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Abstract Natural language understanding and generation are two critical components

of natural language processing. Natural language understanding seeks to describe the

semantics and syntax of human text, while natural language generation aims to automate

the generation of human-like text. Although both have benefited from the recent flood

of research on deep learning, they have also been criticized for lacking context modeling.

Since human languages are context-dependent by nature, there are many context-related

system errors in current natural language understanding and generation models. This

research considers contextual information and studies four context-dependent tasks to

fill this gap.

The context contains information that helps alleviate uncertainty in understanding the

human text. In natural language processing, the context is usually associated with the

surrounding words or phrases. However, the definition of context goes beyond this basic

meaning. In this work, we expand the scope of the context and explore its effectiveness

in four tasks of natural language understanding and generation.

We first investigate the role of short-range context in subword segmentation for neural

machine translation. Existing works segment uncommon words so abruptly that the

resultant subwords do not respect linguistic rules. We propose a novel mixed character-

subword Transformer that conditions source- and target-side contexts, and leverages

dynamic programming to split words into subwords. Our empirical results indicate

that context-conditioned segmentation can produce morphologically plausible subwords,

leading to significant improvements in translation quality.

Then we explore long-range context-dependent natural language understanding in dia-

logue systems. We start by illustrating that one can modify a scene graph via a language

command. To achieve this goal, we create three datasets and describe this modification

task as a conditional generation problem. The desired scene graph can be produced

depending on the context, i.e., the original graph and the modification command. We

also propose a novel architecture to address this modification problem. Our comprehen-

sive studies demonstrate that the proposed architecture can meet the desideratum and

surpass all baseline models.

Next, a conversation involves back-and-forth communication. Contexts in a dialogue

system can go beyond an utterance. Thus, we examine the ability to model a long-

range dependency in a conversational semantic parsing task. In addition, we find that

a standard parser can place incorrect arguments into a logical form. We superimpose

a copy mechanism onto the context-dependent parser to solve these problems. Our

experiments show that the proposed model can deliver sizeable improvements over the

baselines.
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Finally, we argue that the definition of context is not restricted to the neighboring words

or sentences. Instead, given a specific task, the format, wording, and genre of the input

sentences must conform to the specified rules. Hence, we denote such meta information

as the task-specific context. We fine-tune or condition generic generative models on

in-distribution examples to capture this high-level context. Then we harvest a large

quantity of synthetic in-domain unlabeled data from the tailored models. Finally, we

demonstrate that one can significantly advance self-training, knowledge distillation, and

few-shot learning using the synthetic in-domain data.
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Chapter 1

Introduction

Natural language generation (NLG) is an essential subfield of natural language process-

ing (NLP). It aims to automatically produce fluent text from various forms of input.

There has been a surge of interest in NLG from both academia and industry (Reiter

and Dale, 2000). Researchers have highlighted that the study of NLG has fostered the

development of artificial intelligence, cognitive science, and human-computer interac-

tion. From the perspective of the application, many companies have leveraged NLG

technology to automate tasks involving routine document creation. Moreover, tech-

nology companies have introduced numerous and various text-generation application

programming interfaces (APIs), such as machine translation, document summarization,

automatic speech recognition, etc., to serve millions of end-users.

Natural language understanding (NLU) is another critical area of the NLP field. As

opposed to NLG, NLU focuses on capturing the correlations between linguistic units

and understanding the high-level encoded information. NLU can be considered akin to

reading comprehension, whereas NLG is associated with composition. However, NLG

and NLU are not separate. In text-to-text generation, NLU is responsible for converting

discrete input tokens into linguistic-aware representations, which will eventually be de-

composed into another set of discrete symbols via NLG. Moreover, NLU can be leveraged

to convert human-written text into machine-understandable representation to facilitate

communication between humans and machines.

The basis of NLG is to learn a function mapping the source signals to target outputs.

Early research in this area approached the generation problem via a list of hand-crafted

1
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rules. Such labor-intensive approaches limited the development of NLG to simple ap-

plications such as weather summary (Goldberg, 1993), activity summary (McKeown

et al., 1994), software manuals (Paris and Vander Linden, 1996), etc. These systems

are comprised of multiple brittle, pipelined sub-components. Consequently, they suffer

from compounding errors when any module raises an issue. Due to the complexity of

hand-crafted engineering, statistical approaches were introduced to reduce the need for

arduous manual effort. It has been shown that sentences generated via statistical ap-

proaches are less fluent, although these approaches achieve partial success (Bentivogli

et al., 2016; Koehn and Knowles, 2017; Toral and Sánchez-Cartagena, 2017). In addi-

tion, statistical approaches focus on the statistical alignment between source and target

elements, but ignore semantic and syntactic understanding of the source text. Finally,

sophisticated statistical models require multiple tunable modules to deliver decent re-

sults.

As with NLG, parsing of a natural sentence into a structured representation via NLU

was initiated using rule-based algorithms (Woods, 1973; Johnson, 1984). However, since

rule-based approaches require domain-specific knowledge and do not adapt quickly to

multiple domains, statistical approaches were suggested in order to eliminate this lack

of flexibility (Zelle and Mooney, 1996; Wong and Mooney, 2006). Nevertheless, the

weaknesses of statistical approaches in NLG apply to NLU as well.

Thanks to the algorithmic and computational breakthrough of deep neural networks

(DNNs), NLG and NLU performances have experienced significant improvements, in-

cluding in architectural design, generation quality, and inference speed (Bahdanau et al.,

2014; Cho et al., 2014; Rush et al., 2015; Xu et al., 2015; Dong and Lapata, 2016; Ling

et al., 2016; Nallapati et al., 2016; Jia and Liang, 2017; Vaswani et al., 2017). Despite

the success of DNNs, we believe that unleashing the full potential for NLU and NLG

is yet to be seen. In this thesis, we improve DNNs for a range of NLU and NLG tasks

by exploiting the “context” in which the text appears. We consider a broad notion

of context consisting of (1) short-range context, (2) long-range context, and (3) meta

context, in which the abstractness is gradually increasing. For the short-range context,

we investigate its impact on the characteristic of a source language in machine trans-

lation. We explore the history of conversations in a dialogue setting as the study of

the long-range context. We define the high-level context, such as domain, style, genre,
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etc. as meta context. Then we examine the significance of meta context in various text

understanding and classification tasks.

Short-range Context for Machine Translation In machine translation, discovering

the units of text used for generating the translation is very important. Following humans

convention, we had been working on word-level translations (Koehn, 2009; Bahdanau

et al., 2014; Cho et al., 2014; Jean et al., 2015). To reduce the memory footprint and

the computational cost, subword segmentation was devised and has become an integral

component of NMT systems (Sennrich et al., 2015; Kudo, 2018). It aims to handle the

representation of rare words by splitting them into subwords (e.g., ‘multilateralism’→

‘multilater’+‘alism’). The German word ‘carts’ can be segmented differently: (1) ‘carts’,

(2) ‘cart’ + ‘s’, (3) ‘car’ + ‘ts’, etc. Some of these are not morphologically plausible.

Existing subword algorithms consider each word separately and employ a greedy algo-

rithm to conduct the segmentation, leading to implausible splits such as ‘car’ + ‘ts’. If

we have access to the corresponding English context: “The railway system was equipped

with electrically powered carts”, we can produce subwords like ‘cart’ + ‘s’, respecting

linguistic rules.

Long-range Context for Dialogue/Search A search engine can convert a search

query to a machine-understandable structure for efficient and effective image search (Schus-

ter et al., 2015; Anderson et al., 2016). Existing image search engines usually employ

a single-turn search. However, users’ demands tend to be dynamically changing. They

usually start with the main object and gradually expand their queries with more details.

Hence, users must type the complete queries multiple times when working on the single-

turn search. Instead, a conversational search can track the changing intent of users and

update the retrieval results accordingly. In addition, most semantic parsing approaches

target an utterance-level parsing, while the data is derived from a conversation (Dong

and Lapata, 2016; Ling et al., 2016; Jia and Liang, 2017). Table 1.1 shows that omitting

the history of the conversation can lead to an improper conversion to the machine-

executable representation. In summary, in dialogues, back-and-forth interaction always

exists; thus, a long-range context-dependency is present in conversations by nature. We

state that incorporating context-aware modeling is crucial to dialogue-driven NLU tasks.

Meta Context for Text Understanding and Classification For text classification

problems, having access to more in-domain unlabeled data can significantly advance the
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Table 1.1: An error made by the utterance-level parsing. It is clear that without the
contextual information, the NLU model cannot infer the correct logical form.

dialog history
...
user : go to the next email and read it
user : read the next email
...
current utterance:
go next
logical form
reference: ( next email )
utterance-level parsing: ( unknown command )

task performance. However, such unlabeled data is usually missing. A simple solution is

that one can retrieve unlabeled examples from a large and diverse open-domain dataset

(Du et al., 2021). Nevertheless, due to the intellectual property and privacy concerns, it

is not feasible to find relevant examples for professional domains, such as medical, legal,

and financial domains. A domain is always linked to a specific style or genre, affecting the

wording and phrasing (Hu et al., 2017; Prabhumoye et al., 2018). It has shown that one

can suffer from performance degradation when using mismatched domains (Kouw and

Loog, 2018; Wilson and Cook, 2020). Moreover, Table 1.2 shows that some problems

conform to complex input schemes, e.g., sentence pairs with certain relations. Such a

characteristic also exacerbates the difficulty of retrieving in-domain examples. Therefore,

we believe the retrieval solution is suboptimal. We coin the high-level information of

downstream tasks, such as domain, genre, style, etc., meta context. Finally, we argue

that modeling the meta context can promote the generation of in-domain unlabeled

data.

The aforementioned issues have motivated this research to investigate the effectiveness of

using various context-aware approaches to boost the performance of context-dependent

NLG and NLU.

1.1 Problem Statement

In summary, we have pinpointed the necessity and importance of contextual information

when dealing with human text. We argue that the current models of natural language
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Table 1.2: Examples with complex input schemes. The first sentence pair is entailed,
where as the second pair is not entailed.

Sentence 1: A place of sorrow, after Pope John Paul II died, became a place of
celebration, as Roman Catholic faithful gathered in downtown Chicago to mark
the installation of new Pope Benedict XVI.
Sentence 2: Pope Benedict XVI is the new leader of the Roman Catholic Church.
Relation: entailment

Sentence 1: When did the third Digimon series begin?
Sentence 2: Unlike the two seasons before it and most of the seasons that followed,
Digimon Tamers takes a darker and more realistic approach to its story featuring
Digimon who do not reincarnate after their deaths and more complex character
development in the original Japanese.
Relation: not entailment

understanding and generation fail to handle contextual information adequately. This

thesis focuses on three major weaknesses related to context. These are below:

• Problem 1: Context-agnostic subword segmentation tends to produce suboptimal

subwords which do not abide by linguistic rules.

• Problem 2: Sentence-level language understanding models suffer from perfor-

mance degradation when dealing with context-dependent inputs.

• Problem 3: A particular task requires input sentences to satisfy specific at-

tributes. However, this meta context has been under-studied in the literature.

1.2 Research Objectives

The main research objective is to leverage the context to alleviate the uncertainty and

ambiguity within the text such that we can enhance the utility of deep learning models

for natural language understanding and generation tasks.

In order to achieve this overarching objective, we pose three areas of investigation,

divided across three parts of the thesis.

• Objective 1: Enhance subword segmentation in neural machine translation by

considering the source and target context
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• Objective 2: Advance context-dependent natural language understanding by

incorporating historical context into simple context-independent models

• Objective 3: Model the task-specific context and generating in-domain unlabeled

data such that the performance of the task of interest can be boosted

1.3 Contributions

Guided by the objectives, this study makes three essential contributions. We summarize

them as follows:

• Incorporating source and target context into subword segmentation:

We propose a novel mixed character-subword transformer to conduct context-

dependent subword segmentation in NMT tasks. Since there are multiple plau-

sible segmentations, we leverage a dynamic programming approach to address

the intractable marginalization. We also employ dynamic programming to find

more morphologically plausible segmentations. We experiment with the proposed

method on five language pairs. Our empirical results suggest that this context-

dependent approach can produce subwords that respect linguistic features, leading

to significant improvements in translation quality over the context-agnostic coun-

terparts. This work was published in ACL 2019.

• Context-dependent natural language understanding in dialogue systems:

Understanding human-written text and generating structured text are crucial to

dialogue systems. Since conversations involve back-and-forth communication, con-

text can significantly drive conversation. We focus on two language understanding

tasks, scene graph modification and semantic parsing. The former aims to update

a scene graph via a textual command, while the latter converts a natural sentence

into a machine-understandable representation. Since scene graph modification is

a novel task, we create three datasets for it, then we use several existing models

to perform this task. These models are not designed for this task, and all demon-

strate poor performance. Thus, we cast the original scene graph and the command

as the context. Then we devise a task-tailored model to encourage interactions

within the context. Finally, our empirical study indicates that the proposed model
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can fulfill the modification goal and outperform the baselines significantly across

the crafted datasets. This work was published in EMNLP2020 as a findings paper.

Next, we study the effect of long-range context in dialogue-oriented semantic pars-

ing. It has been shown that a context-independent parser has difficulty managing

context-dependent parsing. We integrate a context-aware module into the context-

independent parser to alleviate the parsing errors caused by the lack of context

modeling. We additionally note that the standard parser can describe false argu-

ments for the input utterance due to the memorization of frequent phrases. To

resolve this issue, we propose utilizing a copy mechanism to copy the arguments to

the appropriate target positions. Finally, our experiments indicate that the aug-

mented parser can deliver superior results over the baseline model, corroborating

the necessity of the context-aware and copy mechanisms. This work was published

in ALTA2019.

• Modeling task-specific context: To the best of our knowledge, we first propose

leveraging unlabeled synthetic data to advance self-training, knowledge distillation,

and few-shot learning. We claim that context goes beyond surrounding words. A

particular task tends to have a unique characteristic, which we name the task-

specific context. Such context has a noticeable impact on the style and wording.

In order to model such a meta context, we tailor a generic generative model trained

on generic data to a task-specific model. To meet this requirement, we fine-tune

or condition the generic model on the in-domain data. Then we can synthesize a

lot of in-domain unlabeled data. Finally, we show that using the synthetic data

can drastically boost the performance of the classification task of interest. This

work has been accepted to Transactions of the Association for Computational

Linguistics 2022.

1.4 Thesis Outline

In this section, we provide an outline of the rest of the thesis. The major contributions

of this thesis are presented in Chapters 3, 4, 5 and 6, where the first three chapters

address the uncertainty issues related to the context, as defined as the surrounding

words and sentences. Chapter 6 focuses on the alleviation of uncertainty via the task-

specific context. A summary of each chapter is as follows:



8

• Chapter 2: Background This chapter provides a thorough review of the foun-

dations described in the thesis, covering the up-to-date achievements in natural

language understanding and generation, and the development of pre-trained large

language models.

• Chapter 3: Subword Segmentation with Contextual Information In this

chapter, we first present our novel subword segmentation model for translation

tasks, which considers the contexts of both source and target sentences when

segmenting a word. Then we describe thorough experiments on five language pairs

with ten translation directions. Our empirical study demonstrates the effectiveness

of the proposed approach in comparison to word-bounded solutions in terms of the

quality of segmentation and translation.

• Chapter 4: Context-conditional Scene Graph Modification We introduce

a novel task in this chapter. This task aims to produce an updated scene graph

by conditioning an existing graph and a modification command. We first craft

three datasets for this task. Then we tailor the existing graph-generation mod-

els to examine the feasibility of updating a given scene graph from a descriptive

sentence. Next, we propose a novel cross-attention mechanism to understand the

context effectively and generate high-quality scene graphs. The proposed approach

significantly outperforms the baseline across the three datasets.

• Chapter 5: Context-dependent Semantic Parsing This chapter investigates

the effectiveness of incorporating long-range context into semantic parsing in a

dialogue system. We identify that the baseline model suffers from two major

flaws: (1) lack of context modeling and (2) argument misplacement. We integrate

context-aware and copy mechanisms into the baseline model to overcome these

drawbacks. Our comprehensive empirical study shows that the context-dependent

method outperforms its context-agnostic counterpart under different neural archi-

tectures. The copy mechanism is orthogonal to the context-aware architecture,

leading to additional boosts in performance.

• Chapter 6: Advancing Text Classification by Modeling Task-specific

Context We argue that context is also associated with a particular task. The

text style and wording are strongly affected by this high-level context. This chap-

ter reports our theoretical and empirical study of the importance of modeling the
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task-specific context. Our experiments highlight that we can guide the generic gen-

erative model to concentrate on task-specific context and synthesize high-quality

unlabeled in-domain data. We advance self-training, knowledge distillation, and

few-shot learning by incorporating the synthetic data into the learning objective.

• Chapter 7: Conclusion This chapter summarizes our findings and contributions

in this thesis and also outlines potential directions for future work.



Chapter 2

Background

This chapter will provide a thorough review of the foundations described in the thesis,

including the up-to-date achievements made in natural language understanding and

generation and a detailed description of pre-trained large language models.

We initiate this chapter with a description of the advancement of NLG in Section 2.1.

We first depict the basics of rule-based text generation systems. Then a statistical

solution will be reviewed before introducing the state-of-the-art neural models. Since

these neural approaches will lay a foundation for our models described in later chapters,

we will spotlight every detail, including architecture, training and decoding procedures,

and evaluation metrics.

Then, in Section 2.2, we shift the attention to NLU, which also has experienced an

involution from rule-based systems to neural models. We will explain them one by one

and portray the entire length of the neural solutions.

Section 2.3 will review the recent progress in pre-trained language models and stress two

dominant directions: (1) unidirectional model and (2) bidirectional model. Moreover,

we will discuss the concepts and applications of these models.

2.1 Natural Language Generation

Automating text generation is a prominent branch of NLP. The ultimate goal of NLG

is not limited to text generation, but also aims to produce human-like text. As a

10
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rudimentary trial, researchers developed a modularized system to meet this desideratum,

where a list of rules codes each module (Reiter and Dale, 2000). A typical rule-based

NLG system consists of three pieces:

• Document planner: determining the content and structure of a document;

• Microplanner: deciding words and syntactic structures for expressing the content

and structure from the document planner; and

• Surface realizer: producing actual text by using the abstract representations from

the microplanner.

Note that these components are not exclusive to rule-based NLG systems. Designing

rules requires domain knowledge, so this approach cannot massively scale to various

domains. As a remedy, a statistical method was first introduced for machine transla-

tion (Brown et al., 1993), and quickly applied to broad NLG tasks (Oh and Rudnicky,

2000; Belz and Kow, 2009; Langner and Black, 2009). This approach can model the

probability of generating a target sentence given a source sentence. The probabilistic

model is obtained automatically by learning the underlying distribution of the training

data. Since the statistical solution is data-driven, one can smoothly adapt it to any do-

main whenever the training data is available. Besides, due to the efficacy, the statistical

model had dominated NLG for decades until the advent of neural approaches.

Mathematically, the statistical model seeks to find the most probable target sequence ŷ

given a source sentence like:

ŷ = arg max
y

P (y|x) (2.1)

After applying Bayes’ rule, one can transform the conditional probability to:

ŷ = arg max
y

P (y)P (x|y)

where P (x|y) and P (y) are a transition model and a language model respectively. The

former is responsible for an alignment between source tokens (or phrases) and the most

probable target tokens (or phrases) (Brown et al., 1993; Koehn, 2009), whereas the latter

rewards a fluent and grammatically plausible sentence evaluated on n-gram probabili-

ties (Vogel et al., 2000; Koehn, 2009).
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Although the statistical approach fulfilled a triumph in academia and industry, it was

criticized for two major flaws. First, the markovian property hinders the capability of

capturing long-distance dependency. Second, statistical systems also comprise multiple

sub-modules. Since each module is tuned separately, any intermediate brittleness can

lead to an unexpected collapse.

Due to the breakthrough of deep learning in computer vision and natural language

processing (Mikolov et al., 2010; Krizhevsky et al., 2012; Mikolov et al., 2013; Simonyan

and Zisserman, 2014), neural approaches overtook their statistical counterparts at the

NLG field since 2014. The neural NLG aims to conduct text generation via a neural

network, which can be optimized end-to-end. This neural model consists of two core

parts: encoder and decoder. As depicted in Figure 2.1, the encoder reads the input

source words and projects them into a vector representation. On the other hand, the

decoder leverages this vector to emit the target sentence word by word. As both source

and target sides are comprised of a sequence of words, this model is coined as sequence-

to-sequence (seq2seq) model.

encoder

decoder

Figure 2.1: A general workflow of a sequence-to-sequence model.

In the emerging seq2seq model, a fixed representation of the source sentence is en-

trusted for a content representation. Afterward, the decoder takes this representation

as input and sequentially generates the target words (Sutskever et al., 2014). How-

ever, compressing the holistic source sentence into a content vector tends to suffer from

dramatic performance degradation, when the length of the source sentence grows (Cho

et al., 2014). Thus, an attention-based seq2seq model was proposed to compute the

context representation dynamically. These models employ recurrent neural networks
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(RNNs) (described shortly) (Elman, 1990) to model the sequential information. Despite

the success of RNN-based models in NLG tasks (Krizhevsky et al., 2012; Bahdanau

et al., 2014; Cho et al., 2014; Rush et al., 2015; Nallapati et al., 2016; Paulus et al.,

2017; See et al., 2017), etc., the recurrence significantly impedes the parallelism for

training and cause a computational bottleneck when handling longer sequences, such as

document summarization and document translation. A novel architecture named Trans-

former (Vaswani et al., 2017) was proposed to parallelize the computation by utilizing

a complete attention-based mechanism1. Due to the fast computation and state-of-the-

art generation performance, Transformer has become the de facto architecture for NLG

tasks.

The rest of this section will describe the RNN-based attentional seq2seq model (Sec-

tion 2.1.1) and the Transformer-based encoder-decoder model (Section 2.1.2), which

are the architectural backbone for our research. Finally, two decoding approaches and

popular automatic evaluation metrics will be elaborated.

2.1.1 RNN-based Seq2seq Architecture

2.1.1.1 Recurrent Neural Networks

The cornerstone of RNN-based architecture is recurrent neural networks designed to

model temporal signals. As shown in Figure 2.2, RNNs read a sequence of vector inputs

{x1,x2, ...,xn−1,xn} one by one. At each time step t, RNNs first update the hidden

representation ht from the previous state ht−1 and the input xt. Then, the output yt

can be generated from ht. The beauty of using RNNs is ht can represent the partial

sequence {x1, ...,xm}, which manages to remove the markovian constraint. Formally,

one can model a one-step vanilla RNN as:

ht = RNN(ht−1,xt)

= f(Whhht−1 + Wxhxt + bh)

where Whh, Wxh and bh are learnable parameters, which are shared across timesteps, f

is a non-linear activation function (e.g., sigmoid). h0 is often initialize with zeros. The

1Although a convolution-based model (Gehring et al., 2017) can achieve the same purpose, we do not
discuss it since we have not used it in our research.
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discrete symbol yt is emitted via:

yt ∼ softmax(Whyht + by)

where Why and by are shared and learnable parameters as well. ht is first projected into a

score vector through a linear transformation. Then the softmax function ( softmax(z) =

exp(zi)∑K
j=1 exp(zj)

) converts the score vector to a probability vector.

....

Figure 2.2: An overview of recurrent neural networks.

Theoretically, the vanilla RNNs can handle long-range dependency. Practically, due to

the gradient-based back-propagation, the vanilla RNNs experience two notorious issues:

exploding and vanishing gradients (Bengio et al., 1994). These issues are ascribed to

the multiplicative nature of gradient updates. Particularly, when we back-propagate

the gradients through time, the accumulative gradients will become either exponentially

large (exploding gradient) or exponentially small (vanishing gradient). Consequently,

the vanilla RNNs can fall short of capturing the long-range dependency.

To mitigate the aforementioned issues, a special variant of RNN, called long short-term

memory (LSTM) (Hochreiter and Schmidhuber, 1997), was devised as a replacement for

the vanilla RNNs. According to Figure 2.3, the gist of LSTM is to leverage three gating

functions to control the information flows of the input signals xt, previous hidden states

ht−1 and the current hidden states ht. The gates can be formulated like:

gi
t = σ(Whiht−1 + Wxixt + bi)

gf
t = σ(Whfht−1 + Wxixt + bf )

go
t = σ(Whoht−1 + Wxoxt + bo)

where σ is a sigmoid function, and {W , b} are shared across timesteps. In addition to
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the hidden state ht, LSTM introduces a cell state ct to store or remove the temporal

information as follows:

c̃t = tanh(Whcht−1 + Wxcxt + bc)

c = gf
t ⊙ ct1 + gi

t ⊙ c̃t

ht = go
t ⊙ c

where ⊙ denotes element-wise multiplication. With the aid of LSTM, one can train

robust and stable RNNs to model long-range dependency. Because of the superior

performance (Bahdanau et al., 2014), LSTM has become the default setting for RNNs.

