
Using Defect Prediction to Improve the

Bug Detection Capability of

Search-Based Software Testing

Anjana Perera
Doctor of Philosophy

A Thesis Submitted for the Degree of Doctor of Philosophy at

Monash University in 2022

Faculty of Information Technology

https://anjana-perera.github.io/

To my family, Sandamali, Ramani, Ananda and Anitha

Copyright notice

©Anjana Perera (2022).

I certify that I have made all reasonable efforts to secure copyright permissions for third-

party content included in this thesis and have not knowingly added copyright content

to my work without the owner’s permission.

ii

https://anjana-perera.github.io/

Abstract

Automated test generators, such as search-based software testing (SBST) techniques,

replace the tedious and expensive task of manually writing test cases. SBST techniques

are effective at generating tests with high code coverage. However, is high code cov-

erage sufficient to maximise the number of bugs detected? In fact, the existing SBST

approaches that are only guided by coverage have limitations when it comes to detecting

bugs. We argue that SBST needs to be focused to search for test cases in likely defec-

tive areas rather than in likely non-defective areas of the code in order to maximise the

likelihood of detecting bugs. Defect predictors give useful information about bug-prone

areas in software. We leverage them to inform SBST where it should concentrate the

search for test cases.

We formulate the objective of this thesis: Improve the bug detection capability of SBST

by incorporating defect prediction information. We achieve the main objective via three

research studies that aim at addressing the following three research objectives (RO);

RO1) develop an approach that allocates time budget to classes for test generation based

on defect prediction, RO2) understand the impact of imprecision in defect prediction

for guiding SBST, and RO3) develop an SBST technique that uses defect prediction to

guide the search process to likely defective areas. To this end, we introduce two SBST

approaches guided by defect prediction, i.e., defect prediction guided SBST (SBSTDPG)

(RO1) and predictive many objective sorting algorithm (PreMOSA) (RO3), and present

a comprehensive experimental analysis of the impact of defect prediction imprecision on

the bug detection performance of SBST (RO2).

The primary finding of this thesis is that defect prediction improves the effectiveness

and efficiency of SBST in terms of detecting bugs. Our experimental evaluations on

the Defects4J benchmark demonstrate the proposed SBST approaches guided by defect

prediction detect up to 13.1% more bugs on average than the state-of-the-art SBST. In

particular, our recommendations to improve the bug detection performance of SBST are

to use class level defect prediction to allocate time budgets for test generation such as

SBSTDPG (RO1) and to use method level defect prediction to guide the search process

in SBST such as PreMOSA (RO3). We find that the recall of the defect predictor, which

is indicative of false negatives, has a significant impact on the bug detection effectiveness

of SBST with a large effect size, while the effect of precision, which is indicative of false

alarms, is not of meaningful practical significance (RO2). We recommend that SBST

techniques must handle the potential false negatives, i.e., missed bugs, in the predic-

tions. In the context of combining defect prediction and SBST, our recommendation

for practice is to increase the recall while maintaining precision at an acceptable level,

e.g., 75%, if the SBST technique does not handle the potential false negatives. If SBST

iii

iv

handles the potential false negatives (e.g., PreMOSA), then it is beneficial to further

improve the defect predictor performance only when there is a tight time budget for test

generation. When there is a reasonably large time budget and SBST handles the po-

tential false negatives, we recommend practitioners to not focus on improving the defect

predictor performance beyond an acceptable level, e.g., recall and precision ≥ 75%.

Declaration

This thesis is an original work of my research and contains no material which has been

accepted for the award of any other degree or diploma at any university or equivalent

institution and that, to the best of my knowledge and belief, this thesis contains no

material previously published or written by another person, except where due reference

is made in the text of the thesis.

Signature:

Print Name: Anjana Perera

Date: Tuesday 6th September, 2022

v

Publications during enrolment

Publications arising from this thesis are listed as follows.

1) Perera, A., Aleti, A., Böhme, M. and Turhan, B., 2020, September. Defect prediction

guided search-based software testing. In 2020 35th IEEE/ACM International Conference

on Automated Software Engineering (ASE) (pp. 448-460). IEEE.

DOI: 10.1145/3324884.3416612

Pre-print: https://arxiv.org/abs/2109.12645

2) Perera, A., Aleti, A., Turhan, B. and Böhme, M., 2022. An experimental assess-

ment of using theoretical defect predictors to guide search-based software testing. IEEE

Transactions on Software Engineering, to appear.

DOI: 10.1109/TSE.2022.3147008 [Open Access]

3) Perera, A., 2020, December. Using defect prediction to improve the bug detection

capability of search-based software testing. In Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering (pp. 1170-1174).

DOI: 10.1145/3324884.3415286

Pre-print: https://arxiv.org/abs/2206.06549

The following papers are currently under review at the respective venues.

1) Perera, A., Turhan, B., Aleti, A. and Böhme, M., 2022. On the impact of imprecision

in defect prediction for guiding search-based software testing. Under review in ACM

Transactions on Software Engineering and Methodology.

The following publications are not part of the thesis, but were produced in parallel to

the research described in the thesis.

1) Perera, A., Aleti, A., Tantithamthavorn, C., Jiarpakdee, J., Turhan, B., Kuhn, L. and

Walker, K., 2022. Search-based fairness testing for regression-based machine learning

systems. Empirical Software Engineering, 27(3), pp.1-36.

DOI: 10.1007/s10664-022-10116-7 [Open Access]

The following papers are not part of the thesis, but were produced in parallel to the

research described in the thesis and are currently under review.

1) Martinez, M., Kechagia, M., Perera, A., Petke, J., Sarro, F., Aleti, A., 2022. Test-

based patch clustering for automated program repair. Under review in Empirical Soft-

ware Engineering.

vi

https://arxiv.org/abs/2109.12645
https://arxiv.org/abs/2206.06549

vii

Pre-print: https://arxiv.org/abs/2207.11082

https://arxiv.org/abs/2207.11082

Acknowledgements

I am immensely grateful to my supervisors, Associate Professor Aldeida Aleti, Professor

Burak Turhan and Dr. Marcel Böhme, for their guidance, advice and encouragement.

They were not only mentors to me, but also sponsors who provided me opportunities to

grow as a researcher, and I am indebted to them for their support throughout the PhD

journey.

I would like to express my deepest gratitude to my panel members, Associate Pro-

fessor Ron Steinfeld, Dr. Li Li, Associate Professor Yuan-Fang Li and Dr. Chakkrit

Tantithamthavorn, for their invaluable feedback and appreciation during the milestone

seminars.

I owe my gratitude to Professor John Grundy for supporting me to refine my research

topic and objectives in the initial part of the PhD.

My gratitude extends to my thesis examiners, Associate Professor Gregory Gay and

Professor Phil McMinn, for reading my thesis and providing invaluable feedback and

suggestions.

I would like to extend my sincere thanks to the past and present staff at the Graduate

Research Student Services team and the Operations team at Faculty of Information

Technology of Monash University. I am also grateful to Julie Holden for her insightful

feedback and suggestions on better communicating my research.

I would also like to thank fellow PhD students and friends, Samodha Pallewatta, Malika

Ratnayake, Danushka Liyanage, Alexander Ek, Shashi Jayaweera, Evelina Blomquist,

Daniel Ehrenreich and Phoebe Heung for their support, companionship and the inter-

esting conversations, technical and otherwise.

Last but not least, this endeavour would not have been possible without the uncondi-

tional support and love of my wife, Sandamali Kankanam Arachchige, who was always

with me during the peaks and troughs of this journey supporting me in every possible

way. I am deeply indebted to my parents, Ramani Seneviratne and Ananda Perera (who

unfortunately passed away in 2013), and my brother, Anitha Perera, for guiding me to

come this far in life.

This research was supported by the Faculty of Information Technology Research Scholar-

ship and Faculty of Information Technology International Postgraduate Research Schol-

arship from the Faculty of Information Technology of Monash University.

viii

Contents

Copyright notice ii

Abstract iii

Declaration v

Publications during enrolment vi

Acknowledgements viii

List of Figures xiii

List of Tables xv

Abbreviations xviii

1 Introduction 1

1.1 Research Problem . 4

1.2 Research Objectives . 6

1.2.1 Time Budget Allocation . 7

1.2.2 Impact of Defect Predictor Imprecision 9

1.2.3 Guiding the Search Process with Defect Prediction 10

1.3 Research Contributions . 11

1.3.1 Contributions to Knowledge . 11

1.3.2 Contributions to Practice . 12

1.4 Thesis Structure . 13

2 Background 15

2.1 Introduction . 15

2.2 Search-Based Software Testing . 16

2.2.1 Search-Based Software Testing for Unit Test Generation 17

2.2.1.1 Problem Representation 17

2.2.1.2 The Search Steps and Genetic Operators 18

2.2.2 EvoSuite . 20

2.2.3 Single Objective Formulation . 21

2.2.3.1 Single Target Strategy . 21

2.2.3.2 Whole Test Suite . 22

2.2.3.3 Archive-Based Whole Test Suite 23

2.2.4 Many-Objective Formulation . 25

ix

Contents x

2.2.4.1 Optimisation Problem . 25

2.2.4.2 Many Objective Sorting Algorithm 27

2.2.4.3 Dynamic Many Objective Sorting Algorithm 27

2.3 Defect Prediction . 28

2.3.1 Constructing Defect Prediction Models 29

2.3.2 Types of Defect Predictors . 30

2.4 Summary . 31

3 Related Work 32

3.1 Introduction . 32

3.2 Search-Based Software Testing . 32

3.3 Defect Prediction . 34

3.4 Defect Prediction in Automated Software Testing 38

3.5 Summary . 40

4 Methodology 42

4.1 Experimental Subjects . 43

4.2 Benchmark Methods . 45

4.3 Detecting Bugs with Search-Based Software Testing Techniques 45

4.4 Bug Detection Evaluation Procedure . 47

4.5 Performance Measures . 48

4.6 Threats to Validity . 52

4.6.1 Construct Validity . 53

4.6.2 Internal Validity . 53

4.6.3 Conclusion Validity . 54

4.6.4 External Validity . 54

5 Time Budget Allocation 56

5.1 Introduction . 56

5.2 Motivation . 58

5.3 Defect Prediction Guided Search-Based Software Testing 60

5.3.1 Defect Predictor . 60

5.3.2 Budget Allocation Based on Defect Scores 63

5.3.2.1 Exponential Time Budget Allocation Based on Defect
Scores . 63

5.3.2.2 The 2-Tier Approach . 65

5.3.3 Search-Based Software Testing . 66

5.4 Experimental Evaluation . 66

5.4.1 Experimental Settings . 67

5.4.1.1 Time Budget . 67

5.4.1.2 Baseline Selection . 67

5.4.1.3 Parameter Settings . 68

5.4.1.4 Prototype . 69

5.4.1.5 Experimental Protocol 70

5.4.2 Results . 71

5.5 Threats to Validity . 78

5.6 Summary . 78

Contents xi

6 Impact of Defect Predictor Imprecision 83

6.1 Introduction . 83

6.2 Methodology . 85

6.2.1 Defect Prediction Simulation . 85

6.2.2 Search-Based Software Testing Guided By Defect Prediction . . . 88

6.2.2.1 Filtering Targets with Defect Prediction 89

6.2.2.2 Dynamic Selection of Targets and Archiving Tests 90

6.3 Analysis of Impact of Defect Prediction Imprecision 91

6.3.1 Experimental Settings . 91

6.3.1.1 Experimental Subjects 91

6.3.1.2 Prototype . 92

6.3.1.3 Parameter Settings . 92

6.3.1.4 Experimental Protocol 94

6.3.2 Results . 94

6.3.2.1 Sensitivity to the Recall of the Defect Predictor 98

6.3.2.2 Number of Buggy Methods 98

6.3.2.3 Sensitivity to the Precision of the Defect Predictor 100

6.3.3 Discussion . 102

6.4 Threats to Validity . 103

6.5 Summary . 104

7 Guiding the Search Process with Defect Prediction 106

7.1 Introduction . 106

7.2 Motivation . 108

7.3 Predictive Many-Objective Sorting Algorithm 109

7.3.1 Filtering Targets with Defect Prediction 110

7.3.2 Updating Targets and Archiving Tests 112

7.3.3 Balanced Test Coverage of Targets 112

7.3.3.1 Independent Paths . 114

7.3.3.2 Temporarily Disabling Targets from the Search 115

7.4 Experimental Evaluation . 117

7.4.1 Experimental Settings . 119

7.4.1.1 Defect Prediction Simulation 119

7.4.1.2 Experimental Subjects 120

7.4.1.3 Baseline . 120

7.4.1.4 Prototype . 120

7.4.1.5 Parameter Settings . 120

7.4.1.6 Experimental Protocol 122

7.4.2 Results . 123

7.4.3 Discussion . 135

7.5 Threats to Validity . 137

7.6 Summary . 138

8 Conclusions 140

8.1 Using Defect Prediction to Improve the Bug Detection Performance . . . 140

8.2 Impact and Handling of Defect Prediction Imprecision 143

8.3 Summary . 144

Contents xii

9 Future Work 148

A Time Budget Allocation 151

A.1 Distribution of time spent by Schwa and BADS 151

A.2 Bug detection performance comparison of SBSTnoDPG and SBSTO 152

B Impact of Defect Predictor Imprecision 157

B.1 MCC of the defect prediction configurations 157

B.2 Bugs excluded from Defects4J dataset . 158

B.3 A statistical summary of the bug detection by SBST guided by DP 158

B.4 Results of the normality tests . 158

B.4.1 Bugs having only one buggy method 159

B.4.2 Bugs having more than one buggy method 161

B.5 Results of the Tukey post-hoc test . 162

B.6 Results of the Games-Howell post-hoc test 162

C Impact of Precision for Different Time Budgets 167

C.1 Time Budget = 5 seconds . 167

C.2 Time Budget = 10 seconds . 168

C.3 Time Budget = 15 seconds . 168

C.4 Time Budget = 30 seconds . 169

C.5 Time Budget = 60 seconds . 171

D Guiding the Search Process with Defect Prediction 175

D.1 Overview of the success rates of PreMOSA and DynaMOSA 175

D.2 Bug detection results of PreMOSA and DynaMOSA over the time budget
spent . 175

D.3 Bug detection results comparison of PreMOSA-100 against PreMOSA-75
over the time budget spent . 175

E Balanced Test Coverage of Targets 194

E.1 Overview of the success rates of DynaMOSA+b and DynaMOSA 194

E.2 Bug detection results of PreMOSA and DynaMOSA over the time budget
spent . 194

Bibliography 202

List of Figures

1.1 Main research objective overview . 7

2.1 Overview of the main steps of a genetic algorithm. 19

2.2 Control dependency graph . 24

4.1 Buggy code and patch from Lang-16 bug 46

4.2 Test case generated by EvoSuite during the search for the buggy version
of NumberUtils class from Lang-16 . 47

4.3 Final test case with assertions by EvoSuite for the buggy version of Num-
berUtils class from Lang-16 . 47

5.1 Buggy code and patch from Math-94 bug 59

5.2 Sample test case T1 . 59

5.3 Sample test case T2 . 59

5.4 Defect Prediction Guided SBST Overview 60

5.5 Time Weighted Risk (TR = 0.4) . 62

5.6 Distribution of the defect scores assigned by Schwa for the classes in
Chart-9 bug from Defects4J. 64

5.7 Exponential Function of BADS. ea = 0.02393705, eb = 0.9731946, and
ec = −10.47408 . 70

5.8 The number of bugs detected by the 2 approaches against different total
time budgets . 72

5.9 The number of classes where a bug was detected by the 2 approaches,
grouped by the relative ranking positions (%) of the classes in the project
at T = 15 ∗N seconds . 73

5.10 Buggy code and patch from Time-8 bug 77

6.1 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. 95

6.2 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the means plot of number of bugs detected by
SBST guided by DP for the groups of recall. Only for the bugs that have
more than one buggy method. Total number of bugs = 135. 100

6.3 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the means plot of number of bugs detected by
SBST guided by DP for the groups of recall. Only for the bugs that have
one buggy method. Total number of bugs = 285. 101

xiii

List of Figures xiv

7.1 Search space of test inputs for covering the buggy code and detecting the
bug for Time-8 bug . 109

7.2 Control dependency graph of the method forOffsetHoursMinutes from
Time-8 bug . 113

7.3 A sample test case with the time taken to generate. 123

7.4 The number of bugs detected by PreMOSA and DynaMOSA in 2 minutes
time budget . 126

7.5 The number of bugs detected by PreMOSA and DynaMOSA over the
time budget spent . 128

7.6 The number of bugs detected by DynaMOSA+b and DynaMOSA in 2
minutes time budget . 130

7.7 The number of bugs detected by DynaMOSA+b and DynaMOSA over
the time budget spent . 133

8.1 Overall mapping of the research . 141

A.1 Distribution of the time spent per class by Schwa and BADS for the bugs
in Defects4J. 151

A.2 The number of bugs detected by SBSTnoDPG and SBSTO against different
total time budgets . 153

B.1 Q-Q plots of the distributions of the number of bugs detected for each
combination of the groups of recall and precision. R = Recall and P =
Precision. 160

B.2 Q-Q plots of the distributions of the number of bugs detected for the
groups of recall. For the bugs that have one buggy method. 161

B.3 Q-Q plots of the distributions of the number of bugs detected for the
groups of recall. For the bugs that have more than one buggy method. . . 162

C.1 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. Time Budget = 5 seconds. 169

C.2 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. Time Budget = 10 seconds. 170

C.3 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. Time Budget = 15 seconds. 172

C.4 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. Time Budget = 30 seconds. 173

C.5 Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected
by SBST guided by DP for each combination of the groups of recall and
precision. Time Budget = 60 seconds. 174

List of Tables

4.1 Interpretation of the magnitude of Â12 statistic for approach A vs. B. . . 50

4.2 Confusion Matrix. 52

5.1 Mean and median number of bugs detected by the two approaches against
different total time budgets. 71

5.2 Summary of the bug detecting results grouped by the relative ranking
position (%) of the classes in the project at T = 15 ∗N seconds. 73

5.3 Summary of the bug detecting results at T = 15 ∗N 75

5.4 Success rate for each method at 15 ∗N total time budget. Bug IDs that
were detected by only one approach are highlighted with different colours;
SBSTDPG and SBSTnoDPG . 80

5.4 (continued) . 81

5.4 (continued) . 82

6.1 Summary of the two-way ANOVA test results. Df = degrees of freedom,
Sum Sq = sum of squares and Mean sq = mean sum of squares. 97

6.2 Summary of the Welch ANOVA test results. Num Df = degrees of freedom
of the numerator and Denom Df = degrees of freedom of the denominator. 99

7.1 Mean and median number of bugs detected by PreMOSA and DynaMOSA
in 2 minutes time budget. 125

7.2 Summary of the bug detection results at 2 minutes. 125

7.3 Mean and median difference of time taken to generate bug detecting tests
by PreMOSA and DynaMOSA. 127

7.4 Mean and median number of bugs detected by DynaMOSA+b and Dy-
naMOSA in 2 minutes time budget. 130

7.5 Summary of the bug detection results of DynaMOSA+b and DynaMOSA
at 2 minutes. 131

7.6 Mean and median difference of time taken to generate bug detecting tests
by DynaMOSA+b and DynaMOSA. 132

7.7 Summary of the effect sizes of the differences of branch coverage by Dy-
naMOSA+b and DynaMOSA. 134

7.8 Summary of the effect sizes of the differences of CV of number of tests
per an independent path by DynaMOSA+b and DynaMOSA. 135

8.1 Summary of the definitions of the main research objective, research ob-
jectives, papers, findings, and contributions. 146

8.1 (continued) . 147

xv

List of Tables xvi

A.1 Mean and median number of bugs detected by SBSTnoDPG and SBSTO

against different total time budgets. 152

A.2 Success rate for SBSTnoDPG and SBSTO at 15 ∗ N total time budget.
Bug IDs that were detected by only one approach are highlighted with
different colours; SBSTnoDPG and SBSTO 154

A.2 (continued) . 155

A.2 (continued) . 156

A.3 Summary of the bug detecting results of SBSTnoDPG and SBSTO at T =
15 ∗N . 156

B.1 MCC of each defect prediction configuration. 157

B.2 Reasons for removing bugs from the dataset. 158

B.3 A statistical summary of the number of bugs detected by SBST guided
by DP when using defect predictors with different recall and precision. . . 159

B.4 The results of the Kolmogorov-Smirnov test for normality of the distri-
butions (α = 0.05) of the number of bugs detected for each combination
of the groups of recall and precision. 159

B.5 The results of the Kolmogorov-Smirnov test for normality of the distribu-
tions (α = 0.05) of the number of bugs detected for the groups of recall.
For the bugs that have one buggy method. 160

B.6 The results of the Kolmogorov-Smirnov test for normality of the distribu-
tions (α = 0.05) of the number of bugs detected for the groups of recall.
For the bugs that have more than one buggy method. 161

B.7 The results of the Tukey’s Honestly-Significant-Difference test with the
Cohen’s d effect sizes for all possible pairs. Diff is the difference in means.
Lower and Upper denote the 95% family-wise confidence levels. R =
Recall and P = Precision. 163

B.7 (continued) . 164

B.7 (continued) . 165

B.8 The results of the Games-Howell post-hoc test with the Cohen’s d effect
sizes for all possible pairs. For the bugs that have one buggy method.
Mean Diff is the difference in means. Df is the degree of freedom. Lower
and Upper denote the 95% family-wise confidence levels. R = Recall. . . . 165

B.9 The results of the Games-Howell post-hoc test with the Cohen’s d effect
sizes for all possible pairs. For the bugs that have more than one buggy
method. Mean Diff is the difference in means. Df is the degree of freedom.
Lower and Upper denote the 95% family-wise confidence levels. R = Recall.166

C.1 Summary of the two-way ANOVA test results. Time Budget = 5 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean
sum of squares. 168

C.2 Summary of the two-way ANOVA test results. Time Budget = 10 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean
sum of squares. 168

C.3 Summary of the two-way ANOVA test results. Time Budget = 15 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean
sum of squares. 171

List of Tables xvii

C.4 Summary of the two-way ANOVA test results. Time Budget = 30 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean
sum of squares. 171

C.5 Summary of the two-way ANOVA test results. Time Budget = 60 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean
sum of squares. 171

D.1 Success rate for PreMOSA-100 and DynaMOSA at 2 minutes. Bug IDs
that were detected by only one approach are highlighted with different
colours; PreMOSA-100 and DynaMOSA . 177

D.1 (continued) . 178

D.1 (continued) . 179

D.1 (continued) . 180

D.2 Success rate for PreMOSA-75 and DynaMOSA at 2 minutes. Bug IDs
that were detected by only one approach are highlighted with different
colours; PreMOSA-75 and DynaMOSA . 181

D.2 (continued) . 182

D.2 (continued) . 183

D.2 (continued) . 184

D.3 Mean and median number of bugs detected by PreMOSA-100 and Dy-
naMOSA over the time budget spent. 185

D.3 (continued) . 186

D.3 (continued) . 187

D.4 Mean and median number of bugs detected by PreMOSA-75 and Dy-
naMOSA over the time budget spent. 188

D.4 (continued) . 189

D.4 (continued) . 190

D.5 Mean and median number of bugs detected by PreMOSA-100 and PreMOSA-
75 over the time budget spent. 191

D.5 (continued) . 192

D.5 (continued) . 193

E.1 Success rate for DynaMOSA+b and DynaMOSA at 2 minutes. Bug IDs
that were detected by only one approach are highlighted with different
colours; DynaMOSA+b and DynaMOSA . 195

E.1 (continued) . 196

E.1 (continued) . 197

E.1 (continued) . 198

E.2 Mean and median number of bugs detected by DynaMOSA+b and Dy-
naMOSA over the time budget spent. 199

E.2 (continued) . 200

E.2 (continued) . 201

Abbreviations

SDLC Software Development Life Cycle

SBSE Search-Based Software Engineering

GA Genetic Algorithm

SBST Search-Based Software Testing

RIP Reachability, Infection and Propagation

RO Research Objective

CI Continuous Integration

CUT Class Under Test

SQA Software Quality Assurance

CDG Control Dependency Graph

ITS Issue Tracking System

VCS Version Control Systems

TWR Time Weighted Risk

MCC Matthews Correlation Coefficient

BADS Budget Allocation based on Defect Scores

DP Defect Predictor

RQ Research Question

xviii

Chapter 1

Introduction

In the wake of automating many manual and laborious tasks, software has become a

key component in almost every system, e.g., online banking, trading, self-driving cars,

airplanes, hospitals. It is not surprising to learn that software has direct or indirect

impacts on the lives of humans, animals and other living things. What would happen

if a software system that we highly rely on fails to function as we expect? In October

2018, a Lion Air Boeing 737 MAX 8 airplane crashed causing death to everyone on

board. After 5 months of that incident, an Ethiopian Airlines Boeing 737 MAX airplane

crashed resulting in deaths of everyone on board. Although the causes for these two

crashes leading to a shocking number of fatalities were due to several reasons, it was

found out that the fault was originated because of a bug in a part of the Boeing’s flight

management computer software [1]. The consequences of software failures are not only

limited to fatalities. In August 2012, a defective software component in the Knight

Capital’s trade execution system caused a huge financial loss of $440 million to the

company in just 45 minutes [2].

Software testing is an important process in the software development life cycle (SDLC) to

ensure the delivery of high quality software products to the market. Various automated

test generation techniques have been proposed in the literature [3–5] since manual test

generation is a difficult and time consuming task, especially with the software systems

becoming sophisticated and large. Automated test generators automatically generate

tests for a given program to achieve a given testing goal such as maximising structural

coverage.

1

2

Harman and Jones [6] coined the emerging research area search-based software engi-

neering (SBSE), which uses metaheuristic search algorithms such as genetic algorithms

(GA) or simulated annealing [7] to solve software engineering problems. Search-based

software testing (SBST) is a sub-area of SBSE, which specifically focuses on tackling

software testing problems such as test data generation. Research on SBST dates back

to 1976 [8], and since then it has had a growing interest by the research community [9].

SBST techniques [9] have been very successful in automated test generation, and are

widely used not only in academia, but also in the industry (e.g., Facebook [10, 11]).

SBST techniques use search methods to automatically generate high quality test cases

for a particular system [12, 13]. These techniques focus on code coverage, and previous

work show that they are very effective at achieving high coverage [14–17]. They can

even cover more code than manually written test cases [18]. However, according to

the reachability, infection and propagation (RIP) model [19–22], covering the buggy

code is necessary but not sufficient to detect the bugs in the code. In fact, the results

from previous studies show that the SBST techniques guided only by coverage have

limitations when it comes to detecting bugs [23, 24]. For example, EvoSuite [3], a state-

of-the-art SBST tool, could detect only 23% of the bugs, on average, from the Defects4J

dataset [25], when it is given a three minutes time budget per class and using branch

coverage as criterion [23]. For SBST, it is difficult to directly aim at generating test

cases that detect bugs because it is computationally expensive to assess if a test case has

detected a bug (i.e., semantic bugs) during the search process. To detect bugs, previous

work in SBST resorted to coverage-based test generation when automated oracles were

not available (e.g., semantic bugs) [23, 24, 26].

SBST techniques guided only by coverage search for tests to cover the whole code base

by assuming every part of the code is equally important to cover. They have no guidance

in terms of where the buggy code is likely to be located, and hence spend most of the

search effort in non-buggy code which constitutes a greater portion of the code base.

Only a small fraction of the code base constitutes the buggy code [27]. For example, a

project may have hundreds or thousands of classes, but only a few classes may be buggy.

In those few buggy classes, the bug is most likely to be located in a few buggy methods.

This means that it is ineffective for SBST techniques in terms of detecting bugs to try

to search for test cases that cover the whole code base when only a small portion of it

3

is actually buggy. We expect SBST techniques to have better bug detection capability

if the search for tests targets more the buggy areas in the code.

Defect predictors are well-studied techniques for estimating the bug-prone areas in soft-

ware. The predictions can be coarse-grained like package [28] and file/class [29, 30]

levels, or fine-grained like method level [29, 31, 32]. They use various features related to

metrics like code size [33], code complexity [34], change history [35] and organisation [36]

to predict whether a package, file or method is defective. Defect predictors have been

shown to be effective at locating bugs in software [29, 37, 38]. As a result of their effi-

cacy, organisations use defect predictors to help developers in code reviews [39, 40] and

to focus their limited testing efforts on likely buggy parts in code [41]. In addition, de-

fect prediction has been successfully used to inform other automated testing techniques,

e.g., Paterson et al. [42] proposed a test case prioritisation strategy.

We hypothesise that we can improve the bug detection capability of SBST by informing

SBST of the areas in the code which are likely to be buggy. It is not known where the

buggy code is prior to running tests. We argue that defect prediction can be used to

identify bug-prone areas in the code and inform the SBST techniques where the bug is

likely to be. Then SBST can be guided to search for more tests covering the likely buggy

areas in order to increase the likelihood of detecting the bug. Therefore, we formulate

the main research objective of this thesis as to improve the bug detection capability of

SBST by incorporating defect prediction information.

To achieve the main research objective, we devise three research objectives (RO) and

conduct three research studies to address them. The three research objectives are

RO1) to develop an approach that allocates time budget to classes for test generation

based on defect prediction,

RO2) to understand the impact of imprecision in defect prediction for guiding SBST,

and

RO3) to develop an SBST technique that uses defect prediction to guide the search

process to likely defective areas.

4

The first objective aims at improving the bug detection performance of the test suites

generated by SBST by addressing the problem of time budget allocation using coarse-

grained defect prediction (i.e., at class level) as guidance for the SBST technique. In the

second one, we systematically investigate the impact of the errors in defect predictions

on the bug detection performance of SBST. The third objective aims at improving the

bug detection performance of SBST using fine-grained defect prediction (i.e., at method

level) inside the search process of SBST to guide the search for tests to likely buggy

areas in code.

The proposed time budget allocation approach in RO1 (Chapter 5) can be used to

allocate the available time budget for test generation of a whole project in the context

of continuous integration (CI) with maximising the chances of detecting bugs. The

comprehensive experimental analysis conducted in RO2 (Chapter 6) provides insights

into the types of prediction errors that have an impact on the bug detection performance

of SBST. The recommendations we make based on the second study can be used to build

better SBST techniques that handle the potential errors with significant impact. We

also provide actionable conclusion for the defect prediction research community to focus

on when improving defect predictors in the context of combining them with SBST. The

proposed SBST technique in RO3 (Chapter 7) can be used together with the time budget

allocation approach proposed in RO1 to optimally utilise the allocated time budget to

a class by further guiding the search for tests towards buggy areas in a class.

1.1 Research Problem

The results from previous studies show that SBST techniques only guided by coverage,

despite achieving high code coverage [14–17], are not as effective in detecting bugs [23,

24]. A test oracle is needed to determine if a test case has detected a bug. When the

automated oracles are not available, which is usually the case for semantic bugs, SBST

techniques only focus on achieving coverage criteria because it is difficult for them to

directly target generating tests that detect bugs. However, in order to detect bugs,

coverage of buggy code alone is not sufficient according to the RIP model.

SBST tools like EvoSuite employ search methods such as GA to generate a test suite

for a class under test (CUT) according to a given test goal like maximise statement

5

coverage, branch coverage, method coverage, or a combination of the three. One of the

crucial parameters that has to be tuned in the GA is the time budget, which is used

as a stopping criterion for the GA. Previous studies investigated the improvement of

bug detection performance of SBST caused by increasing the time budget [24, 26, 43].

This is based on the hypothesis that allocating a higher time budget allows the search

method to further explore the search space of possible test inputs, thus increasing the

probability of finding the optimum. Despite the increase in bug detection effectiveness

when increasing the time budget, this idea of allocating large amount of time budget

has limitations in its practicability [44].

Real world projects are usually very large and can have thousands of classes [45]. If an

SBST tool runs test generation for 10 minutes per class as done in [43], then it will take

at least 166 hours to finish the task for the whole project having thousands of classes.

Even the CI systems may not be able to allocate such large amount of resources (e.g., 166

hours run-time) as they also have other processes competing for the available resources.

Given the limited computational resources available in practice [44] and the expectation

of faster feedback cycles from testing in modern software development practices (e.g.,

agile), it is not viable to allocate such large amount of time budgets like 10 minutes per

class for test generation.

SBST techniques use fitness functions to evaluate the fitness of generated tests and they

are based on the test goals (e.g., branch, method, line, exception and weak mutation

coverage) that need to be achieved. The generated test suites for different test goals may

capture different behaviour of the program under test. Previous work investigated the

bug detection performance of SBST when it is using different fitness functions based on

single and combinations of test goals [24]. The results indicate that the most effective

fitness function is based on branch coverage since it aims at thoroughly exploring the

program structure. However, SBST could only detect on average 25.24% of bugs from

the Defects4J dataset when using branch coverage based fitness function and 10 minutes

of time budget. This suggests that the bug detection performance of SBST is still not

impressive even after using a large time budget and the most effective fitness function.

We argue that one main limitation in SBST techniques that focus on code coverage is

that they have no guidance in terms of where the buggy code is likely to be located in

the code base. The buggy code constitutes only a smaller portion of the code base [27].

6

Hence, SBST techniques are more likely to waste the search efforts by trying to cover

the whole code base. We expect SBST techniques to achieve a better bug detection

performance, if they target the search for tests more in the buggy areas in the code.

In conclusion, SBST techniques have been shown to struggle in terms of detecting bugs

despite achieving impressive code coverage results. While increasing the time budget

allocated for the search and branch coverage based fitness function indicated increased

bug detection performance, there is still more room for improvement and also these ideas

have limitations in practicability. We argue that SBST techniques should focus more on

searching for tests in likely defective areas in code in order to effectively and efficiently

detect bugs especially given the resource constrained nature in practice.

1.2 Research Objectives

The main research objective of this thesis is to improve the bug detection capability

of SBST by incorporating defect prediction information. In order to detect a bug, a

test case has to satisfy all three conditions of the RIP model. SBST techniques are

very effective at satisfying the reachability condition of the RIP model, i.e., reaching the

buggy code. Despite covering the buggy code, SBST techniques are shown to be not as

effective at generating tests that can cause an incorrect program state (infect) and then

propagating that to a failure of the program. SBST techniques that target high code

coverage search for test cases to cover the entire code base. However, the buggy code

constitutes a smaller portion of the whole code base. For example, Wattanakriengkrai

et al. [27] reported only a 2%-28% of files are buggy in the systems they studied and as

little as 1%-3% of lines in a buggy file are buggy. As we discussed in Section 1.1, we

argue that it is likely effective for SBST to concentrate the search for tests in buggy code

when it comes to bug detection. This way it can increase the likelihood of successful

infection and propagation of the bug. We hypothesise that SBST techniques can use

the information of buggy locations as given by defect predictors to focus the search for

tests more in the likely buggy code in order to increase its bug detection capability.

Figure 1.1 shows an overview of our main research objective. The requirement is to

generate test suites with improved bug detection for a project containing classes. We

7

plan to use defect predictors to extract characteristics of the code that can derive defec-

tiveness and predict the future defective code in the system. We study how this location

information about bugs can be used to inform SBST techniques in order to increase

bug detection. This thesis makes contributions to the SBST knowledge by proposing

approaches for SBST to exploit buggy location information given by defect predictors.

To achieve our main research objective, we set out three research objectives, which we

will describe in the next part of the section.

Project

Defect	Predictor

Probability	of
Defectiveness/
Classification

Automated	Test
Generation	-	SBST Test	Suite

Figure 1.1: Main research objective overview

1.2.1 Time Budget Allocation

SBST tools such as EvoSuite generate test suites for each class in the project separately.

In object-oriented design, a general rule of thumb is to design highly cohesive and loosely

coupled classes. Hence, unlike in within a class, there is not much heuristics to be derived

from a different class which can be used in another class to guide the test generation.

Also, SBST will run into scalability issues if it is to aggregate all the coverage targets

from multiple classes in a project. For example, it will require large memory for the

larger test suites generated for multiple classes during run-time. Thus, SBST tools

usually run test generation for each class independently.

As we discussed in Section 1.1, one of the crucial parameters that needs to be tuned

carefully is the time budget allocated for the search of tests. Time budget is a stopping

criterion for the GA. Allocating a higher time budget allows SBST to extensively explore

and exploit the search space of possible test inputs, thereby increasing the chances

of finding the optimal tests. For example, previous work showed the improved bug

detection performance of EvoSuite when the time budget is increased from 2 minutes to

10 minutes [24]. However, due to the resource constrained nature in the development

environments, it is not practical to allocate higher time budgets for every class in a

project.

8

For small projects, it is feasible to run test generation individually for each class in the

project outside of working hours in developer machines. Real-world projects, however,

are usually very large, e.g., a modern car has millions of lines of code and thousands

of classes [45], and they require a significant amount of resources (e.g., time) to run

the test generation tools for each class in the project. Even in an open source project

like Apache Commons Math [46], there are around 800 classes. In a project like this,

it would take at least 13-14 hours to run test generation with spending just one minute

per each class.

Modern software development practices, e.g., agile, expect faster feedback cycles from

testing. Hence, the most viable option for running frequent test generation is to adapt

SBST in the CI systems. However, CI systems are already dealing with high demands

for computational resources from the existing processes in the system such as regres-

sion testing, code quality checks, integration testing and project builds. If SBST to

be successfully adapted in the CI systems, one major challenge it has is to use mini-

mal resources possible such that it does not idle or interrupt other processes that are

already in the system. Due to this high demand and the limited availability of compu-

tational resources in organisations, the development environments are usually resource

constrained. Therefore, it is necessary to optimally utilise the available computational

resources, e.g., time budget, to generate test suites for a whole project with maximising

the chances of detecting bugs.

Not every class in a project is buggy. Allocating an equal time budget to all the classes

in a project is a sub-optimal strategy in terms of bug detection. In an ideal scenario,

SBST should run test generation on all the buggy classes and non-buggy classes should

be left out from test generation. However, the practitioners do not know which classes

are buggy prior to running tests. We plan to use class level defect prediction to get

information of the probability of defectiveness of classes in a project. Using this infor-

mation, we differentiate classes in a project in order to allocate the available time budget

to those classes. Our aim is to develop a time budget allocation approach guided by

defect prediction for SBST to improve the bug detection performance of the test suites

generated. Therefore, we formulate the following research objective;

9

RO1: Develop an approach that allocates time budget to classes for test generation

based on defect prediction.

1.2.2 Impact of Defect Predictor Imprecision

There is a plethora of defect predictors which have been proposed over the past 40

years [47]. Often, the predictions produced by defect predictors are not perfectly accu-

rate. For example, Zimmermann et al. [48] found that only 21 out of 622 cross-project

defect predictor combinations to have recall, precision and accuracy greater than 75%.

In their systematic literature review, Hall et al. [49] reported defect predictor perfor-

mances from as low as 5% and 25% to as high as 95% and 85% for precision and recall,

respectively. Hosseini et al. [50] also reported similar findings in their systematic liter-

ature review of cross-project defect predictors. This shows that the defect predictors

have a wavering performance and we cannot expect their predictions to be accurate all

the time.

Defect prediction researchers usually aim at elevating both recall and precision. A

lower recall and precision can significantly hamper the benefits of defect predictors for

the developers who usually manually inspect or test the predicted buggy code to find

bugs. Previous work report the developers’ opinions about the defect predictor per-

formance [39, 41, 47]. Poor recall of the defect predictor means that there are higher

false negatives (i.e., labelling buggy code as non-buggy). This can lead the developers

to completely miss bugs, since they are not likely to inspect the code with non-buggy

label which usually constitutes a large portion of the code base. Poor precision means

there are higher false positives (i.e., wrongly labelling non-buggy code as buggy). False

positives cause developers to waste their precious time on inspecting non-buggy code,

which eventually leads to losing trust on the defect predictor [39, 41]. In the eyes of

the developers, higher precision is more important compared to higher recall in a defect

predictor, because higher precision means lower false positives [47] and less waste of

their efforts.

The impact of the defect prediction errors on the bug detection performance of SBST

guided by defect prediction has not been studied before. Hence, the impact of false

negatives (indicated by recall) and false positives (indicated by precision) on the SBST

10

techniques is unknown. False negatives may result in SBST techniques not generating

tests for buggy areas in code because they are not labelled as buggy by the predictor.

This could lead the SBST techniques to miss bugs. On the other hand, false positives

may not be as important in the context of combining defect prediction and SBST, since

searching for tests in false positives may not be a significant burden to the automated

test generation techniques in contrast to a developer manually inspecting the false pos-

itives. To answer this question, “What is the impact of imprecise predictions on the

bug detection performance of SBST?”, we aim at investigating the impact of defect pre-

diction imprecision for guiding SBST. Therefore, we formulate the following research

objective;

RO2: Understand the impact of imprecision in defect prediction for guiding

search-based software testing.

1.2.3 Guiding the Search Process with Defect Prediction

Coverage is often used to define the fitness function used in SBST techniques [14, 15, 51].

During the search process, test cases with high coverage are considered of higher quality,

and the aim of the search process is to generate test cases that maximise coverage. The

existing SBST techniques, therefore, treat all the coverage targets in the CUT as equally

important to cover. However, only one or a few methods in a class are buggy, hence, it is

likely to be ineffective in terms of bug detection to search for tests to cover targets that

contain non-buggy methods. The generated test suites by existing SBST techniques,

despite having high code coverage, have only a few test cases that at least cover the

buggy methods. In the context of detecting bugs, we identify this as a main limitation

in SBST techniques guided only by coverage.

As we discussed under RO1 (Section 1.2.1), due to the usual resource limitations in

practice, requirement of frequent feedback from testing in modern software development

practices, and the high demand for the resources in CI systems, it is very important

for SBST techniques to optimally utilise the available time budget for test generation.

In RO1, we propose a defect prediction guided time budget allocation technique that

allocates higher time budgets to highly likely to be buggy classes. Despite receiving

higher time budget for test generation, it is still sub-optimal to spend a majority of the

11

allocated time budget to search for test cases that cover non-buggy targets in the class.

Therefore, it is necessary to significantly limit the search resources spent on covering

non-buggy targets and increase the test coverage for the buggy targets in the CUT in

order to increase the chances of detecting the bugs.

We hypothesise that augmenting coverage information used by SBST techniques with

defect prediction information improves the performance of SBST in terms of bug de-

tection. We argue that coverage guidance alone is not sufficient to effectively guide the

search process to find tests that detect bugs. We plan to use method level defect pre-

diction to get information of which methods are likely to be buggy and which methods

are not. Using this information, the SBST technique can exploit the targets that con-

tain likely buggy methods to increase the test coverage for those targets. Our aim is

to develop an SBST technique that uses defect prediction information inside the search

process along with coverage information to guide the search for test cases towards likely

buggy targets in the class. Therefore, we formulate the following research objective;

RO3: Develop an SBST technique that uses defect prediction to guide the search

process to likely defective areas.

1.3 Research Contributions

This section lists the contributions produced in this research to knowledge and practice.

1.3.1 Contributions to Knowledge

1. We demonstrate class level defect prediction can be used to guide SBST to effi-

ciently and effectively detect bugs through time budget allocation in a resource

constrained environment. The proposed solution combines defect prediction at

class level and SBST by allocating higher time budgets to highly likely to be de-

fective classes. It is experimentally evaluated using 434 real bugs from six open

source Java projects (which took roughly 34,600 CPU-hours).

2. Through a comprehensive experimental analysis involving 420 real bugs from six

open source Java projects (which took roughly 180,750 CPU-hours), we demon-

strate the recall of the defect predictor has a significant impact on the bug detection

12

performance of SBST with a large effect size. On the other hand, the impact of

precision of the defect predictor is not of practical significance. We identify that

SBST techniques must handle potential false negatives in the predictions when

defect predictors are used to guide the search for tests. For SBST, it is important

to be informed of most of the buggy targets even at the expense of acceptable

level of false positives. In the context of combining defect prediction and SBST,

we recommend the researchers to target higher recall while having a sufficiently

high precision, instead of trying to elevate both recall and precision. A replica-

tion package is made available to be used by other studies and can be found at

https://doi.org/10.6084/m9.figshare.16564146.

3. We demonstrate method level defect prediction can be used to guide the search

process in SBST along with coverage information to improve the bug detection

performance of SBST. The proposed SBST technique approaches the test gener-

ation problem as a many-objective optimisation problem and uses buggy meth-

ods predictions to decide which objectives (i.e., coverage targets) to prioritise in

the search process. It exploits the likely buggy targets while exploring the likely

non-buggy targets with a lesser priority and successfully accounts for false neg-

atives in the defect predictions. The proposed solution is experimentally evalu-

ated using 420 real bugs from six open source Java projects and using theoret-

ical defect predictors with acceptable performance as recommended by Zimmer-

mann et al. [48] (which took roughly 48,800 CPU-hours). A replication pack-

age is made available to be used by other studies and can be found at https:

//doi.org/10.6084/m9.figshare.19027778.

1.3.2 Contributions to Practice

1. We develop a novel time budget allocation approach for SBST to run test genera-

tion with improved bug detection performance. The proposed approach is publicly

available as a tool at https://github.com/SBST-DPG/sbst-dpg. When practi-

tioners want to run test generation with SBST for a large project in a CI system

or developer machines, they can leverage our proposed approach to allocate time

budgets to classes in the project.

https://doi.org/10.6084/m9.figshare.16564146
https://doi.org/10.6084/m9.figshare.19027778
https://doi.org/10.6084/m9.figshare.19027778
https://github.com/SBST-DPG/sbst-dpg

13

2. We develop a novel SBST technique that augments defect prediction informa-

tion with coverage information to guide the search process towards buggy ar-

eas in the CUT with improved bug detection performance. The proposed SBST

technique is implemented in the EvoSuite framework and is publicly available at

https://github.com/premosa-sbst/evosuite. We recommend practitioners to

use our proposed technique with a method level defect predictor with an accept-

able performance (i.e., recall and precision ≥ 75%) in place of an SBST technique

only guided coverage when either a large or a tight time budget is available in a

resource constrained environment. Moreover, this technique can be used together

with the proposed time budget allocation approach to further improve the bug

detection performance.

1.4 Thesis Structure

The organisation of the thesis following Chapter 1, the introduction, is as follows.

Chapter 2 describes the background of SBST and defect prediction that would be needed

to understand the rest of the thesis. The proposed SBST approaches in the thesis address

the test generation problem as a many-objective optimisation problem. This chapter

presents the optimisation problem in many-objective formulation. We also describe the

current state-of-the-art SBST technique for unit testing, dynamic many objective sorting

algorithm (DynaMOSA) [14], which is used in the benchmark methods in our studies.

Chapter 3 presents a review of the SBST and defect prediction literature. We identify

the research gap in related work that we address in this thesis by using defect prediction

as guidance. This is followed by a review of previous work in using defect prediction for

automated software testing and positioning our research in this area of work.

Chapter 4 describes the methodological aspects of the research conducted in this thesis

to address the three research objectives.

Chapters 5, 6 and 7 are contribution chapters and each of them presents the research

studies conducted to address the three research objectives described in Section 1.2. In

particular, Chapter 5 presents the proposed time budget allocation approach to address

the RO1. Chapter 6 presents the study designed to systematically investigate the impact

https://github.com/premosa-sbst/evosuite

14

of defect prediction imprecision on the bug detection performance of SBST in order to

achieve the RO2. Chapter 7 presents the proposed SBST technique guided by defect

prediction to achieve the RO3.

Chapter 8 discusses the findings of this research and their implications to knowledge and

practice.

Chapter 9 discusses potential ideas and directions for future work.

Chapter 2

Background

2.1 Introduction

In order to ensure the delivery of high quality software, development teams exercise

software quality assurance (SQA) activities, e.g., code review and software testing. Bugs

can be introduced to the code in different times during development, and they can reside

in the software systems for long periods like two years [52]. In order to detect these bugs,

developers have to exhaustively test everywhere in the system. In the time of fast-paced

software development and with software systems becoming sophisticated and large, it

is not viable to conduct exhaustive testing. To adapt to this rapid changes in software

development, practitioners can leverage defect prediction models [39] to predict the

areas in the software (e.g., files) that are likely to be buggy. Once these areas have been

identified, they can prioritise their limited SQA resources to the most risky parts of the

code.

Manually writing tests is labour intensive, expensive, difficult and error-prone task. In

order to address these problems, researchers have studied automating the test genera-

tion task. So far, various automated test generation techniques have been introduced [3–

5, 53]. Automated test generation techniques that apply search-based optimisation tech-

niques belong to the area of search-based software testing (SBST) [3]. With the use of

these techniques, practitioners are able to focus their efforts to work on creative tasks

while letting the automated techniques take care of the labour intensive and monotonous

test generation tasks.

15

16

In this thesis, we argue that SBST techniques should focus the test generation efforts

more towards the likely buggy areas in software to increase the chances of detecting bugs.

To do that, we propose to leverage defect prediction to inform the SBST techniques of

the likely buggy areas. In this chapter, we describe the background of SBST and defect

prediction in detail.

2.2 Search-Based Software Testing

Harman and Jones formally established the search-based software engineering (SBSE)

research area in 2001 [6]. SBSE is a sub-area of software engineering where software

engineering problems are formulated as search problems and metaheuristic search algo-

rithms like genetic algorithms (GA) [54], ant colony optimisation [55], particle swarm

optimisation [56] and simulated annealing [57] are applied to search for the optimal solu-

tions. SBSE research extends to all phases of the software engineering process; software

testing and debugging [58, 59], requirements analysis [7], software design [60], software

maintenance [61] and project management [62].

SBST is a sub-area of SBSE where research in SBST focuses on solving software testing

problems by applying metaheuristic search methods. Majority of the research work in

SBSE is applied in the context of software testing. According to a survey in 2012, SBST

research takes up 54% of the research done in SBSE [63]. Even though SBSE emerged as

a key research area in 2001, SBST research dates back to 1976 [8]. From 1976 to 2013,

the number of publications in SBST has shown a polynomial rise suggesting a growing

interest in the research community [9]. Each year since 2008, the research community has

been conducting a dedicated SBST workshop, i.e., International Workshop on Search-

Based Software Testing, co-locating with major software engineering conferences, i.e.,

International Conference on Software Engineering (ICSE) and International Conference

on Software Testing, Verification and Validation (ICST), with the aim of bringing to-

gether the research and industrial communities from SBST. SBST research has made its

way to the industry as well, for example, evolutionary testing of autonomous parking

system at Daimler [64] and search-based prediction of faults at Ericsson [65]. One of the

biggest successes of SBST research is the Sapienz tool which is deployed in production

at Facebook [10]. Sapienz is a search-based android testing tool that optimises test

sequences to maximise coverage and fault revelation.

17

SBST research has been applied to solve a plethora of software testing problems such

as functional testing [64, 66], safety testing [67], security testing [68], integration test-

ing [69], robustness testing [70], exception testing [71, 72], structural testing [53, 73],

fairness testing [74], energy testing [75], test prioritisation [76], unit testing [14, 23, 26, 73]

and regression testing [44]. Its use extends to various applications; self-driving cars [66,

77, 78], healthcare software [74], web applications [68], mobile applications [10, 11, 75],

cyber-physical systems [76], data processing systems [70], short-term conflict alert sys-

tems of air traffic controllers [67], and financial software [26]. Test data generation for

unit testing is one of the well studied problems in SBST [79]. In particular, structural

coverage of unit testing has been a main focus [14, 15, 44, 51, 73, 80, 81]. Manually

writing tests is a time consuming task and SBST techniques have been able to automate

this process. They have been shown to achieve higher code coverage than manually

written tests, suggesting their effectiveness [18].

