the rows of T to be indexed by the elements of C ′. It follows

from our definition of b that each row sum in T is r
c
. Thus the sum of all the entries in T

is pr
c

and hence, because T has m
c

columns and any two column sums differ by at most 1,

each column sum in T is in {bpr
m
c, dpr

m
e}. So we have

m/c∑
i=1

tz,i = r
c

for each z ∈ C ′, and
∑
z∈C′

tz,i ∈
{⌊

pr
m

⌋
,
⌈
pr
m

⌉}
for each i ∈ {1, . . . , m

c
}.

(4.2)

We create our partial edge colouring γ of H by, for all (z, `) ∈ C and i ∈ {1, . . . , m
c
},

one at a time in arbitrary order, performing the following process.

� Assign the colour (z, `) to h− (c+ 1)tz,i previously uncoloured edges in A`,i.
� For each w ∈ S`,i, assign the colour (z, `) to tz,i previously uncoloured edges in Bw.

After performing this process for all (z, `) ∈ C and i ∈ {1, . . . , m
c
}, we call the resulting

colouring γ. We will show that there are always uncoloured edges available throughout this

process and that γ satisfies the conditions we require of it.

(i) Let (`, i) ∈ J . We show that the number of edges in A`,i assigned colours is at most

|A`,i| = hc. These edges only receive colours in C ′ × {`} and, for each z ∈ C ′, the

number that receive colour (z, `) is h − (c + 1)tz,i. So the total number that are

assigned a colour is
∑

z∈C′(h− (c+ 1)tz,j), which is at most ph− (c+ 1)bpr
m
c by (4.2).

If the hypotheses of (a) hold then

ph− (c+ 1)
⌊
pr

m

⌋
< ph− (c+ 1)

(
pr

m
− 1
)

=
pc(k − r)

m
+ c+ 1 6 hc

where the equality follows by substituting h = 1
m

(ck + r) and the last inequality is

obtained using p 6 p1 and the definition of p1. If the hypotheses of (b) hold then

similarly we have

ph− (c+ 1)
⌊
pr

m

⌋
= ph− (c+ 1)

pr

m
=

pc(k − r)
m

6 hc

where the last inequality is obtained using p 6 p′1 and the definition of p′1.

(ii) Let w ∈ {1, . . . ,m}. We show that we do not run out of uncoloured edges in Bw
by showing that, for each ` ∈ {1, . . . ,

(
m−1
c−1

)
}, the number of edges in Bw assigned a

colour in C ′ × {`} is at most |Bw|/
(
m−1
c−1

)
=
(
h
c+1

)
/
(
m−1
c−1

)
. Let ` ∈ {1, . . . ,

(
m−1
c−1

)
} and
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let i be the unique element of {1, . . . , m
c
} such that w ∈ S`,i. Then the number of

edges in Bw assigned a colour in C ′ × {`} is
∑

z∈C′ tz,i, and this is at most dpr
m
e by

(4.2). If the hypotheses of (a) hold then, dpr
m
e 6 dp2r

m
e and we obtain the required

bound using the definition of p2. If the hypotheses of (b) hold then, dpr
m
e = pr

m
6 p′2r

m

and we can obtain the required bound using the definition of p′2.

(iii) Let (z, `) be a colour in C. We show that |γ−1((z, `))| = k. For each i ∈ {1, . . . , m
c
},

we assign (z, `) to h − (c + 1)tz,i edges in A and, because |S`,i| = c, to ctz,i edges in

B. So

∣∣γ−1
(
(z, `)

)∣∣ =
m/c∑
i=1

(h− (c+ 1)tz,i + ctz,i) =
hm

c
−

m/c∑
i=1

tz,i =
hm

c
− r

c
= k

where the third equality follows by (4.2) and the last because hm = ck + r.

(iv) Let w ∈ {1, . . . ,m} and (z, `) ∈ C. We show that
∑

x∈Xw degγ(z,`)(x) = h. Let i

be the unique element of {1, . . . , m
c
} such that w ∈ S`,i. Then (z, `) is assigned to

h− (c+ 1)tz,i edges in A`,i, each of which contains one vertex in Xw, and to tz,i edges

in Bw, each of which contains c + 1 vertices in Xw. Any other edges assigned (z, `)

are disjoint from Xw. Thus

∑
x∈Xw

degγ(z,`)(x) = (h− (c+ 1)tz,j) + (c+ 1)tz,j = h.

So by (i) and (ii) we can indeed obtain the partial edge colouring γ as we claimed and by

(iii) and (iv) γ has the required properties. So we can apply Lemma 3.2.2 to obtain an

almost uniform (n, k)-Sperner partition system with p
(
m−1
c−1

)
partitions as discussed.

Note that we could potentially include all c-subsets of X that are not subsets of an Xi

as edges of our clutter above. However, attempting to use all of these would make finding

a suitable colouring γ more difficult. Moreover, as m becomes large, the number of c-sets

we do not use is an asymptotically insignificant fraction of the number of those that we

do. With this new construction for Sperner partition systems in hand, we are now able to

prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Observe that we have n = Θ(k) = Θ(k − r) and hence c =

O(1). We consider two cases according to the value of r.

Case 1. Suppose that r 6 k(2c−1)/2c. So r = o(k) and n ∼ ck. Clearly SP(ck, k) 6

SP(n, k) 6 MMS(n, k) using (4.1), so to complete the proof it suffices to show that
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Figure 4.1: An illustration of the construction of Lemma 4.3.2 with c = 3 and m = 12. The
left hand side depicts a partition {S1,1, S1,2, S1,3, S1,4} of {1, . . . , 12}. On the right side this
has been ‘blown up’ so that each set Xw contains h vertices. Each Bw is composed of all the
4-subsets of Xw. Each ofA1,1, A1,2, A1,3 andA1,4 is composed of all the 3-subsets containing
exactly one vertex from each Xw in the approprate grey shaded region. The partition
{S1,1, S1,2, S1,3, S1,4} gives rise to the p colour classes {(z, 1) : z ∈ C ′}. Each colour class
(z, 1) contains tz,i edges in Bw and h− 4tz,i edges in A1,i for all i ∈ {1, 2, 3, 4} and w ∈ S1,i.
In total these colour classes may use up to all of the edges inA1,1,A1,2,A1,3,A1,4 and at most
|Bw|/

(
m−1
c−1

)
= 1

55
|Bw| edges in each Bw. Each of the other partitions {S`,1, S`,2, S`,3, S`,4}

for ` ∈ {2, . . . , 55} provided by Baranyai’s theorem will similarly give rise to the p colour
classes {(z, `) : z ∈ C ′}.

MMS(n, k) ∼ SP(ck, k). Note that

MMS(n, k) =

(
n
c

)
k − r + r(c+1)

n−c

∼ 1

k

(
n

c

)
∼ nc

c! k
∼ nc−1

(c− 1)!
∼ (ck)c−1

(c− 1)!
∼
(
ck − 1

c− 1

)
= SP(ck, k)

where the first ∼ follows because r = o(k), we use n ∼ ck frequently throughout and the

final equality comes from [33, Theorem 1] as discussed in the introduction.

Case 2. Suppose that r > k(2c−1)/2c. Let

h =

⌈(
(c+ 1)rnc−1

k − r

)1/c
⌉

and m =
⌊
n

h

⌋
− δ,

where δ ∈ {0, 1, . . . , c − 1} is chosen such that m ≡ 0 (mod c). Since k(2c−1)/2c < r < k

and k − r = Θ(k) = Θ(n), we have h = O(n(c−1)/c) but h = Ω(n(2c2−2c−1)/2c2). So mh 6 n

and mh = n − O(n(c−1)/c) = ck + r − o(r). Let q = mh − ck and note that q 6 r and

q = r − o(r).
Using mh 6 n and (4.1), we have SP(mh, k) 6 SP(n, k) 6 MMS(n, k). We will complete

the proof by showing that SP(mh, k) > MMS(n, k)(1 + o(1)). We will use Lemma 4.3.2(a)

to obtain this lower bound on SP(mh, k). Let p1 and p2 be as defined in the Lemma 4.3.2
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statement, except with q in place of r (noting that mh = ck + q). Now,

p2 ∼
m
(

h
c+1

)
q
(
m−1
c−1

) ∼ mhc+1

qc(c+ 1)mc−1 ∼
mh2c

qc(c+ 1)nc−1 ∼
mhc

c(k − r) ∼
mhc

c(k − q) ∼ p1 (4.3)

where the first ∼ holds because
(
m−1
c−1

)
= o(

(
h
c+1

)
) since h = Ω(n(2c2−2c−1)/2c2), the third

holds because m ∼ n
h
, the fourth holds by applying the definition of h and then using

q ∼ r, and the fifth holds using k − r ∼ k − q. By Lemma 4.3.2(a) and (4.3), we have

SP(mh, k) >
(
m− 1

c− 1

)
min{p1, p2} ∼

(
m− 1

c− 1

)
mhc

c(k − r) ∼
mchc

c!(k − r) ∼
nc

c!(k − r) ∼ MMS(n, k)

where the first ∼ uses (4.3), the third uses mh ∼ n and the last uses the definition of

MMS(n, k) together with k − r = Θ(k) and r(c+1)
n−c = O(1).

4.4 The case c = 2

Recall from the introduction that SP(n, k) = 1 when c = 1. Thus, of the cases where c is

constant, the first nontrivial case of c = 2 is of particular interest. Here we first observe two

consequences of the upper bound on SP(n, k) given in Section 3.5 which slightly improves

on MMS(n, k), which we will restate here for convenience. We again extend the usual

binomial coefficient notation by defining
(
q
t

)
= 1

t!

∏t−1
i=0(q − i), for any real number q and

integer t with q > t > 0.

Theorem 3.1.2. If n and k are integers such that n > 2k + 2 and k > 4, then

⌈(
1− r(c+1)

n

)
· SP(n, k)

⌉
+ LLc

(⌊ r(c+1)
n
· SP(n, k)

⌋)
6
(
n− 1

c− 1

)
, (4.4)

where c and r are the integers such that n = ck+r and r ∈ {0, . . . , k−1} and LLc(x) =
(
q
c−1

)
with q being the unique nonnegative real number for which q > c and x =

(
q
c

)
.

Recall that this acts as an upper bound due to the fact that for fixed nonnegative

integers n and k, the left hand side of (4.4) is nondecreasing in SP(n, k). Computation

reveals that, in the case c = 2, there are numerous small parameter sets (n, k) for which

we can exactly determine SP(n, k) because the upper bound given by Theorem 3.1.2 equals

the lower bound implied by Lemma 4.3.2(b) for some choice of m and h with mh = n. In

Table 4.1 (see page 53), we list all the parameter sets with n 6 1000 for which this occurs,

together with the associated values of m, h and SP(n, k). We have not found any such

parameter sets for c > 3. This is perhaps not surprising because, as discussed immediately

after Lemma 4.3.2, the construction “wastes” some c-sets when c > 3.
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n k m h SP(n, k) n k m h SP(n, k)
36 15 4 9 54 560 203 8 70 2800
44 18 4 11 72 560 232 16 35 1080
56 22 4 14 117 564 220 12 47 1518
88 33 4 22 264 576 224 12 48 1584

128 54 8 16 210 588 228 12 49 1650
138 54 6 23 330 600 224 10 60 2250
144 56 6 24 360 600 260 20 30 950
144 60 8 18 252 624 304 52 12 663
150 58 6 25 390 640 230 8 80 3584
150 65 10 15 225 672 266 14 48 1664
160 66 8 20 294 672 273 16 42 1440
168 77 14 12 208 680 323 40 17 780
230 95 10 23 432 700 275 14 50 1820
252 111 14 18 364 720 290 16 45 1620
288 105 6 48 1280 720 330 30 24 928
288 128 16 18 405 750 275 10 75 3375
300 120 10 30 675 756 360 42 18 861
306 111 6 51 1445 768 352 32 24 992
318 115 6 53 1560 770 282 10 77 3510
324 117 6 54 1620 800 335 20 40 1482
330 119 6 55 1680 812 315 14 58 2301
336 144 14 24 546 816 289 8 102 5712
336 160 28 12 378 840 315 12 70 3080
342 123 6 57 1805 840 350 20 42 1596
360 129 6 60 2000 840 378 30 28 1160
360 135 8 45 1260 852 319 12 71 3168
368 138 8 46 1288 864 342 16 54 2160
378 135 6 63 2205 880 365 20 44 1710
420 175 14 30 780 936 348 12 78 3718
480 176 8 60 2100 938 358 14 67 3003
528 192 8 66 2541 944 332 8 118 7497
528 220 16 33 990 960 448 40 24 1170
546 221 14 39 1183 994 378 14 71 3276

Table 4.1: Parameter sets (n, k) for which SP(n, k) is exactly determined by Theorem 3.1.2
and Lemma 4.3.2(b), and the associated values of m, h and SP(n, k).

In the special case where c = 2 and r is small compared to n, we are able to give a more

explicit form of the bound implied by Theorem 3.1.2.

Lemma 4.4.1. Let k > 4 and r be integers such that 2 6 r 6 1
3

√
2k and let t = dLL2(3r)e.

Then SP(2k + r, k) 6 2k + 4r − t− 1.

Proof. Suppose for a contradiction that SP(2k + r, k) > 2k + 4r − t. Then, because the

left side of (4.4) is monotonically increasing in SP(n, k), Theorem 3.1.2 implies that

⌈(
1− 3r

2k+r

)
(2k + 4r − t)

⌉
+ LL2

(⌊
3r

2k+r
(2k + 4r − t)

⌋)
6 2k + r − 1. (4.5)

Observe that b 3r
2k+r

(2k + 4r − t)c = b3r + 3r(3r−t)
2k+r

c = 3r because 9r2 6 2k. Using this fact,
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4.4. The case c = 2

we have d(1− 3r
2k+r

)(2k+4r− t)e = 2k+4r− t−b 3r
2k+r

(2k+4r− t)c = 2k+r− t. So (4.5) is

equivalent to 2k+ r− t+ LL2(3r) 6 2k+ r−1 which is impossible, because t−LL2(3r) < 1

by the definition of t.

More routine calculations establish that Theorem 3.1.2 does not rule out the possibility

that SP(2k + r, k) = 2k + 4r − 1− t.
In [28], it is shown that 2k−1 6 SP(2k+1, k) 6 2k and 2k+1 6 SP(2k+2, k) 6 2k+3.

As a consequence of (4.1), the latter means that 2k + 1 is a lower bound for SP(2k + r, k)

for all r > 3. For small values of r > 3 we give the upper bound provided by Lemma 4.4.1

on SP(2k + r, k), together with the range of k values it applies for in Table 4.2 below.

Lemma 4.4.1 guarantees that this bound will hold for k > 9
2
r2, but in Table 4.2 we give a

more precise lower bound on k, obtained computationally by searching for which values of

k < 9
2
r2 Theorem 3.1.2 guarantees the desired bound on SP(2k + r, k).

r 3 4 5 6 7 8 9 10

for k > 17 35 32 97 71 189 253 311
SP(2k + r, k) 6 2k + 6 2k + 9 2k + 13 2k + 16 2k + 20 2k + 23 2k + 27 2k + 30

Table 4.2: Upper bounds on SP(2k + r, k) and the values of k for which they hold.

In this section we exhibit a new infinite family of parameter sets (n, k) for which we can

precisely determine SP(n, k). For this family, the value of SP(n, k) matches the upper bound

given by Theorem 3.1.2, and hence it supplies examples both of the theorem’s usefulness

and of situations in which its bound is tight.

Lemma 4.4.2. Let k > 11 be an integer such that k 6≡ 4 (mod 6) and let n = 3k−6. Then

SP(n, k) = b1
2
(k − 2)2c.

Proof. First, suppose for a contradiction that SP(n, k) > b1
2
(k − 2)2c + 1. Note that

b1
2
(k − 2)2c + 1 = 1

2
(k − 2)2 + δ where δ = 1

2
if k is odd and δ = 1 if k is even. Then

Theorem 3.1.2 implies that (4.4) holds with n = 3k − 6 and p = 1
2
(k − 2)2 + δ and hence,

via routine calculation,

2k − 3 + LL2(b1
2
(k2 − 8k + 12)c) 6 3k − 7.

However, because
(
k−4

2

)
= 1

2
(k2 − 9k + 20) < b1

2
(k2 − 8k + 12)c for k > 11, we have that

LL2(b1
2
(k2 − 8k + 12)c) > k − 4 and hence a contradiction.

Now we construct an (n, k)-Sperner partition system with b1
2
(k − 2)2c partitions and

so complete the proof. Let p = b1
2
(k − 2)2c, let X1, X2 and X3 be disjoint sets such that
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4.4. The case c = 2

|X1| = |X2| = |X3| = k − 2, and let X = X1 ∪X2 ∪X3. For each i ∈ {1, 2, 3}, let

Ai = {A ⊆ X : |A| = 2 and |A ∩Xj| = 1 for each j ∈ {1, 2, 3} \ {i}}

Bi = {B ⊆ X : |B| = 3 and B ⊆ Xi}.