Figure 2.3: A schematic illustration of LSTM cell (Image source: Olah (2015)).

2.1.1.2 Neural Text Generation with RNNs

Bear the foundation in mind, we can delineate the RNN-based seq2seq model. Mathe-

matically, a seq2seq architecture aims to model a conditional probability P (y|x), where

x = {x1, x2, ..., xm−1, xm} is the source sequence and y = {y1, y2, ..., yn−1, yn} is the

target sequence. Note that x and y can be either a word or a subword (described in

Section 2.1.5). To allow the model to serve sequences with arbitrary lengths, <s> and

</s> are added at the beginning and end of each sentence to signal the start and end

of a sentence respectively. The conditional probability P (y|x) can be decomposed as:

Pθ(y | x) =
∏|y|

t=1
Pθ(yt | y<t,x) (2.2)

where θ indicates the learnable parameters of the seq2seq model, yt is the current target

tokens and y<t is the generated tokens so far. Figure 2.4 provides a schematic illustration
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of RNN-based attentional seq2seq model. We will explain the salient components

below.

....

attention

Figure 2.4: A schematic illustration of RNN-based attentional seq2seq model when
generating yt.

Word Embeddings Neural approaches can only manipulate a real-valued represen-

tation. Hence, one must convert the discrete tokens into vector representations via

word embeddings to work with discrete symbols. Conventionally, we maintain two em-

bedding tables, one for the source sequences E
H×|VS |
S and one for the target sequences

E
H×|VT |
T . H is a pre-defined value, and |VS | and |VT | are source and target vocabulary

sizes respectively. ES and ET are learnable as well.

Encoder A bidirectional RNN is used to construct a “random access memory” of

source hidden states as the context-aware representations of the source tokens. Specifi-

cally, a source sentence is traversed by one left-to-right RNN and one right-to-left RNN.

Then, at each time step j, the forward and backward hidden states can be computed as:

−→
h j =

−−−→
RNN(ES(xj),

−→
h j−1),

←−
h j =

←−−−
RNN(ES(xj),

←−
h j−1)
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where ES(xj) is the embedding of xj . Afterwards, the contextual representation of the

source token xj , referred to as hj , can be obtained by a concatenation of
−→
h j and

←−
h j ,

i.e., hj = [
−→
h j :

←−
h j ].

Attentional Decoder The decoder is a uni-directional RNN and sequentially gener-

ates the target tokens in a left-to-right manner. Moreover, it is paired with an attention

mechanism to update its internal states at each time step t, which can be formulated as:

st = RNN(ET (yt), st−1, ct) (2.3)

where ET (yt) is the embedding of yt, st−1 is the previous hidden states and ct denotes

a context vector computed as a weighted sum of source memories:

ct =

m∑
j=1

αjthj (2.4)

The weight αjt of each hj can be calculated by:

αjt =
exp(score(hj , st−1))∑m
k=1 exp(score(hk, st−1))

Here, score is referred to as a content-based function, and it can be one of the following

three formats (Luong et al., 2015):

score(h, s) =


hTs

hTWs

vT tanh(Wah + Wbs)

The attention mechanism is crucial to seq2seq model, enabling the decoder to access

the source information at each step selectively. This selection aims to establish a soft

alignment between source and target tokens. A higher αjt suggests the source token xj

strongly correlates to the target token yt.
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Finally, one can generate the target token yt by conditioning on all previously generated

tokens y<t and source tokens x via:

ut = tanh(st + Wcuct + WnuET (yt−1))

Pθ(yt | y<t,x) = softmax(Wyut + by)

yt ∼ Pθ(yt | y<t,x)

where {W , b} are also learnable parameters of the seq2seq model. Now, we have

formulated Equation 2.2 in a RNN-based seq2seq model.

2.1.2 Transformer-based Seq2seq Architecture

Since RNNs were born to model temporal dynamics, RNN-based seq2seq models have

dominated NLG tasks for a while (Bahdanau et al., 2014; Rush et al., 2015; Xu et al.,

2015; Li and Jurafsky, 2016b). However, the recurrence also brings two limitations to

seq2seq models. The first limitation is its recurrent property. Particularly, one has to

process each token sequentially, which causes a computational bottle for long sequences,

especially for the encoder, where all tokens are given and accessible. Second, as shown

in Section 2.1.1.1, the history information is stored in a recurrent unit, which is subject

to an update. In other words, once the memory is removed (partially or thoroughly),

one cannot resume it. Thus, RNNs, including LSTM, have difficulty maintaining long-

distance relations. To remedy these shortcomings, Vaswani et al. (2017) proposed to

replace recurrent units with self-attention and feedforward networks for the seq2seq

model, which is termed as Transformer.

The model architecture is illustrated in Figure 2.5, and we will dissect the core compo-

nents in the rest of this subsection.

Word Embeddings Like RNNs-based seq2seq models, Transformer projects the

discrete tokens into real-valued representations via the source (Ew
S ) and the target em-

beddings (Ew
T ). Moreover, since Transformer dismisses the recurrence mechanism for

the sake of parallelism, the ordering information is discarded, which treats a sentence as

a bag of words. In order to compensate for the lack of ordering information, a positional
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Figure 2.5: A schematic illustration of Transformer model.

encoding is incorporated into the Transformer. The source and target positional encod-

ing denote Ep
S and Ep

T respectively. Given the ith source token xi and the jth target

token, their embeddings can be formulated as:

ES(xi) = Ew
S (xi) + Ep

S(i) (2.5)

ET (yj) = Ew
T (yj) + Ep

T (j) (2.6)
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Regarding the positional encodings, Vaswani et al. (2017) proposed to use a static sinu-

soidal encoding. For a token at the position k, its positional encodings can be computed

based on sine and cosine functions of different frequencies:

Ep(k) =



...

PE(k, 2i)

PE(k, 2i + 1)
...


PE(k, 2i) = sin

( k

100002i/H

)
PE(k, 2i + 1) = cos

( k

100002i/H

)
where i ∈ [0, ⌊H−1

2 ⌋] indicates the ith dimension, H is the pre-defined embedding size,

and the wavelengths form a geometric progression from 2π to 10000 ·2π. One advantage

of using the sinusoidal positional encodings is since the sinusoid has a frequency, it may

manage to extrapolate to sequence lengths longer than the ones encountered during

training. Alternatively, Gehring et al. (2017) leveraged learnable position encodings to

inject the positional information. These encodings are randomly initialized, and can be

learnt via the training process.

Encoder The encoder is a stack of N identical blocks, with each consisting of two sub-

layers. The base of the first sub-layer is a multi-head self-attention module (denoted by

MultiHeadself ), whereas the primary module of the second sub-layer is a feed-forward

network (denoted by FFN). These two sub-layers will be described shortly. A residual

connection (He et al., 2016) is inserted around the two sub-layers, followed by a layer

normalization (Ba et al., 2016). Therefore, each encoder block can be formulated as:

X̂n = LayerNorm(Xn−1 + MultiHeadself (Xn−1)) (2.7)

Xn = LayerNorm(X̂n + FFN(X̂n)) (2.8)

where X0 is the output of the encoder embedding layer and n ∈ [1, N ]

Decoder The decoder also comprises a stack of N identical blocks. In addition to

the two sub-layers in the encoder, each decoder block inserts another sub-layer between
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MultiHeadself and FFN. The sub-layer conducts a multi-head inter-attention (denoted

by MultiHeadcross) between the output of the encoder and the current decoder block.

Note that the self-attention sub-layers in decoder blocks employ a triangular mask to

prevent positions from attending to subsequent positions, unseen at the inference stage.

Hence, the computation of nth encoder block can be conducted via:

Ŷ n = LayerNorm(Y n−1 + MultiHeadself (Y n−1)) (2.9)

Ỹ n = LayerNorm(Ŷ n + MultiHeadcross(X
N , Ŷ n)) (2.10)

Y n = LayerNorm(Ỹ n + FFN(Ỹ n)) (2.11)

where Y 0 is the output of the decoder embedding layer, XN is the final output from

the encoder.

Regarding the conditional probability of the next target token yt, it can be calculated

via:

Pθ(yt | y<t,x) = softmax(WyY
N
t + by)

where Y N
t is the final output from the decoder at the timestep t.

MatMul

Scale

Mask (opt.)

Softmax

MatMul

Figure 2.6: Scaled dot-production attention.

Multi-head Attention The core of Transformer is an attention mechanism. Briefly,

the attention mechanism aims to represent a vector via a list of vectors. Under the

scope of Transformer, an attention module takes queries (Q), keys (K), and values (V )

as inputs. Then, the corresponding outputs can be produced, where each of them is a
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weighted sum of the values. The weight assigned to each value is a scaled dot product

between a query and a key as shown in Figure 2.6. One can formulate this operation as:

ATTENTION(Q,K,V ) = softmax(
QKT

√
dk

)V (2.12)

where Q, K and V are matrices, and
√
dk is the second dimension of K. Since the dot-

product attention is a matrix multiplication by nature, which has been highly optimized

by the modern GPU architecture, it is much faster and more space-efficient than the

additive attention.

In order to encourage the model to jointly attend to information from the distinctive

representation subspaces at different positions, instead of using a single attention func-

tion, Transformer employs a novel multi-head attention, where the inputs are linearly

projected into K subspaces. In each of these subspaces of the inputs, the attention oper-

ation, i.e., Equation 2.12, will be executed in parallel. Eventually, one can concatenate

the K intermediate outputs and project them into the final values as:

MultiHead(Q,K,V ) = Concat(head1, ...,headH)WO

where headi = ATTENTION(QWQ
i ,KWK

i ,V W V
i )

where WQ
i ∈ RH×dk , WK

i ∈ RH×dk , W V
i ∈ RH×dk and WO ∈ RH×H are projection

matrices. Note that dk = H
K .

As shown in Equation 2.8, 2.10 and 2.11, there exist three places of using multi-head

attention within Transformer:

• Multi-head Self-attention in Encoder This self-attention works on the output

of the previous layer in the encoder, denoted by MultiHeadself (Xn−1). Here,

the keys, values and queries are sourced from the same place.

MultiHeadself (Xn−1) = MultiHead(Xn−1,Xn−1,Xn−1)

• Multi-head Self-attention in Decoder Self-attention is applied to the output

of the previous layer in the decoder, denoted by MultiHeadself (Y n−1) as well.

Since we can only access the generated tokens during the inference time, the self-

attention forces each position to attend to its preceding positions and itself by
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masking out the future tokens.

MultiHeadself (Y n−1) = MultiHead(Y n−1,Y n−1,Y n−1)

• Encoder-decoder Multi-head Attention This attention mirrors the attention

mechanism in the RNN-based seq2seq. Thus, the keys and values come from the

output of the last layer of the encoder, whereas the output of the previous layer

of the decoder is treated as the queries.

Feed-Forward Network (FFN) Both encoder and decoder layers append a fully

connected feed-forward network (FFN) to the attentive sub-layer. This is formulated as

two linear transformations with a ReLU activation in between:

FFN(X) = ReLU(XWff1 + bff1)Wff2 + bff2

where {W , b} are parameters exclusive to each layer, and ReLU(x) = max(0, x)

2.1.3 Training and Decoding

Training One can use backpropagation to update all parameters of a seq2seq model

(Rumelhart et al., 1985; Lecun, 1988), where the objective function is a negative log-

likelihood (conditional) over the training set D = {(xi,yi)}|D|
i . The conditional log-

likelihood is formulated as the sum of the log-probability of predicting a correct symbol,

conditioning the prefix y<t and source inputs x. Thus, one can seek the optimum set of

parameters θ∗ as follows:

θ∗ = arg min
θ

∑
(x,y)∈D

−logPθ(y | x)

= arg min
θ

∑
(x,y)∈D

|y|∑
t=1

−logPθ(yt | y<t,x)

In order to find θ∗, one usually employs the gradient descent (GD) algorithm, especially

for deep learning models (Goodfellow et al., 2016). GD aims to update the parameters in

the opposite direction of the gradient of the objective function w.r.t. to the parameters.
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Hence, for each update i, one can update the parameters by:

θi = θi − η∇θJ(θi) (2.13)

where J(θ) =∆
∑

(x,y)∈D −logPθ(y|x) is the objective function, and η is the learning rate

determining the size of the steps we take to reach a (local) minimum. Since vanilla

gradient descent or batch gradient descent (BGD) (c.f., Equation 2.13) has to compute

the gradient of the entire training set before making one update, it is prolonged and

intractable for the large dataset. On the contrary, stochastic gradient descent (SGD)

allows a parameter update for each training example. However, since SGD relies on

the gradient of a single example, it can introduce a high variance and cause a severe

fluctuation (Ruder, 2016). As a middle ground, the mini-batch gradient descent manages

to update the parameters based on the gradient of a small batch of training examples.

This variant can accelerate the training procedure and reduce the variance, leading to

a stable convergence; thus it has been used as the default setting for numerous deep

learning models and also called SGD because of the stochasticity (Ruder, 2016).

Notwithstanding its popularity, the mini-batch gradient descent faces some challenges.

First, the choice of the learning rate is burdensome. Small learning rates can cause

painfully slow convergence, whereas a large learning rate can cause an overshoot on the

minimum or even divergence. Second, SGD uses a fixed learning rate throughout the

training process. However, due to the non-convex surfaces, the fixed learning rate cannot

handle the complicated dynamics of DNNs. For instance, we need a large η to find the

vicinity of local optima quickly at the early stage. Nevertheless, a smaller η should be

employed to avoid overshooting the local optima.

To address the these challenges, many adaptive approaches have been proposed, such as

Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), Adam (Kingma and Ba, 2014),

to name a few. Adam quickly gained credence among these approaches due to its

effectiveness in training DNNs.

Decoding Once an NLG system is well-trained, we can utilize it to process unseen

source sentences. We summarize three popular decoding strategies below.

According to Equation 2.1, the NLG targets the maximum conditional probability. A

simple solution is to use greedy search. Similar to other greedy algorithms, one can
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simply select the token with the highest probability from Pθ(yt|y<t,x) at each time

step, and add it into the final sequence. Obviously greedy search is not guaranteed to

find the generation with the highest probability. This failure can be seen from Figure 2.7,

where the best sequence is “<s> a b </s> ”, while greedy search gives us a sub-optimal

solution: “<s> b b </s> ”.

<s>

a

b

</s>

0.35

0.4

0.25


a

b

</s>

0.15

0.8

0.05

a

b

</s>

0.4
0.5

0.1

</s>

</s>

</s>

</s>

1.0

1.0

1.0

1.0

Figure 2.7: An example where greedy search fails (Neubig, 2017).

<s>

a

b

</s>

-1.05

-0.92

-1.39

a

b

</s>

-1.90

-0.22

-3.0

a

b

</s>

-0.92

-0.69

-2.3

</s>

</s>

0.0

-1.05

-0.92

-1.39

-2.95

-1.27

-4.05

-1.27

-1.84

-1.61

-3.22

0.0
-1.61

Figure 2.8: An example of beam search with b=3 (Neubig, 2017).

Of course, we can use exhaustive search to find the best solution, but the magnitude of

the vocabulary of the decoder makes this search intractable. Thus, we resort to beam

search, an optimized best-first search. Unlike greedy search, beam search considers b

best hypotheses at each time step, where b is the width of the beam. As shown in
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Figure 2.8, we expand b = 3 candidates, with each candidate selecting the top b tokens

out of size of |V|, resulting in b ∗ b active hypotheses. The score of a hypothesis at time

step t is formulated as:

s(yi,j
t ,x) = s(yi

t−1,x) + log Pθ(yjt | y<t,x) (2.14)

where i, j ∈ [1, b]. Then we prune them into the top b candidates according the scores.

s(yi
t,x) = max

j
s(yi,j

t ,x) for each i ∈ [1, b]

We denote the b candidates as Yt = [y1
t , ...,y

b
t ]. It is worth noting that we usually use

the log-likelihood to score the candidates, because it is numerically stable on computers.

If a special token 〈eos〉 is generated, we will add this candidate to a candidate pool,

meanwhile removing it from the search tree. The expansion and pruning are repeated

until we collect enough candidates in the pool. Finally, we return the candidate with

the highest log-likelihood as the best generation.

The naive beam search will favor a short sentence because the log-likelihood will decrease

every time a new word is added to the candidate. Even though they might be better

than their shorter competitors, long sentences are at a disadvantage when the re-scoring

criterion is based on the total log-likelihood. Consequently, as the increase of beam

size, beam search is more likely to have a significant length bias towards the shorter

candidates and demonstrate performance degradation (Koehn and Knowles, 2017).

There are several different methods fixing this length bias problem. A simple but effective

approach is to normalize the log likelihood by the length of the candidate:

s(y,x) = logPθ(y | x)/|y| (2.15)

Then, we can use this re-scoring function s(y,x) to select the target sentence among a

pool of candidates.

In addition to the best-first solutions, the community has studied sampling genera-

tion, where the next token yt is sampled from the conditional probability Pθ(·|y<t,x).

Such randomness can introduce diversity into the generated sentences, compared to the

best-first counterparts. One use case is dialogue response, which requires the system
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I ate the pizza while it was still 

prefix hot
warm

cooling
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heating
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She said she never
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Figure 2.9: Two examples of using top-K sampling when generating the next token.
Candidate tokens are in red.
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?

0.8
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Figure 2.10: Two examples of using top-P sampling when generating the next token.
Candidate tokens are in red.

to produce various replies to a particular user input to prevent monotony (Li et al.,

2016a). Furthermore, for any source sentence, usually there exist multiple valid tar-

gets (Vijayakumar et al., 2016; He et al., 2018; Shen et al., 2019). However, a pure

sampling approach can cause incoherence and degeneration (Radford et al., 2019). To
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overcome this issue, two heuristic approaches have been introduced. The first one is top-

K sampling, which samples the next word from the top-K most probable choices (Fan

et al., 2018; Radford et al., 2019). Orthogonal to the top-K approach, one can sample a

token from the top-P portion of the probability mass. According to Figure 2.9 and 2.10,

the number of candidate tokens is fixed for the top-K sampling, whereas the top-P tech-

nique demonstrates certain elasticity when selecting words. Empirical studies indicate

that pruning-based sampling strategies can emit high-quality and diverse texts (Radford

et al., 2015; Holtzman et al., 2019).

2.1.4 Evaluation

After generating target sentences from given inputs, we should assess our NLG perfor-

mance. Hiring professional evaluators to examine the outputs is the best choice, as they

can give a comprehensive judgment. However, this labor-intensive service is not feasible.

Since the source inputs are paired with reference generation, we can compare a system

generation against the reference one. The closer they are, the better system generation

is (Papineni et al., 2002).

BLEU 2 was designed by Papineni et al. (2002) for the evaluation of MT systems. The

cornerstone of this metric is to compute the ratio of common n-grams between reference

translations and system ones. For example, if we have:

Example 1

Candidate: I am a student

Reference: I am a CS professor

In this example, the unigram BLEU is 3/4, while the bigram BLEU is 2/3. However, this

precision-based property can lead to irrationally high scores, if we observe the following

example:

Example 2

Candidate: the the the the the the the

Reference: the cat is on the mat

2BiLingual Evaluation Understudy
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Now the unigram BLEU is 7/7, which is egregious. Therefore, BLEU scores should be

calculated as:

pn =

∑
n-gram∈{system translation ∩ reference translation}Countclip(n-gram)∑

n-gram′∈{system translation}Count(n-gram′)

where Countclip = min(count,Max Ref Count). In other words, if the number of

a n-gram exceeds its occurrence in a reference translation, it will be clipped to the

occurrence. Hence, in example 2, the correct unigram BLEU is 2/7.

More common unigrams between a system translation and reference one indicate a higher

adequacy, while longer n-gram matches account for fluency. A good translation should

take both adequacy and fluency into consideration. Furthermore, the length between

system translation and reference one should also be matched. Since the clipped n-gram

precision measure already penalizes a longer system translation, a multiplicative brevity

penalty factor is introduced to punish a shorter system translation. Finally, a BLEU

score between a system translation and the reference one is computed as:

BLEU = BP · exp
( N∑

n=1

wnlog pn

)

where wn is the weight for a clipped n-gram precision and usually is uniform. BP is the

brevity penalty factor:

BP =

 1 c > r

e1−r/c otherwise

where c and r are the lengths of the system translation and the reference one respectively.

Although various evaluation metrics have been proposed in the literature, we only men-

tion the BLEU, as we only use it for this thesis.

2.1.5 Subword Segmentation

Neural networks have revolutionized machine translation (Bahdanau et al., 2014; Cho

et al., 2014; Sutskever et al., 2014). Early neural machine translation (NMT) systems

used words as the atomic element of sentences. They used vocabularies with tens of thou-

sands words, resulting in prohibitive training and inference complexity. While learning

can be sped up using sampling techniques (Jean et al., 2015), word based NMT models
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have a difficult time handling rare words, especially in morphologically rich languages

such as Romanian, Estonian, and Finnish. The size of the word vocabulary should

increase dramatically to capture the compositionality of morphemes in such languages.

More recently, many NMT models have been developed based on characters and a com-

bination of characters and words (Ling et al., 2015; Luong and Manning, 2016; Lee

et al., 2017; Vylomova et al., 2017; Cherry et al., 2018). Fully character based mod-

els (Lee et al., 2017; Cherry et al., 2018) demonstrate a significant improvement over

word based models on morphologically rich languages. Nevertheless, owing to the lack

of morphological information, deeper models are often required to obtain a good trans-

lation quality. Moreover, elongated sequences brought by a character representation

drastically increases the inference latency.

In order to maintain a good balance between the vocabulary size and decoding speed,

subword units are introduced in NMT (Sennrich et al., 2015; Wu et al., 2016). These

segmentation approaches are data-driven and unsupervised. Therefore, with a negligible

pre-processing overhead, subword models can be applied to any NLP task (Vaswani et al.,

2017; Devlin et al., 2019). Meanwhile, since subword vocabularies are generated based

on word frequencies, only the rare words are split into subword units and common words

remain intact. For instance, “unrelated” is segmented as “un” and “related”.

u-n-r-e-l-a-t-e-d
u-n re-l-a-t-e-d
u-n re-l-at-e-d
u-n re-l-at-ed
un re-l-at-ed
un re-l-ated
un rel-ated
un-related
unrelated
(a) BPE segmentation.

P1(unrelated)=P(un)*P(related)

P2(unrelated)=P(un)*P(relat) *P(ed)
P3(unrelated)=P(unrelat)*P(ed)
P4(unrelated)=P(unrel)*P(ated)

.........



(un, related) = argmax {Pi}

(b) Unigram language model segmentation.

Figure 2.11: Two subword segmentation algorithms on ‘unrelated”. Hyphens indicate
possible merges according the merge table.

Byte Pair Encoding (BPE) (Sennrich et al., 2015) starts from individual characters then

utilizes a compression algorithm to merge the most frequent units until reaching the
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predefined limit, while wordpiece (Schuster and Nakajima, 2012) and unigram language

model (Kudo, 2018) apply language model to characters to form their subwords. Fig-

ure 2.11 illustrates the segmentation procedures of BPE and unigram language model.

These approaches can dramatically reduce vocabulary size to moderate volumes such as

32K or 16K. Meanwhile, there are nearly no OOVs because of subword segmentation.

Since the unigram model can segment a word differently via the probabilistic model,

it can regularize segmentation errors introduced by a deterministic segmentation, such

as BPE. Provilkov et al. (2019) proposed applying dropout to BPE segmentation. Fig-

ure 2.12 depicts that at each merge iteration, one can randomly disallow a small fraction

of mergeable pairs. Now, BPE can produce multiple different segmentations to fulfill

the regularization effect.

u-n_r-e-l-a_t-e_d
u-n re-l_a-t-e_d
u-n re_l-at-e_d
un re-l-at-e-d
un re_l-at-ed
un re-lat-ed
un relat_ed

u-n-r-e-l-a_t-e-d

u_n re_l-a-t-e-d
u_n re-l-at-e-d
u_n re-l-ate_d

u_n rel-ate_d

u_n relate_d


u-n_r_e_l-a-t-e-d
u-n-r_e-l-at-e-d

u-n-r_e-l_at_ed

un-r-e-l-at-ed

un re-l_at-ed

un re-l-ated

un rel_ated

Figure 2.12: Segmentation process of the word ‘unrelated’ using BPE dropout. Hy-
phens indicate possible merges according the merge table. Merges performed at each

iteration are shown in red, dropped underline in green.

