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Abstract

Estimating the rank of the coefficient matrix is a major challenge in multivariate regression,
including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach
that allows for rank estimation. The key to our approach is reparameterizing the coefficient ma-
trix using its singular value decomposition and conducting Bayesian inference on the decomposed
parameters. By implementing a stochastic search variable selection on the singular values of the
coefficient matrix, the ultimate selected rank can be identified as the number of nonzero singu-
lar values. Our approach is appropriate for small multivariate regressions as well as for higher
dimensional models with up to about 40 predictors. In macroeconomic forecasting using VARs,
the advantages of shrinkage through proper Bayesian priors is well documented. Consquently,
the shrinkage approach proposed here that selects or average over low rank coefficient matrices is
evaluated in a forecasting environment. We show in both simulations and empirical studies that
our Bayesian approach provides forecasts that are highly competitive compared to two of most
promising benchmarks methods, dynamic factor models and factor augmented VARs.

1 Introduction

There has been a growing literature on the Bayesian vector autoregression (VAR) approach to macroe-

conomic forecasting, beginning with Sims (1980) who encouraged the rejection of the “incredible”

assumptions usually employed for identifying structural models and advocated the use of Bayesian

techniques. The Bayesian VAR approach can take advantage of VAR models that require only a small

set of plausible identification restrictions and can provide an entire posterior predictive distribution on

possible outcomes of the economy in the future which is more useful than approaches producing point

forecasts only, as pointed out by Littleman (1986).

Since the 1990s, VAR analyses have been largely used in macroeconomic studies and appli-

cations (e.g., Bernanke and Blinder, 1992; Sims, 1992; Leeper et al., 1996; Sims and Zha, 1998;

Robertson and Tallman, 1999). However, VAR models are often restricted to include only a small
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number of variables in practice (typically less than ten) because of the easily exhausted degrees of free-

dom, and forecasts based on such low dimensional VARs are likely to be contaminated as stressed by

Bernanke et al. (2005). The problem of estimating higher dimensional VARs is extremely challenging

and only a few contributions have been made to this literature. In general, these contributions can be

categorized roughly into two strands.

One strand utilizes Bayesian shrinkage to exploit the sparse structure of the coefficient matrix which

means that most of the VAR coefficients are so small that their effects are negligible. For instance,

Bańbura et al. (2010) implement Bayesian shrinkage on VAR coefficients through the utilization of a

natural conjugate extension of the Minnesota prior (e.g. Doan et al., 1984; Littleman, 1986) and show

that Bayesian VARs can perform better in forecasting high dimensional time series than factor models.

Koop (2013) imposes the stochastic search variable selection (SSVS) prior of George et al. (2008)

on each element of the coefficient matrix to conduct Bayesian shrinkage in an automatic fashion, and

implements a combination of the SVSS prior and the Minnesota prior to improve the forecast compared

to using each method alone.

In fact, because macroeconomic time series are highly correlated, the VAR coefficient matrix is not

only sparse but also low-rank; thus using a hybrid method of shrinkage and rank reduction leads to

additional gains on forecasting accuracy. This motivates the other strand which considers reduced

rank multivariate regressions. A typical work is Carriero et al. (2011) who investigated a reduced

rank approximation of the posterior estimate obtained using the Minnesota prior in a large VAR and

demonstrated that forecasts taking into account both sparsity and rank deficiency can outperform

those with either shrinkage or rank reduction (e.g. dynamic factor models) only. However, since the

rank is generally unknown, rank selection is a major challenge in forecasting methods involving rank

reduction. In practice, researchers have to rely on the sensitivity analysis of the results obtained

with alternative ranks. For example, Bernanke et al. (2005) determined how many factors should be

included in the factor augmented vector autoregression (FAVAR) approach by checking the sensitivity

of the results to different numbers of factors. Carriero et al. (2011) searched over all possible rank

values and identified the ‘true’ rank of their estimate as the one minimizing the forecast error. It is

worth mentioning that rank selection is also a challenging issue even in the classical literature on small-

scale reduced-rank regression models, since many tests or selecting procedures (e.g. Anderson, 1951;

Geweke, 1996; Kleibergen and Paap, 2002; Strachan, 2003) are developed but techniques estimating

the rank are rarely provided (e.g. Strachan and Inder, 2004). A common weakness of these procedures

and the aforementioned sensitivity analysis is that rank selection requires the evaluation of forecasting

performance over alternative rank values which can provide only point estimates of the rank and could

be cumbersome, especially in high dimensional cases.

In this paper we focus on forecasting using reduced rank models which could be either VARs or standard

multivariate regressions. This paper has two major contributions. The first is that we propose a novel

fully Bayesian approach which allows for rank estimation. The novelty of this approach is that we

reparameterize the coefficient matrix using its singular value decomposition and work on the posterior

inference for the reparameterized model with decomposed parameters. By imposing a mixture of
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a point mass and proper density as a prior on singular values (see Mitchell and Beauchamp, 1988;

Smith and Kohn, 1996, for examples in the variable selection context) we are able to estimate the

rank, noticing that the rank of the coefficient matrix is equivalent to the number of its non-zero

singular values. It is worth noting that in addition to rank selection, such Bayesian SSVS shrinks

nonzero singular values as well so that our approach can exploit both rank reduction and shrinkage

on the coefficient matrix simultaneously and automatically. Therefore, our approach can possibly add

value to forecasting accuracy in comparison with existing methods such as dynamic factor models and

FAVAR approach which emphasize rank reduction. Some numerical evidence for this claim can be

found in our simulation and empirical studies. Hoff (2007) also considers Bayesian model averaging

and dimension selection with the singular value decomposition, but he is interested in modelling the

multivariate data matrix as a reduced-rank mean matrix plus i.i.d. Gaussian noise which is completely

different from multivariate reduced-rank regressions that we examine. Koop (2013) uses the SSVS

prior for variable selection on the coefficient matrix, but our approach differs from his work in that

we conduct variable selection on the singular values of the coefficient matrix rather than on each VAR

coefficient. An additional advantage of applying this novel SVD reparameterization is that in this case

the problem of estimating the coefficient matrix can be broken up into a set of conditional problems of

estimating decomposed parameters for which proper non-informative priors can be determined and by

doing so we can avoid the imposition of priors that are too subjective and informative on the coefficient

matrix (cf. Yang and Berger, 1994). Although the singular value decomposition can ease the difficulty

of rank selection, it raises the challenging problem of simulating the left and right singular vectors that

are orthonormal and the posteriors of which are not recognizable as known distributions.

The second major contribution of this paper is that we devise a random walk Metropolis-Hastings

algorithm for sampling from such irregular posteriors subject to nonlinear constraints. The principal

feature of this algorithm is that the proposal for the next sample of the matrix of either left or right

singular vectors is made by slightly permuting its current value in a random direction characterized

by the product of a set of randomly chosen Givens rotation matrices. An advantage of this approach

is computational efficiency since the Givens matrices are sparse, however, it should be noted that any

random walk proposal in high dimensions will lead to a highly correlated Markov chain and low Monte

Carlo efficiency. In spite of this, we demonstrate that our approach can handle the so-called ‘medium’

and ‘medium-large’ scale VARs with 20 to 40 variables (e.g. Bańbura et al., 2010; Koop, 2013), while

for large scale VARs with over 50 predictors we might require an extremely large number of MCMC

iterations for convergence which could be computationally prohibitive.

The rest of the paper is organized as follows. Section 2 describes the reduced rank regression model

as well as the reparameterization using singular value decomposition and discusses the priors imposed

on the reparameterized model. In Section 3, we provide the posterior odds ratio and the conditional

posteriors required for the Bayesian SSVS and posterior inference via Gibbs sampler. Section 4 presents

our simulation study and Section 5 covers the empirical application. Section 6 concludes. All the

technical details are documented in the appendix.
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2 Model and Preliminaries

Let Yt = (y1t, y2t, . . . , yNt) be an N -dimensional time series in row vector form where N can be large.