Let A = A1 ∪ A2 ∪ A3 and B = B1 ∪ B2 ∪ B3, and let H be the hypergraph with vertex

set X and edge set A ∪ B. Note that no set in A is a subset of a set in B and thus H is a

clutter. Observe that, for each i ∈ {1, 2, 3}, any permutation of Xi is an automorphism of

H. Let C be a set of p colours other than black. By Lemma 3.2.2, it suffices to find an edge

colouring γ of H with colour set C ∪{black} such that, for each c ∈ C, colour c is assigned

to 6 edges in A and k − 6 edges in B and
∑

x∈Xi degγc (x) = k − 2 for each i ∈ {1, 2, 3}.
We now describe how to find an edge colouring that satisfies the conditions we have

specified. If k ≡ 1 or 2 (mod 6), then p ≡ 0 (mod 3) and we let {C1, C2, C3} be a partition

of C such that |C1| = |C2| = |C3| = p
3
. If k ≡ 5 (mod 6), then p ≡ 1 (mod 3) and we let

{C1, C2, C3} be a partition of C such that |C1| = p+2
3

and |C2| = |C3| = p−1
3

. We describe

how to choose the edges from A in each non-black colour class of γ; the remaining edges in

each non-black class can be chosen from B arbitrarily subject to our specified conditions,

and then any remaining edges are coloured black.

� If k ≡ 0 (mod 3) then, for each c ∈ C, assign colour c to two edges in Ai for each

i ∈ {1, 2, 3};
� If k ≡ 1 (mod 6) then, for each j ∈ {1, 2, 3} and c ∈ Cj, assign colour c to four edges

in Aj and one edge in Ai for each i ∈ {1, 2, 3} \ {j};
� If k ≡ 2 (mod 3) then, for each j ∈ {1, 2, 3} and c ∈ Cj, assign colour c to three

edges in Ai for each i ∈ {1, 2, 3} \ {j}.

It only remains to check that there are sufficiently many edges in Ai and Bi for each

i ∈ {1, 2, 3} that we can choose an edge colouring in this manner. Using the fact that

|Ai| = (k − 2)2 and |Bi| =
(
k−2

3

)
for each i ∈ {1, 2, 3}, it is routine to check this by

considering cases according to the congruence class of k modulo 6.

Again, the Sperner partition systems constructed to prove Lemma 4.4.2 are almost

uniform.

Finally in this section we prove Theorem 4.1.3 by showing that, when c = 2 and r = k−2,

Lemma 4.3.2(b) and Theorem 3.1.2 allow us to narrow SP(n, k) down to one of two possible

values.

Proof of Theorem 4.1.3. Let ` > 2 be the integer such that k = 2`. First, suppose for

a contradiction that SP(n, k) >
(
n/2
2

)
+ 2. Using this, together with n = 6`− 2, c = 2 and
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4.5. Proof of Theorem 4.1.4(a)

r = 2`− 2, Theorem 3.1.2 implies that

⌈(
1− 6`−6

6`−2

) ((
3`−1

2

)
+ 2
)⌉

+ LL2

(⌊
6`−6
6`−2

((
3`−1

2

)
+ 2
)⌋)

6 6`− 3. (4.6)

Observe that d(1− 6`−6
6`−2

)(
(

3`−1
2

)
+ 2)e = d3`− 2 + 4

3`−1
e = 3`− 1 and b6`−6

6`−2
(
(

3`−1
2

)
+ 2)c =

b
(

3`−2
2

)
+6`−6

3`−1
c =

(
3`−2

2

)
+1. So (4.6) is equivalent to 3`−1+LL2

((
3`−2

2

)
+ 1
)
6 6`−3. Clearly

LL2

((
3`−2

2

)
+ 1
)
> 3`− 2, and hence we have a contradiction. Thus SP(n, k) 6

(
n/2
2

)
+ 1.

Now we proceed to show SP(n, k) >
(
n/2
2

)
. Observe that k − 2 ≡ 0 (mod 2) since

k is even. Thus, by Lemma 4.3.2(b), with m = 2 and h = n
2
, we know there exists an

(n, k)-Sperner partition system with p partitions, where

p = min

{⌊
n2

8

⌋
,
⌊

2
(
n/2
3

)
k − 2

⌋}
.

Noting that 2
k−2

(
n/2
3

)
=
(
n/2
2

)
for n = 3k − 2 and

(
n/2
2

)
< 1

8
n2, it is apparent that p =

(
n/2
2

)
and the result therefore follows.

In [28, Theorem 4.1], it was shown that SP(3k − 1, k) > 3k − 1 for all integers k > 3.

Using (4.1), Theorem 4.1.3 provides a substantial improvement to this bound for even

integers k > 6.

4.5 Proof of Theorem 4.1.4(a)

In this section and the next we extend the approach detailed in Section 3.4 and Section 3.3

to prove, respectively, Theorem 4.1.4(a) and Theorem 4.1.4(b). In this section we are

interested in parameter sets (n, k) such that k is odd and n ≡ k+1 (mod 2k), in accordance

with the hypotheses of Theorem 4.1.4(a). For a given parameter set (n, k), our overall

approach will be as follows. In Definition 4.5.1 we define an integer program I(n,k) and then,

in Lemma 4.5.2, show that we can use an optimal solution of I(n,k) to construct an (n, k)-

Sperner partition system whose size is the optimal value of I(n,k). Next, in Lemma 4.5.3,

we establish that an obvious upper bound on the optimal value of I(n,k) is asymptotic to

MMS(n, k) and we then finally prove Theorem 4.1.4(a) by showing that I(n,k) achieves an

optimal value asymptotic to this upper bound. For the basic concepts and definitions of

integer and linear programming we direct the reader to [35].

We now introduce some definitions and notation that we will use extensively throughout

this section. We let d be the integer such that c = 2d+1, that is, such that n = (2d+1)k+1.

We will construct our Sperner partition systems on a set X = X1 ∪X2 where X1 and X2
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4.5. Proof of Theorem 4.1.4(a)

are disjoint sets such that |X1| = |X2| = n
2
. For each nonnegative integer i, let

Ei = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = 2d+ 1− i}

E∗i = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = 2d+ 2− i}.

Note that the elements of Ei are c-sets and the elements of E∗i are (c + 1)-sets. For each

` ∈ {0, . . . , d} define ε` =
(
n/2
d−`

)(
n/2

d+1+`

)
so that we have |Ed−`| = |Ed+1+`| = ε` and for each

` ∈ {0, . . . , d + 1} define ε∗` =
(

n/2
d+1−`

)(
n/2

d+1+`

)
so that we have |E∗d+1−`| = |E∗d+1+`| = ε∗` . Of

the integers in {0, . . . , d}, let u be the smallest that satisfies a(u) 6 (k − 1)b(u) where, for

x ∈ {0, . . . , d},

a(x) = 2
d∑

`=x+1

ε` and b(x) = ε∗0 + 2
x∑
`=1

ε∗` .

Let Q be the largest even integer that is at most 1
k−1

a(u) and also let

A =
⋃
i∈I
Ei where I = {0, . . . , d− u− 1} ∪ {d+ u+ 2, . . . , 2d+ 1}

B =
⋃
i∈I∗
E∗i where I∗ = {d+ 1− u, . . . , d+ 1 + u}.

Let F = A ∪ B. It is not hard to see that u 6 d − 1 since a(d − 1) = 2εd < 2ε0 < 2ε∗0 6

2b(d− 1) and k > 3. Note that A contains c-sets and B contains (c+ 1)-sets, and that the

sets in B are more “balanced” between X1 and X2 than the sets in A. Obviously, no set in B
can be a subset of a set in A. Furthermore, no set in A can be a subset of a set in B because

max{|A∩X1|, |A∩X2|} > d+u+2 for each A ∈ A and max{|B∩X1|, |B∩X2|} 6 d+1+u

for each B ∈ B. Thus (X,F) is a clutter. Also observe that |A| = a(u) and |B| = b(u).

Note that all of the notation we just defined is implicitly dependent on the values of n and

k. These values will be clear from context, so this should not cause confusion.

We will construct a Sperner partition system using the sets in F . Note that each

partition in such a system will contain k − 1 sets from A and one set from B and hence

such a system can have size at most Q + 1. Our construction depends on finding up to

Q disjoint triples of sets from F such that for each triple {E1, E2, E3} we have E1 ∈ B,

E2, E3 ∈ A and
∑3

i=1 |Ei ∩Xw| = 3d + 2 for each w ∈ {1, 2}. We encode this task in the

integer program below. We define η∗0, . . . , η
∗
u to be the unique sequence of integers such that

b1
2
η∗0c+

∑u
`=1 η

∗
` = 1

2
Q and, for some x ∈ {0, . . . , u}, we have η∗` = ε∗` for ` ∈ {0, . . . , x− 1},

0 6 η∗x < ε∗x, η
∗
` = 0 for ` ∈ {x+ 1, . . . , u} and, if x = 0, η∗0 ≡ ε∗0 (mod 2). Such a sequence

exists since 1
2
Q = b 1

2(k−1)
a(u)c 6 b1

2
b(u)c = b1

2
ε∗0c+

∑u
`=1 ε

∗
` .

Definition 4.5.1. For integers k > 3 and n > 2k with k odd and n ≡ k + 1 (mod 2k),

57



4.5. Proof of Theorem 4.1.4(a)

define I(n,k) to be the integer program on nonnegative integer variables xi,j for all (i, j) ∈ Φ,

where

Φ = {(i, j) : u+ 1 6 i 6 j 6 d and j − i 6 u},

that maximises 2
∑

(i,j)∈Φ xi,j subject to

∑
(i,i+`)∈Φ

xi,i+` 6 η∗` for all ` ∈ {1, . . . , u} (4.7)

∑
(i,i)∈Φ

xi,i 6 b1
2
η∗0c (4.8)

∑
(`,j)∈Φ

x`,j +
∑

(i,`)∈Φ

xi,` 6 ε` for all ` ∈ {u+ 1, . . . , d}. (4.9)

Note that taking each variable to be 0 in I(n,k) satisfies all of the constraints and hence

a feasible solution exists. Also, twice the sum of (4.7) for ` ∈ {1, . . . , u} and (4.8) has the

objective function of I(n,k) as its left hand side and, by our definition of η∗0, . . . , η
∗
u, Q as

its right hand side. Hence the optimal value of I(n,k) is at most Q. Further, each variable

must be bounded above, since it appears in the objective function with positive coefficient.

Lemma 4.5.2. Let k > 3 and n > 2k be integers with k odd and n ≡ k+ 1 (mod 2k), and

let p be the optimal value of I(n,k). Then there exists a (n, k)-Sperner partition system with

p partitions.

Proof. Consider an arbitrary optimal solution {xi,j : (i, j) ∈ Φ}. This solution has objec-

tive value p where p 6 Q. We will use this solution to create a partial edge colouring of

the clutter H = (X,F) with p colours and then apply Lemma 3.2.2 to construct a Sperner

partition system.

Note that any permutation of Xw is an automorphism of H for each w ∈ {1, 2}. Define

a set of colours C =
⋃

(i,j)∈Φ(Ci,j ∪ C ′i,j), where |Ci,j| = |C ′i,j| = xi,j for each (i, j) ∈ Φ and

|C| = p. By Lemma 3.2.2 it suffices to find a partial edge colouring γ1 of H with colour set

C such that, for each z ∈ C, |γ−1
1 (z)| = k and

∑
x∈Xw degγ1z (x) = kd + k+1

2
for w ∈ {1, 2}.

We first create a partial edge colouring γ0 of H with three sets in each colour class which

we will later extend to the desired colouring γ1. We create this colouring γ0 by beginning

with all edges of H uncoloured and then choosing certain edges to go in colour classes. We

first describe this process and then justify that we can in fact perform it to obtain γ0.

For each (i, j) ∈ Φ, one at a time in arbitrary order, we proceed as follows. For each

z ∈ Ci,j ∪ C ′i,j we assign colour z to three previously uncoloured edges:

� one from each of Ed−i, Ed+1+j and E∗d+1+i−j if z ∈ Ci,j; and

� one from each of Ed−j, Ed+1+i and E∗d+1+j−i if z ∈ C ′i,j.
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Because (i, j) ∈ Φ, it can be checked that all the edges we colour are in F = A∪B. Further,

observe that we will have
∑

x∈Xw degγ0z (x) = 3d+ 2 for each w ∈ {1, 2} and z ∈ C.

After this process is completed for each (i, j) ∈ Φ, we call the resulting colouring γ0.

We will be able to perform this process provided that we do not attempt to colour more

than |Ei| sets in Ei for any i ∈ I or more than |E∗i | sets in E∗i for any i ∈ I∗.

(i) Let ` ∈ {1, . . . , u}. Each of the
∑

(i,i+`)∈Φ xi,i+` colours in
⋃

(i,i+`)∈ΦCi,i+` is assigned

to exactly one of the edges in E∗d+1−` and no other colours are assigned to these edges.

Similarly, each of the
∑

(i,i+`)∈Φ xi,i+` colours in
⋃

(i,i+`)∈ΦC
′
i,i+` is assigned to exactly

one of the edges in E∗d+1+` and no other colours are assigned to these edges. Thus,

since η∗` 6 ε∗` = |E∗d+1−`| = |E∗d+1+`|, we do not run out of sets in E∗d+1−` or E∗d+1+` by

(4.7).

(ii) Each of the 2
∑

(i,i)∈Φ xi,i colours in
⋃

(i,i)∈Φ(Ci,i ∪ C ′i,i) is assigned to exactly one

of the edges in E∗d+1 and no other colours are assigned to these edges. Thus, since

η∗0 6 ε∗0 = |E∗d+1|, we do not run out of sets in Ed+1 by (4.8).

(iii) Let ` ∈ {u + 1, . . . , d}. Each of the
∑

(`,j)∈Φ x`,j colours in
⋃

(`,j)∈Φ C`,j and each of

the
∑

(i,`)∈Φ xi,` colours in
⋃

(i,`)∈Φ C
′
i,` is assigned to exactly one of the edges in Ed−`

and no other colours are assigned to these edges. Similarly each of the
∑

(i,`)∈Φ xi,`

colours in
⋃

(i,`)∈ΦCi,` and each of the
∑

(`,j)∈Φ x`,j colours in
⋃

(`,j)∈Φ C
′
`,j is assigned

to exactly one of the edges in Ed+1+` and no other colours are assigned to these edges.

Thus, since ε` = |Ed−`| = |Ed+1+`|, we do not run out of sets in Ed−` or Ed+1+` by (4.9).

So the colouring γ0 does indeed exist. We now extend γ0 to the desired colouring γ1. Note

that if k = 3 this process will be trivial and γ1 will equal γ0. Let A† be the set of all edges

in A that are not coloured by γ0. Because γ0 has p colour classes, each containing two edges

in A, we have |A†| = |A| − 2p. Now |A| > p(k− 1) since |A| = a(u) and p 6 Q 6 1
k−1

a(u).

Thus |A†| > p(k−3). For each ` ∈ {u+1, . . . , d} we have |A†∩Ed−`| = |A†∩Ed+1+`| by the

way we created γ0. Thus we can create a partition A‡ of A† into pairs such that for each pair

{E,E ′} we have E ∈ Ed−` and E ′ ∈ Ed+1+` for some ` ∈ {u + 1, . . . , d}. We form γ1 from

γ0 by adding to each colour class the edges from k−3
2

pairs in A‡ in such a way that no pair

is allocated to two different colour classes. This is possible because |A‡| = 1
2
|A†| > pk−3

2
.

We claim that γ1 has the required properties. To see this, note that |γ−1
1 (z)| = k for each

z ∈ C because each colour class in γ0 contained 3 edges and had k − 3 edges added to it

to form γ1. Further, for each z ∈ C and w ∈ {1, 2}, ∑x∈Xw degγ1z (x) = kd + k+1
2

because∑
x∈Xw degγ0z (x) = 3d+2 and |E∩Xw|+ |E ′∩Xw| = 2d+1 for each pair {E,E ′} in A‡.

Next we show that Q is asymptotic to MMS(n, k). We shall require an easy consequence

of Stirling’s approximation (see [38] for example), namely that as x and y tend to infinity
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with y 6 x
2
,

(
x

y

)
∼ A(x, y) where A(x, y) =

xx+1/2

(2π)1/2yy+1/2(x− y)x−y+1/2
. (4.10)

Lemma 4.5.3. Let n and k be integers such that n → ∞ with n ≡ k + 1 (mod 2k),

k = o(n), and k > 3 is odd. Then Q ∼ MMS(n, k).

Proof. Observe that d→∞ since k = o(n). Furthermore, as c = 2d+ 1 and r = 1 in this

case, we have

MMS(n, k) =
1

k − 1 + 2d+2
n−2d−1

(
n

2d+ 1

)
. (4.11)

Recall that (X,F) is a clutter with a(u) edges of size 2d+ 1 and b(u) edges of size 2d+ 2.

So, by the LYM inequality (see [15, p. 25]), a(u)/
(

n
2d+1

)
+ b(u)/

(
n

2d+2

)
6 1 or, equivalently,

a(u) + 2d+2
n−2d−1

b(u) 6
(

n
2d+1

)
. Thus, because 1

k−1
a(u) 6 b(u) by the definition of u,

Q 6
a(u)

k − 1
6

1

k − 1 + 2d+2
n−2d−1

(
n

2d+ 1

)
= MMS(n, k).

