
Essays on Dynamic Conditional Score Models and
Breaks

A thesis submitted for the degree of

Doctor of Philosophy

by

Willy Arturo Alanya Beltran
B. Sc., Pontificia Universidad Católica del Perú, Peru
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Abstract

Abstract

In this dissertation I develop three essays on dynamic conditional score (DCS) models for univariate

and multivariate models. In the first essay, I focus on a DCS model with a short memory process

with changes in regimes for volatility. I also study volatility dynamics in my second essay using

score-based copula models with time-varying dependencies with two components. For my last

essay, I propose a score-driven multivariate model with factors for the location or mean of a set of

macroeconometric variables. All my essays deal with episodes of atypical observations such as the

global financial crisis and the recent pandemic.

In my first essay I propose and study a dynamic conditional score model with random shifts, the RS-

Beta-t-EGARCH model, for modelling volatility in financial markets. The addition of random shifts

can explain the high volatility persistence typically estimated for these financial series. This setting

constitutes an alternative approach to long memory models; moreover, the new model identifies

volatility clusters. I apply the model to stock returns in South American emerging markets. The

estimates for the random shifts fit the main regime disturbance events in the period of study. Monte

Carlo simulations show that the new model replicates the time and spectral domain properties of

the original series. Finally, out-sample forecast evidence favours the new specification.

For my second essay, I study score-driven copula models for modelling high persistence dependence

between financial volatility series. I model this persistence dependence with two components,

one for the long memory and the other for the short-term process. The addition of components

offers a parsimonious solution for modelling high persistence while also allowing for a short-term

component that captures transient shocks. I apply the model to emerging equities in the Americas.

The estimates are robust to the advent of the pandemic, and data resampling delivers similar

parameter estimates. The proposed two-component model improves the in-sample diagnostics and

generates more accurate out-of-sample forecasts.

Lastly, in my third essay, I develop and study a factor-augmented quasi-vector autoregressive model

for economic policy analysis in tumultuous times. An observation-driven framework that exploits

the score model information allows maximum likelihood estimation. This multivariate local model

approach, which assumes a Student t error distribution, is robust to atypical observations such as

the global financial crisis and the recent pandemic. The model outperforms the factor-augmented

iv
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VARMA model because of the assumed heavy tails that capture the COVID-19 atypical data and

other turbulent episodes. An empirical application to the U.S. economy that assess monetary policy

reveals that estimates and impulse responses are stable when considering the sample before and

after COVID-19.
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Introduction

1 Introduction

1.1 Motivation

Countries in Latin America are susceptible to multiple shocks, due to internal social and political

conflicts, their dependence on larger economies and unstable commodity prices. Given these types

of shocks in emerging economies, the modelling of financial volatility, changes in volatility, breaks

and their effects on such markets is important. Accordingly, in this dissertation I develop models for

volatility in my first two essays with the aim of contributing to the growing literature on modelling

financial series using dynamic conditional score models. For my last essay, I propose and analyse a

score-based model for the multivariate location of macroeconomic variables with factors and heavy

tails, and I use it to analyse monetary policy in the United States.

The proposed models in this thesis are specified and estimated within the dynamic conditional

score (DCS) framework because this framework facilitates maximum likelihood estimation and it

can handle shocks of large magnitude. Further, all of these models assume a Student t distribution

in their structure. This distribution can accommodate abnormal shocks because of its heavy tail

features. As time passes the world faces new challenges. The emerging economies in South America

have experienced episodes of turmoil such as those associated with the Asian and global financial

crises, as well as other more local shocks. They have also experienced the recent health crises, and

now there is a conflict in Europe, which could mean another big shock in the short to medium

horizon.

Fry-McKibbin, Hsiao and Tang (2014) describe nine episodes of significant stock crashes in the world

from 1997 to 2013. Four of them originated in the Americas: the Brazilian sudden devaluation from

January to February 1999, the capital control in Argentina at the end of 2001, as well as the Dot-com

and the Great Recession U.S. shocks that began in March 2000 and September 2008, respectively.

These events suggest a variety of breaks, regimes and periods of co-movements in stock volatility.

The main motivation for studying stock markets in South America comes from their vulnerability

to these shocks, but also from their susceptibility to regional and political shocks that the DCS

framework is able to handle. For example, Figure 1.1 plots the squared returns from Chilean,

Colombian and Peruvian, as a proxy of their conditional volatility.
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Introduction

Figure 1.1: Squared returns

Notes: The grey lines mark the second half of 1998; the purple lines, the 2008; and the green lines, the period

March-June 2020, associated with the Asian crisis, U. S. financial crisis, and the pandemic, respectively.

We can identify episodes such as the crisis of 1998 triggered in Asian countries as a result of con-

tinuous currency devaluations (Dungey, González-Hermosillo, and Martin, 2011). In addition, the

Great Recession in the United States in 2008 exacerbated the stock market’s volatility in South

America, as did the pandemic that started in 2020. Further, these stock markets reflect sentiment

about national elections, which in these developing countries could mean potential structural re-

forms. For instance, it is clear that the Peruvian market reacted strongly around mid-2006 and

mid-2011 when the national elections took place.

Stock market volatility series generally display persistent behaviour as a consequence of these

shocks, in addition to their heightened volatility. In my first essay, I formally test if the volatility

in South American stock markets fits a model with a long memory pattern, or if instead it follows

a structure of a short term process with changes in regime. I propose a model that captures these

2
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features so that we can identify volatility regimes in South America.

In my second essay I seek to find common patterns in pairs of American countries that share

economic and trade linkages. Figure 1.2 plots overlapping stock return series of Argentina and

Brazil (top panel), and Canada and Mexico (bottom panel) from October 1996 to December 2020.

Argentine and Brazilian stock returns seem to have overreacted similarly to the capital flows oc-

casioned during the Brazilian devaluation shock in 1999, the Argentinian capital control distress

of 2001, the Asian crisis, and also to the global financial crisis and the pandemic. We can find

similar co-movements in the stock markets for both pairs around these crisis episodes, which gives

evidence of interdependence in stock market volatility. It is important to distinguish these global

shocks from regional shocks, either in South America for Argentina and Brazil, or North America

for Canada and Mexico. There are also local shocks in each of these markets. In my second essay,

I propose a two-component model to deal with long-lasting shocks, but at the same time the model

also identifies more transient shocks in their markets.

The pandemic shock generated a higher cluster of volatility. Recently, Fry-McKibbin, Greenwood-

Nimmo, Hsiao and Qi (2022) describe the COVID-19 shock and its impacts on the group of 20

(G20) countries, which includes these four economies. They identify two COVID phases, the first

one in China at the early stages of the coronavirus spread, and the second phase originated in the

USA, after the official pandemic announcement from the World Health Organization (WHO). They

find that Argentina was particularly affected in the first phase as we can see in the top panel of

Figure 1.2. Overall, these countries were impacted by the health shock in its second phase.

We should bear in mind that the American continent was strongly affected by the recent pandemic,

which rendered numerous life losses estimated to be 2.7 million people1 according to Our World in

Data. Many countries (including Latin American countries), imposed early and drastic restrictions

such as quarantines, and closures of borders at the beginning of the pandemic generating a period

of huge uncertainty. This unprecedented health shock affected Canada with a similar severity.

1Data as of April 2022.
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Figure 1.2: Stock market returns for Argentina, Brazil, Canada and Mexico

In my final essay I assess monetary policy shocks in the United States. The U.S. is one of the

biggest economies in the world and its economic decisions will often have a significant impact on

many countries. To give some examples, Latin American countries have high levels of dollarization,

and so they experience pressure to devaluate their currencies when they receive exchange rate

shocks. Further, a rise in the U.S. Federal funds rate could mean a flow of capital from Latin

America, assuming investors seek greater returns. The U.S. economy is subject to many types of

shocks. I show the first-differenced real personal income and the evolution of the U.S. Federal funds

rate in Figure 1.3.

4
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Figure 1.3: Real personal income and Federal funds rate

We see how the big pandemic shock hit the U.S. economy. Real personal income has considerable

variance at the end of the sample, which is marked by big outliers when the data is transformed into

first differences. This shock was unprecedented if we compare it with the financial crisis and other

major shocks. Monetary policy during the financial crises and also during the pandemic consisted of

a quick decrease in the Federal funds rate to just above the zero lower bound, in order to stimulate

the economy. We can identify zero lower bound episodes associated with the Great Recession from

December 2008 to December 2015, and a recent second episode that started in March 2020.

Figure 1.4 shows the U.S. unemployment rate and the stock return of the main representative index

market in that country, the S&P 500. We can observe a smooth increase in the unemployment

rate towards the end of 2009 as a result of the Great Recession. After this shock, unemployment

showed a marked trend to its level before the financial crisis. However, the pandemic lead to an

outlier episode in 2020. Similarly, monthly S&P 500 stock returns display large losses in market

capitalization in 2008 and 2020.

5
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Figure 1.4: U.S. Unemployment rate and stock returns

I use principal components and many economic indicators of U.S. output, income, labor, consump-

tion, housing, inventories, interest rates, exchange rates, credit and prices, to capture the main

features of U.S. data. These components (factors) capture the variability in the panel data of

economic indicators and reflect the most turbulent episodes. I then incorporate these factors into

a score-driven macroeconomic model that is capable of dealing with these shocks and evaluate

monetary policy in the USA.
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1.2 The dynamic conditional score framework

The work of Harvey and Chakravarty (2008), Creal, Koopman and Lucas (2013) and Harvey (2013)

emphasized that the scaled score of the likelihood can be exploited to facilitate the estimation of

models with time varying parameters. Such score-driven models, often known as dynamic condi-

tional score (DCS) models, or versions of DCS models that use time-varying scaling parameters for

the score (known as generalised autoregressive score (GAS) models), have become popular in the

literature. By design, the DCS framework can be used to model the location or mean, as well as the

scale or volatility. Current applications of DCS methodology includes its use in Markow switching

settings (Bazzi, Blasques, Koopman and Lucas, 2017); censoring (Harvey and Ito, 2020); dynamic

Tobit models (Harvey and Liao, 2019); and vector autoregressive models, as introduced by Blazsek

and Licht (2020).

The DCS framework for modelling volatility provides an alternative approach for estimating the

traditional generalized autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev

(1986) and the discrete stochastic volatility (SV) model first proposed by Jaquier, Polson, and Rossi

(1994). In addition, in the macroeconomic literature, this approach can be used for the estimation

of dynamic stochastic general equilibrium models (DSGE) and vector autoregression (VAR) models

with heavy tails. Given the recent pandemic and other shocks in the recent decades, this approach

provides an alternative way to modelling these episodes of turmoil observations.

The gains from modelling volatility using the DCS framework in comparison to the traditional

GARCH models comes from the score term of the model. Let us consider the t-GARCH model for

a demeaned return yt given by

yt = σtϵt, (1.1)

σ2t+1 = α+ β0σ
2
t + β1y

2
t , (1.2)

σ2t+1 = α+ ϕσ2t + β1σ
2
t u

∗
t , (1.3)

ϵt ∼ tν , (1.4)

with ϕ = β0+β1 < 1 and u∗t = y2t /σ
2
t −1. u∗t is a martingale difference sequence and can be viewed

as a volatility shock. The DCS framework exploits this martingale property by replacing u∗t with

7
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ut so that equation (1.3) becomes:

σ2t+1 = α+ ϕσ2t + β1σ
2
t ut, (1.5)

ut = [(ν + 1)y2t /{(ν − 2)σ2t + y2t }]− 1, (1.6)

ut = (ν + 1)bt − 1, (1.7)

bt =
y2t /(ν − 2)σ2t

1 + y2t /(ν − 2)σ2t
, (1.8)

bt ∼ Beta

(
1

2
,
ν − 2

2

)
, (1.9)

where ut is a term proportional to the score of the process. This model is called a Beta-t-GARCH

model since the score term follows a Beta distribution. The use of ut leads to efficient and robust

estimates when atypical observations are present relative to the t-GARCH model. This is because

the Beta-t-GARCH model takes into account the information of the degrees of freedom through

the score of the model, as we can see in equation (1.6).

A disadvantage of standard Stochastic Volatility models is that they require an approximation for

the likelihood function because of the assumed latent components. However, in the DCS setting

the likelihood function is derived in closed form, given that the model is fully conditioned by its

score.

The gains from the DCS model when modelling the location of a model driven by a Student t

multivariate error comes from the use of the score, which replaces the error term in state-space

models. As discussed in Harvey (2013), we may think of a simple state space model with the

following representation for series xt:

xt = γt + εt, εt ∼ N(0, σ2ε), (1.10)

γt+1 = γt + ηt, ηt ∼ N(0, σ2η), (1.11)

where εt is an error term, and γt follows a random walk process with innovation ηt. Further, the

Kalman filter representation depends on the prediction error υt and the Kalman gain kt:

υt = xt − γt|t−1, (1.12)

γt+1|t = γt|t−1 + ktυt. (1.13)

8
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The DCS framework replaces this prediction error term with a term proportional to the score ut

scaled by a fixed parameter k. One important advantage of this observation-driven representation

is that it can be estimated by maximum likelihood. This is an alternative approach in contrast

to Bayesian estimation, which might become computationally demanding when considering large

non-linear models.

A further advantage of the DCS is its flexibility since it can model directly the main parameters

of a distribution. Specifically, I model the univariate scale and multivariate location Student t

distribution in my first and third essays, respectively. Meanwhile, in my second manuscript I

utilise a Student t copula.

1.3 Overview and outline

My thesis is comprised of three essays: My first two essays focus on the scale or volatility of

univariate and multivariate models, whereas the last chapter focuses on a multivariate location

model.

In the first essay of my dissertation, I analyse financial univariate series with high persistence in their

volatility, using a novel dynamic conditional score (DCS) framework. This approach exploits the

information from the score of the model and the benefits of this approach include the modelling of

time-varying parameters such as changes in the location or scale of a distribution and its robustness

to outliers.

I adapt the DCS model for volatility to include random shifts, and I show that high persistence

in volatility can be modelled as a combination of short-memory and random shifts processes. The

new model is able to capture short-term persistence and identify the breaks and changes in regimes

of volatility in South American stock market volatilities. I use Monte Carlo simulations to show

that this process resembles the original time and spectral properties of the data. Compared to the

model without shifts, this model presents a better in-sample and density forecast performance. I

have published this essay at Finance Research Letters.

My second essay also examines high persistence in volatility, but in time-varying dependence pa-

rameters arising from score-driven copula models. I model explicitly the high persistence using
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a specific long-term component, but at the same time account for transient shocks with another

component. The empirical application considers three country pairs in the American continent that

are linked geographically and economically.

The treatment of the dependence parameter identifies shocks in the long-component with more

duration such as the Asian and US. financial crises, and the current pandemic. The short-component

accounts for shorter-run local shocks that affect the dynamics of these markets. The model with

components outperforms the single-component baseline model according to different criteria.

Finally, in the third essay I develop a factor-augmented multivariate location model using the DCS

approach. This model adds component factors to a quasi-vector autoregressive (QVAR) model

for the assessment of monetary policy in the United States. My approach assumes a Student t

distribution for the shocks, which accommodates events such as the global financial crisis and the

COVID-19 shock.

I estimate this model with a two-step estimation procedure. In the first step, I estimate the

principal factors from information variables for the U.S economy. Then, in the second step I add

these estimated factors into a QVAR model with the monetary policy instrument. I study the

monetary policy shocks in the USA and find that the non-linear model outperforms the linear

model. Also, the proposed model is robust to big shocks and produces stable estimates, even when

considering zero lower bound episodes.

The next chapter presents my article on a dynamic conditional score model with random shifts.

In chapter 3, I present the results from my proposed multivariate copula model with components.

Chapter 4 develops an augmented-factor multivariate location model for assessing monetary policy.

Finally, in chapter 5, I present the conclusions of my dissertation and some proposals for further

research.

10
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2 Modelling Stock Returns Volatility with DCS Models and Ran-
dom Shifts

2.1 Introduction

In this chapter, I develop a dynamic conditional score (DCS) model for volatilities with random

shifts (RS) based on the assumption that they follow a Student t distribution. Introducing RS

enables the capture of volatility shifts in return data and I explore various ways in which RS

improve the DCS specification, especially for South American emerging markets which are subject

to many unpredictable shocks.

A recent trend in the volatility literature is to use observation-driven approaches— the dynamic

conditional score models of Harvey and Chakravarty (2008), Creal, Koopman, and Lucas (2013),

and Harvey (2013)— to model time-varying parameters. Creal et al. (2013) and Harvey (2013)

assert that this specification is robust to outliers because this setting directly incorporates the

information from the score of the process, which is ignored in the GARCH model of Bollerslev

(1986).