2.2.1 Search-Based Software Testing for Unit Test Generation

SBST techniques use meta heuristics search algorithms to search for the optimal solu-

tion in a large solution space for specific criteria (e.g., maximise branch coverage). The

search algorithms can be global solvers like genetic algorithms [3, 14, 51], particle swarm

optimisation [82] and ant colony optimisation [83] or local solvers like simulated anneal-

ing [84], hill climbing [85] and Korel’s Alternating Variable Method [86]. By far genetic

algorithms have been commonly used in the area of SBST for test case generation. It is

based on the Darwinian evolution and survival of the fittest theorem [87].

2.2.1.1 Problem Representation

To apply a genetic algorithm to a test generation problem, the valid solutions to the

problem need to be represented, this is known as problem representation. Each solution

in the search space is called a chromosome or an individual. GA evolves a collection

of individuals, called population, through a series of generations to find the optimal

solution. An individual can be a test case [14, 15] or a test suite [3, 51] depending on

the problem representation chosen by the SBST technique. A test case is a sequence of

statements t = {s1, . . . , sl}, where l is the length of the test case. A statement si, where

i ∈ [1, l], can be of any of the following types; i) primitive statements, ii) constructor

18

statements, iii) field statements, iv) method statements, and v) assignment statements.

A test program that executes the program under test can be synthesised using statements

from the above five types. Primitive statements represent the assignment of primitive

values to variables, e.g., int var0 = 100;. Constructor statements represent creating new

instances of a given class by calling a constructor, e.g., Foo foo0 = new Foo();. Field

statements represent accessing public member fields of instances/classes, e.g., int var1 =

foo0.bar;. Method statements represent invoking methods on instances or calling static

methods, e.g., int var2 = foo0.baz();. Assignment statements represent assignment of

values to elements of arrays and public member fields of instances/classes, e.g., var3[0]

= 100;. A test suite is a collection of test cases T = {t1, . . . , tn}, where n is the size of

the test suite.

2.2.1.2 The Search Steps and Genetic Operators

Figure 2.1 shows the main steps of genetic algorithm which are initialisation, evaluation,

selection, crossover, mutation and reinsertion [88]. In the initialisation step, a set of

randomly generated M number of individuals is created as the initial population. Upon

creating the initial population, GA enters a loop comprising of the steps evaluation,

selection, crossover, mutation and reinsertion. These steps are performed until termi-

nation criteria is met, e.g., maximum time budget, test goal and maximum number of

generations. Termination criteria decides when the search for tests should stop. For ex-

ample, the search can stop once the allocated time budget runs out or the test goal, e.g.,

maximum branch coverage, has been met. In practice, maximum time budget is more

suitable as a stopping condition than maximum number of generations since the testing

activities are largely dictated by the availability of computational resources. Different

SBST techniques take different time to perform the same number of generations given

the same computational power.

In the evaluation step, GA evaluates the fitness of all the individuals in the population

using a fitness function. The purpose of the fitness function is to guide the search

towards the optimal solution in order to meet the objective, e.g., maximise branch

coverage. Fitness of an individual measures the extent that individual satisfies the

objective, and it is used in selection and reinsertion steps to decide whether to select or

drop the individual. Branch distance and approach level are widely used to formulate

19

Initialisation

Evaluation

Termination
criteria met?Selection

Crossover Mutation

Reinsertion
No Yes

Exit

Figure 2.1: Overview of the main steps of a genetic algorithm.

fitness functions targeted at maximising branch coverage as an objective [15, 89]. Branch

distance [86, 87] is calculated at the predicate where the execution path diverges away

from the desired path to the target branch. It measures how close it is to switch the

outcome at the predicate (TRUE→ FALSE or FALSE→ TRUE) causing the test case to

execute the desired alternative branch. Branch distance is used to guide the search to find

inputs that evaluate the desired branches (TRUE or FALSE) at the control dependent

nodes of the target branch. Approach level is calculated based on the distance (i.e.,

number of control dependent nodes) between the branch where the execution diverges

from the desired execution path and the branch under consideration. If the execution

of a test case is closer to reaching the target branch in terms of the control dependent

nodes in the control flow graph, then it is rewarded with a lower approach level. A lower

approach level means better fitness of an individual. Approach level is used to guide the

search to find tests that execute along the desired path to the target branch.

Selection is the process of selecting parents from the current population to generate

20

offspring solutions through crossover and mutation. Usually, the parent selection oper-

ators give higher chance for the fitter individuals to be selected for reproduction than

selecting individuals with lower fitness, e.g., tournament selection [88] and roulette wheel

selection [90].

In the crossover step, the two selected parent chromosomes are crossed over to create

two child chromosomes. There are different types of crossover operators such as single

point crossover and uniform crossover. For example, single point crossover splices the

two parent chromosomes at a selected crossover point and form two child chromosomes

by fusing the front of one parent to the end of the other. The crossover operator helps

the search to exploit existing information in the current population.

The mutation step randomly modifies the two child chromosomes produced from the

crossover step and produces two new child chromosomes. For example, mutation opera-

tor adds, modifies and removes statements to/from test cases [15] with a given mutation

probability. It introduces diversity into the search by helping the search to explore new

areas of the search space and also prevents the search from becoming trapped in local

optima.

Reinsertion step is about selecting individuals from the current population and the

offspring population to form a new population in the next iteration (i.e., generation) in

GA. The elitism strategy has been used as the reinsertion operator in the existing GA

based approaches in SBST [3, 14]. Elitism strategy chooses the fittest M individuals

from the current population and offspring and forms a new population to be used in the

next iteration.

2.2.2 EvoSuite

We use the state-of-the-art SBST tool EvoSuite [3] in this thesis. EvoSuite is an auto-

mated test generation framework that generates JUnit test suites for Java classes. It

was first proposed by Fraser and Arcuri [3] in 2011, since then it has gained growing

interest in the SBST community [14, 15, 23, 51, 91]. Its effectiveness has been evaluated

on open source and as well as industrial software projects in terms of the code cover-

age [14, 15, 51, 80, 81] and bug detection [23, 26]. The existing SBST techniques like

whole test suite [89], whole test suite with archive [51], MOSA [15] and DynaMOSA [14]

21

are implemented in EvoSuite, hence, making it easier to compare the SBST techniques

without having any confounding effects due to different implementations or use of tools.

Furthermore, EvoSuite won 6 out of 7 of the SBST unit testing tool competitions [92–97].

To date, EvoSuite is actively maintained, and its source code and releases are readily

available to use at GitHub [98] and their website [99]. Given the maturity of EvoSuite,

we decide to use it as the SBST tool in our thesis.

2.2.3 Single Objective Formulation

The test generation problem can be formulated in two ways; i) single objective formu-

lation [3, 51], and ii) many-objective formulation [14, 15]. In the latter one, the test

generation problem is approached as a many objective optimisation problem whereas

the single objective formulation approaches the test generation problem as optimising

test suites for a single objective [3, 51]. Dynamic many objective sorting algorithm (Dy-

naMOSA) [14] is the state-of-the-art SBST technique and a many-objective approach.

We use DynaMOSA as the SBST technique in benchmark methods in our thesis. In this

section, we discuss the existing single objective approaches and in the next section, we

describe the DynaMOSA approach in detail.

2.2.3.1 Single Target Strategy

Tonella [100] introduced an approach based on GA (also known as one goal at a time [51])

to automatically generate unit tests for object-oriented programs by giving only one

coverage target at a time for the search. For example, if the objective is to maximise

branch coverage, then the single target strategy runs GA separately for each branch in

the program. There are two major drawbacks in this approach. Since it considers only

one target (e.g., branch) at a time, if an infeasible branch is selected as the next target

to cover, then there is the risk of wasting the time budget on that infeasible branch.

This could lead to missing test generation for other branches in the program. The other

major drawback of this approach is that it misses the targets covered by accident (i.e.,

collateral coverage) while focusing the search to cover another target. It is important

for SBST techniques to pay attention to the collateral coverage since a test case that

covers a target also covers the targets along its execution path in the control flow graph.

22

2.2.3.2 Whole Test Suite

Fraser and Arcuri [3] introduced whole test suite (WTS) approach that optimises test

suites considering all the coverage targets at the same time. The objective function in

WTS is an aggregation of all the coverage targets into a single scalar objective function,

which is known as sum scalarisation. By aggregating all the targets into a single objec-

tive, WTS is able to mitigate the drawbacks in the single target strategy. In particular,

WTS simultaneously focuses on all the targets of the program, hence the infeasible tar-

gets do not prevent the search from finding tests to cover feasible targets. The collateral

coverage is automatically included in the aggregated objective function.

WTS defines the problem of finding a test suite that satisfies all the targets as follows.

Let U = {u1, . . . , uk} be the set of k coverage targets of the program under test. Then,

WTS needs to find a test suite T = {t1, . . . , tn} that minimises the fitness function

fU (T),

fU (T) =
∑
u∈U

d(u, T) (2.1)

where d(u, T) is the distance for the target u ∈ U according to a distance function. If

the target u ∈ U is covered by the test suite T , then d(u, T) is equal to zero.

For branch coverage problem, the distance d(b, T) for the branch b ∈ B, where B =

{b1, . . . , bk} is the set of branches of the program under test, is defined as follows;

d(b, T) =

0 if the branch has been covered,

v(dmin(b, T)) if the predicate has been executed at least twice,

1 otherwise.

(2.2)

where (dmin(b, T) is the minimum branch distance for the branch b ∈ B and is com-

puted according to the branch distance computation schemes [90]. v(x) is a normalising

function and it normalises the minimum branch distance to a value within the range 0

to 1.

23

Finally, WTS aggregates these single branch distances for each branch b ∈ B to the

following single fitness function.

f(T) = |M | − |MT |+
∑
b∈B

d(b, T) (2.3)

where M is the set of methods without branches (branchless methods), and MT denotes

the set of branchless methods which are covered by the test suite T .

WTS achieves higher branch coverage than the single target strategy [3, 89]. However,

it is not guaranteed that the targets covered by WTS subsume the targets covered by

the single target strategy. The fitness function in WTS (e.g., Equation. (2.3)) treats

all the coverage targets equally and the search receives the same reward when covering

either of the targets. Hence, WTS is more likely to keep cover trivial targets than to

try covering nontrivial targets. Single target approach, on the other hand, may get to

spend a significant time budget to cover nontrivial targets at the expense of missing

many trivial targets.

2.2.3.3 Archive-Based Whole Test Suite

Rojas et al. [51] introduced archive-based whole test suite (WSA) approach which ad-

dresses the problem of the lack of tests generated to cover nontrivial targets by WTS.

In WTS, if the search finds a new test suite Tnew by modifying a test suite Told and

Tnew covers previously uncovered n targets and loses coverage of more than n previ-

ously covered targets, then according to the fitness function in Equation.(2.1), Tnew is

not considered any better than Told despite covering new targets. WSA addresses this

problem by removing a target from the fitness function once it is covered. This way the

search will not be rewarded anymore for covering that target again. It is rewarded only

when it tries to cover uncovered targets. WSA adapts the archiving technique proposed

in [15] to retain the test cases covering the targets that are removed from the fitness

function. At the end of the search, this archive of test cases forms the final test suite.

The fitness function in WSA is as follows;

fU (T) =
∑

u∈U\C

d(u, T) (2.4)

24

where C denotes the set of covered targets.

One limitation in the WSA approach is that it may lose guidance to cover certain

targets once targets are removed from the fitness function after they are covered. For

example, the fitness function for branch coverage is an aggregation of branch distances

for each branch of the program under test. Branch distance provides guidance to the

search to find a test that executes the respective branch only at its control dependent

node. Figure 2.2 shows a control dependency graph (CDG) for a program and bi, where

i ∈ [1, 6], is a branch. The branch distance of branch b6 provides guidance only at

the node D. The guidance provided by the approach level, i.e., guidance to find tests

that execute along the desired path to the target branch, is already provided by the

aggregated branch distances in the fitness function. For example, the branch distances

of b1 and b3 provide guidance for the search to find a test that executes b6 by covering

b1 and b3. When WSA removes covered targets from the fitness function, there is the

chance of that guidance being removed. For example, once WSA finds a test case to

cover b5, hence b1 and b3 are also covered, b1, b3 and b5 are removed from the fitness

function. This means that the updated fitness function does not have approach level

guidance for b6 anymore. As a result, WSA is likely to not cover the targets that are

deep down in the CDG.

A

B C

D

F

E

G

b1 b2

b3 b4

b5 b6

Figure 2.2: Control dependency graph

25

2.2.4 Many-Objective Formulation

The test generation problem can be approached as a many objective optimisation prob-

lem where each target of the program under test is represented as an objective. The

many objective solvers simultaneously optimise test cases to cover multiple targets. By

formulating the test generation problem as a many-objective problem, the limitations

in single objective approaches such as problems of sum scalarisation [14] and lack of

guidance in the single fitness functions can be mitigated. Previous work showed that

many objective solvers like MOSA and DynaMOSA are more effective at achieving high

branch, statement and strong mutation coverage than the single objective approaches

(e.g., single target and whole test suite approaches) [14, 15, 81]. According to the reach-

ability, infection and propagation (RIP) principle [19–22], it is necessary for a test to

cover the buggy code in order to detect the bug. Previous work indicates that mutation

coverage significantly correlates with the bug detection of the test suites [101]. There-

fore, in this thesis, we use many objective formulation and many objective solvers to

approach the test generation problem. In particular, we use the state-of-the-art SBST

technique DynaMOSA in the benchmark methods and propose an SBST technique which

addresses the test generation as a many objective optimisation problem.

2.2.4.1 Optimisation Problem

In many objective formulation, the objectives to be optimised are the individual dis-

tances for each target in the program under test. The problem of finding a set of test

cases that satisfy all the targets can be formulated as follows. Let U = {u1, . . . , uk}

be the set of k coverage targets and we need to find a set of non-dominated test cases

T = {t1, . . . , tn} that minimise the fitness functions fi(t) for all the targets ui ∈ U ,

fi(t) = d(ui, t) (2.5)

where d(ui, t) is the distance from covering the target ui ∈ U with respect to the test

case t.

For branch coverage problem, the fitness function fi(t) of the branch bi ∈ B, where

B = {b1, . . . , bk} is the set of branches of the program under test, is defined as follows.

26

fi(t) = al(bi, t) + d(bi, t) (2.6)

where al(bi, t) is the approach level and d(bi, t) is the normalised branch distance of the

branch bi for the test case t. In many objective optimisation, each target is considered

a separate objective. Hence the approach level guidance provided by the aggregated

fitness function in the single objective formulation does not exist anymore. Therefore,

the approach level is added to each fitness function.

For a given test case t, the fitness is a vector of k values (⟨f1, . . . , fk⟩), where fi (i ∈ [1, k])

represents the distance of t from covering the target ui ∈ U . If a test case t covers a

target ui, then the corresponding fitness fi of t is zero.

To maximise the coverage of multiple targets, we need to find a set of non-dominated

test cases T = {t1, . . . , tn} where for each tj ∈ T , ∃ui ∈ U such that fi(tj) = 0. A set of

test cases are said to be non-dominated if each test case in the set is better on at least

one coverage target and worse on the remaining targets when compared to other test

cases in the set.

To evaluate individual test cases, we can use Pareto dominance (Definition 2.1) and

Pareto optimality (Definition 2.2) of test cases [102].

Definition 2.1. Pareto Dominance. A test case ti dominates another test case tj ,

if, and only if, the values of the fitness vector satisfy the following conditions:

∀x ∈ {1, . . . , k} fx(ti) ≤ fx(tj)

and

∃y ∈ {1, . . . , k} s.t. fy(ti) < fy(tj)

The definition above states that a test case ti dominates another test case tj , if, and only

if, ti is closer to cover at least one coverage target and not worse in terms of covering

other targets when compared to tj .

27

Definition 2.2. Pareto Optimality. A test case is Pareto optimal, if, and only if,

it is not dominated by any other test case in the space of all possible test cases.

The definition above states that a Pareto optimal test case is better on covering one or

more targets and can be worse on covering the remaining targets when compared to all

possible test cases.

The solution to the many-objective problem is a set of Pareto optimal test cases. Unlike

in usual many-objective optimisation problems where there are trade-offs in the objective

space, in the context of test generation, the optimal test cases are the ones which cover

at least one target, i.e., objective, (i.e., ∃ui ∈ U s.t. fi(t) = 0). Therefore, these test

cases that cover at least one target form the final test suite and represent a sub-set of

the Pareto optimal test cases.

2.2.4.2 Many Objective Sorting Algorithm

Panichella et al. [15] proposed many objective sorting algorithm (MOSA), which for-

mulates the test generation problem as a many objective optimisation problem and

produces a set of Pareto optimal test cases. It starts with a set of randomly generated

test cases as the initial population. It generates new population of test cases by applying

crossover and mutation operators. Test cases are selected to the next generation using a

ranking algorithm called preference sorting algorithm which is based on ‘preference cri-

terion’ and the non-dominance relation of test cases. According to preference criterion,

for each target ui ∈ U , the test case that is closest to cover ui is selected to the first

non-dominated front. All the test cases in the first non-dominated front are selected

to the next generation. MOSA maintains an archive of test cases generated during the

evolution process that forms the final test suite. The archive contains the shortest test

cases for each covered target.

2.2.4.3 Dynamic Many Objective Sorting Algorithm

DynaMOSA [14] is the successor of MOSA and stands as the state-of-the-art SBST

technique. A main limitation in MOSA is that it tries to cover all the targets from the

beginning of the search while most of the targets are not reachable until their control

28

dependent targets are covered. DynaMOSA addresses this problem by introducing a

method called dynamic selection of targets.

A subset of the targets that are included in the search process cannot be covered until

their control dependent targets are covered. Assume a test generation scenario which

uses branch coverage as the optimisation criterion. In the beginning of the search, U

contains all the branches as shown in the CDG (Figure 2.2) as the set of targets to

search for test cases. However, branches like b5 and b6 cannot be covered until their

control dependent branches b1 and b3 are covered. Likewise, b3 cannot be covered until

b1 is covered. Therefore, it is inefficient to search for tests to cover such targets, e.g., b5,

while their control dependent targets are still uncovered. It will unnecessarily increase

the computational complexity of the SBST technique because of the added objectives

to the search without any added benefit.

To address this, DynaMOSA dynamically selects targets to search for test cases only

when their control dependent targets are covered. For example, b5 and b6 are selected to

the search process only if b1 and b3 are covered. At the start of the search, DynaMOSA

selects the set of targets U∗ ⊆ U that do not have control dependencies. At any given

time in the search, DynaMOSA optimises test cases to cover only the targets in U∗.

Once a new population is generated, DynaMOSA needs to update U∗ with new targets

if their control dependent targets are covered. Since DynaMOSA aims at maximising

code coverage, it also removes the covered targets from U∗ to allow itself to focus more

on uncovered targets. Unlike in WSA, removing covered targets from U∗ does not cause

DynaMOSA to lose guidance to cover the targets that are deep down in the CDG. This

is because it uses approach level in the fitness function of each target.

2.3 Defect Prediction

Defect prediction techniques predict the areas in software that are likely to be defective,

in other words bug-prone areas. The exact locations of the bugs are not known prior to

testing. However, there are factors which characterise the code and can correlate with

the likelihood of software components being defective. For example, code complexity

is one such factor, which indicates a component with higher number of entities and

higher number of dependencies between them is highly likely to be defective [34]. The

29

concept behind defect prediction is that mathematical models can be built using the

factors correlating with the defectiveness of the code to estimate if the code is likely to

be defective in the future.

2.3.1 Constructing Defect Prediction Models

To construct a defect prediction model, a defect dataset comprising of metrics to charac-

terise the code with respect to their defectiveness and bug history of the code needs to be

created first [103]. Previous studies have considered a wide range of metrics such as code

size [33], code complexity [34], object-oriented metrics [104], organisational metrics [36],

change history related metrics [35] and code churns [38] to characterise the code when

building defect predictors. Dam et al. [105] introduced an approach to automatically

learn semantic and syntactic features that can derive defectiveness of the code instead

of manually selecting the features to use, and it was shown to outperform the defect

predictors built with traditional software metrics.

These metrics and the bug history of the code can be extracted from the issue tracking

systems (ITS) like Jira [106] and BugZilla [107] and version control systems (VCS)

like Git [108], CVS [109] and SVN [110] maintained by development teams for the

software projects. For example, ITS can be used to retrieve the bug reports and extract

information like the release version of a bug when it was reported [34, 103]. VCS can

be used to identify when a bug was fixed by checking commit messages with keywords

like ”fixed” and ”bug” followed up by ”#” or a number [34]. Previous studies have used

the SZZ algorithm [111, 112] to find the bug introducing changes for a given bug fixing

commit and bug report, which helps to identify the bug history of the code to build

defect datasets.

Code snapshots at the versions of interest can be retrieved from the VCS. Code size,

code complexity and object-oriented metrics can be extracted from the code snapshots.

For example, CK tool [113] is a Java code metrics calculator that extracts a large set

of metrics including the Chidamber/Kemerer (CK) metrics [114] using the source code

of a software project. VCS contains code change information that can be used to ex-

tract change history related metrics, code churns and ownership metrics by mining the

software repositories. For example, recent changes to the code by a new author can

indicate the code is highly likely to be defective [30]. This information can be extracted

30

by examining the usernames of the authors and diffs of commit history of the code from

the VCS.

Upon creating a defects dataset, a defect prediction model is constructed using a machine

learning technique [32, 38] or a statistical approach [36, 37]. The prediction model

relates the software metrics and defectiveness of code in the defects dataset. Majority

of previous work used machine learning techniques to build defect prediction models,

e.g., naive Bayes [115], logistic regression [116], random forest [117], support vector

machine [118], J48 [119] and C4.5 [120]. The defect prediction models can then be used

to predict bugs in future versions of the code.

In a setting where a defects dataset is not available to be used as a training dataset

to train a machine learning technique, cache-based [29, 121] or risk estimation based

prediction techniques [30, 39] can be used to construct prediction models. For example,

FixCache [29] maintains a cache of the most bug-prone software entities. In particular,

when FixCache finds a bug fixing revision in the VCS it determines the bug introducing

change and fetches the entity and nearby entities (temporal and spatial locality) at the

revision where the bug was introduced into the cache. The cache is used to predict bugs

in future revisions. Lewis et al. [39] and Freitas [30] developed defect predictors based

on risk estimation techniques. In particular, they used a time weighted risk (TWR)

formula to calculate an estimation of the probability of defectiveness of an entity. For

example, the TWR formula takes the timestamps of the bug fixing commits for a given

entity and calculates a time-weighted risk for that entity in terms of its defectiveness.

2.3.2 Types of Defect Predictors

Defect predictors give predictions at different levels of granularity, e.g., coarse-grained

prediction levels such as package [28], file [29] and class [104] levels and fine-grained

levels such as method [32] and line [27] levels. The output of the defect predictor can

be in various forms; probability of the code being defective [30], number of defects (i.e.,

defects density) [122], binary classification of buggy or not buggy [31], ranking of code

according to the defectiveness [39]. The probability of the code being defective and the

number of defects can be converted to a binary classification using a threshold [32, 36].

For example, a threshold of 0.5 was used to determine if the code is likely to be buggy

or not [36]. In particular, if the probability of defectiveness is greater than 0.5, then

31

the code is labelled as buggy, and non-buggy otherwise. Similarly, a threshold of 1 was

used to convert the defect density to a binary classification [32]. In particular, if defects

density is greater than or equal to 1, then the code is labelled as buggy, and non-buggy

otherwise. Defectiveness ranking is useful when the limited SQA resources and activities

need to be prioritised for a part of the code. Usually, the top-n riskiest entities (e.g.,

files) are selected according to the ranking given by the defect predictor to conduct SQA

activities [39]. The probability of defectiveness can also be used to rank the entities,

where the entity with the highest probability is the riskiest and the one with lowest

probability is the least risky entity [42].

2.4 Summary

In this chapter, we discuss how SBST fits in the broad area of software engineering. We

give an overview of the main steps of applying a genetic algorithm to a test generation

problem. We discuss the existing SBST approaches that formulate the test generation

problem as single objective optimisation problem and their limitations. Then we present

the optimisation problem in many-objective formulation and describe the state-of-the-

art DynaMOSA in detail, which is used in the benchmark methods in the thesis. The

proposed SBST approaches in our thesis address the test generation problem as a many-

objective optimisation problem. Finally, we give an overview of the construction of

defect prediction models and discuss different types of defect predictors available.

Chapter 3

Related Work

3.1 Introduction

This chapter presents a review of the search-based software testing (SBST) literature.

In particular, we discuss the SBST techniques for unit testing and limitations of SBST

approaches, including the state-of-the-art SBST technique, in terms of detecting bugs.

This is followed by a review of the defect prediction literature. We discuss the advan-

tages and limitations of different types of defect predictors categorised by the prediction

technique used (e.g., machine learning), output type, metrics used, and granularity of

the predictions in the context of using them to guide SBST. Finally, we present a review

of the previous work in defect prediction for automated software testing.

3.2 Search-Based Software Testing

As we discussed in Section 2.2, SBST has been used in plethora of software testing

problems and applications [53, 64, 66, 66–71, 73–78]. Test data generation is one of the

main problems where SBST is applied [123]. In particular, SBST for unit testing is the

most well studied test generation problem in the literature [79]. Among those studies,

structural coverage of unit tests [14, 15, 44, 51, 73, 80, 81] has received larger attention

compared to bug detection [23, 24, 26] from the SBST researchers. In this thesis, we

pay a particular attention to the bug detection capability of the SBST for unit testing.

32

33

SBST techniques use meta heuristics search algorithms to search for high quality test

cases for a specific criteria (e.g., maximise branch coverage). Mainly, the test generation

problem is formulated in two ways; i) single objective formulation [3, 51], and ii) many-

objective formulation [14, 15], which we introduced in Sections 2.2.3 and 2.2.4. Whole

test suite approaches [3, 51] use single objective formulation where they optimise test

suites to satisfy a single objective composed of all the coverage targets. Many objective

sorting algorithms [14, 15] use many objective formulation where they simultaneously

optimise test cases to satisfy all the coverage targets. Previous work shows that these

many objective sorting algorithms are more effective and efficient than whole test suite

approaches in terms of code coverage and mutation coverage [14, 15, 81].

Dynamic many objective sorting algorithm (DynaMOSA) [14] approaches the test gen-

eration problem as a many objective optimisation problem and is considered the state-

of-the-art SBST technique. It is better at achieving high code coverage than many ob-

jective sorting algorithm (MOSA) [15] and archive-based whole test suite (WSA) [51].

DynaMOSA exploits the control dependency of the targets in the program and narrows

down the search to a subset of the coverage targets at a time. This makes DynaMOSA

less computationally complex than its predecessor MOSA. According to the reachability,

infection and propagation (RIP) model, it is necessary but not sufficient to cover the

buggy code in order to detect a bug. Achieving a high code coverage by the test suite

does not guarantee effective bug detection. One main limitation in DynaMOSA is that

it targets at covering all the targets in the program while only a few of them are actually

buggy. We argue that it is likely to be ineffective in terms of bug detection to search for

tests in non-buggy targets which constitute a larger portion of the code base.

Results from previous work show that SBST techniques have limitations in terms of

bug detection [23, 24, 26]. For example, EvoSuite, a state-of-the-art SBST tool, could

only detect on average 23% of the bugs from the Defects4J dataset [23]. However, in

the same study, Randoop [4], a feedback-directed random test generation technique,

detected on average 15% of the bugs, which indicates that despite its poor bug detection

performance, SBST is still better than random testing techniques. Similar results can

be observed in the study by Almasi et al. [26].

Salahirad et al. [24] studied the bug detection effectiveness of SBST when it is using

different fitness functions based on single and combinations of test goals. Test suites

34

generated for different test goals may capture different behaviours of the program under

test, hence SBST may detect different bugs when it is guided by different test goals.

Branch coverage based fitness function was shown to be the most effective because

it is focused on thoroughly exploring the program structure. However, SBST could

only detect on average 25% of the bugs from the Defects4J dataset when using branch

coverage fitness function and 10 minutes time budget, suggesting code coverage alone is

not enough to effectively detect bugs.

As described in Section 2.2.1.2, time budget is used in SBST techniques to determine

when the genetic algorithm should stop searching for tests. Higher time budget means

the search method is able to extensively explore and exploit the search space of possible

test inputs, thereby increasing the chances of finding better test cases with respect to

the coverage criterion used. Previous work studied the improvement of bug detection

effectiveness of SBST by increasing the time budget [24, 26, 43]. The results from

those studies indicate that it is beneficial to increase the time budget in order for SBST

to detect more bugs. However, this approach has limitations in its practicability. In

particular, Almasi et al. [26] allocated 15 minutes, and Gay [43] and Salahirad et al. [24]

allocated 10 minutes time budget per class. In practice, the practitioners do not know the

buggy classes prior to running test generation. In the absence of a time budget allocation

approach, they have to allocate a fix time budget for every class in the project. Given the

industrial projects are usually very large with thousands of classes and the requirement

of frequent testing, it is not viable to allocate such large time budgets for every class in

a project, unless there is a lot of computational resources available in an organisation,

which is usually not the case [44]. We argue that in a resource constrained environment,

SBST should receive higher time budgets to search for tests in likely defective classes at

the expense of the time budgets for the likely non-defective classes in order to properly

utilise the available limited time budget.

3.3 Defect Prediction

Defect predictors employ machine learning techniques [32, 38], statistical approaches [36,

37], cache-based techniques [29, 121] or risk estimation techniques [30, 39] to predict bug-

prone areas in the code. Majority of previous work in defect prediction used machine

learning techniques such as naive Bayes, logistic regression, random forest and support

35

vector machine [49]. They train a model from a defect dataset containing bug history

of code and features that can derive the defectiveness of the code. Cache-based or risk

estimation based prediction techniques do not require a defect dataset, hence they are

easy to apply to an industrial setting where a training dataset is not available. We

employ Schwa [30], a defect predictor based on risk estimation, to guide the time budget

allocation approach for SBST in the study conducted to achieve RO1. The proposed

approach does not depend on the prediction model used by the defect predictor. Hence,

any defect predictor can be used in place of Schwa for the task at hand.

The output of a defect predictor can be in the form of a binary classification [31], proba-

bility of defectiveness [30], defectiveness ranking [39] or defect density of the code [122].

Defect predictors employing machine learning techniques such as logistic regression give

a probability of the code being defective [36]. Some defect prediction models are trained

to output the number of defects (i.e., defect density) in the code [122]. This can be con-

verted to a binary classification using a threshold [36]. For example, if the probability

is greater than the threshold, the code is labelled as buggy, and not buggy otherwise.

On the other hand, machine learning techniques such as support vector machine directly

gives a binary classification. Freitas [30] proposed a defect prediction technique based on

risk estimation and they used a time weighted risk formula to calculate the probability of

code being defective. Yang et al. [124] proposed a learn-to-rank approach to construct

defect prediction models that output a ranking of the code according to their defec-

tiveness. Majority of the previous work studied defect predictors that output a binary

classification [49]. However, defect predictors with a continuous output like probability

of defectiveness provide more information to differentiate the code than what classifi-

cation provides. We use a defect predictor, Schwa [30], that outputs the probability of

defectiveness of classes in a project in RO1 as it allows us to differentiate classes based

on how likely they are to be defective. In RO2 and RO3, we simulate defect prediction

as we need to control the defect prediction performance to certain levels. Since we use

theoretical defect predictors in these two research objectives, we resort to the generic

defect predictor, which is the one that outputs a binary classification.

As we discussed in Section 2.3.1, previous work on defect prediction have considered a

wide range of metrics to characterise the code with respect to their defectiveness [33–

36, 38, 104, 105]. Graves et al. [125] showed that the number of changes and particularly

the recent changes to the code are effective indicators of future defects. Kim et al. [29]

36

followed the observation that bugs occur in software change history as bursts, hence

they argue that recent changes to the code and recent faults in the code are likely to

introduce bugs in the future. Rahman et al. [121] proposed a simple approach, which

was eventually implemented by the Google Engineering team [39, 40], that orders files

by the number of bug fix commits in a file, and found out that its performance is quite

similar to the more complex approach FixCache [29]. Furthermore, they showed that

the files that have been recently involved in a bug fix are likely to contain further bugs.

Freitas [30] developed an enhanced version of this approach called Schwa, which predicts

defects in programs by using three metrics; recent changes, recent bug fixes, and recent

new authors [36] to the code.

The effectiveness of the metrics used to indicate the defect proneness of the code is

dependent on the context they are applied in [37]. For example, Nagappan et al. [36]

showed that the organisational metrics are the best indicators of the defect proneness

of the Windows Vista project. Caglayan et al. [37] demonstrated a counter-case to

this in their replication study involving a large-scale enterprise software. We propose

approaches and design studies that are not dependent on the metrics used in the defect

predictors.

Defect predictors estimate the likelihood of a package [28], file [29], class [104], method [32]

or line [27] is defective. There is plethora of defect predictors working at coarse-grained

levels such as package, file and class levels [49]. Whereas there are only few defect pre-

dictors that work at fine-grained levels such as method and line levels. This is because

obtaining bug history and features to derive defectiveness are more challenging tasks for

methods and lines compared to packages, files or classes [31, 126]. While there are many

coarse-grained defect predictors with effective predictive power, their use in practice has

limitations because of the size of the units they make predictions for [41]. In particular,

a class (or file) may have thousands of lines of code. By looking at the prediction for

such class, it is hard for a developer to find the bug through code review or manual

testing. In fact, Hata et al. [31] showed that the fine-grained predictors outperform

coarse-grained predictors in terms of the effort required to find bugs manually. Our

thesis investigates leveraging defect predictors at both coarse-grained and fine-grained

levels to inform SBST techniques of the defective areas in code in order to improve the

bug detection performance.

37

Defect predictors have been shown to be effective at locating bugs in software [29,

37, 38]. In particular, defect predictors with more than 85% of recall and precision

have been reported in the literature [32, 38]. Due to their efficacy, they are used in

practice to assist developers in code reviews [39, 40] and manual testing [41]. With

the help of the defect predictors, developers can make decisions on where to prioritise

their test efforts [127]. However, finding bugs by code reviews or manual testing may

become a laborious task when the size of the code that is predicted buggy is large or

complex. Previous work proposed to use model-agnostic techniques from explainable AI

to generate explanations for the defect prediction models and their predictions, e.g., most

important characteristics that contributed to the final prediction [128]. This further

helps developers to find bugs by understanding why the code is flagged as buggy by

the predictor [127]. In this thesis, we propose to use defect prediction to inform an

automated testing technique which produces bug detecting test cases. The automated

testing step has the potential to complement or to substitute the manual testing/code

review step, hence can further reduce the workload of the developers.

Defect predictors are not perfectly accurate. While there are defect predictors with

higher recalls and precision, their performance can vary, e.g., from as low as 5% and

25% to as high as 95% and 85% for recall and precision, respectively [49]. Hosseini

et al. [50] also reported similar findings in their systematic literature review of cross-

project defect predictors. The false negatives and false positives in the predictions can

have an impact on the usefulness of defect predictors in practice. Developers may miss

bugs because of false negatives [29]. False positives, on the other hand, mislead the

developers into thinking that non-buggy code is buggy. This can result in a waste of

developers’ time and can lead them to not trust the defect predictor, especially when

the predictions go against their perceptions of the code [39, 41, 47]. When an automated

testing technique uses defect predictions, false positives may not be a significant burden

in contrast to a developer manually inspecting non-buggy code for bugs. False negatives,

on the other hand, may cause the automated techniques to completely miss the bugs.

However, there is the potential to mitigate this by allowing the automated technique to

explore the likely non-buggy code for bugs, which would be an expensive task if it is

done manually. This thesis investigates the impact of false positives and false negatives

on the bug detection performance of SBST. We propose defect prediction guided SBST

techniques that handles the potential errors in the predictions to mitigate their impact

38

on the final outcome, i.e., bug detection of the test cases.

Zimmermann et al. [48] recommended a defect predictor with recall, precision and accu-

racy greater than 75% is a strong defect predictor, and vice versa. They found out that

only 21 out of 622 cross-project defect predictor combinations are strong defect predic-

tors according to this criterion. Following this recommendation, we define an acceptable

defect predictor is one that has a recall and precision greater than 75%. In particular, in

RO2, we systematically investigate the impact of imprecision of defect prediction in the

range of acceptable defect predictors. In RO3, we experimentally assess the proposed

SBST technique using acceptable defect predictors.

We use an off-the-shelf defect predictor in the proposed SBST approach in RO1 and

demonstrate real defect predictors can be leveraged to guide SBST to detect bugs effi-

ciently and effectively. In RO3, we experimentally assess the proposed SBST technique

using theoretical defect predictors with lower bound and upper bound performances in

the acceptable range. To do this, we simulate defect prediction following the assump-

tion of uniform distribution of defect prediction errors similar to Herbold [129]. The

performance of real defect predictors cannot be controlled to any desired values. To

systematically investigate the impact of defect prediction imprecision in the acceptable

range (RO2), we simulate defect prediction for different levels of performance. Using

a real defect predictor in the experimental evaluation demonstrates the viability of the

proposed approach in practice [42, 130–132]. However, it limits the findings of the study

to a specific defect predictor built with one learner and one set of metrics.

3.4 Defect Prediction in Automated Software Testing

As we discussed in Section 3.3, defect predictors have been used in the industry to

support developers in code reviews [39, 40] and in testing [41] because of their efficacy

in locating bugs in software. While the main assumption of defect prediction is to

provide useful information to developers [39], prediction outcomes have also been used

successfully in automated testing techniques [42, 131–133].

Previous work that leveraged defect prediction to guide automated software testing tech-

niques have used defect prediction either i) in the test generation phase [130, 133] or ii)

39

post test generation phase [42, 131, 132]. In particular, Hershkovich et al. [130, 133] pro-

posed QUADRANT which uses defect prediction to select classes to run test generation.

G-clef [42] is a test prioritisation strategy that uses a defect predictor and prioritises

test cases in terms of their likelihood of finding bugs. FaRM [131] is a mutant selec-

tion technique that selects and ranks fault revealing mutants using prediction models.

FLUCCS [132] is a fault localisation approach that ranks methods according to their

likelihood of being faulty using defect prediction models. G-clef, FARM and FLUCCS

are applied after the test generation step, i.e., G-clef and FaRM can be used to prioritise

and select test cases, and FLUCCS can be applied to localise the fault once a bug is

detected through test generation.

QUADRANT [130] is a defect prediction guided class selection strategy to run test

generation with an automated testing technique like SBST. It uses a class level defect

predictor, and code complexity, object-oriented and change history related metrics are

used to derive the defectiveness of the code [134]. QUADRANT ranks classes according

to a score which is a combination of the probability of defectiveness and/or lines of

code in the class. Only the top-n classes are selected for test generation, and in the

experiments, they have considered n ∈ [1, 15]. Usually, the industrial projects are very

large and may have thousands of classes [45]. Selecting only a few classes for test

generation and leaving out the other classes may have consequences in terms of bug

detection. This is because defect predictors are not perfectly accurate and there is a

reasonable chance that the buggy class not to be ranked in the top-n classes when n is

significantly smaller compared to the total number of classes in a project. For example,

the average relative ranking position of the buggy classes by the defect predictor used

in G-clef is 13%, which means if the project has 1000 classes, the defect predictor ranks

the buggy classes at 130th position on average [42]. In contrast, this thesis proposes a

defect prediction guided time budget allocation approach that allocates time budgets to

classes for test generation while accounting for potential errors in the predictions.

The size of the regression test suites increases over the time as new test cases are added,

for example, when development teams add new features to the software. To reduce the

time taken to detect bugs (i.e., regressions) in software, researchers have opted for test

case prioritisation strategies. Paterson et al. [42] introduced G-clef which is a test case

prioritisation strategy that uses a class level defect predictor based on change history

related metrics [30] and prioritises test cases in terms of the buggy rank of the classes

40

they cover. It was shown to be more effective at reducing the number of test cases

required to find bugs compared to the existing prioritisation strategies. We employ the

same defect predictor as used in G-clef to inform a time budget allocation approach in

this thesis. In contrast to G-clef, our thesis focuses on improving bug detection capability

of an automated test generation technique.

Mutation testing is expensive due to the larger number of mutants that need to be

analysed. FaRM is a mutant selection technique that selects and ranks fault revealing

mutants, i.e., the killable mutants and the ones that lead to test cases revealing bugs,

and aims at revealing most of the bugs by analysing the smallest possible number of

mutants [131]. FaRM uses a prediction model that captures the characteristics that

derive the ability of the mutants to reveal bugs. The prediction model used in FaRM

utilises source code metrics. It was shown to outperform the state-of-the-art mutant

selection and mutant prioritisation methods in terms of revealing bugs. FaRM can be

applied as a post-test generation task. In contrast, our thesis specifically focuses on

generating tests with the guidance of defect prediction.

Once the tests (automatically generated or manually written) detect bugs, developers

need to analyse the programs and test executions to find the root cause of the observed

failures. Fault localisation techniques help developers to reduce their debugging efforts

by highlighting the program elements (e.g., lines) which are most likely to contain the

faults. FLUCCS [132] is such fault localisation approach that combines the existing

spectrum-based fault localisation (SBFL) approach with defect prediction. They use a

method level defect predictor that utilise code size, complexity, code churns and change-

related metrics to rank methods according to their likelihood of being faulty. FLUCCS

was shown to outperform the state-of-the-art SBFL techniques in terms of locating

faults at the top and within the top ten methods. FLUCCS also works at the post-test

generation phase, for example, once the tests generated by SBST detect a bug, FLUCCS

can be applied to localise the fault with the aid of SBST generated tests.

3.5 Summary

The test generation problem is one of the main problems addressed by SBST research.

Among the studies in test generation, structural coverage of unit testing has been a main

41

focus. In fact, several SBST techniques have been proposed with the aim of maximising

structural coverage of unit tests and they have shown to be effective at achieving high

code coverage, sometimes covering more code than manually written tests. However,

SBST techniques are not as effective in terms of detecting bugs as indicated by the

results of previous work. We argue that this is mainly due to SBST having no guidance

towards the defective areas in a program.

Various types of defect predictors have been proposed over the past 40 years [47]. They

give predictions at different levels of granularity, e.g., coarse-grained like file level and

fine-grained like method level. Both coarse-grained and fine-grained predictions can

provide useful information to SBST techniques in different ways. Due to their efficacy,

defect predictors have been used to support developers in preforming manual tasks like

code reviews and testing. Lack of explainability is one of the limitations in typical

defect prediction outcomes when they are used by humans. Having SBST techniques to

consume defect prediction outcomes and produce bug detecting tests has the potential

to complement or to substitute the manual tasks and will be able to reduce the workload

of the developers and the explainability issue to a certain extent. When using defect

prediction to inform SBST techniques, one of the main concerns to look for is that the

predictions are not perfectly accurate. This calls for an investigation of the impact of the

defect prediction imprecision on guiding SBST and handling for those potential errors

having a significant impact. Defect predictors have been used in automated testing

techniques to inform those techniques of the likely defective areas in programs. To the

best of our knowledge, this thesis is the first to investigate the use of defect prediction

to guide the SBST techniques towards the likely defective areas.

Chapter 4

Methodology

In Chapter 3, we discussed the limitations of search-based software testing (SBST) tech-

niques in the context of bug detection and the potential of defect predictors to provide

additional guidance for SBST techniques to increase the bug detection performance of

them. The ultimate goal of the thesis is to improve the bug detection capability of SBST

by incorporating defect prediction information. To achieve that, we formulate three re-

search objectives, which we introduced in Chapter 1, and conduct three research studies

to address them. This chapter presents the methodological aspects of the research con-

ducted in this thesis; the research method used to address the research objectives and

validate the solutions proposed in each research objective, and the validity threats to

the research studies conducted.

To evaluate the proposed contributions of the thesis, we design a set of experiments. The

design of experiments describes the details to run a set of experiments under controlled

conditions to evaluate the performance of SBST in terms of bug detection when using

defect prediction for guidance. The experiments consist of generating test suites for

programs containing bugs. These programs with bugs are the benchmark subjects of

the experiments, which are taken from a well-studied dataset, Defects4J benchmark.

To perform an experimental comparison between a proposed approach in the thesis and

the existing SBST approaches, we use the state-of-the-art SBST technique, DynaMOSA,

in the benchmark methods. The SBST approaches need to be allocated a time budget

for test generation. In each contribution chapter, we describe the specific time budgets

allocated in the particular experiments. The proposed approaches and the benchmark

42

43

methods are implemented within the state-of-the-art SBST tool, EvoSuite, hence, any

confounding effects due to different implementations or use of tools are mitigated in the

experiments. The parameter settings for the SBST techniques, defect predictors and the

proposed approaches are described in the particular contexts under each contribution

chapter. We mainly use the number of detected bugs as the performance measure. In

addition, time to generate the first bug detecting test case is also used. To compare

the performance of the proposed approaches against the benchmark methods and draw

conclusions from the results, we conduct statistical tests.

In this thesis, we consider generating tests to detect bugs not only limited to regressions,

but also the bugs that are introduced to the system at various times. Previous work

that evaluate EvoSuite in terms of bug detection considered test suite generation for

a regression testing scenario [23, 26, 44, 135]. They assume the current version of the

software works correctly and generate test suites to capture the behaviour of that version.

Then, these test suites are used to detect regression bugs introduced in the next commit.

The bug survival time, i.e., the time between the introduction of the bug and when the

bug fix is performed, can be as long as 2 years or as short as a few days [52]. Given a

software system, there can be bugs that are introduced to the system at various times

in the past and not yet detected. Therefore, contrary to the previous works, we focus

on an application scenario of generating tests to detect bugs that exist in the system.

In the next sections, we describe the benchmark subjects, benchmark methods, perfor-

mance measures and the bug detection evaluation procedure used in this thesis. The

design of experiments is based on the research objectives, which allows us to validate

the particular approaches and test the respective hypotheses. This section describes the

aspects that are common to all the experiment designs in this thesis. The other specific

details are described under each contribution chapter.

4.1 Experimental Subjects

We use the version 1.5.0 of the Defects4J dataset [25, 136] as our benchmark subjects

to conduct experimental evaluations for our proposed approaches. It contains 438 bugs

that are from manually validated bug fixes from six real-world open source Java projects.

We remove four deprecated bugs from the original dataset [136] since they are not

44

reproducible under Java 8, which is required by our test generation tool used, i.e.,

EvoSuite. This results in the following bugs that are not part of the experiments: Lang-

2, Closure-63, Closure-93 and Time-21 are removed. The 434 bugs are from the following

projects; JFreeChart (26 bugs), Closure Compiler (174 bugs), Apache commons-lang (64

bugs), Apache commons-math (106 bugs), Mockito (38 bugs), and Joda-Time (26 bugs).

For each bug, the Defects4J benchmark gives a buggy version and a fixed version of the

program. The difference between these two versions of the program is the applied patch

to fix the bug, which indicates the location of the bug. The Defects4J benchmark also

provides a test execution framework to perform tasks like running the generated tests

against the other version of the program (buggy/fixed) to check if the tests are able to

detect the bug and fixing the flaky test suites [136]. We use this framework to determine

if the test suites generated by SBST detects the bug or not (discussed in Section 4.4).

Defects4J is widely used as the benchmark subjects in research on automated unit test

generation [23, 43], automated program repair [137], fault localisation [138], test case

prioritisation [42], etc. This makes Defects4J a suitable benchmark for evaluating our

proposed approaches, as it allows us to compare our results to existing work. Defects4J

is actively maintained and more recently another 401 bugs from 11 open-source projects

were added to the existing 438 bugs. Bugs.jar [139] and Bears benchmark [140] are

another two bugs datasets that are mainly targeted to be used in automated program

repair studies. Bugs.jar contains 1158 real bugs from eight open-source Java projects

and Bears benchmark contains 251 real bugs from 72 open-source Java projects. Unlike

Defects4J, both datasets have not been used in the automated test generation stud-

ies. This can be because of their lack of support provided to fix test suites containing

flaky test cases and evaluate test suites for bug detection, whereas the test execution

framework of Defects4J enables researchers to easily perform these tasks. More recently,

Herbold et al. [141] created another bug dataset containing 2371 real bugs from 28 open-

source Java projects by manually validating bug fixes through crowd sourcing. Given

Defects4J is actively maintained, its maturity as a framework to support experiments,

and its use in a wide array of automated software testing areas including automated

test generation, we decide to use Defects4J dataset as the benchmark subjects in this

thesis. We identify validating the proposed approaches in this thesis against other bugs

datasets [139–141] as future work to support the external validity of our findings and

increase the generalisability.

45

4.2 Benchmark Methods

The main objective of the thesis is to use defect prediction to guide the SBST techniques

to likely defective areas in code, which results in improved bug detection performance

of the generated test suites. To determine if the objective is achieved, we use the

state-of-the-art SBST technique, DynaMOSA, in the benchmark methods to compare

against the bug detection effectiveness and efficiency of our proposed approaches. As

discussed in Section 2.2.4, DynaMOSA is better at achieving high code coverage and

mutation coverage compared to the existing SBST techniques. In order to detect a

bug, it is necessary to reach the buggy code according to the RIP principle. Previous

work indicates that mutation coverage significantly correlates with the bug detection of

the test suites [101]. Therefore, we choose DynaMOSA in the benchmark methods to

measure the improvements by our proposed approaches. In each contribution chapter,

we describe the specific benchmark methods used in the particular contexts.

4.3 Detecting Bugs with Search-Based Software Testing

Techniques

In order to detect a bug, a test case must satisfy the conditions of the reachability,

infection and propagation (RIP) model [19–22]. In addition, it must also have a test

oracle to reveal the failure [142]. DynaMOSA and our proposed SBST technique in

RO3 are implemented in the state-of-the-art SBST tool, EvoSuite. Tests generated by

EvoSuite satisfy all three conditions of the RIP model. However, they do not have test

oracles, hence are incapable of revealing bugs without test oracle inserted by humans or

automated tools [143]. We will explain this more with an example.

Figure 4.1 shows the buggy code snippet and the applied patch for NumberUtils class

from Lang-16 bug in Defects4J [136]. The buggy method, createNumber, takes a pa-

rameter of String type, str, and returns a java.lang.Number object with the value

specified in the input str. If the value in str cannot be converted, then it throws a

NumberFormatException. For example, if the method is called with the input str="0Xa",

then it is expected to return a java.lang.Integer object with the value 10. However,

such input does not execute the true branch of the if condition at line 458 because the

46

buggy method only checks for hexadecimal notations starting with "0x" and not "0X".

As a result, the execution continues along the false branch of the if condition at line

458 and throws a NumberFormatException instead of the expected java.lang.Integer

object. This bug is fixed by modifying the if condition at line 458 as shown in the diff

in Figure 4.1.

444 444 public static Number createNumber(String str)
 throws NumberFormatException {
445 445 if (str == null) {
446 446 return null;
447 447 }
448 448 if (StringUtils.isBlank(str)) {
449 449 throw new NumberFormatException("A blank string is not a valid
 number");
450 450 }
451 451 if (str.startsWith("--")) {
 …
456 456 return null;
457 457 }
458 - if (str.startsWith("0x") || str.startsWith("-0x")) {
 458 + if (str.startsWith("0x") || str.startsWith("-0x") || str.startsWith("0X") ||
 str.startsWith("-0X")) {
459 459 return createInteger(str);
460 460 }

 …
594 594 }

Figure 4.1: Buggy code and patch from Lang-16 bug

Assume a test generation scenario for the buggy version of the NumberUtils class in

our example. Figure 4.2 shows a sample test case generated by EvoSuite during the

search process. The execution of the test case reaches the buggy code, i.e., line 458.

