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Abstract

In this thesis we study induced subgraphs of uniformly random graphs with given degree sequences.

Specifically, if G ∼ G(d) is a uniformly random graph with degree sequence d, and S ⊂ [n] is some

subset of vertices (which can be fixed or random), we study the properties of the random graph

G[S]. First we study the distribution of the degree sequence of G[S], which we call the induced

degree sequence. Under certain restrictions on both the maximum degree of d and the size of the

set S, we show that the induced degree sequence is concentrated around some sort of average

sequence defined deterministically in terms of d and S. Our main tool that we use to show this

is the switching method. We then use this knowledge of the distribution of the induced degree

sequence to determine properties of G[S] using known results about random graphs with given

degree sequences. Under the restrictions we impose on d and S, we determine thresholds for when

G[S] is connected using results of Gao and Ohapkin [56], as well the threshold for the existence

of a giant component in G[S] using the results of Joos et al. [83]. We also give results on the

chromatic number using results of Gao and Ohapkin [56], and conditions for the (asymptotically

almost sure) existence and non-existence of non-trivial automorphisms using results of Brick et al.

[23]. This method of studying G[S] is similar to the method of Fountoulakis [46] for studying site

and bond percolation on sparse random graphs with given degree sequences. We then adapt our

method to give thresholds for connectivity and existence of a giant component in G(d) after site

percolation with survival probability p for constant p, which also applies for more dense graphs.

We then focus on studying the threshold for the existence of giant components in G[S] using

a different, more direct approach. We modify the random graph process used by Joos et al.

[83] in their proof of the threshold for the existence of giant components in G(d). We use this

to determine the threshold for the existence of giant components in induced sub-pairings in the

configuration model. We then apply the switching method to adapt this result to the random

graph model for more restricted classes of degree sequences and vertex subsets. This result gives

a more natural expression for the threshold, as well as being applicable for a wider range of degree

sequences d and subsets S. We also show that the threshold in the configuration model does not

translate to the random graph model for all possible degree sequences d and subsets S, and we

give some examples where the configuration model gives the wrong intuition for the existence of

giant components in induced subgraphs in random graph model.
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Chapter 1

Introduction

Graphs and networks have become ubiquitous tools in all fields of modern research. As the

world becomes more digital and interconnected, computational methods to analyse large and

complex processes are rapidly becoming integral to all aspects of our lives. As such, there is a

growing need to describe objects and processes as discrete systems, and graphs have proven to

be a valuable tool for doing this. As a result, graphs and other network-like objects permeate

all fields of study: computer science, neuroscience, biochemistry, linguistics, and economics to

name just a few [37, 129, 87, 30, 8]. The different structures of graphs are as varied as their

applications, and as the graphs grow in size their complexity explodes beyond the capabilities

of naive enumeration and analysis. Brute force methods can give insights into basic properties

of small graphs, but the networks that appear in many research or commercial applications can

have millions and billions of nodes. Compounding this issue is the fact that the number of

graphs grows staggeringly quickly. There are 2(n2) labelled graphs on n vertices, and the number

unlabelled graphs (graphs up to isomorphism) on n vertices also grows incredibly quickly - for

example, there are 64,001,015,704,527,557,894,928 unique unlabelled graphs on 16 vertices [121].

As a result, general methods and tools to study large graphs are invaluable for understanding

these large networks and informing our applications of them.

One avenue for studying the properties of large graphs is to generate graphs via some random

process, called a random graph model. By studying the distribution of a graph property in some

random graph model, we can determine the typical behaviour of that class of graphs without

explicitly generating and analysing each graph. Classical random graph models, such as the

binomial random graph model G(n, p), have been studied extensively and given many insights into

the properties of large graphs. However, many of these random graph models often assume that

the vertices are homogeneous, in the sense that each vertex in the graph is more or less equivalent

to every other vertex. For many networks that arise in real-world applications, this is not the

case: it is common instead to see networks where some nodes are linked to only a few other nodes,

while some nodes act as “hubs” and have many more links than other nodes [7, 115, 33]. These

networks cannot be easily analysed by studying these classical random graph models, as many of

their properties are a consequence of their inhomogeneity.

One tool for studying such networks is what is called a null model (see [90]). A null model

is a random model (a random graph model, for our purposes) which satisfies a particular set

of constraints but is otherwise sampled uniformly at random from all objects which satisfy the

constraints. A particular instance of a graph, such as one obtained through empirical study of
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some process, can then be compared with the null model to determine which of its properties are

expected based on the observed constraints, and which properties are unexpected or non-trivial

for such a network. If the null model for a set of constraints is likely to have a given property,

then it is less interesting if the network itself has that property; however, if the network has some

feature that the null model has with very low probability, then this feature is noteworthy, and

likely a product of the underlying process being studied.

A natural constraint to construct a null model for a network is its degree sequence, which

is a sequence d = (d(1), . . . , d(n)) where the elements are the number of links incident to each

node in the network, or the number of edges incident to each vertex in the graph. For a given

network, the degree sequence is relatively simple to determine, as it is a local property of the

network. This gives rise to a family of random graph models called uniformly random graphs with

a given degree sequence, where a graph is sampled uniformly at random from all graphs where each

vertex has the required degree. Much less is known about this model (or family of models) due

to the extra complexity that comes with fixing a particular degree sequence. Nevertheless, as we

discuss in the following section, these models are still actively studied for a wide range of degree

sequences because they give extremely helpful insights into these networks with inhomogeneous

degree sequences. Due to the difficulties of working directly with this model, other related but

simpler models have been studied to help give insights where the theoretical results about random

graphs with given degree sequences fall short. One such model is the configuration (or pairing)

model, which constructs a random (pseudo)graph from a random pairing of sets of points. This

model was originally proposed to study uniformly random graphs with given degree sequences

[10], but has since received a great deal of attention in its own right, particularly as a tool for

studying networks [71].

A common question to ask about a graph is what subgraphs it contains. Many graph properties

can be phrased in terms of subgraphs - for example, a graph is connected if and only if it contains

a spanning tree, and a graph is bipartite if and only if it contains no odd cycle as a subgraph.

This study of subgraphs has naturally followed in the field of random graphs, and the subgraphs

of various models of random graphs have been extensively studied. This has applications for

studying the properties of networks in the event that certain nodes or links are removed from

the network. For example, Britton et al. [25] studied the spread of disease by modelling a social

interaction network as a uniformly random graph with a given degree sequence. This graph model

is the null model for the social interaction network under the constraint that each person has

a given number of friends. They then studied vaccination strategies to minimise the number of

infections: in this case, vaccinating a person corresponds to deleting that node from the network.

Thus, studying the spread of the disease through the unvaccinated people in the network becomes

a problem of studying the subgraph induced by the corresponding nodes. In their paper they also

look at a random vaccination strategy: that is, studying the spread of the disease in a subgraph

made by deleting vertices randomly according to some probability. This fits into a broader study

of what is known as percolation, or more specifically site percolation. The study of percolation

on large (sometimes infinite) fixed graphs, as well as on random graphs of various kinds, has

been an active field of research since its inception, both from a purely mathematical perspective

[26, 22, 107, 51, 82] and also for its applications to modelling problems [96, 27, 81].

Thesis aim. Study the distribution and properties of subgraphs of uniformly random graphs
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with given degree sequences induced on a subset of the vertex set. In particular, we aim to study

when this subgraph asymptotically almost surely is connected or contains a giant component.

In this thesis we study subgraphs of uniformly random graphs with given degree sequences

induced on a fixed subset of the vertices. This is related to but notably distinct from the study of

percolation, where the subset is random. We give particular focus to the connectivity structure of

the induced subgraph, and under what conditions we can determine a threshold for connectivity

or the existence of a giant component, a component with a linear number of edges and/or vertices,

based on the degree sequence and the subset of the vertices in question. Connectivity is a fun-

damental graph property which has been studied in many random graph models [58, 42, 130, 45]

and has been actively researched since the inception of the field. The study of giant components

in random graphs has a similarly rich history [42, 15, 113], and recently Joos et al. [83] deter-

mined the threshold for the existence of giant components in random graphs with given degree

sequences, for all possible sequences. Furthermore, it is a natural question when studying sub-

graphs of random graphs to ask about the connectivity structure of the remaining subgraph. We

give two different approaches, one more general approach for studying a wide range of properties

and one specifically for studying the existence of giant components. The approaches are:

(1) The reduction method, where we study the distribution of the degree sequence of the induced

subgraph. We then combine this information with known results about random graphs with

given degree sequences to determine various properties of the induced subgraph.

(2) The exploration method, where we define a modified breadth-first search process and study

its evolution on a random graph to determine the threshold for the existence of giant com-

ponents in the induced subgraph.

In Chapter 3, we analyse the distribution of the degree sequence of the induced subgraph,

which we call the induced degree sequence. We use ideas similar to those used by Fountoulakis [46]

in his study of giant components in percolated sparse random graphs with given degree sequences.

We extend this method to study the case where the subset is fixed, as well as considering a

much wider range of degree sequences: in particular, the results obtained in this thesis work for

some degree sequences with much higher maximum degree and average degree. For sufficiently nice

choices of degree sequence d and vertex subset S, we show that the degree sequence of the induced

subgraph is “concentrated”, in the sense that we can define a particular degree sequence and show

that the induced degree sequence is asymptotically almost surely close to this. In Chapter 4, we

use these results about the distribution of the induced degree sequence to study various graph

properties of the induced subgraph. This method is general in that it works for a variety of

different graph properties. By combining the knowledge of the distribution of the induced degree

sequence with known results about thresholds for graph properties in random graphs with given

degree sequences, we determine thresholds (in terms of d and S) for when the induced subgraph is

connected or has a giant component, as well as results about the chromatic number of this graph

or when it has non-trivial automorphisms. We call this method the reduction method as we are

reducing the problem of studying the induced subgraph to studying pre-existing thresholds for

properties of random graphs with given degree sequences. In Chapter 5, we extend the study of

the distribution of the degree sequence of the induced graph to study site percolation, which is

the case where S is constructed by choosing each vertex independently with probability p. For a
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similarly nice choice of degree sequence, we give thresholds for when the site-percolated random

graph with a given degree sequence is a.a.s. connected or contains a giant component in the case

where p is a constant.

In Chapters 6 and 7, we study the problem of giant components in induced subgraphs using

the exploration method. We adapt the proof of a recent result given by Joos et al. [83] describing

the threshold for the existence of giant components in uniform random graphs with given degree

sequences. Their method studies a breadth-first search exploration process which generates a

random graph via the method of deferred decisions. Similar ideas have existed in the literature for

some time (for example, [113]), but their method includes extra initial steps to handle the presence

of high-degree vertices. We adapt this framework to study the existence of giant components in

induced subgraphs. In Chapter 6, we apply this method in the configuration model. In this case,

we determine the exact threshold for the existence of a giant component in the induced sub-pairing

of a uniformly random pairing P with degree sequence d, for all sequences d, under the condition

that both the set S and its complement are large with respect to the whole pairing. In Chapter 7,

we adapt this result to the random graph model under tighter restrictions on the pair (d, S).

Specifically, we introduce two restrictions on the contribution of high-degree vertices to S and its

complement (the set of deleted vertices). The restriction on the contribution to the complement

is significantly more strict. Under these tighter restrictions, we show that an analogous proof to

the configuration model result carries over, and the same threshold as in the configuration model

applies. The range of degree sequences for which this result applies is larger than the range for

which the results given in Chapter 4 apply, but the method is much more specific to the study of

giant components. We also showcase why the conditions we impose on d and S are meaningful:

we give some examples of pairs (d, S) which show that the configuration model result cannot carry

over in full generality.

In Chapter 8, we discuss possible directions for future research using either method. We

describe various avenues to relax the conditions that we impose when studying G[S] via the

reduction method, as well as other results that could be proved using the current method and its

generalisations. For the exploration method, we discuss some conjectures that slightly relax the

conditions we impose in our results. We also give other possible avenues to explore. Many of these

extensions centre around studying the neighbourhoods of vertices of high degree in G(d). This is

a difficult problem, and progress in this direction would likely require novel methods that could

be used to improve many current results about random graphs with given degree sequences. In

the Appendix, we give a glossary of the notation that we use in the various sections, as well as

some well known probability tools and bounds that we use throughout the thesis.
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Chapter 2

Background

2.1 Basic definitions

2.1.1 What is a graph?

Here we give the most basic definition that sets up all the work in this thesis.

Definition 2.1.1. A (simple) graph is a pair G = (V,E), where V is an arbitrary set and E is a

set consisting of 2-element subsets of V .

This definition is correct and good, but it is not how we often imagine graphs. If we consider

the set V as a set of nodes, or vertices, and the set E as connections between these nodes,

then we can represent graphs pictorially. For example, the graph where V = {1, 2, 3, 4, 5, 6}
and E = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}, {4, 5}, {4, 6}} can be represented by the image in

Figure 2.1.

1

2

3

4

5

6

Figure 2.1: A visual representation of a graph.

This is much easier to conceptualise, but also hints at the motivation for studying these objects:

a graph is like an abstracted form of a network. As such, the mathematical study of graphs can

thus give insight in all sorts of surprising places in many different fields. On the other hand, from

a purely mathematical perspective, graphs are incredibly interesting objects to tinker with, and

over the last century or two graph theory has become an incredibly popular topic in mathematics

and theoretical computer science.

Here we give some basic graph theory terminology for those less familiar with the field. For

a more comprehensive introduction to graph theory, including some terminology that we use but
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2.2. RANDOM GRAPHS AND GRAPH PROPERTIES

do not explicitly define, we recommend the classic textbook Graph Theory by Diestel [39]. We

say that two vertices u, v ∈ V (G) are adjacent or neighbours in a graph G if {u, v} ∈ E(G).

For brevity, we generally denote an edge {u, v} simply by uv (or equivalently vu, since edges are

not directed). A commonly used notation for adjacency is u ∼ v, however we avoid this here

to minimise notational clashes with asymptotic notation used later. The set of neighbours of a

vertex v ∈ V (G) is denoted NG(v). The number of vertices adjacent to v is the degree of v, and

the maximum degree of a vertex in G is denoted ∆(G). A sequence of vertices v1v2 . . . vk such

that vi 6= vj for all i 6= j and vivi+1 ∈ E(G) for all i ∈ {1, . . . , k − 1} is called a path. Two

vertices are connected if there exists a path in G between u and v. A set of vertices which are all

connected to each other in a graph is called a component. The order of a component is the number

of vertices contained in the component, and the size is the number of edges between vertices in

the component. A graph H = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

For some V ′ ⊂ V , we define the induced subgraph on V ′ to be the subgraph of G with vertex set

V ′ and edge set E′ consisting of all edges uv ∈ E where u, v ∈ V ′. Let G[V ′] denote the induced

subgraph on V ′.

2.2 Random graphs and graph properties

Here we lay out the basic definitions of a general random graph model, as well as specifically the

model of random graphs with a given degree sequence, which is the focus of this thesis. We also

describe the asymptotic notation that we use to discuss properties of random graph models as

the number of vertices grows arbitrarily large. We also give a history and literature review of the

properties of random graphs that we study.

2.2.1 The basic concept

Definition 2.2.1. A random graph model is a probability space (Ω,Σ,P) where Ω is a set of

graphs and Σ = 2Ω, the set of all subsets of Ω.

This definition is intentionally broad, as there are many, many different types of random graph

models. One of the most classical and well-studied random graph models is the binomial random

graph, also denoted by G(n, p). In this model, Ω is the set of all labelled, n-vertex graphs, and

P (G) = p|E(G)|(1− p)(
n
2)−|E(G)| for all G ∈ Ω. Equivalently, and perhaps more intuitively, one can

generate a random graph according to this distribution by taking n isolated vertices and adding

each possible edge with probability p, independent of all other edges. This random graph model

has been studied in formidable detail since its invention (see any or all of [16, 80, 50, 39] to merely

scratch the surface), and despite its simple definition has yielded much insight into the behaviour

of large graphs. In particular, when p = 1
2 , this model corresponds to a uniformly random labelled

graph on n vertices. Thus, studying G
(
n, 1

2

)
allows us to determine the unbiased distribution of

graph properties across all n-vertex graphs. Another common random graph model is G(n,M),

where Ω is the set of all graphs with exactly n vertices and M edges, and P is the uniform

distribution. These are sometimes called Erdős-Rényi random graphs (although sometimes this is

also ascribed to G(n, p)) due to their early work studying this model. This model turns out to be

extremely similar to G(n, p), for appropriate choices of p and M (for a more detailed discussion

6



2.2. RANDOM GRAPHS AND GRAPH PROPERTIES

on this see Section 1.1 of the book Random Graphs by Frieze and Karoński [50], in particular

Theorem 1.4, originally given by  Luczak [99]).

Typically when studying random graphs, people are interested in the asymptotic behaviour of

some graph property. That is, the focus is less on small graphs, and instead people are interested

in what happens when the graphs are allowed to grow arbitrarily large. Because of this, many

results in the field are expressed (sometimes implicitly) in terms of sequences of random graph

models, indexed by the number of vertices in each graph (or some similar quantity). Suppose

that {Gn}n≥1 is a sequence of random graph models. Let {En}n≥1 be a corresponding sequence of

events. These could be anything - for example, the event that the vertex labelled 1 is isolated (that

is, has no neighbours), or the event that the graph sampled from Gn is connected, or countless

other things. We say that an event occurs asymptotically almost surely (which we commonly

abbreviate to a.a.s.) if the probability that the event occurs converges to 1 as n goes to ∞. That

is, if Pn is the probability measure on Gn, then {En}n≥1 occurs a.a.s. if and only if Pn (En)→ 1.

If {Gn}n≥1 is a sequence of uniform probability spaces, this means that the fraction of graphs that

do not have the property in question is vanishingly small. We discuss asymptotic concepts and

notation in more detail in Section 2.2.4.

2.2.2 Random graphs with a given degree sequence

One of the most fundamental properties of a graph is its degree sequence, which is the sequence

detailing the degree of each vertex (the number of neighbours of each vertex).

Definition 2.2.2. The degree sequence of a (labelled) graphG is the sequence d = (d(1), . . . , d(n))

such that vertex i has degree d(i). We call a sequence d graphical (or sometimes just a degree

sequence) if there exists some (simple) graph with degree sequence d.

Here we give some notation for several properties of a sequence d. The value of the largest

element in the sequence is its maximum degree, and is denoted by ∆ := ∆(d). The length of a

sequence is denoted n(d), to correspond with the notation for the number of vertices in a graph

with that degree sequence. For some set A ⊂ [n(d)], define the total degree of A, denoted by d(A),

as

d(A) =
∑
i∈A

d(i).

For the case where A = [n(d)], define

M(d) := d([n(d)]) =
∑

i∈[n(d)]

d(i).

We call M(d) the total degree of d. Equivalently, for a graph with degree sequence d, we call

M(d) the total degree of G, and this is equal to 2|E(G)|. When it is unambiguous, we simply

refer to this as M . The average degree of a sequence is then d(d) := M(d)/n(d).

One major caveat to the G(n, p) and G(n,M) random graph models is that the distribution of

many graph properties is far removed from that of many types of real-world networks [115]. For

example, the degree of a vertex in G(n, p) is a binomially distributed random variable with n− 1

trials (one for each other vertex in the graph) and probability of success p (the probability of each
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edge being present). On the other hand, the degree sequences of many real-world networks have

been conjectured to follow a power-law distribution, where the probability that a vertex has degree

k is proportional to k−γ , for some constant γ (typically γ ∈ (2, 3)) [33]. As a result, Erdős–Rényi

random graphs have entirely different structure to many families of graphs found in real-world

applications. In order to study these types of graphs, other random graph models are needed.

As mentioned in Chapter 1, one method for studying these real-world networks is to consider a

null model with constraints derived from the properties of a particular network [90]. One natural

constraint is the degree sequence, as it is a very “local” property of the network and thus easy to

determine. In this case, the null model samples uniformly at random from every graph with the

same degree sequence as the original network. This sets the stage for the model which we analyse

for most of the thesis. We call this the uniformly random graph with degree sequence d.

Definition 2.2.3. Let G(d) denote the set of labelled graphs with degree sequence d equipped

with the uniform probability measure.

As with other random graph models, we also refer to “the graph G(d)”, meaning a graph

sampled uniformly at random from the set of all graphs with degree sequence d. We also sometimes

abuse notation and refer to the set of all graphs with degree sequence d by G(d).

Uniform random graphs with given degree sequences are a broad class of commonly studied

random graph models. Unlike binomial random graphs or Erdős-Rényi random graphs, these

graph models can be used to study graphs and networks with extremely inhomogeneous degree

sequences. For example, the probability that G(n, p) contains both a degree 1 and a degree n− 1

vertex is immeasurably low, but in G(d) we can guarantee it by choosing such a sequence d.

This immediately fixes a notable limitation of G(n, p), as the degree of each vertex is no longer

concentrated around np. However, the extra nuance also brings with it much more challenging

analysis: events that were straightforward or even trivial to study in G(n, p) can be challenging in

G(d). For example, the probability that two vertices are adjacent in G(n, p) is immediate from the

definition, and is completely independent of all other edges in the graph. However, the probability

of this event occurring in G(d) does not have an easy answer in general, and depends strongly on

both the degree sequence d and the specific two vertices that are being considered. Furthermore,

due to the fixed degrees of each vertex, the probability that some edge exists is dependent on

every other edge in the graph. Thus, when trying to look for more complicated structures in these

random graphs that use multiple edges, it is not enough to know information about the likelihood

of each edge in isolation.

In the context of G(n, p), the notion of a sequence of probability spaces is fairly straightfor-

ward: each set Ωn just contains all labelled graphs on n vertices. However, for G(d), the degree

sequence d fixes the number of vertices in the graph, so it is not immediately clear what a “se-

quence” of probability spaces should look like. Various ideas exist in the literature to deal with

this. Some authors define the notion of an asymptotic degree sequence, which is a sequence of

sequences (dn)n≥1 where dn is an n-element, graphical sequence for each n satisfying some nice

limiting properties. Molloy and Reed [113], Fountoulakis [46] and Janson [74] all assume that the

asymptotic degree sequences are what they call smooth, where (dn)n≥1 is smooth if

nj(dk)

k
→ λj

8
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for some constant λj ∈ [0, 1] for each j ≥ 0. They also assume that the asymptotic degree sequence

is sparse, which means that there exists some λ ∈ (0,∞) such that

1

k

∑
i≥1

ini(dk)→ λ.

Paraphrasing, this condition says that the sum of every element in the degree sequence dk (the

total degree of dk) is asymptotically proportional to k, the number of vertices in a graph with

degree sequence dk. Molloy and Reed [113] and Fountoulakis [46] also assume that

1

k

∑
i≥1

i(i− 2)ni(dk)→
∑
i≥1

i(i− 2)λi <∞.

This last condition is assumed by Fountoulakis [46] because their result is proved by applying the

result of Molloy and Reed, which itself assumes this condition. Other approaches, such as that of

Janson [74], do not require this second assumption.

One thing to note is that many results about G(d) (and also many results about the configu-

ration model C(d), defined in the next subsection) only consider sequences with minimum degree

at least 1. If d has k terms equal to 0, then a uniformly random graph with degree sequence d

has an identical distribution to a uniformly random graph with degree sequence d∗ (where d∗ is

the sequence d with all zeroes removed) and k isolated vertices. Thus, allowing isolated vertices

is not particularly interesting, and so a minimum degree of at least 1 is commonly assumed. With

this in mind, in this thesis we also usually assume that d has a minimum degree of at least 1. In

particular, we assume that d has a minimum degree of at least 1 when studying induced subgraphs

of G(d) in Chapters 3 to 7. Note that since we study degree sequences of induced subgraphs, it

is possible that the degree sequences of these induced subgraphs may contain zeroes. We discuss

this in more detail in the relevant later chapters.

2.2.3 The configuration model

Due to the inherent difficulty of working with G(d), many other random graph models have been

created to study graphs with inhomogeneous degree sequences. The configuration (or pairing)

model, denoted C(d), was introduced by Bollobás [10] as a way of approximating and modelling

random graphs with a given degree sequence. In this model, each vertex i is represented as a bin

with label i which contains d(i) labelled points. These points are called half edges. A uniformly

random element of C(d) corresponds to a uniformly random perfect matching of the half edges.

Such a matching is called a configuration, or a pairing. Two matched half edges {pi, pj} are a

pair, and we call pj the mate of pi. We enumerate the set of all half edges in a pairing by the set

[M ] := {1, . . . ,M}, recalling that M = M(d) is the total degree of a graph or (degree) sequence.

Let B(i) ⊂ [M ] be the set of half edges in the bin corresponding to vertex i.

Pairings have a natural correspondence to what are called multigraphs with degree sequence d:

simply consider each pair as an edge in the multigraph and ignore the labels of the half edges. The

result is an object similar to a graph that potentially has multiple edges between certain pairs of

vertices, as well as edges which start and end at the same vertex (loops). In some works, these are

also referred to as pseudographs, though some authors distinguish multigraphs as pseudographs

with no loops. With this correspondence between pairings and multigraphs, many graph-theoretic
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concepts, such as adjacency, connectivity, and subgraphs, extend to the configuration model. A

vertex in a pairing is a bin of points, and the degree of the vertex is simply the number of points in

the bin. An edge then corresponds to two half edges that have been paired, and we call these two

half edges the endpoints of that edge. We differentiate between the set of half edges (all points

in all bins) and the set of edges (the set of pairs of half edges in a given pairing). Two vertices

u and v have an edge between them (are adjacent) if there exists a half edge ui in B(u), the bin

corresponding to u, and a half edge vj in B(v) such that {ui, vj} is a pair. The vertices u and v

are parent vertices to the points ui and vj .

Similarly, concepts of connectedness carry over naturally following the definition of adjacency.

The order and size of a component of a pairing can be respectively defined as the number of

vertices and edges in the component. We can also define concepts analogous to subgraphs: from a

pairing P we can define a partial pairing Q ⊂ P where some of the vertices and half edges of P are

removed. Similarly to induced subgraphs, define P [S] to be the sub-pairing of P only containing

half edges whose parent vertices are in S ⊂ [n]. Depending on the application, it can be beneficial

to delete or to keep the unpaired half edges, that is, the half edges whose mate has been deleted.

In this thesis, a (uniformly) random configuration or random pairing refers to a uniformly

random pairing chosen from C(d). The relevance of the configuration model to random graphs

stems from the following well-known result. Suppose G(P ) is the (multi)graph corresponding to a

given pairing P , and call a pairing simple if G(P ) is a simple graph (no multiple edges or loops).

Proposition 2.2.4. Let d be a graphical sequence. Let G ∈ G(d) be a simple graph with degree

sequence d. Then

P (G(C(d)) = G|C(d) is simple) = P (G(d) = G) .

Proof. Let P be a pairing that corresponds to the simple graph G, that is, G(P ) = G. Each

permutation σ which permutes the half edges within each bin of P creates a new pairing σ(P )

that corresponds to the same graph G. This holds for all G ∈ G(d). Since we assume that the

pairing P is simple, σ(P ) is a unique pairing for each σ. Furthermore, for a given assignment of

half edges to bins, all pairings C(d) that correspond to G can be represented as σ(P ) for some

σ that fixes every bin B(v). Thus, the number of pairings in C(d) that correspond to G is the

number of ways of permuting the half edges in each bin, which is

n∏
i=1

d(i)!.

Note that this property only depends on the degree sequence d and that G is simple. Therefore,

the probability that a uniformly random pairing from C(d) corresponds to G is proportional to∏n
i=1 d(i)!, for all G ∈ G(d). Since these graphs all have the same degree sequence, this probability

is the same for all of them. Thus, if we condition that the corresponding graph is simple, all simple

graphs are equally likely.

On paper this sounds extremely useful, as random graphs with fixed degree sequences are hard

to sample uniformly and random matchings of points are much easier to generate. Indeed this

is the case, and there is an extensive body of literature dedicated to studying the configuration

model and its implications for random graphs. However, the configuration model does have its
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limitations. While Proposition 2.2.4 guarantees uniformity of the output if you condition on a

simple pairing, this does not extend to uniformity over all multigraphs, as the argument does not

hold if the pairing P contains multiple edges or loops. Furthermore, even if C(d) a.a.s. has some

particular property, translating the result to the analogous claim for G(d) requires the probability

that the pairing is simple to be bounded away from zero. Janson [75] gives necessary and sufficient

conditions on the degree sequence of the pairing for this to be true.

Lemma 2.2.5. ([75, 77], Theorem 1.1) Let G∗(d) be the multigraph corresponding to a uniform

random pairing P ∈ C(d). Then

lim inf P (G∗(d) is simple) > 0 ⇐⇒
n∑
i=1

d(i)2 = O

(
n∑
i=1

d(i)

)
.

Vaguely speaking, this lemma means that if the degree sequence contains any large elements, or

many elements that are somewhat large, then results about C(d) do not immediately imply anal-

ogous results for G(d). For degree sequences d that do satisfy this condition, this lemma implies

that every event that happens asymptotically almost surely in C(d) also happens asymptotically

almost surely in G(d).

Despite the limitations, the configuration model is a useful and widely utilised tool for studying

graphs and networks [113, 24, 18, 71]. The configuration model has given insight into many graph

problems which are difficult to solve in G(d). For example, the threshold for when a random G(d)

graph is connected is currently unknown for many degree sequences (see Lemma 2.2.8, given in

[56], for a contemporary result). However, Federico and Van Der Hofstad [45] characterised the

threshold for when a random pairing is a.a.s. connected for all degree sequences. Beyond the study

of graphs, the configuration model can be used to generate other objects randomly, and has also

been used to study random hypergraphs [31] as well as random contingency tables [9].

Another possible correspondence between pairings and simple graphs is what is known as

the erased configuration model [24], in which all loops (an edge where both endpoints are in

the same bin) are deleted and all multiple edges are merged into a single edge to give a (non-

uniformly distributed) simple graph. The notable downsides to this method are twofold: the

resulting simple graph does not necessarily have the desired degree sequence, nor is it uniformly

distributed. However, this method still has its uses. Firstly, under certain conditions on the

degree sequence its distribution is asymptotically correct [24]. Furthermore, Janson [78] showed

that, under certain conditions, the corresponding multigraph can be adjusted by using switchings

(a concept we touch on later, albeit in a different context) to yield a random graph that is almost

uniform, in the sense that the total variational distance between the distribution of the resulting

graph and the uniform distribution is o(1). Thus, the configuration model still gives valuable

insights into random graphs.

2.2.4 Asymptotic notation

As discussed earlier, we are generally interested in studying properties of random graphs as the

graph grows arbitrarily large. Thus, typically we consider a sequence of degree sequences indexed

by n, the number of vertices in the corresponding graphs. The asymptotic notation we use is

defined in terms of n, specifically as n → ∞. Note that if d has a minimum degree of 1 and

M = M(d) is the total degree of d, then M ∈ [n, n(n− 1)]. This implies that M →∞ iff n→∞.

11
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Thus, if we assume that d has a minimum degree of 1, it is equivalent to define the asymptotics

with respect to n→∞ or M →∞.

We use the following definitions for Landau notation, as given by Wormald [63]. These defi-

nitions are equivalent to the standard definitions but allow us to more easily talk about bounds

which apply asymptotically almost surely. Suppose that |f | < φg, where f , g, and φ are functions

of n or M . Then if φ is bounded by a constant, we say that f = O(g) (equivalently, g = Ω(f),

using the definition of Knuth [91]). If g = O(f) also, then we say that f = Θ(g). If φ → 0 as

n goes to infinity, then we say that f = o(g) (equivalently, g = ω(f)). We say that f ∼ g if

f − g = o(f) (equivalently, o(g)).

We often write statements such as “a.a.s. a = O(b)” or “a.a.s. a ∼ b” for two functions

a and b (which are implicitly dependent on n or M and may be random variables). It is not

immediately clear that “a = O(b)” is a well defined event on a probability space, and so we need

to take some care. We write this using the conventions of Janson [76]: when we write “a.a.s.

a = O(b)” we mean that there exists a constant C > 0 such that a.a.s. |a| ≤ Cb, or equivalently

P (|a| ≤ Cb) → 1 as n → ∞. Similarly, if we write “a.a.s. a = o(b)”, we mean that there exists

a sequence δ := δ(n) → 0, such that P (|a| ≤ δb) → 1 as n → ∞. Thus, when we write “a ∼ b

a.a.s.”, we mean that a − b = o(a) a.a.s. (equivalently, o(b)). Analogous definitions hold for Ω(·)
and ω(·).

Some equalities and inequalities used throughout this thesis only hold asymptotically, that is,

hold for n sufficiently large. In this case, there exists some N , not explicitly stated, such that

for all n > N (equivalently M > N) the inequality holds. When an inequality only holds for

sufficiently large n or M , it is stated to hold asymptotically, or for n or M sufficiently large.

Another caveat worth mentioning is that in some places (particularly in examples) we want to

define degree sequences in terms of functions of n or M . For example, one might want to consider

a graph where every vertex has degree logM , or a graph with n1/2 vertices of degree n1/2. In

such cases, there are reasonable questions about whether such a sequence is graphical, or whether

logM and n1/2 are even integers. One option is to consider only such examples valid for values of

n and M where everything is graphical. Otherwise, we can make this rigorous by adding a O(1)

term to each quantity to make it an integer and to make the sequence graphical. That is, in the

first example we would really be considering a graph where every vertex has degree logM +O(1),

and in the first example we would be considering a graph with n1/2 + O(1) vertices of degree

n1/2 + O(1). For our purposes, this only comes up when discussing examples of sequences that

inform our intuition. In these cases, we do not explicitly mention that we add O(1) to these terms,

but it is considered to be there implicitly.

2.2.5 Properties of random graphs

Here we give definitions for each graph property that we look at in our study of induced subgraphs

of uniformly random graphs with a given degree sequence. In each case, we define the property,

and give a brief overview and history of the literature about how this graph property behaves in

various random graph models.
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Degree sequence

Recall the definition of a graphical sequence from Definition 2.2.2. Erdős and Gallai [40] gave

necessary and sufficient conditions for a sequence to be graphical.

Theorem 2.2.6. ([40]) A sequence d containing n elements ordered in non-decreasing order is

graphical if and only if
∑n

i=1 d(i) is even and

k−1∑
i=0

d(n− i) ≤ k(k − 1) +
n−k∑
i=1

min{d(i), k}

for all k ≤ n.

The requirement that d is ordered is somewhat trivial: we can permute the elements of d to

obtain a sequence d′ (which corresponds to permuting the vertex labels of the underlying graph)

ordered in non-decreasing order and apply the condition to d′. On the more constructive side of

things, the Havel-Hakimi algorithm [67, 64] either constructs a simple graph with degree sequence

d if it is graphical, or proves that such a graph does not exist if d is not graphical, and does so in

O(n2) time.

Erdős and Rényi [41, 42] began the study of the degree sequence of a random graph, a topic

that has since received much attention. Bollobás [11] gave ranges W (k) such that a.a.s. the

degree of the kth largest degree vertex in G(n, p) lies in W (k), for all k ≤ 1
2n, as well as results

about when G(n, p) has a unique maximum degree vertex and the distribution of the number of

vertices of a given degree [14]. This work was later elaborated on by Palka [117, 118]. McKay and

Wormald [111, 112] showed for various ranges of p (such as p(1−p) = ω(log n/n2) and p = o(
√
n))

that the degree sequence of G(n, p) can be approximated by a sequence of n random variables

Xn ∼ Bin (n− 1, p′) (meaning Xn is distributed as a binomial random variable with n − 1 trials

and success probability p′) where p′ is a carefully defined random variable. They also showed that

the degree sequence of G(n,M) can be closely approximated by a sequence of binomial random

variables, conditional on the event that their sum is equal to M . This result has recently been

extended by Liebenau and Wormald [97] to much wider ranges, where p(1− p) = ω(log3 n/n2) or

min{m,
(
n
2

)
−m} = ω(log n) depending on whether G(n, p) or G(n,M) is being considered.

Connectivity

Another fundamental property of a graph is whether it is connected, that is, whether all vertices

belong to the same component of the graph.

Definition 2.2.7. A graph G is connected if, for all u, v ∈ V (G), there exists a path from u to v

in G.

Gilbert [58], and independently Erdős and Rényi [42], showed that G(n, p) is a.a.s. connected if

p > (1 + ε) logn
n for some ε > 0, and a.a.s. disconnected if p < (1− ε) logn

n . That is, logn
n is a sharp

threshold for connectedness in G(n, p). This coincides with the threshold for the disappearance of

isolated vertices in G(n, p). Around the threshold, G(n, p) is neither a.a.s. connected nor discon-

nected: if p = (log n + c)/n for some constant c, then the probability that G(n, p) is connected

converges to exp (− exp (−c)) Erdős and Rényi [42]. More specifically, Ling [98] gave the exact
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distribution of the number of edges that need to be added to G(n, p) such that the resulting graph

is connected.

For graphs with given degree sequences, Wormald [130] showed that a random d-regular graph

is a.a.s. connected if d is some constant greater than 3. More generally, he showed that if d is a

degree sequence with minimum degree at least d and maximum degree at most D, for all constants

d ≥ 3 and D, then G(d) is a.a.s. d-connected, meaning that it has no vertex cutset containing less

than d vertices.  Luczak [100] extended this to the case where the sequence has minimum degree

at least d and the maximum degree is unbounded, and also gave the probability that a G(d) is

connected in the case that d = 2. For regular graphs, Frieze [49] showed that a random d-regular

graph is a.a.s. Hamiltonian (and thus connected) for d = o(n1/5). This was then extended by

Cooper et al. [35] to show that this holds for all d ∈ [3, c0n] for some sufficiently small constant

c0. For nearly regular graphs (specifically d with average degree d(d) = ω(log n) and d(i) ∼ d(d)

for all i), Gao et al. [55] proved that G(d) is Hamiltonian by coupling the generation of G(d) with

two binomial random graphs G(n, p1) and G(n, p2) such that a.a.s. G(n, p1) ⊆ G(d) ⊆ G(n, p2) for

p1 and p2 that are close. The gaps in both time and generality between results for G(n, p) and

G(d) random graph models highlight the extra difficulty that comes with studying random graphs

with given degree sequences.

As mentioned earlier, Federico and Van Der Hofstad [45] recently gave the precise window

for connectivity in the configuration model C(d). They showed that the probability that C(d) is

connected is a function of the number of degree 1 vertices, the number of degree 2 vertices, and

the average degree of d; their result also shows that in the case that the average degree is ω(1) the

number of degree 2 vertices is not relevant. This result carries over to the random graph model

G(d) when d satisfies the conditions of Lemma 2.2.5. This was then expanded upon by Gao and

Ohapkin [56] to carry over to the random graph model for a much larger range of degree sequences

d. They give the following result in their paper. Again, the important factors are the number of

degree 1 and 2 vertices in the graph, as well as the total degree.

Lemma 2.2.8. ([56], Theorem 10 & Corollary 11) Let d be a graphical sequence with ∆2 = o(M)

and minimum degree at least 1, and let c > 0 be a fixed constant. Then

(a) if n1(d) = o
(√

M
)

and n2(d) = o(M), then G(d) is a.a.s. connected,

(b) if n1(d) = ω
(√

M
)

then a.a.s. G(d) is disconnected,

(c) if n1(d) ≥ c
√
M or n2(d) ≥ cM , then there exists δ = δ(c) > 0 such that for all sufficiently

large n, P (G(d) disconnected) ≥ δ.

This connectivity threshold also doubles as the threshold for the disappearance of isolated K2

and K3 subgraphs in G(d). This hints at an underlying similarity to the connectivity threshold

for G(n, p): while G(d) cannot have isolated vertices (unless d contains zeroes), the connectivity

threshold still corresponds to the a.a.s. disappearance of minuscule, isolated subgraphs.

Chromatic number

In 1852, Francis Guthrie conjectured that all maps could be coloured using at most four colours

such that no two countries of matching colour shared a border. In graph theory circles this became

known as the Four Colour Conjecture, and has a long history of work associated with it. Over a
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century later, this claim was proved, first by Appel and Haken [5, 6], with a simpler proof given

later by Robertson et al. [122]. This question inspired the more general study of graph colouring

and the chromatic number of graphs.

Definition 2.2.9. The chromatic number of a graph, denoted χ(G), is the smallest number of

colours needed to colour the vertex set of the graph G such that for all {u, v} ∈ E(G), u and v

receive different colours.

Far from being an esoteric property concerning maps, graph colouring has evolved into one

of the most extensively studied fields in graph theory, with far-reaching applications both within

graph theory research and in applications to other fields [29, 94, 95]. One of the earliest results

on the chromatic number of a random graph was given by Grimmett and McDiarmid [62]. They

showed that for constant p, the random graph G(n, p) a.a.s. has chromatic number

(1 + o(1))
n

2 logb n
≤ χ(G) ≤ (1 + o(1))

n

logb n
,

where b = 1
1−p . They also conjectured that the true asymptotic value lies near the lower bound,

which was later proved by Bollobás [17] and independently by Matula [105]. It was known at

the time that the o(1) function in the lower bound is actually quite small: for example, Shamir

and Spencer [126] showed that χ(G(n, p)) is concentrated in a window of size
√
nω, for some

function ω → ∞ growing arbitrarily slowly. Along with this, they showed that if p < n−5/6−ε

for some fixed ε > 0, then the concentration is much stronger: in fact, χ(G(n, p)) is a.a.s. one of

five consecutive integers (known as 5-point concentration). This was improved by  Luczak [102]

to show that χ(G(n, p)) is a.a.s. one of two integers, and this idea was extended by Alon and

Krivelevich [4] to prove 2-point concentration for p = n−1/2−ε. Notably, the particular values of

these integers were unknown. In the case that p = d/n, the search for these values culminated in

Achlioptas and Naor [1] finding the specific two integers on which χ(G(n, p)) is concentrated: if

k is the smallest integer such that d < 2k log k, then a.a.s. the chromatic number is either k or

k + 1. Similar x-point concentration results for small x have also been proved for wider ranges of

p. For example, Coja-Oghlan et al. [34] show that if p ≤ n−3/4−ε for some constant ε > 0, then the

chromatic number of G(n, p) is a.a.s. concentrated on one of three values, as well as establishing

2-point concentration of χ(G(n, p)) for a subset of this range. Recently, Kargaltsev et al. [86]

show that this 2-point concentration holds for p ≤ n−3/4−δ where δ ∈
(
0, 1

4

]
, proving the highly

sought 2-point concentration for almost all of the remaining values of p that Coja-Oghlan et al.

examined.

In the case of fixed, constant p, the distribution of χ(G(n, p)) is quite different. Improvements

on the bound of Bollobás were given by McDiarmid [106], followed by an improved upper bound

by Fountoulakis et al. [48] and an improved lower bound by Panagiotou and Steger [119]. Most

recently, Heckel [68] gave improved upper and lower bounds, in particular bounds that match up

to a o(1) term in the denominator. In stark contrast to the case where p = o(1), the chromatic

number of G(n, p) for fixed p is not concentrated on a finite set of values. Indeed, Heckel [69] showed

that the chromatic number of G(n, 1
2) is not concentrated on fewer than n1/4−ε consecutive values.

In a recent arXiv publication, Heckel and Riordan [70] show that for some values of n the width

of the region of a.a.s. concentration is at least n1/2−o(1), which approximately matches the upper

bound of
√
n/ log n given by Noga Alon [116] (Section 7.9, Exercise 3).
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For graphs with given degree sequences, Frieze and  Luczak [53] showed that a random d-

regular graph a.a.s. has chromatic number d
2 log d(1 + o(1)) when d is bigger than some constant

d0 and d = o(n1/3−ε) for some fixed ε > 0. In the case where d is much larger, Krivelevich et al.

[92] showed that if d ∈
[
n6/7+ε, 0.9n

]
then a.a.s. a random d-regular graph has chromatic number

n
2 logb d(1 + o(1)), where b = n/(n − d). Notably, this coincides with the chromatic number of

G(n, p) when p = d/n, that is, when the binomial random graph has average degree asymptotically

equal to d. The intermediate gaps in the values of d were proved by Cooper et al. [36], who showed

that a d-regular graph has chromatic number d/2 log d for all d ∈
[
3, n1−η] for an arbitrarily small

constant η > 0.

A natural question that follows from all these results is whether there exists an analogous

value to which χ(G(d)) converges to for irregular degree sequences d. If d is not regular, the first

step is to consider what to replace the value d with - one logical choice would be the average

degree, which we denote d(d). One might then hope that it is true that G(d) a.a.s. has chromatic

number d(d)/2 ln d(d), or something similar. Frieze et al. [52] gave a range of degree sequences for

which χ(G(d)) = Θ(d(d)/ ln d(d)) a.a.s., and Gao and Ohapkin [56] recently improved the range

of degree sequences for which this result holds. We give the latter result below. For a sequence d

ordered in non-increasing order, define

Dk(d) =

k∑
i=1

d(i),

the sum of the k highest-degree elements in a sequence d.

Lemma 2.2.10. ([56], Theorem 9) Let d be an n-element graphical sequence. Suppose that d

satisfies the following conditions:

(a) ∆(d) = o(n),

(b) D∆(d)(d) = o(M), and

(c) there exist constants α ∈
(

1
2 , 1
)

and ε,K0 ∈ R+ such that Dk(d) ≤ K0dn
(
k
n

)α
for all

k ∈ {1, . . . , εn}.

Then a.a.s. G(d) has chromatic number Θ
(

d(d)
ln d(d)

)
.

In their paper, Frieze and  Luczak [53] also give an example of a sequence for which it is

definitely not true that a.a.s. χ(G(d)) = Θ(d(d)/ ln d(d)). Thus, for random graphs with given,

irregular degree sequences, it is unclear if there is a single function that χ(G(d)) should converge

to for all d, let alone what such a function would be.

Automorphism group

One thing to note is that in this thesis we only consider labelled graphs. That is, every vertex in

V (G) has a unique label, and thus the two graphs in Figure 2.2 are not the same labelled graph.

However, these graphs are obviously similar - they have the same “shape”, but the labels have

been rearranged. By permuting the label set, we can transform the first graph into the second.

More formally, this is called an isomorphism. An isomorphism that preserves the edge set of the

graph is called an automorphism.

16



2.2. RANDOM GRAPHS AND GRAPH PROPERTIES

1

2

3

4

5

6

2

5

3

6

1

4

Figure 2.2: Two graphs that differ by a permutation of the vertex set, specifically the permutation
(1 2 5) (4 6) ∈ S6. These graphs are isomorphic, however this permutation is not an automorphism
as the graphs have different edge sets (for example, the second graph does not contain the edge
{1, 2}).

Definition 2.2.11. An automorphism of a graph G = (V,E) is a permutation σ : V → V such

that {{σ(u), σ(v)}}{u,v}∈E = E. That is, σ is a permutation of the vertex set V that preserves

the edge set E. The set of automorphisms for a given graph G is known as the automorphism

group of G.

Every graph has at least one automorphism: the identity permutation, which maps each vertex

to itself. This is often called the trivial automorphism, for fairly obvious reasons. The study of

graph automorphisms (also sometimes called graph symmetries) is a topic of graph theory in and

of itself, but automorphisms are also important in other areas of graph theory, such as enumerating

graphs. Every labelled graph is uniquely determined by its edges, and thus the number of labelled

graphs on n vertices is 2(n2). But what about unlabelled graphs? Two labelled graphs might

correspond to the same unlabelled graph - in fact, up to n! labelled graphs might correspond to

the same unlabelled graph. By determining the automorphism group of each graph, we can fix

this double counting.

The size of the automorphism group is another long-studied property of random graphs. Erdős

and Rényi [43] showed that if min{p, 1−p} ≥ (1+ε) logn
n , then G(n, p) is a.a.s. asymmetric. Keeping

in mind that an automorphism of G is an automorphism of the complement graph G, this aligns

with the threshold for both G(n, p) and its complement to be a.a.s. connected. If p does not satisfy

this condition, then a.a.s. either G(n, p) or its complement contain multiple isolated vertices, which

gives rise to symmetries which permute the labels of these isolated vertices. This link between

connectivity and non-trivial automorphisms is further seen in results of Bollobás [13], who showed

that a random d-regular graph is a.a.s. asymmetric if d ≥ 3 and d is a constant, which aligns with

the connectivity results for random regular graphs discussed earlier. Note that if d ∈ {0, 1, 2}
then a random d-regular graph is symmetric with probability 1, and the similar results follow for

d ∈ {n − 3, n − 2, n − 1} by considering the complement. McKay and Wormald [110] extended

the result of Bollobás to d = o(
√
n), as well as extending to irregular degree sequences. The

characterisation of the a.a.s. existence of non-trivial symmetries in random regular graphs was

then completed by Kim et al. [89], who showed that if d ∈ [3, n − 4] then a random d-regular

graph is a.a.s. asymmetric.

For irregular degree sequences, McKay and Wormald [110] showed that G(d) is a.a.s. asym-
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metric if it contains sufficiently low numbers of degree 1 and 2 vertices. One easy-to-state result

they give is as follows: if d is a bounded degree sequence (that is, ∆(d) is at most a constant),

n1(d) = O(n1/3), and n2(d) = O(n2/3), then a.a.s. G(d) has no non-trivial automorphisms. Brick

et al. [23] extend this result using similar methods. They precisely determine the threshold for

non-trivial symmetries in the case where the maximum degree of d is bounded by a constant.

Lemma 2.2.12. ([23], Theorem 2) Fix a constant ∆ > 0 and assume that d is a graphical

sequence where 1 ≤ d(i) ≤ ∆ for all 1 ≤ i ≤ n.

(a) If n1 = o(n1/2) and n2 = o(n) then a.a.s. G(d) is asymmetric.

(b) If n1 = ω(n1/2) then a.a.s. G(d) is symmetric.

(c) If there is a constant c > 0 such that

n1 > cn1/2 or n2 > cn

then there is δ = δ(c) > 0 such that for all sufficiently large n

P (G(d) is symmetric) > δ.

It is noteworthy that this threshold is the same as the connectivity threshold for bounded

degree sequences determined by Federico and Van Der Hofstad [45]. This echoes the overlap

of the thresholds for connectivity and non-trivial automorphisms in G(n, p). In contrast to the

connectivity threshold of Gao and Ohapkin given in Lemma 2.2.8, if the maximum degree is

some growing function of n then the threshold for the existence of non-trivial automorphisms

also depends on this maximum degree. As an extreme case, consider a degree sequence d which

contains only two degree 1 terms but also a term of degree n − 1. Then G(d) has a non-trivial

automorphism with probability 1: a permutation of the vertex labels that swaps the two degree

1 vertices but fixes the rest of the graph is a non-trivial automorphism, since both degree 1

vertices are adjacent to the degree n − 1 vertex with probability 1. Intuitively, the reason for

this dependence is that the presence of vertices of high degree increases the chances that many

degree 1 and 2 vertices are adjacent to these high-degree “hub” vertices. This in turn increases

the chance of small, symmetric structures appearing in the random graph. In this sense, there is

an intuitive synergy between high-degree vertices and degree 1 and 2 vertices when it comes to

generating graphs with non-trivial automorphisms. The results of Brick et al. [23] that apply to

degree sequences with larger maximum degree are given below. The first theorem gives sufficient

conditions on d for G(d) to a.a.s. have no non-trivial automorphisms.

Lemma 2.2.13. ([23], Theorem 3) Suppose there are constants R1 > 0, R2 > 0 and 0 < ε < 1

such that a graphical sequence d with minimum degree at least 1 satisfies the following conditions:

(A1) ∆2

d = o(n
1
6
− 1

2R1
− 1
R2 ),

(A2) ∆2

d = o

(
n1/4

n
1/2
1

)
,

(A3) ∆2

d = o

(
nα2/2

n
α2/2
2

)
,
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2.2. RANDOM GRAPHS AND GRAPH PROPERTIES

(A4)
(
ni
n

)αi(1−ε) (∆2

d

)2−ε
= o(1), for i ∈ {1, 2},

where α2 = 1/(R2 + 4), and α1 = (1− α2)/(R1 + 4). Then G(d) is a.a.s. asymmetric.

The next lemma deals with the other case, giving sufficient conditions on d for G(d) to a.a.s.

have a non-trivial automorphism. The proof of this lemma measures the likelihood of a few small,

symmetric structures (such as isolated K2 subgraphs or K3 subgraphs with two degree 2 vertices)

to appear in G(d). For the following theorem, recall that M = M(d) =
∑n

i=1 d(i) and define

M2(d) =
∑n

i=1 d(i)(d(i)− 1).

Lemma 2.2.14. ([23], Theorem 4) Let d be an n-vertex graphical sequence with minimum degree

at least 1 and assume ∆2 = o(M).

(a) If M2 = o(M), n1 = ω
(
M/
√
M2

)
, or n2 = ω

(√
M3/M2

)
then a.a.s. G(d) is symmetric.

(b) If there is a constant c > 0 such that

n1 > cM/
√
M2, or n2 > c

√
M3/M2,

then there exists δ = δ(c) > 0 such that for all sufficiently large n,

P (G(d) symmetric) > δ.

Existence of a giant component

The component structure of random graphs has been extensively studied in various random graph

models since the early days of random graphs. For Gn,M (uniform random graphs with n vertices

and M edges), Erdős and Rényi [42] showed the existence of what is classically called the “double

jump” threshold: if M = cn for some constant c < 1
2 , then a.a.s. all components have O(log n)

vertices, whereas if c > 1
2 then a.a.s. there exists a single component of order at least εn, for some

constant ε > 0, with every other component of size O(log n). If c = 1
2 , then a.a.s. the largest

component has size Θ(n
2
3 ). Bollobás [15] and  Luczak [101] explored the growth of the largest

component in the realm where M ∼ 1
2n, as well as giving estimates for the order of the kth largest

component. The component of order at least εn is referred to as the giant component. Since this

result, there have been a plethora of results about thresholds for the existence of giant components

in many random graph models [32, 127, 38, 128, 54].

The first result about giant components in graphs with given degree sequences was by Molloy

and Reed [113], who gave a characterisation for sparse graphs. As is the case with many results

on G(d), their results came about by translating results from the configuration model. In their

paper, they analyse a random process which explores the random graph using a breadth-first

search. Analogously, this can be viewed as generating the graph using a deferred decision process,

revealing adjacencies stepwise as the graph is “explored” by the breadth-first search algorithm.

They concluded for graphs with low maximum degree that a giant component exists a.a.s. when

E [D(D − 2)] is positive and bounded away from zero, where D is the degree of a uniformly ran-

domly selected vertex. Conversely, if this expectation is negative, then almost surely a random

graph with degree sequence d does not have a giant component. The intuition for this is straight-

forward: roughly speaking, in the early steps of the exploration process on G(d), the probability
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that a given vertex is the next vertex discovered is proportional to its degree, up to some small

error. Discovering a new vertex v consumes 1 half edge in the component currently being explored,

but adds d(v) − 1 new ones. This is described in the diagram in Figure 2.3. Thus, E [D(D − 2)]

corresponds to the expected net gain of half edges at each step early in the exploration process.

Thus, if the number of unpaired half edges in the component is expected to decrease at each step,

it is much more likely that it reaches zero - meaning the component has been totally explored -

before exploring εn vertices for any ε > 0. On the other hand, if the number of unpaired half

edges is expected to increase at each step, this means the component explored by the breadth-first

search is gaining half edges faster than it is losing them, and it is likely to grow to linear size.

Graph explored so far

New vertex being “explored”

Figure 2.3: A diagram depicting a degree 4 vertex being added to the explored graph at a given
time step. The component has a net gain of 2 unpaired half edges.

These methods were adapted by many people to prove results about giant components in

both the configuration model and the random graph model for a wide variety of degree sequences

[21, 66, 79, 85]. Recently, Joos, Perarnau, Rautenbach, and Reed [83] characterised the threshold

for the a.a.s. existence of a giant component in G(d) for every sequence d. Their method is also

based on a breadth-first search, with extra preliminary steps to deal with the presence of vertices

of high degree.

When considering G(d) models that contain high-degree vertices, a whole host of new problems

arise. As mentioned earlier, the probabilities of many events are much more easily calculated in the

configuration model. However, extra conditions (such as those given in Lemma 2.2.5) are needed

to carry the analogous results from C(d) to G(d), which preclude using this method for the degree

sequences in question. When working directly in the random graph model, the probabilities of

these events are commonly computed via the switching method (which we describe in Section 2.3).

This is much more involved, and is both more complicated and less precise in the presence of high-

degree vertices.

The other problem is that the presence of high-degree vertices makes the exploration process

less “stable” over time. Consider as an example the degree sequence d = (1, 1, . . . , 1, n2/3) (ex-

ample from Joos et al. [83]). No graph with this degree sequence has a giant component: they all

contain a single component with n2/3 + 1 vertices, with every other component isomorphic to K2.

However, E [D(D − 2)] = Θ(n4/3) in this case, so extrapolating from the Molloy-Reed criterion

one might expect a giant component. The issue is that E [D(D − 2)] is only positive because of

vertex n. As soon as this vertex is added to explored component, every unexplored vertex has

degree 1, and E [D(D − 2)] is no longer representative of the expected net gain in half edges at

each step. Instead, the net gain at each subsequent step is −1, as every “undiscovered” vertex
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has degree 1.

To combat this problem, the algorithm used in the proof of Joos et al. [83] starts by doing

what they call preprocessing. This is a method of analysing the high-degree vertices before the

breadth-first search process begins which excludes them from being discovered at a later step. The

benefit of this is twofold. Firstly, it means that the expected number of half edges (or open edges,

using the graph-centric terminology of Joos et al.) gained at each step does not change much

throughout the early steps of the exploration process. Secondly, by removing high-degree vertices

from consideration, the probabilities of various events throughout the process can be much more

accurately determined, as the approximations arising from the switching method can be made

much more precise.

The other concern that arises when considering arbitrary degree sequences is the curious role

of vertices of degree 2. If a degree 2 vertex is discovered at some step in the exploration process,

the number of open edges does not change. Because of this, random graphs with large numbers

of degree 2 vertices behave differently: they correspond to the case where E [D(D − 2)] → 0 as

n → ∞, which was not covered by the original results of Molloy and Reed [113]. The solution

of Joos et al. is to create a new graph H(d) from G(d) where all paths of degree 2 vertices are

removed and replaced with a single edge (potentially creating a multigraph). Then the exploration

process is analysed to determine the component structure of H(d), and a relationship between

the giant components of G(d) and H(d) is established. Their result is given below. Notably, in

this result the o(1) terms are uniform across all n-vertex degree sequences. They also apply this

theorem to give a result explicitly written in terms of sequences of sequences, which we state later

in Theorem 4.4.1.

Theorem 2.2.15. ([83], Theorems 1 and 6) Let d = (d(1), . . . , d(n)) with d(1) ≤ d(2) ≤ · · · ≤
d(n). Define the following quantities:

jd = min

({
j : j ∈ [n] and

j∑
i=1

d(i)(d(i)− 2) > 0

}
∪ {n}

)
,

R(d) =
n∑

i=jd

d(i),

M
∼

(d) =
∑

i∈[n],d(i)6=2

d(i).

Call a degree sequence well-behaved if M
∼

(d) is at least λ(n) for any function λ : N → N where

λ→∞ as n→∞. Then:

(a) For every function δ → 0 as n → ∞, for every γ > 0, if d is a well-behaved graphical

sequence with R(d) ≤ δ(n)M
∼

(d), then the probability that G(d) has a component of order

at least γn is o(1).

(b) For every positive constant ε, there is a γ > 0 such that if d is a well-behaved graphical

sequence with R(d) ≥ εM
∼

(d), then the probability that G(d) has a component of order at

least γn and a component of size at least αM
∼

(d) is 1− o(1).

(c) For every b ≥ 0 and every 0 < γ < 1
8 , there exist a positive integer nb,γ and a 0 < δ < 1

such that if n > nb,γ and d is a degree sequence with M
∼

(d) ≤ b, then the probability that
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there is a component of order at least γn in G(d) lies between δ and 1− δ.

The intuition behind this criterion is that R(d) roughly represents the size that a component

reaches in the exploration process before the expected stepwise net gain in open edges becomes

negative. This is because, intuitively, this roughly corresponds to when the vertices contributing

to the R(d) summation have been discovered. At this point, the component does not grow much

more, and thus the largest component of the graph is, intuitively, of size roughly R(d). It must

be noted though that all of this is just intuition - the result of Joos et al. does not attempt to

give any meaningful window for the size or order of the largest component beyond whether it is

giant or not.

This theorem helps explain why previously found thresholds did not extend to random graphs

with high-degree vertices. If large elements are present in the degree sequence, the expected

increase in the number of open edges at each step can change drastically quickly. If the high-

degree vertices are discovered early (which is, intuitively speaking, likely to be the case) then

the expected net gain of open edges at each step can drop below 0 well before the component

can grow to be a giant. This characterisation avoids this problem by splitting the sequence at

jd, effectively separating the contribution of low-degree and high-degree terms in d and counting

their contributions in different ways.

One consequence of Theorem 2.2.15 is the following proposition. We give this proposition

early, as it is useful at many points throughout the thesis.

Proposition 2.2.16. If d is an n-element graphical sequence such that M(d) = ω(n), then

R(d) = M(d)(1− o(1)).

This is an immediate consequence of the following claim of Joos et al. [83].

Claim 2.2.17. ([83], Claim 5) If d is an n-element graphical sequence, then R(d) ≥M∼ (d)−2(n−
n2(d)).

Note that M
∼

(d)−2(n−n2(d)) = M(d)−2n. So if M(d) = ω(n), then R(d) ≥M∼ (d)(1−o(1)).

Thus, Theorem 2.2.15 implies that if M(d) = ω(n), then G(d) a.a.s. contains a giant component.

In their paper, Joos et al. [83] actually show the slightly stronger result that if M
∼

(d) > 3n, then

G(d) a.a.s. contains a giant component. We do not need this stronger bound, but it gives some

intuition about giant components in G(d). If M
∼

(d) > 3n, then the average degree of a vertex in

G is strictly greater than 2. This intuitively suggests that, on average, the number of open edges

gained at each step of the exploration process is positive, and thus the process is likely to explore

a large component before running out of open edges.

2.3 The switching method

As alluded to in the previous sections, estimating and determining the probabilities of different

events in G(d) is a non-trivial task at the best of times. The probability measure on G(d) is the

uniform measure, which means that for some event A ⊂ G(d) we know that

P (A) =
|A|
|G(d)|

.
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Thus, if we know the fraction of graphs with a certain property (for example, the fraction of

graphs containing some particular edge uv), then we know the probability of this event. This can

also be naturally extended to finding conditional probabilities: for two events A and B, it follows

that

P (A|B) =
|A ∩B|
|B|

.

Counting the number of graphs with degree sequence d is extremely difficult, and for most prop-

erties A (equivalently, events) the counting is similarly difficult. However, we do not need to know

the exact values of |A| and |G(d)|, or even their approximate values - as long as we have good

bounds on the ratio between the two quantities, then we have good bounds on the probability of

the event A. This is the premise of the switching method.

For our purposes, a switching is an operation that maps a graph in G(d) to another graph in

G(d) by deleting a subset of the edges and replacing them with other edges such that the degree

sequence is maintained. For a given switching that maps a graph G1 to another graph G2, we call

the inverse operation, mapping G2 to G1, a reverse switching. Let (A,B) be a partition of G(d).

For example, for some u, v ∈ V (G), let A be the set of graphs where uv is not an edge, and let B

be the set of graphs where uv is an edge. We can define a switching that maps an element of A to

an element of B by modifying the edges of the graph. There are many different possible switching

operations that accomplish this, one such switching is given in Figure 2.4. On the left we have a

(small part of a) graph in A, so it does not contain the edge uv. The switching then takes two

edges ux and vy, deletes them, and replaces them with edges uv and xy. This creates a new

graph with the same degree sequence which contains the edge uv, and is thus in B. A switching

yv

u x

yv

u x

Figure 2.4: An example of a switching operation. Present edges are given as solid lines, forbidden
edges are given as dashed. Other edges can be present or absent. The set of vertices and edges
which the switching is defined on is sometimes called a configuration in the literature. We avoid
that term where possible to minimise confusion with terminology for discussing the configuration
model C(d).

operation defines a bipartite graph H with vertex set V (H) = (A,B) and edges between graphs

G ∈ A and G′ ∈ B if and only if there exists a switching mapping G to G′. If every graph in A

has degree a in H and every vertex in B has degree b, then counting the edges of H from both

perspectives gives that

a|A| = b|B|. (2.1)

This gives the relative of size of A with respect to B. Since (A,B) is a partition of G(d), it follows
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that

P (A) =
|A|
|G(d)|

=
|A|

|A|+ |B|
=

|A|
|B|

|A|
|B| + 1

.

The last form of this expression is useful because Equation (2.1) implies that |A|/|B| = b/a, which

allows us to determine P (A) (in this example, the probability that u and v are not adjacent).

With a little more effort we can define a similar idea for a partition with more than two parts,

and determine their sizes relative to each other. A commonly used variant of this is the following:

suppose {Ai}i∈[N ], for N ∈ N, is a partition of G(d). Suppose that we can define a switching that

takes G ∈ Ai+1 to G′ ∈ Ai for all i < N where ai+1|Ai+1| = ai|Ai|. Then we can determine the

relative sizes of each Ai:

|Ai| = |Ai−1|
ai−1

ai
= · · · = |A1|

i−1∏
j=1

aj
aj+1

= |A1|
a1

ai
. (2.2)

The catch of the switching method is that a and b in Equation (2.1) (and analogously {ai}i∈[N ]

in (2.2)) are not often easy to determine exactly. In fact, in most applications the degrees (in H)

of each element of A will not be equal, and similarly for graphs in B. We can instead think of

a and b as functions of the graphs in A and B respectively, where a(G) denotes the degree of G

in H, for some G ∈ A. These functions are rarely constant and are usually difficult to determine

exactly.

One option, often the simplest, is to find upper and lower bounds for a over all graphs in A,

as well as upper and lower bounds for b over all graphs in B. This is often done in two steps.

First, an upper bound is found for the number of ways to choose the vertices/edges involved in

the switching for each graph G. Dependent on the particular graph G, some of these choices are

invalid or forbidden in the sense that the output of the switching would not be an element of

G(d). The second step is to then remove these invalid choices from the total count. For example,

suppose we wanted to perform the switching given in Figure 2.4. For some G ∈ A and choices

of vertices x and y, it is possible that xy ∈ E(G). Then the output of this switching would not

be a simple graph. Thus, we must exclude this choice of {u, v, x, y} from the lower bound on the

number of ways to apply the switching to each G ∈ A.

Suppose that dA and DA are the lower and upper bounds on the degree of each a ∈ A ⊂ V (H),

and suppose that dB and DB are the corresponding bounds for B. Then these bounds can be

used to obtain expressions similar to Equation (2.1), and to thus obtain upper and lower bounds

for P (A):

dA|A| ≤ DB|B| and dB|B| ≤ DA|A|,

which implies that

dB
DA
≤ |A|
|B|
≤ DB

dA
.

Provided that these bounds are sufficiently close (ideally asymptotically equal), this gives accurate

bounds on the probability of the event A. This is the key idea used in Chapters 3 and 7 to
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determine various probabilities in the random graph model.

In some circumstances, a small subset of graphs in A (or B) have many less valid switchings

that can be applied to them in comparison to the rest of the graphs in that part. If we were

to apply what has been discussed so far, the bounds obtained from the switchings may be very

coarse, and thus might be insufficient or even trivial. The issue in this case is that dA|A| is not

an accurate lower bound on the number of edges between A and B, since a few bad apples spoil

the bunch. To fix this, we can partition A further, say, into Agood and Abad, where Abad contains

the problematic graphs with a significantly worse lower bound. This way, we can replace dA|A|
with the larger bound

dAverage|A| ≥ dAbad
|Abad|+ dAgood

|Agood|.

Then dAverage is a (lower bound on the) weighted average of the lower bound over all elements in

A, and thus a lower bound on the number of edges between A and B in H. If one can get a good

bound on the relative sizes of Agood and Abad, this leads to a tighter bound on |A|/|B| (and thus

on P (A)), since the small number of problematic graphs do not ruin the bound.

For even more nuanced switching ideas, we turn to Hasheminezhad and McKay [65]. They

provide a much more general framework that encapsulates and extends what has been discussed

so far. Let V be an arbitrary set that indexes a partition {A(v)}v∈V of G(d). Let E be a set of

ordered pairs (u, v) of elements in V. Define a structure graph G = (V,E) for a given switching

operation as follows. Each vertex v ∈ V corresponds to the set A(v). The edge (u, v) (also written

uv for brevity, with implied u → v orientation) is in E if and only if there exists an element

G ∈ A(u) and an element G′ ∈ A(v) such that there is a switching mapping G to G′. The

structure graph permits loops, but has no multiple edges. Define N(v) = |A(v)|, and analogously

define N(V ) =
∑

v∈V |A(v)| for some subset V ⊂ V.

Suppose that, on average, a graph in A(v) can be subject to at least a(v) switchings and be

created by at most b(v) switchings. Define α(vw) = b(w)/a(v); equivalently we write α(v → w)

to emphasise the direction. For a directed path P in G, let E(P ) be the edges of this path. Define

α(P ) =
∏

uv∈E(P )

α(uv),

and define

Z := {v ∈ V | α(vw) ≥ 1 for some vw ∈ E, or v is a sink in G} .

Let X be a superset of Z (where Z must be non-empty), and let Y be a set that is disjoint from X.

For U, V ⊂ V, define QY,Z(U, V ) to be the set of all non-trivial (containing at least two distinct

vertices) directed paths in G that start in U , end in V , and have no internal vertices in Y ∪ Z.

Finally, for subsets A,B ⊂ V, define

αY,Z(AB) := max
P∈QY,Z(A,B)

αP . (2.3)

Lemma 2.3.1. ([65], Theorem 3) Let G = (V,E) be as defined above, along with N , α, X, Y,
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and Z. Then

N(Y)

N(X)
≤

αY,Z(YZ)

1− αY,Z(YY)
,

where αY,Z(AB) = 0 if QY,Z(A,B) = ∅.

This is a large generalisation on the switching method described previously. In this language,

the partition {Ai}i∈[N ] forms the vertex set of the structure graph, which is simply the path

A1 . . . AN . This method allows us to consider switchings to bound multiple related graph pa-

rameters simultaneously, and show that a.a.s. at least one of the parameters is within its desired

range. As well as this, since loops are permissible in the structure graph, this method also allows

us to consider switchings that might not work in the standard format where the structure graph

is simply a path. This more generalised switching method will be useful in proving some results

in Chapter 7.