So it remains to show that Q > MMS(n, k)(1− o(1)).

For technical reasons, we extend the definitions of a, b and ε given at the start of this

section by defining a(−1) =
(

n
2d+1

)
, b(−1) = 0 and ε−1 = 0. Using the definitions of Q and

a,

Q >
a(u)

k − 1
− 2 =

a(u− 1)− 2εu
k − 1

. (4.12)

We will bound Q by bounding a(u− 1) below and applying (4.12).

We first show that

(2d+ 2)b(u− 1) = (n− 2d− 1)
((

n

2d+ 1

)
− a(u− 1)

)
− (n− 2d− 2u)εu−1. (4.13)

We may assume u > 1 for otherwise u = 0, a(u − 1) =
(

n
2d+1

)
, b(u − 1) = 0, εu−1 = 0 and

(4.13) holds. Define

C =
⋃
i∈I
Ei, where I = {0, . . . , d− u} ∪ {d+ u+ 1, . . . , 2d+ 1}

D =
⋃
i∈I∗
E∗i , where I∗ = {d− u+ 2, . . . d+ u}

C =
⋃
i∈I

Ei, where I = {d− u+ 1, . . . d+ u}.

Thus we have C =
(

X
2d+1

)
\ C, |C| = a(u− 1), |D| = b(u− 1) and |C| =

(
n

2d+1

)
− a(u− 1). We

now count, in two ways, the number of pairs (S,B) such that S ∈ C, B ∈ D and S ⊆ B.
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� Each of the b(u− 1) sets in D has exactly 2d+ 2 subsets in
(

X
2d+1

)
and each of these

is in C, because no set in C is a subset of a set in D.

� Each of the
(

n
2d+1

)
− a(u − 1) sets in C has n − 2d − 1 supersets in

(
X

2d+2

)
. For each

S ∈ C \ (Ed−u+1 ∪ Ed+u), all of these supersets of S are in D. For each of the 2εu−1

sets S ∈ Ed−u+1 ∪ Ed+u, exactly n
2
− d− u of these supersets of S are not in D.

Equating our two counts, we see that (4.13) does indeed hold.

By definition of u, 1
k−1

a(u− 1) > b(u− 1). Substituting this into (4.13) and solving for

1
k−1

a(u− 1) we see

a(u− 1)

k − 1
>

(
n

2d+1

)
− n−2d−2u

n−2d−1
εu−1

k − 1 + 2d+2
n−2d−1

. (4.14)

Substituting (4.14) into (4.12) and then manipulating, we obtain

Q >

(
n

2d+1

)
− n−2d−2u

n−2d−1
εu−1

k − 1 + 2d+2
n−2d−1

− 2εu
k − 1

− 2 =

(
n

2d+1

)
− n−2d−2u

n−2d−1
εu−1 − 2(1 + 2d+2

(k−1)(n−2d−1)
)εu

k − 1 + 2d+2
n−2d−1

− 2

(4.15)

Observing that the coefficients of εu−1 and εu in the numerator of the final expression

above are clearly O(1) and that εu 6 εu−1 6 ε0, we see from (4.11) that (4.15) implies that

Q > MMS(n, k)(1−o(1)) provided that ε0 = o(
(

n
2d+1

)
). To see this is the case, observe that

ε0(
n

2d+1

) ∼ A(n
2 , d)A(n

2 , d+ 1)

A(n, 2d+ 1)
6
(
A(n

2 , d+ 1
2 )
)2

A(n, 2d+ 1)
=
√

2n
π(2d+1)(n−2d−1)

∼
√

k
πd(k−1)

= o(1).

where the first ∼ uses (4.10) and the last was obtained using n ∼ 2dk. So the proof is

complete.

We define the slack in an inequality f 6 g to be g− f . We will refer to this particularly

in the case of the constraints (4.7)–(4.9) and, in the next section, the constraints (4.17)–

(4.19). Note a candidate solution to an integer program is feasible if and only if the slack

in each of its constraints is nonnegative. Our next result shows that the optimal value of

I(n,k) is close to Q.

Lemma 4.5.4. Let k > 3 and n > 2k be integers with k odd and n ≡ k+ 1 (mod 2k). The

optimal value of I(n,k) is at least Q− 2
(
u
2

)
− 2(d−u+1)

k−1
.

Proof. For t ∈ {1, . . . , u}, let βt be the slack in the constraint of I(n,k) given by setting

` = t in (4.7). Also let β0 be the slack in the constraint (4.8) of I(n,k). Similarly, for

t ∈ {u + 1, . . . , d}, let αt be the slack in the constraint of I(n,k) given by setting ` = t in

(4.9). We will create a solution to I(n,k) with objective value at least Q− 2
(
u
2

)
− 2(d−u+1)

k−1
.

61



4.5. Proof of Theorem 4.1.4(a)

We do this by beginning with the solution to I(n,k) in which all the variables are 0 and

iteratively improving the solution. Each step of the iteration proceeds as follows.

(i) Take the existing solution. Let y be the largest element of {1, . . . , u} for which

βy > y if such an element exists. If no such element exists, let y = 0 if β0 > d−u+1
k−1

and otherwise terminate the procedure.

(ii) Let z be the largest element of {u+ 1, . . . , d} for which αz > δ, where δ = 1 if y > 1

and δ = 2 if y = 0. We claim that z exists, z > u+ 2y and, if y > 1, then α` > 1 for

each ` ∈ {z − 2y + 1, . . . , z}.
(iii) If y > 1, increase the value of each of the y variables in {xz−i,z−y−i : i ∈ {0, . . . , y−1}}

by 1. This results in βy decreasing by y, α` decreasing by 1 for each ` ∈ {z − 2y +

1, . . . , z}, and all other α` and β` remaining unchanged.

(iv) If y = 0, increase the value of the variable xz,z by 1. This results in β0 decreasing by

1, αz decreasing by 2, and all other α` and β` remaining unchanged.

Provided the claim in (ii) holds, it can be seen that this procedure will terminate with a

solution in which β0 6 d−u+1
k−1

and β` 6 ` − 1 for each ` ∈ {1, . . . , u}. As noted just below

Definition 4.5.1, twice the sum of the constraints (4.7) for ` ∈ {1, . . . , u} and (4.8) has the

objective function of I(n,k) as its left hand side and Q as its right hand side. Thus this

solution will have objective value at least Q− 2
(
u
2

)
− 2(d−u+1)

k−1
since

u∑
`=0

β` 6
d− u+ 1

k − 1
+

u∑
`=1

(`− 1) =
(
u

2

)
+
d− u+ 1

k − 1
.

So it suffices to show that the claim in (ii) holds in each step.

Throughout the process none of the α` and β` ever increase and thus the values of y and

z chosen at each step form nonincreasing sequences. Let α =
∑d

`=u+1 α` and β =
∑u

`=0 β`.

At the beginning of the process, α = 1
2
a(u) and β = 1

2
Q and we have a(u) > (k − 1)Q by

the definition of Q. Further, at each step of the process the reduction in α is exactly twice

the reduction in β. So, because k − 1 > 2, at any step of the process α > (k − 1)β. Fix

a step and the values of y and z at this step. We will show the claim in (ii) holds for this

step by considering cases according to whether y = 0.

Case 1. Suppose that y > 1. Since η∗y > βy > 0, we have η∗` = ε∗` for each ` ∈
{1, . . . , y − 1} by our definition of η∗0, . . . , η

∗
u. Further, for each ` ∈ {1, . . . , y − 1}, β` has

not so far been decreased and hence β` = η∗` = ε∗` . Thus

α > (k − 1)β > k−1
2
ε∗0 + (k − 1)

y−1∑
`=1

ε∗` . (4.16)
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In particular α is positive and hence z exists. By our choice of z, α` = 0 for each ` ∈
{z + 1, . . . , d}. Thus, if z < u+ 2y then we would have

α 6
u+2y−1∑
`=u+1

ε` <
u+2y−1∑
`=u+1

ε∗`

where the second inequality follows from the definitions of ε` and ε∗` using the fact that

d + 1 < n
2
. But this can be seen to contradict (4.16) by first using k − 1 > 2 in (4.16)

and then applying 2y − 1 times the fact that ε∗`1 > ε∗`2 for any integers `1 and `2 with

0 6 `1 < `2 6 d + 1. So z > u + 2y. Finally note that, for any ` ∈ {z − 2y + 1, . . . , z},
any previous step of the process which decreased the slack in α` also decreased the slack in

αz by an equal amount (namely 1). Thus, because at the start of the process α` > αz, this

still holds at the present step and hence α` > 1. So the claim is proved.

Case 2. Suppose that y = 0. Then β0 > d−u+1
k−1

by our choice of y, so β > d−u+1
k−1

and

hence α > d − u + 1. So, by the pigeonhole principle, α` has slack at least 2 for some

` ∈ {u + 1, . . . , d}. Thus z exists, and z > u + 2y = u trivially. So again the claim is

proved.

In the above result, note that 2
(
u
2

)
+ 2(d−u+1)

k−1
is obviously O(d2) since u 6 d.

Proof of Theorem 4.1.4(a). This follows from Lemmas 4.5.2, 4.5.3 and 4.5.4, noting

that in the last of these our lower bound on the optimal value of the integer program

is Q − O(d2) and hence is asymptotic to Q because Q ∼ MMS(n, k) and clearly d2 =

o(MMS(n, k)).

4.6 Proof of Theorem 4.1.4(b)

In this section we are interested in parameter sets (n, k) such that k is odd and n ≡ k − 1

(mod 2k), in accordance with the hypotheses of Theorem 4.1.4(b). For a given parameter

set (n, k), our overall approach in this section is similar to that of the last section. In

Definition 4.6.1 we define an integer program I(n,k) and then, in Lemma 4.6.2, show that

we can use an optimal solution of I(n,k) to construct an (n, k)-Sperner partition system

whose size is the optimal value of I(n,k). Next, in Lemma 4.6.3, we establish that an

obvious upper bound on the optimal value of I(n,k) is asymptotic to MMS(n, k) and we

then finally prove Theorem 4.1.4(b) by showing that, for k > 5, I(n,k) achieves an optimal

value asymptotic to this upper bound. Our proof of this last result differs substantially

from the proof of the analogous result in Section 4.5, however.
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We do not retain any of the notation defined in the last section. Instead, we will redefine

most of it to suit our purposes here. Throughout we will let d be the integer such that

c = 2d, that is, such that n = (2d+ 1)k− 1. Again, we will construct our Sperner partition

systems on a set X = X1∪X2 where X1 and X2 are disjoint sets such that |X1| = |X2| = n
2
.

For each nonnegative integer i, let

Ei = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = 2d− i}

E∗i = {E ⊆ X : |E ∩X1| = i, |E ∩X2| = 2d+ 1− i}.

Note that the elements of Ei are c-sets and the elements of E∗i are (c + 1)-sets. In fact,

when considered in terms of c, these definitions are the same as those given in the last

section although they appear different when phrased in terms of d. For each ` ∈ {0, . . . , d},
define ε` =

(
n/2
d−`

)(
n/2
d+`

)
and ε∗` =

(
n/2
d−`

)(
n/2

d+1+`

)
so that we have |Ed−`| = |Ed+`| = ε` and

|E∗d−`| = |E∗d+1+`| = ε∗` . Of the integers in {−1, . . . , d− 1}, let u be the largest that satisfies

(k − 1)a(u) 6 b(u) where a(−1) = 0, b(−1) =
(

n
2d+1

)
and, for x ∈ {0, . . . , d},

a(x) = ε0 + 2
x∑
`=1

ε` and b(x) = 2
d∑

`=x+1

ε∗` .

Let Q = a(u) if a(u) is even and Q = a(u)− 1 if a(u) is odd. Also let

A =
⋃
i∈I
Ei, where I = {d− u, . . . d+ u}

B =
⋃
i∈I∗
E∗i , where I∗ = {0, . . . , d− u− 1} ∪ {d+ u+ 2, . . . , 2d+ 1}.

We allow u to equal −1 in our definition above to ensure it is always well-defined. When

u = −1, we have that A is empty and Definition 4.6.1 and Lemma 4.6.2 below are trivial.

However our main interest in this section is in the regime where n is large compared to k

and for these cases Lemma 4.6.3 below implies that u > 0 and the systems we construct

are nontrivial. Let F = A∪B. As in the previous section, A contains c-sets and B contains

(c + 1)-sets but, unlike in the previous section, here the sets in A are more “balanced”

between X1 and X2 than those in B. Obviously, no set in B can be a subset of a set in A.

Furthermore, no set inA can be a subset of a set in B because min{|A∩X1|, |A∩X2|} > d−u
for each A ∈ A and min{|B ∩ X1|, |B ∩ X2|} 6 d − u − 1 for each B ∈ B. Thus (X,F)

is a clutter. Also observe that |A| = a(u) and |B| = b(u). Again, all of the notation just

defined is implicitly dependent on the values of (n, k).

We will construct a Sperner partition system using the sets in F . Note that each
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partition in such a system will contain one set from A and k−1 sets from B and hence such

a system can have size at most Q + 1. Similarly to the previous section, our construction

here depends on finding up to Q disjoint triples of sets from F . Here, for each triple

{E1, E2, E3}, we will have E1 ∈ A, E2, E3 ∈ B and
∑3

i=1 |Ei ∩ Xw| = 3d + 1 for each

w ∈ {1, 2}. Again, we encode this task in an integer program.

Definition 4.6.1. For integers k > 3 and n > 2k with k odd and n ≡ k − 1 (mod 2k),

define I(n,k) to be the integer program on nonnegative integer variables xi,j for all (i, j) ∈ Φ,

where

Φ = {(i, j) : u+ 1 6 i 6 j 6 d and j − i 6 u},

that maximises 2
∑

(i,j)∈Φ xi,j subject to

∑
(i,i+`)∈Φ

xi,i+` 6 ε` for all ` ∈ {1, . . . , u} (4.17)

∑
(i,i)∈Φ

xi,i 6 b1
2
ε0c (4.18)

∑
(`,j)∈Φ

x`,j +
∑

(i,`)∈Φ

xi,` 6 ε∗` for all ` ∈ {u+ 1, . . . , d}. (4.19)

When u = −1 we have Φ = ∅ in the above and we consider I(n,k) to be a trivial

program with optimal value 0. Again, taking each variable to be 0 in I(n,k) satisfies all

of the constraints and hence a feasible solution exists. Also, twice the sum of (4.17) for

` ∈ {1, . . . , u} and (4.18) has the objective function of I(n,k) as its left hand side and

Q = 2b1
2
a(u)c as its right hand side. Hence the optimal value of I(n,k) is at most Q and

once again each variable must be bounded above.

Lemma 4.6.2. Let k > 3 and n > 2k be integers with k odd and n ≡ k− 1 (mod 2k), and

let p be the optimal value of I(n,k). Then there exists a (n, k)-Sperner partition system with

p partitions.

Proof. The result is trivial if u = −1, so we may assume that u > 0 and hence A is

nonempty. Consider an arbitrary optimal solution {xi,j : (i, j) ∈ Φ}. This solution has

objective value p where p 6 Q. We will use this solution to create a partial edge colouring

of the clutter H = (X,F) with p colours and then apply Lemma 3.2.2 to construct a

Sperner partition system.

Note that any permutation of Xw is an automorphism of H for each w ∈ {1, 2}. Define

a set of colours C =
⋃

(i,j)∈Φ(Ci,j ∪ C ′i,j), where |Ci,j| = |C ′i,j| = xi,j for each (i, j) ∈ Φ and

|C| = p. By Lemma 3.2.2 it suffices to find a partial edge colouring γ1 of H with colour set

C such that, for each z ∈ C, |γ−1
1 (z)| = k and

∑
x∈Xw degγ1z (x) = kd + k−1

2
for w ∈ {1, 2}.
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We first create a partial edge colouring γ0 of H with three sets in each colour class which

we will later extend to the desired colouring γ1. We create this colouring γ0 by beginning

with all edges of H uncoloured and then choosing certain edges to go in colour classes. We

first describe this process and then justify that we can in fact perform it to obtain γ0.

For each (i, j) ∈ Φ one at a time in arbitrary order we proceed as follows. For each

z ∈ Ci,j ∪ C ′i,j we assign colour z to three previously uncoloured edges:

� one from each of E∗d−i, E∗d+1+j and Ed+i−j if z ∈ Ci,j; and

� one from each of E∗d−j, E∗d+1+i and Ed+j−i if z ∈ C ′i,j.

Because (i, j) ∈ Φ, it can be checked that all the edges we colour are in F = A∪B. Further,

observe that we will have
∑

w∈Xw degγ0z (x) = 3d+ 1 for each w ∈ {1, 2} and z ∈ C.

After this process is completed for each (i, j) ∈ Φ, call the resulting colouring γ0. We

will be able to perform this process provided that we do not attempt to colour more than

|Ei| sets in Ei for any i ∈ I or more than |E∗i | sets in E∗i for any i ∈ I∗.