Then a multivariate VAR(p) model can be expressed as

Yt = Yt−1A1 + Yt−2A2 + · · ·+ Yt−pAt−p + et (2.1)

where et is an error vector distributed independently N(0,Σ) across the time period t with Σ being a

N ×N positive definite matrix and {Ai; i = 1, 2, . . . , p} are N ×N autoregressive coefficient matrices.

It is assumed that means and trends in this model have been properly eliminated. Moreover, letting

Xt = (Yt−1, Yt−2, . . . , Yt−p) and Θ = (A′1, A
′
2, . . . , A

′
p)
′, one can write (2.1) alternatively as

Yt = XtΘ + et

or in a more convenient matrix notation

Y
T×N

= X
T×Np

Θ
Np×N

+ E
T×N

(2.2)

where Y = (Y ′1 , Y
′

2 , . . . , Y
′
T )′, X = (X ′1, X

′
2, . . . , X

′
T )′ and E = (e′1, e

′
2, . . . , e

′
T )′ such that vec(E) follows

the multivariate normal distribution N(0,Σ⊗ IT ). Throughout this paper, we assume that rank (Θ) =

r � N ≤ Np and r is unknown. It is worth noting that equation (2.2) that we shall frequently

work with should not necessarily be a VAR(p) model but it can also be a more general multivariate

regression model.

In the classical reduced rank regression literature, the key to conduct statistical inference is to repa-

rameterize the rank-deficient coefficient matrix as a product of two low-rank matrices, i.e.,

Y
T×N

= X
T×Np

Θ
Np×N

+ E
T×N

= X
T×Np

Φ
Np×r

· Ψ
r×N

+ E
T×N

(e.g., Geweke, 1996). However, in this paper we do not follow this standard procedure but make use

of a novel parametrization due to singular value decomposition Θ = UΛV ′ which gives

Y
T×N

= X
T×Np

U
Np×N

· Λ
N×N

· V ′
N×N

+ E
T×N

(2.3)

in which U is a semi-orthogonal matrix (i.e. U ′U = IN where IN is a N × N identity matrix),

Λ is a diagonal matrix containing nonnegative singular values and V is an orthogonal matrix such

that V ′V = V V ′ = IN . It should be noted that Λ contains only r positive diagonal elements un-

der the low-rank assumption that we impose. One can easily see that our parametrization in (2.3)

explicitly allows for rank selection since the rank of Θ is equivalent to the number of nonzero di-

agonal entities of Λ. Therefore, we are able to implement stochastic search variable selection (e.g.,

George and McCulloch, 1993) on the diagonal of Λ via Gibbs sampling to obtain the posterior dis-

tribution on rank r. Specifically, denote that Λ = diag{λ1, . . . , λN} where λj ≥ 0 for each j and in

4



order to facilitate variable selection we introduce the latent vector γ = (γ1, . . . , γN ) such that λj > 0

iff γj = 1 and λj = 0 iff γj = 0 following Mitchell and Beauchamp (1988); Smith and Kohn (1996);

Clyde et al. (1996); George and McCulloch (1997); Brown et al. (2002); Panagiotelis and Smith (2008)

and others. Furthermore, we specify the prior for each λi conditioning on γi as

p(λj | γj = 1) =

√
2τ2

π
exp

(
−
τ2λ2

j

2

)
· 1{λj > 0}, (2.4)

p(λj | γj = 0) = 1{λj = 0}, (2.5)

so that given γj = 1 the conditional prior distribution of λj is half-normal with hyper-parameter τ2

for each j. Basically, the half-normal prior works in approximately the same way as the normal prior

but restricts λj to be positive real numbers.

Notice that parameters U , Λ and V in (2.3) are unidentified. To see this, one can change the ordering

of the singular values in Λ and the ordering of the corresponding columns of U and V without altering

the product UΛV ′. Moreover, given that Θ is rank deficient, Λ contains many zeros in the diagonal

so that arbitrarily changing the ordering of the columns of either U or V corresponding to these zero

singular values would leave UΛV ′ unchanged. Furthermore, one can also rotate the subspace spanned

by those columns corresponding to zero singular values of either U or V without changing the value

of UΛV ′. In addition, one cannot identify the column signs of U and V either. These imply that the

posterior inference on either U , Λ or V would be senseless, but posterior inference on the coefficient

Θ and its rank r is still valid because they are invariant to rotations, permutations and changes of

sign in the matrices in the singular value decomposition and are thus identified. A great advantage

of working with the partially identified model (2.3) is that it allows for forecasting and rank selection

without requiring additional identifying restrictions and also gives us a large amount of computational

flexibility.

An empirical justification for model (2.3) is that it is an alternative for factor models since the product

XU can be regarded as certain "common factors" since the elements of this product are also linear

combinations of the predictors and the remaining product ΛV ′ can represent the associated "factor

loadings". It is in this sense that model (2.3) is directly comparable to dynamic factor models. If the

model (2.3) were augmented with an additional sparse coefficient matrix, then it would be comparable

to the factor augmented VARs. We leave this extension to future research but still compare the

forecasting performance of our model with both dynamic factor models and factor augmented VARs in

the simulation and empirical studies later on, noting that the former is a more appropriate benchmark.

2.1 Priors for Rank Selection and Smoothing

First of all, we make use of the notation qγ =
∑
j
γj to represent the model complexity which in our

case means the selected rank for the coefficient Θ. As revealed by Kohn et al. (2001), Fernandez et al.

(2001), Wolfe et al. (2004) and Scott and Berger (2010) in the context of linear regression, the prior on

γ can be extremely informative when the number of available candidates for selection is large. A typical
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example is the flat prior p(γ) = 2−N which imposes a strong belief on the latent vector γ with qγ being

approximately N/2 so that this prior heavily discriminates against low-rank models which are in fact

better predictive models under the assumption of dynamic factor models in macroeconomic forecasting

(e.g., Forni et al., 2000; Stock and Watson, 2011). Therefore, we address this issue by proposing the

following prior for γ

p(γ) =


1

qmax+1

(
N
qγ

)−1
, 0 ≤ qγ ≤ qmax

0 qγ > qmax,

where qmax is the highest rank we allow for. Notice that this prior is a slightly modified version of the

one implemented by George and McCulloch (1993), Cripps et al. (2005) and Panagiotelis and Smith

(2008) and it actually implies a uniform prior on qγ , i.e.,

p(qγ) =


(
N
qγ

)
· p(γ) = 1

qmax+1 , 0 ≤ qγ ≤ qmax

0 qγ > qmax.

Because the coefficient matrix Θ is assumed to have a small rank, it is unnecessary to put prior weight

on the entire model space and hence we restrict the selected rank not to exceed qmax. Under this prior,

p(γj = 1 | γ/j) =
qγ/j + 1

N + 1
, 0 ≤ qγ/j ≤ q

max (2.6)

p(γj = 0 | γ/j) =
N − qγ/j
N + 1

, 0 ≤ qγ/j ≤ q
max

and

p(γj = 1 | γ/j) = 0, qγ/j > qmax

p(γj = 0 | γ/j) = 1, qγ/j > qmax (2.7)

where γ/j =
(
γ1, . . . , γj−1, 0, γj+1, . . . , γN

)
and qγ/j =

∑
i 6=j

γi. Note that these conditional priors are

derived to facilitate the calculation of posterior odds ratio for the ultimate Bayesian rank selection.

The hyper-parameter τ2 in (2.4) is important for determining the degree of Bayesian shrinkage on

nonzero singular values. In this paper, we employ the prior log(τ2) ∼ N(a, b) with the hyper-priors

a ∼ N(0, 100) and b ∼ IG(101, 10100) following Panagiotelis and Smith (2008) and the simulation and

empirical studies later on will show that adding this level of hierarchy to the prior for τ2 does improve

the quality of the fits.