2.4 Subgraphs of random graphs

The classic paper of Erdős and Rényi [42] provides a starting point for results on subgraphs of

random graphs. They provide a threshold function for the existence of a small graph H as a

subgraph of G(n,M) in the case that H is what they called “balanced”, meaning that it contains

no subgraphs denser than H itself. For example, trees, cycles, and complete graphs are all balanced

in this sense. Matula [104] extended this result for complete graphs, analysing the distribution

of complete subgraphs and maximal complete subgraphs of G(n, p). This was expanded upon by

Schurger [125], who showed that the number of Kk subgraphs in G(n, p) converges to a Poisson

distribution. The result of Erdős and Rényi was extended further by Bollobás [12] to give the

threshold function for the probability that G(n, p) contains H for a wider class of graphs H.

Specifically, he showed that if m(H) is the density of the densest subgraph of H, then

lim
n→∞

P (H ⊂ G(n, p)) =

0 if p = o(n1−1/m(H)),

1 if p = ω(n1−1/m(H)).

This result suggests that, roughly speaking, once a G(n, p) graph is likely to contain a copy of the

densest subgraph of H, then it likely contains all of H - the sparser parts are “easier” to contain

than the dense part. Ruciński [123] provided a general framework for determining the probability

that a G(n, p) random graph has a given graph H as a subgraph, as well as the distribution of the

number of copies of H. In particular, he gives conditions under which the number of copies of H is

asymptotically distributed as a Poisson or a normal distribution. This result also extends beyond

G(n, p) to arbitrary graphs G where the edges of G are deleted independently with probability

p, that is, bond percolation on fixed graphs. In a later paper, Ruciński [124] gave necessary

and sufficient conditions for the number of copies of a subgraph H in a G(n, p) random graph to

asymptotically have a normal or Poisson distribution.

As is the case for many graph properties, the problem of subgraph containment is quite different

for random graphs with a given degree sequence. McKay [109] gave an early result in this area,

giving a series of general results about bounds on the probability that G(d) contains a particular

subgraph, along with a particular application to the average number of spanning trees of G(d).
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These results only apply in the case where the subgraph is small, and also require that the

maximum degree of the whole graph is asymptotically negligible compared to the number of

edges. These results were expanded upon by Greenhill and McKay [61], McKay [108], and then

later by Greenhill, Isaev, and McKay [60]. In particular, these extensions consider when the graph

G is dense, that is, has average degree λn for some constant λ > 0.

If we restrict to just the case where the degree sequence d is a constant sequence (that is, G(d)

is a random regular graph), then Kim et al. [88] gave a threshold function for when G(d) contains

a given subgraph H. They showed that d = n1−1/m(H) (where m(H) is again the density of the

densest subgraph of H) is the threshold — that is, if d = o(n1−1/m(H)), then a.a.s. a random

d-regular graph does not contain H as a subgraph, and a.a.s. does if d = ω(n1−1/m(H)). This

mirrors the earlier analogous result for G(n, p) proved by Bollobás. The nearly thirty year gap

between the result in G(n, p) and the result for random regular graphs is a testament to the extra

difficulty in working with G(d) and the extra complexity brought about by the edge dependencies

inherent in the model.

In the realm of induced subgraphs, Maehara [103] showed that, for many classes of subgraph

H, the number of induced subgraphs of G(n, p) which are isomorphic to H is normally distributed.

More recently, Krivelevich, Sudakov, and Wormald [93] studied the order of the largest induced

regular subgraph of G(n, 1
2), showing that a.a.s. the largest such graph has roughly n2/3 vertices.

More recently again, Kamaldinov, Skorkin, and Zhukovskii [84] proved that a.a.s. the maximum

size of an induced subtree of G(n, p) is concentrated on two consecutive values, specifically either

b2 log1/(1−p) np+ 2.9c or the next integer.

When it comes to graphs with a given degree sequence, Gao et al. [57] used switchings to

estimate the probability that the subgraph of a uniformly random d-regular graph induced on

S ⊂ [n] is some given graph H, for d = o(n1/3). This is also extended to the case where d is an

arbitrary graphical sequence and ∆(d) = o(M(d)1/4). On the denser side of things, McKay [108]

asymptotically determined the analogous probability for the case where the average degree is very

high (specifically Ω(n/ log n)) using the multidimensional saddle point method. More recently,

Gao and Ohapkin [56] gave an asymptotic formula for the probability that a given graph H is a

subgraph (induced or otherwise) of G(d), with much less restrictive conditions on d and H (see

Theorem 4 and Corollary 5 of their paper).

The results presented in this thesis approach this problem from a different perspective. Rather

than asking for the probability that the induced subgraph is equal to some particular graph, we

study the properties of induced subgraph without explicitly determining the exact graph itself.

This allows us to get quite different results than the aforementioned papers, trading specific

knowledge about the subgraph for more information about its overall structure. For example, it

would be extremely non-trivial to determine the threshold for the existence of a giant component

in the induced subgraph using the results of Gao et al. [57] or Gao and Ohapkin [56].

2.4.1 Percolation

Another well-studied method for generating random graphs is to take some graph (which can

be fixed or random) and delete edges or vertices of the graph according to some probability

distribution. Classically, edges (equivalently, vertices) are kept independently with probability

p for some p ∈ (0, 1), and this is known in the literature as bond percolation (equivalently, site
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percolation). As an extremely basic example, the random graph model G(n, p) is equivalent to

the graph Kn after bond percolation where edges are kept with probability p. The study of

percolation on graphs has received particular attention in the cases of large, infinite graphs, such

as the infinite grid graph with vertex set Z2, the n-dimensional hypercube, or other lattice-like

graphs. This area of study was started by Broadbent and Hammersley [26] using Z2 after bond

percolation as a model for fluids moving through porous media. Since then, similar ideas have

been applied to many problems such as traffic flow in cities [96], fragmentation of virus shells

[27], and the deposition of metals on surfaces [81], as well as creating a robust mathematical field

in its own right. The most commonly asked questions are about the connectivity structure of

the remaining graph: after randomly deleting edges or vertices, what is the probability that the

remaining graph is connected or contains a giant component?

There has been considerable study of percolation on the n-cube, the graph representation of

the n-dimensional hypercube. Erdős and Spencer [44], and independently Burtin [28], studied the

component structure of the n-dimensional hypercube subject to bond percolation, where edges are

kept with probability p. They showed that the percolated graph is a.a.s. connected when p > 1
2 ,

a.a.s. disconnected when p < 1
2 , and connected with a probability that tends to e−1 for p = 1

2 .

This is somewhat reminiscent of the connectivity threshold of G(n, p), where the probability that

G(n, p) is connected converges to exp(exp(−c)) when p = (lnn + c)/n for constant c. Erdős and

Spencer conjectured that the percolated hypercube a.a.s. had a giant component when p = 1+ε
n

for some ε > 0, and a.a.s. had no giant component when ε < 0. This was proved by Ajtai et al.

[2] in the case where ε is fixed, and Bollobás et al. [20] in the case where ε → 0. This work has

been elaborated on extensively and actively since then [22, 72, 73, 107].

One offshoot of this has been the study of percolated random graphs, or the study of random

subgraphs of random graphs. Frieze et al. [51] studied the existence of giant components in

bond-percolated quasi-random d-regular graphs (that is, d-regular graphs where all but the first

eigenvalue are o(d)) when d→∞. They found that there exists a critical threshold of pc := 1/d:

if p > (1 + ε)pc for some ε > 0, then the percolated graph a.a.s. contains a unique component of

size Ω(n), but if p < (1− ε)pc then the graph has maximum component size O(log n). This idea

was elaborated on by Bollobás et al. [19], who showed that for arbitrary dense graph sequences

{Gn}n≥1 subject to bond percolation, the threshold for the existence of a giant component is 1
λn

,

where λn is the largest eigenvalue of Gn. This aligns with the result of Frieze et al. [51], as d is

the largest eigenvalue of every d-regular graph. Alon et al. [3] studied bond percolation for finite

d-regular expander graphs of high girth and bounded degree. They found that above a critical

value pc = 1
d−1 , a unique giant component appears a.a.s. in the bond-percolated expander graph.

They also use this to show that for a random d-regular graph, the critical percolation threshold is

almost surely 1
d−1 +o(1). This agrees with a slightly earlier result of Goerdt [59], who proved that

1
d−1 is the bond percolation threshold for almost all d-regular graphs. Pittel [120] then showed

that the transition window around pc is of order n−1/3 in the case where d is constant. This work

was expanded on by Nachmias and Peres [114], and then later by Joos and Perarnau [82]. The

latter paper concluded that, at the critical percolation threshold, the largest component is a.a.s.

of order Θ(n2/3) for all d ∈ {3, . . . , n−1}. This is strongly reminiscent of the component structure

around the threshold for the existence of giant components in G(n,M).

Focusing more on random graphs with given degree sequences, Fountoulakis [46] gave an early

result on the the study of G(d) after bond and site percolation for irregular degree sequences. He
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showed that, for an asymptotic sequence of degree sequences (dn)n≥1 such that ∆(dn) ≤ n1/9, the

critical threshold for both site and bond percolation is given by

pc :=

∑
v∈V (G) d(v)∑

v∈V (G) d(v)(d(v)− 1)
. (2.4)

That is, if p < pc, then a uniformly random graph with degree sequence d after (site or bond)

percolation has a giant component with probability o(1), whereas if p > pc the percolated graph

has a giant component with probability 1 − o(1). This turns out to be related to the study of

branching processes. Consider a vertex v ∈ V (G) and look at the distribution of the degrees of

its neighbours. The maximum degree restrictions imply that the graph is locally tree-like, in the

sense that the vertices at distance at most d from each vertex v a.a.s. form a tree. It also follows

that the probability a given neighbour of some vertex has degree i is very close to ini(d)
M (recall

that M is the sum of every element in d). This means that the expected number of “children” of

the vertex v in this tree is asymptotically p−1
c . Thus, if p < pc and edges (or similarly vertices)

are kept with probability p, then the expected number of children of each vertex in this tree is

p · p−1
c < 1, whereas if p > pc this expectation is strictly greater than 1. Intuitively (and, as

Fountoulakis shows, rigorously), this expectation determines whether the branching process that

defines the structure of the component “dies out” quickly or whether the component containing v

grows to linear size. This is very similar to how the expected gain/loss of half edges is an indicator

for the a.a.s. existence of giant components in G(d) in the characterisation by Molloy and Reed

[113] discussed earlier.

The proof of this is based around analysis of the configuration model, applying results anal-

ogous to Lemma 2.2.5 to carry the results into the random graph model. A key element of the

proof is the following fact: if we condition on the resulting degree sequence after percolation —

suppose we call this k — then the percolated pairing is distributed as a uniformly random ele-

ment of C(k). Then by showing that a.a.s. k is “concentrated” in some sense, known results about

giant components in C(d) are applied to prove results about the percolated case. This idea will

be explored further in Chapters 3 and 4, where we employ a similar idea and study the degree

sequence of induced subgraphs of random graphs. We then apply known results about G(d) to

study a range of graph properties for these induced subgraphs, including the existence of a giant

component.

The result of Fountoulakis was extended by Janson [74], who also studied the properties of

a uniformly random pairing (and by Lemma 2.2.5, equivalently a uniformly random graph) after

site and bond percolation. The treatment of the deleted vertices or edges in this method is slightly

different to that of Fountoulakis, and Janson describes the deletion process in two steps. First,

to-be-deleted vertices (or half edges) are “exploded”: an exploded degree i vertex is replaced with

i degree 1 vertices (each containing a unique half edge from that vertex), and an exploded half

edge is moved into its own degree 1 vertex. Secondly, all these newly created degree 1 vertices

(and the half edges contained therein) are deleted. However, since these newly created vertices

are indistinguishable from normal degree 1 vertices, it is sufficient to delete the corresponding

number of degree 1 vertices uniformly at random from all degree 1 vertices in the “exploded”

graph. In this way, the problem again boils down to studying a modified degree sequence, albeit

with the extra caveat of also deleting a specific number of degree 1 vertices. In particular, for
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site percolation, Janson shows that, under sufficiently nice smoothness conditions for the degree

sequence, the site percolated pairing a.a.s. has a giant component if and only if

∞∑
j=0

j(j − 1)πjpj >
∞∑
j=0

jpj ,

where pj is the asymptotic fraction of vertices with degree j and πj is the probability that each

degree j vertex is deleted. Note that in the case where πj is fixed and equal for all j, this aligns

with earlier result of Fountoulakis [46] as the threshold aligns with (2.4). In the case where a giant

component exists, he also determines its order up to an error of o(n). This is done by analysing a

Galton-Watson style branching process. These results are then related back to the random graph

model by Lemma 2.2.5. This idea of “exploding” deleted vertices will be useful in Chapter 6,

where a similar idea is used without the need for regularity conditions on the degree sequence d.

By combining this idea with a modified version of the exploration process used by Joos et al. [83],

we determine the threshold for the existence of a giant component in the induced sub-pairing on

a fixed set S for all possible degree sequences d, provided that S is sufficiently large in some sense

(specifically that
∑

i∈S d(i) ∼ cM(d) for some constant c ∈ (0, 1)).

Recently, Fountoulakis et al. [47] studied the existence of giant components in edge percolated

random graphs. This paper is notably different from the aforementioned results of Fountoulakis

and Janson in that it does not use the configuration model. Instead, they use the switching method

and apply the more recent result of Joos et al. [83] to give conditions that guarantee the a.a.s.

existence of giant components after edge percolation in G(d) when d has bounded average degree.

Their result shows that the critical condition depends on the tail of the degree sequence. If the tail

is small, then there exists a percolation threshold, but if the tail is sufficiently large, then for all

constants p ∈ (0, 1] the bond-percolated graph a.a.s. contains a giant component. In Chapter 5, we

study site percolation on G(d). We do not require that our graphs have bounded average degree.

Instead, our results require a condition on the maximum degree (the same condition as imposed

in Chapters 3 and 4) which allows our results to apply in cases when the graph G is more dense

than bounded average degree allows for. A consequence of our results, which is intuitively similar

to results of Fountoulakis et al. [47], is that if d has total degree ω(n) then site-percolated graph

a.a.s. has a giant component when p is constant.
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Chapter 3

Degree sequence of the induced

subgraph

In this chapter we analyse the distribution of the degree sequence of the induced graph G[S],

where G ∼ G(d) and S is a fixed subset of the vertex set of G. We show that this degree sequence

is a.a.s. “close” in some sense to an “average” sequence that can be defined deterministically in

terms of d and S. We then use this to show that many basic quantities defined from the degree

sequence of the induced subgraph are concentrated around their corresponding values for the

average sequence. This forms the framework of what we call the reduction method in Chapter 1.

3.1 Overview

In this section we introduce the concepts on which we focus our study, as well as much of the

notation. Let d = (d(1), . . . , d(n)) be a graphical sequence, that is, the degree sequence of a

graph with vertex set [n]. Let Ωn,d be the set of all graphs with degree sequence d. Let G(d) :=

(Ωn,d,P(Ωn,d),P) be the probability space of all graphs with degree sequence d equipped with the

uniform probability measure. Let G be a graph from G(d) sampled uniformly at random. Let

S := {i1, . . . , is} ⊂ [n] be a set of vertices and let S := S\[n]. Recall that G[S] is the induced

subgraph of G on S. For each v ∈ S, define dS(v) to be the degree of vertex v in the induced

subgraph G[S], which we call its induced degree. Then in the probability space G(d), the function

dS(v) is a random variable for each v ∈ S. This random variable takes integer values between

0 and d(v) (including 0 and d(v)) counting how many edges incident to v are also incident to

another vertex in S; more succinctly, dS(v) is the number of neighbours of v in S. Let dS be the

degree sequence of G[S], where dS(j) is the degree of vertex ij in G[S] for j ∈ [s]. We refer to

G[S] as the induced (sub)graph, and the degree sequence dS as the induced degree sequence.

For graphs G where the maximum degree is sufficiently low (roughly o(
√
M)), we show that

these random variables are binomially distributed up to some small error. This means that for

vertices of moderate degree (in some soon-to-be-defined sense), their degrees in G[S] are highly

concentrated around their respective averages. Intuitively, for a given vertex v ∈ S, the probability

that some edge incident to v is also incident to another vertex in S should be approximately d(S)
M ,

where M is the total degree of d. This intuition follows from the configuration model: each half

edge in the bin for vertex v is paired with a uniformly random half edge in G, and exactly d(S)−1

of the M − 1 possible mates for this half edge belong to vertices in S. According to this intuition,
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the expected induced degree of this vertex is approximately d(S)
M d(v). In later lemmas we show

that, under some assumptions on the maximum degree of G, this intuition is correct, and we nail

down the error in these approximations more precisely.

However, one should not expect an induced subgraph of a regular graph to itself be a regular

graph. Rather, the degrees of the vertices in G[S] are roughly binomially distributed, where the

induced degree of a vertex v ∈ S can be approximated by the random variable Bin (d(v), p) where

p = d(S)
M , where d(S) is the total degree of S in G and M := M(d) is the total degree of G.

In this sense, the induced degree of a specific low-degree vertex is not precisely predictable, but

the number of low-degree vertices with a given induced degree is concentrated. Thus, while an

induced subgraph of (for example) a 5-regular graph is not regular, we can get precise estimates

on how many vertices of each degree it is likely to contain.

The relevance of studying dS comes from the following observation.

Proposition 3.1.1. Conditional on the event that dS = k for some arbitrary graphical sequence

k, the graph G[S] is distributed as a uniformly random graph with degree sequence k.

Proof sketch. Let H1, H2 be graphs with degree sequence k, and let Ωn,d[H] be the subset of Ωn,d

such that G[S] = H for an arbitrary graph H. Then define a map Φ(H1, H2; ·) : Ωn,d[H1] →
Ωn,d[H2] that takes a graph G ∈ Ωn,d[H1], deletes all the edges in E(H1), and adds in all the

edges in E(H2). This map is a bijection since H1 and H2 have the same degree sequence, and

thus |Ωn,d[H1]| = |Ωn,d[H2]|. Since G(d) is a uniform probability space, this means that

P (G[S] = H1) =
|Ωn,d[H1]|
|Ωn,d|

=
|Ωn,d[H2]|
|Ωn,d|

= P (G[S] = H2) .

Since H1, H2 are arbitrary graphs with degree sequence k, this means that P (G[S] = H) is the

same for all graphs H with degree sequence k. Since k is arbitrary, this holds for all possible

sequences.

This proposition means that we can study the properties of the induced graph G[S] by applying

known results about random graphs with given degree sequences to dS . Since dS is a random

variable, this reduces our problem to understanding the distribution of dS . This observation also

underpins the study of percolated random graphs done by Fountoulakis [46].

3.1.1 Notation and definitions

Here we recall some notation from Chapter 2, as well as introduce some new notation. Let d be

an arbitrary sequence of non-negative integers. If d is graphical, let G := G(d) be a uniformly

random graph with degree sequence d. Define d′ to be the sequence d ordered in non-decreasing

order; equivalently one can think of this as d(i) = d′(σ(i)) for an appropriate permutation σ. For

convenience, we define σ such that it maintains relative orderings of elements with the same value

in d. For example, if d is already ordered in non-decreasing order, d′ = d and σ is the identity

permutation. Define d∗ to be the maximal subsequence of d with all positive entries (that is, all

elements equal to 0 removed). Naturally, (d′)∗ = (d∗)′.

Since we talk about many different degree sequences at once, often with different numbers of

elements, we need to lay out some notation that accommodates this. Most of this notation is

similar to standard notation for graphs and their degree sequences, but written as a function that
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takes a sequence as an argument. Let n(d) be the number of elements in the sequence d. For

each k ∈ Z≥0, let

nk(d) = | {i ∈ [n(d)] | d(i) = k} |,

Recall that ∆(d) is the largest term in d, or the maximum degree of a vertex in a graph with that

degree sequence (if it is graphical). For some set A ⊂ [n(d)], recall the total degree of A, denoted

by d(A), as

d(A) =
∑
i∈A

d(i).

Also recall that d([n]) = M(d) is the total degree of d. For convenience we write M = M(d)

(where d is the degree sequence of the graph G) and use M(·) when referring to other sequences.

If d is a graphical sequence and G is a graph with degree sequence d, then n(d) the number of

vertices in G, nk(d) is the number of degree k vertices in G, and M(d) = 2|E(G)|.

3.1.2 The idealised degree sequence

The aim of this work is to predict properties of the induced graph G[S] based on the degree

sequence dS . However, the degree sequence dS is a random variable. We define an “idealised”

degree sequence dI(d, S), which we abbreviate to dI , which in some sense represents what an

average degree sequence of G[S] looks like. This sequence is based on the idea that the induced

degree of a given vertex v ∈ S can be approximated by a binomial random variable with d(v)

trials and success chance d(S)
M .

When defining the idealised degree sequence, we impose various restrictions on d and S to

make this intuition more reflective of reality. Firstly, we require that both S and S are large, in

the sense that they have large total degree. We also impose a condition on the maximum degree

of d. Specifically, we impose the conditions that

d(S) = Θ(M), d(S) = Θ(M) and ∆ := ∆(d) ≤
√
M

log7M
.

These conditions apply throughout Chapters 3 and 4. The conditions on S are quite general.

Since M ∈ [n,∆n], this condition implies that |S|, |S| = Ω(
√
M log7M). In particular, this

allows for the case where |S| = o(n), as long as the set S has sufficiently high average degree

in G. The condition on ∆ implies that ∆2 = o(M), which allows for tight error bounds on the

switchings used to determine the induced degree of a given vertex. The extra factors of logM

in the denominator are relevant for various union bounds used in Section 3.2.3. Notably, this

condition on the maximum degree is much more general than the condition that ∆ = o(
√
n), and

allows for much higher-degree vertices in dense graphs. For example, if d = (n1−ε, . . . , n1−ε), then

the condition is satisfied, as
√
M/ log7M = n1−ε/2 log7M ≥ ∆.

Here we lay the foundation to define dI formally. Let d = (d(1), . . . , d(n)) be an n-element

graphical sequence. Without loss of generality, we suppose that d is ordered in non-decreasing

order. Recall that S ⊂ [n] is defined to be the subsequence {ik}k∈[s], so |S| = s. Define J :=
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logM log logM for brevity and

` := max
k∈{1,...,s}

{d(ik) ≤ J} .

Define Ssmall = {i1, . . . , i`} and Sbig = {i`+1, . . . , is}, where Sbig = ∅ if ` = s. For this definition

and throughout this chapter, let Zj ∼ Bin
(
j, d(S)

M

)
. For k ∈ {0, . . . , J}, define

ỹk =
∑

i∈Ssmall

P
(
Zd(i) = k

)
. (3.1)

Effectively, we want to define dI (or at least the first ` entries of dI) to contain exactly ỹk elements

equal to k in its first ` elements. However, since ỹk is not necessarily an integer, we employ what

is often called cascade rounding to round them to integer values while maintaining their sum. Let

bxe be the nearest integer to x (rounding up if x − bxc = 1/2) and let (yk)
J
k=0 be the sequence

(ỹk)
J
k=0 after cascade rounding is applied. Then

y0 = bỹ0e and yi =

⌊
i∑

k=0

ỹk

⌉
−

i−1∑
k=0

ỹk for i ∈ {1, . . . , J}. (3.2)

This ensures that
∑J

k=0 yk =
∑J

k=0 ỹk = ` and |yk − ỹk| ≤ 1 for all k. Now we define dI .

Definition 3.1.2. Let (yk)
J
k=0 be the sequence (ỹk)

J
k=0 after cascade rounding is applied, as

defined in (3.2). For each k ∈ {0, . . . , J}, dI contains yk elements equal to k, ordered in non-

decreasing order. In addition to this, dI also contains the terms{⌊
d(i`+1)

d(S)

M

⌋
, . . . ,

⌊
d(is)

d(S)

M

⌋}
.

These terms are concatenated to the end in the order listed.

The sequence dI in some sense represents the “average” degree sequence of G[S]. If we approx-

imate the induced degree of a vertex v ∈ S by a binomial Bin
(
d(v), d(S)

M

)
, then d(S)

M d(i) is simply

the expected degree of vertex i in G[S] under this approximation. Similarly, ỹk is the expected

number of vertices in Ssmall with induced degree k under this approximation, and yk is simply this

value rounded to an integer in such a way that the sum of the sequence is still |Ssmall|. We note

that the summation in the definition of ỹk can be re-expressed as∑
v∈Ssmall

P
(
Zd(v) = k

)
=
∑
j≤J
|Sj |P (Zj = k) (3.3)

where Sj := {ik ∈ S : d(ik) = j} for all j ≤ J . These sums are equal as every v ∈ Ssmall

contributes to exactly one Sj , precisely the set where d(v) = j. In this way, the form on the

right hand side is simply grouping summation terms by their value in d. These two forms are

used interchangeably throughout many proofs. It is worth noting that the definition for dI is not

the only possible definition for a sequence that can be used to predict properties of G[S]. At the

end of this section we give another definition for such a sequence, and discuss the differences and

similarities to dI .

The choice of logM log logM as the cutoff between the vertices that are concentrated indi-
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vidually or as a group is not the most aesthetically pleasing choice. The cutoff function must be

ω(logM), in order to perform certain union bounds in Corollary 3.2.3. However, the more obvious

choice of log2M requires ∆(d) to be lowered by an extra factor or two of logM . For this reason

we use the slightly less pleasing function, and abbreviate it to J for notational convenience.

The reason for using cascade rounding rather than a more simple method (e.g. rounding each

ỹk in the conventional way) is that we want to maintain that n(dI) = |S|. For a pathological

example of a pair (d, S) for which more simple rounding causes problems, consider the case where

the degree sequence d and set S are given by

d = (1, 1, . . . , 1, bJc) and S =

{
1

2
n+ 1, . . . , n

}
.

Due to the value of the nth element, it is not hard to show (formally speaking, a consequence of

Lemma 3.2.5) that ỹk ∈
(
0, 1

2

)
for all k > 1. If we define yk using conventional nearest-integer

rounding, the sequence dI would contain no term greater than 1. This might be unsettling, as

one might (accurately) expect that vertex n in G[S] is likely to have induced degree significantly

greater than 1. On the other hand, if we always rounded up, the sequence dI would contain almost

J terms greater than 1, despite d only containing a single term greater than 1. In either case,

using these other methods of rounding makes it possible (if not highly likely) that n(dI) 6= |S|,
and instead we might only be able to say that |n(dI) − |S|| ≤ J . From a predictive perspective

this might not be an issue — in the grand scheme of things, logM log logM is quite small, so the

addition or removal of a small number of terms of degree at most logM log logM does not affect

many of the predictive properties of dI that we prove later. However, it significantly simplifies

the notation and proof arguments to impose that dS and dI have the same number of terms, and

in many ways is simply more natural.

It is worth noting that the definition of dI does not explicitly define an induced degree for

each individual vertex. We avoid referring to vertices in the definition of dI as there is no clear

notion of identifying terms in Ssmall with a particular “idealised degree” in dI . Instead, dI gives

a more holistic view of the average behaviour of vertices in G[S]. None of the theorems that we

apply to study G[S] (the theorems mentioned in Chapter 2) depend on specific vertices in G[S]

having specific degrees. Thus, we never need the degree of a fixed low-degree vertex to be well

concentrated.

This sequence is also not necessarily ordered, for example it is possible that dI(`) > dI(`+ 1).

As a small example of this, consider the pair (d, S) where d = (J, . . . , J, J + 1, J + 1) and S =

{1
2n, . . . , n − 1}. Then dI(s) ≤

⌊
1
2J
⌋

+ 1, but it is straightforward to show from the definition

of dI and yk that dI(s − 1) > 1
2J + 1. For times when it is convenient to talk about dI being

ordered, recall from Section 3.1.1 that d′I is the sequence dI ordered in non-decreasing order. This

can be written as d′I(i) = dI(σ(i)) for an appropriate permutation σ. As we discuss later, the

sequence dI is “almost” ordered in the sense that any terms that are out-of-order all have degree
d(S)
M J(1 + o(1)).

One point that might cause alarm is that the sequence dI is not necessarily a graphical se-

quence. For instance, it is entirely possible that M(dI) is odd. For our methods it is actually

entirely unnecessary that dI be a graphical sequence in its own right. However, one can force that

dI is always graphical with minimal modification: if M(dI) is odd, then lower the value of the

highest-degree term in dI by 1 to create a new sequence dfI . Otherwise, if M(dI) is even, define
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dfI = dI . The next lemma and subsequent corollary state that dfI is always a graphical sequence.

This modification does not meaningfully affect the properties of dI that we consider, and allows

us to talk about random graphs with degree sequence dI without having to add the caveat that

dI is graphical. Thus, for intuition purposes one may simply assume that dI is graphical.

Lemma 3.1.3. Let d be an n-element sequence of non-negative integers, for n sufficiently large.

If M(d) is even and ∆(d) ≤ c
√
M for some c ≤ 1

2 , then d is a graphical sequence.

Proof. Without loss of generality, we can assume that d is ordered in non-decreasing order. Recall

that the Erdős-Gallai theorem (given in Theorem 2.2.6) states that d is a graphical sequence if

and only if

k−1∑
i=0

d(n− i) ≤ k(k − 1) +

n−k∑
i=1

min{d(i), k} (3.4)

for all k ≤ n (since we assume that M(d) is even). Note that because of the maximum degree

constraints on d, the left hand side of this inequality is at most kc
√
M .

First suppose that k ≥ c
√
M + 1. Then k(k− 1) ≥ kc

√
M , and the claim immediately follows.

Now suppose that k < c
√
M + 1. Then define xk := min{x ∈ [n] : d(x) ≥ k}. It follows from this

definition that

n−k∑
i=1

min{d(i), k} =

xk∑
i=1

d(i) +
n−k∑

i=xk+1

k.

Now consider two cases. First, consider the case that n − k − xk ≥ c
√
M . Then Theorem 2.2.6

holds immediately, as

n−k∑
i=xk+1

k ≥ kc
√
M.

On the other hand, if n− k − xk < c
√
M , then it follows that

n−k∑
i=xk+1

d(i) < c2M,

since d has maximum degree at most c
√
M . Thus,

xk∑
i=1

d(i) = M(d)−
n−k∑

i=xk+1

d(i)−
n∑

i=n−k+1

d(i) > M − 2c2M − c
√
M = M(1− 2c− o(1)).

Since k < c
√
M + 1, it follows that the left hand side of (3.4) is less than c2M + c

√
M . Since

c ≤ 1
2 , it then follows that

k−1∑
i=0

d(n− i) ≤M(c2 + o(1)) < M(1− 2c2 − o(1)) <
n−k∑
i=1

min{d(i), k}.

Thus, d satisfies (3.4) for all k ≤ n. Therefore, since we assume M(d) is even, it follows that d is

a graphical sequence.
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With this in mind, it is easy to argue that dfI is always a graphical sequence. We defer the

proof for now, since it relies on a result about M(dI) (specifically Lemma 3.3.1) that we prove

later.

Corollary 3.1.4. The sequence dfI is a graphical sequence.

To relate this idealised degree sequence dI to a random degree sequence dS , we use switchings

to show that the degrees of vertices in G[S] a.a.s. behave as expected. We show that a.a.s.

all vertices v ∈ S such that d(v) > J (that is, the vertices in Sbig) have an induced degree

asymptotically equal to d(v)d(S)
M . Furthermore, we show that the number of vertices v ∈ Ssmall

with induced degree k is concentrated around its average value for all k. These ideas are formalised

in the following lemma. For ease of writing, we define γ := d(S)/M ; it immediately follows that

γ = Θ(1). This definition will be used in many places throughout this chapter. We also use the

notation that a = b± c means that a ∈ [b− c, b+ c].

Lemma 3.1.5. Suppose that d is an n-element graphical sequence with maximum degree at most√
M/ log7M , and suppose S ⊂ [n] such that d(S) = γM and d(S) = (1 − γ)M = Θ(M). Then

the following statements hold with probability 1− o(1).

(a) For all vertices v ∈ S such that d(v) > J ,

dS(v) = d(v)
d(S)

M

(
1± 10√

γ log logM

)
.

(b) Let Yi be the number of vertices in Ssmall with induced degree i. Then

E [Yi] = ỹi

(
1 +O

(
∆2J

M

))
and

|Yi − E [Yi]| ≤
1

log5M
E [Yi] + log7M

for all i ≤ J .

This is the key lemma we use to analyse the properties of G[S]. Many results in the study of

random graphs with given degree sequences state thatG(d), a uniformly random graph with degree

sequence d, a.a.s. has a particular property if d satisfies some conditions. This lemma implies

that dS and dI are very similar degree sequences. Thus, if dI satisfies a particular condition,

then depending on the specifics we can apply Lemma 3.1.5 to show that a.a.s. dS satisfies the

same condition or a very similar one. This allows us to determine the properties of G[S] simply

by knowing d and S. Using this method, we analyse the connectivity and the chromatic number

G[S], as well as the existence of non-trivial automorphisms or giant components in G[S]. These

results and their proofs are given in Chapter 4.

One thing that follows from the definition of dI is that nk(dI) and nk+1(dI) are closely related

for low values of k. That is, if dI has a very large number of elements equal to k with indexes in

{1, . . . , `} (that is, in Ssmall), then it also has a relatively large number of elements equal to k− 1.

This is formalised in the following remark. Combining the following remark with Lemma 3.1.5
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means, for example, that if G[S] a.a.s. contains many degree 2 vertices, then a.a.s. it also contains

a large number of degree 1 vertices. This is particularly useful later when proving properties of

G[S] in Chapter 4.

Remark 3.1.6. Recall that Sj is the set of i ∈ S such that d(i) = j. Then for k ≥ 1,

∑
j≤J
|Sj |P (Zj = k) =

∑
j≤J

d(S)

d(S)

j − k + 1

k
|Sj |P (Zj = k − 1) .

With some naive bounds on the value of j−k+1
k , this gives useful bounds on the ratios between

successive values of yk. Since j ≤ J , it follows that

ỹk =
∑
j≤J
|Sj |P (Zj = k) ≤ J

k

d(S)

d(S)

∑
j≤J
|Sj |P (Zj = k − 1) =

Jd(S)

kd(S)
ỹk−1,

and thus yk−1 = Ω(kyk/J) for all k ≥ 1.

It is worth noting that yk, defined in Definition 3.1.2, is not necessarily the number of terms

equal to k in dI , as it is possible that dI(i) = k for some k > `. Similarly, Yk, as defined in

Lemma 3.1.5(b), is not necessarily the number of degree k vertices in G[S]. However, as noted in

the following remark, this is only an issue for k > d(S)
M logM log logM(1− o(1)).

Remark 3.1.7. Lemma 3.1.5 implies that with probability 1−o(1), no vertex in Sbig has induced

degree less than γ logM log logM(1 − 10/
√
γ log logM). This means that for all k smaller than

this value, we have that nk(dS) = Yk with probability 1 − o(1). This means, for example, when

considering the number of vertices of degree 0 in G[S], we do not need to consider the case where

a vertex in Sbig is isolated in G[S], as it happens with probability o(1).

We also give a more relaxed (but more general) concentration result for the induced de-

gree of vertices in Ssmall with larger degrees. Analogous asymptotic concentration results to

Lemma 3.1.5(a) still hold with probability 1−o(1) if the cutoff of logM log logM is replaced with

logM log log logM , with analogous replacements in the definition of the error margin.

Remark 3.1.8. For all vertices v ∈ S such that d(v) ≥ logM log log logM ,

dS(v) ∈
[
d(S)

M
d(v)

(
1− 10√

γ log log logM

)
,
d(S)

M
d(v)

(
1 +

10√
γ log log logM

)]
with probability 1− o(M−10).

The proof of the claim is almost identical to the proof of Lemma 3.1.5(a), which is given in

Lemma 3.2.2 and Corollary 3.2.3. Despite being even less aesthetically pleasing, this remark has

a useful consequence. We know from Lemma 3.1.5(a) that a.a.s. all vertices in Sbig have degree

Ω(J) in G[S], however it says nothing about the behaviour of vertices in Ssmall with degree Θ(J).

This corollary says that a.a.s. every vertex in Ssmall with d(v) = Θ(J) must have an induced

degree that asymptotically matches its expected induced degree.

3.1.3 An alternative predictive sequence

As mentioned earlier, dI as defined in Definition 3.1.2 is not the only possible sequence that we

can use to predict properties of the induced subgraph. Alternatively, we can define a sequence
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dH , based on a cumulative distribution function.

Definition 3.1.9. Let d be a graphical sequence. Let S ⊂ [n] define a subsequence of d. To

define dH , let Zj ∼ Bin
(
j, d(S)

M

)
. Then define

N(k) =

⌊∑
i∈S
P
(
Zd(i) ≤ k

)
+

1

2

⌉

for k ≥ 0, and N(−1) = 0, where bxe is the nearest integer to x. Then define nk(dH) =

N(k)−N(k − 1) to be the number of elements in dH with value k.

This sequence dH does not treat big and small vertices in S differently, which is in some sense

less artificial. Furthermore, the same methods that we use to show that dS is a.a.s. close to dI

can also be used to show that dS and dH are a.a.s. close. As a result, it is not hard to show that

dH can also be used to predict many properties of G[S]. However, while dH might have a more

natural definition, we choose to study dI as there is less work required to show that there is an

appropriate term in dI corresponding to each high-degree vertex in S, since this is built into the

definition. In this case, the slightly unnatural definition of dI saves us some work in showing that

these two sequences are similar. However, dH also has some advantages, for example the elements

are sorted in non-decreasing order by construction. Both definitions have their advantages and

disadvantages, but they are so similar that any result that can be proved with one can be proved

with the other, with possibly a little more work.

3.2 Concentration of the induced degree sequence

Here we prove the main workhorse lemmas that we need to prove Lemma 3.1.5. Recall that dS(v)

is the degree of vertex v in G[S]. Recall that M =
∑

i∈[n] d(i) and that Zj ∼ Bin (j, γ) where

γ = d(S)/M . We restrict ourselves to the case where ∆(d) ≤
√
M

log7M
, γ = Θ(1), and 1− γ = Θ(1).

Let d be an arbitrary graphical sequence satisfying these conditions. We show that, under these

conditions, the degree of a given vertex in G[S] is roughly binomially distributed with some small

error that shrinks to 0 as M grows. We then use this to show that a.a.s. the sequence dS is

sufficiently “close” to the sequence dI to satisfy Lemma 3.1.5. The proof, much like the lemma,

is split into two parts: one for the vertices in S above the cutoff J (that is, vertices v such that

d(v) > logM log logM) and one for vertices below the cutoff. The proofs for each part are given

in Sections 3.2.2 and 3.2.3.

3.2.1 Distribution of the induced degree of a given vertex

The following lemma forms the crux of how we analyse the induced degree sequence dS . Since G(d)

is a uniform probability space, the number of graphs with a given property is directly proportional

to the probability that a graph has that property. The ratio between P (Zj = i) and P (Zj = i+ 1)

is given by

P (Zj = i)

P (Zj = i+ 1)
=
i+ 1

j − i
d(S)

d(S)
.
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With this in mind, the following lemma implies that dS(v) is, in some sense, asymptotically

binomially distributed. The approximation error is a result of the switching bounds, as described

in Section 2.3. However, we also would not expect that the induced degree of each vertex is

exactly binomial: as mentioned earlier, G(d) is a complicated probability space with where the

existence and non-existence of each possible edge depends on every other possible edge. Because

of the error term we cannot say that dS(v) is exactly binomial, however since the distributions are

similar we show in the following sections that dS(v) satisfies many concentration results similar

to a binomial random variable.

Lemma 3.2.1. Let v be an arbitrary vertex in S. Let Xi be the number of graphs in G(d) where

dS(v) = i. Then

Xi

Xi+1
=

i+ 1

d(v)− i
· d(S)

d(S)

(
1 +O

(
∆2

M

))
.

Proof. Let Aiv be the set of G ∈ G(d) such that dS(v) = i, which implies that Xi = |Aiv|. We

define a switching that takes a graph G ∈ Ai+1
v to some G′ ∈ Aiv. Let G ∈ Ai+1

v . To perform a

switching, choose a vertex y such that vy ∈ E(G) and y ∈ S, as well as an ordered pair of vertices

(u, x) such that ux ∈ E(G) and u ∈ S (x can be in either S or S). The switching deletes edges vy

and ux, replacing these edges with uv and xy and hence creating a new graph G′. This switching

is considered valid if and only if G′ ∈ Aiv, which occurs if and only if

(a) the vertices {u, v, x, y} are distinct, and

(b) xy /∈ E(G) and uv /∈ E(G).

Now let G′ ∈ Aiv. Then observe that a reverse switching takes an edge uv where u ∈ S and an

ordered pair of vertices (x, y) where y ∈ S and xy ∈ E(G), and replaces the edges uv and xy with

edges xu and vy, creating a new graph G. Again to ensure that the result of the reverse switching

is an element of Ai+1
v , a reverse switching is considered valid if and only if

(i) the vertices {u, v, x, y} are distinct, and

(ii) vy /∈ E(G) and ux /∈ E(G).

A diagram for the switching is given in Figure 3.1.

yv

u x

yv

u x

Figure 3.1: The switching used in this proof. Here v, y ∈ S and u ∈ S. Present edges are given as
solid lines, forbidden edges are given as dashed. Other edges may be present or absent.

Now we find upper and lower bounds on the number of switchings that can be applied to some

G ∈ Ai+1
v . The number of forward switchings is at most the number of ways of choosing an edge

vy, where y ∈ S, and an ordered pair of vertices (u, x) such that ux ∈ E(G) and u ∈ S. Given
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some G ∈ Ai+1
v , there are i + 1 choices for vertex y such that vy ∈ E(G) and y ∈ S. There are

d(S) choices for a vertex u ∈ S and neighbour x. Thus, there are at most (i+ 1)d(S) switchings

from G ∈ Ai+1
v to some G′ ∈ Aiv.

To determine a lower bound on the number of switchings that can be applied to each G ∈ Ai+1
v ,

we bound from above the number of choices for {u, x, y} as described above that do not correspond

to a valid switching. This occurs exactly if at least one of (a) or (b) is not satisfied. Let W be

the number of choices for {u, x, y} such that at least one of (a) or (b) is not satisfied. Then the

number of forward switchings from some graph G ∈ Ai+1
v is (i+1)d(S)−W (G). We give an upper

bound on W for all G ∈ Ai+1
v .

For case (a), we consider all the different ways that the vertices can be non-distinct. The

vertices v and y must be different, as they are adjacent, as are the vertices u and x. The vertices

{v, y} must both be distinct from u, as v, y ∈ S but u /∈ S. Thus, the only two possibilities are if

x = v or x = y. In the first case, there are i+ 1 choices for the vertex y, and d(v)− i− 1 choices

for the vertex u, since ux ∈ E(G), x = v, and u ∈ S. In the second case, there are i+1 choices for

y, and at most d(y) choices for u, since ux ∈ E(G) and x = y. Since d(v), d(y) ≤ ∆, this means

that there are at most 2(i+ 1)∆ choices for {u, x, y} that do not satisfy (a). For case (b), we first

bound the number of choices such that xy ∈ E(G). Again there are i + 1 ways to choose y, and

then given y there are at most d(y) choices for x such that xy ∈ E(G), and then at most d(x)

choices for u such that ux ∈ E(G). Since d(x), d(y) ≤ ∆, there are at most (i+ 1)∆2 choices such

that xy ∈ E(G). By similar reasoning, there are at most (i+ 1)∆2 choices for {u, x, y} such that

uv ∈ E(G). Since d has minimum degree at least 1, the number of valid switchings that can be

applied to each G ∈ Ai+1
v is at least (i+ 1)(d(S)− 4∆2).

Now we use a very similar argument to count the number of reverse switchings that can be

applied to each G ∈ Aiv, or equivalently the number of switchings that create a particular G ∈ Aiv.
The number of reverse switchings is at most the number of ways of choosing an edge uv, where

u ∈ S, and an ordered pair of vertices (x, y), where y ∈ S and xy ∈ E(G). Given some G ∈ Aiv,
there are (d(v)− i) choices for the vertex u. There are d(S) choices for an ordered pair of vertices

(x, y) such that y ∈ S and xy ∈ E(G). Thus, there are at most (d(v) − i)d(S) choices for

{u, x, y} that correspond to a valid reverse switching. Now we bound from above the number of

these choices that do not correspond to a valid reverse switching. A choice of {u, x, y} does not

correspond to a valid reverse switching if and only if one of (i) and (ii) are not satisfied. For case

(i), we consider all the different ways that the vertices can be non-distinct. The vertices u and v

are distinct, as they are adjacent, as are x and y. The vertices u and y are distinct, as y ∈ S and

u /∈ S. Thus, the only possible clashes are if x = v, x = u, or y = v. Using similar reasoning to the

analysis of the forward switching, there are at most 3(d(v)− i)∆ choices for {u, x, y} that do not

satisfy (i). For case (ii), we consider the two possible “bad” edges separately. There are i choices

for vy and d(v)−i choices for u such that y ∈ S, vy ∈ E(G), u ∈ S, and uv ∈ E(G). Given y, there

are at most d(y) choices for x such that xy ∈ E(G). Thus, there are at most (d(v)− i)∆2 choices

for {u, x, y} such that vy ∈ E(G). Similarly, there are at most (d(v) − i)∆2 choices such that

ux ∈ E(G). Thus, the number of valid backward switchings is at least (d(v)− i)
(
d(S)− 5∆2

)
.

This implies the following inequalities.

Xi+1(i+ 1)(d(S)− 4∆2) ≤ Xi(d(v)− i)d(S),

Xi+1(i+ 1)d(S) ≥ Xi(d(v)− i)
(
d(S)− 5∆2

)
.

(3.5)
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From these inequalities it follows that

Xi

Xi+1
=

i+ 1

d(v)− i
· d(S)

d(S)

(
1 +O

(
∆2

M

))
,

since d(S) and d(S) are Θ(M).

3.2.2 High-degree vertices: proof of Lemma 3.1.5(a)

Now we use Lemma 3.2.1 to show that vertices in Sbig (that is, vertices v ∈ S such that d(v) >

J = logM log logM) a.a.s. all have induced degree close to d(v)d(S)
M . This justifies the treatment

of terms in Sbig when defining dI in Definition 3.1.2. Recall that γ = d(S)/M , and thus γ = Θ(1).

Lemma 3.2.2. Let ε = 5(
√
γ log logM)−1 and define i0 := i0(v) = γd(v) (not necessarily an

integer). Then, for M sufficiently large,

P (dS(v) ∈ [i0(1− 2ε), i0(1 + 2ε)]) < 2d(v) exp

(
−1

2
ε2i0

)
.

Proof. Recall that dS(v) is the degree of vertex v in G[S]. We first prove that the probability that

dS(v) < i0(1− 2ε) is less than d(v) exp
(
−1

2ε
2i0
)
. The argument for the upper bound is identical,

and then the lemma follows from the union bound. Define ik = (1− kε)i0 for all k, ε > 0. Recall

that Xi is the number of graphs in G(d) such that dS(v) = i. For all i ≤ i1 − 1, Lemma 3.2.1

implies that

Xi

Xi+1
=

i+ 1

d(v)− i
d(S)

d(S)

(
1 +O

(
∆2

M

))
≤ i1
d(v)− i1

d(S)

d(S)

(
1 +O

(
∆2

M

))
≤ i0 − εi0
d(v)− i0

d(S)

d(S)

(
1 +O

(
∆2

M

))
= (1− ε) i0

d(v)− i0
d(S)

d(S)

(
1 +O

(
∆2

M

))
.

By definition of i0,

i0
d(v)− i0

=
d(S)
M

1− d(S)
M

=
d(S)

d(S)
.

Thus, it follows from the above computation that, for all i ≤ i1 − 1,

Xi

Xi+1
≤ (1− ε)

(
1 +O

(
∆2

M

))
< 1− 3

4
ε, (3.6)
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where the second inequality holds for M sufficiently large, since ∆2 = o(M). Thus for all i < i2,

Xi

Xi1

≤
(

1− 3

4
ε

)εi0
= exp

(
−3

4
ε2i0 +O

(
ε3i0

))
< exp

(
−1

2
ε2i0

)
,

where the last inequality holds for M sufficiently large, since ε → 0 as M → ∞. Thus if i < i2,

it follows that P (dS(v) = i) < exp
(
−1

2ε
2i0
)
. Performing a union bound over all possible induced

degrees i ≤ i2 ≤ d(v) gives that

P (dS(v) ≤ i2) ≤ d(v) exp

(
−1

2
ε2i0

)
.

An analogous calculation gives the corresponding bound for large i, which we give here for com-

pleteness. This time, let ik = (1 + kε). For any i ≥ i1, it follows that

Xi+1

Xi
=
d(v)− i
i+ 1

d(S)

d(S)

(
1 +O

(
∆2

M

))
≤ d(v)− i1

i1

d(S)

d(S)

(
1 +O

(
∆2

M

))
≤ 1

1 + ε

d(v)− i0
i0

d(S)

d(S)

(
1 +O

(
∆2

M

))
≤
(
1− ε+O

(
ε2
))(

1 +O

(
∆2

M

))
< 1− 3

4
ε.

This statement is analogous to the inequality given in (3.6). From this point, the rest of the proof

follows similarly.

Corollary 3.2.3. Define ε = 5(
√
γ log logM)−1 as in Lemma 3.2.2. The probability that all

vertices v ∈ S such that d(v) > J satisfy

dS(v) ∈
[
d(S)

M
d(v)(1− 2ε),

d(S)

M
d(v)(1 + 2ε)

]
is 1− o

(
M−10

)
.

Proof. Recall that Sbig is the set of vertices in S such that d(v) > J . We apply Lemma 3.2.2

along with the union bound over all vertices in Sbig. Lemma 3.2.2 implies that the proba-

bility that dS(v) is outside the specified range is at most 2n exp
(
−1

2ε
2i0
)
. Note that i0 ≥

γ logM log logM for all v ∈ Sbig. Combining this with the union bound implies that the prob-

ability that there exists some vertex v ∈ Sbig such that dS(v) is outside its specified range is at

most 2n2 exp
(
−1

2ε
2γ logM log logM

)
. Due to the choice of ε, this is at most 2n2 exp

(
−25

2 logM
)
,

which is n2 · o(M−12). Since n ≤M , the claim holds.
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3.2.3 Low-degree vertices: proof of Lemma 3.1.5(b)

As mentioned earlier, it is not expected that the induced degree of all low-degree vertices (that

is, vertices in Ssmall with degree at most J = logM log logM) is asymptotically d(v)d(S)
M . For

example, if the original graph is a random d-regular graph for some constant d, it is highly, highly

unlikely that G[S] is regular. However, Lemma 3.2.1 implies that the distribution of dS(v) for

each these vertices should be close to binomial. Here we formalise this idea. In the case where the

expected number of vertices with degree k in G[S] is small (that is, polylogarithmic in M), the

concentration results obtained may be weak or even trivial. However, as we show in Chapter 4,

these concentration windows are still sufficient to determine thresholds for various properties of

G[S]. This justifies our treatment of low-degree vertices in the definition of dI . Recall that

γ = d(S)
M and that Zj ∼ Bin (j, γ).

An important step to proving Lemma 3.1.5(b) is to show that the induced degrees of pairs of

vertices in Ssmall are not strongly dependent. As a step towards showing this, we show that given

two vertices in Ssmall, the probability that they are adjacent is very small. This is proved in the

following lemma. We prove something slightly more general than this, where we also condition on

the induced degree of a small (bounded) number of other vertices in Ssmall.

Lemma 3.2.4. Let {v1, . . . , vk} ⊂ Ssmall be a set of k distinct vertices where k = O(1), and let

G be a uniformly random graph with degree sequence d. Then

P (v1v2 ∈ E(G)| dS(v1) = i1, . . . , dS(vk) = ik) = O

(
J2

M

)

for all ij ≤ d(vj) for j ≤ k, and P (v1v2 ∈ E(G)) = O
(
J2

M

)
.

Proof. First note that if one of i1 or i2 is equal to zero, then

P (v1v2 ∈ E(G)| dS(v1) = i1, . . . , dS(vk) = ik) = 0.

Thus we suppose that i1, i2 > 0.

Let Av1,v2 be the subset of G(d) where v1 and v2 are adjacent and each vertex vj has induced

degree ij for j ≤ k. Similarly, let Bv1,v2 be the subset of G(d) where v1 and v2 are not adjacent

and each vertex vj has induced degree ij for j ≤ k. We define a switching between these subsets

as follows. Suppose G ∈ Av1,v2 . To perform a switching, choose two ordered pairs of vertices in

V (G), (x, y) and (a, b), such that ab, xy ∈ E(G), and y, b ∈ S. Then the switching deletes the

edges v1v2, xy, ab and replaces them with v1y, ax, v2b, creating a new graph G′. A diagram of

this switching is given in Figure 3.2. This switching is considered valid if and only if G′ ∈ Bv1,v2 ,

which occurs if and only if

(a) the vertices {v1, v2, a, b, x, y} are distinct, except y = b is permissible,

(b) v1y, ax, v2b /∈ E(G), and

(c) the induced degrees of v1, . . . , vk are unchanged by the switching.

Now let G′ ∈ Bv1,v2 . Then note that a reverse switching is equivalent to the following: take two

edges v1y and v2b where y, b ∈ S, as well as an ordered pair of vertices (a, x) such that ax ∈ E(G),
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and replace v1y, ax, v2b with v1v2, xy, ab, hence creating a new graph G. Such an operation

corresponds to a valid reverse switching if and only if G ∈ Av1,v2 , which occurs if and only if

(i) the vertices {v1, v2, a, b, x, y} are distinct, except y = b is permissible,

(ii) v1v2, ab, xy /∈ E(G), and

(iii) the induced degrees of v1, . . . , vk are unchanged by the switching.

b

v2v1

y

x a

b

v2v1

y

x a

Figure 3.2: The switching used in this proof. Present edges are given as solid lines, forbidden
edges are given as dashed. Other edges can be present or absent.

Now we determine upper and lower bounds on the number of switchings that can be applied to

each G ∈ Av1,v2 . The number of possible forward switchings for any G ∈ Av1,v2 is at most the

number of ways of choosing (a, b) and (x, y) such that ab, xy ∈ E(G), and b, y ∈ S. Since y and b

are in S, there are d(S)2 such choices for {a, b, x, y} (including choices that do not correspond to

valid switchings, for example where ab = xy). Thus, there are at most d(S)2 switchings that can

be applied to each G ∈ Av1,v2 .

Now let W be the number of choices for (a, b) and (x, y) as described above that do not

correspond to a valid switching. This occurs exactly if at least one of (a) – (c) do not occur. We

bound the number of choices such that one of the following does not occur:

(a′) the vertices {v1, . . . , vk, a, b, x, y} are distinct, except y = b is permissible, and

(b′) v1y, ax, v2b /∈ E(G).

Since this implies {a, b, x, y} ∩ {v1, . . . , vk} = ∅, (a′) is a more strict condition than (a) and (c)

combined. To bound W from above for all G ∈ Av1,v2 , we bound from above the number of choices

Z such that at least one of (a′) or (b′) does not occur.

For case (a′), there are three types of ways in which the chosen vertices can be non-distinct:

(a1) b = y,

(a2) a = x, a = y, or b = x,

(a3) an element of {a, b, x, y} is equal to an element of {v1, . . . , vk}.

The definition of the switching permits b = y, and so we do not need to count this case. For case

(a2), there are at most d(S) choices for the pair (a, b), and at most d(a) choices for a vertex y

such that ay ∈ E(G) (since xy ∈ E(G) and a = x). Thus, the number of choices where a = x at

most d(S)∆. By similar arguments, the number of choices that satisfy (a2) is at most 3d(S)∆.

For case (a3), the number of choices for {a, b, x, y} that intersect with {v1, . . . , vk} is at most

4d(S)(d(v1) + · · ·+ d(vk)).
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For case (b′), there are at most d(v1)∆d(S) choices for {a, b, x, y} such that v1y ∈ E(G). Simi-

larly, there are at most d(v2)∆d(S) choices for {a, b, x, y} such that v2b ∈ E(G). Finally, there are

at most d(S)∆2 choices for these vertices such that ax ∈ E(G). Thus, at most d(S)∆ (i1 + i2 + ∆)

of the aforementioned d(S)2 choices for {a, b, x, y} do not satisfy (b). Therefore, it follows that

for all G ∈ Av1,v2 ,

W (G) ≤ 4d(S)(d(v1) + · · ·+ d(vk)) + d(S)∆ (i1 + i2 + ∆) .

Therefore, the number of valid switchings that can be applied to each G ∈ Av1,v2 is at least

d(S)2 − 4d(S)(d(v1) + · · ·+ d(vk))−∆d(S) (i1 + i2 + ∆). Since ij ≤ d(vj) ≤ J for all j ≤ k, and

k = O(1), this is d(S)(d(S)−O(∆2)).

Now we determine similar bounds for the reverse switching operation. We abbreviate this

argument as it is similar to previous switching bound arguments. Let G′ ∈ Bv1,v2 . The number of

reverse switchings that can be applied to G′ is at most the number of ways of choosing edges v1y,

v2b, and an ordered pair of adjacent vertices (a, x) such that b, y ∈ S. By the definition of Bv1,v2 ,

the number of choices for y is i1, and similarly the number of choices for b is i2. The number of

choices for the adjacent pair (a, x) is at most M . Since we are only looking for an upper bound

on the probability that v1v2 ∈ E(G), we do not need to consider the number of these choices that

do not correspond to valid reverse switchings.

Therefore, noting that d(S) = Θ(M), it follows that

|Av1,v2 |
|Bv1,v2 |

≤ i1i2M

d(S)2

(
1 +O

(
∆2

M

))
.

Since ∆2 = o(M) by assumption, the multiplicative error term is 1 + o(1). Thus, the probability

that the vertices v1 and v2 are adjacent, conditional on the induced degrees of {v1, . . . , vk}, is at

most

P (v1v2 ∈ E(G)| dS(v1) = i1, . . . , dS(vk) = ik) =
|Av1,v2 |

|Av1,v2 |+ |Bv1,v2 |

≤ i1i2M

d(S)2
(1 + o(1))

≤ J2M

d(S)2
(1 + o(1)),

since both i1 and i2 are at most d(v1) and d(v2) respectively and v1, v2 ∈ Ssmall. Therefore, apply-

ing the law of total probability over all possible values for (i1, . . . , ik) implies that the probability

that v1 and v2 are adjacent is at most

∑
(i1,...,ik)

P (dS(v1) = i1, . . . , dS(vk) = ik)
J2M

d(S)2
(1 + o(1)) =

J2M

d(S)2
(1 + o(1)).

Since d(S) = Θ(M), this completes the proof.

We now formally state and prove the lemma that the induced degrees of small sets (that is,

sets of bounded size) of vertices in Ssmall are roughly independent.

Lemma 3.2.5. Suppose (d, S) is such that d(S) = Θ(M), d(S) = Θ(M), and ∆(d) ≤
√
M

log7M
. Let
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{v1, . . . , vk} ⊂ Ssmall be a set of k distinct vertices for some k = O(1). Let Zj ∼ Bin
(
j, d(S)

M

)
.

Then

P (dS(v1) = i1, . . . , dS(vk) = ik) =
k∏
j=1

P (dS(vj) = ij)

(
1 +O

(
∆2J

M

))

=
k∏
j=1

P
(
Zd(vj) = ij

)(
1 +O

(
∆2J

M

))
.

Proof. Without loss of generality, we condition on the event that dS(vj) = ij for all j ≥ 2, where

ij ≤ d(vj). We show that

P (dS(v1) = i1| dS(v2) = i2, . . . , dS(vk) = ik) = P
(
Zd(v1) = i1

)(
1 +O

(
∆2J

M

))
,

as well as

P (dS(v1) = i1) = P
(
Zd(v1) = i1

)(
1 +O

(
∆2J

M

))
.

Then we prove the lemma quickly from these results, since v1 is arbitrary. Let Ci be the set

of graphs in G(d) such that dS(v1) = i and dS(vj) = ij for all j ≥ 2. That is, for all G ∈ Ci,
(dS(v1), dS(v2), . . . , dS(vk)) = (i, i2, . . . , ik). We apply a similar switching to the one used in

Lemma 3.2.1 to switch between Ci+1 and Ci. The diagram for this new switching is given in

Figure 3.3. The important difference between this switching and the switching used in the proof

of Lemma 3.2.1 is that the induced degrees of vertices v2, . . . , vk are maintained. Other than this

extra restriction, the edges are chosen in the same way as the switching used in Lemma 3.2.1.

yv1

u x

yv1

u x

Figure 3.3: The switching used in this proof. Here v1, y ∈ S and u ∈ S. Importantly, the switching
does not alter dS(v2), . . . , dS(vk).

Now we define the switching formally. Suppose G ∈ Ci+1. Choose a vertex y such that

v1y ∈ E(G) and y ∈ S, as well as an ordered pair of vertices (u, x) such that ux ∈ E(G) and

u ∈ S. The switching deletes edges v1y and ux, replacing these edges with uv1 and xy and hence

creating a new graph G′. This switching is considered valid if and only if G′ ∈ Ci, which occurs

if and only if

(a) the vertices {u, v1, x, y} are distinct,

(b) xy /∈ E(G) and uv1 /∈ E(G),

(c) the induced degrees of v2, . . . , vk are unchanged by the switching.

Similarly, a reverse switching applied to some G′ ∈ Ci+1 is equivalent to taking an edge uv1 where

u ∈ S and an ordered pair of vertices (x, y) where xy ∈ E(G) and y ∈ S, replacing the edges uv1
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and xy with edges xu and v1y, thus creating a new graph G. Again to ensure that the result of

the reverse switching is an element of Ci+1, this choice of {u, v1, x, y} is considered valid if and

only if

(i) the vertices {u, v1, x, y} are distinct,

(ii) v1y /∈ E(G′) and ux /∈ E(G′),

(iii) the induced degrees of v2, . . . , vk are unchanged by the switching.

To count the number of switchings that can be applied to each G ∈ Ci+1, we carry out the

analogous computation to what was done in the proof of Lemma 3.2.1. For each G ∈ Ci+1, there

are (i + 1)d(S) choices for {u, v1, x, y} such that v1y, ux ∈ E(G), y ∈ S and u /∈ S. To obtain a

lower bound on the number of switchings that satisfy conditions (a) – (c), we bound from above

the number of these choices for {u, v1, x, y} such that one of the following is false:

(a) the vertices {u, v1, x, y} are distinct,

(b) xy /∈ E(G) and uv1 /∈ E(G),

(c′) {v2, . . . , vk} ∩ {u, v1, x, y} = ∅.

Since (c′) is a more strict condition than (c), it follows that a choice for {u, v1, x, y} that satisfies

(a), (b), and (c′) must also satisfy (a) – (c). Thus, if W (G) is the number of choices for {u, v1, x, y}
that do not satisfy at least one of (a), (b), or (c′), it follows that the number of switchings that can

be applied to G is at least (i+1)d(S)−W (G). We now bound W (G) from above for all G ∈ Ci+1.

Identically to the analogous case in the proof of Lemma 3.2.1, there are at most 3(i+1)∆2 choices

for {u, v1, x, y} that do not satisfy (a) or (b). All that remains is to give an upper bound on the

number of choices that do not satisfy part (c′).

By assumption, v1 6= vj for j ≥ 2, and u /∈ S. Thus, the only possibilities for a non-empty

intersection are if x ∈ {v2, . . . , vk} or y ∈ {v2, . . . , vk}. Given v2, . . . , vk are fixed, there are at most

k∆ choices for a neighbour of one of these vertices. Thus, there are at most (i+ 1)k∆ choices for

{u, v1, x, y} such that x ∈ {v2, . . . , vk}. For the case where y ∈ {v2, . . . , vk}, the number of such

choices depends on which vertices in {v2, . . . , vk} are adjacent to v1 in G. If v1 has no neighbours

in the set {v2, . . . , vk}, then there are no choices for {u, v1, x, y} such that y ∈ {v2, . . . , vk}, since

y is a neighbour of v1. If v1vj ∈ E(G) for some j ≥ 2, then there are d(S) choices for {u, v1, x, y}
such that y = vj , u ∈ S, and ux ∈ E(G). Lemma 3.2.4 implies that, for each j ≥ 2,

P (v1vj ∈ E(G)| dS(v1) = i+ 1, . . . , dS(vk) = ik) = O

(
J2

M

)
.

Since k = O(1) it follows from the union bound that

P

 k⋃
j=2

{v1vj ∈ E(G)}

∣∣∣∣∣∣ dS(v1) = i+ 1, . . . , dS(vk) = ik

 = O(J2/M).

Thus, the average number of choices for {u, v1, x, y} where y ∈ {v2, . . . , vk}, taken over all G ∈

48



3.2. CONCENTRATION OF THE INDUCED DEGREE SEQUENCE

Ci+1, is

min{d(v1),k}∑
i=0

id(S)P ( |NG(v1) ∩ {v2, . . . , vk}| = i| dS(v1) = i+ 1, . . . , dS(vk) = ik)

≤ k2d(S)O

(
J2

M

)
= O(J2).

Therefore, the average number of valid switchings that can be applied to each G ∈ Ci+1 is

(i+ 1)(d(S)−O(∆2))−O(J2) = (i+ 1)d(S)

(
1−O

(
∆2 + J2

M

))
.

Without loss of generality, we can assume that J ≤ ∆ (otherwise, we could simply replace J with

∆ in the previous analysis). Thus, the number of switchings that can be applied to each G ∈ Ci+1

is (i+ 1)d(S)
(

1−O
(

∆2

M

))
.

Now we determine upper and lower bounds for the number of reverse switchings that can be

applied to each G′ ∈ Ci. The enumeration of the number of choices for {u, v1, x, y} is very similar

to enumeration done in the proof of Lemma 3.2.1: there are (d(v1) − i) choices for the vertex

u /∈ S such that v1u ∈ E(G), and d(S) choices for an ordered pair of adjacent vertices (x, y) such

that y ∈ S. Now we bound the number of these choices that do not satisfy each of (i) – (iii). By

the same reasoning as used in the proof of Lemma 3.2.1, the number of choices for these vertices

that do not satisfy one of (i) or (ii) is O((d(v1)− i)∆2). Now we bound the number of cases that

do not satisfy (iii). Again, as an upper bound on the number of choices that do not satisfy (iii),

we count the number of choices where {u, v1, x, y} and {v2, . . . , vk} intersect.

Note that v1 6= vj for any j ≥ 2 by assumption, and u 6= vj since u ∈ S. Thus, it follows that

the only choices for {u, v1, x, y} that do not satisfy (iii) are choices where either x ∈ {v2, . . . , vk}
or y ∈ {v2, . . . , vk}. In this case, there are at most 2(d(v1)− i)

∑k
j=2 d(vj) choices for {u, v1, x, y}

such that either x ∈ {v2, . . . , vk} or y ∈ {v2, . . . , vk}. Since k = O(1) and {v2, . . . , vk} ⊂ Ssmall,

the number of reverse switchings that can be applied to each G′ ∈ Ci is

(d(v1)− i)d(S)

(
1−O

(
∆2

M

))
.

Thus, it follows that

|Ci|
|Ci+1|

=
i+ 1

d(v1)− i
d(S)

d(S)

(
1 +O

(
∆2

M

))
. (3.7)

Let pi = P (dS(v1) = i| dS(v2) = i2, . . . , dS(vk) = ik) for i ∈ {0, . . . , d(v1)}. Recall that γ =

d(S)/M . Then Equation (3.7) implies that, for all i ∈ {0, . . . , d(v1)},

pi+1

pi
=
d(v1)− i
i+ 1

d(S)

d(S)

(
1 +O

(
∆2

M

))
=
d(v1)− i
i+ 1

γ

1− γ

(
1 +O

(
∆2

M

))
.
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Thus, we can express pi in terms of p0:

pi =

(
d(v1)

i

)(
1− γ
γ

)i
p0

(
1 +O

(
∆2

M

))i
=

(
d(v1)

i

)(
1− γ
γ

)i
p0 exp

(
O

(
∆2i

M

))
=

(
d(v1)

i

)(
1− γ
γ

)i
p0

(
1 +O

(
∆2d(v1)

M

))
, (3.8)

since i ≤ d(v1) and ∆2d(v1)
M → 0 when d(v1) ≤ logM log logM . The sum of all pi must be equal

to 1, and thus

1 =

d(v1)∑
i=0

[(
d(v1)

i

)(
γ

1− γ

)i(
1 +O

(
∆2d(v1)

M

))
p0

]
.

Since the error is uniformly bounded for all terms in the sum, and all terms are positive, the

relative error of the whole sum is at most
(

1 +O
(

∆2d(v1)
M

))
. Thus,

d(v1)∑
i=0

[(
d(v1)

i

)(
γ

1− γ

)i
p0

]
= 1 +O

(
∆2d(v1)

M

)
.

It follows from the previous equation and the definition of the binomial distribution that

p0 =

d(v1)∑
i=0

(
d(v1)

i

)(
γ

1− γ

)i−1(
1 +O

(
∆2d(v1)

M

))

= (1− γ)d(v1)

(
1 +O

(
∆2d(v1)

M

))
.

Applying Equation (3.8) for all i ≤ d(v1), we obtain that

P (dS(v1) = i1| dS(v2) = i2, . . . , dS(vk) = ik) = P
(
Zd(v1) = i1

)(
1 +O

(
∆2d(v1)

M

))
(3.9)

for each choice of ij ≤ d(vj) for all j ≤ k. By the law of total probability, summing over all

ordered tuples (i2, . . . , ik) such that ij ≤ d(vj) for all j ≥ 2 gives that

P (dS(v1) = i1) =
∑

(i2,...,ik)

P

dS(v1) = i1

∣∣∣∣∣∣
k⋃
j=2

{dS(vj) = ij}

P
 k⋃
j=2

{dS(vj) = ij}


= P

(
Zd(v1) = i1

)(
1 +O

(
∆2d(v1)

M

))
. (3.10)

Now note that the choice of v1 ∈ {v1, . . . , vk} was arbitrary, and the same argument holds for

all vj . Thus, analogous statements to Equations (3.9) and (3.10) apply for all vertices vj . Thus,
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applying these two equations for all j ≤ k and recalling that k = O(1), it follows that

P (dS(v1) = i1, . . . , dS(vk) = ik) =

k∏
j=1

P (dS(vj) = ij | dS(vj+1) = ij+1, . . . , dS(vk) = ik)

=

k∏
j=1

P (dS(vj) = ij)

(
1 +O

(
∆2J

M

))

=

k∏
j=1

P
(
Zd(vj) = ij

)(
1 +O

(
∆2J

M

))
.