(i) Let ` ∈ {1, . . . , u}. Each of the
∑

(i,i+`)∈Φ xi,i+` colours in
⋃

(i,i+`)∈Φ Ci,i+` is assigned

to exactly one of the edges in Ed−` and no other colours are assigned to these edges.

Similarly, each of the
∑

(i,i+`)∈Φ xi,i+` colours in
⋃

(i,i+`)∈ΦC
′
i,i+` is assigned to exactly

one of the edges in Ed+` and no other colours are assigned to these edges. Thus, since

|Ed−`| = |Ed+`| = ε`, we do not run out of sets in Ed−` or Ed+` by (4.17).

(ii) Each of the 2
∑

(i,i)∈Φ xi,i colours in
⋃

(i,i)∈Φ(Ci,i∪C ′i,i) is assigned to exactly one of the

edges in Ed and no other colours are assigned to these edges. Thus, since |Ed| = ε0,

we do not run out of sets in Ed by (4.18).

(iii) Let ` ∈ {u + 1, . . . , d}. Each of the
∑

(`,j)∈Φ x`,j colours in
⋃

(`,j)∈Φ C`,j and each of

the
∑

(i,`)∈Φ xi,` colours in
⋃

(i,`)∈Φ C
′
i,` is assigned to exactly one of the edges in E∗d−`,

and no other colours are assigned to these edges. Similarly, each of the
∑

(i,`)∈Φ xi,`

colours in
⋃

(i,`)∈ΦCi,` and each of the
∑

(`,j)∈Φ x`,j colours in
⋃

(`,j)∈ΦC
′
`,j is assigned to

exactly one of the edges in E∗d+1+`, and no other colours are assigned to these edges.

Thus, since |E∗d−`| = |E∗d+1+`| = ε∗` , we do not run out of sets in E∗d−` or E∗d+1+` by

(4.19).

So the colouring γ0 does indeed exist. We now extend γ0 to the desired colouring γ1.

Note that if k = 3 this process will be trivial and γ1 will equal γ0. Let B† be the set of all

edges in B that are not coloured by γ0. Because γ0 has p colour classes, each containing

two edges in B, we have |B†| = |B|− 2p. Now |B| > (k− 1)|A| > p(k− 1) since |A| = a(u),

|B| = b(u) and p 6 Q 6 a(u). Thus |B†| > p(k − 3). For each ` ∈ {u + 1, . . . , d} we

have |B† ∩ E∗d−`| = |B† ∩ E∗d+1+`| by way we defined γ0. Thus we can create a partition

B‡ of B† into pairs such that for each pair {E,E ′} we have E ∈ E∗d−` and E ′ ∈ E∗d+1+`
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for some ` ∈ {u + 1, . . . , d}. We form γ1 from γ0 by adding to each colour class the

edges from k−3
2

pairs in B‡ in such a way that no pair is allocated to two different colour

classes. This is possible because |B‡| = 1
2
|B†| > pk−3

2
. We claim that γ1 has the required

properties. To see this, note that |γ−1
1 (z)| = k for each z ∈ C because each colour class

in γ0 contained 3 edges and had k − 3 edges added to it to form γ1. Further, for each

z ∈ C and w ∈ {1, 2}, ∑x∈Xw degγ1z (x) = kd + k−1
2

because
∑

x∈Xw degγ0z (x) = 3d + 1 and

|E ∩Xw|+ |E ′ ∩Xw| = 2d+ 1 for each pair {E,E ′} in B‡.

Next we show that Q is asymptotic to MMS(n, k). We do this in a different fashion to

the proof of Lemma 4.5.3, one that allows us to also obtain an estimate of u and some other

technical results that will be required in our proof of Theorem 4.1.4(b). Recall that the

error function, denoted erf, is defined for any real number x by erf(x) = 2√
π

∫ x
0

exp(−t2) dt.

Lemma 4.6.3. Let n and k be integers such that n → ∞ with n ≡ k − 1 (mod 2k),

k = o(n), and k > 3 is odd. Then

(a) ε∗` ∼ (k − 1)ε` for each integer ` > 0 such that ` = O(
√
d);

(b) ε` ∼ ε0 exp(− k
d(k−1)

`2) for each integer ` > 0 such that ` = O(
√
d);

(c) u ∼ erf−1(1
2
)
√
d(k − 1)/k; and

(d) Q ∼ MMS(n, k);

Proof. Let n ≡ k−1 (mod 2k) be a positive integer. Observe that d→∞ since k = o(n).

It will often be useful to note that n− 2d = (2d+ 1)(k − 1).

For each integer ` > 0 such that ` = O(
√
d),

ε∗` =
n− 2d− 2`

2d+ 2`+ 2
ε` ∼ (k − 1)ε`

where the equality follows by the definitions of ε` and ε∗` and the ∼ follows because n−2d =

(2d+ 1)(k − 1) and ` = O(
√
d). So (a) holds.

For each integer ` > 0 such that ` = O(
√
d),

ε`
ε0

∼ d2d+1(n
2
− d)n−2d+1

(d− `)d−`+1/2(d+ `)d+`+1/2(n
2
− d− `)(n+1)/2−d−`(n

2
− d+ `)(n+1)/2−d+`

=
(

d2

d2 − `2
)d−`+1/2( (n

2 − d)2

(n
2 − d)2 − `2

)(n+1)/2−d−` ( d

d+ `

)2`
(

n
2 − d

n
2 − d+ `

)2`

=
(

d

d− 1
d`

2

)d−`+1/2( n
2 − d

n
2 − d− 1

n/2−d`
2

)(n+1)/2−d−`
(

`

`+ 1
d`

2

)2`(
`

`+ 1
n/2−d`

2

)2`

∼ exp
(

1
d
`2
)

exp
(

1
d(k−1)

`2
)

exp
(
−2
d
`2
)

exp
(
− 2
d(k−1)

`2
)

= exp
(
− k
d(k−1)

`2
)
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where the first line follows by applying (4.10) and simplifying, and the fourth line follows

by applying limit identities, remembering that n − 2d = (2d + 1)(k − 1) and ` = O(
√
d).

So we have proved (b). In particular, note that ε` = Θ(ε0).

For any positive real constant κ > 0, let uκ = κ
√
d(k − 1)/k and note that uκ = Θ(

√
d).

Now,

a(buκc) = ε0 + 2
buκc∑
`=1

ε`

∼ ε0

(
1 + 2

buκc∑
`=1

exp
(
− k
d(k−1)

`2
))

∼ 2ε0

(buκc∑
`=0

exp
(
− k
d(k−1)

`2
))

∼ 2ε0

∫ uκ

0

exp
(
− k
d(k−1)

`2
)
d`

= ε0

√
k−1
k
dπ erf(κ)

∼
(
n

2d

)
erf(κ) (4.20)

where in the second line we used part (b) of this lemma and the definition of the function

a, in the fourth line we approximated the sum with an integral, in the fifth we changed the

variable of integration to t =
√
k/d(k − 1)` and applied the definition of uκ, and in the last

we applied (4.10) to ε0 and
(
n
2d

)
and performed a routine calculation recalling n ∼ 2kd. In

the first three lines, recall that uκ = Θ(
√
d) and the terms of the sum are comparable and

hence each term is insignificant compared to the whole. On the other hand,

b(buκc) =
(

n

2d+ 1

)
− 2

buκc∑
`=0

ε∗`

∼ (k − 1)

((
n

2d

)
− 2

buκc∑
`=0

ε`

)
∼ (k − 1)

((
n

2d

)
− a(buκc)

)
∼ (k − 1)

(
n

2d

)
(1− erf(κ)) (4.21)

where the first line follows from the definition of b, the second using part (a) of this lemma

and the fact that
(

n
2d+1

)
= (k − 1)

(
n
2d

)
since n − 2d = (2d + 1)(k − 1), the third by the

definition of a and because any term of the sum is insignificant compared to the whole,

and the last by (4.20). Let κ0 = erf−1(1
2
). For any κ < κ0, using (4.20) and (4.21),

we have (k − 1)a(buκc) < b(buκc) and hence u > buκc by the definition of u. Similarly,

(k − 1)a(buκc) > b(buκc) and hence u < buκc for any κ > κ0. This proves (c). Finally, we
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have Q ∼ a(u) ∼ 1
2

(
n
2d

)
using (4.20) and the fact that u ∼ uκ0 by part (c) of this lemma.

Since c = 2d, r = k − 1 and n− 2d = (2d+ 1)(k − 1) in this case, MMS(n, k) = 1
2

(
n
2d

)
and

the proof of (d) is complete.

Lemma 4.6.4. Let n and k be integers such that n → ∞ with n ≡ k − 1 (mod 2k),

k = o(n), and k > 5 is odd. Then the optimal value of I(n,k) is Q.

Proof. Observe that d→∞ since k = o(n). For t ∈ {1, . . . , u}, let αt be the slack in the

constraint of I(n,k) given by setting ` = t in (4.17), and let α0 be the slack in constraint

(4.18) of I(n,k). Similarly, for t ∈ {u+1, . . . , d}, let βt be the slack in the constraint of I(n,k)

given by setting ` = t in (4.19). Consider the candidate solution for I(n,k) in which every

variable is 0 except

� xu+1+i,2u+1−i = εu−2i for each i ∈ {0, . . . , bu−1
2
c},

� xu+1+i,2u−i = εu−2i−1 for each i ∈ {0, . . . , bu−2
2
c},

� xb3u/2c+1,b3u/2c+1 = b1
2
ε0c.

We claim that this is indeed a feasible solution with objective value Q. Note that, for this

assignment, α` = 0 for each ` ∈ {0, . . . , u}. Because twice the sum of the constraints (4.17)

for ` ∈ {1, . . . , u} and (4.18) has the objective function of I(n,k) as its left hand side and

Q = 2b1
2
a(u)c as its right hand side, this assignment has objective value Q. So it only

remains to show that β` > 0 for each ` ∈ {u + 1, . . . , d} and hence that the solution is

feasible. For each ` ∈ {2u + 2, . . . , d}, (4.19) is clearly satisfied since its left hand side is

0. Furthermore, for each ` ∈ {u + 1, . . . , 2u + 1}, it can be seen that at most two of the

variables contributing to the left hand side are nonzero. In fact, we have

β2u+1−i = ε∗2u+1−i − εu−2i+1 − εu−2i for each i ∈ {1, . . . , bu−1
2
c} (4.22)

βu+1+i = ε∗u+1+i − εu−2i − εu−2i−1 for each i ∈ {0, . . . , bu−2
2
c} (4.23)

β2u+1 = ε∗2u+1 − εu (4.24)

βb3u/2c+1 = ε∗b3u/2c+1 − ε1 − 2b1
2
ε0c. (4.25)

We now obtain two expressions which we will use to approximate, respectively, the

positive and negative terms in the expressions on the right hand sides of (4.22)–(4.25). For

each ` ∈ {0, . . . , 2u+ 1}, we have from Lemma 4.6.3(a) and (b) that

ε∗` ∼ (k − 1)ε` ∼ (k − 1)ε0 exp
(
− k
d(k−1)

`2
)
. (4.26)
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Also, for each ` ∈ {0, . . . , u}, using Lemma 4.6.3(b) we obtain

ε` + ε`+1 < 2ε` ∼ 2ε0 exp
(
− k
d(k−1)

`2
)
. (4.27)

Using (4.26) and (4.27) it is not too difficult to establish that the expressions in (4.22)–

(4.25) are nonnegative in each case. We demonstrate how to do this in the case of (4.22),

where the expressions come closest to being negative.

Let i be an arbitrary element of {1, . . . , bu−1
2
c}. Using (4.22), (4.26) and (4.27) and

then factorising, we have

β2u+1−i > ε∗2u+1−i − 2εu−2i ∼ (k − 1)ε2u+1−i − 2εu−2i

∼ (k − 1)ε0 exp
(
−k(2u+1−i)2

d(k−1)

)
− 2ε0 exp

(
−k(u−2i)2

d(k−1)

)
= ε0 exp

(
−k(2u+1−i)2

d(k−1)

)(
k − 1− 2 exp

(
k(3u+1−3i)(u+1+i)

d(k−1)

))
.

(4.28)

The first exponential in (4.28) approaches a positive constant since by Lemma 4.6.3(c), we

know that u = Θ(
√
d), so to prove that β2u+1−i > 0 it suffices to show that the second

exponential approaches a constant strictly less that k−1
2

. Now

k(3u+1−3i)(u+1+i)
d(k−1)

6 k(3u−2)(u+2)
d(k−1)

∼ 3ku2

d(k−1)
∼ 3
(
erf−1(1

2
)
)2

where the first inequality follows because (3u+ 1− 3i)(u+ 1 + i) is maximised when i = 1

given that i > 1, the first ∼ follows because u = Θ(
√
d) and the second by Lemma 4.6.3(c).

Thus, because erf−1(1
2
) < 0.477, it is easy to calculate that the second exponential in (4.28)

approaches a constant less than 1.98. Since k > 5, this is less than k−1
2

. Thus β2u+1−i > 0.

Very similar arguments show that the expressions in (4.23)–(4.25) are nonnegative in each

case.

Proof of Theorem 4.1.4(b). This follows immediately from Lemmas 4.6.2, 4.6.3(d) and

4.6.4.

It is of interest to note that as result of Theorem 4.1.4(b), the asymptotics of SP(n, k)

when k = o(n) is odd and n ≡ k − 1 (mod 2k) are only unknown when k = 3. We believe

the statement is still true in this case.

Conjecture 4.6.5. Let n be an integer such that n → ∞ with n ≡ 2 (mod 6). Then

SP(n, 3) ∼ MMS(n, 3).
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In an attempt to find evidence supporting this conjecture, we observed that if we relax

one of the integer programs I(n,k) to a linear program L(n,k), then the optimal value of

L(n,k) exceeds the optimal value of I(n,k) by at most 2|Φ| < 2u(d − u). This is because a

feasible solution for I(n,k) can be obtained from an optimal solution for L(n,k) by simply

taking the floor of each variable. So clearly the two optimal values are asymptotic to each

other as n becomes large. Thus we implemented the linear relaxation L(n,k) in the linear

programming solver Gurobi [19]. We proceeded to solve L(n,3) for all n ≡ 2 (mod 6) where

26 6 n 6 18000 (the program is trivial for n < 26), and in all cases the optimal solution

found gave an objective value that matched Q to at least 11 significant figures. Since

the objective value for L(n,3) is asymptotic to the objective value of I(n,3), and in view of

Lemma 4.6.2 and Lemma 4.6.3(d), these calculations support our belief that the conjecture

holds.
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Chapter 5

Intersecting cross-Sperner families

5.1 Introduction

As previously mentioned in Section 2.3, Wong and Tay recently considered pairs of families

of sets such that each family is individually a Sperner set system and the pair of families is

cross-intersecting. They obtained the following result.

Theorem 2.3.6 ([41]). If n > 3 is an integer and F ,G ⊆ 2[n] are Sperner set systems such

that |F ∩G| > 0 for all F ∈ F and G ∈ G, then

|F|+ |G| 6

2
(

n
dn/2e

)
if n is odd(

n
n/2

)
+
(

n
n/2+1

)
if n is even.

(2.5)

Furthermore there are Sperner set systems F ,G ⊆ 2[n] such that |F ∩G| > 0 for all F ∈ F
and G ∈ G and for which equality holds in (2.5).

In this short chapter we examine what can be thought of as the “dual” problem con-

cerning pairs of families of sets such that each family is individually intersecting and the

pair of families is cross-Sperner. A family F of sets is intersecting if F ∩ F ′ 6= ∅ for all

F, F ′ ∈ F . Recall that a pair (F ,G) of families of subsets of [n] is cross-Sperner if F * G

and G * F for all F ∈ F and G ∈ G. Thus an intersecting cross-Sperner pair on [n] is a

cross-Sperner pair (F ,G) of families of subsets of [n] such that both F and G are both inter-

secting families. Note that it is not necessary for F or G to be Sperner families themselves,

and in most cases they will not. In this chapter we determine, for each positive integer n,

the maximum value of |F|+ |G| for an intersecting cross-Sperner pair (F ,G) on [n].

Theorem 5.1.1. If n is a positive integer and (F ,G) is an intersecting cross-Sperner pair

on [n], then |F| + |G| 6 2n−1. Furthermore, for each m ∈ {0, . . . , 2n−1}, there is an
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intersecting cross-Sperner pair (F ,G) on [n] such that |F|+ |G| = 2n−1 and |F| = m.

It is of interest to recall that Gerbner et al. had previously considered the cross-Sperner

property in its own right in [16] . They obtained the following tight upper bound on the

value of |F||G| for a cross-Sperner pair on [n], which we restate for convenience.

Lemma 2.3.4 ([16]). Let n > 2 be an integer and let F ,G ⊆ 2[n]. If (F ,G) is a cross-

Sperner pair, then |F||G| 6 22n−4.

As observed in [16], the tightness of the bound above is witnessed for each n > 2 by

the cross-Sperner pair (F ,G) where F = {F ∈ 2[n] : 1 ∈ F, n 6∈ F} and G = {G ∈
2[n] : 1 6∈ G, n ∈ G}. Importantly for us, this is in fact an intersecting cross-Sperner pair.