2.2 Priors on U and V

Due to the parametrization based on singular value decomposition adopted in (2.3), we require

quadratic constraints on U and V such that U ′U = IN and V ′V = V V ′ = IN . As a conse-

quence, imposing some common priors (e.g., the use of normal priors advocated for problems with
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linear constraints) on parameters U and V subject to the two constraints would lead to posteriors

with nonlinear constraints, but sampling from such irregular posteriors is rather challenging. In fact,

these constraints formulate two specific topological spaces in matrix algebra, one of which denoted by

VN,Np = {U(Np×N) | U ′U = IN} is the so-called Stiefel manifold containing all the Np × N semi-

orthogonal matrices and the other of which denoted by O(N) = {V (N ×N) | V ′V = V V ′ = IN} is

the orthogonal group of N × N orthogonal1 matrices (e.g., Muirhead, 2005, p.67). In this paper, we

will make use of uniform priors for parameters U and V over the spaces specified above which are first

introduced in Bayesian analysis by Strachan and Inder (2004) who notice that uniform distributions

are proper over these compact spaces. Koop et al. (2009) also implement such priors to simulate the

cointegration space in Bayesian analysis of cointegrated models. A brief demonstration on the con-

struction of uniform priors over these spaces are presented as follows. Interested readers are referred

to James (1954) and Muirhead (2005) for more conceptual and technical details.

The crucial point of deriving the uniform distribution on VN,Np is obtaining its volume which requires

integration over this space. James (1954) has proved the existence of an invariant measure on the Stiefel

manifold under orthogonal transformations. Moreover, it is also unique up to a finite multiplicative

constant. In order to define this measure, we introduce its differential form denoted by (U ′dU) which

in our case can be written as

(U ′dU) =

N∧
i=1

Np∧
j=i+1

u′jdui

where
(
U,U⊥

)
= (u1, . . . , uN | uN+1, . . . , uNp) forms a Np × Np orthogonal matrix such that the

columns of U⊥ are perpendicular to those of U and the symbol ‘
∧
’ is referred to as the ‘exterior

product’ (e.g., Muirhead, 2005, p.52). We are now able to give the following invariant measure on

VN,Np

µ(M) =

∫
M

(U ′dU), M⊆ VN,Np

and it is an invariant measure in the sense that µ(QM) = µ(MT ) = µ(M) for any orthogonal matrices

Q ∈ O(Np) and T ∈ O(N). It is worth noticing that each element U ∈ VN,Np can be regarded as the

coordinates of a point lying on the surface of dimension N2p − N(N + 1)/2 in the Euclidean space

of dimension N2p, because the constraint U ′U = IN implies N(N + 1)/2 functionally independent

restrictions on U . Therefore, the measure µ defined on the Stiefel manifold VN,Np is equivalent to the

ordinary Lebesgue measure. Due to Theorem 2.1.15 of Muirhead (2005, p.70) the volume of the Stiefel

manifold VN,Np can be evaluated as

Vol (VN,Np) =

∫
VN,Np

(U ′dU) =
2NπN

2p/2

ΓN (Np/2)

1In linear algebra, an orthogonal matrix is a square matrix with real elements the columns and rows of which are
orthogonal unit vectors which are usually referred to as orthonormal vectors. Thus, the terminologies ‘orthogonal’ and
‘orthonormal’ are sometimes used interchangeably when applied to such a matrix. We make a note here to avoid any
potential confusion between these two terminologies.
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where ΓN (·) is the multivariate Gamma function (e.g., Definition 2.1.10 of Muirhead, 2005, p.61).

Thus, the density of the uniform distribution over VN,Np can be expressed as

p(U) =
1

Vol (VN,Np)
=

ΓN (Np/2)

2NπN2p/2
(2.8)

for U ∈ VN,Np. Since the orthogonal group O(N) is actually a special case of the Stiefel manifold

VN,Np with p = 1, we can immediately obtain the density of the uniform distribution over O(N) which

is

p(V ) =
1

Vol (O(N))
=

ΓN (N/2)

2NπN2/2
(2.9)

for V ∈ O(N) with the differential form

(V ′dV ) =
N∧
i<j

v′jdvi

where vi and vj represent the ith and jth orthonormal columns of V respectively. So the invariant

measure can be then defined by

ν(S) =

∫
S

(V ′dV ), S ⊆ O(N),

which is the well known Haar measure.

2.3 Bayesian Shrinkage on Θ via SVD Parameterization

Given priors on the decomposed parameters (U,Λ, V ), an interesting question arises as to what Bayesian

shrinkage these priors would imply on the regression coefficient Θ via SVD parameterization. For the

sake of simplicity, we ignore the variable selection on the singular values for rank reduction and just

investigate Bayesian shrinkage. Specifically, suppose that Θ has full column rank so that the singular

values are all nonzero and shrinkage is imposed upon these singular values in a straightforward manner

by assuming independent half normal priors. The resulting prior for the coefficient matrix Θ in this

case is formulated in the proposition below.

Proposition 2.1. Providing the rotation matrices U and V have uniform priors given by (2.8) and

(2.9), the singular values {λi; i = 1, 2, . . . , N} are ordered decreasingly and follow i.i.d. N(0, 1/τ2)

priors, then the SVD parameterization Θ = UΛV ′ implies that the prior for the coefficient matrix Θ is

p(Θ)(dΘ) ∝ exp

(
−τ

2

2
trΛ2

)
(U ′dU)(dΛ)(V ′dV )

= exp

(
−τ

2

2
trΘ′Θ

)
|Θ′Θ|−

Np−N
2

 N∏
i<j

(λ2
i − λ2

j )

−1

(dΘ) (2.10)

in which (dΘ) represents the differential form of Θ and (dΛ) =
N∧
i=1

dλi denotes the differential form of
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Λ.

Notice that in Proposition 2.1 we set the singular values of Θ in the descending order for the ease

of presentation whereas the theory and implementation of our Bayesian approach in fact do not re-

quire such ordering. The expression (2.10) suggests a prior that shrinks Θ towards the equality of

its singular values. This phenomenon is also observed in the work of Yang and Berger (1994) which

focuses on the development of the reference prior for high dimensional covariance matrices. They

reparameterize the covariance matrix based on orthogonal decomposition and the resulting reference

prior (e.g., Yang and Berger, 1994, Eq. (15)) involves the term

(∏
i<j

(di − dj)

)−1

where di is the ith

largest eigenvalue of the covariance matrix under their notation thus that the reference prior puts much

weight near the region of the equality of the eigenvalues of the covariance matrix. Their reparameter-

ization slightly differs from the one we use in that in our case Θ is not necessarily positive definite so

that orthogonal decomposition is not appropriate and we apply singular value decomposition instead.

Yang and Berger (1994) suggest that such Bayesian shrinkage would produce a better eigenstructure

for a large covariance matrix estimator from which the estimation of Θ in our case may also benefit.

It is worth noting that the Minnesota prior of Doan et al. (1984) and Littleman (1986) shrinks the

coefficient matrix towards a random walk representation which can be regarded as a special case of

such Bayesian shrinkage since the coefficient matrix under this situation is actually an identity matrix.

3 Posterior Inference

Following the standard procedure of stochastic search variable selection (e.g., George and McCulloch,

1993; Koop et al., 2007; Panagiotelis and Smith, 2008), we extend the regression setup in (2.3) with

the latent variable γ and implement the Gibbs sampler relying on the resulting hierarchical Bayes

model which delivers an auxiliary Markov chain

U (0),Λ(0), V (0),Σ(0), γ(0), U (1),Λ(1), V (1),Σ(1), γ(1), . . . , U (k),Λ(k), V (k),Σ(k), γ(k), . . . (3.1)

where the superscript k indicates the kth sweep of the MCMC simulation. The Gibbs sampling scheme

guarantees that these values can be regarded as samples drawn from the joint posterior distribution

once the Markov chain (3.1) converges. The generation of this Markov chain requires the derivation

of conditional posteriors of interesting parameters which will be given in the subsequent parts of this

section. For simplifying the notation, we let Π = {U,Λ, V,Σ, γ} represent the set of parameters.

3.1 Posterior Odds Ratio and Conditional Posteriors

An ultimate goal of this paper is to develop a Bayesian technique that allows for rank selection on

the coefficient matrix Θ. In practice, we underpin this problem by tracing out the selected rank qγ at

every single sweep of the MCMC simulation and then estimating the rank using the posterior mode.