The execution of the buggy statement causes an incorrect internal program state (in-

fection), i.e., a valid argument to str (str="0Xa") must not cause the program to

throw a NumberFormatException. The incorrect internal program state is propagated

to an incorrect final state (failure) of the program, i.e., at line 3 in the test case,

createNumber("0Xa") call should output a java.lang.Integer object with the value

10, instead a NumberFormatException is thrown. EvoSuite does not have test oracles,

hence it generates assertions in the tests assuming the program under test is correct.

For example, Figure 4.3 shows the final test case generated by EvoSuite for the test case

shown in Figure 4.2, which is not able to reveal the bug since the test case does not fail

when it is executed against the buggy program.

47

 1 …
 2 String string0 = “0Xa”;
 3 NumberUtils.createNumber(string0);
 4 …

Figure 4.2: Test case generated by EvoSuite during the search for the buggy version
of NumberUtils class from Lang-16

 1 public void test001() throws Throwable {
 2 // time taken = 83090
 3 try {
 4 NumberUtils.createNumber("0Xa");
 5 fail("Expecting exception: NumberFormatException");
 6 } catch(NumberFormatException e) {
 7 //
 8 // 0Xa is not a valid number.
 9 //
 10 verifyException("org.apache.commons.lang3.math.NumberUtils", e);
 11 }
 12 }

Figure 4.3: Final test case with assertions by EvoSuite for the buggy version of
NumberUtils class from Lang-16

In the ideal scenario, if oracle automation [143] exists, the generated test cases can reveal

the bugs. Without oracle automation, the best EvoSuite can do is to propagate the

incorrect state of the program to the output. The scope of this thesis is to improve the

bug detection capability of the test suites generated by SBST guided by defect prediction

and not oracle automation. Therefore, in this thesis, we consider that DynaMOSA or

the proposed SBST approaches detect a bug if they generate a test case that propagates

the internal error to the output of the program. Nevertheless, we remind the readers

that neither DynaMOSA nor our proposed SBST approaches are able to reveal existing

bugs in a program without the aid of oracle automation. Finally, this limitation is not

only applicable to our proposed SBST approaches and DynaMOSA, but also to other

SBST techniques [3, 15, 51] in this space as well.

4.4 Bug Detection Evaluation Procedure

To determine if a bug is detected by a test suite generated by an SBST approach,

we perform the following procedure in the experiments. We use the test execution

48

framework in Defects4J [136] for this task.

First, the flaky test cases are removed from the test suites using the ‘fix test suite’ script

in Defects4J test execution framework as described in [23]. A test case should produce

the same output when it is run against the version of the program it was created in the

first place. If not, the test case is considered a flaky test case. For example, a test case

containing an assertion that refers to the system time will produce different outputs

when it is run at different times. Hence, that test case is flaky and needs to be removed

from the test suite. To identify and remove the flaky tests from a test suite, ‘fix test

suite’ first removes all uncompilable test classes until the test suite compiles. Then,

the test suite is executed against the version of the program the test suite was created,

i.e., buggy version in our case. If the execution reveals flaky tests, then they will be

removed, and the test suite will be re-compiled and re-executed. This is repeated until

the test suite executes against the buggy version and produces the same output for five

consecutive runs (i.e., without detecting any flaky tests).

We use the fixed versions of the programs as the test oracles [131]. If a test suite running

against the buggy version of a program produces a different output compared to what

it produces when it is run against the fixed version, then it means the test suite detects

the bug. We use the ‘run bug detection’ script in Defects4J test execution framework

and fixed version of the program as the test oracle to determine if a test suite detects a

bug. EvoSuite generates assertions assuming the program under test is correct, therefore

the generated tests should always produce the same execution result when they are run

against the buggy version. A test suite is considered broken, if it is not compilable or

produces a different execution result when it is run against the buggy version. The test

suite is considered it has missed detecting the bug, if the test execution results are same

when it is run against the buggy and fixed versions of the program, if the results are

different, then it is considered as it has detected the bug.

4.5 Performance Measures

In order to compare the proposed approaches against the benchmark SBST approaches,

we define performance measures. The main performance measure used in this thesis is

49

the number of bugs detected. We define the measure number of bugs detected, d(B), in

Equation. (4.1).

d(B) =
∑
bi∈B

d(bi) (4.1)

where

• B = {b1, . . . , bn} is the set of bugs from the benchmark subjects and n is the

number of bugs in the dataset.

• d(bi) denotes whether the bug bi is detected by the test suite and is calculated as

in Equation. (4.2). We consider a test suite detects a bug, if it detects the bug in

any of the buggy classes of that bug.

d(bi) =

1 if

∑
bij∈Bi

d(bij) > 1

0 if
∑

bij∈Bi

d(bij) = 0

(4.2)

where

• Bi = {bi1, . . . , b1k} is the set of buggy classes of the bug bi and k is the number of

buggy classes of bi.

• d(bij) denotes whether the test suite detects the bug bi in buggy class bij and is

calculated as in Equation. (4.3).

d(bij) =

1 if the test suite detects the bug bi in buggy class bij

0
if the test suite misses the bug bi in buggy class bij

or is broken

(4.3)

We repeat the test generation runs for each buggy class and for each approach to account

for the non-deterministic behaviour of genetic algorithms used in SBST. We use mean

and median number of bugs detected over a number of independent runs to report and

50

compare the bug detection performance of the SBST approaches. We also plot the

number of bugs detected as boxplots and violin plots to visualise the distribution. We

conduct sound statistical tests to derive conclusions from the results of the experiments.

To check for statistical significance of the differences of the number of bugs detected by

two approaches, we employ non-parametric Mann-Whitney U-Test with the significance

level (α) 0.05 [144]. To compute the effect size of the differences, we conduct Vargha

and Delaney’s Â12 statistical test [145].

In the context of comparing the number of bugs detected, the Â12 statistic measures

the probability that running SBST approach A yields higher d(B) values than running

approach B. We interpret the magnitude of Â12 statistic as shown in Table 4.1 [15]. We

consider the effect size is negligible if Â12 ∈ (0.42, 0.58). If Â12 = 0.50, then the two

approaches are equivalent.

Table 4.1: Interpretation of the magnitude of Â12 statistic for approach A vs. B.

Interpretation A > B B > A

Large Â12 ≥ 0.75 Â12 ≤ 0.25

Medium 0.65 ≤ Â12 < 0.75 0.25 < Â12 ≤ 0.35

Small 0.58 ≤ Â12 < 0.65 0.35 < Â12 ≤ 0.42

We also use the measure time to generate bug detecting test to compare the proposed

SBST technique against the benchmark SBST technique in RO3. It is defined as the

time to generate the first test case that can detect a bug. We use this measure to

evaluate the SBST techniques in terms of the efficiency of detecting bugs. To check for

statistical significance of the differences of the time to generate bug detecting tests by

two approaches, we employ Wilcoxon signed-rank test [144] and its effect size, r [146].

We describe this measure in detail and the steps to calculate it and conduct statistical

tests in Section 7.4.

In RO2, we conduct two-way ANOVA test to statistically analyse the effects of recall

and precision of the defect predictor on the bug detection effectiveness of SBST. Prior

to conducting two-way ANOVA test, we conduct necessary statistical tests to check our

data holds the assumptions of the test. To check if the observed effects are of practical

significance, we compute the epsilon squared effect size (ϵ̂2) [147] of the variations in

number of bugs detected with respect to recall and precision. To further analyse which

groups of recall and precision are significantly different from each other and their effect

51

size, we conduct the Tukey’s Honestly-Significant-Difference test [148] as a post hoc

test and compute the Cohen’s d effect size, respectively. We describe this in detail in

Section 6.3.

Previous work on defect prediction have used various performance measures to measure

and compare the predictive power of defect predictors such as recall, precision, accu-

racy, probability of false alarms, area under the curve (AUC), F-measure, G-measure

and Matthews correlation coefficient (MCC) [149]. Out of these measures, recall and

precision have been widely used in previous work to report the performance of defect

predictors [49, 50]. In this thesis, we mainly use recall and precision to characterise

the performance of the defect predictors used in the proposed SBST approaches. For

completeness, we report the accuracy and MCC of the defect predictors as well.

As shown in the confusion matrix in Table 4.2, a true positive is when buggy code is

correctly labelled as buggy, a true negative is when non-buggy code is correctly labelled

as non-buggy, a false positive is when non-buggy code is incorrectly labelled as buggy,

and a false negative is when buggy code is incorrectly labelled as non-buggy. Recall

is the rate of the defect predictor correctly identifying buggy code and is calculated as

in Equation. (4.4). A defect predictor with recall closer to 1 means that it identifies

most of the buggy code correctly. Recall is indicative of the false negatives by the defect

predictor. Poor recall of the defect predictor means there are higher false negatives, and

lower false negatives otherwise. Precision is the rate of the correct buggy code labels

by the defect predictor and is calculated as in Equation. (4.5). A defect predictor with

precision closer to 1 means that most of the buggy code labels produced by the defect

predictor are correct. Precision is indicative of the false positives by the defect predictor.

Poor precision of the defect predictor means there are higher false positives, and lower

false positives otherwise.

Accuracy is the rate of correct labels by the defect predictor and is calculated as in

Equation. (4.6). Accuracy can be biased in the case of highly imbalanced datasets, which

is usually a commonplace situation in the context of defect prediction [150]. Accuracy

closer to 1 means the defect predictor correctly labels most of the code. However, if

the actual buggy code is significantly smaller compared to the non-buggy code, then the

accuracy can still be closer to 1 even if the defect predictor labels all the buggy code

incorrectly. MCC is the Pearson correlation for a contingency table [151, 152]. MCC

52

is an unbiased performance metric and is calculated as in Equation. (4.7). MCC closer

to +1 means the defect predictor is better at classification and equal to 0 means the

classification is random. MCC closer to -1 means it is better at perverse classification,

hence swapping the states of the output of the defect predictor will make it a better

predictor.

Table 4.2: Confusion Matrix.

Actual

buggy

Actual

non-buggy

Predicted

buggy

True Positive

(TP)

False Positive

(FP)

Predicted

non-buggy

False Negative

(FN)

True Negative

(TN)

Recall =
TP

TP + FN
(4.4)

Precision =
TP

TP + FP
(4.5)

Accuracy =
TP + TN

TP + FP + TN + FN
(4.6)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.7)

4.6 Threats to Validity

This section discusses the validity threats to the research studies conducted to achieve

the main goal of the thesis. The types of validity threats considered in this thesis are

construct validity, internal validity, conclusion validity and external validity. In this

section, we particularly focus on the validity threats that are common across all the

studies conducted. The more specific threats to the individual studies are discussed

under each contribution chapter.

53

4.6.1 Construct Validity

As we discussed in Section 4.5, we use recall and precision to characterise the perfor-

mance of the defect predictors used in our studies. Recall and precision can be biased

in the case of highly imbalanced datasets, which is usually a commonplace situation for

defect datasets as there are only a few number of buggy entities compared to non-buggy

ones [150]. Recall and precision are indicative of the false negatives and false positives

in the predictions, respectively. Hence, they are more suitable measures to characterise

defect predictors when we investigate the impact of defect prediction imprecision on

SBST in RO2. Furthermore, they have been widely used in previous work to report

the performance of defect predictors [49, 50] and often preferred by practitioners [47]

to measure the performance. For completeness, we use MCC, which is an unbiased

performance metric, to report the defect predictor performance as well.

We only consider the labelled bugs in the Defects4J dataset in our experimental studies,

which is likely smaller than the set of actual bugs in the dataset. In order to check

how many actual bugs are detected by the SBST approaches in the evaluations, we have

to manually validate all the generated test suites, which is not a feasible task given

the large number of test suites generated in the experiments. For example, there are

41, 200, 144, 600 and 36, 150 test suites generated by all the SBST approaches in the

experimental studies conducted for RO1, RO2, and RO3, respectively. Therefore, in line

with previous work [24, 43], we choose to conduct the experimental studies considering

only the labelled bugs in Defects4J dataset.

4.6.2 Internal Validity

A threat to internal validity exists from the use of the term experiment in our thesis.

According to the hallmarks characterised by Ayala et al. [153], our studies in the thesis

correspond to experiments with limited control. This is because we use a retrospective

repository (i.e., Defects4J) as the dataset, hence our experimental designs do not fully

cover the control hallmark [153]. We rely on Defects4J benchmark for the accuracy of the

dataset, hence our studies may be prone to different biases as we do not have any chance

of control over the dataset collection. The only way to guarantee the maximum level

of control is to use prospective repositories. However, all the available bugs datasets

54

are retrospective repositories [25, 139–141]. In fact, in their study, Ayala et al. [153]

reported that only one out 254 studies use prospective repositories.

To limit the influence of randomness of genetic algorithm used in SBST approaches

on our results, we repeat the test generation runs, for example 25 times. The SBST

approaches are compared considering the mean and median performance and results of

the statistical tests.

The proposed SBST approaches and the baseline approaches are implemented within the

EvoSuite framework. Therefore, any confounding effects on the results due to different

implementations or use of tools are mitigated in our experimental studies.

4.6.3 Conclusion Validity

To account for any threats to the conclusion validity, we derive conclusions from the

experimental results after conducting sound statistical tests; non-parametric Mann-

Whitney U-Test, Vargha and Delaney’s Â12 statistic, two-way ANOVA test, epsilon

squared effect size, Tukey’s Honestly-Significant-Difference test, Cohen’s d effect size,

Welch ANOVA test, Games-Howell post-hoc test, Wilcoxon signed-rank test, and its

effect size, r.

4.6.4 External Validity

As we described in Section 4.1, we use real bugs from Defects4J dataset as experimental

subjects. These bugs are extracted by manually validating bug fixes from six open source

projects. These open source projects may not represent all program characteristics,

especially industrial projects. Nevertheless, Defects4J dataset has been widely used

in the related literature, including previous work in automated test generation, as a

benchmark [23, 42, 43, 137, 138, 154]. We identify validating the proposed approaches

and replicating our studies on other bugs datasets [139–141] as future work to increase

the generalisability of our results. To enable other researchers to easily replicate our

studies, replication packages and prototype tools of the proposed approaches are made

publicly available.

55

As we described in Section 2.2.2, we implement the proposed SBST approaches within

the EvoSuite framework and conduct experimental studies. EvoSuite generates JUnit

test suites for Java programs. Thus, we may not be able to generalise our results to

other programming languages. However, the concept of using defect prediction to guide

SBST for improved bug detection is not language dependent and can be applied to other

programming languages as well.

Chapter 5

Time Budget Allocation

5.1 Introduction

Search-based software testing (SBST) techniques have been shown to be more effective

not only at detecting bugs, but also at achieving high code and mutation coverage

compared to other automated test generation techniques such as random search and

dynamic symbolic execution (DSE) [23, 26, 155]. SBST techniques are guided by fitness

functions based on coverage criteria such as line, branch and weak mutation coverage,

and they are good at efficiently generating test suites with high coverage. As a result,

SBST techniques are capable of detecting more bugs compared to the random search

or DSE approaches. For instance, EvoSuite detected on average 23% of the bugs from

the Defects4J dataset, and Randoop [4], a feedback-directed random test generation

technique, detected only 15% of the bugs on average while generating substantially larger

test suites than EvoSuite [23]. Similar results can be observed in the study conducted

by Almasi et al. [26] on an industrial project. More recently, EvoSuite was shown to

achieve significantly higher mutation score than EvoSuiteDSE [156], which uses a pure

dynamic symbolic execution approach [155]. Given that mutation coverage significantly

correlates with the bug detection of the test suites [101], SBST can be considered as

the better candidate for bug detection improvement among random search and dynamic

symbolic execution techniques.

SBST tools like EvoSuite generate test suites for each class in the project separately. The

time budget allocated for the genetic algorithm to search for test cases is an important

56

57

parameter that needs to be tuned carefully. The SBST technique is able to extensively

explore and exploit the search space of possible test inputs with a large time budget.

As a result, it is more likely to detect bugs with a larger time budget compared to a

smaller time budget. While it is beneficial for the genetic algorithm to have higher time

budgets allocated, the resource constrained nature in practice prevents every class in a

project from receiving higher time budgets.

In practice, the time budget allocated for test generation depends on several factors; i)

size of the project, ii) frequency of test generation runs, and iii) availability of compu-

tational resources. Industrial projects are usually very large and can have thousands of

classes [45]. To run test generation for such projects having thousands of classes, it will

take at least 16-17 CPU-hours to finish the task with spending just one minute per each

class. Modern software development practices such as agile requires faster and frequent

feedback from testing. This makes it difficult to run SBST on developer machines as it

may run frequently for a long duration and slow them down as a result [44]. Instead,

practitioners can opt for continuous integration (CI) systems to provide the opportunity

for SBST tools to cater this requirement of running frequent test generation for large

projects. However, the CI systems already have high demands from the existing pro-

cesses in the system and the available computational resources in CI systems are usually

limited in practice. This prompts the necessity of SBST using minimal resources possible

such that the practitioners will be able to run them in the developer machines or deploy

them in the CI systems without disrupting the existing processes. Therefore, this raises

the question, ‘How should we optimally utilise the available computational resources, in

this case time budget, to generate test suites for a whole project with maximising the

chances of detecting bugs?’.

Previous work that studied the bug detection performance of SBST considered SBST

approaches used in their studies to focus only on high code coverage [23, 24, 26, 135].

Hence, budget allocation for classes in a project to maximise bug detection has been

overlooked by previous studies. They allocated a fix time budget to test generation

for each buggy class. Since the buggy classes are not known prior to running tests,

in practice all the classes in the project have to be allocated the same time budget.

Usually, most classes are not buggy, hence we argue that this is a sub-optimal strategy.

Only Campos et al. [44] proposed a budget allocation approach to maximise the branch

coverage. They used the number of branches in classes to decide how much time budget

58

should be allocated for each of the classes in a project. This approach will not be suitable

for the task of maximising bug detection, since high code coverage alone is not sufficient

to detect the maximum number of bugs.

Ideally, SBST should run test generation for the buggy classes and non-buggy classes

can be left out from test generation. However, the buggy classes are not known to

practitioners prior to running tests. We use defect prediction that works at class level

to get information of the probability of defectiveness of classes in a project. We differ-

entiate the classes in a project based on this information and allocate time budget to

classes accordingly. Therefore, in this chapter, we aim to achieve the following research

objective;

RO1: Develop an approach that allocates time budget to classes for test generation

based on defect prediction.

To achieve this research objective, we propose a time budget allocation approach called,

defect prediction guided SBST (SBSTDPG), and demonstrate its improved efficiency and

effectiveness in terms of detecting bugs through an experimental evaluation. SBSTDPG

leverages Schwa [30] which gives the probabilities of defectiveness of the classes in

a project. We introduce a module named budget allocation based on defect scores

(BADS), which takes the probabilities of defectiveness of classes and outputs time bud-

gets to them. Upon receiving the time budgets, SBSTDPG runs test generation for the

classes using the state-of-the-art SBST tool EvoSuite with DynaMOSA. We use De-

fects4J dataset as benchmark subjects to experimentally evaluate SBSTDPG against the

state-of-the-art SBST approach in terms of bug detection efficiency and effectiveness.

5.2 Motivation

This example illustrates the limitation of SBST focusing only on high code coverage

when using it for detecting bugs. Figure 5.1 shows the buggy code snippet and the

applied patch for MathUtils class from Math-94 bug in Defects4J. The if condition

at line 412 is placed to check if either u or v is zero. This is a classic example of a

bug due to an integer overflow. Assume the method is called with the following inputs

MathUtils.gcd(1073741824, 1032). Then, the if condition at line 412 is expected to

59

be evaluated to false since both u(1073741824) and v(1032) are non-zeros. However,

the multiplication of u and v causes an integer overflow to zero, and the if condition

at line 412 is evaluated to true. As shown in the diff, the applied patch rectifies this

issue by individually checking if u or v are zero at line 412. To detect this bug, a test

should not only cover the true branch of the if condition at line 412, but also pass the

non-zero arguments u and v such that their multiplication causes an integer overflow to

zero.

411 411 public static int gcd(int u, int v) {
412 - if (u * v == 0) {
 412 + if ((u == 0) || (v == 0)) {
413 413 return (Math.abs(u) + Math.abs(v));
414 414 }
415 415 …
416 416 }

Figure 5.1: Buggy code and patch from Math-94 bug

The fitness function for the true branch of the if condition at line 412 is u∗v/(u∗v+1),

and it tends to reward the test inputs u and v whose multiplication is closer to zero more

than the ones whose multiplication is closer to causing an integer overflow to zero. For

an example, suppose we have two test cases T1 and T2 as shown in the Figures 5.2

and 5.3, respectively, in the current iteration of the genetic algorithm. The fitness of

T1 and T2 are 6/(6 + 1) = 0.143 and 14997485/(14997485 + 1) ≈ 0.999 with respect

to the true branch at line 412. Thus, T1 is considered fitter when compared with T2,

while the T2 is closer to detect the bug than T1. An SBST technique focusing on high

code coverage is more likely to find a test case with both/either u and/or v = 0 and

consider this code as covered than find a test case with a pair of u and v causing an

integer overflow to zero.

 1 …
 2 int int0 = 2;
 3 int int1 = 3;
 4 MathUtils.gcd(int0, int1);
 5 …

Figure 5.2: Sample test case T1

 1 …
 2 int int0 = 12085;
 3 int int1 = 1241;
 4 MathUtils.gcd(int0, int1);
 5 …

Figure 5.3: Sample test case T2

60

In a situation like this, we can increase the chances of detecting the bug by allowing the

search method to extensively explore and exploit the search space of possible test inputs

and generate more than one test case (test inputs) for such branches. We propose to

use defect predictions at class level to allocate high time budgets for highly likely to be

defective classes. Our proposed approach identifies MathUtils class as a highly likely to

be defective class with the aid of a defect predictor and allocates a large time budget for

test generation with SBST. This allows the SBST technique to extensively explore and

exploit the search space of possible test cases that cover the true branch at line 412,

which in turn increases the chances of finding test cases that can detect the bug.

5.3 Defect Prediction Guided Search-Based Software Test-

ing

Defect prediction guided SBST (SBSTDPG) (see Figure 5.4) uses defect scores of each

class produced by a defect predictor to focus the search towards the defective areas of

a program. Existing SBST approaches allocate the available time budget equally for

each class in the project [14, 23, 72, 80]. Usually, most classes are not buggy, hence we

argue that this is a sub-optimal strategy. Ideally, valuable resources should be spent in

testing classes that are likely to be buggy, hence we employ a defect predictor, known

as Schwa [30], to calculate the likelihood that a class in a project is defective. Our

approach has three main modules: i) Defect Predictor (DP), ii) Budget Allocation

Based on Defect Scores (BADS), and iii) Search-Based Software Testing (SBST).

Project
Schwa:	Defect
Predictor

Defect
Scores

Time
Budgets

EvoSuite:
SBST Test	Suite

Budget	Allocation	
Based	on	

Defect	Scores
(BADS)

Figure 5.4: Defect Prediction Guided SBST Overview

5.3.1 Defect Predictor

The defect predictor gives a probability of defectiveness (defect score) for each class in

the project. The vector s represents this output. In our implementation of SBSTDPG,

61

we choose (a) the level of granularity of the defect predictor to be the class level, and

(b) the Schwa [30] as the defect predictor module.

Schwa is an enhanced version of the cache-based prediction model used by the Google

Engineering team [39, 40]. Paterson et al. [42] successfully applied Schwa as the defect

predictor in G-clef to inform a test case prioritisation strategy of the classes that are likely

to be buggy. Certainly other defect prediction approaches proposed in the literature

(e.g., FixCache [29] and Change Bursts [38]) would also be suitable for the task at hand.

A strength of Schwa is its simplicity, and that it does not require training a classifier

which makes it easy to apply to an industrial setting where training data is not always

available (like the one we study).

Schwa uses the following three measures which have been shown to be effective at pro-

ducing defect predictions in the literature (see Section 3.3); i) Revisions - timestamps

of revisions (recent changes are likely to introduce faults), ii) Fixes - timestamps of

bug fix commits (recent bug fixes are likely to introduce new faults), and iii) Authors -

timestamps of commits by new authors (recent changes by the new authors are likely

to introduce faults). The Schwa tool extracts this information through mining a version

control system such as Git [108]. The tool is readily available to use as a Python package

at Pypi [157]. Therefore, given the robustness of this tool and its approach, we decide

to use it as the defect predictor module in our approach.

Schwa [158] starts with extracting the three metrics; Revisions (Rc), Fixes (Fc), and

Authors (Ac) for all classes c ∈ C in the project. For each timestamp, it calculates a

time weighted risk (TWR) [39] using the Equation. (5.1).

TWR(ti) =
1

1 + exp(−12ti + 2 + (1− TR) ∗ 10)
(5.1)

The quantity ti is the timestamp normalised between 0 and 1, where 0 is the normalised

timestamp of the oldest commit under consideration and 1 is the normalised timestamp

of the latest commit. The number of commits that Schwa tracks back in version history

of the project (n) is a configurable parameter and it can take values from one commit

to all the commits. The parameter TR ∈ [0, 1] is called the Time Range and it allows

to change the importance given to the older commits. The time weighted risk formula

scores recent timestamps higher than the older ones (see Figure 5.5).

62

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalised Timestamp

T
im

e
 W

e
ig

h
te

d
 R

is
k

Figure 5.5: Time Weighted Risk (TR = 0.4)

Once Schwa calculated the TWRs, it aggregates these TWRs per each metric, and

calculates a weighted sum sc for each class c ∈ C in the project as in Equation. (5.2).

sc = wr ∗
∑
ti∈Rc

TWR(ti) + wf ∗
∑
ti∈Fc

TWR(ti)

+ wa ∗
∑
ti∈Ac

TWR(ti)
(5.2)

The sum
∑

ti∈Rc
TWR(ti) is the total of the time weighted risks of the Revisions metric

for class c. Similarly,
∑

ti∈Fc
TWR(ti) and

∑
ti∈Ac

TWR(ti) are the sums of the TWRs

of the Fixes and Authors metrics for class c ∈ C. The quantities wr, wf , and wa are

weights that modify the TWR sum of each metric and their sum is equal to 1. The

weighted sum, sc, is called the score of class c ∈ C.

Finally, Schwa estimates the probability p(c) of that a class c is defective as given in

Equation. (5.3).

p(c) = 1− exp(−sc) (5.3)

63

We refer to this probability of defectiveness p(c) as the defect score of class c ∈ C.

5.3.2 Budget Allocation Based on Defect Scores

BADS takes the defect scores (s = {p(c)|c ∈ C}) as input and decides on how to allocate

the available time budget to each class based on these scores, producing a vector t as

output. Ideally, all the defective classes in the project should get more time budget while

non-defective classes can be left out from test generation. However, the defect predictor

only gives an estimation of the probability of defectiveness. Therefore, BADS allocates

more time budget to the highly likely to be defective classes than to the less likely to

be defective classes. This way we expect SBST to get higher time budget to extensively

explore for test cases in defective classes rather than in non-defective ones.

5.3.2.1 Exponential Time Budget Allocation Based on Defect Scores

Algorithm 1 Exponential Time Budget Allocation Based on Defect Scores

Input: The set of all the classes C, where N = |C|
s = {s1, s2, . . . , sN}
T, tmin, TDP

ea, eb, ec
Output: t = {t1, t2, . . . , tN}

1: procedure AllocateTimeBudget
2: r ← Assign-Rank(s)
3: r

′ ← Normalise-Rank(r)
4: w

′ ← ∅
5: for all ci ∈ C do
6: w′

i ← ea + eb ∗ exp(ec ∗ r′i)
7: w ← Normalise-Weight(w

′
)

8: t ← ∅
9: for all ci ∈ C do

10: ti ← wi ∗ (T −N ∗ tmin − TDP) + tmin

11: Return(t)

Algorithm 1 illustrates the proposed time budget allocation algorithm of BADS, where

s is the set of defect scores of the classes, T is the total time budget for the project, tmin

is the minimum time budget to be allocated for each class, TDP is the time spent by the

defect predictor module, and ea, eb, and ec are parameters of the exponential function

64

that define the shape of the exponential curve. t is the set of time budgets allocated for

the classes.

The defect scores assignment in Figure 5.6 is a good example of the usual defect score

distribution by a defect predictor. Usually, there are only a few classes which are actually

buggy. Allocating higher time budgets for these classes would help maximise the bug

detection of the test generation tool. Following this observation and the results of our

pilot runs, we use an exponential function (line 6 in Algorithm 1) to highly favour the

budget allocation for the few highly likely to be defective classes.

Moreover, there is relatively higher number of classes which are moderately likely to

be defective (e.g., 0.5 < defect score < 0.8). It is also important to ensure there is

sufficient time budget allocated for these classes. Otherwise, neglecting test generation

for these classes could negatively affect bug detection of the test generation tool. We

introduce a minimum time budget, tmin, to all the classes because we want to ensure

that every class gets a budget allocated regardless of the defectiveness predicted by the

defect predictor. The exponential function in Algorithm 1 together with tmin allow an

adequate time budget allocation for the moderately likely to be defective classes.

Defect Score

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Figure 5.6: Distribution of the defect scores assigned by Schwa for the classes in
Chart-9 bug from Defects4J.

Upon receiving the defect scores (s), BADS assigns ranks (r) for all the classes according

to the defect scores. Next, the Normalise-Rank function normalises the ranks in

the range [0,1], where the rank of the most likely to be defective class is 0 and the

65

least likely to be defective class is 1. Then, each class gets a weight (w
′
i) assigned

based on its normalised rank by the exponential function. The amount of time budget

allocated to class ci is proportional to w
′
i. The parameters ea, eb, and ec have to be

carefully selected such that the weights are almost equal and significantly small for the

lower-ranked classes, and the difference between the weights of adjacently ranked classes

rapidly increases towards the highly-ranked classes. The Normalise-Weight function

normalises the weights to the range [0,1], ensuring the summation is equal to 1, and

produces the normalised weights vector w. Finally, BADS allocates time budget for

each class from the remaining available time budget, T −N ∗ tmin − TDP , based on its

normalised weight (line 10 in Algorithm 1) .

5.3.2.2 The 2-Tier Approach

According to the defect predictor outcome, almost all the classes in the project get non-

zero defect scores attached to them. This gives the impression that all these classes

can be defective with at least a slight probability. However, in reality, this does not

hold true. For a given project version, there are only a few defective classes. A defect

predictor is likely to predict that non-defective classes are also defective with a non-zero

probability. While the exponential function disfavours the budget allocation for these

less likely to be defective classes, tmin guarantees a minimum time budget allocated to

them. If we decrease tmin in order to make the budget allocation negligible for the likely

to be non-defective classes, then it would risk a sufficient time budget allocation for the

moderately likely to be defective classes.

We propose the 2-Tier approach which divides the project into two tiers following the

intuition that some of the classes are defective and the others are not. BADS sorts

the classes into two tiers before the weights assignment, such that the highly likely to

be defective classes are in the first tier and the less likely to be defective classes are

in the second tier. This allows to further discriminate the less likely to be defective

classes, and favour the highly likely to be defective classes by simply allocating only a

smaller fraction of the total time budget to the second tier and allocating the rest to the

first tier. Section 5.4.1.3 provides more details on the parameter selection of the 2-Tier

approach.

66

5.3.3 Search-Based Software Testing

Given the maturity of EvoSuite (as discussed in Section 2.2.2), we use it as the SBST

module in our defect prediction guided SBST approach. We use DynaMOSA as the

SBST technique in EvoSuite (described in 2.2.4.3).

5.4 Experimental Evaluation

We evaluate our approach in terms of its efficiency in detecting bugs, and the effectiveness

in detecting unique bugs, i.e., bugs that cannot be detected by the benchmark approach.

Our first research question is:

RQ1: Is SBSTDPG more efficient in detecting bugs compared to the state of the art?

To answer this research question, we run a set of experiments where we compare our

approach against the baseline method discussed in Section 5.4.1.2. All methods are

employed to generate test cases for Defects4J [136], which is a well-studied benchmark

of buggy programs described in Section 4.1. Once the test suites are generated, we check

if they detect the bugs in the programs, and report the results as the mean and median

over 20 runs. To check for statistical significance of the differences and the effect size,

we employ two-tailed non-parametric Mann-Whitney U-Test with the significance level

(α) 0.05 [144] and Vargha and Delaney’s Â12 statistic [145]. We also plot the results as

boxplots to visualise their distribution.

In addition, to analyse the effectiveness of the proposed approach, we seek to answer

the following research question:

RQ2: Does SBSTDPG detect more unique bugs?

To answer this research question, we analyse the results from the experiments in more

detail. While the first research question focuses on the overall efficiency, in the second

research question we aim to understand if SBSTDPG is capable of detecting more unique

bugs which can not be detected by the baseline method. Part of the efficiency of our

proposed method, however, could be due to its robustness, which is measured by the

success rate, hence we also report how often a bug is detected over 20 runs.

67

5.4.1 Experimental Settings

5.4.1.1 Time Budget

In real world scenarios, total time budget reserved for test generation for a project

depends on how it is used in the industry. For example, a project having hundreds

of classes and running SBST 1-2 minutes per class takes several hours to finish test

generation. If an organisation wants to adapt SBST in their CI system [159], then it has

to share the resources and schedules with the processes already in the system; regression

testing, code quality checks, project builds etc. In such case, it is important that SBST

uses minimal resources possible, such that it does not idle other jobs in the system due

to resource limitations.

Panichella et al. [14] showed that DynaMOSA is capable of converging to the final

branch coverage quickly, sometimes with a lower time budget like 20 seconds. This is

particularly important since faster test generation allows more frequent runs and thereby

it makes SBST suitable to fit into the CI/CD pipeline. Therefore, we decide that 30

seconds per class is an adequate time budget for test generation and 15 seconds per

class is a tight time budget in a usual resource constrained environment. We conduct

experiments for 2 cases of total time budgets (T); 15 ∗N and 30 ∗N seconds.

5.4.1.2 Baseline Selection

As discussed in Section 4.2, we use the current state-of-the-art SBST technique, Dy-

naMOSA [14], with equal time budget allocation, SBSTnoDPG, as our baseline for com-

parison. Previous work on bug detection capability of SBST allocated an equal time

budget for all the classes [23, 26, 135]. Even though, Campos et al. [44] proposed a

budget allocation approach targeting the maximum branch coverage, we do not consider

this as a baseline in our work as we focus on bug detection instead. As we discussed in

Chapter 4, our intended application scenario is generating tests to detect bugs not only

limited to regressions, but also the bugs that are introduced to the system in different

times. Hence, we consider generating tests to all of the classes in the project regardless

of whether they have been changed or not. Therefore, in equal budget allocation, total

time budget is equally allocated to all the classes in a project.

68

5.4.1.3 Parameter Settings

There are three modules in our approach. Each module has various parameters to be

configured, and the following subsections outline the parameters and their chosen values

in our experiments.

Schwa. Schwa has five parameters to be configured; wr, wf , wa, TR, and n. We choose

the default parameter values used in Schwa [158] as follows: wr = 0.25, wf = 0.5,

wa = 0.25, and TR = 0.4. Our preliminary experiments with n = 50, 100, 500, 1000 and

all commits suggest that n = 500 gives most accurate predictions.

EvoSuite. Arcuri and Fraser [160] showed that parameter tuning of SBST techniques

is an expensive and long process, and the default values give reasonable results when

compared to tuned parameters. Therefore, we use the default parameter values used in

EvoSuite in previous work [14, 89] except for the following parameters.

Coverage criteria: We use branch coverage as coverage criterion inline with the prior

studies which investigated bug detection effectiveness of EvoSuite [23, 26]. EvoSuite

with branch coverage was shown to be the most effective coverage criterion in terms of

detecting bugs when compared with other criteria like line, output and weak mutation

coverage [24, 43].

Assertion strategy: As Shamshiri et al. [23] mentioned, mutation-based assertion filtering

can be computationally expensive and lead to timeouts sometimes. Therefore, we use

all possible assertions as the assertion strategy.

Given a coverage criterion (e.g., branch coverage), DynaMOSA explores the search space

of possible test inputs until it finds test cases that cover all of the targets (e.g., branches)

or the time runs out (i.e., time budget). These are known as stopping criteria. This

way, if the search achieves 100% coverage before the timeout, any remaining time budget

will be wasted. At the same time, DynaMOSA aims at generating only one test case to

cover each target in the class under test (CUT), since its objective is to maximise the

coverage criterion given. This also helps in minimising the test suite produced. However,

when it comes to detecting bugs in the CUT, just covering the bug does not necessarily

imply that the particular test case can detect the bug. Hence, we find that using 100%

coverage as a stopping criterion and aiming at finding only one test case for each target

deteriorate the bug detection capability of DynaMOSA. Therefore, in our approach, we

69

configure DynaMOSA to generate more than one test case for each target in the CUT,

retain all these test cases, disable test suite minimisation and remove 100% coverage

from the stopping criteria. By doing this, we compromise the test suite size in order to

increase the bug detection capability of SBST.

BADS. Following the results of our pilot runs, we use the default threshold of 0.5 to

allocate the classes into the two tiers. In particular, the top half of the classes (ranked

in descending order according to defect scores) are allocated in the first tier (N1) and

the rest are in the second tier (N2). N1 and N2 are the number of classes in the first

and second tiers respectively.

Our preliminary results also suggest that allocating 90% and 10% of the total time

budget (T) to the first tier (T1) and the second tier (T2) sufficiently favours the highly

likely to be defective classes, while not leaving out the less likely to be defective classes

from test generation. In particular, we choose T1 = 27 ∗N1 and T2 = 3 ∗N2 seconds at

T = 15 ∗N and T1 = 54 ∗N1 and T2 = 6 ∗N2 seconds at T = 30 ∗N . We choose 15 and

30 seconds as tmin for the first tier (tmin1) at T = 15 ∗N and T = 30 ∗N respectively.

The rationale behind choosing these values for tmin1 is that it guarantees the classes

in the first tier at least get a time budget of the equal budget allocation (i.e., budget

allocation without defect prediction guidance). For tmin of the second tier (tmin2), we

assign 3 and 6 seconds at T = 15 ∗ N and T = 30 ∗ N because T2 is not enough to go

for an exponential allocation.

The parameters for the exponential function are as follows: ea = 0.02393705, eb =

0.9731946, and ec = −10.47408. The rationale behind choosing the parameter values for

the exponential function is as follows. The exponential curve is almost flat and equal

to 0 for the values in the x axis from 0.5 to 1 (see Figure 5.7). Then, after x = 0.5, it

starts increasing towards x = 0. Finally, at x = 0, the output is equal to 1.

5.4.1.4 Prototype

We implement the defect prediction guided SBST approach in a prototype tool in or-

der to experimentally evaluate it. The prototyped tool is maintained and available to

download from here: https://github.com/SBST-DPG/sbst-dpg.

https://github.com/SBST-DPG/sbst-dpg

70

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Normalised Rank

W
e

ig
h

t
(b

e
fo

re
 N

o
rm

a
li

s
a

ti
o

n
)

Figure 5.7: Exponential Function of BADS. ea = 0.02393705, eb = 0.9731946, and
ec = −10.47408

5.4.1.5 Experimental Protocol

As we mentioned earlier, to answer RQ1 and RQ2, we conduct experiments for T = 15∗N

and 30 ∗N seconds.

In SBSTDPG, Schwa uses current versions of the repositories of the projects. For each

bug, Schwa predicts the defectiveness of the classes at the commit just before the bug

fixing commit. For each bug in Defects4J, there is a buggy version and a fixed version

of the project. We take each buggy version of the projects, and then generate test suites

only for the buggy class(es) of that project version using the two approaches. To take

the randomness of SBST into account, we repeat each test generation run 20 times,

and carry out statistical tests when necessary. Consequently, we have to run a total

of 2 (approaches) ∗ 511 (buggy classes) ∗ 20 (repetitions) ∗ 2 (time budgets) = 40,880

test generations. We collect the generated test suites after each test generation run.

We determine if the 40,800 generated test suites detect the bug by using the method

described in Section 4.4. Altogether, the experimental evaluation took roughly 34,600

CPU-hours.

71

5.4.2 Results

We present the results for each research question following the method described in

Section 5.4. While the main aim is to evaluate if our approach is more efficient than the

state of the art, we also focus on explaining its strengths and weaknesses.

Table 5.1: Mean and median number of bugs detected by the two approaches against
different total time budgets.

Mean Median
p-value Â12T (s)

SBSTDPG SBSTnoDPG SBSTDPG SBSTnoDPG

15 ∗N 151.45 133.95 150.5 134.0 <0.0001 0.94

30 ∗N 171.45 166.9 170 167.5 0.0671 0.67

RQ1. Is SBSTDPG efficient in detecting bugs?

As described in Section 5.4, we perform 20 runs for each SBST approach and each buggy

program in Defects4J and report the results as boxplots in Figure 5.8. As we can see,

overall, our proposed method SBSTDPG detects more bugs than the baseline approach

for both 15 and 30 seconds time budgets.

We also report the means, medians and the results from the statistical analysis in Table

5.1. SBSTnoDPG detects 133.95 bugs on average at total time budget of 15 seconds per

class. SBSTDPG outperforms SBSTnoDPG, and detects 151.45 bugs on average, which is

an average improvement of 17.5 (+13.1%) more bugs than SBSTnoDPG. The difference

of the number of bugs detected by SBSTDPG and SBSTnoDPG is statistically significant

according to the Mann-Whitney U-Test (p-value < 0.0001) with a large effect size (Â12

= 0.94). Thus, we can conclude that SBSTDPG is more efficient than SBSTnoDPG.

At total time budget of 30 seconds per class, SBSTDPG detects more bugs than the

SBSTnoDPG. According to the Mann-Whitney U-Test, the difference between SBSTDPG

and SBSTnoDPG is not statistically significant, with a p-value of 0.067. However the

effect size of 0.67 suggests that SBSTDPG detects more bugs than SBSTnoDPG 67% of

the time, which is significant given how difficult it is to find bug detecting test cases [161].

72

k

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k
k

k

k

k

k

k

kk

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

k
k

k

k

k

k
k

k

k

k

120

140

160

180

15 30

Total Time Budget (x N seconds)

N
u

m
b

e
r

o
f

B
u

g
s

 D
e

te
c

te
d

Approach

SBSTDPG

SBSTnoDPG

Figure 5.8: The number of bugs detected by the 2 approaches against different total
time budgets

In summary, defect prediction guided SBST (SBSTDPG) is significantly more

efficient than SBST without defect prediction guidance (SBSTnoDPG) when they

are given a tight time budget in a usual resource constrained scenario. When

there is sufficient time budget SBSTDPG is more effective than SBSTnoDPG 67%

of the time.

To further analyse the differences between the two approaches, Figure 5.9 reports the

distribution of the number of classes where a bug was detected across 20 runs for the 2

approaches grouped by the relative ranking position produced by Schwa at total time

73

0

30

60

90

0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100

Relative Ranking Position of the Classes (%)

N
u

m
b

e
r

o
f

c
la

s
s

e
s

 w
h

e
re

 a
 b

u
g

 w
a

s
 d

e
te

c
te

d
Approach

SBSTDPG

SBSTnoDPG

Figure 5.9: The number of classes where a bug was detected by the 2 approaches,
grouped by the relative ranking positions (%) of the classes in the project at T = 15∗N

seconds

Table 5.2: Summary of the bug detecting results grouped by the relative ranking
position (%) of the classes in the project at T = 15 ∗N seconds.

Rank

(%)

Buggy

Classes

Avg.

Time

Budget

Mean number of classes

where a bug was found

SBSTDPG SBSTnoDPG

0 - 10 266 66.61 96.25 69.45

10 - 20 72 20.76 28.40 26.40

20 - 30 63 16.43 20.00 19.00

30 - 40 25 16.00 7.00 6.75

40 - 50 26 16.00 8.00 8.00

50 - 60 13 2.00 1.35 2.35

60 - 70 16 2.00 2.85 4.70

70 - 80 12 2.00 3.30 5.95

80 - 90 13 2.00 1.30 4.10

90 - 100 5 2.00 0.25 1.45

budget of 15 seconds per class. Relative ranking position is the normalised rank of the

respective class as described in Algorithm 1.

We observe that when the buggy classes are correctly ranked at the top by Schwa, and

allocated more time by BADS, the performance of SBSTDPG is significantly better than

74

the baseline method. More than half of the buggy classes (52%) are ranked in the top

10% of the project by Schwa, as shown in Table 5.2, and allocated 66.61 seconds of time

budget on average by BADS. Around 36% of the buggy classes are ranked in the 10-

50% of the projects. BADS employs an exponential function to largely favour a smaller

number of highly likely to be defective classes and allocates an adequate amount of time

to the moderately defective classes.

Only 12% of the buggy classes are ranked below the first half of the project. BADS

assumes not all classes in a project are defective and follows the 2-Tier approach to

optimise the budget allocation for the project. Thus, all the classes in the second tier

which contains the classes that are ranked as less likely to be buggy, get a very small

time budget (2 seconds). Unsurprisingly, SBSTnoDPG detected more bugs out of these

59 buggy classes than SBSTDPG. This indicates that the defect predictor’s accuracy

is key to the better performance of SBSTDPG and there is potential to improve our

approach further.

For completeness, we also measure and present the number of true positives, false nega-

tives, and recall of Schwa. Based on the 0.5 threshold, i.e., if the defect score is greater

than or equal to 0.5 then the class is buggy and it is non-buggy if the defect score is

less than 0.5, Schwa labels 436 buggy classes correctly (true positives) and mislabels 75

buggy classes (false negatives). Hence, Schwa achieves a recall of 85%.

The defect predictor (i.e., Schwa) and BADS modules add an overhead to SBSTDPG.

While this overhead is accounted in the time budget allocation in SBSTDPG, we also

report the time spent by the defect predictor and BADS modules together. Schwa and

BADS spent 0.68 seconds per class on average (standard deviation = 0.4 seconds), which

translates to a 4.53% and 2.27% overhead in 15 and 30 seconds per class time budgets

respectively. Therefore, this shows the overhead introduced by Schwa and BADS in

SBSTDPG is very small and negligible. The distribution of time spent by Schwa and

BADS is reported in Appendix A as a histogram.

RQ2. Does SBSTDPG detect more unique bugs?

To investigate how our approach performs against each bug, we present an overview of

the success rates for each SBST method at total time budget of 15 seconds per class in

75

Table 5.4. Success rate is the ratio of runs where the bug was detected. Due to space

limitation, we omit the entries for bugs where none of the approaches were able to detect

the bug. We also highlight the bugs that were detected by only one approach. As can be

seen from Table 5.4, our approach outperforms the benchmark in terms of the success

rates for most of the bugs.

Table 5.3: Summary of the bug detecting results at T = 15 ∗N .

Bugs

detected

Unique

bugs

Bugs detected

in every run

Bugs detected

more often

SBSTDPG 236 35 84 127

SBSTnoDPG 215 14 76 47

This observation can be confirmed with the summary of the results which we report in

Table 5.3. What is particularly interesting to observe from the more granular represen-

tation of the results in Table 5.4 is the high number of bugs where our approach has

100% success rate, which means that SBSTDPG detects the respective bugs in all the

runs. This is an indication of the robustness of our approach.

Certain bugs are harder to detect than others. Out of the 20 runs for each SBST

approach, if a bug is only detected by one of the approaches, we call it a unique bug.

The reason why we pay special attention to unique bugs is because they are an indication

of the ability of the testing technique to detect what cannot be detected otherwise in the

given time budget, which is an important strength [161]. SBSTDPG detected 236 bugs

altogether, which is 54.38% of the total bugs, whereas SBSTnoDPG detected only 215

(49.54%) bugs. SBSTDPG detected 35 unique bugs that SBSTnoDPG could not detect in

any of the runs. On the other hand, SBSTnoDPG detected only 14 such unique bugs. 30

out of these 35 bugs have buggy classes ranked in the top 10% of the project by Schwa,

and the other 5 bugs in 10-50% of the project. We observe similar results at total time

budget of 30 seconds per class as well, where SBSTDPG detected 32 unique bugs, while

SBSTnoDPG was only able to detect 13 unique bugs.

SBSTDPG detected 127 bugs more times than SBSTnoDPG, while for SBSTnoDPG, this

is only 47. 92 out of these 127 bugs have buggy classes ranked in the top 10% of the

project and the other 35 bugs in 10-50% of the project.

If we consider a bug as detected only if all the runs by an approach detect the bug

(success rate = 1.00), then the number of bugs detected by SBSTDPG and SBSTnoDPG

76

become 84 and 76. There are 27 bugs which only SBSTDPG detected them in all of the

runs.

In summary, SBSTDPG detects 35 more unique bugs compared to the benchmark

approach. Furthermore, it detects a large number of bugs more frequently than

the baseline. Thus, this suggests that the superior performance of SBSTDPG is

supported by both its capability of detecting new bugs which are not detected by

the baseline and the robustness of the approach.

We pick the Math-94 bug from the motivating example in Section 5.2 and investigate

the tests generated by the two approaches. SBSTnoDPG generated 30.75 test cases on

average that cover the true branch of the if condition at line 412, yet it was not able

to detect the bug in any of the runs. Schwa ranked Math-94 bug in the top 10% of the

project and BADS allocated 37 seconds time budget to the search. Then, SBSTDPG

generated 49.8 test cases on average that cover the said branch. As a result, it was able

to detect the bug in 7 runs out of 20. Allocating a higher time budget increases the

likelihood of detecting the bug since it allows the search method to explore and exploit

the search space extensively to find the test inputs that can detect the bug.

We also pick Time-8 bug and investigate the tests generated by the two approaches.

Figure 5.10 shows the buggy code snippet and the applied patch for DateTimeZone

class from Time-8. The forOffsetHoursMinutes method takes two integer inputs

hoursOffset and minutesOffset, and returns the DateTimeZone object for the off-

set specified by the two inputs. If the method forOffsetHoursMinutes is called with

the inputs hoursOffset=0 and minutesOffset=-15, then it is expected to return a

DateTimeZone object for the offset −00 : 15. However, the if condition at line 279 is

evaluated to true and the method throws an IllegalArgumentException instead.

To detect this bug, a test case has to execute the if conditions at lines 273 and 276 to

false; that is hoursOffset ̸= 0 or minutesOffset ̸= 0 and hoursOffset ∈ [−23, 23],

and then it has to execute the if condition at line 279 to true with a minutesOffset

∈ [−59,−1]. Moreover, there is a new condition introduced at line 282 in the fixed

code to check if the hoursOffset is positive when the minutesOffset is negative (see

Figure 5.10). Thus, this adds another constraint to the possible test inputs that can

detect the bug, which is hoursOffset ≤ 0. Therefore, it is evident that it is hard not

77

only to find the right test inputs to detect the bug, but also to find test inputs to at

least cover the buggy code.

As it was the case in Math-94, just covering the buggy code (true branch of the if

condition at line 279) is not sufficient to detect the Time-8 bug. For an example, test

inputs hoursOffset=-4 and minutesOffset=-150 cover the buggy code, however they

cannot detect the bug. Therefore, the search method needs more resources to generate

more test cases that cover the buggy code such that it eventually finds the right test

cases that can detect the bug.