These results immediately tell us that, for any n > 2, the maximum value of |F||G| over

all intersecting cross-Sperner pairs (F ,G) on [n] is exactly 22n−4. So we concentrate our

attention on determining the maximum value of |F|+ |G| over all intersecting cross-Sperner

pairs (F ,G) on [n]. The example above shows that this maximum value is at least 2n−1

for all n > 2. By proving Theorem 5.1.1, we will show that this maximum is exactly

2n−1 and, further, that it can be achieved with any choice of sizes of F and G such that

|F|+ |G| = 2n−1.

5.2 An upper bound on a wider class of pairs

Let F be a family of subsets of a ground set X. Let the up-set on X of a family of sets

F ⊆ 2X be the collection of sets F ↑ = {S ∈ 2X : S ⊇ F for some F ∈ F}, and the down-set

of a family of sets F ⊆ 2X be the collection of sets F ↓ = {S ∈ 2X : S ⊆ F for some F ∈ F}.
We say that F is an up-set if F ↑ = F and that F is a down-set if F ↓ = F . Note that

unlike the down-set, the up-set of a family depends on its ground set and we will clarify

what ground set we are considering whenever it may be unclear. Otherwise assume that

the up-set is on [n]. The down-set and up-set of a family F of sets are sometimes also

referred to as its ideal and filter respectively.

We first observe that we can use an approach similar to the one used in [16] to establish

an upper bound on |F| + |G| for a class of pairs (F ,G) that is wider than the class of

intersecting cross-Sperner pairs. We begin with a simple observation that will be useful

throughout this chapter.

Lemma 5.2.1. If n is a positive integer and F is an intersecting family of subsets of [n],

then |F| 6 2n−1. Furthermore, for each m ∈ {0, . . . , 2n−1}, there is an intersecting family

F of subsets of [n] such that |F| = m and F is an up-set.

73



5.2. An upper bound on a wider class of pairs

Proof. For any intersecting family F of subsets of [n] and any F ∈ F , we have [n]\F /∈ F .

This shows that |F| 6 2n−1. To prove the second part of the lemma, we proceed by

induction on 2n−1 −m. Let

F0 =
{
F ∈ 2[n] : 1 ∈ F

}
and observe that clearly |F0| = 2n−1 and F0 is an intersecting family. Thus the second part

of the lemma holds for 2n−1 −m = 0.

Now suppose that for some t ∈ {0, . . . , 2n−1} there exists a family Ft of subsets of [n]

such that |Ft| = 2n−1 − t and Ft is an up-set. Let Ft+1 = Ft \ {Ft} where Ft is a set of

minimum size in Ft. The fact that Ft is an intersecting family obviously implies that Ft+1

is an intersecting family. Furthermore, the facts that Ft is a set of minimum size in Ft and

that Ft is an up-set imply that Ft+1 is an up-set.

As a consequence of this result, we have that |F| 6 2n−1 and |G| 6 2n−1 for any

intersecting cross-Sperner pair (F ,G). We will establish an upper bound on |F| + |G| for

any (not necessarily intersecting) cross-Sperner pair (F ,G) with |F| 6 2n−1 and |G| 6 2n−1.

Our proof of this bound, like the proof of Theorem 2.3.4 in [16], relies on two existing

results. The first is a simple observation about the so called meets and joins of cross-Sperner

families, while the second is the Ahlswede and Daykin inequality. We restate both here for

convenience.

Lemma 2.3.2 ([16]). Let n be a positive integer and let F ,G ⊆ 2[n]. If (F ,G) is a cross-

Sperner pair, then the families F , G, F ∧ G, and F ∨ G are pairwise disjoint, where

F ∧ G = {F ∩G : F ∈ F and G ∈ G} and F ∨ G = {F ∪G : F ∈ F and G ∈ G}.

Lemma 2.3.3 ([1]). Let F ,G ⊆ 2[n] for some integer n. Then

|F||G| 6 |F ∧ G||F ∨ G|.

Lemma 5.2.2. Let n > 2 be an integer and let F ,G ⊆ 2[n]. Assume |F| 6 2n−1 and

|G| 6 2n−1 and that (F ,G) is a cross-Sperner pair. Then |F|+ |G| 6 (4− 2
√

2)2n−1.

Proof. Assume without loss of generality that |F| > |G| and remember that |F| 6 2n−1. If

F or G is empty, the bound trivially holds, so assume both are nonempty. Let X1 = F ∧G
and X2 = F ∨ G. Let t = |F| + |G| and x = |X1| + |X2|. As a result of Lemma 2.3.2, we

know that F , G, X1 and X2 are pairwise disjoint because F and G are cross-Sperner, and

thus |X1|+ |X2|+ |F|+ |G| 6 2n or, equivalently

t 6 2n − x. (5.1)
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As a result of Lemma 2.3.3, we have that |F||G| 6 |X1||X2|. We also know that |X1||X2| 6
1
4
x2 because by the definition of x, we have that x2 > x2 − (|X1| − |X2|)2 = 4|X1||X2|.

We claim that |F||G| = |F|(t − |F|) > 2n−1(t − 2n−1). To see this, recall our earlier

assumptions that |F| > |G| = t− |F| and |F| 6 2n−1. The inequality is obviously true for

t 6 2n−1, so all that is left is to check when t > 2n−1. Let a = |F|, b = |G| and 2n−1 = a+ c.

So t = a+ b > a+ c. Then

2n−1(t− 2n−1) = (a+ c)((a+ b)− (a+ c)) = (a+ c)(b− c) = ab− c(a− b)− c2 6 ab

with the final inequality following from the fact that −c(a − b) 6 0 for a > b (which we

initially assumed), and so our claim holds.

So we have 2n−1(t− 2n−1) 6 1
4
x2 or, equivalently,

t 6
x2

2n+1 + 2n−1. (5.2)

Now if x 6 (
√

2 − 1)2n, then t 6 (4 − 2
√

2)2n−1 by (5.2). Otherwise x > (
√

2 − 1)2n and

t < (4− 2
√

2)2n−1 by (5.1).

5.3 Proof of Theorem 5.1.1

We now move on to proving our main result for the chapter. To do so, we first prove the

upper bound on |F| + |G| we require for Theorem 5.1.1. Our proof relies on the following

result of Erdős, Herzog and Schönheim on down-sets and their complements, where we

denote the complement of a family F of subsets of [n] by F = {[n] \ F : F ∈ F} (see [11,

Theorem 1] for the full result).

Theorem 5.3.1 ([11]). Let n be a positive integer and let F ⊆ 2[n] be a down-set. Then

there exists a bijection ϕ : F → F such that F ⊆ ϕ(F ) for all F ∈ F .

Lemma 5.3.2. If (F ,G) is an intersecting cross-Sperner pair on [n], then |F|+ |G| 6 2n−1.

Proof. Suppose that (F ,G) is an intersecting cross-Sperner pair on [n]. Note that F ↑ is

an intersecting family because F is an intersecting family. It follows that F ↑ is disjoint

from F ↑. Let H = 2[n] \ (F ↑ ∪ F ↑), and note that {F ↑,F ↑,H} is a partition of 2[n]. Our

proof is based on considering how F and G intersect the classes of this partition. Obviously

F ⊆ F ↑ and, because (F ,G) is a cross-Sperner pair, we have that G is disjoint from F ↑.
Thus G ⊆ F ↑ ∪H.
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We first observe that for each H ∈ H we also have that H ∈ H and thus, because G is

an intersecting family, at most one of H and H is in G. Therefore,

|G ∩ H| 6 1
2
|H| = 1

2
(2n − 2|F ↑|) = 2n−1 − |F ↑|. (5.3)

Now, observe that F ↑ = (F) ↓ and hence is a down-set. So, by Theorem 5.3.1, there

exists a bijection ϕ : F ↑ → F ↑ such that S ⊆ ϕ(S) for all S ∈ F ↑. Thus no set in

{ϕ−1(F ) : F ∈ F} can appear in G because (F ,G) is a cross-Sperner pair. Thus

|G ∩ F ↑| 6 |F ↑ \ {φ−1(F ) : F ∈ F}| 6 |F ↑| − |F|. (5.4)

So, by first using the fact that F ↑ and H are disjoint and then applying (5.3) and (5.4),

we have that

|F|+ |G| = |F|+ |G ∩ F ↑|+ |G ∩ H| 6 2n−1.

Next, we show that the upper bound obtained in Lemma 5.3.2 is tight in the strong

sense indicated by Theorem 5.1.1. To do so we must first present a general construction of

intersecting cross-Sperner pairs (F ,G) for which |F|+ |G| = 2n−1.

Lemma 5.3.3. Let n be a positive integer and s ∈ [n]. Let R be an intersecting family on

[n−s] such that R is an up-set on [n−s] and Q be an intersecting family on {n−s+1, . . . , n}
such that |Q| = 2s−1 and Q is an up-set on {n− s+ 1, . . . , n}. Then (F ,G) where

F = {Q ∪R′ : Q ∈ Q, R′ ∈ 2[n−s] \ R} and G = {Q′ ∪R : Q′ ∈ 2{n−s+1,...,n} \ Q, R ∈ R}

is an intersecting cross-Sperner pair with |F| = 2s−1(2n−s − |R|), |G| = 2s−1|R| and |F|+
|G| = 2n−1.

Proof. It is clear from the definitions of F and G that |F| = 2s−1(2n−s − |R|) and |G| =

2s−1|R|, and hence that |F| + |G| = 2n−1. So it remains to show that both F and G
are intersecting families and that (F ,G) is cross-Sperner. We can see that F and G are

intersecting families as Q and R are both intersecting families, respectively.

Now we proceed to show that the two families are cross-Sperner. If there were sets

F ∈ F and G ∈ G such that F ⊆ G, then F ∩ {n− s+ 1, . . . , n} ⊆ G ∩ {n− s+ 1, . . . , n}
and, since F ∩ {n − s + 1, . . . , n} ∈ Q and G ∩ {n − s + 1, . . . , n} ∈ 2{n−s+1,...,n} \ Q, this

contradicts the fact that Q is an up-set on {n−s+1, . . . , n}. Similarly if there were F ∈ F
and G ∈ G such that G ⊆ F , then G ∩ [n − s] ⊆ F ∩ [n − s] and, since G ∩ [n − s] ∈ R
and F ∩ [n− s] ∈ 2[n−s] \ R, this contradicts the fact that R is an up-set on [n− s]. Thus
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for any F ∈ F and G ∈ G we have F * G and G * F . So (F ,G) is indeed a cross-Sperner

pair.

Observe that applying Lemma 5.3.3 with s = 1, R = {R ∈ 2[n−1] : 1 ∈ R} and Q =

{{n}} recovers the construction of Gerbner et al. that shows the tightness of Theorem 2.3.4.

We can apply Lemma 5.3.3 to prove the second part of Theorem 5.1.1.

Lemma 5.3.4. Let n be a positive integer. For each m ∈ {0, . . . , 2n−1}, there exists an

intersecting cross-Sperner pair (F ,G) on [n] such that |F|+ |G| = 2n−1 and |F| = m.

Proof. We may assume m > 2n−2 for otherwise we can simply exchange the roles of F
and G. Applying Lemma 5.3.3 with s = 1, Q = {{n}}, and R chosen to have cardinality

2n−2−x for some x ∈ {0, . . . , 2n−2}, produces an intersecting cross-Sperner pair (F ,G) with

|F| = 2n−2 +x and |F|+ |G| = 2n−1. Thus it suffices to show that for each x ∈ {0, . . . , 2n−2}
there is an intersecting family Rx ⊆ 2[n−1] such that |Rx| = 2n−2 − x and Rx is an up-set

on [n− 1]. This follows from Lemma 5.2.1.

Proof of Theorem 5.1.1. This follows immediately from Lemmas 5.3.2 and 5.3.4.
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Chapter 6

Cross-Sperner families with one

family size specified

6.1 Introduction

This chapter deals with the problem of finding the minimum size of F ↑ ∪ F ↓ when the

size of F is specified. For our purposes in this chapter it will be convenient to extend our

usual notation by letting [n] = ∅ when n = 0. Let F be a family of subsets of a ground

set X. Recall from the previous chapter that F ↑ = {S ⊆ X : F ⊆ S for some F ∈ F} and

F ↓ = {S ⊆ X : S ⊆ F for some F ∈ F}. Here we further define the closed neighbourhood

F l of F to be the family F ↑ ∪ F ↓. For nonnegative integers m and n such that m 6 2n,

let

Φ(n,m) = min
{∣∣F l∣∣ : F ⊆ 2[n] and |F| = m

}
.

For any nonnegative integer n it is clear that Φ(n, 0) = 0 and Φ(n, 2n) = 2n. Note

that this includes the trivial cases Φ(0, 0) = 0 and Φ(0, 1) = 1 which will be important as

base cases for a recursion. Also note that clearly Φ(n,m) is nondecreasing in m. Our main

result in this chapter is to determine Φ(n,m), for all nonnegative integers m and n such

that m 6 2n, by means of a recursive formula.

Theorem 6.1.1. Let m and n be nonnegative integers such that 0 6 m 6 2n. Let a =

blog2mc, and

a′ =

a if a ≡ n (mod 2) or a = 0

a− 1 otherwise.
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6.1. Introduction

Then Φ(n,m) = m if m ∈ {0, 2n} and otherwise

Φ(n,m) = 2b(n+a)/2c + 2d(n−a)/2e(m− t+ 1
2
δ)−m

where t ∈ [2a
′
] is the greatest integer such that m− 2a

′
> Φ(a′, t) + 2t− 1, and

δ =

1 if Φ(a′, t) = m− 2a
′ − 2t+ 1

0 otherwise.

Although our determination of Φ(n,m) is recursive in general, in some cases we are able

to give Φ(n,m) explicitly.

Corollary 6.1.2. Let n and m be nonnegative integers with m ∈ {1, . . . , 2n − 1} and let

a = blog2mc. Then Φ(n,m) = 2d(n+a)/2e + 2b(n−a)/2cm−m if and only if a = 0 or

� a > 1, a ≡ n (mod 2) and m 6 2a + 2da/2e + 2ba/2c − 1; or

� a > 1, a 6≡ n (mod 2) and m > 2a+1 − 2d(a+1)/2e − 2b(a+1)/2c + 2.

One motivation for investigating Φ(n,m) is the fact that it is closely linked to the

problem of finding the maximum size of G for a cross-Sperner pair (F ,G) where the size of

F is specified. For nonnegative integers m and n such that m 6 2n, let

g(n,m) = max
{
|G| : F ,G ⊆ 2[n] are cross-Sperner and |F| = m

}
.

The problem of finding values of g(n,m) was mentioned by Gerbner et al. in [16]. The

following proposition shows the exact link between Φ(n,m) and g(n,m).

Proposition 6.1.3. For nonnegative integers m and n such that m 6 2n, we have g(n,m) =

2n − Φ(n,m).

Proof. Suppose F is a family of subsets of [n] such that |F l| = Φ(n,m) and let G =

2[n] \ F l. Then (F ,G) is a cross-Sperner pair and |G| = 2n − |F l| = 2n − Φ(n,m). Thus

g(n,m) > 2n − Φ(n,m).

Now suppose that (F ,G) is a cross-Sperner pair such that |F| = m and |G| = g(n,m).

Then F l ⊆ 2[n] \ G and hence |F l| 6 2n − g(n,m). Thus Φ(n,m) 6 2n − g(n,m) or,

equivalently, g(n,m) 6 2n − Φ(n,m).

Beyond the question concerning g(n,m), there are at least two further motivations

to study the quantity Φ(n,m). The first relates to the isoperimetric problem which we

discussed in Section 2.5. Recall that the boundary ∂G(U) of a set of vertices U in a
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graph G is defined as ∂G(U) = (
⋃
x∈U NG(x)) \ U and that the isoperimetric problem

on G asks us to determine ∂G(m) = min{∂G(U) : U ⊆ V (G), |U | = m} for a given

value of m in {0, . . . , |V (G)|}. For a nonnegative integer n, the Boolean lattice graph

Bn is the graph with vertex set 2[n] and edge set {XY : X ( Y for X, Y ∈ 2[n]}. Note

that the hypercube Qn is the spanning subgraph of this graph with edge set {XY :

X ( Y, |X| = |Y | − 1 for X, Y ∈ 2[n]}. It can be seen that, for any family F ⊆ 2[n], we

have that F l is exactly the disjoint union of F and ∂Bn(F). Thus we can clearly see the

following proposition.

Proposition 6.1.4. or nonnegative integers m and n such that m 6 2n, we have ∂Bn(m) =

Φ(n,m)−m.

So determining the values of Φ(n,m) also solves the isoperimetric problem for the

Boolean lattice graph. The relationship between g(n,m) and the isoperimetric problem

on the Boolean lattice graph was noted by Gerbner et al. in [16].

The second motivation for studying the quantity Φ(n,m) relates to the Kruskal-Katona

theorem (see Section 2.4). Recall that the shadow ∆(F) of a family of k-subsets of [n]

is defined to be the family of all (k − 1)-sets that are a subset of at least one set in F .