2.2 Natural Language Understanding

Due to the breakthrough of deep learning, numerous and various tasks within the field

of NLP have made impressive achievements (Vaswani et al., 2017; Devlin et al., 2018;

Edunov et al., 2018). However, most of these achievements are assessed by automatic

metrics, which are relatively superficial and brittle, and can be easily tricked (Jia and

Liang, 2017; Paulus et al., 2017; Läubli et al., 2018). Hence, understanding the under-

lying meaning of natural language sentences is crucial when deploying NLP systems to

serve human users. NLU aims to translate an unstructured human-written text into a

structured machine-understandable representation, which enables the recognition of the

intents of user inputs.
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The development of NLU has experienced three stages. First, primitive NLU systems

employed rule-based techniques to perform the conversion from a sentence to a machine-

understandable form (Woods, 1973; Johnson, 1984). Thus, these systems are inevitable

to be brittle and laborious. To reduce the engagement of human activities, researchers

shifted the attention to statistical techniques. A seminal work from Zelle and Mooney

(1996) proposed to automatically transform a sentence to a database query via statistical

learning. This line of work utilized a deterministic shift reduce parser to produce the

structured form from the natural sentence. One advantage of this approach is that

as the generated query must be correctly executed, the evaluation is straightforward.

The data-driven method can be applied to other datasets and even multiple languages

without the demand for domain knowledge. Mathematically, one can view the conversion

task as a conditional probability problem, i.e., Pθ(y|x), where x is the human sentence,

and y is the corresponding structural form. Inspired by this, Wong and Mooney (2006)

performed semantic parsing, a type of NLU problem, via the statistical NLG technique.

With the advancement of the deep learning models, Pθ(y|x) has been gradually modeled

by the seq2seq framework because of its outstanding performance.

The rest of this section will describe two popular directions in NLU: (1) semantic parsing

and (2) scene graph parsing.

2.2.1 Semantic Parsing

Semantic parsing is a task that aims to convert human utterances to machine-executable

representations, such as logical forms, programming snippets, SQL queries, etc. (see Ta-

ble 2.1). Due to its significance in NLU, semantic parsing has gained dramatic attention.

Early data-driven approaches utilized high-quality lexicons and hand-crafted feature en-

gineering to parse the human sentences. Although these methods achieved impressive

performance over some datasets, using hand-crafted features impedes the further devel-

opment of semantic parsing and knowledge transferring across different tasks.

Motivated by the triumph of seq2seq models in different generation tasks (Bahdanau

et al., 2014; Rush et al., 2015; Vinyals et al., 2015; Xu et al., 2015), researchers have

investigated applying the end-to-end framework to semantic parsing (Dong and Lapata,

2016; Ling et al., 2016; Jia and Liang, 2017). Since this framework lessens the need for

high-quality lexicons, fabricated templates, and hand-engineered features, it has gained
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Table 2.1: Examples of semantic parsing.

Example 1:

English: which state has the most rivers running through it?
logical form: (argmax $0 (state:t $0) (count $1 (and (river:t $1) (loc:t $1 $0))))

Example 2:

English: if length of bits is lesser than integer 3 or second element of bits is not equal
to string ’as’
code snippets: if len(bits) <3 or bits[1] != ’as’:

Example 3:

English: What record company did conductor Mikhail Snitko record for after 1996?
code snippets: : SELECT Record Company WHERE (Year of Recording >1996)
AND (Conductor = Mikhail Snitko)

credence among the community. We will present the seq2seq model and its variant for

semantic parsing below.

Seq2seq Architecture As both texts x and machine-interpretable meaning represen-

tations y consist of a sequence of tokens, one can model any semantic parsing problem via

a standard seq2seq model whenever the annotated data D = {(xi,yi)}|D|
i is available.

The training and decoding suites are identical to NLG.

Seq2Tree Architecture As seq2seq models were initially proposed to address the

text generation tasks, they excel at producing unstructured outputs without a rigid

hierarchy. However, as demonstrated in Table 2.1, machine-executable representations

are hierarchically structured. Memorizing various pieces of auxiliary information (e.g.,

parenthesis pairs) imposes a burden on the long-range dependency of the seq2seq model.

Therefore, Dong and Lapata (2016) proposed a sequence-to-tree (seq2tree) model

which is specific for the compositional nature of meaning representations.

According to Figure 2.13, given a logical form “lambda $0 e (and (>(departure time

$0) 1600:ti) (from $0 dallas:ci))”, the tokens inside pairs of brackets are replaced with

a special token <n>, denoted as a non-terminal token. Then one can organize the

transformed logical form in a tree structure, where each level is an expansion of <n>.

At each level, a special token </s> signifies the termination of this level. The seq2tree

model leverages a tree-like decoder to model the hierarchical representation.
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Figure 2.13: The schematic illustration of the hierarchical decoder of the seq2tree
model (Dong and Lapata, 2016).

Figure 2.14: A seq2tree decoding example for the logical form “A B (C)” (Dong
and Lapata, 2016).

During the inference time, a logical form can be generated in a top-down manner as well

(c.f., Figure 2.14). Specifically, seq2tree produces a logical form sequentially, until

encountering </s>. Whenever <n> is produced, a sub-tree generation will be triggered

after the previous sequence generation terminates. This recursion will suspend when

no <n> appears. Special tokens <s> and <(> indicate the beginning of a sequence

and a non-terminal sequence respectively, while </s> represents the end of any type of

sequence. The sequence is decoded during the sub-tree generation by conditioning the

non-terminal hidden vector. In addition, to encourage connection between a parental

node and its sub-tree, the input of the sub-tree generation will be concatenated with the

non-terminal hidden vector before being fed into the decoder.
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Formally, given x, one can express the probability of y = ”AB (C)” as the product of

two sequences (c.f., Figure 2.14):

p(y|x) = p(y1:4|x)p(y5:6|y≤3,x) (2.16)

Since the generated structural outputs must be executable, strict string matching is

utilized to evaluate the model performance.

2.2.2 Scene Graph Parsing

The computer vision community originally introduced scene graph representation to

represent the rich, structured knowledge within an image via graphs. As shown in Fig-

ure 2.15, a node in a scene graph can represent either an object, an attribute for an

object, or a relationship between two objects. Because of the effectiveness in knowl-

edge encoding and expression, this structured representation has been successfully used

for various visual tasks (Chang et al., 2014; Johnson et al., 2015; Teney et al., 2017).

However, the costs of annotating scene graphs are prohibitive. A list of works (Dai

et al., 2017; Xu et al., 2017) proposes automatically generating scene graphs from im-

ages. Given the success of using scene graphs in image retrieval, there has been an

attempt to parse an image description into a scene graph to facilitate precise image

matching (Schuster et al., 2015; Anderson et al., 2016). This thesis targets natural

language understanding, so this section shifts attention to the latter.

Figure 2.15: An example of scene graph representation for an image (Johnson et al.,
2015).

The task of transforming a descriptive sentence into a scene graph is defined as follows.

Given a set of object classes C, a set of relation types R, a set of attribute types A, and
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a sentence s, we want to parse s to a scene graph:

G =< O,E >

where O = {o1, ..., on} ⊆ C is a set of objects mentioned in s and E ⊆ O×R×O is a set

of relations between two objects in the graph. Each oi is a tuple (ci, Ai), where ci ∈ C is

the class of oi, and Ai ⊆ A are the associated attributes. For example, given a sentence

s =“A young boy in a black shirt”, we can extract two objects o1 = (boy, {young}), and

o2 = (shirt, {black}), and a relation e1 = (o1, in, o2). A visualization of this conversion

is depicted in Figure 2.16.

boy

young

shirt

black

in

A young boy in a black shirt

Figure 2.16: An example of parsing a sentence into a scene graph.

Due to the lack of annotated data, most works employ rule-based avenues to address the

parsing problem (Schuster et al., 2015; Anderson et al., 2016). Until very recently, Wang

et al. (2018) creatively developed annotated data by aligning scene graphs from Visual

Genome (Krishna et al., 2017) and MS COCO (Lin et al., 2014) to text descriptions.

Building upon this labeled data, Andrews et al. (2019) devices an end-to-end parsing

system surpassing the rule-based models by a large margin.

The gist of this end-to-end model is an Attention Graph mechanism, which is designed

to predict the node type of a token and the relation between two tokens. Given a token,

there are six node types:

• SUBJ The node label for an object in O; It is linked to a virtual node, denoted

as root ;
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• PRED The node label for a relationship R; The arc of this node points to a SUBJ

node;

• OBJT The node label for an object in O. It is connected to the relevant PRED

node;

• ATTR The node label for an attribute in A. The arc of this node points to either

SUBJ or OBJT node;

• same This label is used for phrasal nodes. For instance, “in front of” is a phrase

indicating a relation between two object nodes. Thus, same means that the token

shares the same node type with the preceding node;

• none There is no node type attached to this token.

GPT

....

....

....

....

Figure 2.17: An example of predicting the node and relations from a sentence input.
zi is the prediction of the parental node, where as yi is the predicted node type.

Bear the definitions in mind. We can formulate the parsing model as a conditional

probability:

Pθ(y, z|x) = Pθ(y|x) ∗ Pθ(z|x)
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where x is a sequence of input tokens, y is the corresponding node types, and z indicates

the assigned parental tokens. As shown in Figure 2.17, The sentence x = {x1, ..., xn} can

be fed into GPT model (will be discussed in Section 2.3.1) to obtain the unidirectional

contextualized representation {hL
1 , ...,h

L
n}. Then, a self-attention module is employed

to produce the bidirectional contextualized representation {hT
1 , ...,h

T
n}. One can emit

the probabilities of node types and parental tokens from the outputs of the self-attention

layer. Finally, the model can be trained via the standard cross-entropy losses on y and

z. We can predict the node type and the parental node for each token at the inference

stage.

2.3 Pre-trained Language Models

Pre-training a model on large-scaled data (e.g., ImageNet (Russakovsky et al., 2015))

has been considered as the groundbreaking milestone for this wave of advancement

in computer vision (CV). Nowadays, using the pre-trained model as a backbone has

become the default setting for downstream CV tasks. Inspired by such achievements,

the NLP community has been trying to mirror the triumph. First, it has been shown

that the convergence speed for NLP models can be accelerated, if we initialize the

word embeddings with pre-trained ones, such as Word2Vec (Mikolov et al., 2013) and

GloVe (Pennington et al., 2014). As highlighted in Section 1, languages are context-

dependent by nature. However, the pre-trained word embeddings do not consider this

salient information. Moreover, except the word embedding layer, other components are

still randomly initialized. To encourage the modeling of the contextual message, there

are some attempts to use a pre-trained RNN model as the backbone for various text

classification tasks (Dai and Le, 2015; Howard and Ruder, 2018; Peters et al., 2018).

These models reveal the potential of pre-trained models and lay a foundation for the

prosperity of large pre-trained language models (LLMs). Eventually, the revolution on

the LLMs for NLP tasks happened in 2018. Devlin et al. (2018) and Radford et al. (2018)

independently proposed pre-training a large Transformer model on massive text corpora

in a self-supervised manner. Their experiments showed that fine-tuning the LLMs on

downstream NLP tasks could drastically surpass the previous state-of-the-art (SOTA)

systems. Thus, since then, the pretraining-and-finetuning paradigm has monopolized

the learning scheme in NLP.
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The rest of this section will explain two prototypical LLMs, i.e., GPT (Radford et al.,

2018) and BERT (Devlin et al., 2018).

2.3.1 Unidirectional Pre-trained Language Models

Language models (LMs) have a long history and play a crucial role in the NLP field. The

primary goal of LMs is to appraise the naturalness of a sentence y = {y1, ..., yn}, i.e.,

whether a sentence looks like a natural sentence used by humans. In order to achieve

this goal, we can estimate the probability of y. The estimation can be formulated as:

Pθ(y) =
∏|y|

t=1
Pθ(yt | y<t) (2.17)

The higher Pθ(y) suggests a more plausible sentence. Since Pθ(y) is the generic case of

Pθ(y|x), we can model it via RNNs or Transformer, but without the encoder. Similarly,

we can optimize θ on a large corpus (like Penn TreeBank (Marcus et al., 1994)) via

minimizing the negative log-likelihood as described in Section 2.1.3. Once the LMs are

well-trained, we can score a sentence y by feeding it into the LMs. In convention, we

use perplexity (PPL) for the scoring, which is calculated as:

PPL = T

√
1∏T

t=1 Pθ(yt | y<t)
(2.18)

where T = |y|. Since these LMs comprehend the text from left to right only, they are

referred to as unidirectional LMs or autoregressive LMs.

Although LMs were devised to assess the quality of sentences, recent works have shown

that pre-trained LMs can be endowed with language understanding capability. As such,

they can enhance a range of downstream NLP tasks through a fine-tuning process (Dai

and Le, 2015; Howard and Ruder, 2018).

GPT Albeit the effectiveness of these approaches, their usage of shallow RNNs and

middle-sized datasets cannot fully exploit the potential of LMs. Thus, Radford et al.

(2018) proposed training a 12-layer Transformer decoder on the BooksCorpus dataset (Zhu

et al., 2015), which contains over 7,000 unique unpublished books from a variety of gen-

res. In addition, as the corpus contains long stretches of contiguous text, it can encourage
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the model to learn to capture long-range information, which is crucial for document-level

downstream tasks. This model is coined as GPT.

Radford et al. (2018) conduct comprehensive experiments to examine the power of GPT

on various tasks, including natural language inference, question answering, commonsense

reasoning, semantic similarity, text classification, etc. They found that with the help of

the pre-training, GPT could significantly surpass the previous SOTA systems.

GPT-2 Because of the achievements made by GPT, Radford et al. (2019) aims to

further advance the capability of LMs by scaling the model size and training data size to

a 48-layer Transformer decoder and 40GB text. Since this model is derived from GPT, it

is termed as GPT-2. As the training data is sourced from numerous and diverse websites

and GPT-2 have a large capacity to learn any signals, Radford et al. (2019) believe that

GPT-2 can acquire world knowledge to some extent via self-supervised learning.

In order to validate their hypothesis, in contrast to previous works emphasizing minimal

supervision, they decided to test GPT-2 on the zero-shot setting, where no supervision

is provided. According to their experiments, even without any supervised training,

GPT-2 can complete multiple challenging NLP tasks, such as reading comprehension,

summarization, translation, etc. Furthermore, GPT-2 achieved SOTA performance on 7

out of the 8 datasets in a zero-shot setting. Finally, it has shown that GPT-2 can generate

realistic and coherent continuations about their chosen topic as shown in Table 2.2

Table 2.2: An example of synthetic sentences generated by GPT-2.

Human-written prompts:
In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

Machine-generated completion:
The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon
is finally solved .....

GPT-3 After seeing the triumph of the first two generations of GPT models, the GPT

team is ambitious for a more grandiose goal. Specifically, they train a model, so-called
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GPT-3, with 175 billion parameters on 570GB data and test its performance in the

few-shot setting (Brown et al., 2020).

Since GPT-3 contains 175 billion parameters, the fine-tuning process will be compu-

tationally prohibitive. As a byproduct, it has shown that GPT-2 can generate topic-

relevant text from a given prompt. Inspired by this, GPT-3 introduces an innovative

paradigm to perform few-shot learning by sidestepping the parameter-updating process.

As shown in Figure 2.18, for a sentiment analysis task on tweet, one can craft a prompt

by concatenating a task description, a few labeled examples, and a test instance. Then

GPT-3 can take this prompt as an input x, and produce the correct label y via a condi-

tional probability Pθ(y|x). The logic behind this magic is GPT-3 manages to learn the

pattern from the provided prompt such that it can complete the unlabeled instance by

generating its label.

Classify the sentiment in these tweets:


tweet: "I can't stand homework"
sentiment: negative


tweet: "I can't wait for Halloween!!!"
sentiment: positive 


tweet: "I hate chocolate"
sentiment: 

GPT-3

Classify the sentiment in these tweets:


tweet: "I can't stand homework"
sentiment: negative


tweet: "I can't wait for Halloween!!!"
sentiment: positive 


tweet: "I hate chocolate"
sentiment: negative

Figure 2.18: An example of prompt-based few-shot learning by GPT-3.

To demonstrate the generality of the prompt-based few-shot learning, Brown et al. (2020)

studied a total of 51 few-shot learning tasks. Surprisingly, GPT-3 not only achieves

strong performance in few-shot settings, but also matches, in some cases, the SOTA fine-

tuned results. Thanks to GPT-3, the prompt-based few-shot learning has revolutionized

the learning paradigm in machine learning.
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2.3.2 Bidirectional Pre-trained Language Models

The unidirectional LMs are disadvantageous because the representation of each token

only considers the leftward context. Such restrictions cause difficulty in addressing tasks

requiring context from both directions, such as question answering. Bahdanau et al.

(2014) and Peters et al. (2018) have identified that bidirectional contextual represen-

tation can significantly boost machine translation and representation learning. These

works leverage two RNNs to encode left-to-right and right-to-left contexts, respectively.

Nevertheless, the Transformer encoder can model the two-side context via the self-

attention module by nature, which is superior to the shallow concatenation of a left-

to-right and a right-to-left model. Hence, there have been works expressing interest in

training the Transformer encoder in a self-supervised manner.

BERT

[CLS]  my  dog  is  [MASK]  [SEP]  he  likes  playing  [SEP]

cuteNSP

Figure 2.19: A schematic illustration of the mask prediction and the next sentence
prediction for BERT.

BERT The pioneering work is BERT, attempting to pre-train a 24-layer Transformer

encoder on the BooksCorpus and English Wikipedia. As the self-attention module would

allow each word to access itself, the standard token prediction used by the unidirectional

LMs is trivial. Inspired by Taylor (1953), Devlin et al. (2018) devised a masked language

model (MLM) to effectively advance the representation learning and the acquisition of

linguistic knowledge. Concretely, as shown in Figure 2.19, one can randomly mask

some percentage of tokens, and feed the imprinted sentence into BERT. Finally, one can

consider the prediction of the masked tokens as the objective.
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However, the [MASK] token can cause a discrepancy between the pre-training and fine-

tuning, as the [MASK] token does not appear during fine-tuning. To mitigate this,

instead of replacing all selected tokens with [MASK], if the i-th token is chosen, one

can replace it with (1) the [MASK] symbol 80% time; (2) a random token from the

vocabulary 10% of time; (3) the original i-th token 10% of time. According to the

empirical study, this avenue works the best.

In addition to the MLM, Devlin et al. (2018) introduces another objective focusing on

predicting the relationship between two sentences. Specifically, Figure 2.19 shows that

the input consists of two sentences, separated by a special token [SEP]. 50% of the time,

the second sentence is immediately after the first one, whereas 50% of the time is a

random sentence from the corpus. A [CLS] token is prepended to the input to denote

whether the two sentences are adjacent. This objective is beneficial to downstream tasks

inferring a relationship between two sentences, such as question answering and natural

language inference.

Unlike GPT models emphasizing generation power, BERT put more effort into discrim-

inative tasks. One can feed a sentence or a sentence pair into BERT during fine-tuning.

Then the hidden states hL
[CLS] of [CLS] at the last layer are used to represent the input.

Finally, we can pass hL
[CLS] into an output layer for classification. Despite its simplicity,

fine-tuning from the pre-trained BERT can outperform its contemporary works, like

GPT, by a sizeable margin. Although one can use BERT for sequence labeling tasks,

such as named entity recognition, we limit the discussion to the classification tasks, as

we only touch them in this thesis.

RoBERTa The efficacy of BERT has attracted lots of attention from the community

and led to the emergence of multiple post-BERT variants. All these variants manage to

outperform the original BERT significantly. Out of these variants, RoBERTa noticed

that the underperformance of BERT is mainly attributed to insufficient training. Thus,

Liu et al. (2019) proposed to make several modifications to BERT, including:

1. Training the model longer, with bigger batches, over more data;

2. Removing the next sentence prediction objective;

3. Training on longer sequences;
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4. Dynamically changing the masking pattern applied to the training data.

The first three tactics are straightforward and have been corroborated in previous

works (Lample and Conneau, 2019; Yang et al., 2019b). Liu et al. (2019) has found that

the original BERT conducted the masking operation in the data pre-processing stage, re-

sulting in a static mask. In order to alleviate the potential memorization caused by such

a static strategy, BERT repeated an input instance multiple times and applied different

masking operations to each of them. However, this brute-force approach can drastically

increase storage when scaling to 10x larger training data. As a remedy, RoBERTa de-

signed a dynamic masking to randomly mask an input on the fly before feeding it into

the model. With the aid of these modifications, RoBERTa further advanced the perfor-

mance of BERT and marked new SOTA results, compared to the previously published

methods.

2.4 Summary

This chapter laid a foundation for the comprehension of this thesis through a review

of prior relevant works. We first overviewed the concepts, development, and up-to-date

techniques in natural language generation and understanding. Then we reviewed the

two mainstreams of pre-trained large language models and described their architectures,

objectives, training data, and applications. Bearing the background knowledge in mind,

we aim to explore and extend these lines of works by modeling context-dependent knowl-

edge.



Part I

Context-dependent Subword

Segmentation
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Chapter 3

Subword Segmentation with

Contextual Information

This chapter is based on:

Xuanli He, Gholamreza Haffari, and Mohammad Norouzi. 2020. Dynamic Pro-

gramming Encoding for Subword Segmentation in Neural Machine Translation. In

Proceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, pages 3042–3051, Online. Association for Computational Linguistics.

Due to computational and memory constraints, NMT cannot handle all words in the

studied languages. A straightforward avenue is to select uncommon words and treat

them as unknown words. This solution can cause mistranslation because of the loss of

information. To sidestep this issue, Sennrich et al. (2015), Wu et al. (2016), and Kudo

(2018) proposed segmenting words into subword units, which can maximally retain the

rare words and drastically reduce the memory footprint.

These approaches consider words as separate and independent pieces. However, people

articulate their thoughts via a sequence of words and the choices of words must precisely

reflect the actual meaning. Nevertheless, a text is not a combination of expressive words

and phrases. Instead, the inter-connection among words forms the context and affects

the expressions of words.

46
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This chapter aims to produce linguistically plausible subwords by conditioning the source

and target-side contexts. Specifically, we employ a mixed character-subword transformer

architecture to conduct subword re-segmentation of the target text using a pre-built sub-

word vocabulary. As the source text is provided for machine translation systems, one can

access it and obtain global contextual information by using the encoder. Moreover, we

believe subword segmentation can benefit from the left-side local context when decoding

the target text. To validate this proposal, we examine it in English ↔ (German, Ro-

manian, Estonian, Finnish, Hungarian) translations. The empirical studies demonstrate

the superiority of our approach over the previous context-independent approaches.

3.1 Introduction

The segmentation of rare words into subword units (Sennrich et al., 2015; Wu et al., 2016)

has become a critical component of neural machine translation (Vaswani et al., 2017)

and natural language understanding (Devlin et al., 2019; Liu et al., 2019). Subword

units enable open vocabulary text processing with a negligible pre-processing cost and

help maintain a desirable balance between the vocabulary size and decoding speed. Since

subword vocabularies are built in an unsupervised manner (Sennrich et al., 2015; Wu

et al., 2016), they can be easily adopted for any language.

Given a fixed vocabulary of subword units, rare words can be segmented into a sequence

of subword units in different ways. For instance, “un+conscious” and “uncon+scious”

are both suitable segmentations for the word “unconscious”. There has been a surge

of interest in the exploration of subword segmentation. Seeking an optimal subword

segmentation is still an open research question. We identify two popular families of

subword segmentation algorithms in neural machine translation:

1. Greedy algorithms: Wu et al. (2016) segment words by recursively selecting the

longest subword prefix. Sennrich et al. (2015) recursively combine adjacent word

fragments that co-occur most frequently, starting from characters.

2. Stochastic algorithms (Kudo, 2018; Provilkov et al., 2019) draw multiple segmen-

tations for source and target sequences resorting to randomization to improve

robustness and generalization of translation models.
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However, since priors works omit the source context, the resultant segmentation is subop-

timal, causing the lack of respect for linguistic properties. We argue that the segmenta-

tion of source sentences can be thought of as input features to enhance the segmentation

quality. In addition, since there are multiple valid segmentations, we view the subword

segmentation of an output sentence in machine translation as a latent variable that

should be marginalized to obtain the probability of the output sentence given the input.