This completes the proof.

Recall that Yi is the number of vertices in Ssmall with induced degree i, for i ∈ {0, 1, . . . , J}.
Then the following corollary provides part of the proof to Lemma 3.1.5(b).

Corollary 3.2.6. For all i ≤ J , E [Yi] = ỹi

(
1 +O

(
∆2J
M

))
.

Proof. By Lemma 3.2.5,

E [Yi] =
∑

v∈Ssmall

P (dS(v) = i) =
∑

v∈Ssmall

P
(
Zd(v) = i

)(
1 +O

(
∆2J

M

))
= ỹi

(
1 +O

(
∆2J

M

))
,

where the last inequality follows from the fact that the error term is uniformly bounded for all

summands and that all summands are positive.

Now we prove the rest of Lemma 3.1.5(b). We know from Lemma 3.2.5 and subsequently

Corollary 3.2.6 that E [Yi] is close to yi for all i ≤ J . The next step is to show that Yi is

concentrated around its expected value. We bound the variance of Yi in order to later apply

Chebyshev’s inequality (given in Theorem A.2).

Lemma 3.2.7. For all i ≤ J , Var (Yi) ≤ E [Yi]
(

1 +O
(

∆2J
M

)
E [Yi]

)
.

Proof. Let Vk be the indicator variable for the event that vertex k ∈ Ssmall has induced degree i.

Then

Yi =
∑

k∈Ssmall

Vk.

Taking the variance of this sum gives that

Var (Yi) = Var

 ∑
k∈Ssmall

Vk

 =
∑

k∈Ssmall

Var (Vk) +
∑
j 6=k

Cov (Vj , Vk), (3.11)

where the last sum is over all ordered pairs (j, k) ∈ S2
small where j 6= k. Each Vk is a Bernoulli
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random variable, and thus

Var (Vk) = E
[
V 2
k

]
− E [Vk]

2

= E [Vk]− E [Vk]
2

= E [Vk] (1− E [Vk])

= P (dS(k) = i) (1− P (dS(k) = i)) .

So the first summation is equal to∑
k∈Ssmall

Var (Vk) =
∑

k∈Ssmall

P (dS(k) = i) (1− P (dS(k) = i)) ≤ E [Yi] . (3.12)

An application of Lemma 3.2.5 provides a bound on the covariance terms in the second summation:

Cov (Vj , Vk) = P (dS(j) = i, dS(k) = i)− P (dS(j) = i)P (dS(k) = i)

= P (dS(j) = i)P (dS(k) = i)O

(
∆2J

M

)
.

Thus, the summation in Equation (3.11) of the covariances over all ordered pairs (j, k) ∈ S2
small

where j 6= k is equal to ∑
j∈Ssmall

∑
k∈Ssmall

P (dS(j) = i)P (dS(k) = i)−
∑

j∈Ssmall

P (dS(j) = i)2

O

(
∆2J

M

)

=

 ∑
k∈Ssmall

P (dS(k) = i)

2

−
∑

j∈Ssmall

P (dS(j) = i)2

O

(
∆2J

M

)
.

Therefore, noting that
∑

j∈Ssmall
P (dS(j) = i)2 ∈ [0,E [Yi]

2], we obtain

∑
j 6=k

Cov (Vj , Vk) ≤ E [Yi]
2 ·O

(
∆2J

M

)
. (3.13)

Combining (3.12) – (3.13), we obtain an upper bound on the variance of Yi:

Var (Yi) ≤ E [Yi] +O

(
∆2J

M

)
E [Yi]

2 .

The claim of the lemma immediately follows.

Some straightforward applications of Chebyshev’s inequality give the concentration bounds in

Lemma 3.2.8. When E [Yi] is not too small (in a sense defined shortly), we show that Yi is a.a.s.

within a 1 + o(1) window around its expected value. If Yi is expected to be small, then it follows

that a.a.s. Yi is also small. We choose our bounds in such a way that these inequalities a.a.s. all

hold simultaneously.
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Lemma 3.2.8. If E [Yi] ≥ log12M , then

P
(
|Yi − E [Yi] | ≥

E [Yi]

log5M

)
= O

(
1

log2M

)
.

If E [Yi] ≤ log12M , then

P
(
|Yi − E [Yi] | ≥ logkM

)
= O

(
log12−2kM

)
.

Proof. First suppose that E [Yi] ≥ log12M . Applying Chebyshev’s inequality with t := αE [Yi]

gives that

P (|Yi − E [Yi] | ≥ αE [Yi]) ≤
Var (Yi)

α2E [Yi]
2

≤ 1

α2E [Yi]
+O

(
∆2J

α2M

)
.

Recall that ∆ = ∆(d) ≤
√
M/ log7M . Now let α = log−5M , then

Var (Yi)

α2E [Yi]
2 =

1

α2E [Yi]
+O

(
∆2J

α2M

)
≤ 1

log2M
+O

(
J

log4M

)
.

Since J = o(log2M), this gives the first part of the lemma. Now suppose that E [Yi] ≤ log12M .

Then it follows that

Var (Yi) = E [Yi] + E [Yi]
2O

(
∆2J

M

)
≤ log12M + o

(
log12M

)
= log12M(1 + o(1)).

Then applying Chebyshev’s inequality with t := logkM gives the desired result.

The combination of these two concentration bounds and the union bound for all i ≤ J =

logM log logM gives the following corollary.

Corollary 3.2.9. With probability 1− o(1),

|Yi − E [Yi]| ≤
1

log5M
E [Yi] + log7M

for all i ∈ {0, 1, . . . , J}.

Proof. Set k = 7 in Lemma 3.2.8. Since J = o(log2M), with probability 1− o(1) the inequalities

mentioned in the previous lemma a.a.s. simultaneously hold for all i ≤ J .

With this, we have proved all the claims in Lemma 3.1.5. We pull them all together here for

completeness.

Proof of Lemma 3.1.5. Corollary 3.2.3 proves Lemma 3.1.5(a), and Corollaries 3.2.6 and 3.2.9

prove part (b). Applying the union bound, the desired result immediately follows.
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Remark 3.2.10. Recall that |ỹi − yi| ≤ 1 for each i ≤ J . It follows from Corollary 3.2.6 that

yi = E [Yi] (1 + o(1)) ± 1 for all i ≤ J . With this in mind, it is an immediate consequence of

Lemma 3.2.8 (say, taking k = 6.75 instead of k = 7 and α = 1
2 log−5M instead of α = log−5M in

the proof) that a.a.s.

|Yi − yi| ≤
yi

log5M
+ log7M

for all i ≤ J . This allows us to more directly relate dI and dS .

3.2.4 A note on isolated vertices in G[S]

Many results about random graphs with given degree sequences only consider sequences with

minimum degree at least 1. We also make this assumption on d throughout the entire thesis. If d

has k terms equal to 0, then a uniformly random graph with degree sequence d has an identical

distribution to a uniformly random graph with degree sequence d∗ (recall that d∗ is the sequence d

with all zeroes removed) and k isolated vertices. Thus, allowing isolated vertices is not particularly

interesting, and so a minimum degree of 1 is commonly assumed. This means that when applying

such results to study G[S], we technically need to apply them to d∗I and d∗S instead of dI and

dS . However, if the number of elements in d∗I and d∗S deviated wildly from each other, we might

not be able to infer our desired properties of G[S] from properties of d∗I . To address this, we

show that the numbers of non-zero terms in both sequences are a.a.s. close to each other. This is

straightforward to show just using Definition 3.1.2 and Lemma 3.1.5. The applications discussed

in this work only require us to know the order of the number of vertices in G[S], rather than its

exact value. Thus, we can effectively ignore this issue altogether. The following lemma formalises

this.

Lemma 3.2.11. With probability 1− o(1), n(d∗I) ∼ n(d∗S). Furthermore, n(d∗I) = Θ(|S|) always.

Proof. We first show that n(d∗I) = Θ(|S|). If ỹ0 = o(|S|) then the claim holds trivially; thus we

assume that ỹ0 = Θ(|S|). Note that

P (Zk = 1)

P (Zk = 0)
= k

d(S)

d(S)
.

Thus, by Remark 3.1.6 and the definition of dI it follows that

n1(dI) =
∑

i∈Ssmall

P
(
Zd(i) = 1

)
± 1

=
d(S)

d(S)

∑
i∈Ssmall

d(i)P
(
Zd(i) = 0

)
± 1.

By assumption, d(i) ≥ 1 for all i ∈ [n] and d(S) = Θ(M). Thus, it follows that n1(dI) =

Ω(n0(dI)) ± 1. Since we assume that ỹ0 = Θ(|S|), this implies that n1(dI) = Θ(|S|). Since

n(d∗I) ≥ n1(dI), this proves the claim.

Now we prove that a.a.s. n(d∗I) ∼ n(d∗S). Note that |S| = Ω(
√
M log7M), since ∆(d) ≤√

M/ log7M and d(S) = Θ(M). Also note by Lemma 3.1.5 that a.a.s. |Y0−E [Y0] | ≤ 1
log5M

E [Y0]+
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3.3. BASIC PROPERTIES OF THE INDUCED DEGREE SEQUENCE

log7M and n0(dS) = Y0. Using Remark 3.2.10 to relate this to y0, this implies that a.a.s.

n(d∗S) = |S| − Y0 = |S| − y0 ±
(

1

log5M
E [Y0] + log7M

)
.

Since |S| − y0 = n(d∗I), and |S| = ω(
√
M log7M), and Y0 ≤ |S|, it follows that a.a.s. n(d∗S) =

n(d∗I) + o(|S|). From the earlier part of this lemma, n(d∗I) = Θ(|S|). Thus, a.a.s. n(d∗I) ∼ n(d∗S),

which concludes the proof.

As a note on asymptotics, this also means that if one of n, M , |S|, or n(d∗I) goes to infinity,

then they all do. Thus, when we defined asymptotics earlier in terms of n and M , we could

equivalently define it in terms of |S| or n(d∗I). We do not explicitly use this anywhere, but it does

appear implicitly - some results in the following sections talk about asymptotics in relation to the

length or total degree of a degree sequence while assuming a minimum degree of 1. One can rest

easy knowing that there are no peculiar cases where n(dI) is misbehaving and not growing as a

function of n or M .

3.3 Basic properties of the induced degree sequence

In this section we apply Lemma 3.1.5 to prove concentration results about some basic properties of

dS and then relate them to the analogous properties for dI . These form a foundation for proving

more complicated properties in Chapter 4, such as thresholds for connectivity or the existence of

a giant component in G[S].

The following lemma shows that the total degrees of both dI and dS are highly concentrated

around γ2M , where γ = d(S)/M . This makes sense intuitively: the total degree of S in G is

γM , and the induced degree of each vertex in v ∈ S is roughly distributed as Bin (d(v), γ). Recall

that J = logM log logM , Sbig is the set of vertices in S with degree greater than J in G, and

Ssmall = S\Sbig. We continue to use the notation that a = b± c implies that a ∈ [b− c, b+ c]. For

brevity, define MI := M(dI) and MS := M(dS).

Lemma 3.3.1. MI ∼ γ2M always. Furthermore, a.a.s. MS ∼MI .

Proof. Recall that MI =
∑

i∈S dI(i). First split the summation for MI into

MI =
∑
i∈Sbig

⌊
d(i)

d(S)

M

⌋
+
∑
k≤J

kyk. (3.14)

Now we look at each summation individually. The floor functions in the definition of dI lower the

total value of MI by at most 1 per element of Sbig. That is,(
d(i)

d(S)

M
− 1

)
≤
⌊
d(i)

d(S)

M

⌋
≤ d(i)

d(S)

M
.

Thus it immediately follows that

∑
i∈Sbig

d(i)
d(S)

M
− |Sbig| ≤

∑
i∈Sbig

⌊
d(i)

d(S)

M

⌋
≤
∑
i∈Sbig

d(i)
d(S)

M
. (3.15)
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Now we focus on the second summation in Equation (3.14), which represents the total degree in

dI of terms in Ssmall. Recall that Sj is the subset of S with degree j in d. First note that by

Definition 3.1.2 and Equation (3.3),∑
k≤J

kỹk =
∑
k≤J

k
∑
j≤J
|Sj |P (Zj = k)

=
∑
j≤J
|Sj |

∑
k≤J

kP (Zj = k)

=
∑
j≤J
|Sj |E [Zj ]

=
∑
j≤J
|Sj |j

d(S)

M

=
d(S)

M
d(Ssmall).

Since yk is simply the sequence ỹk after cascade rounding, it follows that yk = ỹk±1 for all k ≤ J .

Thus,

∑
k≤J

kyk =
d(S)

M
d(Ssmall)±

J∑
k=1

k. (3.16)

Combining together (3.14) to (3.16), we obtain

MI ≤
d(S)2

M
+

J∑
k=1

k and MI ≥
d(S)2

M
−

J∑
k=1

k − |Sbig|. (3.17)

Note that by definition, |Sbig| = o(M), since M > J |Sbig|. Since
∑J

k=1 k ≤ J2, which is also

o(M), this proves that MI ∼ d(S)2/M . Recalling that γ = d(S)/M , this proves the first claim of

the lemma.

Now we consider the second claim. Recall that

MS =
∑
v∈S

dS(v),

that is, MS is the total degree of G[S]. We apply Lemma 3.1.5(a) to bound the induced degree of

all vertices in Sbig. Since γ = Θ(1), it follows that a.a.s.

∑
v∈Sbig

dS(v) =
∑
v∈Sbig

bγd(v)c
(

1 +O

(
1√

log logM

))
.

Now we focus on Ssmall. Recall that Yk is the number of vertices in Ssmall with induced degree k.

We apply Lemma 3.1.5(b) and Remark 3.2.10 to the vertices in Ssmall. This implies that a.a.s. Yk
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differs from yk by at most 1
log5M

E [Yk] + log7M for all k ≤ J . Thus, a.a.s.

∣∣∣∣∣∣
∑
k≤J

k (Yk − yk)

∣∣∣∣∣∣ ≤
∑
k≤J

k

(
1

log5M
E [Yk] + log7M

)
≤ 1

log5M

∑
k≤J

kE [Yk] + log10M

≤ 1

log5M

∑
k≤J

kỹk(1 + o(1)) + log10M

≤ MI

log5M
(1 + o(1)) + log10M

≤ M

log5M
.

Thus, combining these results it follows that with probability 1− o(1)

|MS −MI | = O

(
dS(Sbig)√
log logM

)
+

M

log5M
.

Since MI = Θ(M) and dS(Sbig) ≤ d(Sbig) ≤M , this completes the proof.

With this result, we can give a short proof of Corollary 3.1.4, which states that dfI is always

a graphical sequence.

Proof of Corollary 3.1.4. By definition, M(dfI ) is even. It follows from the inequalities given in

(3.17) that M(dI) ≥ d(S)2

M − J2 − |Sbig|, and thus M(dI) ≥ cM for some constant c > 0. Finally,

it follows that ∆(dI) ≤ ∆(d) = o(
√
M). Thus, Lemma 3.1.3 implies that dfI is a graphical

sequence.

Recall that d(d) is the average degree of d, that is,

d(d) =
M(d)

n(d)
.

Another useful corollary of Lemma 3.3.1 is that the average degrees of dI and dS are a.a.s. equal.

Corollary 3.3.2. With probability 1− o(1), d(dI) ∼ d(dS).

Proof. By Lemma 3.3.1, it follows that a.a.s. M(dS) ∼ M(dI), and thus it immediately follows

that a.a.s. M(dS)/|S| ∼M(dI)/|S|.

As mentioned earlier, we cannot concentrate the induced degree of every individual vertex in

G[S] when there exist vertices of low (that is, O(logM)) degree. However, we can argue that the

maximum degree of the induced graph is within a constant factor of what is expected.

Lemma 3.3.3. ∆(dI) = Θ(d(is)) always, and a.a.s. ∆(dS) = Θ(∆(dI)).

Proof. Naturally if Sbig 6= ∅, then by Definition 3.1.2 and Lemma 3.1.5 it follows that ∆(dI) ∼
γd(is) and a.a.s. ∆(dI) ∼ ∆(dS). For the remainder of the proof we suppose that Sbig = ∅. If

d(is) = O(1), then it follows immediately that both dS and dI are bounded and the claim holds.
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To complete the proof, we show that if d(is) = ω(1) and Sbig = ∅, then ∆(dI) = Θ(d(is)) and

a.a.s. ∆(dS) = Θ(d(is)).

It is immediate that ∆(dI) ≤ d(is) and ∆(dS) ≤ d(is). Now we show that dI(s) = Ω(d(is)).

Recall that γ = d(S)/M . Chebyshev’s inequality (given in Theorem A.2) implies that

P
(
|Zd(is) − γd(is)| ≥ d(is)

2/3
)
≤

Var
(
Zd(is)

)
d(is)4/3

=
d(is)γ(1− γ)

d(is)4/3
= o(1). (3.18)

Therefore, by definition of ỹk, ∑
k≥γd(is)−d(is)2/3

ỹk ≥ 1− o(1).

Thus, it follows that yk ≥ 1 for some k ≥ γd(is) − d(is)
2/3. This implies that ∆(dI) ≥ γd(is) −

d(is)
2/3. By a similar argument, we can show that dS a.a.s. contains a term of degree at least

γd(is)− d(is)
2/3:

P
(
dS(s) ≥ γd(is)− d(is)

2/3
)

=
∑

i≥γd(is)−d(is)2/3

P (dS(s) = i)

=
∑

i≥γd(is)−d(is)2/3

P
(
Zd(is) = i

)(
1 +O

(
∆2J

M

))
= 1− o(1),

where the last two equalities follow from Lemma 3.2.5 and Equation (3.18) respectively. Thus,

a.a.s. dS has maximum degree Θ(d(is)). This completes the proof.

Next we prove a concentration result about the sum of the k largest terms in each sequence,

for all k ∈ [s]. We in fact prove a slightly more general statement about the following function:

for d ordered in non-decreasing order, define

Dk(d, t) =
k−1∑
i=0

(d(n(d)− i))t.

When t = 1, this is equal to the sum of the k largest terms in the sequence d. By considering larger

t, we can consider “moments” of the sequence, which are used in some results about random graphs

with given degree sequences. First recall that d′ is the sequence d ordered in non-decreasing order,

for an arbitrary sequence d. The following lemma shows that Dk(d
′
I , t) and Dk(d

′
S , t) are close for

all fixed t and all k ≤ |S|. This lemma may be of independent interest, but in particular allows

us to prove results about the chromatic number of G[S], which are given in the next chapter.

Lemma 3.3.4. With probability 1− o(1),

|Dk(d
′
S , t)−Dk(d

′
I , t)| = o(Dk(d

′
I , t) + log9+tM)

for all k ≤ |S| and fixed t.

We defer the proof for a moment to first state two helpful claims. The first claim follows by

summing the bound in Lemma 3.1.5(b) over all i ≥ k, and is presented without proof.
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Claim 3.3.5. Let Bk(dS) be the number of vertices in Ssmall with degree at least k in G[S]. Then

a.a.s. ∣∣∣∣∣Bk(dS)−
J∑
i=k

yk

∣∣∣∣∣ = O

(
J∑
i=k

[
yk

log5M
+ log7M

])
.

The second preliminary result is a technical lemma on the effects of reordering the sequences,

in particular its effect on the values of the sequence that are at least γJ(1 − o(1)). Recall that

Sbig = {i`+1, . . . , is} and Ssmall = S\Sbig. Define d̂S = (dS(π(i)))i∈[s] to be a reordering of dS

such that d̂S(1) ≤ · · · ≤ d̂S(`) and π(i) = i for all i ≥ ` + 1. That is, d̂S is the degree sequence

dS with terms in Ssmall ordered in non-decreasing order and the terms in Sbig unchanged. The

following claim shows that this new sequence is extremely similar to d′S .

Claim 3.3.6. For all i ≤ |S|, dI(i) ∼ d′I(i). Furthermore, a.a.s. d̂S(i) ∼ d′S(i) for all i ≤ |S|.

Proof. Recall that by definition of dI , dI(1) ≤ · · · ≤ dI(`), where |Ssmall| = `, and also that dI(`+

1) ≤ · · · ≤ dI(s). From the definition of ỹk and McDiarmid’s inequality (given in Theorem A.5),

we get that ∑
k>γJ(1+10/γ

√
log logM)

ỹk =
∑

v∈Ssmall

P
(
Zd(v) > γJ(1 + 10/γ

√
log logM)

)
= o(M−10).

Thus, it follows that yk = 0 for all k > γJ(1 + 10/γ
√

log logM); this implies that dI(`) ≤
γJ(1 + o(1)). By definition of dI , we know that dI(`+ 1) ≥ bγJc.

Let k1 be the smallest index such that dI(k1) ≥ bγJc, and let k2 be the largest index such that

dI(k2) ≤ γJ(1 + 10/γ
√

log logM). It follows that dI(i) = d′I(i) for all i /∈ [k1, k2]. Furthermore,

dI(i) ∼ γJ for all i ∈ [k1, k2]. Thus, dI(j) ∼ dI(k) for all j, k ∈ [k1, k2]. Therefore, d′I(i) ∼ dI(i)

for all i ∈ [k1, k2]. This completes the proof of the first claim.

The proof of the second claim is very similar, but complicated slightly by the randomness

inherent in dS . By Lemma 3.1.5(a), it follows that a.a.s. dS(i) ≥ γJ(1− 10/
√
γ log logM) for all

i ∈ Sbig. Let k3 be the largest index such that d̂S(k3) < γJ(1 − 10/
√
γ log logM). Then a.a.s.

d̂S(i) = d′S(i) for all i ≤ k3, since a.a.s. no vertices in Sbig have induced degree smaller than

γJ(1− 10/
√
γ log logM).

Now choose j such that d̂S(j) ≥ γJ(1 − 10/
√
γ log logM), that is, j > k3. It follows that

d(ij) ≥ 2γ−1 logM log log logM , since γ = Θ(1). Then Remark 3.1.8 implies that a.a.s. d̂S(j) =

γd(ij)(1± o(1)) for all j > k3. Suppose that d′S(j) � d̂S(j) for some j > k3. There are then two

possible cases:

(a) d′S(j) < d̂S(j)(1− f(M)) for all f(M) = o(1), or

(b) d′S(j) > d̂S(j)(1 + f(M)) for all f(M) = o(1).

However, for a sufficiently slowly-shrinking choice of f(M), the number of terms in d̂S with

degree at least d̂S(j)(1− f(M)) (equivalently, γd(iπ−1(j))(1− f(M))) is a.a.s. at least s− j+ 1 by

Lemma 3.1.5 and Remark 3.1.8. This means that case (a) a.a.s. does not occur. Similarly, there

are a.a.s. at least j terms in d̂S with degree at most d̂S(j)(1 + f(M)); this means that case (b)

also a.a.s. does not occur. Thus, it follows that a.a.s. d′S(j) ∼ d̂S(j) a.a.s. for all j > k3. This

completes the proof.
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Now we return to the proof of Lemma 3.3.4. For the purposes of the proof we extend the

definition of Dk(d, t) to degree sequences that are not ordered in non-decreasing order. In this

case, if d is some unordered degree sequence, then Dk(d, 1) is not necessarily the sum of the k

largest terms in d.

Proof of Lemma 3.3.4. It follows from Claim 3.3.6 that

Dk(d̂S , t) ∼ Dk(d
′
S , t) a.a.s. and Dk(d

′
I , t) ∼ Dk(dI , t) (3.19)

for all fixed t and all k ≤ s (recall s := |S|). Thus, to prove Lemma 3.3.4 it is sufficient to prove

the claim that a.a.s. |Dk(d̂S , t)−Dk(dI , t)| = o(Dk(dI , t) + log9+tM) for all k ≤ s and all fixed t.

First suppose that k ≤ |Sbig|. Then every term contributing to either sum is an element of Sbig.

Then Lemma 3.1.5(a) implies that a.a.s. dS(i) ∼ dI(i) for all i ≥ s−k+ 1. Since d̂S(i) = dS(i) for

all i > ` (since Sbig = {`+ 1, . . . , s}), the claim follows immediately. Now suppose that k > |Sbig|.
Since the terms in Sbig a.a.s. do not differ much between the two sequences, we now only need to

bound the difference over the k − |Sbig| largest terms in Ssmall in each sequence. That is, a.a.s.

∣∣∣Dk(d̂S , t)−Dk(dI , t)
∣∣∣ = o(Dk(dI , t)) +

∣∣∣∣∣
k−1∑
i=s−`

(
d̂S(s− i)t − dI(s− i)t

)∣∣∣∣∣ . (3.20)

Define

a = min{dI(s− k + 1), d̂S(s− k + 1)},

b = max{dI(s− k + 1), d̂S(s− k + 1)}.

Recall the definition of yj from Definition 3.1.2, the number of elements in dI equal to j with

index in Ssmall. The definition of yj implies that yj = 0 for all j ≥ (1 + ε)γJ for every constant

ε > 0. Thus, it follows that b < J . Suppose a = b. Applying Claim 3.3.5, the numbers of terms

with degree b in Ssmall contributing to Dk(dI , t) and Dk(d̂S , t) differ by

O

(
J∑

i=b+1

(
yk

log5M
+ log7M

))
.

Combining this with Equation (3.20) implies that

∣∣∣Dk(d̂S , t)−Dk(dI , t)
∣∣∣ = o(Dk(dI , t)) +O

 J∑
j=b+1

jt
yj

log5M
+ log7M


+O

bt J∑
j=b+1

[
yj

log5M
+ log7M

]
= o(Dk(dI , t)) +O

(
Dk(dI , t)

log5M

)
+O

(
J t+1 log7M

)
.

Thus, this difference is o(Dk(dI , t) + log9+tM) for all fixed t. Now suppose that a < b. Without

loss of generality, suppose that dI(s− k + 1) = b, and thus d̂S(s− k + 1) = a. Then all degree b

terms in d̂S in Ssmall contribute to Dk(d̂S , t). From the definition of b and our assumptions about
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3.3. BASIC PROPERTIES OF THE INDUCED DEGREE SEQUENCE

dI(s− k + 1) and dS(s− k + 1), we have that a.a.s.

J∑
j=b

Yj + |Sbig| < k and
J∑
j=b

yj + |Sbig| ≥ k.

By Claim 3.3.5, this implies that a.a.s.

J∑
j=b

Yj + |Sbig| ≥ k −O

 J∑
j=b

[
yj

log5M
+ log7M

] .

Thus, there are O
(∑J

j=b

[
yj

log5M
+ log7M

])
terms in Ssmall with degree less than b contributing

to Dk(d̂S , t). Therefore, in this case a.a.s.

∣∣∣Dk(d̂S , t)−Dk(dI , t)
∣∣∣ = o(Dk(dI , t)) +O

 J∑
j=b

jt
yj

log5M
+ log7M


+O

(bt − at)
J∑
j=b

[
yj

log5M
+ log7M

] .

By identical reasoning to the case where a = b, this is also o(Dk(dI , t) + log9+tM) for all fixed t.

Thus, a.a.s.

|Dk(d̂S , t)−Dk(dI , t)| = o(Dk(dI , t) + log9+tM).

Therefore, it follows from (3.19) that a.a.s.

|Dk(d
′
S , t)−Dk(d

′
I , t)| = o(Dk(d

′
I , t) + log9+tM),

which completes the proof.
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Chapter 4

Properties of the induced subgraph

In this chapter we apply the results given in Chapter 3 to determine more complex properties of

the induced subgraph G[S]. This forms the second part of what we call the reduction approach

to studying G[S]. Many of the results in the literature about G(d) are of the form “if d has

a particular property, then a uniformly random graph with degree sequence d a.a.s. has some

property”. Proposition 3.1.1 states that, conditional on a fixed degree sequence k, the graph G[S]

is a uniformly random graph with degree sequence k. Furthermore, Lemma 3.1.5 implies that dS

is a.a.s. “close” to dI in some sense.

With this in mind, we have a framework for predicting a broad range of properties of G[S]

by applying known results about random graphs with given degree sequences and Lemma 3.1.5.

The aim is to show that if dI satisfies some conditions, then dS a.a.s. satisfies the same (or very

similar) conditions, and use this to show that a.a.s. G[S] has a particular property. In this chapter

we focus on four graph properties in particular: whether G[S] is connected, its chromatic number,

whether it has a non-trivial automorphism group, and whether it contains a giant component.

For each of these applications, the framework is similar: we introduce (or recall from Chapter 2)

a theorem from the literature about the property in question in the random graph model G(d),

and then show that dS a.a.s. satisfies the conditions of the theorem if and only if dI does, and

vice versa.

4.1 Connectivity of G[S]

The first property of G[S] that we study using dI , given in Definition 3.1.2, is whether G[S] is likely

to be connected or not. Recall Lemma 2.2.8 (restated below for convenience), which characterises

when G(d) is a.a.s. connected or not for all graphical sequences d such that ∆(d)2 = o(M). Since

our assumptions on d are more strict than this, we can use this result to determine a threshold

for when G[S] is likely to be connected. Recall that nk(d) is the number of terms equal to k in a

given sequence d.

Lemma 2.2.8. ([56], Theorem 10 & Corollary 11) Let d be a graphical sequence with ∆2 = o(M)

and minimum degree at least 1, and let c > 0 be a fixed constant. Then

(a) if n1(d) = o
(√

M
)

and n2(d) = o(M), then G(d) is a.a.s. connected,

(b) if n1(d) = ω
(√

M
)

then a.a.s. G(d) is disconnected,
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4.1. CONNECTIVITY OF G[S]

(c) if n1(d) ≥ c
√
M or n2(d) ≥ cM , then there exists δ = δ(c) > 0 such that for all sufficiently

large n, P (G(d) disconnected) ≥ δ.

To apply this result to G[S], the number of degree 1 and degree 2 vertices in dS need to be

sufficiently concentrated. However, due to the distribution of degrees in dI (and, by extension, dS),

the conditions for connectedness of G[S] look somewhat different to those given in Lemma 2.2.8.

For example, Remark 3.1.6 implies that if the number of degree 2 vertices in G(dI) is Ω(J
√
M),

then number of degree 1 vertices is Ω(
√
M). Lemma 3.1.5 then implies that similar bounds

a.a.s. apply to dS . This means that the conditions in Lemma 2.2.8 (a) and (c) involving degree

2 vertices are superfluous - that is, if G[S] contains Ω(M) degree 2 vertices, then a.a.s. it also

contains ω(
√
M) degree 1 vertices, and thus the graph is a.a.s. disconnected by applying part (a)

of Lemma 2.2.8. Furthermore, the graph G[S] is trivially disconnected if it contains a degree 0

vertex. With this in mind, it is natural to ask not just whether G[S] is connected, but whether

G[S] is connected if all degree 0 vertices are also deleted. Recall that S = [n]\S, and recall that

ỹk, defined in Equation (3.1), is the sum of P
(
Zd(i) = k

)
over all i ∈ Ssmall.

Lemma 4.1.1. Let d be an n-element graphical sequence with maximum degree at most
√
M/ log7M ,

and let S ⊂ [n] be a set such that d(S) = Θ(M) and d(S) = Θ(M). Then:

(a) If ỹ0 = o(1), then G[S] is a.a.s. connected.

(b) If ỹ0 = Θ(1), then there exists some constant c > 0 such that

c ≤ P (G[S] is disconnected) ≤ 1− c.

(c) If ỹ0 = ω(1) and ỹ1 = o(
√
M), then G[S] is a.a.s. disconnected, but is a.a.s. connected if the

degree 0 vertices are deleted.

(d) If ỹ1 = Θ(
√
M), then G[S] is a.a.s. disconnected, and there exists some constant c > 0 such

that the probability that G[S] is connected after deleting degree 0 vertices is at least c.

(e) If ỹ1 = ω(
√
M), then G[S] is a.a.s. disconnected even after deleting degree 0 vertices.

Lemma 3.1.5(b) implies that E [Yi] ∼ ỹi for all i ≤ J . This means that if ỹ0 = o(1), then so is

E [Y0]; similar results follow for Θ(1) and ω(1), as well as for ỹ1 and E [Y1]. The values of these

ỹi are purely dependent on the degree sequence d and choice of subset S. Thus, even though this

lemma does not directly refer to dI , for some pair (d, S) it is still straightforward to check which

of (a) – (e) is satisfied.

This lemma is an example of where the rounding in the definition of dI can hide details about

the threshold for some graph properties. For example, if E [Y0] = 1
3 , then it follows from the

definition of ỹk and Lemma 3.1.5(b) that y0 = 0. Thus, dI has minimum degree 1. However, with

probability c > 0 there is at least one degree 0 vertex in G[S].

Proof of Lemma 4.1.1. Recall that Ssmall is the set of vertices v ∈ S such that d(v) ≤ J (recall

that J = logM log logM) and that Sbig = S\Ssmall. Corollary 3.2.3 implies that the probability

that some vertex in Sbig has degree 0, 1, or 2 in G[S] is less than M−10. So a.a.s. G[S] contains no
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vertices in Sbig with induced degree 0, 1, or 2. Thus, we focus our attention on Ssmall. Markov’s

inequality implies that

P (Y0 6= 0) = P (Y0 ≥ 1) ≤ E [Y0] . (4.1)

Let Vk be the indicator variable for the event that dS(k) = 0 for each k ∈ Ssmall. Lemma 3.1.5(b)

states that

E [Y0] = ỹ0

(
1 +O

(
∆2J

M

))
∼ ỹ0, (4.2)

since ∆2J = o(M). We also use a second moment inequality (given in Lemma A.3) which states

that

P (Y0 > 0) ≥ E [Y0]2

E
[
Y 2

0

] . (4.3)

To evaluate E
[
Y 2

0

]
, we use Lemma 3.2.5. Let pi := P (Zi = 0) for each i ∈ Ssmall. In line with

our previously established convention, the summation range “j 6= k” means that we sum over all

ordered pairs (j, k) ∈ S2
small such that j 6= k. Then

E
[
Y 2

0

]
= E

 ∑
k∈Ssmall

V 2
k +

∑
j 6=k

VjVk


=

∑
k∈Ssmall

E [Vk] +
∑
j 6=k

E [VjVk]

= E [Y0] +
∑
j 6=k

pd(j)pd(k)

(
1 +O

(
∆2J

M

))

≤
(
E [Y0] + E [Y0]2

)(
1 +O

(
∆2J

M

))
,

where the last two steps follow from an application of Lemma 3.2.5 and the following naive upper

bound:

∑
j 6=k

pd(j)pd(k) =
∑

j∈Ssmall

∑
k∈Ssmall

pd(j)pd(k) −
∑

i∈Ssmall

p2
d(j) ≤

 ∑
j∈Ssmall

pd(j)

2

.

Applying the inequality given in (4.3) then gives that

P (Y0 > 0) ≥ E [Y0]2

E
[
Y 2

0

] ≥ E [Y0]2

E [Y0] (1 + E [Y0])

(
1 +O

(
∆2J

M

))
,

which simplifies to

P (Y0 > 0) ≥ 1
1

E[Y0] + 1

(
1 +O

(
∆2J

M

))
. (4.4)

Altogether, we have a threshold for the existence of degree 0 vertices in terms of E [Y0]:

(i) If E [Y0] = o(1), then the inequality given in (4.1) implies that there exists no degree 0
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vertices with probability 1− o(1).

(ii) If E [Y0] = Θ(1), then together the inequalities given in (4.1) and (4.4) imply that there

exists some c > 0 such that

c ≤ P (Y0 > 0) ≤ 1− c.

(iii) If E [Y0] = ω(1), then the inequality given in (4.4) implies that there exists a degree 0 vertex

with probability 1− o(1).

Applying (4.2), this proves claims (a) and (b) of the lemma, as well as half of the claim given in part

(c). To prove the second half of the lemma, we need to consider the size of E [Y1], the expected

number of degree 1 terms in dS , with respect to the value of M(dS). For Zj ∼ Bin
(
j, d(S)

M

)
,

Lemma 3.2.5 implies that the expected numbers of vertices in Ssmall with induced degree 0 and 1

satisfy the following relation:

E [Y1] =
∑
j≤J
|Sj |P (Zj = 1)

(
1 +O

(
∆2J

M

))

=
d(S)

d(S)

∑
j≤J

j|Sj |P (Zj = 0)

(
1 +O

(
∆2J

M

))

< J
d(S)

d(S)
E [Y0]

(
1 +O

(
∆2J

M

))
.

So if ỹ1 = ω(J), then (4.2) and (4.4) imply that a.a.s. there exists at least one vertex with induced

degree 0 and thus G[S] is a.a.s. disconnected. To prove the remaining claims of the lemma, recall

from Lemma 3.1.5(b) that a.a.s.

|Yi − E [Yi]| ≤
1

log5M
E [Yi] + log7M

for all i ≤ J . Specifically for i = 1, this implies that a.a.s.

Y1 ≤ E [Y1]

(
1 +

1

log5M

)
+ log7M

and

Y1 ≥ E [Y1]

(
1− 1

log5M

)
− log7M.

Since E [Y1] ∼ ỹ1, this implies that if ỹ1 = o(
√
M), then a.a.s. Y1 = o(

√
M). Simialrly, if

ỹ1 = ω(
√
M), then a.a.s. Y1 = ω(

√
M). Finally, if ỹ1 ≥ c

√
M , then a.a.s. Y1 ≥ c′

√
M for every

c′ < c.

Now we apply Lemma 2.2.8 to dS . Lemma 3.3.1 implies that M(dI) ∼ γ2M , and a.a.s.

M(dS) ∼M(dI). Let ε > 0 be some small constant such that ε < γ2. Suppose that ỹ1 = o(
√
M)

(and thus E [Y1] = o(
√
M)), and let A be the event that G[S] is connected after deleting degree 0

65



4.2. CHROMATIC NUMBER OF G[S]

vertices. Then Lemma 2.2.8(a) and Lemma 3.3.1 together imply that

P (A) = P (A|M(dS) ≥ εM)P (M(dS) ≥ εM) + P (A|M(dS) < εM)P (M(dS) < εM)

= (1− o(1))(1− o(1)) + o(1)

= 1− o(1).

This proves the second half of claim (c) in the lemma statement. Claims (d) and (e) follow

similarly by applying Lemma 2.2.8(b) and (c).

4.2 Chromatic number of G[S]

In this section, we apply Lemma 2.2.10 to give results on the chromatic number of G[S]. We restate

the lemma here for a sequence d ordered in non-decreasing order. Recall that for a sequence d

ordered in non-decreasing order,

Dk(d) := Dk(d, 1) =
k−1∑
i=0

d(n(d)− i), (4.5)

the total degree of the k largest elements in d. Also recall that d(d) = M(d)/n(d) is the average

degree of d (which is naturally the same for all graphs in G(d)).

Lemma 2.2.10. ([56], Theorem 9) Let d be an n-element graphical sequence ordered in non-

decreasing order. Suppose that d satisfies the following conditions:

(a) ∆(d) = o(n),

(b) D∆(d)(d) =
∑∆−1

i=0 d(n− i) = o(M), and

(c) there exist constants α ∈
(

1
2 , 1
)

and ε,K0 ∈ R+ such that Dk(d) ≤ K0dn
(
k
n

)α
for all

k ∈ {1, . . . , εn}.

Then a.a.s. G(d) has chromatic number Θ
(

d(d)
ln d(d)

)
.

For the sequences we are considering, the two conditions (a) and (b) are immediately satis-

fied, since we assume that ∆2 = o(M). Thus, condition (c) is the main focus of our attention.

Intuitively, this condition is satisfied when the tail of a degree sequence (the sum of its largest

elements) is sufficiently small compared to the total degree of the sequence. On the other hand,

sequences that do not satisfy this have elements that are much larger than the average degree,

and thus have dense tails. For example, if d = (3, . . . , 3), then condition (c) is satisfied; however,

if d = (3, . . . , 3,
√
M

log7M
), then there does not exist a valid choice of α or K0 for the case k = 1 and

thus condition (c) is not satisfied.

We show that d′S a.a.s. satisfies this condition if and only if d′I satisfies this condition, poten-

tially with slightly different values of K0 or α. Due to the restrictions on α, we know that

K0dn
(
k
n

)α
= Ω(nε) for some ε > 0. Thus, the required result is a direct consequence of

Lemma 3.3.4 applied with t = 1. It follows that a.a.s. Dk(d
′
S) satisfies part (c) of Lemma 2.2.10 if

and only if Dk(d
′
I) does too. This is the content of the following corollary. Note that we actually

compare d′I to d′S , since we want to talk about the sequences when they are both ordered.
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Theorem 4.2.1. Let d be an n-element graphical sequence with maximum degree at most
√
M

log7M
,

and let S ⊂ [n] be a set such that d(S) = Θ(M) and d(S) = Θ(M). Then if d′I satisfies condition

(c) of Lemma 2.2.10, then G[S] a.a.s. has chromatic number Θ
(

γ2M/s
ln(γ2M/s)

)
.

Proof. We show that the sequence d′S a.a.s. satisfies the conditions of Lemma 2.2.10 if and only

if d′I satisfies condition (c). The maximum degree restriction on d implies that both sequences d′I
and d′S immediately satisfy conditions (a) and (b). Corollary 3.3.2 states that a.a.s. d(dS) ∼ d(dI).

Thus, a.a.s.

d(dS)s

(
k

s

)α
= d(dI)s

(
k

s

)α
(1 + o(1)) (4.6)

for all k ≤ s and all α ∈
(

1
2 , 1
)
. Suppose that d′I satisfies part (c) of Lemma 2.2.10. Then there

exists a triple of constants (α, ε,K0) such that

Dk(d
′
I) ≤ K0d(dI)s

(
k

s

)α
for all k ≤ εs. Lemma 3.3.4 then implies that a.a.s. |Dk(d

′
S)−Dk(d

′
I)| = o(Dk(d

′
I) + log10M) for

all such k ≤ s. Then Equation (4.6) implies that a.a.s. d′S satisfies part (c) of Lemma 2.2.10 with

constants (α, ε, 2K0).

Conversely, suppose d′I does not satisfy Lemma 2.2.10(c). Then for all possible sets of constants

(α, ε,K0), there exists some k ≤ εs such that

Dk(d
′
I) > K0d(dI)s

(
k

s

)α
.

Then by Equation (4.6) it similarly follows that a.a.s.

Dk(d
′
S) >

1

2
K0d(dI)s

(
k

s

)α
.

Since K0 is arbitrary, this implies that d′S a.a.s. does not satisfy Lemma 2.2.10(c). Therefore, if

d′I satisfies condition (c) of Lemma 2.2.10, then a.a.s. d′S satisfies all the conditions of the lemma

and d(dS) ∼ d(dI). This completes the proof.

4.3 Symmetry of G[S]

In this section, we apply the results of Brick et al. [23] to give conditions under which G[S] a.a.s.

has (or does not have) non-trivial automorphisms. Recall that we call a graph G symmetric if

it has a non-trivial automorphism, and asymmetric if it does not. Specifically, we show that

Lemmas 2.2.12 to 2.2.14 can be applied to the sequence d∗I (since they assume a minimum degree

of 1) to prove results about the symmetry of G[S]. First we recall Lemma 2.2.12.

Lemma 2.2.12. ([23], Theorem 2) Fix a constant ∆ > 0 and assume that d is a graphical

sequence where 1 ≤ d(i) ≤ ∆ for all 1 ≤ i ≤ n.

(a) If n1 = o(n1/2) and n2 = o(n) then a.a.s. G(d) is asymmetric.

(b) If n1 = ω(n1/2) then a.a.s. G(d) is symmetric.
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4.3. SYMMETRY OF G[S]

(c) If there is a constant c > 0 such that

n1 > cn1/2 or n2 > cn

then there is δ = δ(c) > 0 such that for all sufficiently large n

P (G(d) is symmetric) > δ.

Lemma 3.3.3 implies that dS is a.a.s. bounded if and only if dI is bounded, and dI is bounded

if and only if d is bounded. Thus, we can assume that d is bounded, otherwise Lemma 2.2.12 does

not apply to dI and a.a.s. does not apply to dS . This simplifies the proof considerably. Recall

that Yi is the number of vertices in Ssmall with induced degree i, and recall from Lemma 3.1.5(b)

that E [Yi] ∼ ỹi for all i ≤ J .

Theorem 4.3.1. Let d be a bounded n-element graphical sequence, and let S ⊂ [n] be a set

such that d(S), d(S) = Θ(M). Then G[S] a.a.s. has non-trivial automorphisms, permuting both

degree 0 and degree 1 vertices.

Proof. Since d is bounded, we immediately know that M = Θ(n). Since d(S) = Θ(M), this also

implies that |S| = Θ(n). Lemma 3.3.1 then implies that MI = Θ(n) and a.a.s. MS = Θ(n). Since

d is bounded, it contains no terms that are greater than logM , and thus Ssmall = S. Lemma 3.2.5

implies that, for all v ∈ S,

P (dS(v) = 0) = (1− γ)d(v)

(
1 +O

(
∆2J

M

))
and

P (dS(v) = 1) = d(v)γ(1− γ)d(v)−1

(
1 +O

(
∆2J

M

))
.

Since γ and 1 − γ are both bounded away from 0 and d(v) = O(1) by assumption, there exist

some constants c, c′ > 0 such that P (dS(v) = 0) ≥ c and P (dS(v) = 1) ≥ c′ for all v ∈ S. Thus,

by linearity of expectation,

E [Y0] =
∑

v∈Ssmall

P (dS(v) = 0) ≥ c|S| and E [Y1] =
∑

v∈Ssmall

P (dS(v) = 1) ≥ c′|S|.

Lemma 3.1.5 then implies that a.a.s. |Y0 − E [Y0] | = o(|S|) and |Y1 − E [Y1] | = o(|S|), since |S| =
Θ(M) under these assumptions. This implies that a.a.s. n0(dS) = Θ(|S|) and n1(dS) = Θ(|S|).
This means that a.a.s. n0(dS) ≥ 2, and thus a.a.s. G[S] has a non-trivial automorphism permuting

the degree 0 vertices. Since n(dS) = |S| = Θ(n), this also implies that a.a.s. n1(dS) = Θ(M(dS)).

Thus, Lemma 2.2.12 implies that a.a.s. G[S] has a non-trivial automorphism that permutes degree

1 vertices.

Now we focus on the case that d is not bounded. The aim is to apply Lemmas 2.2.13 and 2.2.14

to give results about whether G[S] a.a.s. has non-trivial automorphisms or not. We restate both

lemmas below for convenience.

Lemma 2.2.13. ([23], Theorem 3) Suppose there are constants R1 > 0, R2 > 0 and 0 < ε < 1

such that a graphical sequence d with minimum degree at least 1 satisfies the following conditions:
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4.3. SYMMETRY OF G[S]

(A1) ∆2

d = o(n
1
6
− 1

2R1
− 1
R2 ),

(A2) ∆2

d = o

(
n1/4

n
1/2
1

)
,

(A3) ∆2

d = o

(
nα2/2

n
α2/2
2

)
,

(A4)
(
ni
n

)αi(1−ε) (∆2

d

)2−ε
= o(1), for i ∈ {1, 2},

where α2 = 1/(R2 + 4), and α1 = (1− α2)/(R1 + 4). Then G(d) is a.a.s. asymmetric.

Lemma 2.2.14. ([23], Theorem 4) Let d be an n-vertex graphical sequence with minimum degree

at least 1 and assume ∆2 = o(M).

(a) If M2 = o(M), n1 = ω
(
M/
√
M2

)
, or n2 = ω

(√
M3/M2

)
then a.a.s. G(d) is symmetric.

(b) If there is a constant c > 0 such that

n1 > cM/
√
M2, or n2 > c

√
M3/M2,

then there exists δ = δ(c) > 0 such that for all sufficiently large n,

P (G(d) symmetric) > δ.

Showing an analogous result to Lemma 2.2.14 forG[S] is relatively straightforward. IfM2(dS) ∼
M2(dI) a.a.s., then all conditions of Lemma 2.2.14 that are satisfied by dI are a.a.s. also satisfied

by dS . The conditions of Lemma 2.2.13 are more nuanced, and thus a little more work is required

to show dI and dS a.a.s. satisfy conditions (A1) to (A4) at the same time. The issue arises

from condition (A4): if n1(dI) or n2(dI) are O(log7M), then Lemma 3.1.5 implies that a.a.s.

ni(dS) = O(log7M) too — however, the actual value could theoretically could be anywhere be-

tween Θ(log7M) and 0. For certain values of R1, R2, ε, and ∆, it is plausible that this difference

could be enough to alter whether the condition (A4) is satisfied.

Thankfully, we are saved by the quantifiers in Lemma 2.2.13: we do not necessarily need dS

and dI to satisfy conditions (A1) to (A4) for the same constants (R1, R2, ε). This flexibility allows

us to get past this pathological case by changing ε slightly for one or both of the sequences. This

gives the following result about automorphisms of G[S]. Here we ignore degree 0 terms in both

dS and dI , since Lemma 2.2.13 assumes a minimum degree of at least 1. Thus, we compare d∗S
and d∗I , where the degree 0 terms have been removed from each sequence.

Theorem 4.3.2. Let d be an n-element graphical sequence with maximum degree at most
√
M

log7M
,

and let S ⊂ [n] be a set such that d(S), d(S) = Θ(M).

(a) If d∗I satisfies conditions (A1) to (A4) of Lemma 2.2.13, then G[S] a.a.s. has no non-trivial

automorphisms other than automorphisms of isolated vertices.

(b) If d∗I satisfies part (a) of Lemma 2.2.14, then G[S] is a.a.s. symmetric. If d∗I satisfies part

(b) of Lemma 2.2.14, then there exists some δ > 0 such that for all sufficiently large n,

P (G(d) symmetric) ≥ δ.
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4.3. SYMMETRY OF G[S]

Similar to our previous methods, we prove this theorem by proving that d∗S a.a.s. satisfies the

conditions of each lemma if and only if d∗I satisfies the conditions. Notably, we do not explicitly

show that each of (A1) to (A4) are a.a.s. satisfied by d∗S if and only if they are satisfied by d∗I .

Instead we show that d∗S a.a.s. satisfies all four conditions at once if and only if d∗I satisfies all

four conditions.

Lemma 4.3.3. Let d be an n-element graphical sequence with maximum degree at most
√
M

log7M
,

and let S ⊂ [n] be a set such that d(S), d(S) = Θ(M).

(a) The degree sequence d∗S a.a.s. satisfies conditions (A1) to (A4) of Lemma 2.2.13 if and only

if d∗I satisfies the conditions.

(b) The degree sequence d∗S a.a.s. satisfies part (a) of Lemma 2.2.14 if and only if d∗I satisfies

part (a). An identical statement holds for part (b).

We start with Lemma 4.3.3(b), as it is more straightforward than the proof of Lemma 4.3.3(a).

We know from Lemma 3.3.1 that a.a.s. M(dS) ∼ M(dI), and since M(d) = M(d∗) this immedi-

ately implies the same result for d∗S and d∗I . The only other necessary ingredient is to show that

the same holds for M2(d∗S), where M2(d) =
∑

i∈[n] d(i) (d(i)− 1). This is proved in the following

lemma. This proof is very similar to the corresponding proof for the concentration of M(dS)

around M(dI). Recall the notation that a = b± c means that a ∈ [b− c, b+ c].

Lemma 4.3.4. With probability 1− o(1), |M2(d∗S)−M2(d∗I)| = o(M2(d∗I) + |S|).

Proof. Recall that Yi is the number of vertices in Ssmall with induced degree i. We can split the

sum for M2(d∗S) into one sum over Sbig and another sum over Ssmall:

M2(d∗S) =
∑
k∈Sbig

dS(k) (dS(k)− 1) +
∑

k∈Ssmall

dS(k) (dS(k)− 1)

=
∑
k∈Sbig

dS(k)2 −
∑
k∈Sbig

dS(k) +

J∑
k=1

k(k − 1)Yk.

By Lemma 3.1.5, we can relate each of these terms to their corresponding values for d∗I . Applying

this lemma it follows that, with probability 1− o(1),

M2(d∗S) =
∑
k∈Sbig

(
d(ik)

d(S)

M
(1 + o(1))

)2

−
∑
k∈Sbig

d(ik)
d(S)

M
(1 + o(1))

+

J∑
k=1

k(k − 1)E [Yk] +

J∑
k=1

k(k − 1)O

(
E [Yk]

log5M
+ log7M

)
.

(4.7)

Since d(ik)
d(S)
M →∞, it follows immediately that

∑
k∈Sbig

(
d(ik)

d(S)

M
(1 + o(1))

)2

−
∑
k∈Sbig

d(ik)
d(S)

M
(1 + o(1))

=
∑
k∈Sbig

d(ik)
d(S)

M

(
d(ik)

d(S)

M
− 1

)
(1 + o(1)),
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4.3. SYMMETRY OF G[S]

since the 1 + o(1) factor is uniformly bounded for all k ∈ Sbig. For the latter two sums in

Equation (4.7), note that the sum
∑J

k=1 k(k − 1) is less than J3. This means that

J∑
k=1

k(k − 1)

(
E [Yk]

log5M
+ log7M

)
≤ J2

log5M

J∑
k=1

E [Yk] + J3 log7M

≤ J2

(
|Ssmall|
log5M

+ J log7M

)
.

Recall from Lemma 3.1.5(b), Equation (3.1), and the definition of yk given in (3.2) that E [Yk] ∼ ỹk
and yk = ỹk ± 1 for all k ≤ J . Altogether, this implies that a.a.s.

M2(d∗S) =
∑
k∈Sbig

d(ik)
d(S)

M

(
d(ik)

d(S)

M
− 1

)
(1 + o(1)) +

J∑
k=1

k(k − 1)ỹk(1 + o(1))

+O

(
J2

(
|Ssmall|
log5M

+ J log7M

))
= M2(dI)(1 + o(1)) +O

(
J3

(
|Ssmall|
log5M

+ log7M

))
.

We know that J3 = o(log5M), |Ssmall| ≤ |S|, and |S| ≥
√
M log7M . Thus, it immediately follows

that

J3

(
|Ssmall|
log5M

+ log7M

)
= o(|S|).

This proves the lemma.

With this result, the proof of Lemma 4.3.3(b) is straightforward. Recall that for all k > 0,

nk(d) = nk(d
∗). Thus, M(d) = M(d∗) and M2(d) = M2(d∗). With this in mind, we sometimes

omit the asterisk to avoid clutter.

Proof of Lemma 4.3.3(b). By Lemma 3.3.1, we know that a.a.s. M(dS) ∼ M(dI) ∼ d(S)2

M . Since

M ≥ |S|, it follows from Lemma 4.3.4 that M2(dI) = o(M) if and only if a.a.s. M2(dS) = o(M)

as well. Thus, if M2(dI) = o(M), both sequences a.a.s. satisfy part (a) of Lemma 2.2.14. For the

remainder of the proof, suppose that M2(dI) = Ω(M). This implies that M2(dI) = Ω(|S|), and

also implies that a.a.s. M2(dI) ∼M2(dS). Thus, in this case it follows that a.a.s.

M(d∗I)/
√
M2(d∗I) ∼M(d∗S)/

√
M2(d∗S) (4.8)

and √
M(d∗I)

3/M2(d∗I) ∼
√
M(d∗S)3/M2(d∗S). (4.9)

From Remark 3.1.7 we know that a.a.s. ni(dS) = Yi for i ∈ {1, 2}. Also, recall from Lemma 3.1.5

and Remark 3.2.10 that a.a.s.

|Yi − yi| ≤
yi

log5M
+ log7M
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for all i ≤ J . Since ni(dI) = yi for i ∈ {1, 2}, it follows that a.a.s.

ni(dS) = ni(dI) + o(ni(dI))± log7M (4.10)

for i ∈ {1, 2}. Recall that ∆ = o(
√
M) and M(dI) = Θ(M). This implies that

M(d∗I)√
M2(d∗I)

≥
M(d∗I)√

∆(d∗I)M(d∗I)
≥M(d∗I)

1/4 = ω(log7M)

and √
M(d∗I)

3

M2(d∗I)
≥

√
M(d∗I)

3

∆(d∗I)M(d∗I)
≥M(d∗I)

3/4 = ω(log7M).

As a result of (4.8) and (4.9), the same inequalities hold a.a.s. when d∗I is replaced with d∗S . From

here we split the proof into two cases depending on the size of E [Yi]. Firstly, if ni(dI) ≤ 3 log7M

for either i = 1 or i = 2, then a.a.s. ni(dS) ≤ 5 log7M by Equation (4.10). Otherwise, if

ni(dI) ≥ 3 log7M for i ∈ {1, 2}, then Equation (4.10) implies that a.a.s. ni(dS) = Ω(ni(dI)).

Thus, if n1(d∗I) ≥ cM(d∗I)/
√
M2(d∗I) or n2(d∗I) ≥ c

√
M(d∗I)

3/M2(d∗I) for some c such that

c = Ω(1), then a.a.s. the corresponding inequality is holds for d∗S if c is replaced with c/2, and

vice versa. Therefore, d∗I satisfies either condition (a) or (b) of Lemma 2.2.14 if and only if d∗S
a.a.s. satisfies the same condition. This concludes the proof.

The remaining step is to prove Lemma 4.3.3(a). The idea for proving this part is similar to part

(b), albeit slightly more complicated. Here we give an outline of the proof. Corollary 3.3.2 implies

that the average degree d(dS) is highly concentrated, and Lemma 3.3.3 implies that the maximum

degree ∆(dS) is either concentrated or bounded (that is, O(1)). Furthermore, as mentioned in the

proof of Lemma 4.3.3(b), n1(dS) and n1(dI) are a.a.s. either asymptotic or O(log7M); the same

claim can be made about n2. Since conditions (A1) – (A4) are only concerned with asymptotic

values, if n1(dS) ∼ n1(dI) and n2(dS) ∼ n2(dI) then each condition is either satisfied by both

sequences or satisfied by neither sequence.

Thus, the only issues that arise come from cases where ni(dI) = O(log7M) for i = 1 or 2.

For example, consider some hypothetical degree sequence d such that ∆2/d = n1/4/ log2 n and

n1 = O(log7M). If n1(d) = log7M , then d does not satisfy condition (A2), but if n1(d) = 1

then the condition is satisfied. This looks problematic, until we remember that there are three

other conditions that d has to satisfy before Lemma 2.2.13 applies. In particular, under these

circumstances d fails condition (A4): by choosing a sufficiently small ε and recalling that α1 <
1
4 ,

it follows that

(n1

n

)α1(1−ε)
(

∆2

d

)2−ε
= logO(1) nn

1
4

(2−ε)−α1(1−ε) = ω(1),

where logO(1) n refers to a non-specific function of n which is O(logk n) for some constant k ∈ R.

The proof of Lemma 4.3.3(b) generalises this idea: if ni(dI) is large for one of i ∈ {1, 2}, then

ni(dS) ∼ ni(dI) and all the desired results follow quickly. However, if ni(dI) is small (that is,

O(log7M)), then we cannot argue that a.a.s. ni(dS) ∼ ni(dI). Depending on the value of ∆(d),

it is then possible that the concentration ranges given in Lemma 3.1.5 are not sufficient to argue

that d∗S a.a.s. satisfies a particular condition if d∗I satisfies that condition. In this case, we show
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that d∗I and d∗S a.a.s. must both fail one of the other conditions, or the constants (R1, R2, ε)

can be changed such that both sequences a.a.s. satisfy the particular condition in question. To

help with this, we define the notion of dI “predicting” properties of dS : we write “dI predicts

property K for dS” if dS a.a.s. has property K if and only if dI has property K (recall that dI is

deterministic). This analogously carries over for d∗I predicting properties of d∗S .

Proof of Lemma 4.3.3(a). First we give an outline of the steps. We show that d∗I predicts (A1)

for d∗S . We then show that either d∗I predicts (A2) and (A3) for d∗S or dI predicts (A4) for d∗S
and does not satisfy it. Finally, we show that if d∗I predicts and satisfies (A1) – (A3), then there

exists a choice of ε > 0 such that d∗I predicts (A4) for d∗S with constants (R1, R2, ε). Thus, either

d∗I predicts (A1) – (A4) for d∗S or they both fail at least one condition. Therefore, d∗S satisfies

(A1) – (A4) if and only if d∗I satisfies (A1) – (A4).

Lemma 3.3.1 states that a.a.s. M(d∗S) ∼ M(d∗I), since M(d) = M(d∗) for all sequences.

Lemma 3.2.11 states that a.a.s. n(d∗S) ∼ n(d∗I). Therefore, a.a.s.

d(d∗S) =
M(d∗S)

n(d∗S)
∼
M(d∗I)

n(d∗I)
= d(d∗I).

Lemma 3.3.3 states that a.a.s. ∆(dS) = Θ(∆(dI)). Thus, if there exist constants (R1, R2) such

that d∗I satisfies condition (A1), then a.a.s. d∗S also satisfies (A1) with the same constants.

Remark 3.2.10 implies that if ni(dI) ≥ 3 log7M , then a.a.s. ni(dS) ≥ (1 − ε)ni(dI) − log7M

for every ε > 0. It also implies that if ni(dI) < 3 log7M , then a.a.s. ni(dS) < 5 log7M . We

use these as two cases to delineate the proof into four parts. First consider the case where

n1(dI), n2(dI) ≥ 3 log7M . Then, for i ∈ {1, 2}, each pair of terms ni(dI) and ni(dS) a.a.s. differ

by at most a factor of 3. Since a.a.s. the values of ∆2(d∗I)/d(d∗I) and ∆2(d∗S)/d(d∗S) are also within

a constant factor of each other, it follows immediately that d∗I predicts each property (A1) – (A4)

for d∗S in this case. Therefore, d∗S a.a.s. satisfies (A1) – (A4) if and only if d∗I satisfies (A1) – (A4)

in this case.

For the remaining parts of the proof we consider the case where ni(d
∗
I) < 3 log7M for at

least one of the values i ∈ {1, 2}. First we show that if n1(d∗I) < 3 log7M (and thus a.a.s.

n1(d∗S) < 5 log7M as well) and d∗I does not predict whether d∗S satisfies (A2), then d∗I does not

satisfy (A4) and a.a.s. d∗S does not satisfy it either. For simplicity, define logO(1)M to be a stand-

in for arbitrary functions that asymptotically grow faster than log−CM but slower than logCM ,

for some constant C. Suppose that condition (A2) is satisfied by d∗I but a.a.s. not satisfied by d∗S ,

or vice versa. Then it must be the case that

∆2n
1/2
1

dn1/4
= logO(1)M

both for d∗I and a.a.s. for d∗S . Since we are assuming that n1 < 5 log7M for both sequences, this

in turn implies that ∆2/d = n1/4/ logO(1)M for both sequences. Note that in this equation, as

well as in the rest of this proof, if a function of a degree sequence (for example, ∆, n, d) does not

specify a particular degree sequence, then we implicitly mean that the equation holds both for d∗I
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and a.a.s. for d∗S . Now if we consider condition (A4) it follows that

(n1

n

)α1(1−ε)
(

∆2

d

)2−ε
= n

1
2
−α1−ε(1/4−α1) logO(1)M.

Since α1 < 1/4 and ε < 1 by definition, the power of n in this equation is bounded from below by

1

2
− α1 − ε(1/4− α1) >

1

2
− α1 − 1/4 + α1 =

1

4
.

Thus, for both d∗I and a.a.s. for d∗S , we get that

(n1

n

)α1(1−ε)
(

∆2

d

)2−ε
= ω

(
n1/4 logO(1)M

)
= ω(1).

Therefore d∗I does not satisfy condition (A4), and a.a.s. neither does d∗S .

Now we show that if n2(d∗I) < 3 log7M and d∗I does not predict whether d∗S satisfies (A3),

then again d∗I does not satisfy (A4) and a.a.s. d∗S also does not satisfy this condition. Suppose

that d∗I does not predict (A3) for d∗S , that is, (A3) is satisfied by d∗I but not a.a.s. satisfied by d∗S
(or vice versa). Then it must be true that

∆2

d

(n2

n

)α2/2
= logO(1)M

for d∗I as well as a.a.s. for d∗S . Since n2 < 5 log7M , this implies that

∆2

d
= nα2/2 logO(1)M.

Now if we consider condition (A4), it follows that

(n2

n

)α2(1−ε)
(

∆2

d

)2−ε
= nα2(1− ε

2
−(1−ε)) logO(1)M = nα2ε/2 logO(1)M,

which is ω(1) for every constant ε > 0, regardless of what the logO(1)M function is. Thus, if d∗I
satisfies condition (A3) but d∗S does not a.a.s. satisfy the condition (or vice versa), then d∗I fails

condition (A4), and d∗S also a.a.s. fails (A4). Therefore, either d∗I predicts (A1) – (A3) for d∗S or

d∗I does not satisfy (A4) (for every constant ε > 0) and a.a.s. d∗S does not satisfy (A4).

Now suppose that d∗I predicts (A1) – (A3) for d∗S and also satisfies these conditions. Naturally,

if d∗I predicts but does not satisfy (A4) for at least one of the values i ∈ {1, 2}, then d∗I does not

satisfy (A1) – (A4) and a.a.s. neither does d∗S . Thus, we suppose that for each of i ∈ {1, 2},
either d∗I predicts (A4) for d∗S and satisfies the condition, or d∗I does not predict the condition.

Again recall that if n1(d∗I) ≥ 3 log7M and n2(d∗I) ≥ 3 log7M , then it immediately follows that

d∗I predicts (A4) for d∗S . Thus, we assume that at least one of n1(d∗I) and n2(d∗I) are less than

3 log7M .

First suppose that d∗I predicts and satisfies (A4) for i = 2. Also suppose that n1(d∗I) < 3 log7M

and that there exists a triple of constants (R1, R2, ε) such that condition (A4) is satisfied by d∗I
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but not a.a.s. satisfied by d∗S (or vice versa) for this set of constants and i = 1. This implies that

(n1

n

)α1(1−ε)
(

∆2

d

)2−ε
= logO(1)M,

both for d∗I and a.a.s. for d∗S . Since n1 < 5 log7M , this means that

(
∆2

d

)2−ε
n−α1(1−ε) =

(
∆2/d

nα1

)1−ε(
∆2

d

)
= logO(1)M. (4.11)

This implies two things: firstly, nα1 = ω(∆2/d), and secondly,

∆2

d
= nα1(1−ε)/(2−ε) logO(1)M. (4.12)

Since α1 < 1/4, this implies that ∆2/d = o(n1/4−δ) for some constant δ > 0. This implies that by

choosing ε′ = ε/2, it follows that

(
∆2

d

)2−ε/2
n−α1(1−ε/2) =

(
∆2

d

)2−ε
n−α1(1−ε)

(
∆2/d

nα1

)ε/2
=

(
nα1(1−ε)/(2−ε)

nα1

)ε/2
logO(1)M

= n−c logO(1)M (4.13)

for some c > 0. Since this is o(1), this means that d∗I satisfies the i = 1 case of (A4) with constants

(R1, R2,
1
2ε), and a.a.s. d∗S does too. To see that the i = 2 case of (A4) is still satisfied, note that

(n2

n

)α2(1−ε/2)
(

∆2

d

)2−ε/2
=
(n2

n

)α2(1−ε)
(

∆2

d

)2−ε((n2

n

)α2 ∆2

d

)ε/2
. (4.14)

Since we assume that (A4) is satisfied for i = 2 and constants (R1, R2, ε), it follows that

(n2

n

)α2(1−ε)
(

∆2

d

)2−ε
= o(1).

Since we also assume that (A3) is a.a.s. satisfied for both sequences (and trivially n/n2 ≥ 1), it

also follows that ((n2

n

)α2 ∆2

d

)
= o(1).

Thus, d∗I still predicts (A4) for d∗S and satisfies it for i = 2 and constants (R1, R2,
1
2ε).

Now suppose that n2(d∗I) < 3 log7M and there exists a triple of constants (R1, R2, ε) such

that condition (A4) is satisfied by d∗I but not a.a.s. satisfied by d∗S (or vice versa) for this set of

constants and i = 2. We also suppose that d∗I predicts and satisfies (A4) for i = 1. Then analogous

equations to Equations (4.11) to (4.13) hold when α1 is replaced with α2. This immediately implies

that d∗I predicts and satisfies (A4) for constants (R1, R2,
1
2ε) for i = 2. If d∗I does not predict the

i = 1 case of (A4) for constants (R1, R2,
1
2ε), then by the case argued previously (where d∗I only

predicted (A4) for i = 2), it follows that d∗I predicts (A4) for d∗S and satisfies (A4) for both i = 1
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and i = 2 with constants (R1, R2,
1
4ε).

Now suppose that ni(d
∗
I) < 3 log7M for both i = 1 and i = 2 and that there exists a triple of

constants (R1, R2, ε) such that, for each value of i, condition (A4) is satisfied by d∗I but not a.a.s.

satisfied by d∗S (or vice versa) for this set of constants. Then Equations (4.11) to (4.13) apply to

both the i = 1 and i = 2 cases. Thus, d∗I satisfies (A4) and also d∗I predicts (A4) for d∗S (for both

i = 1 and i = 2 cases) with constants (R1, R2,
1
2ε). This completes the proof as outlined in the

first paragraph.

4.4 Giant components in G[S]

The final property of G[S] that we analyse using dI and Lemma 3.1.5 is the existence of giant

components. We begin with the result given by Joos, Perarnau, Rautenbach, and Reed, rewritten

slightly for our purposes. We recall several definitions from Theorem 2.2.15. For a sequence

d := (d(1), . . . , d(n)), define

M
∼

(d) =
∑

i∈[n],d(i)6=2

d(i). (4.15)

For sequences such that d(1) ≤ d(2) ≤ · · · ≤ d(n), define the following quantities:

jd = min

({
j : j ∈ [n] and

j∑
i=1

d(i)(d(i)− 2) > 0

}
∪ {n}

)
,

R(d) =

n∑
i=jd

d(i).

(4.16)

We restrict ourselves to analysing non-negative sequences of integers. For convenience, we also

want our sequences to be ordered in non-decreasing order. Let D be the set of all such sequences,

and let Dn be the set of all such sequences with exactly n elements.

Here we discuss this result more explicitly in terms of sequences of sequences, and we borrow

some extra definitions from Joos et al. [83] to do so. Call a sequence of sequences (d)n≥1 well-

behaved if M
∼

(d) → ∞ as n → ∞. Call (d)n≥1 lower bounded if R(d) = Ω(M
∼

(d)). Call (d)n≥1

upper bounded if R(d) = o(M
∼

(d)). In most contexts, we omit the dependence on n from the

sequence, and thus the statement “d is well-behaved” means that the sequence of sequences (d)n≥1

is well-behaved. Here we give a version of the result by Joos et al. [83] in terms of sequences of

sequences, which we use in this section.