The Kruskal-Katona theorem states that, over all families F of k-subsets of [n] with some

fixed size m, the size of the shadow ∆(F) of F is minimised when F is taken to be the

first m k-subsets of [n] in colexicographic order. Further, it is known that this same choice

of F also minimises the size of F ↓. It is also known that the similar results are true for

∇(F) and F ↑ when one takes the first m k-subsets of [n] in lexicographic order. Thus

determining the values of Φ(n,m) can be seen as proving a certain “two-sided” variant of

the Kruskal-Katona theorem in which F is allowed to contain sets of different sizes and

we are interested in minimising the size of F l. However, note that the previous discussion

means that it is not immediately apparent what families of a given size might minimise

|F l|. In [3] and [4], Bashov studied a different two-sided version of the Kruskal-Katona

theorem in which F remained restricted to contain sets of uniform size and the size of the

union of the shade and shadow (rather than the union of the up-set and down-set) was to

be minimised. His results were discussed in Section 2.5.

6.2 Preliminaries

Throughout this chapter, for nonnegative integers n and m we call a family of subsets F
of [n] with |F| = m an (n,m)-family. It is easy to determine Φ(n,m) when m = 1 and,
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consequently, when m is close to 2n. Part (i) of the lemma below was already observed in

[16], and the next two parts follow quickly from the first.

Lemma 6.2.1. Let n be a nonnegative integer. Then

(i) Φ(n, 1) = 2dn/2e + 2bn/2c − 1;

(ii) Φ(n,m) = 2n for each m ∈ {2n − 2dn/2e − 2bn/2c + 2, . . . , 2n};
(iii) Φ(n,m) 6 2n − 1 for each m ∈ {0, . . . , 2n − 2dn/2e − 2bn/2c + 1}.

Proof. We prove each part separately.

(i). Let F be a subset of [n] and let k = |F |. Then {F} ↓ = 2k and {F} ↑ = 2n−k, and

hence {F} l = 2k + 2n−k − 1. Clearly the minimum value of 2k + 2n−k over k ∈ {0, . . . , n}
is 2dn/2e + 2bn/2c and the result follows.

(ii). Suppose for a contradiction that, for some m ∈ {2n−2dn/2e−2bn/2c+ 2, . . . , 2n}, there

is an (n,m)-family F such that |F l| < 2n. Let G be a set in 2[n] \ F l, and note that

{G} l ⊆ 2[n] \ F . Thus |{G} l| 6 2n −m, which contradicts (i).

(iii). By (i), there is a subset F of [n] such that {F} l = 2dn/2e + 2bn/2c − 1. So, for

any m ∈ {0, . . . , 2n − 2dn/2e − 2bn/2c + 1}, we can choose an (n,m) family G such that

G ⊆ 2[n] \ {F} l. Then F /∈ G l and the result follows.

We define the colexicographic order on subsets of [n] as follows. For two subsets F and

G of [n], we say F ≺ G if F ∩ {i+ 1, . . . , n} = G ∩ {i+ 1, . . . , n} for some i ∈ G \ F . Note

that this defines a strict total order on the subsets of [n] (of all sizes). We can then extend

this definition to families of subsets of [n]. For two families F and G of subsets of [n], we

say F ≺ G if F ∩ {Y ⊆ [n] : X ≺ Y } = G ∩ {Y ⊆ [n] : X ≺ Y } for some X ∈ G \ F .

This defines a strict total order on families of subsets of [n] (of all sizes). We write � when

we also wish to allow equality.

For a family F of sets, we say a set X ∈ F is minimal in F if no set in F is a proper

subset of X and is maximal in F if no set in F is a proper superset of X. We call a family

of sets F convex if F ↑ ∩ F ↓ = F . Equivalently, F is convex if, for any F1, F2 ∈ F and

any set X such that F1 ⊆ X ⊆ F2, we have X ∈ F . Our next lemma shows that if we are

attempting to find values of Φ(n,m), then it suffices to consider convex families.

Lemma 6.2.2. For any (n,m)-family F , there exists a convex (n,m)-family G such that

G l ⊆ F l and G � F .

Proof. Assume that F = F ↓ ∩ F ↑. Then F is convex and G = F is a suitable choice for

G. Assume that F 6= F ↓∩F ↑, then there exists sets F1, F2 ∈ F and X ∈ 2[n] \F such that

F1 ⊆ X ⊆ F2. We may further assume that F2 is maximal in F . Let H = (F \{F2})∪{X}
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and noteH � F . AlsoH ↑ = F ↑ because F1 is in both F andH and {F2} ↑ ⊆ {X} ↑ ⊆ {F1} ↑

since F1 ⊆ X ⊆ F2. Further, H ↓ ⊆ F ↓ \ {F2} because {X} ↓ ⊆ {F2} ↓ since X ⊆ F2 and

because F2 /∈ H ↓ since no proper superset of F2 is in F . It follows that H l ⊆ F l and

further that H ↑ ∩ H ↓ ⊆ (F ↑ ∩ F ↓) \ {F2}. Thus we can iterate this process and it will

eventually terminate with a convex family G ⊆ 2[n] such that G l ⊆ F l and G � F .

Finally in this section we give a result that determines |F l| for convex families F that

contain a set which is a superset of every other set in F , also known as a maximum set.

This lemma allows us to give an upper bound on Φ(n,m) that is sometimes tight.

Lemma 6.2.3. Let F be a convex (n,m)-family such that, for some ` ∈ [n], we have [`] ∈ F
and F ⊆ {[`]} ↓. Then

(i) |F l| = 2` +m2n−` −m;

(ii) |F l| > 2d(n+a)/2e +m2b(n−a)/2c −m where a = blog2mc.

Proof. We first prove (i). Since F is convex, |F l| = |F ↑| + |F ↓| −m. Since [`] ∈ F and

F ⊆ [`] ↓, we have |F ↓| = 2`. So to prove (i) it suffices to show that |F ↑| = m2n−`. For each

set F ∈ F let UF = {X ⊆ [n] : X ∩ [`] = F} and note that |UF | = 2n−`. Let U =
⋃
F∈F UF

and note that the union is disjoint and hence that |U| = m2n−`. We will complete the proof

of (i) by showing that F ↑ = U . Clearly U ⊆ F ↑. Let Y ∈ F ↑. Hence F ⊆ Y for some

F ∈ F . Let F ′ = Y ∩ [`] and observe that F ′ ∈ F since F ⊆ F ′ ⊆ [`] and F is convex.

Thus Y ∈ UF ′ ⊆ U and hence F ↑ ⊆ U . So we do indeed have that F ↑ = U and hence (i)

holds.

We now prove (ii). Let `0 be an element of [n] such that 2` +m2n−` −m is minimal for

` = `0 and, subject to this, let `0 be maximal. Then we have 2`0 +m2n−`0 < 2`0+1+m2n−`0−1

and 2`0+m2n−`0 6 2`0−1+m2n−`0+1, and from these it follows that 22`0−n−1 6 m < 22`0−n+1.

Thus, by the definition of a, we have a ∈ {2`0 − n− 1, 2`0 − n} and hence `0 = d1
2
(n+ a)e

since `0 is an integer. So the result follows by the definition of `0 and part (i).

Note that the set [`] was the maximum set in F in Lemma 6.2.3. For any m 6 2`, it is

easy to construct an (n,m)-family satisfying the hypotheses of Lemma 6.2.3 by beginning

with [`] ↓ and iteratively removing a minimal set until a family with m sets is reached. In

particular, we can construct an (n,m)-family that satisfies the hypotheses of Lemma 6.2.3

for ` = d1
2
(n + a)e where a = blog2mc. Thus Φ(n,m) 6 2d(n+a)/2e + m2b(n−a)/2c − m by

part (i) of Lemma 6.2.3, recalling that Φ(n,m) = min
{∣∣F l∣∣ : F ⊆ 2[n] and |F| = m

}
and

noting that |F l| 6 |F ↑|+ |F ↓|. As asserted by Corollary 6.1.2, we shall see that this bound

is sometimes tight.
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Example 6.2.4. For ` = 4 and m ∈ {0, . . . , 16}, we can construct an (n,m)-family satis-

fying the hypotheses of Lemma 6.2.3 by beginning with {1, 2, 3, 4} ↓, ordered as follows:

∅, 1, 2, 3, 4, 12, 13, 23, 14, 24, 34, 123, 124, 134, 234, 1234

and removing sets from the left until a family with m sets is obtained (note that each set

will be minimal as it is removed).

6.3 Shifting

We make use of a variant of the classical notion of shifting. Most significantly, our notion

differs from the usual one in that it allows sets to be replaced with sets of a different size.

For a family F of subsets of [n] and two nonempty disjoint subsets I and J of [n] we define,

for each F ∈ F ,

SFI,J(F ) =

 (F \ J) ∪ I if J ⊆ F , I ∩ F = ∅ and (F \ J) ∪ I /∈ F
F otherwise.

We further define SI,J(F) = {SFI,J(F ) : F ∈ F}. Observe that |SI,J(F)| = |F|. If I = {i}
and J = {j}, this definition agrees with the conventional definition of a shift introduced in

Section 2.4.

Let F be a family of subsets of [n]. Recall from the last chapter that F denotes

{[n] \ F : F ∈ F}, and for any set F ∈ F , we let F denote the set [n] \ F . Let ρ be the

permutation of [n] such that ρ(i) = n+ 1− i for each i ∈ [n] and for a subset F of [n], let

ρ(F ) = {ρ(x) : x ∈ F}. The reverse of F is the family ρ(F) = {ρ(F ) : F ∈ F}. Obviously

|ρ(F)| = |F|. We prove a number of properties of complements, reverses and shifts.

Lemma 6.3.1. Let F be a family of subsets of [n] and I and J be disjoint subsets of [n].

Then

(i)
(
F
) ↓

= F ↑,
(
F
) ↑

= F ↓ and
(
F
) l

= F l;
(ii) ρ(F) = ρ

(
F
)
, ρ(F ↓) = (ρ(F)) ↓, ρ(F ↑) = (ρ(F)) ↑, and ρ(F l) = (ρ(F)) l;

(iii) SI,J(F) = SJ,I(F).

Proof. It is a simple exercise to prove (i) by noting that X ⊆ Y if and only if Y ⊆ X. The

properties in (ii) are immediate from the fact that ρ is a permutation of the ground set [n].

For (iii), we abbreviate SFI,J to S and SFJ,I to S ′. Let F ∈ F . Note that F ∩ I = ∅ if

and only if I ⊆ F , J ⊆ F if and only if F ∩ J = ∅, and (F \ J) ∪ I ∈ F if and only if
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(F \ I)∪ J ∈ F , since (F \ J) ∪ I = (F \ I)∪ J . Hence S(F ) = F if and only if S ′(F ) = F

and when both S(F ) 6= F and S ′(F ) 6= F we have

S(F ) = (F \ J) ∪ I =
(
F \ I

)
∪ J = S ′(F ) .

Thus, S(F ) = S ′(F ) for all F ∈ F and we have SI,J(F) = SJ,I(F).

We now prove a result that shows that, under certain conditions, the size of the closed

neighbourhood of a family of sets is not increased when a shift is applied to the family.

This result is analogous to results for conventional shifts that are often used to prove the

Kruskal-Katona theorem (see, for example, [12]).

Lemma 6.3.2. Let F be a family of subsets of [n] and let I and J be nonempty disjoint

subsets of [n]. If SI′,J(F) = F for all nonempty proper subsets I ′ of I and SI,J ′(F) = F
for all nonempty proper subsets J ′ of J , then

(i) (SI,J(F)) ↓ ⊆ SI,J(F ↓);

(ii) (SI,J(F)) ↑ ⊆ SI,J(F ↑);

(iii) (SI,J(F)) l ⊆ SI,J(F l);

(iv) |(SI,J(F)) l| 6 |F l|.

Proof. (i). We abbreviate SFI,J to S and SF
↓

I,J to S ′. Suppose for a contradiction that there

is a set X in (SI,J(F)) ↓ \ SI,J(F ↓). Since X ∈ (SI,J(F)) ↓, we have that X ⊆ S(F ) for

some F ∈ F . We consider two cases according to whether S(F ) = F .

Suppose first that S(F ) 6= F . Then J ⊆ F , I ∩ F = ∅ and (F \ J) ∪ I /∈ F . Further,

J ∩X = ∅ since X ⊆ S(F ). We must have I * X for otherwise the set Y = (X \ I) ∪ J
is a subset of F since X ⊆ S(F ), and the fact that Y ∈ F ↓ contradicts our assumption

that X /∈ SI,J(F ↓). We will show that X ∈ F ↓ and hence, since J ∩X = ∅, that we have

S ′(X) = X contradicting X /∈ SI,J(F ↓). If X ∩ I = ∅, then X ⊆ F and so X ∈ F ↓. If

X∩I 6= ∅, then by our hypotheses and since I * X, we have SI′,J(F) = F where I ′ = I \X.

Thus (F \ J) ∪ I ′ ∈ F , which implies that X ∈ F ↓.
Now suppose that S(F ) = F . Then X ⊆ F and therefore X ∈ F ↓. So, since X /∈

SI,J(F ↓), we must have S ′(X) 6= X. So J ⊆ X, I ∩X = ∅ and S ′(X) = (X \ J) ∪ I /∈ F ↓.
The first of these facts implies that J ⊆ F since X ⊆ F and the last of these facts implies

that I * F for otherwise S ′(X) = (X \ J) ∪ I ⊆ F contradicting S ′(X) /∈ F ↓.
If I ∩ F 6= ∅, then ∅ ( I \ F ( I and hence, by our hypotheses, SI′,J(F) = F where

I ′ = I \F . Hence, we have that (F \J)∪I = (F \J)∪I ′ ∈ F , and so S ′(X) = (X \J)∪I ⊆
(F \ J) ∪ I contradicts S ′(X) /∈ F ↓. So it must be that I ∩ F = ∅ and, as shown earlier,
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J ⊆ F . Thus, since S(F ) = F , it must be the case that the set (F \ J)∪ I is in F , but this

contradicts S ′(X) = (X \ J) ∪ I /∈ F ↓.
(ii). By using (i) and (iii) of Lemma 6.3.1 and applying (i) of this lemma, we have

(SI,J(F)) ↑ = SI,J(F)
↓

=
(
SJ,I
(
F
)) ↓ ⊆ SJ,I

((
F
) ↓)

= SJ,I
(
F ↑
)

= SI,J(F ↑)

and hence (SI,J(F)) ↑ ⊆ SI,J(F ↑). Thus (ii) follows from (i).

(iii). This follows immediately from (i) and (ii).

(iv). This follows from (iii) by noting that |SI,J(F l)| = |F l|.

For establishing lower bounds on Φ(n,m) it will be useful to consider a particular family

that we now define. For nonnegative integers m and n with m 6 2n, we define the canonical

minimal (n,m)-family to be the unique (n,m)-family F such that |F l| = Φ(n,m) and

F � G for each (n,m)-family G such that |G l| = Φ(n,m). This family is unique because

� is a total order on (n,m)-families. We proceed to show that a canonical minimal family

must be convex and invariant under certain shifts. For a family F of subsets of [n], we say

F is strongly shifted if SI,J(F) = F for all I, J ⊆ [n] such that max(I) < min(J).

Lemma 6.3.3. The canonical minimal (n,m)-family is convex and strongly shifted.

Proof. Let F be the canonical minimal (n,m)-family. Then F must be convex, for other-

wise by Lemma 6.2.2 there would be an (n,m)-family G such that |G l| 6 |F l| and G ≺ F ,

and this would contradict the definition of F . Suppose for a contradiction that F is not

strongly shifted. Then there are subsets I and J of [n] such that max(I) < min(J) and

SI,J(F) 6= F . We may further suppose that I and J have been chosen so that SI′,J(F) = F
for all nonempty proper subsets I ′ of I and SI,J ′(F) = F for all nonempty proper subsets

J ′ of J (note that we necessarily have max(I ′) 6 min(J) and max(I) 6 min(J ′)). Then by

Lemma 6.3.2, SI,J(F) is an (n,m)-family such that |(SI,J(F)) l| 6 |F l|. Furthermore, it is

easy to see that SI,J(F) ≺ F since max(I) < min(J). So we have a contradiction to the

definition of F .

6.4 Standard form

We will see in the next lemma that any convex strongly shifted family F must have a

number of properties including that [s− 1] ⊆ F ⊆ [` + 1] for all F ∈ F where s and ` are

the smallest and largest sizes, respectively, of a set in F . We introduce some notation to

help us describe such families. Let s, ` and n be positive integers with s 6 ` 6 n. We call
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a subset of [`] \ [s] an (s, `)-pattern and define the (s, `)-pattern of a subset X of [n] to be

X ∩ ([`] \ [s]). We always consider a family P of (s, `)-patterns as a family on the ground

set [`] \ [s]. So, in particular, P ↑ denotes the set of all subsets of [`] \ [s] that are supersets

of at least one set in P . We define the (s, `)-type of a subset X of [n] to be

10 if s ∈ X and `+ 1 /∈ X
00 if s /∈ X and `+ 1 /∈ X
11 if s ∈ X and `+ 1 ∈ X
01 if s /∈ X and `+ 1 ∈ X.