The selected rank at each sweep is calculated as the number of nonzero singular values λi’s which is
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determined by the value of γ simulated based on the following posterior odds ratio

p(γk = 0 | {Π\λk, γk}, Y,X)

p(γk = 1 | {Π\λk, γk}, Y,X)
(3.2)

for each integer 1 ≤ k ≤ N . Notice that the posterior odds ratio (3.2) indicates a MCMC step that

simulates γk with λk being analytically integrated out so that it avoids a reducible Markov chain.

Before deriving the posterior odds ratio (3.2), we find it more convenient to post-multiply V on both

sides of the model (2.3) and consider its a ‘canonical SUR’ form as follows

ỹ = vec(Ỹ ) = X̃λ+ vec(Ẽ) =


x̃1 0 · · · 0

0 x̃2 · · · 0
...

...
. . .

...

0 0 · · · x̃N




λ1

λ2

...

λN

+ ẽ (3.3)

in which we let Ỹ = Y V = (ỹ1, ỹ2, . . . , ỹN ), X̃ = XU = (x̃1, x̃2, . . . , x̃N ) and λ = (λ1, λ2, . . . , λN )′.

Moreover, we have Ẽ = EV ∼ N(0, V ′ΣV ⊗ IT ). The following theorem provides the posterior odds

ratio for each γk in this case.

Theorem 3.1 (Posterior Odds Ratio). Let γi 6=k represent all the remaining components of γ excluding

γk and denote that

Σ̃ = V ′Σ−1V =


σ̃11 σ̃12 · · · σ̃1N

σ̃21 σ̃22 · · · σ̃2N

...
...

. . .
...

σ̃N1 σ̃N2 · · · σ̃NN

 (3.4)

Given priors (2.4) and (2.5) on each singular value λk we can obtain the posterior odds ratio for each

γk based on (3.3) as below

p(γk = 0 | {Π\λk, γk}, Y,X)

p(γk = 1 | {Π\λk, γk}, Y,X)
=
p(γk = 0 | γi 6=k)
p(γk = 1 | γi 6=k)

·
(

4τ2

σ̃kkx̃
′
kx̃k + τ2

)−1/2

× exp

(
−1

2

(x̃′k(H/k + σ̃kkỹk))
2

σ̃kkx̃
′
kx̃k + τ2

)
/Φ

(
x̃′k(H/k + σ̃kkỹk)√
σ̃kkx̃

′
kx̃k + τ2

)
(3.5)

where H/k =
k−1∑
j=1

(ỹj − x̃jλj)σ̃jk +
N∑

j=k+1

(ỹj − x̃jλj)σ̃kj.

It is worth mentioning that the use of the general expression

p(γk = 0 | γi 6=k)
p(γk = 1 | γi 6=k)

in equation (3.5) gives the flexibility of using different priors on the latent vector γ for the posterior
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odds ratio. In our case, the uniform prior on qγ leads to

p(γk = 0 | γi 6=k)
p(γk = 1 | γi 6=k)

=


N−qγ/j
qγ/j+1 , 0 ≤ qγ/j ≤ qmax

∞, qγ/j > qmax

due to (2.6) and (2.7). This implies that when implementing a Metropolis-Hastings algorithm for

rank selection, we always have to accept γk = 0 if the selected rank at the current state reaches the

maximum qmax.

In addition to the posterior odds ratio for each γk given in Theorem 3.1, the conditional posterior for

each singular value λk is summarized as below.

Theorem 3.2. When γk = 1, the conditional posterior density of λk is

p(λk | {Π\λk, γk}, γk = 1, Y,X) ∝ exp

(
−
σ̃kkx̃

′
kx̃k + τ2

2

(
λk −

x̃′k(H/k + σ̃kkỹk)

σ̃kkx̃
′
kx̃k + τ2

)2
)
· 1{λk > 0}

so that in this situation it follows a truncated normal distribution. Given that γk = 0, the posterior

p(λk | {Π\λk, γk}, γk = 0, Y,X) only has probability mass at the point λk = 0 so that λk is equal to

zero with probability one under this situation.

Due to the use of the standard Jeffreys prior on Σ, i.e., p(Σ) ∝ |Σ|−(N+1)/2, we can easily show that

p(Σ | U,Λ, V, γ, Y,X) ∝ |Σ|−
T+N+1

2 exp

(
−1

2
tr
((
Y −XUΛV ′

)′ (
Y −XUΛV ′

)
Σ−1

))
and then it follows that

Σ | U,Λ, V, γ, Y,X ∼ IW
((
Y −XUΛV ′

)′ (
Y −XUΛV ′

)
, T
)

;

(e.g., Zellner, 1971, pp.225–227).

It should be noted that we derive the posteriors above by treating the hyper-parameter τ2 as fixed for

simplicity. In fact, the posterior inference on τ2 is quite standard and easily accommodated so that

we omit it here.

3.2 The Algorithm of Proposing Rotation Matrices U and V

A major difficulty in implementing the Bayesian approach developed in this paper is how one generates

the rotation matrices U and V arising due to SVD parameterization. First notice that the conditional

posteriors of U and V cannot be recognized as standard distributions since they are both proportional

to the likelihood such that

p(U | Λ, V,Σ, γ, Y,X) ∝ p(V | U,Λ,Σ, γ, Y,X)

∝ π(Y | U,Λ, V,Σ, γ,X)

11



∝ exp

(
−1

2
tr
((
Y −XUΛV ′

)′ (
Y −XUΛV ′

)
Σ−1

))
,

where γ has been included implicitly and π(Y | U,Λ, V,Σ, γ,X) denotes the likelihood function. There-

fore, we require a feasible Metropolis-Hastings algorithm to simulate rotation matrices U and V within

the Gibbs sampler.

Without any loss of generality, we only consider the development of the Metropolis-Hastings algorithm

of sampling U and the situation of V would be the same with the obvious change of the notation. Given

that the parameter U lies in the Stiefel manifold VN,Np = {U(Np×N) | U ′U = IN}, its orthonormal

column vectors actually span a N -dimensional plane that passes through the origin in the Euclidean

space RNp. As this plane moves in any possible directions (i.e. the column vectors forming it point in

any directions from the origin) in the coordinate system, U can vary over the entire Stiefel manifold

VN,Np. Thus, a natural way of proposing the candidate for the next sample of U (denoted by U∗) is

to slightly permute its value U (k) at the current sweep k in a random direction. In fact, the action of

‘randomly permuting’ U (k) can be characterized by postmultiplying it with a set of Givens rotation

matrices which have the following general form (e.g., Golub and Van-Loan, 2012)

G`,m =



`th mth

I 0 0 0 0

`th 0 cos θ 0 − sin θ 0

0 0 I 0 0

mth 0 sin θ 0 cos θ 0

0 0 0 0 I


(3.6)

where −π/2 < θ < π/2 denotes the angle of the rotation and G`,m is clearly orthogonal. For an arbi-

trary Givens matrix G`,m, the product U (k)G`,m implies that one rotates the `th and the mth columns

of U (k) in the two-dimensional plane spanned by these two vectors by θ radians counterclockwise. For

instance, suppose that we have

U (k) =


1 0

0 1

0 0


the columns of which are clearly orthonormal and span the xy plane in the standard R3 coordinate

system. Now we postmultiply U (k) by [
cos θ − sin θ

sin θ cos θ

]
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and it follows accordingly that

U∗ =


1 0

0 1

0 0


[

cos θ − sin θ

sin θ cos θ

]
=


cos θ − sin θ

sin θ cos θ

0 0

 .
As can be obviously observed, the column vectors of U∗ differ from those of Uk by θ radians in the xy

plane. Therefore, by randomly selecting a set of Givens matrices we are able to make a proposal for U .

Specifically, let Iγ(k) be the index set corresponding to the elements of γ(k) =
(
γ

(k)
1 , . . . , γ

(k)
j , . . . , γ

(k)
N

)
such that γ(k)

j = 1 at the sweep k and denote by I/γ(k) the set of remaining indices. Moreover,

suppose that q(k) stands for the rank of the coefficient Θ selected at the sweep k. The random walk

Metropolis-Hastings sampling procedure for U can be formulated as follows.