Theorem 4.4.1. ([83], Theorem 3) Let d ∈ Dn for each n ≥ 1, and suppose each d has minimum

degree of at least 1.

(a) If d is well-behaved and lower bounded, there is a γ > 0 such that the probability that G(d)

has a component of order at least γn is 1− o(1).

(b) If d is well-behaved and upper bounded, then for every γ > 0 the probability that G(d) has

a component of order at least γn is 1− o(1).

(c) If d is either not well-behaved or neither upper bounded nor lower bounded, then for every

sufficiently small positive γ, there is a 0 < δ < 1 such that there are both arbitrarily large n
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for which the probability that G(d) has a component of order at least γn is at least δ, and

arbitrarily large n for which the probability that G(d) has a component of order at least γn

is at most 1− δ.

This completely characterises the existence of giant components in random graphs with a fixed

degree sequence. Using Theorem 4.4.1 we can predict the a.a.s. existence of a giant component

in G for all well-behaved degree sequences. We use this theorem as a black box to show that

the a.a.s. existence or non-existence of a giant component in G[S] can be predicted by applying

Theorem 4.4.1 to d∗I . We show in Lemma 4.4.11 that d∗I is well-behaved, and d∗S is a.a.s. well-

behaved. Then we prove, under our standard assumptions on (d, S), that the induced graph G[S]

a.a.s. contains a giant component if and only if the degree sequence d∗I is lower bounded.

When dI is graphical, these previous two statements combine to show that G[S] a.a.s. has a

giant component if and only if a uniformly random graph with degree sequence d∗I a.a.s. contains

a giant component (if dI is not graphical, the same statement can be made with dfI in its place).

The reason for using d∗I here is simply because Theorem 4.4.1 requires a minimum degree of 1.

By Lemma 3.2.11 the values of |S|, |S| − n0(dI), and |S| − n0(dS) are a.a.s. all within a constant

factor of each other. Thus, a giant component of G(d∗S) is a.a.s. still a giant component of G(dS)

and vice versa. Also note that for a sequence d ordered in non-decreasing order, R(d) = R(d∗),

so we often simply refer to dS and dI , rather than d∗S and d∗I .

Theorem 4.4.2. Let (d(n))n≥1 be a sequence of sequences d = d(n) such that d ∈ Dn for each n,

and d has minimum degree at least 1 and maximum degree at most
√
M

log7M
. Let S ⊂ [n] be a subset

for each n such that d(S) = Θ(M) and d(S) = Θ(M). Then dI is well-behaved, and a.a.s. dS is

well-behaved. Furthermore, a.a.s. dS is upper bounded if and only if dI is upper bounded, and

dS is lower bounded if and only if dI is lower bounded. That is, G[S] a.a.s. contains a component

with at least γn vertices, for some constant γ > 0, if and only if R(d′I) ≥ εM for some constant

ε > 0.

We wish to emphasise the distinction between M(d), the total degree of d, and M
∼

(d), as

defined in Equation (4.16), which omits degree 2 vertices. It is entirely possible that M
∼

(d) =

o(M(d)), and for some such degree sequences it happens that R(d) = o(M(d)) and G(d) a.a.s.

has a giant component. For our purposes, this is not an issue, and the distinction between M(d)

and M
∼

(d) is purely nominal. We show that a.a.s. M
∼

(dS) = Θ(M) under our standard assumptions

on (d, S); see Lemma 4.4.11 for the formal discussion of this. In terms of the following proofs, this

result on M
∼

(dS) means that to prove Theorem 4.4.2 it is sufficient to show that R(d∗S) a.a.s. lies

within a window of size o(M) around R(d′I). We rely heavily on this observation, as our previous

concentration results such as Lemma 3.1.5 are all in terms of M , rather than M
∼

(dS) or M
∼

(d∗I).

A notable consequence of Theorem 4.4.2 is the following observation.

Observation 4.4.3. Suppose d is a graphical sequence and S is a subset of [n] such that the

conditions of Theorem 4.4.2 are satisfied and M(d) = ω(|S|). Then G[S] a.a.s. contains a giant

component.

This observation is a consequence of Propositions 2.2.16 and 3.1.1. For more details, we direct

the reader to Claim 7.2.3, where a similar result is proved and the argument is given in more

detail.
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Proof of Theorem 4.4.2

Now we show that slight perturbations to a degree sequence do not affect the asymptotically almost

sure existence of a giant component. The following lemma formalises this in terms of M
∼

(d) and

R(d). The remaining lemmas in this section then argue that the concentration windows given in

Lemma 3.1.5 are sufficiently tight to predict the asymptotically almost sure existence of a giant

component in G[S] by checking whether dI satisfies Theorem 4.4.1. Note that in the following

lemma, we do not require that n(d1) and n(d2) (recall that n(·) is the number of elements in a

sequence) are equal, it is sufficient to assume that they are asymptotically equal.

Lemma 4.4.4. Let d1,d2 ∈ D, and define M
∼

1 = M
∼

(d1), M
∼

2 = M
∼

(d2), R1 = R(d1), and

R2 = R(d2). Suppose that n(d1) ∼ n(d2), M
∼

1 ∼M
∼

2, and that |R1 −R2| = o(M
∼

1). Then d1 and

d2 are either both well-behaved or both not. Furthermore, if they are well-behaved, then d1 is

upper bounded if and only if d2 is upper bounded, and d1 is lower bounded if and only if d2 is

lower bounded.

Proof. First note that d1 and d2 are either both well-behaved or both not: since M
∼

2 ∼ M
∼

1, it

follows immediately that M
∼

1 →∞ if and only if M
∼

2 →∞. Thus, d1 is well-behaved if and only if

d2 is well-behaved. Now suppose both d1 and d2 are well-behaved. Suppose d1 is upper bounded.

Then for every ε > 0, there is an nε such that R1 ≤ εM
∼

1 for all n > nε. By the assumptions of

this lemma, this implies for all n > nε that

R2 ≤ R1 + |R1 −R2| ≤ εM
∼

1 + o(M
∼

1) = εM
∼

2(1 + o(1)) + o(M
∼

2) ≤ ε(1 + o(1))M
∼

2.

Since this holds for every ε > 0, this implies that d2 is also upper bounded. Again, since this

argument is symmetric in d1 and d2, the converse follows immediately. Therefore, d1 is upper

bounded if and only if d2 is upper bounded.

Similarly, without loss of generality suppose d1 is lower bounded. That is, for some β > 0,

there exists an nβ such that for all n > nβ, R1 ≥ βM
∼

1. The assumptions on d2 then imply that,

for all n ≥ nβ,

R2 ≥ R1 − |R1 −R2| ≥ βM
∼

1 − o(M
∼

1) ≥ βM∼ 2(1− o(1)).

Thus, there exists some n′β such that R2 ≥ 1
2βM
∼

2 for all n > n′β, and therefore d2 is also lower

bounded. Again by symmetry the converse follows, and d1 is lower bounded if and only if d2 is

lower bounded. This concludes the proof.

The next step is to argue that d∗S and d∗I a.a.s. satisfy the conditions of Lemma 4.4.4. Com-

paring d∗S and d∗I is not too different to comparing dS and dI : it follows from the definition of

M(·) and R(·) that M(d∗) = M(d) and R(d∗) = R(d) for all sequences d, and Lemma 3.2.11

implies that a.a.s. n(d∗I) ∼ n(d∗S). Thus, a.a.s. Lemma 4.4.4 applies to d∗I and d∗S if and only if it

a.a.s. applies to dI and dS .

Define MI = M(dI) and MS = M(dS), and analogously define RI and RS . Lemma 3.3.1 states

that MI ∼ γ2M (recall γ = d(S)/M), and also that a.a.s. MS ∼MI . Next we give conditions on

two arbitrary ordered sequences d1 and d2 sufficient to ensure that |R(d1)−R(d2)| = o(M(d1)).

Finally, we use Lemma 3.1.5 to show that a.a.s. d∗S and d∗I satisfy these conditions.
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The next lemma gives a convenient bound on |R(d1) − R(d2)| for two arbitrary (ordered)

n-element sequences. Recall from (4.16) that

jd = min

({
j : j ∈ [n] and

j∑
i=1

d(i)(d(i)− 2) > 0

}
∪ {n}

)
.

Lemma 4.4.5. Let d1 and d2 be two n-element sequences ordered in non-decreasing order, that

is, d1,d2 ∈ Dn. Suppose that j2 := jd2 ≤ jd1 =: j1. Then

|R(d2)−R(d1)| ≤

∣∣∣∣∣∣
n∑

i=j1

[d2(i)− d1(i)]

∣∣∣∣∣∣+

∣∣∣∣∣
j1∑
i=1

d2(i)(d2(i)− 2)

∣∣∣∣∣ .
We emphasise here that the j1 index in both summations is necessary. If the index in the first

sum was replaced with j1+1, then the claim would not hold for all pairs of sequences: for example,

if d1 contains only zeroes and d2 has exactly one element equal to 2 with the rest equal to 0, then

the modified claim does not hold. On the other hand, if the claim was modified to replace the

index in the second summation with j1−1, then there exist sequences d1 and d2 such that the left

hand side is unbounded but the right hand side of the modified claim would be equal to 1. For

example, suppose d1 = (1, . . . , 1, 3, . . . , 3, k, k) such that j1 = n and
∑n−1

i=1 d1(i)(d1(i) − 2) = 0.

Then define d2 such that d2(1) = 0, and d2(i) = d1(i) for all i ≥ 1. Then R(d2) = 2k but∑n
i=j1

[d2(i)− d1(i)] = 0 and
∑j1−1

i=1 d2(i)(d2(i)− 2) = 1.

Proof of Lemma 4.4.5. Note that if j2 = j1 then R(d2) − R(d1) =
∑n

i=j1
[d2(i)− d1(i)] and the

lemma is trivially true. Thus, for the remainder of this proof, we assume that j2 < j1. Since

j1 ≤ n, this immediately implies that j2 < n. Thus it follows that
∑j2

i=1 d2(i)(d2(i) − 2) > 0,

which in term means that d2(j2) ≥ 3 and therefore d2(i) ≥ 3 for all i ≥ j2. We use these facts

later in the proof.

The difference between R(d2) and R(d1) is

R(d2)−R(d1) =

n∑
i=j2

d2(i)−
n∑

i=j1

d1(i)

=
n∑

i=j1

[d2(i)− d1(i)] +

j1−1∑
i=j2

d2(i). (4.17)

Now we bound the second summation on the right hand side of Equation (4.17). Note that

x ≤ x(x− 2) for x ≥ 3 and recall that d2(i) ≥ 3 for all i ≥ j2. Thus, we can employ the following

bound:

j1−1∑
i=j2

d2(i) ≤
j1−1∑
i=j2

d2(i)(d2(i)− 2) =

j1−1∑
i=1

d2(i)(d2(i)− 2)−
j2−1∑
i=1

d2(i)(d2(i)− 2). (4.18)

By definition of j2, we know that
∑j2−1

i=1 d2(i)(d2(i)− 2) ∈ (−d2(j2) (d2(j2)− 2) , 0]. Since j2 < j1

and d(j2) ≥ 3, we also know that d2(j2)(d2(j2) − 2) ≤ d2(j1)(d2(j1) − 2), as d2 is ordered in
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non-decreasing order. Thus, it follows from Equation (4.18) that

j1−1∑
i=j2

d2(i) ≤
j1−1∑
i=1

d2(i)(d2(i)− 2) + d2(j2) (d2(j2)− 2) ≤
j1∑
i=1

d2(i)(d2(i)− 2). (4.19)

Taking the absolute value of both sides of Equation (4.17), applying the triangle inequality, and

then applying the bound given in (4.19) completes the proof.

We next analyse |R(d1)−R(d′2)| where d2 is obtained from d1 by changing some of its elements.

Note that d2 may not be in non-decreasing order after some of its elements are altered, which is

why we compare R(d1) to R(d′2). In the next lemma, we exclusively consider alterations that do

not increase the value of jd. We then generalise to arbitrary alterations in Corollary 4.4.7 using a

two-step process. It is also true that the types of alterations described in the following lemma do

not decrease the value of R(d), but as it is not necessary for our purposes we do not prove this

here.

Lemma 4.4.6. Let d1 be an n-element sequence ordered in non-decreasing order and let K ⊂ [n].

Let d2 be an n-element sequence such that d1(i) = d2(i) for all i /∈ K and for all k ∈ K, one of

the following is true:

(a) d1(k) ≥ 1, d2(k) > d1(k),

(b) d1(k) = 0, d2(k) > 1,

(c) d1(k) = 1, d2(k) = 0.

Then jd′2 ≤ jd1 , and

|R(d1)−R(d′2)| ≤
∑
k∈K

max{d1(k)2, d2(k)2}+ ∆(d1)2.

Proof. We first prove that jd′2 ≤ jd1 . Similarly to Lemma 4.4.5 define j1 := jd1 and j2 := jd′2 . If

j1 = n then the claim is trivially true. Thus, we may suppose that j1 < n. By definition of j1,

this implies that
∑j1

i=1 d1(i)(d1(i)− 2) > 0. Thus it follows that d1(j1) ≥ 3, and hence d2(j1) ≥ 3,

and thus both sequences have maximum degree at least 3. We now prove that j2 ≤ j1 for two

such sequences d1 and d2 that differ in a single element k - that is, in the case where K = {k}
- such that one of conditions (a), (b), or (c) are satisfied. Then the claim follows for |K| > 1 by

repeatedly applying the claim for |K| = 1. Define σ ∈ Sn such that d2(i) = d′2(σ(i)) for all i ≤ n.

We assume, as always, that σ maintains the relative order of elements where the values of d are

equal.

Observe that if k > j1, then since d1(k) ≥ 3 it must follow that d2(k) > d1(k) and therefore

σ(k) > j1. Thus, the elements with index at most j1 are identical between both sequences, and

thus j2 = j1. If k ≤ j1 and σ(k) > j1, then it follows that d′2(i) = d1(i + 1) for all i ∈ [k, σ(k)).

That is, all the elements between k and σ(k) get “pushed back” by one index when the sequence
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is arranged in non-decreasing order. Thus, it follows that

j1∑
i=1

d′2(i)(d′2(i)− 2) =

j1∑
i=1

d1(i)(d1(i)− 2) + 1{σ(k)≤j1}d2(k)(d2(k)− 2)

− 1{k≤j1}d1(k)(d1(k)− 2)

+ 1{σ(k)>j1≥k}d2(j1 + 1)(d2(j1 + 1)− 2).

(4.20)

Since we assume that j1 < n, it follows that the summation on the right hand side is positive.

Thus, it only needs to be shown that the remaining terms on the right hand side are non-negative

overall, and then it follows that j2 ≤ j1. We analyse based on the three cases stated in the lemma.

In case (a), it follows that d1(k) < d2(k) and d1(k) ≤ d1(j1 + 1) if k ≤ j1, and since d2(k) 6= 1

the claim follows in this case. Case (b) follows by identical reasoning. In case (c), it follows that

the three terms sum to either 0 or 1, depending on whether k ≤ j1. Thus, it follows that j2 ≤ j1

in all cases. This completes the proof of the first claim in the case where |K| = 1. By iteratively

applying this result the claim holds for arbitrary |K|.
Now we prove the second claim of the lemma. By the definition of d2 and the first part of

the lemma, it follows that j2 ≤ j1. The second claim is immediately true if either sequence has

maximum element at most 2: if ∆(d1) ≤ 2, then R(d1) = d1(n) and R(d2) ≤
∑

k∈K d2(k)+d1(n),

and if ∆(d2) ≤ 2 then it follows that ∆(d1) ≤ 2. Thus, we may assume that each sequence contains

at least one element that is at least 3. Therefore, d1(j1) ≥ 3 and d′2(j2) ≥ 3. If j2 = j1 = n, then

R(d′2) − R(d1) = d′2(n) − d1(n) and the claim of the lemma follows. Thus, we may assume that

j2 < n. This implies that
∑j2

i=1 d
′
2(i)(d′2(i) − 2) > 0. Recall from the first part of the proof that

j2 ≤ j1. Thus, it follows from Lemma 4.4.5 that

|R(d′2)−R(d1)| ≤

∣∣∣∣∣∣
n∑

i=j1

(d′2(i)− d1(i))

∣∣∣∣∣∣+

∣∣∣∣∣
j1∑
i=1

d′2(i)(d′2(i)− 2)

∣∣∣∣∣ . (4.21)

We now examine each sum on the right hand side individually; we begin with the left sum. Since

d1(j1) ≥ 3, we know that d1(i) > 1 for all i ≥ j1. Thus, for all i such that d1(i) > 1, it follows

from (a) that d′2(i) ≥ d1(i). This implies that the first summation in (4.21) is non-negative. Recall

from earlier in the proof the definition of σ ∈ Sn, the permutation such that d2(i) = d′2(σ(i)) for

all i ≤ n. Consider the case that σ(i) ≥ j1 and i /∈ K (and thus d2(i) = d1(i)). Then it follows

that σ(i) ≤ i, since d2(j) ≥ d1(j) for all j ≥ j1. In this case, the two terms d′2(σ(i)) and d1(i) are

both present in the summation with opposite signs and cancel out. Thus, the summation can be

re-expressed as

n∑
i=j1

(d′2(i)− d1(i)) =
∑

σ(i)≥j1

d2(i)−
∑
i≥j1

d1(i)

=
∑

σ(i)≥j1, i∈K

d2(i)−
∑

i≥j1, i∈K
d1(i).

To bound this from above, note that d1(i) ≥ 0 for all i ≤ n, and thus the whole expression is

bounded from above by
∑

k∈K d2(k). To bound this expression from below, recall that d′2(i) ≥
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d1(i) for all all i ≥ j1. Thus, the whole summation is bounded from below by 0. That is,

0 ≤
n∑

i=j1

[d′2(i)− d1(i)] ≤
∑
k∈K

d2(k). (4.22)

Now we consider the second summation in (4.21). For an arbitrary sequence d, define

F (d) =

j1∑
i=1

d′(i)(d′(i)− 2);

note that the summation index j1 does not depend on the sequence d. First consider the case where

K = {k}, that is, d1 and d2 differ on a single element. We apply (4.20) to bound F (d′2)− F (d1)

by considering the indicator functions on the right hand side. As shown in the proof of the first

claim (just after (4.20)), F (d′2)− F (d1) ≥ 0. Note that if σ(k) > j1 ≥ k, then d2(j1 + 1) ≤ d2(k)

and d2(j1 + 1)(d2(j1 + 1) − 2) ≤ d2(k)(d2(k) − 2). Also note that d1(k)(d1(k) − 2) ≥ 0 unless

d1(k) = 1 by (a) and (b). Therefore, it follows from (4.20) that

0 ≤
j1∑
i=1

d′2(i)(d′2(i)− 2)−
j1∑
i=1

d1(i)(d1(i)− 2) ≤ d2(k)(d2(k)− 2) + 1{d1(k)=1}. (4.23)

Now for |K| ≥ 1, we bound the second summation in (4.21) by changing d1 into d2 stepwise. Let

{hj}j∈{0,...,|K|} define a set of sequences such that h0 = d1 and for each j ≥ 1 there is a unique

kj ∈ K so that hj−1(kj) = d1(kj), hj(kj) = d2(kj), and hj(i) = hj−1(i) for all i 6= kj . That

is, between each sequence the value of exactly one element with index in K is modified; thus it

follows that h|K| = d2. Then a telescoping sum and |K| applications of (4.23) gives

F (d2) = F (d2)− F (h|K|−1) + F (h|K|−1) + · · ·+ F (h1)− F (d1) + F (d1)

≤
∑
k∈K

d2(k)(d2(k)− 2) + |{k ∈ K | d1(k) = 1}|+
j1∑
i=1

d1(i)(d1(i)− 2).

Therefore, from (4.21), (4.22), and the definition of j1, it follows that

|R(d′2)−R(d1)| ≤
∑
k∈K

d2(k) +
∑
k∈K

d2(k)(d2(k)− 2) +

j1∑
i=1

d1(i)(d1(i)− 2) + |{k ∈ K | d1(k) = 1}|,

noting that both sums on the right hand side of (4.21) are non-negative ((4.22) implies that the

first sum is non-negative, and Equation (4.20) and the discussion thereafter implies that the second

sum is non-negative). By definition we know that
∑j1

i=1 d1(i)(d1(i) − 2) ≤ d1(j1)(d1(j1) − 2) ≤
∆(d1)2. For the remaining terms, note by the definition of d2 that if k ∈ K and d2(k) ≥ 1,

then d2(k) > 1, and thus d2(k)(d2(k) − 1) + 1 ≤ d2(k)2. If d2(k) = 0, then d1(k) = 1, and thus

d2(k)(d2(k)− 2) + 1 = 1 = d1(k)2. Therefore, it follows that

|R(d′2)−R(d1)| ≤
∑
k∈K

max{d1(k)2, d2(k)2}+ ∆(d1)2.

This completes the proof.
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We can apply the above lemma twice to give a more general bound when d1 and d2 differ by

arbitrary substitutions.

Corollary 4.4.7. Let d1 be an n-element sequence ordered in non-decreasing order. Let K ⊂ [n],

and suppose d2 is a sequence such that d1(i) = d2(i) for all i /∈ K. Then

|R(d1)−R(d′2)| ≤
∑
k∈K

max{d1(k)2, d2(k)2}+ 2∆(d1)2.

Proof. We can assume that ∆(d1) ≥ 1, otherwise Lemma 4.4.6 immediately gives the desired

result. Without loss of generality, suppose K is minimal in the sense that d1(i) 6= d2(i) for all

i ∈ K. Partition K into K1 and K2 such that K1 is the subset of [n] where one of the following

is satisfied:

(a) d1(i) ≥ 1, d2(i) > d1(i),

(b) d1(i) = 0, d2(i) > 1,

(c) d1(i) = 1, d2(i) = 0.

Then it follows that K2 is the subset of n such that one of the following is satisfied:

(a′) d1(i) > 1, d2(i) < d1(i),

(b′) d1(i) = 0, d2(i) = 1.

Define k to be the sequence such that k(i) = d1(i) for all i /∈ K2, and k(i) = d2(i) for all i ∈ K2.

Then observe that d1 and k satisfy the conditions of Lemma 4.4.6 (with k confusingly playing the

role of d1 and K2 playing the role of K in the lemma statement). Thus, applying Lemma 4.4.6 it

follows that

|R(d1)−R(k′)| ≤
∑
k∈K2

max{d1(k)2, d2(k)2}+ ∆(k)2.

The sequences k and d2 also satisfy the conditions of Lemma 4.4.6 (with k again playing the role

of d1 and K1 playing the role of K in the lemma statement). Thus, it follows that

|R(d′2)−R(k′)| ≤
∑
k∈K1

max{d1(k)2, d2(k)2}+ ∆(k)2

Applying the triangle inequality gives that

|R(d1)−R(d′2)| ≤
∑
k∈K1

max{d1(k)2, d2(k)2}+
∑
k∈K2

max{d1(k)2, d2(k)2}+ 2∆(k)2.

Since (K1,K2) is a partition of K and ∆(k) ≤ ∆(d1), this completes the proof.

The following two lemmas use Lemmas 4.4.5 and 4.4.6 to bound |R(d1) − R(d2)| for two

sequences that are “close” in some sense. In the first lemma, the ratio between the value of each

term in d2 and the value of the corresponding term in d1 is close to 1. In the second lemma, the

numbers of elements equal to k (for each k ≤ J) only differ by a small amount between the two

sequences. These results will then be used to compare dS and dI .
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Lemma 4.4.8. Let d1 and d2 be two n-element integer sequences ordered in non-decreasing order.

Suppose that there exists a sequence (αi)i∈[n] of real numbers such that α := maxi |αi| < 1 and

d2 = (d1(i)(1 + αi))i∈[n]. Then

|R(d1)−R(d2)| < (1 + 7α)∆(d1)2 + 16αM(d1).

Proof. Define k1 and k2 such that k1(i) = d(1− α)d1(i)e and k2(i) = b(1 + α)d1(i)c. Since d1, and

d2 are integer sequences, it follows that d1(i), d2(i) ∈ [k1(i), k2(i)] for all i ∈ [n]. It follows that all

four sequences have an identical number of elements equal to 0. Since α < 1, it also follows that

n1(k2) ≤ n1(dx) ≤ n1(k1) for x ∈ {1, 2}. Since they are all in non-decreasing order, the sequences

themselves are identical for all i such that d1(i) < 2. Thus, it follows that jk2 ≤ jdx ≤ jk1 and

R(k1) ≤ R(dx) ≤ R(k2) for x ∈ {1, 2}. Therefore,

|R(d1)−R(d2)| ≤ R(k2)−R(k1).

We now bound R(k2) − R(k1). First note that R(k1) ≥ 0 and R(k2) ≤ (1 + α)M(d1), and thus

the claim of the lemma is trivially true if 1 +α ≤ 16α. Thus, for the rest of the proof, we assume

that α < 1
15 .

Lemma 4.4.5 implies that

R(k2)−R(k1) ≤
n∑

i=jk1

[k2(i)− k1(i)] +

jk1∑
i=1

k2(i)(k2(i)− 2), (4.24)

where the absolute value signs are dropped as all summations are non-negative. To bound the

first sum, the definitions of k1 and k2 immediately give that

n∑
i=jk1

[k2(i)− k1(i)] ≤
n∑

i=jk1

2αd1(i) ≤ 2αM(d1). (4.25)

For the second summation in (4.24), first note that since α < 1
9 , it follows that k2(i) ≤ (1+3α)k1(i)

for all i. Since x(x − 2) achieves its minimum at x = 1 and is monotonically increasing for all

x ≥ 1, it follows that

jk1∑
i=1

k2(i)(k2(i)− 2) ≤
jk1∑
i=1

(1 + 3α)k1(i)((1 + 3α)k1(i)− 2)

=

jk1∑
i=1

k1(i)(k1(i)− 2) + 6α

jk1∑
i=1

k1(i)(k1(i)− 1) + 9α2

jk1∑
i=1

k1(i)2

≤
jk1∑
i=1

k1(i)(k1(i)− 2) + 7α

jk1∑
i=1

k1(i)2,

where the last inequality follows from the assumption that α < 1
9 . By definition of jk1 ,

jk1∑
i=1

k1(i)(k1(i)− 2) ≤ k1(jk1)2 ≤ ∆(k1)2.
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By adding 2
∑jk1

i=1 k1(i) to each side of the inequality, it also follows that

jk1∑
i=1

k1(i)2 ≤ 2

jk1∑
i=1

k1(i) + k1(jk1)2 ≤ 2M(k1) + ∆(k1)2.

Altogether, this implies that

jk1∑
i=1

k1(i)(k1(i)− 2) + 7α

jk1∑
i=1

k1(i)2 ≤ (1 + 7α)∆(k1)2 + 14αM(k1). (4.26)

Combining (4.25) and (4.26), and noting that k1(i) ≤ d1(i) for all i (and hence M(k1) ≤M(d1)),

it follows that

R(k2)−R(k1) ≤ (1 + 7α)∆(d1)2 + 16αM(d1).

Since |R(d1)−R(d2)| ≤ R(k2)−R(k1), this completes the proof.

Recall that J = logM log logM . The next lemma argues that two sequences d1 and d2 that

differ by small numbers of low-degree elements (elements less than or equal to J) have similar

values for R(·). For brevity we define M := M(d1).

Lemma 4.4.9. Let d1 and d2 be two sequences such that ni(d1) = ni(d2) for all i > J and

|ni(d1)− ni(d2)| ≤ M
i log3M

for all i ∈ {1, . . . , J}. Then |R(d′1)−R(d′2)| = O
(
M(log logM)3

logM

)
.

Proof. First, note that the number of elements of the sequence that have their value changed is

at most

J∑
i=1

M

i log3M
=

M

log3M

J∑
i=1

1

i
=

M

log3M
(log(J) +O(1)).

Also note that for all elements i ∈ [n] that have their value changed, max{d1(i)2, d2(i)2} ≤ J2.

Let K be the set of elements that have their value changed. Applying Corollary 4.4.7 then implies

that

|R(d1)−R(d2)| ≤
∑
k∈K

max{d1(i)2, d2(i)2} ≤ J2 + 2∆(d1)2

≤ |K|J2 + 2∆(d1)2

≤ 2
M

log3M
log(J)J2 + 2∆(d1)2

= O

(
M(log logM)3

logM

)
+ 2∆(d1)2.

Since ∆(d1) ≤
√
M/ log7M , this completes the proof.

Now we combine the above two lemmas with Lemma 3.1.5 to show that the two degree se-

quences dS and dI a.a.s. satisfy the conditions of Lemma 4.4.4. For brevity, recall RS := R(dS),

RI := R(dI), MS := M(dS), and MI := M(dI). Recall Sbig is the set of all i ∈ S such that

d(i) > J . Recall that Yi is the number of elements in dS equal to i with index in Ssmall, and that

yi is the analogous term for dI .
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Lemma 4.4.10. With probability 1− o(1), |RS −RI | = o(MI).

Proof. Define an intermediate sequence k, where k(i) = dS(i) for i ∈ Sbig and k(i) = dI(i) for

i ∈ Ssmall. We prove the lemma by using R(k) as an intermediate between RI and RS and applying

the triangle inequality. By Lemma 3.1.5(a), a.a.s.

k(i) = dI(i)

(
1 +O

(
1√

log logM

))
for all i ∈ Sbig. For all i ∈ S\Sbig, by definition k(i) = dI(i). Thus, a.a.s. there exists a sequence

(αi)i∈[s] such that k(i) = dI(i)(1 +αi) for all i ∈ [s] and α := maxi∈[s] |αi| = O
(

1√
log logM

)
. Thus,

it follows from Lemma 4.4.8 that a.a.s.

|RI −R(k)| = O

(
MI√

log logMI

)
.

Recall from Lemma 3.3.1 that MI ∼ γ2M where γ = d(S)/M = Θ(1). By Lemma 3.1.5(b) and

Remark 3.2.10, a.a.s.

|Yi − yi| = O

(
yi

log5M
+ log7M

)
for all i ≤ J . By Lemma 4.4.9, this implies that a.a.s.

|R(k)−RS | = O

(
MS(log logMS)3

logMS

)
.

Also recall from Lemma 3.3.1 and that a.a.s. MS −MI = o(M). Thus, by the triangle inequality,

a.a.s.

|RI −RS | =
M(log logM)3

logM
+O

(
MI√

log logMI

)
= O

(
MI√

log logMI

)
.

This completes the proof.

As mentioned earlier, there is a small issue of counting degree 2 vertices in the definition

of M(·). In the characterisation given in Theorem 4.4.1, degree 2 elements in a sequence do

not contribute to the value of M
∼

(d). To apply Theorem 4.4.1, it needs to be checked that the

concentration bounds previously found for MI and MS carry over to M
∼

(dI) and M
∼

(dS). However,

we know from Lemma 3.1.5 that dS and dI a.a.s. have a similar number of degree 2 elements.

We show in the following proof that the total degree of either sequence is not almost all from

degree 2 elements. Thus, in the following lemma we show that dI is well-behaved (as defined in

Theorem 4.4.1) and thus dS is a.a.s. also well-behaved.

Recall that Zj ∼ Bin (j, γ), and recall from Equation (3.1) the definition of ỹi, the sum of

P
(
Zd(v) = i

)
over all v ∈ Ssmall. Recall that (yi)i≤J , the number of degree i elements in the

sequence dI with index in Ssmall, is equal to the sequence {ỹi}i≤J after cascade rounding.

Lemma 4.4.11. M
∼

(dI) = Θ(M), and a.a.s. M
∼

(dI)−M
∼

(dS) = o(M).

Proof. The first claim follows unless MI ∼ 2y2; we prove that the definition of dI means that this

does not occur. Define S≥3 := {i ∈ S | d(i) ≥ 3}. Consider two cases, one where |S≥3| = o(|S|)
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and one where |S≥3| = Θ(|S|). In the first case, since d has minimum degree at least 1 it follows

that S contains |S|(1 − o(1)) elements i such that d(i) ∈ {1, 2}. Then if |S≥3| = o(|S|), the

definition of ỹ1 implies that

ỹ1 =
∑
i∈S
P
(
Zd(i) = 1

)
≥

∑
i∈S\S≥3

P
(
Zd(i) = 1

)
≥ γ|S1|+ 2γ(1− γ)|S2|

≥ |S|(1− o(1)) min{γ, 2γ(1− γ)}.

Since γ = Θ(1) and y2 ≤ |S| and y1 ≥ ỹ1 − 1, it follows that

MI − 2y2 ≥ y1 = Ω(y2).

Thus, MI � 2y2. Now consider the second case, where S≥3 = Θ(|S|). Then∑
k≥3

ỹk =
∑
k≥3

∑
i∈S
P
(
Zd(i) = k

)
=
∑
i∈S≥3

P
(
Zd(i) ≥ 3

)
.

For all i ∈ S≥3, P
(
Zd(i) ≥ 3

)
≥ c for some constant c > 0 independent of i. Thus, it follows that∑

k≥3 ỹk = Θ(|S|). By similar reasoning to the previous case, this implies that MI ≥ (2 + c)y2

for some c > 0, and thus MI � 2y2. Thus, in either case, it follows that M
∼

(dI) = MI − 2y2 =

Θ(MI) = Θ(M). This proves the first claim in the lemma.

Now consider the second claim. Recall that Yi is the number of degree i elements in dS with

index in Ssmall. By Lemma 3.1.5(a), there are a.a.s. no elements v ∈ Sbig such that dS(v) =

2. Thus, a.a.s. the number of terms of degree 2 in dS is exactly Y2. By Lemma 3.1.5(b) and

Remark 3.2.10, a.a.s.

|Y2 − y2| ≤ |Y2 − E [Y2] |+ |E [Y2]− y2| ≤
y2

log5M
(1 + o(1)) + log7M.

Since y2 ≤ 1
2MI , it follows that a.a.s. |Y2 − y2| ≤ MI

log5M
+ log7M . By Lemma 3.3.1, this is o(M),

and therefore a.a.s.

M
∼

(dS)−M∼ (dI) = MS −MI − Y2 + y2 = o(M).

This completes the proof.

Since M
∼

(dI) = Θ(M), all asymptotic results concerning MI or MS immediately carry over

to M
∼

(dI) and M
∼

(dS). Lemmas 3.3.1, 4.4.4, 4.4.10, and 4.4.11 combine to give a short proof of

Theorem 4.4.2.

Proof of Theorem 4.4.2. Lemmas 3.3.1 and 4.4.11 respectively imply that a.a.s. |M∼ (dS)−M∼ (dI)| =
o(MI) and M

∼
(dS) = Θ(MI). This implies that a.a.s. dS and dI are both well-behaved. It also

follows immediately that

|M∼ (dS)−M∼ (dI)| = o(M
∼

(dI)).
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Lemma 4.4.10 states that a.a.s. |RS −RI | = o(MI). Since M
∼

(dI) = Θ(MI) it follows that a.a.s.

|RS −RI | = o(M
∼

(dI)).

By Lemma 4.4.4, this means that dS is upper bounded if and only if dI is upper bounded, and

likewise for lower bounded. Therefore, G[S] a.a.s. contains a giant component if and only if a.a.s.

R(d′S) ≥ αM for some constant α > 0, which occurs if and only if R(d′I) ≥ εM for some ε > 0.
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Chapter 5

Site percolation: random induced

subgraphs

In this chapter we study the case where the subset S is chosen randomly by choosing each vertex

independently with some constant probability p. The methods we apply are similar similar to

the methods used in Chapters 3 and 4 to study the case where S is fixed: we define some sort

of deterministic “average” sequence based on d and p and then show that the degree sequence

of the induced graph is a.a.s. close to this sequence. Due to the extra randomness introduced by

allowing S to vary, the definition of this average sequence is similar but slightly different to the

definition of dI given in Definition 3.1.2. The extra randomness also means that we lose some

predictive power, and not all results from Chapter 4 carry over fully in this case. In this chapter,

we characterise when G[S] a.a.s. has a giant component, as well as when G[S] is connected after

deleting isolated vertices.

5.1 The site percolation model

Suppose that instead of S being a predetermined, fixed set, S is determined by taking each vertex

in G with some probability p. The set S then corresponds to a random subset of {1, . . . , n}.
This is more commonly known as percolation, more specifically site percolation of the random

graph G(d) (this is in contrast to bond percolation, where edges are randomly deleted). For our

purposes, we will always assume that min{p, 1−p} = Θ(1). In this section we study our favourite

graph properties on this random graph space, and show that we can still find thresholds for these

properties in G[S] based on looking at an “average” degree sequence (defined in Definition 5.2.1).

First we need to formally introduce the new probability space. In this chapter, the event

space is the set of all possible induced subgraphs G[S] for all graphs G ∈ G(d) and all subsets

S ⊂ [n]. The probability that the percolated graph G[S] is some particular (labelled) graph H

is the probability that the correct subset S is chosen (which is simply p|V (H)|(1 − p)n−|V (H)|)

multiplied by the probability that some G is sampled from G(d) such that G[S] = H. More

formally, if H is some graph with V (H) ⊆ [n], then

P (G[S] = H) =
|{G ∈ G(d) | H ⊆ G}|

|G(d)|
p|V (H)|(1− p)n−|V (H)|.

The probability P (·) and expectation E [·] used in this chapter are with respect to this measure.
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We call this model the (site) percolated graph G(d) with survival probability p. We define E [ ·|S]

to be the expectation conditional on the random subset being S. This conditional expectation

corresponds to the definition of E [·] used in Chapters 3 and 4, since S was predetermined. We

also use many definitions from Chapter 3 but with an extra argument S when discussing things

for a fixed S: for example, we write dI(S) to mean the sequence dI as defined in Definition 3.1.2

for a particular subset S. The sequence dS is still defined to be the degree sequence of G[S].

Throughout this chapter, we still assume that d has minimum degree at least 1 and maximum

degree at most
√
M/ log7M . Naturally, we do not make assumptions about S or d(S), since this

is not a fixed object.

5.2 Concentration of the induced degree sequence

First we recall some relevant definitions from the previous chapters. Recall that d(A), for some

A ⊂ [n], is the total degree in d of the set A, and recall that M := M(d) =
∑n

i=1 d(i) is the

total degree of d. Recall that nk(d) is the number of terms equal to k in some sequence d.

Again we define Yi as in Lemma 3.1.5 to be the number of vertices in Ssmall such that dS(v) = i.

As we previously defined in Section 2.2.4, when we write “a.a.s. a = O(b)” (or equivalently

“P (a = O(b)) = 1− o(1)”) for two functions a and b (implicitly, a(M) and b(M)), we mean that

there exists a constant C > 0 such that P (|a| ≤ Cb) → 1 as M → ∞ where the constant C is

independent of M and bounded away from 0.

To study this model, we define an “idealised” or “average” degree sequence for this probability

space as well, which we call dA. First, define

Vbig = {i ∈ [n] | d(i) > J} ,

where J = logM log logM and Vsmall = [n]\Vbig. With this, we can also write Ssmall and Sbig as

S ∩ Vsmall and S ∩ Vbig respectively. To allow us to use certain results from Chapters 3 and 4, we

construct dA by considering vertices in Vbig and vertices in Vsmall separately.

Much like the definition of dI back in Definition 3.1.2, we design dA to represent an average

degree sequence of G[S] in our particular probability space. The way we define dA is similar to

how we defined dI in Definition 3.1.2, particularly for low-degree terms: dA contains the expected

number of vertices with induced degree i under the binomial approximation, subject to cascade

rounding. The treatment of high-degree terms in the definition of dA is similar to the treatment

of low-degree terms, which distinguishes it from dI .

The different treatment of high-degree vertices compared to dI is due to the extra randomness

caused by not fixing the set S. In the definition of dI , we assume that S is fixed, and so we

can analyse each vertex in Sbig precisely. In this case where the set S (and thus Sbig) is not

fixed, if Vbig contains a wide range of degrees then some percolated graphs might have a much

higher maximum degree than others. Thus, the behaviour of the set of high-degree vertices in the

percolated graph G(d) is much less clear in this model than compared to the case where S is fixed.

However, for a fixed set S and for each v ∈ Sbig, an analogous lemma to Lemma 3.1.5 (specifically

Lemma 5.2.2(c)) states that the degree of the corresponding vertex in G[S] is well concentrated.

We discuss the relationships between dS , dA, and dI more in Section 5.3.1 and Remark 5.3.8.
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Definition 5.2.1. Let d = (d(1), . . . , d(n)) be an n-element graphical sequence ordered in non-

decreasing order. Let p ∈ (0, 1) be a constant, and let Zj ∼ Bin (j, p). For k ∈ {0, . . . , J},
define

w̃k := p
∑

i∈Vsmall

P
(
Zd(i) = k

)
.

Let (wk)
J
k=0 be the sequence (w̃k)

J
k=0 after cascade rounding. Then dA contains wk elements equal

to k. This makes up the first
∑

k≤J wk entries of dA. In addition to this, define

z̃k := p
∑
i∈Vbig

P
(
Zd(i) = k

)
.

Let (zk)
J
k=0 be the sequence (z̃k)

J
k=0 after cascade rounding. The sequence dA also contains zk

more terms of degree k. These terms make up the remaining entries of dA.

The specific definition of zk given in Definition 5.2.1 is not the only viable definition for a

representative set of induced degrees of vertices in Sbig. Rather, we just need some sequence of

terms such that their total and average degree are not too probabilistically outlandish. We show

(in Lemma 5.2.4 and the subsequent results that use it) that the behaviour of Vbig in the site

percolated graph is sufficiently predictable to yield useful results using this definition of z̃k. Given

the change to the treatment of Vbig, one might ponder the reason for splitting the treatment of

Vsmall and Vbig and defining w̃k and z̃k, rather than simply extending the definition of w̃k to all

v ∈ [n]. Indeed this is possible, and might be more natural. However, as mentioned earlier, the

split allows us to appeal to certain results from the previous sections, such as Lemma 3.1.5, in

order to prove that dA and dS are similar for low-degree terms. These similarities are stated

formally in Lemma 5.2.2.

As was the case with dI , we do not require that dA is a graphical sequence to apply these

results. We can define dfA analogously to dfI earlier (that is, the maximum degree element of dA is

reduced by 1 if M(dA) odd, otherwise dfA = dA); Lemma 3.1.3 then implies that dfA is a graphical

sequence. Then one can think of a graph with degree sequence dfA in place of a graph with degree

sequence dA for intuition purposes.

One thing to note when defining sequences of degree sequences in the site percolation model is

that indexing by |S| does not make sense, since S does not have a fixed size. When comparing dS

and dA for a fixed sequence d (and thus a fixed value of n(d)), this means that the two sequences

do not necessarily have the same number of elements. However, this is no great concern: d∗I also

did not necessarily have the same number of elements as d∗S . Much like how Lemma 3.2.11 showed

that n(d∗I) and n(d∗S) were a.a.s. close, we show later in Lemma 5.2.2 that the two sequences dA

and dS have asymptotically equal numbers of terms. This is sufficient to argue that G(dS) and

G(dA) (implicitly, G(dfA)) have very similar properties. That is, if dA has a particular property,

then a.a.s. the site percolated graph G[S] has some property.

Lemma 5.2.2. Let d be an n-element degree sequence with minimum degree at least 1 and

maximum degree at most
√
M/ log7M . Let S and G[S] be distributed as a site percolated G(d)

with survival probability p for constant p. Then the following statements hold with probability

1− o(1).
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(a) |S| = np

(
1 +O

(√
logn
n

))
.

(b) d(S) = pM
(

1 +O
(

1
M1/4

))
.

(c) For all v ∈ Sbig,

dS(v) = pd(v)

(
1 +O

(
1√

log logM

))
.

(d) For all i ≤ J ,

|Yi − wi| ≤
(

wi

log5M
+ log7M

)
(1 + o(1)).

The rough outline of the proof is as follows. A Chernoff bound shows that |S| is a.a.s. equal to

np(1+o(1)), and a basic vertex exposure martingale shows that d(S) is a.a.s. equal to pM(1+o(1)).

This proves the first two statements in the lemma. For each choice of S that satisfies parts (a)

and (b) of this lemma, Lemma 3.1.5 applies. For terms in Sbig, this means that the concentration

window given in Lemma 3.1.5(a) carries over immediately for each of these “good” choices of

S. This proves the third statement. For Ssmall, there is an extra level of complication. We

know that the concentration result given in Lemma 3.1.5(b) applies for each fixed S, but this

only yields good concentration of Yi if |Sj |, the number of vertices in S with degree j in G, is

sufficiently concentrated for each j ≤ J . Thankfully, this is indeed the case, and a proof of the final

statement follows from this. Because of the maximum degree constraint on d, the concentration

windows obtained this way are sufficiently small. Recall the notation that a = b ± c means that

a ∈ [b− c, b+ c].

Proof of Lemma 5.2.2. Immediately we know that E [|S|] = np, and linearity of expectation gives

that

E [d(S)] =
∑
i∈[n]

d(i)P (i ∈ S) = pM.

First we argue concentration of |S|. The Chernoff bound given in Lemma A.4 implies that

P (||S| − E [|S|] | ≥ εnp) ≤ 2 exp

(
−npε

2

3

)
.

Letting ε = 3
√

log n/pn, it immediately follows that this probability is at most 2n−3. This

completes the proof of (a). For part (b), we construct a martingale to show concentration of d(S).

At step i, for i ∈ [n], reveal whether vertex i is in S. Define Mi = d(S ∩ [i]). Then it follows

immediately that |Mi −Mi−1| ≤ d(i) for all i ≤ n and Mn = d(S). Thus, by Azuma’s inequality

(given in Theorem A.6),

P (|d(S)− pM | ≥ α) ≤ 2 exp

(
−α2

2
∑

i∈V (G) d(i)2

)
.
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By assumption, ∆(d) ≤
√
M

log7M
, which implies that

∑
i∈V (G)

d(i)2 ≤ ∆(d)
∑
i∈[n]

d(i) ≤ M3/2

log7M
.

Thus, by setting α = M3/4, this probability is at most 2M−3/2, which proves that S a.a.s. satisfies

condition (b). For the remainder of this proof, we call a set S “good” if |S| = pn
(
1± 3

√
log n/

√
pn
)

and d(S) = pM
(
1± 1/pM1/4

)
.

Now we focus on part (c). Let S be some arbitrary “good” subset of [n], and recall that

γ = d(S)/M . Then Lemma 3.1.5(a) implies that

P
(
dS(v) = pd(v)

(
1± 10√

γ log logM

)
for all v ∈ Sbig

∣∣∣∣S) = 1− o(1).

By parts (a) and (b) of this lemma, we know that S is good with probability 1− o(1). Thus, the

probability that there exists some v ∈ Sbig with induced degree that is not pd(v)
(

1 +O
(

1√
log logM

))
is at most

P (S is not good) + P
(
dS(v) 6= pd(v)

(
1 +O

(
1√

log logM

))∣∣∣∣S is good

)
P (S is good) = o(1).

This proves part (c).

Finally, we focus on part (d) of the lemma. Recall that nj(d) is the number of elements of d

equal to j, or equivalently (if d is graphical) the number of vertices of degree j in a graph with

degree sequence d. Let Sj be the set of vertices of degree j in S, for each j ≤ J . We can express

|Sj | as a sum over all vertices in G with degree i:

|Sj | =
∑
d(i)=j

1{i∈S},

where 1{i∈S} is an independent Bernoulli random variable with P
(
1{i∈S} = 1

)
= p for all i ∈ [n]. It

follows from linearity of expectation that E [|Sj |] = pnj(d). Since these indicators are independent

random variables, McDiarmid’s inequality (given in Theorem A.5) gives that

P (||Sj | − pnj(d)| > αj) ≤ 2 exp

(
−

2α2
j

nj(d)

)

for each j ≤ J . Define αj = (nj(d) log logM)1/2. Then

exp

(
−

2α2
j

nj(d)

)
= exp (−2 log logM) .

Performing the union bound over J such events implies that the probability that each Sj is within

(nj(d) log logM)1/2 of its expectation is at most

J exp (−2 log logM) =
log logM

logM
= o(1).

Suppose for some particular j that nj(d) ≥ log11M . Then, with probability 1 − o(1) it follows
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that

||Sj | − pnj(d)| ≤ αj = (nj(d) log logM)1/2 = o

(
nj(d)

log5.25M

)
.

Now suppose that nj(d) < log11M . Then it follows that

||Sj | − pnj(d)| ≤ αj = (nj(d) log logM)1/2 = o(log5.75M).

Thus, it follows that a.a.s. for all j ≤ J

||Sj | − pnj(d)| = o

(
nj(d)

log5.25M
+ log5.75M

)
. (5.1)

Suppose that S is an arbitrary good subset of [n] which also satisfies the concentration bounds

given in Equation (5.1) for all j ∈ {0, . . . , J}. Since S is good, the conditions of Lemma 3.2.5

are met. Recall that Yi is the number of vertices in Ssmall with induced degree i, for i ≤ J . The

expectation of Yi, conditional on this set S, is thus given by

E [Yi|S] =
∑
j≤J
|Sj |P (Zj = i)

(
1 +O

(
∆2J

M

))
.

Since we assume that S satisfies the concentration inequalities given in Equation (5.1), it follows

that∑
j≤J
|Sj |P (Zj = i) =

∑
j≤J

P (Zj = i)

[
pnj(d)±

(
nj(d)

log5.25M
+ log5.75M

)]

=
∑
j≤J

P (Zj = i) pnj(d)

(
1 +O

(
1

log5.25M

))
±
∑
j≤J

P (Zj = i) log5.75M

= wi + o

(
wi

log5M
+ log7M

)
.

Since ∆2J/M = o(log−12M), it follows that, conditional on the aforementioned set S,

E [Yi|S] = wi + o

(
wi

log5M
+ log7M

)
. (5.2)

Since we assume that S is good, (d, S) also satisfies the conditions of Lemma 3.1.5(b). This

implies that a.a.s.

|Yi − E [Yi|S] | ≤ E [Yi|S]

log5M
+ log7M. (5.3)

A combination of the bounds given in (5.2) and (5.3) and the triangle inequality implies that,

conditional on the event that S is good and also satisfies the concentration bounds given in

Equation (5.1), a.a.s.

|Yi − wi| ≤
(

wi

log5M
+ log7M

)
(1 + o(1)).

Since S satisfies these conditions a.a.s., this proves part (d).
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Remark 5.2.3. Recall that d∗ is the sequence d with all elements equal to 0 removed. An

analogous argument to Lemma 3.2.11 implies that n(d∗A) = Θ(n). Since Lemma 5.2.2(a) implies

that a.a.s. n(dS) = |S| ∼ pn, and part (d) of the lemma states that a.a.s. Y0 − w0 = o(n), it

follows that a.a.s. n(d∗S) ∼ n(d∗A). That is, a.a.s. dS and dA both have pn(1 + o(1)) terms, and

a.a.s. d∗S and d∗A both have cn(1 + o(1)) terms for some constant c > 0.

Next we show that the total induced degree of vertices in Sbig is a.a.s. concentrated. Due to

the nature of the site percolation model, the specific induced degrees of elements in Sbig might

vary wildly. However, Lemma 5.2.2(c) states that a.a.s. each element of Sbig has induced degree

near its expectation. Our assumption on the maximum degree of d is then sufficient to argue that

d(Sbig) is concentrated. Recall from Definition 5.2.1 the definition of zk, the number of terms in

dA equal to k that correspond to vertices in Vbig.

Lemma 5.2.4. Deterministically,
∑

k≥0 kzk = p2d(Vbig) ± 1
2∆(d)2. Also, if dS(Sbig) is the total

induced degree of Sbig, then a.a.s.

dS(Sbig) = p2d(Vbig)(1 + o(1))± 2d(Vbig)1/2∆(d)1/2 log logM.

Proof. The first result simply follows from the definition of zk, given in Definition 5.2.1:∑
k≥0

kzk =
∑
k≥0

kz̃k ±
∑
k≥0

k

=
∑
k≥0

kp
∑
i∈Vbig

P
(
Zd(i) = k

)
± 1

2
∆(d)2

= p
∑
i∈Vbig

∑
k≥0

kP
(
Zd(i) = k

)
± 1

2
∆(d)2

= p2d(Vbig)± 1

2
∆(d)2.

We show that d(Sbig) is concentrated using a similar method to that used to prove that d(S)

is concentrated. Let Vbig = {v1, . . . , v|Vbig|} where d(v1) ≤ d(v2) ≤ · · · ≤ d(v|Vbig|). If Dt is the

total degree (in G) of {v1, . . . , vt} ∩ S for t ≤ |Vbig|, then |Dt − Dt−1| ≤ d(vt). Noting that

E [d(Sbig)] = pd(Vbig), Azuma’s inequality implies that

P (|d(Sbig)− pd(Vbig)| > α) ≤ 2 exp

(
− α2

2
∑

i∈Vbig d(i)2

)
≤ 2 exp

(
− α2

2∆(d)d(Vbig)

)
.

Choosing α = d(Vbig)1/2∆(d)1/2 log logM implies that a.a.s. d(Sbig) = pd(Vbig)±α. Lemma 5.2.2

implies that a.a.s. dS(v) = pd(v)(1+o(1)) for all v ∈ Sbig. Thus, a.a.s. dS(Sbig) =
∑

v∈Sbig
dS(v) =

p(1 + o(1))
∑

v∈Sbig
d(v) = p2d(Vbig)(1 + o(1)) ± 2d(Vbig)1/2∆(d)1/2 log logM . This proves the

second claim.

Combining this previous lemma with Lemma 5.2.2, it follows that the total degree of M(dS)

is a.a.s. asymptotically equal to M(dA), which is approximately p2M .

Lemma 5.2.5. M(dA) = p2M ±∆(d)2 always, and a.a.s. M(dS) ∼M(dA).

Proof. The first claim follows almost identically to the first claim in Lemma 5.2.4, and thus we
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omit some details:

M(dA) =
∑
k≤J

kwk +
∑
k≥0

kzk

=
∑
k≤J

kw̃k +
∑
k≥0

kz̃k ± 2
∆∑
k=0

k

= p2M ±∆2.

To prove the second claim, we apply Lemmas 5.2.2 and 5.2.4. Suppose dS satisfies (a) – (d) of

Lemma 5.2.2, which occurs with probability 1− o(1). Under these conditions, it follows that

M(dS) =
∑
k≤J

kYk + dS(Sbig)

=
∑
k≤J

kwk + dS(Sbig)±
∑
k≤J

k

[
wk

log5M
+ log7M

]
(1 + o(1))

= p2d(Vsmall) + p2d(Vbig)(1 + o(1)) + o(M)

= p2M(1 + o(1)).

This proves the second claim.

5.3 Properties of random induced subgraphs

The concentration results proved in the previous section allow us to prove results about the prop-

erties of G[S] analogous to the case where S is fixed. We focus on analysing the connectivity of the

percolated graph, as well as the existence of giant components in such a graph. It is noteworthy

that an analogous result to Theorem 4.2.1 about the chromatic number ofG[S], or more specifically

Lemma 3.3.4, does not immediately carry over to the site percolation model. For a naive counterex-

ample, consider the degree sequence
(

3, . . . , 3,
√
M

log7M

)
. With probability p, the degree sequence dS

contains vertex n. If n ∈ S, a.a.s. this vertex has induced degree Θ(
√
M/ log7M) = Θ(

√
n/ log7 n)

by Lemma 5.2.2. Recall that Dk(d) := Dk(d, 1) =
∑k−1

i=0 d(n(d) − i). Then condition (c) of

Lemma 2.2.10 is a.a.s. not satisfied for k = 1:

D1(dS) = Θ

( √
n

log7 n

)
= ω

(
dn1−α) = Ω

(
d|S|1−α

)
,

since α > 1
2 and d = O(1) for this sequence. If n /∈ S, then the degree sequence dS has maximum

degree 3. Thus, Dk(dS) ≤ 3k for all k ≤ |S|. It follows by taking α = 3
4 and K0 = 2 that

Dk(dS) ≤ 3k ≤ 6n1/4k3/4 = K0n

(
k

n

)α
,

which holds for all k ≤ |S|. Thus, condition (c) is satisfied for every ε ≤ 1. Therefore, we cannot

directly apply Lemma 2.2.10 to determine the chromatic number of the percolated graph G[S],

since dS may or may not satisfy the conditions of the lemma with non-trivial probability. However,

there is an obvious caveat to fix this: the addition of a single high-degree vertex to G[S] can only

affect the chromatic number of the graph by at most 1, since we can simply colour this vertex
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with a unique colour.

Speaking more generally, an essential feature of this class of counterexamples is the presence of

a bounded number of vertices of degree
√
n/polylog n. This means that there is then a non-trivial

probability of having none of these vertices, as well as a non-trivial probability of having at least

one. If instead we consider a graphs with a slightly lower maximum degree, it is possible that we

can get a similar result to Theorem 4.2.1 for this smaller range of degree sequences. If we impose

the condition that ∆ ≤ logM log logM , an analogous argument to the deterministic case should

show that the satisfiability of condition (c) is predictable using dA, as in the deterministic case

with dI . However, better results are likely not too hard to prove. One possible conjecture is given

below.

Conjecture 5.3.1. Suppose that the maximum degree is at most n1/2−δ for some constant δ > 0.

With probability 1− o(1), the claims of Theorem 4.2.1 hold if the set S is chosen by taking each

vertex with probability p (where p ∈ (0, 1) is independent of n) and dI is replaced with dA.

The idea here is based in a simple concentration argument: if the maximum degree is n1/2−δ,

then by choosing α = 1
2(1 + δ), at least nδ/2 vertices of degree n1/2−δ must be summed over in

Dk(dS) for condition (c) of Lemma 2.2.10 to not be satisfied. If a degree sequence d contains

this many big elements, then the number of such elements in S must be concentrated around its

average. Thus, the numbers of terms of this size in dS and dA would be a.a.s. close, and thus

their effects on the summations Dk(dS) and Dk(dA) would be similar.

5.3.1 Connectivity of the percolated graph

Here we give an analogous result to Lemma 4.1.1 for the case where S is chosen randomly. One

notable difference in this model, compared to the case where S is fixed, is that E [Yi] is much

harder to determine asymptotically. In the case where S is fixed, Lemma 3.1.5 implies that

E [Y0|S] ∼ ỹ0(S), which we used to prove Lemma 4.1.1. However, the extra randomness from

choosing S probabilistically means that the value of E [Yi] is not as easy to determine as E [Yi|S].

In particular, the proof of Lemma 5.2.2 shows that S is “good” (in the sense defined in the proof,

that is, that |S| = pn(1± 3
√

log n/
√
pn) and d(S) = pM(1± 1/pM1/4)) with probability at least

1 − 4M−3/2 (noting that M ≤ n2). We can apply this and sum over all possible subsets S to

bound E [Yi]:

E [Yi] =
∑

S∈P(n)

E [Yi|S]P (S) =
∑

good S

E [Yi|S]P (S) +
∑

bad S

E [Yi|S]P (S) .

Since S is good with probability at least 1−4M−3/2, and Y0 ≤ |S| ≤M , the second summation is

between 0 and M−1/2. Recall from Definition 5.2.1 that wi is the number of elements in dA with

degree i and index at most `, and serves as an approximation for the number of vertices in Ssmall

with degree i in G[S]. Then Equation (5.2) implies that

E [Yi] = wi(1 + o(1)) + o(log7M) +O
(
M−1/2

)
= wi(1 + o(1)) + o(log7M). (5.4)

This means that we can easily determine E [Yi] asymptotically if E [Yi] ≥ c log7M , as this implies

that E [Yi] ∼ wi. Unfortunately, it also means that w̃i = o(1) does not immediately imply that

E [Yi] = o(1), and thus results such as Lemma 4.1.1(a) and (b) do not carry over to the percolation
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model. With this in mind, we give the following result about whether G[S] is a.a.s. connected or

not.

Theorem 5.3.2. Let d be an n-element degree sequence with minimum degree at least 1 and

maximum degree at most
√
M/ log7M . Let S and G[S] be distributed as a site percolated G(d)

with survival probability p for constant p. Then

(a) If w1 = o(
√
M), then G[S] is a.a.s. connected after deleting the degree 0 vertices.

(b) If w1 = Θ(
√
M), then G[S] is a.a.s. disconnected, and there exists some constant c > 0 such

that the probability that G[S] is connected after deleting the degree 0 vertices is at least c.

(c) If w1 = ω(
√
M), then G[S] is a.a.s. disconnected even after deleting the degree 0 vertices.

Proof. First we focus on each set S that is “good”. Then, for each good set S, we apply

Lemma 4.1.1 to the probability space conditional on this set S. Since S is a.a.s. good, it is sufficient

to only focus on such sets S. If S is good, then by definition we know that d(S) = Θ(M) and d(S) =

Θ(M). Furthermore, if S is good, then Equation (5.2) implies that ỹi(S) = wi(1+o(1))+o(log7M)

for i ∈ {0, 1}.
Suppose that w1 = o(

√
M), and define A to be the event that G[S] is connected except for

isolated vertices. Then

P (A) =
∑

S∈P([n])

P (A|S)P (S) ≥
∑

good S

P (A|S)P (S) .

Since w1 = o(
√
M), for each good S we know that ỹ1(S) = o(

√
M). Thus, Lemma 4.1.1 implies

that P (A|S) = 1 − o(1) for each good set S. This proves part (a). The other two cases follow

similarly, noting that w̃0 ≤ Cw̃1 for a sufficiently large constant C > 0.

5.3.2 Giant components in the percolated graph

Here we prove an analogous result to Theorem 4.4.2 in the case where ∆(d) ≤
√
M/ log7M and

S is chosen randomly by taking each vertex independently with probability p, where p ∈ (0, 1) is

a constant. We show that R(dA) = Θ(M) is a threshold for the existence of a giant component in

the random graph with given degree sequence d after site percolation under these assumptions.

Theorem 5.3.3. Let d be an n-element degree sequence with minimum degree at least 1 and

maximum degree at most
√
M/ log7M . Let S and G[S] be distributed as a site percolated G(d)

with survival probability p for constant p. Then G[S] a.a.s. has a giant component if and only if

R(d′A) ≥ εM for some constant ε > 0.

Specifically, we prove the following result, which is analogous to Theorem 4.4.2. Recall that

d∗ is the sequence d with all terms equal to 0 removed.

Lemma 5.3.4. Let d be an n-element degree sequence with minimum degree at least 1 and

maximum degree at most
√
M/ log7M . Let S and G[S] be distributed as a site percolated G(d)

with survival probability p for constant p. Then d∗A is well-behaved and a.a.s. d∗S is also well-

behaved. Furthermore, d∗S is a.a.s. upper bounded if and only if d∗A is upper bounded, and d∗S is

a.a.s. lower bounded if and only if d∗A is lower bounded.
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The proof that dA functions as a predictor for the existence of a giant component in the

site percolated G(d) is similar to the proof of the case where S is fixed. The idea is again that

the degree sequence dS is sufficiently concentrated to a.a.s. predict the value of R(dS) within a

o(M) error margin, and also that a.a.s. M
∼

(dA) = Θ(M(dA)) (and thus M
∼

(dA) = Θ(M)) and

a.a.s. M
∼

(dS) ∼ M
∼

(dA). This statement implies that dS is a.a.s. well-behaved. Then we apply

Lemma 4.4.4 to dA and dS to get the desired result. Now we give the details.

Lemma 5.3.5. M
∼

(dA) = Θ(M(dA)), and a.a.s. M
∼

(dA)−M∼ (dS) = o(M(dA)).

Proof. The proof is analogous to Lemma 4.4.11. Define V≥3 := {i ∈ V | d(i) ≥ 3}. Consider

two cases, one where |V≥3| = o(n) and one where |V≥3| = Θ(n). First consider the case where

|V≥3| = o(n). The sequence d has minimum degree at least 1, and thus in this case G ∼ G(d) has

n(1− o(1)) vertices with degree either 1 or 2. Let V1 be the set of degree 1 vertices in G, and let

V2 be the set of degree 2 vertices. The definition of w̃1 then implies that

w̃1 = p
∑

i∈Vsmall

P
(
Zd(i) = 1

)
≥ p2|V1|+ 2p2(1− p)|V2| ≥ cn

for some constant c > 0, since min{p, 1 − p} = Θ(1). Since w2 ≤ n, it follows that M
∼

(dA) =

M(dA) − 2w2 ≥ w1 ≥ cn − 1 = Ω(w2). Thus, M(dA) � 2w2, and so M
∼

(dA) = Θ(M(dA)). Now

consider the second case, where |V≥3| = Θ(n). Then∑
k≥3

w̃k = p
∑

i∈Vsmall

P
(
Zd(i) ≥ 3

)
≥ c|V≥3|

for some constant c > 0. Thus, M(dA) ≥ 2w2 + c|V≥3|, which implies that M(dA) � 2w2.

Therefore, in either case it follows that M
∼

(dA) = Θ(M(dA)).

Now we prove the second claim. Lemma 5.2.2(d) implies that a.a.s. |Y2 − w2| = o(w2 + M),

and Lemma 5.2.5 states that a.a.s. M(dS) ∼M(dA) = p2M(1 + o(1)). Since w2 ≤ 1
2M(dA), this

implies that a.a.s.

M
∼

(dS)−M∼ (dA) = M(dS)−M(dA)− 2Y2 + 2w2 = o(M).

This completes the proof.

Now we show that R(dS) and R(dA) a.a.s. differ by o(M). The proof of this is more involved

than the deterministic case due to the lack of a fixed set Sbig. The low-degree elements of both dS

and dA are handled in a way that is much more reminiscent of the case where S is deterministic, and

as such we leverage some intermediate results from that proof. In particular, recall Lemma 4.4.9

from Section 4.4 which (roughly) states that adding and removing small numbers of low-degree

terms to a sequence changes the value of R(·) by o(M).

The high-degree elements pose more of an issue here than in the case where S is fixed, since

the high-degree elements of dS and dA may not be asymptotic, or even particularly close. Despite

this, the value of R(dS) is sufficiently concentrated. We prove a new lemma to show that the

difference in high-degree terms between dA and dS is a.a.s. not enough to perturb R(·) by more

than o(M). Recall that d′ is the sequence d ordered in non-decreasing order.
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Lemma 5.3.6. Let d1 be a sequence of non-negative integers ordered in non-decreasing order

with total degree M . Let f(M) be some function going to infinity arbitrarily slowly. Suppose d2

is a sequence of non-negative integers such that there exists some index k that satisfies

(a) d1(i) = d2(i) for all i ≤ k,

(b) d1(j), d2(j) ≥ f(M) for all j > k,

(c) d2(i) ≤ d2(j) for all i ≤ k < j, and

(d) M(d2) = M(1 + o(1)).

Then |R(d1)−R(d′2)| = o(M).

Proof. Define jdi := ji for brevity, where i ∈ {1, 2}. By definition of d1 and d2, we know that

k∑
i=1

d1(i)(d1(i)− 2) =
k∑
i=1

d′2(i)(d′2(i)− 2).

This immediately implies that j1 ≤ k if and only if j2 ≤ k, in which case the claim of the lemma

immediately follows. Thus, we suppose that j1, j2 > k for the rest of the proof. Note that since

d1 and d2 agree on all terms up to the kth term, condition (d) implies that

n(d1)∑
i=k+1

d1(i) =

n(d2)∑
i=k+1

d2(i) + o(M).

If
∑n(d1)

i=k+1 d1(i) = o(M), then R(d1), R(d′2) = o(M), and the claim of the lemma immediately

follows in this case too. Now we suppose that j1, j2 > k and
∑n(d1)

i=k+1 d1(i) = cM for some c = Θ(1).

In this case, we show that R(d1), R(d2) = cM(1 − o(1)). Suppose there exists some partition

(X1, X2) of the set {k + 1, . . . , n(d1)} such that X1 = {k + 1, . . . , x1} and d1(X1) ≥ 2M/f(M)

and d1(X1) ≤M/
√
f(M). Then

x1∑
i=1

d1(i)(d1(i)− 2) > −M + (f(M)− 2)2M/f(M) > 0.

This implies that R(d1) ≥
∑n(d1)

i=x1
d1(i) − d1(X1) = cM(1 − o(1)). Now if no such partition

(X1, X2) exists, then d1(x) > M/2
√
f(M) for some x ∈ {k + 1, n(d1)}. Then

x∑
i=1

d1(i)(d1(i)− 2) > −M +
1

3
M
√
f(M) > 0.

This implies that R(d1) ≥
∑n(d1)

i=x d1(i) > cM−2M/f(M) = cM(1−o(1)). Since d2(j) ≥ f(M) for

all j > k, an identical argument shows that R(d′2) ≥ cM(1− o(1)). This completes the proof.

Lemma 5.3.7. With probability 1− o(1), |R(dS)−R(dA)| = o(M(dA)).

Proof. Define a sequence k which contains wk elements equal to k for each k ≤ J (in non-decreasing

order), as well as containing the term dS(i) for each i ∈ Sbig (in the same order as they appear

in dS). This sequence matches dA for the “small” terms and dS for the “big” terms. Suppose
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that dS satisfies conditions (a) – (d) of Lemma 5.2.2, which occurs with probability 1−o(1). This

implies that a.a.s.

|Yi − wi| ≤
(

yi

log5M
+ log7M

)
(1 + o(1))

for all i ≤ J . Thus, by Lemma 4.4.9, it follows that a.a.s.

|R(dS)−R(k)| = O

(
M(log logM)3

logM

)
= o(M). (5.5)

Next we show that a.a.s. |R(dA)−R(k)| = o(M). From this result, the claim of the lemma follows

via the triangle inequality and the fact that M(dA) = Θ(M) (from Lemma 5.2.5). We now show

that dA and k a.a.s. satisfy the conditions of Lemma 5.3.6, and thus a.a.s. |R(dA) − R(k)| =

o(M(dA)) = o(M). Choose k to be the largest index in dA such that dA(k) ≤ 1
2pJ . Note that

z̃k = 0 for all k ≤ 1
2pJ by definition (and standard binomial concentration results), and a.a.s. G[S]

contains no vertex v ∈ Sbig such that dS(v) ≤ 1
2pJ by Lemma 5.2.2. Thus, dA and k a.a.s. satisfy

conditions (a) – (c) of Lemma 5.3.6.