We say a family F of subsets of [n] has (s, `)-pattern list (P10,P00,P11,P01) where P10,P00,

P11,P01 are the families of all patterns belonging to the sets in F with types 01, 00, 11, 01

respectively (note that P10,P00,P11,P01 will not be disjoint in general). We say that a

family F with (s, `)-pattern list (P10,P00,P11,P01) is in (s, `)-standard form if it satisfies

the following properties.

(SF1) [s− 1] ⊆ F ⊆ [`+ 1] for each F ∈ F
(SF2) P10 = 2[`]\[s]

(SF3) P00 = P ↑00

(SF4) P11 = P ↓11

(SF5) {P} ↑ \ {P} ⊆ P00 and {P} ↓ \ {P} ⊆ P11 for each P ∈ P01

Note that a family F that obeys (SF1) is uniquely determined by its (s, `)-pattern list, as

each set is then uniquely determined by its intersection with [`] \ [s] (its pattern) and its

intersection with {s, l + 1} (given by its type). When we are dealing with a family that

we have specified to be in (s, `)-standard form for particular values of s and `, the only

types and patterns we will be interested in will be (s, `)-types and (s, `)-patterns and so we

usually drop the (s, `) prefix.

Lemma 6.4.1. Let F be a strongly shifted and convex family of subsets of [n]. Then F is

in (s, `)-standard form where s and ` are the sizes of the smallest and largest sets in F ,

respectively.

Proof. Let (P10,P00,P11,P01) be the pattern list of F . We will prove that F satisfies each

of (SF1)–(SF5) in turn.

(SF1). Suppose that F * [`+1] for some F ∈ F . Because SI,J(F) = F where I = [`+1]\F
and J = F \ [`+ 1], we must have that (F \ J) ∪ I = [`+ 1] is in F , a contradiction. Thus

F ⊆ [`+ 1] for each F ∈ F .

Now suppose that [s−1] * F for some F ∈ F . Because SI,J(F) = F where I = [s−1]\F
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and J = F \ [s− 1], we must have that (F \ J)∪ I = [s− 1] is in F , a contradiction. Thus

[s− 1] ⊆ F for each F ∈ F .

(SF2). As F is strongly shifted and contains sets of sizes s and `, we have that [s] and [`]

are in F . Therefore, as F is convex [s] ∪ P ∈ F for all P ⊆ [`] \ [s] and so P10 = 2[`]\[s].

(SF3). Let P be a pattern in P00 and F = [s−1]∪P be the corresponding set in F . Then

for any set Q such that P ⊆ Q ⊆ [`] \ [s], the set G = [s− 1]∪Q is in F since F ⊆ G ⊆ [`]

and F is convex. Thus Q ∈ P00. It follows that P00 = P ↑00.

(SF4). Let P be a pattern in P11 and F = [s] ∪ P ∪ {` + 1} be the corresponding set in

F . Then for any set Q such that ∅ ⊆ Q ⊆ P , the set G = [s] ∪ Q ∪ {` + 1} is in F since

[s] ⊆ G ⊆ F and F is convex. Thus Q ∈ P11. It follows that P11 = P ↓11.

(SF5). Let P ∈ P01, F = [s− 1] ∪ P ∪ {`+ 1} be the corresponding set in F and Q be a

set such that P ( Q ⊆ [`] \ [s]. Because SI,J(F) = F where I = Q \ P and J = {` + 1},
the set (F \ J)∪ I = [s− 1]∪Q is in F . This implies that Q ∈ P00. So {P} ↑ \ {P} ⊆ P00.

By an analogous argument {P} ↓ \ {P} ⊆ P11.

For an (n,m)-family F in (s, `)-standard form, we can determine |F ↑| + |F ↓| exactly

in terms of the sizes of the families in its pattern list and their intersections.

Lemma 6.4.2. Let F be an (n,m)-family in (s, `)-standard form with pattern list (P10,P00,

P11,P01). Then |F l| 6 |F ↑|+ |F ↓| −m and |F ↑|+ |F ↓| is given by

2n−s+2sm+2n−`−1
(
2|P00|+ |P10

01 |+ |P11
01 |
)
−2s−1

(
2|P00|+ |P10

01 |+ |P00
01 |+ 2|P11

01 |+ 2|P∗01|
)

where P10
01 = P01 \ (P00 ∪ P11), P00

01 = P01 ∩ (P00 \ P11), P11
01 = P01 ∩ (P11 \ P00) and

P∗01 = P01 ∩ P00 ∩ P11.

Proof. We have |F l| 6 |F ↑| + |F ↓| − m since F ⊆ F ↑ ∩ F ↓, so it remains to show

that |F ↑| + |F ↓| is as given in the lemma statement. Clearly P01 is the disjoint union of

P10
01 ,P00

01 ,P11
01 and P∗01. We first show that

|F ↑| = 2n−s + 2n−`−1(2|P00|+ |P10
01 ∪ P11

01 |). (6.1)

For a pattern P and a subset A of {s, ` + 1}, we say the pair (P,A) is up-covered if

[s− 1]∪P ∪A ∈ F ↑. By (SF1), [s− 1] ⊆ F ⊆ [`+ 1] for all F ∈ F , so F ↑ contains exactly

the sets [s − 1] ∪ P ∪ A ∪ B where (P,A) is up-covered and B ⊆ [n] \ [` + 1]. Therefore

|F ↑| = 2n−`−1u , where u is the number of up-covered pairs. So to establish (6.1) it suffices

to show that

u = 2`−s+1 + 2|P00|+ |P10
01 ∪ P11

01 |. (6.2)
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As [s] ∪ P ∈ F for all patterns P by (SF2), the pairs (P, {s}) and (P, {s, ` + 1}) are up-

covered for each of the 2`−s patterns P . Also, the pair (P, ∅) is up-covered if and only if

P ∈ P ↑00 as the sets in F that contain neither s nor ` + 1 are exactly those of type 00.

Finally (P, {` + 1}) is up-covered if and only if P ∈ (P00 ∪ P01) ↑ as the sets in F that do

not contain s are exactly those of type 00 or 01. So

u = 2`−s+1 + |P ↑00|+ |(P00 ∪ P01) ↑| = 2`−s+1 + |P00|+ |(P00 ∪ P01) ↑|

where the second equality follows by (SF3). So it suffices to prove that (P00 ∪ P01) ↑ =

P00 ∪ P10
01 ∪ P11

01 to establish (6.2) and therefore (6.1). Noting that P ↑01 \ P01 ⊆ P00 by

(SF5) and P ↑00 = P00 by (SF3), it follows that (P00 ∪ P01) ↑ = P00 ∪ P01 which is exactly

P00 ∪ P10
01 ∪ P11

01 by the definitions of P10
01 and P11

01 . So (6.1) does indeed hold.

Next we establish that

|F ↓| = 2` + 2s−1(2|P11|+ |P10
01 ∪ P00

01 |). (6.3)

For a pattern P and a subset A of {s, ` + 1}, we say the pair (P,A) is down-covered if

[s − 1] ∪ P ∪ A ∈ F ↓. By (SF1), [s − 1] ⊆ F ⊆ [` + 1] for all F ∈ F , so F ↓ contains

exactly the sets ([s− 1] \B)∪P ∪A where (P,A) is down-covered and B ⊆ [s− 1]. Hence,

|F ↓| = 2s−1v, where v is the number of down-covered pairs. By similar arguments to those

used for |F ↑|, it can be shown that

v = 2`−s+1 + |P ↓11|+ |(P11 ∪ P01) ↓| = 2`−s+1 + 2|P11|+ |P10
01 ∪ P00

01 |

from which (6.3) follows.

That |F ↑|+|F ↓| is as given in the lemma statement now follows using (6.1) and (6.3) and

making the substitutions |P11| = m−|P10|−|P00|−|P01|, |P01| = |P10
01 |+|P00

01 |+|P11
01 |+|P∗01|

and |P10| = 2`−s. The first two of these substitutions are valid by the definitions of the

families involved and the last is valid by (SF2).

It turns out that there are two critical cases for establishing Φ(n,m). These involve a

convex (n,m)-family F in (s, `)-standard form with ` = n− s or ` = n− s− 1. Our final

two lemmas in this section use Lemma 6.4.2 to give lower bounds on |F l| in these two

situations.

Lemma 6.4.3. Let n be a nonnegative integer and let F be a convex (n,m)-family that is

in (s, `)-standard form with ` = n− s. Let t be the maximum integer in {0, . . . , 2`−s} such

that m − 2`−s > Φ(` − s, t) + 2t − 1 and let δ = 1 if m − 2`−s = Φ(` − s, t) + 2t − 1 and
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δ = 0 otherwise. Then

|F l| > 2n−s + 2s
(
m− t+ 1

2
δ
)
−m.

Proof. Let (P10,P00,P11,P01) be the pattern list of F and let P10
01 ,P00

01 ,P11
01 ,P∗01 be as

defined in Lemma 6.4.2. Since F is convex, using Lemma 6.4.2 and ` = n− s we have

|F l| = |F ↑|+ |F ↓| −m = 2n−s + (2s − 1)m− 2s−1
(
|P00

01 |+ |P11
01 |+ 2|P∗01|

)
.

This completes the proof if |P00
01 |+ |P11

01 |+ 2|P∗01| 6 2t− δ. So suppose for a contradiction

that |P00
01 | + |P11

01 | + 2|P∗01| > 2t − δ + 1. As F is in standard form, P ↑01 \ P01 ⊆ P00 by

(SF5) and by definition P00
01 ∪ P∗01 ⊆ P00. Similarly, P ↓01 \ P01 ⊆ P11 and P11

01 ∪ P∗01 ⊆ P11.

Therefore

|P00|+ |P11| > |P ↑01 \ P01|+ |P ↓01 \ P01|+ |P00
01 |+ |P11

01 |+ 2|P∗01| > |P l01| − |P01|+ 2t− δ + 1

where the last inequality follows using our assumption and since the convexity of F implies

the convexity of P01. Thus,

m− 2`−s = |P00|+ |P11|+ |P01| > |P l01|+ 2t− δ + 1 > Φ(`− s, t− δ + 1) + 2t− δ + 1

where the last inequality follows from the definition of Φ, since 2|P01| > |P00
01 | + |P11

01 | +
2|P∗01| > 2t − δ + 1 by our assumption and hence |P01| > t − δ + 1. This contradicts the

definition of t when δ = 0 and contradicts the definition of δ when δ = 1.

Lemma 6.4.4. Let n be a nonnegative integer and let F be a convex (n,m)-family that is

in (s, `)-standard form with ` = n− s− 1. Then

|F l| > 2n−s + 2sm−m.

Proof. Let (P10,P00,P11,P01) be the pattern list of F and let P10
01 ,P00

01 ,P11
01 ,P∗01 be as

defined in Lemma 6.4.2. Since F is convex, using Lemma 6.4.2 and ` = n− s− 1 we have

|F l| = |F ↑|+ |F ↓| −m = 2n−s + (2s − 1)m+ 2s−1
(
2|P00|+ |P10

01 | − |P00
01 | − 2|P∗01|

)
.

Thus we have the desired result because |P00| > |P00
01 |+ |P∗01| by the definitions of P00

01 and

P∗01.
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6.5 Proof of main result

Throughout this section assume that n,m ∈ Z+ with m ∈ {1, . . . , 2n−1 − 1}. Motivated by

Lemmas 6.4.3 and 6.4.4, define

A(n,m) = 2d(n+a)/2e + 2b(n−a)/2cm−m

B(n,m) = 2b(n+a)/2c + 2d(n−a)/2e(m− t+ 1
2
δ)−m = A(n,m)− 2d(n−a)/2e(t−δ/2)

where a = blog2mc,

a′ =

a if a ≡ n (mod 2) or a = 0

a− 1 otherwise,

t ∈ [2a
′
] is the greatest integer such that m− 2a

′
> Φ(a′, t) + 2t− 1, and

δ =

1 if Φ(a′, t) = m− 2a
′ − 2t+ 1

0 otherwise.

The aim is to prove that Theorem 6.1.1, which asserts that Φ(n,m) = B(n,m) for

m ∈ {1, . . . , 2n − 1}. Note that Lemma 6.2.3(ii) asserts that |F l| > A(n,m) under the

conditions it specifies. Note that B(n,m) = A(n,m) − 2d(n−a)/2e(t − δ/2), so B(n,m) 6

A(n,m) whenever t > δ/2. We now show that B(n,m) 6 A(n,m) in all cases, and

characterise when A(n,m) = B(n,m).

Lemma 6.5.1. Let n and m be nonnegative integers with m ∈ {1, . . . , 2n − 1} and let

a = blog2mc. Then B(n,m) 6 A(n,m) with equality if and only if a = 0 or

� a > 1, a ≡ n (mod 2) and m 6 2a + 2da/2e + 2ba/2c − 1; or

� a > 1, a 6≡ n (mod 2) and m > 2a+1 − 2d(a+1)/2e − 2b(a+1)/2c + 2.

Proof. Let a′, t and δ be as in the definition of B(n,m). When a = 0, then m = 1 and

clearly t = 0 and δ = 0, so A(n,m) = B(n,m). So we may assume 1 6 a < n.

Case 1. Suppose that a ≡ n (mod 2). Then

A(n,m)−B(n,m) = 2(n−a)/2
(
t− 1

2
δ
)
.

So, since t cannot be 0 when δ = 1, we have B(n,m) 6 A(m,n) with equality if and only

if t = δ = 0. By the definition of t, we have t = 0 if and only if m − 2a 6 Φ(a, 1). By

Lemma 6.2.1(i), this is equivalent to m 6 2a + 2da/2e + 2ba/2c − 1.
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Case 2. Suppose that a 6≡ n (mod 2). Define b to be the element of {0, . . . , 2a − 1} such

that m = 2a + b. Then

A(n,m)−B(n,m) = 2(n+a−1)/2−2(n−a−1)/2m+2(n−a+1)/2
(
t− 1

2
δ
)

= 2(n−a−1)/2 (2t− b− δ) .

We first prove that 2t > b+ δ and hence that A(n,m) 6 B(n,m) with equality if and only

if 2t = b + δ. If t = 2a−1, then 2t > b + δ, since b 6 2a − 1 and δ 6 1. Otherwise, by the

definition of t,

Φ(a− 1, t+ 1) + 2t > m− 2a−1 = 2a−1 + b . (6.4)

Since Φ(a− 1, t+ 1) 6 2a−1 by definition, (6.4) implies that 2t > b. Further, if 2t = b then

Φ(a− 1, t) + 2t− 1 6 2a−1 + 2t− 1 = 2a−1 + b− 1 = m− 2a−1 − 1

and hence δ = 0. Thus 2t > b + δ and A(n,m) 6 B(n,m) with equality if and only if

2t = b+ δ.

Let m0 = 2a+1−2d(a+1)/2e−2b(a+1)/2c+2 and t0 = 2a−1−2d(a−1)/2e−2b(a−1)/2c+1. We will

complete the proof by showing that 2t = b+ δ if and only if m > m0. By Lemma 6.2.1(ii)

and (iii), Φ(a − 1, t) = 2a−1 if t > t0 + 1 and Φ(a − 1, t) 6 2a−1 − 1 if t 6 t0. Using these

facts and the definition of t0, we have

Φ(a− 1, t0 + 1) + 2(t0 + 1)− 1 = 3 · 2a−1 − 2d(a+1)/2e − 2b(a+1)/2c + 3 (6.5)

Φ(a− 1, t0) + 2t0 − 1 6 3 · 2a−1 − 2d(a+1)/2e − 2b(a+1)/2c. (6.6)

Case 2a. Suppose that m > m0 + 1. We show that 2t = b + δ. By the hypothesis of

this subcase, m − 2a−1 is greater than or equal to the right hand side of (6.5) and hence

t > t0 + 1. So we have that Φ(a − 1, t) = 2a−1 and hence by definition t is the greatest

integer such that 2t 6 m − 2a + 1 = b + 1. So we have 2t = b and δ = 0 if b is even and

2t = b+ 1 and δ = 1 if b is odd. Hence 2t = b+ δ.

Case 2b. Suppose that m 6 m0. We show that 2t = b+ δ if and only if m = m0. By the

hypothesis of this subcase, m− 2a−1 is less than the right hand side of (6.5) and so t 6 t0.

Further, if m ∈ {m0,m0−1}, then m−2a−1 is greater than the right hand side of (6.6) and

so t = t0 and δ = 0. We separately consider the situations when t = t0 and when t 6 t0−1.

If t = t0 then using b = m − 2a and the definition of t0 shows that b = 2t0 if m = m0,

b = 2t0 − 1 if m = m0 − 1, and b 6 2t0 − 2 otherwise. So, since we have seen that δ = 0

when m ∈ {m0,m0 − 1}, we have that 2t = b+ δ if and only if m = m0.

If t 6 t0 − 1 then, by the definition of t, we have m− 2a−1 6 Φ(a− 1, t+ 1) + 2t. Since
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Φ(a− 1, t+ 1) 6 Φ(a− 1, t0) 6 2a−1 − 1, this implies 2t > b+ 1. Further, if δ = 1, then by

the definition of δ we have m − 2a−1 = Φ(a − 1, t) + 2t − 1. Since Φ(a − 1, t) 6 2a−1 − 1,

this implies 2t > b+ 2. Thus 2t > b+ δ.