1. Select qmax − q(k) elements from the index set I/γ(k) without replacement and denote the set of

these elements by I+(k).

2. Construct the set Iγ+(k) = {Iγ(k), I+(k)}.

3. Let ∆(k) be the set of all possible 2-combinations out of the set Iγ+(k) and let δ(k) = (`,m) ∈ ∆(k)

be an arbitrary element in this set that implies a clockwise rotation in the plane spanned by the

`th and the mth columns of U (k). The Givens matrix corresponding to the rotation δ(k) (which

is denoted by G(k)
`,m) is given by (3.6) with θ replaced by θ(k) that we simulate from N

(
0, υ2

)
.

4. Randomly permute U (k) by postmultiplying the permutation matrix P (k) which is represented

by the product of a sequence of Givens matrices G(k)
`,m, i.e.,

P (k) =
∏

(`,m)∈∆(k)

G
(k)
`,m

in which the order of G(k)
`,m that forms the product P (k) is randomly chosen.

5. Given that the proposed random matrix U∗ = U (k)P (k), accept this proposal with probability

min
(

1, π(Y | U∗,Λ, V,Σ, γ(k), X)/π(Y | U (k),Λ, V,Σ, γ(k), X)
)

where π(Y | U∗,Λ, V,Σ, γ(k), X) and π(Y | U (k),Λ, V,Σ, γ(k), X) are the likelihood functions for

U∗ and U (k) respectively and here we use γ(k) to emphasize that the simulated rank does not

change when a proposal for U is made.

6. Set k = k + 1 and go back to step 1.

In practice, this procedure implies N × q(k) variables that one has to simulate at the kth sweep of the

MCMC scheme. If N = 20 and q(k) ≤ qmax = 10 for example, then we need to estimate up to 200

variables at each sweep which will certainly slow down the convergence of acceptance and rejection

samplers like the Metropolis-Hastings algorithm we propose here. Thus, an appropriate initial value

can largely increase the efficiency of this algorithm, especially when we are interested in Bayesian
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estimation for high dimensional problems. Fortunately, in the frequentist world, there is a long history

of considering maximum likelihood (ML henceforth) estimation of the multivariate linear regression

with low-rank assumption (e.g., Anderson, 1951; Davies and Tso, 1982; Izenman, 1975; Robinson, 1973,

1974; Tso, 1981) and such reduced-rank ML estimator can be easily implemented with its closed-form

expression being documented by Reinsel (2006, p. 4) in detail. Since the reduced-rank estimation

conventionally assumes that the rank is known, it is also necessary to determine a decent starting

value for the rank. A feasible approximation is the number of nonzero canonical correlations between

data matrices Y and X of the model (2.2) which can be obtained by the standard Wilk’s Lambda F

test for the significance of canonical dimensions.

4 Simulation

In this simulation study, we mainly investigate two issues, one is whether a Bayesian approach based on

singular value decomposition that averages over different ranks (henceforth BRA-SVD) can correctly

select the rank of the coefficient matrix and the other is to compare the one-step ahead out-of-sample

forecasting performance of our BRA-SVD method with existing benchmarks, the dynamic factor model

(DFM henceforth), the factor augmented vector autoregressive approach (FAVAR henceforth) and

ordinary least squares (OLS henceforth).

4.1 DFM and FAVAR

The DFM and FAVAR approaches are two of the most promising methods in the recent literature on

macroeconomic forecasting. Dynamic factor models generally assume that the information contained

in a large set of stationary macroeconomic variables can be summarized with a small number of

unobserved factors. In this paper, we use the dynamic factor model of Stock and Watson (2012) which

is expressed as below

Yit = δ′iFt−1 + uit, i = 1, . . . , N t = 1, . . . , T (4.1)

Xt = ΛFt + εt. (4.2)

where Xt denotes the informational time series at time t (in our simulation we have simply Xt = Yt),

Yt is a n×1 vector of target variables to forecast and Ft is the K×1 vector of latent factors where K is

small relative to n. Notice that the unobserved factors Ft in (4.2) are often estimated by the principal

components of the predictors. Due to (4.1) we formulate the one-step ahead forecast utilizing the first

lag of the first K principal components as regressors with the coefficient δ estimated using OLS. In

the simulation study, we consider the one-step ahead DFM forecast with 3 factors which is denoted by

DFM3.

The FAVAR framework of Bernanke et al. (2005) also takes advantage of the factor structure

Xt = ΛFt + εt
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but augments the unobserved factors into a standard VAR model[
Ft

Yit

]
= Φi(L)

[
Ft−1

Yit−1

]
+ vit, i = 1, 2, . . . , N t = 1, 2, . . . , T, (4.3)

in which Φi(L) is a lag polynomial operator of appropriate finite order. Similar to DFM forecasting,

we use the first K principal components of Xt as the estimate of the latent factors at time period t

to derive one-step ahead forecast. In the following numerical study, we utilize a simple version of the

FAVAR approach by assuming Φi(L) = Φi where Φi is a constant matrix in (4.3) and the resulting

model then coincides with a dynamic factor model given by (4.1) plus an AR(1) term. In order to

stress this point, we let DFM3-AR1 to represent the simplified FAVAR approach that we use with 3

factors.

4.2 Monte Carlo Designs and Results

We use two Monte Carlo designs to evaluate the forecasting performance of our Bayesian approach.

Specifically, the first Monte Carlo design is based on a standard VAR(1) model presented as below

Yt
1×N

= Yt−1
1×N
· Θ
N×N

+ Et
1×N

= Yt−1 · U
N×N

· Λ
N×N

· V ′
N×N

+Et

where the error term Et ∼ N (0,Σ). The coefficient matrix Θ is assumed to be rank-deficient with

rank (Θ) = 3 � N = 20. The number of variables is set to N = 20 to resemble what Bańbura et al.

(2010) call a ‘medium’ VAR. As found by Bańbura et al. (2010) and Koop (2013), adding more

variables to such a ‘medium’ VAR in practice only leads to minor gains in forecasting accuracy generally

and sometimes even cause deterioration in forecasting performance.

As demonstrated in Table 1, in this design we consider numerical experiments in different combinations

of autocorrelation and noise when the number of observations are T = 51, 101 and 201 respectively. In

cases where autocorrelation is high, we mean that the first three nonzero eigenvalues of the coefficient

matrix Θ are large and set ΛH = Λ = diag{0.9, 0.75, 0.5, 0, . . . , 0} in the simulation. Alternatively, in

situations of a low autocorrelation we set ΛL = 0.5ΛH . Moreover, when we refer to a large noise, we

set the covariance matrix of the error term ΣL = Σ ∼ WN (IN/N, N). Otherwise, in cases where the

noise is small we assume that ΣS = Σ ∼ WN (0.01× IN/N, N). Overall, we have 12 scenarios and

in each scenario we replicate 100 datasets for each of which T observations of N series are simulated

underlying this data generating process. For dataset i, we compute the posterior mode of the selected

rank of the coefficient Θ denoted by r̂i and the posterior estimate Θ̂i using BRA-SVD method based

on the first T − 1 observations. Furthermore, we formulate the one-step ahead forecast Ŷ i
T = Y i

T−1Θ̂i

where Y i
T−1 represents the (T − 1)th observation of dataset i. Thus, the average selected rank for each

scenario due to BRA-SVD can be interpreted as

r̂BRA-SVD =
1

100
·

100∑
i=1

r̂i
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Table 1: Monte Carlo designs.

