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Abstract

Income elasticity dynamics of health expenditure is considered for the OECD and

Eurozone over the period 1995-2014. Motivated by some modelling challenges, this

paper studies a class of non-linear cointegration panel data models, controlling

for cross-section dependence and certain endogeneity. Using the corresponding

methods, our empirical analyses show a slight increase in the income elasticity of

the healthcare expenditure over the years, but still with values under 1, meaning

that healthcare is not a luxury good in the OECD and Eurozone.
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1 Introduction

The income elasticity of healthcare expenditure is defined as the percentage change in

healthcare expenditure in response to the percentage change in income per capita. If

this elasticity is greater than one, then healthcare expenditure grows faster than income,

as luxury goods do, and is driven by market forces alone (Culyer, 1988). However,

significant governmental funding of health systems produces elasticities lower than one,

typical of necessary goods. On this subject, there is growing literature on modelling

and assessing the sustainability of health systems in some countries (e.g., Di Matteo

and Di Matteo, 1998; Hartwig, 2008). Take Figure A.1 of this study as an example,

in which a few facts emerge. First, there is a steady increase of average healthcare

expenditure per capita during the past two decades in the OECD and Eurozone, and the

rate of increase falls slightly after the Global Financial Crisis. A report of the World

Health Organization on the effects of the Global Financial Crisis in European health

systems (Mladovsky et al., 2012) concludes that the response has been heterogeneous

among European countries: some countries have made their health system more efficient,

others have extended health benefits to ensure access for low-income groups, while others

have cut investment and increased patient charges. Clearly, the Global Financial Crisis

has been an economic shock that has trigged the implementation of new health policies

seeking to reduce the sensitivity of health systems to these economic shocks and to make

them less dependent on public revenues. Second, there are clear nonstationary trends

in Figure A.1, which should be accounted for by economic/econometric models. Third,

certain cointegration/endogeneity should be allowed for.

Although the relevant literature has agreed that the sustainability of the healthcare

cost can be more or less assessed by measuring income elasticity (e.g., Jones and Wildman,

2008; Hauck and Zhang, 2016), most earlier works use parametric models, assuming that

regressors are stationary over time, and assuming exogeneity between regressors and

error terms. Among the limited literature (e.g., Gerdtham and Löthgren, 2000; Okunade

and Murthy, 2002; Jewel et al., 2003), few studies in this field have accounted for the

nonstationarity of variables, the heterogeneous income elasticity over time, and certain

endogeneity simultaneously.

That being said, we aim to capture the features associated with healthcare expenditure

mentioned above by investigating some semiparametric panel data models. Panel data

analyses have received considerable attention during the past two decades due to the

suitability for a wide number of applied disciplines, e.g., economics, finance, and biology

(Arellano, 2003; Hsiao, 2014). In addition, semi/nonparametric panel data models have
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seen their popularity increase because of the flexibility of the unknown functional forms,

e.g., Connor et al. (2012), Su and Jin (2012), Fan et al. (2016), just to name a few.

Given that time trends are the dominant characteristic in many economic, financial, and

climate datasets, it is thus worth considering some semi/nonparametric panel data models

including different types of time trends. An excellent review on the challenges that arise

with time trends can be seen in Phillips (2001).

In this article we study the income elasticity of healthcare expenditure specifically

using time-varying coefficient panel data models with nonstationarity and endogeneity.

On methodology, we first extend Phillips et al. (2017) to the panel data framework, and

establish a biased corrected estimator to tackle certain endogeneity while accounting for

time-varying marginal effects, and nonstationarity of the regressors. We then discuss an

extension on nonstationary panel data models with interactive fixed effects. For both

cases (with and without interactive fixed effects) we show that the degeneracy issue

mentioned in Phillips et al. (2017) is no longer a problem when panel data get involved.

Some other relevant theoretical works include, but are not limited to, Cai and Li (2008),

Sun et al. (2009), Gao et al. (2019), etc. On empirical study, our results, which are

based on 34 countries in the OECD and 20 counties in the Eurozone from 1995 to 2014,

suggest that the income elasticities increase slightly over time. Our study shows that the

country demographic structure is also related with its healthcare expenditure. The price

of healthcare increases with ageing population and decreases as the rate of population

under 15 years old increases. A monotonic decreasing relationship appears between the

healthcare expenditure and the proportion of public funding dedicated to healthcare.

This supports the positive effect of the new healthcare policies triggered by the Global

Financial Crisis in the Eurozone. These policies aim at making the Eurozone health

systems less dependent upon government funding and macro-economic shocks, and they

seem to be working in the right direction.

The rest of this paper is organized as follows. The methodology and the associated

asymptotic results are provided in Section 2. Section 3 presents the empirical study.

Section 4 concludes. Appendix A further explains two technical issues, and presents

the list of countries studied in this paper. To conserve space, Appendix B collects the

necessary technical lemmas, mathematical proofs and some simulation studies.

Before proceeding we introduce some notations that will be used repeatedly below. ‖·‖
denotes the Euclidean norm of a vector or the Frobenius norm of a matrix; ‖ · ‖sp defines

the spectral norm of a matrix; =⇒ denotes convergence in distribution; bxc denotes the

largest integer less than or equal to x; Kh(u) = K(u
h
), where K(·) and h represent a

kernel function and a bandwidth of the kernel method, respectively; iT and IT stand for
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a T × 1 vector of ones and a T ×T identity matrix, respectively; MW = IT −PW denotes

the orthogonal projection matrix generated by matrix W , where PW = W (W ′W )−1W ′,

and W is a T × q matrix with rank q.

2 Methodology

We start by considering the following panel data model

Yit = X ′itβ0(τt) + αi + uit, (2.1)

where {(Yit, Xit) | i = 1, . . . , N, t = 1, . . . , T} are observable. Moreover, τt = t/T , Xit =

Xi,t−1 + νit is a d × 1 integrated process, β0(·) = (β01(·), . . . , β0d(·))′ is the coefficient

function, and αi is the individual effect. We adopt a linear process for νit and uit, i.e.,

(ν ′it, uit)
′ =

∑∞
j=0(Φj, ψj)

′εi,t−j, where εit is a (d + 1) × 1 sequence of random vectors,

and (Φj, ψj)
′ is (d+ 1)× (d+ 1) and is partitioned conformable to (ν ′it, uit)

′. Throughout

this study, suppose
∑N

i=1 αi = 0 for the purpose of identification. The model (2.1)

captures potential drifts in the relationship between Yit and Xit over time, and allows for

certain endogeneity through the structure of (ν ′it, uit)
′, which is especially useful for time

series data over long horizons, because economic mechanisms are likely to evolve with

institutional changes, regulatory conditions, or financial conditions.

2.1 Estimation and Asymptotic Properties

Having introduced the model (2.1), we define the estimate of β0(δ) for ∀δ ∈ (0, 1) as

follows:

β̂(δ) = (X ′W ∗
δX)−1X ′W ∗

δ Y, (2.2)

where Y = (Y11, . . . , Y1T , . . . , YN1, . . . , YNT )′, X is defined similar to Y , W ∗
δ = D′δWδDδ,

Wδ = IN ⊗ diag{Kh(τ1 − δ), . . . , Kh(τT − δ)}, Dδ = INT −D(D′WδD)−1D′Wδ, and D =

(−iN−1, IN−1)′ ⊗ iT . To conserve space, the reason why (2.2) is considered is explained

in Appendix A.1 of this paper. It is worth pointing out that under a panel data setting

the degeneracy issue mentioned in Phillips et al. (2017) is no longer a problem for (2.2).

The detailed explanation is provided in Appendix A.2.

Before stating the asymptotic properties of (2.2), we provide the necessary assump-

tions with discussions.
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Assumption 1. Let K(·) be symmetric and defined on [−1, 1], and satisfy
∫ 1

−1
K(w)dw =

1, supw∈[0,1] |K(1)(w)| <∞, and
∫ 1

−1
|w|K(w)dw <∞.

Assumption 2. Suppose that each element of β0(τ) is second order continuously differ-

entiable on [0, 1].

Assumption 3. Let Φ =
∑∞

j=0 Φj and ψ =
∑∞

j=0 ψj. Suppose that maxi≥1E‖Xi0‖4 <∞
and

∑∞
j=0 j‖(Φj, ψj)‖ < ∞. Moreover, suppose that {εit} is independent and identically

distributed (i.i.d.) over i and t, E[εit] = 0, E[εitε
′
it] = Λ > 0, and E‖εit‖4+γ0 < ∞ for

some γ0 > 0.

Assumption 4. Suppose that as (N, T )→ (∞,∞), h→ 0 and min{T,N} · h→∞. In

addition, lim(N,T )→(∞,∞)NT
2h5 <∞.

Assumption 1 imposes some standard conditions on the kernel function. Assumption 2

requires certain smoothness of the coefficient function. Both assumptions are standard in

the literature of nonparametric regression (e.g., Cai and Li, 2008). Assumption 3 extends

the requirements on nonstationary time series of Phillips et al. (2017) to the panel data

setting. Assumption 4 restricts the rate of N and T diverging to ∞.

With these conditions in hand, we establish the first asymptotic result in the next

theorem.

Theorem 2.1. Suppose that Assumptions 1-4 are satisfied. For ∀δ ∈ (0, 1), as (N, T )→
(∞,∞),

√
NT 2h

{
β̂(δ)− β0(δ)−∆1 −OP (h2)

}
=⇒ N(0, C∗

(1−CK)2
Σ−1
ν Σν,uΣ

−1
ν ), where ∆1,

C∗, and CK are defined in (A.2) of Appendix A, Σν = Φ′ΛΦ and Σν,u = ψ′ΛψΦ′ΛΦ.

The bias term OP (h2) comes from the use of kernel method, and can be eliminated if

one is willing to impose an assumption N1/2Th3 → 0. In the following, we pay particular

attention to the bias term ∆1, which exists due to the correlation between νit and uit.

We define some variables before continuing. For α ∈ (0, 1), let α̂i(δ) be yielded by

plugging β̂(δ) in (A.4), and let ûit = yit − X ′itβ̂(t/T ) − α̂i with α̂i = 1
τ−τ

∑τ
t=τ+1 α̂i(τt),

where τ = bτ ∗T c, τ = b(1−τ ∗)T c, and τ ∗ ∈ (0, 1
2
) is a self-selected positive constant. The

use of τ ∗ is to avoid the boundary effects of the nonparametric kernel method. Let ω̂it =

(ν ′it, ûit)
′ in which the value of νit can be easily obtained by νit = Xit−Xi,t−1, and construct

the estimated autocovariances by Γ̂i,ω(j) = 1
τ−τ

∑τ
t=τ+1 ω̂i,t−jω̂

′
it, where j = 0, 1, · · · , lT (<

T ), and lT is a lag truncation number satisfying certain conditions to be specified below.

These autocovariances give ∆̂ω = 1
N

∑N
i=1 ∆̂i,ω with ∆̂i,ω =

∑lT
j=0W

(
j
lT

)
Γ̂i,ω(j), where

W (·) is a lag kernel as in Andrews (1991).
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We can then estimate the bias term as follows.

∆̂νu =
1

N

N∑
i=1

∆̂i,νu and ∆̂t
νū(δ) =

1

N

N∑
i=1

∆̂t
i,νū(δ), (2.3)

where ∆̂i,νu is the first d elements of the last column of ∆̂i,ω, and

∆̂t
i,νū(δ) =

(
T∑
s=1

Kh(τs − δ)

)−1 t∑
l=1

T∑
s=1

Kh(τs − δ)W
(
s− l
lT

)
Γ̂i,νu(s− l)I(|s− l| ≤ lT ),

(2.4)

in which Γ̂i,νu(·) is the first d elements of the last column of Γ̂i,ω(·). Finally, the bias

corrected estimator of β0(δ) is as follows:

β̂∗(δ) =(X ′W ∗
δX)−1

(
X ′W ∗

δ Y −N
T∑
t=1

Kh(τt − δ)(∆̂νu − ∆̂t
νū(δ))

)
. (2.5)

Apparently, the choice of lT is important, so we impose the next assumption.

Assumption 5. The lag kernel W (·) satisfies that (i) W (0) = 1 and
∫ 1

−1
W 2(x)dx <

∞; (ii) W (−x) = W (x); and (iii) Parzen’s exponent for q ∈ [0,∞) such that kq =

lim
x→0

1−W (x)
|x|q <∞ for q > 1/2. Moreover, lT →∞, lTh/T → 0, and Nh/l2qT → 0.

With the extra assumption in hand, the next theorem follows.

Theorem 2.2. Suppose that Assumptions 1-5 are satisfied. For ∀δ ∈ (0, 1), as (N, T )→
(∞,∞),

√
NT 2h{β̂∗(δ)− β0(δ) +OP (h2)} =⇒ N(0, CK∗

(1−CK)2
Σ−1
ν Σν,uΣ

−1
ν ).

The proof of Theorem 2.2 is given in the online supplementary material.

2.2 Extension — Time-Varying Panel Data Models with Inter-

active Fixed Effects

In this subsection, we extend (2.1) to a panel data model with interactive fixed effects.

Panel data models with interactive fixed effects models have been well studied in theory

and applied since Pesaran (2006) and Bai (2009). Although there are a few nonparametric

based methodologies proposed and investigated in the literature of factor models (e.g.,

Su and Jin, 2012; Fan et al., 2016; Dong et al., 2019), majority (if not all) of these studies

adopt the sieve estimation method. To the best knowledge of the authors, only Su and

Wang (2017) use the kernel method to study a time-varying factor model which does not

include any regressors. As nonparametric kernel regression is one of the most commonly

studied methods of nonparametric regression, it is then important to extend Pesaran
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(2006) and Bai (2009) to a nonparametric kernel setting, and investigate how a kernel

based approach can be applied.