Now we consider condition (d). Note that since dA and k agree on the first
∑

j wj elements,

it suffices to show that dS(Sbig) and
∑

k≥0 kzk are a.a.s. within o(M) of each other. Since ∆(d) ≤√
M/ log7M , Lemma 5.2.4 implies that a.a.s. dS(Sbig) = p2d(Vbig)± o(M). Since k contains the

term dS(i) for each i ∈ Sbig, it follows that a.a.s. |M(dA)−M(dS)| = o(M) = o(M(dA)). Thus,

Lemma 5.3.6 implies that a.a.s. |R(dA) − R(k)| = o(M), and the claim of the lemma follows by

the triangle inequality.

To finish off the proof of Lemma 5.3.4 we apply Lemma 4.4.4. Since this lemma only requires

that n(d1) ∼ n(d2), it is not an issue that dA and dS do not necessarily have the same number of

terms.

Proof of Lemma 5.3.4. Lemma 5.2.2(a) and Remark 5.2.3 imply that a.a.s. n(dS) ∼ n(dA) and

n(d∗S) ∼ n(d∗A). Lemma 5.3.5 states that a.a.s. M
∼

(dS) ∼ M
∼

(dA) = Θ(M). This implies that

d∗A is well-behaved and that d∗S is a.a.s. well-behaved. Lemma 5.3.7 then implies that a.a.s.

R(d∗S) − R(d∗A) = R(dS) − R(dA) = o(M
∼

(dA)). Therefore, the conditions of Lemma 4.4.4 are

a.a.s. satisfied by d∗S and d∗A, and the claim of the lemma follows.

Proof of Theorem 5.3.3. Theorem 5.3.3 follows from Lemmas 5.3.4 and 5.3.5. Recall that R(d∗) =

R(d) for all sequences d. If there exists some ε > 0 such that R(dA) ≥ εM , then by definition d∗A
is lower bounded. Then a.a.s. d∗S is lower bounded. Thus, a.a.s. G[S] has a giant component by

Theorem 4.4.1. Otherwise, ifR(dA) = o(M), then d∗A is upper bounded, and thus a.a.s. d∗S is upper

bounded. Therefore, G[S] a.a.s. does not contain a giant component. Therefore, R(dA) ≥ εM is

a threshold for the existence of a giant component in G(d) subject to site percolation under our

assumptions on p and d, which proves Theorem 5.3.3.

Remark 5.3.8. Another method of studying the site percolated G(d) random graph would be to

study dI(S) for all “good” sets S. Ideally in this method, one could show that if S is good then

dI(S) is close to dA in a sense that implies that R(dA)−R(dI(S)) = o(M). Then we could apply

Theorem 4.4.2 to compare dI(S) and dS for each fixed, good set S. Since S is a.a.s. good, this
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would imply that the percolated graph G[S] a.a.s. has a giant component if and only R(dA) ≥ εM ,

as desired.

We do not give the details here, but this method does work: if S is good, then Equations (5.2)

and (5.3) imply that E [Yi|S] is close to wi, and the value of dI(Sbig) can be shown to be a.a.s.

p2d(Vbig) + o(M) (and thus the definition of “good” could be modified to include concentration

of d(Sbig)). Thus, the proof of Lemma 5.3.7 would carry over to show that |R(dA)−R(dI(S))| =
o(M(dA)) for every good set S. We do not use this method though, as the work required to

compare dA and dI is basically the same as the work required to compare dA and dS directly,

since results akin to Lemmas 5.3.5 and 5.3.6 are still required. Thus, the proof using this method

would be slightly more cumbersome, as it would be very similar to the current proof but with an

extra step, since we must compare dA and dI(S) as well as comparing dI(S) and dS for good sets

S.
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Chapter 6

Exploration approach in the

configuration model

In this chapter we again consider the existence of giant components in induced subgraphs, but

using a different method. In Chapter 2 we discussed a result by Joos et al. [83] which determined

the threshold for giant components in G(d). Their proof, as well as many previous results (such as

Molloy and Reed [113]) used an exploration process on the random graph to study the component

structure. We adapt the modified breadth-first search random process used by Joos et al. to

determine the existence of giant components in induced subgraphs. This is the basis of what we

referred to in Chapter 1 as the exploration method, since our analysis revolves heavily around

studying the exploration process.

In this chapter, we focus on doing so in configuration model random graphs C(d). For a given

sequence d and S ⊂ [n], we characterise the asymptotic threshold for when the subgraph of a

uniformly random pairing with degree sequence d induced on the set of vertices S a.a.s. has a giant

component. In the following chapter, we then adapt this framework to the random graph model

G(d). We begin our analysis in the configuration model since it is much more straightforward

to analyse than G(d), and thus we can gain intuition in this model without getting mired in

switchings and other technicalities associated with G(d).

In the next section, we describe our main results and the threshold we obtain in the configu-

ration model. We also lay out some basic implications of the configuration model that are crucial

to our analysis in this setting. In Section 6.2, we describe the exploration process that we use

to prove our main results, and determine the threshold for the a.a.s. existence of a component in

G[S] with Θ(M) edges. In Section 6.3, we show that the a.a.s. (non-)existence of a component

with Θ(M) edges implies the a.a.s. (non-)existence of a component with Θ(|S|) vertices. That is,

if G[S] a.a.s. contains a component of linear size, then it also a.a.s. contains a component of linear

order.

6.1 Main results

Let d be an n-element sequence of non-negative integers with even sum. Since we are considering

pairings rather than graphs in this chapter, we do not need this sequence to satisfy the Erdős-

Gallai criterion for graphical sequences given in Theorem 2.2.6. Instead, we call a sequence

pseudographical if it is a sequence of non-negative integers with even sum. Let S ⊂ [n] and
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S = [n]\S, and define

dS(w) =

d(w) w ∈ S,

1 w /∈ S.
(6.1)

We stress here that this definition is not related to the sequence dS as defined and used in

Chapters 3 to 5, which was the degree sequence of the induced graph G[S]. We also stress that

we do not use dS to mean the degree sequence of G[S] in Chapters 6 and 7.

Without loss of generality we assume that the sequence d is ordered in non-decreasing order

with respect to d(w) (dS(w)− 2). Thus, (S, S) is a partition of [n] such that S = {1, 2, . . . , n−|S|}
and S = {n− |S|+ 1, . . . , n}. For such a sequence d and set S, define

jS(d) = min

j : j ∈ [n] and
∑
i≤j

d(i) (dS(i)− 2) > 0

 ∪ {n}
 ,

RS(d) =
n∑

i=jS

d(i),

(6.2)

and recall that M(d) =
∑n

i=1 d(i) is the total degree of d. We abbreviate these by omitting the

d in most cases. Note that jS(d) can be defined equivalently as

jS(d) = min

j : j ≥ |S|+ 1 and

j∑
i=|S|+1

d(i) (d(i)− 2) > d(S)

 ∪ {n}
 ,

where [j] = {1, . . . , j}. Much like in Chapters 3 and 4, we emphasise the distinction between

M(d) and M
∼

(d) (where M
∼

(d) is defined in Theorem 2.2.15): if n2(d) is the number of elements

in d equal to 2, then M(d) = M
∼

(d) + 2n2(d). We also recall from these chapters the definition of

the total degree of a set A ⊂ [n] as

d(A) :=
∑
v∈A

d(v).

Let C(d) be the space of all pairing graphs with degree sequence d, and let P be a pairing from

C(d) chosen uniformly at random. Recall from Section 2.2.4 the various definitions of O(·), o(·),
Ω(·), ω(·), and Θ(·).

Theorem 6.1.1. Let d be a pseudographical sequence. Consider a uniformly random element

P ∈ C(d), and let S ⊂ [n]. Then:

(a) If RS(d) = o(M) and d(S) = Θ(M), the probability that P [S] contains a component of size

Θ(M) is o(1).

(b) If RS(d) = Θ(M), the probability that P [S] contains a component of size Θ(M) is 1− o(1).

We call case (a) of Theorem 6.1.1 the subcritical case, and case (b) the supercritical case.

Theorem 6.1.2 translates the statement of Theorem 6.1.1 from a result about edges to a result

about vertices.
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Theorem 6.1.2. Let d be a pseudographical sequence. Consider a uniformly random element

P ∈ C(d), and let S ⊂ [n]. Suppose that d(S) = Θ(M). Then Theorem 6.1.1 still holds if “of size

Θ(M)” is replaced with “of order Θ(|S|)”.

This result is strongly reminiscent of Theorem 2.2.15 about the existence of giant components

in G(d). The set of deleted vertices S have the same effect in this threshold as degree 1 vertices

do in the threshold given in Theorem 2.2.15, as well as more classical thresholds such as the one

by Molloy and Reed [113]. This is natural, given the similarities in the proof method, but there

are more intuitive reasons for this similarity. Degree 1 vertices and vertices in S have a similar

effect on the exploration process: every time a degree 1 vertex or a vertex in S is discovered, the

number of unpaired half edges in the component currently being explored decreases by 1.

In comparison to the result of Janson [74], the results given in Theorems 6.1.1 and 6.1.2 expand

the ranges sequences for which the existence a giant component is predictable in the configuration

model. There are no restrictions on the maximum degree of a vertex or on the proportion of

vertices with a given degree. However, the most notable drawback in this result is that there is no

prediction for the order of the largest component beyond whether it is linear or sublinear, while

the Janson result gives the order up to an error of o(n).

In the supercritical case of Theorem 6.1.2, the condition that d(S) = Θ(M) is implied by

the fact that RS = Θ(M). However, the condition that d(S) = Θ(M) cannot be relaxed in the

subcritical case of Theorem 6.1.2. We give an example of a pair (d, S) where RS = o(M) and

P [S] a.a.s. contains a component with Θ(|S|) vertices. Lemmas 6.3.1 and 6.3.3 are the specific

lemmas that allow us to convert the statement about the size of the largest component, given in

Theorem 6.1.1, into the statement of Theorem 6.1.2 about the order of the largest component.

Example 6.1.3. Suppose that S contains n2/5 vertices of degree n1/2, and S contains n − n2/5

vertices of bounded degree. Then M = Θ(n) and d(S) = o(n), so RS ≤ (S) = o(M). Thus,

Theorem 6.1.1 applies and says that a.a.s. the induced pairing P [S] has no component of size

Θ(M). In fact, this is always true: the maximum number of edges in P [S] is
(
n2/5

2

)
∼ 1

2n
4/5.

However, a result we give later (specifically Lemma 6.2.2) implies that if (U,W ) is a partition of

S, then the probability that (U,W ) induces an empty cut (that is, P contains no edges of the

form uv where u ∈ U and w ∈W ) is bounded from above by

exp

(
− 1

2M
d(U)(n9/10 − d(U))

)
for every non-trivial partition (U,W ) of S. Since every vertex in U has degree n1/2, this probability

is at most exp
(
−Cn2/5|U |

)
for some constant C > 0. Thus,

P (some (U, V ) induces an empty cut) <

n2/5∑
i=1

(
n2/5

k

)
exp

(
−Ckn2/5

)
= o(1).

Therefore, the induced pairing P [S] is a.a.s. connected, despite satisfying the subcritical criterion

of Theorem 6.1.1.

We prove Theorem 6.1.1 by modifying the exploration process used by Joos et al. [83] to the

problem at hand. To describe this exploration process more neatly, we “explode” vertices outside

S into degree 1 vertices while maintaining the total degree of S. This does not affect the induced
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pairing P [S] at all, but makes the analysis of the exploration process much more intuitive. To

define this formally, let k = (k(1), . . . , k(n)) be a pseudographical sequence and let S ⊂ [n]. Define

a new sequence d := d(k) = (d(1), . . . , d(n′)) by replacing each vertex v ∈ S with d(v) vertices of

degree 1 (ordering d such that d(j) ≤ d(j + 1) for all j < n′). Note that if k was an n-element

sequence, then d has more than n elements, and thus P ∈ C(d) has more than n vertices. However,

the sub-pairing P [S] still has exactly |S| vertices. The following lemma implies that we only need

to consider sequences of this type. It shows that for all pseudographical sequences k there exists

a corresponding (pseudographical) sequence d such that P [S] has the same distribution in both

C(k) and C(d).

Lemma 6.1.4. For every pseudographical sequence k, the induced pairings P (k)[S] and P (d(k))[S]

have the same distribution.

Proof. Define a map f : C(k)→ C(d) as follows: for each P ∈ C(k), suppose the labels of the half

edges in B(i), the bin corresponding to vertex for some i ∈ S, are labelled i1, . . . , ik(i). Then for

each i ∈ S, delete it and replace it with k(i) vertices of degree 1 (where vertices are labelled by any

rule), each containing a different half edge from vertex i. For every pair of half edges u, v ∈ [M ],

the probability that u and v are paired in C(k) is 1
M−1 , and the same holds for f(P ) ∈ C(d).

Thus, define a coupling between uniform generation of pairings in C(k) and C(d) by making the

same half edge pairings (that is, using the same permutation to determine the pairings for P and

f(P )). Deleting S and all incident edges in both P and f(P ) then yields the same induced pairing.

Thus, the induced pairings P (k)[S] and P (d)[S] have the same probability of yielding any given

sub-pairing P [S].

6.2 The configuration model exploration process and analysis

Theorem 6.1.1 is proved by analysing a modified breadth-first search process on a uniformly

random element of C(d). In this section we describe the process in full, along with how we use it

to analyse a uniform random pairing. By Lemma 6.1.4, we may assume that the degree sequence

d is such that d(w) = 1 for all w /∈ S. Note that this means d may have more than n components

due to “exploding” vertices in S, despite the original pairing of interest having exactly n vertices.

However, as mentioned above, P [S] still has exactly |S| vertices.

6.2.1 The configuration model exploration process

The initial input to the exploration process is a pairing P with (n-element) pseudographical

sequence d and a subset S ⊂ [n] such that d(i) = 1 for all i /∈ S. The algorithm also fixes a

uniformly random ordering on the half edges in the pairing, which we denote by σ ∈ SM . When

we refer to the “lowest indexed” half edge, it is with respect to this permutation. Call a pairing

P ∈ C(d) with a half edge ordering an input. The algorithm performs the exploration process on

this input in a manner that we describe below. The process is deterministic for a given input, but

can also be defined in a randomised way without reference to a permutation: instead of picking

the relevant half edge with the lowest index, simply pick one uniformly at random from the set of

relevant half edges.

At time t = 0 of the exploration process, initialise T0 = (V0, E0,X0). The set V0 is a subset of

the vertex set V (P ) (the specific subset is defined differently for the subcritical and supercritical
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cases, at the start of Sections 6.2.3 and 6.2.4 respectively). This set V0 is called the preprocessing

set. The edge set Et, for all t ≥ 0, is the edge set of the induced partial pairing P [Vt]. The set Xt

is a set of half edges i such that the parent vertex ui is in Vt and the parent vertex of m(i) is not

in Vt. We call these half edges open edges at time t. For all t ≥ 0, define Mt := M − d(Vt), the

total degree of the vertices not in Tt. As the process progresses it produces a nested set of partial

sub-pairings

T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ (V (P ), E(P ), ∅)

where Tt ⊂ Tt+1 means that Vt ⊂ Vt+1 and Et ⊂ Et+1. We call Tt the partially explored pairing

at time t, or simply the partial pairing at time t.

After time t = 0 the process is defined iteratively. For each t, let Xt = |Xt| be the number

of open edges in Tt. At time t ≥ 1, if Xt−1 > 0, then the there exists an open edge at time

t − 1, that is, a half edge in whose parent vertex is in Vt−1 and whose mate is not in Vt−1.

The process takes the lowest-indexed open edge (whose parent vertex is denoted vt) in Xt−1

and pairs it to its mate. Call the parent vertex of this mate wt. Then Vt = Vt−1 ∪ {wt}, and

Et = Et−1∪{im(i) | i ∈ B(wt),m(i) ∈ Xt}. The edges added to Et at this step, other than im(i),

are called back edges. On the other hand, if Xt−1 = 0, that is, all half edges in Tt−1 are paired and

there are no open edges, then choose the vertex containing the lowest-indexed half edge in S to

be wt. This starts a new component in P [S]. Let d′S,t(wt) be the number of back edges between

wt and Tt−1. Then for all t > 0, we have that

Xt = Xt−1 + d(wt)− 2− 2d′S,t(wt) and Mt = Mt−1 − d(wt). (6.3)

This then iterates for each step of the exploration process.

The vertex sets of Tt and Tt−1 differ by a single vertex wt. We say that wt is discovered at

time t. The edge sets only differ by edges incident to wt, as do the sets of half edges. We call

the component of Tt−1 containing vt the active component. Define St = S\Vt and St = S\Vt, the

analogous set for S. Let d : P(V ) → N to be the degree of a vertex (or set of vertices), where

d(U) =
∑

u∈U d(u). Then define Mt−1 = d(St−1) + d(St−1).

To analyse this process on a random element of C(d), we use the method of deferred decisions

to generate the pairing as the process evolves. In this case, the input can be considered an unpaired

set of M points, distributed among n labelled bins as per the degree sequence d. At each step

t > 0, an open edge it is chosen uniformly at random from all open edges in Xt, and its mate m(it)

is chosen uniformly at random from all half edges belonging to vertices v /∈ Vt−1. In this way, we

generate a uniformly random pairing stepwise. For each t, define Pt (·) = P ( ·|Tt, . . . , T0) to be the

probability measure conditional on the deferred decision exploration process up to time t. This

conditional probability space is the uniform probability space of all pairings P ∈ C(d) such that the

induced pairing P [Vt] contains exactly the edges in Et. Similarly, define Et [·] = E [ ·|Tt, . . . , T0],

the expectation conditional on the deferred decision exploration process up to time t. We say that

vertices and edges in Tt have been revealed or explored.

The proof of Theorem 6.1.1 then revolves around keeping track of Xt throughout this deferred

decision process. Specifically, we show that at each step the expected change in Xt is slightly posi-

tive or negative, depending on whether the degree sequence satisfies the supercritical or subcritical
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criterion of Theorem 6.1.1. Then we show that Xt, as a sum of many random small variables,

is concentrated for large values of t. We show that in the supercritical regime there exists some

t such that a.a.s. Xt > βM for some constant β > 0. We then argue that this implies that the

corresponding component in P [S] a.a.s. has Θ(M) edges, as well as Θ(|S|) vertices. On the other

hand, in the subcritical regime we prove that a.a.s. Xt = 0 for some t = o(M), and from there

argue that a.a.s. all components of P [S] contain at most o(n) vertices.

In order to make Xt sufficiently concentrated throughout this process, we “preprocess” high-

degree vertices to remove them from the exploration process, placing them into V0. This keeps

Xt −Xt−1 small even when the maximum degree of d is arbitrarily large. The exact definition of

the preprocessing step is slightly different depending on whether we are analysing the subcritical

or supercritical case, and is defined formally in the respective sections of the proof. However, the

general idea is the same, borrowed from the process defined by Joos et al. [83].

6.2.2 Adjacency of vertices in the configuration model

One of the simplicities of analysing the configuration model, in comparison to the random graph

model G(d), is that determining the probability that two vertices are adjacent is much more

straightforward. More generally, the probability that two disjoint subsets of vertices U and W

have an edge between them is the same as the probability that two vertices of degree
∑

u∈U d(u)

and
∑

w∈W d(w) are adjacent. To analyse C(d) and the exploration process, we consistently use

the following observation.

Observation 6.2.1. Let A be a set of pairs of half edges in [M ] such that no half edge appears in

more than one pair. Conditional on any such set A, the remaining half edges are paired uniformly

at random. Conditional on the event that a half edge u is paired with some half edge in a set

K ⊂ [M ] (where u /∈ K), the probability that u is paired with some particular k ∈ K is exactly

1/|K|.

This is simply because the half edges are all paired uniformly at random, so any subset is also

uniformly random. This observation implies that, conditional on an arbitrary partial pairing Tt−1

for some t ≥ 1, the probability that wt = w, for some w /∈ Vt−1, is exactly d(w)
Mt−1

. This forms the

crux of our analysis of the exploration process, and obtaining an analogous result to this is the

main hurdle in adapting this result to the random graph model in Chapter 7. Observation 6.2.1 is

also the main tool used in the proof of the following lemma, which is used many times throughout

the proofs of the main results.

Lemma 6.2.2. Let U and W be sets of vertices with total degree d(U) and d(W ) respectively.

The probability that there are no edges between U and W is at most

exp

(
− 1

2M
d(U)d(W )

)
.

Proof. Consider a process of stepwise checking for edges between U and W . At each step, choose

a half edge in W and reveal whether it is paired to a half edge in U . Suppose that out of K half

edges in W checked so far, no edge between U and W has been revealed. Conditional on this,

the probability that the next half edge is paired to a half edge in U is d(U)
M−1−2K , which is bounded

below by d(U)
M . Since revealing the mate of each half edge consumes at most two half edges in W ,
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at least 1
2d(W ) half edges in W must have their mate revealed before the mate of each half edge

in W is known. Thus, the probability that the partition (U,W ) induces an empty cut is at most

(
1− d(U)

M

) 1
2
d(W )

.

Taking the exponential of the logarithm of both sides gives that

(
1− d(U)

M

) 1
2
d(W )

= exp

(
1

2
d(W ) log

(
1− d(U)

M

))
< exp

(
−1

2
d(W )

d(U)

M

)
,

where the second inequality follows from the Taylor expansion of the logarithm.

6.2.3 Analysis in the supercritical regime

In the supercritical criterion, we assume that there exists some ε > 0 such that RS ≥ εM . Define

H+ =

{
j ∈ [n] : d(j) >

√
M

logM

}
.

As we only consider pairs (d, S) such that d(i) = 1 for all i /∈ S, it follows that H+ ⊂ S. The

proof of the supercritical case splits into two cases, depending on whether d(H+) = Θ(M) or

d(H+) = o(M). In both cases, we show that there exists some set of vertices that are connected

in P [S] and have total degree Θ(M). It then remains to be shown that a.a.s. a positive fraction

of the half edges in vertices belonging to this component in P [S] pair with other half edges in S.

Lemma 6.2.3. If d(H+) = cM for some c bounded away from 0, then the partial pairing induced

by the vertices of H+ is a.a.s. connected.

Proof. First suppose that H+ contains only one vertex, which would be vertex n. Then imme-

diately P [H+] is connected. From here we suppose that |H+| ≥ 2. Consider the probability

that some partition (U,W ) of H+ is a cut of P [H+]. Without loss of generality we may suppose

d(U) ≤ d(W ). Since d(H+) = cM , Lemma 6.2.2 implies that the probability that the partition

(U,W ) induces an empty cut is

P (U �W ) < exp

(
− 1

2M
d(U)d(W )

)
.

Since every vertex in H+ has degree greater than
√
M

logM , we know that

|H+| ≤ cM√
M/ logM

= c
√
M logM.

Furthermore, if we assume that |U | = k, it also follows that

d(U) ≥ k
√
M

logM
.

First, consider the case where U contains at most M
2
3 half edges, that is, d(U) ≤ M2/3. The

probability that U and W induce an empty cut is then at most exp
(
−1

2c
′d(U)

)
, for some constant
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c′ < c. Since d(U) ≤ M2/3 by assumption, it must be true that k ≤ M1/6 logM . Thus, the

probability that any partition (U,W ) where d(U) ≤M2/3 induces an empty cut is less than

M1/6 logM∑
k=1

(
M1/6 logM

k

)
e
− c
′k
2

√
M

logM ≤
M1/6 logM∑

k=1

(
M1/6 logM

k
e

1− c′
√
M

2 logM

)k
.

Asymptotically the summand is o( 1
M ) and thus the sum is o(1).

Now consider the case where both parts contain more than M
2
3 half edges. Then W has total

degree at least bM for b = c
3 (since we assume that d(U) ≤ d(W )) and U has total degree at least

M
2
3 . Lemma 6.2.2 then implies that

P (U �W ) ≤ exp

(
−1

2
bM

2
3

)
for any partition (U,W ) where d(U) ≤ d(W ) and d(U) > M2/3. The total number of vertices

in H+ is less than
√
M logM , since each vertex has degree greater than

√
M

logM . Thus, there are

less than 2
√
M logM possible partitions (U,W ), since each of the

√
M logM vertices in H+ can be

placed in either part. Then Markov’s inequality implies that the probability that some partition

(U,W ) forms an empty cut is at most

2
√
M logMe−bM

2/3
< e
√
M logM−bM

2
3 = o(1).

Combining these cases, the probability that the sub-pairing induced by H+ is not connected is

o(1).

If some constant fraction of the half edges in H+ pair with other half edges in vertices in H+,

then the component of P [H+] has Θ(M) edges, and thus P [S] has a component with Θ(M) edges.

Otherwise, P [H+] is a.a.s. a partial pairing that contains a connected component with αM open

edges, for some constant α > 0. In Lemma 6.2.9, we show that this also implies that a.a.s. P [S]

has a component with Θ(M) edges.

Thus, for the remainder of the proof, we suppose that d(H+) = o(M). If H+ is non-empty

and d(H+) ≤ δM for some δ → 0, as part of the preprocessing step we move H+ to S, exploding

the vertices into d(H+) degree 1 vertices, creating a new sequence d′ and redefining S. We prove

that the induced sub-pairing P [S\H+] a.a.s. has a component with Θ(M) edges. This implies

the existence of a component with Θ(M) edges in the pairing P [S], since adding the vertices

in S+ back into the sub-pairing can only increase the size and order of the largest component.

We still use H+ to refer to the set of vertices in S with degree greater than
√
M/ logM , as we

need to check that deleting these vertices does not affect the evolution of the exploration process

significantly.

Set V0 = {v}, where v is the vertex containing the lowest-indexed half edge in S. We consider

the process up to some time τ , where τ is the minimum time t at which either Xt > βM or

Mt ≤
(
1− ε

4

)
M , for β = 10−6ε2. The next two lemmas show that moving the vertices in H+

to S does not significantly affect the exploration process. That is, since d(H+) is small, this the

expected number of open edges gained at each step remains positive even for this restricted S.

Lemma 6.2.4. Suppose that RS ≥ εM and d(H+) ≤ εM
100 for some fixed ε > 0. Suppose U ⊂ S
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is a set containing H+ such that d(U) < ε
4M + d(H+). Then

∑
i∈V \U

d(i) (d(i)− 2) ≥ 2

3
RS(1− o(1)).

Proof. We first prove by contradiction that, under the assumptions of this lemma, d(jS) ≤
√
M

logM .

If d(jS) >
√
M

logM , then vertex jS and all vertices of greater degree are in U . Thus, d(U) ≥ RS ,

which violates the assumptions on U . Therefore d(jS) ≤
√
M

logM . We write

∑
i∈V \U

d(i) (d(i)− 2) =
∑
i≤jS

d(i)(d(i)− 2)−
∑

i∈U,i≤jS

d(i) (d(i)− 2)

+
∑

i/∈U,i>jS

d(i)(d(i)− 2).

To bound the first sum on the right hand side, note that by definition
∑

i≤jS d(i)(d(i) − 2) > 0.

Let K =
∑

i∈U,i≤jS d(i), and note that ε
4M + d(H+) ≤ RS

3 . Since RS ≥ εM , it also follows that

d(jS) ≥ 3. Thus,∑
i∈V \U

d(i) (d(i)− 2) ≥ −
∑

i∈U,i≤jS

d(i) (d(i)− 2) + (d(jS)− 2)
∑

i/∈U,i>jS

d(i)

≥ −K(d(jS)− 2) + (d(jS)− 2)

∑
i>jS

d(i)−
∑

i∈U,i>jS

d(i)


≥ −K(d(jS)− 2) + (d(jS)− 2)

(
RS − d(jS)−

(
1

3
RS −K

))
≥ 2

3
(d(jS)− 2)RS − d(jS)2.

Since d(jS) ∈
[
3,
√
M

logM

]
by previous claims, and RS ≥ εM by assumption, it follows that

2
3 (d(jS)− 2)RS − d(jS)2 ≥ 2

3RS(1− o(1)).

The next lemma shows that (Xt)t≥0 is expected to increase as t increases for all t ≤ τ ,

regardless of the steps that the process has taken up to time t. Observation 6.2.1 implies that the

probability that w = wt is d(w)
Mt−1

for all w /∈ Vt−1 (and if w ∈ Vt−1, the probability that wt = w is

0). Thus,

Et−1 [d(wt)− 2] =
∑

w/∈Vt−1

d(w)

Mt−1
(d(w)− 2) . (6.4)

Lemma 6.2.5. Suppose that RS ≥ εM and d(H+) ≤ εM
100 for some fixed ε > 0. For all t ≤ τ ,

Et−1 [d(wt)− 2] ≥ 1
3ε.

Proof. Assume that Xt−1 > 0. If this is not the case, and Xt−1 = 0, then the following forms a

lower bound, which is sufficient for the proof. Since t ≤ τ , we know that (1− ε
4)M ≤Mt−1 ≤M .
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Thus, we can bound the summation in Equation (6.4) from below:

∑
w/∈Vt−1

d(w)

Mt−1
(d(w)− 2) =

∑
w/∈Vt−1,d(w)=1

d(w)

Mt−1
(d(w)− 2) +

∑
w/∈Vt−1,d(w)≥2

d(w)

Mt−1
(d(w)− 2)

≥
∑

w/∈Vt−1,d(w)=1

d(w)(
1− ε

4

)
M

(d(w)− 2) +
∑

w/∈Vt−1,d(w)≥2

d(w)

M
(d(w)− 2)

=
∑

w/∈Vt−1

d(w)

M
(d(w)− 2)−

(
1

1− ε
4

− 1

) ∑
w/∈Vt−1,d(w)=1

d(w)

M

=
∑

w/∈Vt−1

d(w)

M
(d(w)− 2)−

(
ε

4
+
ε2

16
+O

(
ε3
))

(1− ε)

≥
∑

w/∈Vt−1

d(w)

M
(d(w)− 2)− ε

4
.

Recall that H+ has been moved to S, and thus contributes negatively to this summation. Applying

Lemma 6.2.4 with U = Vt−1 ∪H+ gives that

∑
w/∈Vt−1

d(w)

M
(d(w)− 2)− ε

4
=
∑
w/∈U

d(w)

M
(d(w)− 2)− d(H+)

M
− ε

4

≥ 2

3

RS
M

(1− o(1))− ε

4
− d(H+)

M

≥ 1

3
ε,

since d(H+) ≤ εM
100 and RS ≥ εM .

At each step of the exploration process, all edges between wt and Vt−1 are revealed. Recall

that d′S,t(w) is the number of edges between w and Vt−1 other than vtw, that is, the number of

back edges revealed at step t. As mentioned in Equation (6.3), the number of open edges gained

at step t is not necessarily d(wt)− 2, but is instead d(wt)− 2− 2d′S,t(wt), since the process reveals

back edges at each step. However, on average, these back edges only consume a small fraction of

the open edges gained at each step. This is proved in the following lemma.

Lemma 6.2.6. For all t ≤ τ , Et−1

[
d′S,t(wt)

]
≤ 1

12Et−1 [d(wt)− 2].

Proof. Suppose that wt = w for an arbitrary w /∈ Vt−1. Upon revealing w, it contains d(w) − 1

unpaired half edges (since vtw is an edge). For each unpaired half edge p ∈ B(w) (the set of half

edges in the bin corresponding to vertex w) and each open edge q ∈ Xt−1, let A(p, q) denote the

event that p and q are paired. For each of these events, Observation 6.2.1 implies that

Pt−1 (A(p, q)|wt = w) =
1

Mt−1
,

since q cannot be adjacent to another open edge by definition of the exploration process. For a

given half edge p ∈ B(w), the events A(p, q1) and A(p, q2) are mutually exclusive for every pair
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q1 6= q2 of open edges in Xt−1. Thus, for each p ∈ B(w),

Pt−1

 ⋃
q∈Xt−1

A(p, q)

∣∣∣∣∣∣wt = w

 =
Xt−1

Mt−1
.

If t ≤ τ , this is at most βM
M

100
99 = 100β

99 , since Xt−1 ≤ βM and Mt−1 ≥ 99
100M by the definition of τ

(and a sufficiently small choice of ε). There are d(w)− 1 half edges in B(w) that could be paired

to form back edges (since vtw does not count as a back edge). Thus,

Et−1

[
d′S,t(wt)

∣∣wt = w
]

=
100β

99
(d(w)− 1).

Finally, comparing this to Et−1 [d(wt)− 2] gives that

Et−1

[
d′S,t(wt)

]
=

∑
w/∈Vt−1

Et−1

[
d′S,t(w)|wt = w

]
P (wt = w)

=
100

99
β
∑

w/∈Vt−1

d(w)

Mt−1
(d(w)− 1)

=
100

99
10−6ε2 (Et−1 [d(wt)− 2] + 1) .

Since ε < 1 and Et−1 [d(wt)− 2] ≥ 1
3ε, this implies that Et−1

[
d′S,t(wt)

]
≤ 1

12Et−1 [d(wt)− 2].

It still needs to be shown that Xt is sufficiently close to its expectation for all t ≤ τ . The

proof of this is almost identical to the analogous proof by Joos et al. [83, Lemma 25]. The

proof follows from an application of Azuma’s inequality, which is given in Theorem A.6. Define

At = d(wt)− Et−1 [d(wt)] and Bt = d′S,t(wt)− Et−1

[
d′S,t(wt)

]
.

Lemma 6.2.7. With probability 1− o(1), |
∑

t′≤tAt′ | and |
∑

t′≤tBt′ | are both strictly less than
M

log logM for all t ≤M .

Proof. The argument is identical for |
∑

t′≤tAt′ | and |
∑

t′≤tBt′ |, and thus we only give the argu-

ment for the former. Note that Et−1 [At] = 0 for all t. It is straightforward to show that
∑

t′≤tAt′

is a martingale with respect to the filtration of partial pairings (Tt)t≥0:

Et−1

∑
t′≤t

At′

 = Et−1 [At] +
∑
t′≤t−1

At′ = Et−1 [d(wt)− Et−1 [d(wt)]] +
∑
t′≤t−1

At′ =
∑
t′≤t−1

At′ .

It follows that E
[∑

t′≤tAt′
]

= 0 for all t. Since the maximum degree of a vertex not in H+ is

at most
√
M

logM , it follows that |At|, |Bt| ≤
√
M

logM for all t ≤ M . Thus, by Azuma’s inequality with

ck =
√
M

logM for all k ≤ t,

P

∣∣∣∑
t′≤t

At

∣∣∣ > M

log logM

 ≤ 2 exp

(
− M log2M

2t(log logM)2

)
< exp

(
− log3/2M

)
,

where the last inequality holds for all t ≤ M . Taking the union bound over all such t then gives
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that

P

∣∣∣∑
t′≤t

At

∣∣∣ > M

log logM
for some t ≤M

 < M exp
(
− log3/2M

)
= M1−

√
logM = o(1).

This completes the proof.

Recall that τ is the minimum time t such that either Xt > βM or Mt ≤
(
1− ε

4

)
M , for

β = 10−6ε2. We show that a.a.s. Xτ > βM . Since all open edges belong to the same component

of P [S] (specifically, they belong to the active component of the process at time τ), this gets us

most of the way to finding a component with Θ(M) edges in P [S].

Lemma 6.2.8. With probability 1− o(1), Xτ > βM .

Proof. Recall that for a given input, that is for a given pairing P and permutation of the half

edges σ ∈ SM , the process is deterministic. Consider the behaviour of Xt on a given input ω. For

all ω, it follows that

Xτ (ω) ≥
∑
t≤τ

(d(wt(ω))− 2)− 2
∑
t≤τ

d′S,t(wt(ω)), (6.5)

where wt(ω) is the vertex revealed at step t for input ω. Assume for contradiction that Xτ (ω) ≤
βM . Then by the definition of τ , it follows that Mτ (ω) ≤

(
1− ε

4

)
M . Then adding and subtracting∑

t≤τ Et−1 [d(wt)− 2]− 2
∑

t≤τ Et−1

[
d′S,t(wt)

]
from the right hand side of (6.5) gives that

Xτ (ω) ≥
∑
t≤τ

(d(wt)− 2)− 2
∑
t≤τ

d′S,t(wt)

=
∑
t≤τ
Et−1 [d(wt)− 2]− 2

∑
t≤τ
Et−1

[
d′S,t(wt)

]
+
∑
t≤τ

At − 2
∑
t≤τ

Bt.

By Lemmas 6.2.5 and 6.2.6, it follows that

∑
t≤τ
Et−1 [d(wt)− 2]− 2

∑
t≤τ
Et−1

[
d′S,t(wt)

]
≥ 5

6

1

3
ετ =

5ετ

18
.

Let Ω be the set of inputs ω for which |
∑

t′≤tAt′(ω)| and |
∑

t′≤tBt′(ω)| are each less than M
log logM

for all t ≤M . By Lemma 6.2.7, P (w ∈ Ω) = 1− o(1). For all ω ∈ Ω,

Xτ (ω) ≥ 5ετ

18
− 3M

log logM
≥ τε

4
,

where the last inequality holds for sufficiently large M . Recall that for a fixed input ω, τ(ω) is

deterministic. We partition Ω based on the size of τ(ω). First suppose τ(ω) ≥ 3
64M . Then it

immediately follows that Xτ > βM . Now suppose that τ(ω) < 3
64M and suppose for contradiction

that Xτ ≤ βM . This implies that Mτ ≤
(
1− ε

4

)
M , which then implies that

∑
t≤τ d(wt) ≥ ε

4M .
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Thus,

Xτ (ω) ≥
∑
t≤τ

(d(wt)− 2)− 2
∑
t≤τ

d′S,t(wt)

≥
∑
t≤τ

(d(wt)− 2)− 2
∑
t≤τ
Et−1

[
d′S,t(wt)

]
− 2

∑
t≤τ

Bt

=
5

6

∑
t≤τ

(d(wt)− 2) +
1

6

∑
t≤τ
Et−1 [d(wt)− 2]− 2

∑
t≤τ
Et−1

[
d′S,t(wt)

]
+

1

6

∑
t≤τ

At − 2
∑
t≤τ

Bt.

(6.6)

Lemma 6.2.6 implies that 1
6

∑
t≤τ Et−1 [d(wt)− 2]− 2

∑
t≤τ Et−1

[
d′S,t(wt)

]
≥ 0, and thus

Xτ (ω) ≥ 5

6

∑
t≤τ

[d(wt)− 2] +
1

6

∑
t≤τ

At − 2
∑
t≤τ

Bt.

For all ω ∈ Ω, we know that 1
6

∑
t≤τ At − 2

∑
t≤τ Bt > −

3M
log logM . Then since

∑
t≤τ d(wt) ≥ ε

4M

it follows that

Xτ (ω) ≥ 5

6

∑
t≤τ

d(wt)− 2τ

− 3M

log logM
≥ 5

6
M
(ε

4
− ε

32

)
− 3M

log logM
> βM.

Therefore, Xτ > βM for all ω ∈ Ω. Since P (ω ∈ Ω) = 1− o(1), this completes the proof.

At this point we have proved that a.a.s. there exists a partial pairing of P [S] that contains a

connected component with Θ(M) open edges. Finally, we show that a positive fraction of these

open edges are not paired with half edges in vertices in S, and thus correspond to edges in P [S].

Lemma 6.2.9. If a partial pairing T = (V,E,X) has at least βM open edges, then a.a.s. at least

β2M of these open edges pair with half edges with parent vertices in S.

Proof. Since RS ≥ εM , there exists some c ∈ [ε, 1) such that d(S) = cM . Take an arbitrary subset

K of X of size βM . We analyse a process of checking the mate of each half edge in this subset

sequentially, similar to that used in Lemma 6.2.2. Note however that half edges in X cannot be

paired with other half edges in X, as these would have been revealed as back edges during the

exploration process. Suppose that less than β2M of the previously revealed mates of half edges

in K belong to vertices in Sτ , the set of vertices in S that have not been explored at time τ . The

definition of τ implies that d(Sτ ) ≥ cM − ε
4M − d(wτ ). Thus, the probability that the mate of

the next half edge checked is not in S is at most

1− d(Sτ )− β2M

Mτ
< 1− 2c

3
,

noting that c ≥ ε by definition and β = 10−6ε2. Thus, the probability that less than β2M of the

βM half edges have a pair in S is less than

β2M∑
i=1

(
βM

i

)(
1− 2c

3

)(βM−i)
< 2βM exp

(
−1

2
βcM

)
= o(1).

Therefore, a.a.s. at least β2M of the βM edges have both endpoints in S.
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Proof of Theorem 6.1.1(b). Lemma 6.2.8 states that the partial pairing Tτ a.a.s. has a connected

component with more than βM open edges. Lemma 6.2.9 then implies that the corresponding

component in P [S] a.a.s. has at least β2M edges. Therefore, P [S] a.a.s. contains a component

with at least β2M edges.

6.2.4 Analysis in the subcritical regime

Suppose that RS =
∑n

i=jS
d(i) ≤ δM for some δ → 0 as n→∞. Define U ⊂ S to be the smallest

set of highest degree vertices in S such that
∑

i∈U d(i) > 5δ1/4M . That is, define

u = max

{
v ∈ [n] :

n∑
i=v

d(i) > 5δ1/4M

}
and U = {u, u+ 1, . . . , n} . (6.7)

Since 5δ1/4M > δM and RS ≤ δM , it immediately follows that u < jS . Then define V0 = U ∪{v}
for an arbitrary v ∈ [n]. To analyse (Xt)t≥0 in the subcritical case, we bound it from above using

a simpler random variable:

X ′t = X ′0 +
t∑
i=1

[d(wi)− 2] (6.8)

where X ′0 =
∑

u∈U∪{v} d(u). This is an upper bound on Xt for all t, since it does not take into

account back edges or edges between vertices in V0. Thus, if X ′t ≤ 0, then there must exist some

time t′ < t such that Xt′ = 0. To prove the subcritical part of Theorem 6.1.1, we show that for

each choice of v (such that V0 = U ∪{v}), X ′t < 0 for some t = o(M) with probability 1−o(M−1).

Therefore, by the union bound a.a.s. there is no v ∈ V (P ) that lies in a component with Θ(M)

edges. The following observation gives us a straightforward but useful lower bound on the size of

Mt throughout the exploration process.

Observation 6.2.10. For all t ≥ 1, Mt ≥ d(St−1) ≥ d(S)− t.

This observation simply stems from the idea that at each step of the process, Mt−Mt−1−d(wt),

and that everything in S has degree 1 by assumption. Thus, for all t ≥ 0, either d(St) = d(St−1)−1

or d(St) = d(St−1).

We first prove that the degrees of the vertices in S outside of V0 are bounded by a slowly

growing function of δ; this is formalised in the following lemma.

Lemma 6.2.11. The maximum degree of a vertex in St−1 is at most δ−1/4 for all t ≥ 1. Further-

more, X ′0 ≤ 7δ1/4M .

Proof. We show that there exists a vertex in U with degree at most δ−1/4. Since each vertex outside

U cannot have a higher degree than any vertex inside U , this proves the claim. Recall that u

is the vertex in U with lowest index in d, and thus lowest degree. For the sake of contradiction

suppose that the claim of the lemma is not true, that is, assume d(u) > δ−
1
4 . Then note that

δ−
1
4 − 2 ≥ 3

4δ
− 1

4 asymptotically, and also recall that U ⊂ S and u < jS . Thus,

jS−1∑
i=u

d(i) (d(i)− 2) ≥ (d(u)− 2)

jS−1∑
i=u

d(i) ≥ 3

4
δ−1/4

jS−1∑
i=u

d(i) ≥ 3

4
δ−1/4(5δ1/4M − δM) ≥ 3M.
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But this means that

jS−1∑
i=1

d(i) (d(i)− 2) =

u−1∑
i=1

d(i)(d(i)− 2) +

jS−1∑
i=u

d(i) (d(i)− 2) ≥ −M + 3M = 2M,

since the sum
∑u−1

i=1 d(i)(dS(i) − 2) is at least −M . This is a contradiction, since we know∑jS−1
i=1 d(i) (dS(i)− 2) ≤ 0 from the definition of jS . This proves the first claim. The second claim

follows from the fact that δ−1/2 ≤ M (since RS ≤ δM and RS ≥ 1), and U contains a vertex of

degree at most δ−1/4. Together this implies that

X ′0 = d(U ∪ {v}) ≤ 5δ1/4M + 2δ−1/4 ≤ 7δ1/4M.

This completes the proof.

This implies that d(wt) ≤ δ−1/4 for all t ≥ 1. Now we study how (X ′t)t≥0 changes over time.

From the definition of X ′t, we know that X ′t −X ′t−1 = d(wt)− 2. In a similar fashion to the proof

of the supercritical case, we study Et−1 [d(wt)− 2] throughout the process. Despite not having

to keep track of back edges throughout this process, the argument in this case is more nuanced.

This is due to the fact that we do not obtain a bound on Et−1 [d(wt)− 2] that is uniform for all

(sufficient) t. This is in contrast to the proof of the supercritical case, where Lemma 6.2.5 bounds

Et−1 [d(wt)− 2] from below by a positive constant. In this case, we show that Et−1 [d(wt)− 2]

grows more and more negative as the process evolves. The first step is to show that E0 [d(w1)− 2],

the expected number of open edges gained in the first time step, is negative. This forms the base

case of our later analysis of how Et−1 [d(wt)− 2] changes over time.

Lemma 6.2.12. If RS ≤ δM for δ → 0, then E0 [d(w1)− 2] ≤ −4δ1/4.

Proof. By definition, V0 contains U and thus has total degree greater than 5δ1/4M . Recall that

u is defined to be the lowest-indexed vertex in U . First suppose that U contains only vertices of

degree at least 3. Then

jS−1∑
i=u

d(i)(d(i)− 2) ≥
jS−1∑
i=u

d(i).

Since
∑jS−1

i=1 d(i)(d(i)− 2) ≤ 0, this implies that

u−1∑
i=1

d(i)(d(i)− 2) =

jS−1∑
i=1

d(i)(d(i)− 2)−
jS−1∑
i=u

d(i)(d(i)− 2) ≤ −5δ1/4M + δM.

Recall that Et−1 [d(wt)− 2] is given by the expression in Equation (6.4). Thus, we obtain an upper

bound for E0 [d(w1)− 2]:

E0 [d(w1)− 2] =
u−1∑
i=1

d(i)(d(i)− 2)

M0
− d(v)

M0
(d(v)− 2)1{v≤u−1}

≤ −9

2
δ1/4 − d(v)

M0
(d(v)− 2)1{v≤u−1}

≤ −4δ1/4.
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Now suppose that U contains a vertex of degree 2 or lower. If this is the case, then every vertex

outside of U must have degree at most 2. Thus,

E0 [d(w1)− 2] =
u−1∑
i=1

d(i)(d(i)− 2)

M0
− d(v)(d(v)− 2)

M0
1{v≤u−1}

≤ −d(S)

M0
− d(v)(d(v)− 2)

M0
1{v≤u−1}

≤ −c

for some constant c > 0. This concludes the proof.

This bound on its own is insufficient to prove the desired result. Aside from the obvious

problem, that this lemma only applies to time t = 1, we also require that the expected number of

open edges decreases more quickly than this bound implies. If Et−1 [d(wt)− 2] = −Θ(δ1/4) for all

t, then on average it would take Θ(M) steps to guarantee that X ′t ≤ 0. This is too long, as it is

possible that in that time the process revealed a component with Θ(M) edges or Θ(n) vertices.

However, intuitively we expect that Et−1 [d(wt)− 2] should decrease over time. This is because

vertices with high-degree are more likely to be explored at each step (since the probability of

discovering a vertex at time t is proportional to its degree), and thus over time we expect fewer

and fewer high-degree vertices to be left unexplored to lift this expectation. On the other hand,

Observation 6.2.10 states that d(St) stays close to its initial value for all t = o(M). We show that

this intuition is roughly correct, and that Et−1 [d(wt)− 2] a.a.s. decreases over time. The following

lemma states this idea formally, and is the critical lemma we use to prove the subcritical case of

Theorem 6.1.1. Lemma 6.2.12 acts as a base case for the proof of this lemma. For notational

convenience we also define

ft := Et−1 [d(wt)− 2] =
∑

w/∈Vt−1

d(w)

Mt−1
(d(w)− 2) . (6.9)

Note that this can also be written as

ft = −1 +
∑

w∈St−1

d(w)

Mt−1
(d(w)− 1). (6.10)

Both forms are useful at various points in the following proofs. We also define Gt = ft+1 − ft −
Et−1 [ft+1 − ft], to help analyse how ft changes throughout this process.

Lemma 6.2.13. Define c := d(S)
8M and suppose t ≤ δ1/19M . If (Tt′)t′<t is such that

∣∣∑
t′<tGt′

∣∣ ≤
4
√

logM
Mδ1/2

√
t for all t′ < t, then Et−1 [d(wt)− 2] ≤ − ct

Mt−1
.

We defer the proof briefly, as it is rather long. Note that since we assume d(S) = Θ(M),

it follows that c is bounded away from 0. The following lemma shows that
∣∣∑

t′<tGt′
∣∣ is a.a.s.

sufficiently small to apply Lemma 6.2.13 for all possible t. That is, a.a.s. the expected number of

open edges gained at each step decreases at the expected rate.

Lemma 6.2.14. The probability that
∣∣∣∑t′≤tGt′

∣∣∣ > 4
√

logM
Mδ1/2

√
t for some t ≤M is o(M−2).

Proof.
∑

t′≤tGt′ is a martingale with expectation 0 (the proof of this statement is analogous to

the ideas in Lemma 6.2.7). To bound |Gt| for all t, we first express ft+1 in terms of ft for arbitrary

118



6.2. THE CONFIGURATION MODEL EXPLORATION PROCESS AND ANALYSIS

t:

ft+1 =
1

Mt

∑
w/∈Vt

d(w) (d(w)− 2) =
Mt−1

Mt

∑
w/∈Vt

d(w)

Mt−1
(d(w)− 2) .

Since Vt = Vt−1 ∪ {wt}, it follows that

ft+1 =
Mt−1

Mt

[
ft −

d(wt)(d(wt)− 2)

Mt−1

]
.

Thus, the difference can be written as

ft+1 − ft =
d(wt)

Mt
(ft − (d(wt)− 2)) . (6.11)

Since d(wt) ≤ δ−1/4 for all t ≥ 1, it follows that |Gt| ≤ 2δ−1/2

Mt
. Applying Azuma’s inequality gives

that

P

∣∣∣∣∣∣
∑
t′≤t

Gt′

∣∣∣∣∣∣ > 4
√

logM

Mδ1/2

√
t

 < exp (−3 logM) .

Applying a union bound over all t ≤M completes the proof.

Much like in the supercritical case, it also needs to be shown that d(wt)−2 is actually close to

Et−1 [d(wt)− 2], at least when averaged over a large enough time scale. The proof is very similar

to that of Lemma 6.2.7, as well as the analogous result from Joos et al. [83, Lemma 25]. The

lemma is given here for completeness. Recall the variable At = d(wt)−Et−1 [d(wt)] from the proof

of the supercritical case. Note that since X ′t does not account for back edges, we do not need

to prove the analogous result about the concentration of the number of back edges revealed over

time.

Lemma 6.2.15. The probability that
∣∣∣∑t′≤tAt

∣∣∣ > M2/3 for some t ≤M is less than 2e−M
1/4

.

Proof. Recall that
∑

tAt is a martingale with expectation 0 (see Lemma 6.2.7). By Lemma 6.2.11,

|At| ≤ δ−1/4 for all t ≤M . Then by Azuma’s inequality and the union bound,

P

∣∣∣∑
t′≤t

At

∣∣∣ > M2/3 for some t ≤M

 < 2Me
− M4/3

2δ−1/2t < e−M
1/4
.

Proof of Lemma 6.2.13

The proof of this lemma is not entirely straightforward. The main step is given in Lemma 6.2.18,

which gives a bound on how Et−1 [d(wt)− 2] changes at each step in expectation. However,

the proof of Lemma 6.2.18 requires bounds on the magnitude of Et−1 [d(wt)− 2] which are not

necessarily true for all t ≤ δ1/19M a priori. These bounds are true for a small initial window of

time after t = 0. Furthermore, applying these lemmas to the first window of time, and recalling

the assumption from the lemma about
∑

t′ Gt′ , ensures that the necessary bounds are true for
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the next window of time. Thus, Lemmas 6.2.14, 6.2.16, and 6.2.18 form the base case for a

proof by induction of Lemma 6.2.13. The inductive step is then given in Lemma 6.2.19. Define

λ = 1
2δ

1/4d(S), and given λ define Ix = {t ∈ Z | (x − 1)λ < t ≤ xλ} for x ∈
{

1, . . . , δ−1/5
}

.

The sequence (Ix)x≤δ−1/5 corresponds to the windows of time mentioned prior. Note that the

assumption that d(S) = Θ(M) implies that λ = Θ(δ1/4M).

Lemma 6.2.16. For all t ∈ I1, ft < −2δ1/4 and ft+1 − ft ≤ 1
Mt−1

.

Proof. We prove this lemma by induction on t. Note by Lemma 6.2.12 that f1 ≤ −4δ1/4. This

proves the first part of the base case where t = 1. Now we prove the second half of the statement

for time t = 1. Since f1 ≤ −4δ−1/4, it follows from (6.11) that

d(w1)

M1
(f1 − (d(w1)− 2)) ≤ −d(w1)(d(w1)− 2)

M0
.

This is maximised when d(w1) = 1. Therefore, the second part of the claim holds for t = 1. This

completes the proof of the base case. Now assume that the statement holds for all t′ < t. By the

induction hypothesis, the definition of I1, and Observation 6.2.10, it follows that ft < −2δ1/4:

ft ≤ ft−1 +
1

Mt−1
≤ f1 +

t−1∑
i=1

1

Mi
< f1 +

t− 1

Mt−1
< −4δ1/4 +

δ1/4d(S)

2d(S)
(1 + o(1)) < −2δ1/4.

This proves the first part of the statement, that ft < −2δ1/4 for all t ∈ I1. It follows from (6.11)

that

d(wt)

Mt
(ft − (d(wt)− 2)) ≤ −d(wt)(d(wt)− 2)

Mt−1
, (6.12)

as ft < −2δ1/4. The right hand side of (6.12) is also maximised when d(wt) = 1. This completes

the proof of the second part of the claim for all t ∈ I1.

We mentioned earlier the intuitive idea that, on average, we expect Et−1 [d(wt)− 2] to decrease

as t increases. This is formalised in Lemma 6.2.18. Note that Lemma 6.2.16 implies that ft <

−2δ1/4 for all t ∈ I1. The following observation is useful in the proof of this lemma.

Observation 6.2.17. For a vector of non-negative integers d, it follows that
∑

w d(w)2(d(w)−2) ≥
3
2

∑
w d(w)(d(w)− 2).

Lemma 6.2.18. Let c := d(S)
8M and t ≤ δ1/19M . If ft < −2δ1/4, then either Et−1 [ft+1 − ft] ≤

− c
Mt−1

or ft < −c.

Proof. We assume that ft < −2δ1/4. Thus, it follows from (6.12) that, for all possible choices of

wt,

ft+1 − ft = −d(wt)

Mt
(d(wt)− 2) +

d(wt)

Mt
ft < −

d(wt)

Mt−1
(d(wt)− 2).
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Taking the conditional expectation with respect to the partial pairing Tt−1 gives that

Et−1 [ft+1 − ft] < Et−1

[
−d(wt)

Mt−1
(d(wt)− 2)

]
=

∑
w/∈Vt−1

Pt−1 (wt = w)Et−1

[
−d(wt)

Mt−1
(d(wt)− 2)

∣∣∣∣wt = w

]

=
∑

w/∈Vt−1

d(w)

Mt−1

(
− d(w)

Mt−1
(d(w)− 2)

)

= −
∑

w∈St−1

d(w)2

M2
t−1

(d(w)− 2) +
d(St−1)

M2
t−1

.

We now split the proof into two cases. First suppose that
∑

w∈St−1
d(w)2(d(w)− 2) ≥ 5

4d(St−1).

Then this implies that

Et−1 [ft+1 − ft] < −
d(St−1)

4M2
t−1

≤ − c

Mt−1

since Observation 6.2.10 implies that d(St−1) = Θ(M) by the assumptions of Theorem 6.1.1 and

the fact that t = o(M). Thus the claim of the lemma holds in this case. Now consider the case

where
∑

w∈St−1
d(w)2(d(w)− 2) ≤ 5

4d(St−1). Then, by Observation 6.2.17, ft is bounded by

ft = Et−1 [d(wt)− 2] =
1

Mt−1

 ∑
w∈St−1

d(w)(d(w)− 2)− d(St−1)


≤ 1

Mt−1

2

3

∑
w∈St−1

d(w)2(d(w)− 2)− d(St−1)


≤ 1

Mt−1

[
5

6
d(St−1)− d(St−1)

]
< −c.

This completes the proof.

Lemma 6.2.16 implies that Lemma 6.2.18 applies for all t ∈ I1. The next step is to show

that this lemma applies for all t ≤ δ1/19M . We do so by analysing each set of λ := 1
2δ

1/4d(S)

time steps inductively. We give the first step here to help build some intuition. Recall that

Ix = {t ∈ Z | (x− 1)λ < t ≤ xλ}. Suppose that there exists some t ∈ I1 such that ft < −c, for c

defined in Lemma 6.2.13. Then Lemma 6.2.16 implies that, for all s ∈ [t, δ1/20M ],

fs ≤ ft +
s−1∑
i=t

1

Mi−1
≤ −c+

δ1/4M

Ms
= −(c− o(1)). (6.13)

Thus, it follows that fbλc+1 < −4δ1/4. On the other hand, if there does not exist some t ∈ I1 such

that ft < −c, then Lemma 6.2.18 implies that Et−1 [ft+1 − ft] ≤ − c
Mt−1

for all t ≤ λ. Then, since
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we assume that
∣∣∣∑t≤λGt

∣∣∣ is small, we bound fbλc+1 by

fbλc+1 = fbλc+1 − fbλc + fbλc − · · · − f1 + f1

=

bλc∑
t=1

(ft+1 − ft) + f1 +

bλc∑
t=1

Et−1 [ft+1 − ft]−
bλc∑
t=1

Et−1 [ft+1 − ft]

=

bλc∑
t=1

Et−1 [ft+1 − ft] +

bλc∑
t=1

Gt + f1

≤ −
bλc∑
t=1

c

Mt−1
+

4
√

logM

Mδ1/2

√
δ1/4M + f1

< −4δ1/4,

as f1 ≤ −4δ1/4 and the rest of the terms are negative overall. Thus, ft ≤ −2δ1/4 and ft+1 − ft ≤
1/Mt−1 for all t ∈ I2 (using the same proof as Lemma 6.2.16), and thus Lemma 6.2.18 applies

to each t ∈ I2. By assuming
∣∣∣∑t′≤tGt′

∣∣∣ is small for all t ≤ M , we can apply the same ideas to

I3. We apply this idea inductively to get the following lemma, which shows that the claims made

about ft for t ∈ I1 extend to all t ≤ 1
2δ

1/20d(S).

Lemma 6.2.19. If (Tt)t≥1 is such that
∣∣∑

t′<tGt′
∣∣ ≤ 4

√
logM

Mδ1/2

√
t for all t′ < t, then the inequalities

ft ≤ −2δ1/4 and ft+1 − ft ≤ 1
Mt−1

hold for all t ≤ 1
2δ

1/20d(S).

Proof. Let x ∈ {1, . . . , δ−1/5}. We prove this lemma by proving the following statement by

induction on x: if
∣∣∑

t′<tGt′
∣∣ ≤ 4

√
logM

Mδ1/2

√
t, then fb(x−1)λc+1 ≤ −4δ1/4 and ft+1 − ft ≤ 1

Mt−1
for

all t ∈ Ix for all x ≤ δ−1/5. Lemma 6.2.16 forms the base case x = 1.

Now suppose the claim holds for all x′ ≤ x for some x ≥ 1; we next prove that the claim

holds for x + 1. The assumption that the claim holds for x′ ≤ x implies that ft ≤ −2δ1/4 for all

t ≤ xλ. Thus, we can apply Lemma 6.2.18. Writing fbxλc+1 as a telescoping sum and applying

our assumption on
∑

t′<tGt′ gives that

fbxλc+1 = fbxλc+1 − fbxλc−1 + fbxλc−1 − · · · − f1 + f1

=

bxλc∑
t=1

Gt +

bxλc∑
t=1

Et−1 [ft+1 − ft] + f1

≤ 4
√

logM

Mδ1/2

√
(x+ 1)λ−

bxλc∑
t=1

c

Mt−1
+ f1

≤ −4δ1/4,

(6.14)

since the first two terms are non-negative overall and Lemma 6.2.12 states that f1 ≤ −4δ1/4.

Since fbxλc+1 ≤ −4δ1/4, an identical proof to Lemma 6.2.16 (applying (6.12)) then shows that

ft+1 − ft ≤ 1/Mt−1 for all t ∈ Ix+1. This completes the proof.

With this, we finally prove Lemma 6.2.13.

Proof of Lemma 6.2.13. Suppose (Tt)≥1 is such that
∣∣∑

t′<tGt′
∣∣ ≤ 4

√
logM

Mδ1/2

√
t for all t. We consider

two cases based on the cases outlined in Lemma 6.2.18. Suppose fs < −c for some s ≤ t, where

c = Θ(1) is as defined in the lemma statement. By Lemmas 6.2.16 and 6.2.19, it follows that
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ft ≤ fs + o(1) for t ≤ δ1/20M , and the claim of the lemma follows immediately. Now suppose that

there is no s ≤ t such that fs < −c. Then by Lemmas 6.2.18 and 6.2.19, it follows that

ft ≤
4
√

logM

Mδ1/2

√
t− 4δ1/4 − ct

Mt−1
.

Since our choice of δ is such that δ = ω(M−1/2), we know that 4
√

logM
Mδ1/2

√
δ1/20M < 4δ1/4. Thus,

the claim of the lemma follows.

Lemma 6.2.20. With probability 1 − o(M−2), there exists some time t ≤ δ1/18M such that

Xt = 0.

Proof. Consider the set of inputs (pairings P ∈ C(d) with half edge orderings σ ∈ SM ) such that

for all t ≤M , ∣∣∣∣∣∣
∑
t′≤t

At

∣∣∣∣∣∣ ≤M2/3 and

∣∣∣∣∣∣
∑
t′≤t

Gt′

∣∣∣∣∣∣ ≤ 4
√

logM

Mδ1/2

√
t. (6.15)

By Lemmas 6.2.14 and 6.2.15, the fraction of inputs that do not satisfy this is o(M−2). Thus,

it suffices to show that for every input that does satisfy these inequalities, Xt = 0 for some

t ≤ δ1/18M . For each such input, consider the value of X ′T where T := δ1/18M . Express X ′T as

X ′T = X ′0 +
T∑
i=1

(d(wi)− 2)

= X ′0 +

T∑
t=1

Et−1 [d(wt)− 2] +

T∑
t=1

(d(wt)− Et−1 [d(wt)])

= X ′0 +

T∑
t=1

Et−1 [d(wt)− 2] +

T∑
t=1

At.

Lemma 6.2.11 states that X ′0 ≤ 7δ1/4M . By the assumption given in (6.15), we know that∑T
t=1At ≤ M2/3, and also Lemma 6.2.13 implies that Et−1 [d(wt)− 2] ≤ −ct/Mt−1 for all t ≤ T .

Thus, for all such inputs,

X ′T ≤ 7δ1/4M +M2/3 − cT (T − 1)

2M

≤ 7δ1/4M +M2/3 +
1

2MT
(4
√
Tδ−1 logM)2 − cδ1/9M2

3M

≤ 7δ1/4M +M2/3 + 9δ−17/18 logM − δ1/8M

< 0.

Therefore, since Xt ≤ X ′t for all t, there exists some t ≤ T such that Xt = 0. Since the inequalities

in (6.15) are both satisfied with probability 1− o(M−2), this completes the proof.

The proof of Theorem 6.1.1(a) follows quickly from Lemma 6.2.20.

Proof of Theorem 6.1.1(a). Recall that V0 = U ∪ {v} for an arbitrary v ∈ S. Taking the union

bound over all choices of v ∈ S and applying Lemma 6.2.20 implies that, for every choice of v ∈ S,
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a.a.s. there exists some t ≤ δ1/18M such that Xt = 0. This implies that a.a.s. all components

containing vertices in V0 are explored in at most δ1/18M steps of the exploration process. It also

implies that the total degree of all vertices in every component of P [S] explored at time δ1/18M

is at most 2δ1/18M , as the fact that X ′
δ1/18M

< 0 implies that

d(V0) +
δ1/18M∑
t=1

d(wt) < 2δ1/18M.

This means that a.a.s. every component of P [S] contains at most 2δ1/18M edges. This completes

the proof.

6.3 From size to order

In this section we prove Theorem 6.1.2. First we prove that if (d, S) satisfies the conditions of

Theorem 6.1.2 and RS = o(M), then M = Θ(|S|). The proof method is borrowed from a similar

result by Joos et al. [83].

Lemma 6.3.1. If d(S) = Θ(M) and RS = o(M), then M = Θ(|S|).

Proof. Suppose for contradiction that d(S) = Θ(M), RS = o(M), but M = |S|f(|S|) for some

f = ω(1). By assumption, there exists some γ = Θ(1) such that d(S) = γM and d(S) = (1−γ)M .

So the average degree in G of vertices in S is γ|S|f(|S|)/|S| = γf(|S|). The Cauchy-Schwarz

inequality then implies that∑
i∈S

d(i) (d(i)− 2) ≥ |S|γf(|S|) (γf(|S|)− 2) = Ω(|S|f(|S|)2). (6.16)

Let (Ui,Wi) denote a pair of subsets where Ui contains the i lowest-degree vertices in S, and

Wi = {i} ∪ S\Ui. There must be some k ≤ |S| such that d(Uk) = Θ(M) and d(Wk) = Θ(M).

This implies that Uk and Wk have average degree Ω(nf(n)/|Uk|) and Ω(nf(n)/|Wk|) respectively.

Then analogously to Equation (6.16),∑
i∈Uk

d(i) (d(i)− 2) = Ω
(
nf(n)2

)
= ω(d(S)).

Thus, jS < k. Therefore, RS > d(Wk) = Θ(M). This is a contradiction. The claim of the lemma

follows.

Since |S| ≤ n ≤M , this also implies that |S| = Θ(n) under these assumptions.

Corollary 6.3.2. If d(S) = Θ(M) and RS = o(M), then a.a.s. P [S] does not contain a component

with Θ(|S|) vertices.

Proof. Lemma 6.2.20 states that a.a.s. there exists some t ≤ δ1/18M such that Xt = 0. Thus,

a.a.s. every component of P [S] contains at most δ1/18M + |V0| vertices. Since V0 = U ∪ {v}, for a

uniformly random v ∈ S and the preprocessing set U defined in (6.7), it follows that a.a.s. every

component of P [S] contains o(M) vertices. By Lemma 6.3.1, M = Θ(|S|), and thus a.a.s. every

component contains o(|S|) vertices.
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Lemma 6.3.3. If d(S) = Θ(M), and RS = Θ(M), then a.a.s. P [S] contains a component with

Θ(M) edges and Θ(|S|) vertices.

Proof. Note that if |S| = O(1), the result is trivially true, so we assume that |S| = ω(1). Theo-

rem 6.1.1 implies that a.a.s. P [S] has a connected component with Θ(M) edges. Let f(M) be the

total degree of the largest component of P [S]. Suppose that (U,W ) is a partition of S such that

U has total degree f(M) (specifically, Lemma 6.2.9 implies that f(M) ≥ β2M), and W = S\U .

Thus, d(W ) = d(S)− f(M). Lemma 6.2.2 states that the probability that no edge exists between

some vertex in U and some vertex in W in a uniformly random pairing P is at most

exp

(
− 1

2M
d(U)d(W )

)
.

Since U ⊂ S, there are
(|S|
k

)
ways to choose a k-subset of vertices in S. Then note that if U

contains at most γ|S| vertices, for some γ < 1, then W contains at least (1− γ)|S| vertices. Since

each of these vertices has degree at least 1 in G, the lower bound |W | ≥ (1 − γ)|S| implies that

d(W ) ≥ (1 − γ)|S|. Then performing a union bound over all possible sets U where |U | ≤ γ|S|
gives

P (|U | ≤ γ|S|) ≤
γ|S|∑
k=1

exp

(
− 1

2M
f(M)(1− γ)|S|

)(
|S|
k

)

< exp

(
− 1

2M
f(M)(1− γ)|S|

) γ|S|∑
k=1

(
|S|
k

)
.

Since
∑x

i=0

(
n
i

)
≤
(
ne
x

)x
, the summation in this expression is at most (e/γ)γ|S|, and thus

P (|U | ≤ γ|S|) < exp

(
− 1

2M
f(M)(1− γ)|S|+ γ|S|(1− log γ)

)
. (6.17)

Note that f(M) = Θ(M) and γ(1− log γ)→ 0 as γ → 0. Thus, there exists some small constant γ

such that this bound is at most exp
(
−1

3γ|S|
)
. This implies that the probability that there exists

a partition (U,W ) of S that induces an empty cut satisfying d(U) = Θ(M) and |U | < γ|S| is at

most exp
(
−1

3γ|S|
)
, which is o(1) since we can assume that |S| = ω(1).

Thus, a.a.s. P [S] contains a component with Θ(M) edges, and P contains no partition (U,W )

of S with an empty cut such that d(U) = Θ(M) and |U | ≤ γ|S|. This implies that if P [S] contains

a component with Θ(M) edges, then a.a.s. this component has at least γ|S| vertices. Therefore,

a.a.s. P [S] contains a component with Θ(M) edges and Θ(|S|) vertices.
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Chapter 7

Exploration approach in the random

graph model

In this chapter we adapt the results from Chapter 6 to give analogous results about giant compo-

nents of induced subgraphs of uniformly random graphs with a given degree sequence. We give

sufficient conditions on d and S such that the thresholds given in Theorems 6.1.1 and 6.1.2 also

apply to induced subgraphs of random graphs with degree sequence d. This forms the second

part of the analysis of the exploration method as outlined in Chapter 1. The model G(d) is con-

siderably more nuanced than the configuration model, as the existence of one edge is dependent

on the existence or non-existence of every other edge in the graph. One of the main challenges

and limitations in adapting these results is determining the various adjacency probabilities that

the configuration model gave us for free, such as Observation 6.2.1. We use the switching method

extensively throughout this chapter to determine upper and lower bounds on probabilities of two

vertices being adjacent. In the context of an exploration process on G(d), we also use the switching

method to determine bounds on the probability of exploring a particular vertex at a given step of

the process.