In this chapter, we propose a new algorithm called Dynamic Programming Encoding

(DPE) to mitigate the aforementioned issues. We present a new family of mixed

character-subword transformers, for which simple dynamic programming algorithms ex-

ist for exact marginalization and MAP inference of subword segmentations. The time

complexity of the dynamic programming algorithms is O(TV ), where T is the length

of the target sentence in characters, and V is the size of the subword vocabulary. By

comparison, even computing the conditional probabilities of subword units in an au-

toregressive model requires O(TV ) to estimate the normalizing constant of the categor-

ical distributions. Thus, our dynamic programming algorithm does not incur additional

asymptotic costs. We use a lightweight mixed character-subword transformer as a means

of pre-processing translation datasets to segment output sentences using DPE for MAP

inference.

The performance of a standard subword transformer (Vaswani et al., 2017) trained on

WMT datasets tokenized using DPE is compared against Byte Pair Encoding (BPE) (Sen-

nrich et al., 2015) and BPE dropout (Provilkov et al., 2019). Empirical results on English

↔ (German, Romanian, Estonian, Finnish, Hungarian) suggest that stochastic subword

segmentation is effective for tokenizing source sentences, whereas deterministic DPE is

superior for segmenting target sentences. DPE achieves an average improvement of 0.9

BLEU over greedy BPE (Sennrich et al., 2015) and an average improvement of 0.55

BLEU over stochastic BPE dropout (Provilkov et al., 2019)

3.2 Latent Subword Segmentation

Let x denote a source sentence and y = (y1, . . . , yT ) denote a target sentence comprising

T characters. The goal of machine translation is to learn a conditional distribution

p(y | x) from a large corpus of source-target sentences. State-of-the-art neural machine
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translation systems make use of a dictionary of subword units to tokenize the target

sentences in a more succinct way as a sequence of M ≤ T subword units. Given a

subword vocabulary, there are multiple ways to segment a rare word into a sequence of

subwords (see Figure 3.1). The common practice in neural machine translation considers

subword segmentation as a pre-process and uses greedy algorithms to segment each

word across a translation corpus in a consistent way. This chapter aims to find optimal

subword segmentations for the task of machine translation.

Figure 3.1: An illustration of marginalizing subword segmentations of the word ‘un-
conscious’

Let z = (z1, .., zM+1) denote a sequence of character indices 0 = z1 < z2 < . . . <

zM < zM+1 =T in an ascending order, defining the boundary of M subword segments

{yzi,zi+1}Mi=1. Let ya,b ≡ [ya+1, . . . , yb] denote a subword that spans the segment

between (a + 1)th and bth characters, including the boundary characters. For example,

given a subword dictionary {‘c’, ‘a’, ‘t’, ‘at’, ‘ca’}, the word ‘cat’ may be segmented

using z = (0, 1, 3) as (‘c’, ‘at’), or using z = (0, 2, 3) as (‘ca’, ‘t’), or using z = (0, 1, 2, 3)

as (‘c’, ‘a’, ‘t’). The segmentation z = (0, 3) is not valid since ‘cat’ does not appear in

the subword vocabulary.

Autoregressive language models create a categorical distribution over the subword vocab-

ulary at every subword position and represent the log-probability of a subword sequence

using chain rule,

log p(y, z) =
∑|z|

i=1
log p(yzi,zi+1 | yz1,z2 , . . . ,yzi−1,zi) . (3.1)

Note that we suppress the dependence of p on x to reduce notational clutter. Most

neural machine translation approaches assume that z is a deterministic function of y
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and implicitly assume that log p(y, z) ≈ log p(y).

We consider a subword segmentation z as a latent variable and let each value of z ∈ Zy,

in the set of segmentations compatible with y, contribute its share to p(y) according to

p(y) =
∑

z p(y, z),

log p(y) = log
∑
z∈Zy

exp

|z|∑
i=1

log p(yzi,zi+1 | . . . ,yzi−1,zi) . (3.2)

Note that each particular subword segmentation z ∈ Zy provides a lower bound on

the log marginal likelihood log p(y) ≥ log p(y, z). Hence, optimizing Equation 3.1 for a

greedily selected segmentation can be justified as a lower bound on Equation 3.2. That

said, optimizing Equation 3.2 directly is more desirable. Unfortunately, exact marginal-

ization over all segmentations is computationally prohibitive in a combinatorially large

space Zy, especially because the probability of each subword depends on the segmen-

tation of its conditioning context. In the next section, we discuss a sequence model in

which the segmentation of the conditioning context does not influence the probability of

the next subword. We describe an efficient Dynamic Programming algorithm to exactly

marginalize out all possible subword segmentations in this model.

3.3 A Mixed Character-Subword Transformer

We propose a mixed character-subword transformer architecture, which enables one to

marginalize out latent subword segmentations exactly using dynamic programming (see

Figure 3.2). Our key insight is to let the transformer architecture process the inputs and

the conditioning context based on characters to remain oblivious to the specific choice

of subword segmentation in the conditioning context and enable exact marginalization.

That said, the output of the transformer is based on subword units and at every position

it creates a categorical distribution over the subword vocabulary. More precisely, when

generating a subword yzi,zi+1 , the model processes the conditioning context (yz1 , . . . , yzi)

based solely on characters using,

log p(y, z) =
∑|z|

i=1
log p(yzi,zi+1 | yz1 , ..., yzi) , (3.3)

where the dependence of p on x is suppressed to reduce notational clutter.
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Figure 3.2: An illustration of the mixed character-subword Transformer. The input
is a list of characters, whereas the output is a sequence of subwords.

Given a fixed subword vocabulary denoted V , at every character position t within y,

the mixed character-subword model induces a distribution over the next subword w ∈ V

based on,

p(w |y1, .., yt)=
exp(f(y1, .., yt)

⊤e(w))∑
w′∈V exp(f(y1, .., yt)⊤e(w′))

where f(·) processes the conditioning context using a Transformer, and e(·) represents

the weights of the softmax layer.

As depicted in Figure 3.2, the mixed character-subword Transformer consumes charac-

ters as input generates subwords as output. This figure only shows the decoder archi-

tecture, as the encoder that processes x is a standard subword Transformer. Once a

subword w is emitted at time step t, the characters of the subword w are fed into the

decoder for time steps t + 1 to t + |w|, and the next subword is generated at time step

t + |w|, conditioned on all of the previously generated characters.
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3.3.1 Optimization

We use
∑

(x,y)∈D logPθ(y|x) as the training objective for our latent segmentation trans-

lation model, where D is the training corpus consisting of parallel bilingual sentence

pairs. Maximizing the training objective requires marginalization and the computation

of the gradient of the log marginal likelihood.

Exact Marginalization. Under our model, the probability of a subword only depends

on the character-based encoding of the conditioning context and not its segmentation, as

in Equation 3.3. This means that we can compute the log marginal likelihood for a single

example y, exactly, using the Dynamic Programming algorithm shown in Algorithm

1. The core of the algorithm is line 3, where the probability of the prefix string y0,k

is computed by summing terms corresponding to different segmentations. Each term

consists of the product of the probability of a subword yj,k times the probability of its

conditioning context (y1, . . . , yj). The running time of the algorithm is O(mT ), where T

is the length of the string, and m is the size of the longest subword unit in the vocabulary.

Algorithm 1 Dynamic Programming (DP) for Exact Marginalization

Input: y is a sequence of T characters, V is a subword vocabulary, m is the maximum
subword length

Output: log p(y) marginalizing out different subword segmentations.
1: α0 ← 0
2: for k = 1 to T do
3: αk ← log

∑k−1
j=k−m 1[yj,k ∈ V ] exp

(
αj + logPθ(yj,k|y1, .., yj)

)
4: end for
5: return αT ▷ the marginal probability log p(y) = log

∑
z∈Zy

p(y, z)

Gradient Computation. We use automatic differentiation in PyTorch to backpropa-

gate through the dynamic program in Algorithm 1 and compute its gradient. Compared

to a standard Transformer decoder, our mixed character-subword Transformer is 8x

slower with a larger memory footprint, due to computation involved in the DP algo-

rithm and large sequence length in characters. To address these issues, we reduce the

number of transformer layers from 6 to 4, and accumulate 16 consecutive gradients before

one update.
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3.3.2 Segmenting Target Sentences

Once the mixed character-subword transformer is trained, it is used to segment the target

side of a bilingual corpus. We randomize the subword segmentation of source sentences

using BPE dropout (Provilkov et al., 2019). Conditional on the source sentence, we use

Algorithm 2, called Dynamic Programming Encoding (DPE) to find a segmentation of

the target sentence with the highest posterior probability. This algorithm is similar to

the marginalization algorithm, where we use a max operation instead of log-sum-exp.

The mixed character-subword transformer is used only for tokenization, and a standard

subword transformer is trained on the segmented sentences. For inference using beam

search, the mixed character-subword transformer is not needed.

Algorithm 2 Dynamic Programming Encoding (DPE) for Subword Segmentation

Input: y is a sequence of T characters, V is a subword vocabulary, m is the maximum
subword length

Output: Segmentation z with highest posterior probability.
for k = 1 to T do
βk ← max{j∈[k−m,k−1] |yj,k∈V } βj + logPθ(yj,k|y1, .., yj)
bk ← argmax{j∈[k−m,k−1] |yj,k∈V }βj + logPθ(yj,k|y1, .., yj)

end for
z ← backtrace(b1, .., bT ) ▷ backtrace the best segmentation using b

3.4 Experiments

Dataset We use WMT09 for En-Hu, WMT14 for En-De, WMT15 for En-Fi, WMT16

for En-Ro and WMT18 for En-Et. We utilize Moses toolkit1 to pre-process all corpora,

and preserve the true case of the text. Unlike Lee et al. (2018), we retain diacritics for En-

Ro to retain the morphological richness. We use all of the sentence pairs where the length

of either side is less than 80 tokens for training. Byte pair encoding (BPE) (Sennrich

et al., 2015) is applied to all language pairs to construct a subword vocabulary and

provide a baseline segmentation algorithm. The statistics of all corpora are summarized

in Table 3.1.

Training with BPE Dropout. We apply BPE dropout (Provilkov et al., 2019) to

each mini-batch. For each complete word, during the BPE merge operation, we randomly

1https://github.com/moses-smt/mosesdecoder
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Table 3.1: Statistics of the corpora.

Number of sentences Vocab
train dev test size

En-Hu WMT09 0.6M 2,051 2,525 32K
En-De WMT14 4.2M 3000 3003 32K
En-Fi WMT15 1.7M 1,500 1,370 32K
En-Ro WMT16 0.6M 1,999 1,999 32K
En-Et WMT18 1.9M 2,000 2,000 32K

drop a particular merge with a probability of 0.05. This value worked the best in our

experiments. A word can be split into different segmentations at the training stage,

which helps improve the BPE baseline.

DPE Segmentation. DPE can be used for target sentences, but its use for source

sentences is not justified as source segmentations should not be marginalized out. Ac-

cordingly, we use BPE dropout for segmenting source sentences. That is, we train a

mixed character-subword transformer to marginalize out the latent segmentations of

a target sentence, given a randomized segmentation of the source sentence by BPE

dropout. After the mixed character-subword transformer is trained, it is used to seg-

ment the target sentences as described in Section 3.3.2 for tokenization.

As summarized in Figure 3.3, we first train a mixed character-subword transformer with

dynamic programming. Then, this model is frozen and used for DPE segmentation

of target sentences. Finally, a standard subword transformer is trained on source sen-

tences segmented by BPE dropout and target sentences segmented by DPE. The mixed

character-subword transformer is not needed for translation inference.

Transformer Architectures. We use transformer models to train three translation

models on BPE, BPE dropout, and DPE corpora. We make use of transformer base for

all of the experiments.

3.4.1 Main Results

Table 3.2 shows the main results. First, we see that BPE dropout consistently outper-

forms BPE across language pairs. In Table 3.2, the column labeled to ∆1 shows the



55

Figure 3.3: The workflow of the proposed DPE approach.

improvement of BPE dropout over BPE. This gain can be attributed to the robustness

of the NMT model to the segmentation error on the source side, as our analysis in

Section 3.4.3 will confirm. Second, we observe further gains resulted from DPE com-

pared to BPE dropout. The column labeled ∆2 shows the improvement of DPE over

BPE dropout. DPE provides an average improvement of 0.55 BLEU over BPE dropout

and BPE dropout provides an average improvement of 0.35 BLEU over BPE. As our

proposal uses BPE dropout for segmenting the source, we attribute our BLEU score im-

provements to a better segmentation of the target language with DPE. Finally, compared

to BPE for segmenting the source and target, our proposed segmentation method results

in large improvements in the translation quality, up to 1.49 BLEU score improvements

in Et→En.

3.4.2 Segmentation Examples

Table 3.3 shows examples of target sentences segmented using DPE and BPE and the

corresponding source sentences. In addition, Table 3.4 presents the top 50 most common

English words that result in a disagreement between BPE and DPE segmentations based

on the Et→En corpus. For DPE, for each word, we consider all segmentations produced
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Table 3.4: Word fragments obtained by BPE vs. DPE. The most frequent words
that resulted in a disagreement between BPE and DPE segmentations on Et→ En are

shown.

BPE DPE (ours)

recognises recognise + s
advocates advocate + s
eurozone euro + zone
underlines underline + s
strengthens strengthen + s
entrepreneurship entrepreneur + ship
acknowledges acknowledge + s
11.30 11 + .30
wines wine + s
pres + ently present + ly
f + illed fill + ed
endors + ement endorse + ment
blo + c bl + oc
cru + cially crucial + ly
eval + uations evaluation + s
tre + es tr + ees
tick + ets tick + et + s
predic + table predict + able
multilater + alism multilateral + ism
rat + ings rating + s
predic + ted predict + ed
mo + tives motiv + es
reinfor + ces reinforce + s
pro + tocols protocol + s
pro + gressively progressive + ly
sk + ill ski + ll
preva + ils prevail + s
decent + ralisation decent + ral + isation
sto + red stor + ed
influ + enz + a influen + za
margin + alised marginal + ised
12.00 12 + .00
sta + ying stay + ing
intens + ity intensi + ty
rec + ast re + cast
guid + eline guide + line
emb + arked embark + ed
out + lines outline + s
scen + ari + os scenario + s
n + ative na + tive
preven + tative prevent + ative
hom + eland home + land
bat + hing bath + ing
endang + ered endanger + ed
cont + inen + tal continent + al
t + enth ten + th
vul + n + era + bility vul + ner + ability
realis + ing real + ising
t + ighter tight + er
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and show the segmentation that attains the highest frequency of usage in Table 3.4. As

can be observed, DPE produces more linguistically plausible morpheme-based subwords

compared to BPE. For instance, BPE segments “carts” into “car”+“ts”, as both “car”

and “ts” are common subwords and listed in the BPE merge table. By contrast DPE

segments “carts” into “cart”+“s”. We attribute the linguistic characteristics of the

DPE segments to the fact that DPE conditions the segmentation of a target word on

the source sentence and the previous tokens of the target sentence, as opposed to BPE,

which mainly makes use of the frequency of subwords, without any context.

DPE generally identifies and leverages some linguistic properties, e.g., plural, antonym,

normalization, verb tenses, etc. However, BPE tends to deliver less linguistically plau-

sible segmentations, due to its greedy nature and the lack of context.

3.4.3 Analysis

Conditional Subword Segmentation. One of our hypotheses for the effectiveness

of subword segmentation with DPE is that it conditions the segmentation of the target

on the source language. To verify this hypothesis, we train mixed character-subword

Transformer solely on the target language sentences in the bilingual training corpus

using the language model training objective. This is in contrast to the mixed character-

subword model used in the DPE segmentation of the main results in Table 3.2, where

the model is conditioned on the source language and trained on the sentence pairs using

a conditional language model training objective. Once the mixed character-subword

Transformer language model is trained, it is then used to segment the target sentence

of the bilingual corpus in the pre-processing step before a translation model is trained.

Table 3.5 shows the results. It compares the unconditional language model (LM) DPE

v.s. the conditional DPE for segmenting the target language, where we use BPE dropout

for segmenting the source language. We observe that without the information from the

source, LM DPE is on-par with BPE, and is significantly outperformed by conditional

DPE. This observation confirms our hypothesis that segmentation in NMT should be

source-dependent.

We are further interested in analyzing the differences of the target language segmenta-

tion depending on the source language. For this analysis, we filtered out a multilingual
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Table 3.5: DPE-LM learns a segmentation of the target based on language modeling,
which is not conditioned on the source language.

Source BPE drop BPE drop BPE drop
Target BPE drop LM DPE DPE

En→Ro 28.07 28.07 28.66
En→Hu 12.94 12.87 13.36

Ro→En 32.56 32.57 32.99
Hu→En 16.61 16.41 17.05

Figure 3.4: Disagreement of DPE segments between Et-En and Ro-En over English
vocabulary

parallel corpus from WMT, which contains parallel sentences in three languages English,

Estonian and Romanian. That is, for each English sentence we have the corresponding

sentences in Et and Ro. We then trained two DPE segmentation models for the trans-

lation tasks of Et→En and Ro→En, where English is the target language. Figure 3.4

shows when conditioning the segmentation of the target on different source languages,

DPE can lead to different segmentations even for an identical multi-parallel corpus. The

differences are more significant for low-frequency words.

Another aspect of DPE segmentation method is its dependency on the segmentation of

the source. As mentioned, we segment the target sentence on the fly using our mixed

character-subword model given a randomized segmentation of the source produced by

BPE dropout. That means during the training of the NMT model where we use BPE

dropout for the source sentence, the corresponding target sentence may get a different

DPE segmentation given the randomized segmentation of the source sentence. We are
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Table 3.6: “DPE Fixed” obtains a fixed segmentation of the target sentence given the
BPE-segmented source sentence, whereas “DPE On The Fly” obtain the best segmen-
tation of the target sentence given a randomized segmentation of the source produced

by BPE dropout.

Source BPE drop BPE drop
Target DPE Fixed DPE On The Fly

En→Ro 28.58 28.66
En→Hu 13.14 13.36
En→Et 18.51 18.80

Ro→En 32.73 32.99
Hu→En 16.82 17.05
Et→En 24.37 24.62

interested in the effectiveness of the target segmentation if we commit to a fixed DPE

segmentation conditioned on the BPE segmentation of the input. Table 3.6 shows the

results. We observe a marginal drop when using the fixed DPE, which indicates that

the encoder can benefit from a stochastic segmentation, while the decoder prefers a

deterministic segmentation corresponding to the segmentation of the source.

DPE vs BPE. We are interested in comparing the effectiveness of DPE v.s. BPE

for the target, given BPE dropout as the same segmentation method for the source.

Table 3.7 shows the results. As observed, target segmentation with DPE consistently

outperforms BPE, leading to up to 0.9 BLEU score improvements. We further note

that using BPE dropout on the target has a similar performance to BPE, and it is

consistently outperformed by DPE.

Table 3.7: BLEU score of different target segmentation methods.

Source BPE drop BPE drop BPE drop
Target BPE BPE drop DPE

En→Ro 28.04 28.07 28.66
En→Et 18.09 18.20 18.80

Ro→En 32.40 32.56 32.99
Et→En 23.52 23.65 24.62

We further analyze the segmentations produced by DPE v.s. BPE. Figure 3.5 shows

the percentage of the target words which have different segmentation with BPE and

DPE, for different word frequency bands in En→Et translation task. We observe that



62

Figure 3.5: Disagreement of segments between BPE and DPE over Estonian vocab-
ulary.

for Estonian words whose occurrence is up to 5 in the training set, the disagreement rate

between DPE and BPE is 64%. The disagreement rate decreases as we go to words in

higher frequency bands. This may imply that the main difference between the relatively

large BLEU score difference between BPE and DPE is due to their different segmentation

mainly for low-frequency words.

Figure 3.6: BLEU scores of BPE vs DPE by the lengths of sentences for En→Et.

We further plot the distribution of BLEU scores by the length of target sentences. As

shown in Figure 3.6, DPE demonstrates much better gains on the longer sentences,

compared with the BPE version.
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3.5 Summary

This chapter introduces Dynamic Programming Encoding in order to incorporate the

information of the source language into subword segmentation of the target language.

Our approach utilizes dynamic programming for marginalizing the latent segmentations

when training, and inferring the highest probability segmentation when tokenizing. Our

comprehensive experiments show impressive improvements compared to state-of-the-art

segmentation methods in NMT, i.e., BPE and its stochastic variant BPE dropout.
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Chapter 4

Context-conditional Scene Graph

Modification

This chapter is based on:

Xuanli He, Quan Hung Tran, Gholamreza Haffari, Walter Chang, Zhe Lin, Trung

Bui, Franck Dernoncourt, and Nhan Dam. 2020. Scene Graph Modification Based

on Natural Language Commands. In Findings of the Association for Computational

Linguistics: EMNLP 2020, pages 972–990, Online. Association for Computational

Linguistics.

The primary goal of this thesis is to leverage context to advance natural language under-

standing and generation. In Part I, we have testified that incorporating short-range or

within-sentence context into subword segmentation can produce morphologically plausi-

ble subword units, leading to significant improvements over previous approaches. How-

ever, as shown in Section 1, the context can span beyond a single sentence, especially in

a dialogue system, where we have to capture a long-range or cross-sentence context to

alleviate the uncertainty owing to back-and-forth conversations. In this chapter and the

next one, we focus on two dialogue-driven natural language understanding tasks that

demand the modeling of the long-range context.

This chapter targets the modification of scene graphs. As described in Section 2.2.2,

scene graphs are machine-understandable structural representations of natural sentences.

65



66

Modern search engines have introduced a click-through feature to refine the original

query. Inspired by this, we present a novel task to support the refinement of the initial

scene graph via natural language commands. We first formulate the initial scene and a

modification query as the context. Then we generate an updated scene graph based on

the interaction within the context using a hierarchical seq2seq model. Since this sce-

nario is under-explored, we unveil three datasets as the testbed. Our experiments show

that the proposed architecture and its variants can fulfill the objective, i.e., updating

an initial scene graph from a modification query.

4.1 Introduction

Parsing text into structured semantics representation is one of the most long-standing

and active research problems in NLP. Numerous parsing methods have been developed

for many different semantic structure representations (Chen and Manning, 2014; Mrini

et al., 2019; Zhou and Zhao, 2019; Clark et al., 2018; Wang et al., 2018). However,

most of these previous works focus on parsing a single sentence, while a typical human-

computer interaction session or conversation is not single-turn. A prominent example

is image search. Users usually start with short phrases describing the main objects or

topics they are looking for. Depending on the result, the users may then modify their

query to add more constraints or give additional information. In this case, without

the modification capability, a static representation is not suitable to track the changing

intent of the user. We argue that the back-and-forth and multi-turn nature of human-

computer interactions necessitate the need for updating the structured representation.

Another advantage of modifying a structured representation in the interactive setting is

that it makes it easier to check the consistency. For instance, it is much easier to check

whether the user requests two contradicting attributes for the same object in a scene

graph during the interactive search, which can be done automatically.

In this chapter, we propose the problem of scene graph modification for search. A scene

graph (Johnson et al., 2015) is a semantic formalism that represents the desired image

as a graph of objects with relations and attributes. This semantic representation has

been shown to be very successful in retrieval systems (Johnson et al., 2015; Schuster

et al., 2015; Vendrov et al., 2015). Inspired by the dialogue state tracking setting (Perez

and Liu, 2017; Ren et al., 2018), we consider the scene graph modification problem as
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follows. Given an initial scene graph and a new query issued by the user, the goal is to

generate a new scene graph taking into account the original graph and the new query.

We formulate the problem as conditional graph modification, and create three datasets

for this problem. We propose novel encoder-decoder architectures for conditional graph

modification. More specifically, our graph encoder is built upon the self-attention ar-

chitecture popular in state-of-the-art machine translation models (Vaswani et al., 2017;

Edunov et al., 2018), which is superior to, according to our study, Graph Convolutional

Networks (GCN) (Kipf and Welling, 2017). Unique to our problem, however, is the fact

that we have an open set of relation types in the graphs. Thus, we propose a novel

graph-conditioned sparse Transformer, in which the relation information is embedded

directly into the self-attention grid. For the decoder, we treat the graph modification

task as a sequence generation problem (Li et al., 2018; Simonovsky and Komodakis,

2018; You et al., 2018). Furthermore, to encourage the information sharing between the

input graph and modification query, we introduce two techniques, i.e., late feature fusion

through gating and early feature fusion through cross-attention. We further create three

datasets to evaluate our models. The first two datasets are derived from public sources:

MSCOCO (Lin et al., 2014) and Google Conceptual Captioning (GCC) (Sharma et al.,

2018) while the last is collected using Amazon Mechanical Turk (MTurk). Experiments

show that our best model achieves up to 8.5% improvement over the strong baselines on

both the synthetic and user-generated data in terms of F1 score.