Specifically, we consider the next model, and employ the kernel method to recover the

unknown coefficient function.

Yit = X ′itβ0(τt) + λ′0if0t + uit, (2.6)

where uit is an error term, Xit = Xi,t−1+νit, νit follows a linear process νit =
∑∞

j=0 Υjεi,t−j,

and εit stands for a d× 1 random vector. Moreover, λ0i and f0t are r× 1 unknown factor

loading and factor respectively, and both r and d are fixed and known. Following our

study on (2.1), we try to allow for certain correlation between Xit and uit as well as

correlation between λ′0if0t and uit in the following development.

The next assumption provides some basic requirements on (2.6).

Assumption 6.

1. Let Υ =
∑∞

j=0 Υj. Suppose maxi≥1E‖Xi0‖4 < ∞ and
∑∞

j=0 j‖Υj‖ < ∞. More-

over, suppose that {εit} is i.i.d. over i and t, E[εit] = 0, E[εitε
′
it] = Λε > 0, and

E‖εit‖4+γ0 <∞ for some γ0 > 0.

2. For ∀δ ∈ (0, 1), ‖L1NT‖ = oP (1) and ‖L2NT‖ = OP (1), where

L1NT =
1

NT 3/2h

N∑
i=1

T∑
t=1

XituitKh(τt − δ),

L2NT =
1

NT 3/2h

N∑
i=1

T∑
t=1

Xitλ
′
0if0tKh(τt − δ).

Assumption 6.1 is a simpler version of Assumption 3, so discussion is omitted. As-

sumption 6.2 permits correlation between Xit and uit, as well as correlation between Xit

and λ′0if0t, and it can be easily verified (see Lemmas B.1 and B.2 of the supplementary

file for example).

Under Assumption 6, a key fact is that for ∀δ ∈ (0, 1), β0(δ) can always be recovered

consistently by a naive estimator:

β̈(δ) =

(
N∑
i=1

T∑
t=1

XitX
′
itKh(τt − δ)

)−1 N∑
i=1

T∑
t=1

XitYitKh(τt − δ). (2.7)

Lemma B.4 of the supplementary file shows that as long as Assumption 6 holds, β̈(δ)

converges to β0(δ) at the rate OP

(
1√
T

)
assuming Th4 → 0. We will utilize (2.7) later.
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We now write (2.6) in matrix notation as follows:

Yi = φi[β0] + F0λ0i + ui, (2.8)

where φi[β0] = (X ′i1β0(τ1), . . . , X ′iTβ0(τT ))′, and the other variables are defined con-

formably. For any given F0λ0i, when estimating β0(δ), we just need to consider the

OLS estimator for the following transformed model:

ΥδYi −ΥδF0λ0i = Υδφi[β0] + Υδui, (2.9)

where Υδ = diag
{√

1
h
Kh(τ1 − δ), . . . ,

√
1
h
Kh(τT − δ)

}
. Since λ0i is unobservable, we

further remove it from (2.9) by left multiplying the projection matrix MΥδF0 :

MΥδF0ΥδYi = MΥδF0Υδφi[β0] +MΥδF0Υδui. (2.10)

With (2.10) in hand and accounting for the fact that F0 is unknown as well, we write the

objective function as follows:

Q(β, F ) =
N∑
i=1

(Yi −Xiβ)′ΥδMΥδFΥδ(Yi −Xiβ). (2.11)

In order to avoid the singularity problem discussed in Section 4 of Bai et al. (2009), we use

the information of β̈(·) to restrict β of (2.11) within Rδ(β) = {β | ‖β−β̈(δ)‖ ≤ a0√
T
}, where

a0 is a sufficiently large constant. Moreover, in view of (2.9) and (2.10), we modify the

identification condition on F of Bai (2009) by assuming F ∈ DF = {F | 1
T
F ′Υ2

δF = Ir}.
Finally, our estimates of (β0(δ), F0) are given below:

(β̃(δ), F̃ ) = argmin
β∈Rδ(β),F∈DF

Q(β, F ). (2.12)

In order to establish the consistency associated with (2.12), we impose the next as-

sumption.

Assumption 7.

1. Suppose ‖ 1
NTh

∑N
i=1

∑T
t=1 uitλ

′
0if0tKh(τt−δ)‖ = oP (1), and ‖U‖sp = OP (max{

√
N,
√
T}),

where U = (u1, . . . , uN)′.

2. (a) For δ ∈ (0, 1), 1
Th

∑T
t=1 f0tf

′
0tKh(τt − δ)→P Σf (δ), and maxt≥1E‖f0t‖4 <∞.

(b) 1
N

∑N
i=1 λ0iλ

′
0i →P Σλ, and maxi≥1E‖λ0i‖4 <∞.
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3. Let infF∈DF λmin(Ω†(F )) > 0 uniformly, where

Ω†(F ) =
1

NT 2

Ω1(F )− Ω′2(F )

[
N∑
i=1

λ0iλ
′
0i ⊗ IT

]−1

Ω2(F )

 ,

Ω1(F ) =
N∑
i=1

X ′iΥδMΥδFΥδXi, Ω2(F ) =
N∑
i=1

λi ⊗ (MΥδFΥδXi).

Assumptions 7.1 and 7.2 are standard in the literature (Bai, 2009; Moon and Weidner,

2015). In addition, Assumption 7.1 implicitly permits certain correlation between uit and

λ′0if0t. Assumption 7.3 is the nonparametric version of Assumption A of Bai (2009) under

the nonstationary panel data setting.

We are now ready to present the first asymptotic property of (2.12).

Lemma 2.1. Let Assumptions 1–2, 4, and 6–7 hold. For δ ∈ (0, 1), as (N, T )→ (∞,∞),

(1).
√
T (β̃(δ)− β0(δ)) = oP (1); (2). ‖PΥδF̃

− PΥδF0‖ = oP (1).

The first result of Lemma B.6 shows that (2.12) yields a more efficient estimator on

β0(δ) than the naive estimator β̈(δ). It is well understood that we can only recover F0

up to a rotation matrix without more restrictive assumptions (e.g., Fan et al., 2016), so

the second result is presented on the idempotent matrix associated with ΥδF̃ .

Before stating the rate of convergence, we present more restrictions on the error terms.

Assumption 8. Let ut = (u1t, . . . , uNt)
′ and the filtration BT,t = σ(xj, uj−1, F0,Γ0 | j ≤

t+1) form a martingale difference sequence such that E[ut | BT,t−1] = 0 and E[utu
′
t | BT,t−1] =

Σu = {σij}N×N almost surely, where xt is defined similar to ut, and Γ0 = (λ01, . . . , λ0N)′.

In addition, let σii = σ2
u for i ≥ 1,

∑N
i=1

∑N
j=1,6=i |σij| = O(N) and N/T → c < ∞.

Suppose also that maxi,tE[u4
it | BT,t−1] <∞ holds almost surely.

We are now ready to establish the following theorem; its proof is given in the supple-

mentary material.

Theorem 2.3. Suppose that Assumptions 1–2, 4, and 6-8 hold. For δ ∈ (0, 1), as

(N, T ) → (∞,∞), (1). β̃(δ) − β0(δ) = OP ( 1√
NT 2h

+ h2); (2). ‖PΥδF̃
− PΥδF0‖ =

OP

(
4
√
Th+ 1√

Th
+ 1√

N

)
.

Having established Theorem 2.3, one can further investigate an asymptotic normality

for β̃(δ). As a matter of fact, some studies have been achieved in the supplementary file

of Dong et al. (2019), where the sieve method is adopted. Under the framework of (2.6),

modelling the endogeneity between Xit and uit through a linear process requires more

efforts, as one needs to account for f0t in the data generating process. We leave these

topics for future study.
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2.3 A practical issue

Before closing this section we discuss a practical issue — dealing with mixed I(0)/I(1)

regressors, which is very likely to be encountered in empirical studies. Up to this point we

have been assuming that Xit is an integrated process without including any stationary

variables in either (2.1) or (2.6). Assuming that I(0) variables are strictly exogenous,

incorporating stationary variables is relatively easy for (2.1) due to the fact that the

estimator (2.2) has a closed-form, and the asymptotic development can go through with

some minor modifications. We now focus on the case with interactive fixed effects. A

more realistic model is

Yit = X ′1itβ10(τt) +X ′2itβ20(τt) + λ′0if0t + uit, (2.13)

where X1it = X1i,t−1+νit, X2it is a vector including stationary variables and time invariant

variables (e.g., gender and geographic variables), and the rest of the settings are identical

to (2.6).

In order to estimate β10(δ) and β20(δ) for ∀δ ∈ (0, 1), we can first establish a naive

estimator for β10(δ) as

β̈1(δ) =

(
N∑
i=1

T∑
t=1

X1itX
′
1itKh(τt − δ)

)−1 N∑
i=1

T∑
t=1

X1itYitKh(τt − δ), (2.14)

and construct Rδ(β) = {β | ‖β − β̈1(δ)‖ ≤ a0√
Th
} under some regularity conditions. Then

we define the estimators of β10(δ) and β20(δ) by

(β̃1(δ), β̃2(δ), F̃ ) = argmin
β1∈Rδ(β),β2∈R2(δ),F∈DF

Q(β1, β2, F ), (2.15)

where Q(β1, β2, F ) =
∑N

i=1(Yi−X1iβ1−X2iβ2)′ΥδMΥδFΥδ(Yi−X1iβ1−X2iβ2), and R2(δ)

is the parameter space of β20(δ). The development of (2.15) would be very similar to

that given for (2.12). Once again, we leave such details for future research.

3 Application

In this section we focus on the income elasticities of healthcare expenditure for the Euro-

zone and OECD, where managing healthcare costs is possibly the most important concern

of healthcare policy that requires a deep insight of its determinants. The consensus in

the literature is that the main factor that drives healthcare expenditure is income (e.g.,
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Newhouse, 1977; Gerdtham et al., 1992; Jones and Wildman, 2008; Baltagi and Moscone,

2010; Hauck and Zhang, 2016). Rising income and purchasing power enables the con-

sumer to choose more and better healthcare products, which commonly results in an

increase in the price of healthcare. Other variables have also been identified as drivers of

healthcare spending. The two main questions under study are:

(1) Is the income elasticity of healthcare greater than 1 and how has it evolved over

time?

(2) Has there been any change in the relationship between non-income variables and

healthcare expenditure?

3.1 Data and Models

The period under study starts in 1995 and runs until 2014 for 20 countries in the Eurozone

and for 34 countries in the OECD. We list the names of these countries in Appendix A.3.

All variables were downloaded from the Worldbank dataset. The dependent variable in

our study is the log of total healthcare expenditure per capita for country i at year t,

denoted by lhe. The proxy for income is the log of the GDP per capita, denoted by lgdp.

These variables have been adjusted for inflation and purchasing-power in U.S. dollars.

The literature has also validated some demographic variables, such as the shares

of population over 65 years old and under 15 years old, as possible determinants of

healthcare expenditure (see Hitiris and Posnett, 1992, among others). These are denoted

in this paper by pop65 and pop14, respectively. In addition, the literature reports a

positive significant relationship between the public finance share of healthcare and the

total healthcare expenditure. The public in our study is calculated as the percentage of

government expenditure in public healthcare. In a nutshell, the dependent variable is

lheit and the regressors are lgdpit, pop65it, pop14it, publicit.

3.2 Brief Review on Methodology

At the starting point Newhouse (1977) shows the income elasticity of healthcare expen-

diture from around 1.20 to 1.50 in the OECD using a cross-sectional model,

lhei = β1 lgdpi + β2 pop65 + β3 pop14i + β4 publici + α + ui, (3.1)

where i = 1, . . . , N . Variables are recorded over a number of years t = 1, . . . , T and the

dependent variable, lhei, is calculated as the average value of lheit over all years of the

country i. The regressors are constructed similarly. With the rising popularity of panel
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data models, Gerdtham et al. (1992) consider the individual fixed effects (FE) model,

lheit = β1 lgdpit + β2 pop65it + β3 pop14it + β4 publicit + αi + uit. (3.2)

Baltagi and Moscone (2010) and Moscone and Tosetti (2010) further raise the concerns

on measuring heterogeneous unobserved fixed effects over time, and introduce the panel

data model with interactive effects,

lheit = β1 lgdpit + β2 pop65it + β3 pop14it + β4 publicit + αi + λ′0if0t + uit, (3.3)

where the first element of f0t is constant 1 in order to include an individual effect in the

factor structure.

Another possible source of misspecification of Models (3.1)-(3.3) is the violation of

the assumption on the stationarity of the dependent and independent variables, which

will lead to spurious results (Engle and Granger, 1987). Several studies have examined

this assumption over the years with different datasets. McCoskey and Selden (1998) and

Jewel et al. (2003) reject the unit-root hypothesis of the lhe and lgdp processes for most

OECD countries in their sample. On the other hand, Gerdtham and Löthgren (2000),

Okunade and Murthy (2002), and Baltagi and Moscone (2010) conclude that the series

lhe and lgdp are nonstationary. In this line, Table 1 shows the percentage of countries

in our sample for which the unit-root hypothesis is rejected with the Augmented Dickey-

Fuller (ADF) tests at 5% significance level. The null hypothesis is not rejected for most

countries. The highest rate of rejection is for variables pop65 and pop14 but still under

40%. In summary, nonstationarity should be accounted for in practice.

Table 1: Percentage of rejection of ADF tests across countries for the Eurozone and
OECD. The tests are done for the alternative hypotheses of (i) random walk with drift,
and (ii) random walk with drift and trend and with 1 lag.