We cannot hope to recover the threshold for all sequences d and all subsets S that we cover

in Theorems 6.1.1 and 6.1.2. In part, this is due to the limitations of the switching method,

particularly in the presence of high-degree vertices. However, in part this is due to different

underlying behaviour between the two models. The following example shows that Theorems 6.1.1

and 6.1.2 do not carry over to the random graph model G(d) in their complete generality.

Example 7.0.1. Consider the sequence d = (4, 4, . . . , 4, n − 1, n − 1), and consider the set S =

{1, . . . , n− 2}; that is, S contains exactly the degree 4 vertices. In the random graph model,

G[S] is a uniformly random 2-regular graph, and thus by Theorem 2.2.15 the order (and thus

size) of the largest component is not almost surely linear or almost surely sublinear. However,

by Theorem 6.1.1, if P is a uniformly random pairing with this degree sequence, then P [S] a.a.s.

contains a component with a linear number of edges and vertices.

This is because the neighbourhoods of high-degree vertices behave very differently in the

random graph model to in the configuration model. This becomes exceptionally problematic

when these vertices are in S, as the way that they affect the degrees of vertices in S is not easily

predictable using the switching method. One notable difference in this chapter is that all of the

results in the random graph model have extra conditions on the total degree of the high-degree

126



7.1. MAIN RESULTS

vertices in G, and in particular in S, the set which is deleted. In the configuration model, this

was not an issue: a deleted degree n vertex is, in some sense, equivalent to n deleted degree 1

vertices, and so we could assume everything in S had degree 1. This is absolutely not the case

in the random graph model, and thus we impose extra conditions to ensure that the important

parts of the configuration model proof translate to this model. These conditions are likely not all

necessary, and later in this chapter, as well as in the following chapter, we discuss some of the

possible relaxations that could be true and possible to prove. However, it is worth noting from

the outset that the threshold in G(d) cannot be the exact same as the threshold in C(d) for all

pairs (d, S) for which Theorems 6.1.1 and 6.1.2 apply.

In the following section, we give our main results, describing for which pairs (d, S) threshold

in C(d) carries over to G(d). We then give the proof for the case where M/n→∞, where M is the

total degree of the sequence d. This part of the proof does not rely on the exploration process, and

allows us to focus the exploration process on the case where M = Θ(n). In Section 7.3, we define

an exploration process which is equivalent to the one defined in Chapter 6 for the random graph

model. Next, we use this to determine the threshold for the a.a.s. (non-)existence of a component

with Θ(M) edges. We then determine, under slightly stricter conditions on (d, S), the threshold

for the a.a.s. (non-)existence of a component with Θ(|S|) vertices. At the end of this chapter, we

also give some examples of sequences d and subsets S which highlight the need for these stricter

conditions.

7.1 Main results

Let d be an n-element graphical sequence. We recall some notation from the start of Chapter 6,

in particular 6.1. Let S ⊂ [n] and S = [n]\S, and recall from Equation (6.1) the definition of

dS(·), where

dS(w) =

d(w) w ∈ S,

1 w /∈ S.

Again, without loss of generality we assume that the sequence d is ordered in non-decreasing order

with respect to d(w) (dS(w)− 2). For such a sequence d and set S, recall from (6.2) the definitions

of jS(d) and RS(d), as well as the total degree M(d):

jS(d) = min

j : j ∈ [n] and
∑
i≤j

d(i) (dS(i)− 2) > 0

 ∪ {n}
 ,

RS(d) =
n∑

i=jS

d(i),

M(d) =
n∑
i=1

d(i).

We abbreviate these by omitting the d in most cases.
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Define

H+ =
{
v ∈ [n] : d(v) > δ

√
M
}
. (7.1)

for some δ → 0 arbitrarily slowly. Define S+ := S ∩ H+, and S
+

:= S ∩ H+. Specifically, we

choose δ such that it satisfies certain conditions given later (specifically in Remark 7.3.1). For

the purposes of our proof, we always assume that δ = ω(log−1M). This condition is an artefact

of the proof, where in some cases it is not necessary or beneficial for δ to be minimal. However,

since we do not optimize this proof for the specific size or order of the largest component, it does

not meaningfully affect the results to assume this.

Theorem 7.1.1. Let d be an n-element graphical sequence and S ⊂ [n]. Let δ = o(1) be some

function such that d(S
+

) = o(M). Suppose that d(S), d(S) = Θ(M) and RS = o(M). Consider

a uniformly random element G ∈ G(d).

(a) The probability that G[S] contains a component of size Θ(M) is o(1).

(b) The probability that G[S] contains a component of order Θ(|S|) is o(1).

In the supercritical case, it is not always true that a component with Θ(M) edges a.a.s. has

Θ(|S|) vertices. As we discuss later, the problem arises from the presence of high-degree vertices

in S. By placing a tighter restriction on d(S
+

), we can show the a.a.s. existence of a component

with a positive fraction of the vertices of G[S].

Theorem 7.1.2. Let d be an n-element graphical sequence and S ⊂ [n]. Let δ = o(1) be some

function such that d(S
+

) = o(M). Suppose that d(S) = Θ(M) and d(S\S+) = Θ(M). Suppose

that RS = Θ(M). Consider a uniformly random element G ∈ G(d).

(a) The probability that G[S] contains a component of size Θ(M) is 1− o(1).

(b) Suppose further that d(S
+

) = o(n). Then the probability that G[S] contains a component

of size Θ(M) and order Θ(|S|) is 1− o(1).

Again, we refer to the case in Theorem 7.1.1 as the subcritical case (or regime), and the case

in Theorem 7.1.2 as the supercritical case. The requirement that d(S\S+) = Θ(M) is somewhat

artificial, and can most likely be relaxed. If d(S) = Θ(M) and d(S\S+) = o(M), then S+ has

total degree Θ(M). The vertices in S+ are intuitively likely to be adjacent to each other and form

a giant component. However, this component may a.a.s. have o(M) edges, or even have o(M)

edges always if |S+| = o(
√
M). To see this, consider the following example.

Example 7.1.3. Consider a pair (d, S) such that M = 100n, S\S+ is empty, and S+ contains

n1/3 vertices of degree n2/3. Then it is not hard to show that RS(d) ≥ n(1− o(1)). However, the

graph G[S] contains O(n2/3) edges.

Our results do not consider cases like this. By enforcing that the total degree of the “small”

vertices in S is not a vanishingly small fraction of d(S), we remove cases where G[S] has o(M)

edges always. We note that the condition that |S\S+| = Θ(|S|) is not equivalent to the condition

that d(S\S+) = Θ(M), as the vertices in S+ can have much higher degree; the condition we

impose is more strict.
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The extra assumption on d(S
+

) in Theorem 7.1.2(b) is important. As we discuss later (in

Section 7.8), there are (d, S) pairs where RS = Θ(M), d(S
+

) = ω(n), and d(S
+

) = o(M) where

G[S] a.a.s. does not contain a component with Θ(|S|) vertices. This highlights an important

difference between this result and the result of Joos et al. [83], as well as this result and Theo-

rems 6.1.1 and 6.1.2. In a uniformly random graph with degree sequence d, the a.a.s. existence

of a giant component with Θ(M) edges also guaranteed the a.a.s. existence of a component with

Θ(n) vertices. In the induced subgraph case, there are sequences d and subsets S such that G[S]

a.a.s. has a component with a linear number of edges, but no component with a linear (in |S|)
number of vertices. With this distinction in mind, we sometimes refer to edge-giant components or

vertex-giant components, which are components with Θ(M) edges or Θ(|S|) vertices respectively.

One important note is that the proof for the case where M = ω(n) differs substantially from

the configuration model. In the case that M = ω(n), under the restrictions that we impose on

(d, S) in the random graph model (that is, d(S), d(S\S+), d(S) = Θ(M), and d(S
+

) = o(M)),

we show that the induced graph G[S] a.a.s. has a component with Θ(M) edges. Specifically, we

prove the following result.

Lemma 7.1.4. Suppose that d(S\S+) = Θ(M), d(S) = Θ(M), d(S
+

) = o(M), and M = ω(|S|).
Then RS = Θ(M) and a.a.s. G[S] contains a component with Θ(M) edges.

This reduces proving Theorem 7.1.1 and Theorem 7.1.2(a) to the case where M = Θ(n). In

this case, we adapt the configuration model proof and analyse a similar exploration process. This

extra assumption on M is vital to the analysis of the exploration process, particularly because it

implies a stronger assumption about d(S
+

): we can suppose that d(S
+

) = o(n). This makes the

switching analysis much more tractable despite the presence of high-degree vertices in S. This

is useful, and in fact necessary for our methods, when analysing the probability of exploring a

particular vertex at time t.

7.2 The case where M = ω(n)

Suppose that d(S\S+) = Θ(M), d(S) = Θ(M), and d(S
+

) = o(M). Lemma 6.3.1, which states

that M = Θ(|S|) if RS = o(M) and d(S) = Θ(M), is model-agnostic and applies to the random

graph model without modification. Thus, the contrapositive of Lemma 6.3.1 implies that if M =

ω(n) (and thus M = ω(|S|)), then RS = Θ(M). So we need to show that if M = ω(n), a.a.s. G[S]

contains a component with Θ(M) edges. Here we give the proof of this.

Below we give the edge-centric version of the giant component result of Joos et al. [83], since

we also use this in the proof of Lemma 7.1.4. This result is (an immediate corollary of) Theorem

9 of their paper, and is an intermediate result used to prove their main results.

Theorem 7.2.1. ([83], Theorem 9) Let d, jd, R(d), and M
∼

(d) be as defined in Theorem 2.2.15.

Then for any positive constant ε > 0, there is a γ > 0 such that if d is a well-behaved graphical

sequence with R(d) ≥ εM
∼

(d), then the probability that a random graph with degree sequence d

has a component of size at least γM
∼

(d) is 1− o(1).

Recall from Proposition 3.1.1 that conditional on the induced degree of each vertex in S (that

is, the degree sequence of G[S]), the graph G[S] is distributed as a uniformly random graph with

that degree sequence. We show that, under the assumptions of Lemma 7.1.4, the graph G[S] a.a.s.
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has total degree ω(n). Then by applying Claim 2.2.17 and Theorem 7.2.1, it follows that a.a.s.

G[S] has an edge-giant component. Now we give the details. Let EG(A,B) be the set of edges

between A and B in the graph G, for disjoint sets A and B.

Lemma 7.2.2. Suppose that d(S\S+) = aM for some a = Θ(1), d(S) = Θ(M), and d(S
+

) =

o(M). Then a.a.s. G[S] contains at least 10−6a2M edges with at least one end incident to S\S+.

Proof. We prove the lemma by partitioning the probability space G(d) into disjoint parts and

analysing each of them in turn. First consider the set of graphs G such that |EG(S+, S\S+)| ≥
1

100aM . Trivially it follows that G[S] contains at least 10−6a2M edges with one end incident

to S\S+. Now consider the graphs G such that |EG(S+, S\S+)| < 1
100aM . Let A be the set

of all such G ∈ G(d). By the assumptions on G and on d(S
+

), each G ∈ A contains at least

aM − 1
100aM − d(S

+
) edges with one end in S\S+ and the other end in [n]\H+, which means

at least 49
50aM such edges exist. We define a switching from A to A to show that a.a.s. at least

10−6a2M of these edges have both ends in S\S+ (note that a2 < a < 1).

Let Ai ⊂ A be the set of G ∈ A such that |E(G[S\S+])| = i. We define a switching between

Ai and Ai+1 as follows. Suppose G ∈ Ai. Choose an edge ux ∈ E(G) such that u ∈ S\S+ and

x ∈ S\S+
. Choose a second edge vy ∈ E(G) such that v ∈ S\S+, y ∈ S\S+

, u 6= v, x 6= y,

and uv, xy /∈ E(G). Then a switching deletes edges ux and vy and replaces them with uv and

xy, creating a new graph G′ ∈ Ai+1. Note that a reverse switching corresponds to choosing

two ordered pairs (u, v) and (x, y) such that uv, xy ∈ E(G), u, v ∈ S\S+, x, y ∈ S\S+
, and

ux, vy /∈ E(G).

S\S+
S\S+

G ∈ Ai

u

v

x

y

S\S+
S\S+

G′ ∈ Ai+1

u

v

x

y

Figure 7.1: A diagram of the main switching used to prove Lemma 7.1.4, which sends G ∈ Ai to
G′ ∈ Ai+1.

First we give a lower bound on the number of valid forward switchings that can be applied to

each G ∈ Ai. By the definition of A, there are at least 49
50aM − 2i choices for an edge ux such

that u ∈ S\S+ and x ∈ S\S+
, and at least 49

50aM − 2i − 1 choices for a different edge vy such

that v ∈ S\S+ and y ∈ S\S+
. This choice does not correspond to a valid switching if and only if

(a) uv ∈ E(G) or xy ∈ E(G), or

(b) u = v or x = y.

First we bound the number of choices described above that satisfy condition (a). Given a choice for

the edge ux, there are at most d(u) choices for a vertex v ∈ S\S+ such that uv ∈ E(G), and given

such a choice of v there are at most d(v) choices for a vertex y such that vy ∈ E(G). Thus, there are

at most δ2M choices for an edge vy such that uv ∈ E(G), since {u, v, x, y} ⊂ [n]\H+. Analogously,

there are at most δ2M choices for an edge vy such that xy ∈ E(G). Therefore, the number of

choices for {u, v, x, y} such that uv ∈ E(G) or xy ∈ E(G) is at most 2δ2M . Case (b) is similar:
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given a particular choice for the edge ux, there are at most 2δ
√
M choices for an edge vy such

that u = v or x = y. Thus, for a given choice of edge ux, there are most 3δ2M choices for the edge

vy that do not correspond to a valid forward switching. Therefore, the number of valid forward

switchings that can be applied to each G ∈ Ai is at least
(

49
50aM − 2i

) (
49
50aM − 2i− 3δ2M

)
. For

an upper bound on the number of reverse switchings that can be applied to each G′ ∈ Ai+1, note

that there are 2(i + 1) choices for an ordered pair (u, v) such that uv ∈ E(G′) and u, v ∈ S\S+,

and at most d(S) choices for the ordered pair (x, y) such that xy ∈ E(G′) and x, y ∈ S\S+
. Thus,

for each G′ ∈ Ai+1, there are at most 2(i + 1)d(S) choices for {u, v, x, y} that correspond to a

reverse switching. Therefore, it follows that

|Ai|
|Ai+1|

≤ 2(i+ 1)d(S)(
49
50aM − 2i

) (
49
50aM − 2i− 3δ2M

) .
Define ε = 10−3a2. If i ≤ εM , then this upper bound on |Ai|/|Ai+1| is at most 10−2. Thus, if

ε′ = 10−3ε, then for all i ≤ ε′M ,

|Ai|
|AεM |

≤ (10−2)(ε−ε′)M = exp
(
−2(ε− ε′) log 10

)
< e−εM .

Since |AεM | ≤ |A| and the probability measure on G(d) is the uniform measure, this implies that

P ( |E(G[S\S+])| = i|G ∈ A) < e−εM for all i ≤ ε′M . Therefore,

P
(
|E(G[S\S+])| < ε′M

∣∣G ∈ A) =
ε′M−1∑
i=0

P
(
|E(G[S\S+])| = i

∣∣G ∈ A) < ε′M−1∑
i=0

e−εM = o(1).

(7.2)

Therefore, conditional on G ∈ A, a.a.s. |E(G[S\S+])| > ε′M . If G /∈ A, then by definition G[S]

contains at least 1
100aM edges that are incident to S\S+. Since E(G[S\S+]) ⊆ E(G[S]), this

completes the proof.

Now we use this result to prove Lemma 7.1.4. Despite having little specific knowledge of

the degree sequence of G[S] beyond a lower bound on its total degree, the proof is a fairly

straightforward application of Theorem 7.2.1 and Lemma 7.2.2. We do this by considering the

degree sequence of the induced subgraphG[S] after deleting all the isolated vertices, or equivalently

after removing all elements equal to 0 from the degree sequence. We remove the zero elements

because Theorem 7.2.1 assumes a minimum degree of at least 1. For the purposes of finding a

component with Θ(M) edges, this is just a technicality, as deleting isolated vertices does not affect

the number of edges in any component of G[S].

Recall from Proposition 3.1.1 that, conditional on the event that G[S] has degree sequence k,

the graph G[S] is a uniformly random graph with degree sequence k. We first prove the following

claim.

Claim 7.2.3. For each G ∈ G(d), let t := t(G) be the degree sequence of G[S], ordered in non-

decreasing order with isolated vertices excluded. If there exists some constant ε > 0 such that

a.a.s. R(t) ≥ εM , then G[S] a.a.s. contains a component with Θ(M) edges.

Proof of Claim 7.2.3. Let A(k) be the subset of G(d) such that t = k. Let γ = γ(ε) > 0 be as

defined in Theorem 7.2.1 for this choice of ε. The law of total probability then implies that the
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probability that G[S] contains a component with at least γM
∼

(t) edges is∑
k

P (G ∈ Γ(k)| t = k)P (t = k) ,

where the sum is over all possible sequences k such that t(G) = k. Let K be the set of sequences

k such that there exists G ∈ G(d) where t(G) = k and R(k) < εM . By assumption,∑
k∈K

P (t = k) = o(1).

Let Γ(k) be the set of G ∈ G(d) such that t = k and G[S] contains a component with at least

γM
∼

(k) edges. Proposition 3.1.1 and Theorem 7.2.1 imply that P (G ∈ Γ(k)| t = k) = 1− o(1) for

all k /∈ K. Therefore,∑
k

P (G ∈ Γ(k)| t = k)P (t = k) = (1− o(1))(1− o(1)) + o(1) = 1− o(1).

Finally, note that M
∼

(k) ≥ R(k) ≥ εM for all k /∈ K. Therefore, every component with at least

γM
∼

(k) edges also has at least γεM edges. Therefore, a.a.s. G[S] contains a component with at

least γεM edges, which proves the claim.

Now we apply this claim to prove Lemma 7.1.4. We also recall Proposition 2.2.16, which states

that if d is an n-element graphical sequence such that M(d) = ω(n), then R(d) = M(d)(1−o(1)).

Proof of Lemma 7.1.4. For each G ∈ G(d), define t := t(G) to be the degree sequence of G[S],

ordered in non-decreasing order with isolated vertices excluded. Lemma 7.2.2 implies that, under

the conditions on Lemma 7.1.4, a.a.s. |E(G[S])| ≥ 10−6a2M , where a = d(S\S+)/M = Θ(1).

Since M = ω(n), this implies that a.a.s. M(t) = ω(n). For all such t, Proposition 2.2.16 implies

that R(t) ≥ M(t)(1 − o(1)). Thus, there exists a constant ε > 0 (for example, 107a2) such that

a.a.s. R(t) ≥ εM . Therefore, Claim 7.2.3 implies that G[S] a.a.s. contains a component with

Θ(M) edges.

Note that we did not use the assumption that M = ω(|S|) in the proof of Lemma 7.2.2. This

non-vanishing fraction of edges in G[S] with at least one endpoint in S\S+ is a consequence of our

assumption that d(S\S+) = Θ(M). However, such a result does not immediately tell us whether

the induced graph a.a.s. contains a giant component or not, as the non-vanishing fraction could

still be incredibly small with respect to M . In order to make such claims, we would need to know

more about the distribution of the induced degree sequence, or at the very least have a much

stronger lower bound on the number of edges in E(G[S\S+]).

Remark 7.2.4. One might wish to try a similar idea to the proof of Lemma 7.1.4 to show that

G[S] a.a.s. contains a component with Θ(|S|) vertices. Theorem 2.2.15 also applies under the same

conditions as Theorem 7.2.1, and so a similar argument can be applied. This looks promising, but

there is an issue: these theorems only apply to degree sequences with minimum degree at least 1,

and the graph G[S] may contain many isolated vertices with non-trivial probability.

Let N0(G) be the set of vertices in S that have no neighbour in S, that is, the set of vertices

with degree 0 in G[S]. Suppose M = ω(|S|), and G ∈ A(k) as defined in the previous proof. A
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proof based on Lemma 10 in the paper of Joos et al. [83] (replacing log logM with an arbitrary

function f(M) such that f(M) = ω(1)) implies that a uniformly random G ∈ A(k) a.a.s. has a

component of order (|S| − |N0(G)|)(1 − o(1)), as well as a component containing Θ(M) edges.

Thus, if there exists some constant c > 0 such that a.a.s. |N0| ≤ (1 − c)|S\S+| for a uniformly

random G ∈ G(d), this immediately implies the existence of a giant component in G[S] with

probability 1−o(1). However, as we discuss later (specifically in Section 7.7), |N0(G)| is a difficult

value to control. There are many pairs (d, S) which satisfy the conditions of Theorem 7.1.2 for

which |S| − |N0(G)| = o(|S|) with probability bounded away from 0.

7.3 The random graph exploration process

Now we analyse the case where M = Θ(n). We analyse this in the same way that we analysed the

configuration model, using a similar breadth-first exploration process and the method of deferred

decisions. Due to the similarities in the description of the exploration process, we carry over

the language of the configuration model and continue to work on a restricted subset of C(d)

designed to mirror the probability space G(d). Previously, a pairing P was sampled uniformly at

random. In this model, a pairing is sampled uniformly at random conditional on the event that

the corresponding graph G is simple. Let Φ ⊂ C(d) be the subset of pairings that have no multiple

edges or loops. We call these pairings simple, as they are the pairings that correspond to simple

graphs. For each graph G ∈ G(d), there are exactly
∏n
i=1 d(i)! pairings in Φ that correspond to

G. Thus, the distributions of the size and order of the largest component in G(d) are the same as

their distributions in Φ.

Let G∗ ∈ Φ be a simple pairing. We denote the elements of Φ by G∗ to emphasise the both

its similarity to and distinction from a simple graph. Recall that the half edges in G∗ are labelled

with [M ] = {1, . . . ,M}. For a given G∗ ∈ Φ and i ∈ [M ], define m(i) to be the mate of half edge

i in the pairing G∗. Let the parent vertex of i be denoted ui. Let V (G∗) be the set of ‘bins’ or

vertices of G∗, and let B(u) be the set of half edges that are in the bin corresponding to vertex i.

Let E(G∗) be the set of edges of G∗, which are unordered pairs of half edges in [M ]. For a given

G∗ ∈ Φ, these can also be uniquely represented by the unordered pair of their parent vertices

{ui, um(i)} (also written uium(i) for brevity).

We define an exploration process that is, in effect, the same as the configuration model version.

At each step we have a partial pairing Tt−1 = (Vt−1, Et−1,Xt−1), and we explore a specific open

edge from this partial pairing to another vertex wt. The difference here is that if wt /∈ S, we do

not expose any other edges between wt and Vt−1. This makes the algorithm behave much more

like exploring a graph where the vertices in S have been “exploded”, as they were in the proof

of the configuration model result. We avoid the notion of exploding vertices in this chapter for

intuition reasons: as the pairings we consider here are simple, exploding the vertices in S gives

the wrong intuition for vertex adjacency - a vertex in S could not be adjacent to two different

degree 1 vertices that correspond to the same exploded vertex in S. Thus, we alter the definition

of the exploration process to mimic the configuration model process without having to handle any

explosives.

However, this change to how vertices in S are dealt with makes it harder to define some of the

variables that we wish to consider. For example, in the exploration process on the configuration

model, Mt−1 was defined as the sum of the degrees of unexplored vertices in the pairing. If we do
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not explode vertices in S, there may be vertices u ∈ S that have been “explored” at some time t

in the sense that wt = u, but it is still possible that wt′ = u at some future time step t′ > t. This

is because the other edges between u and Vt−1 (which we called back edges) were not revealed

when u was explored at time t, as u ∈ S.

More generally, we want notation to discuss the “available degree” of a given vertex. This is

designed to capture the notion of how many half edges can be matched with the open edge being

paired at some time step, or equivalently how much that vertex contributes to Mt. In line with the

configuration model intuition, this corresponds to the number of half edges in the corresponding

bin that are not paired or open in Tt. To this end, we define the available degree of each vertex

w ∈ V at time t as follows:

d(t) (w) =

0, w ∈ S ∩ Vt
d(w)−X otherwise

, (7.3)

where X = |{v ∈ V | vw ∈ Et}|, the number of edges incident to w that are in the partial pairing

Tt. This definition is very useful when bounding the probability of discovering vertices at each

step, and thus for analysing the expected number of open edges gained at each step t. For w ∈ S,

this definition is simple: d(t) (w) = d(w) if w has not been explored yet (that is, if w /∈ Vt−1),

and d(t) (w) = 0 if it has (that is, if w ∈ Vt−1). For some w /∈ S, some edges between Tt−1 and

w may have already been revealed at previous steps. These half edges in the bin corresponding

to w cannot be paired with the open edge being explored at time t, as they are already paired in

Tt−1. This naturally affects the probability that w = wt. This is formalised in Section 7.4.

Now we describe the exploration process explicitly. We consider the (graphical) sequence d

and the set S ⊂ [n] as fixed. The input for the process is a simple pairing G∗ ∈ Φ. At time

t = 0 of the exploration process, initialise T0 = (V0, E0,X0). The set V0, called the preprocessing

set, is a subset of V defined depending on the size of RS(d) (that is, whether RS(d) = o(M) or

RS(d) = Θ(M)) and is defined specifically in the relevant later sections. The corresponding edge

set E0 also depends on the size of RS(d) and is defined later. As with the exploration process on

C(d), each step of the exploration process produces a partial pairing Tt such that

T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ (V (G∗), E(G∗), ∅),

where Tt = (Vt, Et,Xt) and the subset notation means that Vt−1 ⊆ Vt and Et−1 ⊂ Et. The sets

Vt ⊂ V (G∗) and Et ⊂ E(G∗) correspond to the vertices and edges of the partial pairing, and are

constructed iteratively in a way defined below. The set Xt ⊂ [M ] is a set of half edges i such that

the parent vertex ui is in Vt ∩ S and i is unpaired in Tt. These half edges are called open edges.

As in the configuration model, we call Tt the partially explored sub-pairing at time t, or partial

pairing at time t for brevity.

We now describe the iterative steps of the exploration process for all t ≥ 1. If Xt−1 = 0, then

the partial pairing Tt−1 contains no open edges. Then let i be a uniformly random half edge in

G∗ such that the parent vertex ui is in S\Vt. Define wt := ui. Then Vt = Vt−1 ∪ {wt}, Et = Et−1,

and Xt =
⋃
j∈wt{j}.

On the other hand, if Xt−1 > 0, then there exists some open edge in Tt−1, that is, Xt−1 6= ∅.
Let i be the lowest-indexed half edge in Xt−1. Denote its parent vertex vt, and define wt to be the
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parent vertex of its mate m(i). Then Vt = Vt−1 ∪ {wt}. If wt /∈ S, then Et = Et−1 ∪ {vtwt} and

Xt = Xt−1\{i}. If wt ∈ S, then Et = Et−1 ∪
⋃
i∈Bt{ui, um(i)} and Xt = Xt−1 ∪B(wt)\Bt, where

Bt := {i | i ∈ B(wt), m(i) ∈ Xt}

and B(wt) is the set of half edges associated with vertex wt. The edges added to Et at this step,

other than vtwt, are called back edges. The number of back edges added to Et at time t is denoted

d′S,t(wt), which is equal to |Bt| − 1, since we do not consider the edge vtwt a back edge. Note that

if wt /∈ S, then it is possible that wt = ws for some s < t. On the other hand, if wt ∈ S, then

wt 6= ws for all s 6= t.

Much like when studying C(d), we use the method of deferred decisions to analyse this process

on a random element of Φ. This way the pairing is generated as the algorithm progresses - instead

of exploring a predetermined uniformly random simple pairing, the deferred decisions process can

be thought of as constructing a uniformly random simple pairing in a stepwise manner. However,

since G∗ is not a uniformly random element of C(d), the probability that wt = w for any given

vertex w is non-trivial to determine. For a given partial pairing T , we can consider the set of all

simple pairings G∗ ∈ Φ such that G∗ agrees with T at time t − 1, that is, such that G∗ contains

all pairs in T and does not contain any edges between vertices in Vt−1 ∩ S that are not present in

T . This corresponds exactly to the set of G∗ such that there exists a sequences of choices for half

edges at each step t′ < t such that Tt−1(G∗) = T , that is, the set of simple pairings G∗ ∈ Φ that

could possibly have partial pairing equal to T at time t − 1. We denote this set Φ(T ), though it

is implicitly dependent on t as well.

We say that vertices in Vt and edges in Et have been discovered or revealed at time t, and

wt is the vertex explored at time t. If wt ∈ S, back edges between wt and Vt−1 are said to have

been revealed at time t. We also say that the (connected) component of Tt containing the parent

vertices of the open edges in Xt is called the active component. Again we define Pt (·) := P ( ·|Tt),
where we condition on the deferred decision process up to time t; we define Et [·] = E [ ·|Tt] to

be the corresponding expectation. This conditional expectation is over all G∗ ∈ Φ such that the

partial pairing at time t is equal to Tt, which is precisely the set Φ(Tt).

Recall the definition of d(t)(w), the available degree of w ∈ V at time t, given in (7.3). We

define Mt by

Mt :=
∑
w∈V

d(t)(w).

This is analogous to the definition of Mt for the process on C(d), representing the number of

“available” half edges for a given open edge to be paired with at time t of the deferred decision

process. We also define St = S\Vt. This represents the set of vertices in S that have not yet been

“discovered” by the exploration process at time t. These vertices are available to be explored at

time t, and thus contribute to the expected number of open edges gained or lost at each step of

the process. Thus, d(St) is the total degree of the vertices in S\Vt. Equivalently, this can be

defined as

d(St) =
∑
w∈S

d(t)(w).
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Defining the analogous set for S is more complicated, as half edges i where ui ∈ S ∩Vt can still be

paired with other half edges in Xt. Define St to be the set of vertices v ∈ S with at most d(v)− 1

neighbours in Tt. Then we define

d(St) :=
∑
w∈S

d(t)(w).

It follows from these definitions that Mt = d(St) + d(St). Conditional on an arbitrary sequence

of partial pairings (Ts)s≤t, if d(t) (v) = 0 then Pt (wt+1 = v) = 0. This is because if v ∈ S, then

Et contains all edges between v and Vt ∩ S, and thus no open edge in Xt can be paired with any

unpaired half edge in v. On the other hand, if v /∈ S, then d(t) (v) = 0 means that Et contains all

edges incident to v in the simple pairing G∗.

At each step of the exploration process, all of these aforementioned quantities change based

on wt. Recall the definition of dS(·) from (6.1), that dS(w) = d(w) if w ∈ S and dS(w) = 1 if

w /∈ S. At each step t ≥ 1, Mt = Mt−1 − dS(wt). If wt ∈ S, then d(St) = d(St−1) − d(wt),

and d(St) = d(St−1). If wt /∈ S, then d(St) = d(St−1), and d(St) = d(St−1) − 1. If wt ∈ S and

Xt−1 = 0, then Xt = d(wt). If wt ∈ S in Xt−1 > 0, then Xt = Xt−1 + d(wt) − 2 − 2d′S,t(wt),

where we recall that d′S,t(wt) is the number of back edges between wt and S ∩ Vt−1. If wt /∈ S,

then Xt = Xt−1− 1. Equivalently, these two cases where Xt−1 > 0 can be expressed by the single

equation

Xt = Xt−1 + dS(wt)− 2− 2d′S,t(wt).

These relationships form the crux of our analysis.

Remark 7.3.1. In order to simplify some of the computations in the analysis of the exploration

process, we amalgamate various different o(1) functions such that δ can take the place of all of

them. Specifically, in the case that M = Θ(n) we assume that δ satisfies the following conditions:

(a) δ → 0 as n→∞,

(b) d(S
+

) ≤ δ2n,

(c) δ = ω(log−1M).

In Section 7.5 where we prove Theorem 7.1.1, the subcritical result, we also impose that RS ≤ δM .

Since Theorem 7.1.1 assumes that RS = o(M), and increasing δ monotonically excludes more

elements from H+, these conditions can all be satisfied simultaneously by taking the largest

δ → 0 that satisfies the latter three conditions. Importantly, since we assume that M = Θ(n) and

we assume that d(S
+

) = o(M), we can choose δ such that d(S
+

) ≤ δ2n.

7.4 The probability of discovering a given vertex at each step

In the configuration model, Observation 6.2.1 implied that, conditional on the process up to

time t− 1, the probability of discovering a particular vertex w at time t was exactly d(w)/Mt−1.

This incredibly important piece of the analysis was an immediate consequence of the definition

of the configuration model. In this section we determine analogous upper and lower bounds on
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the probability of exploring a given vertex w ∈ V at time t in the deferred decision exploration

process. We prove these results using switchings. To do this, we assume that the partial pairing at

time t−1 satisfies certain conditions that allow the switching proofs to work. Recall the definition

of vt, the parent vertex of the half edge being paired by the exploration process at time t. We call

a partial pairing T = (Vt−1, Et−1,Xt−1) predictable if it satisfies the following conditions.

(P1) Mt−1 = Θ(M),

(P2) d(vt) ≤ δ
√
M ,

(P3) St−1 has maximum degree at most δ
√
M ,

(P4) Xt−1 ≤ αn for some α < 10−3,

(P5) |Vt−1| ≤ 1
3n.

Implicitly, a partial pairing at time t − 1 is predictable with respect to the degree sequence of

the underlying simple pairing G∗. If a partial pairing is predictable with respect to G∗, it is also

predictable with respect to all other simple pairings G∗ ∈ Φ that agree with T , since all pairings in

Φ have the same degree sequence. Thus, we just say that the partial pairing itself is predictable.

We call such a partial pairing predictable because we show that under these conditions, the

probability of discovering a given vertex at each step is (up to some small caveats) approximately

equal to its value in the configuration model. These conditions are sufficient but not necessary

— for example, we do not optimise the constants in Items (P4) and (P5) at all. Since we assume

that M = Θ(n) throughout this part of the proof, the penultimate condition is equivalent to the

condition that Xt−1 ≤ α′M for α′ = αn/M = Θ(1). We show in the respective sections that, as

a consequence of the preprocessing step, Tt−1 satisfies these conditions for some large number of

time steps t ≥ 1 in both the subcritical and supercritical regimes.

There are two main steps to obtaining the vertex discovery probabilities for predictable partial

pairings. Firstly, we show that the probability that wt ∈ S
+

for each t is very small. Specifically,

we show that this probability is bounded above by δ, where δ := δ(n) → 0 is a function such

that d(S
+

) ≤ δ2n. This means that the presence of a small number of high-degree vertices in S

does not meaningfully affect the probability of exploring a given vertex at time t. Then we show

that, conditional on the event that wt /∈ S
+

, the probability that wt = w is close to what it is

in the configuration model. The reason for dealing with these two cases separately, rather than

just having a single lemma for all vertices, is that the switchings used to prove the bounds used

for the lower-degree vertices rely on being able to assume that particular vertices have maximum

degree δ
√
M . However, the probability of discovering a vertex in S

+
is still unlikely at each step,

since we imposed that d(S
+

) ≤ δ2n. Thus, we deal with this as a separate case, and use the law

of total probability to recombine these cases in the later proofs where these bounds are used.

Recall from (7.3) the definition of d(t) (w) for a vertex w, the number of unpaired half edges

incident to w that have not been revealed at time t. We call this the available degree of w at

time t. The appearance of d(t−1)(w) in the following proofs is quite natural: for a vertex w /∈ S,

there may exist edges wv ∈ Et−1, as it may have been discovered by the process previously. The

function d(t−1)(w) essentially counts the number of “available” half edges in B(w), the set of

half edges corresponding to w, that can be explored at time t. This is why many bounds in the

following proofs are given in terms of d(t−1)(w), as we condition on the partial pairing at time t−1
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and thus exclude switchings that use edges that are in Et−1. Recall that Mt−1 =
∑

w∈V d
(t−1)(w),

and that Pt−1 (·) is the probability of an event conditional on the partial pairing at time t− 1.

Lemma 7.4.1. Suppose that M = Θ(n) and d(S
+

) ≤ δ2n for some δ → 0. Suppose that Tt−1 =

(Vt−1, Et−1,Xt−1), the partial pairing at time t− 1, is predictable. Then Pt−1

(
wt ∈ S

+
)
≤ δ.

Proof. Let T = (Vt−1, Et−1,Xt−1) be a predictable partial pairing, and let it be the lowest-indexed

open edge in Xt−1. Let Φ(T ) be the set of G∗ ∈ Φ that agree with T , that is, the set of simple

pairings such that there exists a sequence of choices for half edges at each step t′ < t such that

Tt−1 = T . Let A be the set of simple pairings G∗ ∈ Φ(T ) such that wt ∈ S
+

, and let B be

its complement (the set of simple pairings such that wt /∈ S
+

). We define a switching mapping

simple pairings from A to B. Suppose G∗ ∈ A, and define w to be the vertex that contains the

half edge paired with it, that is, wt = w. Then let (x, y) be an ordered pair of vertices such that

x /∈ S+
and xy ∈ E(G∗). A switching takes edges vtw and xy, deletes them, and replaces them

with edges vtx and wy, creating a new pairing G′∗ where wt = x. This switching is valid as long

as G′∗ is a simple pairing in B.

vt
w ∈ S+

x /∈ S+ y

Tt−1

G∗ ∈ A

vt
w ∈ S+

x /∈ S+ y

Tt−1

G′∗ ∈ B

Figure 7.2: A diagram of the switching used in the proof of Lemma 7.4.1, which sends G∗ ∈ A to
G′∗ ∈ B.

First we determine a lower bound on the number of valid forward switchings that can be

applied to each G∗ ∈ A. The number of choices for a vertex y such that d(t−1)(y) ≥ 1 is at least
2
3n, since the number of vertices y such that d(t−1)(y) = 0 is at most |Vt−1|, which is at most 1

3n

since T is predictable and thus satisfies (P5). Given y, there is at least one choice for x such that

xy ∈ E(G∗) and xy /∈ Et−1. Such a choice of {vt, x, w, y} corresponds to a valid switching if and

only if

(a) x /∈ S+
and x /∈ Vt−1 ∩ S,

(b) wy /∈ E(G∗),

(c) vtx /∈ E(G∗),

(d) {vt, x, w, y} are all distinct.

We bound from below the number of choices for {vt, x, w, y} such that

(a′) y /∈ S+
and y has no neighbour in S

+
,

(b′) x /∈ Vt−1 ∩ S,

(c′) vtx /∈ E(G∗),
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(d′) {vt, x, w, y} are all distinct.

Every choice that satisfies (a′) – (d′) also satisfies (a) – (d). Let Z(G∗) be the number of choices

for (x, y) such that one of (a′) – (d′) are not satisfied. Then the number of switchings that can

be applied to each G∗ ∈ A is at least 2
3n − Z(G∗). We bound Z(G∗) from above for all G∗ ∈ A.

For case (a′), there are at most d(S
+

) + d(S
+

)/(δ
√
M) choices for y such that y ∈ S+

or y has

a neighbour in S
+

. For case (b′), there are Xt−1 choices for (x, y) such that d(t−1)(y) ≥ 1 and

x ∈ Vt−1 ∩ S. For case (c′), there are at most d(vt) choices for a vertex x such that x /∈ S
+

and vtx ∈ E(G∗), and given x there are at most d(x) choices for y. Since we assume that T is

predictable (and thus satisfies (P2) and (P3)) and x /∈ S+
, it follows that there are at most δ2M

choices for {vt, x, w, y} that do not satisfy (c′). Finally, given the way the vertices are chosen, the

only way that these vertices can be non-distinct is if vt = x. However, this is counted in part (b′),

since this implies that x ∈ Vt−1 ∩ S. Therefore,

Z(G∗) ≤ d(S
+

) + d(S)/(δ
√
M) +Xt−1 + δ2M.

Since we assume that M = Θ(n) and d(S
+

) ≤ δ2n, this implies that the number of valid switchings

from A to B is at least 2
3n − o(n) −Xt−1, which is at least 1

2n since Xt−1 < 10−3n by condition

(P4). The number of backward switchings is at most d(S
+

), the number of choices for a vertex

y such that wy ∈ E(G∗) for some w ∈ S+
, since the vertices vt and x are fixed by the partial

pairing T . This implies that

|A|
|B|
≤ d(S

+
)

1
2n

≤ 2δ2.

Thus, it follows that

Pt−1

(
wt ∈ S

+
)

=
|A|

|A|+ |B|
=

|A|/|B|
|A|/|B|+ 1

≤ 2δ2.

This completes the proof.

Now we show that, conditional on the event that wt /∈ S
+

, the probability that wt = w for

some w /∈ S+
is approximately proportional to its available degree, d(t−1)(w). This aligns with

the intuition from the configuration model, and allows us to employ similar methods to show that

Et−1 [dS(wt)− 2] evolves similarly to the analogous quantity (which was simply Et−1 [d(wt)− 2])

in the configuration model. By conditioning on the case where wt /∈ S
+

, we can study this case

using a similar switching analysis to that done by Joos et al. [83].

In the following lemma, we also have to exclude vertices w ∈ S that are already adjacent to vt in

the partial pairing Tt−1. Since the partial pairing is simple, if vtw ∈ Et−1, then Pt−1 (wt = w) = 0.

However, if we consider the case where T is predictable, then d(vt) ≤ δ
√
M . This allows us to

show in the later sections that this caveat does not significantly affect how the process evolves.

Recall that St−1 := S\Vt−1, and St−1 is the set of all vertices w ∈ S such that d(t−1)(w) ≥ 1.

Lemma 7.4.2. Suppose that M = Θ(n) and d(S
+

) ≤ δ2n for some δ → 0. Suppose that

Tt−1 = (Vt−1, Et−1,Xt−1), the partial pairing at time t− 1, is predictable. Let w /∈ S+
be a vertex
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such that d(t−1)(w) ≥ 1 and vtw /∈ Et−1. Then

Pt−1

(
wt = w|wt /∈ S

+
)

=
d(t−1)(w)

Mt−1
(1±O(δ)) .

Proof. Let T = (Vt−1, Et−1,Xt−1) be a predictable partial pairing. Let Φ(T ) be the subset of

simple pairings G∗ ∈ Φ that agree with T . Let Aw be the set of G∗ ∈ Φ(T ) such that wt = w, and

let Bw be the set of G∗ ∈ Φ(T ) such that wt 6= w and wt /∈ S
+

. We define a switching between

Aw and Bw. Let G∗ ∈ Aw be a simple pairing. To perform a switching, choose an ordered pair

of vertices (x, y) such that xy ∈ E(G∗). Then the switching deletes edges {vtw, xy} and adds in

edges {vtx,wy} to create a new G′∗. This switching is considered valid if and only if G′∗ ∈ Bw,

which occurs if and only if

(a) x ∈ St−1 ∪ St−1 and x /∈ S+
,

(b) vtx,wy /∈ E(G∗),

(c) the vertices {vt, w, x, y} are all distinct,

(d) xy /∈ Et−1.

vt w

x y

Tt−1

G∗ ∈ Aw

vt w

x y

Tt−1

G′∗ ∈ Bw

Figure 7.3: A diagram of the main switching used to prove Lemma 7.4.2, which sends G∗ ∈ Aw
to G′∗ ∈ Bw.

The switching is invalid if x ∈ S+
because wt = x in G′∗ (since every simple pairing in Φ(T )

is pairing the same half edge at time t), and we are conditioning on the event that wt /∈ S
+

.

Now we obtain upper and lower bounds on the number of valid switchings that can be applied

to each G∗ ∈ Aw. By definition, there are Mt−1 choices for an ordered pair of adjacent vertices

(x, y) such that d(t−1)(x) ≥ 1 (which is equivalent to the condition that x ∈ St−1 ∪ St−1) and

xy /∈ Et−1. This means that every such choice satisfies (d). Let W (G∗) be the number of these

Mt−1 choices for (x, y) such that at least one of (a), (b), or (c) is not satisfied. Then the number

of valid switchings that can be applied to G∗ is at least Mt−1−W (G∗). Let Z(G∗) be the number

of these Mt−1 choices such that at least one of the following statements is true:

(a′) x ∈ S+
or y ∈ S+

,

(b′) x, y /∈ S+
and vtx or wy ∈ E(G∗),

(c′) x, y /∈ S+
and the vertices {vt, w, x, y} are not all distinct.
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It follows that Mt−1 − Z(G∗) is a lower bound on Mt−1 −W (G∗) for all G∗. We give an upper

bound on Z for all G∗ ∈ Aw.

For case (a′), there are at most d(S
+

) choices for (x, y) such that x ∈ S+
and xy ∈ E(G∗),

and similarly at most d(S
+

) choices for the case where y ∈ S+
. Since d(S

+
) ≤ δ2n, there are at

most 2δ2n choices for (x, y) such that (a′) is true.

For case (b′), we first give an upper bound on the number of choices for (x, y) such that vtx

is an edge. There are at most d(vt) choices for x such that vtx ∈ E(G∗) and x /∈ S
+

. Then,

given x, there are at most d(x) choices for y such that xy ∈ E(G∗). If T is predictable, then T

satisfies (P2), and thus d(vt) ≤ δ
√
M . Since T also satisfies (P3) and x /∈ S+

, it also follows that

d(x) ≤ δ
√
M . By the same reasoning, the number of choices for (x, y) such that x, y /∈ S+

and

wy ∈ E(G∗) is at most d(w)δ
√
M , which is at most δ2M as w /∈ S+

. Thus, the number of choices

for (x, y) such that (b′) is true is at most 2δ2M .

For case (c′), note that vt 6= x, since vt ∈ Vt−1 ∩ S and thus d(t−1)(vt) = 0. So the possible

cases for non-distinct vertices are vt = y, w = y, and w = x. At most d(vt) choices for (x, y)

correspond to the case where vt = y, and at most 2d(w) correspond to the cases where either

w = y or w = x. By the same logic to case (b′), this implies that the number of choices for (x, y)

that satisfy (c′) is at most 3δ
√
M .

Altogether, this gives the bound

Z ≤ 2δ2n+ 2δ2M + 3δ
√
M,

which is asymptotically at most δM since M ≥ n and δ = o(1). Thus, the number of switchings

that can be applied to each G∗ ∈ Aw is at least Mt−1 − δM and at most Mt−1. Recall that since

T is predictable, condition (P1) implies that Mt−1 = Θ(M).

Now we consider the analogous upper and lower bounds on the number of G∗ ∈ Aw that can

be mapped to a given G′∗ ∈ Bw via a switching, or equivalently, the number of reverse switchings

that map an element G′∗ ∈ Bw to an element G∗ ∈ Aw. A reverse switching applied to some

G′∗ ∈ Bw is equivalent to the following: choose an edge wy /∈ Et−1 (noting that wt 6= w), then

delete edges {vtwt, wy} and add in edges {vtw,wty}, hence creating some G∗ ∈ Aw. Given some

G′∗ ∈ Bw, there are at most d(t−1)(w) choices for a neighbour y such that wy /∈ Et−1. Such a

choice corresponds to a valid reverse switching if and only if the resulting G∗ is an element of Aw,

which occurs if and only if

(i) neither vtw ∈ E(G′∗) nor wty ∈ E(G′∗),

(ii) the vertices {vt, w, wt, y} are all distinct.

Note that since G′∗ ∈ Bw and Bw ⊆ Φ(T ), it follows that wt /∈ S
+

for all such simple pairings.

We use extra, separate switching arguments to show the following claims. We defer their proofs

for the moment.

Claim 7.4.3. Conditional on the event that G′∗ ∈ Bw, the probability that vtw /∈ E(G′∗) is

1−O(δ2).

Claim 7.4.4. Conditional on the event that G′∗ ∈ Bw , the probability that wtw /∈ E(G′∗) is

1−O(δ2).
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Claim 7.4.5. Conditional on the event that G′∗ ∈ Bw , the probability that there are at most

δd(t−1)(w) edges not in Et−1 between w and the neighbours of wt is 1−O(δ).

We call a vertex v ∈ NG(w) (the neighbourhood of w in G) an “undiscovered neighbour of w” if

vw /∈ Et−1. Assuming these claims, we now complete the proof of the lemma. These claims imply

that the proportion of elements G′∗ ∈ Bw such that neither vtw nor wtw are in E(G′∗) and at most

δd(t−1)(w) undiscovered neighbours of w are also neighbours of wt is at least 1 − O(δ). For each

such element of Bw, we can obtain a strong lower bound on the number of valid choices for wy and

thus the number of possible reverse switchings. By design, there are at most δd(t−1)(w) choices

that do not satisfy (i). For case (ii), we consider the different possible ways that {vt, w, wt, y} can

be non-distinct. The vertices vt and y must be distinct, as vtw /∈ E(G′∗) for all such G′∗. By

assumption, vt is distinct from wt and w, and wt and w are distinct from each other. Finally, w

and y are distinct, since they are adjacent. The only remaining case is if wt = y. However, since

wy ∈ E(G′∗), the condition wt = y implies that wtw ∈ E(G′∗), which is a contradiction of our

choice of G′∗. Thus, the fraction of elements of Bw for which there are at most δd(t−1)(w) choices

for y that do not satisfy (i) and (ii) is 1−O(δ). Therefore, the average number of reverse switchings

that can be applied to each G′∗ ∈ Bw is at least d(t−1)(w)(1− δ)(1−O(δ)) ≥ d(t−1)(w)(1−O(δ)).

Thus, it follows that

d(t−1)(w)(1−O(δ))

Mt−1
≤ |Aw|
|Bw|

≤ d(t−1)(w)

Mt−1 − δM
.

Therefore, since d(t−1)(w) ≤ d(w) ≤ δ
√
M and Mt−1 = Θ(M),

Pt−1

(
wt = w|wt ∈ S

+
)

=
|Aw|

|Aw|+ |Bw|
=

d(t−1)(w)(1±O(δ))

Mt−1 + d(t−1)(w)(1±O(δ))
=
d(t−1)(w)

Mt−1
(1±O(δ)).

This completes the proof, except for the proofs of the claims. We now give these proofs.

Proof of Claim 7.4.3. Let Cw be the set of G∗ ∈ Bw such that vtw ∈ E(G∗). We define a switching

between Cw and Bw\Cw. Suppose G∗ ∈ Cw. Let (a, b) be an ordered pair of adjacent vertices

such that ab /∈ Et−1. Then the switching deletes edges vtw and ab, replacing them with edges vta

and wb, hence creating G′∗. The choice of (a, b) is considered valid if and only if G′∗ ∈ Bw\Cw.

vt w

a b

Tt−1

G∗ ∈ Cw

vt w

a b

Tt−1

G′∗ ∈ Bw\Cw

Figure 7.4: A diagram of the switching used in the proof of Claim 7.4.3, which sends G∗ ∈ Cw to
G′∗ ∈ Bw\Cw.

There are Mt−1 choices for an ordered pair of adjacent vertices (a, b) such that d(t−1)(a) ≥ 1 and

ab /∈ Et−1. Then for such a choice of (a, b), the set {vt, w, a, b} corresponds to a valid switching if

and only if
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(a) vta /∈ E(G∗) and wb /∈ E(G∗),

(b) {a, b} ∩ {vt, w} = ∅.

Let W (G∗) be the number of choices for (a, b) such that one of the above conditions is not satisfied.

Then the number of switchings that can be applied to G∗ is Mt−1 −W (G∗). Let Z(G∗) be the

number of choices for (a, b) such that

(a′) a or b ∈ S+
,

(b′) a, b /∈ S+
, vta ∈ E(G∗) or wb ∈ E(G∗),

(c′) a, b /∈ S+
, {a, b} ∩ {vt, w} 6= ∅.

By similar counting arguments to the previous switching, it follows that Z ≤ 2δ2n + 2δ2M +

3δ
√
M ≤ δM . Now we count reverse switchings. Note that a reverse switching corresponds to

choosing a neighbour a of vertex vt (where a 6= wt and vta /∈ Et−1) and a neighbour b of w,

deleting the edges vta and wb, and replacing them with vtw and ab to create some G∗ ∈ Cw.

Thus, there are at most d(vt)d(w) reverse switchings that create each G∗. Therefore,

|Cw| ≤ |Bw\Cw|
2d(w)d(vt)

Mt−1
.

Condition (P2) implies that d(vt) ≤ δ
√
M . Since we assume that w /∈ S

+
, we also know that

d(w) ≤ δ
√
M . Recalling that Mt−1 = Θ(M) from condition (P1), this implies that there exists

some constant C > 0 such that

|Cw|
|Bw\Cw|

≤ Cδ2.

Therefore,

Pt−1 (vtw ∈ E(G∗)|G∗ ∈ Bw) =
|Cw|
|Bw|

≤ Cδ2.

This completes the proof of the claim.

Proof of Claim 7.4.4. Let Fw be the set of all graphs in Bw such that wtw ∈ E(G∗), and let F ′w

be its complement in Bw. We define a switching from Fw to F ′w to prove the claim. Let G∗ ∈ Fw.

Choose an ordered pair of vertices (a, b) such that

(a) ab ∈ E(G∗) and ab /∈ Et−1,

(b) awt, bw /∈ E(G∗), and

(c) {a, b, wt, w, vt} are all distinct.

The switching then deletes edges wtw and ab from E(G∗) and adds in edges awt and bw, creating

a new G′∗ ∈ F ′w. A reverse switching is equivalent to taking edges awt and bw, deleting these

edges, and replacing them with the edges wtw and ab. Thus, there are at most d(w)d(wt) such

switchings that map an element of Fw to a given G′∗ ∈ F ′w, or equivalently at most d(w)d(wt)

reverse switchings can be applied to each G′∗ ∈ F ′w.
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vt
wt

w b

a
Tt−1

G∗ ∈ Fw

vt
wt

w b

a
Tt−1

G′∗ ∈ F ′w

Figure 7.5: A diagram of the switching used in the proof of Claim 7.4.4, which sends G∗ ∈ Fw to
G′∗ ∈ F ′w.

Now we give a lower bound on the number of switchings that can be applied to each G∗ ∈ Fw.

There are Mt−1 choices for an ordered pair of adjacent vertices (a, b) such that d(t−1)(a) ≥ 1

and ab /∈ Et−1. The number of such choices where a ∈ S+
or b ∈ S+

is at most 2δ2n. Of the

remaining Mt−1 − 2δ2n choices, at most δ
√
M(d(wt) + d(w)) do not satisfy (b), and at most

δ
√
M + 2(d(wt) + d(w)) do not satisfy (c). Recall that d(w), d(wt) ≤ δ

√
M , since w,wt /∈ S

+

by assumption. Thus, there are at least Mt−1 − 5δ2M switchings that can be applied to each

G∗ ∈ Fw. Altogether, this implies that

|Fw|
|F ′w|

≤ d(w)d(wt)

Mt−1 − 5δ2M
= O(δ2),

where the last inequality follows from the facts that d(w), d(wt) ≤ δ
√
M and Mt−1 = Θ(M) (as

T is predictable). This completes the proof.

Proof of Claim 7.4.5. This proof is in two parts. Recall the definition of Cw from the proof of

Claim 7.4.3, the subset of Bw such that vtw ∈ E(G∗) for all G∗ ∈ Cw. Firstly we show that,

conditional on G∗ ∈ Bw\Cw, with probability at least 1−O(δ2) at most 1
2δd

(t−1)(w) undiscovered

neighbours of w in St−1 ∪ St−1\S
+

are also neighbours of wt. Applying Claim 7.4.3 gives us the

desired result for G∗ ∈ Bw. Secondly we show that, conditional on G∗ ∈ Bw, with probability

1−O(δ) the vertex w has at most 1
2δd

(t−1)(w) undiscovered neighbours in S
+

(and thus at most

this many are also neighbours of wt). Each proof is done with its own switching. These results

combine to prove the claim by the union bound for G∗ ∈ Bw.

Let Di
w ⊂ Bw\Cw be the set of G∗ ∈ Bw\Cw such that there are exactly i edges between w

and the neighbours z of wt such that z is not in S
+

and wz /∈ Et−1. We define a switching from

Di+1
w to Di

w. Suppose G∗ ∈ Di+1
w , and let z ∈ St−1∪St−1\S

+
be a vertex such that wtzw is a path

in G∗ and wz /∈ Et−1. Let (a, b) be an ordered pair of adjacent vertices such that d(t−1)(a) ≥ 1

and ab /∈ Et−1. Then a switching takes the edges wz and ab, deletes both of these edges, and

replaces them with aw and bz, creating a new pairing G′∗. This switching is valid if and only if

G′∗ ∈ Di
w, which occurs if and only if

(a) aw, awt, bz /∈ E(G∗),

(b) the vertices {vt, wt, w, z, a, b} are all distinct.

We forbid the edge awt because if awt ∈ E(G∗), then the output of the switching G′∗ would

contain the path wawt and thus would still be in Di+1
w , not Di

w. Now we determine a lower bound
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vt

wt z

w

b

a
Tt−1

G∗ ∈ Di+1
w

vt

wt z

w

b

a
Tt−1

G′∗ ∈ Di
w

Figure 7.6: A diagram of one of the switchings used to prove Claim 7.4.5, which sends G∗ ∈ Di+1
w

to G′∗ ∈ Di
w.

on the number of valid switchings that can be applied to each G∗ ∈ Di+1
w . There are i+ 1 choices

for the vertex z by definition, and for each z there are Mt−1 choices for an ordered pair of vertices

(a, b) such that ab ∈ E(G∗)\Et−1. As is standard, we bound from above the number of choices

for (a, b) such that one the following occur:

(a′) a, b ∈ S+
,

(b′) a, b /∈ S+
and aw ∈ E(G∗) or awt ∈ E(G∗) or bz ∈ E(G∗),

(c′) a, b /∈ S+
and the vertices {vt, wt, w, z, a, b} are not all distinct.

There are at most 2δ2n choices that do not satisfy (a′). For case (b′), since w,wt, z /∈ S
+

, we know

that d(a), d(b), d(w), d(wt), d(z) ≤ δ
√
M . Thus, for each choice of z there are at most 3δ2M choices

for (a, b) such that case (b′) occurs. Finally, for case (c′), we consider the possible ways that the

vertices {vt, wt, w, z, a, b} can be non-distinct. The vertices vt and z are distinct, as Di+1
w ⊆ Bw\Cw

implies that vtw /∈ E(G∗). Thus, the vertices {vt, w, wt, z} are all necessarily distinct. The vertices

a and b are distinct from each other, as they are adjacent. Since d(t−1)(a) ≥ 1, the vertices vt and

a are distinct. Thus, the remaining possibilities are if b = vt, or if {a, b}∩{w,wt, z} 6= ∅. At most

δ
√
M choices for (a, b) satisfy each such combination, and thus there are at most 7δ

√
M choices

that satisfy (c′). Therefore, the number of switchings that can be applied to each G∗ ∈ Di+1
w is

at least (i+ 1)(Mt−1 − 4δ2M).

Now we count the number of reverse switchings that can be applied to each G′∗ ∈ Di
w. Note

that a reverse switching is equivalent to the following: choose a vertex z ∈ St−1∪St−1\S
+

which is

a neighbour of wt such that wz /∈ Et−1 and z is not a neighbour of w. Then choose one neighbour

a of w and one neighbour b of z. A reverse switching then deletes {aw, bz} from E(G′∗) and adds

in edges {ab, wz} to create some G∗. With this in mind, there are at most d(t−1)(w)δ2M reverse

switchings that can be applied to each G′∗ ∈ Di
w, since d(wt), d(z) ≤ δ

√
M by assumption and

there are at most d(t−1)(w) choices for such a vertex a.

Thus, for all i ≤ d(t−1)(w),

|Di+1
w |
|Di

w|
≤ 2d(t−1)(w)δ2M

(i+ 1)Mt−1
=
d(t−1)(w)

(i+ 1)
O(δ2), (7.4)

since Mt−1 = Θ(M). Let D∗w = ∪i≥i0+1D
i
w, where i0 = 1

2δd
(t−1)(w). Applying (7.4) iteratively
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gives that

|D∗w| =
∑

i≥i0+1

|Di
w| ≤ |Di0

w |
∑

i≥i0+1

(
d(t−1)(w)

(i+ 1)
O(δ2)

)i
≤ |Di0

w |
∑

i≥i0+1

(O(δ))i = |Di0
w |O(δ),

since δ = o(1). Thus, P (D∗w|Bw\Cw) = O(δ). Therefore, conditional on Bw\Cw, with probability

1 − O(δ) the vertices w and wt have at most δd(t−1)(w) common neighbours z such that z /∈ S+

and wz /∈ Et−1. Since Claim 7.4.3 implies that |Cw|/|Bw| = O(δ2), this proves the first half of the

claim.

Now we prove the second part of the claim. Note that due to our choice of w, Et−1 contains

no edges between w and S
+

, that is, all neighbours of w in S
+

are undiscovered in T . For the

second part of the claim, we show that, conditional on G∗ ∈ Bw, the probability that the vertex

w has less than 1
2δd

(t−1)(w) neighbours in S
+

is 1−O(δ). This immediately implies that wt and

w have at most this many common neighbours in S
+

. Let Di
w ⊂ Bw such that w has exactly

i neighbours in S
+

for i ∈ {0, . . . , d(t−1)(w)}. We define a switching between Di+1
w and Di

w as

follows. Let G∗ ∈ Di+1
w . Let wy be an edge such that y ∈ S+

and wy /∈ Et−1. Let (a, b) be an

ordered pair of vertices such that ab ∈ E(G∗), where a /∈ S+
and ab /∈ Et−1. Then the switching

deletes the edges ab and wy and adds in aw and by, creating a new pairing G′∗ ∈ Di
w.

vt

wt y ∈ S+

w

b

a
Tt−1

G∗ ∈ Di+1
w

vt

wt y ∈ S+

w

b

a
Tt−1

G∗ ∈ Di
w

Figure 7.7: A diagram of the second switching used to prove Claim 7.4.5, which sends G∗ ∈ Di+1
w

to G′∗ ∈ Di
w.

The number of switchings that can create each G′∗ ∈ Di
w is at most d(t−1)(w)d(S

+
), which is

the number of ways of choosing a neighbour a of w where aw /∈ Et−1 and an edge by such that

y ∈ S+
. Now we determine a lower bound on the number of switchings that can be applied to

each G∗ ∈ Di+1
w . By definition, there are exactly i+ 1 choices for the edge wy, since w is fixed. If

(a, b) is an ordered pair of adjacent vertices, then {w, y, a, b} corresponds to a valid switching if

the output is in Di
w, which occurs if

(a) ab /∈ Et−1,

(b) a /∈ S+
,

(c) aw, by /∈ E(G∗),

(d) {a, b, w, y} are all distinct.

Condition (P5) implies that there are at least 2
3n − 2 choices for some vertex b /∈ Vt−1 ∪ {w, y}.

Since d(S
+

) ≤ δ2n, it follows that o(n) of these choices for b are in S
+

or have a neighbour in
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S
+

. Of the remaining choices for b, at most δ2M of these are adjacent to w or have a common

neighbour with w (since b has no neighbours in S
+

). For each of the remaining choices for b,

there exists at least one choice for the vertex a such that ab ∈ E(G∗), a /∈ S
+

, a 6= w, and

aw /∈ E(G∗). Thus, for each choice of an edge wy there are at least 2
3n − o(n) choices for (a, b)

such that {w, y, a, b} corresponds to a valid switching. Thus,

|Di+1
w |
|Di

w|
≤ d(t−1)(w)d(S

+
)

2
3(i+ 1)n

(1 + o(1)) ≤ 3δ2d(t−1)(w)

2(i+ 1)
(1 + o(1)),

since d(S
+

) ≤ δ2n. If i+ 1 ≥ 1
2δd

(t−1)(w), then the above ratio is at most 4δ. Therefore,

P
(
∪i≥ 1

2
δd(t−1)(w)D

i
w

∣∣∣Bw) ≤∑
i≥1

(4δ)i = O(δ).

This completes the second part of the proof of the claim, and the full statement of the claim

follows from the union bound.

With these claims proved, the proof of the lemma is complete.

Remark 7.4.6. Suppose that Tt−1 = (Vt−1, Et−1,Xt−1) is a partial pairing. Let Ft−1 ⊂ St−1 be

the set of w ∈ St−1 such that vtw ∈ Et−1 and w /∈ S+
. If w ∈ Ft−1, then Pt−1 (wt = w) = 0. This

is because the pairings in Φ are simple, and if wt = w then there would be a double edge between

vt and w. We say that such w ∈ Ft−1 are forbidden vertices (at time t − 1), as they cannot be

explored by the process at time t. If Tt−1 is predictable, then (P2) states that d(vt) ≤ δ
√
M for all

t > 0, and thus d(Ft−1) ≤ δ2M . This bound is useful for analysing Et−1 [dS(wt)− 2], particularly

in the supercritical regime. An analogous definition could be constructed for w ∈ S+
too, however

this is not necessary as Pt−1

(
wt ∈ S

+
)

is small if Tt−1 is predictable.

The framework for the analysis in the supercritical and subcritical regimes is similar. In either

case, we define the initial sets V0 and E0 such that Tt−1 is predictable for a large window of time

t ≥ 1. Then we adapt the proof from the corresponding case in the configuration model. We

show that, in spite of the switching errors, the exploration process and the value of Xt−1 (recall

Xt−1 = |Xt−1|) evolve similarly to their configuration model equivalents.

7.5 Analysis in the subcritical regime

In this section we prove Theorem 7.1.1. The assumptions in the theorem that d(S) = Θ(M)

and RS = o(M) imply that d(S\S+
) = Θ(M). Furthermore, Lemma 6.3.1 implies that if RS =

o(M), then M = Θ(|S|). Recall from Remark 7.3.1 the various conditions that we impose on

δ, specifically that δ → 0, RS ≤ δM , d(S
+

) ≤ δ2n, and δ = ω(log−1M). We assume these

conditions, often implicitly, throughout this section.

7.5.1 Preprocessing and setup

As in the configuration model case, we start by defining the preprocessing step t = 0. We now

define the sets V0 and E0 for the exploration process in the subcritical regime. They are similar
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to their configuration model analogues defined in Section 6.2.4, but include some extra vertices

and edges to help simplify the later analysis.

Let U be the preprocessing set as defined in (6.7), that is, the smallest set of the highest

degree vertices in S with total degree greater than 5δ1/4M . Let U∗ ⊂ U be the set of vertices

with degree greater than δ
√
M . Let W be the set of neighbours of U∗ in S\U . Let W ′ be the

set of neighbours of U∗ in S. Define U1 = U ∪W , and then define V0 := U1 ∪W ′ ∪ {v} for some

arbitrary v ∈ S. Define E0 := E(G∗[U1]) ∪ E(U∗,W ′), where E(U∗,W ′) denotes the set of edges

uw ∈ E(G∗) such that u ∈ U∗ and w ∈ W ′ and E(G∗[U1]) is the set of edges in G∗ with both

ends in U1 (equivalently, the set of edges of the induced pairing G∗[U1]).

Importantly, Lemma 6.2.11 from the configuration model proof still applies in the random

graph case (with the same U definition as in (6.7) and an identical proof). This means that the

maximum degree of a vertex in S\U is δ−1/4. This implies that U∗ = S+, and thus E0 contains

every edge that is incident to a vertex in S+. We use this to prove that the new preprocessing

set U1 is only negligibly larger than U , and thus all the important bounds on d(U) used in the

configuration model immediately carry over to U1. From here, the exploration process evolves as

defined in Section 7.3.

Lemma 7.5.1. Suppose that RS ≤ δM . Under the assumptions of Theorem 7.1.1, d(U∗) ≤ 2δM

and d(W ) ≤ 2δ3/4M .

Proof. We first show that d(U∗) ≤ 2δM . Suppose for contradiction that d(U∗) > 2δM . It follows

that ∑
u∈U∗

d(u) (dS(u)− 2) >
(
δ
√
M − 2

) ∑
u∈U∗

d(u) > δ2M3/2 = ω(M).

Note that if U∗ contains a vertex of degree greater than δM , then immediately we get a contra-

diction that RS > δM . So we suppose that U∗ contains no vertex of degree greater than δM . Let

Q ⊂ U∗ be the smallest set of the lowest degree vertices in U∗ with total degree at least δM , and

let q be the highest degree vertex in Q. Then

∑
u∈Q

d(u) (dS(u)− 2) >
(
δ
√
M − 2

)∑
u∈Q

d(u) >
1

2
δ2M3/2.

Since
∑j

i=1 d(i)(dS(i)− 2) ≥ −M for all j ∈ [n], this immediately implies that jS ≤ q, and thus

RS ≥ d(q) +
∑

u∈U∗\Q

d(u) > δM.

This is a contradiction since RS ≤ δM by the assumption of Theorem 7.1.1. Thus, it must

hold that d(U∗) ≤ 2δM . Then the total degree of W is at most δ−1/4d(U∗), since W ⊂ S\U
and the maximum degree in S outside of U is δ−1/4. Therefore, it immediately follows that

d(W ) ≤ 2δ3/4M .

The following corollary contains many useful bounds on the maximum degree of various vertices

and sets of vertices. These bounds will be used extensively throughout the following proofs, and

thus we compile them all here.

148



7.5. ANALYSIS IN THE SUBCRITICAL REGIME

Corollary 7.5.2. For a pair (d, S) satisfying the conditions of Theorem 7.1.1 such that RS ≤ δM ,

the following statements are true:

(a) d(U1) ≤ 6δ1/4M ,

(b) the maximum degree of a vertex in S\U1 is at most δ−1/4,

(c) For all t > 0, d(vt) ≤ δ
√
M .

Proof. Part (a) simply follows from Lemma 7.5.1, since it implies that

d(U1) = d(U) + d(W ) ≤ 5δ1/4M + 2δ3/4M ≤ 6δ1/4M.

Part (b) follows immediately since U ⊂ U1, and the maximum degree of any vertex in S\U is

at most δ−1/4. Part (c) then follows from the fact d(t) (u) = 0 for all u ∈ U∗ and t ≥ 0, by the

definition of V0 and E0. Thus, vt ∈ S\S+ for all t > 0, which immediately implies the desired

claim.

Thus, all the bounds in the configuration model that were based on the size of U apply with

minimal alteration if we swap out U with U1. Intuitively, this means that also placing W and U∗

into V0 does not affect the evolution of the exploration process by too much. However, now we

have a tighter control on dS(wt), as well as d(vt) at each step in the exploration process. This

helps with the switching arguments and also helps to show that Xt, the number of open edges at

some time t, is concentrated. These points are formalised later.

Now we show that, for sufficiently many time steps t > 0, the partial pairing Tt−1 is predictable,

that is, satisfies (P1) to (P5). Note that an analogous statement to Observation 6.2.10 still applies

to the exploration process on G∗ ∈ Φ. The caveat is that we must now also take into account the

edges that are revealed in the preprocessing step.