Recently, the DCS model has emerged as an alternative approach for modelling volatility, to be

used instead of the traditional generalized autoregressive conditional heteroskedasticity (GARCH)

model of Bollerslev (1986) or the discrete stochastic volatility (SV) model first proposed by Jaquier,

Polson, and Rossi (1994). Creal et al. (2013) and Harvey (2013) assert that this specification is

robust to outliers because this setting directly incorporates the information from the score of the

process, which is ignored in GARCH models.

A disadvantage of SV models is the need to approximate the likelihood function because of the

assumed latent components. Further, due to its unobservable nature, an SV model captures the

volatility in an indirect way, and its estimation requires a preliminary transformation (e.g., tak-

ing logarithms) of its error terms. This approximation requires a mixture of normal distribu-

tions. Nonetheless, in the DCS setting the likelihood function is derived in closed form, and this

observation-driven approach models the time-varying volatility directly through the scale of the

distribution.
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The main contribution of this study is the combination of the DCS model for volatility with random

shifts. The addition of RS follows the work of Qu and Perron (2013) and this process is mainly

driven by a Bernoulli parameter. My model not only captures the main volatility episodes, including

outliers, but also allows for random shifts that are capable of identifying volatility regimes. This

is a novel approach because the literature concerning DCS models often assumes that volatility is

a long memory process. For example, Lucas and Opschoor (2019) model the fractional integration

parameter, and Harvey and Palumbo (2019) establish long and short memory processes for their

two-component model for realised volatility.

Perron and Qu (2010) develop a graphical device using the log periodogram of a series. Given an

estimated periodogram with M frequencies, they identify three features that mimic a short-term

process with random shifts in a sample of T observations: a sharp decay for values less than T 1/3,

a steady shape between T 1/3 and T 1/2, and a slow decay starting at T 2/3. In a long memory

process, by contrast, the periodogram will remain steady across the sample. Figure 2.1 plots the

periodogram for the proxy of volatilities in South American returns, where the vertical lines mark

T 1/3, T 1/2 and T 2/3. These estimated periodograms support the hypothesis of random shifts.

Figure 2.1: Volatility proxy periodogram

Note: The proxy is computed as ln(x2t + 0.001), where xtare the demeaned stock returns.
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In addition, Qu and Perron (2013) incorporate RS in a stochastic volatility model. Alvaro, Guillén,

and Rodŕıguez (2017) use this stochastic volatility model with random shifts to study the volatility

of commodity prices. They find that, in Latin America, the estimated regimes of volatility are highly

correlated with business cycles. This underscores the importance of random shifts when modelling

volatility in emerging markets. However, a limitation of these studies is that they assume normality

or mixed normal distributions.

In this chapter, volatilities follow a Beta-t-EGARCH model with RS. This model not only captures

the main volatility episodes, including outliers, but also allows for random shifts that are capable

of identifying volatility regimes. This is a novel approach because the literature concerning DCS

models often assumes that volatility is a long memory process. For example, Lucas and Opschoor

(2019) model the fractional integration parameter, and Harvey and Palumbo (2019) establish long

and short memory processes for their two-component model.

The addition of RS follows the work of Qu and Perron (2013) and the process is mainly driven by

a Bernoulli parameter. When the Bernoulli parameter takes the value of 1, then a shift occurs in

the volatility of returns and is adjusted at the level of the volatility shock, but if there is no such

shift, the process maintains the level of the previous period. A scale parameter in the RS process

captures the aggregate magnitude of the shifts in the sample.

Monte Carlo simulations show that the proposed model captures the time and frequency properties

of the original series. As an empirical application, I use the stock returns of the main emerging

market economies in South America: Chile, Colombia and Peru. After the Pacific Alliance trade

agreement in 2011, these economies established deeper trade and financial linkages. The Pacific

Alliance represents about a third of the gross domestic product of the region.

I find that the persistence of a shock in the Beta-t-EGARCH model without RS for the stock market

returns that I analyse is relatively higher than that in a model with RS since the RS component

captures part of the persistence. These results highlight the importance of modelling shifts in

volatility because this will have a significant effect on the forecast of the duration of shocks, and

hence, on the transitory effects of a shock to the volatility. In addition, the model captures the main

volatility regimes in these emerging markets as a result of multiple shocks, regardless of whether

they arise from internal or external turmoils.
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In comparison with the base Beta-t-EGARCH model, the new model shows a better fit to the

data. According to the log-likelihood and the information criterion, the RS-Beta-t-EGARCH model

improves in-sample fit. Monte Carlo simulations show that the new model replicates the time

and spectral domain properties of the original series. In addition, the model with shifts presents

more accurate density forecasts which might be employed in applications such as value-at-risk and

expected shortfall.

The structure followed in this chapter is as follows: Section 2.2 discusses the Beta-t-EGARCHmodel

with random shifts. Section 2.3 and 2.4 present the main empirical findings in the application of

the model to emerging market economies. Section 2.5 shows, through Monte Carlo simulations,

the relevance of random shifts, and density forecast comparison. The conclusions are set out in the

final section.

2.2 The RS-Beta-t-EGARCH model

The Beta-t-EGARCH model with random shifts (RS-Beta-t-EGARCH) employs an exponential

link function to model the volatilities through the scale.2 The RS-Beta-t-EGARCH model for the

demeaned return yt, for t = 1, ..., T , is as follows:

yt = exp(λ̃t)εt, εt ∼ tν , (2.1)

λ̃t = ω + λt + µt, (2.2)

λt = ϕλt−1 + κλut−1, (2.3)

µt(st) = µt−1(st−1) + δtκµut−1, (2.4)

ut ∝
∂ ln ft(yt|Yt−1)

∂λ̃t
. (2.5)

This model uses an exponential link function between the logarithm of the scale3 λ̃t and the volatility

σt so that σt = [exp(λ̃t)/{(ν − 2)ˆ(1/2)}], where ν are the degrees of freedom of the zero mean

Student t distribution εt. The scale λ̃t has three components: the constant term ω, the short-term

component λt and the random shifts process given by µt.

2This model retains and improves the properties of the EGARCH model presented by Nelson (1991).
3Hereafter, I use the term scale when referring to the logarithm of the scale.
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The short-term component λt has persistence ϕ and it captures temporary increments in the scale

as a result of a volatility shock. On the other hand, a shock to the random shifts process in equation

(17) will be maintained until another shock occurs. Random shifts occur when a Bernoulli variable

δt takes the value of 1 and an associated indicator st is then equal to 1. This occurs with probability

α. There is no random shift when st = 0, and this occurs with probability 1− α.

Following Klaassen (2002), the dependence of µt−1 on st−1 is integrated out, so that

µt−1(st) = E[µt−1(st−1)|st, Yt−1], (2.6)

µt−1(st) = (1− α)µt−1(st−1 = 0) + αµt−1(st−1 = 1). (2.7)

Finally, ut is proportional to the conditional score, κλ is a scaling parameter and κµ scales the

cumulative contribution of ut to the random shift process µt.

The RS-Beta-t-EGARCH model can be estimated by maximizing the likelihood with respect to

the parameter set ψ = (ω, ϕ, κλ, κµ, α) and the degrees of freedom ν. The model lies between the

single component model of Harvey (2013) when α = 0, and the two-component model of Harvey

and Sucarrat (2014) when α = 1 and the persistence of the long-term component is set to one.

The identifiability conditions for the latter model are that 0 < κλ < κµ and the short-component

persistence ϕ < 1, and these conditions will suffice for the RS-Beta-t-EGARCH model for which

0 ≤ α ≤ 1, ensuring that estimates will be consistent and asymptotically normally distributed.

2.3 Empirical Application

Densities of financial series (e.g., returns in stock and currency markets) often show heavy tails due

to their considerable instability. South American stocks are particularly vulnerable to episodes of

volatility, since they are both influenced by global economic shocks as well as their own frequent

local political and economic crises. This study focuses on Chile, Colombia and Peru, because these

countries have been in the Pacific Alliance trade agreement since 2011 and their stock markets are

integrated through the Mercado Integrado Latinoamericano (MILA) program.

Table 2.1 presents statistics for daily returns on the S&P 500 for the United States, and the stock
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returns from the main equity markets of Chile (IPSA), Colombia (COLCAP) and Peru (IGBVL).4

The sample covers the period between January 1998 and June 2020, but it starts from January 2001

for Colombia, which is when the Colombian equity index was created. The mean returns are close

to zero, indicating a lack of arbitrage opportunities. In addition, the statistics indicate departures

from a normal distribution, with negative skewness, high kurtosis and a rejection of normal density

behaviour from the Jarque-Bera test.

Table 2.1: Stock market returns statistics

Country United States Chile Colombia Peru

Value/Index S&P 500 IPSA COLCAP IGBVL

Mean 0.028 0.031 0.056 0.048

Maximum 11.580 12.528 15.822 13.673

Minimum -11.984 -14.115 -15.883 -18.633

Standard Deviation 1.254 1.119 1.301 1.366

Skewness -0.151 -0.214 -0.266 -0.541

Kurtosis 13.177 18.587 24.503 19.583

Jarque-Bera 24434.750 56689.280 89275.590 62653.410

Number of Observations 5657 5596 4631 5445

Note: Returns are computed as rt = [log(Pt)− log(Pt−1)] ∗ 100,where Pt is the index.

Almost all the South American stock returns exhibit a higher skewness, which is statistically signif-

icantly larger, when compared to the S&P 500 returns.5 The more pronounced negative skewness

reflects more downturn episodes than in the United States, which might be explained by its rel-

evance worldwide. These features are common in small open economies because of the multiple

shocks (i.e., external shocks from commercial partners, as well as internal, political, and commodity

shocks) that they face. These properties might also suggest the modelling of multiple regimes of

volatility in emerging market economies. The exception is Peru, but this market shows a greater

standard deviation and kurtosis relative to the U.S. stock market.

4The returns are computed as rt = [log(Pt)− log(Pt−1)] ∗ 100, where Pt is the index.
5The 95 percent confidence intervals for the skewness (kurtosis) from each set of returns do not overlap.
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Figure 2.2 displays the South American stock market returns. It is clear that key economic events,

such as the Asian crisis shock during the 1990s, the global financial crisis in 2008 and the recent

pandemic at the beginning of 2020, are episodes of atypical uncertainty. We can also identify

episodes of higher instability for each market such as national general elections involving candidates

of radical ideas in Peru in mid-2006 and mid-2011, and in Colombia in the middle of a military

conflict in May 2022. Further, in Chile there were a series of economic reforms at the end of 1990s

after the established dictatorship of Pinochet. Another event that struck the Chilean and Peruvian

markets in 1998 was the Russian crisis due to the trade linkages of these countries with the US

market, which was considerably affected from this shock (Fry-McKibbin, Hsiao and Tang, 2014).

Figure 2.2: South American stock returns

Note: Returns are computed as rt = [log(Pt)− log(Pt−1)] ∗ 100,where Pt is the country index.

Financial markets react quickly to disruptive events such as political upheaval, the global financial

crisis, or more recently, global health alarms because of their liquid nature. It is important to

develop volatility market models that are useful for financial analysts, including those who evaluate

17



Modelling Stock Returns Volatility with DCS Models and Random Shifts

Value at Risk (VaR). Policymakers in emerging market economies also find volatility models helpful

since such economies experience high commodity price volatility.

2.4 Model estimates

Table 2.2 shows estimates for the Beta-t-EGARCH and the RS-Beta-t-EGARCH models6 using

daily demeaned South American stock returns data.7

The persistence parameter ϕ decreases significantly8 in all samples by approximately 0.02-0.05,

suggesting that a variance shock has a more transitory effect in the new specification relative to

the Beta-t-EGARCH model. This is expected since part of the persistence has now been captured

by the random shifts process. Further, the scaling parameter κµ and the shift parameter α in the

RS process are jointly significant according to the likelihood ratio test.

The random shift parameter has a point estimate of 0.0219 for Peru, which suggests that approx-

imately 113 shifts occurred in the estimated volatility sample. The shock is permanent until the

realization of the next shift; in other words, there are 114 identified regimes of volatility. For Chile

and Colombia, the RS parameter estimates are 0.008 and 0.010, which suggest 43 and 48 volatil-

ity regimes, respectively. According to the new model, the Peruvian returns volatility presents

a relatively high number of shifts; however, the scaling parameter associated with shifts is 0.869

and relatively low, which implies that most of the estimated regimes are not as pronounced. For

Colombia, the cumulated magnitude estimate is 1.602, and for Chile 2.060, so these values establish

more marked regimes. Based on the likelihood and the Akaike (1974) information criterion (AIC),

the new model has a better in-sample fit relative to the Beta-t-EGARCH model.10

6The optimization procedure corresponds to the interior point algorithm in MATLAB 2020a.
7I set κλ < κµ and the parameter estimates fulfill these identifiability conditions
8The confidence intervals for the parameter estimates from each model do not overlap.
9The estimates for the short-memory component are robust to different initial values. However, the initial values

for the RS process are sensitive to bigger values in the number of shifts, for instance initial values above 0.1.
10Estimates of the Harvey and Sucarrat (2014) two-component model give similar likelihood measures, but this

cannot account for volatility shifts (see Figure 2.4 in this essay) generated by a RS-Beta-t-EGARCH model.
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Table 2.2: DCS models estimates

Beta-t-EGARCH RS-Beta-t-EGARCH

Parameter Chile Colombia Peru Chile Colombia Peru

ω -0.210 -0.184 -0.147 0.320 -0.265 0.074

(0.011) (0.041) (0.319) (0.016) (0.071) (0.027)

ϕ 0.970 0.947 0.970 0.951 0.915 0.921

(0.005) (0.010) (0.005) (0.002) (0.012) (0.008)

κλ 0.104 0.142 0.104 0.093 0.132 0.100

(0.010) (0.046) (0.025) (0.006) (0.108) (0.016)

κµ 2.060 1.601 0.869

(0.030) (0.166) (0.030)

log (ν) 2.182 1.771 1.677 2.201 1.794 1.701

(0.020) (0.070) (0.238) (0.013) (0.305) (0.037)

α 0.008 0.010 0.021

(0.003) (0.004) (0.008)

logL -7329.468 -6492.035 -7887.726 -7325.251 -6485.220 -7877.966

AIC 14666.936 12992.069 15783.453 14660.501 12980.440 15765.933

ϕNO−ϕRS 0.020∗∗∗ 0.033∗ 0.049∗∗∗

LR [H0 : κµ = α = 0] 8.435∗∗∗ 13.630∗∗∗ 19.520∗∗∗

Observations 5596 4631 5445 5596 4631 5445

Notes: The standard errors (in parentheses) are computed using the inverse of the Hessian matrix. AIC is the Akaike

Information Criterion. ϕNO and ϕRS denote the estimated persistence from the Beta-t-EGARCH model and RS-

Beta-t-EGARCH model, respectively. LR is the likelihood ratio test statistic and H0 denotes the null hypothesis.

∗ and ∗∗∗ imply significance at 10% and 1%, respectively.

As evidenced in Figure 2.3, the estimated Beta-t-EGARCH score term periodogram of Geweke

and Porter-Hudak (1983) that estimates the fractional integration parameter d̂ at frequencies M =

[10, T 4/5] in a sample of T observations shows a behaviour that Perron and Qu (2010) document

as typical of a random shifts process. That is, an abrupt decay in periodogram at frequencies
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less than T 1/3. We can see from the gap between both scores at frequencies lower than T 1/2 that

the score for the RS-Beta-t-EGARCH model has removed the shift pattern that is now modelled

appropriately in the shift process.

Figure 2.3: Score term periodogram for the Beta-t-EGARCH and RS-Beta-t-EGARCH models

Notes: d̂ is the fractional integration parameter at frequenciesM = [10, T 4/5] in a sample of T observations.

The vertical lines represent the frequencies at T 1/3, T 1/2, and T 2/3.

Figure 2.4 plots the smoothed estimates of the random shift processes and the volatility. The gap

between these two series corresponds to the short-term process. The RS capture the main regimes

of volatility and each regime lasts until the model detects a new shift. These estimates capture

the main cycles of uncertainty in each of the South American countries. We can see regimes of

high volatility for all the countries because of the currency crisis in Asian countries during the
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second half of 1998. Also, the U.S. financial crisis, especially in 2008 hit the emerging markets of

the region. Last, the pandemic has exacerbated the market with volatility peaks at the end of the

sample.

Figure 2.4: Smoothed volatility and random shift process

Notes: The grey lines mark the second half of 1998; the purple lines, the 2008; and the green lines, the period

March-June 2020, associated with the Asian crisis, U. S. financial crisis, and the pandemic, respectively.

Each one of the countries has specific internal events that make the equity market react when there

is good or negative perception about policy decisions. For instance, there were military conflicts

between the Revolutionary Armed Forces (FARC) and the police in Colombia during the decade of

2000, which involved the kidnapping of the candidate for the national elections Íngrid Betancourt

in February 2002. Mej́ıa-Posada, Restrepo-Ochoa and Isaza (2022) showed that terrorism attacks
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generated abnormal negative returns in the Colombian stock market, whereas the peace process

with the FARC in 2016 produced positive reactions in the COLCAP index.