For m ∈ {1, . . . , 2n−1} we can now prove Theorem 6.1.1 by first showing that Φ(n,m) >

B(n,m) and then showing that Φ(n,m) 6 B(n,m).

Lemma 6.5.2. For nonnegative integers n and m with m ∈ {1, . . . , 2n − 1}, Φ(n,m) >

B(n,m).

Proof. Let F be the (n,m)-canonical minimal family, let s and ` be the least and greatest

sizes of a set in F respectively. It suffices to show that |F l| > B(n,m). By Lemmas 6.3.3

and 6.4.1 F is convex and in (s, `)-standard form. Let a, a′, t and δ be as in the definition

of B(n,m). We have 2`−s 6 m 6 2`−s+2− 2, where the lower bound on m follows by (SF2)

and the upper bound follows by (SF1) and the fact that [s− 1] and [` + 1] cannot be sets

in F by the definitions of s and `. We consider two cases according to whether F ⊆ {[`]} ↓.
Case 1. Suppose that F ⊆ {[`]} ↓. Then, since [`] is the only set of size ` in {[`]} ↓}, we

have that [`] ∈ F , and so by Lemma 6.2.3(ii) and Lemma 6.5.1 we have

|F l| > A(n,m) > B(n,m) .

Case 2. Suppose that F * {[`]} ↓. We first show that s ∈ {n− `− 1, n− `}.
Suppose for a contradiction that s > n− `+ 1. Recall that ρ is the permutation of [n]

such that ρ(i) = n+ 1− i for each i ∈ [n] and for a subset F of [n], ρ(F ) = {ρ(x) : x ∈ F}.
By (SF1), F ⊆ {[s− 1]} ↑ and hence we have that ρ(F) ⊆ {[n− s+ 1]} ↓. So ρ(F) ⊆ {[`]} ↓

since s > n− ` + 1 and hence ρ(F) ≺ F since F * {[`]} ↓. This contradicts the definition

of F since |F l| = |(ρ(F)) l| by Lemma 6.3.1 (i) and (ii).

Now suppose for a contradiction that s 6 n − ` − 2. Then no set in F contains n by

(SF1) because s 6 n− `− 2 implies ` 6 n− 2. Let G = {F ∪ {n} : F ∈ F} and note that

|G ↑| = 1
2
|F ↑|, that |G ↓| = 2|F ↓|, and that G is convex because F is. So

|F l| − |G l| = |F ↑|+ |F ↓| − |G ↑| − |G ↓| = 1
2
|F ↑| − |F ↓| > 2n−s−1 − 2`+1 > 0

where the second last inequality follows because {[s]} ↑ ⊆ F ↑ by (SF2) and F ↓ ( {[`+ 1]} ↓

by (SF1) and the definition of `, and the last follows because s 6 n− `− 2. So |G l| < |F l|
which contradicts the definition of F . So we do indeed have that s ∈ {n− `− 1, n− `}. We

divide the proof into two subcases accordingly. In each case, note that a ∈ {l− s, l− s+ 1}
because we saw above that 2l−s 6 m < 2l−s+1.
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Case 2a. Suppose that s = n − ` − 1. If a ≡ n (mod 2), then a = ` − s + 1 and hence

s = n−a
2

. If a 6≡ n (mod 2), then a = ` − s and hence s = n−a−1
2

. So s = bn−a
2
c and, by

Lemmas 6.4.4 and 6.5.1, we have

|F l| > 2n−s + 2sm−m > 2d(n+a)/2e +m2b(n−a)/2c −m = A(n,m) > B(n,m) .

Case 2b. Suppose that s = n− `. If a ≡ n (mod 2), then a = `− s and hence s = n−a
2

. If

a 6≡ n (mod 2), then a = `− s+ 1 and hence s = n−a+1
2

. So we have that s = dn−a
2
e. Thus

by Lemma 6.4.3,

|F l| > 2b(n+a)/2c + 2d(n−a)/2e (m− t+ 1
2
δ
)
−m = B(n,m) .

Lemma 6.5.3. For nonnegative integers n and m with m ∈ {1, . . . , 2n − 1}, Φ(n,m) 6

B(n,m).

Proof. Let a, a′, t and δ be as in the definition of B(n,m). Let s = dn−a
2
e and ` = bn+a

2
c,

and note that s = n− ` and `− s = a′. We say a family of subsets of [n] is suitable if

� it is in (s, `)-standard form; and

� |P01| = t, P01 ⊆ P00 and |P01 \ P11| = δ, where (P10,P00,P11,P01) is its pattern list.

We will construct a suitable family F such that |F| = m. This will suffice to complete the

proof because then, if (P10,P00,P11,P01) is the pattern list of F and P10
01 ,P00

01 ,P11
01 ,P∗01 are

as defined in Lemma 6.4.2, we have

|F l| 6 2n−s + (2s − 1)m− 2s−1
(
|P00

01 |+ 2|P∗01|
)

= 2` + 2s
(
m− t+ 1

2
δ
)
−m

= B(n,m)

where the first line follows from Lemma 6.4.2 because ` = n − s and P01 ⊆ P00 implies

|P10
01 | = |P11

01 | = 0, the second line follows since |P01| = t, P10 ⊆ P00 and |P01 \ P11| = δ

imply |P∗01| = t− δ and |P−01| = δ, and the final line follows from the definitions of ` and s.

Hence Φ(n,m) will be at most B(n,m) as required. So it suffices to show there is a suitable

family F with |F| = m.

Let m0 = 2`−s + Φ(`− s, t) + 2t. Note that we have

m0 − 1 6 m < 3 · 2`−s + t (6.7)

and that δ = 1 if and only if m = m0 − 1. The lower bound and the statement concerning
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δ follow by the definition of t. The upper bound follows by the definition of a′ = ` − s if

t = 2`−s and follows because m 6 2`−s+Φ(`−s, t+1)+2t and Φ(`−s, t+1) 6 2`−s if t < 2`−s.

Let Q be a convex family of subsets of [`] \ [s] such that |Q| = t and |Q l| = Φ(` − s, t).
Such a family exists by the definition of Φ(` − s, t) and Lemma 6.2.2. Noting the bounds

on m given by (6.7), we divide the proof into two cases.

Case 1. Suppose that m = m0 − 1. In this case δ = 1 and hence t > 1. Take F to be

the unique family satisfying (SF1) with pattern list (P10,P00,P11,P01) where P10 = [`]\ [s],

P01 = Q, P00 = Q ↑, P11 = Q ↓ \ {A} and A is a maximal set in Q. It can be confirmed

that F is in (s, `)-standard form using the fact that A is maximal in Q. By definition,

|P01| = |Q| = t, P01 ⊆ P00 and |P01 \ P11| = |{A}| = 1 = δ. So F is suitable.

Case 2. Suppose that m > m0. In this case δ = 0, so the condition |P01 \ P11| = δ in

the definition of suitable reduces to P01 ⊆ P11. We complete the proof by showing via

induction on k that there is a suitable family of size k for each k ∈ {m0, . . . ,m}.
For k = m0, we take F to be the unique family satisfying (SF1) with pattern list

(P10,P00,P11,P01) where P10 = 2[`]\[s], P01 = Q, P00 = Q ↑, P11 = Q ↓. As in the case

above it can be seen that F is suitable.

Now suppose that k ∈ {m0 + 1, . . . ,m} and that there is a suitable family F with

|F| = k − 1. Let (P10,P00,P11,P01) be the pattern list of F . We will add a set to F to

obtain a suitable family F ′ with |F ′| = k in one of two slightly different ways depending

on whether P00 = 2[`]\[s].

If P00 6= 2[`]\[s], then take F ′ = F∪{[s−1]∪X} where X is a maximal set in 2[`]\[s]\P00.

So F ′ has pattern list (P10,P00∪{X},P11,P01) . Obviously |F ′| = k, and it can be verified

that F ′ is in (s, `)-standard form since F is and since X is maximal in 2[`]\[s] \ P00. Then

it is easy to see that F ′ is suitable, noting that P01 ⊆ P11.

If P00 = 2[`]\[s], then note that P11 6= 2[`]\[s] since

|P11|+ 2`−s+1 + t = |F| = k − 1 < 3 · 2`−s + t

where the first equality holds because |P00| = |P10| = 2`−s and |P01| = t and the inequality

holds by (6.7). Take F ′ = F ∪ {[s − 1] ∪ {s, ` + 1} ∪ Y } where Y is a minimal set in

2[`]\[s] \ P11. So F ′ has pattern list (P10,P00,P11 ∪ {Y },P01) . Obviously |F ′| = k, and

it can be verified that F ′ is in (s, `)-standard form since F is and since Y is minimal in

2[`]\[s]\P11. Then it is easy to see that F ′ is suitable, noting that P01 ⊆ P11. This completes

the induction and hence the proof of the lemma.

Proof of Theorem 6.1.1. If m ∈ {0, 2n} then it is clear that Φ(n,m) = m. Otherwise

m ∈ {1, . . . , 2n − 1} and Φ(n,m) = B(n,m) by Lemmas 6.5.2 and 6.5.3.
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Proof of Corollary 6.1.2. By Theorem 6.1.1 we have that Φ(n,m) = B(n,m) and by

Lemma 6.5.1 we have that B(n,m) = A(n,m) exactly in the cases given in the corollary

statement.

In Table 6.1 we use Theorem 6.1.1 to compute the values of Φ(n,m) for n ∈ {2, 3, 4, 5, 6}.
In the vast majority of these cases we have Φ(n,m) = A(n,m), with the only exceptions as

follows. For n = 4, we have Φ(n,m) = A(n,m) − 1 when m ∈ {8, 9}. For n = 5, we have

Φ(n,m) = A(n,m) − 2 when m ∈ {15, 16, 17, 18} and Φ(n,m) = A(n,m) − 1 when m ∈
{14, 19, 20, 21}. For n = 6, we have Φ(n,m) = A(n,m)− 5 when m ∈ {32, 33}, Φ(n,m) =

A(n,m)−4 when m ∈ {30, 31, 34, 35, 36}, Φ(n,m) = A(n,m)−3 when m ∈ {29, 37, 38, 39},
Φ(n,m) = A(n,m)− 2 when m ∈ {8, 9, 25, 26, 27, 28, 40, 41, 42} and Φ(n,m) = A(n,m)− 1

when m ∈ {24, 43, 44, 45, 46, 47, 48, 49}.
In Table 6.2we also present, for n = 4 and each m ∈ {0, ..., 16}, a family F of subsets

of {1, 2, 3, 4} such that |F| = m and |F l| = Φ(n,m). We also include F l and the family

G = 2{1,2,3,4} \ F l that would maximise |F| + |G| under the condition that (F ,G) is a

cross-Sperner pair.
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m Φ(2,m) Φ(3,m) Φ(4,m) Φ(5,m) Φ(6,m)
0 0 0 0 0 0
1 3 5 7 11 15
2 4 6 10 14 22
3 4 7 11 17 25
4 4 8 12 20 28
5 8 13 21 31
6 8 14 22 34
7 8 15 23 37
8 8 15 24 38
9 15 25 39
10 16 26 42
11 16 27 43
12 16 28 44
13 16 29 45
14 16 29 46
15 16 29 47
16 16 30 48
17 30 49
18 30 50
19 31 51
20 31 52
21 31 53
22 32 54
23 32 55
24 32 55
25 32 55
26 32 56
27 32 57
28 32 58
29 32 58
30 32 58
31 32 59
32 32 59
33 59
34 60
35 60
36 60
37 61
38 61
39 61
40 62
41 62
42 62
43 63
44 63
45 63
46 63
47 63
48 63
49 63

50− 64 64

Table 6.1: Values of Φ(n,m) for n ∈ {2, 3, 4, 5, 6}.
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6.5. Proof of main result
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Chapter 7

Conclusion

There are still many questions left open related to our work with different “Sperner-like”

families.

The simplest question comes as a result of Theorem 4.1.4(b), where the asymptotics of

SP(n, k) when k = o(n) is odd and n ≡ k − 1 (mod 2k) are only unknown when k = 3.

We believe that in this case, the theorem statement is still true, giving us the following

conjecture which was discussed at the end of Section 4.6.

Conjecture 7.0.1. Let n be an integer such that n → ∞ with n ≡ 2 (mod 6). Then

SP(n, 3) ∼ MMS(n, 3).

As per the discussion there, we have computational evidence which supports our belief

that this conjecture holds.

In Chapters 3 and 4, we established that SP(n, k) is asymptotic to MMS(n, k) in a very

wide variety of cases, with the main unresolved situation being when n is odd, k = o(n)

and k − r is bounded. It seems likely that addressing these unresolved cases will require

developing new constructions for Sperner partition systems. Throughout Chapter 3 and

Chapter 4, we provided explicit constructions for (n, k)-Sperner partition systems in cases

where n satisfied a particular divisibility condition (n needed to be even in Chapter 3 and

in Sections 4.5 and 4.6, and needed to be divisible by some fixed h in Section 4.3) and then

used Lemma 2.2.4 to construct all of the non divisible cases. We then proceeded to show

that the resulting systems had size asymptotic to MMS(n, k). When k − r is bounded, we

no longer have that MMS(n, k) ∼ MMS(n+ 1, k) as

MMS(n, k)

MMS(n+ 1, k)
=
k − r − 1 + (r+1)(c+1)

n−c+1

k − r + r(c+1)
n−c

· n− c+ 1

n+ 1
6

k − r − 1

k − r ,

which is bounded away from 1 since k − r is bounded. Thus systems constructed using
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Lemma 2.2.4 will not have a number of partitions asymptotic to MMS(n + 1, k). In spite

of this difficulty, we suspect the following conjecture to be true.

Conjecture 7.0.2. Let n and k be integers such that n→∞ and k > 1. Then SP(n, k) ∼
MMS(n, k).

The work in Section 4.4, as well as the work of Li and Meagher in [28], leads to the

obvious problem of determining SP(n, k) exactly for various (n, k) with n > k > 1. All of

the existing results are for cases where c = 2, so it would be of great interest to find cases

where we can find an exact value for SP(n, k) when c 6= 2. Even beginning to tackle this

problem has proven difficult. When c = 2, a simple counting argument gives us that any

partition in a nontrivial (2k+r, k)-Sperner partition system must have at least k−r 2-sets,

and no sets of size 1. As soon as we fix c 6= 2, even in the simplest case of c = 3, we no

longer have a lower bound on the number of c-sets in a partition, nor can we easily bound

the number of sets of size less than or equal to c, making any attempt at proving that a

given construction is optimal all the more difficult.

Another major open problem related to Sperner partition systems concerns the structure

of extremal examples. Li and Meagher conjectured in [28] that for all integers n > k > 1,

there exists an almost uniform (n, k)-Sperner partition system with SP(n, k) partitions.

Recall that an almost uniform (n, k)-Sperner partition system is one in which all classes

contain either bn/kc or dn/ke elements. We also believe this conjecture to be true, as

supported by the fact that every construction for Sperner partition systems we present in

this thesis produces almost uniform Sperner partition systems. We attempted to prove this

conjecture in the special case of c = 2, as we felt that knowing that there would always be

a minimum number of 2-sets in the system would be helpful, but even then we were unable

to make any progress.

As part of our work in Chapter 5, we presented a construction for a wide array of pairs

of intersecting cross-Sperner families that meet the bound given in Theorem 5.1.1. It would

be interesting to find other constructions for families meeting this bound or, on the other

hand, show that our construction gives every extremal family. It would also be of interest

to extend our result in Theorem 5.1.1 in a fashion similar to that of Tay and Wong, who

not only classified all possible Sperner cross-intersecting pairs that met their proven upper

bound, but also classified all pairs with one fewer set than this. Unfortunately, we suspect

that achieving a similar stability result for cross-Sperner pairs is unlikely due to the wide

range of extremal examples produced by Lemma 5.3.3, which are not necessarily exhaustive.

Theorem 6.1.1 gives exact values for Φ(n,m), which we recall is the minimum size of |F l|
over all families F ⊆ 2[n] with |F| = m. Although the values are recursively determined
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in general, Corollary 6.1.2 then goes on to identify a number of cases where Φ(n,m) can

be explicitly stated. We are greatly interested in the possibility of extending this explicit

determination to other cases, perhaps even to all n and m. We have made some initial

progress in finding explicit lower and upper bound for Φ(n,m), but there is still much work

to be done here.

We are also interested in determining if there exists a total order on subsets of [n] such

that, for each m ∈ {0, . . . 2n}, we have that |F l| = Φ(n,m) where F is the family containing

the first m subsets of [n] under the total order. Bashov proved that no such order exists for

the double sided shadow ([4]). We plan for this to be the subject of future investigation.

Another point of interest in our work in Chapter 6, is the introduction of a new extension

to the classical technique of shifting that allowed us to prove our main result. It is natural

to investigate if this technique would be of use to other problems. Such problems would

have to involve families of sets that are allowed to be different sizes.
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