Observation 7.5.3. For all t ≥ 1, Mt ≥ d(St−1) ≥ d(S)− t− |W ∗| ≥ d(S)− t− 6δ1/4M .

This is because we do not reveal back edges when wt ∈ S, and thus for each time t ≥ 1

there are two cases: if wt ∈ S, then d(St) = d(St−1), and if wt ∈ S, then d(St) = d(St−1) − 1.

When t = o(M), this implies that Mt−1 = Θ(M) and d(St−1) = Θ(M), since d(S) = Θ(M) by

assumption.

Proposition 7.5.4. Suppose that M = Θ(n), d(S
+

) ≤ δ2n. If t = o(M) and Xt−1 ≤ αn for

some α < 10−3, then Tt−1 is predictable for all t > 0.

Proof. Under these conditions, Observation 7.5.3 immediately implies that (P1) is satisfied. Corol-

lary 7.5.2 implies that (P2) and (P3) are satisfied, as well as implying that |V0| ≤ 6δ1/4M . Since

M = Θ(n) and |Vt−1| ≤ |V0| + t = o(M), this implies that (P5) is satisfied. Finally, (P4) is

satisfied by assumption.

The next two lemmas are thus an immediate consequence of this proposition and Lemmas 7.4.1

and 7.4.2 respectively. Recall that Pt−1 (·) is the probability of an event conditional on the partial

pairing at time t−1, and recall from (7.3) the definition of d(t) (w), the available degree of a vertex

w at time t.
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Lemma 7.5.5. Suppose that M = Θ(n), d(S
+

) ≤ δ2n. If t = o(M) and Xt−1 ≤ αn for some

α < 10−3, then Pt−1

(
wt ∈ S

+
)
≤ δ.

Lemma 7.5.6. Suppose that the conditions of Theorem 7.1.1 are satisfied and RS ≤ δM . Suppose

that t = o(M) and Xt−1 ≤ αn for some α < 10−3. Let w /∈ S+
be a vertex such that d(t−1)(w) ≥ 1

and vtw /∈ Et−1. Then

Pt−1

(
wt = w|wt /∈ S

+
)

=
d(t−1)(w)

Mt−1
(1±O(δ)) .

7.5.2 Process evolution in the subcritical regime

In this section we study how Xt, the number of open edges in Tt, evolves over time throughout

the deferred decision process in the subcritical regime on the set of simple pairings Φ. Specifically,

we show that it behaves very similarly to the corresponding process in the configuration model

C(d). As in the configuration model, we bound Xt from above for all t ≥ 0 by

X ′t = X ′0 +

t∑
i=1

(dS(wt)− 2)

where X ′0 =
∑

u∈U1∪{v} d(u). This is an upper bound on Xt since it does not consider half edges

that are consumed by revealing back edges or edges between vertices in V0. So if X ′t ≤ 0, then

there exists some time t′ ≤ t such that Xt′ = 0. In this section, we show that X ′
δ1/18M

≤ 0 with

probability 1− o(M−1). We then use this to prove Theorem 7.1.1.

Recall that St−1 = S\Vt−1, and write V = V (G∗) for brevity. Define

ft := −1 +
∑

w∈St−1

d(w)

Mt−1
(d(w)− 1) =

∑
w∈V

d(t−1)(w)

Mt−1
(dS(w)− 2) . (7.5)

This is equivalent to the definition of ft in the configuration model case; the second form accounts

for the fact that vertices in S are no longer “exploded” into degree 1 vertices. In contrast to

the configuration model process, it is not true that ft = Et−1 [dS(wt)− 2]. This is because

Pt−1 (wt = w) differs between the two probability spaces C(d) and Φ. However, Lemma 7.5.6

argues that for w /∈ S
+

and w /∈ Ft−1 the probability of discovering w at time t − 1 in the

configuration model is a good approximation of the probability of the same event in Φ. So

intuitively, one might assume that ft behaves similarly in both models. To account for w ∈ S+
or

w ∈ Ft−1, Lemma 7.5.5 implies that the probability of discovering a vertex in S
+

is small, and as

discussed in Remark 7.4.6 the set of forbidden vertices at each time step is both a subset of S and

also has small total degree. This intuitively means that these vertices do not significantly affect

the value of Et−1 [dS(wt)− 2]. First we use Lemma 7.5.6 to show that if t = o(M) and Xt−1 ≤ αn
for some α < 10−3, then Et−1 [dS(wt)− 2] is within a small approximation error of ft.

Lemma 7.5.7. If t = o(M) and Xt−1 ≤ αn for some α < 10−3, then Et−1 [dS(wt)− 2] =

ft(1±O(δ)) +O(δ).

Proof. Since dS(w) = 1 for all w /∈ S and Pt−1 (wt = w) = 0 if d(t−1)(w) = 0, we can express
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Et−1 [dS(wt)− 2] as

Et−1 [dS(wt)− 2] = −1 +
∑

w∈St−1

Pt−1 (wt = w) (d(w)− 1).

By assumption, Lemma 7.5.6 applies. Since d(t−1)(w) = d(w) for all w ∈ St−1,

Et−1 [dS(wt)− 2] = −1 +
∑

w∈St−1

d(w)

Mt−1
(d(w)− 1)(1±O(δ))

= −1 + (1±O(δ))
∑

w∈St−1

d(w)

Mt−1
(d(w)− 1)

= −1 +
∑

w∈St−1

d(w)

Mt−1
(d(w)− 1)±O(δ)

∑
w∈St−1

d(w)

Mt−1
(d(w)− 1)

= ft ±O(δ) (ft + 1) .

This completes the proof.

If ft is sufficiently negative (specifically, ω(δ) in magnitude) and the conditions on t and Xt−1

are satisfied, then the above lemma implies that Et−1 [dS(wt)− 2] = ft(1 + o(1)). We show that

a.a.s. this is the case for all t ≤ δ1/19M . This is done in a way that mimics the configuration

model results about ft. However, there is slightly more work to be done, as we have to also keep

track of Xt−1 throughout the process and make sure it does not grow too large. First we show

that f1 is bounded above by some function that is −ω(δ).

Lemma 7.5.8. If RS ≤ δM for δ → 0, f1 ≤ −4δ1/4.

Proof. It is useful to express f1 with some redundant terms. Recall the set W , the set of neighbours

of S+ which are in S, and W ′, the set of neighbours of S+ which are in S. Then the definitions

of V0 and E0 imply that

f1 =
1

M0

u−1∑
i=1

d(i)(dS(i)− 2)− d(v)(d(v)− 2)

M0
1{v≤u−1}

− 1

M0

∑
w∈W

d(w) (dS(w)− 2) +
|E(U∗,W ′)|

M0
.

(7.6)

Lemma 7.5.1 states that d(U∗) ≤ 2δM and d(W ) ≤ 2δ3/4M . This implies that |E(U∗,W ′)| ≤
d(U∗) ≤ 2δM . This combined with Corollary 7.5.2 implies that M0 = M(1−O(δ1/4)).

By definition, V0 contains U1 (and thus also contains U) and so has total degree at least

5δ1/4M . Recall that u is defined to be the lowest-indexed vertex in U . The definition of U implies

that u < jS and U ⊂ S. First suppose that U contains only vertices of degree at least 3. Then

jS−1∑
i=u

d(i)(dS(i)− 2) =

jS−1∑
i=u

d(i)(d(i)− 2) ≥
jS−1∑
i=u

d(i).
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Since
∑jS−1

i=1 d(i)(dS(i)− 2) ≤ 0 by the definition of jS , this implies that

u−1∑
i=1

d(i)(dS(i)− 2) =

jS−1∑
i=1

d(i)(dS(i)− 2)−
jS−1∑
i=u

d(i)(dS(i)− 2)

≤ 0−
jS−1∑
i=u

d(i)

=

n∑
i=jS

d(i)−
n∑
i=u

d(i)

≤ −5δ1/4M + δM.

Thus, it follows from Equation (7.6) that

f1 ≤
1

M0

u−1∑
i=1

d(i)(dS(i)− 2)− d(v)

M0
(d(v)− 2)1{v≤u−1} + 3δ

≤ −9

2
δ1/4 − d(v)

M0
(d(v)− 2)1{v≤u−1}

≤ −4δ1/4.

This proves the lemma in the case that U only contains vertices of degree at least 3. Now suppose

that U contains a vertex of degree 2 or lower. If this is the case, then every vertex in S\U must

have degree at most 2. Then Equation (7.6) implies that

f1 ≤
1

M0

u−1∑
i=1

d(i)(dS(i)− 2)− d(v)(d(v)− 2)

M0
1{v≤u−1} −

1

M0

∑
w∈W

d(w) (dS(w)− 2) + 3δ

≤ −d(S0)

M0
− d(v)(d(v)− 2)

M0
1{v≤u−1} −

1

M0

∑
w∈W

d(w) (dS(w)− 2) + 3δ

= −Θ(1).

Since δ → 0, this concludes the proof.

We next show that Et−1 [dS(wt)− 2] decreases at a similar rate to its configuration model

counterpart. Specifically, we prove an analogue to Lemma 6.2.13. This is given in the next lemma.

Define a sequence of random variables (At)t≥1, where At := dS(wt) − Et−1 [dS(wt)]. Recall the

definition of the sequence of random variables (Gt)t≥1 from the proof of the configuration model

result, where Gt = ft+1 − ft − Et−1 [ft+1 − ft]. We defer the proof of this lemma for now.

Lemma 7.5.9. Let (Tt)t≥1 be a sequence of partial pairings such that for all t,
∣∣∣∑t′≤tAt′

∣∣∣ > M2/3

and
∣∣∣∑t′≤tGt′

∣∣∣ ≤ 4
√

logM
Mδ1/2

√
t. Then there exists a constant c > 0 such that for all t ≤ δ1/19M ,

Et−1 [dS(wt)− 2] ≤ − ct
Mt−1

.

The extra condition on
∑

t′≤tAt will be used to ensure that Xt = o(M) for all t, and thus Tt

is predictable for all t ≤ δ1/19M . This allows us to use Lemmas 7.5.5 and 7.5.6 to analyse how

Et−1 [dS(wt)− 2] and ft change over time.

The following lemmas show that ft decreases in a similar fashion to its corresponding term

in the configuration model. Combining these results with Lemma 7.5.7 then gives the proof of
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Lemma 7.5.9. In some cases the proofs are identical to their configuration model counterparts

and thus we simply refer to the proofs in that section. However, when the probabilities obtained

in Lemma 7.5.6 are needed, the proofs are more involved, as we need to be careful with the error

terms.

One significant complication, when compared to the configuration model, comes from analysing

the contribution of vertices in S
+

. However, since Lemma 7.5.5 states that Pt−1

(
wt ∈ S

+
)

is low,

and dS(w) = 1 for all w ∈ S+
, this issue is more technical than problematic. Another complication

comes from needing to consider forbidden vertices Ft−1 at each step, however as discussed in

Remark 7.4.6 this set is small and thus also not a major issue.

Define λ := 10−6d(S) nM δ
1/4 and Ix = {t ∈ Z | (x− 1)λ < t ≤ xλ}. These are similar to the

definitions of λ and Ix from Chapter 6, but in this definition λ is smaller by a constant factor since

M = Θ(n). This will allow us to show that Xt stays sufficiently small throughout the process.

Note that λ = Θ(δ1/4M). Recall that d(w) ≤ δ−1/4 for all w ∈ St for all t ≥ 0 from Corollary 7.5.2.

Thus, if |t − s| ≤ λ, then |X ′t −X ′s| < 10−6 d(S)
M n. Consequently, this implies that X ′t−1 < 10−6n

for all t ∈ I1, and thus Lemmas 7.5.5 and 7.5.6 apply for all t ∈ I1. The first result we give is the

analogue of Lemma 6.2.16.

Lemma 7.5.10. For all t ∈ I1, ft+1 − ft ≤ 1
Mt−1

and ft < −2δ1/4.

Proof. The proof is almost identical to the analogous result in the configuration model, which

is Lemma 6.2.16. The only thing that needs to be changed is the base case, which follows from

Lemma 7.5.8. Much like Lemma 6.2.16, we prove this lemma by induction on t. Lemma 7.5.8

shows that f1 ≤ −4δ1/4. We can express ft+1 as

ft+1 =
∑
w∈V

d(t) (w)

Mt
(dS(w)− 2) =

Mt−1

Mt

(∑
w∈V

d(t−1)

Mt−1
(dS(wt)− 2)− dS(wt)

Mt−1
(dS(wt)− 2)

)

=

(
1 +

dS(wt)

Mt

)(
ft −

dS(wt)

Mt−1
(dS(wt)− 2)

)
.

Rearranging this gives that

ft+1 − ft = −dS(wt)

Mt−1
(dS(wt)− 2) +

dS(wt)

Mt
ft −

dS(wt)
2

MtMt−1
(dS(wt)− 2). (7.7)

This implies that if ft ≤ −2δ1/4, then ft+1 − ft ≤ 1
Mt−1

. This concludes the base case. Now

suppose that the lemma holds for all t′ < t. Then Observation 7.5.3 implies that, for all t ∈ I1,

ft = f1 +
t−1∑
i=1

(fi+1 − fi) < −4δ1/4 +
t− 1

Mt−1
< −4δ1/4 +

λ

d(S)(1− o(1))
< −2δ1/4.

Therefore, by induction ft < −2δ1/4 and ft+1 − ft ≤ 1
Mt−1

for all t ∈ I1.

Importantly, combining this with Lemma 7.5.7 implies that Et−1 [dS(wt)− 2] = ft(1 + o(1))

for all t ∈ I1. Next we give the analogue to Lemma 6.2.13, bounding Et−1 [ft+1 − ft] for all t

such that ft is sufficiently small, as in the configuration model case. The proof is similar, but we

need to be careful to manage the errors arising from bounding Pt−1 (wt = w) using the switching

method. Since we invoke Lemmas 7.5.5 and 7.5.6, we also assume that t = o(M) and Xt−1 < αM

to ensure that these lemmas apply.
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Lemma 7.5.11. Suppose t = o(M), Xt−1 < αM for some α < 10−3, and ft ≤ −2δ1/4. Then

there exists a constant c ∈ R+ such that either Et−1 [ft+1 − ft] ≤ − C
Mt−1

or ft < −C.

Proof. First we recall the definition of ft from (7.5) and write Et−1 [ft+1 − ft] as

∑
w∈V

Pt−1 (wt = w)

 ∑
u∈St−1\{w}

d(u)

Mt−1 − dS(w)
(d(u)− 1)−

∑
u∈St−1

d(u)

Mt−1
(d(u)− 1)

 .

For brevity, we denote the bracketed term of the summand A(w). Note that this expression

for ft+1 − ft is equal to the expression given in (7.7), as Mt = Mt−1 + dS(wt). Note that if

w /∈ St−1 ∪ St−1, then Pt−1 (wt = w) = 0. Thus,

Et−1 [ft+1 − ft] =
∑

w∈St−1

Pt−1 (wt = w)A(w)

+
∑

w∈St−1\S
+

Pt−1 (wt = w)A(w)

+
∑
w∈S+

Pt−1 (wt = w)A(w).

(7.8)

The first summation on the right hand side can be expressed as∑
w∈St−1

Pt−1 (wt = w)A(w) =
∑

w∈St−1

Pt−1

(
wt = w|wt /∈ S

+
)
Pt−1

(
wt /∈ S

+
)
A(w)

+
∑

w∈St−1

Pt−1

(
wt = w|wt ∈ S

+
)
Pt−1

(
wt ∈ S

+
)
A(w)

=
∑

w∈St−1

Pt−1

(
wt = w|wt /∈ S

+
)
Pt−1

(
wt /∈ S

+
)
A(w),

since Pt−1

(
wt = w|wt ∈ S

+
)

= 0 for all w ∈ St−1. Thus, Lemmas 7.5.5 and 7.5.6 imply that

∑
w∈St−1

Pt−1 (wt = w)A(w) =
∑

w∈St−1

d(w)

Mt−1
(1±O(δ))A(w).

We use the same idea to rewrite the second summation in Equation (7.8). Recall from Remark 7.4.6

the definition of Ft−1, the set of vertices in St−1 that are adjacent to vt in the partial pairing Tt−1.

The second summation can be expressed as

∑
w∈St−1\S

+

Pt−1 (wt = w)A(w) =
∑

w∈St−1\
(
S
+∪Ft−1

)
d(t−1)(w)

Mt−1
(1±O(δ))A(w).

Finally, the third summation in Equation (7.8) can be expressed as∑
w∈S+

Pt−1 (wt = w)A(w) = Pt−1

(
wt ∈ S

+
) ∑
w∈S+

Pt−1

(
wt = w|wt ∈ S

+
)
A(w).
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Note that if wt /∈ St−1, then

A(w) =
∑

u∈St−1

d(u)

Mt−1 − 1
(d(u)− 1)−

∑
u∈St−1

d(u)

Mt−1
(d(u)− 1) =

ft + 1

Mt−1 − 1
.

Since ft ≥ 0 for all t and we assume that ft ≤ −2δ1/4, it thus follows that A(w) = (1 −
Ω(δ1/4))/Mt−1 and A(w) ≥ 0 for w ∈ S. Therefore,

∑
w∈S+

Pt−1 (wt = w)A(w) = P
(
wt ∈ S

+
) ∑
w∈S+

Pt−1

(
wt = w|wt ∈ S

+
)
A(w) = O

(
δ

Mt−1

)
.

Since d(Ft−1) ≤ δ2M (by Corollary 7.5.2 and Remark 7.4.6), this is also implies that

0 ≤
∑

w∈Ft−1

d(t−1)(w)

Mt−1
(1±O(δ))A(w) ≤ 2δ2M

M2
t−1

= O

(
δ2

Mt−1

)
.

On the other hand, if wt ∈ S, then Equation (7.7) implies that

A(w) ≤ − d(w)

Mt−1
(d(w)− 2),

since we assume that ft ≤ −2δ1/4. We apply all of these bounds to Equation (7.8) to obtain

Et−1 [ft+1 − ft] ≤
∑

w∈St−1

d(w)

Mt−1
(1±O(δ))

(
− d(w)

Mt−1
(d(w)− 2)

)

+
∑

w∈St−1\S
+

d(t−1)(w)

Mt−1
(1±O(δ))

ft + 1

Mt−1 − 1
+O

(
δ

Mt−1

)

<
∑

w∈St−1

−d(w)2

M2
t−1

(d(w)− 2)(1±O(δ))

+
∑

w∈St−1\S
+

d(t−1)(w)

Mt−1
(1 +O(δ))

1

Mt−1
+O

(
δ

Mt−1

)

= (1−O(δ))
∑

w∈St−1

−d(w)2

M2
t−1

(d(w)− 2) +O(δ)
∑

w∈St−1,d(w)=1

d(w)2

M2
t−1

+
∑

w∈St−1

d(t−1)(w)

M2
t−1

+O(δ)
∑

w∈St−1

d(t−1)(w)

M2
t−1

+O

(
δ

Mt−1

)

= (1−O(δ))

 ∑
w∈St−1

−d(w)2

M2
t−1

(d(w)− 2) +
d(St−1)

M2
t−1

+O

(
δ

Mt−1

)
.

Now note that the bracketed expression is identical to that which was bounded in Lemma 6.2.18.

Thus, we use very similar analysis: if
∑

w∈St−1
d(w)2(d(w) − 2) ≥ 5

4d(St−1), we conclude that

there exists some constant C ′ > 0 such that

Et−1 [ft+1 − ft] ≤
−C ′

Mt−1
(1−O(δ)) ≤ −C ′

2Mt−1
.
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On the other hand, suppose
∑

w∈St−1
d(w)2(d(w) − 2) < 5

4d(St−1). Lemma 7.5.7 states that

Et−1 [dS(wt)− 2] = ft +O(δ)(1 + ft). Since we assume that ft ≤ −2δ1/4, it follows that

Et−1 [dS(wt)− 2] = ft(1 + o(1)) =
1

Mt−1

 ∑
w∈St−1

d(w)(d(w)− 2)− d(St−1)

 (1 + o(1)).

Observation 6.2.17 then implies that
∑

w∈St−1
d(w)(d(w) − 2) ≤ 2

3

∑
w∈St−1

d(w)2(d(w) − 2) ≤
5
6d(St−1). Therefore,

Et−1 [dS(wt)− 2] ≤ 1

Mt−1

2

3

∑
w∈St−1

d(w)2(d(w)− 2)− d(St−1)

 (1 + o(1))

≤ 1

Mt−1

(
5

6
d(St−1)− d(St−1)

)
(1 + o(1))

≤ −C

for some constant C > 0, since d(St−1) = Θ(M) for all t = o(M) by Observation 7.5.3. This

completes the proof.

Now we can give the proof of Lemma 7.5.9. The remaining part of the argument is very similar

to the proofs of Lemmas 6.2.13 and 6.2.19. We show that Xt stays small for all necessary values

of t under the assumptions of Lemma 7.5.9. Thus, we show that ft decreases as t increases, much

like it did in the configuration model. Then we simply apply Lemma 7.5.7 to prove the desired

bound on Et−1 [dS(wt)− 2] for all t ≤ δ1/19M . Recall the definitions of λ := 10−6d(S) nM δ
1/4 and

Ix = {t ∈ Z | (x− 1)λ < t ≤ xλ}.

Proof of Lemma 7.5.9. The first step is showing that an analogous result to Lemma 6.2.19 holds

for all the necessary values of t. The proof method is effectively the same, except we also need

to check the extra condition that Xt = o(M) for all t ∈ Ix for x ≤ δ−1/5. Let (Tt)t≥1 be a

sequence of partial pairings that satisfies the conditions of Lemma 7.5.9. We prove the following

statement for all x ∈ {1, . . . , δ−1/5} by induction on x: if (Tt)t≥1 is such that
∣∣∣∑t′≤tAt′

∣∣∣ ≤M2/3

and
∣∣∣∑t′≤tGt′

∣∣∣ ≤ 4
√

logM
Mδ1/2

√
t for all t ≥ 1, then ft+1 − ft ≤ 1

Mt−1
, ft ≤ −2δ1/4, and Xt ≤ δ1/5 for

all t ∈ Ix. Since δ1/19M = o(δ−1/5λ), this implies that the statement holds for all t ≤ δ1/19M .

We first prove the base case where x = 1. The definitions of λ and I1 imply that Xt < 10−6n

for all t ∈ I1. Lemma 7.5.10 states that ft ≤ −2δ1/4 for all t ∈ I1. Thus, Lemma 7.5.7 implies that

Et−1 [dS(wt)− 2] = ft(1 + o(1)) for all t ∈ I1. Combining this with the assumption on
∑

t′≤tAt′

implies that, for all t ∈ I1,

Xt ≤ X ′0 +

t∑
i=1

Ei−1 [dS(wi)− 2] +

t∑
i=1

Ai ≤ 7δ1/4M +

t∑
i=1

fi(1 + o(1)) +M2/3 ≤ 8δ1/4M. (7.9)

This proves the base case. The inductive step follows similarly: suppose that the claims hold

for x′ ≤ x. Then the bound given in (7.9) that Xt ≤ 8δ1/4M for all t ∈ Ix′ , for all x′ ≤ x.

Thus, the definition of λ implies that Xt < 10−6n for all t ∈ Ix+1. Then Lemma 7.5.11 applies

for all t ∈ Ix′ , for all x′ ≤ x. Thus, by identical reasoning to Lemma 6.2.19 (specifically the

calculation given in (6.14)), it follows that fbxλc+1 ≤ −4δ1/4. Then applying Equation (7.7) gives
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that ft ≤ −2δ1/4 and ft+1 − ft ≤ 1/Mt−1 for all t ∈ Ix+1. Thus, Lemma 7.5.7 implies that

Et−1 [dS(wt)− 2] = ft(1 + o(1)) for all t ∈ Ix+1. Therefore, the inequalities given in (7.9) apply

for all t ∈ Ix+1. This completes the inductive proof.

Now suppose that (Tt)t≥1 is a sequence of partial pairings such that
∣∣∣∑t′≤tAt

∣∣∣ ≤ M2/3 and∣∣∣∑t′≤tGt′
∣∣∣ ≤ 4

√
logM

Mδ1/2

√
t for all t ≥ 1. Then the proof of Lemma 6.2.13 carries over exactly under

this restriction on t. That is, if there exists some s ≤ t such that fs < −C for some constant

C > 0, then for all t ≤ δ1/19M it follows that

ft = fs +
t−1∑
i=s

(fi+1 − fi) < −C +
t

Mt−1
= −C(1 + o(1)).

Otherwise, Es−1 [fs+1 − fs] ≤ − C
Ms−1

for all s ≤ t, and the assumed bound on
∣∣∣∑t′≤tGt′

∣∣∣ implies

that ft ≤ −Ct
Mt−1

.

This implies that for all t ≤ δ1/19M , we know that ft ≤ −Ct/Mt−1 for some constant C > 0,

and also that ft ≤ −2δ1/4 for all t ≤ δ1/19M . This means that for all such t, Lemma 7.5.7 implies

that Et−1 [dS(wt)− 2] = ft(1 + o(1)). Therefore, for all t ≤ δ1/19M , there exists some constant c,

where c ≤ C, such that Et−1 [dS(wt)− 2] ≤ −ct/Mt−1. This completes the proof.

Now we show that
∑

t′≤tAt′ and
∑

t′≤tGt′ are sufficiently concentrated to apply Lemma 7.5.9.

The proof of this is analogous to Lemmas 6.2.14 and 6.2.15, and the results carry over almost

immediately. Both concentration results are stated again below for convenience. Recall At :=

dS(wt)−Et−1 [dS(wt)] and recall Gt := ft+1 − ft −Et−1 [ft+1 − ft]. We give a brief sketch of why

the respective configuration model result translates to this model, and refer to the original proofs

for the full details.

Lemma 7.5.12. The probability that
∣∣∣∑t′≤tAt′

∣∣∣ > M2/3 for some t ≤ M is at most 2e−M
1/4

.

The probability that
∣∣∣∑t′≤tGt′

∣∣∣ > 4
√

logM
Mδ1/2

√
t for some t ≤M is o(M−2).

Proof sketch. Corollary 7.5.2(b) states that St has maximum degree δ−1/4 for all t ≥ 0. Thus,

|At| ≤ δ−1/4 for all t ≥ 1. Thus, an identical proof to that given in Lemma 6.2.15 shows that(∑
t′≤tAt

)
t≥1

is a martingale and satisfies the desired concentration inequality. To bound |Gt|,
note that ft+1 − ft can be expressed as in Equation (7.7), and thus

|ft+1 − ft| =
∣∣∣∣−dS(wt)

Mt−1
(dS(wt)− 2) +

dS(wt)

Mt
ft −

dS(wt)
2

MtMt−1
(dS(wt)− 2)

∣∣∣∣
≤ δ−1/4(δ−1/4 − 2)

Mt−1
+

dS(wt)

Mt

∣∣∣∣ft − dS(wt)

Mt−1
(dS(wt)− 2)

∣∣∣∣
≤ 2δ−1/2

Mt
.

Therefore, the proof of Lemma 6.2.14 carries over exactly.

We now apply Lemmas 7.5.9 and 7.5.12 to show that in the deferred decision process, starting

from V0 = U1 ∪ W ′ ∪ {v} for some arbitrary v ∈ S, with probability 1 − o(M−2) there exists

some time t ≤ δ1/19M such that Xt = 0. By design, the proof of this is almost identical to

Lemma 6.2.20.
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Lemma 7.5.13. With probability 1 − o(M−2), there exists some time t ≤ δ1/18M such that

Xt = 0 in the deferred decision process.

Proof. Suppose that (Tt)t≥0 is a sequence of partial pairings such that, for all t ≤ δ1/18M ,∣∣∣∣∣∣
∑
t′≤t

At′

∣∣∣∣∣∣ ≤M2/3 and

∣∣∣∣∣∣
∑
t′≤t

Gt′

∣∣∣∣∣∣ ≤ 4
√

logM

Mδ1/2

√
t. (7.10)

Lemma 7.5.12 states that this occurs with probability 1− o(M−2). Thus, it suffices to show that

for each such sequence of partial pairings, there exists some t ≤ δ1/18M such that Xt = 0. Since

we assume (Tt)t≥1 satisfies the inequalities given in (7.10), it follows that Lemma 7.5.9 applies, and

thus there exists some constant c > 0 such that Et−1 [dS(wt)− 2] ≤ −ct/Mt−1 for all t ≤ δ1/19M .

Consider the value of X ′T at time T := δ1/18M :

X ′T ≤ 7δ1/4M +
T∑
t=1

(dS(wt)− 2)

≤ 7δ1/4M +M2/3 −
T∑
t=1

ct

Mt−1

≤ 7δ1/4M +M2/3 +
cT (T − 1)

2M

≤ 7δ1/4M +M2/3 − δ1/8M

< 0.

Therefore, since Xt ≤ X ′t for all t, there exists some t ≤ T such that Xt = 0. Since this holds for

all sequences of partial pairings such that the inequalities in (7.10) holds, and those inequalities

hold for all t ≥ 0 with probability 1− o(M−2), this completes the proof.

As in the configuration model, we use Lemma 7.5.13 to show that every component in G∗[S]

a.a.s. contains o(|S|) edges and vertices, which completes the proof of Theorem 7.1.1. This proof

of the a.a.s. non-existence of an induced giant component in the subcritical case is almost identical

to the proof in the configuration model. The only difference is in the exact definition of V0, but

this difference is purely nominal. As mentioned at the start of this section, Lemma 6.3.1 implies

that M = Θ(|S|), since RS = o(M) and d(S) = Θ(M).

Proof of Theorem 7.1.1. Lemma 6.3.1 states that if RS = o(M) and d(S) = Θ(M) then M =

Θ(|S|). Suppose that V0 = U1∪W ′∪{v} for an arbitrary v ∈ S. By Lemma 7.5.13, with probability

1− o(M−2) there is some time t ≤ δ1/18M such that X ′t ≤ 0, and thus Xt = 0. This implies that,

with probability 1− o(M−2), the total degree of all vertices in S in every component explored by

the process starting at v at this time t is at most d(U1) +
∑t

i=1 dS(wi) < 6δ1/4M + 2t < 3δ1/18M

(where the bound on d(U1) is from Corollary 7.5.2(a)).

Taking the union bound over all (at most n) choices for the vertex v, a.a.s. every component

of G∗[S] has at most |V0 ∩ S| + δ1/18M vertices and at most 3δ1/18M edges. Since |V0 ∩ S| =

|U1 ∪ {v}| ≤ 6δ1/4M + 1 and M = Θ(|S|), this implies that the largest component in G∗[S] a.a.s.

has less than 2δ1/18M = o(|S|) vertices and o(M) edges. Recall that G∗ ∈ Φ is a simple pairing

corresponding to the graph G. Since the largest component in G∗[S] has the same distribution as

the largest component in G[S] (where G ∼ G(d)), this completes the proof.
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7.6 Analysis in the supercritical regime

In this section we prove Theorem 7.1.2(a) in the case that M = Θ(n). In combination with

Lemma 7.1.4, this completes the proof of Theorem 7.1.2(a). Recall that

H+ =
{
v ∈ [n] : d(v) > δ

√
M
}

(7.11)

for some δ → 0 satisfying conditions (a) – (c) of Remark 7.3.1, and recall that S+ = H+ ∩ S and

S
+

= H+ ∩ S. Much like in the configuration model proof, we split the proof of the supercritical

case into two parts: one for pairs (d, S) such that d(S+) = o(M) and one where d(S+) = Θ(M).

The first case is analysed via the exploration process in much the same way as the configuration

model proof, using Lemmas 7.4.1 and 7.4.2. Similarly to the configuration model proof, the case

where d(S+) = Θ(M) is not shown via the exploration process. However, the proof we use here

is quite different to the configuration model result, due to the complexities of G(d).

7.6.1 The case where d(S+) = o(M)

In this section we again analyse the exploration process. The idea in this section is the same as

in the previous section: proving that the growth of Xt throughout the deferred decision process is

similar to its growth in the configuration model. Much like in the configuration model, the proof

of the supercritical case is more straightforward than the proof of the subcritical case that we gave

in the previous section. The first step is to define a preprocessing step such that Lemmas 7.4.1

and 7.4.2 apply to the process.

Preprocessing and setup

Define ε > 0 to be a constant such that RS ≥ εM . This implies that there exists ε′ := εMn such

that RS ≥ ε′n and ε′ = Θ(1). Note that since n ≤ M , we know that ε ≤ ε′. For convenience, we

choose ε such that ε′ ≤ 1. Define τ similarly to the corresponding variable in the configuration

model: τ is the smallest time t such that either Xτ > βM , where β := 10−6ε2, or Mt ≤
(
1− ε

4

)
M .

Since Mt−1 −Mt ≥ 1 for all t, this immediately implies that τ ≤ ε
4M = ε′

4 n.

If S+ is non-empty and d(S+) = o(M), then in the preprocessing step we delete the set

S+, moving it into S. If S+ = ∅, then this preprocessing step does nothing. We show that

G[S\S+] a.a.s. contains an edge-giant component, and thus a.a.s. G[S] also contains an edge-

giant component. The important thing to check in this case is that moving the vertices from S+

into S does not significantly affect the exploration process. Since d(S+) is small, this is indeed

the case. This is similar to the idea used in the configuration model proof, but again we do not

explode the deleted vertices into degree 1 vertices. For the preprocessing set, define V0 = {v} for

an arbitrary vertex v ∈ S\S+, and E0 = ∅.
Thus, we can think of this preprocessing step as setting V0 = {v}, S0 = S\ ({v} ∪ S+), and

S0 = S ∪ S+. This implies that if w ∈ S+, then dS(w) = 1 for the purposes of our analysis of

the exploration process. In this sense, we do not consider the vertices in S+ to actually be in S,

implicitly redefining S := S\S+. As a result of this, when discussing the exploration process for

t ≥ 0 we often refer to H+ simply as S
+

, using S
+

to refer to every vertex with degree greater

than δ
√
M in G. We still use S+ to refer to the set of vertices in G with degree greater than δ

√
M
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that were originally in S, as there are times that we need to refer to this set specifically. Since

d(H+) = o(M) and M = Θ(n), we can again define δ such that d(H+) ≤ δ2n.

Recall d(t) (w), the number of “available” half edges in vertex w at time t, from Equation (7.3).

We show, analogously to the subcritical case, that Tt−1 is predictable for all t ≤ τ , meaning that it

satisfies (P1) to (P5). These all follow from the definition of τ and the fact that St has maximum

degree δ
√
M for all t ≥ 0 by preprocessing.

Proposition 7.6.1. Suppose that RS ≥ εM for some constant ε > 0 such that ε ≤ ε′ ≤ 1.

Suppose that M = Θ(n), d(H+) ≤ δ2n, and t ≤ τ . Then Tt−1 is predictable.

Proof. The definition of τ implies that condition (P1) is satisfied. The preprocessing step implies

that St has maximum degree δ
√
M for all t ≥ 0. Since vt ∈ S for all t > 0, conditions (P2)

and (P3) are satisfied. Recall that we chose ε > 0 such that ε ≤ ε′ ≤ 1. The definition of τ

implies that Xt−1 ≤ 10−6ε2M = 10−6εε′n < 10−3n, and thus condition (P4) is satisfied. Finally,

we know that |Vt−1| ≤ |V0| + t − 1 = t, and t ≤ τ ≤ ε′

4 n ≤
1
4n, which means that condition (P5)

is satisfied.

Thus, the following two lemmas are an immediate consequence of this proposition and Lem-

mas 7.4.1 and 7.4.2 respectively.

Lemma 7.6.2. Suppose that d(H+) ≤ δ2n and RS ≥ εM , where M = Θ(n) and ε ≤ ε′ ≤ 1. For

all t ≤ τ , Pt−1

(
wt ∈ S

+
)
≤ δ.

Lemma 7.6.3. Suppose that d(H+) ≤ δ2n and RS ≥ εM , where M = Θ(n) and ε ≤ ε′ ≤ 1.

Furthermore, suppose that t ≤ τ . Let w /∈ S+
be a vertex such that d(t−1)(w) ≥ 1 and vtw /∈ Et−1.

Then

Pt−1

(
wt = w|wt /∈ S

+
)

=
d(t−1)(w)

Mt−1
(1±O(δ)) .

Process evolution in the supercritical regime

Now we use Lemmas 7.6.2 and 7.6.3 to prove the case of Theorem 7.1.2 when the total degree

of d(H+) = o(M) and M = Θ(n). Again we adapt the proof of the configuration model result.

Since RS ≥ εM , this implies that
∑

i≤jS d(i)(dS(i) − 2) > 0. From this we also know that

dS(jS) = d(jS) ≥ 3, otherwise this summation could not be positive.

In the following lemma we show that if S+ has small total degree, then moving these vertices

from S to S does not significantly alter ft (recall that ft, given in Equation (7.5), is intuitively the

expectation of dS(wt) − 2 if Pt−1 (wt = w) = d(t−1)(w)
Mt−1

for all w ∈ V ). Furthermore, it also shows

that as long as a sufficiently small (but positive) fraction of the graph has been explored, the

value of ft is guaranteed to be bounded away from 0. This proof is very similar to Lemma 6.2.4,

but included for completeness as some of the functions considered are slightly different to the

configuration model analogue (such as dS(·) rather than d(·)).

Lemma 7.6.4. Suppose d(S+) ≤ εM
100 and RS ≥ εM for fixed ε > 0. Suppose U ⊂ S is a set

containing all vertices in S with degree greater than δ
√
M , and suppose d(U) < ε

4M + d(S+).

Then ∑
i∈V \U

d(i) (dS(i)− 2) ≥ 2

3
εM.
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Proof. We first prove by contradiction that d(jS) ≤ δ
√
M under the assumptions of this lemma.

If d(jS) > δ
√
M , then vertex jS and all vertices of greater degree are in U , and thus d(U) ≥ RS

which violates the assumptions on U . We write∑
i∈V \U

d(i) (dS(i)− 2) =
∑
i≤jS

d(i)(dS(i)− 2)−
∑

i∈U,i≤jS

d(i) (dS(i)− 2)

+
∑

i/∈U, i>jS

d(i) (dS(i)− 2) .

To bound the first sum on the right hand side, first note that
∑

i≤jS d(i)(dS(i)− 2) > 0. Then for

the latter two sums, note that dS(i) = d(i) ≥ 3 for all i ≥ jS . This implies that d(jS) ∈ [3, δ
√
M ].

Then the expression given above is bounded as follows.∑
i∈V \U

d(i) (dS(i)− 2) ≥ −
∑

i∈U,i≤jS

d(i) (dS(i)− 2) + (d(jS)− 2)
∑

i/∈U,i>jS

d(i)

≥ −(d(jS)− 2)
∑

i∈U,i≤jS

d(i) + (d(jS)− 2)

∑
i>jS

d(i)−
∑

i∈U,i>jS

d(i)


≥ (d(jS)− 2) (RS − d(jS)− d(U))

≥ (d(jS)− 2)
(
RS − δ

√
M − ε

4
M − d(S+)

)
≥ 2

3
(d(jS)− 2)RS .

Since d(jS) ≥ 3 and RS ≥ εM , this proves the lemma.

We now use this lemma to show that Et−1 [dS(wt)− 2] is bounded away from 0 for all t ≤ τ .

Lemma 7.6.5. Suppose that M = Θ(n), RS ≥ εM , and d(S+) ≤ εM
100 . For all t ≤ τ ,

Et−1 [dS(wt)− 2] ≥ 1
4ε.

Proof. We first give a quick outline of the proof. We use Lemma 7.6.4 to show that ft ≥ 1
3ε.

We then show that, since the switching errors given in Lemma 7.6.3 are small, the value of

Et−1 [dS(wt)− 2] is not too far from ft. Firstly, ft is bounded below as follows:

∑
w∈V

d(t−1)(w)

Mt−1
(dS(w)− 2) =

∑
d(t−1)(w)≥1,dS(w)≥2

d(w)

Mt−1
(dS(w)− 2)−

∑
d(t−1)(w)≥1,dS(w)=1

d(t−1)(w)

Mt−1

≥
∑

d(t−1)(w)≥1,dS(w)≥2

d(w)

M
(dS(w)− 2)−

∑
d(t−1)(w)≥1,dS(w)=1

d(t−1)(w)(
1− ε

4

)
M

=
∑
w∈V

d(t−1)(w)

M
(dS(w)− 2)−

(
1

1− ε
4

− 1

) ∑
d(t−1)(w)≥1,dS(w)=1

d(w)

M

=
∑
w∈V

d(t−1)(w)

M
(dS(w)− 2)−

(ε
4

+O
(
ε2
)) ∑

d(t−1)(w)≥1,dS(w)=1

d(w)

M

≥
∑
w∈V

d(t−1)(w)

M
(dS(w)− 2)− ε

4
.

For all w ∈ S, d(t−1)(w) is equal to either 0 if w ∈ Vt−1 or d(w) otherwise. For all w ∈ S, we use
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the simple bound the d(t−1)(w) ≤ d(w). It then follows that

∑
w∈V

d(t−1)(w)

M
(dS(w)− 2) ≥

∑
w/∈S∩Vt−1

d(w)

M
(dS(w)− 2).

Let U = (S ∩ Vt−1) ∪ S+. Note that since t ≤ τ , it follows that d(U) < ε
4M + d(S+). Then

Lemma 7.6.4 applies, and it follows that ft ≥
(

2
3 −

1
4

)
ε ≥ 1

3ε.

Now relating this to Et−1 [dS(wt)− 2] via Lemma 7.6.3, it follows that

Et−1 [dS(wt)− 2] =
∑
w∈V

Pt−1 (wt = w) (dS(w)− 2)

=
∑
w∈V

Pt−1

(
wt = w|wt /∈ S

+
)

(dS(w)− 2)Pt−1

(
wt /∈ S

+
)

+
∑
w∈V

Pt−1

(
wt = w|wt ∈ S

+
)

(dS(w)− 2)Pt−1

(
wt ∈ S

+
)
.

Note that wt ∈ St−1, wt ∈ St−1\S
+

, and wt ∈ S
+

are all mutually exclusive events. Thus,

Et−1 [dS(wt)− 2] =
∑

w∈St−1

Pt−1

(
wt = w|wt /∈ S

+
)

(d(w)− 2)Pt−1

(
wt /∈ S

+
)

+
∑

w∈St−1\S
+

Pt−1

(
wt = w|wt /∈ S

+
)

(−1)Pt−1

(
wt /∈ S

+
)

+
∑
w∈S+

Pt−1

(
wt = w|wt ∈ S

+
)

(−1)Pt−1

(
wt ∈ S

+
)
.

(7.12)

We analyse each sum in turn. The last summation is∑
w∈S+

Pt−1

(
wt = w|wt ∈ S

+
)

(−1)Pt−1

(
wt ∈ S

+
)

= −Pt−1

(
wt ∈ S

+
) ∑
w∈S+

Pt−1

(
wt = w|wt ∈ S

+
)
≥ −δ

(7.13)

by Lemma 7.6.2 and the law of total probability. We now apply Lemma 7.6.3 to bound the

remaining two sums from below. Recall from Remark 7.4.6 the definition of Ft−1, the set of

vertices w ∈ St−1\S
+

that are adjacent to vt in the partial pairing Tt−1; this is the set of vertices

such that Pt−1 (wt = w) = 0 despite the fact that d(t−1)(w) ≥ 1. Since d(vt) ≤ δ
√
M for all t ≥ 0,

it follows that d(Ft−1) ≤ δ2M . Thus, we can bound the second sum by

−Pt−1

(
wt /∈ S

+
) ∑
w∈St−1\S

+

Pt−1

(
wt = w|wt /∈ S

+
)
≥ −

∑
w∈St−1\S

+

Pt−1

(
wt = w|wt /∈ S

+
)

≥ −
∑

w∈St−1

d(t−1)(w)

Mt−1
(1 +O(δ))

= −d(St−1)

Mt−1
(1 +O(δ)). (7.14)

To apply Lemma 7.6.3 to obtain a lower bound on the first sum, we first need to split the sum

based on whether the value of the summand is negative or not. Doing so, we bound the first sum
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from below by

(1−O(δ))

 ∑
w∈St−1,d(w)≥2

d(w)

Mt−1
(d(w)− 2)(1−O(δ))−

∑
w∈St−1,d(w)=1

d(w)

Mt−1
(1 +O(δ))


=(1−O(δ))

∑
w∈St−1

d(w)

Mt−1
(d(w)− 2)−O(δ)

∑
w∈St−1,d(w)=1

d(w)

Mt−1

=(1−O(δ))
∑

w∈St−1

d(w)

Mt−1
(d(w)− 2)−O(δ), (7.15)

since n1/Mt−1 = O(1). Therefore, combining the bounds given in (7.12) to (7.15) gives that

Et−1 [dS(wt)− 2] ≥ (1−O(δ))
∑

w∈St−1

d(w)

Mt−1
(d(w)− 2)− d(St−1)

Mt−1
(1 +O(δ))−O(δ)

= (1−O(δ))
∑
w∈V

d(w)

Mt−1
(dS(w)− 2)−O(δ)

= (1−O(δ))ft −O(δ).

Thus, it follows that Et−1 [dS(wt)− 2] ≥ (1−O(δ))1
3ε−O(δ) ≥ 1

4ε. Since Lemma 7.6.3 holds for

all t ≤ τ , this completes the proof.

Recall that Xt = |Xt|, the number of open edges in the partial pairing at time t. The next

ingredient we need to obtain a lower bound on Xt is a lower bound on the number of back edges

that are revealed throughout the process. The definition of the exploration process means that

we only reveal back edges between Vt−1 ∩ S and wt ∈ S. Intuitively, G(d) is locally tree-like in

the sense that we expect very few short cycles. Thus, we expect that the number of back edges

revealed at each step should usually be quite low. This indeed turns out to be the case, as we

prove via the switching method in Lemma 7.6.6. This lemma implies that, on average, back edges

do not consume all or almost all of the open edges gained at each step, and thus do not affect

the average size of Xt beyond a constant factor. Recall that d′S,t(wt) is the number of back edges

revealed by the process at step t.

Lemma 7.6.6. Let t ≤ τ . Then conditional on the process up to time t− 1,

Et−1

[
d′S,t(wt)

]
≤ 1

12
Et−1 [dS(wt)− 2] .

Proof. Let T = (Vt−1, Et−1,Xt−1) be the partial pairing at time t− 1. Let Φw(T ) be the subset of

simple pairings G∗ ∈ Φ such that G∗ agrees with T and wt = w, for some vertex w. Note that if

w ∈ S or d(w) = 1, then d′S,t(w) = 0. Thus, we restrict our attention to the case where w ∈ St−1

and d(w) ≥ 2. Let Ai be the subset of Φw(T ) such that there are exactly i edges between w and

Vt−1 ∩ S\{vt}, that is, there are exactly i back edges revealed at step t of the process. We define

a switching between Ai+1 and Ai, for all i ≥ 0. Let G∗ ∈ Ai+1, and let wz be a back edge, that

is, an edge such that z ∈ S ∩ Vt−1 and wz ∈ E(G∗). Let (x, y) be an ordered pair of adjacent

vertices such that xy /∈ Et−1. Then a switching deletes the edges wz and xy and adds in edges

wy and xz, creating a new G′∗.

For each G∗ ∈ Ai+1, by definition there are exactly i+ 1 choices for a back edge wz. There are
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vt

wz

x y

Tt−1

G∗ ∈ Ai+1

vt

wz

x y

Tt−1

G′∗ ∈ Ai

Figure 7.8: A diagram of the switching used to prove Lemma 7.6.6, which sends G∗ ∈ Ai+1 to
G′∗ ∈ Ai.

Mt−1 choices for an ordered pair of adjacent vertices (x, y) such that xy /∈ Et−1 and d(t−1)(y) ≥ 1.

This implies that y /∈ Vt−1 ∩ S, and thus wy is not a back edge in G′∗. This choice for the edge

xy corresponds to a valid switching if and only if G′∗ ∈ Ai, which occurs if

(a) x, y /∈ S+
,

(b) x /∈ Vt−1 ∩ S,

(c) xz,wy /∈ E(G∗),

(d) the vertices {vt, w, x, y, z} are all distinct.

Of the Mt−1 choices for (x, y) mentioned previously, at most 2δ2n of these have either x ∈ S+

or y ∈ S+
. We now bound from below the number of remaining choices for (x, y) that do not

satisfy conditions (b) – (d). Suppose (b) is not satisfied. Then the edge xy corresponds to an

open edge and its mate. Thus, there are at most Xt−1 choices for (x, y) such that x ∈ Vt−1 ∩ S.

By the standard counting arguments, since {vt, w, x, y, z} all have degree at most δ
√
M in G (as

z must be in Vt−1 ∩ S by definition and we have already counted the case where x, y ∈ S
+

),

it follows that, for each choice of z, there are at most 2δ2M choices for (x, y) such that either

xz ∈ E(G∗) or wy ∈ E(G∗). Finally, there are O(δ
√
M) choices for {vt, w, x, y, z} such that the

vertices are not all distinct from each other. Therefore, for each G∗ ∈ Ai+1, there are at least

(i + 1)(Mt−1 − Xt−1 − O(δ2M)) choices for the vertices x, y, and z that correspond to a valid

forward switching.

The number of reverse switchings that can be applied to each G′∗ ∈ Ai is at most the number

of ways of choosing a neighbour y of w such that y /∈ Vt−1 ∩ S and choosing an edge xz where

z ∈ Vt−1 ∩ S and x /∈ Vt−1 ∩ S. There are at most d(w) − 1 choices for y, as vtw ∈ E(G∗) by

assumption. There are at most Xt−1 choices for xz, since this edge corresponds to an open edge.

For all t ≤ τ , we know that Xt−1 ≤ βM , where β := 10−6ε2. Thus, for all i ≥ 0,

|Ai+1|
|Ai|

≤ (d(w)− 1)Xt−1

(i+ 1)(Mt−1 −Xt−1)
(1 + o(1)) ≤ (d(w)− 1)β

(i+ 1)(1− 10−6ε2)
(
1− ε

4

) ,
since Mt−1 ≥

(
1− ε

4

)
M for all t ≤ τ . Now suppose that i + 1 ≥

√
β(d(w) − 1). Then this

ratio is at most 2
√
β. Using this, we obtain the following bound on Et−1

[
d′S,t(wt)

∣∣∣wt = w
]

for
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all w ∈ St−1 with degree at least 2:

Et−1

[
d′S,t(wt)

∣∣wt = w
]

=
∑
k≥0

kPt−1

(
d′S,t(wt) = k

∣∣wt = w
)

≤
√
β(d(wt)− 1) +

∑
k>
√
β(d(wt)−1)

kPt−1

(
d′S,t(wt) = k

∣∣wt = w
)

≤
√
β(d(wt)− 1) +

∑
k>
√
β(d(wt)−1)

(
k +

√
β(d(wt)− 1)

)
(2
√
β)k

=
√
β(d(wt)− 1)

1 +
∑
i≥1

(2
√
β)i

+
∑
i≥1

i(2
√
β)i

<
√
β(d(wt)− 1)

(
1 + 2.5

√
β
)

+
2
√
β

(1− 2
√
β)2

≤
√
β(d(wt)− 1)

(
1 + 2.5

√
β
)

+
2
√
β(d(wt)− 1)

(1− 2
√
β)2

,

since we are conditioning on wt = w for some w ∈ St−1 such that d(w) ≥ 2. Thus, for each such

vertex w,

Et−1

[
d′S,t(wt)

∣∣wt = w
]
≤ 2
√
β(d(wt)− 1)

(
2 + 5

√
β
)
≤ 6
√
β(d(wt)− 1).

The law of total expectation gives that

Et−1

[
d′S,t(wt)

]
=
∑
w∈V

Pt−1 (wt = w)Et−1

[
d′S,t(wt)

∣∣wt = w
]
.

By definition, Pt−1 (wt = w) = 0 if w /∈ St−1 ∪ St−1. Furthermore, Et−1

[
d′S,t(wt)

∣∣∣wt = w
]

= 0 if

w ∈ S. Combining this with the above bound in the case that dS(w) ≥ 2, we obtain

Et−1

[
d′S,t(wt)

]
≤ 6
√
β
∑
w∈V

Pt−1 (wt = w) (dS(w)− 1)

= 6
√
βEt−1 [dS(wt)− 1] = 6

√
β (Et−1 [dS(wt)− 2] + 1) .

By Lemma 7.6.5, Et−1 [dS(wt)− 2] ≥ ε/4 for all t ≤ τ . Since β = 10−6ε2, the result follows.

The last ingredient we need is the concentration of Xt. Define At = dS(wt)−Et−1 [dS(wt)] and

Bt = d′S,t(wt)−Et−1

[
d′S,t(wt)

]
. The proof of the concentration of these over all t is identical to the

corresponding configuration model result (Lemma 6.2.7), as it still follows that |At|, |Bt| ≤ δ
√
M

(since the preprocessing step implies that dS(wt), d
′
S,t(wt) ≤ δ

√
M for all t ≥ 0). Thus, we omit

the proof here.

Lemma 7.6.7. With probability 1− o(1), both |
∑

t′≤tAt′ | and |
∑

t′≤tBt′ | are strictly less than
M

log logM for all t ≤ τ .

Recall that τ is the minimum time at which either Xτ > βM or Mτ ≤
(
1− ε

4

)
M , where ε is

the constant such that RS ≥ εM and β = 10−6ε2. We now show that a.a.s. Xτ > βM . This proof

uses many of the same ideas as the corresponding result in the configuration model (Lemma 6.2.8).
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Lemma 7.6.8. With probability 1− o(1), at time τ of the deferred decision process we have that

Xτ > βM .

Proof. The definition of the exploration process implies that

Xτ ≥ X0 +
∑
t≤τ

[dS(wt)− 2]− 2
∑
t≤τ

d′S,t(wt).

Recall that At = dS(wt) − Et−1 [dS(wt)] and Bt = d′S,t(wt) − Et−1

[
d′S,t(wt)

]
. Now consider all

sequences of partial pairings (Tt)t≥1 generated by the exploration process such that∣∣∣∣∣∣
∑
t′≤t

At′

∣∣∣∣∣∣ ≤ M

log logM
and

∣∣∣∣∣∣
∑
t′≤t

Bt′

∣∣∣∣∣∣ ≤ M

log logM
(7.16)

for all t ≤ τ . Then for each such sequence of partial pairings,

Xτ ≥
∑
t≤τ
Et−1 [dS(wt)− 2]− 2

∑
t≤τ
Et−1

[
d′S,t(wt)

]
− 3M

log logM
.

Applying Lemma 7.6.6 then gives that

Xτ ≥
5

6

ε

4
τ − 3M

log logM
. (7.17)

Suppose, for contradiction, that Xτ ≤ βM . Then the definition of τ implies that Mτ ≤
(
1− ε

4

)
M ,

and thus
∑

t≤τ dS(wt) ≥ ε
4M . We consider two cases based on the value of τ . Firstly, if τ ≥ 3ε

64M ,

then the inequality in (7.17) immediately gives the desired contradiction. On the other hand, if

τ < 3ε
64M , then Lemma 7.6.6 and an identical computation to that given in (6.6) imply that

Xτ ≥
5

6

∑
t≥τ

[dS(wt)− 2] +
1

6

∑
t≤τ

(At − 2Bt),

Since we are assuming that τ < 3ε
64M ,

∑
t≤τ dS(wt) ≥ ε

4M , and the inequalities given in (7.16)

hold for this sequence of partial pairings, then

Xτ ≥
5ε

24
M − 2τ − M

2 log logM
> βM.

Therefore, if the inequalities given in (7.16) are satisfied, Xτ > βM . Lemma 7.6.7 states that

a.a.s. these inequalities hold for all t ≤ M . This implies that a.a.s. Xτ > βM , which completes

the proof.

Lemma 7.6.8 shows that a.a.s. the partial pairing Tτ contains a large number of open edges.

These open edges, by definition, must all be in the same connected component of Tτ . Therefore,

all their parent vertices belong to the same component of G[S]. However, this does not imply

that the component in G[S] contains Θ(M) edges, as it is possible that all or almost all of these

open edges pair with half edges in S. We show that a.a.s. this is not the case, and that a positive

fraction of these open edges pair with half edges in Sτ (recall Sτ = S\(Vτ )). This implies that

G[S] a.a.s. contains a component with Θ(M) edges. Since the preprocessing step moves all vertices
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from S+ to S, in the following proof we again refer to the set of all vertices with degree greater

than δ
√
M simply as S

+
.

Lemma 7.6.9. Suppose (d, S) satisfies the conditions of Theorem 7.1.2 and RS ≥ εM for some

constant ε > 0. Then a.a.s. G[S] contains a component with at least 1
5εβM edges.

Proof. Let T be a partial pairing. Let Φ(T ) be the subset of simple pairings G∗ ∈ Φ such that

there exists a sequence of choices for half edges at each step of the exploration process such that

Tτ (G∗) = T . Suppose that T has Xτ open edges for some Xτ > βM and that Φ(T ) is non-empty.

We define a switching that maps elements of Φ(T ) to Φ(T ).

Let Ai be the set of simple pairings G∗ ∈ Φ(T ) such that exactly i of the Xτ open edges in

Tτ (G∗) are paired with half edges in Sτ . We define a switching between Ai+1 and Ai. Suppose

G∗ ∈ Ai+1. Let uv be an edge in G∗ such that u ∈ Vτ ∩ S and v ∈ Sτ . Let (x, y) be an ordered

pair of adjacent vertices such that x ∈ Sτ (note that this means (x, y) and (y, x) are counted

separately if x, y ∈ Sτ ). A switching takes the edges uv and xy, deletes them, and replaces them

with the edges ux and vy, creating a new pairing G′∗. This switching is valid as long as G′∗ is

a simple pairing in Ai. This occurs if and only if the vertices {u, v, x, y} are distinct, neither of

the edges ux or vy are present in G∗, and y /∈ Vτ ∩ S. The number of forward switchings for

all G∗ ∈ Ai+1 is the number of choices for vertices {u, v, x, y} that satisfy the above restrictions.

There are exactly i+ 1 choices for the edge uv so that u ∈ Vτ ∩ S and v ∈ Sτ . There are at most

d(Sτ ) choices for vertex x and neighbour y, as this is the number of choices for a half edge with

parent vertex in Sτ . Thus, the number of forward switchings is at most (i+ 1)d(Sτ ).

u

v

y

x

Vτ ∩ S Vτ ∩ S

Sτ

Sτ

G∗ ∈ Ai+1

u

v

y

x

Vτ ∩ S Vτ ∩ S

Sτ

Sτ

G′∗ ∈ Ai

Figure 7.9: A diagram of the switching used in the proof of Lemma 7.6.9, which sends G∗ ∈ Ai+1

to G′∗ ∈ Ai. The position of vertex y in the diagram is to denote that y ∈ Sτ and y ∈ Sτ are both
allowed.

Now suppose G′∗ ∈ Ai. We now look for a lower bound on the number of switchings that

create G′∗, equivalently the number of backward switchings from some G′∗ ∈ Ai to G∗ ∈ Ai+1.

There are Xτ − i choices for the edge ux such that u ∈ Vτ ∩S and x ∈ Sτ . There are d(Sτ ) choices

for an ordered pair of adjacent vertices (v, y) such that v ∈ Sτ , with no restrictions on y. One of

these choices does not correspond to a valid switching if

(a) uv ∈ E(G′∗),

(b) xy ∈ E(G′∗),
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(c) vertices {u, v, x, y} are not distinct,

(d) y ∈ Vτ ∩ S.

Let W (G′∗) be the number of choices that satisfy at least one of (a) – (d). It follows that the

number of valid backward switchings that can be applied to G′∗ is (Xτ − i)d(Sτ )−W (G∗). Thus,

we bound W from above. We do so by bounding Z(G′∗) from above, where Z(G′∗) is the number

of choices for {u, v, x, y} such that

(a′) x ∈ S+
or y ∈ S+

,

(b′) x, y /∈ S+
and uv ∈ E(G′∗),

(c′) x, y /∈ S+
and xy ∈ E(G′∗),

(d′) x, y /∈ S+
and the vertices {u, v, x, y} are not distinct,

(e′) y ∈ Vτ ∩ S.

It follows that W ≤ Z for all G′∗ ∈ Ai. We now show that

Z ≤ (Xτ − i)
(
d(S

+
) + i+ 3δ2M

)
+ d(Sτ )d(S

+
). (7.18)

For case (a′), there are Xτ − i choices for edge ux such that u ∈ Vτ ∩ S and x ∈ Sτ . There

are at most d(S
+

) choices for a vertex y ∈ S
+

and a neighbour v. Thus, there are at most

(Xτ − i)d(S
+

) choices for {u, v, x, y} such that u ∈ S ∩ Vτ , x ∈ Sτ , and y ∈ S+
. Similarly, there

are d(S
+

) choices for a vertex x ∈ S+
and neighbour u, and d(Sτ ) choices for {v, y} such that

vy ∈ E(G′∗) and v ∈ Sτ . Thus, there are at most d(S
+

)d(Sτ ) choices for {u, v, x, y} such that

x ∈ S
+

. Therefore, there are at most (Xτ − i)d(S
+

) + d(Sτ )d(S
+

) choices for {u, v, x, y} that

satisfy (a′). For case (b′), there are Xτ − i choices for the edge ux. Then, given this choice, there

are at most d(u) choices for a neighbour v of u such that v ∈ Sτ . Then there are d(v) choices for

a neighbour y of v. Note that by assumption both u and v have degree at most δ
√
M . Thus, at

most (Xτ − i)δ2M choices satisfy (b′). For case (c′), since we assume that x, y /∈ S+
, by similar

reasoning at most (Xτ − i)δ2M of the choices for {u, v, x, y} have edge xy present. For part (d′),

the only possibilities for non-distinct vertices are if x = y or u = y. There are Xτ − i choices for

ux and at most d(u) + d(x) choices for v, since vy ∈ E(G′∗) and either y = x or y = u. Thus,

there are at most 2(Xτ − i)δ
√
M choices for that satisfy (d′), since again x, y /∈ S+

. Finally, we

bound the number of choices that satisfy (e′). There are exactly i choices for an edge yv such that

y ∈ Vτ ∩ S and v ∈ Sτ , and Xτ − i choices for the edge ux such that u ∈ Vτ ∩ S and x ∈ Sτ . So

it follows that

Z ≤ (Xτ − i)
(
d(S

+
) + i+ 2δ2M + 2δ

√
M
)

+ d(Sτ )d(S
+

).

Recall that δ → 0 and δ = ω(log−1M). The bound in (7.18) then follows immediately. Thus, the

number of backward switchings that can be applied to G′∗ ∈ Ai is at least

(Xτ − i)
(
d(Sτ )− i− d(S

+
)− 3δ2M

)
− d(Sτ )d(S

+
). (7.19)
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We know by the definition of τ that d(Sτ ) ≥ RS − ε
4M − δ

√
M ≥ 3

4εM(1 − o(1)). Recall that

Xτ > βM , since we assume that T has more than βM open edges. The definition of τ implies

that Xτ−1 ≤ βM . Thus, Xτ ≤ βM + δ
√
M = βM(1 + o(1)). Also recall that d(S

+
) ≤ δ2n ≤ δM .

Therefore, for all i ≤ Xτ/2, the expression given in (7.19) is at least

(Xτ − i)d(Sτ )

(
1− 3

2ε
β −O

(
δ

ε

))
.

Recall that β = 10−6ε2. Thus, it follows for all i ≤ Xτ/2 that

|Ai|
|Ai+1|

≤ (i+ 1)d(Sτ )

(Xτ − i)d(Sτ )

(
1 + 10−5ε+O

(
δ

ε

))
.

Define i0 = d(Sτ )
2M Xτ ; note that since d(Sτ ) < M it follows that i0 < Xτ/2. Now suppose that

i+ 1 ≤ i0. Then

|Ai|
|Ai+1|

≤
d(Sτ )
2M Xτd(Sτ )

Xτ

(
1− d(Sτ )

2M

)
d(Sτ )

(1 + 10−5ε+O(δ/ε))

=
d(Sτ )

2M − d(Sτ )
(1 + 10−5ε+O(δ/ε))

≤ d(Sτ )

M + d(Sτ )
(1 + 10−5ε+O(δ/ε))

≤ d(Sτ )

2d(Sτ ) + d(Sτ )
(1 + 10−5ε+O(δ/ε))

≤ 1

2 + ε
(1 + 10−5ε+O(δ/ε))

<
1

2
,

where the last inequality follows from the fact that δ → 0 and ε is fixed. So for all i ≤ i0− logM ,

|Ai|
|Ai0 |

≤ 2− logM .

Since i0 = Θ(M), it follows that i0 > logM . Thus, we obtain a bound on the size of the union of

Ai for all i ≤ i0 − logM :

i0−logM∑
i=0

|Ai| ≤ |Ai0 |
i0−logM∑
i=0

1

2logM+i
≤ 21−logM .

Note that if Xτ > βM , then

i0 − logM =
d(Sτ )

2M
Xτ ≥

3

8
εβM(1− o(1))− logM >

1

5
εβM.

Recall that G∗ is a uniformly random simple pairing. Thus, if T is a partial pairing with more

than βM open edges and Φ(T ) is non-empty, it follows that

P
(
|E(Vτ ∩ S, Sτ )| ≤ 1

5
εβM

∣∣∣∣Tτ = T

)
≤ 21−logM .
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Thus, for a uniformly random G∗ ∈ Φ, it follows that

P
(
|E(Vτ ∩ S, Sτ )| ≤ 1

5
εβM

)
≤ 21−logM + P (Xτ ≤ βM) . (7.20)

By Lemma 7.6.8, it follows that this is o(1). Therefore, (7.20) immediately implies that the

probability that G[S] contains no component with more than εβM/5 edges is o(1). This completes

the proof.

Thus, in the case that RS ≥ εM and d(S+) = o(M), a.a.s. G[S\S+] contains a connected

component containing Θ(M) edges, and thus a.a.s. G[S] contains a component with Θ(M) edges.

We now shift focus to the case where d(S+) = Θ(M).

7.6.2 The case where d(S+) = Θ(M)

In this section we prove the following lemma. This, in combination with Lemmas 7.1.4 and 7.6.9,

shows that in the supercritical regime there a.a.s. exists a component in G[S] with Θ(M) edges,

which proves Theorem 7.1.2(a).

Lemma 7.6.10. Suppose that (d, S) satisfies the conditions of Theorem 7.1.2 and also that

d(S+) = Θ(M). Then G[S] a.a.s. contains a component with Θ(M) edges.

We do not analyse this case using the exploration process. Thus, we revert our discussion

and our proofs back to graphs G ∈ G(d) instead of simple pairings G∗ ∈ Φ. Lemma 7.1.4 proves

Lemma 7.6.10 in the case where M = ω(|S|). Thus, we only need to consider the case where

M = Θ(|S|), which immediately implies that M = Θ(n) and |S| = Θ(n). A consequence of these

assumptions is that |S\S+| = |S|(1− o(1)), as it implies that

|S+| = O(δ−1
√
M) = o(n).

Consequently, there exists some constant ξ ∈ (0, 1) such that |S\S+| ≥ 2ξn. This implies the

assumption from Theorem 7.1.2 that d(S\S+) = Θ(M).

Unlike in the previous subsection, the proof of this result does not involve moving S+ into

S. Thus, we emphasise the distinction between the sets H+, the set of all vertices with degree

greater than δ
√
M in G, and the set S

+
, which is the subset of H+ contained in S. Naturally,

since S+ = Θ(M), the set S+ is non-empty.

To prove that G[S] a.a.s. contains a component with Θ(M) edges in this case, we use a more

involved switching argument described by Hasheminezhad and McKay [65], with the relevant

lemma given in Lemma 2.3.1. The idea is that we want to define a switching that takes an edge

uv ∈ E(G), where u ∈ S+ and v ∈ S\S+
, and replaces it with an edge between S+ and S\S+.

The naive way to do this is to choose some ab where a ∈ S\S+ and swap out the pair of edges

{uv, ab} for {ua, vb}. The problem comes from trying to obtain an upper bound on the number

of choices for {u, v, a, b} such that the edge ua is present. Since u ∈ S+, it might potentially have

very high degree (potentially even degree n− 1), and as such there might be few good choices for

the vertex a such that ua /∈ E(G).

However, in some sense this case isn’t really “bad”. If some vertex u ∈ S+ has many neighbours

in S\S+, then each neighbour corresponds to another edge in G[S] — specifically, another edge
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incident to S+. On the other hand, if some vertex u ∈ S+ has few neighbours in S\S+, then there

are many good choices for the edge ab to perform the switching. So if it is the case that there

are very few valid switching choices, then there must be many edges between S+ and S\S+. To

account for this in the switching argument, we apply the framework outlined by Hasheminezhad

and McKay [65] and the bound in Lemma 2.3.1.

Lemma 7.6.11. Suppose that d(S+) = Θ(M) and the conditions of Theorem 7.1.2 are satisfied.

Suppose that M = Θ(n) and |S\S+| ≥ 2ξn for some fixed ξ > 0. Then a.a.s. there are Θ(M)

edges between vertices in S+ and vertices in S.

Proof. First we define the switching we use. For some graph G, let uv be an edge in G where

u ∈ S+ and v ∈ S\S+
. Let (x, y) be an ordered pair of adjacent vertices such that x ∈ S\S+ and

y /∈ H+. The switching then deletes the two edges xy and uv and replaces them with ux and vy,

creating a new graph G′. This switching is considered valid if G′ ∈ G(d), which occurs if and only

if ux, vy /∈ E(G) and the vertices {u, v, x, y} are all distinct. A diagram of this switching is given

in Figure 7.10. Since we assume that M = Θ(n), we define p, q = Θ(1) such that d(S+) = pn and

u

v

y

x

S\S+

S\S+

S+

G ∈ A(i, j)

u

v

y

x

S\S+

S\S+

S+

G′ ∈ A(k, `)

Figure 7.10: A diagram of the switching used in the proof of Lemma 7.6.11, which sendsG ∈ A(i, j)
to G′ ∈ A(k, `). The definition of the switching implies that k = i−1 and either ` = j or ` = j−1.
The position of vertex y in the diagram is to denote that y ∈ Sτ and y ∈ Sτ are both allowed.

d(S) = qn for notational convenience.

Let NG(S+) denote the set of vertices in G with a neighbour in S+. We now define a structure

graph G = (V,E) for this switching. Define

A(i, j) =
{
G ∈ G(d) : |E(S+, S\S+

)| = i and |S\
{
S+ ∪NG(S+)

}
| = j

}
.