272 272 public static DateTimeZone forOffsetHoursMinutes(int hoursOffset,
 int minutesOffset) throws IllegalArgumentException {
273 273 if (hoursOffset == 0 && minutesOffset == 0) {
274 274 return DateTimeZone.UTC;
275 275 }
276 276 if (hoursOffset < -23 || hoursOffset > 23) {
277 277 throw new IllegalArgumentException("Hours out of range: " +
 hoursOffset);
278 278 }
279 - if (minutesOffset < 0 || minutesOffset > 59) {
 279 ++ if (minutesOffset < -59 || minutesOffset > 59) {
280 280 throw new IllegalArgumentException("Minutes out of range: " +
 minutesOffset);
281 281 }
 282 + if (hoursOffset > 0 && minutesOffset < 0) {
 283 + throw new IllegalArgumentException("Positive hours must not

 have negative minutes: " + minutesOffset);
 284 + }
282 285 int offset = 0;

 …
295 298 }

Figure 5.10: Buggy code and patch from Time-8 bug

Our investigation into the tests generated by the two approaches shows that the baseline,

SBSTnoDPG, covered the buggy code in 90% of the runs. SBSTnoDPG generated 25.78

test cases on average that cover the buggy code and it was able to detect the bug in 14

runs out of 20. Whereas, SBSTDPG allocated 75 seconds time budget to the search as

Schwa ranked the bug in the top 10% of the project and generated 109.8 test cases on

average that cover the buggy code. As a result, it was able to detect the bug in all of the

runs (success rate = 1.00). Therefore, this again confirms the importance of focusing

the search more into the buggy classes to increase the likelihood of detecting the bug.

78

As outlined in Section 5.4.1.3, we configure DynaMOSA to generate more than one test

case for each target in the CUT, retain all these test cases and disable test suite minimi-

sation. By doing this, we expect to compromise the test suite size in order to maximise

the bug detection of SBST. To investigate the benefit of configuring DynaMOSA in this

way, we also run the same set of experiments using DynaMOSA with test suite min-

imisation and equal budget allocation, SBSTO. We compare its performance against

SBSTnoDPG. SBSTO detects 85.75 and 93.45 bugs on average at total time budget of 15

and 30 seconds per class. SBSTnoDPG outperforms SBSTO with an average improvement

of 48.2 (+56.2%) and 73.45 (+78.6%) more bugs in each case, which are statistically

significant according to the Mann-Whitney U-Test (p-value < 0.0001) with a large effect

size (Â12 = 1.00). More details of the comparison are reported in Appendix A.

5.5 Threats to Validity

In addition to the validity threats discussed in Section 4.6, we discuss the following

threat that is specific to this study.

Internal Validity. We employ an exponential function to allocate time budgets for

classes based on the defect scores. As opposed to an exponential allocation, a direct

mapping (i.e., linear budget allocation) would have been simple and straight-forward.

However, as described in Section 5.3.2.1, there are only a few number of classes which

are actually buggy (i.e., highly likely to be defective) and they need to be allocated

more time budget to maximise the bug detection of the test generation tool. A linear

allocation approach is not able to largely favour these small number of classes like the

exponential allocation approach does.

5.6 Summary

We introduce defect prediction guided SBST (SBSTDPG) that combines class level defect

prediction and search-based software testing to efficiently detect bugs in a resource

constrained environment. SBSTDPG employs a budget allocation algorithm, budget

allocation based on defect scores (BADS), to allocate time budgets for classes based

on their likelihood of defectiveness. We validate our approach against 434 real bugs

79

from Defects4J dataset. Our experimental evaluation demonstrates that in a resource

constrained environment, when given a tight time budget, SBSTDPG is significantly

more efficient than the state-of-the-art approach with a large effect size. In particular,

SBSTDPG detects 13.1% more bugs on average compared to the state-of-the-art SBST

approach when they are given a tight time budget of 15 seconds per class. Further

analysis of the results finds that the superior performance of SBSTDPG is supported by

its ability to detect more unique bugs which otherwise remain undetected.

80

Table 5.4: Success rate for each method at 15 ∗ N total time budget. Bug IDs that
were detected by only one approach are highlighted with different colours; SBSTDPG

and SBSTnoDPG .

Bug ID SBSTDPG SBSTnoDPG

Lang-1 1 0.45

Lang-4 0.9 1

Lang-5 0 0.2

Lang-7 1 1

Lang-8 0.1 0.1

Lang-9 0.95 1

Lang-10 0.95 0.8

Lang-11 0.8 0.95

Lang-12 0.2 0.8

Lang-14 0.05 0

Lang-17 0.05 0

Lang-18 0.5 0.3

Lang-19 0.05 0.7

Lang-20 0.8 0.4

Lang-21 0.1 0.1

Lang-22 0.55 0.8

Lang-23 1 0.95

Lang-27 0.8 0.75

Lang-28 0.05 0.05

Lang-32 1 1

Lang-33 1 1

Lang-34 1 0.9

Lang-35 1 0.3

Lang-36 1 1

Lang-37 0.65 0.2

Lang-39 1 0.95

Lang-41 0.7 1

Lang-44 0.85 0.65

Lang-45 1 1

Lang-46 0.5 1

Lang-47 0.95 0.9

Lang-49 0.55 0.4

Lang-50 0.3 0.3

Lang-51 0.1 0.05

Lang-52 1 1

Lang-53 0.3 0.15

Lang-54 0.05 0.05

Lang-55 0.05 0

Lang-57 1 1

Lang-58 0 0.05

Lang-59 1 0.95

Lang-60 0.75 0.3

Lang-61 1 0.25

Lang-65 1 0.95

Math-1 1 1

Math-2 0 0.1

Bug ID SBSTDPG SBSTnoDPG

Math-3 0.55 1

Math-4 1 1

Math-5 0.45 0.95

Math-6 1 1

Math-9 0.7 0.6

Math-10 0.1 0

Math-11 0.95 1

Math-14 1 1

Math-16 0 0.05

Math-21 0.05 0.45

Math-22 1 1

Math-23 0.95 0.8

Math-24 0.9 0.85

Math-25 0.1 0

Math-26 1 1

Math-27 0.6 0.65

Math-28 0.05 0

Math-29 0.9 1

Math-32 1 1

Math-33 0.45 0.35

Math-35 1 1

Math-36 0.2 0.1

Math-37 1 1

Math-40 1 0.95

Math-41 0.25 0.4

Math-42 0.95 0.95

Math-43 0.45 0.55

Math-45 0 0.3

Math-46 1 1

Math-47 1 0.95

Math-48 0.65 0.75

Math-49 0.8 0.75

Math-50 0.75 0.3

Math-51 0.35 0.25

Math-52 0.65 0.6

Math-53 1 1

Math-55 1 1

Math-56 1 0.9

Math-59 1 1

Math-60 0.95 0.95

Math-61 1 1

Math-63 1 0.4

Math-64 0.05 0

Math-65 0.25 0.25

Math-66 1 1

Math-67 1 1

81

Table 5.4: (continued)

Bug ID SBSTDPG SBSTnoDPG

Math-68 1 1

Math-70 1 1

Math-71 0.6 0.35

Math-72 0.5 0.45

Math-73 0.75 1

Math-75 1 0.9

Math-76 0.15 0.05

Math-77 1 1

Math-78 0.6 0.6

Math-79 0.15 0.05

Math-80 0.3 0

Math-81 0.15 0

Math-83 0.9 1

Math-84 0.15 0

Math-85 1 1

Math-86 0.95 0.85

Math-87 0.95 1

Math-88 0.75 0.7

Math-89 1 1

Math-90 1 1

Math-92 1 1

Math-93 0.35 0.25

Math-94 0.35 0

Math-95 1 1

Math-96 1 1

Math-97 1 1

Math-98 1 0.85

Math-100 1 1

Math-101 0.2 1

Math-102 0.75 0.5

Math-103 1 1

Math-104 0.5 0.4

Math-105 1 1

Math-106 0.15 0

Time-1 1 1

Time-2 0.85 1

Time-3 0.15 0.05

Time-4 0 0.3

Time-5 1 1

Time-6 1 0.8

Time-7 0.15 0

Time-8 1 0.7

Time-9 1 1

Time-10 0.1 0.1

Time-11 1 1

Time-12 1 0.55

Time-13 0.5 0.05

Time-14 0 0.95

Bug ID SBSTDPG SBSTnoDPG

Time-15 0.4 0.3

Time-16 0.15 0

Time-17 1 0.55

Time-22 0 0.25

Time-23 0 0.2

Time-24 0 0.45

Time-26 0.1 0.05

Time-27 0.15 0.5

Chart-1 0.2 0.05

Chart-2 0.05 0

Chart-3 0.9 0.15

Chart-4 0.85 0.3

Chart-5 0.35 1

Chart-6 0.8 1

Chart-7 0.3 0.25

Chart-8 1 1

Chart-10 1 1

Chart-11 0.2 1

Chart-12 0.9 0.5

Chart-13 0.9 0.2

Chart-14 1 1

Chart-15 1 0.9

Chart-16 1 1

Chart-17 1 1

Chart-18 1 1

Chart-19 1 0.15

Chart-20 0.5 0.1

Chart-21 0.55 0.05

Chart-22 1 1

Chart-23 1 1

Chart-24 0 1

Mockito-2 1 1

Mockito-17 1 1

Mockito-29 0.85 0.95

Mockito-35 1 1

Closure-6 0.05 0

Closure-7 0.35 0.1

Closure-9 0.6 0.15

Closure-12 0.3 0.1

Closure-19 0 0.1

Closure-21 0.9 0.35

Closure-22 0.5 0.5

Closure-26 0.5 0.4

Closure-27 0.25 0.1

Closure-28 1 1

Closure-30 1 0.95

Closure-33 1 0.5

Closure-34 0.05 0

82

Table 5.4: (continued)

Bug ID SBSTDPG SBSTnoDPG

Closure-39 1 0.6

Closure-41 0.1 0

Closure-43 0.05 0

Closure-46 1 1

Closure-48 0.1 0

Closure-49 0.45 0.5

Closure-52 0.4 0.1

Closure-54 1 0.8

Closure-56 0.95 1

Closure-60 0.1 0

Closure-65 0.9 0.45

Closure-72 0.2 0.3

Closure-73 1 1

Closure-77 0.7 0.25

Closure-78 0.05 0

Closure-79 1 0.85

Closure-80 0.2 0

Closure-81 0.35 0

Closure-82 1 1

Closure-86 0.15 0

Closure-89 0.05 0

Closure-91 0.15 0

Closure-94 0.25 0

Closure-104 0.95 0.5

Closure-106 1 0.95

Closure-108 0.8 0.2

Closure-110 0.95 1

Closure-112 0.1 0

Closure-113 0.25 0.05

Closure-114 0 0.1

Closure-115 0.3 0.25

Bug ID SBSTDPG SBSTnoDPG

Closure-116 0.2 0.1

Closure-117 0.4 0.05

Closure-119 0.25 0

Closure-120 0.2 0.1

Closure-121 0.55 0.2

Closure-122 0.05 0

Closure-123 0.15 0.1

Closure-125 0.45 0

Closure-128 0.15 0.1

Closure-129 0.2 0.05

Closure-131 0.15 0.9

Closure-137 0.95 1

Closure-139 0.15 0.05

Closure-140 0.85 0.25

Closure-141 0.3 0

Closure-144 0.3 0.1

Closure-146 0.15 0

Closure-150 0.45 0.1

Closure-151 1 1

Closure-160 0.55 0.05

Closure-164 0.35 0.45

Closure-165 0.95 0.8

Closure-167 0.35 0

Closure-169 0 0.05

Closure-170 0.2 0.2

Closure-171 0.9 0.05

Closure-172 0.65 0.15

Closure-173 1 0.5

Closure-174 1 1

Closure-175 0.75 0.15

Closure-176 0.1 0.1

Chapter 6

Impact of Defect Predictor

Imprecision

6.1 Introduction

Often, the predictions produced by defect predictors are not perfectly accurate. In

fact, the defect predictors proposed in previous work have wavering performance. For

example, in their systematic literature review, Hall et al. [49] reported defect predictors

having recall in the range 25% to 85% and precision in the range 5% to 95%. A lower

recall and precision can significantly hamper the benefits of defect predictors for the

developers who usually manually inspect or test the predicted buggy code to find bugs.

Poor recall means there are higher false negatives in the predictions. This can lead

the developers to completely miss bugs, since they are not likely to inspect the code

with non-buggy label which usually constitute a large portion of the code base. Lower

precision means there are higher false positives in the predictions. False positives cause

developers to waste their precious time on inspecting non-buggy code, which eventually

leads to losing trust on the defect predictor [39, 41]. In the context of developers using

defect predictions, it is important the developers be informed of precise buggy locations

(i.e., higher precision) at the expense of missing out bugs (i.e., lower recall).

The impact of false negatives and false positives on guiding search-based software testing

(SBST) techniques has not been studied in previous studies. For example, in Chapter 5,

we used a single defect predictor to guide a time budget allocation approach for SBST

83

84

and demonstrated the improved bug detection performance of the approach. The defect

predictor used in the study have a relatively high performance, i.e., 85% recall. We

cannot expect the same defect predictor to perform well when applied on another project

with different characteristics and at different targeted prediction level (e.g., method

level) [37]. A defect predictor with lower recall (i.e., higher false negatives) may cause

the SBST technique to not generate tests for buggy areas in code. This could lead the

SBST technique to miss bugs when it is guided by defect predictions. On the other

hand, poor precision (i.e., higher false positives) may not be as important for the SBST

technique because searching for tests to cover false positive areas in code may not be a

significant burden to a machine compared to a human manually inspecting code with

false alarms. Given such wavering performance of defect predictors and unanswered

questions about their impact on guiding SBST, we aim at systematically investigating

the impact of defect prediction imprecision on the bug detection performance of SBST.

Therefore, in this chapter, we aim to achieve the following research objective;

RO2: Understand the impact of imprecision in defect prediction for guiding

search-based software testing.

To achieve this research objective, we design a study to systematically investigate the

variations in bug detection effectiveness of SBST against imprecise defect predictions

at various levels. Through experimental evaluation, we demonstrate that the recall of

the defect predictor has a significant impact on the bug detection performance of SBST

and the impact of precision is not practically significant. According to Zimmermann

et al. [48], defect predictors with recall and precision higher than 75% are considered

acceptable defect predictors. We simulate defect predictors for different configurations

of recall and precision in the range 75% to 100%. In this study, we use fine-grained defect

prediction, i.e., method level, hence the SBST technique receive further narrowed down

locations of the bugs compared to coarse-grained defect predictions. We use the state-

of-the-art SBST technique, DynaMOSA, to incorporate buggy methods predictions in

the search process. DynaMOSA guided by defect prediction directs the search for tests

towards the likely buggy methods in the code. We experimentally evaluate the bug

detection effectiveness of SBST guided by defect prediction using 420 labelled bugs from

Defects4J dataset as benchmark subjects.

85

6.2 Methodology

Our aim is to understand how the defect prediction imprecision impacts the bug detec-

tion performance of SBST. To this end, we design a study that addresses the following

research question (RQ):

RQ: What is the impact of the imprecision of defect prediction on bug detection

performance of SBST?

To address this research question, we measure the effectiveness of SBST in terms of

detecting bugs when using defect predictors with different levels of imprecision. We

use the state-of-the-art SBST technique, DynaMOSA [14], and incorporate predictions

about buggy methods in order to guide the search for test cases towards likely buggy

methods (see Section 6.2.2), which we refer as SBST guided by DP throughout the thesis.

Fine-grained defect predictions such as method level is chosen so that the location of the

bug is narrowed down better than coarse-grained defect predictions such as class level.

Hence the defect predictors at method level provide additional information to the SBST

technique such that it can further narrow down the search for test cases to likely buggy

methods.

We measure defect predictor imprecision using recall and precision. Recall and preci-

sion have been widely used in previous work to measure the predictive power of defect

predictors [49, 50]. We consider a defect predictor with either recall or precision less

than 75% is not an acceptable defect predictor, as recommended by Zimmermann et

al. [48]. Hence, we simulate defect predictors for varying levels of recall and precision in

the range 75% to 100% (see Section 6.2.1) and measure the impact on the bug detection

performance of SBST by the prediction imprecision.

6.2.1 Defect Prediction Simulation

To measure the bug detection performance of SBST against the imprecision of defect

predictions, we simulate defect predictor outcomes at various levels of performance in the

range 75% and 100% for both precision and recall. We do not use real defect predictors in

our study because their performance cannot be controlled to systematically investigate

86

the impact of imprecision of defect prediction. Recall is the rate of the defect predictor

identifying buggy methods. It is calculated as in Equation. (6.1), where tp is the number

of true positives, i.e., number of buggy methods that are correctly classified, and fn is the

number of false negatives, i.e., number of buggy methods that are incorrectly classified.

recall =
tp

tp+ fn
(6.1)

Precision is the rate of the correct buggy methods labelled by the defect predictor. It

can be calculated as in Equation (6.2), where fp is the number of false positives, i.e.,

number of non-buggy methods that are incorrectly classified as buggy methods.

precision =
tp

tp+ fp
(6.2)

We simulate defect predictions from 75% to 100% recall in 5% steps, with 75% and 100%

precision. Thus, there are altogether 12 defect predictor configurations, with the fol-

lowing values of (precision, recall): (75%, 75%), (75%, 80%), (75%, 85%), (75%, 90%),

(75%, 95%), (75, 100%), (100%, 75%), (100%, 80%), (100%, 85%), (100%, 90%), (100%,

95%), (100, 100%). Our preliminary experiments suggest that the bug detection perfor-

mance of SBST guided by DP changes by a small margin when the precision is changed

from 100% to 75%, while keeping the recall unchanged. On the other hand, the bug

detection performance of SBST guided by DP changes by a large margin when only the

recall is changed from 100% to 75%. Hence, we decide to consider only the values of 75%

and 100% for precision, while recall is sampled at 5% steps. For completeness, we report

the Matthews correlation coefficient (MCC) of each defect prediction configuration in

Appendix B.

The output of the simulated defect predictor is binary, i.e., method is buggy or not

buggy, similar to most of the existing defect predictors. Some of the existing defect

predictors output the likelihood of the components being buggy or the ranking of the

components according to their likelihood of being buggy. Since we employ a theoretical

defect predictor and not a specific one, we resort to the generic defect predictor, which

is the one that gives a binary classification.

87

Algorithm 2 Defect Predictor Simulation

Input: r, p ▷ recall and precision
M = {m1, . . . ,mk} ▷ ground truth

1: procedure SimulateDefectPredictor
2: d← Count(mi) for mi ∈M s.t. mi = 1
3: nd← |M | − d
4: Mb ← {i | ∀i ∈ [1, k] ∧mi = 1}
5: Mn ← {i | ∀i ∈ [1, k] ∧mi = 0}
6: tp← d ∗ r
7: fp← tp ∗ (1− p)/p
8: Cb ← RandomChoice(Mb, tp) ∪ RandomChoice(Mn, fp)
9: C ← {ci = 1 | ∀i ∈ [1, k] ∧ i ∈ Cb, ci = 0 | ∀i ∈ [1, k] ∧ i /∈ Cb}

10: Return(C)

Algorithm 2 illustrates the steps of simulating the defect predictor outputs for a given

recall and precision combination. The procedure SimulateDefectPredictor receives

the set of methods in the project with the ground truth labels for their defectiveness,

M = {m1, . . . ,mk}, where

mi =

1 if method with index i is buggy

0 otherwise

and outputs a set of labels for each method in the project, C = {c1, . . . , ck}, where

ci =

1 if method with index i is predicted buggy

0 otherwise

First, it calculates the number of buggy (d) and non-buggy methods (nd) in the project

(lines 2-3 in Algorithm 2). Next, it finds the set of indices of all the buggy (Mb) and

non-buggy methods (Mn) in the project (lines 4-5). The true positives (tp) and false

positives (fp) are then calculated for the given recall (r) and precision (p) (lines 6-7).

The RandomChoice(Mx, n) procedure returns n number of randomly selected methods

from the set Mx, where x ∈ {b, n}. Cb is assigned a set of randomly picked tp number

of buggy and fp number of non-buggy method indices (line 8). Cb is the set of buggy

method indices as classified by the simulated defect predictor. The output is the set

C = {c1, . . . , ck}, where ci = 1 if the method with index i is labelled as buggy and ci = 0

if the method with index i is labelled as not buggy (line 9).

88

6.2.2 Search-Based Software Testing Guided By Defect Prediction

SBST techniques search for test cases to cover a given set of targets of a class by spending

an allocated time budget. The set of coverage targets usually represents all of the code

in the class under test (CUT). The buggy code can be just a few lines of code in the

class and contained within a method. It is likely to be ineffective in terms detecting

bugs to spend the allocated time budget searching for tests that exercise the non-buggy

code which also constitutes a large part of the CUT. In this study, we simulate defect

predictions targeted at a more granular level, i.e., method level. This further narrows

down the location of the bug such that the SBST technique can differentiate methods in a

class based on their defectiveness. This allows us to use these buggy method predictions

to guide the search process in SBST techniques more towards the likely buggy areas

within the CUT to increase the chances of detecting bugs.

We incorporate buggy method predictions in DynaMOSA [14], the state-of-the-art SBST

technique, to guide the search for test cases towards likely buggy methods. As described

in Section 2.2.4, DynaMOSA tackles the test generation problem as a many objective

optimisation problem, where each coverage target in the program, e.g., branch and

statement, is an objective to optimise. It is more effective at achieving high branch,

statement and strong mutation coverage than previously proposed SBST techniques

([15, 51, 89]) [14]. In order to detect a bug, it is necessary to reach the buggy code

according to the reachability, infection and propagation (RIP) model [162]. Therefore,

the best choice among existing SBST techniques is the one that has higher code coverage.

In the next sections, we refer to the DynaMOSA approach guided by the defect predictor

as SBST guided by DP. SBST guided by DP is presented in Algorithm 3. It shares the

same search steps and genetic operators as DynaMOSA, except for the updated steps

shown in blue colour in Algorithm 3.

SBST guided by DP receives as input a class with methods labelled as buggy or non-

buggy, which are labels that can be obtained using existing defect predictors [31, 32]. In

our study, SBST guided by DP receives these labels from defect predictor simulations

(Section 6.2.1).

SBST guided by DP devotes all the search resources to find tests that cover likely buggy

methods, thereby increasing the chances of detecting bugs. Initially, SBST guided by

DP filters out the coverage targets that are deemed to not contain buggy methods as

89

indicated by the defect prediction information, and keeps only targets that contain likely

buggy methods (as shown in line 2 of Algorithm 3 and described in Section 6.2.2.1).

In Chapter 5, we showed that DynaMOSA detects significantly more bugs when it was

configured to generate more than one test case to cover each of the coverage targets.

Following this, SBST guided by DP also generates more than one test case for all the se-

lected buggy targets, hence, further increases the chances of detecting bugs (lines 6, 7, 10

and 11 and described in Section 6.2.2.2).

To generate more than one test case for all the likely buggy targets, SBST guided by

DP does not remove a target once it is covered during the search. This is likely to cause

SBST guided by DP to miss nontrivial targets in the search and keep on generating

tests to cover more trivial targets [51]. To address this, we use a method called balanced

test coverage to dynamically disable targets from the search based on their current test

coverage and number of independent paths (lines 3 and 13). This ensures that the

nontrivial targets have an equal chance of being covered compared to the targets that

are easier to cover. Use of this method in SBST guided by DP has a minimal impact

on the conclusions of this study and it is more relevant in the proposed approach to

achieve RO3 in Chapter 7. Hence, we describe this method in detail in Chapter 7 (see

Section 7.3.3).

SBST guided by DP randomly generates a set of test cases that forms the initial popula-

tion (line 5). Then, it evolves this initial population through creating new test cases via

crossover and mutation (line 9), and selecting test cases to the next generation (line 14),

until a termination criteria, such as maximum time budget, is met.

6.2.2.1 Filtering Targets with Defect Prediction

A defect predictor classifies the methods of the CUT as buggy or non-buggy, denoted

as ci, where

ci =

1 if method with index i is predicted as buggy

0 otherwise

This information is used to filter out the likely non-buggy targets from the set of all

targets U using the classifications given (line 2). Spending the limited search resources

90

Algorithm 3 SBST Guided By Defect Prediction

Input: ▷
U = {u1, . . . , uk} ▷ the set of coverage targets of CUT
G = ⟨N,E⟩ ▷ control dependency graph of the CUT
ϕ : E → U ▷ partial map between edges and targets
C = {c1, . . . , cm} ▷ the set of defectiveness classifications for methods in the CUT

1: procedure SBST
2: UB ← FilterTargets(U,C)
3: L← IndependentPaths(G) ▷ L is a vector of the number of independent

paths for each edge
4: U∗ ← targets in UB with no control dependencies
5: P0 ← RandomPopulation(M) ▷ M is the population size
6: A← UpdateArchive(P0, ∅, UB) ▷ A is the archive
7: U∗ ← UpdateTargets(U∗, G, ϕ, UB)
8: for r ← 0 ; !terminationCriteria; r++ do
9: Qr ← GenerateOffspring(Pr)

10: A← UpdateArchive(Qr, A, UB)
11: U∗ ← UpdateTargets(U∗, G, ϕ, UB)
12: Rr ← Pr ∪Qr

13: U∗ ← SwitchOffTargets(U∗, A, L, ϕ)
14: Pr+1 ← SelectPopulation(Rr, U

∗,M)

15: T ← A ▷ Update the final test suite T
16: Return(T)

on covering non-buggy targets is likely to be ineffective when it comes to detecting bugs.

Filtering out targets that are unlikely to be buggy allows the search to focus on test

cases that cover the likely buggy targets (i.e., ∀u ∈ UB), hence, generating more effective

test cases faster than other approaches which search for tests in all the targets in the

CUT.

6.2.2.2 Dynamic Selection of Targets and Archiving Tests

At the start of the search, SBST guided by DP selects the set of targets U∗ ⊆ UB that

do not have control dependencies (line 4). These are the targets SBST guided by DP

can cover without requiring to cover any other targets in the program (described in

Section 2.2.4.3). At any given time in the search, it searches for test cases to cover only

the targets in U∗.

Once a new population of test cases is generated (lines 5 and 9), the procedure Update-

Targets is executed to update U∗ by adding new targets to the search. The procedure

91

UpdateTargets adds a target u ∈ UB to U∗ only if the control dependent targets of

u are covered as explained in Section 2.2.4.3.

SBST guided by DP maintains an archive of test cases found during the search which

cover the selected targets. Once the search finishes, this archive forms the final test suite.

Unlike in DynaMOSA, we configure the UpdateTargets procedure to not remove a

covered target from U∗ and the UpdateArchive procedure (lines 6 and 10) to archive

all the test cases that cover the selected targets u ∈ UB. This way, SBST guided by DP

can generate more than one test case for each target u ∈ UB, hence increasing the bug

detection capability of the generated test suites. In Chapter 5, we show that DynaMOSA

detects up to 79% more bugs when it was configured to not remove covered targets from

the search and retain all the generated tests.

6.3 Analysis of Impact of Defect Prediction Imprecision

We design a set of experiments to evaluate the effectiveness of SBST guided by DP in

terms of detecting bugs when using defect predictors with 12 different levels of impreci-

sion as described in Section 6.2.1 (RQ). We use the bugs from the Defects4J dataset as

the experimental subjects [136] (see Section 6.3.1.1).

To account for the randomness of the defect prediction simulation algorithm (Algo-

rithm 2), we repeat the simulation runs 5 times for each defect predictor configuration

(i.e., recall and precision pair). For each of these simulation runs, we repeat the test

generation runs 5 times, to account for the randomness in SBST guided by DP.

Once tests are generated and evaluated for bug detection, we conduct two-way ANOVA

test to statistically analyse the effects of recall and precision of the defect predictor on

the bug detection effectiveness of SBST guided by DP.

6.3.1 Experimental Settings

6.3.1.1 Experimental Subjects

In our experiments, we further remove 14 bugs from the Defects4J dataset (version 1.5.0)

described in Section 4.1. Those are 12 bugs that do not have buggy methods and 2 bugs

92

for which SBST guided by DP generated uncompilable tests (e.g., method signature is

changed in the bug fix). This results in the following 14 bugs that are not part of the

experiments: Lang-23, 25, 30, 56, 63, Math-12, 104, Time-11, Chart-23, Closure-15, 28,

83, 111 and Mockito-26 are removed. Thus, we evaluate SBST guided by DP on a total

of 420 bugs. The number of bugs from each project is as follows; JFreeChart (25 bugs),

Closure Compiler (170 bugs), Apache commons-lang (59 bugs), Apache commons-math

(104 bugs), Mockito (37 bugs), and Joda-Time (25 bugs). The reasons to remove each

bug are reported in Appendix B.

We calculate the adequate sample size [163] for two-way ANOVA test with power=0.80,

alpha=0.05 and medium effect size (f=0.25). The required sample size with these pa-

rameters is 212, which is well below our sample size of 420 bugs.

The Defects4J benchmark gives a buggy version and a fixed version of the program for

each bug in the dataset. The fixed version is different to the buggy version by the applied

patch to fix the bug, which indicates the location of the bug. We label all the methods

that are either modified or removed in the bug fix as buggy methods [132].

6.3.1.2 Prototype

DynaMOSA is implemented in the state-of-the-art SBST tool, EvoSuite [3]. For the

experimental evaluation, we implement the changes described in Section 6.2.2 for SBST

guided by DP. The changes are implemented within EvoSuite version 1.0.7, forked from

the GitHub repository [98] on June 18th, 2019. We also implement the defect predictor

simulator as described in Section 6.2.1. The prototypes are available to download from

here: https://doi.org/10.6084/m9.figshare.16564146

6.3.1.3 Parameter Settings

We use the default parameter settings of EvoSuite [89] and DynaMOSA [14] except for

the parameters mentioned in the next part of the section. Parameter tuning of SBST

techniques is a long and expensive process [160]. According to Arcuri and Fraser [160],

EvoSuite with default parameter values performs on par compared to EvoSuite with

tuned parameters.

https://doi.org/10.6084/m9.figshare.16564146

93

Time Budget: We set 2 minutes as time budget per CUT for test generation. In practice,

the time budget allocated for SBST tools depends on the size of the project, frequency

of test generation runs and availability of computational resources in the organisation.

Real world projects are usually very large and can have thousands of classes [45]. If an

SBST tool runs test generation for 2 minutes per class, then it will take at least 33 hours

to finish the task for the whole project.

To address this issue, practitioners can adapt the SBST tools in their continuous in-

tegration (CI) systems [159]. However, the introduction of new SBST tools to the CI

system should not make the existing processes in the system idle.

Thus, given the limited computational resources available in practice [44] and the expec-

tation of faster feedback cycles from testing in agile development prompt the necessity

of frequent test generation runs with limited testing budget. Therefore, we decide that

2 minutes per class is a reasonable time budget in a usual resource constrained environ-

ment.

Coverage criteria: Similar to RO1 (see Section 5.4.1.3), we use branch coverage as

coverage criterion in SBST guided by DP as it was shown to be the most effective

criterion in terms of detecting bugs [24, 43].

Termination criteria: We use only the maximum time budget as the termination crite-

rion. Stopping the search after it covers all the targets is detrimental to bug detection.

The search needs to utilise the full time budget to generate as many tests for each target

in the CUT in order to increase the chances of detecting bugs. Therefore, we terminate

the search for test cases only when the allocated time budget runs out.

Test suite minimisation: We disable test suite minimisation since all the test cases in

the archive form the final test suite (see Section 6.2.2.2).

Assertion strategy: Similar to RO1 (see Section 5.4.1.3), we choose all possible asser-

tions as the assertion strategy because the mutation-based assertion filtering can be

computationally expensive and can lead to timeouts [23].

94

6.3.1.4 Experimental Protocol

We run experiments with SBST guided by DP using defect predictors with 12 different

levels of imprecision as described in Section 6.2.1. For each bug in the Defects4J dataset,

we checkout the buggy version of the project and collect the ground truth labels for the

buggy and non-buggy methods. If a method is either modified or removed in the bug

fix, we label that method as a buggy method, and non-buggy otherwise [132]. Then,

for each of the six projects in the dataset, we combine the ground truth labels from

all the bugs respective to each project. For example, for the Apache commons-math

project, we combine the labels from all the 104 bugs from that project in the dataset.

Then, we simulate defect prediction outcomes for each project using the defect prediction

algorithm described in Section 6.2.1.

As described in Chapter 4, we assume an application scenario of generating tests to

detect bugs not only limited to regressions, but also the bugs introduced to the code in

various times in development. Therefore, we run test generation on the buggy version

of the projects. We measure the bug detecting effectiveness of SBST guided by DP only

on the Defects4J bugs. Thus, we only run test generation for buggy classes, i.e., classes

that are modified in the bug fixes, in the projects.

For each level of defect predictor imprecision, we run test generation with SBST guided

by DP 25 times for each bug in the dataset. Consequently, we have to run a total of

12 (levels of defect prediction imprecision) ∗ 25 (repetitions) ∗ 482 (buggy classes) =

144,600 test generations. We collect the test suites generated from each of the 144,600

test generation runs. We determine if the 144,600 generated test suites detect the bugs

by using the method described in Section 4.4. Altogether, the experimental evaluation

took roughly 180,750 CPU-hours.

6.3.2 Results

We present the results for our research question following the method described in Sec-

tion 6.3. Our aim is to evaluate the effectiveness of bug detecting performance of SBST

guided by DP when using imprecise defect predictors.

95

RQ. What is the impact of the imprecision of defect prediction on bug

detection performance of SBST?

●
●

●

●

●

●

160

180

200

220

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure 6.1: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST

guided by DP for each combination of the groups of recall and precision.

Figure 6.1 shows the distributions of the number of bugs detected by SBST guided by

DP as violin plots and the profile plot of the mean number of bugs detected by SBST

guided by DP for each combination of the factors of six recalls and two precisions. The

two lines in our profile plot run almost parallel to each other, i.e., the two lines do not

cross each other at any point. This means that there is no observable interaction effect

between recall and precision.

The two lines descent steeply from recall 100% to 75%. This shows that recall has an

effect on number of bugs detected by SBST guided by DP. In particular, bug detection

96

effectiveness decreases as recall decreases.

The precision=75% line closely follows the precision=100% line while staying slightly

above the latter, except at recall=85%, where there is a considerable gap between the

two. We can soon see if this difference is significant from the two-way ANOVA test

results. We report the mean and median number of bugs detected by SBST guided by

DP in Appendix B.

To statistically test the effect of each of the metrics, recall and precision, and their

interaction on the number of bugs detected by SBST guided by DP, we conduct the

two-way ANOVA test. Prior to conducting two-way ANOVA test, we have to make sure

that our data holds the following assumptions of the test.

1. The dependent variable should approximately follow a normal distribution for all

the combinations of groups of the two independent variables.

2. Homogeneity of variances exists for all the combinations of groups of the two

independent variables.

To check the first assumption, we conduct the Kolmogorov-Smirnov test [164] for normal-

ity of the distributions (α = 0.05) of the number of bugs detected for each combination of

the groups of recall and precision. Based on the results of the tests, we cannot reject our

null hypothesis (p-values ≥ 0.131), i.e., H0 = the number of bugs detected is normally

distributed, hence we assume all the samples come from a normal distribution (i.e., H0

is true). More details of the results of the normality tests are reported in Appendix B.

To check the second assumption, we conduct the Bartlett’s test for homogeneity of

variances (α = 0.05) in each combination of the groups of recall and precision. Based

on the results of the test, we cannot reject our null hypothesis (p-value = 0.305), i.e.,

H0 = variances of the number of bugs detected are equal across all combinations of the

groups, hence we assume the variances are equal across all samples (i.e., H0 is true).

Table 6.1 shows the summary of the two-way ANOVA test results. According to the

two-way ANOVA test, recall and precision explain a significant amount of variation in

number of bugs detected by SBST guided by DP (p-values < 0.001). The test also

indicates that we cannot reject the null hypothesis that there is no interaction effect

between recall and precision on number of bugs detected (p-value = 0.105). That means

97

Df Sum Sq Mean Sq F value p-value

Recall 5 51341 10268 497.42 <0.001

Precision 1 273 273 13.21 <0.001

Recall:Precision 5 190 38 1.84 0.105

Residuals 288 5945 21

Table 6.1: Summary of the two-way ANOVA test results. Df = degrees of freedom,
Sum Sq = sum of squares and Mean sq = mean sum of squares.

we can assume the effect of recall on number of bugs detected does not depend on the

effect of precision, and vice versa.

To check if the observed differences among the groups are of practical significance, we

measure the epsilon squared effect size (ϵ̂2) [147] of the variations in number of bugs

detected with respect to recall and precision. We find that the effect of recall on bug

detection effectiveness is large with an effect size of 0.89, while the effect of precision is

very small (ϵ̂2 = 0.004) [165], which can be seen from the overlapping distributions in

the violin plots in Figure 6.1 as well.

To further analyse which groups are significantly different from each other, we conduct

the Tukey’s Honestly-Significant-Difference test [148]. The Tukey post-hoc test shows

that the number bugs detected by SBST guided by DP is significantly different between

each of the six levels of recall (p-values < 0.002). The Cohen’s d effect sizes of the

differences between the groups of recall range from medium (d = 0.77 for recall 95% and

100%) to large (d ≥ 1.33 for all other pairs of groups). The Tukey post-hoc test results

of all possible pairs of groups can be found in Appendix B.

In summary, the false negatives of the defect predictor has a significant impact

on the bug detection performance of SBST. In particular, when the recall of the

defect predictor decreases, the bug detection effectiveness significantly decreases

with a large effect size. On the other hand, we conclude that there is no mean-

ingful practical effect of precision on the bug detection performance of SBST, as

indicated by a very small effect size.

98

6.3.2.1 Sensitivity to the Recall of the Defect Predictor

As shown in Figure 6.1, SBST guided by DP detects less number of bugs when using

defect predictors with a lower recall compared to using one with a higher recall. In

particular, SBST guided by DP detects 7.5 less bugs and misses test generation for 15

bugs on average (out of 420) when the recall decreases by 5% in our experiments. SBST

guided by DP completely trusts the defect predictor and only generates tests for classes

having at least one method predicted as buggy (e.g., true positive). The number of

true positives by the defect predictor decreases when the recall decreases. This results

in SBST guided by DP generating tests for a fewer number of classes as the recall

decreases, hence detecting less number of bugs when recall drops from 100% to 75%.

We identify this as a weakness of SBST when using defect predictions. To mitigate this,

SBST techniques have to take potential false negatives in the predictions into account.

The current approach fully exploits the buggy methods predicted by the defect predictor.

We recommend that SBST techniques require to explore the likely non-buggy methods

while prioritising the exploitation of likely buggy methods. One way to do this is to

always generate tests for methods that are predicted buggy, while also generating tests

for predicted non-buggy methods at least with a minimum probability. This way the

SBST technique gets a chance to search for tests in incorrectly classified buggy methods

(when recall <100%), while also giving higher priority to methods that are predicted

buggy by the defect predictor.

6.3.2.2 Number of Buggy Methods

As we discussed previously, when the recall of the defect predictor decreases, SBST

guided by DP completely misses test generation for certain bugs, hence leads to poorer

bug detection. In our experiments, SBST guided by DP misses test generation for 18.2%

of the bugs on average when recall decreases from 100% to 75%. Further analysis of

the results indicates that SBST guided by DP only misses test generation for 4.5% of

the bugs on average for the bugs that spread across multiple methods, whereas it misses

24.7% of the bugs on average for the bugs that are concentrated into only one method.

This suggests that the bugs that are found within only one method are more prone to

the impact of recall compared to bugs that are spread across multiple methods.

99

To understand the effects of recall on detecting bugs which are found within only one

method and spread across multiple methods, we conduct Welch ANOVA test [166] sep-

arately for the two subsets of our dataset, i.e., bugs having only one buggy method and

bugs having more than one buggy method. The reason for carrying out Welch ANOVA

test is because our data fails the assumption of homogeneity of variances for each com-

bination of the groups of recall for bugs having only one buggy method. The results of

the normality tests can be found in Appendix B.

Num Df Denom Df F value p-value

buggy methods > 1 5.00 137.06 67.24 <0.001

buggy methods = 1 5.00 136.68 395.91 <0.001

Table 6.2: Summary of the Welch ANOVA test results. Num Df = degrees of freedom
of the numerator and Denom Df = degrees of freedom of the denominator.

The results of the Welch ANOVA test are shown in Table 6.2. There are 135 bugs which

have more than one buggy method. The results for these bugs show that overall recall

has a significant effect on number of bugs detected by SBST guided by DP (p-value

<0.001) with a large effect size (ϵ̂2 = 0.53) [167]. However, the Games-Howell post-hoc

test reveals that the bug detection effectiveness is not significantly different between

recall 80%, 85% and 90%, and 95% and 100%. This can be seen in the violin plots in

Figure 6.2 as well.

There are 285 bugs which have only one buggy method. The results of Welch ANOVA

test for these bugs show that recall has a significant effect on number of bugs detected by

SBST guided by DP (p-value <0.001) with a large effect size (ϵ̂2 = 0.87). The Games-

Howell post-hoc test confirms that the number of bugs detected by SBST guided by DP

is significantly different between each group of recall (p-values <0.001) with large effect

sizes (d ≥ 0.98) as can be seen in Figure 6.3. The Games-Howell post-hoc test results

for all possible pairs of recalls can be found in Appendix B.

In summary, we find that recall has a significant effect on bug detection effectiveness

of SBST guided by DP regardless of whether the bugs are found within one method or

spread across multiple methods. However, for the bugs that are spread across multiple

methods, the effect size of recall effect is smaller when compared to bugs that are found

within one method (0.53 < 0.87). In contrast to bugs that are found within one method,

100

● ●

●
● ●

●

60

70

80

90

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Figure 6.2: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the means plot of number of bugs detected by SBST guided
by DP for the groups of recall. Only for the bugs that have more than one buggy

method. Total number of bugs = 135.

the effect of recall is not significant between the groups of recall 80%, 85% and 90%,

and 95% and 100% for the bugs that are spread across multiple methods.

6.3.2.3 Sensitivity to the Precision of the Defect Predictor

According to the two-way ANOVA test, the precision of the defect predictor has a statis-

tically significant effect, however with a very small effect size, which suggests the effect

is not of meaningful practical significance. Precision is associated with false positives

(Equation. (6.2)), i.e., non-buggy methods predicted as buggy by the defect predictor.

Change of precision from 100% to 75% means that there are false positives in the de-

fect prediction results. We investigate the buggy method labels produced by the defect

predictor and the bug detecting results of SBST guided by DP in our experiments to

find out if false positives have actually helped SBST guided by DP to detect more bugs.

We find that the false positives have not contributed to the bug detection performance

101

●

●

●

●

●

●

80

100

120

140

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Figure 6.3: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the means plot of number of bugs detected by SBST guided
by DP for the groups of recall. Only for the bugs that have one buggy method. Total

number of bugs = 285.

of SBST guided by DP. We conclude that the impact of precision is not of practical

significance to the bug detection performance of SBST.

Effects from false positives on SBST may be different when SBST guided by DP is given

a small time budget. In particular, SBST guided by DP with a sufficient time budget

like 120 seconds may have enough time to search for tests in actual buggy methods (i.e.,

true positives) despite searching for tests in false positives. Whereas the search for tests

in actual buggy methods may be greatly impacted when SBST guided by DP is given

a small time budget like 15 or 30 seconds. Hence, we further investigate the impact of

the time budget on the conclusions about sensitivity to the defect prediction precision.

We find that the conclusions remain the same at 5, 10, 15, 30, 60 and 120 seconds time

budgets, i.e., there is no meaningful practical effect of precision on the bug detection

performance of SBST. The results of the two-way ANOVA tests along with the violin

and profile plots at each time budget are reported in the Appendix C.

102

6.3.3 Discussion

Defect predictors have mainly been used to provide a list of likely defective parts of

a program (e.g., classes and methods) to programmers, who then manually inspect or

test the likely defective parts to find the bugs [39, 41]. In this context, the precision

of the defect predictor is very important [47]. Poor precision of the defect predictor

means there are higher false positives. Higher false positives can waste developers’ time

and lead to losing their trust on the prediction results [39]. However, when the defect

predictions are consumed by another automated testing technique such as SBST, this

may not be the case. In the context of SBST, our study reveals contrasting findings. We

find that the effect of precision on the bug detection performance of SBST is negligible,

while the recall of the predictor has a significant impact with a large effect size.

We recommend that programmers improve the recall of the defect predictor at the cost

of precision to achieve good performance in SBST guided by defect prediction. There is

a trade-off between recall and precision of a defect predictor [168]. Defect predictors are

usually good at detecting bugs (i.e., high recall) at the expense of false positives (i.e.,

low precision). Our study shows the bug detection effectiveness of SBST guided by DP

is highly sensitive to recall, while the effect of precision is negligible. This means that

most defect predictors proposed in the literature would be suitable for guiding SBST. As

the scope of our study is to analyse the impact of precision in the range of an acceptable

defect predictor, i.e., precision ≥ 75%, we cannot make any conclusions about defect

predictors with precision below 75%. Therefore, we can conclude that it is beneficial to

increase the recall of the defect predictor by sacrificing precision while maintaining it

above an acceptable level, e.g., 75%.

The primary actionable conclusion from this study for the research community is to

define recall-at-precision measure to be 75% for defect predictors in the context of com-

bining defect prediction and SBST. Defect predictors having recall and precision greater

than or equal to 75% are considered acceptable defect predictors [48]. Currently the

defect prediction community is targeting to increase both precision and recall. We rec-

ommend the researchers to target higher recall while having a sufficiently high precision,

which is 75%. This approach is widely used in training machine learning classifiers,

where there is a particular precision level required to meet to avoid false positives, such

that any classifier that fails to meet this criterion is considered unacceptable. When the

103

criterion for minimum precision level is met, increasing recall at the minimum precision

or above becomes the goal.

6.4 Threats to Validity

In Section 4.6, we discussed the validity threats that are common to the three research

studies conducted in this thesis. In addition, we discuss the following threats that are

specific to this study.

Construct Validity. To systematically investigate the impact of defect prediction

imprecision, we simulate the predictions by assuming a uniform distribution of defect

prediction errors which is similar to previous work [129]. This means in our simulations,

every method has an equal chance of being labelled incorrectly independent of each

other. However, real defect predictors may have different distributions of their predic-

tions depending on the underlying characteristics and nature of the prediction problem,

which may impact the realism of a simulated defect predictor. Nevertheless, in the ab-

sence of prior knowledge about empirical or theoretical defect prediction distributions,

it is reasonable to assume a uniform distribution of predictions in the defect prediction

simulation.

SBST guided by DP generates more than one test case for each target in the CUT. This

increases the chances of detecting bugs at the cost of larger test suites. Larger test suites

are associated with a higher number of assertions in the tests generated by EvoSuite,

which need to be manually adapted by developers in practice. This may increase the

labelling cost for developers, the impact of which needs to be investigated in future work.

Internal Validity. To account for the randomness in the defect prediction simulation,

we repeat the simulations 5 times for each combination of the groups of recall and

precision. For each simulation, we repeat the test generation 5 times to account for

the non-deterministic behaviour of SBST guided by DP. In total, we conduct 25 test

generation runs for each bug and for each level of defect prediction imprecision.

External Validity. We investigate the impact of defect prediction imprecision only in

the range of 75% to 100% for recall and precision. Therefore, our findings may not be

generalised to the defect predictors which have recall or precision less than 75%. While

104

this choice of performance sampling in our simulation is a threat to external validity, it is

also a threat to construct validity for lack of characterising all possible defect predictors.

However, we opted to use this range with the justification that this is the range for

an acceptable performance for a defect predictor as recommended by Zimmermann et

al. [48].

6.5 Summary

We study the impact of imprecision in defect prediction on the bug detection performance

of SBST. We use simulated defect predictors to systematically sample defect predictors

in the range of 75% to 100% for recall and precision. We use the state-of-the-art SBST

technique, DynaMOSA, and incorporate predictions about buggy methods as given by

the simulated defect predictor to guide the search for test cases towards likely buggy

methods. Through a comprehensive experimental evaluation on 420 bugs from the

Defects4J dataset, we find that the recall of the defect predictor has a significant impact

on the bug detection effectiveness of SBST with a large effect size. More specifically,

SBST guided by DP finds 7.5 less bugs on average (out of 420 bugs) for every 5%

decrements of recall. On the other hand, the impact of precision is not of practical

significance as indicated by a very small effect size, hence we conclude that the precision

of defect predictors has negligible impact on the bug detection effectiveness of SBST, as

long as one uses a defect predictor with acceptable performance, i.e., with precision and

recall greater than 75%. Further analysis of the results shows that the impact of the

recall for the bugs that are spread across multiple methods is smaller compared to the

bugs that are found within only one method.

Based on the results of our study, we make the following recommendations:

1. SBST techniques must take potential errors in the predictions into account, in par-

ticular the false negatives. Currently, the search for tests exploits the likely buggy

targets, however, we recommend that SBST techniques also require to explore the

likely non-buggy targets at least with a minimum probability. One possible solu-

tion is to prioritise predicted buggy parts of the program, while guiding the search

with a certain probability towards locations that are predicted as not buggy.

105

2. In the context of combining defect prediction and SBST, it is beneficial to increase

the recall of the defect predictor by sacrificing precision, while maintaining the

precision above an acceptable level, e.g., 75%. When the predictions are used by

SBST, an acceptable amount of false positives are not a problem. For SBST, it

is important to be informed of most of the buggy targets even at the expense of

acceptable level of false alarms. We recommend the researchers to target higher

recall while having a sufficiently high precision, instead of trying to elevate both

recall and precision.

Chapter 7

Guiding the Search Process with

Defect Prediction

7.1 Introduction

Search-based software testing (SBST) techniques often aim at maximising code coverage,

which is often used to define the objective functions used in them. For example, SBST

techniques that formulate the test generation problem as a single objective formulation

aggregate all the coverage targets of the class under test (CUT) into a single objective

function (see Section 2.2.3). Many objective sorting algorithms simultaneously optimise

test cases to meet multiple objectives where each of them represents each coverage

target in the CUT (see Section 2.2.4). The existing SBST techniques treat all the

coverage targets as equally important to cover, since covering any target increases the

code coverage by an equal amount and rewards the search equally. In particular, for

SBST techniques with a single objective function, covering any of the uncovered targets

increases the fitness by an equal amount. For many objective sorting algorithms, covering

any of the uncovered targets means the respective objective score is set to zero and the

objective is removed from the set of uncovered objectives.

Only one or a few methods are buggy in a class. Hence, only a subset of all the coverage

targets contains the buggy methods. It is likely to be ineffective in terms of bug detection

to optimise test cases/suites to satisfy coverage targets that do not contain the buggy

methods. In fact, the test suites generated by the existing SBST techniques have only

106

107

a few test cases that cover the buggy methods despite having high code coverage. We

identify this as a main limitation in SBST techniques guided only by coverage. In the

context of detecting bugs, the set of coverage targets that contain the buggy methods

are likely to be more important to cover than the other targets.