In addition, the Colombian stock market was particularly vulnerable to the rise in interest rates

in the US., after the devaluation of the national currency in June 2006 (Sosa, Ortiz and Cabello,

2017). In Chile, the main economic and labour regulations over issues such as pension funds during

the 2000s had negative effects on the market. However, the Chilean stock market showed times of

relative calm during the 2010s due to sound performance of the copper industry.

Furthermore, the estimates capture the main cycles of uncertainty confronting the Peruvian econ-

omy from 1998-2016: the political and economic reforms of the 2000s; a period of relative stability

from 2002-2005; a heightened level of uncertainty in 2006 as a result of general elections when some

parties took radical positions against economic openness; and the presidential elections of 2011 and

2016, which again created turmoil in the stock market.

I use the Bai and Perron (2003) global minimizer algorithm to fit the number of regimes estimated by

the RS-Beta-t-EGARCH model so that we can determine the average duration per regime and also

identify the jumps in volatility. Figure 2.5 shows the smoothed RS process and the fitted regimes

for all returns. The average duration regimen is around 130, 96, and 48 days for Chile, Colombia

and Peru, respectively. In addition to the Asian and U.S financial crisis, and the pandemic, we

can identify relevant volatility regimes for each country. For Chile, there was higher volatility from

May 2018 until December 2018, resulting from the election of a new government in March 2018 and

the subsequent implementation of new policies. Colombia presents a regime of volatility starting

in October 2006 which might originate from the rise in the US policy rate and associated outflows

of capitals to that country (Guaŕın, Moreno and Vargas, 2014). Finally, in the case of Peru there

was a regime linked to the tight dispute for presidency that involved radical reforms from February

2006 until after the general elections in April 2006.

2.5 Monte Carlo Evidence

I generate 10000 artificial series for each country assuming a data generating process (DGP) for the

Beta-t-EGARCH model (DGP-1) and the RS-Beta-t-EGARCH model (DGP-2) with the estimates

of Table 2.2 as the true values, in order to validate the robustness of my results. Since the scaling
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parameter κµ captures the aggregate effect of shifts I assume that each shift is scaled by the same

magnitude.11

Figure 2.5: Smoothed random shift process and fitted regimes

Note: RS denotes the smoothed random shift process from the RS-Beta-t-EGARCH model.

A key time domain characteristic in the analysis of memory persistence is the autocorrelation

function (ACF) of the logarithm of squared returns. Figure 2.6 displays similar patterns in the

original demeaned data, and the average of each of the simulated series under DGP-1 and DGP-2.

The autocorrelations exhibit a quick decline to negative values, and then converge to zero. Also,

the ACF for DGP-2 follows the original ACF more closely at longer lags, than does the ACF for

DGP-1.

11When simulating shifts, the κµ parameter aggregates the average shift size each time.
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Figure 2.6: Sample autocorrelations for the log-squared returns of demeaned original and simulated
series

Notes: DGP-1 and DGP-2 are generated under the Beta-t-EGARCH model without shifts and with shifts,

respectively. AC denotes the sample autocorrelation.

I also analyse the frequency domain properties to assess memory in the 10000 artificial series for

each DGP. We observe the frequency interval for the periodograms of the original data and the

average of the simulated data shown in Figure 2.7. When the artificial series comes from DGP-

1 or the Beta-t-EGARCH model, the memory parameter generates an inverse pattern from the

original series between T 1/3 and T 1/2 frequencies. However, if the process follows the DGP-2 from

the RS-Beta-t-EGARCH model, a sudden decline appears in the value of the estimate d̂ between

frequencies T 1/3 and T 1/2. This decline in the memory parameter is consistent with the decay in

the original series. There is steady behaviour in the memory parameter from T 1/2 until T 2/3 for

the original and the simulated DGP-2 data. Further, starting from frequency T 2/3, the original and
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the simulated series display a slow decrease in d̂, indicating that the process starts to be driven by

a short memory rather than a long memory process.

Figure 2.7: Periodogram for the log-squared returns of demeaned original and simulated series

Notes: DGP-1 and DGP-2 are generated under the Beta-t-EGARCH model without shifts and with shifts,

respectively. d̂ is the fractional integration parameter at frequencies M = [10, T 4/5] in a sample of T

observations. The vertical lines represent the frequencies at T 1/3, T 1/2, and T 2/3.
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Using DGP-1 and DGP-2, I verify the plausibility of the estimates for the new model. Table

2.3 presents the estimates for the South American original data, together with average estimates

based on the 10000 simulated DGP-1 and DGP-2 data using the Beta-t-EGARCH and RS-Beta-t-

EGARCH models.

We see in the third column of Table 2.3 that when I consider estimates based on DGP-1 the estimates

are close to the original values, and when I use the RS-Beta-t-EGARCH model to estimate the

shift parameter α, the α̂ is almost zero. Under this scenario, the model does not detect many

artificial shifts when the true process does not have shifts. To evaluate the alternative hypothesis

that DGP-2 is appropriate (in the sixth column), not surprisingly, the shift parameter estimates

are closer to the true values for Chile and Colombia.

The estimate for α gives a similar value as in DGP-1 for the Peruvian case because DGP-2 implies

that the scale parameter of the cumulative magnitude of shifts is divided equivalently between all

the shifts in regimes. In particular, Peru has the lowest estimate (0.869) for κµ among the South

American countries. Thus, DPG-2 generates less marked regimes and a lower estimate for the shift

parameter.

2.5.1 Out-of-sample diagnostic

I employ the density forecast test based on the method of Lopez (2002). He introduces probability

scoring-rules for density forecasts that replace the statistical loss functions such as those in Diebold

and Mariano (1995). One benefit of this approach is that it considers the model process itself,

rather than a proxy for the volatility, which is the case when loss functions take the form of the

mean square error (MSE), the mean absolute value (MAE), or other statistical criteria.
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Table 2.3: South American original and simulated series estimates

DGP Original DGP-1 Original DGP-2

Chile

Parameter No RS No RS With RS With RS No RS With RS

ω -0.210 -0.209 -0.209 0.320 0.317 0.317

ϕ 0.970 0.969 0.970 0.951 0.956 0.950

κλ 0.104 0.155 0.152 0.093 0.140 0.136

κµ 2.660 2.060 1.482

log (ν) 2.182 2.192 2.192 2.201 2.196 2.203

α 0.001 0.008 0.003

Colombia

ω -0.184 -0.184 -0.183 -0.265 -0.268 -0.266

ϕ 0.947 0.946 0.946 0.915 0.919 0.914

κλ 0.142 0.187 0.187 0.132 0.176 0.174

κµ 1.393 1.601 0.899

log (ν) 1.771 1.777 1.777 1.794 1.793 1.796

α 0.000 0.010 0.004

Peru

ω -0.147 -0.147 -0.138 0.074 0.074 0.075

ϕ 0.970 0.969 0.970 0.921 0.921 0.919

κλ 0.104 0.133 0.121 0.100 0.129 0.129

κµ 1.651 0.869 0.529

log (ν) 1.677 1.684 1.682 1.701 1.705 1.706

α 0.002 0.021 0.002

Notes: DGP-1 and DGP-2 are generated under the Beta-t-EGARCH model without shifts and with shifts,

respectively. No RS and With RS refer to the estimates using the Beta-t-EGARCH model and the RS-Beta-

t-EGARCH model, correspondingly.
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The weighted likelihood ratio (WLR) test of Amisano and Giacomini (2007) incorporates weights

into the Lopez (2002) test that can be arbitrarily chosen. This test is based on rolling window

estimates of the one-step ahead density forecasts for the RS-Beta-t-EGARCH model [ln f̂∗t (Yt+1)],

and the Beta-t-EGARCH model [ln f̂t(Yt+1)], so that

WLR = wt+1[ln f̂
∗
t (Yt+1)− ln f̂t(Yt+1)], (2.8)

where wt+1 = 1/Tf are weights for the window sample t = 1, ..., Tf . The null and alternative

hypotheses are

H0 : E[WLR] = 0. (2.9)

H1 : E[WLR] > 0. (2.10)

The density forecast test follows the procedure of Diebold and Mariano (1995) by defining the

differences

dt = ln f̂∗t (Yt+1)− ln f̂t(Yt+1), (2.11)

and then assessing whether c is significantly greater from zero in the regression

dt = c+ εt. (2.12)

If the test finds evidence of such a difference, then the RS-Beta-t-EGARCH model outperforms

the base model. I set the rolling window to be one third of the total number of observations. The

estimates ĉ are 0.430, 1.015, and 2.650, for Chile, Colombia and Peru, correspondingly, and their

Newey and West (1987) robust standard errors (0.060, 0.063 and 0.122) imply that these estimates

are significant at 1 percent. Thus, the out-sample diagnostic favours the new model with random

shifts.

2.6 Conclusions

This essay provides a new approach to deal with series of high persistence that are commonly

treated in the literature as series with long memory. I analyse a dynamic conditional score model
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for modelling time-varying volatilities with random shifts. In contrast to long memory models,

this model assumes that RS play a significant role in the dynamics of the volatility, affecting its

persistence in particular.

The application of this model to South American equity markets shows that multiple regime shifts

are linked to major events that disrupted these economies, such as the U.S. financial crisis in 2007

and the current pandemic. The estimated effect on the estimate of the persistence in volatilities

when random shifts are included in the model is noticeable, and reduces the impact of a volatility

shock. A comparison between the RS-Beta-t-EGARCH model with respect to the base Beta-t-

EGARCH model exhibits better in-sample and out-sample performances.

This chapter opens up interesting avenues for further research. The estimated volatilities and shifts

seem to be correlated as they react jointly when they face an external shock. Thus, it would be

worthwhile to develop an extension for a multivariate setting and to identify common features and

co-movements in times of high uncertainty. In addition, the model could be extended to model the

skewness and the location of the Student t distribution.
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3 Modelling Volatility Dependence with Score Copula Models

3.1 Introduction

Latin American countries are vulnerable to external shocks from bigger economies (e.g., the Asian

and U.S. financial crises), and regional shocks (i.e., political and migration-related shocks) in this

geographic area can spread quickly from one country to others. Dungey et al. (2011) explain that

the 1998 Long-Term Capital Management collapse and the debt crisis in Russia had a very strong

spillover effect on Argentina and Brazil across equity and debt instruments, which rendered the

region particularly vulnerable. Forbes and Rigobon (2002) study the existence of interdependence

episodes in Latin America from the Mexican currency crisis in 1994. Hence, multivariate models

offer an important perspective for the analysis of interdependencies or spillovers in these markets.

Spillovers and other dependencies between financial markets can be modelled in many ways. The

principal contribution of this paper is the modelling of these interdependencies using score-driven

copula models. The score-driven setting emerges as an alternative approach for modelling volatili-

ties, relative to the traditional generalized autoregressive conditional heteroskedasticity (GARCH)

model of Bollerslev (1986) and the discrete stochastic volatility (SV) model first proposed by Jaquier

et al. (1994). Creal et al. (2013) and Harvey (2013) suggest that this specification is robust to

outliers, since this setting incorporates the information from the score of the process in a direct

way.

The score-driven models proposed in this paper model the time-varying lower tail dependence

with the Clayton and rotated Gumbel copulas. I also consider modelling the lower and upper

tails using the Student t copula. In all cases dependence incorporates two components. Doing

so, we not only capture the main dependence episodes, but also differentiate between longer and

shorter components. First, the long-component process captures relatively long-lasting shocks to

dependence, such as global pandemic shocks that affect all stock markets in the Americas similarly.

Second, the short-component process identifies transient or local shocks in the dependence across

equity indexes.

As a preliminary step, I estimate the marginal models using the GJR-GARCH model of Glosten,

Jagannathan, and Runkle (1993) adjusted for skewness and fat tails. The estimated conditional
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variances show historical peaks during the pandemic for most of the countries in the region. Then,

for the analysis of two-component score-driven copula models, I focus on bivariate settings following

the work on risky assets by Ayala and Blazsek (2018). Recent studies, such as Nito̧i and Pochea

(2020), apply the score-driven copula methodology to European equities. In addition, Manguzvane

et al. (2020) estimate mixture score-driven copula models for the main equities in South Africa.

Nonetheless, no such studies exist for emerging countries in the American continent. I apply the

models to Argentina-Brazil, Canada-Mexico and Chile-Peru pairs that are associated naturally by

their geographic proximity and trade linkages, and all of these markets are affected by shocks from

the U.S.

The study of dynamic copulas begins with the work of Patton (2006). He applies Sklar’s (1959)

theorem, which incorporates univariate marginal distribution estimates into a multivariate model

through a copula. Further, Creal et al. (2011) and Harvey (2013) propose multivariate score-

driven copula models. However, their models only consider a unique component for the dependence

structure which generally presents a persistence close to one. Bernardi and Catania (2019) extend

the copula specification of Creal et al. (2011), allowing a Markovian process to capture the time

varying dependence. In their analysis of European equities, they find a high persistence either

in the higher or lower regimes. Similarly, Opschoor, Lucas, Barra and van Dijk (2020) report a

persistence close to one in their multi-factor copula models. This high persistence suggests long

memory in the dependence parameter.

One way to deal with this high persistence is the addition of components. Engle and Lee (1999)

introduce two components for long and short memory dynamics as additive processes in GARCH

models. Similarly, Alizadeh, Brandt, and Diebold (2002) add components into SV models and use

range-based estimation to study U.S. exchange rates markets. Further, Engle and Rangel (2008)

develop a spline-GARCH model where the components for the volatility dynamics are multiplica-

tive. In the same line, Engle, Ghysels, and Sohn (2013) establish a GARCH mixed data sampling

model. Harvey (2013) includes a two-component structure into a dynamic conditional score model.

Later, Ito (2016) uses multiplicative long and short components in her spline dynamic conditional

score model. In addition, Harvey and Lange (2018) add two-component into a exponential GARCH

in mean model, whereas Harvey and Palumbo (2019) and Ayala, Blazsek and Licht (2022) utilise

different component specifications for the error term in score based models of realised volatility

and exchange rates, respectively. Opschoor and Lucas (2021) and Linton and Wu (2022) model

time-varying volatility ratios with components under the score-driven framework. However, there
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are no works that deal with high persistence in the dependence term of score-driven copula models

and this chapter aims to cover this gap.

The score-driven framework provides robustness to outliers that are common for countries in the

Americas, and hence the dynamic dependence between these countries is better characterized. The

estimates of the long-component series reveal a high persistence for all copulas, and the short-

memory persistence estimate characterises shocks of shorter life. The two-component model im-

proves the fit to the data in comparison to the single component specification. Specifically, the

two-component score-driven Student t copula model has the best performance among the models

analyzed and it also improves the one-step density forecasts in comparison to the single component

specification.

The long-component process highlights major crisis episodes such as the Asian crisis, the US fi-

nancial crisis, and the recent pandemic. The estimates are robust to the COVID-19 crisis when

comparing the subsample October 1996 - December 2019 and the full sample October 1996 - De-

cember 2020. An additional robustness check that re-estimates the model with bootstrapped data

confirms the stability of estimates.

The structure followed in this chapter is as follows: Section 2 discusses the univariate and bivariate

copula models. Section 3 presents the estimates in the application of the model to equity markets

in the Americas. Section 4 describes the volatility dynamics across the marginal and score-driven

copula models. Sections 5 and 6 validate the robustness of the estimates. Section 7 shows the

out-of-sample density forecast from both models. Section 8 concludes.

3.2 Methodology

The approach I follow for the modelling of copulas is the generalized autoregressive model of Creal

et al. (2013) and Harvey (2013). This approach exploits the information from the score derived

from models. Let us consider the local level model example of Harvey (2013) for series xt so that

xt = γt + εt, εt ∼ N(0, σ2ε), (3.1)

γt+1 = γt + ηt, ηt ∼ N(0, σ2η), (3.2)
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where εt is the process error term, and γt is a random walk process with innovation ηt. The

associated Kalman filter equations are

υt = xt − γt|t−1, (3.3)

γt+1|t = γt|t−1 + ktυt, (3.4)

where υt is the one-step ahead prediction error and kt is the Kalman gain. In the non-varying

version with γt = γ and σ2η = 0, the maximum likelihood estimator of γ satisfies the score condition

T∑
t=1

(xt − γ̂) = 0. (3.5)

This condition suggests that the prediction error υt in (3.3) with zero mean may be replaced by a

term ut, where

ut ∝
T∑
t=1

(xt − γ̂). (3.6)

Hence, under the score-driven framework the equation in (3.4) is replaced by

γt+1|t = γt|t−1 + kut. (3.7)

Note that ut is proportional to the score of the process with k being a scale parameter to estimate.