T Autocorrelation (Λ) Noise (Σ)

Monte Carlo Design 1: VAR(1)
51 High Large
101 High Large
201 High Large
51 High Small
101 High Small
201 High Small
51 Low Large
101 Low Large
201 Low Large
51 Low Small
101 Low Small
201 Low Small

Monte Carlo Design 2: Regression
51 n.a. Large
101 n.a. Large
201 n.a. Large
51 n.a. Small
101 n.a. Small
201 n.a. Small

and the root mean squared error (henceforth RMSE) for the one-step ahead forecast compared with

the T th observation Y i
T based on BRA-SVD is

RMSEBRA-SVD =

√√√√ 1

100
·

100∑
i=1

∥∥∥Y i
T − Ŷ i

T

∥∥∥2

by noting that ‖ · ‖ denotes the Euclidean norm of a vector. In order to evaluate whether BRA-SVD

method can correctly select the rank of the coefficient matrix and compare its forecasting performance

with existing benchmarks, we report the average selected rank r̂BRA-SVD and the relative RMSEs of the

OLS, DFM3, DFM3-AR1 and BRA-SVD against the oracle estimator E[Y i
T | Y i

T−1] = Y i
T−1Θ which

should produce the best forecast but is infeasible in practice.

We consider the following regression model in the second Monte Carlo design

Y
T×N

= X
T×N

· Θ
N×N

+ E
T×N

= X · U
N×N

· Λ
N×N

· V ′
N×N

+E

where each row of E follows the multivariate normal distribution N (0,Σ) and we still assume that

rank (Θ) = 3 � N = 20. It should be noted that we generate exactly the same large and small noise

as those in VAR(1) model. Moreover, the coefficient matrix Θ is generated as the same as the ones in

cases of the high autocorrelation in Monte Carlo design 1 with Λ = diag{0.9, 0.75, 0.5, 0, . . . , 0}. The

6 different scenarios of this design have also been illustrated in Table 1. Elements of the data matrix

X for the regressors are generated i.i.d. from the standard normal distribution. It should be noted
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that the one-step ahead out-of-sample forecast of the regression model differs slightly from that of the

VAR(1) model. We take the BRA-SVD forecasting as an example. For dataset i, the posterior estimate

Θ̂i is first computed based on the first T − 1 observations of the dependent variable Y and regressors

X, and then the one-step ahead forecast for Y i
T is formulated with Ŷ i

T = Xi
T Θ̂i where Xi

T is the T th

observation of the regressors X in dataset i. Since the second design corresponds to the classical

reduced rank regression, we only report the average selected rank and the relative RMSEs of one-step

ahead forecasts of the OLS, DFM32 and BRA-SVD against the oracle estimator E[Y i
T | Xi

T ] = Xi
TΘ

based on 100 datasets randomly simulated from this model for each scenario. Finally, one should notice

that we set qmax = 10 when implementing the BRA-SVD approach so that our sampler would not be

allowed to visit a rank higher than 10 given that the value of true rank in both designs is 3.

Table 2 summarizes the average and median selected ranks in different scenarios for the two Monte

Carlo designs. Overall, the BRA-SVD can deliver posterior estimates which are more or less 3 when

the numbers of available observations are 100 and 200. In cases with 50 observations, the BRA-SVD

can either overestimate or underestimate the rank depending on the strength of noise. For the VAR(1)

model, the values of average and median selected ranks using BRA-SVD approach are quite stable

across different levels of autocorrelation in respect to the same level of noise. Moreover, Figures 1

and 2 illustrate the distribution of the selected rank using BRA-SVD regarding the 100 replicated data

sets for every scenario of each Monte Carlo design in detail. As can be seen clearly from these figures,

when the sample size is 50, the posterior mode of the rank is often not equal to the true value across

100 replications, especially for higher levels of noise. As sample size increases and noise decreases the

posterior mode of rank is nearly always equal to the true rank across 100 replications. Table 3 shows

that in terms of the RMSE measure the performance of BRA-SVD forecasting is closest to that of the

oracle estimator for both the VAR(1) and regression models. This is actually what we expect since

our Bayesian approach not only selects the correct rank but also shrinks the selected singular values

so that it can gain additional forecasting accuracy compared to methods like DFM and FAVAR which

only apply dimension reduction.

2In the context of static regression models, the terminology ‘DFM3’ is inappropriate. Here we just use it to refer to
a linear model where the dependent variables are regressed on the first 3 classical factors (e.g., Anderson, 1984) of the
regressors for the ease of presenting Table 3.
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Table 2: Average and median (in brackets) selected ranks.

T − 1 High/Large High/Small Low/Large Low/Small

VAR(1)
50 3.63(4) 2.27(2) 3.65(4) 1.90(2)
100 3.47(3) 2.98(3) 2.74(3) 2.40(2)
200 3.22(3) 3.05(3) 2.89(3) 2.84(3)

Regression
50 2.34(2) 3.03(3) n.a. n.a.
100 3.02(3) 3.04(3) n.a. n.a.
200 3.12(3) 3.05(3) n.a. n.a.

Note: The term ‘—/—’ refers to the combination of the levels of autocorrelation and noise which has been listed in
Table 1. For example, ‘High/Large’ means the case of both a high autocorrelation and a large noise for the VAR(1)

model. In the simulation study on the regression model, we do not take into account autocorrelation, and use the terms
‘High/Large’ and ‘High/Small’ just to represent the two cases of large and small noise respectively for simplicity..

Table 3: Relative RMSEs of OLS, DFM3, DFM3-AR1, BRA-SVD, Oracle forecasts.

T-1 AutoCorr./Noise OLS DFM3 DFM3-AR1 BRA-SVD Oracle

VAR(1)
50 High/Large 1.326 1.060 1.074 1.024 1.000
100 High/Large 1.124 1.045 1.050 1.016 1.000
200 High/Large 1.044 1.027 1.029 1.004 1.000
50 High/Small 1.272 1.051 1.061 1.020 1.000
100 High/Small 1.151 1.058 1.067 1.041 1.000
200 High/Small 1.064 1.035 1.036 1.011 1.000
50 Low/Large 1.266 1.024 1.038 1.010 1.000
100 Low/Large 1.124 1.026 1.031 1.009 1.000
200 Low/Large 1.024 1.011 1.010 1.002 1.000
50 Low/Small 1.322 1.037 1.060 1.028 1.000
100 Low/Small 1.171 1.028 1.033 1.017 1.000
200 Low/Small 1.039 1.004 1.007 1.005 1.000

Regression
50 n.a./Large 1.283 1.059 n.a. 1.026 1.000
100 n.a./Large 1.104 1.053 n.a. 1.017 1.000
200 n.a./Large 1.053 1.043 n.a. 1.011 1.000
50 n.a./Small 1.356 2.645 n.a. 1.039 1.000
100 n.a./Small 1.131 2.891 n.a. 1.030 1.000
200 n.a./Small 1.078 2.702 n.a. 1.014 1.000

Note: Relative RMSE is computed using the RMSE of each method divided by that of the benchmark, the oracle
estimator. All relative RMSE values reported in this paper are rounded up to three decimal places..
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Figure 1: Distributions of the selected ranks in different scenarios: VAR(1).
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Figure 2: Distributions of the selected ranks in different scenarios: Regression.
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5 Empirical Application

The empirical data we use are originally from Stock and Watson (2012) and are quarterly observations

from Q3 1960 until Q3 2008 (with earlier observations used for the lags of regressors as necessary)

on 20 macroeconomic aggregate time series selected for the ‘medium’ VAR model studied by Koop

(2013). All the variables are differenced or transformed to ensure stationarity, the details of which

can be found in an earlier manuscript version of Stock and Watson’s paper (Stock and Watson, 2009).

We consider h-step-ahead forecasts for h = 1, 2, 3 and 4. First, one-step-ahead forecasts in Q3 1985

are produced using the 100 observations of all variables from Q3 1960 to Q2 1985 as the dependent

variables, then the sample is rolled forwards so that an one-step-ahead forecast is produced for Q4

1985 using observations from Q4 1960 to Q3 1985 as a training sample and so on. Other multiple steps

ahead forecasts are generated in a similar way. Overall, 94− h rolling pseudo out-of-sample forecasts

are obtained for each h as a result. The relative RMSE with the DFM5 being the benchmark is used for

evaluating the performance of our BRA-SVD method in comparison with that of the OLS, DFM5 and

DFM5-AR1. Notice here that DFM5 and DFM5-AR1 refer to the DFM and simple FAVAR forecasts

with 5 factors respectively. All approaches make use of only one lag of the dependent variables (p = 1).