Our contributions are three-fold. Firstly, we introduce the problem of scene graph

modification – an important component in multi-modal search and dialogue. Secondly,

we propose a novel encoder-decoder architecture relying on a graph-conditioned Trans-

former and cross-attention to tackle the problem, outperforming the strong baselines

that we set up for the task. Thirdly, we introduce three datasets that can serve as

evaluation benchmarks for future research1.

4.2 Data Creation

In this section, we detail our data creation process. We start with information on scene

graphs and a parser to generate them for the captions in two existing datasets, i.e.,

1The dataset is available at: https://github.com/xlhex/SceneGraphModification.git

https://github.com/xlhex/SceneGraphModification.git
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MSCOCO (Lin et al., 2014) and GCC (Sharma et al., 2018). We then describe how to

generate modified scene graphs and modification queries based on these scene graphs,

and leverage human annotators to increase and analyze data quality.

4.2.1 Scene Graphs

Schuster et al. (2015) introduce scene graphs as semantic representations of images. As

shown in Figure 2.16, a parser will parse a sentence into a list of objects. Although

there are several scene graphs annotated datasets for images (Krishna et al., 2017), the

alignments between graphs and text are unavailable. Moreover, image grounded scene

graphs, e.g., the Visual Genome dataset (Krishna et al., 2017), also contain lots of non-

salient objects and relations, while search queries focus more on the main objects and

their connections.

The lack of a large-scale and high-quality public dataset prompts us to create our

own benchmark datasets. To do this, we start with the popular captioning datasets:

MSCOCO (Lin et al., 2014) and GCC (Sharma et al., 2018). We use a scene graph

parser developed by Adobe to parse a random subset of MSCOCO description data

and GCC captions to construct scene graphs. The parser is built upon a dependency

parser (Dozat and Manning, 2016), similar to the SPICE system (Anderson et al., 2016).

4.2.2 Modified MSCOCO and GCC for Graph Modification

Our first two datasets add annotations on top of the captions for MSCOCO and GCC.

The parser described in Section 4.2.1 is used to create 200k scene graphs from MSCOCO

and 420k scene graphs from GCC data. Comparing the two datasets, the graphs from

MSCOCO are simpler, while the GCC graphs are much more complicated.

Given a scene graph G, we construct a triplet (x,y, z), where x is the source graph, y

indicates the modification query, and z represents the target graph. More specifically,

we uniformly select and apply an action a from the set of all possible graph modification

operations A = {Delete, Insert,Substitute}. The actions are applied to the graph

as follows:
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Table 4.1: Simplified templates for synthetic data, with each operation has 10 tem-
plates.

Insertion:
I want xx, I prefer xx, I like xx
I would like to see xx, Show me xx,
Give me xx, I’m interested in xx
I need xx, Search for xx, Return xx

(xx are nodes to be inserted)

Deletion:
remove xx, I do not want xx, delete xx
I do not like xx, omit xx, I do not need xx
erase xx, ignore xx, discard xx, drop xx

(xx denotes the node to be deleted)

Substitution:
change xx to yy, update xx to yy
replace xx with yy, substitute yy for xx
I prefer yy to xx, modify xx to yy
I want yy rather than xx, switch xx to yy
convert xx to yy, give me yy instead of xx

(xx and yy are old nodes and updated nodes)

• Delete. We randomly select a node from G (denoting the source graph x), and

then remove this node and its associated edges. The remaining nodes and edges

are then the target graph z. As for the modification query y, it is generated from

a randomly selected deletion template or by MTurk workers. These templates are

based upon the Edit Me dataset (Manuvinakurike et al., 2018);

• Insert. We treat insertion as the inversion of deletion. Specifically, we produce

the source graph x via a Delete operation on G, where the target graph z is set

to G. Like the deletion operator, the insertion query y is generated by either the

MTurk workers, or by templates;

• Substitute. We replace a randomly selected node from the source graph G with a

semantically similar node to get the target graph. To find the new node, we make

use of the AllenNLP toolkit (Gardner et al., 2018) to get a list of candidate words

based on their semantic similarity scores to the old node.

In Table 4.1, we summarize the templates used for our synthetic data.
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4.2.3 Crowdsourcing User Data

As described above, apart from using templates, we crowdsource more diverse, and nat-

ural modification queries from MTurk. As depicted in Figure 4.1, we first show the

workers an example that includes a source graph, a target graph, and three accept-

able modification queries. Then the workers are asked to fill in their descriptions for

the unannotated instances. We refer to the template-based version of the datasets as

“synthetic” while the user-generated contents as “user-generated”.

man

black hat

man

player

bat baseball

player

wearing

swinging

Examples

I'm interested in any images with man

Search for man, not necessarily
wearing a black hat

Too many details, just show me
pictures of man

Your description

Figure 4.1: An interface of the crowd-sourcing stage. We first present some examples
to workers. Then we ask the workers to write a description based on the new instance.

We notice several difficulties in our preliminary trials within the data collection process.

Firstly, understanding the graphs requires some knowledge of NLP, thus not all MTurk

workers can provide good modification queries. Secondly, due to deletion and parser

errors, we encounter some graphs with disconnected components in the data. Thirdly,

there are many overly complicated graphs that are not representative of search queries,

as most of the search queries are relatively short, with just one or two objects. To miti-

gate these problems, we manually filter the data by removing graphs with disconnected

components, low-quality instances, or excessively long descriptions (i.e., more than 5

nodes). The final dataset contains 32k examples.

To test the quality of our crowd-sourced dataset, we performed a limited user study

with 15 testers who were not aware of the nature of the work and how we collected
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Figure 4.2: Quality score distribution on the crowdsourced dataset. On a scale of 1
to 5, 1 is the worst instance while 5 is the best example.

the dataset. We give them a random collection of instances, each of which is a triplet

of source graph, modification query, and target graph. The tester would then give a

score indicating the quality of each instance based on the following two criteria: (i)

how well the modification query is reflected in the target graph? and (2) how natural

are the query and the graphs? Regarding the second criterion, we instruct the scorer

to assess whether the query and graph are human-like, grammatically and semantically.

Furthermore, as most scorers are knowledgeable in image search, they are also required

to evaluate whether they think the query is plausible in a search scenario.

Figure 4.2 shows the score distribution from 200 randomly chosen instances. We observe

that most of the quality scores of 3 or 4 are due to the modification query or graphs to

be unnatural. Testers tend to give the score of 1 for semantically wrong instances (e.g

the modification query does not match the changes). Overall, the testers judge the data

to be good with the average score of 3.76.

4.3 Methodology

In this section, we explore different methods to tackle our proposed problem. By ana-

lyzing the results and comparing different models, we establish baselines and set up the
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research direction for future work. We start by formalizing the problem, and defining

the input as well as the expected output along with the notations. We then define our

encoder-decoder architecture with the focus on our novel modeling characteristics: (i)

the graph encoder with graph-conditioned, sparsely connected Transformer and (ii) the

early and late feature fusion models for combining information from the input text and

graph.

Notations. A graph is represented by xG := (xN ,xE). The node set is denoted by

xN := {x1, .., x|xN |} where |xN | is the number of nodes, and xi ∈ VN where VN is the

node vocabulary. The edge set is denoted by xE := {xi,j |xi, xj ∈ xN , xi,j ∈ VE} where

VE is the edge vocabulary.

4.3.1 Problem Formulation

We formulate the task as a conditional generation problem. Formally, given a source

graph xG and a modification query y, one can produce a target graph zG by maximizing

the conditional probability p(zG | xG ,y). As a graph consists of a list of typed nodes

and edges, we further decompose the conditional probability (You et al., 2018) as,

p(zG | xG ,y) = p(zN | xG ,y)× p(zE | xG ,y, zN ), (4.1)

where zN and zE respectively denote the nodes and edges of the graph zG .

Given a training dataset of input-output pairs, denoted by D ≡ {(xG
d ,yd, z

G
d )}Dd=1, we

train the model by maximizing the conditional log-likelihood ℓCLL = ℓNode + ℓEdge where,

ℓNode =
∑

(x,y,z)∈D

log p(zN | x,y; θN ) (4.2)

ℓEdge =
∑

(x,y,z)∈D

log p(zE | x,y, zN ; θE). (4.3)

During learning and decoding, we sort the nodes according to a topological order which

exists for all the directed graphs in our user-generated and synthetic datasets.
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4.3.2 Graph-based Encoder-Decoder Model

Inspired by the machine translation literature (Bahdanau et al., 2014; Vaswani et al.,

2017), we build our model based on the encoder-decoder framework. Since our task

takes a source graph and a modification query as inputs, we need two encoders to model

the graph and text information separately. Thus, our model has four main components:

the query encoder, the graph encoder, the edge decoder, and the node decoder. The

information flow between the components is shown in Figure 4.3. In general, we encode

the graph and text modification query into a joint representation, generating the target

graph in two stages. Firstly, the target nodes are generated via node-level RNNs. Then

we leverage another RNNs to produce the target edges over the nodes.

Image

copy space

with

tea cup

table

on

of

The source graph

Remove the table

The modification query

The graph encoder

The text encoder

Image

copy space

tea cup

Image

copy space

with

tea cup
of

The edge decoder

The node decoder

The target graphFeature 
fusion

Figure 4.3: The information flow of our model. Green boxes denote the main com-
putational units.

4.3.2.1 Graph Encoder: Sparsely Connected Transformer

The standard Transformer architecture (Vaswani et al., 2017; Yang et al., 2019a) relies

on a grid of fully-connected self-attention to obtain the contextualized representations

from a sequence of elements. In this work, we propose the graph-conditioned, sparsely

connected Transformer to encode the information from a graph. Our idea is partially in-

spired by the sparse Transformer through factorization (Child et al., 2019). Despite the

similar name, the two methods share very few similarities in both motivations and mech-

anisms. The architecture of our graph encoder with the sparely connected Transformer

is detailed below.
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Compared to natural language text, graphs are structured data comprised of two main

components: nodes and edges. To efficiently encode a graph, we need to encode the

information not only from these constituent components, but also from their interac-

tions, namely the node-edge association and connectivity. Thus, we incorporate the

information from all the edges to the nodes from which these edges are originated. More

formally, our edge-aware node embedding xi can be obtained from the list of source

graph nodes and edges via,

xi = EN [xi] +
∑

j∈J(i)

EE [xij ], (4.4)

where EN and EE are the embedding tables for node and edge labels respectively, and

J(i) is the set of nodes connected (both inbound and outbound) to the ith node in the

graph.

After getting the edge-aware node embeddings, we employ the sparsely connected Trans-

former to learn the contextualized embeddings of the whole graph. Unlike the conven-

tional Transformer, we do not incorporate the positional encoding into our graph inputs

because the nodes are not in a predetermined sequence. Given the edge information

from xE , we enforce the connectivity information by making nodes only visible to its

first order neighbor. Let us denote the attention grid of the Transformer as A. We

then define A[xi,xj ] = f(xi,xj) if xi,j ∈ xE or zero otherwise, where f denotes the

normalized inner product function.

The sparsely connected Transformer, thus, provides the graph node representations con-

ditioned on the graph structure, using the edge labels in the input embeddings and sparse

layers in self-attention. We denote the node representations in the output of the sparsely

connected Transformer by [mx1 , ..,mx|xN |
].

4.3.2.2 Query Encoder

We use a standard Transformer encoder (Vaswani et al., 2017) to encode the modification

query y = (y1, .., y|y|) into [my1 , ...,my|y| ]. Crucially, in order to encourage semantic

alignment, we share the parameters of the graph and query encoders.
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4.3.2.3 Information Fusion of Encoders

In a conventional encoder-decoder model, usually there is only one encoder. In our sce-

nario, there are two sources of information, which require separate encoders. The most

straightforward way to incorporate the two information sources is through concatena-

tion. Concretely, the combined representation would be,

m = [mx1 , ...,mx|xV|
,my1 , ...,my|y| ]. (4.5)

The decoder component will then be responsible for information communication between

the two encoders through its connections to them. In the following, we propose more

advanced methods to combine the two sources of information.

Late Fusion via Gating. To enhance the ability of the model to combine the en-

coders’ information for better use of the decoder, we introduce a parametric approach

with the gating mechanism. Through the gating mechanism, we aim to filter useful

information from the graph based on the modification query, and vice versa.

More specifically, we add a special [CLS] token to the graph and in front of the query

sentence. The representation of this token in the encoders will then capture the holistic

understanding, which we denote by mxG and my for the graph and modification query

respectively.

We make use of these holistic meaning vectors to filter useful information from the

representations of the graph nodes mxi and modification query tokens myj as follows,

gxi = σσσ(MLP(mxi ,my)) (4.6)

m′
xi

= gxi ⊙mxi (4.7)

gyj = σσσ(MLP(myj ,mxG )) (4.8)

m′
yj = gyj ⊙myj , (4.9)

where MLP is a multi-layer perceptron, ⊙ indicates an element-wise multiplication, and

σσσ is the element-wise sigmoid function used to construct the gates gxi and gyj . The

updated node m′
xi

and token m′
yj are then used in the joint encoders representation of

Equation 4.5.
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We refer to this gating mechanism as late fusion since it does not let the information

from the graph and text interact in their respective lower level encoders. In other words,

the fusion happens after the contextualized information has already been learned.

Early Fusion via Cross-Attention. To allow a deeper interaction between the graph

and text encoders, we explore fusing features at the early stage before the contextual-

ized node mxi and token myi representations are learned. This is achieved via cross-

attention, an early fusion technique.

Recall that the parameters of the graph and query encoders are shared to enable the

encoding of the two sources in the same semantic space. That is, we use the same

Transformer encoder for both sources. In cross-attention, we concatenate the x (from

Equation 4.4) and y before rather than after the Transformer encoder. As such, the

encoder’s input is [x,y]. In the Transformer, the representation of each query token

gets updated by self-attending to the representations of all the query tokens and graph

nodes in the previous layer. However, the representation of each graph node gets updated

by self-attending only to its graph neighbors according to the connections of the sparsely

connected Transformer as well as all query tokens. The final representation m is taken

from the output of Transformer. Figure 4.4 shows the information flow in the cross-

attention mechanism.

Sparse graph 
based attention

Fully connected
text attention

Fully connected
cross-attention

Joint
embedding

Figure 4.4: Cross-attention fusion. Graphical components can attend to the text
input, and vice versa.
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4.3.2.4 Node-level Decoder

We use GRU cells (Cho et al., 2014) for our RNN decoders. The node-level decoder is

a vanilla auto-regressive model described as,

hN
t = GRUN (zt−1,h

N
t−1) (4.10)

cNt = ATTNN (hN
t ,m) (4.11)

p(zt | z<t,x
G ,y) = softmax(W [hN

t , cNt ] + b) (4.12)

where z<t denotes the nodes generated before time step t, ATTNN is a Luong-style

attention (Luong et al., 2015), and m is the memory vectors from information fusion of

the encoders (see Section 4.3.2.3).

4.3.2.5 Edge-level Decoder

For the edge decoder, we first use an adjacency-style generation (You et al., 2018).

The rows/columns of the adjacency matrix are labeled by the nodes in the order that

the node-level decoder has generated them. For each row, we have an auto-regressive

decoder that emits each edge’s label to other nodes from the edge vocabulary, including

a special token [NULL] showing an edge does not exist. As shown in Figure 4.5, we

are only interested in the lower triangle part of the matrix, as we assume that the node

decoder has generated the nodes in a topologically sorted manner. The dashed upper-

triangle part of the adjacency matrix is used only for parallel computation, and it will

be discarded.

We use an attentional decoder using GRU units for generating edges. It operates simi-

larly to the node-level decoder using Equation 4.10 and Equation 4.11. For more accurate

typed edge generation, however, we incorporate the hidden states of the source and tar-

get nodes (from the node decoder) as inputs when updating the hidden state of the edge

decoder:

hE
i,j = GRUE(zi,j−1,h

N
i ,hN

j ,hE
i,j−1), (4.13)

where hE
i,j is the hidden state of the edge decoder for row i and column j, and zi,j−1 is

the label of the previously generated edge from node i to j − 1.
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Figure 4.5: Adjacency matrix style decoder. We represent a graph via an adjacency
matrix. Rows and columns mean the nodes, while the cells represent the edges.
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Figure 4.6: A flat edge-level decoder. We generate edges linearly. The inputs are
node pairs, while the outputs are the associated edges between the nodes.

However, there are two drawbacks to this edge generation method. Firstly, the dummy

edges in the adjacency matrix cause waste of computation. Secondly, the edges generated

by the previous rows are not conditioned upon when the edges in the next row are

generated. However, it may be beneficial to use the information about the outgoing

edges of the previous nodes to enhance the generation accuracy of the outgoing edges

of the next node. We will analyze this hypothesis in Section 4.4.1. Hence, we suggest

flattening the lower triangle of the adjacency matrix. We remove the dummy edges and

concatenate the rows of the lower triangular matrix to form a sequence of pairs of nodes

for which we need to generate edges (see Figure 4.6). This strategy results in using
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information about all previously generated edges when a new edge is generated.

4.4 Experiments

Dataset We report the statistics of the synthetic data and crowdsourced data in Ta-

ble 4.2. The graph size distributions of source and target graphs are almost identical

among the sets. With the increase in text description length, the source graphs become

more complicated accordingly. In addition, according to the average number of involved

nodes and edges when editing the source graphs, GCC data demands more editions than

the other two, which suggests that GCC is much more complicated.

Table 4.2: Statistics of the created datasets. #editing nodes indicates the number of
involved nodes during the graph editing, whereas #editing edges means the number of

involved edges.

Synthetic (Train/Dev/Test) Crowsourced
MSCOCO GCC Train/Dev/Test

size 196k / 2k / 2k 400k / 7k / 7k 30k / 1k / 1k
Ave. #tokens / text desc 5.2 / 5.2 / 5.2 10.1 / 10.1 / 10.2 4.8 / 4.8 / 4.8
Ave. #nodes / src graph 2.9 / 2.9 / 2.9 3.8 / 3.8 / 3.8 2.0 / 2.0 / 2.0
Ave. #edges / src graph 1.9 / 1.9 / 1.9 2.9 / 2.8 / 2.8 1.0 / 1.0 / 1.0
Ave. #nodes / tgt graph 2.9 / 2.9 / 2.8 3.8 / 3.8 / 3.8 2.0 / 2.0 / 2.0
Ave. #edges / tgt graph 1.9 / 1.9 / 1.8 2.9 / 2.8 / 2.8 1.0 / 1.0 / 1.0
Ave. #tokens / src query 4.7 / 4.8 / 4.7 4.9 / 4.8 / 4.9 10.1 / 10.2 / 10.0
Ave. #editing nodes 0.6 / 0.6 / 0.6 0.8 / 0.8 / 0.8 0.7 / 0.7 / 0.7
Ave. #editing edges 0.7 / 0.6 / 0.7 1.0 / 0.9 / 0.9 0.7 / 0.7 / 0.7

Baselines. We consider five baselines for comparison. In “Copy Source” baseline (i),

the system copies the source graph to the target graph2. In the “Text2Text” baseline (ii),

we linearize the graph and reconstruct the natural sentence similarly to the modification

query. In the “Modified GraphRNN” baseline (iii), we use the breadth-first-search (BFS)

based node order to flatten the graph3, and use RNNs as the encoders (You et al., 2018)

and a decoder similar to our systems. In the final two baselines, “Graph Transformer”

(iv) and “Deep Convolutional Graph Networks” (DCGCN) (v), we use the Graph Trans-

formers (Cai and Lam, 2019) and Deep Convolutional Graph Networks (Guo et al., 2019)

to encode the source graph (the decoder is identical to ours).

2It is based on the observation that the user only modifies a small portion of the source graph.
3The topological ties are broken by order of the nodes appearing in the original query.
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Our Model Configurations. We report the results of different configurations of our

model. The “Fully Connected Transformer” uses dense connections for the graph en-

coder. This is in contrast to “Sparse Transformer”, which uses the connectivity structure

of the source graph in self attention (see Section 4.3.2.1). The information from the graph

and query encoders can be combined by “Concatenation”, late fused by “Gating”, or

early fused by “Cross Attention” (see Section 4.3.2.3). The “Adjacency Matrix” style

for edge decoding can be replaced with “Flat-Edge” generation (see Section 4.3.2.5).

Training Details Our encoder is comprised of 3 stacked sparse transformers, with

4 heads at each layer. The embedding size is 256, and the inner-layer of feed-forward

networks has a dimension of 512. Both node-level and edge-level decoders are one-layer

GRU-RNN with a hidden size of 256, and the size of embeddings is 256 as well. We

train 30 epochs and 300 epochs for synthetic and user-generated data respectively, with

a batch size of 256. We evaluate the model over the dev set every epoch, and choose the

checkpoint with the best graph accuracy for the inference.

Evaluation Metrics. We use two automatic metrics for the evaluation. Firstly, we

calculate the precision/recall/F1-score of the generated nodes and edges. Secondly, we

use the strict-match accuracy, which requires the generated graph to be identical to the

target graph for a correct prediction.

4.4.1 Experimental Results

Table 4.3 reports the results of our model and the baselines on the synthetic and user-

generated datasets. From the experimental results, various configurations of our model

are superior to the baselines by a significant margin. Noticeably, DCGCN and graph

transformer are strong baselines, delivering SOTA performance across tasks such as

AMR-to-text generation and syntax-based neural machine translation (Guo et al., 2019;

Cai and Lam, 2019). We believe the larger number of edge types in our task impairs

their capability.

We ablate the different components of the proposed methods to appraise their effective-

ness (c.f., the bottom pane of Table 4.3). First, our hypothesis about the preference
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Table 4.3: Node-level, edge-level and graph-level matching score (%) over two datasets
(modified from MSCOCO). “*” indicates statistically significant difference (p <0.0001)

from the best baseline.

Synthetic Data User-Generated Data
Edge F1 Node F1 Graph Acc Edge F1 Node F1 Graph Acc

Baselines
Copy Source 64.62 78.41 - 31.42 66.17 -
Text2Text 72.74 91.47 64.42 52.68 78.59 52.15
Modified GraphRNN (You et al., 2018) 55.76 80.64 50.72 57.17 80.68 56.75
Graph Transformer (Cai and Lam, 2019) 75.68 91.21 71.38 59.43 81.47 58.23
DCGCN (Guo et al., 2019) 72.47 89.08 68.89 54.23 79.05 52.67

Our Models
Fully Conn Trans + Adj Matrix + Concat 76.49* 91.54 72.13* 57.47 81.29 56.91
Sparse Trans + Adj Matrix + Concat 77.94* 91.94 74.68* 57.78 81.36 56.98
Sparse Trans + Flat-Edge + Concat 79.13* 92.11 76.13* 57.92 81.74 57.03
Sparse Trans + Flat-Edge + Gating 80.13* 92.54* 77.04* 59.58* 82.39* 59.63*
Sparse Trans + Flat-Edge + Cross-Attn 86.52* 95.40* 82.97* 62.10* 83.69* 60.90*

for flat-edge generation over adjacency matrix-style edge generation is confirmed. Fur-

thermore, the two-way communication between the graph and query encoders through

the gating mechanism consistently outperforms a simple concatenation in terms of both

edge-level and node-level generation. Eventually, the cross-attention – the early fusion

mechanism, leads to substantial improvement in all metrics.

We also observe that generating the graphs for the crowdsourced data is much harder

than the synthetic data, which we believe is caused by the annotators’ diversity in se-

mantics and expressions. Consequently, all models suffer from performance degradation.

Nevertheless, the performance trends of different configurations of our model are almost

identical on the user-generated and synthetic data.

In addition, Figure 4.7 presents the breakdown performance of our best model for

node-level F1 scores based on the frequency of nodes. Similar to other long-tail prob-

lems (Zhang et al., 2021), the performance gradually increases with the increase in node

frequency.

Finally, Table 4.4 indicates that with the increase of the complexity of graphs, the models

have difficulty in inferring the relations among nodes for GCC data, which causes a

dramatic drop in terms of the edge F1 score and graph accuracy.
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Figure 4.7: Node-level F1 scores of different node frequency groups on synthetic data
and user-generated data. X axis indicates the frequency group, where Y axis is F1

score.

Table 4.4: Node/Edge/Graph level matching scores comparing the best baseline -
Graph Transformer to our model variants on synthetic MSCOCO and GCC.