We hypothesise that augmenting coverage information used by SBST techniques with

defect prediction information in the search process improves the bug detection per-

formance of SBST. We argue that SBST techniques should increase the test coverage

towards buggy methods within the CUT to increase the chances of detecting bugs. We

use defect prediction that works at method level to get information on which methods

are likely to be buggy within a class. SBST technique can then identify the coverage

targets that are likely to contain buggy methods to direct the test coverage. Our goal is

to develop an SBST technique that guides the search for test cases towards likely buggy

coverage targets in the class by using information from defect prediction. Therefore, in

this chapter, we aim to achieve the following research objective;

RO3: Develop an SBST technique that uses defect prediction to guide the search

process to likely defective areas.

To achieve this research objective, we propose predictive many objective sorting algo-

rithm (PreMOSA) and demonstrate its improved effectiveness and efficiency in terms of

detecting bugs through an experimental assessment using theoretical defect predictors.

PreMOSA is a many objective solver that uses information from a method level defect

predictor and guides the search for tests towards the likely buggy methods. PreMOSA

prioritises exploiting the coverage targets that contain likely buggy methods. It han-

dles potential errors in the predictions by exploring the coverage targets that contain

likely non-buggy methods with a lesser priority. In order to ensure trivial and nontrivial

targets have a fair opportunity to be covered, PreMOSA employs a method to balance

the test coverage among all the targets in the search. We use Defects4J dataset as

benchmark subjects to experimentally evaluate PreMOSA against the state-of-the-art

DynaMOSA in terms of bug detection effectiveness and efficiency. In the experimental

assessment, we use theoretical (i.e., simulated) defect predictors that can be replaced

with any real defect predictor in practice [31, 32]. We intentionally abstract the defect

predictor component to avoid potential confounding effects that can be caused by using

specific defect predictors.

108

7.2 Motivation

Figure 5.10 shows a buggy code snippet and the applied patch for DateTimeZone class

from Time-8 bug in Defects4J [136]. The buggy method, forOffsetHoursMinutes, takes

two integer inputs, hoursOffset and minutesOffset, and returns the DateTimeZone

object for the offset specified by the two inputs. For example, if the method is called

with the inputs hoursOffset=0 and minutesOffset=-30, then it is expected to return

a DateTimeZone object for the offset −00 : 30. However, such inputs execute the true

branch of the if condition at line 279 and the method throws an IllegalArgumentException

instead of the expected DateTimeZone object. This bug is fixed by modifying the if

condition at line 279 and adding a new condition at line 282 as shown in the diff in

Figure 5.10.

To detect this bug, test cases have to execute the false branches of the if conditions

at line 273 and 276; that is hoursOffset ̸= 0 or minutesOffset ̸= 0 and hoursOffset

∈ [−23, 23]. They also have to execute the true branch at line 279 with an additional

constraint; minutesOffset ∈ [−59,−1]. Furthermore, the newly added if condition at

line 282 adds another constraint on the input hoursOffset; that is hoursOffset ≤ 0.

In summary, only the test inputs sampled from the space where hoursOffset ∈ [−23, 0]

and minutesOffset ∈ [−59,−1] can detect the bug.

It is evident that just covering the buggy code (i.e., the true branch of the if condition

at line 279) is not sufficient to detect the bug. For example, the inputs hoursOffset=12

and minutesOffset=-60 cover the buggy code, however, they do not detect the bug. As

shown in Figure 7.1, the space of all possible test inputs that cover the buggy code (i.e.,

hoursOffset ∈ [−23, 23] and minutesOffset /∈ [0, 59]) is larger than the space of test

inputs that can detect the bug. The existing SBST techniques that aim at maximising

code coverage, such as DynaMOSA are more likely to sample test inputs from the larger

space of inputs that cover the buggy code without detecting the bug, and then terminate

without actually detecting the bug.

The existing SBST approaches can be configured to generate many tests for each cover-

age target in the DateTimeZone class, and it will increase the chances of detecting the

bug. However, there are 54 methods in the class and only one method is buggy. If we

assume the test adequacy criterion to be branch coverage, then there are 201 coverage

109

Figure 7.1: Search space of test inputs for covering the buggy code and detecting the
bug for Time-8 bug

targets in total, while only 14 of them actually contain the buggy method. Thus, we find

it is ineffective to spend all the critical search resources on covering all the 201 targets,

when only a few of them leads to the buggy code. We propose to use buggy methods

predictions from a defect predictor to decide where to increase the coverage within the

class. Thus, our novel SBST approach concentrates the search for test cases more on

the only buggy method in the project, forOffsetHoursMinutes.

7.3 Predictive Many-Objective Sorting Algorithm

Predictive many objective sorting algorithm (PreMOSA) is a novel search-based soft-

ware testing approach that incorporates guidance from a defect predictor. PreMOSA

receives as input a buggy program with methods labelled as buggy or non-buggy, which

are labels that can be obtained using existing defect predictors [31, 32]. PreMOSA is

not specific to a certain defect predictor. Hence, we use the most commonly used defect

predictor output type in PreMOSA, which is binary classification [50]. PreMOSA uses

this information to start searching for test inputs that cover targets that are deemed

to contain buggy methods as indicated by the defect prediction information (see Sec-

tion 7.3.1). This helps focus the search initially on covering the likely buggy targets

rather than the likely non-buggy targets.

110

Most of the time, defect predictors are not 100% accurate, which means that they may

label actual buggy methods as non-buggy. PreMOSA starts searching for test cases

to cover the targets that contain predicted non-buggy methods, once the likely buggy

targets coverage does not improve for a pre-defined number of consecutive iterations (see

Section 7.3.1).

PreMOSA also generates more than one test case for all the selected targets, hence,

increases the chances of detecting bugs (see Section 7.3.2).

Finally, to balance the test coverage among all the targets in the search, we introduce a

method to dynamically disable coverage targets from the search based on their current

test coverage and number of independent paths (see Section 7.3.3). This ensures that

the non-trivial targets have an equal chance of being covered compared to the targets

that are easier to cover.

PreMOSA is presented in Algorithm 4. It is based on a genetic algorithm (GA). Pre-

MOSA creates an initial population of randomly generated test cases (line 9 in Algo-

rithm 4). Then, it evolves this initial population through creating new test cases via

crossover and mutation (line 13) and selecting test cases to the next generation (line 18),

until a termination criterion, such as maximum time budget, is met.

7.3.1 Filtering Targets with Defect Prediction

A defect predictor classifies the methods of the CUT as buggy or non-buggy, denoted

as ci, where

ci =

1 if mi is predicted as buggy

0 otherwise

where mi denotes method with index i. PreMOSA starts with filtering the likely buggy

and likely non-buggy targets, UB and UN respectively, from the set of all targets U using

the classifications given (line 2 in Algorithm 4). The procedure FilterTargets labels

targets as buggy if they belong to a likely buggy method and non-buggy otherwise.

Initially, PreMOSA finds tests to cover only the likely buggy targets, hence, only the

likely buggy targets are selected to be included in the search process in the beginning

(line 5). This way, PreMOSA can extensively search for test cases that cover likely buggy

111

Algorithm 4 PreMOSA

Input:
U = {u1, . . . , uk} ▷ the set of coverage targets of CUT
G = ⟨N,E⟩ ▷ control dependency graph of the CUT
ϕ : E → U ▷ partial map between edges and targets
C = {c1, . . . , cm} ▷ the set of defectiveness classifications for methods in the CUT

1: procedure PreMOSA
2: UB, UN ← FilterTargets(U,C)
3: L← IndependentPaths(G) ▷ L is a vector of the number of independent

paths for each edge
4: if UB is not empty then
5: U ← UB

6: else
7: U ← UN

8: U∗ ← targets in U with no control dependencies
9: P0 ← RandomPopulation(M) ▷ M is the population size

10: A← UpdateArchive(P0, ∅) ▷ A is the archive
11: U∗ ← UpdateTargets(U∗, G, ϕ)
12: for r ← 0 ; !terminationCriteria; r++ do
13: Qr ← GenerateOffspring(Pr)
14: A← UpdateArchive(Qr, A)
15: U∗ ← UpdateTargets(U∗, G, ϕ)
16: Rr ← Pr ∪Qr

17: U∗ ← SwitchOffTargets(U∗, A, L, ϕ)
18: Pr+1 ← SelectPopulation(Rr, U

∗,M)
19: U∗ ← AddNonBuggyTargets
20: T ← A ▷ Update the final test suite T
21: Return(T)

22: procedure AddNonBuggyTargets
23: if trigger not fired to add non-buggy targets then
24: if # covered goals = prev. # covered goals then
25: w++
26: else
27: w = 0
28: if w = I then ▷ I is max. # iterations without coverage improvement
29: U ← U ∪ UN

30: U∗ ← U∗ ∪ {u ∈ UN |u has no control dependencies}
31: Return(U∗)

targets, which leads to generating more effective test cases faster than other approaches

by increasing the chances of reaching the buggy code.

Defect predictors often are not 100% accurate, and it is likely that buggy methods

may be labelled as non-buggy. To address this issue, PreMOSA considers targets that

do not contain any methods that are predicted as buggy if it deems to have searched

enough for tests that cover the likely buggy targets (line 19). If PreMOSA resorts to

112

searching for tests to cover only the likely buggy targets, then it will miss actual buggy

targets that are incorrectly classified. Thus, PreMOSA starts finding tests to cover

likely non-buggy targets once the coverage of likely buggy targets does not improve for

a predefined number of consecutive iterations (I) in GA (line 28). This way, PreMOSA

expects to account for the errors present in the predictions. Finally, if there are no likely

buggy targets, either because the class is not buggy or the defect predictor is inaccurate,

PreMOSA considers all targets from the start (line 7).

7.3.2 Updating Targets and Archiving Tests

PreMOSA generates more than one test case for all the selected targets in order to

increase the chances of infection and propagation of the bugs. When updating targets

in each iteration (lines 11 and 15), it does not remove covered targets from U∗, allowing

it to keep generating more tests to cover those targets as well.

PreMOSA keeps an archive of all the test cases that cover the selected targets u ∈ U

during the search (lines 10 and 14). This archive of test cases form the final test suite.

Thus, the final test suite is more likely to detect the bugs as it contains all the generated

test cases which cover the potentially buggy targets.

Removing covered targets from U∗ and archiving only the shortest test case for each

covered target are beneficial for achieving high code coverage with a minimal test suite

size [14]. However, just covering the buggy code is not sufficient to detect the bug. In

Chapter 5, we showed that there was an average improvement of up to 79% in terms of

detecting bugs when the state-of-the-art DynaMOSA was configured to not to remove

covered targets from the search and retain all the generated tests. Therefore, we decide

to archive all the test cases that cover the selected targets u ∈ U and not to remove the

covered targets from the search in PreMOSA.

7.3.3 Balanced Test Coverage of Targets

Figure 7.2 shows the control dependency graph (CDG) of the method forOffsetHoursMinutes

from the motivating example in Section 7.2. Nodes denote the predicates and leaves de-

note the exit points of the program. For example, node 279-1 denotes the minutesOffset

113

< 0 predicate at line 279 and leaf 280 denote the return statement at line 280. Lines be-

tween nodes denote the control dependency edges. For example, b5,T is the true branch

of the minutesOffset < 0 predicate. For simplicity, we do not include the nodes that

are not predicates of the program.

273-1

273-2

276-1274

277

276-2

279-1

280

279-2

285

294

b1,T

b1,F

b2,T b2,F

b3,T

b3,F

b4,T b4,F

b5,T

b5,F

b6,T b6,F

b7,T b7,F

Figure 7.2: Control dependency graph of the method forOffsetHoursMinutes from
Time-8 bug

In our running example, assume the branch coverage is the optimisation criterion. An

114

SBST technique that does not remove covered targets from the search is more likely to

keep on generating test cases which cover more trivial branches like b3,T or b4,T rather

than a less trivial branch b5,T (Figure 7.2). This is detrimental to the bug detection

performance of SBST since it is necessary to find tests that exercise the branch b5,T in

order to detect the bug, and also, to increase the chances of detecting the bug, SBST

has to find as many tests as possible that cover b5,T .

We introduce a new method to dynamically remove coverage targets from the search

based on their current test coverage and number of independent paths, in order to

balance the test coverage among all the targets. A balanced test coverage means that

all the targets receive an equitable test coverage. This ensures that, in PreMOSA, the

less trivial targets also get a good coverage in the presence of more trivial targets.

A balanced test coverage is achieved when the number of tests generated per an in-

dependent path of a target is equal for all of the targets. We measure the number of

independent paths of a target by assuming the paths start at the control dependent edge

of that target (line 3). An independent path is one that traverses one or more new edges

in the control dependency graph.

In general, for each target u ∈ U∗, PreMOSA checks the current test coverage (i.e.,

number of tests in the archive that cover u), and then temporarily removes u from U∗

in the current iteration, if the test coverage per an independent path from u is higher

than the other targets (line 17).

7.3.3.1 Independent Paths

We use the number of independent paths of a target to determine how much of a test

coverage a target should receive compared to other targets, in order to achieve a balanced

test coverage for all targets. For a target u ∈ U∗, if there are many independent paths

that start from u, then PreMOSA should generate more tests to cover u than the other

targets which have few independent paths. In our running example, the target b2,F

should receive more test coverage than b2,T because there are more independent paths

leading up from b2,F (6) compared to b2,T (1).

In the beginning of the search, PreMOSA finds the number of independent paths of

each edge in the control dependency graph G of the program (line 3). The control

115

dependency graph G = ⟨N,E⟩ consists of nodes n ∈ N and edges e ∈ E ⊆ N ×N . The

nodes represent statements in the program. The edges represent control dependencies

between the statements. For each edge e ∈ E, the procedure IndependentPaths

calculates the number of independent paths starting from e using the graph G. The

actual executions of the paths start at the root node, however, in the calculation of

number of independent paths of e, we assume the paths start at e. All the coverage

targets that are directly control dependent by e have the same number of independent

paths as that of e.

In the motivating example, the edges b2,T , b3,T , b4,T , b5,T , b6,T , b7,T and b7,F have

only one path each that start from those edges. There are 2 independent paths from

the edge b6,F , those are b6,F − b7,T and b6,F − b7,F . Likewise, there are 7, 6, 6, 5, 4

and 3 independent paths that start from edges b1,T , b1,F , b2,F , b3,F , b4,F and b5,F ,

respectively. If the optimisation problem is maximising the branch coverage, then these

edges become the coverage targets in the search.

7.3.3.2 Temporarily Disabling Targets from the Search

In many objective optimisation, test cases are optimised simultaneously to satisfy all

the coverage targets. Thus, the search resources (e.g., time budget) are not allocated to

each coverage target individually. To focus the search differently on covering each target,

PreMOSA dynamically switches off targets during the evolution. In every iteration in

GA, for each target u ∈ U∗, the procedure SwitchOffTargets checks the current

test coverage of u, and then removes u from U∗, if the test coverage per an independent

path of u is higher than that of the other targets. Therefore, after calling the procedure

SwitchOffTargets, only the targets which are having a low test coverage (per an

independent path) remain in U∗. Then, the procedure SelectPopulation selects test

cases to the next generation considering only these remaining targets in U∗. This paves

the way for the search to find more test cases in the next generation that cover these

targets, thereby guiding the search to a balanced test coverage for all the targets.

First, the procedure SwitchOffTargets finds the set of nodes with predicates NP

in G (line 2 in Algorithm 5). Next, for each node n ∈ NP , it fetches the number of

independent paths from the outgoing edges of n (lines 5-6). Then, it randomly selects

a control dependent target from each outgoing edge of n (lines 7-8). We consider all

116

Algorithm 5 Temporarily Removal of Targets to Balance Test Coverage

1: procedure SwitchOffTargets(U∗, A, L, ϕ)
2: NP ← NodesWithPredicates(G)
3: for n ∈ NP do
4: {en,T , en,F } ← outgoing edges in G from node n
5: ln,T ← GetIndependentPaths(L, en,T)
6: ln,F ← GetIndependentPaths(L, en,F)
7: un,T ← RandomChoice({ϕ(en,T)})
8: un,F ← RandomChoice({ϕ(en,F)})
9: An,T ← GetTests(A, un,T)

10: An,F ← GetTests(A, un,F)

11: if
|An,T |
ln,T

>
|An,F |
ln,F

then

12: U∗ ← U∗ − {ϕ(en,T)}

13: else if
|An,T |
ln,T

<
|An,F |
ln,F

then

14: U∗ ← U∗ − {ϕ(en,F)}
15: Return(U∗)

the control dependent targets of an edge receive the same test coverage. Hence, the test

coverage of a randomly selected target of an edge is equal to the test coverage of that

edge. Finally, it finds the edge which has the largest number of tests in the archive per

an independent path, and removes all the control dependent targets of that edge from

U∗ (lines 9-14).

In the running example, if we consider the node 276-2, the outgoing edges are b4,T and

b4,F , and the number of independent paths from these edges are 1 and 4, respectively.

Assume the coverage criterion is maximise branch coverage, hence b4,T and b4,F are also

targets in the search, and there are currently 30 and 20 tests in the archive covering b4,T

and b4,F , respectively. Thus, b4,T has 30 (= 30/1) tests in the archive per an independent

path, while b4,F has only 5 (= 20/4) tests per a path. Hence SwitchOffTargets

temporarily removes the target b4,T from U∗, and paves way for the search to find more

test cases that cover b4,F . Overall, this encourages the search to have a balanced test

coverage for all the targets rather an excessive coverage of more trivial targets like b3,T

and b4,T . As a result, a less trivial target like b5,T , which contains the buggy code,

receives a good coverage in the presence of other more trivial targets.

117

7.4 Experimental Evaluation

We design a set of experiments to evaluate PreMOSA in terms of its effectiveness and

efficiency in detecting bugs compared to the state-of-the-art DynaMOSA. Through these

experiments, we aim to investigate if augmenting coverage information with defect pre-

diction information in the search process of SBST indeed helps to improve the bug

detection performance of the generated test suites. Our first research question is:

RQ1: Is PreMOSA more effective in detecting bugs compared to the state-of-the-art

DynaMOSA?

To answer this research question, we compare the number of bugs detected by PreMOSA

against DynaMOSA, which we discuss in Section 7.4.1.3. We run test generation on De-

fects4J bugs [136] (discussed in Section 7.4.1.2) using both PreMOSA and the baseline.

To account for randomness in PreMOSA and DynaMOSA, we repeat the test generation

for 25 runs for each bug and testing approach. Once test cases are generated and evalu-

ated for bug detection, we report the bug detection results as means and medians over

25 runs. To check if PreMOSA significantly detects more bugs than DynaMOSA and the

effect size of the difference, we employ one-tailed non-parametric Mann-Whitney U-Test

with the significance level (α) 0.05 [144] and Vargha and Delaney’s Â12 statistic [145].

To analyse the efficiency of PreMOSA, we seek to answer the following research question:

RQ2: Is PreMOSA more efficient at generating test cases that can detect bugs

compared to the state-of-the-art DynaMOSA?

To answer this research question, we measure the time to generate the first test case that

can detect a bug by the two approaches over 25 runs. As we described in Section 4.3, a

test case detects a bug if it satisfies all the three conditions of the reachability, infection

and propagation (RIP) model, and we call such test cases bug detecting tests throughout

the chapter. For each bug that is detected by both approaches, we calculate the difference

of the mean time to generate the first test case that detects the particular bug by the

two approaches. If the difference is positive, that means PreMOSA generates a test case

to detect the bug in a shorter time. A negative difference means otherwise. To check

118

if PreMOSA generates a bug detecting test in a significantly shorter time, we employ

one-tailed Wilcoxon signed-rank test [144] and its effect size, r [146]. We remind the

reader that the time taken to generate the first bug detecting test is not equal to time

taken to reveal the bug. The latter happens only after the test generation is completed.

Zimmermann et al. [48] argues that a defect predictor is strong if, and only if, all

recall, precision and accuracy are greater than 75%. Therefore, we consider defect

predictors having both recall and precision in the range 75% to 100% as acceptable

defect predictors. In RQ1 and RQ2, we simulate defect predictor outcomes for two

levels of performance for PreMOSA; i) most conservative and acceptable defect predictor

(recall=precision=75%) and ii) ideal defect predictor (recall=precision=100%). We will

discuss this more in Section 7.4.1.1. We expect PreMOSA to perform best with the

latter defect prediction simulation, and with the former simulation, we can see the most

conservative performance of PreMOSA when using acceptable defect predictors.

In addition, to analyse the effects of the balanced test coverage of targets method, we

seek to answer the following research question:

RQ3: How does the balanced test coverage of targets affect the coverage and bug

detection of SBST?

To answer this research question, we extend the state-of-the-art SBST, DynaMOSA, to

use the balanced test coverage of targets method described in Section 7.3.3 and refer

to this as DynaMOSA+b throughout the chapter. We compare the number of bugs

detected (effectiveness) and the time to generate bug detecting tests (efficiency) by

DynaMOSA+b against DynaMOSA. We run test generation on Defects4J bugs using

DynaMOSA+b and repeat the test generation for 25 runs. To measure and compare the

effectiveness and the efficiency of detecting bugs of DynaMOSA+b against DynaMOSA,

we follow the same procedure as described in RQ1 and RQ2.

We expect DynaMOSA+b to cover more targets since it encourages the search method

to find test cases that cover nontrivial targets by dynamically disabling trivial targets

from the search. We compare branch coverage achieved by DynaMOSA+b against

DynaMOSA for each bug. To check for statistical significance of the difference and

the effect size, we employ two-tailed non-parametric Mann-Whitney U-Test with the

significance level (α) 0.05 and Vargha and Delaney’s Â12 statistic.

119

Ideally, balanced test coverage should make all the branches in the CUT have an equal

number of tests per independent path, which means that the distribution of the num-

ber of tests per independent path of branches in a CUT should have a zero variance.

Therefore, we compare the variation in the distributions of the number of tests per inde-

pendent path of DynaMOSA+b and DynaMOSA. An approach with smaller variation

indicates that it has achieved a better balance of test coverage compared to the approach

that has larger variation. To do this, for each buggy class in Defects4J, we measure the

number of tests that cover a branch at the end of the search for all the branches in the

CUT by DynaMOSA+b and DynaMOSA. Then, we calculate the number of tests per

an independent path for each branch in the CUT. Using this, we calculate the coefficient

of variation (CV) of the number of tests per an independent path. CV is the ratio of the

standard deviation to the mean of number of tests per an independent path. A smaller

CV indicates a smaller variation of number of tests per an independent path, hence a

better balance of test coverage. To check for statistical significance of the difference

and the effect size of CV by DynaMOSA+b and DynaMOSA, we employ two-tailed

non-parametric Mann-Whitney U-Test with the significance level (α) 0.05 and Vargha

and Delaney’s Â12 statistic.

7.4.1 Experimental Settings

7.4.1.1 Defect Prediction Simulation

We simulate defect predictor outcomes at two levels of recall and precision, which cor-

respond to the theoretical upper bound and lower bound performance of an acceptable

defect predictor. This would not be possible with real defect predictors since their per-

formance cannot be controlled. Using a real defect predictor would have demonstrated

the viability of PreMOSA in practice. However, it would then have the disadvantage of

limiting the findings of our study to one single defect predictor, e.g., a specific defect

predictor built with one learner and one set of metrics. Therefore, we abstract the defect

predictor component in the experimental evaluation.

To simulate the defect predictions, we use the defect prediction simulation algorithm

introduced in Chapter 6 (Section 6.2.1).

120

7.4.1.2 Experimental Subjects

We use the same set of experimental subjects used in the experimental evaluation in

Chapter 6 (Section 6.3.1.1). That is a total of 420 manually validated real bugs from

six real-world open source Java projects. Similar to Chapter 6, we label all the methods

that are either modified or removed in the bug fix as buggy methods [132].

7.4.1.3 Baseline

As described in Section 4.2, we use the current state-of-the-art SBST technique, Dy-

naMOSA [14], as the baseline. It is more effective at achieving high branch, statement

and strong mutation coverage than previously proposed SBST techniques ([15, 51, 89])

[14].

We configure DynaMOSA to not remove the covered targets from the search, retain all

the test cases generated, and continue the search until the full time budget is consumed

in our experimental evaluation. DynaMOSA primarily focuses on achieving high code

coverage with a minimal test suite size. Hence, it aims at generating only one short

test case to cover each target in the program. However, just covering the buggy code

is not sufficient to detect the bug. In Chapter 5, we showed that DynaMOSA detects

79% more bugs on average when it is configured to not remove covered targets from the

search, use the full time budget, and retain all the generated tests in the final test suite

(i.e., disable test suite minimisation).

7.4.1.4 Prototype

We implement PreMOSA in the state-of-the-art SBST tool, EvoSuite [3], within version

1.0.7, forked from the GitHub repository [98] on June 18th, 2019. The prototype is

available to download from here: https://github.com/premosa-sbst

7.4.1.5 Parameter Settings

There are several parameters that need to be configured in PreMOSA. Parameter tuning

of search algorithms is a long and expensive process [160]. Arcuri and Fraser [160] showed

https://github.com/premosa-sbst

121

that the default parameter values in EvoSuite give reasonable results when compared to

tuned parameters. Moreover, Panichella et al. [14] also used these default values in the

state-of-the-art DynaMOSA. Therefore, we decide to use the default parameter values

used in EvoSuite [89] and DynaMOSA [14] except for the following parameters.

Time Budget: Similar to Chapter 6, we set 2 minutes as the time budget for test

generation per class as it is a reasonable time budget in a usual resource constrained

environment (see Section 6.3.1.3).

Coverage criteria: Similar to Chapters 5 and 6 (see Sections 5.4.1.3 and 6.3.1.3), we

use branch coverage as coverage criterion in PreMOSA as it was shown to be the most

effective criterion in terms of detecting bugs when used in EvoSuite [24, 43].

Termination criteria: Similar to Chapter 6 (see Section 6.3.1.3), we use only the maxi-

mum time budget as the termination criterion since PreMOSA can increase the chances

of detecting bugs by utilising the full time budget.

Test suite minimisation: We disable test suite minimisation since all the test cases in

the archive form the final test suite (see Section 7.3.2).

Assertion strategy: Mutation-based assertion filtering can be computationally expensive

and can lead to timeouts. Therefore, following a similar approach to previous work [23],

we choose all possible assertions as the assertion strategy.

Similar to PreMOSA, we configure the baseline technique, DynaMOSA, as described

above.

Finally, following the results of our pilot runs, we use 50 consecutive iterations for the

parameter maximum number of iterations without coverage improvement (I) in Pre-

MOSA. Furthermore, we configure PreMOSA to add non-buggy targets to the search if

it cannot cover any buggy target in the first 25 iterations in the search. For some of the

classes, PreMOSA cannot find a test that covers the buggy targets until the trigger is

fired to add non-buggy targets to the search. Thus, all the search resources spent until

this point are ineffective in terms of detecting bugs. Our preliminary results suggest

that for a significant number of classes, PreMOSA covers the first buggy target within

the first 25 iterations. Therefore, we decide to add non-buggy targets to the search if

PreMOSA fails to cover at least one target after 25 iterations.

122

7.4.1.6 Experimental Protocol

We run experiments with PreMOSA using 2 instances of simulated defect predictors and

DynaMOSA on 420 bugs. For each bug in the Defects4J dataset, we take the buggy

version of the project and collect the ground truth labels for the buggy and non-buggy

methods. Next, for each of the six projects in Defects4J, we combine all the ground truth

labels from the bugs of those projects. For example, for Apache commons-lang project,

we combine the labels from all the 59 bugs. Then, we simulate the defect predictor

outcomes using the Algorithm 2 for each of the six projects in separate.

As described in Chapter 4, our intended application scenario is generating tests to detect

bugs that already exist in the system. Hence, we run test generation on the buggy version

of the projects. Since we are measuring the bug detection capability of both approaches

only on the Defects4J bugs, we do not run test generation on the non-buggy classes, i.e.,

classes that are not modified in the bug fixes of the Defects4J bugs.

To take the randomness of SBST into account, we repeat each test generation run

25 times. Due to the randomness of the Defect Prediction Simulation Algorithm, we

repeat the simulation runs 5 times for the recall=precision=75% experiments. For each

of these simulated defect predictor instances, we repeat test generation runs 5 times.

Consequently, we have to run a total of 3 (approaches) ∗ 25 (repetitions) ∗ 482 (buggy

classes) = 36,150 test generations. We collect the generated test suites at the end of

each test generation run. We evaluate if the 36,150 generated test suites detect the

selected Defects4J bugs by following the method described in Section 4.4. Altogether,

the experimental evaluation took roughly 48,800 CPU-hours.

The ‘run bug detection’ script from the test execution framework in Defects4J logs the

test cases that produce different test execution results when run against the buggy and

fixed versions. We configure both PreMOSA and DynaMOSA to log the time taken to

generate each test case since the start of the search (in milliseconds). Figure 7.3 shows

a sample test case with the time taken to generate it logged as a comment. Hence, we

can find the time taken to generate test cases that detect the bugs by each approach,

which will be used to evaluate the efficiency of the two approaches (RQ2).

123

Figure 7.3: A sample test case with the time taken to generate.

7.4.2 Results

We present the results for our research questions following the method described in

Section 7.4. Our main aim is to evaluate if PreMOSA is more effective and efficient than

the state-of-the-art DynaMOSA.

RQ1: Is PreMOSA effective at detecting bugs?

As we described in Section 7.4, we perform 25 runs of PreMOSA using defect predictions

at recall=precision=75% (PreMOSA-75) and recall=precision=100% (PreMOSA-100),

and DynaMOSA against each buggy program in Defects4J (Section 7.4.1.2) and report

the bug detection results as boxplots in Figure 7.4. As we can see, both PreMOSA-100

and PreMOSA-75 detect more bugs than DynaMOSA.

We report the means and medians of the number of bugs detected and the results from

the statistical analysis in Table 7.1. DynaMOSA detects 197.16 bugs on average in 2

minutes. PreMOSA-100 and PreMOSA-75 outperform DynaMOSA, and detect 213.56

and 212.6 bugs on average, which are average improvements of 16.4 (+8.3%) and 15.44

(+7.8%) more bugs than DynaMOSA, respectively. The differences of the number of

bugs detected by PreMOSA-100/PreMOSA-75 and DynaMOSA are statistically signif-

icant according to the Mann-Whitney U-Test (p-value <0.0001) with large effect sizes

124

(Â12 ≥ 0.98). Thus, we conclude that PreMOSA is significantly more effective than

DynaMOSA when using any acceptable defect predictor (i.e., recall, precision ≥ 75%).

PreMOSA-75 detects only 0.96 (-0.4%) less bugs on average than PreMOSA-100. Ac-

cording to the one-tailed Mann-Whitney U-Test, this difference is not statistically sig-

nificant (p-value = 0.5512), and the Â12 statistic indicates a negligible effect size of 0.53.

Therefore, we can confirm PreMOSA successfully accounts for errors in the predictions

of defect predictors in the acceptable range.

Certain bugs are harder to detect than others. Similar to Chapter 5, we identify a bug as

a unique bug if it is only detected by one approach, i.e., PreMOSA or DynaMOSA (see

Section 5.4.2). The number of unique bugs detected by an approach is an indication

of the ability of that approach to detect the bugs that are not detected otherwise in

the given time budget, which is an important strength given how hard it is to detect a

bug [161].

Table 7.2 shows a summary of the bug detection results of PreMOSA and DynaMOSA.

PreMOSA-100 and PreMOSA-75 detect 287 and 292 bugs altogether, which is 68.3%

and 69.5% of the total bugs respectively, whereas DynaMOSA detects only 280 (66.7%)

bugs. PreMOSA-100 detects 17 unique bugs that DynaMOSA cannot detect in any of

the runs, whereas DynaMOSA only detects 10 such unique bugs. Similarly, PreMOSA-75

detects 22 unique bugs that are not detected by DynaMOSA, whereas DynaMOSA only

detects 10 unique bugs that PreMOSA-75 cannot detect in any of the runs. This shows

that PreMOSA is capable of detecting more bugs that are not detected by DynaMOSA.

We find that PreMOSA-100 detects less bugs in total and less unique bugs than PreMOSA-

75 when the bugs are isolated in buggy methods with private access modifier (i.e., private

buggy methods). For example, PreMOSA-75 detects Closure-25, 50, 55, 57, 67, 68, 143,

154 bugs, which all have only private buggy methods, while PreMOSA-100 detects none

of them. PreMOSA-100 starts the search for test cases to cover only the buggy targets.

When all the buggy targets are in private methods, PreMOSA-100 has only limited

guidance to cover these targets since it cannot directly call the private buggy methods.

PreMOSA-100 will get further guidance to cover these targets only after the non-buggy

targets are added to the search (line 19 in Algorithm 4). It will be able to indirectly

call the buggy targets in private methods through non-buggy methods with non-private

access modifier. In contrast, PreMOSA-75 is more likely to start with non-buggy targets

125

incorrectly predicted as buggy or all likely non-buggy targets (line 7 in Algorithm 4).

This means PreMOSA-75 has a better chance of having more guidance to cover buggy

targets in private methods from the beginning of the search compared to PreMOSA-

100, and as a result, it is able to detect more bugs in total and more unique bugs than

PreMOSA-100.

If we consider a bug as detected only if all the 25 runs by an approach detect that

bug (i.e., success rate = 1.0), then the number of bugs detected by PreMOSA-100

and PreMOSA-75 becomes 140 and 127 respectively, whereas it is only 114 bugs for

DynaMOSA. We further find that PreMOSA-100 detects 108 bugs more times than

DynaMOSA, while for DynaMOSA, this is only 62 bugs. Similarly, PreMOSA-75 detects

124 bugs more times than DynaMOSA, whereas it is only 61 bugs for DynaMOSA.

Altogether, this demonstrates that PreMOSA is also more robust in detecting bugs

when compared to DynaMOSA. More details on the success rates by PreMOSA-100,

PreMOSA-75 and DynaMOSA are reported in Appendix D.

Table 7.1: Mean and median number of bugs detected by PreMOSA and DynaMOSA
in 2 minutes time budget.

Mean Median p-value Â12

PreMOSA-100 213.56 213
PreMOSA-100 vs.

DynaMOSA
<0.0001 0.99

PreMOSA-75 212.6 212
PreMOSA-75 vs.

DynaMOSA
<0.0001 0.98

DynaMOSA 197.16 197
PreMOSA-100 vs.

PreMOSA-75
0.5512 0.53

Table 7.2: Summary of the bug detection results at 2 minutes.

Bugs

detected

Bugs detected

in every run

Unique

bugs

PreMOSA-100 287 140 17

PreMOSA-75 292 127 22

DynaMOSA 280 114 10

126

DynaMOSA PreMOSA-75 PreMOSA-100
mode

180

190

200

210

220

230

Nu
m

be
r o

f B
ug

s D
et

ec
te

d

Figure 7.4: The number of bugs detected by PreMOSA and DynaMOSA in 2 minutes
time budget

In summary, PreMOSA is significantly more effective than the state-of-the-art

DynaMOSA with large effect sizes when using any acceptable defect predictor.

The superior performance of PreMOSA is supported by both its capability to

detect new bugs that are not detected by DynaMOSA and the robustness of the

approach.

RQ2: Is PreMOSA efficient at generating test cases that can detect

bugs?

As described in Section 7.4, for each approach, we calculate the mean time to generate

the first test case that detects each bug. In the case of a bug that is detected by both

PreMOSA-100 and DynaMOSA, we then calculate the difference of the mean times to

127

generate the first bug detecting test by the two approaches, i.e., mean time to generate

the first bug detecting test by DynaMOSA - mean time to generate the first bug detecting

test by PreMOSA-100. We repeat the same procedure for PreMOSA-75 and DynaMOSA

as well. If the difference is positive, that means PreMOSA generates a bug detecting

test in a shorter time on average. A negative difference means PreMOSA has a worst

performance.

We report the means and medians of the differences of the time taken to generate bug

detecting tests and the results from the statistical analysis in Table 7.3. The average

difference of mean time to generate bug detecting tests between PreMOSA-100 and Dy-

naMOSA is 2.59 seconds, and it is 2.02 seconds between PreMOSA-75 and DynaMOSA.

According to the one-tailed Wilcoxon signed-rank test, these differences are statistically

significant with p-values <0.05. However, we find that the effect sizes (i.e., r) estimated

using the Wilcoxon signed-rank test are small. The effect size of the difference of mean

time to generate bug detecting tests between PreMOSA-100 and DynaMOSA is 0.18,

which translates to approximately 60% probability of PreMOSA-100 generating a bug

detecting test faster than DynaMOSA [146]. The effect size of 0.11 between PreMOSA-

75 and DynaMOSA suggests that PreMOSA-75 generates a bug detecting test faster

than DynaMOSA approximately 56% of the time. Therefore, we can conclude Pre-

MOSA is significantly faster than DynaMOSA to generate a bug detecting test when

using any acceptable defect predictor.

Table 7.3: Mean and median difference of time taken to generate bug detecting tests
by PreMOSA and DynaMOSA.

Mean (s) Median (s) p-value r

PreMOSA-100 vs.

DynaMOSA
2.59 0.22 0.0016 0.18

PreMOSA-75 vs.

DynaMOSA
2.02 0.05 0.0347 0.11

The above analysis is carried out with respect to the time to generate bug detecting test

for each bug that is detected by all the approaches in the comparison. In addition, we

also analyse the efficiency of PreMOSA and DynaMOSA with respect to the number of

bugs detected over the time budget spent, which includes all the bugs in the dataset.

Figure 7.5 shows the median number of bugs detected by each approach over the time

128

0 15 30 45 60 75 90 105 120
Time (seconds)

0

25

50

75

100

125

150

175

200

225

Nu
m

be
r o

f B
ug

s D
et

ec
te

d
(IQ

R)

DynaMOSA
PreMOSA-75
PreMOSA-100

0

4

8

12

16

20

Av
er

ag
e

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
)

Figure 7.5: The number of bugs detected by PreMOSA and DynaMOSA over the
time budget spent

budget spent. The number of bugs detected by an approach x (x ∈ {PreMOSA, Dy-

naMOSA}) at time t (t ∈ [0, 120]) is equal to the number of bugs that can be detected by

the tests generated by x after t seconds of test generation. The shaded area around the

curves depicts the interquartile range. The dashed lines depict the average improvements

of PreMOSA-100 and PreMOSA-75 relative to the baseline DynaMOSA.

In the first 2 seconds, DynaMOSA has a head start, due to the slight additional over-

head of PreMOSA in filtering targets and calculating number of independent paths

(Sections 7.3.1 and 7.3.3). However, both PreMOSA-100 and PreMOSA-75 outperform

DynaMOSA after 2 seconds.

According to the Mann-Whitney U-Test (α = 0.05), PreMOSA-100 and PreMOSA-75

detect significantly more bugs than DynaMOSA with large effect sizes (Â12 ≥ 0.87) at

any time after 3 seconds. This confirms that PreMOSA not only detects more bugs

than DynaMOSA at the end of 120 seconds, but also is ahead of DynaMOSA from the

129

very beginning of the search (i.e., after 2 seconds). More details on the number of bugs

detected by PreMOSA-100, PreMOSA-75 and DynaMOSA over the time budget spent

are reported in Appendix D.

The relative improvement by PreMOSA using any acceptable defect predictor is much

higher when it is given a tight time budget. In particular, the average relative improve-

ments of PreMOSA-100 and PreMOSA-75 reach maximums of 16.1% and 13.0% at 11

seconds respectively. We also find that both PreMOSA-100 and PreMOSA-75 have an

average improvement more than 10% in the interval of 6 and 38 seconds. This further

demonstrates the increased efficiency of PreMOSA compared to DynaMOSA, such that

the large improvements of PreMOSA occur when it is given tight time budgets like in a

usual resource constrained scenario.

In summary, PreMOSA is significantly more efficient than the state-of-the-art

DynaMOSA with small effect sizes when using any acceptable defect predictor.

Overall, PreMOSA not only detects more bugs than DynaMOSA when they are

given a reasonably large time budget, but also when they are given tight time

budgets like in a resource constrained environment.

RQ3: How does the balanced test coverage affect the coverage and bug

detection of SBST?

As we described in Section 7.4, we perform 25 runs of DynaMOSA+b against each

buggy program in Defects4J. We report the bug detection results of DynaMOSA+b and

DynaMOSA as boxplots in Figure 7.6. As we can see, DynaMOSA+b detects more bugs

than DynaMOSA.

We report the means and medians of the number of bugs detected and the results

from the statistical analysis in Table 7.4. DynaMOSA+b outperforms DynaMOSA,

and detects 203.64 bugs on average, which is an average improvement of 6.48 (+3.3%)

more bugs than DynaMOSA. The difference of the number of bugs detected by Dy-

naMOSA+b and DynaMOSA is statistically significant according to the Mann-Whitney

U-Test (p-value = 0.0004) with a large effect size (Â12 = 0.79). Thus, we conclude that

DynaMOSA+b is significantly more effective than DynaMOSA.

130

DynaMOSA DynaMOSA+b
mode

180

185

190

195

200

205

210

215

220

Nu
m

be
r o

f B
ug

s D
et

ec
te

d

Figure 7.6: The number of bugs detected by DynaMOSA+b and DynaMOSA in 2
minutes time budget

Table 7.4: Mean and median number of bugs detected by DynaMOSA+b and Dy-
naMOSA in 2 minutes time budget.

Mean Median p-value Â12

DynaMOSA+b 203.64 203
DynaMOSA+b vs.

DynaMOSA
0.0004 0.79

DynaMOSA 197.16 197

Table 7.5 shows a summary of the bug detection results of DynaMOSA+b and Dy-

naMOSA. As we discussed in RQ1, a unique bug is a bug that is detected by only one

approach and we consider such bugs are harder to detect. DynaMOSA+b detects 26

unique bugs that DynaMOSA cannot detect in any of the runs, whereas DynaMOSA

only detects 14 such unique bugs. This shows that DynaMOSA+b is capable of detecting

more bugs that are not detected by DynaMOSA.

If we consider a bug as detected only if all the 25 runs by an approach detect that bug

(i.e., success rate = 1.0), then the number of bugs detected by DynaMOSA+b becomes

127, whereas it is only 114 bugs for DynaMOSA. DynaMOSA+b detects 114 bugs more

131

times than DynaMOSA, while for DynaMOSA, this is only 69 bugs. Altogether, this

demonstrates that DynaMOSA+b is also more robust in detecting bugs when compared

to DynaMOSA. More details on the success rates by DynaMOSA+b are reported in

Appendix E.

Table 7.5: Summary of the bug detection results of DynaMOSA+b and DynaMOSA
at 2 minutes.

Unique

bugs

Bugs detected

in every run

Bugs detected

more often

DynaMOSA+b 26 127 114

DynaMOSA 14 114 69

In summary, balanced test coverage significantly improves the bug detection effec-

tiveness of SBST with a large effect size. The improved effectiveness is supported

by the capability of SBST with balanced test coverage to detect new bugs that

are not detected by SBST without balanced test coverage and the robustness of

the approach.

Similar to RQ2, we evaluate the efficiency of DynaMOSA+b against DynaMOSA in two

ways; i) with respect to the time to generate bug detecting test for each bug that is

detected by both approaches, and ii) with respect to the number of bugs detected over

the time budget spent, which includes all the bugs in the dataset.

In the first analysis, we calculate the mean time to generate the first bug detecting test

by DynaMOSA+b for each bug. For each bug that is detected by both DynaMOSA+b

and DynaMOSA, we then calculate the difference of the mean times to generate the

first bug detecting test by the two approaches, i.e., mean time to generate the first bug

detecting test by DynaMOSA - mean time to generate the first bug detecting test by

DynaMOSA+b. If the difference is positive, that means DynaMOSA+b generates a bug

detecting test in a shorter time on average. A negative difference means DynaMOSA+b

has a worst performance.

We report the means and medians of the differences of the time taken to generate bug

detecting tests and the results from the statistical analysis in Table 7.6. The average

difference of mean time to generate bug detecting tests between DynaMOSA+b and

DynaMOSA is only 0.69 seconds. According to the one-tailed Wilcoxon signed-rank

132

test, this difference is not statistically significant with a p-value = 0.4890. We cannot

reject the null hypothesis, i.e., H0 = mean time to generate bug detecting tests by

DynaMOSA+b is greater than or equal to that of DynaMOSA. Therefore, we assume

DynaMOSA+b is not significantly faster than DynaMOSA to generate a bug detecting

test.

Table 7.6: Mean and median difference of time taken to generate bug detecting tests
by DynaMOSA+b and DynaMOSA.

Mean (s) Median (s) p-value r

DynaMOSA+b vs.

DynaMOSA
0.69 -0.02 0.4890 0.002

In the second analysis, we look at the number of bugs detected over the time budget

spent considering all the bugs in the dataset. Figure 7.7 shows the median number of

bugs detected by DynaMOSA+b and DynaMOSA over the time budget spent. The

number of bugs detected by an approach x (x ∈ {DynaMOSA+b, DynaMOSA}) at

time t (t ∈ [0, 120]) is equal to the number of bugs that can be detected by the tests

generated by x after t seconds of test generation. The shaded area around the curves

depicts the interquartile range. The dashed lines depict the average improvements of

DynaMOSA+b relative to DynaMOSA.

Only at the second and third seconds, DynaMOSA detects significantly more bugs than

DynaMOSA+b. This is due to the slight additional overhead of DynaMOSA+b in cal-

culating number of independent paths for the method balanced test coverage. From

fourth to 25th second, the number of bugs detected by DynaMOSA+b and DynaMOSA

is not significantly different. According to the Mann-Whitney U-Test (α = 0.05), Dy-

naMOSA+b detects significantly more bugs than DynaMOSA with medium to large

effect sizes after the 26th second. This confirms that DynaMOSA+b not only detects

more bugs than DynaMOSA at the end of 120 seconds, but also is ahead of DynaMOSA

after 26 seconds from the start of the search. More details on the number of bugs

detected by DynaMOSA+b over the time budget spent are reported in Appendix E.

133

0 15 30 45 60 75 90 105 120
Time (seconds)

0

25

50

75

100

125

150

175

200

225

Nu
m

be
r o

f B
ug

s D
et

ec
te

d
(IQ

R)

DynaMOSA
DynaMOSA+b

0

4

8

12

16

20

Av
er

ag
e

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
)

Figure 7.7: The number of bugs detected by DynaMOSA+b and DynaMOSA over
the time budget spent

In summary, balanced test coverage does not significantly shorten the time taken

to generate bug detecting tests. However, SBST with balanced test coverage

detects significantly more bugs than SBST without balanced test coverage not

only when they are given a reasonably large time budget, but also when they are

given fairly tight time budgets like in a resource constrained environment.

As described in Section 7.4, we analyse the effect on coverage by the balanced test

coverage method in two ways; i) with respect to branch coverage, and ii) with respect

to coefficient of variation of number of tests per an independent path of the branches.

In the first analysis, we measure and compare the branch coverage by DynaMOSA+b

and DynaMOSA for each buggy class in Defects4J. According to the two-tailed non-

parametric Mann-Whitney U-Test, the branch coverage achieved by DynaMOSA+b

and DynaMOSA are significantly different for 93 out of 482 buggy classes. Out of those

93 buggy classes, DynaMOSA+b achieves a significantly higher branch coverage for 65

134

buggy classes, while DynaMOSA achieves a significantly higher branch coverage for 28

buggy classes.

To check for the effect size of the difference of branch coverage, we calculate the Vargha

and Delaney’s Â12 statistic. We categorise the buggy classes, for which DynaMOSA+b

and DynaMOSA achieved significantly different branch coverage, according to the size

of the effect size, i.e., large, medium and small (described in Section 4.5). As seen in

Table 7.7, DynaMOSA+b achieves significantly higher branch coverage with large and

medium effect sizes for more buggy classes than DynaMOSA.

Table 7.7: Summary of the effect sizes of the differences of branch coverage by Dy-
naMOSA+b and DynaMOSA.

Large Medium Small

DynaMOSA+b 19 41 5

DynaMOSA 8 13 7

In summary, balanced test coverage significantly improves the branch coverage by

SBST with large and medium effect sizes for higher number of classes.

In the second analysis, we calculate and compare the coefficient of variation of the

number of tests per an independent path by DynaMOSA+b and DynaMOSA for each

buggy class in Defects4J. According to the two-tailed non-parametric Mann-Whitney

U-Test, the CV of the test suites generated by DynaMOSA+b and DynaMOSA are

significantly different for 249 out of 482 buggy classes. Out of those 249 buggy classes,

DynaMOSA+b has a significantly smaller CV of number of tests per an independent

path for 148 buggy classes, while DynaMOSA has a significantly smaller CV for 101

buggy classes.

To check for the effect size of the difference of CV by DynaMOSA+b and DynaMOSA,

we calculate the Vargha and Delaney’s Â12 statistic. We categorise the buggy classes,

for which DynaMOSA+b and DynaMOSA have significantly different CV of number

of tests per an independent path, according to the size of the effect size, i.e., large,

medium and small (described in Section 4.5). As seen in Table 7.8, DynaMOSA+b has

a significantly smaller CV of number of tests per an independent path with large effect

sizes for more buggy classes than DynaMOSA.

135

Table 7.8: Summary of the effect sizes of the differences of CV of number of tests per
an independent path by DynaMOSA+b and DynaMOSA.

Large Medium Small

DynaMOSA+b 123 25 0

DynaMOSA 76 25 0

In summary, SBST with balanced test coverage method achieves a significantly

better balance of test coverage of targets with large effect sizes for higher number

of classes.

7.4.3 Discussion

The execution time of PreMOSA is comprised of the time taken by the defect predictor

and the execution time of the search process. With simulated defect predictors, it is not

possible to know the execution time of an actual defect predictor. Also, the run-time of

an actual defect predictor changes from one model to another model depending on several

factors like the classifier used in the model. Therefore, in the experimental evaluation,

we do not account for the time taken by the defect predictor, and allocate the full time

budget of 2 minutes to the search process. However, we find that PreMOSA with an

acceptable defect predictor reaches the final number of bugs detected by DynaMOSA in

79.2 seconds on average. This suggests that even if the defect predictor takes 40.8 seconds

to run on average per CUT, PreMOSA will still perform on par with DynaMOSA.

Furthermore, the defect predictor used in Chapter 5, Schwa, spent 0.68 seconds per

class on average (with a standard deviation of 0.4 seconds). Therefore, the execution

time of an actual defect predictor is not expected to affect the conclusions of this study.

We pick the Time-8 bug from the motivating example in Section 7.2 and investigate

the bug detection results by PreMOSA and DynaMOSA. PreMOSA-100, PreMOSA-75

and DynaMOSA are able to detect the bug in all the 25 runs within the allocated two

minutes time budget. However, DynaMOSA takes 18.6 seconds on average to generate

the first bug detecting test, whereas PreMOSA-100 and PreMOSA-75 only take 7.1 and

10.2 seconds on average for the task. This means PreMOSA-100 and PreMOSA-75

reduce the time to generate bug detecting tests by 62% and 45% on average for Time-8

bug. This shows that in a resource constrained environment, when time budgets are

136

tight, PreMOSA is more likely to detect a bug compared to DynaMOSA which is not

guided by defect prediction.

PreMOSA is guided by coverage and defect prediction information. It first attempts to

cover the likely buggy targets and starts finding tests to cover likely non-buggy targets

once it deems to have searched enough in likely buggy targets. On the other hand,

DynaMOSA is only guided by coverage and aims at maximising code coverage. In our

experiments, PreMOSA-100, PreMOSA-75 and DynaMOSA achieved 57.89%, 59.14%

and 62.94% branch coverage of the classes under test on average, respectively.