The score driven setting is also valid for scale (volatility) models. Moreover, Harvey (2013) shows

that this approach is robust to outliers since the score mitigates the impact from those observations.

In this chapter I employ this approach in a variety of copula models for modelling time-varying

dependence. For the univariate or marginal models, I estimate the GJR-GARCH model assum-

ing a skewed Student t for its error term.12 The skewed Student t of the GJR-GARCH model

characterises the fat tails and asymmetry typically present in return series. Then, using proba-

bility integral transformations of their residuals, I employ time-varying copula models that allow

two-components in their dependence structure.

12This model for conditional volatility extends the GARCH model to allow asymmetries originating from overre-
actions in the market due to bad news for instance.
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3.2.1 GJR-GARCH Marginal Model

For marginal univariate models, I consider the skewed extension for GARCH type models proposed

by Hansen (1994). In particular, I model each univariate series yit for the i = 1, 2 demeaned

returns with the asymmetric GJR-GARCH(1,1) model assuming the errors follow a skewed Student

t distribution as follows13

yi,t = σi,tϵi,t, (3.8)

σ2i,t+1 = αi + β0,iσ
2
i,t + β1,iy

2
it + β2,i1(−∞<yit≤0)y

2
it, (3.9)

ϵi,t ∼ ST (0, 1, νi,ηi), (3.10)

where αi represents the constant term for the conditional variance dynamics σi,t, β0,i the persistence,

β1,i the impact from the current variance shock and β2,i the leverage effect, with β0,i + β1,i +

(β2,i/2) ≤ 1. Finally, the error term is a standardized skewed t distribution with νi, degrees of

freedom and an asymmetry parameter ηi > 0 when it is right-skewed.

3.2.2 Two-components

I incorporate two components into score-driven copula models in order to assess long memory

patterns such as persistent shocks, and shocks with shorter duration. In particular, I add this ex-

tension to Clayton, rotated Gumbel and Student t copulas. The first two copulas measure negative

interdependencies, which capture shocks associated with bad news in equity markets. These types

of shocks rather than positive shocks are the most recurrent in stock markets. In addition, I assess

two-components in Student t copulas that capture positive and negative interdependencies. The

time-varying dependence parameter λt for all these copulas are score-driven:

λt = ω + λ1,t + λ2,t, (3.11)

λ1,t = ϕ1λ1,t−1 + κ1ut−1, , (3.12)

λ2,t = ϕ2λ2,t−1 + κ2ut−1, (3.13)

13I employ GARCH models as marginal models because they have been extensively used in the finance literature by
researchers and practitioners, but I do not use a score-driven framework for this. The two-step estimation procedure
that I use is simpler and places focus on the score-driven copulas.
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where ϕ1 and ϕ2 represents the persistence for the long and short memory parameter, respectively.

The ut process is a term proportional to the score of the model. Further, the scaling parameters for

the score term are κ1 and κ2 for each process. To ensure that the equation in (3.12) identifies the

long component I impose that 0 < ϕ2 < ϕ1 < 1 and that 0 < κ1 < κ2, following the identifiability

conditions of Harvey (2013). In contrast, the one-component filters of association only consider the

term λ1,t.

I focus on models that incorporate negative interdependencies first, since these have been popular in

the literature. I allow for interdependencies using the time-varying copula models of Harvey (2013),

Creal et al. (2013) and Oh and Patton (2018). In bivariate settings, negative interdependencies

that are present when there are negative shocks in the market are well captured by a Clayton

copula:

CC(τ1t, τ2t, γt) = (τ−γt
1t + τ−γt

2t − 1)−1/γt , γt > 0, (3.14)

where τit = F (yit) is the probability integral transformation of the residuals for i = 1, 2 series

obtained from the estimation of the GJR-GARCH model for each series, and γt is the lower time

varying tail dependence parameter. I use an exponential link function so that γt is always greater

than zero:

γt = exp(λt). (3.15)

The term proportional to the score for the Clayton copula is given by

ut ∝
∂ logCC(τ1t, τ2t, γt)

∂γt
= − log(τ1tτ2t) +

1

1 + γt
+

log(τ−γt
1t + τ−γt

2t − 1)

γ2t
(3.16)

+

(
1 + 2γt
γt

)(
τ−γt
1t log τ1t + τ−γt

2t log τ2t

τ−γt
1t + τ−γt

2t − 1

)
.

Likewise, I consider the rotated Gumbel copula14 that also models lower tail dependence. Patton

(2013) introduces the time-varying rotated Gumbel copula within the score-driven framework:

CG(τ1t, τ2t, θt) = τ1t + τ2t + e(−[{− log(1−τ1t)}θt+{− log(1−τ2t)}θt ])1/θt , θt > 1, (3.17)

14The Gumbel copula models the upper tail dependence, whereas the rotated Gumbel copula models the lower tail
dependence.
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which has a lower tail dependence of 2− [2ˆ(1/θt)], and the parameter θt is modelled using the link

function transformation of λt so that

θt = 1 + exp(λt), (3.18)

ut ∝
∂ logCG(τ1t, τ2t, θt)

∂γt
= − log([1− τ1t][1− τ2t]) +

1

1 + θt
+

log([1− τ1t]
−θt + [1− τ2t]

−θt − 1)

θ2t
(3.19)

+
(1 + 2θt)([1− τ1t]

−θt log[1− τ1t] + [1− τ2t]
−θt log[1− τ2t])

θt([1− τ1t]−θt + [1− τ2t]−θt − 1)
.

I also study the symmetric time-varying Student t copula model. This dynamic Student t copula

is given by

CS(τ1t, τ2t) = Fρ(Φ
−1{τ1t},Φ−1{τ2t}, ρt, ν̄), (3.20)

where Φ−1{.} is the inverse of the cumulative Student t distribution, and Fρ(.) is the bivariate

Student t distribution with correlations ρt and ν̄ degrees of freedom.

The correlation process ρt is driven by the time-varying parameter λt such that

ρt =
1− exp(−λt)
1 + exp(−λt)

, (3.21)

ut ∝
∂ logCS(τ1t, τ2t)

∂γt
=

[(1 + ρ2t )(ztΦ
−1{τ1t} − ρt)− ρt(ztΦ

−1{τ2t} − 2)]
√

[(ν̄ + 4)(1− ρ2t )
2]

(1− ρ2t )
2
√
(ν̄ + 2 + ν̄ρ2t )

,

(3.22)

with zt = [(ν̄ +2)(1− ρ2t )]/[ν̄(1− ρ2t ) +Φ−1{τ2t}− 2ρ2tΦ
−1{τ1t}]. We should bear in mind that the

model assumes that a shock to the correlation process affects the dependence structure for both

series at the same time and with the same magnitude.

3.2.3 Estimation

Given the demeaned return process, yt, the GJR-GARCH model is estimated by maximizing the

likelihood with respect to the parameter set ψ = (α, β0, β1, β2). The likelihood for this model is
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given by

logL(ψ) =
T∑
t=1

log f(yt|Yt−1), (3.23)

log f(yt|Yt−1) = −1

2

[
log 2π + log σ2t (ψ) +

y2t
σ2t (ψ)

]
, (3.24)

where σ2t (ψ) is the conditional volatility dynamics as described in (3.9).

Note, that the GJR-GARCH model assumes a Gaussian error term, and the following step models

the residual term ϵ̂t using the Skewed Student t distribution of Hansen (1994) with likelihood

logL(ν,η) =
T∑
t=1

log(ϵ̂t), (3.25)

g(ϵ̂t) =


bc

(
1 + 1

ν−2

[
bϵ̂t+a
1−η

]2)−(ν+1)/2

, ϵ̂t < −a/b

bc

(
1 + 1

ν−2

[
bϵ̂t+a
1+η

]2)−(ν+1)/2

, ϵ̂t ≥ −a/b

 , (3.26)

a = 4ηc

(
ν − 2

ν − 1

)
, (3.27)

b =
√

1 + 3η2 − a2, (3.28)

c =
Γ(ν+1

2 )√
π(ν − 2)Γ

(
ν
2

) , (3.29)

where ν > 2 and 1 > η > −1. Given these estimates, I apply the probability integral transformation

to the residuals ϵ̂t using the skewed Student t cumulative distribution. The resulting uniform

distributed series are denoted by τ1t and τ2t.

Finally, the dependence estimates are obtained by maximizing the log-likelihood of the copula

models. For instance, the two-component score-driven t-copula model log-likelihood is

log ft(τ1t, τ2t, θt) =

T∑
t=1

logFρ(Φ
−1{τ1t},Φ−1{τ2t}, ρt, ν̄), (3.30)

where φ = (ω, ϕ1, κ1, ϕ2, κ2, ν̄) contains the parameters of the copula model, Φ−1{τ1t} is the inverse

of the cumulative distributive distribution of the Student t distribution, and Fρ(.) the bivariate

Student t distribution with time-varying correlations ρt in equation (3.21) and ν̄ degrees of freedom.

37



Modelling Volatility Dependence with Score Copula Models

3.3 Empirical Application

Table 3.1 presents a description of countries in the American region categorized as developed or

emerging according to the world MSCI ACWI Index15 as of June 2020.

Table 3.1: Sample description

Country Category Index Sample Source

Canada Developed TSX 09/10/1996 - 31/12/2020 Yahoo Finance

United States Developed S&P 500 09/10/1996 - 31/12/2020 Yahoo Finance

Argentina Emerging MERVAL 09/10/1996 - 30/12/2020 Yahoo Finance

Brazil Emerging IBOV 09/10/1996 - 30/12/2020 Yahoo Finance

Chile Emerging IPSA 09/10/1996 - 30/12/2020 investing.com

Mexico Emerging MEXBOL 09/10/1996 - 31/12/2020 Yahoo Finance

Peru Emerging IGBVL 09/10/1996 - 31/12/2020 SMV, Yahoo Finance

Notes: The Peruvian data until December 2016 is obtained from the Stock Market Superintendence (SMV).

The country category is classified according to the MSCI ACWI Index.

I filter out dates for which data in at least one country is missing (e.g. national holidays) so that the

sample retains the same set of daily observations.16 Table 3.2 presents statistics for daily returns17

on the S&P 500 (United States), the TSX (Canada), and the stock returns from the main equity

markets of Argentina, Brazil, Chile, Mexico and Peru. The statistics indicate a departure from a

normal distribution, positive or negative skewness, high kurtosis and a rejection of normal density

behaviour from the Jarque-Bera test.

15The full classification description can be found in MSCI Global Market Accessibility Review (June 2020) of MSCI
Inc.

16Doing so, I removed 877, 941, 1017, 983, 1024, 817, and 1043 observations for Argentina, Brazil, Canada, Chile,
Mexico, Peru and the USA, respectively.

17The returns are computed as rt = [log(Pt)− log(Pt−1)] ∗ 100, where Pt is the General Index.
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Table 3.2: Stock market returns statistics

Values Argentina Brazil Canada Chile Mexico Peru USA

Mean 0.066 0.051 0.014 0.035 0.042 0.055 0.031

Maximum 17.488 33.419 9.656 8.722 12.923 10.529 10.789

Minimum -37.931 -15.809 -12.345 -12.086 -13.337 -13.291 -9.511

Standard Deviation 2.326 2.037 1.092 1.091 1.390 1.326 1.220

Skewness -1.000 0.636 -0.930 -0.140 0.077 -0.306 -0.257

Kurtosis 21.018 23.603 15.704 11.964 11.079 12.683 11.042

Jarque-Bera 69182.612 89696.376 34701.569 16929.404 13744.230 19815.663 13667.979

ACF 1st Lag 0.011 -0.014 -0.026 0.152 0.064 0.134 -0.095

ACF 2nd Lag -0.025 -0.057 -0.024 0.011 -0.021 0.040 -0.010

ACF 3rd Lag 0.020 -0.006 0.020 0.013 -0.005 0.068 -0.002

ACF 4th Lag 0.037 0.012 -0.022 0.027 0.003 0.032 0.004

ACF 5th Lag -0.004 -0.026 -0.049 -0.005 -0.044 0.002 -0.032

Observations 5052

Sample 10/10/1996 - 30/12/2020

Note: ACF is the autocorrelation function.

Almost all the Latin American stock returns exhibit a higher standard deviation than the U.S.

and Canadian markets. This suggests more unstable episodes associated with external shocks from

trade country partners, global factors such as financial and health crises, as well as internal or

political shocks which are a feature in the LATAM region. Further, from the kurtosis values, in

general there are more big shocks or outliers in the developing countries than in the developed

markets. These atypical episodes could be explained by shocks originating in border countries,

from an economy with which there are more trade linkages, or more overreaction to shocks from

bigger markets. Since the mean and first autocorrelation lags are near zero for each series, I work

with demeaned returns focusing only on the volatility dynamics.
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3.3.1 Model Estimates

I show the marginal univariate skewed Student t GJR-GARCH model estimates in Table 3.3, which

are the main inputs for the two-component score-driven t-copula models. The persistence in all

conditional volatilities is close to one, meaning that a shock to the volatility will have a long-lasting

effect. In addition, the leverage coefficient is significant for all series. Negative news has a greater

effect on the conditional volatility given the combined effect from β0, β1 and β2. Meanwhile the

effect that prevails when there are positive shocks comes from the coefficients β0 and β1. In all

cases, the skewness parameter η is negative which means that more observations are above the

mean and median, which coincides with the descriptive statistics. We can see low values for the

estimates of the degrees of freedom ν revealing heavy tails.

Table 3.3: Skewed GJR-t-GARCH model estimates

Parameter Argentina Brazil Canada Chile Mexico Peru

α 0.267 0.117 0.015 0.033 0.030 0.074

(0.035) (0.017) (0.002) (0.005) (0.005) (0.011)

β0 0.771 0.876 0.878 0.833 0.874 0.767

(0.017) (0.011) (0.009) (0.014) (0.012) (0.021)

β1 0.151 0.023 0.042 0.089 0.044 0.164

(0.014) (0.007) (0.009) (0.012) (0.008) (0.018)

β2 0.080 0.130 0.130 0.105 0.139 0.068

(0.020) (0.015) (0.015) (0.015) (0.016) (0.019)

ν 5.281 9.485 9.102 8.890 8.395 5.125

(0.303) (1.061) (0.944) (0.932) (0.822) (0.284)

η -0.047 -0.048 -0.177 -0.010 -0.034 -0.003

(0.017) (0.020) (0.019) (0.019) (0.019) (0.018)

logL -6960.995 -7091.038 -7042.212 -7101.625 -7096.345 -6966.469

AIC 13925.991 14186.076 14088.423 14207.251 14196.691 13936.937

Note: The standard errors (in parenthesis) are computed using the inverse of the Hessian matrix. The logL

and AIC corresponds to the skewed t generalization of Hansen (1994).

These univariate estimates are the main inputs for the multivariate copula models. I analyse three
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pairwise countries, Argentina vs Brazil, Canada vs Mexico18, and Chile vs Peru, grouped given their

geographic proximity, their trade linkages and because they might face common factor shocks. Table

3.4 reports the estimates for the Clayton and rotated Gumbel copula models described in equations

(3.14) and (3.17), respectively.

The estimates for both copulas reveal a persistence close to one, as shown by the estimates of ϕC

and ϕG which suggest a long memory dynamic for the time-varying lower tail dependence. When I

consider two components for the dependence structure, the persistence for the long memory main-

tains similar values as the one-component model, but the estimates for the short-term persistence

ϕ2 are considerably lower.

The short-term persistence estimate (ϕ̂2) for the Canada-Mexico pair is around 0.8 in both models,

and for Chile-Peru this estimate is approximately 0.3. The values for the pair Argentina-Brazil

differ between models; it is 0.216 for the Clayton model and 0.940 for the rotated Gumbel copula.

In particular, one may think that the gap between the long-memory (0.997) and short-memory

(0.940) persistence estimates for the rotated Gumbel model is not big enough. Nonetheless, the

half-life19 shock to the long component process for this country pair lasts approximately 227 days

more than a half-life shock to the short-memory component implying a similar duration to the

Clayton specification (187 days). For Canada-Mexico the long persistence half-life shock prevails

for 75 to 87 more days in comparison to the single-component specification, meanwhile that for

the pair Chile-Peru a further 61 or 42 days, estimating the Clayton and rotated Gumbel models,

respectively.