MSCOCO GCC
Edge F1 Node F1 Graph Acc Edge F1 Node F1 Graph Acc

Graph Trans. 75.68 91.21 71.38 42.76 82.38 34.31
Concat 79.13 92.11 76.13 45.09 86.93 37.53
Gating 80.13 92.54 77.04 52.85 91.60 45.79
Cross-Attn 86.52 95.40 82.97 57.68 93.84 52.50

4.4.2 Quantitative Analysis

The best configuration of our model is based on cross-attention, with a flat-edge decoder,

and sparse Transformer. We investigate which cases in this configuration outperforms

the baselines. As seen in Figure 4.8, cross-attention is able to understand the pronoun

and correctly removes the connected object and its associated relation as evidenced

by the first example A. In addition, example B demonstrates that when the graph

transformer observes a longer description, it lacks the capability of fusing the semantics

between the source graph and the modification query; then, certain nodes from the

source graph are not preserved. We believe that the proposed approach can reduce the

noise in graph generation, and retain fine-grained details better than the baselines.
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Figure 4.8: Our best model v.s. the Graph Transformer on two modification examples.

4.5 Summary

In this chapter, we explore a novel problem of conditional graph modification, in which

a system needs to understand the context, i.e., a source graph and a modification

command, to modify the source graph. Since there is no available dataset, we craft

two synthetic datasets and one crowdsourced data for this novel task. Then we de-

vise an innovative architecture to conduct this task. Finally, our best system, based

on graph-conditioned transformers and cross-attention information fusion, outperforms

strong baselines adapted from machine translations and graph generations.



Chapter 5

Context-dependent Semantic

Parsing

This chapter is based on:

Xuanli He, Quan Tran, and Gholamreza Haffari. 2019. A Pointer Network Architec-

ture for Context-Dependent Semantic Parsing. In Proceedings of the The 17th An-

nual Workshop of the Australasian Language Technology Association, pages 94–99,

Sydney, Australia. Australasian Language Technology Association.

In the previous chapter, we initiated our exploration of long-range context-dependent

NLU through the lens of scene graphs. We have illustrated that one can utilize the

preceding context to adjust the components of a scene graph such that the changing

intent of users can be dynamically modeled via an interaction.

The accomplishment achieved in the previous chapter corroborates the necessity of mod-

eling a long-range context in a dialogue-driven NLU. However, since a dialogue system in-

volves multi-turn instead of single-turn conversation, one has to capture a much broader

context; otherwise, a misunderstanding can be incurred, as shown in Table 5.1.

To explore the significance of the longer context in NLU, this chapter focus on a dialogue-

based semantic parsing task. In this task, one should consider the multi-sentence context

dependency when parsing an utterance into the corresponding logical form. Moreover,

since the arguments of the logical form are substrings of the utterance, the parser has

84
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Table 5.1: An error incurred by the dialogue-driven parsing system without consid-
ering the long-range context.

dialog history
...
user : compose a new email. the recipient is mom.
user : the subject is hello
user : update mom to “mom and dad”
...
current utterance:
update mom to “mom and dad”
logical form
reference: ( setFieldFromString ( getProbMutableFieldByFieldName recipient list ) ( string-
Value “ mom and dad ”) )
system: ( unknown )

to identify and place them in the argument slots. A parser without such capability

will fail to produce a proper logical form. To address these issues, we propose a novel

architecture to capture the contextual information and alleviate the argument fill-in

errors via a copying mechanism.

5.1 Introduction

Recently, due to the breakthrough of deep learning, numerous and various tasks within

the field of natural language processing (NLP) have made impressive achievements

(Vaswani et al., 2017; Devlin et al., 2018; Edunov et al., 2018). However, most of these

achievements are assessed by automatic metrics, which are relatively superficial and

brittle, and can be easily tricked (Paulus et al., 2017; Jia and Liang, 2017; Läubli et al.,

2018). Hence, understanding the underlying meaning of natural language sentences is

crucial to NLP tasks.

As an appealing direction in natural language understanding, semantic parsing has been

widely studied in the NLP community (Ling et al., 2016; Dong and Lapata, 2016; Jia

and Liang, 2017). Semantic parsing aims at converting human utterances to machine-

executable representations. Most existing work focuses on parsing individual utterances

independently, and even they have access to contextual information. In spite of several

pioneering efforts (Zettlemoyer and Collins, 2009; Srivastava et al., 2017), these pre-

neural models suffer from complicated hand-crafted feature engineering, compared to

their neural counterparts (Rabinovich et al., 2017; Dong and Lapata, 2018). One notable
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exception is the work of Suhr et al. (2018), who incorporates context into ATIS data

with a neural approach.

In this work, we propose a neural semantic parser for the email assistant task. As shown

in Table 5.2, in order to resolve this task, we have to incorporates the conversation

context and a copying mechanism to fill in the arguments of the logical forms from the

input sentence. Our model achieves state-of-the-art (SOTA) performance. We further

provide a details analysis of where these improvements come from.

Table 5.2: Example of a real-world interaction between a human (User) and an
automated email assistant (Agent)

User: Create contact for mom
Agent: ( createInstanceByFullNames contact ( stringNoun “ mom ” ) )
User: mom ’s email is momthebest7 @ bestforyou.com
Agent: ( setFieldFromString ( getProbMutableFieldByInstanceNameAndFieldName mom
email ) ( stringValue “ momthebest7 @ bestforyou.com ” ) )
User: create new outgoing mail
Agent: ( createInstanceByConceptName outgoing email )
User: set the recipient to mom ’s email
Agent: ( setFieldFromFieldVal ( getProbMutableFieldByFieldName recipient list ) ( eval-
Field ( getProbFieldByInstanceNameAndFieldName mom email ) ) )
User: send email to mom
Agent: ( send email )

In summary, the contributions of this chapter are as follows:

• We propose a novel and efficient approach to modeling the historical context of

a semantic parsing task. This avenue significantly boosts the performance by 1.8

scores using contextual information.

• We incorporate a copying mechanism to alleviate the argument fill-in errors in-

curred by misalignment between source sentences and logical forms, leading to a

gain of 2.3 scores in the best case.

• We show that one can superimpose the copying mechanism on the context-dependent

design to advance the performance by 1.0 scores on RNNs and Transformer.

• We quantitatively study the error reduction brought by the copying mechanism

and context-dependent modeling, respectively.



87

5.2 Models

To build our models, we follow a process of error-driven design. We first start with

a simple seq2seq model, then we closely examine the errors, group them, and then

propose a solution to each of these error groups. Our examination identifies two primary

sources of errors in a seq2seq model: i) the overly strong influence of the language

model component and ii) the lack of contextual information. Thus we design our model

to incorporate the Pointer Mechanism and Context-dependent Mechanism to solve these

problems. From this point, we refer to the errors caused by the first source (language

model) as Copy-related errors, and the ones caused by the second source (lack of context)

as Context-related errors.

5.2.1 Word Copy using the Pointer Mechanism

With the basic seq2seq architecture, the model’s generation is heavily influenced by

the language model aspect. Thus, it tends to use the strings it has seen in the training

dataset (see Table 5.3).

Table 5.3: An error made by the base seq2seq model. Copy mechanism can fix it.

current utterance:
set body to blue
logical form
reference: (setFieldFromString ( getProbMutableFieldByFieldName body ) ( stringValue ”
blue ” ) )
seq2seq: (setFieldFromString ( getProbMutableFieldByFieldName body ) ( stringValue ”
charlie is on his way ” ) )

From this analysis, we realize that it would be crucial for the model to learn when to

copy from the source sentence, and when to generate a new token. Thus, we incorporate

the pointer mechanism into our base seq2seq approach.

As shown in Figure 5.1, for an email assistant system, users inputs are usually comprised

of a functional part and a content part. A semantic parser should be able to distinguish

and handle them differently. Specifically, the parser must generate a series of lambda-

like functions for the functional part, while the content part should be copied to the

argument slot.



88

Figure 5.1: A example of semantic parsing on the email assistant system.

Our pointer network is inspired by that of See et al. (2017) designed for the summariza-

tion task. Given an utterance x and a logical form y, at each time step t, we have a soft

switch which determines the contributions of the token generator and the copier which

uses a pointer over the words of the input utterance:

P (yt) = pgenPvocab(yt) + (1− pgen)
∑

i:xi=yt

αt
i

where αt
i is the attention score over the position i in the t-th generation step, and Pvocab is

a probability distribution over the vocabulary. pgen ∈ [0, 1] is the generation probability,

modeled as:

pgen = σ(wT
c ct + wT

s st + wT
xxt + b)

where ct and st are the context vector and the decoder state respectively (c.f., Equa-

tion 2.3 and 2.4), while wT
c , wT

s , wT
x and b are learnable parameters.

5.2.2 Conditioning on Conversation Context

Understanding conversations between a user and the system requires the comprehension

of the flow of the discourse among a sequence of utterances. Processing utterances

independently within a conversation leads to misinterpreting users inputs, which will

result in incorrect logical form generation (see Table 5.4). Therefore, we incorporate the

context when processing the current utterance for a better generation.
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Table 5.4: An error made by the base seq2seq model. It is clear that without the
context information, the model cannot infer the correct logical form.

dialog history
...
user : compose a new email. the recipient is mom. the subject is hello
user : cancel
...
current utterance:
cancel
logical form
reference: ( undo )
seq2seq: ( cancel )

Basically, a conversation consists of a sequence of user utterances:{x1, ...,xT } paired with

a list of logical forms: {y1, ...,yT }. For a given utterance sequence xi = {xi
1, ...,x

i
m},

a semantic parser should predict its associated logical form yi = {yi
1, ...,y

i
n}. Inspired

by Suhr et al. (2018), we introduce a hierarchical architecture to model both utterance-

level and conversation-level information (see Figure 5.2). At the utterance level, we use

an attentional seq2seq model to establish the mapping from an utterance xi to its

corresponding logical form yi:

hi
1:m = Encoder(xi

1, ...,x
i
m), (5.1)

cit = Attention(hi
1:m, sit−1), (5.2)

yi
t, s

i
t = Decoder(yi

t−1, s
i
t−1, c

i
t) (5.3)

As the seq2seq model, we investigate the use of RNN-based and Transformer-based

architectures. Furthermore, we make use of a conversation-level RNN to capture the

wider conversational context:

gi = RNN(hi
m, gi−1) (5.4)

where hi
m is the last hidden state of the ith utterance, and g is the conversational hidden

state. In order to incorporate the conversational information into our model, we modify

the Equation 5.1 by injecting gi−1:

hi
1:m = Encoder([xi

1 : gi−1], ..., [x
i
m : gi−1])

where [:] denotes a concatenation operation.
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Similar to memory networks (Sukhbaatar et al., 2015), it is essential to give the decoder

a direct access to the last k utterances, if we want to leverage the discourse information

effectively. Hence, we concatenate the previous k utterance {xi−k, ..,xi−1} with the

current utterance. Now Equation 5.2 is rewritten as:

cit = Attention(hi−k
1:m, ..,hi−1

1:m,hi
1:m, sit−1)

In addition, since the importance of the concatenated utterances is different, it is signif-

icant to differentiate these utterances to reduce confusion. Therefore, as suggested by

Suhr et al. (2018), we add relative position embeddings Epos[·] to the utterances when

we compute attention scores. Depending on their distances from the current utterance,

we append Epos[0], ..,Epos[k] to the previous utterances respectively.

5.3 Experiments

Dataset Semantic paring is crucial to dialogue systems, especially for multi-turn con-

versations. Additionally, understanding users’ intentions and extracting salient require-

ments play an essential role in dialogue-related semantic parsing. We use a dataset

created by Srivastava et al. (2017) as a case study to explore the performance of seman-

tic parsing in dialogue systems. This dataset is collected from an email assistant, which

can help users manage their emails. As shown in Table 5.5, users can type some human

sentences from the interface. Then the email assistant can automatically convert the

natural sentences to machine-understandable logical forms.

Table 5.5: A partial conversation from the data.

dialog history
...
user : Define the concept “ contact ”
user : add field “ email ” to concept “ contact ”
user : create contact “ Mom ”
...
logical form
...
(defineConcept ( stringNoun “ contact ” ) )
(addFieldToConcept contact ( stringNoun “ email ” ) )
(createInstanceByFullNames contact ( stringNoun “ mom ” ) )
...
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Following Srivastava et al. (2017), we partition the dataset into a training fold (93

conversations) and a test fold (20 conversations) as well. However, this partition might

be different from Srivastava et al. (2017), as they only release the raw Email Assistant

dataset. The total number of user utterances is 4759, the number of sessions is 113, and

the mean/max of the number of utterances per interactive session is 42/273.

5.3.1 Main Results

Prior to this work, Srivastava et al. (2017) also incorporate the conversational context

into a CCG parser (Zettlemoyer and Collins, 2007). CCG requires extensive hand-

feature engineering to construct text-based features. However, neural semantic parsers

have been demonstrating impressive improvement over various and numerous dataset

(Suhr et al., 2018; Dong and Lapata, 2018). Hence, we explore both RNN-based (Bah-

danau et al., 2014) and Transformer-based (Vaswani et al., 2017) architectures for our

attentional seq2seq model, denoted as RNNS2S and Transformer respectively.

In the RNNS2S model, at the utterance level, a one-layer bidirectional RNNs are for the

encoder, while the decoder is a two-layer RNNs. We use a one-layer RNNs to represent

the conversational information flow. All RNNs use LSTM cells, with a hidden size of

128. The dimensions of word embeddings and position embeddings are 128 and 50

respectively. We train our models for 10 epochs by Adam optimizer (Kingma and Ba,

2014) with an initial learning rate of 0.001. The batch size of non-context training is 16,

while the context variant is 1.

For the Transformer model, we use 3 identical transformer blocks for both encoder and

decoder. Within each block, the size of the embeddings is 256, while the feed-forward

network has 512 neurons. We set the size of heads to 4. The conversational encoder is

a one-layer RNNs with a size of 256. The optimizer and training schedule is same as

Vaswani et al. (2017), except warmup steps = 500. Due to the warmup steps, We train

this model for 14 epochs. The batch size is the same as that of RNNS2S.

Unless otherwise mentioned, we use 3 previous utterances as the history. Since there is

no validation set, we use 10-fold cross-validation over the training set to find the best

parameters.
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Table 5.6: Test accuracy on Email Assistant dataset. Bold indicates the best result.
SPCon is the best CCG parser with contextual information in Srivastava et al. (2017)

Accuracy

Previous methods
Seq2seq Srivastava et al. (2017) 52.3
SPCon Srivastava et al. (2017) 62.3

Our models
RNNS2S 68.0
RNNS2S + pointer 69.3
RNNS2S + context 69.8
RNNS2S + context + pointer 70.5

Transformer 69.3
Transformer + pointer 72.2
Transformer + context 71.0
Transformer + context + pointer 73.4

Table 5.6 demonstrates the accuracy of different models. Our RNNS2S baseline already

surpasses the previous SOTA result with a large margin. However, since we use our

partition, this comparison should not be a reference. Both pointer network and conver-

sational architecture dramatically advance the accuracy. Besides, the RNNS2S baseline

lags behind our approach by 2.5 scores when combining these two techniques. Finally,

the Transformer model also benefits from this synergy and obtains an accuracy of 73.4,

marking a new SOTA result on this dataset.

5.3.2 Analysis

In this section, we provide some deep analysis on our models, including the utility of

the copying mechanism and the context-dependent mechanism.

(a) RNNS2S (b) Transformer

Figure 5.3: Number of copy-related incorrect instances that can be corrected by a
pointer network on RNNS2S (left) and Transformer (right).
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The effects of the copying mechanism We analyze the test data, and count the

number of errors that can be rectified by introducing the pointer network for both

vanilla and context-dependent seq2seq models. According to Figure 5.3, our pointer

network fixes at least half of the incorrect instances. Clearly, the pointer mechanism

cannot solve all copy-related errors. After scrutinizing the system-generated results, we

realize that the pointer network tends to retain the copy mode once it is triggered. This

phenomenon is consistent with the observations by See et al. (2017). Consequently, the

extra copies impinge on the accuracy of the system.

Table 5.7: An example of complex and compositional commands.

utterance:
Set recipient to Mom’s email . Set subject to hello and send the email
logical form:
( doSeq ( setFieldFromFieldVal ( getProbMutableFieldByFieldName body ) ( evalField ( get-
ProbFieldByInstanceNameAndFieldName inbox body ) ) ) ( doSeq ( setFieldFromFieldVal
( getProbMutableFieldByFieldName recipient list ) ( evalField ( getProbFieldByInstance-
NameAndFieldName inbox sender ) ) ) ( send email ) ) )

The effects of the context-dependent mechanism. In the experiments, our context-

dependent mechanism is shown to be able to address context-related errors, especially

when the user’s input implies a complex and compositional command. These complex

commands usually involve a series of complicated actions, as shown in Table 5.7. Ac-

cording to Table 5.8, our context-dependent model rectifies half of the context-related

errors.

Table 5.8: Incorrect instances of RNNS2S, context-dependent RNNS2S, Transformer
and context-dependent Transformer models in terms of complex commands and context

dependency.

#incorrect #incorrect

complex command

RNNS2S 39 Transformer 35
RNNS2S + context 20 Transformer + context 24

context dependency

RNNS2S 29 Transformer 25
RNNS2S + context 21 Transformer + context 16

Since we notice that previous utterances can also obfuscate the model, we conduct an

ablation study over the size of history. As shown in Figure 5.4, overall, incorporating 3

previous utterances reach the best performance. According to Figure 5.5, we believe that
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(a) RNNS2S (b) Transformer

Figure 5.4: Accuracy of different size of historical utterances for RNNS2S (left) and
Transformer (right). X axis is the accuracy, and Y axis is the number of the historical

utterances.

incorporating 3 previous utterances covers sufficient contextual information fo RNNS2S.

Less than this number, the system cannot better utilize context, while the salient in-

formation is contaminated by the extra history. The same behavior is observed in the

Transformer model. We argue that the effective history size would depend on different

datasets, but they will demonstrate the same trend.

Figure 5.5: Attention scores of different size of history on RNNS2S. X axis indicates a
relative position of the studied utterance to the current one. Y axis refer to the number

of historical utterances.

5.4 Summary

In this chapter, we explore a neural semantic parser architecture that incorporates con-

versational context and copying mechanisms. These modeling improvements are solidly

grounded by our analysis, and they significantly boost the performance of the base

model. As a result, our best architecture establishes a new state-of-the-art performance

on the Email Assistant dataset.



Part III

Modeling Task-specific Context
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Chapter 6

Advancing Text Classification by

Modeling Task-specific Context

This chapter is based on:

He, Xuanli, Gholamreza Haffari, and Mohammad Norouzi. ”Generate, Annotate,

and Learn: NLP with Synthetic Text”, Accepted to Transactions of the Association

for Computational Linguistics, 2022

In Part I and II, we have highlighted the significance of context from the perspective of

short- and long-range context, which explicitly embeds the contextual information in the

surrounding words or sentences. However, the definition of context can be implicit or

abstract. For instance, Michael Jordan tends to be a reference to the computer scientist

when the text topic relates to machine learning. In contrast, basketball player “Michael

Jordan” is likely to be more relevant in the sports domain. In addition, advanced

words should be used in formal writing, while simple words frequently appear in daily

conversation. To conclude, the structure, genre, and meaning of sentences are all affected

by an abstract context, denoted by the meta (or task-specific) context. Thus, this Part

is geared toward the exploration and application of the task-specific context.

In addition to the methodology, we also attribute the breakthrough of deep learning

to the availability of plentiful data. Indeed, we can rival human parity to some extent

in tasks where the in-domain data is abundant (Hassan et al., 2018; Liu et al., 2019;
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Lan et al., 2020). Nevertheless, we still face data scarcity for many tasks, which severely

hinders the progress of these tasks. As GPT-family models are able to synthesize human-

like data, we advocate for the use of these models to synthesize task-specific data.

In relation to the capability of data synthesization, since GPT models are trained on

diverse data, the generation space is more comprehensive than we demand. Therefore,

we should steer the vanilla models toward generating task-specific data. To fulfill this

requirement, we first tailor the generation space by fine-tuning or conditioning GPT

models on in-distribution examples. Then we leverage these tailored generative models

to synthesize unlabeled task-specific text. Next, we use state-of-the-art classifiers to

annotate the generated data with pseudo labels. Finally, we combine the labeled data

with the pseudo-labeled data to train more effective classifiers or for the purpose of

knowledge distillation and few-shot learning.

6.1 Introduction

There is an abundance of unlabeled data in the real world, but task-specific unlabeled

data within the scope of a given machine learning problem can be challenging to find.

For instance, one cannot easily find in-domain unlabeled text conforming to the in-

put distribution of a specific Natural Language Processing (NLP) task from the GLUE

benchmark (Wang et al., 2019b). Some NLP tasks require an input comprising a pair of

sentences with a particular relationship between them. Moreover, classification datasets

typically represent a tailored distribution of data and only include a limited number

of class labels. We denote this tailored distribution as a task-specific context. If task-

specific unlabeled data were available, one could adopt self-training (Yarowsky, 1995)

to automatically annotate unlabeled data with pseudo labels to improve the accuracy

and robustness of classifiers (Carmon et al., 2019; Xie et al., 2020; Bari et al., 2021). In

addition, one can use knowledge distillation (Hinton et al., 2015) on fresh task-specific

unlabeled data to more effectively compress deep neural networks and ensembles (Bu-

ciluǎ et al., 2006; Chen et al., 2020).

In the absence of task-specific unlabeled data, one could retrieve unlabeled exam-

ples from a large and diverse open-domain dataset (Du et al., 2021). However, such

a retrieval-based approach may not scale to problems with complex input schemes,
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e.g., sentence pairs with certain relations. Recent work (Yang et al., 2020; Kumar et al.,

2020) has considered the use of Language Models (LMs) like GPT-2 (Radford et al.,

2019) as a means of data augmentation, showing the effectiveness of this approach for

commonsense reasoning and classification tasks. Existing approaches often consider

class-conditional generation, where the synthetic data is produced by conditioning on

a specified class label. However, it is unclear whether the class-conditional generation

is best suited for NLP tasks. Furthermore, existing pipelines often make synthetic data

generation complicated as one needs to detect and discard low-quality synthetic labeled

data or optionally re-label data (Yang et al., 2020; Vu et al., 2021). For instance, Ku-

mar et al. (2020) observes that it is difficult for sentences generated by label-conditioned

GPT-2 to retain the semantics/pragmatics of the conditioning label, leading to poor

performance on downstream tasks.

We unify and simplify existing work on LMs as a data source for NLP and develop

a general framework called “generate, annotate, and learn (GAL)”. The generality of

GAL allows us to use LM-generated synthetic data within novel applications such as

Knowledge Distillation (KD) and few-shot learning. GAL builds on recent advances

in text generation (Radford et al., 2019; Gao et al., 2021) and uses powerful LMs to

synthesize task-specific unlabeled text by fine-tuning or conditioning a large LM on

in-distribution examples. We use state-of-the-art classifiers to annotate generated text

with soft pseudo labels when possible. We then combine labeled data and pseudo-labeled

data to train more effective supervised models, resulting in significant gains on a range

of NLP tasks like KD and few-shot learning.

We present a justification for GAL based on the empirical and vicinal risk minimization

frameworks (Vapnik, 1992; Chapelle et al., 2001). We also investigate key components

of GAL. We find that even if class-conditional LMs are available for text generation, it

is more effective to discard the conditioning labels and let the teacher models produce

pseudo labels. This observation is supported by our theoretical and empirical results.

Accordingly, in contrast to prior work (Yang et al., 2020; Vu et al., 2021), we advocate

for the use of simple unconditional LMs for text synthesis. Further, we avoid any form of

data filtering. Not surprisingly, we find that the diversity of synthetic text matters. That

said, simple unconditional generation given random seeds provides sufficient diversity,

and crafting diverse LM prompts is not needed.
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In summary, Our contributions are as follows:

• We develop GAL, a simple and effective approach to the use of LMs for task-

specific unlabeled text generation. We show that GAL can be used effectively for

KD, self-training, and few-shot learning in NLP.

• We present theoretical and empirical investigations for GAL, explaining why it

works and why using class-conditional LMs to generate synthetic labeled data is

not as effective.

• GAL advances KD for NLP and establishes a new SoTA result for a single 6-layer

transformer on the GLUE test set. It further improves prompt-based few-shot

learning, providing an average improvement of 1.3% on four 4-shot learning NLP

tasks, outperforming GPT-3-6B.