Eurozone OECD

Drift Drift + trend Drift Drift + trend

lhe 0.00% 5.00% 8.82% 5.88%

lgdp 10.00% 5.00% 5.88% 5.88%

pop65 0.00% 35.00% 5.88% 26.47%

pop14 35.00% 15.00% 26.47% 14.71%

public 10.00% 10.00% 14.71% 5.88%

In addition, Models (3.1)-(3.3) assume that the coefficients of the covariates are con-

stant over time. Our contribution is the recommendation of two models. The first model
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is a fixed effects model with time-varying coefficients estimated with β̂∗(·) defined in (2.5)

as follows:

lheit = β1(τt) lgdpit + β2(τt) pop65it + β3(τt) pop14it + β4(τt) publicit + αi + uit. (3.4)

This model allows for the covariates to be unit-root processes and the coefficients to vary

over time. Additionally, β̂∗(·) corrects the bias arising from endogeneity.

The second recommendation is a model with time-varying coefficients and interactive

effects that again allows for covariates to be unit-root processes. The individual fixed

effects are added to the model as there is likely heterogeneity among countries. However,

time fixed effects, if existing, are included in the interactive effects term, which also

groups other possible determinants not included explicitly in the covariates,

lheit = β1(τt) lgdpit+β2(τt) pop65it+β3(τt) pop14it+β4(τt) publicit+αi+λ
′
0if0t+uit. (3.5)

where the first element of f0t is constant 1 in order to include an individual effect in the

factor structure.

3.3 Is Healthcare a Luxury in Developed Countries ?

Results in Table A.2 show the income elasticity estimates of healthcare expenditure and

their 95% confidence intervals from Models (3.1)-(3.3). The computation is done using

the R packages plm by Croissant and Millo (2008) and phtt by Bada and Liebl (2014).

The aim of this analysis is to confirm historical results with our sample. The estimates

of the coefficient of lgdp from Model (3.1) and Model (3.2) are over 1 for both the OECD

and Eurozone, which is in concordance with earlier studies like Newhouse (1977), Leu

(1986), and Gerdtham et al. (1992). On the other hand, the estimated coefficient of lgdp

from Model (3.3) is significantly below 1 in concordance with some recent studies like

Baltagi and Moscone (2010) and Murthy and Ketenci (2017). The number of interactive

effects is selected with the criterion in Ahn and Horenstein (2013), implemented in the R

package phtt by Bada and Liebl (2014) and described in Appendix B.1 in the supplemen-

tary sections. Basically, the inclusion of interactive effects in classic panel data models

justifies the argument that healthcare is a necessity good. However, it does not reveal

any information on possible dynamics of this elasticity over time, a matter that may be

explained by the time-varying coefficients of Models (3.4)-(3.5). Thus, in the following,

we focus on reporting the results associated with Models (3.3)-(3.5). Model (3.4) is es-

timated by the bias-corrected estimator, β̂∗(δ) in Equation (2.5) which is also the initial
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step in Model (3.5) and from whose residuals the unobservable factors and loadings are

estimated. In this way, the estimation difference from adding time-varying coefficients

can be analysed by comparing Models (3.3) and (3.5), and the estimation difference from

adding interactive effects can be analysed by comparing Models (3.4) and (3.5).

Figure A.2 compares the income elasticity estimates of healthcare expenditure from

Models (3.3)-(3.5). Three factors for the OECD and four for the Eurozone are selected in

Model (3.5) with the criterion in Ahn and Horenstein (2013). The bandwidth is selected

by leave-k-out cross-validation (Chu and Marron, 1991) with k = bT/4c to ensure the

independence of the subsamples. The dashed black line and light brown band correspond

to the income elasticity from the parametric Model (3.3). As mentioned above and in

Table A.2, the elasticity is significantly less than 1: an expected increase of 1% in income

will result in an expected increase of 0.91% in healthcare spending for the Eurozone and

of 0.67% for the OECD. This model hints that the fraction of GDP per capita devoted

to pay healthcare is lower in the OECD countries than in the Eurozone. The opposite is

estimated by Model (3.5), dashed red line with an orange band, with lower estimates for

the Eurozone than the OECD with values near 0.7 and 0.79, respectively. On the other

hand, the continuous black line and grey band, corresponding to the income elasticity

from Model (3.4), shows similar values than Model (3.5) but with a slight variation over

time. In a nutshell, all models show income elasticities less than 1 with little variation

over time even for Model (3.4). This suggests that healthcare is a necessary good and

that the observed increasing dynamics in healthcare expenditure per capita depend on

other variables besides income.

3.4 Do Age Structure and Public Expenditure Affect the Price

of Healthcare ?

A positive relationship between lhe and pop65, and a negative relationship between lhe

and pop14 are expected. As reported in Fisher (1990) and Alemayehu and Warner (2004),

the health bill of the young is the lowest in a health system while the largest, by far, is

the health bill of the elderly. Moreover, more than one-third of people’s lifetime health

spending will accrue in the last years (Zweifel et al., 1999; Alemayehu and Warner, 2004).

As anticipated, the estimates of the pop65 coefficient in Figure A.3 are positive for all

models and significant for Models (3.3) and (3.5) during the whole period. The coefficient

estimates of pop65 from Model (3.4) are time-varying and increasing over time with

significant values at 5% level after 2004 for the Eurozone and after 2008 for the OECD.

Estimates of the pop14 coefficients are negative and very similar for all models for the
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Eurozone: an increase in fertility rate will result in a money saving from healthcare

budgets. Similar results are found for the OECD from Models (3.4)-(3.5) however, the

estimate from Model (3.3) is significantly positive, which is a counterintuitive result.

Finally, all estimators report a positive significant relationship between government

public investment and healthcare expenditure (Table A.2 and third row of Figure A.3) for

the OECD. This means that an increase in public funding of healthcare boosts healthcare

expenditure per capita. Interestingly, Model (3.4) shows a decreasing trend of this coef-

ficient and the 95% confidence interval of the estimates from Model (3.5) include zero.

A possible explanation for this is that most countries in the Eurozone, first the Nordic

countries and the rest after the Global Financial Crisis, have applied health policies to

make their health systems more efficient (Mladovsky et al., 2012) and minimize the ef-

fect of higher unemployment rates and lower tax collection in healthcare expenditure per

capita. The findings indicate that the latest reforms aiming to dissociate healthcare from

public funding are working in the right direction. This is supported by results reported

in Reeves et al. (2014) showing that austerity measures, such as those imposed in the

Eurozone after the Global Financial Crisis, result in healthcare budget cuts and cheaper

healthcare per capita.

In conclusion, the estimates of Model (3.5) show that they are very similar to the

initial expectations and in concordance with the latest healthcare policies. Curiously,

these coefficients are basically constant although they use the same bandwidth and es-

timation as those for Model (3.4) in addition to factors. The message is that adding

interactive effects compensates for the dynamics on the relationship between healthcare

expenditure and the rest of the variables because these variables are likely correlated with

the unobservable factors.

3.5 Analysis of the Interactive Effects

Much research has been done to find further determinants of healthcare expenditure. It

has been revealed that: (a) the deployment of medical technology increases the price

of healthcare (see Newhouse, 1992; Okunade and Murthy, 2002; Murthy and Ketenci,

2017); (b) mortality rate and five-year survival rates are positively related with healthcare

expenditure (Breyer et al., 2015); and (c) life expectancy at birth is also highly correlated

(Murthy and Ketenci, 2017). In a more general approach, Hauck and Zhang (2016) select

a list of 43 potential drivers of healthcare expenditure using Bayesian methods, and find

that 16 of those are significant determinants of healthcare expenditure, which includes

the unemployment rate, growth in insurance premiums, and increase in pharmaceutical
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sales, among others. This is simplified by including interactive effects in the model that

group similar determinants into a set of unobservable factors f0t whose relationship is

estimated in λ0i for each country.

The algorithm in Lam and Yao (2012) and Ahn and Horenstein (2013) selects four

unobservable factors from Model (3.5) for the Eurozone and three for the OECD, plotted

in Figure A.4. The first factor, black line, is monotonically increasing. The second factor,

in red, is a concave line with the maximum at the middle of the time period. The third

factor, in green, is a sinusoidal line with the minimum near year 2005 and maxima close

to years 1996 and 2010 for the Eurozone. For the Eurozone, the fourth factor, in blue, is

also sinusoidal.

We do not venture into explaining the meaning of each factor, as they represent groups

of variables with correlated patterns. However, the monotonic increasing pattern of the

first factor follows a similar pattern as the OCDE average pharmaceutical spending and

average life expectancy at birth series in Figure A.5 (two variables that have been iden-

tified before as determinants of healthcare expenditure in Okunade and Murthy (2002);

Hauck and Zhang (2016); Murthy and Ketenci (2017)). This supports the conjecture

that technological change is a major escalator of healthcare expenditure, as first stated

in Newhouse (1992).

Although the unobservable factors are common to all countries, their loadings vary

by country. Figure A.6 shows the interactive effect terms in Model (3.5) for each country

in the OECD. They are plotted in geographical/political groups for ease of visualisation.

Positive values of these interactive effects mean that other variables in addition to income,

demographic characteristics and public expending increase the price of healthcare, while

the opposite is true for negative values. We can distinguish three kind of patterns in these

plots: (a) the interactive effects increase steadily over time to take a turn down after the

Global Financial Crisis, for example in Finland, Iceland, the Netherlands, Portugal and

the United States; (b) the interactive effects do not change much over the sample period,

for example in Australia, Austria, Canada, Chile and Greece; (c) the interactive effects

follow a concave curve, for example in France, Germany, Italy, Sweden and Switzerland.

Many countries show a downturn in the interactive effects after the Global Financial

Crisis reflecting the effects of the austerity health policies implemented after the crisis to

reduce the burden of the price of health on the tax system.
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4 Conclusion

In this paper the estimator for a time-varying coefficient fixed effects panel data model is

derived using a nonparametric kernel smoothing technique. In our study the regressors are

modelled as unit-root processes whose error term can be correlated contemporaneously.

A bias corrected estimator is provided to account for the correlation between the regressor

innovations and the equation error. In addition, the inclusion of a term of heterogeneous

unobserved factors in the model has been proposed.

The newly developed methodology is used to analyze the income elasticity dynamics

of healthcare expenditure in the OECD and Eurozone. We show that health cost per

capita increases at a lower rate than does income per capita, meaning that healthcare

is a necessity good. Age demographics and government public funding rate are also

significantly related to the healthcare expenditure. An increase in ageing population

results in an increase in the health cost, while an increase in fertility rate results in a

slight drop in health cost. Furthermore, the relationship between public funding and

healthcare expenditure is decreasing over the time period, although still positive.
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Appendix A

We denote some notations for simplicity. First define the next long-run covariance matrix

 ∆ν ∆νu

∆′νu ∆u

 = lim
N→∞

1

N

N∑
i=1

∞∑
j=0

E

 νi0ν
′
ij νi0uij

ν ′i0uij ui0uij

 . (A.1)
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In addition, we denote

∆1 = (X ′W ∗δX)−1N
T∑
t=1

Kh(τt − δ)
(
∆νu −∆t

νū(δ)
)
,

∆t
νū(δ) = lim

N→∞

1

N

N∑
i=1

∑
l≤t

{
1

ZT

T∑
s=1

Kh(τs − δ)E[νiluis]

}
,

CK =

∫ 1

−1

∫ 1

−1
min(s+ 1, r + 1)K(s)K(r)dsdr,

C∗(1) =

∫ 1

−1
K2(w)dw, C∗(2) = C∗(1)

∫ 1

−1
K2(s)ds+

(∫ 1

−1
K(t)K(t)dt

)2

,

C∗(1, 2) =

∫ 1

−1
K2(t)

∫ t

−1
K(s) ds dt+

∫ 1

−1
K(t)K(t)[1− K(t)] dt,

C∗ = C∗(1) + C∗(2)− 2C∗(1, 2), (A.2)

where ZT =
∑T

t=1Kh(τt − δ) and K(s) =
∫ 1
s K(t)dt.

A.1 The Intuition of (2.2)

We now explain the intuition of (2.2). Using the condition
∑N

i=1 αi = 0, we can rewrite (2.1)

in a matrix format as Y = ΨX(β0) + DAα + u, where ΨX(β0) = (X ′11β0(τ1), . . . , X ′NTβ0(τT ))′

and u are defined conformably to Y , and Aα = (α2, . . . , αN )′. Given Assumption 2, we have

β0(τt) ≈ β0(δ) for ∀δ ∈ (0, 1) when τt is in a small neighbourhood of δ. Thus, we intuitively

consider the next objective function

L(β,A) = (Y −Xβ −DA)′Wδ(Y −Xβ −DA), (A.3)

where β and A are d × 1 and (N − 1) × 1 vectors respectively. Note that for ∀β ∈ Rd, the

estimate of Aα is

Â(β) = (D′WδD)−1D′Wδ(Y −Xβ), (A.4)

Plugging Â(β) back into L(β,A), we obtain the objective function of the so-called profile method

(e.g., Sun et al., 2009) as follows:

L(β) = (Y −Xβ)′W ∗δ (Y −Xβ). (A.5)

Minimizing L(β), (2.2) follows immediately.