18The selection of this pair for the North American region is to assess the impacts from the U.S. economy.
19The half-life is defined as log(0.5)/ log(ϕ).
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Table 3.4: Score-driven Clayton and rotated Gumbel copula models

Model/ Argentina vs Canada vs Chile vs Argentina vs Canada vs Chile vs

Parameter Brazil Mexico Peru Brazil Mexico Peru

Clayton Single-component Two-component

ω -0.002 -0.005 -0.015 -0.475 -0.328 -0.985

(0.000) (0.000) (0.001) (0.160) (0.151) (0.031)

ϕC 0.996 0.983 0.984 0.996 0.991 0.989

(0.003) (0.002) (0.001) (0.001) (0.013) (0.003)

κ1 0.039 0.049 0.059 0.037 0.030 0.049

(0.000) (0.004) (0.006) (0.007) (0.017) (0.001)

ϕ2 0.216 0.780 0.322

(0.034) (0.373) (0.011)

κ2 0.048 0.071 0.171

(0.022) (0.017) (0.023)

logL 728.152 729.681 301.922 729.224 734.792 308.627

AIC -1450.304 -1453.362 -597.844 -1448.448 -1459.583 -607.254

LR p-value 0.342 0.006 0.001

Rotated Gumbel Single-component Two-component

ω -0.006 -0.020 -0.031 -0.956 -0.802 -1.499

(0.000) (0.003) (0.003) (0.189) (0.130) (0.130)

ϕG 0.994 0.973 0.979 0.997 0.992 0.984

(0.003) (0.003) (0.001) (0.001) (0.009) (0.006)

κ1 0.077 0.087 0.086 0.044 0.042 0.072

(0.001) (0.015) (0.015) (0.013) (0.026) (0.020)

ϕ2 0.940 0.784 0.284

(0.072) (0.149) (0.136)

κ2 0.058 0.110 0.173

(0.028) (0.038) (0.056)

logL 838.035 828.396 343.639 840.617 832.886 348.022

AIC -1670.070 -1650.791 -681.278 -1671.233 -1655.772 -686.045

LR p-value 0.069 0.012 0.012

Notes: The parameters with subscripts C and G refer to the Clayton and Rotated Gumbel copula models,

respectively. The standard errors (in parentheses) are computed using the Huber (1967) sandwich estimator.

LR is the likelihood ratio test statistic with null hypothesis H0 : ϕ2 = κ2 = 0.
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The two-component model for either the Clayton or rotated Gumbel copula models has a higher

likelihood for Argentina-Brazil than the single component approach. However, under the Akaike

(1974) information criterion (AIC) which penalizes for a larger number of parameters, the more

parsimonious one component seems more suitable for that pair in the case of the Clayton copula

model. For the other two pairs, the likelihood, AIC and likelihood ratio test select the two-

component extension.

Table 3.5 reports the estimates from the score-driven t-copula and the two-component score-driven

t-copula models given in (3.20). Similarly to the rotated Gumbel case, the long-component se-

quence captures longer lasting shocks to the correlation parameter with persistence near unity.

The short-term process exhibits estimates similar to those in the previous case. This means that

the persistence of a shock to this process is robust to the dependence specification, regardless of

whether the copula is symmetric or asymmetric.

However, under the score-driven t-copula the difference in the half-life between the short and long

term components are 242 days, 43 days, and 34 days for the three country pairs. This might be

due to the fact that this copula is symmetric and models atypical observations in both tails. The

degrees of freedom range from 9 to 17, favouring a Student t specification rather than a Gaussian

specification for the correlations in volatility.

The likelihood increases with respect to the base model with a unique component for every pair.

In addition, when I use the AIC criterion to account for the additional parameters involved in

the component structure, the model with two-components presents a better fit to the data in all

cases. Moreover, the short-component parameters ϕ2 and κ2 are jointly significant according to

the likelihood ratio test. Overall, the two-component score-driven t-copula is the best model since

this model takes into account symmetrically lower and upper tails, and the degrees of freedom

parameter for heavy tails.
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Table 3.5: Score-driven t-copula models estimates

Single-component Two-component

Parameter Argentina vs Canada vs Chile vs Argentina vs Canada vs Chile vs

Brazil Mexico Peru Brazil Mexico Peru

ω 0.007 0.032 0.018 1.051 1.132 0.653

(0.001) (0.000) (0.003) (0.999) (0.000) (0.097)

ϕ1 0.994 0.972 0.973 0.997 0.985 0.980

(0.000) (0.000) (0.003) (0.000) (0.000) (0.000)

κ1 0.058 0.072 0.059 0.040 0.045 0.049

(0.009) (0.016) (0.008) (0.024) (0.005) (0.007)

ϕ2 0.798 0.761 0.249

(0.000) (0.087) (0.088)

κ2 0.068 0.060 0.066

(0.002) (0.000) (0.014)

ν̄ 17.049 11.296 9.665 15.000 11.351 9.570

(3.119) (2.745) (0.000) (0.000) (0.000) (1.969)

logL 873.496 865.154 362.846 877.327 868.005 365.625

AIC -1738.991 -1722.309 -717.691 -1742.654 -1724.010 -719.250

LR p-value 0.022 0.058 0.062

Notes: The standard errors (in parentheses) are computed using the Huber (1967) sandwich estimator. LR

is the likelihood ratio test statistic with null hypothesis H0 : ϕ2 = κ2 = 0.

3.4 Volatility Dynamics

Figure 3.1 plots the univariate conditional variance from the GJR-GARCH model for Canada,

Mexico, and the four countries in South America. The Asian crisis event during 1998 prompted

considerable turmoil in Mexican and South American equities. We can identify a rise in the levels
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of volatility during the second half of 2008 in all markets from the U.S. financial crisis. There are

peaks in the end of the sample because of the uncertainty associated with the recent pandemic.

Figure 3.1: GJR-GARCH conditional volatilities estimates

Following Ayala and Blazsek (2018), I transform the dependence parameter from each copula model

into its Blomqvist (1950) β∗ measure, which lies between −1 and 1. This transformation allows

a more comparable picture of the time-varying dependence using different copulas. In Figure 3.2

we can see the time-varying β∗ of the score-driven Clayton and rotated Gumbel copulas lower tail

parameter.20 During 1998, the correlations between Brazil and Argentina show a rise given the

impacts arising from the Asian crisis. Also, the three pairwise correlations indicate an increase in

correlations from July 2008 due to the financial crisis. Comovements in all countries have increased

during the recent pandemic, in comparison to comovements observed at the beginning of 2018.

20The β∗ for the Clayton copula is 4(21+γt − 1)−1/γt − 1, and for the rotated Gumbel is β∗ = 22−21/θt − 1.
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Figure 3.2: Two-component score-driven Clayton and rotated Gumbel copula β∗ of the lower tail
parameter

Note: The grey lines mark the year 1998; the purple lines mark the second half of 2008; and the green lines

mark the period March to December 2020, associated with the Asian crisis, the U. S. financial crisis, and

the pandemic, respectively.

Figure 3.3 shows the dynamics of the two-component score-driven t-copula dependence. The

Blomqvist’s β∗ of correlations21 generate similar patterns with respect to the lower tail depen-

dence, but the peaks and troughs are more pronounced because the modelling now accounts for

both tails.

21β∗ = 2arcsin(ρt)/π in this case.
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Figure 3.3: Two-component score-driven t-copula β∗ of correlations

Note: The grey lines mark the year 1998; the purple lines mark the second half of 2008; and the green lines

mark the period March to December 2020, associated with the Asian crisis, the U. S. financial crisis, and

the pandemic, respectively.

The use of the score-driven t-copula allows us to identify episodes that lower tail dependence

copulas cannot identify. As Santa-Cruz (2012) states, by the end of 2003 Canada and Mexico

were discussing their positions regarding the US invasion over Iraq, and this meant a sharp decay

in market volatility dependence. However, in 2004 both countries signed the Canada–Mexico

Partnership which strengthened trade agreements and market integration between both countries.

This positive shock was not captured by the Clayton copula whereas the score-driven t-copula

model revealed this very clearly.

In a similar downside and upside time, Chile and Peru increased their dependence after the strong
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and political reforms in Peru that finished in 1999. After this episode, these countries recovered

their commercial relationships and stability, but the Clayton specification suggests a peak rather

than the sustained regimen suggested by the score-driven t-copula.

Hence after, I will consider only the results from the two-component score-driven t-copula model

which takes into account the positive and negative shocks to the dependence and exhibits, in

general, a better fit to the data among the models examined. Figure 3.4 depicts the longer and

shorter components of the correlation dynamics. The longer process captures common shocks of

longer duration, which might be attributable to external and global shocks, whereas the short-

component process identifies shocks of shorter duration that affect both markets at the same time.

The rise in the long-term component is clear for the pair Argentina-Brazil over the Asian and the

US. financial crisis, but this correlation only increases slightly during the pandemic. On the other

hand, the long-term volatility dynamics for Canada and Mexico have increased considerably since

the onset of COVID-19, probably in reaction in both stock markets to the growth in cases in the

USA. The dynamics between Chile and Peru have peaks for the main events of the sample.

Figure 3.4: Long and short components

Note: λ1,t and λ2,t denote the long-term and short-term components, respectively.
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Despite the significant and positive autocorrelation in the short-term process, much of the correla-

tion dynamics are attributable to the longer component. Note that both processes are score-driven

and modelled assuming a heavy tail distribution. This allows the long-term component to capture

tumultuous episodes as described above, and the short term process can capture shocks of short

duration that in some cases might be simply noise terms. In fact, Pong, Shackleton and Taylor

(2008) assert that the autocorrelation function (ACF) of a short-memory series is geometrically

bounded, whereas the ACF of a long-term process exhibits a hyperbolic decay, and Figure 3.5

shows that both components display such behaviour.

Figure 3.5: Long and short component autocorrelation functions

Note: ACF is the autocorrelation function.

3.5 Pre and Post COVID-19

This section provides a robustness check by considering the subsample up to the end of 2019 before

the declaration of the COVID-19 pandemic. Table 3.6 compares estimates using the two-component

score-driven t-copula model. The long-component persistence (ϕ1) is fairly similar for Argentina-
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Brazil and Chile-Peru pairs, and the difference between the subsample and the full sample for

Canada-Mexico is only 0.007. The persistence values for the short-component using the entire

sample are slightly higher for Argentina-Brazil and Chile-Peru. We note that the Canada-Mexico

set has for the full sample a lower short-term persistence (ϕ2) in comparison to the subsample.

The changes in the estimates for Canada-Mexico could be explained by the unprecedented uncer-

tainty generated in the Canadian stock market, when the pandemic arrived there, whereas the

Mexican market response was not as strong as that during the Asian exchange rate crisis of 1998

or during the 2008 U.S economic downturn. Mexico did not impose radical lockdown until the end

of April 2020.

Table 3.6: Two-component score-driven t-copula model: Samples ending in 2019 and 2020

2019 2020

Parameter Argentina vs Canada vs Chile vs Argentina vs Canada vs Chile vs

Brazil Mexico Peru Brazil Mexico Peru

ω 1.111 1.105 0.668 1.051 1.132 0.653

(0.103) (0.101) (0.003) (0.999) (0.000) (0.097)

ϕ1 0.997 0.992 0.982 0.997 0.985 0.980

(0.000) (0.000) (0.005) (0.000) (0.000) (0.000)

κ1 0.043 0.036 0.047 0.040 0.045 0.049

(0.000) (0.009) (0.000) (0.024) (0.005) (0.007)

ϕ2 0.736 0.792 0.135 0.798 0.761 0.249

(0.187) (0.000) (0.037) (0.000) (0.087) (0.088)

κ2 0.059 0.064 0.078 0.068 0.060 0.066

(0.018) (0.013) (0.011) (0.002) (0.000) (0.014)

ν̄ 15.887 11.908 10.062 15.000 11.351 9.570

(2.939) (0.000) (1.427) (0.000) (0.000) (1.969)

logL 858.810 829.393 342.288 877.327 868.005 365.625

AIC -1705.621 -1646.785 -672.576 -1742.654 -1724.010 -719.250

Obs 4831 5052

Sample 10/10/1996 - 30/12/2019 10/10/1996 - 30/12/2020

Note: The standard errors (in parenthesis) are computed using the Huber (1967) sandwich estimator.
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Figure 3.6 shows the differences in dynamics between the subsample until December 2019 and the

full sample up to December 2020. The evolution paths for the Argentina-Brazil and Chile-Peru

pairs are identical for both samples. As noted earlier, when considering the impact of COVID-

19, the Canada-Mexico pair exhibits lower persistence in each component. Overall, the estimated

parameters and the implied evolution of components show that the score-driven approach can

capture bigger shocks like the recent pandemic.

Figure 3.6: Longer and shorter components

3.6 Bootstrap simulation

I generate 500 artificial series by resampling each pair of countries’ datasets. This non-parametric

approach assumes that the univariate residuals from the GJR-GARCH Skewed Student t are rep-

resentative of the truth. I follow the approach of Politis and Romano (1994) generating 60 blocks

for each sampling partition given the length of the series and the high persistence of the single
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component model.

Using the resampled data, I verify the robustness of the score-driven t-copula model estimates

for the new model. Table 3.7 presents the estimates from the original data together with average

estimates based on simulations.

Table 3.7: South American original and simulated series estimates

Original Simulated

Parameter Argentina vs Canada vs Chile vs Argentina vs Canada vs Chile vs

Brazil Mexico Peru Brazil Mexico Peru

ω 1.051 1.132 0.653 1.119 1.156 0.685

ϕ1 0.997 0.985 0.980 0.983 0.972 0.966

κ1 0.040 0.045 0.049 0.056 0.044 0.047

ϕ2 0.798 0.761 0.249 0.802 0.703 0.268

κ2 0.068 0.060 0.066 0.076 0.074 0.085

ν̄ 15.000 11.351 9.570 13.376 11.063 9.439

We see that the averages of the estimates based on resampling draws are similar to the original

estimates. The simulated data preserves high persistence close to unity; meanwhile the simulated

short-term component estimates have averages of around 0.8, 0.7, and 0.3 for the pairs Argentina-

Brazil, Mexico-Canada, and Chile-Peru pairs, respectively. Further, the simulated series maintains

the order of the difference in half-lives between the long and short components of the original values.

The average of the estimates for the scale terms for both components are close when compared to

the original estimates, and the estimates for degrees for freedom are also close.

3.7 Out-of-sample Density Forecasts

I follow the density scoring-based test of Amisano and Giacomini (2007). An advantage of this

approach is the comparison between models that use densities of forecasts rather for the mean

square error (MSE), for instance. In addition, Giacomini and White (2006) state that this density
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approach is applicable to nested models as in this paper, given the non-singularity of the asymptotic

variance of this test class.

The density test of Amisano and Giacomini (2007) has as main inputs the one-step ahead density

forecasts. Let log f̂∗t [Yt+1] be the density forecast for the single-component score-driven t-copula

model and log f̂t[Yt+1] be the density forecast for the two-component score-driven t-copula model.

Then, the likelihood ratio test is

WRL = wt+1[log f̂
∗
t [Yt+1]− log f̂t[Yt+1]], (3.31)

wt+1 =
1

Tf
, (3.32)

where wt+1 are constant weights for the window sample t = 1, ..., Tf with null hypothesis H0 and

alternative hypothesis H1 given by

H0 : E[WLR] = 0,

H1 : E[WLR] > 0.

Following the work of Diebold and Mariano (1995), the significance and the positive sign of the c

estimate in the regression

dt = c+ εt, (3.33)

dt = log f̂∗t [Yt+1]− log f̂t[Yt+1], (3.34)

shows that the two-component model generates better one-step ahead forecasts instead of the

single-component counterpart model.

The rolling window consists of 60 percent of the full sample22 which aims to retain the persistence

noted in the empirical application. Moving the rolling window one month ahead each time, I project

the last day of every month.

22The first rolling window starts from 10/10/1996 until 30/03/2011. An increase in the number of observations for
the rolling window does not alter the test outcome.
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It seems evident that the addition of one more component improves the modelling of shocks espe-

cially during the global financial crisis for all groups of countries, and during the first months of

the pandemic for the last two-pairs.

The estimates for ĉ are 3.241, 1.772, and 2.082, for Argentina-Brazil, Canada-Mexico and Chile-

Peru, respectively, and their Huber (1967) robust standard errors (0.418, 0.188 and 0.165) indicate

statistically significant gains in the out-sample forecast using the two-component score-driven t-

copula model.

3.8 Conclusions

This work studies the benefits of specifying long and short components, when modelling high

persistence in the dependence parameter of score-driven copula models. Unlike models for high

persistence such as long-memory models or models that employ fractional dynamics, the two com-

ponents allow for a shorter persistence dynamic that captures transitory shocks. The addition of

a second component for modelling dependence characterises common volatility shocks of shorter

duration.

In comparison to the base score-driven Clayton, the score-driven rotated Gumbel copula, or the

score-driven t-copula models, the two-component models exhibit better in-sample fit according

to the likelihood ratio tests. The two-component score-driven t-copula model, which accounts

for positive and negative shocks, generates the best fit to the data and out-of-sample density

forecast comparison tests. An empirical application of the two components model to bivariate

series in American equity markets reveals that the co-movements are high in times such as the

Great Financial Crisis in 2008 and the recent pandemic, when external shocks had impact on these

economies. Further, the symmetric two-component score-driven t-copula specification is robust to

the COVID-19 crisis.