In the experimental evaluation, we do not consider additional cost factors such as the

effort required to insert test oracles manually or automatically and the execution time of

test suites. PreMOSA generates more than one test case for each target in the CUT and

retains all these test cases. DynaMOSA is also configured to do the same as described

in Section 7.4.1.3. In our experiments, PreMOSA-100, PreMOSA-75 and DynaMOSA

generate 12548, 13004 and 14344 test cases on average per test suite, respectively. Both

PreMOSA and DynaMOSA are implemented in EvoSuite, which generates assertions in

the tests assuming the program under test is correct. EvoSuite uses a mutation-based

assertion filtering strategy to minimise the number of assertions in the generated test

suites. However, we disable this in our experiments since it can be computationally

expensive and can lead to timeouts. Therefore, in the experiments, there are 1,416,817,

1,462,391 and 1,277,024 assertions generated on average per test suite by PreMOSA-

100, PreMOSA-75 and DynaMOSA, respectively. In practice, these assertions need to

be updated manually or automatically for generated tests to reveal the bugs, which can

be problematic when the test suites become large. Appropriate test suite minimisation

techniques can be applied to the test suites generated by PreMOSA to mitigate this

problem.

For completeness, we report the accuracy and Matthews correlation coefficient (MCC) [151]

of the defect predictors used in PreMOSA. For recall=precision=100%, the accuracy of

the defect predictor is 100%, and for recall=precision=75%, the accuracy is on average

99.97%. A high accuracy is observed for the defect predictor with recall=precision=75%

because of the highly imbalanced nature of the Defects4J dataset, which we discussed

in threats to construct validity in Section 4.6. MCC of the recall=precision=100% and

recall=precision=75% predictors are 1.0 and 0.75 on average, respectively.

137

The baseline method, DynaMOSA, does not use a defect predictor and aims to cover

all the targets in the CUT equally. This means that in the eyes of DynaMOSA, all the

methods in a class are likely buggy, which translates to a 100% recall and precision per

project as follows; Lang - 0.06%, Math - 0.03%, Time - 0.05%, Chart - 0.02%, Closure

- 0.02% and Mockito - 0.15%.

7.5 Threats to Validity

In this section, we discuss the threats that are specific to this study, in addition to the

validity threats discussed in Section 4.6.

Construct Validity. We use the defect prediction simulation algorithm introduced in

Chapter 6 (see Section 7.4.1.1). There exists a construct threat to validity from the

assumption of uniform distribution of predictions in the defect prediction simulation,

which we discussed in Section 6.4.

Internal Validity. To account for the randomness of the simulated defect predictor,

we repeat the simulations for 5 times for recall=precision=75% configuration. Then,

for each simulation, we repeat the test generation for 5 times to account for the non-

deterministic behaviour of PreMOSA. For PreMOSA-100 and DynaMOSA, we repeat

the test generation runs for 25 times to account for the non-deterministic behaviour of

the two techniques.

External Validity. Our findings may not be generalised to the defect predictors which

have recall or precision less than 75%. We experimentally assess the bug detection per-

formance of PreMOSA when using theoretically most conservative and acceptable defect

predictors (recall=precision=75%) and ideal defect predictor (recall=precision=100%).

The experimental results demonstrate the improved performance of PreMOSA when

using either of the defect predictors, which suggest PreMOSA is significantly better at

detecting bugs than DynaMOSA when using defect predictors having recall and pre-

cision greater than 75%. We choose 75% recall and precision as the lower bound for

an acceptable defect predictor with the justification that Zimmermann et al. [48] rec-

ommended only the defect predictors having recall and precision more than 75% as

acceptable defect predictors.

138

7.6 Summary

We show that augmenting coverage information with defect prediction information in

the search process of SBST improves the bug detection performance of the generated

test suites. We develop a many-objective optimisation approach for test generation

called predictive many objective sorting algorithm (PreMOSA) that uses buggy meth-

ods predictions to decide where to increase the test coverage in the CUT. PreMOSA

is equipped with a new method called balanced test coverage to allow the nontrivial

targets to have an equal chance of being covered compared to the more trivial targets.

We experimentally assess the performance of PreMOSA when using defect predictors

having the theoretical upper and lower bound performance of acceptable defect predic-

tors. We validate our technique against 420 labelled bugs from Defects4J dataset. Our

experimental evaluation demonstrates that PreMOSA is significantly more effective than

the state-of-the-art DynaMOSA with large effect sizes when using any acceptable defect

predictor. In particular, it detects 8.3% and 7.8% more labelled bugs on average than

DynaMOSA when using an ideal defect predictor and most conservative and acceptable

defect predictor, respectively. We also find PreMOSA is significantly more efficient than

DynaMOSA.

The performance of PreMOSA does not decrease significantly when replacing the ideal

defect predictor (i.e., recall=precision=100%) with the most conservative defect predic-

tor in the acceptable range (i.e., recall=precision=75%). On the other hand, if defect

predictions with errors, i.e., false positives and false negatives, are directly used by de-

velopers, e.g., in code reviews and manual testing, it can lead to waste of developer time,

miss important bugs, etc. [39]. Our results show that PreMOSA successfully accounts

for errors in the predictions of defect predictors that are considered acceptable [34].

We find that after 60 seconds of time budget, there is no significant difference in the

performances of PreMOSA with an ideal defect predictor and with the most conser-

vative defect predictor. When using PreMOSA, we recommend practitioners to not

focus on improving the defect predictor performance beyond 75% recall and precision

if their testing resources allow reasonably large time budget for test generation. On

the other hand, if there is a tight time budget for test generation, then improving the

defect predictor performance would further improve the bug detection performance of

PreMOSA. A statistical summary and a statistical comparison of the number of bugs

139

detected by PreMOSA-100 against PreMOSA-75 over the time budget spent is available

in Appendix D.

Chapter 8

Conclusions

The main goal of this thesis is to improve the bug detection capability of search-based

software testing (SBST) by incorporating defect prediction information. We devise three

research objectives to achieve the main goal and conduct three studies to address them.

The contributions made from the three studies demonstrate that defect prediction can

successfully be used to guide SBST to effectively and efficiently detect bugs. While

defect prediction guidance is beneficial for SBST, we find that the bugs missed by the

defect predictor impacts the bug detection performance of SBST significantly. This can

be mitigated by designing SBST techniques to handle the potential false negatives in

the defect predictions. This chapter presents the findings from our studies along using

defect prediction to improve the bug detection performance of SBST (Section 8.1) and

impact of defect prediction imprecision on SBST and handling of them (Section 8.2).

Figure 8.1, together with Table 8.1, show how the contributions, the findings of the

studies, publications, the research objectives, and the main research objective are linked

together.

8.1 Using Defect Prediction to Improve the Bug Detection

Performance

The primary finding of this thesis is that defect prediction improves the effectiveness and

efficiency of SBST in terms of detecting bugs. Modern fast-paced software development

140

141

MAIN
RESEARCH
OBJECTIVE

RESEARCH
OBJECTIVES PAPERS FINDINGS CONTRIBUTIONS

1

1

2

3

I

II

III

A

B

C

D

E

a

b

c

I

II

e

dF

Figure 8.1: Overall mapping of the research

practices like agile require fast and frequent feedback from testing. With software sys-

tems becoming sophisticated and large, SBST techniques need to optimally utilise the

available limited computational resources. When it comes to detecting bugs, the need

arises for the SBST techniques to prioritise the search for tests towards the likely defec-

tive areas in software to increase the chances of detecting bugs. This thesis demonstrates

that class level defect prediction can successfully be used to allocate time budgets to

classes for SBST to run test generation with improved bug detection performance and

method level defect prediction can successfully be used to guide the search process in

SBST along with coverage information to increase the bug detection performance.

Running test generation for a project requires a large time budget since usually the

industrial projects are very large containing thousands of classes. Given the usual re-

source constrained nature in development environments, generating tests for an entire

project by allocating a large time budget for every class may not be feasible. For ex-

ample, if a development team wants to run SBST in the continuous integration (CI)

system, then the SBST tool needs to use as minimal resources as possible while max-

imising the chances of detecting bugs. This is because the CI systems already have high

142

demands from the existing processes in the system like code quality checks, dynamic

analyses, project builds, integration testing and regression testing. In Chapter 5, we

introduce defect prediction guided SBST (SBSTDPG) which allocates time budgets for

classes based on their likelihood of defectiveness as given by a class level defect predictor

and runs test generation with SBST. SBSTDPG ensures higher time budgets for highly

likely to be defective classes at the expense of lower time budgets for the less likely to

be defective classes. The results from the experimental evaluation demonstrate that

it is beneficial to use class level defect prediction to guide time budget allocation for

SBST (SBSTDPG) when there are limited resources available to run test generation, for

example in CI systems or developer machines.

The existing SBST techniques aim at maximising code coverage and are guided by

coverage only. For example, SBSTDPG uses the state-of-the-art SBST technique, Dy-

naMOSA, as the SBST module and it treats all the coverage targets in the class are

equally important to cover. This is detrimental to the bug detection since there are only

a few targets that contain the buggy code and covering a large number of non-buggy

targets in the class is likely to be ineffective in terms of detecting bugs. The allocated

time budget for the SBST technique needs to be spent more to search for tests to cover

buggy targets than the non-buggy ones. In Chapter 7, we introduce predictive many-

objective sorting algorithm (PreMOSA) that augments coverage information with defect

prediction information in the search process. PreMOSA uses buggy methods predictions

to decide where to prioritise and increase the test coverage in the class. Based on the

results of the experimental evaluation, we recommend practitioners that it is beneficial

to use PreMOSA with a method level defect predictor having an acceptable performance

(i.e., recall and precision ≥ 75%) in place of an SBST technique only guided by coverage.

Our recommendation applies to scenarios where both tight and large time budgets are

available in resource constrained environments.

PreMOSA and SBSTDPG are orthogonal to each other in terms of how they use defect

prediction to guide the search for test cases. In particular, SBSTDPG uses class level

defect prediction and PreMOSA uses method level defect prediction. Defect prediction

is used outside of the search process in SBSTDPG and PreMOSA uses defect prediction

information inside the search process. SBSTDPG allocates time budgets for classes and

PreMOSA runs test generation for a class by spending a given time budget. Therefore,

143

PreMOSA and SBSTDPG can be used together by simply replacing the SBST module

in SBSTDPG with PreMOSA to further improve the performance of them.

In practice, we recommend the practitioners to use PreMOSA and SBSTDPG with an

oracle automation strategy [143] as a post test generation step to reveal bugs. As we

discussed in Section 4.3, the test suites can reveal the bugs once the assertions are checked

by an oracle automation strategy. In the absence of such a strategy, practitioners can

check the assertions manually, and to reduce the cost of manual work, they can adapt

an appropriate test suite reduction technique such as a test suite minimisation or a

prioritisation strategy with the number of test cases capped to an acceptable size.

8.2 Impact and Handling of Defect Prediction Imprecision

There is a plethora of defect predictors developed over the past 40 years and they have

a wavering performance. A defect predictor that works well for a certain project may

not have the same performance when it is applied to another project with different

characteristics to the previous. Both SBST and defect prediction researchers need to

know the impact of the variation of defect predictor performance on guiding SBST. For

SBST researchers, it is important to know which types of errors in predictions need to

be handled when using the predictions for guiding SBST. In the context of combining

defect prediction and SBST, defect prediction researchers should target to minimise the

significantly impactful errors in predictions rather than minimising them all.

In Chapter 6, we study the impact of imprecision in defect prediction on the bug detec-

tion performance of SBST and demonstrate that the recall of the defect predictor has a

significant impact on the bug detection effectiveness of SBST while the impact of pre-

cision is not of practical significance. Based on the results of the study, we recommend

SBST researchers to design SBST techniques that handle the potential false negatives

in the predictions. One way to do this is to explore the likely non-buggy parts of the

program at least with a minimum probability, while prioritising the exploitation of the

likely buggy parts. SBST is able to afford a reasonable amount of false positives on

its own. For SBST, it is important to be informed of the most of the buggy code even

at the expense of an acceptable amount of false positives. If the SBST technique does

not handle the potential false negatives, our recommendation to the defect prediction

144

researchers is to target higher recall while having a sufficiently high precision, instead

of trying to elevate both recall and precision. This can be done by defining recall-at-

precision measure to 75% and aiming to increase recall while maintaining precision at

an acceptable level, i.e., 75%.

PreMOSA, which we introduced in Chapter 7, is designed to handle the false negatives

in predictions, i.e., buggy methods that are incorrectly labelled as non-buggy meth-

ods. It prioritises exploiting the likely buggy targets and explores the likely non-buggy

targets with a lesser priority. The bug detection performance of PreMOSA does not

decrease significantly when an ideal defect predictor (i.e., recall=precision=100%) is

replaced with the most conservative defect predictor in the acceptable range (i.e., re-

call=precision=75%), if there is a reasonably large time budget for test generation. This

highlights the importance of accounting for errors in the defect predictions. We suggest

that when the potential false negatives are handled by the SBST technique (e.g., Pre-

MOSA), it is not necessary to further improve the defect predictor performance beyond

an acceptable level, e.g., recall and precision ≥ 75%, if the testing resources allow rea-

sonably large time budget for test generation. On the other hand, if there is a tight

time budget for test generation, then it can be beneficial to further improve the defect

predictor performance for the bug detection performance of the SBST technique.

8.3 Summary

This thesis demonstrates that it is beneficial in terms of bug detection for the SBST

approaches to focus the test generation more on the buggy code as guided by defect

prediction. The existing SBST approaches are not that effective in terms of bug detection

and their bug detection capability has been studied by previous work along the lines of

different coverage criteria and time budgets. We identify the gap that SBST performs

rather poorly in terms of detecting bugs because there is no guidance for SBST in

terms of where the buggy code is. In particular, coverage has always been used as the

only guidance for SBST when searching for test cases and we argue coverage alone is not

sufficient to guide SBST to detect bugs effectively and efficiently. This thesis investigates

the idea of using defect prediction to inform SBST of the likely buggy areas in code in

order to improve the bug detection capability of SBST. In conclusion, defect prediction

145

can be used successfully to guide SBST along with the coverage guidance to detect bugs

effectively and efficiently.

Previous research shows that practitioners prefer precise defect predictions when they

are used to assist manual tasks like code reviews or testing. Contrary to the existing

knowledge, we find that SBST techniques can afford less precise defect predictors. For

SBST, it is more important to be informed of the most of the buggy code, even at the

expense of a reasonable amount of false alarms. Combining defect prediction and SBST

is not straight-forward. Missing to correctly label buggy code is significantly detrimental

to the bug detection of SBST. Unless there is a defect predictor that can label nearly all

the buggy code correctly at most with an acceptable amount of false alarms, SBST must

handle the cases where the defect predictor misses buggy code in order to effectively and

efficiently detect bugs. Otherwise, using defect prediction can be a disadvantage for

SBST rather than an advantage.

146

Table 8.1: Summary of the definitions of the main research objective, research objec-
tives, papers, findings, and contributions.

Type ID Definition

Main

Research

Objective

1
Improve the bug detection capability of SBST by incorporating

defect prediction information.

1
Develop an approach that allocates time budget to classes for

test generation based on defect prediction.
Research

Objective 2
Understand the impact of imprecision in defect prediction for

guiding search-based software testing.

3
Develop an SBST technique that uses defect prediction to guide

the search process to likely defective areas.

I Defect prediction guided search-based software testing

Paper
II

On the impact of imprecision in defect prediction for guiding

search-based software testing

III
An experimental assessment of using theoretical defect

predictors to guide search-based software testing

I Using defect prediction to improve the bug detection performance

Finding
A

Use class level defect prediction to allocate time budgets for

test generation with SBST such as SBSTDPG.

B
Use method level defect prediction to guide the search process

in SBST such as PreMOSA.

II Impact and handling of defect prediction imprecision

C
SBST techniques must handle the potential false negatives

in the predictions.

D

In the context of combining defect prediction and SBST,

increase recall while maintaining precision at an acceptable

level, e.g., 75%, if the SBST technique does not handle the

potential false negatives in the predictions.

E

If the potential false negatives are handled by the SBST

technique (e.g., PreMOSA), then it is beneficial to further

improve the defect predictor performance only when there is

a tight time budget for test generation.

F

When there is a reasonably large time budget and SBST

handles the potential false negatives (e.g., PreMOSA), do not

focus on improving the defect predictor performance beyond

an acceptable level, e.g., recall and precision ≥ 75%.

147

Table 8.1: (continued)

Type ID Definition

a

Class level defect prediction can be used to guide SBST to

efficiently and effectively detect bugs through time budget

allocation in a resource constrained environment.

Contribution
b

A novel time budget allocation approach for SBST to run test

generation with improved bug detection performance (SBSTDPG).

c

The recall of the defect predictor has a significant impact on the

bug detection performance of SBST and the impact of the

precision is not practically significant.

d

Method level defect prediction can be used to guide the search

process in SBST along with coverage information to improve the

bug detection performance of SBST.

e

A novel SBST technique that augments defect prediction

information with coverage information to guide the search process

towards buggy areas in the class under test with improved bug

detection performance of SBST (PreMOSA).

Chapter 9

Future Work

It would be interesting for the defect prediction research community to investigate im-

proving the defect predictor performance by using the tests generated by SBST as feed-

back for the defect predictor. In particular, a feedback loop can be designed with defect

prediction and SBST, so that the defect prediction model is reconstructed (e.g., re-

trained) with the outcomes (i.e., detects a bug or does not detect any bugs) of the tests

generated by SBST until a stopping criteria is met (i.e., defect predictor performance

saturates or reaches an expected level of performance).

We introduce a method called balanced test coverage to ensure all the coverage targets

receive an equitable test coverage. Since there is no information to further differen-

tiate targets within a method, the balanced test coverage method currently follows a

binary approach. In particular, it switches-off targets if they have higher test coverage

and switches-on otherwise. There is the potential to further guide the search for tests

to interesting targets within a method by parameterising balanced test coverage. For

example, it can switch-on and off targets with some probabilities rather than a binary

approach. More recently, Wattanakriengkrai et al. [27] introduced a defect predictor

that gives predictions at line level, LINE-DP, and it was shown to achieve a 61% recall

with however a very low precision. A possible direction for future work is to guide the

parameterised balanced test coverage method by using LINE-DP.

We use Defects4J dataset as the benchmark subjects to conduct the experimental eval-

uations in the thesis. It contains 438 bugs that are from manually validated bug fixes

148

149

from six real-world open source Java projects. We identify validating the proposed ap-

proaches in this thesis against other bugs datasets [139–141] as future work to support

the external validity of our findings and increase the generalisability. The source code

of the proposed approaches and replication packages are made available to enable other

researchers to easily replicate our research work.

Generating more than one test case to cover each of the coverage targets is highly

beneficial for bug detection. This can also increase the test suite size and as a result

the cost of inserting oracles manually or automatically and the execution time of test

suites can go high. To reduce this cost, appropriate test suite minimisation techniques

can be adapted. A potential direction for future work could be to use defect prediction

to complement existing test suite minimisation strategies, so that the test suite size is

reduced without significantly losing the bug detection performance of the original test

suites.

Defect prediction guided SBST approaches, e.g., SBSTDPG and PreMOSA, have the

potential to provide assistance to developers when they manually inspect the defect

predictions or to completely substitute the manual step. One of main limitations in

defect prediction is that they do not explain why a certain entity is flagged as buggy,

hence it can be a time consuming task for the developers to manually examine the

likely buggy entity to find the bug. Another limitation is the false positives, which can

cause the developers to waste their precious time. The test suites generated by SBST

(containing bug detecting tests) can be handed down to developers with the predictions

to make it easier for them to find and identify the root cause of the bugs. This may

mitigate the explainability issue of defect predictions as the bug detecting tests can

expose the buggy behaviour of the likely buggy entity. The developers are shielded

from the effect of false positives since SBST uses the predictions directly and handles

them. We identify investigating the potential benefits of defect prediction guided SBST

approaches for the humans involved in defect prediction as future work to extend this

research.

The concept of using defect prediction to guide SBST can be extended to other au-

tomated test generation techniques as well. For instance, the time budget allocation

approach proposed in Chapter 5 can be used with random search [4] or dynamic sym-

bolic execution [169] techniques instead of the SBST technique as they can benefit from

150

larger time budgets. We identify studying the bug detection improvements of other test

generation techniques guided by defect prediction as future work.

Appendix A

Time Budget Allocation

A.1 Distribution of time spent by Schwa and BADS

Figure A.1 shows the distribution of the time spent per class by Schwa and BADS for the

bugs in Defects4J. The mean time spent by Schwa and BADS per class is 0.68 seconds

and the standard deviation is 0.4 seconds.

Time Spent per Class by Schwa and BADS (seconds)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
10

20
30

40
50

60

Figure A.1: Distribution of the time spent per class by Schwa and BADS for the bugs
in Defects4J.

151

152

A.2 Bug detection performance comparison of SBSTnoDPG

and SBSTO

In Chapter 5, DynaMOSA is configured to generate more than one test case for each

target in the class under test (CUT), retain all these test cases and disable test suite

minimisation (see Section 5.4.1.3). In Section 5.4.2, we investigate the benefit of con-

figuring DynaMOSA this way by comparing the bug detection results of DynaMOSA

with the configuration as outlined in Section 5.4.1.3 (SBSTnoDPG) and DynaMOSA with

test suite minimisation (SBSTO). In this appendix, we report the bug detection results

of SBSTnoDPG and SBSTO as boxplots (Figure A.2), the statistical summary and the

results of the statistical tests (Table A.1), overview of the success rates (Table A.2) and

summary of the bug detection results (Table A.3).

Table A.1: Mean and median number of bugs detected by SBSTnoDPG and SBSTO

against different total time budgets.

Mean Median
p-value Â12T (s)

SBSTnoDPG SBSTO SBSTnoDPG SBSTO

15 ∗N 133.95 85.75 134.0 85.0 <0.0001 1.00

30 ∗N 166.9 93.45 167.5 92.5 <0.0001 1.00

153

k

k

k

kk

k

k

kkk

k

k

k

k

k

k

k
k

kk

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k
k

k

k

k

k

kk

k

k

k
k

k

k

k

k

kk
k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

k

k

k

k

k

100

125

150

175

15 30

Total Time Budget (x N seconds)

N
u

m
b

e
r

o
f

B
u

g
s

 D
e

te
c

te
d

Approach

SBSTnoDPG

SBSTO

Figure A.2: The number of bugs detected by SBSTnoDPG and SBSTO against differ-
ent total time budgets

154

Table A.2: Success rate for SBSTnoDPG and SBSTO at 15 ∗ N total time budget.
Bug IDs that were detected by only one approach are highlighted with different colours;

SBSTnoDPG and SBSTO .

Bug ID SBSTnoDPG SBSTO

Lang-1 0.45 0.05

Lang-4 1 0.3

Lang-5 0.2 0

Lang-7 1 1

Lang-8 0.1 0

Lang-9 1 1

Lang-10 0.8 0.15

Lang-11 0.95 0.75

Lang-12 0.8 0.65

Lang-18 0.3 0.5

Lang-19 0.7 0.65

Lang-20 0.4 0.1

Lang-21 0.1 0

Lang-22 0.8 0.5

Lang-23 0.95 0.1

Lang-27 0.75 0.05

Lang-28 0.05 0

Lang-32 1 1

Lang-33 1 0.5

Lang-34 0.9 0.4

Lang-35 0.3 0.8

Lang-36 1 0.6

Lang-37 0.2 0.05

Lang-39 0.95 0.65

Lang-41 1 0.55

Lang-44 0.65 0.2

Lang-45 1 0.95

Lang-46 1 0.8

Lang-47 0.9 1

Lang-49 0.4 0

Lang-50 0.3 0

Lang-51 0.05 0.05

Lang-52 1 0.55

Lang-53 0.15 0

Lang-54 0.05 0.05

Lang-57 1 0.15

Lang-58 0.05 0.15

Lang-59 0.95 0.55

Lang-60 0.3 0.1

Lang-61 0.25 0.1

Lang-63 0 0.05

Lang-65 0.95 0.75

Math-1 1 0.85

Math-2 0.1 0

Math-3 1 0.2

Math-4 1 0.6

Bug ID SBSTnoDPG SBSTO

Math-5 0.95 0.95

Math-6 1 1

Math-9 0.6 0.05

Math-11 1 0.55

Math-14 1 1

Math-16 0.05 0

Math-21 0.45 0.1

Math-22 1 1

Math-23 0.8 0.6

Math-24 0.85 0.8

Math-26 1 0.05

Math-27 0.65 0.1

Math-29 1 0.45

Math-32 1 0.8

Math-33 0.35 0.1

Math-35 1 1

Math-36 0.1 0

Math-37 1 0.85

Math-40 0.95 0.8

Math-41 0.4 0

Math-42 0.95 0.95

Math-43 0.55 0

Math-45 0.3 0

Math-46 1 1

Math-47 0.95 1

Math-48 0.75 0.1

Math-49 0.75 0.3

Math-50 0.3 0.2

Math-51 0.25 0.1

Math-52 0.6 0

Math-53 1 0.85

Math-55 1 0.5

Math-56 0.9 0.85

Math-59 1 1

Math-60 0.95 0.15

Math-61 1 1

Math-63 0.4 0.4

Math-65 0.25 0.45

Math-66 1 1

Math-67 1 1

Math-68 1 0

Math-70 1 0.15

Math-71 0.35 0.4

Math-72 0.45 0.15

Math-73 1 0.9

Math-75 0.9 0

155

Table A.2: (continued)

Bug ID SBSTnoDPG SBSTO

Math-76 0.05 0.05

Math-77 1 1

Math-78 0.6 0.1

Math-79 0.05 0

Math-80 0 0.1

Math-81 0 0.2

Math-83 1 0.45

Math-85 1 0.75

Math-86 0.85 0.45

Math-87 1 0.9

Math-88 0.7 0.3

Math-89 1 0.85

Math-90 1 0.5

Math-92 1 1

Math-93 0.25 0.2

Math-95 1 0.65

Math-96 1 0.6

Math-97 1 0.8

Math-98 0.85 0.35

Math-100 1 0.45

Math-101 1 0.15

Math-102 0.5 0.6

Math-103 1 0.85

Math-104 0.4 0.25

Math-105 1 0.15

Time-1 1 1

Time-2 1 0.65

Time-3 0.05 0

Time-4 0.3 0.2

Time-5 1 0.6

Time-6 0.8 0.25

Time-8 0.7 0.4

Time-9 1 0.85

Time-10 0.1 0

Time-11 1 0.8

Time-12 0.55 0.2

Time-13 0.05 0.15

Time-14 0.95 0.25

Time-15 0.3 0

Time-17 0.55 0.05

Time-22 0.25 0

Time-23 0.2 0

Time-24 0.45 0.05

Time-26 0.05 0

Time-27 0.5 0.1

Chart-1 0.05 0.05

Chart-3 0.15 0.1

Chart-4 0.3 0.3

Bug ID SBSTnoDPG SBSTO

Chart-5 1 0.85

Chart-6 1 0

Chart-7 0.25 0

Chart-8 1 0.3

Chart-10 1 0.4

Chart-11 1 0.25

Chart-12 0.5 0

Chart-13 0.2 0.1

Chart-14 1 1

Chart-15 0.9 0.95

Chart-16 1 0.8

Chart-17 1 1

Chart-18 1 1

Chart-19 0.15 0.45

Chart-20 0.1 0

Chart-21 0.05 0.05

Chart-22 1 1

Chart-23 1 0.3

Chart-24 1 0.8

Mockito-2 1 1

Mockito-17 1 0.15

Mockito-29 0.95 0.35

Mockito-35 1 1

Closure-7 0.1 0.35

Closure-9 0.15 0

Closure-12 0.1 0

Closure-19 0.1 0

Closure-21 0.35 0.2

Closure-22 0.5 0.75

Closure-26 0.4 0.7

Closure-27 0.1 0.1

Closure-28 1 0.75

Closure-30 0.95 0.9

Closure-33 0.5 0.4

Closure-39 0.6 0.65

Closure-46 1 1

Closure-49 0.5 0.1

Closure-52 0.1 0.1

Closure-54 0.8 0.9

Closure-56 1 1

Closure-65 0.45 0

Closure-72 0.3 0

Closure-73 1 0.6

Closure-77 0.25 0.05

Closure-79 0.85 0.2

Closure-81 0 0.05

Closure-82 1 0.85

Closure-100 0 0.15

156

Table A.2: (continued)

Bug ID SBSTnoDPG SBSTO

Closure-104 0.5 1

Closure-106 0.95 0.9

Closure-108 0.2 0

Closure-110 1 1

Closure-113 0.05 0

Closure-114 0.1 0

Closure-115 0.25 0

Closure-116 0.1 0

Closure-117 0.05 0

Closure-119 0 0.05

Closure-120 0.1 0

Closure-121 0.2 0

Closure-123 0.1 0

Closure-128 0.1 0

Closure-129 0.05 0

Closure-131 0.9 0

Closure-137 1 0.3

Closure-139 0.05 0

Bug ID SBSTnoDPG SBSTO

Closure-140 0.25 0.35

Closure-141 0 0.05

Closure-144 0.1 0.05

Closure-148 0 0.35

Closure-150 0.1 0.1

Closure-151 1 0

Closure-160 0.05 0

Closure-164 0.45 0.3

Closure-165 0.8 1

Closure-167 0 0.05

Closure-169 0.05 0

Closure-170 0.2 0

Closure-171 0.05 0

Closure-172 0.15 0

Closure-173 0.5 0

Closure-174 1 0.9

Closure-175 0.15 0

Closure-176 0.1 0

Table A.3: Summary of the bug detecting results of SBSTnoDPG and SBSTO at T =
15 ∗N .

Bugs

detected

Unique

bugs

Bugs detected

in every run

Bugs detected

more often

SBSTnoDPG 215 54 76 160

SBSTO 170 9 28 28

Appendix B

Impact of Defect Predictor

Imprecision

B.1 MCC of the defect prediction configurations

As we discussed in Section 4.6, for completeness, Table B.1 reports MCC (calculated as

in Equation. (4.7)) of the 12 defect prediction configurations used in Chapter 6.

Table B.1: MCC of each defect prediction configuration.

Recall (%) Precision (%) MCC

100
100 1.0

75 0.87

95
100 0.98

75 0.85

90
100 0.95

75 0.83

85
100 0.93

75 0.80

80
100 0.90

75 0.78

75
100 0.87

75 0.75

157

158

B.2 Bugs excluded from Defects4J dataset

Table B.2 shows the bugs that are excluded from the Defects4J dataset in the experi-

ments in Chapters 6 and 7 with the reasons to remove them.

Table B.2: Reasons for removing bugs from the dataset.

Bug ID Reason

Lang-2 Deprecated

Lang-23 No buggy methods

Lang-25 No buggy methods

Lang-30 EvoSuite generates uncompilable tests

Lang-56 No buggy methods

Lang-63 EvoSuite generates uncompilable tests

Math-12 No buggy methods

Math-104 No buggy methods

Time-11 No buggy methods

Time-21 Deprecated

Chart-23 No buggy methods

Closure-15 No buggy methods

Closure-28 No buggy methods

Closure-63 Deprecated

Closure-93 Deprecated

Closure-111 No buggy methods

Mockito-26 No buggy methods

B.3 A statistical summary of the bug detection by SBST

guided by DP

Table B.3 reports the number of bugs detected by SBST guided by DP when using the

12 defect predictor configurations studied in Chapter 6.

B.4 Results of the normality tests

Table B.4 reports the results of the Kolmogorov-Smirnov test for normality of the dis-

tributions of the number of bugs detected by SBST guided by DP when using 12 defect

predictor configurations.

159

Table B.3: A statistical summary of the number of bugs detected by SBST guided
by DP when using defect predictors with different recall and precision.

Recall (%) Precision (%) Mean Median

100
100 203.96 204

75 205.16 205

95
100 200.36 200

75 201.72 200

90
100 191.4 192

75 191.52 192

85
100 180.76 182

75 186 187

80
100 176.48 177

75 178.08 178

75
100 166.16 167

75 168.08 169

Table B.4: The results of the Kolmogorov-Smirnov test for normality of the distribu-
tions (α = 0.05) of the number of bugs detected for each combination of the groups of

recall and precision.

Recall (%) Precision (%) Statistic p-value Conclusion

100
100 0.1328 0.7616 Do not reject H0

75 0.1192 0.8694 Do not reject H0

95
100 0.1709 0.4153 Do not reject H0

75 0.1899 0.2908 Do not reject H0

90
100 0.0881 0.9901 Do not reject H0

75 0.1147 0.8974 Do not reject H0

85
100 0.2266 0.1307 Do not reject H0

75 0.1340 0.7484 Do not reject H0

80
100 0.0972 0.9723 Do not reject H0

75 0.1189 0.8712 Do not reject H0

75
100 0.1399 0.6881 Do not reject H0

75 0.1319 0.7705 Do not reject H0

Figure B.1 shows the Q-Q plots of the distributions of the number of bugs detected by

SBST guided by DP for 12 defect predictor configurations.

B.4.1 Bugs having only one buggy method

Table B.5 reports the results of the Kolmogorov-Smirnov test for normality of the dis-

tributions of the number of bugs detected by SBST guided by DP for the six groups of

recall. Only the bugs that have one buggy method are considered.

160

195

200

205

210

R=100%, P=100% R=100%, P=75% R=95%, P=100% R=95%, P=75%

185

190

195

200

Or
de

re
d

Va
lu

es

R=90%, P=100% R=90%, P=75% R=85%, P=100% R=85%, P=75%

2 0 2

170

175

180

185
R=80%, P=100%

2 0 2
Theoretical Quantiles

R=80%, P=75%

2 0 2

R=75%, P=100%

2 0 2

R=75%, P=75%

Figure B.1: Q-Q plots of the distributions of the number of bugs detected for each
combination of the groups of recall and precision. R = Recall and P = Precision.

Table B.5: The results of the Kolmogorov-Smirnov test for normality of the distribu-
tions (α = 0.05) of the number of bugs detected for the groups of recall. For the bugs

that have one buggy method.

Recall (%) Statistic p-value Conclusion

100 0.1090 0.5685 Do not reject H0

95 0.1427 0.2372 Do not reject H0

90 0.0985 0.7116 Do not reject H0

85 0.1255 0.3812 Do not reject H0

80 0.0835 0.8770 Do not reject H0

75 0.0893 0.8206 Do not reject H0

Figure B.2 shows the Q-Q plots of the distributions of the number of bugs detected by

SBST guided by DP for the six groups of recall. Only the bugs that have one buggy

method are considered.

161

120

125

130

135

Or
de

re
d

Va
lu

es

Recall=100% Recall=95% Recall=90%

2 0 2

100

105

110

115

120

Recall=85%

2 0 2
Theoretical Quantiles

Recall=80%

2 0 2

Recall=75%

Figure B.2: Q-Q plots of the distributions of the number of bugs detected for the
groups of recall. For the bugs that have one buggy method.

B.4.2 Bugs having more than one buggy method

Table B.6 reports the results of the Kolmogorov-Smirnov test for normality of the dis-

tributions of the number of bugs detected by SBST guided by DP for the six groups of

recall. Only the bugs that have more than one buggy method are considered.

Table B.6: The results of the Kolmogorov-Smirnov test for normality of the distribu-
tions (α = 0.05) of the number of bugs detected for the groups of recall. For the bugs

that have more than one buggy method.

Recall (%) Statistic p-value Conclusion

100 0.1885 0.0499 Reject H0

95 0.1366 0.2826 Do not reject H0

90 0.1166 0.4758 Do not reject H0

85 0.1250 0.3864 Do not reject H0

80 0.1685 0.1039 Do not reject H0

75 0.1360 0.2871 Do not reject H0

Figure B.3 shows the Q-Q plots of the distributions of the number of bugs detected by

SBST guided by DP for the six groups of recall. Only the bugs that have more than

one buggy method are considered.

162

72.5

75.0

77.5

80.0

82.5

Or
de

re
d

Va
lu

es

Recall=100% Recall=95% Recall=90%

2 0 2

70

75

80
Recall=85%

2 0 2
Theoretical Quantiles

Recall=80%

2 0 2

Recall=75%

Figure B.3: Q-Q plots of the distributions of the number of bugs detected for the
groups of recall. For the bugs that have more than one buggy method.

B.5 Results of the Tukey post-hoc test

Table B.7 reports the results of the Tukey’s Honestly-Significant-Difference test with the

Cohen’s d effect sizes for all possible pairs of defect predictor configurations.

B.6 Results of the Games-Howell post-hoc test

Tables B.8 and B.9 report the results of the Games-Howell post-hoc test with the Cohen’s

d effect sizes for all possible pairs of recalls for the bugs having only one buggy method

and the bugs having more than one buggy method, respectively.

163

Table B.7: The results of the Tukey’s Honestly-Significant-Difference test with the
Cohen’s d effect sizes for all possible pairs. Diff is the difference in means. Lower and
Upper denote the 95% family-wise confidence levels. R = Recall and P = Precision.

Diff Lower Upper
p-value

adj.

Cohen’s

d

Recall

R=95%-R=100% -3.52 -6.13 -0.91 0.0018 0.77

R=90%-R=100% -13.10 -15.71 -10.49 <0.0001 2.89

R=85%-R=100% -21.18 -23.79 -18.57 <0.0001 4.67

R=80%-R=100% -27.28 -29.89 -24.67 <0.0001 6.01

R=75%-R=100% -37.44 -40.05 -34.83 <0.0001 8.25

R=90%-R=95% -9.58 -12.19 -6.97 <0.0001 2.11

R=85%-R=95% -17.66 -20.27 -15.05 <0.0001 3.89

R=80%-R=95% -23.76 -26.37 -21.15 <0.0001 5.23

R=75%-R=95% -33.92 -36.53 -31.31 <0.0001 7.47

R=85%-R=90% -8.08 -10.69 -5.47 <0.0001 1.78

R=80%-R=90% -14.18 -16.79 -11.57 <0.0001 3.12

R=75%-R=90% -24.34 -26.95 -21.73 <0.0001 5.36

R=80%-R=85% -6.10 -8.71 -3.49 <0.0001 1.34

R=75%-R=85% -16.26 -18.87 -13.65 <0.0001 3.58

R=75%-R=80% -10.16 -12.77 -7.55 <0.0001 2.24

Precision

P=75%-P=100% 1.91 0.87 2.94 0.0003 0.42

Recall:Precision

R=95%:P=100%-R=100%:P=100% -3.60 -7.83 0.63 0.1850 -

R=90%:P=100%-R=100%:P=100% -12.56 -16.79 -8.33 <0.0001 2.77

R=85%:P=100%-R=100%:P=100% -23.20 -27.43 -18.97 <0.0001 5.11

R=80%:P=100%-R=100%:P=100% -27.48 -31.71 -23.25 <0.0001 6.05

R=75%:P=100%-R=100%:P=100% -37.80 -42.03 -33.57 <0.0001 8.33

R=100%:P=75%-R=100%:P=100% 1.20 -3.03 5.43 0.9987 -

R=95%:P=75%-R=100%:P=100% -2.24 -6.47 1.99 0.8465 -

R=90%:P=75%-R=100%:P=100% -12.44 -16.67 -8.21 <0.0001 2.74

R=85%:P=75%-R=100%:P=100% -17.96 -22.19 -13.73 <0.0001 3.96

R=80%:P=75%-R=100%:P=100% -25.88 -30.11 -21.65 <0.0001 5.70

R=75%:P=75%-R=100%:P=100% -35.88 -40.11 -31.65 <0.0001 7.90

R=90%:P=100%-R=95%:P=100% -8.96 -13.19 -4.73 <0.0001 1.97

R=85%:P=100%-R=95%:P=100% -19.60 -23.83 -15.37 <0.0001 4.32

R=80%:P=100%-R=95%:P=100% -23.88 -28.11 -19.65 <0.0001 5.26

R=75%:P=100%-R=95%:P=100% -34.20 -38.43 -29.97 <0.0001 7.53

R=100%:P=75%-R=95%:P=100% 4.80 0.57 9.03 0.0119 1.06

R=95%:P=75%-R=95%:P=100% 1.36 -2.87 5.59 0.9961 -

R=90%:P=75%-R=95%:P=100% -8.84 -13.07 -4.61 <0.0001 1.95

R=85%:P=75%-R=95%:P=100% -14.36 -18.59 -10.13 <0.0001 3.16

R=80%:P=75%-R=95%:P=100% -22.28 -26.51 -18.05 <0.0001 4.91

R=75%:P=75%-R=95%:P=100% -32.28 -36.51 -28.05 <0.0001 7.11

164

Table B.7: (continued)

Diff Lower Upper
p-value

adj.

Cohen’s

d

R=85%:P=100%-R=90%:P=100% -10.64 -14.87 -6.41 <0.0001 2.34

R=80%:P=100%-R=90%:P=100% -14.92 -19.15 -10.69 <0.0001 3.29

R=75%:P=100%-R=90%:P=100% -25.24 -29.47 -21.01 <0.0001 5.56

R=100%:P=75%-R=90%:P=100% 13.76 9.53 17.99 <0.0001 3.03

R=95%:P=75%-R=90%:P=100% 10.32 6.09 14.55 <0.0001 2.27

R=90%:P=75%-R=90%:P=100% 0.12 -4.11 4.35 1.0000 -

R=85%:P=75%-R=90%:P=100% -5.40 -9.63 -1.17 0.0021 1.19

R=80%:P=75%-R=90%:P=100% -13.32 -17.55 -9.09 <0.0001 2.93

R=75%:P=75%-R=90%:P=100% -23.32 -27.55 -19.09 <0.0001 5.14

R=80%:P=100%-R=85%:P=100% -4.28 -8.51 -0.05 0.0450 0.94

R=75%:P=100%-R=85%:P=100% -14.60 -18.83 -10.37 <0.0001 3.22

R=100%:P=75%-R=85%:P=100% 24.40 20.17 28.63 <0.0001 5.37

R=95%:P=75%-R=85%:P=100% 20.96 16.73 25.19 <0.0001 4.62

R=90%:P=75%-R=85%:P=100% 10.76 6.53 14.99 <0.0001 2.37

R=85%:P=75%-R=85%:P=100% 5.24 1.01 9.47 0.0034 1.15

R=80%:P=75%-R=85%:P=100% -2.68 -6.91 1.55 0.6336 -

R=75%:P=75%-R=85%:P=100% -12.68 -16.91 -8.45 <0.0001 2.79

R=75%:P=100%-R=80%:P=100% -10.32 -14.55 -6.09 <0.0001 2.27

R=100%:P=75%-R=80%:P=100% 28.68 24.45 32.91 <0.0001 6.32

R=95%:P=75%-R=80%:P=100% 25.24 21.01 29.47 <0.0001 5.56

R=90%:P=75%-R=80%:P=100% 15.04 10.81 19.27 <0.0001 3.31

R=85%:P=75%-R=80%:P=100% 9.52 5.29 13.75 <0.0001 2.10

R=80%:P=75%-R=80%:P=100% 1.60 -2.63 5.83 0.9848 -

R=75%:P=75%-R=80%:P=100% -8.40 -12.63 -4.17 <0.0001 1.85

R=100%:P=75%-R=75%:P=100% 39.00 34.77 43.23 <0.0001 8.59

R=95%:P=75%-R=75%:P=100% 35.56 31.33 39.79 <0.0001 7.83

R=90%:P=75%-R=75%:P=100% 25.36 21.12 29.59 <0.0001 5.59

R=85%:P=75%-R=75%:P=100% 19.84 15.61 24.07 <0.0001 4.37

R=80%:P=75%-R=75%:P=100% 11.92 7.69 16.15 <0.0001 2.63

R=75%:P=75%-R=75%:P=100% 1.92 -2.31 6.15 0.9413 -

R=95%:P=75%-R=100%:P=75% -3.44 -7.67 0.79 0.2433 -

R=90%:P=75%-R=100%:P=75% -13.64 -17.87 -9.41 <0.0001 3.00

R=85%:P=75%-R=100%:P=75% -19.16 -23.39 -14.93 <0.0001 4.22

R=80%:P=75%-R=100%:P=75% -27.08 -31.31 -22.85 <0.0001 5.96

R=75%:P=75%-R=100%:P=75% -37.08 -41.31 -32.85 <0.0001 8.17

R=90%:P=75%-R=95%:P=75% -10.20 -14.43 -5.97 <0.0001 2.25

R=85%:P=75%-R=95%:P=75% -15.72 -19.95 -11.49 <0.0001 3.46

R=80%:P=75%-R=95%:P=75% -23.64 -27.87 -19.41 <0.0001 5.21

R=75%:P=75%-R=95%:P=75% -33.64 -37.87 -29.41 <0.0001 7.41

R=85%:P=75%-R=90%:P=75% -5.52 -9.75 -1.29 0.0014 1.22

R=80%:P=75%-R=90%:P=75% -13.44 -17.67 -9.21 <0.0001 2.96

R=75%:P=75%-R=90%:P=75% -23.44 -27.67 -19.21 <0.0001 5.16

165

Table B.7: (continued)

Diff Lower Upper
p-value

adj.

Cohen’s

d

R=80%:P=75%-R=85%:P=75% -7.92 -12.15 -3.69 <0.0001 1.74

R=75%:P=75%-R=85%:P=75% -17.92 -22.15 -13.69 <0.0001 3.95

R=75%:P=75%-R=80%:P=75% -10.00 -14.23 -5.77 <0.0001 2.20

Table B.8: The results of the Games-Howell post-hoc test with the Cohen’s d effect
sizes for all possible pairs. For the bugs that have one buggy method. Mean Diff is
the difference in means. Df is the degree of freedom. Lower and Upper denote the 95%

family-wise confidence levels. R = Recall.

Group
Mean

Diff

Std.

Error
t-value Df p-value Upper Lower

Cohen’s

d

R=100%-

R=95%
-3.70 0.54 4.895 94.79 <0.001 -1.50 -5.90 0.98

R=100%-

R=90%
-10.76 0.48 15.906 97.97 <0.001 -8.79 -12.73 3.18

R=100%-

R=85%
-17.82 0.60 21.195 87.82 <0.001 -15.37 -20.27 4.24

R=100%-

R=80%
-23.84 0.51 33.180 97.09 <0.001 -21.75 -25.93 6.64

R=100%-

R=75%
-30.24 0.62 34.580 85.04 <0.001 -27.69 -32.79 6.92

R=95%-

R=90%
-7.06 0.53 9.411 94.15 <0.001 -4.88 -9.24 1.88

R=95%-

R=85%
-14.12 0.64 15.669 95.35 <0.001 -11.50 -16.74 3.13

R=95%-

R=80%
-20.14 0.56 25.548 97.23 <0.001 -17.85 -22.43 5.11

R=95%-

R=75%
-26.54 0.66 28.455 93.39 <0.001 -23.83 -29.25 5.69

R=90%-

R=85%
-7.06 0.59 8.449 86.92 <0.001 -4.63 -9.50 1.69

R=90%-

R=80%
-13.08 0.50 18.358 96.71 <0.001 -11.01 -15.15 3.67

R=90%-

R=75%
-19.48 0.62 22.402 84.12 <0.001 -16.94 -22.02 4.48

R=85%-

R=80%
-6.02 0.62 6.919 92.15 <0.001 -3.49 -8.55 1.38

R=85%-

R=75%
-12.42 0.71 12.386 97.68 <0.001 -9.51 -15.34 2.48

R=80%-

R=75%
-6.40 0.64 7.090 89.66 <0.001 -3.77 -9.03 1.42

166

Table B.9: The results of the Games-Howell post-hoc test with the Cohen’s d effect
sizes for all possible pairs. For the bugs that have more than one buggy method. Mean
Diff is the difference in means. Df is the degree of freedom. Lower and Upper denote

the 95% family-wise confidence levels. R = Recall.

Group
Mean

Diff

Std.

Error
t-value Df p-value Upper Lower

Cohen’s

d

R=100%-

R=95%
0.18 0.34 0.373 97.84 0.999 1.59 -1.23 -

R=100%-

R=90%
-2.34 0.38 4.414 96.27 <0.001 -0.80 -3.88 0.88

R=100%-

R=85%
-3.36 0.36 6.583 97.57 <0.001 -1.88 -4.84 1.32

R=100%-

R=80%
-3.44 0.37 6.620 97.05 <0.001 -1.93 -4.95 1.32

R=100%-

R=75%
-7.20 0.33 15.280 97.11 <0.001 -5.83 -8.57 3.06

R=95%-

R=90%
-2.52 0.37 4.836 95.14 <0.001 -1.00 -4.04 0.97

R=95%-

R=85%
-3.54 0.35 7.064 96.91 <0.001 -2.08 -5.00 1.41

R=95%-

R=80%
-3.62 0.36 7.091 96.15 <0.001 -2.14 -5.11 1.42

R=95%-

R=75%
-7.38 0.33 16.004 97.70 <0.001 -6.04 -8.72 3.20

R=90%-

R=85%
-1.02 0.39 1.868 97.54 0.568 0.43 -2.61 -

R=90%-

R=80%
-1.10 0.39 1.983 97.88 0.360 0.51 -2.71 -

R=90%-

R=75%
-4.86 0.36 9.536 93.20 <0.001 -3.38 -6.34 1.91

R=85%-

R=80%
-0.08 0.38 0.149 97.89 1.000 1.48 -1.64 -

R=85%-

R=75%
-3.84 0.35 7.850 95.53 <0.001 -2.42 -5.26 1.57

R=80%-

R=75%
-3.76 0.35 7.538 94.49 <0.001 -2.31 -5.21 1.51

Appendix C

Impact of Precision for Different

Time Budgets

In Chapter 6, we investigate the impact of the time budget on the conclusions about

sensitivity to the defect prediction precision (see Section 6.3.2.3). In this appendix, we

report the two-way ANOVA test results along with violin and profile plots at various

time budgets from 5 to 60 seconds.

Tables C.1, C.2, C.3, C.4 and C.5 show the summary of the two-way ANOVA test results,

and Figures C.1, C.2, C.3, C.4 and C.5 show the distributions of the number of bugs

detected by SBST guided by DP as violin plots and the profile plot of the mean number

of bugs detected by SBST guided by DP for each combination of the factors of six recalls

and two precisions at time budgets of 5, 10, 15, 30 and 60 seconds, respectively.

C.1 Time Budget = 5 seconds

According to the two-way ANOVA test (Table C.1), recall explains a significant amount

of variation in number of bugs detected by SBST (p-value < 0.001) at 5 seconds time

budget. The effect of recall on bug detection effectiveness is large with an effect size

(ϵ̂2) of 0.68. The test indicates that we cannot reject the null hypothesis that there is

no effect from precision on number of bugs detected (p-value = 0.104). That means we

can assume there is no effect from precision on number of bugs detected at 5 seconds

time budget. These results are consistent with the results at 120 seconds time budget.

167

168

Df Sum Sq Mean Sq F value p-value

Recall 5 15689 3138 133.76 <0.001

Precision 1 63 63 2.67 0.104

Recall:Precision 5 260 52 2.21 0.053

Residuals 288 6756 23.5

Table C.1: Summary of the two-way ANOVA test results. Time Budget = 5 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean sum of

squares.

C.2 Time Budget = 10 seconds

According to the two-way ANOVA test (Table C.2), recall explains a significant amount

of variation in number of bugs detected by SBST (p-value < 0.001) at 10 seconds time

budget. The effect of recall on bug detection effectiveness is large with an effect size (ϵ̂2)

of 0.72. The test indicates that we cannot reject the null hypothesis that there is no

effect from precision on number of bugs detected (p-value = 0.336). That means we can

assume there is no effect from precision on number of bugs detected at 10 seconds time

budget. There is an interaction effect between recall and precision on the number of

bugs detected (p-value = 0.026), however this is not practically significant as explained

by a very small effect size of 0.007 (ϵ̂2). These results are consistent with the results at

120 seconds time budget.