A.2 Discussion on the Degeneracy Issue of Phillips et al. (2017)

Note that by some routine procedure (Phillips and Solo, 1992), we have for each i and for

t = bTrc with 0 < r < 1, 1√
T

∑t
s=1(ν ′is, uis)

′ = 1√
T

∑bTrc
s=1 (ν ′is, uis)

′ =⇒ Br(Ω), where Ω =
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Figure A.1: Mean value of log-HCE (solid lines) and log-GDP (dashed lines) per capita
in the Eurozone and the OECD countries during the period 1995-2014.
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(Φ, ψ)′Λ(Φ, ψ), and Br(Ω) denotes a Brownian motion with covariance matrix Ω. Moreover,

by Phillips et al. (2017, Eq 2.18), for each i and for ∀δ ∈ (0, 1), 1
T 2h

∑T
t=1XitX

′
itKh(τt −

δ) =⇒ δΦ′Wd+1(Λ)Φ, where Wd+1(Λ) is a Wishart variate having 1 degree of freedom and

mean matrix Λ. Thus, when d ≥ 2, Φ′Wd+1(Λ)Φ is singular, so it becomes problematic for

nonparametric regression under the context of time series analysis as explained in Phillips et al.

(2017). However, for panel data analysis, this issue is no longer a problem. An intuitive

explanation is that we take the average over both i and t, so after some tedious algebra we have

1
N

∑N
i=1 Φ′E[Wd+1(Λ)]Φ = Φ′ΛΦ > 0. See Lemma B.1 of the supplementary file for details.

Thus, the degeneracy issue disappears when panel data are involved.

A.3 Countries included in this study

• Eurozone: Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ire-

land, Italy, Lithuania, Luxembourg, Latvia, Macedonia, Malta, Netherlands, Portugal,

Slovak Republic, Slovenia, and Spain

• OECD: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Lux-

embourg, Latvia, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak

Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United

States

In this supplementary file, Section B.1 and Section B.2 discuss some practical issues related

to estimating the model with a factor structure; Section B.3 includes some simulation studies;

Section B.4 states the preliminary lemmas; Section B.5 provides all the proofs.
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Figure A.2: Coefficient estimates of lgdp during the period 1995-2014 for the Eurozone
and OECD countries (left to right). The plots show the estimated values of the coefficients
at each year and their 95% confidence interval (bands). TThe dashed black line with
light brown bands corresponds to Model (3.3), the continuous black line with grey bands
corresponds to Model (3.4), and the red line with orange bands corresponds to Model
(3.5).
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Appendix B

B.1 Numerical Algorithm

We now provide the numerical algorithm associated to (9) of the main text. Similar to Bai

(2009), we can decompose it as follows.

(1). β̃(δ) = argmin
β∈Rδ(β)

N∑
i=1

(Yi −Xiβ)′ΥδMΥδF̃
Υδ(Yi −Xiβ),

(2).
1

NT

N∑
i=1

Υδ(Yi −Xiβ̃(δ))(Yi −Xiβ̃(δ))′Υ2
δF̃ = ΥδF̃ VNT ,

where VNT is a diagonal matrix with the diagonal being the r largest eigenvalues of

1

NT

N∑
i=1

Υδ(Yi −Xiβ̃(δ))(Yi −Xiβ̃(δ))′Υδ

arranged in descending order. One can adopt an iteration procedure as in Bai (2009) to imple-

ment the estimation method. Moreover, this procedure can be easily modified to accommodate

(12). Note that the restriction set Rδ(β) can be easily imposed through some programs like

“fmincon” of MATLAB.

Note that F̃ generated in the above procedure is related to the value of δ by design. Prac-
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Figure A.3: Coefficient estimates of pop65, pop14, and public variables (top to bottom)
during the period 1995-2014 for the Eurozone and OECD countries (left to right). The
plots show the estimated values of the coefficients at each year and their 95% confidence
interval (bands). The dashed black line with light brown bands corresponds to Model
(3.3), the continuous black line with grey bands corresponds to Model (3.4), and the red
line with orange bands corresponds to Model (3.5).
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Figure A.4: Unobserved factor estimates from Model (3.5) for the Eurozone and OECD.
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Figure A.5: Average values of the OECD of pharmaceutical price and life expectancy at
birth downloaded from the OECD database at data.oecd.org.
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Figure A.6: Interactive effects obtained from Model (3.5) for the OECD.
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tically, in order to obtain an estimate of F0 which is not subject to δ, one can estimate

β0(τ1), . . . , β0(τT ) first, and conduct PCA on Y ∗it = Yit − X ′itβ̂(τt), which then ensures the

estimates on the factors and loadings are independent of the value of δ.

B.2 Selection of the Number of Factors

We consider the ratio criterion studied in Lam and Yao (2012) and Ahn and Horenstein (2013).

Specifically, we let λ̂j be the jth largest eigenvalue of the estimated sample covariance matrix

1

N

N∑
i=1

Υδ(Yi −Xiβ̃J(δ))(Yi −Xiβ̃J(δ))′Υδ,

where β̃J(δ) is obtained from (9) of the main text assuming that the number of factors is a

pre-specified fixed positive integer J . We then estimate the number of factors by

r̂ = argmin
j∈{1,...,J−1}

λ̂j+1

λ̂j
.

Note that slightly over-identifying the number of factors usually does not have any serious

impact on consistency and rates of convergence of the subsequent estimation (Fan et al., 2013;

Moon and Weidner, 2015). That is why β̃J(δ) is adopted above. After identifying the number

of factors by r̂, we can update the estimate on β0(δ). Alternatively, one may consider using the

criterion provided in Bai and Ng (2002).

B.3 Simulation Studies

In this section, we examine the finite sample performance of the estimates studied in the main

text. As well understood in the literature, the selection of an optimal bandwidth is still an open

question for panel data models. In the following experiments, we consider the rule of thumb

(h = 1.06(NT )−1/5). In addition, we have experimented different choices of the bandwidth to

examine the sensitivity of the bandwidth selection, which is in fact quite stable. For similarity,

we omit the relevant results.

B.3.1 A Panel Data Model with Fixed Effects

We firstly consider a panel data model with fixed effects. The data generating process is of the

form

Yit =Xit,1βt,1 +Xit,2βt,2 + αi + uit,

(Xit,1, Xit,2) =(Xi,t−1,1, Xi,t−1,2) + (νit,1, νit,2), (B.1)
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Table B.3: Results of Model (B.1)

(i). no correlation (ii). with correlation

20 40 80 20 40 80

β̂(·) 20 0.5027 0.4349 0.3595 0.5697 0.4259 0.3548

40 0.4986 0.4006 0.3461 0.5983 0.4248 0.3538

80 0.4740 0.3823 0.2571 0.6721 0.4641 0.3100

β̂∗(·) 20 0.4844 0.4476 0.3631 0.4341 0.3739 0.3406

40 0.4412 0.3967 0.3469 0.3982 0.3252 0.3024

80 0.3934 0.3501 0.2041 0.3948 0.2950 0.2415

where (βt,1, βt,2) = (cos(2πτt), τ
2
t ) with τt = t/T and αi = 1

T 3/2

∑T
t=1Xit,1 for i = 2, · · · , N and

α1 = −
∑N−1

i=1 αi. The error terms (uit, νit,1, νit,2) are generated as follows.

uit =ρ0ui,t−1 + ξit, νit,1 = ρ1νi,t−1,1 + ηit,1, νit,2 = ρ2νi,t−1,2 + ηit,2.

Two simulation scenarios are performed: (i) the errors are generated as i.i.d. processes by

setting (ρ0, ρ1, ρ2) = (0, 0, 0), and (ii) the errors are generated as stationary AR(1) processes

by setting (ρ0, ρ1, ρ2) = (−0.5,−0.5,−0.5). Finally, let (ξit, ηit,1, ηit,2)′ be i.i.d. over i and t

following the next distribution
ξit

ηit,1

ηit,2

 i.i.d.∼ N




0

0

0

 ,


1 µ1 µ2

µ1 1 µ3

µ2 µ3 1


 ,

where µ1 = µ2 = µ3 = 0.8. Simulations are conducted for sample sizes N = 20, 40, 80 and

T = 20, 40, 80 and the number of replications is R = 500. Following Phillips et al. (2017),

we compare the performances of β̂(·) and β̂∗(·) of Section 2.1 using the absolute averages

1
T

∑T
t=1

∑2
l=1 |

1
R

∑R
r=1(β̂

(r)
l (τt)− β0

l (τt))|.
As shown in Table B.3, the absolute averages converge to 0 as the sample sizes increase.

β̂∗(·) has better performance compared to β̂(·), which is expected. For case (ii), the results are

worse than those in case (i), which shows how biases arise with the change in (ρ0, ρ1, ρ2).

B.3.2 A Panel Data Model with Interactive Fixed Effects

A second experiment investigates the estimation of a panel data model with interactive fixed

effects — the performance of β̃(·) in the main text. The data generating process is

Yit =Xit,1βt,1 +Xit,2βt,2 + λ′0if0t + uit,
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Table B.4: Results of Model (B.2)

(i). no correlation (ii). with correlation

20 40 80 20 40 80

β̃(·) 20 0.5898 0.5530 0.5023 0.6490 0.5865 0.5243

40 0.5054 0.4747 0.4195 0.6001 0.5225 0.4424

80 0.4059 0.3726 0.3226 0.5245 0.4443 0.3497

(Xit,1, Xit,2) =(Xi,t−1,1, Xi,t−1,2) + (νit,1, νit,2), (B.2)

where coefficients, regressors and error terms are the same as in Section B.3.1. Let r = 2,

and then generate the loadings as λ0i = (λ0i,1, λ0i,2)′, where λ0i,1 ∼ Xit,1√
T

+N(0, 1) and λ0i,2 ∼
Xit,2√
T

+ N(0, 1). Let f0t ∼ N(0, I2). For the factor model case, loading variables are generated

as λ0i,1 =
Xit,1
T 3/2 +N(0, 1), λ0i,2 =

Xit,2
T 3/2 +N(0, 1). Other variables are generated in the same way

as in Section B.3.1.

As shown in Table B.4, the absolute averages converge to 0 as the sample sizes increase.

However, how to introduce a bias corrected estimator for β̃(·) is beyond the scope of this study.

We leave it for future work.

B.4 Preliminary Lemmas

Lemma B.1. Suppose that Assumptions 1, 3 and 4 are satisfied. For any ∀δ ∈ (0, 1), as

(N,T ) → (∞,∞), 1
NT 2h

X ′W ∗δX →P (1 − CK)Σν , where CK and Σν are defined in (16) of the

main text and Theorem 1, respectively.

Lemma B.2. Suppose that Assumptions 1, 3 and 4 are satisfied. For any ∀δ ∈ (0, 1), as

(N,T )→ (∞,∞),

1√
NT 2h

{
X ′W ∗δ u−N

T∑
t=1

Kh(τt − δ)(∆νu −∆t
νū(δ))

}
=⇒ N(0, C∗Σν,u),

where C∗ := C∗(1) + C∗(2)− 2C∗(1, 2) with C∗(1), C∗(2) and C∗(1, 2) being defined in (19) of the

main text, and Σν,u is defined in Theorem 1.

Lemma B.3. Suppose that Assumptions 1–5 are satisfied. As (N,T )→ (∞,∞),

1.
√
Nh(∆̂νu −∆νu) = oP (1),

2.
√
Nh
Th

∑T
t=1Kh(τt − δ)(∆̂t

νū(δ)−∆t
νū(δ)) = oP (1).

Lemma B.4. Suppose that Assumptions 1, 2, 4 and 6 hold. For ∀δ ∈ (0, 1), β̈(δ) − β0(δ) =

OP

(
1√
Th

+ h2
)

.
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Lemma B.5. Suppose that Assumptions 1–2, 4, and 6–7 hold. As (N,T )→ (∞,∞),

1. supF∈DF

∣∣∣ 1
NT

∑N
i=1 u

′
iΥδPΥδFΥδui

∣∣∣ = o(1);

2. supβ∈Rδ(β),F∈DF

∣∣∣ 1
NT

∑N
i=1(φi[β0]−X ′iβ)′ΥδMΥδFΥδui

∣∣∣ = oP (1);

3. supF∈DF

∣∣∣ 1
NT

∑N
i=1 λ

′
0iF
′
0ΥδMΥδFΥδui

∣∣∣ = oP (1).

Lemma B.6. Suppose that Assumptions 1–2, 4, and 6–8 hold. As (N,T )→ (∞,∞),

1. VNT →P V ,

2. 1√
T
‖ΥδF̃Π−1

NT −ΥδF0‖ = OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1√
Th

)
+OP

(
1√
N

)
,

3. 1
T ‖F

′
0Υ2

δF̃ − F ′0Υ2
δF0ΠNT ‖ = OP (

√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1
Th

)
+O

(
1
N

)
,

4. ‖P
ΥδF̃
− PΥδF0‖2 = OP (

√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1
Th

)
+O

(
1
N

)
,

where V is a r × r diagonal matrix consisting of the eigenvalues of Σf (δ)Σλ, and Π−1
NT =

VNT

(
F ′0Υ2

δF̃
T

)−1 (
Λ′0Λ0

N

)−1
.

B.5 Proofs

In this subsection, we firstly present the proofs of the main results, and then provide the proofs

of the preliminary lemmas.

B.5.1 Proofs of the Main Results

Proof of Theorem 1:

Observe that

β̂(δ)− β0(δ) = (X ′W ∗δX)−1X ′W ∗δ Y − β0(δ)

= (X ′W ∗δX)−1X ′W ∗δ ΨX(β0)− β0(δ)

+(X ′W ∗δX)−1X ′W ∗δDAα + (X ′W ∗δX)−1X ′W ∗δ u

= (X ′W ∗δX)−1X ′W ∗δ ΨX(β0)− β0(δ) + (X ′W ∗δX)−1X ′W ∗δ u

:= ΞNT (1) + ΞNT (2),

where ΨX(β0) and Aα are defined in Appendix A.1; and the third equality follows from

W ∗δDAα = 0 by the definition of W ∗δ .