The long-memory process can be modelled as a process of occasional random shifts and a short-

term component. Thus, it would be worthwhile to develop an extension from this setting to copula

models and identify common regimes of volatilities. In addition, the two-component score-driven

copula models could allow for skewness in the dependence parameter, or might be modelled with

short, medium and long-term shocks, or more components.
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4 Factor-Augmented QVAR Models: An Observation-Driven Ap-
proach

4.1 Introduction

Given the recent pandemic and similar global shocks such as the U.S. financial crisis, it is important

to account for this information in a model that can identify unusual observations in variables

with robust estimates. Harvey (2013) discusses multivariate location models using the dynamic

conditional score (DCS) framework where shocks are modelled using a Student t distribution. This

approach emerges from the work of Harvey (2013) and Creal, Koopman and Lucas (2013), where

they employ an observation-driven approach exploiting the information from the score of the model.

In addition, Blasques, Gorgi, Koopman and Wintenberger (2018) derive the invertibility conditions

for the consistency of maximum likelihood estimators in these type of models.

Blazsek, Escribano, and Licht (2017) named the Harvey’s (2013) multivariate location model as

a quasi vector autoregressive (QVAR) model since it allows a similar reduced form in comparison

to vector autoregressive (VAR) models. They extend the first-order QVAR model as specified in

Harvey (2013) to allow a more general structure with more than one lag. VAR models introduced by

Sims (1980) are useful for macroeconomists who assess impulse response functions from monetary

and fiscal policy shocks. However, high dimensional VARs imply a large number of parameters to

estimate, and adding factors to their structure emerges as a practical solution.

The main contribution of this chapter is the addition of factors into QVAR score-driven models

where the multivariate error term follows a Student t distribution. Factor components can capture

relevant information from a large dataset of variables from several sectors of the economy. In this

way, factor-augmented QVAR (FAQVAR) models do not incorporate many variables explicitly,

and at the same time can deal with episodes of great disturbances. The FAQVAR model given its

score-driven dynamics can be estimated using frequentist methods rather than Bayesian techniques.

The study of factors using macroeconomic variables starts with the work of Stock and Watson

(2002). They show an improvement in forecasts for macroeconomic U.S. series using principal

component methods. Bernanke, Boivin and Eliasz (2005) incorporate factors following Stock and

Watson’s (2002) principal component procedure in VAR dynamics when analysing the effects of
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monetary policy, and also they jointly estimate factors and VAR models using Bayesian techniques.

This model is used extensively in the literature given its flexibility. For instance, Abbate, Eickmeier,

Lemke and Marcellino (2016) estimate factor models considering the financial crisis episode and its

effects on greater economies, and Laine (2020) assesses the effectiveness of monetary policy with a

zero lower bound in the European Union.

I estimate factor-augmented QVAR models using the two-step procedure of Bernanke, Boivin and

Eliasz (2005), where in the first step the unobservable factors are obtained using principal compo-

nent analysis, and then in the second step the estimated factors are added to the QVAR system.

Another alternative, is maximum likelihood estimation with two-steps undertaken by Bai, Li and

Lu (2016) where they analyse inference properties of estimates and impulse responses for FAVAR

models. However, I follow the two-step procedure of Bernanke et al. (2005), and use the bootstrap

strategy of Yamamoto (2019) to deal with the uncertainty generated in the first-step from the

factors estimation.

Defour and Stevanović (2013) utilise a bootstrap approach for their factor-augmented vector au-

toregressive moving average (FAVARMA) model, and argue that the VARMA structure is able to

capture the information from VAR models with long lags, so parsimonious VARMA models al-

low similar impulse response estimates with considerably less parameters to estimate. The QVAR

model collapses to a VARMA model with Gaussian errors when the degrees of freedom of the Stu-

dent t distribution errors goes to infinity (Blazsek et al. 2017), and therefore, a limiting case for

the FAQVAR model is the FAVARMA model, which is the benchmark model in this study.

My model is related to the work of Angelini and Gorgi (2018) where they apply the score-driven

approach to dynamic stochastic general equilibrium (DSGE) models with time-varying parameters

and volatility, whereas Blazsek, Escribano and Licht (2020) establish score-driven representations

with fat tails and heteroskedastic errors for DSGE models. In addition, Blazsek, Escribano and

Licht (2022) develop a multivariate location plus scale model and derive its maximum likelihood

conditions. These works constitute the first applications of the DCS approach in macroeconomic

systems that consider just a few variables in their composition. I extend this analysis to include

factor-augmented variables that have not yet been studied in the literature and that this work aims

to cover.

Recent literature dealing with observations from the pandemic include the work of Lenza and
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Primiceri (2021), who model the specific change in volatility during the pandemic within a VAR

framework. Carriero, Clark, Marcellino and Mertens (2021) treat the pandemic episode as outliers

in their VAR model with stochastic volatility errors instead, following the approach of Stock and

Watson (2016). Antoĺın-Dı́az, Drechsel and Petrella (2021) make a nowcasting analysis of the U.S

economic activity with a dynamic factor model that also includes outliers.

Schorfheide and Song (2021) analyse the forecasts of a mixed-frequency VAR model and conclude

that the model without the pandemic data generates more accurate long-term forecasts. However,

Hartwig (2021) and Bobeica and Hartwig (2022) highlight the importance of modelling errors with a

Student t distribution when the COVID-19 shock is considered in a VAR model, since the parameter

estimates and density forecasts from a Gaussian version are sensitive to the pandemic data. All

these works employ a Bayesian approximation for the estimation of their VAR models, whereas this

essay utilises an observation-driven approach, which can be estimated using frequentist methods.

In addition, Guerron-Quintana (2021) covers non-linearities and asymmetries in state and measure-

ment equations in VAR models using Bayesian estimation. The factor-augmented QVAR model

proposed in this study is observation-driven with a closed form likelihood which is estimated by

maximum likelihood. Further, the FAQVAR model is robust to recently experienced extreme

episodes such as the pandemic, given the modelling of errors as a Student t distribution. To the

best of my knowledge this is the first work considering the pandemic sample using a score-driven

factor-augmented QVAR model.

I analyse the U.S. economy estimating the factor components using McCracken and Ng (2016)’s

macroeconomic monthly variables from January 1959 to May 2021, which cover tumultuous times

for this market. Then, in the second step I estimate the model using the previously estimated factors

and the federal funds rate to evaluate monetary policy shocks. The factor-augmented QVAR model

proposed in this study is robust to extreme episodes recently experienced such as the pandemic,

and outperforms the FAVARMA model producing a better fit to the data. The FAQVAR impulse

response forecasts from a monetary shock follow the expected reactions from the economic theory.

Additional robustness checks using different numbers of factors, a subsample before COVID-19,

and the zero lower bound episodes, indicate the stability of the estimates.

The structure followed in this chapter is as follows: Sections 4.2 and 4.3 discuss the structure of

the FAQVAR model and its estimation. Section 4.4 presents the estimates in the application of
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the model to assess monetary policy in the US. economy. Section 4.5 checks the robustness of the

estimates through the estimation of models with different numbers of factors, samples, and the

unbounded shadow rate. The conclusions are presented in the last section.

4.2 Methodology

I incorporate factor components into the first-order QVAR model of Harvey (2013) and Blazsek et

al. (2017). The model for a yt = (ft, xt) vector of K = k + r variables contains the k factors, ft,

and the vector of r observed macroeconomic variables, xt, as follows:

yt = c+ µt + εt, (4.1)

µt = Φµt−1 +Ψut−1, (4.2)

εt ∼ tν(0,Σ), (4.3)

ut ∝
∂ ln f(yt|Yt−1)

∂µt
, (4.4)

where c is a vector of constants, µt is a location component with persistence Φ, Ψ is the updating

scale matrix from the score term component ut, and the error term εt follows a centered multivariate

Student t distribution with scale Σ and ν > 2 degrees of freedom. The multivariate scale matrix

is positive definite so that Σ = Ω−1Ω−1′ can have a Cholesky decomposition which allows the

identification of the model. The likelihood conditional on past information Yt−1 = (y1, ..., yt) is

given by

log f(yt|Yt−1) = log Γ

(
ν +K

2

)
− K

2
log(νπ)− log Γ

(ν
2

)
− log |Σ|

2
(4.5)

− ν +K

2
log

(
1 +

ε′tΣ
−1εt
ν

)
.

Further, the score term ut is proportional to

∂ ln f(yt|Yt−1)

∂µt
=
ν +K

ν
Σ−1 ×

(
1 +

ε′tΣ
−1εt
ν

)−1

εt, (4.6)

=
ν +K

ν
Σ−1 × ut. (4.7)

Finally, following Bernanke et al. (2005), I consider a set of informational variables zt for the

estimation of factors, and these variables are linked to the main observed variables with the linear
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representation:

zt = Λfft + Λxxt + et, (4.8)

where Λf are the factor loadings, Λx is the effect of the observed economic variables on the infor-

mational data set, and et is an error term.

4.3 Estimation

Factors are not observable and I first estimate these factors using the strategy of Bernanke et al.

(2005). The first step involves the estimation of factors that capture the main features from the

informational variables zt. When evaluating monetary policy we may consider indicators such as

economic activity, stock markets, and inventories.

I divide the group of informational variables as contemporaneously affected or not by the monetary

policy instrument it.
23 Stock and Watson (2002) remark that the principal components from the

informational data set, Ĉk(ft, zt), may generate linear combinations of the policy instrument it

when forecasted. In order to remove this effect, Bernanke et al. (2005) consider the following

regression:

Ĉk(ft, zt) = ωk + akĈk(ft) + bkit + ξkt, (4.9)

where Ĉk(ft) are the components from all non-contemporaneous variables, ωk is an intercept, ak

and bk are elasticities, and ξkt an error term. The estimate for the factor components is given by

f̂kt = ω̂k + âkĈk(ft, zt) + ξ̂kt. (4.10)

The second estimation step consists of augmenting the QVAR system with the factors so that

yt = (f̂t, xt). The FAQVAR model is estimated by maximizing the logarithm of the likelihood with

respect to the parameter set ψ = (Φ,Ψ,Σ, ν):

logL(ψ) =
T∑
t=1

log f(yt|Yt−1). (4.11)

23I estimate the model with one observed variable xt, which is the monetary policy instrument it.

59



Factor-Augmented QVAR Models: An Observation-Driven Approach

Following Proposition 39 of Harvey (2013), the maximum likelihood estimates are consistent since

the score and the errors model are assumed to be identically and independently distributed. In

addition, Harvey (2013) and Blazsek and Licht (2020) establish conditions for the explicit derivation

of the information matrix for the QVAR model standard error estimates. Instead I apply the

non-parametric approach of Yamamoto (2019) for the estimation of standard errors and impulse

response functions of the FAQVAR model, which also capture the error estimation uncertainty from

the first-step.

4.3.1 Impulse Response Function

Blazsek et al. (2017) establish the moving average representation of the stationary process µt,

provided its persistence Φ has a modulus λ less than one in equation (4.2). The MA form is

µt =
∞∑
h=1

ΦhΨ[(ν − 2)ν]1/2Ω−1 ϵt−1−h

ν − 2 + ϵ′t−1−hϵt−1−h
, (4.12)

with ϵt being the error term for the moving-average representation of the FAQVAR model,

ϵt =

[
ν

ν − 2

]−1/2

Ω× εt. (4.13)

The impulse responses for the shock ϵt at the horizon j = 1, ...,∞ to the variable yt are given by

Θ̂j = E

[
∂yt+j

∂ϵt

]
, (4.14)

= ΦjΨ[(ν − 2)ν]1/2Ω−1E[Dt−1−j ], (4.15)

where

Dt =



ν−2+ϵ′tϵt−2ϵ21t
(ν−2+ϵ′tϵt)

2
−2ϵ1tϵ2t

(ν−2+ϵ′tϵt)
2 ... −2ϵ1tϵKt

(ν−2+ϵ′tϵt)
2

−2ϵ2tϵ1t
(ν−2+ϵ′tϵt)

2

ν−2+ϵ′tϵt−2ϵ22t
(ν−2+ϵ′tϵt)

2 ... ...

... ... ... ...

−2ϵKtϵ1t
(ν−2+ϵ′tϵt)

2 ... ...
ν−2+ϵ′tϵt−2ϵ2Kt
(ν−2+ϵ′tϵt)

2

 . (4.16)

The expectation in (4.15) can be obtained considering the time average ofDt. The impulse responses
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to the full description of informational variables comes from the regression in (4.8) since

ẑt = Λ̂f f̂t + Λ̂xxt, (4.17)

=
[
Λ̂f Λ̂x

] f̂t

xt

 , (4.18)

= Λ̂y′t. (4.19)

For the estimation of standard errors and impulse responses, I follow the residual approach of

Yamamoto (2019). This bootstrap method deals with the 2-step estimation errors from the pre-

estimation of factors of Bernanke et al. (2005). Defour and Stevanović (2013) adapts the Yamamoto

(2019)’s algorithm for a FAVARMA model, which is the limiting case of the first order FAQVAR

model. The score-driven framework assumes that the second moments for the score and errors are

finite and normally distributed as in Yamamoto (2019) bootstrap method, then we can modify the

linear algorithm to the FAQVAR model with the following steps:

1. Obtain the parameter estimates ĉ, Φ̂, Ψ̂, Σ̂, ν̂, Λ̂f , Λ̂y from the model in (4.1), and their

respective residuals ε̂t and êt. We also estimate the impulse responses Θ̂i,j .

2. Proceed with sampling residuals with replacement to generate ε∗t and e∗t for the bootstrapped

samples y∗t so that

y∗t = ĉ+ µ∗t + ε∗t , (4.20)

µ∗t = Φ̂µ∗t−1 + Ψ̂u∗t−1, (4.21)

z∗t = Λ̂ff
∗
t + Λ̂yx

∗
t + e∗t . (4.22)

3. Estimate the two-step system with y∗t and get the bootstrapped parameter estimates ĉ∗, Φ̂∗,

Ψ̂∗, Σ̂∗, ν̂∗, Λ̂∗
f , Λ̂

∗
y, and the bootstrapped impulse responses Θ̂∗

i,j .

4. Repeat steps 2-3 R times.

5. Compute the bootstrapped standard errors for model parameters.

6. Sort the bootstrapped impulse responses from the centered statistic si,j = Θ̂∗
i,j − Θ̂i,j , select

the significance level α to obtain the confidence interval [Θ̂i,j − s1−α/2, Θ̂i,j − sα/2], where

s1−α/2 and sα/2 are 1− α/2 and α/2 percentiles, respectively.
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4.4 Empirical Results

I use 128 variables from the McCracken and Ng (2016) dataset that spans 1959:01 to 2021:05. I

screened the data for observations associated with input errors and events such as labor strikes as

noted by Stock and Watson (2002) assuming these observations are greater than 10 times their

interquartile range.24 In addition, I use their expectation maximization (EM) algorithm to replace

the missing and the screened values in the standardised panel data. The panel contains the Federal

funds rate (FFR) and a group of informational variables zt with indicators for output and income,

the labor market, consumption, housing starts and sales, inventories and orders, the stock market,

exchange rates, interest rates, money and credit, prices, as well as average hourly earnings and the

consumer index. Further details for all variables are given in the Appendix.

I estimate the first ten factors using principal components as in Bernanke et al. (2005), and a

preliminary scree plot provides evidence of the contribution of each component to the total variance.

Figure 4.1 shows this decomposition.

Figure 4.1: Scree plot

24Antoĺın-Diaz et al. (2021) carry out a similar data treatment for their factor model. This treatment does not
impact the estimation of principal components and the outliers generated around the financial crisis and the pandemic.
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Jointly these ten components contribute 54.4 percent of the explained variance of the data. The

first, second, third and fourth components explain 17.1, 7.4, 6.8 and 5.3 percent of the total variance,

respectively, and the other factors contribute smaller amounts of less than five percent each. Bai

and Ng (2002) propose information criteria25 for the optimal selection of factors in a dynamic factor

model and I consider the following three criteria:

ICp1(k) = log

(
1

N

N∑
i=1

ê′kiêki
T

)
+ k

(
N + T

NT

)
log

(
NT

N + T

)
, (4.23)

ICp2(k) = log

(
1

N

N∑
i=1

ê′kiêki
T

)
+ k

(
N + T

NT

)
log (min[N,T ]) , (4.24)

ICp3(k) = log

(
1

N

N∑
i=1

ê′kiêki
T

)
+ k

log (min[N,T ])

min[N,T ]
, (4.25)

where k is the number of factors, N = K − 1 since the Federal funds rate is not considered directly

for the estimation of factors, and êki are the residuals from the estimate of a dynamic factor model

assuming k factors. I evaluate the criteria using the first 10 components, and Table 4.1 presents

their values.