Let

V := {0, . . . , pn} × {0, , . . . , |S\S+|}

and

E := {((i, j), (k, `)) | ∃G ∈ A(i, j) and G′ ∈ A(k, `) and a switching mapping G to G′} .
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The set {A(i, j)}(i,j)∈V forms a partition of G(d). Define the sets X and Y as follows:

Y :=

{
(i, j) ∈ V | i ≥ pq

1
2ξ

2 + q
n and j ≥ ξ2n

}
and

X :=

{
(i, j) ∈ V | i ≤ pq

2
3ξ

2 + q
n or j ≤ 3

4
ξ2n

}
.

For now, we defer the proof of the following claim.

Claim 7.6.12. X contains all the sinks of G, as well as all A ∈ V such that α(A → B) ≥ 1 for

some B ∈ V.

Thus, X satisfies the requirements of Lemma 2.3.1. The fact that ξ > 0 implies that pq
1
2
ξ2+q

<

p− ρ for some constant ρ > 0. Thus, every graph contained in some A(i, j) where (i, j) /∈ Y has

at least ρn edges between S+ and S\S+. The assumptions of this lemma imply that ρn = Θ(M).

Note that each switching operation removes exactly one edge from E(S+, S\S+
), and adds at

most one vertex to NG(S+) (the vertex x, since the presence of edge vy in G′ does not change

whether y ∈ NG(S+)). Thus, for all G ∈ A(i, j) and G′ ∈ A(k, `) such that there exists a switching

mapping G to G′, it must be true that i − k = 1 and j − ` ∈ {0, 1}. As a consequence of this,

not only are X and Y disjoint, but all paths in G between A ∈ Y and B ∈ X must have length

greater than cn, where

c =
pqξ

6(1 + p)
(
1 + 1

3ξ
2 + q2 + 7

6qξ
2
) ,

noting that

pq
1
2ξ

2 + q
− pq

2
3ξ

2 + q
= pq

(
1
6ξ

2

1
3ξ

4 + q2 + 7
6ξ

2q

)
> c.

and c < 1
4ξ

2 for all p, q > 0.

Since c = Θ(1), this means that every path in G that starts in Y and ends in X is of length

Θ(n). Another consequence of the relationships between {i, j, k, `} is that there are no edges

(A,B) ∈ E such that A /∈ Y and B ∈ Y. Thus, the set QY,Z(Y,Y) as defined in Lemma 2.3.1

contains only single-edge paths (Y1, Y2) where Y1, Y2 ∈ Y.

Recall from Section 2.3 the definition of a(v) and b(v) for v ∈ V, that is, on average each graph

in A(v) can be subject to at least a(v) switchings and be created by at most b(v) switchings. Next

we prove the following result about a((i, j)) and b((i, j)) for all (i, j) ∈ V.

Claim 7.6.13. Every G ∈ A(i+1, j) can be subject to at least (i+1)(j−3δM) switchings. Every

G ∈ A(i, j) can be created by at most (d(S+)− i)d(S) switchings.

Thus, for this switching operation, for all (A,B) ∈ E we have that

α(A→ B) :=
(d(S+)− i)d(S)

(i+ 1)(j − 3δM)
. (7.21)
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Proof of Claim 7.6.13. Let G ∈ A(i + 1, j). Then there are exactly i + 1 choices for the edge uv

such that u ∈ S+ and v ∈ S\S+
. Given uv, there are at least j vertices in S\S+ that are not

adjacent to u and have at least one neighbour in [n]\S+. Thus, there are at least j choices for an

ordered pair of adjacent vertices (x, y) such that x ∈ S\S+ and ux /∈ G. One of these choices for

{u, v, x, y} does not correspond to a valid switching only if

(a) y ∈ H+,

(b) ux ∈ E(G) or vy ∈ E(G),

(c) {u, v, x, y} are not distinct.

Let W (G) be the number of choices for {u, v, x, y} that satisfy one of (a) – (c). Due to the way

{u, v, x, y} are chosen, these conditions are equivalent to the following:

(a′) y ∈ S+
,

(b′) y /∈ S+
and vy ∈ G,

(c′) y /∈ S+
and v = y.

Thus, we bound W (G) from above for all graphs G ∈ A(i + 1, j) by bounding the number of

choices for {u, v, x, y} that satisfy one of (a′) – (c′). For case (a′), there are i + 1 choices for the

edge uv. There are d(S
+

) choices for an ordered pair of adjacent vertices (x, y) such that y ∈ S+
.

Thus, the number of choices that satisfy (a′) is at most (i + 1)d(S
+

). For case (b′), note that

v ∈ S\S+
and y /∈ H+, and thus both vertices have maximum degree (in G) δ

√
M . Again there

are i+ 1 choices for the edge uv. Given v, there are d(v) choices for a neighbour y of v, and then

d(y) choices for a neighbour x of y. Thus, the number of choices for {u, v, x, y} that satisfy (b′)

is at most (i+ 1)δ2M . By similar reasoning, there are at most (i+ 1)δ
√
M choices for {u, v, x, y}

such that v = y. Thus, it follows that

W ≤ (i+ 1)
(
d(S

+
) + δ2M + δ

√
M
)
.

Since d(S
+

) ≤ δ2n ≤ δM and δ = o(1), it follows that W ≤ (i + 1)3δM . Therefore, the number

of forward switchings that can be applied to some G ∈ A(i+ 1, j) is at least (i+ 1)(j − 3δM).

The number of switchings into any element of A(i, j) is at most the number of choices for an

edge ux where u ∈ S+ and v ∈ S\S+, as well as an ordered pair of adjacent vertices (v, y) where

v ∈ S\S+
. The number of choices for vertex u and neighbour x is at most d(S+)− i. The number

of choices for (v, y) is at most d(S). Thus, the number of switchings into each G′ ∈ A(i, j) is at

most (d(S+)− i)d(S).

With these ingredients, we now apply Lemma 2.3.1. Recalling the definition of αY,Z(UV ) from

Equation (2.3), this lemma says that

N(Y)

N(X)
≤

αY,Z(YZ)

1− αY,Z(YY)
.

Since Z ⊂ X, it follows that αY,Z(YZ) ≤ αY,Z(YX). For all u /∈ X and v such that uv ∈ E, we

show that α(uv) < 9/10. Note that for all ((i, j), B) ∈ E, the function α((i, j)→ B) is decreasing
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in both i and j, and thus it is sufficient to check this on the boundary of X. That is, define

(i0, j0) =
(

pq
2
3
ξ2+q

n, 3
4ξ

2n
)

. Then

α((i+ 1, j)→ B) ≤ α ((i0, j0)→ (i0, j0)) =
pqn2 − pq

2
3
ξ2+q

n · qn
pq

2
3
ξ2+q

n · 3
4ξ

2n
(1 + o(1))

=

(
1− q

2
3
ξ2+q

)
( 3

4
ξ2

2
3
ξ2+q

) (1 + o(1))

=
2
3ξ

2 + q − q
3
4ξ

2
(1 + o(1))

=
2/3

3/4
(1 + o(1))

<
9

10
.

Now we combine this with the bounds on the lengths of paths in QY,Z(Y,X) and QY,Z(Y,Y) given

earlier. Altogether this gives that

max
Q∈QY,Z(Y,X)

α(Q) ≤
(

9

10

)cn
and max

Q∈QY,Z(Y,Y)
α(Q) ≤ 9

10
.

Therefore, Lemma 2.3.1 implies that

N(Y)

N(X)
≤ 10

(
9

10

)cn
= o(1).

Thus, a.a.s. G either has at most pq
1
2
ξ2+q

n edges between S+ and S\S+
or has no more than ξ2n

vertices in S\S+ with no neighbours in S+. To complete the application of Lemma 2.3.1, we now

prove Claim 7.6.12.

Proof of Claim 7.6.12. Consider some pair (i + 1, j) such that α((i + 1, j) → B) ≥ 1. Then it

follows from Equation (7.21) that

(i+ 1)(j − 3δM) ≤ (d(S+)− i)d(S),

which rearranges to give that

i ≤ d(S+)d(S)− j + 3δM

d(S) + j − 3δM
.

If j ≤ 3
4ξ

2n, then (i+1, j) ∈ X by definition. Otherwise, suppose that j ≥ 3
4ξ

2n and α((i+1, j)→
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B) ≥ 1. Then since M = Θ(n) it follows that

i ≤ d(S+)d(S)− j + 3δM

d(S) + j − 3δM
=
d(S+)d(S)

d(S) + j
(1 + o(1))

≤ pq

q + 3
4ξ

2
n(1 + o(1))

<
pq

q + 2
3ξ

2
n.

Thus, it follows that (i+ 1, j) ∈ X. Therefore, X contains all u ∈ V for which α(uv) ≥ 1 for some

uv ∈ E. Furthermore, for every graph G, at least one switching can be applied to G unless either

E(S+, S\S+
) = ∅ or, for every valid choice of uv, there are no valid choices for (x, y). From the

lower bound on a((i, j)) found above, this can only occur if either i = 0 or j ≤ 3δM . For all

of these cases, it follows that (i, j) ∈ X by definition, since δ = o(1) and M = Θ(n). Thus, X

contains all sinks of G.

If G has at most pq
1
2
ξ2+q

n edges between S+ and S\S+
, then since d(S+) = pn and d(S

+
) ≤ δ2n

there must be Θ(n) edges incident to S+ that are either incident to S\S+ or have both endpoints

in S+. On the other hand, if G at most ξ2n vertices in S\S+ with no neighbours in S+, then at

least (ξ − ξ2)n vertices in S\S+ have at least one neighbour in S+ (recall that ξ < 1). Thus, for

all G ∈ A(i, j) where (i, j) /∈ Y, there are at Θ(n) edges between S+ and S. Since M = Θ(n),

this completes the proof.

Recall that |S+| ≤ δ−1
√
M , since every vertex in S+ has degree at least δ

√
M in G. The

previous lemma then implies that a.a.s. the total degree of S+ in G[S] is Θ(n), and thus Θ(M)

by assumption. The following lemma shows that if a uniformly random graph with a fixed degree

sequence has a small set of vertices with high average degree, then this graph a.a.s. has a component

with Θ(M) edges.

Lemma 7.6.14. Suppose G ∼ G(d), where d is an n-element degree sequence with total degree

M := M(d). Suppose G contains a set of vertices X such that |X| ≤ δn for some δ → 0, and

d(X) ≥ αM for some constant α > 0. Then R(d) ≥ 1
4αM .

Proof. Without loss of generality, we suppose that d is ordered in non-decreasing order. Let

X = {x, x + 1, . . . , n} be a set of vertices with total degree αM , for some α > 0. Since x(x − 2)

has a minimum value of −1, we know that

x−1∑
i=1

d(i)(d(i)− 2) > −M.

Suppose that X contains a vertex of degree at least 1
4αM . Then immediately R(d) ≥ 1

4αM , and

thus the lemma is true in this case. Now suppose that X has maximum degree less than 1
4αM .

Let (X1, X2) be a partition of X such that X1 = {x, x + 1, . . . , x1}, X2 = {x1 + 1, . . . , n} and

X1 has total degree at least 1
4αM . Since X has maximum degree less than 1

4αM , we can choose

X1 such that X2 has total degree at least 1
2αM . Since |X1| ≤ |X|, it follows that d(X1)/|X1| ≥
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1
4αδ

−1 →∞. Then

x1∑
i=1

d(i)(d(i)− 2) > −M +

x1∑
i=x

d(i)(d(i)− 2) ≥ −M + |X1|
d(X1)

|X1|

(
d(X1)

|X1|
− 2

)
> 0.

Thus, j(d) ≤ x1, and therefore R(d) ≥ 1
2αM . This completes the proof.

We now combine this result with Claim 7.2.3 and Lemma 7.6.11 to show that G[S] a.a.s.

contains a component with Θ(M) edges. This completes the proof of Lemma 7.6.10.

Proof of Lemma 7.6.10. Lemma 7.6.11 implies that there exists some constant c > 0 such that

a.a.s. the set of vertices S+ has total degree at least cM in G[S]. We also know that |S+| ≤ δ−1
√
M

by definition. Thus, if t is the degree sequence of the induced graph G[S] (ordered in non-

decreasing order and excluding isolated vertices), a.a.s. t contains a set of elements X (specifically,

the elements corresponding to the degrees of the vertices in S+) such that |X| ≤ δ−1M and

t(X) ≥ cM for some constant c > 0. Conditional on the induced graph having such a degree

sequence, Lemma 7.6.14 implies that R(t) ≥ 1
4cM(t). Thus, there exists a constant ε := 1

4c > 0

such that a.a.s. R(t) ≥ εM . Thus, Claim 7.2.3 implies that a.a.s. G[S] has a component with

Θ(M) edges. This completes the proof.

7.7 From size to order, with stricter conditions

In this section we prove Theorem 7.1.2(b). Note that we are no longer assuming that M = Θ(|S|)
or even M = Θ(n). Unlike when looking for giant components in G(d) [83], the a.a.s. existence of

a component with Θ(M) edges in G[S] does not imply the a.a.s. existence of a component with

Θ(|S|) vertices. In fact, it can even be possible that G[S] a.a.s. has a component with Θ(M)

edges, but almost all vertices in G[S] have degree 0 always. Some examples of such unruly pairs

(d, S) are given in Section 7.8.

Thus, we unfortunately cannot always infer that G[S] a.a.s. has a linear-order component even

if it a.a.s. has a linear-size component. However, the counterexamples that we give in Section 7.8

all involve vertices of linear degree in S. We prove that if d(S
+

) = o(n), then the desired size-to-

order results follow.

Recall from Remark 7.3.1 the various properties of δ. Specifically here, we assume that d(S
+

) ≤
δ2n for some δ → 0. The proof of Theorem 7.1.2 is given in several stages. First we show that

if d(S
+

) = o(n), then a.a.s. S
+

does not isolate many vertices in S, where a vertex v ∈ S is

“isolated” by a set U if the neighbourhood of v, N(v), is not contained entirely in U . Then we

leverage this to show that a.a.s. a positive fraction of the vertices in S\S+ are not isolated by S

under the assumptions of Theorem 7.1.2.

Recall that our assumption that d(S\S+) = Θ(M) implies that |S+| = O(|S\S+|), and thus

|S\S+| = Θ(|S|). This means that if a positive fraction of the vertices in S\S+ are a.a.s. not

isolated by S, then G[S] a.a.s. contains Θ(|S|) non-isolated vertices. With this in mind, we do

not prove any results about the number of non-isolated vertices in S+, even though intuitively

one could expect that almost none of them are isolated by S (and thus almost none of them are

isolated vertices in G[S]). Altogether this combines to give a proof of Theorem 7.1.2(b).

Remark 7.7.1. We use the following notation throughout this section:
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(1) |S| = n · g(n). By definition, g(n) = O(1) and g(n) = Ω(δ−1
√
M/n).

(2) |S\S+| = n · h(n). By definition, h(n) = O(1) and h(n) = Ω(δ−1
√
M/n).

(3) d(S\S+) = aM , where a = Θ(1).

(4) d(S\S+
) = bM , where b = Θ(1).

Lemma 7.7.2. Suppose that d(S
+

) ≤ δ2n for some δ → 0 and |S\S+| = nh(n) for some h(n)

such that h(n) = O(1) and h(n) = ω(n−1). Then a.a.s. the graph G has at most
√
δnh(n) vertices

in S\S+ with all neighbours in S
+

.

If h(n) = ω(δ3/2), then this result is trivially true: at most d(S
+

) vertices in G are isolated by

S
+

, and δ2n ≤
√
δn for sufficiently large n. Thus, the result follows trivially in this case. However,

in the cases where h(n) is small (for example, if |S\S+| = O(δ2n)), then this result is necessary

to show that S
+

does isolate almost all of S.

Proof of Lemma 7.7.2. This proof is a straightforward application of Lemma 2.3.1 and the asso-

ciated switching framework. Let Ai be the set of G ∈ G(d) such that S\S+ contains exactly i

vertices with all their neighbours in S
+

. That is, Ai contains the graphs G such that exactly i

vertices in S\S+ are isolated by S
+

. We define a switching as follows. Suppose G ∈ Ai+1. Choose

some vertex v ∈ S\S+ with all its neighbours in S
+

. Choose one of its neighbours u. Choose an

ordered pair of vertices (x, y) such that xy ∈ E(G), y /∈ S+
, edges ux and vy are not present, and

all four vertices {u, v, x, y} are distinct. Then delete the edges uv and xy and add in edges ux

and vy to create a new graph G′ ∈ G(d).

u

v

x

y

S\S+

S
+

G ∈ Ai

u

v

x

y

S\S+

S
+

G′ ∈ Aj

Figure 7.11: A diagram of the switching used in the proof of Lemma 7.7.2, which sends G ∈ Ai
to G′ ∈ Aj . The definition of the switching implies that either j = i − 1 or j = i. The vertex v

only has neighbours in S
+

in G, and y /∈ S+
.

Now we define the structure graph corresponding to this switching. The collection of sets

{Ai}nh(n)
i=0 forms a partition of G(d). Then define the (directed) structure graph G = (V,E) by

V := {0, . . . , nh(n)}

and

E := {(i, j) | ∃ G ∈ Ai and G′ ∈ Aj and a switching mapping G to G′} .
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The sets X and Y are defined as

Y :=
{
i ∈ V | i ≥

√
δnh(n)

}
,

and

X :=

{
i ∈ V | i ≤ 1

2

√
δnh(n)

}
.

We defer the proof of the following claim.

Claim 7.7.3. X contains all the sinks of G, as well as all A ∈ V such that α(A → B) ≥ 1 for

some B ∈ V.

First, we prove the following estimates on a(i+ 1) and b(i).

Claim 7.7.4. Every G ∈ Ai+1 can be subject to at least (i+1)(n− δn) switchings. Every G ∈ Ai
can be created by at most d(S

+
)(|S\S+| − i) switchings.

Proof of Claim 7.7.4. First we bound from below the number of switchings that can be applied

to each G ∈ Ai+1. For each G ∈ Ai+1, there are i + 1 choices for v. For each choice of v, there

is at least one choice for u, since v has at least one neighbour in G and all neighbours of v are in

S
+

. Given {u, v}, there are n− 2 choices for a vertex x ∈ V (G) distinct from u and v. A choice

for {u, v, x} corresponds to a valid switching if and only if there exists a neighbour y of x such

that

(a) ux, vy /∈ E(G),

(b) y /∈ S+ ∪ {v},

(c) {u, v, x, y} are distinct.

Since G has minimum degree at least 1, for each x there is at least 1 choice for a neighbour y of

x. Given u and v, let W (G, u, v) be the number of choices for x such that there does not exist a

neighbour y of x such that {u, v, x, y} satisfies (a) – (c). As we have done previously, we bound

W (G, u, v) from above for all graphs G ∈ Ai+1. Given u and v, let Z(G, u, v) be the set of choices

for x such that, for every choice of a neighbour y of x, the set {u, v, x, y} does not satisfy at least

one of the following conditions:

(a′) ux /∈ E(G),

(b′) y /∈ S+
,

(c′) x /∈ S+
.

All choices for {u, v, x, y} that satisfy (a′) – (c′) also satisfy (a) – (c). To see this, note that if

some choice {u, v, x, y} satisfies (b′), then we know that y /∈ S+
. This implies that vy /∈ E(G),

since y /∈ S+
and v is isolated by S

+
. Condition (a′) implies that ux /∈ E(G), and thus the choice

of {u, v, x, y} satisfies (a). Now suppose the set {u, v, x, y} satisfies (c′) too. Then neither x nor

y are isolated by S
+

, nor are they in S
+

, and thus it follows that {u, v, x, y} are all distinct.

This implies that (c) holds, and also that (b) holds, since y /∈ S+
and y 6= v. Therefore, this set

{u, v, x, y} also satisfies (a) – (c). However, it is possible that x ∈ S+
and {u, v, x, y} may still be
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a valid choice for a switching. Therefore, it follows that W (G, u, v) ≤ Z(G, u, v) for all graphs G.

We bound Z(G, u, v) from above for all graphs G ∈ Ai+1 and each choice for (u, v).

Since d(S
+

) ≤ δ2n by assumption, there are at most δ2n choices for x such that ux ∈ E(G).

Thus, at most δ2n choices for x do not not satisfy (a′). For case (b′), there are at most δ2n

choices for x such that x is isolated by S
+

, and thus at most δ2n choices for x such that there

is no neighbour y /∈ S+
. Similarly, d(S

+
) ≤ δ2n implies that |S+| ≤ δ2n, and thus the number

of choices for a vertex x such that {u, v, x} does not satisfy (c′) is at most δ2n. Thus, there are

n − 2 − O(δ2n) choices for a vertex x such that ux /∈ E(G) and x is neither isolated by, nor an

element of, S
+

. For each of these n − O(δ2n) choices for x, there exists at least one choice for

y /∈ S+
such that xy ∈ E(G), since x has at least one neighbour in G. This set {u, v, x, y} satisfies

(a′) – (c′). This implies that Z(G, u, v) = O(δ2n), and thus W (G, u, v) = O(δ2n), for all G ∈ Ai+1

and all pairs (u, v). Therefore, for every G ∈ Ai+1 there are at least (i+1)(n−O(δ2n)) switchings

that can be applied to G. Since δ → 0, for sufficiently large n this is at least (i+ 1)(n− δn).

Now we bound from above the number of switchings that create some G ∈ Ai. There are

d(S
+

) choices for an ordered pair of vertices (u, x) such that ux ∈ E(G) and u ∈ S+
. There are

at most |S\S+| − i choices for a vertex v with exactly one neighbour not in S
+

, and given such

a choice of v there is a unique choice for vertex y such that vy ∈ E(G) and y /∈ S+
. Thus, the

number of switchings that create some G ∈ Ai is at most d(S
+

)(|S\S+| − i).

Thus, we define a(i+ 1) := (i + 1)(n − δn) and b(i) := d(S
+

)(|S\S+| − i). For all (i, j) ∈ E,

it follows that i − j ∈ {0, 1}. If x has exactly one neighbour outside the set S
+

(that is, vertex

y), then i − j = 0; otherwise it must be that i − j = 1. It also straightforward to see that

b(i+ 1) ≤ b(i). Therefore, we define

α(i+ 1→ B) :=
d(S

+
)(|S\S+| − i)

(i+ 1)(n− δn)
,

which satisfies the requirements of α from Lemma 2.3.1 and the associated framework. With this

in mind it is straightforward to prove Claim 7.7.3.

Proof of Claim 7.7.3. Consider α(i→ B) for i /∈ X, that is, i > 1
2

√
δnh(n). Then, for all B such

that (i, B) ∈ E,

α(i→ B) ≤ δ2n2h(n)
1
2

√
δn2h(n)

≤ δ.

Thus, for all (i, j) ∈ E, if i /∈ X then α((i, j)) = o(1). Furthermore, the lower bound on a(i)

implies that i is a sink in G if and only if i = 0. Thus, Claim 7.7.3 holds.

Since Y and X are distinct, the sets X and Y satisfy the requirements of Lemma 2.3.1.

Recall the definition of QY,Z(A,B), the set of all non-trivial paths in G from set A to set B,

where A,B ⊂ V, that have no internal vertices in Y ∪ Z. As mentioned earlier, all edges in E

are of the form (i+ 1, i) or (i, i). Thus, all paths between X and Y in G must be of length at

least 1
2

√
δnh(n). Furthermore, this implies that the set QY,Z(Y,Y) exclusively contains single-

edge paths (Y1, Y2) where Y1, Y2 ∈ Y. Without loss of generality, we can choose δ such that
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√
δnh(n)→∞. Thus, Lemma 2.3.1 implies that

N(Y)

N(X)
≤ δ

√
δnh(n)

1− δ
= o(1).

Therefore, the probability that a graph G ∈ G(d) has more than
√
δh(n)n vertices in S\S+ with

all neighbours in S
+

is o(1). This completes the proof.

For the following lemma and corollary, let V0(G) be the set of vertices in S\S+ with all

neighbours in S and at least one neighbour in S\S+
, and let V1(G) be the set of vertices in S\S+

with exactly 1 neighbour in S and the rest in S. The following lemma shows that a.a.s. the number

of vertices in S\S+ isolated by S that are not isolated by S
+

is at most (1 − ε)|S\S+| for some

ε > 0. Notably, this lemma does not require that d(S
+

) = o(n), only that it is o(M).

Lemma 7.7.5. Suppose that |S\S+| = nh(n) for some h(n) such that h(n) = O(1) and h(n) =

ω(n−1). Suppose that d(S
+

) ≤ δM , d(S\S+) = aM , and d(S) = bM for some a, b = Θ(1). Then

a.a.s. |S\(S+ ∪ V0(G))| = Θ(|S\S+|).

Proof. Let Ak be the set of G ∈ G(d) such that E(G[S]) contains k edges uv where either u /∈ S+

or v /∈ S+ — that is, the set of G ∈ G(d) such that G[S] contains k edges with at least one

endpoint in S+. These sets form a partition of G(d). We define a switching that maps G ∈ Ak to

G′ ∈ Ak (that is, the switching keeps k fixed) to apply Lemma 2.3.1.

The switching is defined as follows: for some graph G ∈ Ak, choose an edge uv where v ∈ V0(G)

and u ∈ S\S+
. Then choose an ordered pair of adjacent vertices (x, y) such that x ∈ S\S+ and

y ∈ S. Then the switching deletes edges uv and xy and replaces them with ux and vy, creating a

new graph G′. Such a choice for {u, v, x, y} corresponds to a valid switching if and only if G′ ∈ Ak,

which occurs if and only if

(a) vy /∈ E(G),

(b) ux /∈ E(G),

(c) {u, v, x, y} are all distinct.

u

v

y

x

S\S+

S\S+

G ∈ A(i, j)

u

v

y

x

S\S+

S\S+

G′ ∈ A(i′, j′)

Figure 7.12: A diagram of the switching used in the proof of Lemma 7.7.5, which sends G ∈ A(i, j)
to G′ ∈ A(i′, j′). The definition of the switching implies that (i′, j′) ∈ {(i, j), (i − 1, j + 1), (i −
1, j + 2)}. The vertex v only has neighbours in S, and at least one neighbour u ∈ S\S+

.
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The condition that x ∈ S\S+ ensures that the switching does not change k, however, y ∈ S+ is

permissible. We define a structure graph G = (V,E) based on this switching. Define

A(i, j) := {G ∈ Ak | ∀G ∈ A(i, j), |V0(G)| = i and |V1(G)| = j}.

Then {A(i, j)}(i,j)∈[nh(n)]2 forms a partition of Ak. Thus, we define the sets V and E by

V := {0, . . . , nh(n)}2

and

E :=
{{

(i, j), (i′, j′)
}
| ∃ G ∈ A(i, j) and G′ ∈ A(i′, j′) and a switching mapping G to G′

}
.

This switching keeps k fixed, so all outputs of a valid switching are in some set A(i, j) for

(i, j) ∈ V. This switching maps G ∈ A(i, j) to some G′ in one of A(i, j), A(i − 1, j + 1), or

A(i− 1, j + 2), depending on the degree of x in G[S]. If x has degree 1 in G[S], then G′ ∈ A(i, j).

If x has degree 2 in G[S], then G′ ∈ A(i − 1, j + 2). If x has degree at least 3 in G[S], then

G′ ∈ A(i − 1, j + 1). We prove the following lower and upper bounds on a((i, j)) and b((i, j))

respectively.

Claim 7.7.6. Every G ∈ A(i+ 1, j) can be subject to at least (i+ 1)(k− δ2M) switchings. Every

G ∈ A(i, j) can be created by at most d(S) (|S\S+| − i) switchings.

Proof of Claim 7.7.6. First we determine b((i, j)). Suppose G ∈ A(i, j). There are d(S\S+
)

choices for an edge ux such that u ∈ S\S+
and ux ∈ E(G). By definition of A(i, j) there are

exactly j choices for vertex v ∈ S\S+ such that v has degree 1 in G[S]; for each v there is a unique

choice for vertex y such that y ∈ S and vy ∈ E(G). Thus, the number of switchings that map to

a given G ∈ A(i, j) is at most d(S\S+
)j, which is at most d(S) (|S\S+| − i). Therefore, we set

b((i, j)) := d(S) (|S\S+| − i).
Now we bound from below the number of switchings that can be applied to someG ∈ A(i+1, j),

which determines a((i+ 1, j)). There are i+ 1 choices for the vertex v by definition of A(i+ 1, j).

For each v ∈ V0(G), there is at least one choice for u such that uv ∈ E(G) and u ∈ S\S+
. By

definition of Ak, there are at least k choices for an ordered pair of adjacent vertices (x, y) such

that x ∈ S\S+ and y ∈ S. One of these choices for {u, v, x, y} is invalid only if at least one of (a)

– (c) is not satisfied.

Let W be the number of choices for {u, v, x, y} such that at least one of (a) – (c) is not

satisfied. Then the number of switchings that can be applied to a graph G ∈ A(i+ 1, j) is at least

(i+ 1)k−W . The fact that v ∈ V0(G) means that v has no neighbours in S, and thus the number

of choices for {u, v, x, y} that do not satisfy (a) is 0. Now we consider case (b). To bound the

number of choices for vertices where edge ux is present, note that for each choice of uv there are

at most d(u)− 1 choices for x. Given x, there are at most d(x)− 1 choices for y. Since u ∈ S\S+

and x ∈ S\S+, it follows that for each choice of {u, v} there are at most δ2M choices for (x, y)

that do not satisfy (b). Finally, we consider case (c). The vertex v is distinct from {u, x, y} as

v ∈ V0(G). The vertex u is distinct from {x, y} since u ∈ S. Finally, x 6= y because xy is an edge

in G. Thus, there are 0 choices for {u, v, x, y} that do not satisfy (c). Thus, there are at least

a((i+ 1, j)) := (i+ 1)(k − δ2M) switchings that can be applied to every G ∈ A(i+ 1, j).
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Therefore, we set

α((i+ 1, j)→ B) :=
d(S) (|S\S+| − i)
(i+ 1)(k − δ2M)

.

Lemma 7.2.2 implies that a.a.s. k ≥ 10−6a2M . Thus, our analysis focuses on this case. For

notational convenience, define c := 10−6a2. Then define the sets X and Y as follows:

Y :=

{
(i, j) ∈ V | i ≥ b

1
2c+ b

h(n)n and j ≤ c

200
n

}
and

X :=

{
(i, j) ∈ V | i ≤ b

3
4c+ b

h(n)n or j ≥ c

100
n

}
.

These sets are disjoint. We prove the following claim about X and Y.

Claim 7.7.7. Suppose k ≥ cM . X contains every sink of G, as well as the tail of every directed

edge e ∈ E for which α(e) ≥ 1.

Proof of Claim 7.7.7. If a vertex (i, j) is a sink, then there are no switchings from any graph in

A(i, j) to some other set A(i′, j′). This means that, for each G ∈ A(i, j), either there are no

vertices v ∈ V0(G) (which means i = 0), or for each choice of uv where v ∈ V0(G) there are

no valid choices for a pair of adjacent vertices (x, y) such that x /∈ V1(G) and ux /∈ E(G). By

Claim 7.7.6 this implies that |V1(G)| ≥ k− δ2M . For all k ≥ cM , either of these situations imply

that (i, j) ∈ X. Furthermore, for every α((i+ 1, j)→ B) such that (i+ 1, j) /∈ X and all k ≥ cM ,

d(S) (|S\S+| − i)
(i+ 1)(k − o(M))

<
bM

(
nh(n)− b

3
4
c+b

nh(n)
)

b
3
4
c+b

nh(n)cM
(1 + o(1)) <

3

4
(1 + o(1)) <

4

5
.

Thus, for all Ak such that k ≥ cM , X satisfies all the necessary conditions. Now we consider

the sets of paths QY,Z(Y,X) and QY,Z(Y,Y). All paths between some (i, j) ∈ Y and (i′, j′) ∈ X

must be of length Ω(nh(n)). Also note that for all ((i, j), (i′, j′)) ∈ E, we know that i′ ≤ i and

j′ ≥ j. This implies that there are no edges (A,B) ∈ E such that A /∈ Y and B ∈ Y. This means

that QY,Z(Y,Y) only contains paths of length at most 1. Therefore, Lemma 2.3.1 implies that

N(Y)

N(X)
≤

maxQ∈QYX
α(Q)

1−maxQ∈QYY
α(Q)

≤ 5

(
4

5

)Ω(nh(n))

= 5

(
4

5

)ω(1)

, (7.22)

which is naturally o(1). Define K = min
{

1− b
1
2
c+b

, c
200

}
. Thus, it follows that the probability
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that |S\(S+ ∪ V0(G))| ≥ K|S\S+| is

P
(
|S\(S+ ∪ V0(G))| ≥ K|S\S+|

)
=
∑
k≥0

P (G /∈ Y|Ak)P (Ak)

=
∑
k<cM

P (G /∈ Y|Ak)P (Ak) +
∑
k≥cM

P (G /∈ Y|Ak)P (Ak)

≥
∑
k≥cM

(1− o(1))P (Ak) .

The inequality follows from Equation (7.22). Lemma 7.2.2 implies that∑
k≥cM

P (Ak) = 1− o(1),

and thus P (|S\(S+ ∪ V0(G))| = K|S\S+|) = 1 − o(1) for some K = Θ(1). This completes the

proof.

This lemma suggests that problem of finding a linear-order component in G[S] lies in the

behaviour of vertices in S
+

. If the number of vertices in S isolated by S
+

is a.a.s. not all or

almost all of S\S+, then the number of isolated vertices in G[S] is also a.a.s. sufficiently small.

Intuitively, it is expected that S+ contains very few isolated vertices. Thus, the important step

to determining a threshold for the a.a.s. existence of a vertex-giant component in G[S] appears to

boil down to studying how vertices in S
+

isolate vertices in S\S+.

Corollary 7.7.8. Suppose that d(S\S+) = aM for some a = Θ(1), d(S
+

) ≤ δ2n, |S| = ng(n)

and |S\S+| = nh(n) for g(n) and h(n) defined earlier. Then a.a.s. the graph G[S] contains Θ(|S|)
non-isolated vertices.

Proof. Lemma 7.7.2 states that G a.a.s. has at most
√
δnh(n) vertices in S\S+ with all neighbours

in S
+

. Lemma 7.7.5 states that a.a.s. |S\(S+ ∪ V0(G))| ≥ K|S\S+| = Knh(n). Therefore,

a.a.s. the set S\S+ contains at least 1
2Knh(n) vertices that are not isolated in G[S]. Since

|S\S+| = Θ(|S|) by the assumptions of Theorem 7.1.2, this completes the proof.

This means that in the case where M = ω(|S|) and d(S
+

) ≤ δ2n, we get an easy proof of the

a.a.s. existence of a vertex-giant component in G[S]. This proves Theorem 7.1.2(b) in the case

where M = ω(|S|). The proof is a straightforward application of Theorem 2.2.15 and the above

corollary, in a similar fashion to Claim 7.2.3 and Lemma 7.1.4. Thus, we omit some details.

Corollary 7.7.9. Suppose that M = ω(|S|) and the conditions of Theorem 7.1.2(b) apply. Then

a.a.s. the graph G[S] contains a component with Θ(|S|) vertices.

Proof sketch. The proof is almost identical to the proof of Lemma 7.1.4, but applying Theo-

rem 2.2.15 instead of Theorem 7.2.1. Let t = t(G) be the degree sequence of G[S], ordered in

non-decreasing order with isolated vertices excluded. Then Proposition 2.2.16 implies that there

exists an ε > 0 such that a.a.s. R(t) ≥ εM∼ (t), that is, a.a.s. satisfies the supercritical criterion of

Theorem 2.2.15. This means that a.a.s. the graph G[S] has a component containing at least γn(t)

vertices, where γ > 0 is a constant and n(t) is the number of elements in the sequence t (equiva-

lently, the number of non-isolated vertices in G[S]). By Corollary 7.7.8, under the assumptions of
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this lemma the graph G[S] a.a.s. has Θ(|S|) non-isolated vertices. Thus, the largest component

of G[S] a.a.s. contains Θ(|S|) vertices.

The remaining case is when M = Θ(|S|), which is only possible if M = Θ(n) and |S| = Θ(n).

Under these conditions, Theorem 7.1.2(a) and Corollary 7.7.8 together imply that the graph G[S]

a.a.s. contains Θ(n) non-isolated vertices, as well as a component containing Θ(M) edges. We

give a basic argument based on Theorem 2.2.15 that, under these conditions, a.a.s. the graph

G[S] contains a component with a linear number of vertices. This will complete the proof of

Theorem 7.1.2(b). Let H(G) be the (multi)graph that results from contracting all degree 2

vertices in G. Joos et al. [83] prove the following result in their paper.

Theorem 7.7.10. ([83], Theorem 5) Let d, jd, R(d), and M
∼

(d) be as defined in Theorem 2.2.15.

For every ρ > 0, there exists a γ > 0 such that for every well-behaved feasible degree sequence d,

the probability that G(d) has no component of order at least γn and H(G(d)) has a component

of size at least ρM
∼

(d) is o(1).

Lemma 7.7.11. Suppose that the conditions of Theorem 7.1.2(b) apply, and suppose that M =

Θ(n) and |S| = Θ(n). Then a.a.s. the graph G[S] contains a component with Θ(M) edges and

Θ(n) vertices.

Proof. For each G ∈ G(d), define t := t(G) to be the degree sequence of G[S], ordered in non-

decreasing order with isolated vertices excluded. Let n(t) be the number of vertices in G[S] with

degree at least 1. For some sequence k, let A(k) be the set of G ∈ G(d) such that t(G) = k. Recall

that Proposition 3.1.1 states that, conditional on the event that G ∈ A(k), G[S] is isomorphic to

a uniformly random graph with degree sequence k (with the correct number of isolated vertices

added back in). Recall the definition of M
∼

(k) = M(k) − 2n2(k) from Theorem 2.2.15, where

n2(k) is the number of elements in the sequence k equal to 2. Also recall that a sequence k is

well-behaved if M
∼

(k) = ω(1). Partition G(d) into two parts:

Z :=
{
G ∈ G(d) : M

∼
(t(G)) <

√
M
}
,

G(d)\Z :=
{
G ∈ G(d) : M

∼
(t(G)) ≥

√
M
}
.

Suppose there exists some G ∈ Z such that G[S] has a component with at least cM edges for

some constant c > 0. Since G ∈ Z, this means that M
∼

(t) <
√
M . Thus, a component containing

cM edges must also contain at least 1
2(2cM −M∼ (t)) vertices of degree 2, and therefore must have

Θ(n) vertices overall. Naturally, a component with o(M) edges must also have o(n) vertices, since

M = Θ(n) by the assumptions of the lemma. Theorem 7.1.2(a) implies that we can choose ρ > 0

such that G[S] a.a.s. has a component with at least ρM edges. Define a partition (Z1, Z2) of Z,

where Z1 contains the graphs G ∈ Z such that G[S] has a component with at least ρM edges for

the above choice of ρ, and Z2 = Z\Z1. Thus, P (Z2) = o(1).

Let L1(G) be the number of edges in the largest component of G. The above choice of ρ also

implies that either P (L1(G[S]) ≥ ρM |G(d)\Z) = 1− o(1) or P (G(d)\Z) = o(1). For each k such

that M
∼

(k) ≥
√
M , define A(k) ⊂ G(d) to be the set of graphs G such that t(G) = k. The sets

A(k) form a partition of G(d)\Z. The definition of Z implies that every such k is well-behaved,
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since
√
M = ω(1). Partition each A(k) into three parts:

X(k) :=

{
G ∈ A(k) : L1(H(G[S])) ≥ 1

2
ρM
∼

(k)

}
,

Y1(k) :=

{
G ∈ A(k) : L1(G[S]) ≥ ρM, L1(H(G[S])) <

1

2
ρM
∼

(k)

}
,

Y2(k) :=

{
G ∈ A(k) : L1(G[S]) < ρM, L1(H(G[S])) <

1

2
ρM
∼

(k)

}
.

We know that a.a.s. G[S] has a component with at least ρM edges. Thus,
∑

k P (Y2(k)) = o(1),

where the sum is over all sequences k such that t(G) = k for some G ∈ G(d)\Z. Now consider

some G ∈ Y1(k) for an arbitrary k. The extra edges in the component in G[S] must have come

from subdividing edges of the corresponding component in H(G[S]). Each subdivision increases

the number of edges in the component by exactly 1, as well as increasing the number of vertices

by exactly 1. Therefore, by a similar reasoning to the case where G ∈ Z, for all G ∈ Y1 we know

that all components in G[S] with ρM edges must also contain at least 1
2ρn vertices. This implies

that for all graphs G ∈ Z1 ∪
⋃

k Y1(k), there exists some constant α > 0 such that G[S] has a

component with at least α|S| vertices. Finally, Theorem 7.7.10 implies that there exists some

constant α′ > 0 such that for all choices of t,

P (G[S] has a component with at least α′n(t) vertices|X(t)) = 1− o(1).

Thus, by the law of total probability, a.a.s. the graph G[S] contains a giant component on a

positive fraction of the non-isolated vertices. Now recall that d(S
+

) ≤ δ2n. Thus, Corollary 7.7.8

applies, which implies that G[S] a.a.s. has Θ(|S|) non-isolated vertices, which is equivalent to

the statement that a.a.s. n(t) = Θ(|S|). Therefore, we can choose α, α′ > 0 such that a.a.s.

G[S] contains a component with at least α|S| vertices. Since |S| = Θ(n), this component has

Θ(n) vertices. This component must contain at least Θ(n) edges too, as it is connected. Since

M = Θ(n), this completes the proof.

This completes the proof of Theorem 7.1.2(b), except for the following caveat. The proof

of Theorem 2.2.15 shows that in the case where a degree sequence d satisfies the supercritical

criterion and M
∼ ≤ n log logn, a uniformly random graph G(d) a.a.s. contains a component with

both Θ(M
∼

) edges and Θ(n) vertices too. This naturally carries over when we apply their result.

However, the proof does not actually show that the linear-size and linear-order components are

a.a.s. the same component when M
∼ ≥ n log log n. Of course, this is straightforward to show, since

intuitively the probability that G(d) contains a component with Θ(M
∼

) edges and o(n) vertices as

well as a different component with Θ(n) vertices is minuscule. This is the content of the next

lemma. It is straightforward but included for completeness.

Lemma 7.7.12. Let d be a graphical sequence satisfying the supercritical case of Theorem 2.2.15

such that M = ω(n). Then if G ∼ G(d) contains a component with Θ(M) edges and a component

with Θ(n) vertices, a.a.s. they are the same component.

Proof. Note that if M = ω(n), then M
∼

= M(1 − o(1)). Choose constants γ, α > 0 such that

Theorems 2.2.15 and 7.2.1 imply that G(d) a.a.s. has a component with at least γM edges and

a component with at least αn vertices. Let A be the subset of G(d) such that, for all G ∈ A,

185



7.8. SEQUENCES AND SUBSETS THAT INFORM OUR RESTRICTIONS

the graph G contains a component with at least γM edges and αn vertices. Let B be the set of

G ∈ G(d) such that G contains a component K1 with at least γM edges but less than εn vertices

for a sufficiently small constant ε < α, as well as a different component K2 with at least αn

vertices. We define a switching between graphs in A and graphs in B. Suppose G ∈ B. This

switching takes an ordered pair of vertices (a, b) in the component K1 such that ab ∈ E(G) and ab

is not a bridge, as well as a pair of adjacent vertices (c, d) in V (K2). The switching then deletes

the edges ab and cd and replaces them with ac and bd.

Lemma 11 of Joos et al. [83] states that for all G ∈ B there are at most 8n2 switchings that

map some G′ ∈ A to G. Now we bound from below the number of valid switchings that can be

applied to some G ∈ B. There are at least 2γM choices for an ordered pair of adjacent vertices

(a, b) such that a, b ∈ V (K1), since K1 contains at least γM edges. We call this choice valid if

ab is not a bridge. For all ε > 0, there are at most εn bridges in K1, since it contains less than

εn vertices by the definition of B. Since M = ω(n), this implies that there are at least γM valid

choices for (a, b). Furthermore, there are at least αn choices for a pair of adjacent vertices (c, d) in

the component K2, since component K2 contains at least αn vertices, and thus at least as many

edges. For all valid choices of (a, b), every choice for (c, d) corresponds to a valid switching from

B to A. Thus,

|B|
|A|+ |B|

=
Θ(n2)

Θ(nM)
.

Since M = ω(n), this implies that |B| = o(|A|).
Let C be the set of G ∈ G(d) such that G contains either no component with at least αn

vertices or no component with at least γM edges. Then the sets (A,B,C) form a partition of

G(d). Our choices of γ and α imply that P (C) = o(1). Thus,

P (A) =
|A|

|A|+ |B|+ |C|
=

1

1 + o(1)
= 1− o(1).

Therefore, the components in G containing Θ(n) vertices and Θ(M) edges respectively are a.a.s.

the same component.

Remark 7.7.13. This proof can be easily adapted to show that, under these same conditions,

the giant component in G(d) a.a.s. has order n − o(n). The proof is very similar to that given

above, which is itself very similar to the proof of Lemma 10 in [83]. Since M = ω(n), for all

G ∈ B there are Θ(M) valid choices for (a, b). Recall that M = nf(n) for some f(n) = ω(1).

If |V (K2)| ≥ n/
√
f(n), then it still follows that |B| = ω(|A|), and the rest of the proof follows

similarly.

Thus, if d(S
+

) = o(n), d(S\S+) = Θ(M), and RS(d) = Θ(M), then G[S] a.a.s. contains

a component with a linear number of edges and vertices. This completes the proof of Theo-

rem 7.1.2(b).

7.8 Sequences and subsets that inform our restrictions

If (d, S) is a pair such that d(S
+

) = Ω(n) (in particular, if we are also assuming that d(S
+

) =

o(M), then this forces M = ω(n)) then the situation is more complicated. In this case, it is
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entirely possible that G[S] consists mostly of isolated vertices. Lemma 7.7.5 shows that if S
+

does not a.a.s. isolate almost all vertices in S\S+, then a.a.s. the number of vertices in S\S+ not

isolated by S is at least ε|S\S+| for some ε > 0. So the culprit is vertices in S
+

. We conjecture

that the culprit is specifically vertices of degree Θ(n) in S
+

. If this is the case, then one could

possibly prove the following strengthening of Theorem 7.1.2(b).

Conjecture 7.8.1. Suppose (d, S) satisfies the conditions of Theorem 7.1.2 with d(S
+

) = o(M)

and S
+

has maximum degree δn for some δ → 0. Then a.a.s. G[S] contains a component with

Θ(|S|) vertices.

In this section we given some examples of (d, S) pairs that help inform our intuition and our

restrictions on d and S in Theorem 7.1.2. Notably, these examples all have a common thread:

in each case, S contains vertices of degree n − 1. With this in mind, we also put forward a

strengthening of the above conjecture.

Conjecture 7.8.2. Suppose (d, S) satisfies the conditions of Theorem 7.1.2 and S
+

has maximum

degree cn for some constant c < 1. Then a.a.s. G[S] contains a component with Θ(|S|) vertices.

However, the restrictions that we impose on S
+

cannot be totally removed. Here we give some

examples of pairs (d, S) which suggest that some conditions are needed. The first example is a pair

(d, S) which all of the conditions of Theorem 7.1.2(a) except the condition that d(S\S+) = Θ(M).

In this case, G[S] never contains a component with a linear number of edges or vertices.

Example 7.8.3. Suppose S contains n1/3 vertices of degree n3/4 and 1
2n−n

1/3 vertices of degree

n1/50. Then suppose S contains n1/50 vertices of degree n−1 and 1
2n−n

1/50 vertices of degree n1/12

(enough to make the total number of vertices exactly n). We know that M = Θ(n13/12) = ω(n),

and d(S
+

) ∼ n51/50 = o(M), but we also know that d(S\S+) = Θ(n51/50) = o(M). Both d(S)

and d(S) are Θ(M), as is d(S+). Since M = ω(n), one might think that, in a similar vein to

Lemma 7.1.4, the graph G[S] should a.a.s. contain a component with Θ(M) edges. But in every

graph G ∈ G(d), each vertex in S with degree n1/50 is adjacent to every vertex S
+

. Thus, G[S\S+]

is always the empty graph, and there are also no edges between S+ and S\S+. So the only non-

singular components in G[S] contain exclusively vertices in S+. Since |S+| = n1/3, there are at

most n2/3 edges between all of these vertices. Thus, every component in G[S] always has O(n2/3)

edges.

In the next example, we give a pair (d, S) for which there is no linear order component, despite

the fact that d(S\S+) = Θ(M). This satisfies all of the conditions of Theorem 7.1.2(a) (and thus

a.a.s. G[S] have a component with Θ(M) edges) but the induced subgraph G[S] never has a

component with Θ(|S|) vertices.

Example 7.8.4. Suppose S contains n3/4 vertices of degree n1/2 and 1
2n−n

3/4 vertices of degree

n1/20. Then suppose S contains n1/20 vertices of degree n − 1 and ∼ 1
2n vertices of order n1/4

(enough to make the total number of vertices exactly n). We know that M = 3
2n

5/4(1 + o(1)) and

d(S
+

) = n21/20 = o(M), and it is straightforward to show that RS = Θ(M). Also, since
√
M ≥

n5/8, we can choose δ large enough such that δ
√
M = ω(n1/2) and thus S+ = ∅. This implies that

d(S\S+) ∼ n5/4. Therefore, Theorem 7.1.2 implies that G[S] a.a.s. contains a component of size

Θ(M). However, all the degree n1/20 vertices in S are always adjacent to every vertex with degree
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n−1 in S, so the induced graph G[S] has at most n3/4(1 +o(1)) non-isolated vertices. Thus, G[S]

a.a.s. contains a component with Θ(M) edges, but it cannot possibly contain a component with

Θ(|S|) vertices.
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Chapter 8

Final remarks

8.1 Comparison of the two results for giant components

In this thesis we give two different thresholds for the existence of a giant component in G[S].

The threshold given in Theorems 7.1.1 and 7.1.2 is a stronger characterisation, as it works for

a wider range of degree sequences than Theorem 4.4.2. This should not be surprising, as the

exploration method is a more direct approach to studying this problem. Theorem 4.4.2 follows

from an application of a very general result about the degree sequence of G[S], which has the

advantage of also giving results about other graph properties. On the other hand, Theorems 7.1.1

and 7.1.2 are proved using methods much more specific to analysing giant components, and thus

give better results in that case but do not generalise to proving results about other properties of

G[S]. In particular, allowing vertices of high degree in S created some situations where G[S] a.a.s.

did not contain a vertex-giant component, even if it contained a component with cM edges for

some c > 0. This is not captured in Theorem 4.4.2, as the assumptions of the reduction method

(specifically the assumption on the maximum degree of d) imply that G[S] a.a.s. contains Θ(|S|)
non-isolated vertices.

Consider an n-element graphical sequence d and set S ⊂ [n] such that d(S), d(S) = Θ(M) and

∆(d) ≤
√
M/ log7M . That is, Theorem 4.4.2 applies, and one of Theorems 7.1.1 and 7.1.2 applies.

Naturally, these characterisations must agree: if (d, S) satisfies the conditions of Theorem 7.1.1,

then Theorem 4.4.2 should also imply that G[S] a.a.s. does not contain a giant component, and

vice versa. However, these conditions are extremely different, and quite hard to compare directly.

For the more basic cases, it is easy to show that they agree. For example, consider the case that

M = ω(|S|). Recall the definition of dI from Definition 3.1.2, and recall that d′I is defined to be the

sequence dI ordered in non-decreasing order. First note that if M = ω(|S|), then Theorem 7.1.2

applies and states that G[S] a.a.s. contains a giant component (both a linear number of edges

and vertices). On the other hand, Lemma 3.3.1 states that a.a.s. M(dS) ∼M(dI) ∼ γ2M (where

γ = d(S)/M) and thus a.a.s. G[S] has total degree ω(|S|). Therefore, Theorem 4.4.2 also implies

that G[S] a.a.s. contains a giant component in this case. In fact, if M ≥ 4|S|/γ2, then Claim 2.2.17

and Theorem 4.4.2 together imply that G[S] a.a.s. contains a giant component. The case where

M = Θ(|S|), the path is less clear, but this would be a natural direction for future research.

One noteworthy observation about both thresholds is that, in either case, it does not particu-

larly matter which vertices of G are deleted; the only thing that matters is the total degree of the

deleted vertices. Theorems 7.1.1 and 7.1.2 implies that this intuition extends to the case where
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d(S
+

) is small, but the examples given at the end of the previous section imply that this is not

true if S contains vertices of extremely high degree. One obvious and natural direction for future

work would be to extend the results given in Lemma 3.1.5 (and thus the following results given

in Theorem 4.4.2), as well as the thresholds given in Theorems 7.1.1 and 7.1.2, to the case where

d(S
+

) ≥ cM for some constant c > 0. This would most likely be quite difficult, as analysing

switchings in the presence of many vertices of high degree would require some finesse.

8.2 Extensions of the reduction method

The first obvious direction to extend this work would be to combine what we know about dS with

other results about G(d). That way one could determine more properties of induced subgraphs

of random graphs with given degree sequences similarly to what was done in Chapter 4. Along

with their results about the connectivity and chromatic number of G(d), Gao and Ohapkin [56]

provide a general framework for adapting results about the configuration model C(d) to the model

G(d), for certain sequences d. In combination with Lemma 3.1.5, this could provide a pipeline

for proving results about G[S] from known results about C(d). This could give rise to many

more results about G[S], as the configuration model has been well studied for many years and is

significantly easier than the random graph model.

Another natural direction would be to relax the restriction that d(S), d(S) = Θ(M). In

particular, the case where d(S) = o(M) would be interesting to study. One important thing to

note in this generalisation is that the cutoff between what is considered a “big” vertex and what is

considered a “small” vertex might need to change. In particular, the cutoff may need to increase

as a function of d(S)/M . This means that there are more vertices in Ssmall with a wider range

of possible degrees. Using the current methods, this would likely require a stricter maximum

degree requirement on d. A generalisation in this direction would be useful though, particularly

for studying percolation: if the case where d(S)/M = o(M) can be analysed, then we can study

the site-percolated G(d) with survival probability p in the case that p→ 0. Percolation results in

the model G(d) in this case would be novel and interesting to study, as the behaviour could be

quite different to the case where p is constant.

As well as this, the results given in Lemma 3.1.5 could be extended to increase the maximum

degree of G that is allowed, which would allow applications of these results for a wider range

of random graphs. This would be quite challenging, and most likely would require a detailed

and careful use of the switching method, as all of the switching errors in question were of order

Ω(∆2/M). If one was to go generalise this and allow for vertices with significantly higher degree

than the current conditions, it is likely that entirely new methods would be needed. It is natural

to expect that the distribution of the induced degree of a high-degree vertex would be quite

concentrated, but proving this would be challenging as straightforward switchings tend to fail

when the graph contains many high-degree vertices. Thus, extensions in this direction would

most likely require novel methods that could be used to study many other problems concerning

G(d).
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8.3 Extensions of the exploration method

A natural direction to take this work would be to extend to the case where S
+

has large total

degree, that is d(S
+

) ≥ cn or d(S
+

) ≥ cM for some c > 0. There are some clear paths for

small progress in this direction. For example, in the case where M = Θ(n), if d(S
+

) ≥ cM and

d(S
+

) ≤ (1 − ε)d(S+) for constants c, ε > 0, then Lemma 7.6.11 should still hold, as the proof

should follow with minor modifications. Similarly, if d(S
+

) ≥ cM and d(S
+

) ≤ (1 − ε)d(S\S+),

then a slight modification to the proof of Lemma 7.2.2 should imply that a.a.s. G[S] still contains

Θ(M) edges with at least one end in S\S+.

Beyond easy modifications like this, results in this area would most likely be quite dependent

on the particular degrees of the vertices in S
+

, rather than just the total degree of the set. The

intuitive idea here is that, for example, the neighbourhood of a degree n − 1 vertex is simply

the whole graph (except itself), but the neighbourhoods of two vertices with degree n−1
2 are

likely to have significant overlap. Thus, results in this direction would be quite distinct from the

results given in this thesis, which imply that the individual degrees of the deleted vertices are

not particularly relevant. In this vein, it would be interesting to see whether Conjectures 7.8.1

and 7.8.2 are true or not, even just in the case when d(S
+

) = o(M). Lemma 7.7.5 implies that

if one can show that deleting the vertices in S
+

a.a.s. does not create too many isolated vertices,

then the graph G[S] a.a.s. does not have too many isolated vertices. Therefore, progress towards

these conjectures would require more involved switching arguments to study the neighbourhoods

of vertices in S
+

, and neighbourhoods of high-degree vertices in general.

Applying the results in Chapter 7 to the percolation problem would be another direction for

future research. The results in this chapter allow for a wider range of degrees than the results

about percolation in Chapter 5, and in particular allow the presence of vertices of very high degree.

However, the condition that d(S
+

) = o(M) means that the result does not extend well to studying

percolation on G(d): each high-degree vertex has a non-trivial probability of being deleted, which

means that either their total degree must be small or the event that S
+

has large total degree

would be likely. This would still be a generalisation, as Theorem 5.3.3 does not apply if G contains

even one such vertex. However, results in this direction would be much more general if combined

with results in the case where S
+

has large total degree.

Another natural extension of the exploration method, similar to what was mentioned earlier

for the reduction method, would be to extend this case to the case where d(S) = o(M). This

would be quite challenging, particularly if the condition that d(S
+

) = o(M) is also relaxed, as it

might be possible that every vertex in S a.a.s. has many neighbours in S
+

. For both this extension

and the case where d(S
+

) ≥ cM , Lemma 7.5.5 would need to be refined to a much more precise

estimate. In the current proof, we show that the contribution to Et−1 [dS(wt)− 2] from vertices

in S
+

throughout the process is minimal and can be effectively ignored. We also show that back

edges do not eat up a significant portion of the open edges gained at each step. However, under

either of these generalisations, neither of these claims are clear. As an example, suppose one were

to analyse the exploration process on a random induced subgraph G[S] where (d, S) are given

in Example 7.0.1. In this case, the contribution of back edges from S
+

is incredibly vital to the

analysis.

One different direction would be to analyse the process much more precisely to get better upper

and lower bounds on the sizes of the components in G[S]. This is analogous to an idea mentioned
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by Joos et al. [83] as an extension of their result. In our proofs, we made no real effort to optimise

the constants that we used, instead simply giving results about the existence and non-existence

of giant components. This is also true of the result by Joos et al. [83] about giant components in

G(d). Along with similar results about the specific size and order of giant components in G(d), it

would be interesting to see exactly how the size and order of the giant component are affected by

deleting the vertices in S. In their paper, Joos et al. claim that intuitively the largest component

in a random graph with degree sequence d has size approximately R(d). By similar intuitive

reasoning, it is possible that the size of the largest component in G[S] is approximately RS(d).

However, this could only be true under certain conditions, as the threshold itself does not apply for

all pairs (d, S). It is likely that, as with the current threshold, there would need to be conditions

on S
+

in order to determine its asymptotic size.
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[124] Ruciński, A. (1988). When are small subgraphs of a random graph normally distributed?

Probability Theory and Related Fields, 78:1–10.

[125] Schürger, K. (1979). Limit theorems for complete subgraphs of random graphs. Periodica

Mathematica Hungarica, 10(1):47–53.

[126] Shamir, E. and Spencer, J. (1987). Sharp concentration of the chromatic number on random

graphs g n, p. Combinatorica, 7(1):121–129.

[127] Ta, X., Mao, G., and Anderson, B. D. O. (2009). On the giant component of wireless

multihop networks in the presence of shadowing. IEEE Transactions on Vehicular Technology,

58(9):5152–5163.

[128] Tishby, I., Biham, O., Katzav, E., and Kühn, R. (2018). Revealing the microstructure of
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Appendix A

Common probability results

We give a list of several common tools from probability that we use throughout this thesis. These

results themselves are quite basic, but we give them here to be as self-contained as possible.

A.1 The union bound

Lemma A.1. For a countable set of events {Ai}∞i=1, P (
⋃∞
i=1Ai) ≤

∑∞
i=1 P (Ai).

The simplicity of this inequality belies its utility. In particular, if we have a set of events

{Ai}i∈I , and P (Ai) = o(|I|−1) for all i ∈ I, then P (∪i∈IAi) = o(1). We use this idea extensively

throughout this thesis. Typically, either |I| = O(1), where we use the union bound to combine

multiple lemmas about events that each occur with probability 1− o(1), or |I| = n, where we are

performing a union bound over all the vertices in a random graph with n vertices.

A.2 Concentration inequalities

In probability theory, concentration inequalities are a broad and indispensable class of results

that provide bounds on how likely a random variable is to deviate from some value. These are

invaluable tools in studying the behaviour of random graphs. Here we give a brief rundown of

the common inequalities of this type that we use throughout this thesis. First we give Markov’s

inequality, which for nonnegative random variables gives a rough upper bound on the probability

that they exceed some particular value.

Theorem A.1. (Markov’s inequality) If X is a nonnegative random variable and a > 0, then

P (X ≥ a) ≤ E[X]
a .

In many cases, “large” for us means greater than 0, and we use this to argue that P (X > 0) =

P (X ≥ 1) = o(1) for certain discrete random variables X where E [X] → 0. This tactic is some-

times referred to as the First Moment Method.

The next inequality is Chebyshev’s inequality. This is one of many inequalities used to show

how likely a random variable is to deviate far from its expectation. In this case, the bound given

is in terms of its variance.

Theorem A.2. (Chebyshev’s inequality) Let X be a random variable and a > 0. Then

P (|X − E [X] | ≥ a) ≤ Var (X)

a2
.
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A.2. CONCENTRATION INEQUALITIES

Next, we give an inequality that we vaguely refer to as “the second moment method”, since

it gives a bound in terms of the second moment of a random variable. We use this almost as a

complement to Markov’s inequality, to give a lower bound on the probability that a nonnegative

random variable X (which in our case, often counts the number of a particular structure present

in a random graph) is greater than 0.

Lemma A.3. (Second moment method) If X is a nonnegative random variable with finite

variance, then

P (X > 0) ≥ (E [X])2

E [X2]
.

Proof sketch. This inequality follows from the Cauchy-Schwarz inequality, which says for a non-

negative random variable X that

E [X] = E
[
X1{X>0}

]
≤ E

[
X2
]1/2 P (X > 0)1/2 ,

which can be rearranged to give the inequality in the lemma.

The next bound is a variant of a classic bound known as a Chernoff bound. This is one

variation of a wide variety of results about the concentration of a sum of many independent

random variables. We use this inequality to study random variables that can be expressed as a

sum of many independent Bernoulli trials (random variables with output 0 or 1).

Lemma A.4. (Chernoff inequality) Suppose that Sn = X1 + · · · + Xn where Xi ∈ [0, 1] and

E [Xi] = µi for all i ∈ {1, . . . , n} and X1, . . . , Xn are all independent. Define µ =
∑

i≤n µi. Then,

for t ≥ 0,

P (Sn ≥ (1 + ε)µ) ≤ exp

(
−µε

2

3

)
and P (Sn ≥ (1− ε)µ) ≤ exp

(
−µε

2

2

)
.

We also give another related bound called McDiarmid’s inequality.

Theorem A.5. (McDiarmid’s inequality) Let X1, . . . , Xn be independent random variables,

where Xi has range Xi. Let f : X1×· · ·×Xn be a function such that if (x1, . . . , xn) and (x′1, . . . , x
′
n)

differ only in the ith coordinate, then

|f(x1, . . . , xn)− f(x′1, . . . , x
′
n)| ≤ ci.

Then for all t > 0,

P (f(X1, . . . , Xn)− E [f(X1, . . . , Xn)] ≥ t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

The final bound we give is a classic tool from the theory of martingales. Briefly speaking, a

martingale {Xk}k≥0 with respect to a filtration {F}k≥0 is a sequence of random variables such that

E [Xj |Fi] = Xi for all i ≤ j. The following martingale inequality, known as Azuma’s inequality

or the Azuma-Hoeffding inequality, is an indispensable tool in studying random processes that

appear in the study of random graphs.
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Theorem A.6. (Azuma’s inequality) Suppose that {Xk}k≥0 a martingale and |Xk −Xk−1| ≤ ck
almost surely. Then for all positive integers N and all α > 0,

P (|XN −X0| ≥ α) ≤ 2 exp

(
−α2

2
∑N

i=1 c
2
k

)
.

One particular reason that this is so useful is that we can often construct martingales to study

the distribution of other random variables that are not martingales. One such construction is the

Doob martingale, which gives rise to both vertex and edge exposure martingales. These are con-

structions for showing concentration of measure of arbitrary graph parameters by studying how

the parameter changes if the graph is constructed one vertex (or edge) at a time. These martin-

gales, as well as other similar constructions, are used throughout this thesis to show concentration

of a wide variety of random variables.
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Appendix B

Glossary

B.1 General notation

(1) d: the degree sequence of the random graph G ∼ G(d), with minimum degree at least 1.

(2) G(d): the set of all random graphs with degree sequence d, equipped with the uniform

probability measure.

(3) S: the set of vertices in G that induce the graph G[S] that we study.

(4) S: [n]\S, the set of vertices that we delete from G.

(5) M(·): the total degree of a degree sequence, the sum of all its elements.

(6) M
∼

(·): M(·)− 2n2(·), where n2(·) is the number of elements in a sequence equal to 2.

(7) R(d), jd: functions of d used for characterising the a.a.s. existence of giant components in

G(d), defined in Theorem 2.2.15.

B.2 Notation for Chapters 3 to 5

(1) J : the cutoff between what we classify as “big” and “small” vertices in the reduction method,

J := logM log logM .

(2) Ssmall: the set of vertices in S with degree at most J in the graph G; equivalently, the set

of elements in d with value at most J .

(3) Sbig: the set of vertices in S with degree greater than J in the graph G; equivalently, the

set of elements in d with value greater than J .

(4) `: the index in the subsequence S = {i1, . . . , is} such that Ssmall = {i1, . . . , i`}.

(5) γ: the ratio of the total degree of S and the total degree of d; that is, γ = d(S)/M .

(6) dS : the degree sequence of the induced graph G[S]. Note that this definition is unrelated

to dS(w) used in Chapters 6 and 7.

(7) Zj : a binomial random variable, Z ∼ Bin (j, γ).
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(8) Yi: the number of vertices in Ssmall with degree i in the induced subgraph G[S].

(9) ỹi: a function of (d, S) defined in Equation (3.1), which corresponds to the expected number

of vertices in Ssmall with induced degree i under the approximation that P (dS(v) = i) =

P (Zj = i) for all vertices v.

(10) yi: the sequence (yi)i≤J is defined as the sequence (ỹi)i≤J after cascade rounding, as defined

in Equation (3.2).

(11) dI : an “average” degree sequence for the induced graph G[S] when S is fixed, defined in

Definition 3.1.2.

(12) dA: an “average” degree sequence for the site-percolated G(d), defined in Definition 5.2.1.

(13) w̃i: a function of (d, p) for constant p ∈ (0, 1), which corresponds to the expected number of

vertices in Ssmall in the site-percolated G(d) with induced degree i under the approximation

that P (dS(v) = i) = P (Zj = i) for all vertices v.

(14) wi: the sequence (wi)i≤J is defined as the sequence (w̃i)i≤J after cascade rounding.

(15) z̃k: a function of (d, p) for constant p ∈ (0, 1), which corresponds to the expected number of

vertices in Sbig in the site-percolated G(d) with induced degree i under the approximation

that P (dS(v) = i) = P (Zj = i) for all vertices v.

(16) zi: the sequence (zi)i≤J is defined as the sequence (z̃i)i≤J after cascade rounding.

(17) “Good” set S: in Chapter 5, where S is chosen randomly, we say a set S is “good” if

|S| = pn(1± 3
√

log n/
√
pn) and d(S) = pM(1± 1/pM1/4).

B.3 Notation for Chapters 6 and 7

(1) dS(·): this is a function from the vertex set V to N, which is equal to 1 for every v ∈ S and

otherwise is simply d(v) for v ∈ S. Note that this definition is unrelated to dS , the induced

sequence of G[S], used in Chapters 3 to 5.

(2) C(d): the configuration model, the set of all pairings with degree sequence d, equipped with

the uniform probability measure.

(3) RS(d), jS(d): functions of d used for characterising the a.a.s. existence of giant components

in C(d)[S] or G(d)[S], defined in Equation (6.2).

(4) P : a pairing, an element of C(d).

(5) Φ: the set of all simple (no loops or multiple edges) pairings, equipped with the uniform

probability measure.

(6) G∗: a simple pairing, an element of Φ.

(7) Φ(T ): the set of all simple pairings such that there exists a sequence of choices for half edges

for each t′ < t such that Tt−1 = T .
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(8) H+: the set of elements in d (equivalently, the set of vertices in G ∼ G(d) or P ∼ C(d))

with degree greater than δ
√
M for some δ → 0.

(9) S+, S
+

: S+ = S ∩H+, S
+

= S ∩H+.

(10) Tt: the partial pairing created by the exploration process at time t. Tt = (Vt, Et,Xt), which

correspond to the set of vertices, edges, and open edges (unpaired half edges that belong to

vertices in Vt ∩ S) contained in the partial pairing.

(11) Xt: |Xt|, the number of open edges in the partial pairing at time t.

(12) X ′t: an upper bound on Xt, defined in (6.8).

(13) vt: the parent vertex of the half edge whose pair is revealed at time t.

(14) wt: the vertex explored at time t by the process.

(15) dS(·): a function of a vertex w, defined in (6.1) - dS(w) is equal to w if w ∈ S, and 1

otherwise.

(16) d(t−1)(w): the available degree of a vertex w at time t. Defined in (7.3). For w ∈ S, this is 0

if w ∈ Vt−1 and d(w) otherwise. For w /∈ S, this is d(w) minus the number of edges incident

to w in Et−1.

(17) d′S,t(·): the number of back edges (edges between wt ∩ S and Vt−1 ∩ S) revealed by the

exploration process at time t.

(18) Pt−1 (·): the probability of some event, conditional on the partial pairing at time t− 1.

(19) Et−1 [·]: the expectation of some event, conditional on the partial pairing at time t− 1.

(20) ft: defined in (7.5), the expected number of open edges gained at time t under the approxi-

mation that Pt−1 (wt = w) = d(t−1)(w).

(21) At, Bt, Gt: random variables used for concentration arguments: At = dS(wt)−Et−1 [dS(wt)],

Bt = d′S,t(wt)− Et−1

[
d′S,t(wt)

]
, Gt = ft+1 − ft − Et−1 [ft+1 − ft].
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