For ΞNT (1), it is easy to know that

ΞNT (1) = (X ′W ∗δX)−1X ′W ∗δ ΨX(β0)− β0(δ) = OP (h2)
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by Assumption 2 and the Taylor expansion. In connection with Lemmas B.1 and B.2, the result

follows. �

Proof of Theorem 2:

The result follows from Lemma B.3 straightaway, so omitted. �

Proof of Lemma 1:

Before proceeding further, we define some variables. Let ξF = vec(MΥδFΥδF0) for ∀F ∈ DF ,

and let M̃0 = MΥδF0 for short. In addition, let A1 =
∑N

i=1X
′
iΥδMΥδFΥδXi, A2 = (Γ′0Γ0)⊗ IT ,

and A3 =
∑N

i=1 λ0i ⊗ (MΥδFΥδXi). We are now ready to start the proof.

Write

1

NT
Q(β, F )− 1

NT
Q(β0(δ), F0)

=
1

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδMΥδFΥδ(φi[β0]−Xiβ)

+
1

NT

N∑
i=1

λ′0iF
′
0ΥδMΥδFΥδF0λ0i +

2

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδMΥδFΥδF0λ0i

+
1

NT

N∑
i=1

u′iΥδMΥδFΥδui +
2

NT

N∑
i=1

λ′0iF
′
0ΥδMΥδFΥδui

+
2

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδMΥδFΥδui

− 1

NT

N∑
i=1

(φi[β0]−Xiβ0(δ))′ΥδM̃0Υδ(φi[β0]−Xiβ0(δ))

− 1

NT

N∑
i=1

u′iΥδM̃0Υδui −
2

NT

N∑
i=1

(φi[β0]−Xiβ0(δ))′ΥδM̃0Υδui

=
1

NT

N∑
i=1

(β0(δ)− β)′X ′iΥδMΥδFΥδXi(β0(δ)− β) +
1

NT

N∑
i=1

λ′0iF
′
0ΥδMΥδFΥδF0λ0i

+
2

NT

N∑
i=1

(β0(δ)− β)′X ′iΥδMΥδFΥδF0λ0i + oP (1)

= (β0(δ)− β)′A1(β0(δ)− β) + ξ′FA2ξF + 2(β0(δ)− β)′A′3ξF + oP (1)

=
√
T (β0(δ)− β)′

1

NT 2

(
A1 −A′3A−1

2 A3

)√
T (β0(δ)− β)

+
1

NT
[ξ′F + (β0(δ)− β)′A′3A

−1
2 ]A2[ξF +A−1

2 A3(β0(δ)− β)] + oP (1)

=
√
T (β0(δ)− β)′Ω†(F )

√
T (β0(δ)− β)

+
1

NT
[ξ′F + (β0(δ)− β)′A′3A

−1
2 ]A2[ξF +A−1

2 A3(β0(δ)− β)] + oP (1),

where the second equality follows from Lemma B.5, and some routine procedure of the kernel

method. Then by the same arguments as in Bai (2009, p. 1265), the two results follow. �
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Proof of Theorem 3:

(1). We now start investigating the rate of convergence, and write

β̃(δ)− β0(δ) =

(
N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1 N∑
i=1

X ′iΥδMΥδF̃
ΥδYi

=

(
N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1 N∑
i=1

X ′iΥδMΥδF̃
Υδ (φi[β0]−Xiβ0(δ))

+

(
N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1 N∑
i=1

X ′iΥδMΥδF̃
ΥδF0λ0i

+

(
N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1 N∑
i=1

X ′iΥδMΥδF̃
Υδui

:= A1 +A2 +A3.

By the proof of Theorem 1, it is easy to know that A1 = OP (h2). Below, we focus on A2 and

A3. Let ΞNT =
(
F ′0Υ2

δF̃
T

)−1(Λ′0Λ0

N

)−1
for notational simplicity, which gives Π−1

NT = VNTΞNT .

First, we investigate A2, and write

1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδF0λ0i

= − 1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
(ΥδF̃Π−1

NT −ΥδF0)λ0i

= − 1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

[
I1NT (β̃(δ), F̃ ) + · · ·+ I8NT (F̃ )

]
ΞNTλ0i

:= −J1NT − · · · − J8NT ,

where the second equality follows from (B.17), and the definitions of J1NT to J8NT should be

obvious. In view of the decomposition of J2NT , it is easy to know

‖J1NT ‖ = oP (‖β̃(δ)− β0(δ)‖+ h2).

Thus, we start from J2NT and write

J2NT =
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(φj [β0]−Xiβ̃(δ))(F0λ0j)
′Υ2

δF̃ΞNTλ0i

=
1

N2T 2

N∑
i=1

N∑
j=1

X ′iΥδMΥδF̃
ΥδXj(β0(δ)− β̃(δ))λ′0j

F ′0Υ2
δF̃

T
ΞNTλ0i

+
1

N2T 2

N∑
i=1

N∑
j=1

X ′iΥδMΥδF̃
Υδ(φj [β0]−Xjβ0(δ))λ′0j

F ′0Υ2
δF̃

T
ΞNTλ0i
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= − 1

N2T 2

N∑
i=1

N∑
j=1

X ′iΥδMΥδF̃
ΥδXjλ

′
0j

(
Λ′0Λ0

N

)−1

λ0i(β̃(δ)− β0(δ))

+
1

N2T 2

N∑
i=1

N∑
j=1

X ′iΥδMΥδF̃
Υδ(φj [β0]−Xjβ0(δ))λ′0j

F ′0Υ2
δF̃

T
ΞNTλ0i

:= −J2NT,1 + J2NT,2.

By a development similar to (A.2) of Dong et al. (2019), it is easy to know that∥∥∥∥∥∥
(

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1

NT 2J2NT,2

∥∥∥∥∥∥ = OP (h2).

We will further study J2NT,1 later.

For J3NT , write

J3NT =
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

ΥδF0λ0j(φj [β0]−Xiβ̃(δ))′Υ2
δF̃ΞNTλ0i

=
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
(ΥδF0 −ΥδF̃Π−1

NT )
1

NT

N∑
j=1

λ0j(φj [β0]−Xiβ̃(δ))′Υ2
δF̃ΞNTλ0i

=
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
J3NT,i,

where the definition of J3NT,i is obvious. By a development similar to (A.2) of Dong et al.

(2019), we just need to focus on 1
NT 2

∑N
i=1 ‖J3NT,i‖2 in order to show∥∥∥∥∥∥

(
N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1

NT 2J3NT

∥∥∥∥∥∥ = oP (‖β̃(δ)− β0(δ)‖+ h2).

Then write

1

NT 2

N∑
i=1

‖J3NT,i‖2

≤
‖ΥδF0 −ΥδF̃Π−1

NT ‖2

NT 2

N∑
i=1

∥∥∥∥∥∥ 1

NT

N∑
j=1

λ0j(φj [β0]−Xj β̃(δ))′Υδ

∥∥∥∥∥∥
2 ∥∥∥ΥδF̃ΞNTλ0i

∥∥∥2

≤ OP (1)
‖ΥδF0 −ΥδF̃Π−1

NT ‖2

T

 1

NT

N∑
j=1

‖λ0j‖ · ‖(φj [β0]−Xj β̃(δ))′Υδ‖

2

≤ OP (1)
‖ΥδF0 −ΥδF̃Π−1

NT ‖2

T

 1

N

N∑
j=1

‖λ0j‖2
 1

N

N∑
j=1

1

T 2
‖(φj [β0]−Xj β̃(δ))′Υδ‖2


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≤ OP (1)
‖ΥδF0 −ΥδF̃Π−1

NT ‖2

T
· 1

N

N∑
j=1

1

T 2
(φj [β0]−Xiβ̃(δ))′Υ2

δ(φj [β0]−Xiβ̃(δ))

= oP (‖β̃(δ)− β0(δ)‖+ h2).

Therefore,

∥∥∥∥(∑N
i=1X

′
iΥδMΥδF̃

ΥδXi

)−1
NT 2J3NT

∥∥∥∥ = oP (‖β̃(δ)− β0(δ)‖+ h2) follows.

For J4NT , write

J4NT =
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(φj [β0]−Xj β̃(δ))u′jΥ
2
δF̃ΞNTλ0i

=
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(Xjβ0(δ)−Xj β̃(δ))u′jΥ
2
δF0ΠNTΞNTλ0i

+
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(φj [β0]−Xjβ0(δ))u′jΥ
2
δF0ΠNTΞNTλ0i

+
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(φj [β0]−Xj β̃(δ))u′jΥ
2
δ(F̃ − F0ΠNT )ΞNTλ0i

:= J4NT,1 + J4NT,2 + J4NT,3.

For J4NT,1, write

‖J4NT,1‖ =

∥∥∥∥∥∥ 1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδ(Xjβ0(δ)−Xj β̃(δ))u′jΥ
2
δF0ΠNTΞNTλ0i

∥∥∥∥∥∥
≤ OP (1)

1

NT

N∑
i=1

∥∥∥∥ X ′i√T ΥδMΥδF̃

∥∥∥∥ · ‖λ0i‖
1

NT

N∑
j=1

∥∥∥∥Υδ
Xj√
T

∥∥∥∥ · ∥∥u′jΥ2
δF0

∥∥ · ‖β0(δ)− β̃(δ)‖

≤ OP (1)
1

NT

{
N∑
i=1

∥∥∥∥ X ′i√T ΥδMΥδF̃
Υδ

X ′i√
T

∥∥∥∥
}1/2{ N∑

i=1

‖λ0i‖2
}1/2

· 1

NT


N∑
j=1

∥∥∥∥ Xj√
T

Υ2
δ

Xj√
T

∥∥∥∥


1/2
N∑
j=1

∥∥u′jΥ2
δF0

∥∥2


1/2

· ‖β0(δ)− β̃(δ)‖

≤ OP (1)
1√
T
‖β0(δ)− β̃(δ)‖ = oP (‖β0(δ)− β̃(δ)‖).

Thus, J4NT,1 is negligible. Similarly, we can show both ‖J4NT,2‖ and ‖J4NT,3‖ are negligible

by accounting for 1
NT 2 =

∑N
j=1(φj [β0] − Xjβ0(δ))′Υ2

δ(φj [β0] − Xjβ0(δ)) = OP (h2) and result

(2) of Lemma B.6. Analogous to the derivation of J3NT and J4NT , we can conclude ‖J5NT ‖ is

negligible.

Similarly, we can prove that

J6NT =
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

T
ΥδΩuΥ2

δF̃ΞNTλ0i + negligible terms
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=
σ2
u

NT 3

N∑
i=1

X ′iΥδMΥδF̃
Υδ ·Υ2

δF̃ΞNTλ0i + negligible terms

:= J6NT,1 + negligible terms

and J7NT is negligible, where Ωu = E[uiu
′
i] = σ2

uIT .

Based on the above development, we have

β̃(δ)− β0(δ) +

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1

J2NT,1

= −

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1{
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
Υδui + J6NT,1 + J8NT

}
+negligible terms

= −

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1 { 1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
Υδui

+
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃

1

NT

N∑
j=1

Υδuj(F0λ0j)
′Υ2

δF̃ΞNTλ0i

}

−

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1

J6NT,1 + negligible terms

= −

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1
1

NT 2

N∑
i=1

{
X ′iΥδMΥδF̃

Υδ

+
1

N

N∑
j=1

X ′jΥδMΥδF̃
Υδλ

′
0j(Λ

′
0Λ0/N)−1λ0i

}
ui

−

(
1

NT 2

N∑
i=1

X ′iΥδMΥδF̃
ΥδXi

)−1

J6NT,1 + negligible terms

:= −B1 −B2 + negligible terms

Following a procedure similar to Lemma B.2, we can show that B1 = OP (1/
√
NT 2h). Moreover,

note that
√
NT 2hJ6NT,1 can be written as

∥∥∥√NT 2hJ6NT,1

∥∥∥ =

∥∥∥∥∥√NT 2h · σ2
u

NT 3

N∑
i=1

ZiΥ
2
δξi

∥∥∥∥∥
=

∥∥∥∥∥σ2
u

√
N√
T
· 1

NT

N∑
i=1

√
h√
T
ZiΥδ ·Υδξi

∥∥∥∥∥
≤ O(1)

√
N√
T

{
1

NT

N∑
i=1

h
Z ′i√
T

Υ2
δ

Zi√
T

}1/2{
1

NT

N∑
i=1

ξ′iΥ
2
δξi

}1/2

≤ O(1)

√
N√
T

{
1

NT

N∑
i=1

Z ′i√
T

Zi√
T

}1/2{
1

NT

N∑
i=1

ξ′iΥ
2
δξi

}1/2

= OP

(
N

T

)
,
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where Zi = X ′iΥδMΥδF̃
Υδ and ξi = F̃ΞNTλ0i. In connection with the condition N

T → c <∞ of

Assumption 8, the first result follows.

(2). By the first result of this theorem, and (4) of Lemma B.6, the second result follows.

�

B.5.2 Proofs of the Preliminary Lemmas

We introduce some variables which will be repeatedly used below. Let δ(T ) = b(δ−h)T c. From

the BN decomposition (Phillips and Solo, 1992), we have for t ≥ δ(T )

Xit =

t∑
s=1

νis +Xi0 =

t∑
s=1

ν̄is + ν̃i0 − ν̃it +Xi0

=
[ δ(T )∑
s=1

ν̄is + ν̃i0 − ν̃i,δ(T ) +Xi0

]
+
[ t∑
s=δ(T )+1

ν̄is

]
+
[
ν̃i,δ(T ) − ν̃it

]
:=Xi,δ(T ) + ηit + ξit, (B.3)

where ν̄it = (
∑∞

j=0 Φ′j)εit = Φ′εit, and ν̃it =
∑∞

j=0 Φ̃′jεi,t−j with Φ̃j =
∑∞

k=j+1 Φk. Note that

Assumption 3 ensures
∑∞

j=0 ‖Φ̃j‖ <∞, so that ξit = OP (1).