Table 4.1: Bai and Ng (2002) number of factors criteria

Factors

Criteria 1 2 3 4 5 6 7 8 9 10

ICp1 -0.145 -0.195 -0.246 -0.283 -0.319 -0.335 -0.349 -0.355 -0.355 -0.353

ICp2 -0.143 -0.192 -0.242 -0.278 -0.312 -0.327 -0.338 -0.344 -0.342 -0.339

ICp3 -0.150 -0.205 -0.261 -0.304 -0.344 -0.366 -0.384 -0.396 -0.401 -0.404

The first two criteria suggest eight factors, while the last criterion indicates 10 factors.26 I chose the

model with 8 factors as the main model. I estimate these eight factors using principal components

following Bernanke et al. (2005). In addition, I compare the factor estimation with the updated

sample until May 2021 and the factor estimates of Bernanke et al. (2005) in Figure 4.2.27

25Bernanke at al. (2005) asserts that this criteria may not suffice to determine the added number of factors. I
check the robustness of Bai and Ng (2002)’ selection in the next section.

26The results for criteria ICp1 and ICp2 are the same using 30 factors, meanwhile that ICp2 chooses 18 factors.
27Both panels slightly differ, as McCracken and Ng (2016) take into account 8 more series. I also adjust the sign

of the third, fourth and fifth factors from the Bernanke et al. (2005) sample, which arises because of identifiability
of the principal components.
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Figure 4.2: Factor estimates

The first two factors show similar peaks and troughs across the sample for both panels. These

factors capture most of the variance according to the principal components methodology. We

can see the atypical observations and outliers generated after 2005 associated mainly to the U.S.

financial crisis and the pandemic. Moreover, this different behaviour can be due to the fact that

these factors assign relatively less weight for the total variance and so they are sensitive to the new

observations.

I analyse a FAQVAR model using eight factors chosen according to Bai and Ng (2002)’s criteria,

and these factors are able to capture the large variability of the data, especially during the U.S.

financial crisis and the pandemic. Hence, the dependent variables are composed of nine variables

ordered from the first to the eight factors, and the federal funds rate. I also estimate the limiting

FAVARMA Gaussian model of Dufour and Stevanović (2013) when ν → ∞. Table 4.2 reports the

FAVARMA and FAQVAR model estimates, with each column containing estimates for one of the

nine dependent variables.
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The persistence estimates,28 Φ̂, for the FAQVAR model are generally higher than the FAVARMA

values, the estimates for the impact matrix Ω̂−1 are lower for the FAQVAR model. This might

be explained because the degrees of freedom capture (to some extent) the impact from shocks.

In addition, the entries for the updating matrix Ψ̂ are more pronounced relative to those of the

FAVARMA specification.

Table 4.3 presents the model diagnostics that allow assessment of stationary conditions and fit to

the data. Both systems are stable given that for both models the maximum eigenvalues of Φ̂ are

0.958 and 0.994 in absolute value. There are important gains in the in-sample fit to the data from

the likelihood values and the Akaike (1974) information, Bayesian information (Schwarz, 1978), and

Hannan and Quinn (1979) criteria when I consider the DCS approach. The estimate of the degrees

of freedom is small and the addition of this parameter to the model is statistically significant, this

means that the FAQVAR model is able to capture the atypical observations in the panel data.

Table 4.3: FAVARMA and FAQVAR model diagnostics

Diagnostic

Model λ logL AIC BIC HQ

FAVARMA 0.985 2623.881 -4815.762 -3818.692 -4839.630

FAQVAR 0.994 3250.469 -6066.939 -5065.253 -6090.917

Notes: λ is the maximum eigenvalue for the persistence matrix Φ̂. AIC, BIC and HQ are the Akaike,

Bayesian and Hannan and Quinn information criteria, respectively.

After the estimation of parameters and factor loadings, I produce and plot the impulse responses29

to a one standard-deviation contractionary monetary shock, or equivalently to a 116 basis point rise

in the Federal funds rate, as shown in Figure 4.3. I evaluate the impacts over some relevant variables

in the economy after scaling them in levels, although all impulse responses can be reproduced

from the informational set zt. As in Yamamoto (2019), the variables considered for analysis are:

Industrial production index, consumer price index, the exchange rate of Yen to US. dollar, the

civilian unemployment rate and new orders for durable goods. The dotted 95 percent confidence

bands are obtained using 1000 residual bootstrap iterations.
28The initial conditions are set by using the previous estimates from a model with one less factor. I start the loop

with a model with one-augmented factor whose estimates are robust to general initial conditions.
29I use R = 1000 bootstrap iterations from the algorithm described in Section 3.1.
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Figure 4.3: Impulses responses from a negative monetary policy shock

Note: Impulse responses from the FAQVAR model with eight factors, with 95 percent confidence intervals

in dotted lines.

Figure 4.4 shows a comparison between responses to negative monetary policy shocks implied by

the FAVARMA and FAQVAR models. The responses from the FAVAR model are influenced by

crash periods during the global financial crisis and the pandemic that distorted the effects on the

consumer price index, exchange rate, and new orders, this generates a greater decay during the first

months relative to the responses from the FAQVAR model. In comparison to the FAVARMAmodel,

the FAQVAR model effects on new durable goods orders are smoother and more conservative.

As expected from the proposed non-linear model, the responses from the FAQVAR model generate

hump shapes which raise the effect on the consumer price index and industrial production as soon
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as the interest rate reaches negative territory.30 In particular, the higher hump-shaped reaction

that starts at the 9th month might have originated from the quantitative easing policies during the

financial crisis and pandemic, which aimed to boost economic activity.

Figure 4.4: Impulses responses from a negative monetary policy shock, FAVARMA and FAQVAR
models

Note: Impulse responses in months from FAVARMA and FAQVAR models with eight factors.

Further, the FAQVAR model captures the turbulent episodes as atypical since it is modelled with

a heavy tail distribution. The impulse responses follow the expected pattern when a negative

monetary shock occurs: a decrease in industrial production, a decline in prices, a rise in the

30This pattern is also observed by Guerron-Quintana et al. (2021) in their non-linear dynamic factor model
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unemployment rate, a reduction in the number of orders, and an increase in the Yen/Dollar exchange

rate. The FAVAR model estimates of Bernanke et al. (2005) and the FAVARMA model of Defour

and Stevanović (2013) find similar patterns for a sample that extends until 2005 which did not

include last turbulent episodes.

4.5 Alternative Specifications

In this section I estimate additional models with different numbers of factors to verify the robustness

of the estimates in the FAQVAR model, and also I estimate the model using a subsample that does

not include the pandemic period. Figure 4.5 shows the impulse responses functions from models

that consider two, four and six augmented factors.

Figure 4.5: Impulses responses from a negative monetary policy shock and different number of
factors
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We can observe that the impacts derived from a model that only considers two factors are bigger

and exhibit some breaks in industrial production, unemployment rate and new orders. As the

dimension increases the responses are smoother in general. The paths of the shocks are similar in

all scenarios except for the reaction of the exchange rate when four factors are used. However, as

the model incorporates more information from the components the responses become quite similar,

for instance, when we compare the figures for six and eight factors. This may suggest informational

sufficiency from the informational variables (Forni and Gambetti, 2014).

4.6 Pre and Post COVID-19

I provide an additional robustness check by comparing the subsample up to the end of 2019 before

the declaration of the COVID-19 pandemic and the full sample that takes the pandemic into

account. As a benchmark exercise, Table 4.4 shows the estimates from the Gaussian FAVARMA

model for both samples. We can see the effect of the pandemic on the estimates of the FAVARMA

linear model, mainly affecting the estimates associated with the first factor. This means that a

Gaussian assumption in times of high uncertainty can have severe effects on the linear model and

policy assessment since the model does not accommodate extreme observations in comparison to a

heavy tail distribution.
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In contrast, the estimates and impulse responses from the FAQVAR model with a Student t dis-

tribution are almost identical for both samples. Figure 4.6 exhibits the impulse responses from

factors and monetary shocks to their same variables. The responses are identical for the subsample

until December 2019 and the full sample until May 2021. There are a couple of points to highlight;

first that the estimates of the FAQVAR model are robust to unprecedented behaviour of variables

during the pandemic, and second, that the estimates are stable given that the trajectory of the

responses are almost the same.

Figure 4.6: Impulses responses from factors and monetary policy shocks

In Table 4.5, I report the bootstrap mean estimates from the FAQVAR models using the subsample

until December 2019, and the full sample. In line with the findings of Bobeica and Hartwig (2022),

the average of the degrees of freedom estimates supports the model with heavy tails before and

after COVID-19 with a slightly lower average when considering the pandemic period.31 Further,

the intercept, persistence and updating matrices display similar entries across both samples.

31Also, the median of the bootstrap replications for the degrees of freedom display a decrease from 5.81 before the
pandemic to 5.38 for the fill sample.
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4.6.1 Zero Lower Bound

The sample considered also covers periods of zero lower bound (ZLB) in the Federal funds rate,

which may influence the impulse responses from the monetary policy shock if it occurs at the ZLB.

There are recent developments in the literature to deal with lower bounded policy rate, for instance

we may extend the FAQVAR model with the interactive VAR model of Caggiano, Castelnuovo,

and Pellegrino (2017), but this is extension is beyond the scope of this essay. I instead employ

the shadow rate series proposed by Wu and Xia (2016) replacing the effective Federal funds rate

observations during ZLB episodes: the first episode started in December 2008 and lasted until

December 2015, and the second one started in March 2020 as a quick response from the pandemic

threat. I re-estimate the model with the shadow rate and I show in Figure 4.7 the impulse responses

from the Federal funds rate and the shadow rate shocks.

Figure 4.7: Impulses responses from Federal funds rate and shadow rate shocks

Overall, the impulse responses are similar between the effective and shadow rates exhibiting hump-

shaped reactions from the score-driven FAQVAR model. As we can see on the top left response,

the shadow rate is even further negative in comparison to the FFR, as a result the initial impact
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for industrial production is relatively moderate. The prices still show a prize puzzle in the first

month, for then generate a disinflationary effect, and a lower increase in the medium term when

considering the shadow rate. Also, the unemployment rate and new orders generate slightly bigger

reactions from the shadow rate shock, and there is a more pronounced hump-shaped reaction in

the exchange rate response.

4.7 Conclusions

This work studies a factor-augmented quasi-vector autoregression model. The benefit of this ap-

proach is its flexibility as a non-linear model and its robustness to critical episodes such as the

US. financial crisis and the pandemic. Unlike traditional FAVARMA models, FAQVAR models

assume a Student t distribution model for their multivariate errors, and they are observation and

score-driven. The addition of these features generate stable estimates through turbulent episodes.

With respect to the base FAVARMA model, the FAQVAR model generates better in-sample fit

and the generated impulse responses are hump-shaped. An assessment of monetary policy in the

USA unveils that the characterised Student t errors provide a significant improvement to macro-

modelling relative to FAVARMA models and the impulse responses from factor and monetary

shocks are robust. Further, the impulse responses to a group of informational variables are in line

with economic theory.

The proposed model allows several extensions, for instance, the modelling of heteroskedastic er-

rors, time-varying parameters for the multivariate location model, specific modelling at or around

the lower bound with interactive or Markov-switching models, and additional identification for

structural shocks.
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4.8 Appendix

I group the data using Bernanke et al. (2005) categories from FRED-MD as of May 2021. The

associated index for the transformation of variables are: 1 if no transformation, 2 if first-differenced,

3 if two-times differenced, 4 if the variable is in logarithm, 5 when the variables are first differenced

after taking logarithms, 6 if twice differenced after taking logarithm, 7 when growth is differenced.

Real output and income

Variable Index Description Sample

1 RPI 5 Real Personal Income 1959:01-2021:05

2 W875RX1 5 Real personal income ex transfer receipts 1959:01-2021:05

3 INDPRO 5 IP Index 1959:01-2021:05

4 IPFPNSS 5 IP: Final Products and Nonindustrial Supplies 1959:01-2021:05

5 IPFINAL 5 IP: Final Products (Market Group) 1959:01-2021:05

6 IPCONGD 5 IP: Consumer Goods 1959:01-2021:05

7 IPDCONGD 5 IP: Durable Consumer Goods 1959:01-2021:05

8 IPNCONGD 5 IP: Nondurable Consumer Goods 1959:01-2021:05

9 IPBUSEQ 5 IP: Business Equipment 1959:01-2021:05

10 IPMAT 5 IP: Materials 1959:01-2021:05

11 IPDMAT 5 IP: Durable Materials 1959:01-2021:05

12 IPNMAT 5 IP: Nondurable Materials 1959:01-2021:05

13 IPMANSICS 5 IP: Manufacturing (SIC) 1959:01-2021:05

14 IPB51222s 5 IP: Residential Utilities 1959:01-2021:05

15 IPFUELS 5 IP: Fuels 1959:01-2021:05

16 CUMFNS 2 Capacity Utilization: Manufacturing 1959:01-2021:05
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Labor

Variable Index Description Sample

17 HWI 2 Help-Wanted Index for United States 1959:01-2021:04

18 HWIURATIO 2 Ratio of Help Wanted/No. Unemployed 1959:01-2021:04

19 CLF16OV 5 Civilian Labor Force 1959:01-2021:05

20 CE16OV 5 Civilian Employment 1959:01-2021:05

21 UNRATE 2 Civilian Unemployment Rate 1959:01-2021:05

22 UEMPMEAN 2 Average Duration of Unemployment (Weeks) 1959:01-2021:05

23 UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks 1959:01-2021:05

24 UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks 1959:01-2021:05

25 UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over 1959:01-2021:05

26 UEMP15T26 5 Civilians Unemployed for 15-26 Weeks 1959:01-2021:05

27 UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over 1959:01-2021:05

28 CLAIMSx 5 Initial Claims 1959:01-2021:05

29 PAYEMS 5 All Employees: Total nonfarm 1959:01-2021:05

30 USGOOD 5 All Employees: Goods-Producing Industries 1959:01-2021:05

31 CES1021000001 5 All Employees: Mining and Logging: Mining 1959:01-2021:05

32 USCONS 5 All Employees: Construction 1959:01-2021:05

33 MANEMP 5 All Employees: Manufacturing 1959:01-2021:05

34 DMANEMP 5 All Employees: Durable goods 1959:01-2021:05

35 NDMANEMP 5 All Employees: Nondurable goods 1959:01-2021:05

36 SRVPRD 5 All Employees: Service-Providing Industries 1959:01-2021:05

37 USTPU 5 All Employees: Trade, Transportation & Utilities 1959:01-2021:05

38 USWTRADE 5 All Employees: Wholesale Trade 1959:01-2021:05

39 USTRADE 5 All Employees: Retail Trade 1959:01-2021:05

40 USFIRE 5 All Employees: Financial Activities 1959:01-2021:05

41 USGOVT 5 All Employees: Government 1959:01-2021:05

42 CES0600000007 1 Avg Weekly Hours : Goods-Producing 1959:01-2021:05

43 AWOTMAN 2 Avg Weekly Overtime Hours : Manufacturing 1959:01-2021:05

44 AWHMAN 1 Avg Weekly Hours : Manufacturing 1959:01-2021:05
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Consumption