It should be noted that BRA-SVD forecasts are Bayesian forecasts E [Yt+h|It] where Yt+1, ..., Yt+h−1

as well as the unknown parameters are integrated out since they are simulated in an MCMC scheme.

When applying the BRA-SVD method, we simulate 150,000 sweeps of the Gibbs sampling scheme to

obtain the approximate samples from the posterior distribution and discard the first 100,000 sweeps

as burn-in for each rolling window. Moreover, we set qmax = 19 the maximal possible rank since the
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Table 4: h-step-ahead rolling forecasting performance.

OLS DFM5 DFM5-AR1 BRA-SVD

avg. Relative RMSE 1.026 1.000 0.888 0.917
h = 1 Best Performance 0(0%) 2(10%) 13(65%) 5(25%)

Estimated Rank n.a. n.a. n.a. 11.23

avg. Relative RMSE 1.060 1.000 0.917 0.919
h = 2 Best Performance 0(0%) 3(15%) 9(45%) 8(40%)

Estimated Rank n.a. n.a. n.a. 11.21

avg. Relative RMSE 0.986 1.000 0.927 0.947
h = 3 Best Performance 3(15%) 1(5%) 10(50%) 6(30%)

Estimated Rank n.a. n.a. n.a. 11.20

avg. Relative RMSE 0.986 1.000 0.938 0.959
h = 4 Best Performance 3(15%) 2(10%) 11(55%) 4(20%)

Estimated Rank n.a. n.a. n.a. 11.20

Figure 3: Distribution of the selected ranks based on BRA-SVD method.
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Note: Here we only consider the distribution of the selected ranks for the case of one-step-ahead forecast (h = 1) since
the rank distributions in other cases are almost the same.

data are centered.

Table 4 summarises the average relative RMSEs of the h-step-ahead (h = 1, 2, 3 and 4) forecasts based

on the OLS, DFM5, DFM5-AR1 and BRA-SVD methods, the mean selected rank obtained from BRA-

SVD and the number of variables for which each forecasting technique performs the best. The details

of the relative RMSEs of individual forecasts generated by these predictive techniques can be found

in Tables 5–8. The average relative RMSE of the h-step-ahead forecasting for each method is simply

the average of the relative RMSEs of the individual h-step-ahead forecasts derived by that method.

For h = 1, 2, 3 and 4, BRA-SVD always has the second lowest average relative RMSE with its overall
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Table 5: Relative RMSEs for OLS, DFM5, DFM5-AR1, BRA-SVD h-step-ahead forecasts, h = 1.

Variables Description OLS DFM5 DFM5-AR1 BRA-SVD

GDP251 Real GDP, quantity index 1.169 1.000 1.069 0.989
GDP252 Real Personal Cons. Exp., Index 1.195 1.000 1.009 0.984
IPS10 Industrial production index: total 1.236 1.000 0.922 1.107
UTL11 Capacity utilization: manufacturing 0.256 1.000 0.233 0.233
CES002 Employees, nonfarm: total private 0.982 1.000 0.709 0.882
LHUR Unemp. rate: All workers, 16 and over 1.213 1.000 0.967 1.048
HSFR Housing starts: Total 0.325 1.000 0.301 0.320
GDP273A Personal Cons Exp., price index 0.992 1.000 0.929 0.962
CPIAUCSL CPI all items 1.008 1.000 0.910 0.908
PSCCOMR Real spot market price index 1.224 1.000 0.980 0.996
CES275R Real avg hrly earnings: non-farm 0.966 1.000 0.819 0.887
FYFF Interest rate: federal funds 1.051 1.000 1.000 0.881
FYGT10 US treasury const. mat., 10-yr 1.072 1.000 0.955 1.041
FM1 Money stock: M1 1.255 1.000 1.017 1.057
FM2 Money stock: M2 1.017 1.000 1.028 0.986
FMRRA Depository inst reserves: total 1.193 1.000 0.911 1.002
EXRUS US effective exchange rate 1.082 1.000 0.987 0.998
FSPIN S&P stock price index: industrials 1.135 1.000 0.999 1.027
FMRNBA Depository inst reserves: nonborrowed 1.092 1.000 1.038 1.018
PWFSA Producer price index: finished goods 1.053 1.000 0.968 1.024

Table 6: Relative RMSEs for OLS, DFM5, DFM5-AR1, BRA-SVD h-step-ahead forecasts, h = 2.

Variables Description OLS DFM5 DFM5-AR1 BRA-SVD

GDP251 Real GDP, quantity index 1.188 1.000 0.933 0.950
GDP252 Real Personal Cons. Exp., Index 1.135 1.000 1.012 1.058
IPS10 Industrial production index: total 1.201 1.000 0.892 1.010
UTL11 Capacity utilization: manufacturing 0.515 1.000 0.423 0.431
CES002 Employees, nonfarm: total private 1.123 1.000 0.780 1.032
LHUR Unemp. rate: All workers, 16 and over 1.153 1.000 0.909 1.019
HSFR Housing starts: Total 0.439 1.000 0.420 0.425
GDP273A Personal Cons Exp., price index 0.999 1.000 0.994 0.943
CPIAUCSL CPI all items 0.999 1.000 0.986 0.944
PSCCOMR Real spot market price index 1.415 1.000 0.912 0.906
CES275R Real avg hrly earnings: non-farm 1.050 1.000 0.924 1.001
FYFF Interest rate: federal funds 1.018 1.000 0.907 0.812
FYGT10 US treasury const. mat., 10-yr 1.010 1.000 0.966 0.936
FM1 Money stock: M1 0.987 1.000 0.961 0.961
FM2 Money stock: M2 1.130 1.000 1.040 1.035
FMRRA Depository inst reserves: total 1.151 1.000 1.020 1.031
EXRUS US effective exchange rate 0.978 1.000 0.956 0.936
FSPIN S&P stock price index: industrials 1.068 1.000 1.000 1.003
FMRNBA Depository inst reserves: nonborrowed 1.620 1.000 1.287 0.971
PWFSA Producer price index: finished goods 1.018 1.000 1.008 0.969
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Table 7: Relative RMSEs for OLS, DFM5, DFM5-AR1, BRA-SVD h-step-ahead forecasts, h = 3.

Variables Description OLS DFM5 DFM5-AR1 BRA-SVD

GDP251 Real GDP, quantity index 1.113 1.000 0.953 1.032
GDP252 Real Personal Cons. Exp., Index 1.021 1.000 0.992 1.015
IPS10 Industrial production index: total 1.127 1.000 0.916 1.003
UTL11 Capacity utilization: manufacturing 0.744 1.000 0.603 0.623
CES002 Employees, nonfarm: total private 1.171 1.000 0.857 1.057
LHUR Unemp. rate: All workers, 16 and over 1.122 1.000 0.949 1.004
HSFR Housing starts: Total 0.569 1.000 0.557 0.574
GDP273A Personal Cons Exp., price index 1.007 1.000 0.992 0.975
CPIAUCSL CPI all items 0.988 1.000 0.993 0.982
PSCCOMR Real spot market price index 0.970 1.000 0.978 0.988
CES275R Real avg hrly earnings: non-farm 1.026 1.000 0.956 1.010
FYFF Interest rate: federal funds 0.965 1.000 0.923 0.864
FYGT10 US treasury const. mat., 10-yr 0.989 1.000 1.014 0.998
FM1 Money stock: M1 0.947 1.000 0.941 0.936
FM2 Money stock: M2 1.043 1.000 0.966 0.983
FMRRA Depository inst reserves: total 0.999 1.000 0.996 0.978
EXRUS US effective exchange rate 0.932 1.000 0.964 0.950
FSPIN S&P stock price index: industrials 0.987 1.000 0.983 0.962
FMRNBA Depository inst reserves: nonborrowed 0.992 1.000 0.991 0.994
PWFSA Producer price index: finished goods 1.003 1.000 1.015 1.003

Table 8: Relative RMSEs for OLS, DFM5, DFM5-AR1, BRA-SVD h-step-ahead forecasts, h = 4.