6.2 Preliminaries

Self-training As one of the earliest and most successful approaches in semi-supervised

learning (Fralick, 1967), recently, there has been a resurgence of interest in self-training (Hendrycks

et al., 2020; Sohn et al., 2020; Xie et al., 2020; Du et al., 2021). The core of self-training

is to pseudo-label the unlabeled data via a base model. Then one can advance the model

from the human- and pseudo-labeled data.

Given a labeled dataset L = {(xi, yi)}Ni=1 and an unlabeled dataset U = {xj}Mj=1, we

summarize the procedure of self-training as:

1. First, an initial model denoted f1 is trained using supervised learning on the labeled

dataset L.

2. Then, at iteration t, one adopts ft as the teacher model to annotate the unlabeled

dataset U using pseudo labels. Optionally, one uses a selection method to pick a

subset St ⊆ {(xj , ft(xj))}Mj=1 of pseudo labeled examples.

3. A student model ft+1 is trained to optimize a classification loss on the combination

of L and St:

ℓt+1 = E(x,y)∼(L∪St)H(y, ft+1(x)) , (6.1)
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where H(q, p) = q⊤ log p is the softmax cross entropy loss, and y is assumed to

be a one-hot vector (original labels) or a vector of class probabilities (soft pseudo

labels).

4. Self-training iterations are repeated T times or until performance plateaus.

Many different variants of the basic self-training algorithm discussed above exist in the

literature. These variants differ in the type of pseudo labels used, the selection strategy

to filter pseudo labeled examples, the speed at which ft is replaced with ft+1, the choice

of data augmentation strategy in the teacher and student models, and the weighting of

the two datasets in the objective (Berthelot et al., 2019; Xie et al., 2020; Sohn et al.,

2020; Du et al., 2021).

An important design choice is the type of pseudo labels used. One can simply use soft

class probabilities predicted by a teacher ft (Du et al., 2021), sharpened class proba-

bilities (Berthelot et al., 2019), or hard labels (a one-hot vector that is zero except at

argmaxft(x)) (Lee et al., 2013). Another important consideration is the selection strat-

egy to retain a subset of pseudo-labeled examples. FixMatch (Sohn et al., 2020) uses a

hyper-parameter τ to select examples on which the teacher model has a certain level of

confidence, i.e.,

St = {(x, ft(x)) | x ∈ U & max(ft(x)) ≥ τ} . (6.2)

NoisyStudent (Xie et al., 2020) also uses a form of confidence filtering but ensures

that the class labels in the selected subset are balanced. In principle, any method for

out-of-distribution detection (Hendrycks and Gimpel, 2016) can be adopted for filtering

pseudo-labeled examples. We adopt the simplest variant of self-training and limit hyper-

parameter tuning to a bare minimum.

Knowledge Distillation Like self-training, knowledge distillation (Buciluǎ et al.,

2006; Hinton et al., 2015) has been experiencing a renaissance due in part to the emer-

gence of large pre-trained language models (Sanh et al., 2019; Sun et al., 2019a; Xu

et al., 2020).

Knowledge distillation aims to compress a large model or an ensemble of models into

a compact model without a significant performance degradation. Analogous to self-

training, this goal can be achieved by mimicking the predictions of the teacher model
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via pseudo-labeling. However, there is no iterative process since the student model is

usually inferior to the teacher model.

6.3 Generate, Annotate, and Learn (GAL)

Given a labeled dataset L = {(xi, yi)}Ni=1, we first train an unconditional domain-specific

generative model g(x) on Lx = {xi}Ni=1, and then use it to synthesize unlabeled data.

Such synthetic unlabeled data is used within self-training and KD even in the absence

of in-domain unlabeled data. We restrict our attention to basic KD and self-training

methods, even though GAL can be combined with more sophisticated semi-supervised

techniques too.

Open-domain
unlabeled 

data

Fine-tuning on in-domain
data without labels

Supervised
fine-tuning

 Self-training 
or distillation

Labeled data

BERT and 
Friends

Large LM
(e.g., GPT-2)

Self-supervised pretraining
(Masked language modelling)

In-domain LM 
P(x)

Classifier
P(y | x)

MLE

Better or smaller 
classifier

Synthetic
in-domain
unlabeled 

data

Figure 6.1: An illustration of GAL for NLP. We use open-domain data once for self-
supervised pretraining (e.g., BERT) and once for training a large LM (e.g., GPT-2).
BERT is fine-tuned on labeled data to yield a classifier for the task of interest. GPT-2 is
fine-tuned on the same data without labels to obtain an unconditional task-specific LM,
which is used to generate lots of synthetic in-domain unlabeled data for self-training

and KD.

The effectiveness of GAL depends on the fidelity and diversity of synthetic examples. If

we had access to the oracle generative process, we were able to obtain the best KD and

self-training results, as if we had access to real task-specific unlabeled data. Our prelim-

inary experiments suggest that large language models are particularly effective within

the GAL framework. Hence, as shown in Figure 6.1, to build the best domain-specific

language model, we adopt a large language model pre-trained on lots of open-domain

text, and fine-tune it on a given dataset’s inputs, i.e., Lx, ignoring class labels. Both

our theory and ablations confirm that ignoring class labels is a good idea (Section 6.4
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and 6.5). Transferring the knowledge of large language models is particularly beneficial

a small input dataset Lx of text is available (Hernandez et al., 2021).

To improve the computational efficiency of GAL, we do not generate unlabeled data

on the fly, but generate as many unconditional samples as possible and store them in a

synthetic unlabeled dataset U . We use soft-pseudo labels within self-training and KD,

as we empirically found it is more effective than using hard labels on synthetic data.

Algorithm 3 GAL-KD(L, g0, f0, h, k)

Input: Labeled dataset L = {(xi, yi)}Ni=1

Initial parameters of a generative model g0
Initial parameters of a classifier f0
A teacher model h

Output: A well-trained student classifier fs after KD
▷ unlabeled data generation

1: train a generative model g by fine-tuning g0 on Lx where Lx = {x | (x, y) ∈ L}
2: generate U ={x̃j}kNj=1 by drawing kN random samples i.i.d. from g(x)

▷ knowledge distillation
3: apply h to unlabeled instances of U to get U ′

4: train fs by fine-tuning f0 on L ∪ U ′

5: return fs

6.3.1 Knowledge Distillation with GAL

KD distills knowledge of an expressive teacher model into a smaller student model (Hin-

ton et al., 2015). We pose the following objective function for KD with labeled and

synthetic unlabeled data,

ℓkd = λE(x,y)∼LH(y, fs(x)) + (1− λ)Ex̃∼g(x)H(h(x̃), fs(x̃)) (6.3)

where h is the teacher model, fs is the student model, g is the large pre-trained language

model (e.g., GPT2) fine-tuned on the text in the training data Lx. H(q, p) = q⊤ log p is

the softmax cross entropy loss. Note the use of g(x), approximating the unknown real

data distribution P (x) in Equation 6.3. Algorithm 3 summarizes the GAL-KD process.

6.3.2 Self-Training with GAL

Self-training encourages knowledge transfer between a teacher and a student model in

such a way that the student can outperform the teacher. Algorithm 4 summarizes
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the GAL-self-training process. Given the labeled dataset L and the synthetic unlabeled

dataset U , an initial model denoted f1 is trained using supervised learning on the labeled

dataset L. Then, at iteration t, one adopts ft as the teacher model to annotate the

unlabeled dataset U using pseudo labels. In self-training GAL, the student model ft+1

is trained to optimize a classification loss on the combination of L and U :

ℓt+1 = λE(x,y)∼LH(y, ft+1(x)) + (1− λ)Ex̃∼g(x)H(ft(x̃), ft+1(x̃)) . (6.4)

where λ = 0.5 unless stated otherwise.

Algorithm 4 GAL-self-training(L, g0, f0, k, T )

Input: Labeled dataset L = {(xi, yi)}Ni=1

Initial parameters of a generative model g0
Initial parameters of a classifier f0

Output: A better self-training classifier fT+1 after T steps
▷ unlabeled data generation

1: train a generative model g by fine-tuning g0 on Lx where Lx = {x | (x, y) ∈ L}
2: generate U ={x̃j}kNj=1 by drawing kN random samples i.i.d. from g(x)

▷ self-training
3: train a base model f1 by fine-tuning f0 on L
4: for t = 1 to T do:
5: apply ft to unlabeled instances of U to get U ′

6: train ft+1 by fine-tuning f0 on L ∪ U ′

7: return fT+1

6.3.3 Domain-Specific Text Generation

We take a pre-trained GPT-2 language model (Radford et al., 2019) and fine-tune it sep-

arately on each dataset of interest after removing class labels. We find that training from

scratch on these datasets is hopeless, but the larger the pre-trained GPT-2 variant, the

better the validation perplexity scores are. For tasks modeling a relationship between

multiple sentences, we concatenate a separator token “[SEP]” between consecutive sen-

tences. Once a fine-tuned GPT-2 model is obtained, we generate task-specific synthetic

data up to 40× larger than the original training sets. For some samples of generated text

for GLUE see Appendix 10. We believe using bigger LMs and larger synthetic datasets

will improve our results, but we are constrained by compute resources.
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6.4 An Empirical Risk Minimization Perspective

In supervised learning, one seeks to learn a mapping f that given an input x, predicts

a reasonable output y. To define the supervised learning problem formally, one assumes

that input-output pairs are drawn from a joint distribution P , i.e., (x, y) ∼ P (x, y),

and a loss function H(y, f(x)) is used to assess the quality of a mapping f . This loss is

used to define a notion of expected risk:

R(f) = EP (x,y)H(y, f(x)) . (6.5)

In almost all practical applications P (x, y) is unknown. Hence, a labeled dataset of

examples L = {(xi, yi)}Ni=1 is used to approximate R(f) as

R̂(f) =
1

N

∑N

i=1
H(yi, f(xi)) . (6.6)

This objective function is known as empirical risk, and learning f through minimizing

R̂(f) is known as the empirical risk minimization principle (Vapnik, 1992). To com-

pensate for the finite sample size in Equation 6.6, one typically combines R̂(f) with a

regularizer to improve generalization.

Beyond empirical risk minimization. Empirical risk minimization Equation 6.6 is

motivated as a way to approximate P (x, y) through a set of Dirac delta functions on

labeled examples: Pδ(x, y) =
∑

i δ(x = xi, y = yi)/N . However, this approximation is

far from perfect, hence one uses a held-out validation set for early stopping and hyper

parameter tuning.

Chapelle et al. (2001) approximates expected risk as EPν(x,y)H(y, f(x)), denoted as

vicinal risk minimization, by using a vicinity distribution, e.g., ν(x̃, ỹ | x, y) = N (x̃ −

x, σ2)δ(ỹ = y) to approximate P (x, y) as

Pν(x, y) =
1

N

∑N

i=1
ν(x̃ = x, ỹ = y | xi, yi) . (6.7)

The goal is to increase the support of each labeled data point and improve the quality

and robustness of the risk function.
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Recent work on mixup regularization (Zhang et al., 2018) proposes an effective way

to construct another vicinity distribution by interpolating between two data points and

their labels. Albeit their simplicity, these smoothing techniques tend to improve matters.

Generative models for risk minimization. One can factorize the joint distribution

of input-output pairs as P (x, y) = P (x)P (y | x). Accordingly, if one is able to learn

a reasonable unconditional generative model of x denoted g(x), then one can draw a

pair (x, y) by first drawing x ∼ g(x) and then using the current instance of ft to draw

y ∼ ft(x). Then, one can use ft and g to approximate expected risk as

Rt(ft+1) = Ex∼g(x)Ey∼ft(x)H(y, ft+1(x)) . (6.8)

The quality of this approximation highly depends on the quality of ft and g. If ft is

far from an optimal classifier f∗ or g(x) is far from P (x), Equation 6.8 yields a poor

approximation.

The expected risk in Equation 6.8 smoothens the risk landscape in complex ways beyond

simple Gaussian smoothing and interpolation. This smoothing is applicable to any

continuous, discrete, or structured domain as long as expressive generative models of

P (x) are available. That said, for almost all reasonable loss functions H (e.g., softmax

cross entropy and squared error), Equation 6.8 is minimized when ft+1 = ft, which is not

ideal, especially when ft is far from f∗. On the other hand, empirical risk Equation 6.6

anchors the problem in real labeled examples that are provided as ground truth.

GAL-self-training aims to combine the benefits of Equation 6.6 and Equation 6.8 via:

Rt(ft+1) =
λ

N

∑N

i=1
H(yi, ft+1(xi)) + (1− λ)Ex∼g(x)Ey∼ft(x)H(y, ft+1(x)) (6.9)

In this formulation, if ft represents the minimizer of empirical risk Equation 6.6, then

ft+1 = ft is the minimizer of Equation 6.9 too. However, one does not seek the global

minimizer of empirical risk, but rather the best performance on held-out data. If ft is

obtained by stochastic gradient descent on any risk function, but early stopped according

to empirical risk on a held-out set, then using such ft in Equation 6.9 to define Rt(ft+1)

promotes the selection of a mapping ft+1 that minimizes empirical risk while staying

close to the best performing mapping so far (i.e., ft). This formulation motivates self-

training and GAL as regularizers in the functional space and explains why they can
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conceivably work. Although the arguments are provided here for GAL-self-training,

extending them to GAL-KD is straightforward.

How about class-conditional generative models? One can also factorize the joint

distribution P (x, y) as P (y)P (x | y) and accordingly utilize a class-conditional genera-

tive model g(x | y) to derive the following expected risk formulation:

R(f) = Ey∼P (y)Ex∼g(x|y)H(y, ft+1(x)) . (6.10)

In this setting, pseudo labeling is not needed as synthetic data is already labeled. One

can show that the optimal classifier f∗
g that minimizes Equation 6.10 for the cross-entropy

loss is given by,

f∗
g (y | x) = g(x|y)P (y)

/∑
y′
g(x|y′)P (y′) , (6.11)

that is turning the class-conditional generative model into a classifier by using the Bayes

rule yields the optimal solution.

Provided that the accuracy of generative classifiers on text classification is behind their

discriminate counterparts (e.g., Ravuri and Vinyals, 2019), we think substituting Equa-

tion 6.10 into Equation 6.9 is not a good idea. Essentially, by substituting Equation 6.10

into the classification objective, one is regularizing f to remain close to f∗
g , which is not

an effective strategy if f∗
g is not competitive. This argument corroborates the evidence

from our ablation studies and recent work showing that using class-conditional gener-

ative models to augment supervised learning does not provide big gains (Ravuri and

Vinyals, 2019).

That said, one can still use class-conditional generative models to synthesize high-fidelity

samples. As long as these samples are treated as unlabeled examples and annotated using

a classifier, e.g., ft, we believe this is a reasonable approach falling under GAL. Note that

our argument above only applies to the scenario that class-conditional generative models

are used to synthesize labeled examples. In other words, GAL emphasizes the prediction

of the labels in the course of the algorithm, rather than having the labels predefined. If

one uses the unlabeled synthetic examples from class-conditional generative models, it

still aligns to Equation 6.9, which will be verified in Section 6.5.5.
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Table 6.1: Summary of the GLUE benchmark used for evaluation of GAL. STS-B is
a regression task, so #classes is not applicable.

Dataset task domain #train #dev #test #classes

SST-2 sentiment analysis movie reviews 67k 872 1.8k 2
QQP paraphrase social QA questions 364k 40k 391k 2
QNLI QA/natural language inference Wikipedia 105k 5k 5.4k 2
RTE natural language inference news, Wikipedia 2.5k 277 3k 2
MNLI natural language inference misc. 393k 20k 20k 3
MRPC paraphrase news 3.7k 408 1.7k 2
CoLA acceptability misc. 8.5k 1043 1k 2
STS-B sentence similarity misc. 5.8k 15k 1.4k −

6.5 Experiments

In this section, we asses the effectiveness of GAL on KD, self-training and few-shot

learning.

6.5.1 Data

We use the GLUE benchmark (Wang et al., 2019b) for our KD and self-training exper-

iments. The statistics of GLUE are reported in Table 6.1. Regarding few-shot learning,

Brown et al. (2020) studied a total of 51 few-shot learning tasks. Studying all of these

tasks is prohibitively expensive. Thus, we filter tasks by following these two steps. First,

since generating m synthetic examples for each test instance is computationally expen-

sive, we exclude tasks that have more than 5k test examples. Second, we filter tasks on

which GPT-3-6B achieves a score lower than 65% (please refer to Table H.1 in Brown

et al. (2020) for more details). After applying the filtering steps, we use four datasets:

SST-2 (Wang et al., 2019b), PIQA (Bisk et al., 2020), COPA and BoolQ (Wang et al.,

2019a) as the testbed.

Generating Synthetic Text for GLUE To generate domain-specific synthetic data,

we fine-tune GPT-2-large on the training set of each downstream task, excluding labels.

For tasks with multiple input sentences, we concatenate input sentences into a long

sequences and separate sentences by special [SEP] tokens. We generate new domain-

specific data by using top-k random sampling similar to Radford et al. (2019). We do not

feed any prompt to the LM, but a special [BOS] token to initiate the generation chain.

A generation episode is terminated when a special [EOS] token is produced. We gen-

erate diverse sentences by varying the random seed. After collecting enough synthetic
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data, we only retain unique sentences. For tasks with α input sentences, we discard

generated samples that violate this constraint (approximately 10% of samples were re-

jected). Finally, our synthetic unlabeled dataset U includes 40× as many examples as

the original dataset for each task in GLUE.

6.5.2 State-of-the-art Results of Knowledge Distillation with GAL on

GLUE

It is known that KD on fresh data, unseen during training, performs better (Buciluǎ

et al., 2006; Chen et al., 2020) than KD on original training data. Hence, we investigate

the effectiveness of KD using generated unlabeled data through GAL.

We use the HuggingFace implementation (Wolf et al., 2020) for KD experiments and

adopt a standard experimental setup consistent with previous work (Sun et al., 2019a;

Xu et al., 2020). Following Rashid et al. (2021), fine-tuned RoBERTa-large (24-layer

transformer) represents the teacher and a DistilRoBERTa (6-layer transformer) (Sanh

et al., 2019) is used as the student. We train the student model on U and L, where U

is annotated by an ensemble of 10 models, achieving an average score of 87.9. We then

mix L and U with a ratio of 1:4, which is equivalent to λ = 0.2. This ratio works best

on the dev set.

Table 6.2 shows the results of individual 6-layer transformers on the GLUE test set. All

of the baselines use an identical student architecture. GAL achieves the best entry on

the GLUE leaderboard, marking a new state-of-the-art for KD on NLP. It outperforms

strong KD baselines such as DistilRoBERTa (Sanh et al., 2019), BERT-PKD (Sun et al.,

2019a), BERT-Theseus (Xu et al., 2020), tinyBERT (Jiao et al., 2020) and MATE-

KD (Rashid et al., 2021). It also outperforms our own DistilRoBERTa+KD baseline,

which learns from soft labels produced by an identical RoBERTa-large ensemble on the

original labeled dataset. While the use of soft labels outperform the vanilla fine-tuned

DistilRoBERTa model, it significantly underperforms our KD+GAL baseline. We also

compare with round-trip translation (RT), a strong data-augmentation baseline (e.g., Yu

et al., 2018; Shleifer, 2019). We mirror the experimental setup of GAL and generate 40×

unlabeled data using German as the bridge language (English →German→English). The

translations are generated via the best model in WMT19 (Ng et al., 2019). Although
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Table 6.3: RoBERTa base and GAL self-training results on GLUE dev sets, averaged
across 5 independent runs (numbers in the subscript indicate the error bar, i.e., stan-

dard deviation divided by
√

5.).

Model MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg

RoBERTa base 87.7 0.1 63.6 0.4 94.8 0.1 90.1 0.4 90.8 0.1 91.5 0.1 92.6 0.1 78.8 0.4 86.2
+ GAL (iter 1) 87.9 0.1 65.1 0.5 95.3 0.1 91.7 0.5 91.4 0.1 91.8 0.1 93.1 0.1 81.4 0.4 87.2
+ GAL (iter 2) 88.0 0.1 65.2 0.5 95.3 0.1 92.2 0.4 91.5 0.1 91.7 0.1 93.2 0.1 82.4 0.5 87.4
+ GAL (iter 3) 87.9 0.1 65.5 0.5 95.3 0.1 92.2 0.5 91.7 0.2 91.7 0.1 93.2 0.1 82.0 0.5 87.4

RoBERTa base + self-distillation 88.1 0.1 63.7 0.5 95.2 0.1 90.3 0.4 90.4 0.1 91.5 0.1 93.1 0.1 79.7 0.5 86.5

DistilRoBERTa+RT is better than vanilla DistilRoBERTa and KD variants, it still

drastically underperforms our approach.

6.5.3 Self-Training with GAL on GLUE

We fine-tune pretrained RoBERTa model provided by fairseq (Ott et al., 2019) on each

GLUE task. Fine-tuned RoBERTa serves as the first teacher model for self-training.

Each student model is initialized with the original pretrained RoBERTa and fine-tuned

with exactly the same hyper-parameters as suggested by fairseq (Ott et al., 2019). We

combine the labeled dataset L and the synthetic dataset U with a ratio of 1:1, by

oversampling labeled data. This corresponds to λ = 0.5 in Equation 6.9.

Table 6.3 shows that GAL provides an average improvement of +1.3% over RoBERTa-

base. We see consistent improvements with more GAL iterations, but performance

saturates after three iterations. We further compare our approach with a self-distillation

baseline (Furlanello et al., 2018), in which the teacher and student models use the same

architecture and transfer knowledge via the original labeled training set. Although self-

distillation provides a slight improvement, the gains from GAL are more significant.

We delve deeper and combine GAL self-training with RoBERTa-large and report test re-

sults for both single model and ensemble model in Table 6.4. We observe consistent gains

coming from GAL on RoBERTa-large. Our results underperform the latest and biggest

LMs from the GLUE leaderboard, but we are optimistic that GAL can be effectively

combined with enormous LMs to provide additional gains.
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6.5.4 Prompt-based Few-shot Experiments

GPT3 (Brown et al., 2020) has introduced an optimization-free paradigm for few-shot

learning for NLP. Without updating the parameters, large LMs can correctly predict

the labels of the inputs by conditioning on a prompt, which consists of an instruction,

a few labeled instances and a new unlabeled input. We apply GAL to prompt-based

few-shot learning. Specifically, we present k labeled examples as a prompt to GPT-

J (Wang and Komatsuzaki, 2021), an open-sourced re-implementation of GPT-3-6B,

and generate m synthetic examples, followed by the corresponding labels. Note that

to mitigate noisy outputs, the generation of each synthetic example only conditions on

the original k labeled examples. Finally, we concatenate the original k examples and m

synthetic examples, and conduct a (k + m)-shot learning experiment with GPT-J.

Table 6.5: Few-shot learning results for GPT-J (6B) (Wang and Komatsuzaki, 2021)
on four NLP datasets. Accuracy is reported for these datasets.

Model SST-2 PIQA COPA BoolQ Avg

4-shot 89.8 0.8 76.0 1.4 79.0 1.5 64.3 0.8 77.3
8-shot 91.3 0.8 76.2 1.2 79.0 1.5 66.2 0.8 78.2
16-shot 92.7 0.6 77.0 0.9 81.0 1.1 66.8 0.8 79.4

4-shot + synthetic 12-shot (GAL) 91.5 0.7 76.7 1.0 80.0 1.2 65.9 0.8 78.5

We notice that in order to generate valid synthetic data, GPT-J requires to see at least

4 labeled examples. In addition, at most 16 examples of BoolQ can be fed into GPT-J

without truncation. Thus, we set k and m to 4 and 12 respectively. As seen in Table 6.5,

GAL leads to an average improvement of 1.2% over 4-shot learning, and reduces the gap

between 4-shot and 16-shot learning. We noticed that the quality of some generated ex-

amples is low. We believe the performance of few-shot learning can be further improved

with high-quality instances. One solution is to generate many synthetic examples, and

select a high-quality subset. Since each test instance conditions on distinct labeled in-

stances, one has to generate different synthetic instances for each test example from

GPT-J, which causes expensive computation. Due to such computational constraints,

we leave the investigation of data selection strategies to the future work.
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6.5.5 Ablating Components of GAL on GLUE

We conduct an in-depth study of different components of GAL on GLUE datasets.

Unless stated otherwise, we use a RoBERTa-base model with a combination of the

original training data and 40× synthetic data for each self-training experiment.