Proof of Lemma B.1:

We first show that

X ′W ∗δX =
N∑
i=1

T∑
t=1

Kh(τt − δ)(ηitη′it − η̄iη̄′i) +OP (N(Th)3/2 + T 2h+NTh), (B.4)

where η̄i = 1
ZT

∑T
t=1Kh(τt − δ)ηit.

By the definition of W ∗δ , X ′W ∗δX = X ′WδX −X ′WδD(D′WδD)−1D′WδX, in which

X ′WδD(D′WδD)−1D′WδX

=
1

ZT

N∑
i=1

[
T∑
t=1

XitKh(τt − δ)

][
T∑
t=1

X ′itKh(τt − δ)

]

− 1

NZT

[
N∑
i=1

T∑
t=1

XitKh(τt − δ)

][
N∑
i=1

T∑
t=1

X ′itKh(τt − δ)

]
.

In connection with (B.3), we are able to write

X ′W ∗δX

=

N∑
i=1

T∑
t=1

XitX
′
itKh(τt − δ)−

1

ZT

N∑
i=1

[
T∑
t=1

XitKh(τt − δ)

][
T∑
t=1

X ′itKh(τt − δ)

]

+
1

NZT

[
N∑
i=1

T∑
t=1

XitKh(τt − δ)

][
N∑
i=1

T∑
t=1

X ′itKh(τt − δ)

]
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=

N∑
i=1

T∑
t=1

(Xit −Xi,δ(T ))(Xit −Xi,δ(T ))
′Kh(τt − δ)

− 1

ZT

N∑
i=1

[
T∑
t=1

(Xit −Xi,δ(T ))Kh(τt − δ)

][
T∑
t=1

(Xit −Xi,δ(T ))
′Kh(τt − δ)

]

+
1

NZT

[
N∑
i=1

T∑
t=1

XitKh(τt − δ)

][
N∑
i=1

T∑
t=1

X ′itKh(τt − δ)

]

=

N∑
i=1

T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ) + 2

N∑
i=1

T∑
t=1

ηitξ
′
itKh(τt − δ) +

N∑
i=1

T∑
t=1

ξitξ
′
itKh(τt − δ)

−2ZT

N∑
i=1

η̄iξ̄
′
i − ZT

N∑
i=1

ξ̄iξ̄
′
i +NZT X̄X̄

′

≡
N∑
i=1

T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ) + 2R1,NT +R2,NT − 2R3,NT −R4,NT +R5,NT , (B.5)

where ξ̄i = 1
ZT

∑T
t=1 ξitKh(τt − δ) and X̄ = 1

NZT

∑N
i=1

∑T
t=1XitKh(τt − δ).

We now look at Rj,NT for j = 1, . . . , 5. Start from R1,NT and R3,NT , and write

E‖R1,NT ‖ ≤
N∑
i=1

T∑
t=1

Kh(τt − δ)E[‖ηit‖ · ‖ξit‖]

≤
√
Th

N∑
i=1

T∑
t=1

Kh(τt − δ)

{
E

∥∥∥∥ ηit√
Th

∥∥∥∥2

E‖ξit‖2
}1/2

=O(1)N
√
Th

T∑
t=1

Kh(τt − δ) = O(N(Th)3/2),

and

E‖R3,NT ‖ ≤
N∑
i=1

ZTE[‖η̄i‖ · ‖ξ̄i‖]

≤O(1)(Th)5/2Z−1
T

N∑
i=1

E
∥∥∥∥∥ 1

Th

T∑
t=1

ηit√
Th

Kh(τt − δ)

∥∥∥∥∥
2

E

∥∥∥∥∥ 1

Th

T∑
t=1

ξitKh(τt − δ)

∥∥∥∥∥
2


1/2

=O(1)(Th)5/2(ZT )−1 = O(N(Th)3/2).

Similarly, we can show that E‖R2,NT ‖ = O(NTh) and E‖R4,NT ‖ = O(NTh).

For R5,NT , it is easy to know 1√
NT

∑N
i=1Xi,δ(T ) = 1√

NT

∑N
i=1

∑δ(T )
t=1 Φ′εit = OP (1). Thus,

we have

N∑
i=1

T∑
t=1

XitKh(τt − δ) =

N∑
i=1

Xi,δ(T )

T∑
t=1

Kh(τt − δ) +

N∑
i=1

T∑
t=1

(ηit + ξit)Kh(τt − δ)

=OP (Th
√
NT +N1/2(Th)3/2),
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which yields that

R5,NT =
1

NZT

[
N∑
i=1

T∑
t=1

XitKh(τt − δ)

][
N∑
i=1

T∑
t=1

X ′itKh(τt − δ)

]

=OP (1)
1

NTh
·
(

(Th
√
NT )2 +N(Th)3

)
= OP (T 2h). (B.6)

Based on the analyses from (B.5) to (B.6), (B.4) follows. Moreover, OP (N(Th)3/2 + T 2h +

NTh) = oP (NT 2h).

Next, we show that as (N,T )→ (∞,∞),

1

NT 2h

N∑
i=1

T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ)→P Σν(1− CK),

which can be done by considering the first and second moments. For the first moment, we have

E

[
1

NT 2h

N∑
i=1

T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ)

]

=
Φ′

NT 2h

T∑
t=1

Kh(τt − δ)
N∑
i=1

t∑
s=δ(T )+1

E
[
εisε

′
is

]
Φ

− Φ′

NT 2h

T∑
t=1

Kh(τt − δ)
N∑
i=1

1

Z2
T

T∑
`1,`2=1

Kh(τ`1 − δ)Kh(τ`2 − δ)
`1∧`2∑

l=δ(T )+1

E
[
εilε
′
il

]
Φ

=
Φ′

T 2h

T∑
t=1

Kh(τt − δ)(t− δ(T ))ΛΦ

− Φ′

T 2h

T∑
t=1

Kh(τt − δ)
1

Z2
T

T∑
`1,`2=1

Kh(τ`1 − δ)Kh(τ`2 − δ)(`1 ∧ `2 − δ(T ))ΛΦ

→ (1− CK)Φ′ΛΦ = (1− CK)Σν . (B.7)

For the second moment, it is easy to know that

E

{
1

NT 2h

N∑
i=1

(
T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ)

)

−E

[
1

NT 2h

N∑
i=1

(
T∑
t=1

(
ηitη

′
it − η̄iη̄′i

)
Kh(τt − δ)

)]}2
= o(1)

in view of the cross-sectional independence of {εit}.
Thus, the result of this lemma follows. �

Proof of Lemma B.2:
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Similar to analyses of Lemma B.1, we have

X ′W ∗δ u =
N∑
i=1

T∑
t=1

(Xit −Xi,δ(T ))uitKh(τt − δ)

− 1

ZT

N∑
i=1

[
T∑
t=1

(Xit −Xi,δ(T ))Kh(τt − δ)

][
T∑
t=1

uitKh(τt − δ)

]

+
1

NZT

[
N∑
i=1

T∑
t=1

XitKh(τt − δ)

][
N∑
i=1

T∑
t=1

uitKh(τt − δ)

]

=
N∑
i=1

T∑
t=1

(ηit + ξit)uitKh(τt − δ)

− 1

ZT

N∑
i=1

[
T∑
t=1

(ηit + ξit)Kh(τt − δ)

][
T∑
t=1

uitKh(τt − δ)

]

+

[
1√
N

N∑
i=1

T∑
t=1

1

ZT
Kh(τt − δ)Xit

][
1√
N

N∑
i=1

T∑
t=1

uitKh(τt − δ)

]

=
N∑
i=1

T∑
t=1

(ηit + ξit)(uit − ūi)Kh(τt − δ) +OP (Th1/2)

:=
N∑
i=1

T∑
t=1

Sit(uit − ūi)Kh(τt − δ) +OP (Th1/2),

where Sit = ηit + ξit and ūi = 1
ZT

∑T
t=1Kh(τt − δ)uit, and the third equality follows from the

development similar to those given in Lemma B.1.

Next, we need only to prove that

1√
NT 2h

{
N∑
i=1

T∑
t=1

Sit(uit − ūi)Kh(τt − δ)−N
T∑
t=1

Kh(τt − δ)(∆νu −∆t
νū)

}
=⇒ N(0, C∗Σν,u). (B.8)

From the BN decomposition, we have for t ≥ δ(T ), uit = ¯̄uit + (ũi,t−1 − ũit), where ¯̄uit =

(
∑∞

j=0 ψ
′
j)εit = ψ′εit, ũit =

∑∞
j=0 ψ̃

′
jεi,t−j , and ψ̃j =

∑∞
k=j+1 ψk. Let ∆ũit = ũit − ũi,t−1. Note

T∑
t=1

Kh(τt − δ)Sit∆ũit

=

T∑
t=1

Kh(τt − δ)Sitũit −
T∑
t=1

Kh(τt − δ)Sitũi,t−1

=
T∑
t=1

Kh(τt − δ)Sitũit −
T∑
t=1

Kh(τt − δ)νitũi,t−1

−

{
T∑
t=1

Kh(τt−1 − δ)Si,t−1ũi,t−1 +
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]Si,t−1ũi,t−1

}
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= Kh(τT − δ)SiT ũiT −
T∑
t=1

Kh(τt − δ)νitũi,t−1 −
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]Si,t−1ũi,t−1,

and

T∑
t=1

Kh(τt − δ)∆ũit

=

T∑
t=1

Kh(τt − δ)ũit −
T∑
t=1

{Kh(τt−1 − δ) + (Kh(τt − δ)−Kh(τt−1 − δ))} ũi,t−1

= Kh(τT − δ)ũiT −
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]ũi,t−1.

By virtue of Assumption 1, Kh(τT − δ) = 0 with probability 1, which indicates that

T∑
t=1

Kh(τt − δ)Sit(−∆ũit)

=
T∑
t=1

Kh(τt − δ)νitũi,t−1 +
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]Si,t−1ũi,t−1

and

T∑
t=1

Kh(τt − δ)(−∆ũit) =
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]ũi,t−1.

Furthermore, let Vit =
∑t

j=δ(T )+1 εij , so we can also write Sit = Xit−Xi,δ(T ) = Φ′Vit+ν̃i,δ(T )−ν̃it.
Thus, we can further obtain that

T∑
t=1

Kh(τt − δ)Situit =
T∑
t=1

Kh(τt − δ)
(
Sitε

′
itψ − Sit∆ũit

)
=

T∑
t=1

Kh(τt − δ)(Φ′Vit + ν̃i,δ(T ) − ν̃it)ε′itψ

+
T∑
t=1

Kh(τt − δ)νitũi,t−1 +
T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]Si,t−1ũi,t−1.

Finally, we obtain that

1√
N

N∑
i=1

1

T
√
h

T∑
t=1

Kh(τt − δ) (Situit −∆νu)

:=
1√
N

N∑
i=1

1

T
√
h

T∑
t=1

Kh(τt − δ)Φ′Vi,t−1ε
′
itψ

+
1√
N

N∑
i=1

(RiT (1) +RiT (2) +RiT (3) +RiT (4) +RiT (5)) (B.9)
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where

RiT (1) =
1

T
√
h

T∑
t=1

Kh(τt − δ)Φ′(εitε′it − Λ)ψ,

RiT (2) =
1

T
√
h

T−1∑
t=1

Kh(τt − δ)

ũitνi,t+1 −
∞∑
j=0

ψ̃′jΦj+1

 ,

RiT (3) =
1

T
√
h

T∑
t=1

[Kh(τt − δ)−Kh(τt−1 − δ)]Si,t−1ũi,t−1,

RiT (4) =
1

T
√
h

T∑
t=1

Kh(τt − δ)ν̃i,δ(T )ε
′
itψ,

RiT (5) = − 1

T
√
h

T∑
t=1

Kh(τt − δ)ψ′(εitν̃it − Φ̃0).