Variables Description OLS DFM5 DFM5-AR1 BRA-SVD

GDP251 Real GDP, quantity index 1.019 1.000 0.918 0.963
GDP252 Real Personal Cons. Exp., Index 1.006 1.000 0.938 0.987
IPS10 Industrial production index: total 1.082 1.000 0.960 1.029
UTL11 Capacity utilization: manufacturing 0.847 1.000 0.689 0.726
CES002 Employees, nonfarm: total private 1.122 1.000 0.865 1.032
LHUR Unemp. rate: All workers, 16 and over 1.114 1.000 0.990 1.015
HSFR Housing starts: Total 0.687 1.000 0.667 0.692
GDP273A Personal Cons Exp., price index 1.007 1.000 0.986 0.979
CPIAUCSL CPI all items 0.979 1.000 0.985 0.980
PSCCOMR Real spot market price index 0.975 1.000 0.973 0.973
CES275R Real avg hrly earnings: non-farm 0.977 1.000 0.930 0.962
FYFF Interest rate: federal funds 0.987 1.000 0.940 0.949
FYGT10 US treasury const. mat., 10-yr 0.946 1.000 0.951 0.955
FM1 Money stock: M1 1.003 1.000 0.984 0.980
FM2 Money stock: M2 0.989 1.000 0.978 0.977
FMRRA Depository inst reserves: total 1.024 1.000 1.015 1.024
EXRUS US effective exchange rate 0.950 1.000 0.994 0.969
FSPIN S&P stock price index: industrials 1.003 1.000 0.990 0.988
FMRNBA Depository inst reserves: nonborrowed 1.005 1.000 1.005 1.003
PWFSA Producer price index: finished goods 1.002 1.000 0.997 0.998
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performance slightly inferior to that of DFM5-AR1. In terms of individual forecasts, DFM5-AR1 has

the lowest RMSEs amongst all models for the most individual series while BRA-SVD comes to the

second place. It is worth noting that the BRA-SVD method provides the most accurate one-step-ahead

forecasts for three variables: GDP251, CPIAUCSL and FYFF, which respectively represent the Real

GDP, CPI and US Federal funds that are often the indicators of primary interest in macroeconomic

forecasting with VAR models (e.g., Christiano et al., 1999; An and Schorfheide, 2007). In general,

these results support the use of BRA-SVD as an alternative to factor models for forecasting. In fact,

there is no consensus on which method possesses the optimal forecasting performance. As one may

notice, when the forecast horizon increases to h = 3 and 4, even the OLS is competitive for the

DFM5 and also it can outperform the other models in forecasting three specific variables. Therefore,

the selection of forecasting methodologies really depends on the variable of interest and the forecast

horizon. Finally, Figure 3 shows the distribution of the ranks selected by BRA-SVD for the coefficient

matrix in the VAR(1) model investigated here. It has a clear mode around 10 with ranks outside the

range between 8 and 15 being quite unlikely.

6 Conclusion

In this paper, we propose a novel fully Bayesian approach that can address the important issue of

rank selection in multivariate regressions. We assess the performance of our Bayesian approach for the

‘medium’ VAR in both simulation and empirical studies, and the results show that this approach can

correctly select the rank, and provides forecasting accuracy that is highly competitive in comparison

with dynamic factor models and factor augmented VARs. Since the ‘medium’ VAR can generate

forecasts that remain rather robust when more predictors are included, as noticed by Bańbura et al.

(2010) and Koop (2013), our approach which can handle the ‘medium’ and ‘medium-large’ VARs with

20 to 40 predictors could be a competing candidate in forecasting toolbox for macroeconometricans.

Finally, a future research topic is worth mentioning here. In this paper, we adopt the SVD repa-

rameterization for the coefficient matrix to achieve rank selection, because we are also interested in

the canonical correlations between the independent variable and the predictors, and the left and right

singular vectors actually reveal such correlations. However, if one only focuses on rank estimation,

the reparameterization based on the QR decomposition may deserve further attention although the

appropriate sampling scheme for such a model could be challenging. In fact, working with the repa-

rameterized model due to different matrix decompositions might be a promising avenue to estimate

invariants (e.g. determinant, rank, trace and so on) under these transformations, and this is quite a

novel research direction compared to classical methodologies.
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A Appendix

Proof of Proposition 2.1. According to James (1954, pp. 70-71), we can obtain the Jacobian of the

SVD parameterization shown as below

(dΘ) =

(
N∏
i=1

λi

)Np−N N∏
i<j

(λ2
i − λ2

j )(U
′dU)(dΛ)(V ′dV ) (A.1)

in which we let (dΘ) be the differential form of Θ and denote that (dΛ) is the differential form of Λ

which is equivalent to
N∧
i=1

dλi, the exterior product of the N diagonal elements of dΛ. The i.i.d. normal

priors for λis imply that

p(Λ)(dΛ) ∝
N∏
i=1

exp

(
−τ

2λ2
i

2

)
(dΛ) = exp

(
−τ

2

2
trΛ2

)
(dΛ).

Thus, noting the uniform priors on U and V given in (2.8) and (2.9) and the Jacobian in (A.1) we

have

p(Θ)(dΘ) ∝ exp

(
−τ

2

2
trΛ2

)
(U ′dU)(dΛ)(V ′dV )

= exp

(
−τ

2

2
trΘ′Θ

)
|Θ′Θ|−

Np−N
2

 N∏
i<j

(λ2
i − λ2

j )

−1

(dΘ).

The proof is complete.

Proof of Theorem 3.1. First of all, notice that the likelihood functions for the model (2.3) and its SUR

form (3.3) are equivalent

p(Y | U,Λ, V,Σ, γ,X) ∝ |Σ|−
T
2 exp

(
−1

2
tr
((
Y −XUΛV ′

)′ (
Y −XUΛV ′

)
Σ−1

))
= |Σ|−

T
2 exp

(
−1

2
(ỹ − X̃λ)′(V ′Σ−1V ⊗ IT )(ỹ − X̃λ)

)
= |Σ|−

T
2 exp

(
−1

2
(ỹ − X̃λ)′(Σ̃⊗ IT )(ỹ − X̃λ)

)
by noting (3.4) so that the posterior odd ratio obtained in this theorem can apply directly to our

original model.

The derivation of the posterior odds ratio involves two scenarios where γk = 0 and γk = 1 and they

are treated separately in this proof. Throughout this proof, we make use of the notation {Π\λk, γk}
to stand for all the interest parameters exclusive of {λk, γk}.

Initially, we examine the scenario where γk = 1. Note that by combining the likelihood and priors

p(λk, γk = 1 | {Π\λk, γk}, Y,X)
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where ỹi − X̃iλi is a T × 1 vector for any i = 1, 2, . . . , N . Thus, we have
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kỹk

σ̃kkx̃
′
kx̃k + τ2

))
×
√

2τ2

π
1{λk > 0}p(γk = 1 | γi 6=k)

∝ exp

(
−
σ̃kkx̃

′
kx̃k + τ2

2

((
λk −

x̃′k(H/k + σ̃kkỹk)
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By integrating out λk, we can obtain
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2

σ̃kkx̃
′
kx̃k + τ2

))

∝ p(γk = 1 | γi 6=k) ·
(

2π

σ̃kkx̃
′
kx̃k + τ2

)1/2
(

1− Φ

(
−
x̃′k(H/k + σ̃kkỹk)√
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2ỹ′kH/k + σ̃kkỹ
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2

σ̃kkx̃
′
kx̃k + τ2

))

= p(γk = 1 | γi 6=k) ·
(

4τ2

σ̃kkx̃
′
kx̃k + τ2

)1/2

Φ

(
x̃′k(H/k + σ̃kkỹk)√
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When γk = 0, we can similarly get
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2ỹ′kH/k + σ̃kkỹ
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As a consequence,
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)2
σ̃kkx̃

′
kx̃k

)

× exp

(
−1

2

(
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The posterior odds ratio is then given by

p(γk = 0 | {Π\λk, γk}, Y,X)
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The proof is complete.

Proof of Theorem 3.2. The results follow immediately from (A.2) and (A.3).
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