Variable Index Description Sample

45 DPCERA3M086SBEA 5 Real personal consumption expenditures 1959:01-2021:05

46 PCEPI 6 Personal Cons. Expend.: Chain Index 1959:01-2021:05

47 DDURRG3M086SBEA 6 Personal Cons. Exp: Durable goods 1959:01-2021:05

48 DNDGRG3M086SBEA 6 Personal Cons. Exp: Nondurable goods 1959:01-2021:05

49 DSERRG3M086SBEA 6 Personal Cons. Exp: Services 1959:01-2021:05

Housing starts and sales

Variable Index Description Sample

50 HOUST 4 Housing Starts: Total New Privately Owned 1959:01-2021:05

51 HOUSTNE 4 Housing Starts, Northeast 1959:01-2021:05

52 HOUSTMW 4 Housing Starts, Midwest 1959:01-2021:05

53 HOUSTS 4 Housing Starts, South 1959:01-2021:05

54 HOUSTW 4 Housing Starts, West 1959:01-2021:05

55 PERMIT 4 New Private Housing Permits (SAAR) 1960:01-2021:05

56 PERMITNE 4 New Private Housing Permits, Northeast (SAAR) 1960:01-2021:05

57 PERMITMW 4 New Private Housing Permits, Midwest (SAAR) 1960:01-2021:05

58 PERMITS 4 New Private Housing Permits, South (SAAR) 1960:01-2021:05

59 PERMITW 4 New Private Housing Permits, West (SAAR) 1960:01-2021:05

78



Factor-Augmented QVAR Models: An Observation-Driven Approach

Inventories and orders

Variable Index Description Sample

60 CMRMTSPLx 5 Real Manu. and Trade Industries Sales 1959:01-2021:04

61 RETAILx 5 Retail and Food Services Sales 1959:01-2021:05

62 ACOGNO 5 New Orders for Consumer Goods 1992:02-2021:04

63 AMDMNOx 5 New Orders for Durable Goods 1959:01-2021:05

64 ANDENOx 5 New Orders for Nondefense Capital Goods 1968:02-2021:05

65 AMDMUOx 5 Unfilled Orders for Durable Goods 1959:01-2021:05

66 BUSINVx 5 Total Business Inventories 1959:01-2021:04

67 ISRATIOx 2 Total Business: Inventories to Sales Ratio 1959:01-2021:04

Stock market

Variable Index Description Sample

68 S&P 500 5 S&P’s Common Stock Price Index: Composite 1959:01-2021:05

69 S&P: indust 5 S&P’s Common Stock Price Index: Industrials 1959:01-2021:05

70 S&P div yield 2 S&P’s Composite Common Stock: Dividend Yield 1959:01-2021:03

71 S&P PE ratio 5 S&P’s Composite Common Stock: Price-Earnings Ratio 1959:01-2021:04

72 VXOCLSx 1 VXO 1962:07-2021:05

79



Factor-Augmented QVAR Models: An Observation-Driven Approach

Exchange rates

Variable Index Description Sample

73 TWEXAFEGSMTHx 5 Trade Weighted U.S. Dollar Index: Major Currencies 1973:01-2021:05

74 EXSZUSx 5 Switzerland / U.S. Foreign Exchange Rate 1959:01-2021:05

75 EXJPUSx 5 Japan / U.S. Foreign Exchange Rate 1959:01-2021:05

76 EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate 1959:01-2021:05

77 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate 1959:01-2021:05
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Interest rates

Variable Index Description Sample

78 FEDFUNDS 2 Effective Federal Funds Rate 1959:01-2021:05

79 CP3Mx 2 3-Month AA Financial Commercial Paper Rate 1959:01-2020:03

79 CP3Mx 2 3-Month AA Financial Commercial Paper Rate 2020:05-2021:05

80 TB3MS 2 3-Month Treasury Bill 1959:01-2021:05

81 TB6MS 2 6-Month Treasury Bill 1959:01-2021:05

82 GS1 2 1-Year Treasury Rate 1959:01-2021:05

83 GS5 2 5-Year Treasury Rate 1959:01-2021:05

84 GS10 2 10-Year Treasury Rate 1959:01-2021:05

85 AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield 1959:01-2021:05

86 BAA 2 Moody’s Seasoned Baa Corporate Bond Yield 1959:01-2021:05

87 COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS 1959:01-2020:03

87 COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS 2020:05-2021:05

88 TB3SMFFM 1 3-Month Treasury C Minus FEDFUNDS 1959:01-2021:05

89 TB6SMFFM 1 6-Month Treasury C Minus FEDFUNDS 1959:01-2021:05

90 T1YFFM 1 1-Year Treasury C Minus FEDFUNDS 1959:01-2021:05

91 T5YFFM 1 5-Year Treasury C Minus FEDFUNDS 1959:01-2021:05

92 T10YFFM 1 10-Year Treasury C Minus FEDFUNDS 1959:01-2021:05

93 AAAFFM 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS 1959:01-2021:05

94 BAAFFM 1 Moody’s Baa Corporate Bond Minus FEDFUNDS 1959:01-2021:05
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Money and credit

Variable Index Description Sample

95 M1SL 6 M1 Money Stock 1959:01-2021:05

96 M2SL 6 M2 Money Stock 1959:01-2021:05

97 M2REAL 5 Real M2 Money Stock 1959:01-2021:05

98 BOGMBASE 6 St. Louis Adjusted Monetary Base 1959:01-2021:05

99 TOTRESNS 6 Total Reserves of Depository Institutions 1959:01-2021:05

100 NONBORRES 7 Reserves Of Depository Institutions 1959:01-2021:05

101 BUSLOANS 6 Commercial and Industrial Loans 1959:01-2021:05

102 REALLN 6 Real Estate Loans at All Commercial Banks 1959:01-2021:05

103 NONREVSL 6 Total Nonrevolving Credit 1959:01-2021:04

104 CONSPI 2 Nonrevolving consumer credit to Personal Income 1959:01-2021:04

105 MZMSL 6 MZM Money Stock 1959:01-2021:01

106 DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Outstanding 1959:01-2021:04

107 DTCTHFNM 6 Total Consumer Loans and Leases Outstanding 1959:01-2021:04

108 INVEST 6 Securities in Bank Credit at All Commercial Banks 1959:01-2021:05
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Prices

Variable Index Description Sample

109 WPSFD49207 6 PPI: Finished Goods 1959:01-2021:05

110 WPSFD49502 6 PPI: Finished Consumer Goods 1959:01-2021:05

111 WPSID61 6 PPI: Intermediate Materials 1959:01-2021:05

112 WPSID62 6 PPI: Crude Materials 1959:01-2021:05

113 OILPRICEx 6 Crude Oil, spliced WTI and Cushing 1959:01-2021:05

114 PPICMM 6 PPI: Metals and metal products: 1959:01-2021:05

115 CPIAUCSL 6 CPI : All Items 1959:01-2021:05

116 CPIAPPSL 6 CPI : Apparel 1959:01-2021:05

117 CPITRNSL 6 CPI : Transportation 1959:01-2021:05

118 CPIMEDSL 6 CPI : Medical Care 1959:01-2021:05

119 CUSR0000SAC 6 CPI : Commodities 1959:01-2021:05

120 CUSR0000SAD 6 CPI : Durables 1959:01-2021:05

121 CUSR0000SAS 6 CPI : Services 1959:01-2021:05

122 CPIULFSL 6 CPI : All Items Less Food 1959:01-2021:05

123 CUSR0000SA0L2 6 CPI : All items less shelter 1959:01-2021:05

124 CUSR0000SA0L5 6 CPI : All items less medical care 1959:01-2021:05

Average hourly earnings and consumer sentiment index

Variable Index Description Sample

125 CES0600000008 6 Avg Hourly Earnings : Goods-Producing 1959:01-2021:05

126 CES2000000008 6 Avg Hourly Earnings : Construction 1959:01-2021:05

127 CES3000000008 6 Avg Hourly Earnings : Manufacturing 1959:01-2021:05

128 UMCSENTx 2 Consumer Sentiment Index 1959:01-2021:05
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5 Conclusions and recommendations

5.1 Summary of thesis

In this dissertation I propose new dynamic conditional score models for analysing the scale or

volatility in emerging markets in the Americas. I also develop factor DCS models of the location

or mean for the study of monetary policy shocks in the U.S. The DCS framework is able to handle

atypical observations and big shocks given its flexibility for the modelling of time-varying scale or

location processes in a model. Multiple atypical shocks have arisen in the recent decades. Just to

name a few, we have the Asian crisis in 1998, the global financial crisis in 2008, the pandemic in

2020, and the world may soon experience a war shock.

Being able to develop models to capture these episodes, and not just omit them from the sample,

is relevant these days. Even more, the DCS approach is observation-driven since the model is

fully conditioned through a term proportional to the score of each model. This allows estimation

with traditional methods like maximum likelihood for example, which brings practitioners another

alternative to the estimation of models using Bayesian techniques.

My first essay proposes an alternative approach to deal with series of high persistence. I develop a

dynamic conditional score model for modelling time-varying volatilities with random shifts. I show

that this model explains much of the dynamics of volatility in emerging stock markets. The study

of South American equity markets reveals that they follow a pattern associated with a model with

short-memory and random shifts, rather than a long-memory model.

I apply the RS-Beta-t-EGARCH model and I find that multiple regime shifts in these stock markets

are related to events such as the U.S. financial crisis in 2007 and the current pandemic. The addition

of random shifts in the model reduces the impact of a volatility shock. A comparison between the

RS-Beta-t-EGARCH model with respect to the base Beta-t-EGARCH model shows gains in terms

of fit to the data and out-sample density forecasts.

I study score-driven copula models with components in my second essay. This work explores

the benefits of specifying both a long and short component, when modelling persistence in the

dependence parameter of score-driven copula models. In addition, the two components allow for a
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shorter persistence dynamic that captures transitory shocks and leaves the long-component for more

persistent shocks. I analyse three copula specifications: score-driven Clayton, score-driven rotated

Gumbel copula, and the score-driven t-copula models to bivariate equity markets in the American

continent. When I add the two-components to their structure they exhibit better in-sample fit

according to likelihood ratio tests in comparison to the single-component specification. Also, the

model with two components outperforms the unique component model in terms of out-of-sample

density forecasts.

In particular, the two-component score-driven t-copula model, which is a symmetric model cap-

turing positive and negative shocks, outperforms all the other models. The application of the two

components model shows that the time-varying dependencies are high in turmoil times associated

with the Asian crisis, the global financial crisis in 2008 and the COVID-19 pandemic, as a result

of external shocks. Then, I demonstrate the high persistence of the long-term component plotting

autocorrelation functions that display an hyperbolic decay behaviour. The short-term component

instead exhibits a shape similar to a white noise process. Further, the symmetric two-component

score-driven t-copula specification is robust to the COVID-19 crisis.

My third essay establishes a new factor-augmented quasi-vector autoregression model with heavy

tails. This FAQVAR model is driven by its score and it is able to accommodate critical episodes

in the sample of study for the U.S., which includes the last COVID-19 crisis. In comparison to

the standard Gaussian FAVARMA models, my model assumes a Student t distribution model for

its multivariate errors. These features generate stable estimates through turbulent episodes. Even

before the COVID-19 crisis, the proposed model supports a heavy tail specification with a small

estimate for the degrees of freedom.

Further, the FAQVAR model has a superior performance with a better in-sample fit than the

FAVARMA specifications. The generated impulse responses from the analysis of monetary policy

in the USA are hump-shaped, and their responses are in line with the economic theory. A negative

monetary shock contracts industrial production, the demand for new orders for durable goods, and

a rise in the unemployment rate. All impulses responses from the aggregate variables could be

generated because of the factor-augmented structure.

The study considers episodes of zero lower bound for the monetary policy instrument. The first is

a policy measure against the global financial crisis which started at the end of 2008 and lasted until
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December 2015. More recently, the Federal Reserve Board has set its funds rate at the zero lower

bound since March 2021 as a result of the pandemic. I replace these zero lower bound episodes

with a shadow rate, and the responses are fairly stable relative to the constrained Federal funds

rate.

5.2 Recommendations for further research

Dynamic conditional score models constitutes a relatively new approach to deal with time-varying

parameters such as the volatility, or the scale, and the location, or mean, as well as breaks and

regime changes, and other applications in the literature. The flexibility of this framework in the

modelling of heavy tails permits to capture outliers and atypical events. There are more frequent

uncertain events that suddenly may disrupt the world economy. Only considering the recent events

we can count the pandemic and the war conflict in Europe, which could trigger a large-scale shock in

the near future. The DCS framework brings a flexible solution for modelling these and other shocks

in a unique framework. Even more, given its flexibility it is feasible to estimate with frequentist

estimation methods.

My dissertation allows several avenues for research. Additional extensions may include the esti-

mation of common regimes of volatility in multivariate DCS models. The estimation of volatility

regimes in South American emerging markets suggest that these regimes may coincide across coun-

tries as a result of common regional or global shocks. There is a significant dependence of these

economies to big markets in the U.S. and China, for instance. Moreover, Latin American economies

relied historically on the U.S. dollar after hyperinflation episodes in the region during the 1980s and

1990s. This dollarization might mean another source of shocks from speculative flows of capitals in

times of high uncertainty. In addition, stock returns show a marked skewness, so we may consider

a more general distribution like the skewed generalized Student t distribution.

Fry, Martin and Tang (2010) highlight the importance of skewness during financial crises since

this asymmetry measure tends to switch from negative to positive with proper dynamics. Hence,

it would be relevant to model the co-skewness features in univariate and multivariate dynamic

conditional score models. In addition, researchers may explore common regimes of volatility in other

emerging equity markets in Africa, South-East Asia, Eastern Mediterranean or Western Pacific that

share some similarities to countries in the Americas since they are susceptible to multiple shocks
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and also are dependent on bigger economies.

The modelling of a set of variables and their measures of association within the DCS framework

could include multivariate copula models. These copulas utilise the residuals from the marginal

model of individual series. In this dissertation, I employ an asymmetric GARCH model for stock

returns, but further extensions such as fractional integration GARCH specifications or score-driven

dynamics for volatility could be explored. Moreover, if a score-driven marginal model is added into

two-component score-driven copulas, we could investigate gains in the efficiency of estimates as

suggested by Joe (2005) for the GARCH approach.

With respect to score-driven copulas, the addition of more components for the time-varying de-

pendence parameter could contribute to a better understanding in the dynamic of shocks. Three

components may model short-term, medium-term and long-term shocks, for example. I analysed

the benefits of modelling long-term and short components in bivariate settings, but richer dynamics

could be explored if we consider a panel of more than two countries and analyse common shocks

to their volatility dependence using the score-driven framework.

In addition, I considered three types of symmetric and asymmetric copulas, but there are further

copulas for modelling negative and positive shocks, and a variety of associations between variables

in the literature. For instance, more general Archimedean copulas (Genest and MacKay, 1986) or

a mix of copulas (Manguzvane and Muteba, 2020). In this dissertation, I focus on dependencies

in volatility; nonetheless, topics such as financial contagion and spillovers (Forbes and Rigobon,

2002) could explain the origin and sources of propagation shocks that escalate to and from more

developing and developed countries. The appropriate model of these shocks either with univariate

or multivariate models could serve as an input to value at risk (VaR) analysis for assessment of

credit risks of commercial financial institutions and central banks (Caballero, Lucas, Schwaab and

Zhang, 2020).

As in the work of Ayala et al. (2022) where they assess the Russian rouble exchange rate using

a two-component model, financial analysts could explore the multivariate dynamics of exchanges

rates in emerging markets using copula models with components. In times of distress or a rise in

the Federal funds rate in the USA could trigger a common big exchange rate shock in countries

highly dollarized. Recently, articles in the components literature by Linton and Wu (2020) and

Opschoor and Lucas (2021) adopt a specific dynamic for daytime and overnight volatility in stock
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markets. Thus, it would be interesting to shed light on the measures of association with copulas of

these types of volatility across different indices in a regional and a global scale.

Most applications using DCS models are in finance since this approach can handle large shocks, but

scarce work has been undertaken in the macroeconomic field. In this dissertation, I contribute to

this literature with a factor-augmented quasi VAR model that models directly atypical observations

through the assumed multivariate Student t distribution. In particular, I focus on monetary policy

shocks in the USA. A further analysis could be implemented for an empirical application in the

Euro area and other economies that faced similar large shocks as in the U.S. In addition, the model

could be extended to include commodity prices, unemployment, and other macroeconomic variables

to the main system. Doing so, we could explore additional responses from a variety of shocks in

the economy.

Adding more variables into the main system might require further restrictions (e.g. sign restrictions)

for the identification of the model beyond the recursive identification from the standard Cholesky

decomposition. Another avenue for research is the modelling of heteroskedastic errors, which will

allow for more interactions between variables. Along with these developments, a researcher may

consider time-varying parameters for the assumed fixed matrices of the FAQVAR model. Finally,

one might add more lags to the vector autoregressive component of this model in case the impulse

responses exhibit high persistence.

88



References

[1] Abbate, A., S. Eickmeier, W. Lemke, and M. Marcellino (2016), “The Changing International

Transmission of Financial Shocks: Evidence from a Classical Time-Varying FAVAR,” Journal

of Money, Credit and Banking 48(4), 573-601.

[2] Akaike, H. (1974), “A new look at the statistical model identification,” IEEE Transactions on

Automatic Control 19(6), 716-723.

[3] Alanya-Beltran, Willy (2022a), “Modelling Stock Returns Volatility with Dynamic Conditional

Score Models and Random Shifts,” Finance Research Letters 45, 102121.

[4] Alanya-Beltran, Willy (2022b), “Modelling Volatility Dependence with Score Copula Models,”

Mimeo.

[5] Alanya-Beltran, Willy (2022c), “Factor-Augmented QVAR Models: An Observation-Driven

Approach,” Mimeo.

[6] Alizadeh, S., M. Brandt, and F. Diebold (2002), “Range-based estimation of stochastic volatil-

ity models,” Journal of Finance 57, 1047-1091.

[7] Amisano, G., and R. Giacomini (2007), “Comparing density forecasts via weighted likelihood

ratio tests,” Journal of Business & Economic Statistics 25(2), 177-190.

[8] Angelini, G. and P. Gorgi (2018), “DSGE models with observation-driven time-varying volatil-

ity,” Economics Letters 171, 169-171.
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