GPT-2 model size. Radford et al. (2019) present a few variants of the GPT-2 model

including GPT-2, GPT-2-medium, GPT-2-large, and GPT-2-XL. Larger GPT-2 models

yield better perplexity scores and higher generation quality. We utilize these models

except GPT-2-XL within the GAL framework to study the impact of the generative

model’s quality on downstream task’s performance. Table 6.6 shows that regardless of

the GPT-2 model sizes, GAL consistently surpasses the vanilla RoBERTa base. More-

over, SST-2 and RTE datasets are not sensitive to the capacity of GPT-2, but higher

quality synthetic text improves the results on MRPC and CoLA datasets. We leave

investigation of GPT-2-XL and even larger LMs such as GPT-3 (Brown et al., 2020) to

future work.

Table 6.6: GAL with various GPT-2 model sizes on GLUE dev sets. NA indicates a
RoBERTa base model.

GPT-2 SST-2 RTE MRPC CoLA

NA 94.8 78.8 90.1 63.6
small 95.5 81.3 90.9 63.9
medium 95.3 81.3 91.3 63.7
large 95.3 81.4 91.7 65.1

Soft v.s. hard pseudo label. We investigate the use of soft and hard pseudo labels

within the GAL framework. The results in Table 6.7 suggest that GAL using soft

pseudo labels is more effective than hard labels on the GLUE benchmark. This finding is

compatible with the intuition that soft labels enable measuring the functional similarity

of neural networks better (Hinton et al., 2015).

Table 6.7: GAL with soft v.s. hard pseudo labels on GLUE dev sets.

Pseudo label SST-2 RTE MRPC CoLA

hard 95.0 80.7 90.8 63.0
soft 95.3 81.4 91.7 65.1
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Class-conditional synthetic data generation. Although it has shown that incor-

porating labeled synthetic data can significantly boost the performance of low-resource

tagging tasks (Ding et al., 2020; Liu et al., 2021), previous work (Kumar et al., 2020;

Ravuri and Vinyals, 2019) suggests that it is challenging to utilize labeled synthetic data

from class-conditional generative models to boost the accuracy of text and image clas-

sifiers. Our theory in Section 6.4 points to the potential drawback of class-conditional

synthetic data. We empirically study this phenomenon, by fine-tuning GPT-2 in a class-

conditional manner. Then we utilize its synthetic examples in two different cases: 1)

labeled synthetic examples and 2) unlabeled synthetic examples. Table 6.8 shows that

not only class-conditional LMs underperform unconditional LMs in our GAL framework,

but also they are much worse than the baseline, when using the pre-defined labels. Nev-

ertheless, if we apply GAL to these examples, the class-conditional LM is on-par with the

unconditional one, which corroborates the importance of the annotation step in GAL.

Table 6.8: Synthetic data from class-conditional LMs underperforms GAL and
RoBERTa on GLUE dev sets.

Generative model Labeled synthetic data SST-2 RTE MRPC CoLA

None (baseline) - 94.8 78.8 90.1 63.6

Class-conditional LM ✓ 92.9 74.4 86.0 58.4
Unconditional LM (GAL) ✗ 95.3 81.4 91.7 65.1
Class-conditional LM (GAL) ✗ 95.4 81.0 91.4 65.2

Besides, to further verify this argument, we sample 100 instances from the synthetic RTE

dataset generated by the label-prompted GPT2, as the class-conditional LM. Then we

annotate these examples using a human annotator, GPT2 classifier and RoBERTa clas-

sifier. Finally, we compute the Accuracy, F1, Precision and Recall scores between human

labels and GPT2 labels, between human labels and RoBERTa labels, and between hu-

man labels and conditioned labels used by GPT2 when data was generated. Table 6.9

shows that class-conditional LM has difficulty generating sentences retaining the seman-

tics or pragmatics of a specified category, which also corroborates our theoretical analysis

in Section 6.3. On the other hand, discriminative models, such as GPT2 classifier and

RoBERTa classifier, are able to produce higher quality labels that correlate better with

human annotations.

Quality of synthetic dataset. An effective generative model of text should learn

the word preferences and genre associated with a given corpus, but still produce novel
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Table 6.9: Performance of GPT2 annotation, RoBERTa annotation and conditioning
labels on 100 random examples from the synthetic RTE dataset generated by a class-

conditional LM.

Label type Accuracy F1 Precision Recall

GPT2 86.0 87.0 88.7 85.5
RoBERTa 90.0 91.4 100.0 84.1
conditioning label 72.0 71.4 66.0 77.8

sentences. In order to study the characteristics of our synthetic datasets, Table 6.10

reports the number of unique n-grams in the training and synthetic datasets, as well

as the number of unique n-grams shared between them. The high degree of overlap

on uni-grams suggests that the fine-tuned GPT-2-large is somewhat domain-specific.

Meanwhile, the large number of unique n-grams in the synthetic dataset suggests that

many novel word combinations are generated, which is helpful for GAL.

Table 6.10: For each dataset we report the number of unique n-grams in (the original
dataset, the synthetic dataset, shared between the two).

SST-2 QNLI RTE MRPC CoLA

1-gram (15k, 33k, 11k) (89k, 231k, 55k) (18k, 34k, 13k) (15k, 27k, 10k) (6k, 6k, 4k)
3-gram (107k, 2M, 38k) (2M, 10M, 513k) (120k, 750k, 30k) (105k, 562k, 27k) (39k, 198k, 14k)
5-gram (109k, 4M, 9k) (2M, 25M, 146k) (130k, 1M, 4k) (120k, 1M, 7k) (35k, 389k, 5k)

6.6 Summary

We present Generate, Annotate, and Learn (GAL): a framework for self-training and

knowledge distillation with generated unlabeled data. We motivate GAL from an ex-

pected risk minimization perspective and demonstrate both theoretically and empirically

that the use of unconditional generative models for synthetic data generation is more ef-

fective than class-conditional generative models, previously used in the literature. GAL

leverages advances in large pretrained language models to help supervised learning and

can have implications for learning from limited labeled data. GAL significantly helps im-

prove knowledge distillation and prompt-based few-shot learning. Finally, We hope that

GAL will stimulate new research on the evaluation and development of large language

models.



Chapter 7

Conclusion

7.1 Summary of the Thesis

The primary contribution of this thesis is the leveraging of various contexts to enhance

the performance of natural language understanding and generation by mitigating uncer-

tainty caused by the lack of context. We have further crystallized this high-level goal into

three main directions: (1) encouraging morphologically plausible subword segmentation

in NMT via source- and target-side contexts (Chapter 3); (2) enhancing the utility of

context-dependent language understanding tasks through the preceding context (Chap-

ter 4 and 5); and (3) advancing text classification tasks by modeling the task-specific

context (Chapter 6).

We presented the first work incorporating source- and target-side sentences as context

into subword word segmentation for NMT in Chapter 3. We found that as greedy

and stochastic solutions disregard the context, the resultant subword segmentations are

suboptimal. Inspired by this finding, we devised a mixed character-subword Transformer

as a means of context modeling. The Transformer allowed us to access the source- and

target-side information to capture the contextual features. Since there are multiple valid

segments and the optimal one is latent, we utilized dynamic programming to marginalize

possible segmentations during the training stage. We replaced the sum operation with a

max one at the inference stage to produce the best segments. To assess the effectiveness

of the proposed approach, we applied it to ten translation tasks involving five language

117
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pairs. According to the linguistic analysis, our approach can deliver more morpheme-

aware subwords than the context-agnostic segmentation baselines. As a reward, our

solution outperformed the greedy one by 0.9 BLEU on average and achieved an average

improvement of 0.55 BLEU over the stochastic approach.

We introduced a novel task in Chapter 4, aiming to model the changing intent of end-

users through a conditional context lens which could be linked to an interactive click-

through search. In this task, due to the lack of available data, we first created three

new datasets supporting an update of the original scene graph via a textual description.

Then we devised several task-oriented models to examine the feasibility of the proposed

task. The empirical studies showed that our models and baselines could understand the

demand of the modification command and update the original graph accordingly. Our

best model, leveraging cross-attention to capture the association and difference between

the original graph and the modification query, managed to generate high-fidelity and

high-quality target graphs. Thus, it surpassed the strong baselines by up to 8.5% on the

datasets when evaluated on F1 and accuracy. We released these datasets and the best

models to promote further investigation along this line.

In Chapter 5, we looked into the problem of long-range context-dependent NLU, namely,

semantic parsing. We first showed that an utterance-level parser could not handle the

context-related parsing in dialogue-based semantic parsing. In addition, we also noted

that the standard end-to-end parser could neglect the input arguments and produce

erroneous ones. Hence, we integrated context-aware and copy mechanisms into the

neural parser. We quantitatively analyzed the error reduction and found that our ap-

proach could rectify half of the errors spotted in the baseline. Therefore, our approach

outperformed the baseline parser by more than 2.5% accuracy across multiple neural

architectures.

We leveraged unlabeled synthetic data to advance self-training, knowledge distillation,

and few-shot learning in Chapter 6. We asserted that context is not bounded by neigh-

boring words and sentences. Instead, since different tasks conform to differing properties

and formats, one can consider a task as having a meta context. It is known that one

can leverage in-domain unlabeled data to advance the performance of a downstream

task. However, it is challenging to find task-specific unlabeled data due to its unique

characteristics. As a remedy, we tailored generic generative models by fine-tuning or
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conditioning them on in-distribution examples. Then we could synthesize many unla-

beled in-domain data points from the task-specific generative model. We assessed the

efficacy of the proposed approaches on self-training, knowledge distillation, and few-shot

learning. For self-training, with pseudo-labeled synthetic in-domain data, we obtained

average improvements of 1.2 and 0.6 points on the GLUE benchmark dev and test set

over the baseline, respectively. Our approach significantly advanced the knowledge dis-

tillation and marked new state-of-the-art results on the GLUE benchmark leaderboard,

surpassing the previous best results by 1.3 points on average. The prompt-based few-

shot learning also benefited from our approach, leading to an average improvement of

1.2% accuracy over 4-shot learning. In addition to the empirical studies, we theoretically

dissected the key to the success of our approach.

In conclusion, since human languages are context-dependent, this thesis has dedicated

efforts to improving natural language understanding and generation by incorporating

various contextual information. However, compared to previous works, we have ex-

panded the definition of context and explored the impact of this in relation to different

tasks and scopes. Our studies consolidate the claim that context is crucial to human

text. Thus we hope this work can invigorate research in this domain and encourage the

community to expand the view of context and uncover its capabilities more thoroughly.

7.2 Future Directions

This section briefly discusses some potential extensions to the research field based on

the findings of this thesis study.

Fast Context-dependent Subword Segmentation We have shown that context-

dependent subword segmentation can produce morphologically plausible subwords, im-

proving NMT across multiple language pairs. However, because of the use of dynamic

programming, this approach is computationally expensive. Moreover, our approach can

be merely used for target-side segmentation. Lee et al. (2017) and Cherry et al. (2018)

suggested that NMT can be done at a character level. As character-level NMT models

leverage an attention module to align the source characters and the target ones softly,

it is natural to ask whether subword segmentation can benefit from such alignments,
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which may boost the segmentation speed and enable two-sided segmentation. Moreover,

to encourage more morphologically plausible segmentation, one can incorporate several

types of auxiliary information into the model, such as morphological tags and lexical

semantic tags.

Multi-turn Scene Graph Modifications This thesis has unveiled a novel task in

relation to scene graph modification. As a starting point, we focused our attention on

one-step modification. However, in reality the number of modifications is supposed to be

varying on demand. Thus, a possible direction would be investigating multi-turn scene

graph modification where the number of turns is variable.

Improving Robustness Using Synthetic Data We have demonstrated that one

can advance the downstream tasks by generating fresh unlabeled data in terms of accu-

racy. In addition, a concurrent work (Gowal et al., 2021) has shown that using generated

images can enhance the robustness of image classifiers and mitigate the vulnerability

caused by adversarial attacks. We believe this finding applies to text classification prob-

lems as well because of the claim about the smoothness of the landscape of the data

space (see Section 6.4).
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nior, Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation.

arXiv preprint arXiv:1603.06744, 2016.

Linlin Liu, Bosheng Ding, Lidong Bing, Shafiq Joty, Luo Si, and Chunyan Miao.

MulDA: A multilingual data augmentation framework for low-resource cross-lingual



Bibliography 130

NER. In Proceedings of the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 5834–5846, Online, August 2021. As-

sociation for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.453. URL

https://aclanthology.org/2021.acl-long.453.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Minh-Thang Luong and Christopher D Manning. Achieving open vocabulary neural

machine translation with hybrid word-character models. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1054–1063, 2016.

Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to

attention-based neural machine translation. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1412–1421, 2015.

Ramesh Manuvinakurike, Jacqueline Brixey, Trung Bui, Walter Chang, Doo Soon Kim,

Ron Artstein, and Kallirroi Georgila. Edit me: A corpus and a framework for under-

standing natural language image editing. In Proceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018), 2018.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,

Mark Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating

predicate argument structure. In Human Language Technology: Proceedings of a

Workshop held at Plainsboro, New Jersey, March 8-11, 1994, 1994.

Kathleen McKeown, Karen Kukich, and James Shaw. Practical issues in automatic doc-

umentation generation. In Proceedings of the Fourth Conference on Applied Natural

Language Processing, ANLC ’94, page 7–14, USA, 1994. Association for Computa-

tional Linguistics. doi: 10.3115/974358.974361. URL https://doi.org/10.3115/

974358.974361.
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User-generated Dataset for Scene

Graph Modification

We provides some examples of our user-generated dataset for scene graph modification

in Figure 1 and 2.
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snowwhite

I would like to see
snow on ground

snowwhite

ground

on

(a) Insertion

woman

Give me images of
 a woman with

dark hair

woman

hair

with

dark

(b) Insertion

Take away his hat

young man

man hat
wearing

young

(c) Deletion

carpetbrown

floor

on

carpetbrown

Do not lay the brown
carpet on the floor

(d) Deletion

Figure 1: Examples from the user-generated dataset for scene graph modification.
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clock

Show more clocks

small clocks

small

(a) Object substitution

lamp

I don't like lamp, so
give me a lantern

tall lantern

tall

floor

floor

(b) Object substitution

surfboard

i want a pink surfboard,
it can't be white

pink surfboard

white

(c) Attribute substitution

shirt

I want the shirt to be blue
instead of yellow

blue shirt

yellow

fondant

fondant

(d) Attribute substitution

Figure 2: Examples from the user-generated dataset for scene graph modification.



Generated Unlabeled Examples

Annotated with Pseudo Labels

We provide some synthetic sentences generated by GAL in Table 1, 2, 3, 4, 5, and 6.
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Table 1: QNLI: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

When did the third Digimon series begin? [SEP] Unlike the two seasons before it
and most of the seasons that followed, Digimon Tamers takes a darker and more
realistic approach to its story featuring Digimon who do not reincarnate after
their deaths and more complex character development in the original Japanese.
(not entailment)

KNN:
1: What is the name of the third season? [SEP] In addition to the first two
seasons, the third season is the season that introduced new characters such
as Captain Malice, a supervillain who became the antagonist in season two;
and the villains known as the Heartbreakers, who introduced a group of crime
fighters. (not entailment)
2: When did the ”Walking Dead” series end? [SEP] In 2013, AMC announced
that it would develop a ”superhero series”, which would follow the storylines
and characters from the ”Walking Dead” series in order to bring the popular
AMC original series to a new and younger audience. (not entailment)
3: What is the main objective of the first season of the X-Files? [SEP] The
first season was notable in that the characters were introduced and developed
within the space of a single season, as was the format of the show itself. (not
entailment)

What did Arsenal consider the yellow and blue colors to be after losing a FA Cup
final wearing red and white? [SEP] Arsenal then competed in three consecutive
FA Cup finals between 1978 and 1980 wearing their ”lucky” yellow and blue
strip, which remained the club’s away strip until the release of a green and navy
away kit in 1982–83. (entailment)

KNN:
1: Who was the most important player for Arsenal Football Club in the 1950s?
[SEP] Wenger continued to use Arsenal’s famous red shirts and red kits through-
out the 1950s and 1960s, and the red strip became the club’s most recognised
and recognizable symbol. (not entailment)
2: When were the first two teams to play for the trophy in the Premier League?
[SEP] The trophy was awarded to Manchester United in 1990-91 and was named
after Sir Bobby Charlton, the club’s manager until 1990, and later Sir Stanley
Matthews, the club’s most successful manager. (not entailment)
3: What were the last four players to wear the yellow in the final? [SEP] With
Arsenal having won all four major trophies in the period, they became the only
club to have won five in a row. (not entailment)
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Table 2: QQP: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

How is the life of a math student? Could you describe your own experiences? [SEP]
Which level of prepration is enough for the exam jlpt5? (not duplicated)

KNN:
1: What are the best courses for a mechanical engineering student? [SEP] What is
the best course to do after completing a B.Tech in mechanical engineering? (not
duplicated)
2: How much marks are needed to get through the GATE with electronics? [SEP] What
is the average score of the Gate EE exam? What are the cut-offs? (not duplicated)
3: What is the best time table for students to prepare for IAS? [SEP] How can one
study for IAS in a best time? (not duplicated)

How does an IQ test work and what is determined from an IQ test? [SEP] How does
IQ test works? (duplicated)

KNN:
1: What is the average IQ of the U.S. population? [SEP] How does an IQ test work?
(not duplicated)
2: Is the Iq test an effective way to measure intelligence? [SEP] How do IQ tests work?
(duplicated)
3: How is an IQ test on a scale from 1 to 100 scored? [SEP] How do you get your IQ
tested? (not duplicated)

Table 3: SST-2: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

are more deeply thought through than in most ‘ right-thinking ’ films (positive)

KNN:
1: is far more sophisticated , insightful and thought-provoking than his previous
films . (positive)
2: is more sophisticated than its more obvious and less-than-dazzling counter-
parts (positive)
3: is about as well-thought as the idea of a bad hair day , (negative)

contains no wit , only labored gags (negative)

KNN:
1: lacks insight , and lacks empathy (negative)
2: has little humor or intelligence (negative)
3: lacks all wit and humanity (negative)
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Table 4: RTE: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

Like the United States, U.N. officials are also dismayed that Aristide killed a
conference called by Prime Minister Robert Malval in Port-au-Prince in hopes
of bringing all the feuding parties together. [SEP] Aristide had Prime Minister
Robert Malval murdered in Port-au-Prince. (not entailment)

KNN:
1: The government has been criticized for failing to prevent the mass protests
that led to the ouster of President Nicolas Sarkozy earlier this month, which led
to his second election defeat since assuming office two years ago. [SEP] Prime
Minister Jean-Marc Ayrault is a former president of France. (not entailment)
2: The French president, Jacques Chirac, has been urged by both the Vatican
and the U.N. Security Council to step up efforts to prevent the return of former
dictator Nicolas Sarkozy. [SEP] Nicolas Sarkozy left France. (not entailment)
3: The French newspaper Le Monde says the French President Nicolas Sarkozy
was advised by U.S. President George W. Bush about a possible trip to Iraq
on Thursday. [SEP] Nicolas Sarkozy is a member of the United States. (not
entailment)

Only a week after it had no comment on upping the storage capacity of its
Hotmail e-mail service, Microsoft early Thursday announced it was boosting the
allowance to 250MB to follow similar moves by rivals such as Google, Yahoo,
and Lycos. [SEP] Microsoft’s Hotmail has raised its storage capacity to 250MB.
(entailment)

KNN:
1: The company, known as Microsoft Office, said it plans to sell all of the
copies of its popular Office suite at a loss in the wake of the launch of Microsoft
Windows 7, saying it will also make $25 million in advertising costs, a move
likely to hurt its long-standing position among consumers and business leaders.
[SEP] Microsoft Office is a popular office suite. (entailment)
2: The company’s shares shot up more than 35% after the company said it
has sold all of its remaining inventory of the new Kindle e-readers at $70 each.
The shares rose to $65.20 on Wednesday, their highest since March 6, 2011.
“The Kindle is our best selling product,” said Jeff Bezos, founder and CEO of
Amazon.com. [SEP] Amazon.com is based in Seattle. (not entailment)
3: In response to concerns expressed by some investors, Microsoft last week
said it would reduce the amount of shares that will be available to the public
by 10 percent in the first quarter, with a further reduction to 3 percent in the
second quarter. The stock price has plunged from $24 to $17, and Microsoft
is currently offering $17 to $19 a share to its most senior employees. Some
investors had criticized Microsoft’s response to concerns about the price of its
stock and about the perception that the company is in trouble. [SEP] Microsoft
is struggling to sell its stock. (not entailment)
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Table 5: MRPC: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

A BMI of 25 or above is considered overweight ; 30 or above is considered
obese . [SEP] A BMI between 18.5 and 24.9 is considered normal , over 25 is
considered overweight and 30 or greater is defined as obese . (paraphrase)

KNN:
1: The report said that the average woman in her twenties who takes oral
contraceptives daily can expect a loss of around 40 per cent of her bone density
between the ages of 20 and 45 . [SEP] The study said the average woman in
her twenties who used the pill every day , or every day for up to five years , can
expect a loss of about 40 per cent of her bone density between the ages of 20
and 45 . (paraphrase)
2: The report found that 17 percent of U.S. adults between ages 18 and 64 have
a body mass index at or above the ” normal ” 20 . [SEP] For people of that age
, 17.1 percent of adults have a body mass index at or above the ” normal ” 20 ,
while 12.6 percent have a body mass index of 30 or above . (not paraphrase)
3: The survey shows the proportion of women between 20 and 44 who were
obese was 6.3 percent , up from 5.7 percent in 2001 . [SEP] The proportion of
women between 20 and 44 who were obese increased to 6.3 percent from 5.7
percent in 2001 . (paraphrase)

Shares of Genentech , a much larger company with several products on the
market , rose more than 2 percent . [SEP] Shares of Xoma fell 16 percent in
early trade , while shares of Genentech , a much larger company with several
products on the market , were up 2 percent .(not paraphrase)

KNN:
1: Shares in Aventura fell as much as 5 percent , while shares in Medi-Cal
climbed 2.5 percent . [SEP] Shares in Aventura were up 2.5 percent , while
shares in Medi-Cal rose 2.5 percent . (paraphrase)
2: Shares of Amgen rose $ 2.29 , or 2.2 percent , to $ 41.10 in after-hours
trading . [SEP] Shares of Amgen , a division of Sanofi-Aventis , rose $ 1.62 , or
1.6 percent , to $ 41.06 in after-hours trading .(paraphrase)
3: Shares of General Electric Co . GE.N rose more than 6 percent on the New
York Stock Exchange , while shares of PepsiCo Inc . PEP.N rose 4.7 percent
. [SPE] General Electric ’s shares jumped almost 6 percent on the New York
Stock Exchange , while PepsiCo ’s climbed 4.7 percent . (paraphrase)



Bibliography 149

Table 6: MNLI: Two labeled examples, along with 3 nearest neighbors (based on
RoBERTa representations) from our synthetic dataset. We include labels for original

examples and pseudo-labels for synthetic examples in parenthesis.

One of our number will carry out your instructions minutely. [SEP] A member
of my team will execute your orders with immense precision. (entailment)

KNN:
1: We are at your disposal to help you with your investigation and provide a
full range of pro bono services. [SEP] We are the only ones who can help you
with your investigation. (neutral)
2: I will speak with the chief officer of the contractor, who will be informed
about the results of this effort. [SEP] The contractor is being informed about
the results of the effort. (entailment)
3: We have an office here to assist you. [SEP] An office is where we will assist
you, said the manager. (neutral)

Conceptually cream skimming has two basic dimensions - product and geog-
raphy. [SEP] Product and geography are what make cream skimming work.
(neutral)

KNN:
1: There are two main types of analysis and they are the case study and the
case report. [SEP] The case study is the most popular method used to analyze
a subject. (neutral)
2: A third approach to capturing and using this type of experience is to engage
the program management and finance systems of the organization. [SEP] There
are two strategies to capturing and using experience. (contradiction)
3: The first is to see the basic elements of a business model in action. [SEP]
Basic elements of business models are the most important for the success of any
company. (neutral)

I don’t mean to be glib about your concerns, but if I were you, I might be
more concerned about the near-term rate implications of this $1. [SEP] I
am concerned more about your issues than the near-term rate implications.
(contradiction)

KNN:
1: I’m not here to tell you of my own experiences, but they are important
to others who might have similar concerns. [SEP] If you were to have similar
concerns, I’d like to encourage you to tell them to me. (neutral)
2: I don’t mean to sound judgmental, but as a person, I think that’s an issue
you’re probably pretty much on your own if you think about it. [SEP] You’re
probably right if you think about it. (neutral)
3: But I don’t mean to take your word for it. [SEP] I know you are correct,
but I want to make sure it’s clear that I do not agree. (contradiction)
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