Below, we show that 1√
N

∑N
i=1RiT (k) = oP (1) for k = 1, . . . , 5. Firstly, in view of the

cross-sectional independence of {εit}, it is easy to obtain that

E

∥∥∥∥∥ 1√
N

N∑
i=1

RiT (1)

∥∥∥∥∥
2

= o(1)

by some tedious calculation. Next, we consider 1√
N

∑N
i=1RiT (2), and write

E

∥∥∥∥∥ 1√
N

N∑
i=1

RiT (2)

∥∥∥∥∥
2

=
1

N

N∑
i,`=1

E[RiT (2)′R`T (2)]

=
1

NT 2h

N∑
i,`=1

T−1∑
t,s=1

{
Kh(τt − δ)Kh(τs − δ)

·E
[(
ũitνi,t+1 −

∞∑
j=0

ψ̃′jΦj+1

)′(
ũ`sν`,s+1 −

∞∑
j=0

ψ̃′jΦj+1

)]}

=
1

T 2h

T−1∑
t,s=1

Kh(τt − δ)Kh(τs − δ)E
[(
ũitνi,t+1 −

∞∑
j=0

ψ̃′jΦj+1

)′(
ũisνi,s+1 −

∞∑
j=0

ψ̃′jΦj+1

)]
= h

{
E‖RiT (2)‖2E‖RiT (2)‖2

}1/2
= hE‖RiT (2)‖2,

where the third equality follows from Assumption 3. Below, we focus on E‖RiT (2)‖2, so write

E ‖RiT (2)‖2 = tr
(
E[RiT (2)RiT (2)′]

)
=

1

T 2h

T−1∑
t=1

T−1∑
s=1

Kh(τt − δ)Kh(τs − δ)

41



E

 (
∑∞

j=0

∑∞
k=0 ψ̃

′
jεi,t−jε

′
i,t+1−kΦk)(

∑∞
p=0

∑∞
q=0 Φ′pεi,s+1−pε

′
i,s−qψ̃q)

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


=

2

T 2h

b2Thc∑
t=δ(T )+1

Kh(τt − δ)
b2Thc−1∑
l=0

Kh(τt+1 − δ)

 ∑∞
j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0E[(ψ̃′jεi,t−jε

′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)]

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


=

2

T 2h

b2Thc∑
t=δ(T )+1

K2
h(τt − δ)

b2Thc−1∑
l=0 ∑∞

j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0E[(ψ̃′jεi,t−jε

′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)]

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


+

2

T 2h

b2Thc∑
t=δ(T )+1

K2
h(τt − δ)

b2Thc−1∑
l=0

(Kh(τt+l − δ)−Kh(τt − δ))

 ∑∞
j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0E[(ψ̃′jεi,t−jε

′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)]

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


where Kh(τ(t+l) − δ)−Kh(τt − δ) = O(1) l

Th . If we show

∞∑
l=0

 ∑∞
j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0E[(ψ̃′jεi,t−jε

′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)]

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′

 <∞,

then it follows that E‖ 1√
N

∑N
i=1RiT (2)‖2 → 0. Observe that

∞∑
l=0

 ∑∞
j=0

∑∞
k=0

∑∞
p=0

∑∞
q=0E[(ψ̃′jεi,t−jε

′
i,t+1−kΦk)(Φ

′
pεi,t+l+1−pε

′
i,t+l−qψ̃q)]

−(
∑∞

j=0 ψ̃
′
jΦj+1)(

∑∞
j=0 ψ̃

′
jΦj+1)′


=

∞∑
l=0

∞∑
k=0

∞∑
j=0

tr{Φ′kΦk+l ⊗ ψ̃′jψ̃j+l}+

∞∑
l=0

∞∑
j=0

∞∑
k=0∨(1−l)

tr
{

(Φ′kψ̃k+l−1 ⊗ ψ̃′jΦj+l+1)Kd

}

+(ν4 − 3)

∞∑
l=0

∞∑
j=0

tr

{
(Φ′j+1 ⊗ ψ̃′j)(

d+1∑
l=1

el,l ⊗ el,l)(Φj+l+1 ⊗ ψ̃j+l)

}

=

∞∑
l=0

∞∑
j=0

∞∑
k=0

tr{Φ′kΦk+l}ψ̃′jψ̃j+l +
∞∑
l=0

∞∑
j=0

∞∑
k=0∨(1−l)

ψ̃′k+l−1ΦkΦ
′
j+l+1ψ̃j

+(ν4 − 3)
∞∑
l=0

∞∑
j=0

tr

{
(Φ′j+1 ⊗ ψ̃′j)(

d+1∑
l=1

el,l ⊗ el,l)(Φj+l+1 ⊗ ψ̃j+l)

}

:= I + II + III,
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where el,l is the (d × d) matrix where the (l, l)th element is one and other elements are zeros.

Since tr(A⊗B) = tr(A)tr(B) and tr(A) ≤ (rows(A))1/2‖A‖, we have

I =

∞∑
l=0

tr{
∞∑
k=0

Φ′kΦk+l}(
∞∑
j=0

ψ̃′jψ̃j+l)

≤

[ ∞∑
l=0

∣∣∣∣∣tr(
∞∑
k=0

Φ′kΦk+l)

∣∣∣∣∣
] ∞∑

l=0

∣∣∣∣∣∣
∞∑
j=0

tr(ψ̃jψ̃
′
j+l)

∣∣∣∣∣∣


≤ d

( ∞∑
k=0

‖Φk‖

)2( ∞∑
k=0

‖ψ̃k‖

)2

<∞,

and

II ≤
∞∑
k=1

∞∑
j=0

‖Φk‖ · ‖ψ̃k−1‖ · ‖ψ̃j‖ · ‖Φj+1‖+

∞∑
l=1

 ∞∑
k=0

∞∑
j=0

‖Φk‖ · ‖ψ̃k+l−1‖ · ‖ψ̃j‖ · ‖Φj+l+1‖


≤

 ∞∑
j=0

‖Φj‖

2 ∞∑
j=0

‖ψj‖

2

+

( ∞∑
l=0

∞∑
k=0

‖Φk‖ · ‖ψ̃k+l‖

) ∞∑
l=0

∞∑
j=0

‖ψ̃j‖ · ‖Φj+l‖


≤

 ∞∑
j=0

‖Φj‖

2 ∞∑
j=0

‖ψj‖

2

+

( ∞∑
k=0

‖Φk‖
∞∑
k=0

‖ψ̃k‖

) ∞∑
j=0

‖ψ̃j‖
∞∑
j=0

‖Φj‖


<∞.

Similarly, we can show that III <∞. Thus, we have shown that E
∥∥∥ 1√

N

∑N
i=1RiT (2)

∥∥∥2
= o(1).

By the similar arguments, we can also show that E
∥∥∥ 1√

N

∑N
i=1RiT (j)

∥∥∥2
= o(1) for j = 3, 4, 5.

Therefore, we conclude that

1√
N

N∑
i=1

1

T
√
h

T∑
t=1

Kh(τt − δ) (Situit −∆νu)

=
1

T
√
h

T∑
t=1

Kh(τt − δ)Φ′
1√
N

N∑
i=1

Vi,t−1ε
′
itψ + oP (1)

=
1

T
√
h

T∑
t=1

1√
N

N∑
i=1

∑
s<t

Kh(τt − δ)Φ′εisε′itψ + oP (1)

:=
1

T
√
h

T∑
t=1

W1,tN + oP (1) . (B.10)

Using arguments similar to (B.9), the following result also holds.

1√
N

N∑
i=1

1

T
√
h

T∑
t=1

Kh(τt − δ)
(
Sitūi −∆t

νū(δ)
)
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=
1

T
√
h

T∑
t=1

Kh(τt − δ)Φ′
1√
N

N∑
i=1

1

ZT

T∑
l=1

∑
l 6=s≤t

Kh(τl − δ)εisε′ilψ + oP (1)

:=
1

T
√
h

T∑
t=1

W2,tN + oP (1) , (B.11)

where the definition of W2,tN should be obvious.

By (B.10) and (B.11), we have

1√
NT 2h

{
N∑
i=1

T∑
t=1

Sit(uit − ūi)Kh(τt − δ)−N
T∑
t=1

Kh(τt − δ)(∆νu −∆t
ν,ū(δ))

}

=
1

T
√
h

T∑
t=1

(W1,tN −W2,tN ) + oP (1) :=
1

Th

T∑
t=1

WtN + oP (1).

In order to prove (B.8), we need only to prove 1
T
√
h

∑T
t=1WtN =⇒ N(0, C∗Σν,u), so write

WtN := W1,tN −W2,tN =
N∑
i=1

(
1√
N

∑
s<t

W∗t,s(δ)Φ′εisε′itψ

)
,

where

W∗t,s(δ) = Kh(τt − δ)−Wt,s(δ),

Wt,s =
1

ZT

Kh(τt − δ)
∑
l≥s

Kh(τl − δ) +Kh(τs − δ)
∑
l≥t

Kh(τl − δ)

 .

Note that {WtN ,Ft,N} forms a martingale difference array with mean 0, where Ft,N =

σ{εis : 1 ≤ i ≤ N, 1 ≤ s ≤ t} is a σ-filed. Next we use the central limit theory for martingale

difference array. For any ε > 0, it is easy to check that as (N,T )→ (∞,∞),

1

T 2h
E
[
WtNW

′
tNI(‖WtN‖2 ≥ εT

√
h)|Ft−1,N

]
→ 0.

Furthermore, we can prove that

1

T 2h

T∑
t=1

E
[
WtNW

′
tN |Ft−1,N

]
=

1

T 2h

T∑
t=1

∑
s<t

W∗2t,s(δ)
1

N

N∑
i,j=1

E
[
Φ′εisε

′
itψψ

′εjtε
′
jsΦ|Ft−1,N

]
= C∗Σν,u + oP (1)

after some tedious calculation. The proof of Lemma B.2 is now completed. �

Proof of Lemma B.3.
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Write

Γ̂i,νu(j) =
1

τ − τ

τ∑
t=τ+1

νi,t−j ûit

=
1

τ − τ

τ∑
t=τ+1

νi,t−juit −
1

τ − τ

τ∑
t=τ+1

νi,t−j{X ′it(β̂(τt)− β0(τt)) + α̂i − αi}

:=Γ̄i,νu(j)− Γ̃i,νu(j)

for j = 0, 1, · · · , lT . Thus, we can further write

∆̂i,νu =

lT∑
j=0

W

(
j

lT

)
Γ̄i,νu(j)−

lT∑
j=0

W

(
j

lT

)
Γ̃i,νu(j) := ∆̄i,νu + ∆̃i,νu.

Below, we show

√
Nh(∆̂νu −∆νu) =

√
Nh(∆̄νu −∆νu) +

√
Nh

¯̃
∆νu = oP (1), (B.12)

where ∆̄νu = 1
N

∑N
i=1 ∆̄i,νu and

¯̃
∆νu = 1

N

∑N
i=1 ∆̃i,νu.

First, we turn to
√
Nh(∆̄νu−∆νu) = oP (1) in (B.12). By Proposition 1 of Andrews (1991)

and Assumption 5, we have

E‖
√
Nh(∆̄νu −∆νu)‖2 = E

∥∥∥∥∥
√
h√
N

N∑
i=1

(∆̄i,νu − E[∆̄i,νu] + E[∆̄i,νu]−∆νu)

∥∥∥∥∥
2

= hE
∥∥∆̄i,νu − E[∆̄i,νu]

∥∥2
+Nh‖E[∆̄i,νu]−∆νu‖2

= O

(
lTh

τ − τ
+
Nh

l2qT

)
= o(1). (B.13)

Second, by the construction of τ and τ and a development similar to (A.31)–(A.33) of

Phillips et al. (2017), we have

√
Nh

¯̃
∆νu = oP (1). (B.14)

Therefore, we prove (B.12) by (B.14) and (B.13).

Similarly, the second result follows. The proof is now completed. �

Proof of Lemma B.4:

Write

β̈(δ)− β0(δ) = Π1NT + Π2NT + Π3NT − β0(δ), (B.15)
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where

Π0NT =
1

NT 2h

N∑
i=1

T∑
t=1

XitX
′
itKh(τt − δ),

Π1NT = Π−1
0NT

1

NT 2h

N∑
i=1

T∑
t=1

XituitKh(τt − δ),

Π2NT = Π−1
0NT

1

NT 2h

N∑
i=1

T∑
t=1

Xitλ
′
0if0tKh(τt − δ),

Π3NT = Π−1
0NT

1

NT 2h

N∑
i=1

T∑
t=1

XitX
′
itβ0(τt)Kh(τt − δ).

By Assumption 6, it is easy to know that Π1NT + Π2NT = OP

(
1√
T

)
. By the proof of Theorem

1, Π3NT − β0(δ) = OP (h2). The result then follows. �

Proof of Lemma B.5:

(1). Write

sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

u′iΥδPΥδFΥδui

∣∣∣∣∣ = sup
F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

tr{ΥδPΥδFΥδuiu
′
i}

∣∣∣∣∣
= sup

F∈DF

1

NT

∣∣tr{ΥδPΥδFΥδU
′U}
∣∣ ≤ r

NT
‖ΥδPΥδFΥδU

′U‖sp

≤ O(1)
1

NTh
‖U ′U‖ = o(1),

where the first inequality follows from tr|A| ≤ rank(A)·‖A‖sp, the second inequality follows from

the uniform boundedness of the kernel function, and the last equality follows from Assumptions

4 and 7.

(2). Write

sup
β∈Rδ(β),F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδMΥδFΥδui

∣∣∣∣∣
≤ sup

β∈Rδ(β),F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0]−Xiβ)′Υ2
δui

∣∣∣∣∣
+ sup
β∈Rδ(β),F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδPΥδFΥδui

∣∣∣∣∣ := A1 +A2.

By the construction of Rδ(β) and Assumption 6.2, it is easy to know that A1 = oP (1).

For A2, write

sup
β∈Rδ(β),F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

(φi[β0]−Xiβ)′ΥδPΥδFΥδui

∣∣∣∣∣
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= sup
β∈Rδ(β),F∈DF

∣∣∣∣∣ 1

NT

N∑
i=1

tr{ΥδPΥδFΥδui∆φ
′
i,β}

∣∣∣∣∣
= sup

β∈Rδ(β),F∈DF

∣∣∣∣ 1

NT
tr{PΥδFΥδU

′∆φβΥδ}
∣∣∣∣

≤ sup
β∈Rδ(β)

r

NT
‖ΥδU

′∆φβΥδ‖sp ≤ O(1)A1 = oP (1),

where ∆φi,β = φi[β0]−Xiβ and ∆φβ = (φ1[β0], . . . , φN [β0])′.