Df Sum Sq Mean Sq F value p-value

Recall 5 21468 4294 157.94 <0.001

Precision 1 25 25 0.93 0.336

Recall:Precision 5 353 71 2.60 0.026

Residuals 288 7829 27

Table C.2: Summary of the two-way ANOVA test results. Time Budget = 10 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean sum of squares.

C.3 Time Budget = 15 seconds

According to the two-way ANOVA test (Table C.3), recall (p-value < 0.001) and pre-

cision (p-value = 0.010) explain a significant amount of variation in number of bugs

detected by SBST at 15 seconds time budget. The effect of recall on bug detection

effectiveness is large with an effect size (ϵ̂2) of 0.75. The effect of precision at 15 seconds

169

●
●

●
●

●

●

60

80

100

120

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure C.1: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST
guided by DP for each combination of the groups of recall and precision. Time Budget

= 5 seconds.

time budget is not of practical significance as indicated by a very small effect size (ϵ̂2)

of 0.005. There is an interaction effect between recall and precision on the number of

bugs detected (p-value = 0.016), however this is not practically significant as explained

by a very small effect size of 0.007 (ϵ̂2). These results are consistent with the results at

120 seconds time budget.

C.4 Time Budget = 30 seconds

According to the two-way ANOVA test (Table C.4), recall (p-value < 0.001) and pre-

cision (p-value = 0.006) explain a significant amount of variation in number of bugs

170

●
●

●
●

●

●

80

100

120

140

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure C.2: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST
guided by DP for each combination of the groups of recall and precision. Time Budget

= 10 seconds.

detected by SBST at 30 seconds time budget. The effect of recall on bug detection

effectiveness is large with an effect size (ϵ̂2) of 0.83. The effect of precision at 30 seconds

time budget is not of practical significance as indicated by a very small effect size (ϵ̂2)

of 0.004. There is an interaction effect between recall and precision on the number of

bugs detected (p-value = 0.034), however this is not practically significant as explained

by a very small effect size of 0.004 (ϵ̂2). These results are consistent with the results at

120 seconds time budget.

171

Df Sum Sq Mean Sq F value p-value

Recall 5 26849 5370 189.64 <0.001

Precision 1 190 190 6.72 0.010

Recall:Precision 5 403 81 2.85 0.016

Residuals 288 8155 28

Table C.3: Summary of the two-way ANOVA test results. Time Budget = 15 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean sum of squares.

Df Sum Sq Mean Sq F value p-value

Recall 5 37820 7564 297.38 <0.001

Precision 1 197 197 7.74 0.006

Recall:Precision 5 312 62 2.45 0.034

Residuals 288 7325 25

Table C.4: Summary of the two-way ANOVA test results. Time Budget = 30 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean sum of squares.

C.5 Time Budget = 60 seconds

According to the two-way ANOVA test (Table C.5), recall (p-value < 0.001) and pre-

cision (p-value = 0.003) explain a significant amount of variation in number of bugs

detected by SBST at 60 seconds time budget. The effect of recall on bug detection

effectiveness is large with an effect size (ϵ̂2) of 0.86. The effect of precision at 60 seconds

time budget is not of practical significance as indicated by a very small effect size (ϵ̂2)

of 0.004. There is an interaction effect between recall and precision on the number of

bugs detected (p-value = 0.041), however this is not practically significant as explained

by a very small effect size of 0.003 (ϵ̂2). These results are consistent with the results at

120 seconds time budget.

Df Sum Sq Mean Sq F value p-value

Recall 5 43529 8706 385.22 <0.001

Precision 1 203 203 9.00 0.003

Recall:Precision 5 265 53 2.35 0.041

Residuals 288 6509 23

Table C.5: Summary of the two-way ANOVA test results. Time Budget = 60 seconds.
Df = degrees of freedom, Sum Sq = sum of squares and Mean sq = mean sum of squares.

172

●
●

●
●

●

●

100

125

150

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure C.3: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST
guided by DP for each combination of the groups of recall and precision. Time Budget

= 15 seconds.

173

●
●

●
●

●

●

125

150

175

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure C.4: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST
guided by DP for each combination of the groups of recall and precision. Time Budget

= 30 seconds.

174

●
●

●

●

●

●

130

150

170

190

100 95 90 85 80 75
Recall (%)

N
um

be
r

of
 B

ug
s

D
et

ec
te

d

Precision (%)

100

75

Figure C.5: Distributions of the number of bugs detected by SBST guided by DP as
violin plots together with the profile plot of mean number of bugs detected by SBST
guided by DP for each combination of the groups of recall and precision. Time Budget

= 60 seconds.

Appendix D

Guiding the Search Process with

Defect Prediction

D.1 Overview of the success rates of PreMOSA and Dy-

naMOSA

Tables D.1 and D.2 show comparisons of the success rates for each bug by PreMOSA-100

against DynaMOSA and PreMOSA-75 against DynaMOSA, respectively.

D.2 Bug detection results of PreMOSA and DynaMOSA

over the time budget spent

Tables D.3 and D.4 report statistical summary and the results of the statistical tests of

the comparisons of the number of bugs detected by PreMOSA-100 against DynaMOSA

and PreMOSA-75 against DynaMOSA over the time budget spent.

D.3 Bug detection results comparison of PreMOSA-100

against PreMOSA-75 over the time budget spent

Table D.5 reports a statistical summary and the results of the one-tailed Mann-Whitney

U-Test of the comparison of the number of bugs detected by PreMOSA-100 against

175

176

PreMOSA-75 over the time budget spent.

177

Table D.1: Success rate for PreMOSA-100 and DynaMOSA at 2 minutes. Bug
IDs that were detected by only one approach are highlighted with different colours;

PreMOSA-100 and DynaMOSA .

Bug ID PreMOSA-100 DynaMOSA

Lang-1 1 1

Lang-4 1 1

Lang-5 0.64 0.88

Lang-7 1 1

Lang-8 0.8 0.8

Lang-9 1 1

Lang-10 1 1

Lang-11 1 1

Lang-12 0.92 0.96

Lang-14 0.84 0.08

Lang-16 0.6 0.52

Lang-17 0 0.04

Lang-18 1 1

Lang-19 1 0.72

Lang-20 1 0.56

Lang-21 0.36 0.68

Lang-22 1 1

Lang-24 0.04 0.08

Lang-27 1 1

Lang-28 0.04 0

Lang-32 0.32 0.12

Lang-33 1 1

Lang-34 0.24 0.32

Lang-35 1 0.96

Lang-36 1 1

Lang-37 0.6 0.68

Lang-39 1 1

Lang-41 1 1

Lang-44 1 1

Lang-45 1 1

Lang-46 1 1

Lang-47 0.96 0.96

Lang-49 0.96 0.88

Lang-50 0.96 0.88

Lang-51 0.68 0.8

Lang-52 1 1

Lang-53 1 0.84

Lang-54 0.4 0.4

Lang-55 0.92 0.24

Lang-57 1 1

Lang-58 0.92 0.8

Lang-59 0.96 1

Lang-60 1 0.88

Lang-61 1 1

Lang-65 1 1

Math-1 1 1

Bug ID PreMOSA-100 DynaMOSA

Math-2 0.36 0.4

Math-3 1 1

Math-4 1 1

Math-5 1 1

Math-6 1 1

Math-9 1 0.96

Math-10 0.08 0.04

Math-11 0.76 0.8

Math-14 1 1

Math-15 0.28 0.12

Math-16 0.52 0.24

Math-21 0.8 0.84

Math-22 1 1

Math-23 0.8 0.84

Math-24 0.88 0.88

Math-25 0.32 0.4

Math-26 1 1

Math-27 1 1

Math-28 0.04 0.04

Math-29 1 1

Math-32 1 1

Math-33 1 0.8

Math-35 1 1

Math-36 0.72 0.44

Math-37 1 1

Math-38 0.04 0.04

Math-40 1 1

Math-41 0.92 0.8

Math-42 1 0.96

Math-43 0.96 0.8

Math-45 0.88 0.8

Math-46 1 1

Math-47 1 1

Math-48 0.84 1

Math-49 1 0.84

Math-50 0.96 0.84

Math-51 0.68 0.76

Math-52 1 1

Math-53 1 1

Math-55 1 1

Math-56 1 1

Math-59 1 1

Math-60 1 0.96

Math-61 1 1

Math-63 1 0.96

Math-64 0.04 0

178

Table D.1: (continued)

Bug ID PreMOSA-100 DynaMOSA

Math-65 1 0.84

Math-66 1 1

Math-67 1 1

Math-68 1 1

Math-69 0.16 0

Math-70 1 1

Math-71 0.92 0.96

Math-72 1 1

Math-73 1 1

Math-74 0.24 0.04

Math-75 1 1

Math-76 0.64 0.52

Math-77 1 1

Math-78 0.88 1

Math-79 0.96 0.28

Math-80 0.68 0.2

Math-81 0.52 0.2

Math-82 0.48 0.48

Math-83 1 0.96

Math-84 0.24 0.16

Math-85 1 1

Math-86 0.92 0.92

Math-87 1 1

Math-88 1 0.92

Math-89 1 1

Math-90 1 1

Math-92 1 1

Math-93 0.88 0.6

Math-94 0.84 0.72

Math-95 1 1

Math-96 1 1

Math-97 1 1

Math-98 1 1

Math-99 0.32 0.04

Math-100 1 1

Math-101 1 1

Math-102 1 1

Math-103 1 1

Math-105 1 1

Math-106 0.08 0.12

Time-1 1 1

Time-2 1 1

Time-3 0.88 0.32

Time-4 1 1

Time-5 1 1

Time-6 1 1

Time-7 0.32 0.2

Time-8 1 1

Bug ID PreMOSA-100 DynaMOSA

Time-9 1 1

Time-10 1 1

Time-12 1 1

Time-13 0.72 0.84

Time-14 1 1

Time-15 1 0.96

Time-16 0.48 0.08

Time-17 1 1

Time-20 0.2 0

Time-23 1 0.2

Time-24 1 1

Time-25 0.48 0.08

Time-26 0.36 0.48

Time-27 1 1

Chart-1 1 0.44

Chart-2 0.32 0.16

Chart-3 0.88 1

Chart-4 1 0.96

Chart-5 1 1

Chart-6 1 1

Chart-7 1 0.88

Chart-8 1 1

Chart-9 0.24 0.28

Chart-10 1 1

Chart-11 1 1

Chart-12 1 0.92

Chart-13 0.92 1

Chart-14 1 1

Chart-15 1 1

Chart-16 1 1

Chart-17 1 1

Chart-18 1 1

Chart-19 0.96 0.96

Chart-20 0.88 0.72

Chart-21 1 0.84

Chart-22 1 1

Chart-24 1 1

Chart-25 0.12 0

Chart-26 0.64 0.2

Closure-4 0.04 0

Closure-6 0.12 0.56

Closure-7 0.88 0.6

Closure-9 0.48 0.48

Closure-12 0.84 0.92

Closure-13 0.08 0.04

Closure-18 0.32 0.04

Closure-19 0.92 0.36

Closure-21 1 0.92

179

Table D.1: (continued)

Bug ID PreMOSA-100 DynaMOSA

Closure-22 1 0.92

Closure-26 1 0.96

Closure-27 1 1

Closure-30 1 1

Closure-33 0.96 1

Closure-34 0.24 0.08

Closure-39 1 1

Closure-40 0 0.08

Closure-41 0.76 0.8

Closure-42 0 0.08

Closure-43 0.12 0.12

Closure-45 0.04 0.16

Closure-46 1 1

Closure-48 0.04 0.04

Closure-49 0.8 0.92

Closure-52 1 0.92

Closure-54 1 1

Closure-55 0 0.04

Closure-56 1 1

Closure-57 0 0.04

Closure-58 0.04 0.04

Closure-60 0.84 0.12

Closure-65 0.92 0.96

Closure-68 0 0.04

Closure-69 0.04 0

Closure-70 0.04 0

Closure-71 0.04 0.04

Closure-72 1 1

Closure-73 0.92 0.96

Closure-75 0.64 0

Closure-76 0.04 0.12

Closure-77 0.96 0.88

Closure-79 1 1

Closure-80 1 0.52

Closure-81 0.6 0.36

Closure-82 1 0.96

Closure-85 0.08 0

Closure-86 1 0.04

Closure-89 0.04 0.04

Closure-91 0.92 0.76

Closure-92 0.12 0.04

Closure-94 0.88 0.36

Closure-95 0.12 0

Closure-99 0.2 0.2

Closure-100 1 0.96

Closure-101 0.04 0

Closure-102 0.36 0.2

Closure-103 0.12 0.04

Bug ID PreMOSA-100 DynaMOSA

Closure-104 1 0.84

Closure-106 1 1

Closure-107 0 0.04

Closure-108 0.6 0.52

Closure-110 1 1

Closure-112 0.12 0.28

Closure-113 0.64 0.84

Closure-114 0.6 0.88

Closure-115 0.76 0.8

Closure-116 0.64 0.72

Closure-117 0.44 0.52

Closure-118 0.08 0.24

Closure-119 0.52 0.88

Closure-120 0.64 0.76

Closure-121 0.92 0.88

Closure-122 0.04 0.08

Closure-123 0.44 0.4

Closure-124 0.84 0.6

Closure-125 0.28 0.6

Closure-128 0.8 0.48

Closure-129 0.44 0.48

Closure-131 1 1

Closure-136 0.12 0.12

Closure-137 1 0.92

Closure-139 0.24 0.24

Closure-140 1 0.96

Closure-141 1 0.72

Closure-142 0 0.04

Closure-143 0 0.04

Closure-144 0.6 0.4

Closure-146 0.36 0.24

Closure-147 0.04 0.2

Closure-148 0.04 0.04

Closure-150 0.84 1

Closure-151 1 0.4

Closure-152 0.04 0.08

Closure-153 0.08 0

Closure-155 0.64 0.28

Closure-156 0.12 0.12

Closure-157 0.16 0.04

Closure-158 0.04 0

Closure-160 0.68 0.24

Closure-162 0.04 0.04

Closure-164 0.96 1

Closure-165 1 1

Closure-166 0.04 0

Closure-167 0.4 0.44

Closure-170 0.84 1

180

Table D.1: (continued)

Bug ID PreMOSA-100 DynaMOSA

Closure-171 0.84 0.88

Closure-172 0.6 0.8

Closure-173 1 0.92

Closure-174 1 1

Closure-175 0.76 0.4

Closure-176 0.2 0.2

Mockito-2 1 1

Bug ID PreMOSA-100 DynaMOSA

Mockito-4 0.12 0

Mockito-9 0.4 0

Mockito-17 1 1

Mockito-23 0 0.04

Mockito-29 0.76 0.68

Mockito-35 1 1

181

Table D.2: Success rate for PreMOSA-75 and DynaMOSA at 2 minutes. Bug IDs that
were detected by only one approach are highlighted with different colours; PreMOSA-75

and DynaMOSA .

Bug ID PreMOSA-75 DynaMOSA

Lang-1 1 1

Lang-4 1 1

Lang-5 0.76 0.88

Lang-7 1 1

Lang-8 0.84 0.8

Lang-9 1 1

Lang-10 1 1

Lang-11 0.96 1

Lang-12 1 0.96

Lang-14 0.72 0.08

Lang-16 0.72 0.52

Lang-17 0.08 0.04

Lang-18 1 1

Lang-19 1 0.72

Lang-20 1 0.56

Lang-21 0.28 0.68

Lang-22 1 1

Lang-24 0 0.08

Lang-27 1 1

Lang-32 0.24 0.12

Lang-33 1 1

Lang-34 0.36 0.32

Lang-35 1 0.96

Lang-36 1 1

Lang-37 0.6 0.68

Lang-39 1 1

Lang-41 1 1

Lang-44 1 1

Lang-45 1 1

Lang-46 1 1

Lang-47 0.96 0.96

Lang-49 1 0.88

Lang-50 0.96 0.88

Lang-51 0.8 0.8

Lang-52 1 1

Lang-53 1 0.84

Lang-54 0.4 0.4

Lang-55 0.88 0.24

Lang-57 1 1

Lang-58 0.92 0.8

Lang-59 0.92 1

Lang-60 1 0.88

Lang-61 0.96 1

Lang-65 1 1

Math-1 1 1

Math-2 0.44 0.4

Bug ID PreMOSA-75 DynaMOSA

Math-3 1 1

Math-4 1 1

Math-5 1 1

Math-6 1 1

Math-8 0.08 0

Math-9 1 0.96

Math-10 0.04 0.04

Math-11 0.84 0.8

Math-14 1 1

Math-15 0.16 0.12

Math-16 0.16 0.24

Math-21 0.8 0.84

Math-22 1 1

Math-23 0.72 0.84

Math-24 0.88 0.88

Math-25 0.28 0.4

Math-26 1 1

Math-27 1 1

Math-28 0.04 0.04

Math-29 1 1

Math-32 1 1

Math-33 0.92 0.8

Math-35 1 1

Math-36 0.72 0.44

Math-37 1 1

Math-38 0 0.04

Math-39 0.08 0

Math-40 1 1

Math-41 0.92 0.8

Math-42 1 0.96

Math-43 0.84 0.8

Math-45 0.92 0.8

Math-46 1 1

Math-47 1 1

Math-48 0.84 1

Math-49 1 0.84

Math-50 0.88 0.84

Math-51 0.68 0.76

Math-52 1 1

Math-53 1 1

Math-55 1 1

Math-56 1 1

Math-59 1 1

Math-60 1 0.96

Math-61 1 1

Math-63 0.96 0.96

182

Table D.2: (continued)

Bug ID PreMOSA-75 DynaMOSA

Math-64 0.08 0

Math-65 0.88 0.84

Math-66 1 1

Math-67 1 1

Math-68 1 1

Math-69 0.12 0

Math-70 1 1

Math-71 0.92 0.96

Math-72 1 1

Math-73 1 1

Math-74 0.28 0.04

Math-75 1 1

Math-76 0.48 0.52

Math-77 1 1

Math-78 0.88 1

Math-79 0.92 0.28

Math-80 0.32 0.2

Math-81 0.44 0.2

Math-82 0.68 0.48

Math-83 1 0.96

Math-84 0.36 0.16

Math-85 1 1

Math-86 1 0.92

Math-87 1 1

Math-88 0.96 0.92

Math-89 1 1

Math-90 1 1

Math-92 1 1

Math-93 0.8 0.6

Math-94 0.92 0.72

Math-95 1 1

Math-96 1 1

Math-97 1 1

Math-98 1 1

Math-99 0.16 0.04

Math-100 1 1

Math-101 1 1

Math-102 1 1

Math-103 1 1

Math-105 1 1

Math-106 0.08 0.12

Time-1 1 1

Time-2 1 1

Time-3 0.92 0.32

Time-4 1 1

Time-5 1 1

Time-6 1 1

Time-7 0.16 0.2

Bug ID PreMOSA-75 DynaMOSA

Time-8 1 1

Time-9 1 1

Time-10 0.88 1

Time-12 1 1

Time-13 0.72 0.84

Time-14 1 1

Time-15 1 0.96

Time-16 0.36 0.08

Time-17 1 1

Time-20 0.24 0

Time-23 0.96 0.2

Time-24 1 1

Time-25 0.2 0.08

Time-26 0.6 0.48

Time-27 1 1

Chart-1 0.92 0.44

Chart-2 0.68 0.16

Chart-3 0.96 1

Chart-4 1 0.96

Chart-5 1 1

Chart-6 1 1

Chart-7 1 0.88

Chart-8 1 1

Chart-9 0.16 0.28

Chart-10 1 1

Chart-11 0.96 1

Chart-12 0.96 0.92

Chart-13 0.68 1

Chart-14 1 1

Chart-15 1 1

Chart-16 1 1

Chart-17 1 1

Chart-18 1 1

Chart-19 1 0.96

Chart-20 0.76 0.72

Chart-21 0.96 0.84

Chart-22 1 1

Chart-24 1 1

Chart-25 0.12 0

Chart-26 0.28 0.2

Closure-4 0.12 0

Closure-6 0.2 0.56

Closure-7 0.72 0.6

Closure-9 0.68 0.48

Closure-10 0.04 0

Closure-12 0.84 0.92

Closure-13 0.16 0.04

Closure-18 0.12 0.04

183

Table D.2: (continued)

Bug ID PreMOSA-75 DynaMOSA

Closure-19 0.72 0.36

Closure-21 1 0.92

Closure-22 1 0.92

Closure-25 0.04 0

Closure-26 1 0.96

Closure-27 0.84 1

Closure-30 1 1

Closure-33 0.96 1

Closure-34 0.4 0.08

Closure-39 1 1

Closure-40 0 0.08

Closure-41 0.72 0.8

Closure-42 0 0.08

Closure-43 0.08 0.12

Closure-45 0.04 0.16

Closure-46 1 1

Closure-48 0.08 0.04

Closure-49 0.8 0.92

Closure-50 0.04 0

Closure-52 1 0.92

Closure-54 1 1

Closure-55 0.08 0.04

Closure-56 1 1

Closure-57 0.04 0.04

Closure-58 0 0.04

Closure-60 0.8 0.12

Closure-65 1 0.96

Closure-66 0.04 0

Closure-67 0.04 0

Closure-68 0.04 0.04

Closure-70 0.16 0

Closure-71 0.12 0.04

Closure-72 1 1

Closure-73 1 0.96

Closure-75 0.72 0

Closure-76 0.04 0.12

Closure-77 0.88 0.88

Closure-79 1 1

Closure-80 1 0.52

Closure-81 0.4 0.36

Closure-82 1 0.96

Closure-85 0.04 0

Closure-86 0.6 0.04

Closure-89 0.08 0.04

Closure-90 0.04 0

Closure-91 0.72 0.76

Closure-92 0 0.04

Closure-94 0.84 0.36

Bug ID PreMOSA-75 DynaMOSA

Closure-95 0.12 0

Closure-99 0.08 0.2

Closure-100 0.96 0.96

Closure-102 0.16 0.2

Closure-103 0.12 0.04

Closure-104 1 0.84

Closure-106 0.96 1

Closure-107 0 0.04

Closure-108 0.64 0.52

Closure-110 1 1

Closure-112 0.28 0.28

Closure-113 0.76 0.84

Closure-114 0.8 0.88

Closure-115 0.76 0.8

Closure-116 0.72 0.72

Closure-117 0.36 0.52

Closure-118 0.08 0.24

Closure-119 0.76 0.88

Closure-120 0.68 0.76

Closure-121 0.92 0.88

Closure-122 0.28 0.08

Closure-123 0.44 0.4

Closure-124 0.64 0.6

Closure-125 0.28 0.6

Closure-128 0.8 0.48

Closure-129 0.44 0.48

Closure-131 1 1

Closure-136 0.24 0.12

Closure-137 0.96 0.92

Closure-139 0.24 0.24

Closure-140 0.88 0.96

Closure-141 0.96 0.72

Closure-142 0 0.04

Closure-143 0.04 0.04

Closure-144 0.48 0.4

Closure-146 0.44 0.24

Closure-147 0.24 0.2

Closure-148 0.28 0.04

Closure-150 0.84 1

Closure-151 0.8 0.4

Closure-152 0.04 0.08

Closure-153 0.12 0

Closure-154 0.04 0

Closure-155 0.6 0.28

Closure-156 0.12 0.12

Closure-157 0.2 0.04

Closure-160 0.88 0.24

Closure-162 0 0.04

184

Table D.2: (continued)

Bug ID PreMOSA-75 DynaMOSA

Closure-164 1 1

Closure-165 1 1

Closure-166 0.04 0

Closure-167 0.6 0.44

Closure-170 0.88 1

Closure-171 0.72 0.88

Closure-172 0.64 0.8

Closure-173 1 0.92

Closure-174 1 1

Bug ID PreMOSA-75 DynaMOSA

Closure-175 0.88 0.4

Closure-176 0.2 0.2

Mockito-2 1 1

Mockito-4 0.16 0

Mockito-9 0.6 0

Mockito-17 1 1

Mockito-23 0 0.04

Mockito-29 0.84 0.68

Mockito-35 1 1

185

Table D.3: Mean and median number of bugs detected by PreMOSA-100 and Dy-
naMOSA over the time budget spent.

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

Dyna-

MOSA

PreMOSA

-100

Dyna-

MOSA

1 42.88 51.60 42 52 <0.0001 0.03

2 62.40 64.28 63 64 0.0487 0.34

3 78.16 75.28 79 74 0.0239 0.69

4 89.52 82.80 90 82 <0.0001 0.88

5 99.48 89.36 99 89 <0.0001 0.96

6 108.12 95.56 108 97 <0.0001 0.97

7 116.00 100.64 116 101 <0.0001 0.99

8 121.68 105.00 123 105 <0.0001 1.00

9 125.92 109.28 127 109 <0.0001 1.00

10 129.48 112.40 130 112 <0.0001 1.00

11 133.28 114.80 134 114 <0.0001 1.00

12 136.48 118.08 137 118 <0.0001 1.00

13 139.68 121.04 140 121 <0.0001 1.00

14 142.48 123.48 143 124 <0.0001 1.00

15 145.20 126.00 146 127 <0.0001 1.00

16 147.32 128.20 148 128 <0.0001 1.00

17 149.28 130.36 149 131 <0.0001 1.00

18 151.44 132.24 152 132 <0.0001 1.00

19 153.32 134.00 153 134 <0.0001 1.00

20 155.40 135.60 155 135 <0.0001 1.00

21 157.08 137.48 156 138 <0.0001 1.00

22 159.16 139.16 159 139 <0.0001 1.00

23 161.00 140.48 160 140 <0.0001 1.00

24 162.68 142.16 163 142 <0.0001 1.00

25 164.12 143.80 164 144 <0.0001 1.00

26 165.12 144.76 165 145 <0.0001 1.00

27 166.36 145.88 167 145 <0.0001 1.00

28 167.32 147.12 168 147 <0.0001 1.00

29 168.28 148.32 169 149 <0.0001 1.00

30 169.48 149.56 170 150 <0.0001 1.00

31 170.52 150.76 171 152 <0.0001 1.00

32 171.36 152.04 172 153 <0.0001 1.00

33 172.04 152.92 172 154 <0.0001 1.00

34 172.72 153.96 174 155 <0.0001 1.00

35 173.36 155.56 174 156 <0.0001 1.00

36 174.92 156.16 175 156 <0.0001 1.00

37 175.48 157.00 177 157 <0.0001 1.00

38 176.48 158.08 177 159 <0.0001 1.00

39 177.32 158.84 178 161 <0.0001 1.00

40 178.20 159.88 179 161 <0.0001 1.00

186

Table D.3: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

Dyna-

MOSA

PreMOSA

-100

Dyna-

MOSA

41 178.88 160.60 180 162 <0.0001 1.00

42 179.80 161.56 181 163 <0.0001 1.00

43 180.68 162.20 181 164 <0.0001 1.00

44 181.28 162.72 182 164 <0.0001 1.00

45 181.84 163.64 183 165 <0.0001 1.00

46 182.32 164.40 183 166 <0.0001 1.00

47 183.12 164.96 183 166 <0.0001 1.00

48 183.80 165.64 184 167 <0.0001 1.00

49 184.36 166.72 185 167 <0.0001 1.00

50 184.80 167.64 185 168 <0.0001 1.00

51 185.48 168.00 186 169 <0.0001 1.00

52 186.04 168.80 186 170 <0.0001 1.00

53 186.84 169.24 186 170 <0.0001 1.00

54 187.52 169.96 187 171 <0.0001 1.00

55 188.20 170.56 188 171 <0.0001 1.00

56 188.80 171.48 189 172 <0.0001 1.00

57 189.20 172.08 189 172 <0.0001 1.00

58 190.00 172.72 190 172 <0.0001 1.00

59 190.68 173.24 191 173 <0.0001 1.00

60 190.96 173.80 191 174 <0.0001 1.00

61 191.52 174.40 192 174 <0.0001 1.00

62 192.08 175.04 193 174 <0.0001 1.00

63 192.48 175.64 193 174 <0.0001 1.00

64 193.04 176.24 193 175 <0.0001 1.00

65 193.48 176.64 193 175 <0.0001 1.00

66 193.76 177.04 193 176 <0.0001 1.00

67 194.00 177.44 193 176 <0.0001 1.00

68 194.36 178.04 194 177 <0.0001 1.00

69 195.04 178.52 195 177 <0.0001 1.00

70 195.52 179.20 195 179 <0.0001 1.00

71 195.84 179.76 195 179 <0.0001 1.00

72 196.16 180.20 196 181 <0.0001 1.00

73 196.68 180.68 197 181 <0.0001 1.00

74 197.04 181.08 197 181 <0.0001 1.00

75 197.52 181.56 198 181 <0.0001 1.00

76 197.92 182.12 198 182 <0.0001 0.99

77 198.24 182.36 198 182 <0.0001 0.99

78 198.60 183.08 198 182 <0.0001 1.00

79 199.04 183.40 198 182 <0.0001 1.00

80 199.36 183.80 198 183 <0.0001 0.99

81 199.52 184.36 198 184 <0.0001 0.99

187

Table D.3: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

Dyna-

MOSA

PreMOSA

-100

Dyna-

MOSA

82 199.84 184.80 199 184 <0.0001 0.99

83 200.28 185.24 199 185 <0.0001 0.98

84 200.68 185.76 200 185 <0.0001 0.98

85 200.88 186.08 200 185 <0.0001 0.98

86 201.16 186.28 201 186 <0.0001 0.98

87 201.56 186.60 201 186 <0.0001 0.99

88 202.08 186.80 202 187 <0.0001 0.99

89 202.56 187.00 202 187 <0.0001 0.99

90 203.16 187.32 203 187 <0.0001 0.99

91 203.40 187.44 203 187 <0.0001 0.99

92 203.72 187.84 203 187 <0.0001 0.99

93 204.00 188.24 203 187 <0.0001 0.99

94 204.52 188.68 203 188 <0.0001 0.99

95 204.88 189.16 204 189 <0.0001 0.99

96 205.16 189.48 204 189 <0.0001 0.99

97 205.48 189.92 205 191 <0.0001 0.99

98 205.92 190.20 205 191 <0.0001 0.99

99 206.12 190.56 205 191 <0.0001 0.99

100 206.44 190.76 205 191 <0.0001 0.99

101 206.88 191.04 206 191 <0.0001 0.99

102 207.08 191.24 206 191 <0.0001 0.99

103 207.20 191.52 206 191 <0.0001 0.99

104 207.64 192.08 206 192 <0.0001 0.99

105 208.00 192.56 208 192 <0.0001 0.99

106 208.32 192.88 208 192 <0.0001 0.99

107 208.76 193.28 208 193 <0.0001 0.99

108 209.20 193.52 210 193 <0.0001 0.99

109 209.32 193.72 210 193 <0.0001 0.99

110 209.64 194.16 210 194 <0.0001 0.99

111 210.32 194.32 210 194 <0.0001 0.99

112 210.64 194.68 210 195 <0.0001 1.00

113 210.96 194.76 210 195 <0.0001 1.00

114 211.44 194.96 210 196 <0.0001 0.99

115 211.76 195.36 211 196 <0.0001 0.99

116 212.04 195.72 212 196 <0.0001 0.99

117 212.44 196.20 213 197 <0.0001 0.99

118 212.76 196.40 213 197 <0.0001 0.99

119 213.12 196.68 213 197 <0.0001 1.00

120 213.56 197.16 213 197 <0.0001 0.99

188

Table D.4: Mean and median number of bugs detected by PreMOSA-75 and Dy-
naMOSA over the time budget spent.

Time (s)
Mean Median

p-value Â12
PreMOSA

-75

Dyna-

MOSA

PreMOSA

-75

Dyna-

MOSA

1 43.60 51.60 43 52 <0.0001 0.08

2 62.96 64.28 63 64 0.2792 0.41

3 77.76 75.28 78 74 0.0336 0.67

4 88.28 82.80 88 82 <0.0001 0.87

5 97.64 89.36 98 89 <0.0001 0.94

6 106.28 95.56 107 97 <0.0001 0.94

7 112.84 100.64 113 101 <0.0001 0.97

8 117.68 105.00 118 105 <0.0001 0.97

9 122.56 109.28 123 109 <0.0001 0.99

10 126.44 112.40 127 112 <0.0001 0.98

11 129.76 114.80 130 114 <0.0001 0.99

12 133.08 118.08 134 118 <0.0001 0.99

13 136.44 121.04 137 121 <0.0001 0.99

14 138.72 123.48 139 124 <0.0001 0.99

15 141.36 126.00 141 127 <0.0001 1.00

16 143.76 128.20 143 128 <0.0001 1.00

17 145.92 130.36 145 131 <0.0001 1.00

18 148.32 132.24 147 132 <0.0001 1.00

19 150.12 134.00 149 134 <0.0001 1.00

20 151.76 135.60 151 135 <0.0001 1.00

21 153.96 137.48 153 138 <0.0001 1.00

22 155.88 139.16 155 139 <0.0001 1.00

23 157.12 140.48 156 140 <0.0001 1.00

24 158.36 142.16 158 142 <0.0001 1.00

25 159.40 143.80 160 144 <0.0001 1.00

26 160.72 144.76 160 145 <0.0001 1.00

27 161.72 145.88 161 145 <0.0001 1.00

28 163.08 147.12 162 147 <0.0001 1.00

29 164.16 148.32 164 149 <0.0001 1.00

30 165.44 149.56 165 150 <0.0001 1.00

31 166.60 150.76 166 152 <0.0001 1.00

32 167.48 152.04 166 153 <0.0001 1.00

33 168.44 152.92 167 154 <0.0001 1.00

34 169.68 153.96 170 155 <0.0001 1.00

35 171.12 155.56 171 156 <0.0001 1.00

36 172.04 156.16 172 156 <0.0001 1.00

37 172.92 157.00 173 157 <0.0001 1.00

38 173.84 158.08 175 159 <0.0001 1.00

39 174.88 158.84 176 161 <0.0001 1.00

40 175.48 159.88 176 161 <0.0001 1.00

189

Table D.4: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-75

Dyna-

MOSA

PreMOSA

-75

Dyna-

MOSA

41 176.44 160.60 178 162 <0.0001 1.00

42 177.44 161.56 178 163 <0.0001 1.00

43 178.12 162.20 179 164 <0.0001 1.00

44 178.88 162.72 179 164 <0.0001 1.00

45 179.36 163.64 179 165 <0.0001 1.00

46 180.12 164.40 180 166 <0.0001 1.00

47 180.68 164.96 181 166 <0.0001 1.00

48 181.32 165.64 181 167 <0.0001 1.00

49 181.92 166.72 183 167 <0.0001 1.00

50 182.56 167.64 183 168 <0.0001 1.00

51 183.12 168.00 184 169 <0.0001 1.00

52 183.72 168.80 185 170 <0.0001 0.99

53 184.44 169.24 185 170 <0.0001 1.00

54 185.12 169.96 186 171 <0.0001 0.99

55 185.72 170.56 186 171 <0.0001 0.99

56 186.40 171.48 187 172 <0.0001 0.99

57 186.96 172.08 188 172 <0.0001 0.99

58 187.32 172.72 188 172 <0.0001 0.99

59 188.00 173.24 190 173 <0.0001 0.99

60 188.52 173.80 190 174 <0.0001 0.99

61 189.28 174.40 190 174 <0.0001 0.99

62 189.80 175.04 191 174 <0.0001 0.99

63 190.28 175.64 191 174 <0.0001 0.98

64 190.92 176.24 192 175 <0.0001 0.98

65 191.64 176.64 192 175 <0.0001 0.98

66 192.08 177.04 192 176 <0.0001 0.98

67 192.60 177.44 193 176 <0.0001 0.99

68 192.92 178.04 194 177 <0.0001 0.99

69 193.44 178.52 194 177 <0.0001 0.98

70 194.08 179.20 195 179 <0.0001 0.97

71 194.44 179.76 195 179 <0.0001 0.98

72 194.80 180.20 196 181 <0.0001 0.98

73 195.20 180.68 196 181 <0.0001 0.97

74 195.92 181.08 196 181 <0.0001 0.97

75 196.44 181.56 196 181 <0.0001 0.97

76 196.88 182.12 197 182 <0.0001 0.97

77 197.56 182.36 199 182 <0.0001 0.97

78 197.88 183.08 199 182 <0.0001 0.96

79 198.24 183.40 199 182 <0.0001 0.96

80 198.56 183.80 199 183 <0.0001 0.96

81 198.88 184.36 200 184 <0.0001 0.96

190

Table D.4: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-75

Dyna-

MOSA

PreMOSA

-75

Dyna-

MOSA

82 199.12 184.80 201 184 <0.0001 0.95

83 199.68 185.24 201 185 <0.0001 0.95

84 200.04 185.76 201 185 <0.0001 0.95

85 200.36 186.08 201 185 <0.0001 0.95

86 200.92 186.28 201 186 <0.0001 0.96

87 201.32 186.60 201 186 <0.0001 0.96

88 201.76 186.80 201 187 <0.0001 0.97

89 202.20 187.00 201 187 <0.0001 0.97

90 202.56 187.32 202 187 <0.0001 0.97

91 202.76 187.44 203 187 <0.0001 0.97

92 203.28 187.84 204 187 <0.0001 0.97

93 203.72 188.24 205 187 <0.0001 0.97

94 204.16 188.68 205 188 <0.0001 0.97

95 204.32 189.16 205 189 <0.0001 0.97

96 204.48 189.48 205 189 <0.0001 0.97

97 204.88 189.92 206 191 <0.0001 0.97

98 205.32 190.20 206 191 <0.0001 0.98

99 205.64 190.56 207 191 <0.0001 0.98

100 206.08 190.76 208 191 <0.0001 0.98

101 206.48 191.04 208 191 <0.0001 0.98

102 206.80 191.24 208 191 <0.0001 0.98

103 207.08 191.52 208 191 <0.0001 0.98

104 207.44 192.08 208 192 <0.0001 0.98

105 207.92 192.56 209 192 <0.0001 0.98

106 208.16 192.88 210 192 <0.0001 0.98

107 208.68 193.28 210 193 <0.0001 0.98

108 209.12 193.52 210 193 <0.0001 0.99

109 209.32 193.72 211 193 <0.0001 0.99

110 209.48 194.16 211 194 <0.0001 0.98

111 209.76 194.32 211 194 <0.0001 0.98

112 209.96 194.68 211 195 <0.0001 0.98

113 210.24 194.76 211 195 <0.0001 0.98

114 210.72 194.96 211 196 <0.0001 0.99

115 211.00 195.36 211 196 <0.0001 0.99

116 211.24 195.72 211 196 <0.0001 0.99

117 211.48 196.20 211 197 <0.0001 0.98

118 211.96 196.40 211 197 <0.0001 0.98

119 212.32 196.68 212 197 <0.0001 0.98

120 212.60 197.16 212 197 <0.0001 0.98

191

Table D.5: Mean and median number of bugs detected by PreMOSA-100 and
PreMOSA-75 over the time budget spent.

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

PreMOSA

-75

PreMOSA

-100

PreMOSA

-75

1 42.88 43.60 42 43 0.6554 0.47

2 62.40 62.96 63 63 0.6942 0.46

3 78.16 77.76 79 78 0.3665 0.53

4 89.52 88.28 90 88 0.1355 0.59

5 99.48 97.64 99 98 0.0433 0.64

6 108.12 106.28 108 107 0.1357 0.59

7 116.00 112.84 116 113 0.0157 0.68

8 121.68 117.68 123 118 0.0030 0.73

9 125.92 122.56 127 123 0.0047 0.71

10 129.48 126.44 130 127 0.0045 0.71

11 133.28 129.76 134 130 0.0030 0.73

12 136.48 133.08 137 134 0.0029 0.73

13 139.68 136.44 140 137 0.0110 0.69

14 142.48 138.72 143 139 0.0048 0.71

15 145.20 141.36 146 141 0.0019 0.74

16 147.32 143.76 148 143 0.0039 0.72

17 149.28 145.92 149 145 0.0048 0.71

18 151.44 148.32 152 147 0.0100 0.69

19 153.32 150.12 153 149 0.0117 0.69

20 155.40 151.76 155 151 0.0036 0.72

21 157.08 153.96 156 153 0.0108 0.69

22 159.16 155.88 159 155 0.0066 0.70

23 161.00 157.12 160 156 0.0013 0.75

24 162.68 158.36 163 158 0.0008 0.76

25 164.12 159.40 164 160 0.0005 0.77

26 165.12 160.72 165 160 0.0005 0.77

27 166.36 161.72 167 161 0.0004 0.77

28 167.32 163.08 168 162 0.0012 0.75

29 168.28 164.16 169 164 0.0021 0.74

30 169.48 165.44 170 165 0.0015 0.74

31 170.52 166.60 171 166 0.0014 0.75

32 171.36 167.48 172 166 0.0014 0.75

33 172.04 168.44 172 167 0.0028 0.73

34 172.72 169.68 174 170 0.0062 0.71

35 173.36 171.12 174 171 0.0225 0.66

36 174.92 172.04 175 172 0.0120 0.69

37 175.48 172.92 177 173 0.0153 0.68

38 176.48 173.84 177 175 0.0103 0.69

39 177.32 174.88 178 176 0.0160 0.68

40 178.20 175.48 179 176 0.0132 0.68

192

Table D.5: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

PreMOSA

-75

PreMOSA

-100

PreMOSA

-75

41 178.88 176.44 180 178 0.0229 0.66

42 179.80 177.44 181 178 0.0283 0.66

43 180.68 178.12 181 179 0.0281 0.66

44 181.28 178.88 182 179 0.0391 0.64

45 181.84 179.36 183 179 0.0336 0.65

46 182.32 180.12 183 180 0.0358 0.65

47 183.12 180.68 183 181 0.0359 0.65

48 183.80 181.32 184 181 0.0329 0.65

49 184.36 181.92 185 183 0.0316 0.65

50 184.80 182.56 185 183 0.0407 0.64

51 185.48 183.12 186 184 0.0275 0.66

52 186.04 183.72 186 185 0.0375 0.65

53 186.84 184.44 186 185 0.0389 0.64

54 187.52 185.12 187 186 0.0390 0.64

55 188.20 185.72 188 186 0.0350 0.65

56 188.80 186.40 189 187 0.0408 0.64

57 189.20 186.96 189 188 0.0520 0.63

58 190.00 187.32 190 188 0.0351 0.65

59 190.68 188.00 191 190 0.0293 0.66

60 190.96 188.52 191 190 0.0458 0.64

61 191.52 189.28 192 190 0.0732 0.62

62 192.08 189.80 193 191 0.0562 0.63

63 192.48 190.28 193 191 0.0693 0.62

64 193.04 190.92 193 192 0.0994 0.61

65 193.48 191.64 193 192 0.1603 0.58

66 193.76 192.08 193 192 0.1652 0.58

67 194.00 192.60 193 193 0.2265 0.56

68 194.36 192.92 194 194 0.2448 0.56

69 195.04 193.44 195 194 0.1752 0.58

70 195.52 194.08 195 195 0.2153 0.56

71 195.84 194.44 195 195 0.2268 0.56

72 196.16 194.80 196 196 0.2181 0.56

73 196.68 195.20 197 196 0.1959 0.57

74 197.04 195.92 197 196 0.2701 0.55

75 197.52 196.44 198 196 0.3272 0.54

76 197.92 196.88 198 197 0.3378 0.53

77 198.24 197.56 198 199 0.4305 0.51

78 198.60 197.88 198 199 0.4420 0.51

79 199.04 198.24 198 199 0.3889 0.52

80 199.36 198.56 198 199 0.3927 0.52

81 199.52 198.88 198 200 0.4497 0.51

193

Table D.5: (continued)

Time (s)
Mean Median

p-value Â12
PreMOSA

-100

PreMOSA

-75

PreMOSA

-100

PreMOSA

-75

82 199.84 199.12 199 201 0.3852 0.52

83 200.28 199.68 199 201 0.4152 0.52

84 200.68 200.04 200 201 0.3778 0.53

85 200.88 200.36 200 201 0.4115 0.52

86 201.16 200.92 201 201 0.4961 0.50

87 201.56 201.32 201 201 0.5116 0.50

88 202.08 201.76 202 201 0.4574 0.51

89 202.56 202.20 202 201 0.4267 0.52

90 203.16 202.56 203 202 0.3343 0.54

91 203.40 202.76 203 203 0.3414 0.53

92 203.72 203.28 203 204 0.4190 0.52

93 204.00 203.72 203 205 0.4729 0.51

94 204.52 204.16 203 205 0.4418 0.51

95 204.88 204.32 204 205 0.3852 0.52

96 205.16 204.48 204 205 0.3668 0.53

97 205.48 204.88 205 206 0.4002 0.52

98 205.92 205.32 205 206 0.3927 0.52

99 206.12 205.64 205 207 0.4229 0.52

100 206.44 206.08 205 208 0.4573 0.51

101 206.88 206.48 206 208 0.4039 0.52

102 207.08 206.80 206 208 0.4458 0.51

103 207.20 207.08 206 208 0.4922 0.50

104 207.64 207.44 206 208 0.4690 0.51

105 208.00 207.92 208 209 0.5078 0.50

106 208.32 208.16 208 210 0.5155 0.50

107 208.76 208.68 208 210 0.5388 0.49

108 209.20 209.12 210 210 0.5116 0.50

109 209.32 209.32 210 211 0.5155 0.50

110 209.64 209.48 210 211 0.4304 0.51

111 210.32 209.76 210 211 0.3521 0.53

112 210.64 209.96 210 211 0.3522 0.53

113 210.96 210.24 210 211 0.3486 0.53

114 211.44 210.72 210 211 0.3414 0.53

115 211.76 211.00 211 211 0.3100 0.54

116 212.04 211.24 212 211 0.2898 0.55

117 212.44 211.48 213 211 0.2732 0.55

118 212.76 211.96 213 211 0.3167 0.54

119 213.12 212.32 213 212 0.3559 0.53

120 213.56 212.60 213 212 0.2666 0.55

Appendix E

Balanced Test Coverage of

Targets

E.1 Overview of the success rates of DynaMOSA+b and

DynaMOSA

Table E.1 shows a comparison of the success rates for each bug by DynaMOSA+b against

DynaMOSA.

E.2 Bug detection results of PreMOSA and DynaMOSA

over the time budget spent

Table E.2 reports a statistical summary and the results of the statistical tests of the

comparison of the number of bugs detected by DynaMOSA+b against DynaMOSA over

the time budget spent.

194

195

Table E.1: Success rate for DynaMOSA+b and DynaMOSA at 2 minutes. Bug
IDs that were detected by only one approach are highlighted with different colours;

DynaMOSA+b and DynaMOSA .

Bug ID DynaMOSA+b DynaMOSA

Lang-1 1 1

Lang-4 1 1

Lang-5 0.72 0.88

Lang-7 1 1

Lang-8 0.88 0.8

Lang-9 1 1

Lang-10 1 1

Lang-11 1 1

Lang-12 1 0.96

Lang-14 0.16 0.08

Lang-16 0.6 0.52

Lang-17 0.08 0.04

Lang-18 0.96 1

Lang-19 1 0.72

Lang-20 0.8 0.56

Lang-21 0.32 0.68

Lang-22 1 1

Lang-24 0.16 0.08

Lang-27 1 1

Lang-28 0.12 0

Lang-32 0.4 0.12

Lang-33 1 1

Lang-34 0.28 0.32

Lang-35 0.96 0.96

Lang-36 1 1

Lang-37 0.88 0.68

Lang-39 1 1

Lang-40 0.04 0

Lang-41 1 1

Lang-44 1 1

Lang-45 1 1

Lang-46 1 1

Lang-47 1 0.96

Lang-49 0.8 0.88

Lang-50 0.56 0.88

Lang-51 0.6 0.8

Lang-52 1 1

Lang-53 1 0.84

Lang-54 0.28 0.4

Lang-55 0.8 0.24

Lang-57 1 1

Lang-58 0.88 0.8

Lang-59 1 1

Lang-60 0.84 0.88

Lang-61 1 1

Lang-65 1 1

Bug ID DynaMOSA+b DynaMOSA

Math-1 1 1

Math-2 0.48 0.4

Math-3 0.84 1

Math-4 1 1

Math-5 1 1

Math-6 1 1

Math-8 0.04 0

Math-9 1 0.96

Math-10 0.08 0.04

Math-11 0.88 0.8

Math-14 1 1

Math-15 0.08 0.12

Math-16 0.08 0.24

Math-21 0.88 0.84

Math-22 1 1

Math-23 1 0.84

Math-24 0.72 0.88

Math-25 0.44 0.4

Math-26 1 1

Math-27 1 1

Math-28 0 0.04

Math-29 0.96 1

Math-30 0.04 0

Math-32 1 1

Math-33 0.8 0.8

Math-35 1 1

Math-36 0.52 0.44

Math-37 1 1

Math-38 0.04 0.04

Math-39 0.04 0

Math-40 1 1

Math-41 0.68 0.8

Math-42 1 0.96

Math-43 0.92 0.8

Math-45 1 0.8

Math-46 1 1

Math-47 1 1

Math-48 0.68 1

Math-49 1 0.84

Math-50 0.8 0.84

Math-51 0.52 0.76

Math-52 1 1

Math-53 1 1

Math-55 1 1

Math-56 1 1

Math-59 1 1

196

Table E.1: (continued)

Bug ID DynaMOSA+b DynaMOSA

Math-60 1 0.96

Math-61 1 1

Math-63 1 0.96

Math-64 0.04 0

Math-65 0.88 0.84

Math-66 1 1

Math-67 1 1

Math-68 1 1

Math-70 1 1

Math-71 0.88 0.96

Math-72 0.88 1

Math-73 1 1

Math-74 0.12 0.04

Math-75 1 1

Math-76 0.36 0.52

Math-77 1 1

Math-78 1 1

Math-79 0.2 0.28

Math-80 0.32 0.2

Math-81 0.16 0.2

Math-82 0.56 0.48

Math-83 1 0.96

Math-84 0.24 0.16

Math-85 1 1

Math-86 0.92 0.92

Math-87 1 1

Math-88 0.96 0.92

Math-89 1 1

Math-90 1 1

Math-92 1 1

Math-93 0.48 0.6

Math-94 0.96 0.72

Math-95 1 1

Math-96 1 1

Math-97 1 1

Math-98 1 1

Math-99 0.52 0.04

Math-100 1 1

Math-101 1 1

Math-102 1 1

Math-103 1 1

Math-105 1 1

Math-106 0.04 0.12

Time-1 1 1

Time-2 1 1

Time-3 0.76 0.32

Time-4 1 1

Time-5 1 1

Bug ID DynaMOSA+b DynaMOSA

Time-6 1 1

Time-7 0.24 0.2

Time-8 1 1

Time-9 1 1

Time-10 1 1

Time-12 1 1

Time-13 0.56 0.84

Time-14 1 1

Time-15 1 0.96

Time-16 0.08 0.08

Time-17 1 1

Time-20 0.08 0

Time-23 0.96 0.2

Time-24 1 1

Time-25 0.2 0.08

Time-26 0.52 0.48

Time-27 0.96 1

Chart-1 0.48 0.44

Chart-2 0.12 0.16

Chart-3 0.96 1

Chart-4 0.96 0.96

Chart-5 1 1

Chart-6 1 1

Chart-7 0.56 0.88

Chart-8 1 1

Chart-9 0.12 0.28

Chart-10 1 1

Chart-11 1 1

Chart-12 0.92 0.92

Chart-13 0.72 1

Chart-14 1 1

Chart-15 1 1

Chart-16 1 1

Chart-17 1 1

Chart-18 1 1

Chart-19 0.92 0.96

Chart-20 0.8 0.72

Chart-21 0.88 0.84

Chart-22 1 1

Chart-24 1 1

Chart-25 0.04 0

Chart-26 0.36 0.2

Closure-1 0.04 0

Closure-6 0.44 0.56

Closure-7 0.84 0.6

Closure-9 0.32 0.48

Closure-12 0.92 0.92

Closure-13 0.16 0.04

197

Table E.1: (continued)

Bug ID DynaMOSA+b DynaMOSA

Closure-18 0 0.04

Closure-19 0.56 0.36

Closure-21 1 0.92

Closure-22 1 0.92

Closure-26 1 0.96

Closure-27 1 1

Closure-30 1 1

Closure-33 1 1

Closure-34 0.16 0.08

Closure-39 1 1

Closure-40 0.12 0.08

Closure-41 0.92 0.8

Closure-42 0 0.08

Closure-43 0 0.12

Closure-45 0.16 0.16

Closure-46 1 1

Closure-48 0.2 0.04

Closure-49 1 0.92

Closure-52 0.88 0.92

Closure-53 0.04 0

Closure-54 1 1

Closure-55 0.04 0.04

Closure-56 1 1

Closure-57 0 0.04

Closure-58 0 0.04

Closure-60 0 0.12

Closure-65 1 0.96

Closure-66 0.04 0

Closure-67 0.04 0

Closure-68 0 0.04

Closure-70 0.12 0

Closure-71 0.12 0.04

Closure-72 0.96 1

Closure-73 1 0.96

Closure-75 0.12 0

Closure-76 0.04 0.12

Closure-77 0.96 0.88

Closure-78 0.04 0

Closure-79 1 1

Closure-80 0.6 0.52

Closure-81 0.32 0.36

Closure-82 1 0.96

Closure-85 0.08 0

Closure-86 0.16 0.04

Closure-88 0.04 0

Closure-89 0.04 0.04

Closure-91 0.76 0.76

Closure-92 0 0.04

Bug ID DynaMOSA+b DynaMOSA

Closure-94 0.48 0.36

Closure-96 0.04 0

Closure-99 0.32 0.2

Closure-100 0.96 0.96

Closure-102 0.28 0.2

Closure-103 0.08 0.04

Closure-104 1 0.84

Closure-106 1 1

Closure-107 0 0.04

Closure-108 0.72 0.52

Closure-109 0.04 0

Closure-110 1 1

Closure-112 0.2 0.28

Closure-113 0.84 0.84

Closure-114 0.76 0.88

Closure-115 0.76 0.8

Closure-116 0.8 0.72

Closure-117 0.6 0.52

Closure-118 0.32 0.24

Closure-119 0.84 0.88

Closure-120 0.6 0.76

Closure-121 1 0.88

Closure-122 0.04 0.08

Closure-123 0.6 0.4

Closure-124 0.72 0.6

Closure-125 0.36 0.6

Closure-126 0.04 0

Closure-128 0.48 0.48

Closure-129 0.2 0.48

Closure-131 1 1

Closure-136 0.32 0.12

Closure-137 1 0.92

Closure-139 0.4 0.24

Closure-140 0.96 0.96

Closure-141 0.68 0.72

Closure-142 0.04 0.04

Closure-143 0.04 0.04

Closure-144 0.2 0.4

Closure-146 0.44 0.24

Closure-147 0.24 0.2

Closure-148 0 0.04

Closure-150 0.96 1

Closure-151 1 0.4

Closure-152 0 0.08

Closure-153 0.04 0

Closure-154 0.04 0

Closure-155 0.32 0.28

Closure-156 0.04 0.12

198

Table E.1: (continued)

Bug ID DynaMOSA+b DynaMOSA

Closure-157 0.2 0.04

Closure-158 0.08 0

Closure-160 0.68 0.24

Closure-162 0 0.04

Closure-163 0.04 0

Closure-164 1 1

Closure-165 1 1

Closure-167 0.56 0.44

Closure-170 0.92 1

Closure-171 0.84 0.88

Closure-172 0.76 0.8

Bug ID DynaMOSA+b DynaMOSA

Closure-173 0.92 0.92

Closure-174 1 1

Closure-175 0.96 0.4

Closure-176 0.2 0.2

Mockito-2 1 1

Mockito-9 0.48 0

Mockito-17 1 1

Mockito-23 0 0.04

Mockito-29 0.56 0.68

Mockito-35 1 1

Mockito-36 0.04 0

199

Table E.2: Mean and median number of bugs detected by DynaMOSA+b and Dy-
naMOSA over the time budget spent.

Time (s)
Mean Median

p-value Â12
Dyna-

MOSA+b

Dyna-

MOSA

Dyna-

MOSA+b

Dyna-

MOSA

1 50.04 51.60 50 52 0.1234 0.37

2 61.40 64.28 62 64 0.0079 0.28

3 72.56 75.28 71 74 0.0278 0.32

4 81.00 82.80 79 82 0.0577 0.34

5 87.56 89.36 87 89 0.0922 0.36

6 94.12 95.56 94 97 0.2273 0.40

7 99.40 100.64 99 101 0.2755 0.41

8 104.52 105.00 104 105 0.7114 0.47

9 108.88 109.28 108 109 0.6265 0.46

10 112.56 112.40 112 112 0.9845 0.50

11 116.12 114.80 116 114 0.2624 0.59

12 119.04 118.08 119 118 0.2971 0.59

13 121.64 121.04 122 121 0.5520 0.55

14 123.84 123.48 124 124 0.6194 0.54

15 125.92 126.00 126 127 0.9922 0.50

16 128.56 128.20 129 128 0.6680 0.54

17 130.88 130.36 132 131 0.5207 0.55

18 132.96 132.24 133 132 0.4881 0.56

19 135.20 134.00 136 134 0.2758 0.59

20 137.36 135.60 138 135 0.0887 0.64

21 139.20 137.48 139 138 0.0574 0.66

22 140.84 139.16 141 139 0.0603 0.65

23 142.72 140.48 143 140 0.0615 0.65

24 144.64 142.16 145 142 0.0590 0.66

25 146.20 143.80 146 144 0.0780 0.64

26 147.80 144.76 147 145 0.0145 0.70

27 149.48 145.88 149 145 0.0081 0.72

28 150.64 147.12 150 147 0.0088 0.72

29 151.76 148.32 152 149 0.0070 0.72

30 152.68 149.56 152 150 0.0199 0.69

31 153.92 150.76 153 152 0.0244 0.68

32 155.24 152.04 156 153 0.0160 0.70

33 156.44 152.92 157 154 0.0045 0.73

34 157.24 153.96 158 155 0.0085 0.72

35 158.28 155.56 159 156 0.0271 0.68

36 159.28 156.16 161 156 0.0154 0.70

37 160.24 157.00 161 157 0.0105 0.71

38 161.24 158.08 162 159 0.0162 0.70

39 162.08 158.84 163 161 0.0200 0.69

40 163.12 159.88 163 161 0.0189 0.69

200

Table E.2: (continued)

Time (s)
Mean Median

p-value Â12
Dyna-

MOSA+b

Dyna-

MOSA

Dyna-

MOSA+b

Dyna-

MOSA

41 163.88 160.60 165 162 0.0217 0.69

42 164.76 161.56 165 163 0.0293 0.68

43 165.68 162.20 165 164 0.0170 0.70

44 166.52 162.72 166 164 0.0108 0.71

45 167.36 163.64 167 165 0.0102 0.71

46 168.16 164.40 169 166 0.0067 0.72

47 168.96 164.96 170 166 0.0061 0.73

48 169.76 165.64 171 167 0.0075 0.72

49 170.60 166.72 172 167 0.0106 0.71

50 171.40 167.64 173 168 0.0149 0.70

51 172.80 168.00 175 169 0.0051 0.73

52 173.44 168.80 175 170 0.0073 0.72

53 174.08 169.24 175 170 0.0044 0.73

54 174.88 169.96 177 171 0.0031 0.74

55 175.60 170.56 179 171 0.0021 0.75

56 176.28 171.48 179 172 0.0031 0.74

57 176.96 172.08 179 172 0.0034 0.74

58 177.56 172.72 179 172 0.0027 0.75

59 178.48 173.24 181 173 0.0009 0.77

60 179.44 173.80 182 174 0.0006 0.78

61 179.84 174.40 182 174 0.0006 0.78

62 180.44 175.04 182 174 0.0007 0.78

63 181.16 175.64 183 174 0.0004 0.79

64 181.64 176.24 184 175 0.0006 0.78

65 182.08 176.64 184 175 0.0003 0.79

66 182.44 177.04 185 176 0.0004 0.79

67 183.00 177.44 185 176 0.0003 0.79

68 183.40 178.04 185 177 0.0004 0.79

69 183.72 178.52 186 177 0.0004 0.79

70 184.20 179.20 186 179 0.0006 0.78

71 184.68 179.76 186 179 0.0004 0.79

72 185.28 180.20 187 181 0.0006 0.78

73 185.72 180.68 187 181 0.0008 0.78

74 186.28 181.08 188 181 0.0005 0.79

75 186.80 181.56 188 181 0.0004 0.79

76 187.32 182.12 189 182 0.0009 0.77

77 188.00 182.36 189 182 0.0006 0.78

78 188.64 183.08 190 182 0.0012 0.77

79 189.28 183.40 191 182 0.0012 0.77

80 189.84 183.80 191 183 0.0007 0.78

81 190.32 184.36 191 184 0.0013 0.76

201

Table E.2: (continued)

Time (s)
Mean Median

p-value Â12
Dyna-

MOSA+b

Dyna-

MOSA

Dyna-

MOSA+b

Dyna-

MOSA

82 190.68 184.80 192 184 0.0019 0.76

83 191.08 185.24 192 185 0.0026 0.75

84 191.48 185.76 192 185 0.0036 0.74

85 191.92 186.08 193 185 0.0031 0.74

86 192.28 186.28 193 186 0.0020 0.75

87 192.84 186.60 193 186 0.0012 0.77

88 193.12 186.80 194 187 0.0008 0.78

89 193.68 187.00 194 187 0.0004 0.79

90 194.12 187.32 195 187 0.0004 0.79

91 194.52 187.44 195 187 0.0003 0.80

92 194.96 187.84 196 187 0.0003 0.80

93 195.24 188.24 196 187 0.0003 0.79

94 195.60 188.68 196 188 0.0004 0.79

95 196.04 189.16 197 189 0.0006 0.78

96 196.44 189.48 198 189 0.0004 0.79

97 196.88 189.92 198 191 0.0003 0.80

98 197.16 190.20 198 191 0.0004 0.79

99 197.40 190.56 198 191 0.0005 0.79

100 197.68 190.76 199 191 0.0003 0.79

101 198.04 191.04 199 191 0.0003 0.80

102 198.36 191.24 199 191 0.0002 0.80

103 198.80 191.52 199 191 0.0002 0.81

104 199.20 192.08 200 192 0.0002 0.81

105 199.72 192.56 201 192 0.0002 0.80

106 200.00 192.88 201 192 0.0002 0.81

107 200.40 193.28 201 193 0.0001 0.82

108 200.72 193.52 202 193 0.0001 0.82

109 201.00 193.72 202 193 0.0001 0.82

110 201.08 194.16 202 194 0.0002 0.81

111 201.36 194.32 202 194 0.0002 0.81

112 201.52 194.68 202 195 0.0003 0.80

113 201.68 194.76 202 195 0.0002 0.81

114 201.92 194.96 202 196 0.0002 0.81

115 202.12 195.36 202 196 0.0003 0.80

116 202.44 195.72 202 196 0.0002 0.80

117 202.68 196.20 202 197 0.0004 0.79

118 202.92 196.40 203 197 0.0003 0.79

119 203.32 196.68 203 197 0.0002 0.80

120 203.64 197.16 203 197 0.0004 0.79

Bibliography

[1] Phillip Johnston and Rozi Harris. The boeing 737 max saga: Lessons for software

organizations. Software Quality Professional, 21(3):4–12, 2019.

[2] Carol Clark. How to keep markets safe in the era of high-speed trading. Chicago

Fed Letter, (303):1, 2012.

[3] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole test suites.

In 2011 11th International Conference on Quality Software, pages 31–40. IEEE,

2011.

[4] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing

for java. In OOPSLA Companion, pages 815–816, 2007.

[5] Corina S Păsăreanu and Neha Rungta. Symbolic pathfinder: symbolic execution

of java bytecode. In Proceedings of the IEEE/ACM international conference on

Automated software engineering, pages 179–180. ACM, 2010.

[6] Mark Harman and Bryan F Jones. Search-based software engineering. Information

and software Technology, 43(14):833–839, 2001.

[7] Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skaliotis. Search

based approaches to component selection and prioritization for the next release

problem. In 2006 22nd IEEE International Conference on Software Maintenance,

pages 176–185. IEEE, 2006.

[8] Webb Miller and David L. Spooner. Automatic generation of floating-point test

data. IEEE Transactions on Software Engineering, (3):223–226, 1976.

[9] Mark Harman, Yue Jia, and Yuanyuan Zhang. Achievements, open problems

and challenges for search based software testing. In 2015 IEEE 8th International

202

Bibliography 203

Conference on Software Testing, Verification and Validation (ICST), pages 1–12.

IEEE, 2015.

[10] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,

Taijin Tei, and Ilya Zorin. Deploying search based software engineering with

sapienz at facebook. In International Symposium on Search Based Software Engi-

neering, pages 3–45. Springer, 2018.

[11] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing

for android applications. In Proceedings of the 25th International Symposium on

Software Testing and Analysis, pages 94–105, 2016.

[12] Aldeida Aleti and Lars Grunske. Test data generation with a kalman filter-based

adaptive genetic algorithm. Journal of Systems and Software, 103:343–352, 2015.

[13] Carlos Oliveira, Aldeida Aleti, Yuan-Fang Li, and Mohamed Abdelrazek. Foot-

prints of fitness functions in search-based software testing. In Proceedings

of the Genetic and Evolutionary Computation Conference, GECCO ’19, page

1399–1407. Association for Computing Machinery, 2019. ISBN 9781450361118.

doi: 10.1145/3321707.3321880.

[14] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated

test case generation as a many-objective optimisation problem with dynamic se-

lection of the targets. IEEE Transactions on Software Engineering, 44(2):122–158,

2017.

[15] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating

branch coverage as a many-objective optimization problem. In 2015 IEEE 8th

international conference on software testing, verification and validation (ICST),

pages 1–10. IEEE, 2015.

[16] Carlos Oliveira, Aldeida Aleti, Lars Grunske, and Kate Smith-Miles. Mapping the

effectiveness of automated test suite generation techniques. IEEE Transactions on

Reliability, 67(3):771–785, 2018.

[17] Aldeida Aleti, Irene Moser, and Lars Grunske. Analysing the fitness landscape of

search-based software testing problems. Automated Software Engineering, 24(3):

603–621, 2017.

Bibliography 204

[18] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.

Does automated white-box test generation really help software testers? In Pro-

ceedings of the 2013 International Symposium on Software Testing and Analysis,

pages 291–301. ACM, 2013.

[19] Richard A DeMillo, A Jefferson Offutt, et al. Constraint-based automatic test data

generation. IEEE Transactions on Software Engineering, 17(9):900–910, 1991.

[20] Larry J. Morell. A theory of fault-based testing. IEEE Transactions on Software

Engineering, 16(8):844–857, 1990.

[21] Larry Joe Morell. A theory of error-based testing. Technical report, MARYLAND

UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE, 1984.

[22] AJV Offutt. Automatic test data generation. 1989.

[23] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. Do automatically generated unit tests find real faults? an em-

pirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE), pages 201–211.

IEEE, 2015.

[24] Alireza Salahirad, Hussein Almulla, and Gregory Gay. Choosing the fitness func-

tion for the job: Automated generation of test suites that detect real faults. Soft-

ware Testing, Verification and Reliability, 29(4-5):e1701, 2019.

[25] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of existing

faults to enable controlled testing studies for java programs. In Proceedings of the

2014 International Symposium on Software Testing and Analysis, pages 437–440.

ACM, 2014.

[26] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Jānis Bene-

felds. An industrial evaluation of unit test generation: Finding real faults in a

financial application. In Proceedings of the 39th International Conference on Soft-

ware Engineering: Software Engineering in Practice Track, pages 263–272. IEEE

Press, 2017.

[27] Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tan-

tithamthavorn, Hideaki Hata, and Kenichi Matsumoto. Predicting defective lines

Bibliography 205

using a model-agnostic technique. IEEE Transactions on Software Engineering,

pages 1–1, 2020. doi: 10.1109/TSE.2020.3023177.

[28] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting compo-

nent failures at design time. In Proceedings of the 2006 ACM/IEEE international

symposium on Empirical software engineering, pages 18–27, 2006.

[29] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas Zeller.

Predicting faults from cached history. In Proceedings of the 29th international

conference on Software Engineering, pages 489–498. IEEE Computer Society, 2007.

[30] Paulo André Faria de Freitas. Software repository mining analytics to estimate

software component reliability. 2015.

[31] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Bug prediction based on fine-

grained module histories. In 2012 34th international conference on software engi-

neering (ICSE), pages 200–210. IEEE, 2012.

[32] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. Method-

level bug prediction. In Proceedings of the 2012 ACM-IEEE International Sympo-

sium on Empirical Software Engineering and Measurement, pages 171–180. IEEE,

2012.

[33] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code at-

tributes to learn defect predictors. IEEE transactions on software engineering, 33

(1):2–13, 2006.

[34] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects

for eclipse. In Third International Workshop on Predictor Models in Software

Engineering (PROMISE’07: ICSE Workshops 2007), pages 9–9. IEEE, 2007.

[35] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to

predict system defect density. In Proceedings of the 27th international conference

on Software engineering, pages 284–292. ACM, 2005.

[36] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. The influence of or-

ganizational structure on software quality. In 2008 ACM/IEEE 30th International

Conference on Software Engineering, pages 521–530. IEEE, 2008.

Bibliography 206

[37] Bora Caglayan, Burak Turhan, Ayse Bener, Mayy Habayeb, Andriy Miransky,

and Enzo Cialini. Merits of organizational metrics in defect prediction: an indus-

trial replication. In Proceedings of the 37th International Conference on Software

Engineering-Volume 2, pages 89–98. IEEE Press, 2015.

[38] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and

Brendan Murphy. Change bursts as defect predictors. In 2010 IEEE 21st Inter-

national Symposium on Software Reliability Engineering, pages 309–318. IEEE,

2010.

[39] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and

E James Whitehead Jr. Does bug prediction support human developers? find-

ings from a google case study. In Proceedings of the 2013 International Conference

on Software Engineering, pages 372–381. IEEE Press, 2013.

[40] Chris Lewis and Rong Ou. Bug prediction at google, 2011. URL http:

//google-engtools.blogspot.com/2011/12/. Last accessed on: 16/09/2019.

[41] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya

Ghose, Taeksu Kim, and Chul-Joo Kim. Lessons learned from using a deep tree-

based model for software defect prediction in practice. In Proceedings of the 16th

International Conference on Mining Software Repositories, pages 46–57. IEEE

Press, 2019.

[42] David Paterson, Jose Campos, Rui Abreu, Gregory M Kapfhammer, Gordon

Fraser, and Phil McMinn. An empirical study on the use of defect prediction

for test case prioritization. In 2019 12th IEEE Conference on Software Testing,

Validation and Verification (ICST), pages 346–357. IEEE, 2019.

[43] Gregory Gay. The fitness function for the job: Search-based generation of test

suites that detect real faults. In 2017 IEEE International Conference on Software

Testing, Verification and Validation (ICST), pages 345–355. IEEE, 2017.

[44] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous test

generation: enhancing continuous integration with automated test generation. In

Proceedings of the 29th ACM/IEEE international conference on Automated soft-

ware engineering, pages 55–66. ACM, 2014.

http://google-engtools.blogspot.com/2011/12/
http://google-engtools.blogspot.com/2011/12/

Bibliography 207

[45] Manfred Broy, Ingolf H Kruger, Alexander Pretschner, and Christian Salzmann.

Engineering automotive software. Proceedings of the IEEE, 95(2):356–373, 2007.

[46] The Apache Software Foundation. Apache commons math, 2019. URL https:

//github.com/apache/commons-math. Last accessed on: 19/09/2019.

[47] Zhiyuan Wan, Xin Xia, Ahmed E Hassan, David Lo, Jianwei Yin, and Xiaohu

Yang. Perceptions, expectations, and challenges in defect prediction. IEEE Trans-

actions on Software Engineering, 46(11):1241–1266, 2018.

[48] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and

Brendan Murphy. Cross-project defect prediction: a large scale experiment on

data vs. domain vs. process. In Proceedings of the 7th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pages 91–100, 2009.

[49] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A sys-

tematic literature review on fault prediction performance in software engineering.

IEEE Transactions on Software Engineering, 38(6):1276–1304, 2011.

[50] Seyedrebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna. A systematic lit-

erature review and meta-analysis on cross project defect prediction. IEEE Trans-

actions on Software Engineering, 45(2):111–147, 2017.

[51] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. A detailed

investigation of the effectiveness of whole test suite generation. Empirical Software

Engineering, 22(2):852–893, 2017.

[52] Gerardo Canfora, Michele Ceccarelli, Luigi Cerulo, and Massimiliano Di Penta.

How long does a bug survive? an empirical study. In 2011 18th Working Confer-

ence on Reverse Engineering, pages 191–200, 2011. doi: 10.1109/WCRE.2011.31.

[53] Kiran Lakhotia, Mark Harman, and Hamilton Gross. Austin: An open source

tool for search based software testing of c programs. Information and Software

Technology, 55(1):112–125, 2013.

[54] C Chao, J Komada, Q Liu, M Muteja, Y Alsalqan, and C Chang. An application

of genetic algorithms to software project management. Proceedings of the 9th

international advanced science and technology, pages 247–252, 1993.

https://github.com/apache/commons-math
https://github.com/apache/commons-math

Bibliography 208

[55] Enrique Alba and Francisco Chicano. Acohg: Dealing with huge graphs. In

Proceedings of the 9th annual conference on Genetic and evolutionary computation,

pages 10–17, 2007.

[56] Marco Ferreira, Francisco Chicano, Enrique Alba, and JA Gómez-Pulido. De-

tecting protocol errors using particle swarm optimization with java pathfinder.

In Proceedings of the High Performance Computing & Simulation Conference

(HPCS’08), pages 319–325. Citeseer, 2008.

[57] Salah Bouktif, Houari Sahraoui, and Giuliano Antoniol. Simulated annealing for

improving software quality prediction. In Proceedings of the 8th annual conference

on Genetic and evolutionary computation, pages 1893–1900, 2006.

[58] Yi Bian, Serkan Kirbas, Mark Harman, Yue Jia, and Zheng Li. Regression test

case prioritisation for guava. In International Symposium on Search Based Software

Engineering, pages 221–227. Springer, 2015.

[59] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea

Arcuri. Combining multiple coverage criteria in search-based unit test generation.

In International Symposium on Search Based Software Engineering, pages 93–108.

Springer, 2015.

[60] Christopher L Simons and Ian C Parmee. Single and multi-objective genetic opera-

tors in object-oriented conceptual software design. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation, pages 1957–1958, 2006.

[61] Mark O’Keeffe and Mel O Cinnéide. Search-based refactoring for software main-

tenance. Journal of Systems and Software, 81(4):502–516, 2008.

[62] Giuliano Antoniol, Massimiliano Di Penta, and Mark Harman. Search-based

techniques applied to optimization of project planning for a massive mainte-

nance project. In 21st IEEE International Conference on Software Maintenance

(ICSM’05), pages 240–249. IEEE, 2005.

[63] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. Search-based soft-

ware engineering: Trends, techniques and applications. ACM Computing Surveys

(CSUR), 45(1):1–61, 2012.

Bibliography 209

[64] Joachim Wegener and Oliver Bühler. Evaluation of different fitness functions

for the evolutionary testing of an autonomous parking system. In Genetic and

Evolutionary Computation Conference, pages 1400–1412. Springer, 2004.

[65] Wasif Afzal, Richard Torkar, Robert Feldt, and Greger Wikstrand. Search-based

prediction of fault-slip-through in large software projects. In 2nd International

Symposium on Search Based Software Engineering, pages 79–88. IEEE, 2010.

[66] Seunghee Han, Jaeuk Kim, Geon Kim, Jaemin Cho, Jiin Kim, and Shin Yoo.

Preliminary evaluation of path-aware crossover operators for search-based test

data generation for autonomous driving. In 2021 IEEE/ACM 14th International

Workshop on Search-Based Software Testing (SBST), pages 44–47. IEEE, 2021.

[67] Richard M Everson and Jonathan E Fieldsend. Multiobjective optimization of

safety related systems: An application to short-term conflict alert. IEEE Trans-

actions on Evolutionary Computation, 10(2):187–198, 2006.

[68] Julian Thomé, Alessandra Gorla, and Andreas Zeller. Search-based security testing

of web applications. In Proceedings of the 7th International Workshop on Search-

Based Software Testing, pages 5–14, 2014.

[69] Lionel C Briand, Yvan Labiche, and Yihong Wang. An investigation of graph-

based class integration test order strategies. IEEE Transactions on Software En-

gineering, 29(7):594–607, 2003.

[70] Daniel Di Nardo, Fabrizio Pastore, Andrea Arcuri, and Lionel Briand. Evolution-

ary robustness testing of data processing systems using models and data mutation

(t). In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 126–137. IEEE, 2015.

[71] Nigel Tracey, John Clark, John McDermid, and Keith Mander. A search-based

automated test-data generation framework for safety-critical systems. In Systems

engineering for business process change: new directions, pages 174–213. Springer,

2002.

[72] Gordon Fraser and Andrea Arcuri. 1600 faults in 100 projects: automatically

finding faults while achieving high coverage with evosuite. Empirical Software

Engineering, 20(3):611–639, 2015.

Bibliography 210

[73] Gordon Fraser and Andrea Arcuri. Evosuite: On the challenges of test case gener-

ation in the real world. In 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation, pages 362–369. IEEE, 2013.

[74] Anjana Perera, Aldeida Aleti, Chakkrit Tantithamthavorn, Jirayus Jiarpakdee,

Burak Turhan, Lisa Kuhn, and Katie Walker. Search-based fairness testing for

regression-based machine learning systems. Empirical Software Engineering, 27

(3):1–36, 2022.

[75] Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek. Search-based energy test-

ing of android. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE), pages 1119–1130. IEEE, 2019.

[76] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria. Search-based

test case prioritization for simulation-based testing of cyber-physical system prod-

uct lines. Journal of Systems and Software, 149:1–34, 2019.

[77] Alessio Gambi, Marc Mueller, and Gordon Fraser. Automatically testing self-

driving cars with search-based procedural content generation. In Proceedings of the

28th ACM SIGSOFT International Symposium on Software Testing and Analysis,

pages 318–328, 2019.

[78] Alessio Gambi, Marc Müller, and Gordon Fraser. Asfault: Testing self-driving car

software using search-based procedural content generation. In 2019 IEEE/ACM

41st International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), pages 27–30. IEEE, 2019.

[79] Annibale Panichella. Beyond unit-testing in search-based test case generation:

Challenges and opportunities. In 2019 IEEE/ACM 12th International Workshop

on Search-Based Software Testing (SBST), pages 7–8. IEEE, 2019.

[80] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit

test generation using evosuite. ACM Transactions on Software Engineering and

Methodology (TOSEM), 24(2):8, 2014.

[81] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. A large scale

empirical comparison of state-of-the-art search-based test case generators. Infor-

mation and Software Technology, 104:236–256, 2018.

Bibliography 211

[82] Andreas Windisch, Stefan Wappler, and Joachim Wegener. Applying particle

swarm optimization to software testing. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 1121–1128, 2007.

[83] Kamel Ayari, Salah Bouktif, and Giuliano Antoniol. Automatic mutation test

input data generation via ant colony. In Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 1074–1081, 2007.

[84] Nigel Tracey, John Clark, Keith Mander, and John McDermid. An automated

framework for structural test-data generation. In Proceedings 13th IEEE Interna-

tional Conference on Automated Software Engineering (Cat. No. 98EX239), pages

285–288. IEEE, 1998.

[85] Mark Harman and Phil McMinn. A theoretical & empirical analysis of evolutionary

testing and hill climbing for structural test data generation. In Proceedings of

the 2007 international symposium on Software testing and analysis, pages 73–83.

ACM, 2007.

[86] Bogdan Korel. Automated software test data generation. IEEE Transactions on

software engineering, 16(8):870–879, 1990.

[87] Phil McMinn. Search-based software testing: Past, present and future. In 2011

IEEE Fourth International Conference on Software Testing, Verification and Val-

idation Workshops, pages 153–163. IEEE, 2011.

[88] Mark Harman and Phil McMinn. A theoretical and empirical study of search-

based testing: Local, global, and hybrid search. IEEE Transactions on Software

Engineering, 36(2):226–247, 2009.

[89] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions

on Software Engineering, 39(2):276–291, 2012.

[90] Phil McMinn. Search-based software test data generation: a survey. Software

testing, Verification and reliability, 14(2):105–156, 2004.

[91] Andrea Arcuri, José Campos, and Gordon Fraser. Unit test generation during

software development: Evosuite plugins for maven, intellij and jenkins. In 2016

IEEE International Conference on Software Testing, Verification and Validation

(ICST), pages 401–408. IEEE, 2016.

Bibliography 212

[92] José Campos, Annibale Panichella, and Gordon Fraser. Evosuite at the sbst 2019

tool competition. In Proceedings of the 12th International Workshop on Search-

Based Software Testing, pages 29–32. IEEE Press, 2019.

[93] Gordon Fraser and Andrea Arcuri. Evosuite at the sbst 2016 tool competition. In

2016 IEEE/ACM 9th International Workshop on Search-Based Software Testing

(SBST), pages 33–36. IEEE, 2016.

[94] G. Fraser and A. Arcuri. Evosuite at the sbst 2013 tool competition. In 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation

Workshops, pages 406–409, March 2013. doi: 10.1109/ICSTW.2013.53.

[95] Gordon Fraser and Andrea Arcuri. Evosuite at the second unit testing tool com-

petition. In Tanja E.J. Vos, Kiran Lakhotia, and Sebastian Bauersfeld, editors,

Future Internet Testing, pages 95–100, Cham, 2014. Springer International Pub-

lishing. ISBN 978-3-319-07785-7.

[96] Gordon Fraser, José Miguel Rojas, and Andrea Arcuri. Evosuite at the sbst 2018

tool competition. In Proceedings of the 11th International Workshop on Search-

Based Software Testing, SBST ’18, pages 34–37, New York, NY, USA, 2018. ACM.

ISBN 978-1-4503-5741-8. doi: 10.1145/3194718.3194729. URL http://doi.acm.

org/10.1145/3194718.3194729.

[97] Gordon Fraser, José Miguel Rojas, José Campos, and Andrea Arcuri. Evosuite at

the sbst 2017 tool competition. In Proceedings of the 10th International Workshop

on Search-Based Software Testing, SBST ’17, pages 39–41, Piscataway, NJ, USA,

2017. IEEE Press. ISBN 978-1-5386-2789-1. doi: 10.1109/SBST.2017..6. URL

https://doi.org/10.1109/SBST.2017..6.

[98] EvoSuite. Evosuite - automated generation of junit test suites for java classes, 2019.

URL https://github.com/EvoSuite/evosuite. Last accessed on: 29/11/2019.

[99] Gordon Fraser. Evosuite - automatic test suite generation for java, 2018. URL

http://www.evosuite.org/. Last accessed on: 19/09/2019.

[100] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Software Engi-

neering Notes, volume 29, pages 119–128. ACM, 2004.

http://doi.acm.org/10.1145/3194718.3194729
http://doi.acm.org/10.1145/3194718.3194729
https://doi.org/10.1109/SBST.2017..6
https://github.com/EvoSuite/evosuite
http://www.evosuite.org/

Bibliography 213

[101] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes,

and Gordon Fraser. Are mutants a valid substitute for real faults in software

testing? In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 654–665, 2014.

[102] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages

403–449. Springer, 2014.

[103] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tan-

tithamthavorn. Mining software defects: Should we consider affected releases? In

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),

pages 654–665. IEEE, 2019.

[104] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. A validation of object-

oriented design metrics as quality indicators. IEEE Transactions on software en-

gineering, 22(10):751–761, 1996.

[105] Hoa Khanh Dam, Truyen Tran, Trang Thi Minh Pham, Shien Wee Ng, John

Grundy, and Aditya Ghose. Automatic feature learning for predicting vulnerable

software components. IEEE Transactions on Software Engineering, 2018.

[106] Atlassian. Jira, 2022. URL https://www.atlassian.com/software/jira. Last

accessed on: 30/03/2022.

[107] Bugzilla. Bugzilla, 2022. URL https://www.bugzilla.org. Last accessed on:

30/03/2022.

[108] Git. Git, 2019. URL https://git-scm.com. Last accessed on: 19/09/2019.

[109] CVS. Cvs - open source version control, 2019. URL http://cvs.nongnu.org.

Last accessed on: 30/03/2022.

[110] Subversion. Apache subversion, 2021. URL https://subversion.apache.org.

Last accessed on: 30/03/2022.

[111] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes

induce fixes? ACM sigsoft software engineering notes, 30(4):1–5, 2005.

[112] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. Automatic iden-

tification of bug-introducing changes. In 21st IEEE/ACM international conference

on automated software engineering (ASE’06), pages 81–90. IEEE, 2006.

https://www.atlassian.com/software/jira
https://www.bugzilla.org
https://git-scm.com
http://cvs.nongnu.org
https://subversion.apache.org

Bibliography 214

[113] Mauŕıcio Aniche. Java code metrics calculator (CK), 2015. Available in

https://github.com/mauricioaniche/ck/.

[114] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476–493, 1994.

[115] Tao Wang and Wei-hua Li. Naive bayes software defect prediction model. In 2010

International Conference on Computational Intelligence and Software Engineering,

pages 1–4. Ieee, 2010.

[116] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, An-

nibale Panichella, and Sebastiano Panichella. Multi-objective cross-project defect

prediction. In 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation, pages 252–261. IEEE, 2013.

[117] Thilo Mende, Rainer Koschke, and Marek Leszak. Evaluating defect prediction

models for a large evolving software system. In 2009 13th European Conference

on Software Maintenance and Reengineering, pages 247–250. IEEE, 2009.

[118] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. Using the

support vector machine as a classification method for software defect prediction

with static code metrics. In International Conference on Engineering Applications

of Neural Networks, pages 223–234. Springer, 2009.

[119] A Günes Koru and Hongfang Liu. An investigation of the effect of module size on

defect prediction using static measures. In Proceedings of the 2005 workshop on

Predictor models in software engineering, pages 1–5, 2005.

[120] Jun Wang, Beijun Shen, and Yuting Chen. Compressed c4. 5 models for software

defect prediction. In 2012 12th International Conference on Quality Software,

pages 13–16. IEEE, 2012.

[121] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar De-

vanbu. Bugcache for inspections: hit or miss? In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations of soft-

ware engineering, pages 322–331. ACM, 2011.

Bibliography 215

[122] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Predicting the location

and number of faults in large software systems. IEEE Transactions on Software

Engineering, 31(4):340–355, 2005.

[123] Thelma Elita Colanzi, Wesley Klewerton Guez Assunção, Paulo Roberto Farah,

Silvia Regina Vergilio, and Giovani Guizzo. A review of ten years of the symposium

on search-based software engineering. In International Symposium on Search Based

Software Engineering, pages 42–57. Springer, 2019.

[124] Xiaoxing Yang, Ke Tang, and Xin Yao. A learning-to-rank approach to software

defect prediction. IEEE Transactions on Reliability, 64(1):234–246, 2015. doi:

10.1109/TR.2014.2370891.

[125] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. Predicting fault

incidence using software change history. IEEE Transactions on software engineer-

ing, 26(7):653–661, 2000.

[126] Thomas Shippey, Tracy Hall, Steve Counsell, and David Bowes. So you need more

method level datasets for your software defect prediction? voilà! In Proceedings of

the 10th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, pages 1–6, 2016.

[127] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, and John Grundy. Prac-

titioners’ perceptions of the goals and visual explanations of defect prediction

models. In 2021 IEEE/ACM 18th International Conference on Mining Software

Repositories (MSR), pages 432–443. IEEE, 2021.

[128] Jirayus Jiarpakdee, Chakkrit Kla Tantithamthavorn, Hoa Khanh Dam, and John

Grundy. An empirical study of model-agnostic techniques for defect prediction

models. IEEE Transactions on Software Engineering, 48(1):166–185, 2022. doi:

10.1109/TSE.2020.2982385.

[129] Steffen Herbold. On the costs and profit of software defect prediction. IEEE

Transactions on Software Engineering, 47(11):2617–2631, 2021. doi: 10.1109/

TSE.2019.2957794.

Bibliography 216

[130] Eran Hershkovich, Roni Stern, Rui Abreu, and Amir Elmishali. Prioritized test

generation guided by software fault prediction. In 2021 IEEE International Con-

ference on Software Testing, Verification and Validation Workshops (ICSTW),

pages 218–225. IEEE, 2021.

[131] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F Bissyandé, Yves

Le Traon, and Koushik Sen. Selecting fault revealing mutants. Empirical Software

Engineering, 25(1):434–487, 2020.

[132] Joengju Sohn and Shin Yoo. Empirical evaluation of fault localisation using code

and change metrics. IEEE Transactions on Software Engineering, 2019.

[133] Eran Hershkovich, Roni Stern, Rui Abreu, and Amir Elmishali. Prediction-guided

software test generation. In Proceedings of the 30th International Workshop on

Principles of Diagnosis DX’19, 2019.

[134] Amir Elmishali, Roni Stern, and Meir Kalech. Debguer: A tool for bug prediction

and diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 9446–9451, 2019.

[135] Gregory Gay. Generating effective test suites by combining coverage criteria.

In International Symposium on Search Based Software Engineering, pages 65–82.

Springer, 2017.

[136] Rene Just. Defects4j - a database of real faults and an experimental infrastructure

to enable controlled experiments in software engineering research, 2019. URL

https://github.com/rjust/defects4j. Last accessed on: 02/10/2019.

[137] Aldeida Aleti and Matias Martinez. E-apr: Mapping the effectiveness of automated

program repair. arXiv preprint arXiv:2002.03968, 2020.

[138] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D

Ernst, Deric Pang, and Benjamin Keller. Evaluating and improving fault localiza-

tion. In Proceedings of the 39th International Conference on Software Engineering,

pages 609–620. IEEE Press, 2017.

[139] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad.

Bugs. jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings of

https://github.com/rjust/defects4j

Bibliography 217

the 15th International Conference on Mining Software Repositories, pages 10–13,

2018.

[140] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. Bears:

An Extensible Java Bug Benchmark for Automatic Program Repair Studies. In

Proceedings of the 26th IEEE International Conference on Software Analysis, Evo-

lution and Reengineering (SANER ’19), 2019. URL https://arxiv.org/abs/

1901.06024.

[141] Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,

Taher Ahmed Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria,

Philip Makedonski, Matin Nili Ahmadabadi, Kristóf Szabados, Helge Spieker,

Matej Madeja, Nathaniel Hoy, Valentina Lenarduzzi, Shangwen Wang, Gema

Rodŕıguez-Pérez, Ricardo Colomo Palacios, Roberto Verdecchia, Paramvir Singh,

Yihao Qin, Debasish Chakroborti, Willard Davis, Vijay Walunj, Hongjun Wu,

Diego Marcilio, Omar Alam, Abdullah Aldaeej, Idan Amit, Burak Turhan, Si-

mon Eismann, Anna-Katharina Wickert, Ivano Malavolta, Matús Suĺır, Fatemeh

Fard, Austin Z. Henley, Stratos Kourtzanidis, Eray Tuzun, Christoph Treude,

Simin Maleki Shamasbi, Ivan Pashchenko, Marvin Wyrich, James Davis, Alexan-

der Serebrenik, Ella Albrecht, Ethem Utku Aktas, Daniel Strüber, and Johannes

Erbel. Large-scale manual validation of bug fixing commits: A fine-grained anal-

ysis of tangling. CoRR, abs/2011.06244, 2020. URL https://arxiv.org/abs/

2011.06244.

[142] Nan Li and Jeff Offutt. Test oracle strategies for model-based testing. IEEE

Transactions on Software Engineering, 43(4):372–395, 2016.

[143] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.

The oracle problem in software testing: A survey. IEEE transactions on software

engineering, 41(5):507–525, 2014.

[144] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for

assessing randomized algorithms in software engineering. Software Testing, Veri-

fication and Reliability, 24(3):219–250, 2014.

https://arxiv.org/abs/1901.06024
https://arxiv.org/abs/1901.06024
https://arxiv.org/abs/2011.06244
https://arxiv.org/abs/2011.06244

Bibliography 218

[145] András Vargha and Harold D Delaney. A critique and improvement of the cl

common language effect size statistics of mcgraw and wong. Journal of Educational

and Behavioral Statistics, 25(2):101–132, 2000.

[146] Catherine O Fritz, Peter E Morris, and Jennifer J Richler. Effect size estimates:

current use, calculations, and interpretation. Journal of experimental psychology:

General, 141(1):2, 2012.

[147] Soner Yigit and Mehmet Mendes. Which effect size measure is appropriate for

one-way and two-way anova models? a monte carlo simulation study. Revstat

Statistical Journal, 16(3):295–313, 2018.

[148] John W Tukey. Comparing individual means in the analysis of variance. Biomet-

rics, pages 99–114, 1949.

[149] Ning Li, Martin Shepperd, and Yuchen Guo. A systematic review of unsuper-

vised learning techniques for software defect prediction. Information and Software

Technology, 122:106287, 2020.

[150] Martin Shepperd, David Bowes, and Tracy Hall. Researcher bias: The use of

machine learning in software defect prediction. IEEE Transactions on Software

Engineering, 40(6):603–616, 2014.

[151] Jingxiu Yao and Martin Shepperd. Assessing software defection prediction perfor-

mance: Why using the matthews correlation coefficient matters. In Proceedings of

the Evaluation and Assessment in Software Engineering, pages 120–129. 2020.

[152] Jingxiu Yao and Martin Shepperd. The impact of using biased performance metrics

on software defect prediction research. Information and Software Technology, 139:

106664, 2021.

[153] Claudia Ayala, Burak Turhan, Xavier Franch, and Natalia Juristo. Use and misuse

of the term experiment in mining software repositories research. IEEE Transac-

tions on Software Engineering, 2021.

[154] Xuan Bach D Le, David Lo, and Claire Le Goues. History driven program repair.

In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), volume 1, pages 213–224. IEEE, 2016.

Bibliography 219

[155] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.

Sbst tool competition 2021. In 2021 IEEE/ACM 14th International Workshop

on Search-Based Software Testing (SBST), pages 20–27, 2021. doi: 10.1109/

SBST52555.2021.00011.

[156] Ignacio Manuel Lebrero Rial and Juan P. Galeotti. Evosuitedse at the sbst 2021

tool competition. In 2021 IEEE/ACM 14th International Workshop on Search-

Based Software Testing (SBST), pages 30–31, 2021. doi: 10.1109/SBST52555.

2021.00013.

[157] Andre Freitas. Schwa, 2015. URL https://pypi.org/project/Schwa. Last

accessed on 16/09/2019.

[158] André Freitas. schwa, 2015. URL https://github.com/andrefreitas/schwa.

Last accessed on 16/09/2019.

[159] Martin Fowler and Matthew Foemmel. Continuous integration. Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf, 122:14, 2006.

[160] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an em-

pirical investigation in search-based software engineering. Empirical Software En-

gineering, 18(3):594–623, 2013.

[161] Andrew Habib and Michael Pradel. How many of all bugs do we find? a study of

static bug detectors. In Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering. ACM, pages 317–328, 2018.

[162] Nan Li and Jeff Offutt. Test oracle strategies for model-based testing. IEEE

Transactions on Software Engineering, 43(4):372–395, 2017. doi: 10.1109/TSE.

2016.2597136.

[163] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. G* power

3: A flexible statistical power analysis program for the social, behavioral, and

biomedical sciences. Behavior research methods, 39(2):175–191, 2007.

[164] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of

the American statistical Association, 46(253):68–78, 1951.

[165] Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

https://pypi.org/project/Schwa
https://github.com/andrefreitas/schwa

Bibliography 220

[166] Hangcheng Liu. Comparing Welch ANOVA, a Kruskal-Wallis test, and traditional

ANOVA in case of heterogeneity of variance. Virginia Commonwealth University,

2015.

[167] Robert M Carroll and Lena A Nordholm. Sampling characteristics of kelley’s ε

and hays’ ω. Educational and Psychological Measurement, 35(3):541–554, 1975.

[168] A Gunes Koru and Hongfang Liu. Building effective defect-prediction models in

practice. IEEE software, 22(6):23–29, 2005.

[169] Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. Regular

property guided dynamic symbolic execution. In 2015 IEEE/ACM 37th IEEE In-

ternational Conference on Software Engineering, volume 1, pages 643–653. IEEE,

2015.

	Copyright notice
	Abstract
	Declaration
	Publications during enrolment
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Problem
	1.2 Research Objectives
	1.2.1 Time Budget Allocation
	1.2.2 Impact of Defect Predictor Imprecision
	1.2.3 Guiding the Search Process with Defect Prediction

	1.3 Research Contributions
	1.3.1 Contributions to Knowledge
	1.3.2 Contributions to Practice

	1.4 Thesis Structure

	2 Background
	2.1 Introduction
	2.2 Search-Based Software Testing
	2.2.1 Search-Based Software Testing for Unit Test Generation
	2.2.1.1 Problem Representation
	2.2.1.2 The Search Steps and Genetic Operators

	2.2.2 EvoSuite
	2.2.3 Single Objective Formulation
	2.2.3.1 Single Target Strategy
	2.2.3.2 Whole Test Suite
	2.2.3.3 Archive-Based Whole Test Suite

	2.2.4 Many-Objective Formulation
	2.2.4.1 Optimisation Problem
	2.2.4.2 Many Objective Sorting Algorithm
	2.2.4.3 Dynamic Many Objective Sorting Algorithm

	2.3 Defect Prediction
	2.3.1 Constructing Defect Prediction Models
	2.3.2 Types of Defect Predictors

	2.4 Summary

	3 Related Work
	3.1 Introduction
	3.2 Search-Based Software Testing
	3.3 Defect Prediction
	3.4 Defect Prediction in Automated Software Testing
	3.5 Summary

	4 Methodology
	4.1 Experimental Subjects
	4.2 Benchmark Methods
	4.3 Detecting Bugs with Search-Based Software Testing Techniques
	4.4 Bug Detection Evaluation Procedure
	4.5 Performance Measures
	4.6 Threats to Validity
	4.6.1 Construct Validity
	4.6.2 Internal Validity
	4.6.3 Conclusion Validity
	4.6.4 External Validity

	5 Time Budget Allocation
	5.1 Introduction
	5.2 Motivation
	5.3 Defect Prediction Guided Search-Based Software Testing
	5.3.1 Defect Predictor
	5.3.2 Budget Allocation Based on Defect Scores
	5.3.2.1 Exponential Time Budget Allocation Based on Defect Scores
	5.3.2.2 The 2-Tier Approach

	5.3.3 Search-Based Software Testing

	5.4 Experimental Evaluation
	5.4.1 Experimental Settings
	5.4.1.1 Time Budget
	5.4.1.2 Baseline Selection
	5.4.1.3 Parameter Settings
	5.4.1.4 Prototype
	5.4.1.5 Experimental Protocol

	5.4.2 Results

	5.5 Threats to Validity
	5.6 Summary

	6 Impact of Defect Predictor Imprecision
	6.1 Introduction
	6.2 Methodology
	6.2.1 Defect Prediction Simulation
	6.2.2 Search-Based Software Testing Guided By Defect Prediction
	6.2.2.1 Filtering Targets with Defect Prediction
	6.2.2.2 Dynamic Selection of Targets and Archiving Tests

	6.3 Analysis of Impact of Defect Prediction Imprecision
	6.3.1 Experimental Settings
	6.3.1.1 Experimental Subjects
	6.3.1.2 Prototype
	6.3.1.3 Parameter Settings
	6.3.1.4 Experimental Protocol

	6.3.2 Results
	6.3.2.1 Sensitivity to the Recall of the Defect Predictor
	6.3.2.2 Number of Buggy Methods
	6.3.2.3 Sensitivity to the Precision of the Defect Predictor

	6.3.3 Discussion

	6.4 Threats to Validity
	6.5 Summary

	7 Guiding the Search Process with Defect Prediction
	7.1 Introduction
	7.2 Motivation
	7.3 Predictive Many-Objective Sorting Algorithm
	7.3.1 Filtering Targets with Defect Prediction
	7.3.2 Updating Targets and Archiving Tests
	7.3.3 Balanced Test Coverage of Targets
	7.3.3.1 Independent Paths
	7.3.3.2 Temporarily Disabling Targets from the Search

	7.4 Experimental Evaluation
	7.4.1 Experimental Settings
	7.4.1.1 Defect Prediction Simulation
	7.4.1.2 Experimental Subjects
	7.4.1.3 Baseline
	7.4.1.4 Prototype
	7.4.1.5 Parameter Settings
	7.4.1.6 Experimental Protocol

	7.4.2 Results
	7.4.3 Discussion

	7.5 Threats to Validity
	7.6 Summary

	8 Conclusions
	8.1 Using Defect Prediction to Improve the Bug Detection Performance
	8.2 Impact and Handling of Defect Prediction Imprecision
	8.3 Summary

	9 Future Work
	A Time Budget Allocation
	A.1 Distribution of time spent by Schwa and BADS
	A.2 Bug detection performance comparison of SBSTnoDPG and SBSTO

	B Impact of Defect Predictor Imprecision
	B.1 MCC of the defect prediction configurations
	B.2 Bugs excluded from Defects4J dataset
	B.3 A statistical summary of the bug detection by SBST guided by DP
	B.4 Results of the normality tests
	B.4.1 Bugs having only one buggy method
	B.4.2 Bugs having more than one buggy method

	B.5 Results of the Tukey post-hoc test
	B.6 Results of the Games-Howell post-hoc test

	C Impact of Precision for Different Time Budgets
	C.1 Time Budget = 5 seconds
	C.2 Time Budget = 10 seconds
	C.3 Time Budget = 15 seconds
	C.4 Time Budget = 30 seconds
	C.5 Time Budget = 60 seconds

	D Guiding the Search Process with Defect Prediction
	D.1 Overview of the success rates of PreMOSA and DynaMOSA
	D.2 Bug detection results of PreMOSA and DynaMOSA over the time budget spent
	D.3 Bug detection results comparison of PreMOSA-100 against PreMOSA-75 over the time budget spent

	E Balanced Test Coverage of Targets
	E.1 Overview of the success rates of DynaMOSA+b and DynaMOSA
	E.2 Bug detection results of PreMOSA and DynaMOSA over the time budget spent

	Bibliography