(3) The third result follows from a procedure similar to (2) of this lemma. �

Proof of Lemma B.6:

(1). We now consider VNT and write

ΥδF̃ VNT =
1

NT

N∑
i=1

Υδ(φi[β0]−Xiβ̃(δ))(φi[β0]−Xiβ̃(δ))′Υ2
δF̃

+
1

NT

N∑
i=1

Υδ(φi[β0]−Xiβ̃(δ))(F0λ0i)
′Υ2

δF̃

+
1

NT

N∑
i=1

ΥδF0λ0i(φi[β0]−Xiβ̃(δ))′Υ2
δF̃

+
1

NT

N∑
i=1

Υδ(φi[β0]−Xiβ̃(δ))u′iΥ
2
δF̃

+
1

NT

N∑
i=1

Υδui(φi[β0]−Xiβ̃(δ))′Υ2
δF̃

+
1

NT

N∑
i=1

Υδuiu
′
iΥ

2
δF̃ +

1

NT

N∑
i=1

ΥδF0λ0iu
′
iΥ

2
δF̃

+
1

NT

N∑
i=1

Υδui(F0λ0i)
′Υ2

δF̃ +
1

NT

N∑
i=1

Υδ(F0λ0i)(F0λ0i)
′Υ2

δF̃

:= I1NT (β̃(δ), F̃ ) + · · ·+ I5NT (β̃(δ), F̃ ) + I6NT (F̃ ) + · · ·+ I9NT (F̃ ).

Note that I9NT (F̃ ) = ΥδF0 ·
Λ′0Λ0

N · F
′
0Υ2

δF̃
T . Thus, we can write

ΥδF̃ VNT −ΥδF0
Λ′0Λ0

N
·
F ′0Υ2

δF̃

T
= I1NT (β̃(δ), F̃ ) + · · ·+ I8NT (F̃ ). (B.16)

Note that the development of Theorem 3 ensures that
F ′0Υ2

δF̃
T is non-singular, so rewrite (B.16)

as

ΥδF̃ VNT

(F ′0Υ2
δF̃

T

)−1(Λ′0Λ0

N

)−1
−ΥδF0

=
[
I1NT (β̃(δ), F̃ ) + · · ·+ I8NT (F̃ )

] (F ′0Υ2
δF̃

T

)−1(Λ′0Λ0

N

)−1
. (B.17)
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We then examine each of the terms on the right hand side of (B.17) and show that VNT is

non-singular. In order to do so, we write∥∥∥∥∥ΥδF̃ VNT

(F ′0Υ2
δF̃

T

)−1(Λ′0Λ0

N

)−1
−ΥδF0

∥∥∥∥∥
≤ OP (1)

(
‖I1NT (β̃(δ), F̃ )‖+ · · ·+ ‖I8NT (F̃ )‖

)
, (B.18)

and focus on each term on the right hand side of (B.18).

Note that by construction, we have 1√
T
‖ΥδF̃‖ = O(1). We will repeatedly use this fact

below. Start from I1NT (β̃(δ), F̃ ) and write

1√
T
‖I1NT (β̃(δ), F̃ )‖ ≤ O(1)

1

NT

N∑
i=1

(φi[β0]−Xiβ̃(δ))′Υ2
δ(φi[β0]−Xiβ̃(δ))

≤ O(1)
1

NT

N∑
i=1

(β0(δ)− β̃(δ))′X ′iΥ
2
δXi(β0(δ)− β̃(δ))

+ O(1)
1

NT

N∑
i=1

(φi[β0]−Xiβ0(δ))′Υ2
δ(φi[β0]−Xiβ0(δ))

= OP (T‖β̃(δ)− β0(δ)‖2) +OP (Th4),

where the term OP (T‖β̃(δ)−β0(δ)‖2) follows from the development of Theorem 3, and OP (Th4)

follows from the standard argument of the kernel method.

For I2NT (β̃(δ), F̃ ), write

1√
T
‖I2NT (β̃(δ), F̃ )‖ ≤ O(1)

{
1

NT

N∑
i=1

(φi[β0]−Xiβ̃(δ))′Υ2
δ(φi[β0]−Xiβ̃(δ))

}1/2

·

{
1

NT

N∑
i=1

λ′0iF
′
0Υ2

δF0λ0i

}1/2

= OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2),

where the last line follows from the proof for I1NT (β̃(δ), F̃ ), and 1
NT

∑N
i=1 λ

′
0iF
′
0Υ2

δF0λ0i =

OP (1) by Assumption 7.

Similar to I2NT (β̃(δ), F̃ ), we can show for j = 3, 4, 5,

1√
T
‖IjNT (β̃(δ), F̃ )‖ = OP (

√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2).

We now consider I6NT (β̃(δ), F̃ ), and write

E

∥∥∥∥∥ 1

NT

N∑
i=1

Υδuiu
′
iΥδ

∥∥∥∥∥
2
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=
1

N2T 2h2

T∑
t,s=1

N∑
i,j=1

E[uituisujtujs]Kh(τt − δ)Kh(τs − δ)

=
1

N2T 2h2

T∑
t=1

N∑
i,j=1

E[u2
itu

2
jt]K

2
h(τt − δ)

+
1

N2T 2h2

∑
t6=s

N∑
i,j=1

E[uitujt]E[uisujs]Kh(τt − δ)Kh(τs − δ)

= O(1)
1

T 2h2

T∑
t=1

K2
h(τt − δ) +

1

N2

N∑
i,j=1

σ2
ij ·

1

T 2h2

∑
t6=s

Kh(τt − δ)Kh(τs − δ)

= O

(
1

Th

)
+O

(
1

N

)
,

which immediately gives

1√
T
‖I6NT (β̃(δ), F̃ )‖ = OP

(
1√
Th

)
+OP

(
1√
N

)
.

For I7NT (F̃ ) and I8NT (F̃ ), write

E

∥∥∥∥∥ 1

NT

N∑
i=1

ΥδF0λ0iu
′
iΥδ

∥∥∥∥∥
2

=
1

N2T 2h2

T∑
t,s=1

N∑
i,j=1

Kh(τt − δ)Kh(τs − δ)E[f ′0tλ0iuisf
′
0tλ0jujs]

≤ O(1)
1

T 2h2

T∑
t,s=1

Kh(τt − δ)Kh(τs − δ) ·
1

N2

N∑
i,j=1

|σij | = O

(
1

N

)
.

Then we can conclude that

1√
T
‖I7NT (F̃ )‖ = OP

(
1√
N

)
and

1√
T
‖I8NT (F̃ )‖ = OP

(
1√
N

)
.

Based on the above derivations and by multiplying (B.17) with
F ′0Υδ
T from the left–hand

side, we obtain that

F ′0Υ2
δF̃

T
VNT =

F ′0Υ2
δF0

T
· Λ′0Λ0

N
·
F ′0Υ2

δF̃

T
+ oP (1),

which implies
F ′0Υ2

δF̃
T are the eigenvectors of the matrix

F ′0Υ2
δF0

T · Λ′0Λ0

N , and VNT consists of the

eigenvalues of the same matrix (in the limit) by noting that

F ′0Υ2
δF0

T
· Λ′0Λ0

N
→P Σf (δ)Σλ

after simple algebra. Thus, the result follows.
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(2). Based on the above development, (B.18) can be summarized by

1√
T
‖ΥδF̃Π−1

NT −ΥδF0‖ = OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2)

+OP

(
1√
Th

)
+OP

(
1√
N

)
.

(3). According to (B.17),

1

T
F ′0Υ2

δF̃ −
1

T
F ′0Υ2

δF0ΠNT =
1

T
F ′0Υδ

[
I1NT (β̃(δ), F̃ ) + · · ·+ I8NT (F̃ )

]
V −1
NT .

Note that V −1
NT = OP (1), so we focus on 1

T F
′
0Υδ

[
I1NT (β̃(δ), F̃ ) + · · ·+ I8NT (F̃ )

]
below. By the

proof of the first result of this lemma, it is easy to know that

1

T

∥∥∥F ′0Υδ

[
I1NT (β̃(δ), F̃ ) + · · ·+ I5NT (β̃(δ), F̃ )

]∥∥∥
= OP (

√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2).

We now consider 1
T F
′
0ΥδI6NT (F̃ ). Write

1

T
F ′0ΥδI6NT (F̃ ) ≤ 1

T

{
1

NT

N∑
i=1

‖F ′0Υ2
δui‖2

}1/2{
1

NT

N∑
i=1

‖u′iΥ2
δF̃‖2

}1/2

.

Simple algebra shows that 1
NT

∑N
i=1 ‖F ′0Υ2

δui‖2 = OP (1), so we focus on 1
NT

∑N
i=1 ‖u′iΥ2

δF̃‖2

below. Write

1

NT

N∑
i=1

‖u′iΥ2
δF̃‖2 =

1

NT

N∑
i=1

‖u′iΥ2
δ(F0ΠNT + F̃ − F0ΠNT )‖2

≤ 2

NT

N∑
i=1

‖u′iΥ2
δF0ΠNT ‖2 +

2

NT

N∑
i=1

tr
{
u′iΥ

2
δ(F̃ − F0ΠNT )(F̃ − F0ΠNT )′Υ2

δui

}
≤ 2

NT

N∑
i=1

‖u′iΥ2
δF0ΠNT ‖2 +

2

NT
tr
{

Υ2
δ(F̃ − F0ΠNT )(F̃ − F0ΠNT )′Υ2

δU
′U
}

≤ OP (1) +O(1)
1

N
‖U ′U‖ · 1

T
‖ΥδF̃ −ΥδF0ΠNT ‖2.

In connection with (1) of Lemma B.5 and result (2) of this lemma, it then gives that

1

T
F ′0ΥδI6NT (F̃ )

= OP

(
1

T

)
+OP

(
1√
T

){
1

NT
‖U ′U‖ · 1

T
‖ΥδF̃ −ΥδF0ΠNT ‖2

}1/2

= OP

(
1

T

)
+OP

(
1√
T

)
OP

(
1

4
√
N

+
1

4
√
T

){
OP (
√
T‖β̃(δ)− β0(δ)‖)

+OP (
√
Th2) +OP

(
1√
Th

)
+OP

(
1√
N

)}
.
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For 1
T F
′
0ΥδI7NT (F̃ ), we have

1

T
‖F ′0ΥδI7NT (F̃ )‖ ≤ 1

T
‖F ′0Υ2

δF0‖ ·

∥∥∥∥∥ 1

N
√
T

N∑
i=1

λ0iu
′
iΥδ

∥∥∥∥∥ · 1√
T
‖ΥδF̃ −ΥδF0ΠNT ‖

+
1

T
‖F ′0Υ2

δF0‖ ·

∥∥∥∥∥ 1

NT

N∑
i=1

λ0iu
′
iΥ

2
δF0

∥∥∥∥∥ · ‖ΠNT ‖.

By Assumption 7, 1
T ‖F

′
0Υ2

δF0‖ = OP (1). Also, ‖ΠNT ‖ and 1√
T
‖ΥδF̃ − ΥδF0ΠNT ‖ have been

studied above. Thus, we focus on
∥∥∥ 1
N
√
T

∑N
i=1 λ0iu

′
iΥδ

∥∥∥ and
∥∥∥ 1
NT

∑N
i=1 λ0iu

′
iΥ

2
δF0

∥∥∥ below. Write

E

∥∥∥∥∥ 1

N
√
T

N∑
i=1

λ0iu
′
iΥδ

∥∥∥∥∥
2

=
1

N2Th

N∑
i=1

N∑
j=1

T∑
t=1

E[λ′0iλ0juitujt]Kh(τt − δ) = O

(
1

N

)
.

Similarly, by Assumption 8, it is easy to know that

E

∥∥∥∥∥ 1

NT

N∑
i=1

λ0iu
′
iΥ

2
δF0

∥∥∥∥∥
2

= O

(
1

NTh

)
.

We then obtain that

1

T
‖F ′0ΥδI7NT (F̃ )‖ ≤ OP

(
1√
N

){
OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2)

+OP

(
1√
Th

)
+OP

(
1√
N

)}
+OP

(
1√
NTh

)
.

Based on the above development, we then obtain that

1

T
‖F ′0Υ2

δF̃ − F ′0Υ2
δF0ΠNT ‖

= OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
, (B.19)

which further indicates that

1

T
‖F̃ ′Υ2

δF̃ − F̃ ′Υ2
δF0ΠNT ‖

≤ 1

T
‖(ΥδF̃ −ΥδF0ΠNT )′(ΥδF̃ −ΥδF0ΠNT )‖

+
1

T
‖(ΥδF0ΠNT )′(ΥδF̃ −ΥδF0ΠNT )‖

= OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+O

(
1

N

)
. (B.20)

(4). Note that (B.19) and (B.20) give that

1

T
Π′NTF

′
0Υ2

δF̃ −
1

T
Π′NTF

′
0Υ2

δF0ΠNT
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= OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
and

Ir −
1

T
F̃ ′Υ2

δF0ΠNT = OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+O

(
1

N

)
.

Summing up the above two equations yields that

Ir −
1

T
Π′NTF

′
0Υ2

δF0ΠNT = OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
.

Note that it is easy to know that

‖P
ΥδF̃
− PΥδF0‖2 = tr

{
P

ΥδF̃
+ PΥδF0 − PΥδF̃

PΥδF0 − PΥδF0PΥδF̃

}
= 2tr

{
Ir −

1

T
F̃ ′ΥδPΥδF0ΥδF̃

}
.

Moreover, using (B.19), we obtain that

1

T
F̃ ′ΥδPΥδF0ΥδF̃ =

1

T
F̃ ′Υ2

δF0(F ′0Υ2
δF0)−1F ′0Υ2

δF̃

=
1

T
Π′NTF

′
0Υ2

δF0(F ′0Υ2
δF0)−1F ′0Υ2

δF0ΠNT

+OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
=

1

T
Π′NTF

′
0Υ2

δF0ΠNT

+OP (
√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
.

Thus, we have

‖P
ΥδF̃
− PΥδF0‖2 = OP (

√
T‖β̃(δ)− β0(δ)‖) +OP (

√
Th2) +OP

(
1

Th

)
+OP

(
1

N

)
.

The proof is now completed. �
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